
Computer Vision and Imaging in Intelligent
Transportation Systems

Computer Vision and Imaging in Intelligent
Transportation Systems

Edited by

Robert P. Loce
Conduent Labs, Webster, NY, USA

Raja Bala
Samsung Research America, Richardson, TX, USA

Mohan Trivedi
University of California, San Diego, CA, USA

This edition first published 2017
© 2017 John Wiley & Sons Ltd

Registered Offices
John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA
John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom

For details of our global editorial offices, for customer services and for information about how to apply for permission to
reuse the copyright material in this book please see our website at www.wiley.com.

The right of the author to be identified as the author of this work has been asserted in accordance with the Copyright,
Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form
or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright,
Designs and Patents Act 1988, without the prior permission of the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in
electronic books.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and
product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective
owners. The publisher is not associated with any product or vendor mentioned in this book.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this
book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this
book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. It is sold on the
understanding that the publisher is not engaged in rendering professional services and neither the publisher nor the author
shall be liable for damages arising herefrom. If professional advice or other expert assistance is required, the services of a
competent professional should be sought

Library of Congress Cataloging‐in‐Publication data applied for

ISBN: 9781118971604

A catalogue record for this book is available from the British Library.

Cover design: Wiley
Cover image: ©Anouar Akrouh / Eyeem / Gettyimages

Setin 10/12pt Warnock by SPi Global, Pondicherry, India

10 9 8 7 6 5 4 3 2 1

v

Contents

List of Contributors xiii
Preface xvii
Acknowledgments xxi
About the Companion Website xxiii

1 Introduction 1
Raja Bala and Robert P. Loce

1.1 Law Enforcement and Security 1
1.2 Efficiency 4
1.3 Driver Safety and Comfort 5
1.4 A Computer Vision Framework for Transportation Applications 7
1.4.1 Image and Video Capture 8
1.4.2 Data Preprocessing 8
1.4.3 Feature Extraction 9
1.4.4 Inference Engine 10
1.4.5 Data Presentation and Feedback 11
 References 12

Part I Imaging from the Roadway Infrastructure 15

2 Automated License Plate Recognition 17
Aaron Burry and Vladimir Kozitsky

2.1 Introduction 17
2.2 Core ALPR Technologies 18
2.2.1 License Plate Localization 19
2.2.1.1 Color‐Based Methods 20
2.2.1.2 Edge‐Based Methods 20
2.2.1.3 Machine Learning–Based Approaches 23
2.2.2 Character Segmentation 24
2.2.2.1 Preprocessing for Rotation, Crop, and Shear 25
2.2.2.2 Character‐Level Segmentation 28
2.2.3 Character Recognition 28
2.2.3.1 Character Harvesting and Sorting 30

Contentsvi

2.2.3.2 Data Augmentation 31
2.2.3.3 Feature Extraction 32
2.2.3.4 Classifiers and Training 34
2.2.3.5 Classifier Evaluation 37
2.2.4 State Identification 38
 References 42

3 Vehicle Classification 47
Shashank Deshpande, Wiktor Muron and Yang Cai

3.1 Introduction 47
3.2 Overview of the Algorithms 48
3.3 Existing AVC Methods 48
3.4 LiDAR Imaging‐Based 49
3.4.1 LiDAR Sensors 49
3.4.2 Fusion of LiDAR and Vision Sensors 50
3.5 Thermal Imaging‐Based 53
3.5.1 Thermal Signatures 53
3.5.2 Intensity Shape‐Based 56
3.6 Shape‐ and Profile‐Based 58
3.6.1 Silhouette Measurements 60
3.6.2 Edge‐Based Classification 65
3.6.3 Histogram of Oriented Gradients 67
3.6.4 Haar Features 68
3.6.5 Principal Component Analysis 69
3.7 Intrinsic Proportion Model 72
3.8 3D Model‐Based Classification 74
3.9 SIFT‐Based Classification 74
3.10 Summary 75
 References 75

4 Detection of Passenger Compartment Violations 81
Orhan Bulan, Beilei Xu, Robert P. Loce and Peter Paul

4.1 Introduction 81
4.2 Sensing within the Passenger Compartment 82
4.2.1 Seat Belt Usage Detection 82
4.2.2 Cell Phone Usage Detection 83
4.2.3 Occupancy Detection 83
4.3 Roadside Imaging 84
4.3.1 Image Acquisition Setup 84
4.3.2 Image Classification Methods 85
4.3.2.1 Windshield and Side Window Detection from HOV/HOT Images 86
4.3.2.2 Image Classification for Violation Detection 90
4.3.3 Detection‐Based Methods 94
4.3.3.1 Multiband Approaches for Occupancy Detection 94
4.3.3.2 Single Band Approaches 95
 References 96

Contents vii

5 Detection of Moving Violations 101
Wencheng Wu, Orhan Bulan, Edgar A. Bernal and Robert P. Loce

5.1 Introduction 101
5.2 Detection of Speed Violations 101
5.2.1 Speed Estimation from Monocular Cameras 102
5.2.2 Speed Estimation from Stereo Cameras 108
5.2.2.1 Depth Estimation in Binocular Camera Systems 109
5.2.2.2 Vehicle Detection from Sequences of Depth Maps 110
5.2.2.3 Vehicle Tracking from Sequences of Depth Maps 113
5.2.2.4 Speed Estimation from Tracking Data 114
5.2.3 Discussion 115
5.3 Stop Violations 115
5.3.1 Red Light Cameras 115
5.3.1.1 RLCs, Evidentiary Systems 116
5.3.1.2 RLC, Computer Vision Systems 118
5.3.2 Stop Sign Enforcement Systems 123
5.4 Other Violations 125
5.4.1 Wrong‐Way Driver Detection 125
5.4.2 Crossing Solid Lines 126
 References 126

6 Traffic Flow Analysis 131
Rodrigo Fernandez, Muhammad Haroon Yousaf, Timothy J. Ellis, Zezhi Chen
and Sergio A. Velastin

6.1 What is Traffic Flow Analysis? 131
6.1.1 Traffic Conflicts and Traffic Analysis 131
6.1.2 Time Observation 132
6.1.3 Space Observation 133
6.1.4 The Fundamental Equation 133
6.1.5 The Fundamental Diagram 133
6.1.6 Measuring Traffic Variables 134
6.1.7 Road Counts 135
6.1.8 Junction Counts 135
6.1.9 Passenger Counts 136
6.1.10 Pedestrian Counts 136
6.1.11 Speed Measurement 136
6.2 The Use of Video Analysis in Intelligent Transportation Systems 137
6.2.1 Introduction 137
6.2.2 General Framework for Traffic Flow Analysis 137
6.2.2.1 Foreground Estimation/Segmentation 139
6.2.2.2 Segmentation 140
6.2.2.3 Shadow Removal 140
6.2.2.4 Morphological Operations 141
6.2.2.5 Approaches Based on Object Recognition 141
6.2.2.6 Interest‐Point Feature Descriptors 141
6.2.2.7 Appearance Shape–Based Descriptors 142

Contentsviii

6.2.2.8 Classification 142
6.2.2.9 Analysis 143
6.2.3 Application Domains 143
6.3 Measuring Traffic Flow from Roadside CCTV Video 144
6.3.1 Video Analysis Framework 144
6.3.2 Vehicle Detection 146
6.3.3 Background Model 146
6.3.4 Counting Vehicles 149
6.3.5 Tracking 150
6.3.6 Camera Calibration 150
6.3.7 Feature Extraction and Vehicle Classification 152
6.3.8 Lane Detection 153
6.3.9 Results 155
6.4 Some Challenges 156
 References 159

7 Intersection Monitoring Using Computer Vision Techniques for Capacity,
Delay, and Safety Analysis 163
Brendan Tran Morris and Mohammad Shokrolah Shirazi

7.1 Vision‐Based Intersection Analysis: Capacity, Delay, and Safety 163
7.1.1 Intersection Monitoring 163
7.1.2 Computer Vision Application 164
7.2 System Overview 165
7.2.1 Tracking Road Users 166
7.2.2 Camera Calibration 169
7.3 Count Analysis 171
7.3.1 Vehicular Counts 171
7.3.2 Nonvehicular Counts 173
7.4 Queue Length Estimation 173
7.4.1 Detection‐Based Methods 174
7.4.2 Tracking‐Based Methods 175
7.5 Safety Analysis 177
7.5.1 Behaviors 178
7.5.1.1 Turning Prediction 179
7.5.1.2 Abnormality Detection 179
7.5.1.3 Pedestrian Crossing Violation 179
7.5.1.4 Pedestrian Crossing Speed 181
7.5.1.5 Pedestrian Waiting Time 182
7.5.2 Accidents 182
7.5.3 Conflicts 185
7.6 Challenging Problems and Perspectives 187
7.6.1 Robust Detection and Tracking 187
7.6.2 Validity of Prediction Models for Conflict and Collisions 188
7.6.3 Cooperating Sensing Modalities 189
7.6.4 Networked Traffic Monitoring Systems 189
7.7 Conclusion 189
 References 190

Contents ix

8 Video‐Based Parking Management 195
Oliver Sidla and Yuriy Lipetski

8.1 Introduction 195
8.2 Overview of Parking Sensors 197
8.3 Introduction to Vehicle Occupancy Detection Methods 200
8.4 Monocular Vehicle Detection 200
8.4.1 Advantages of Simple 2D Vehicle Detection 200
8.4.2 Background Model–Based Approaches 200
8.4.3 Vehicle Detection Using Local Feature Descriptors 202
8.4.4 Appearance‐Based Vehicle Detection 203
8.4.5 Histograms of Oriented Gradients 204
8.4.6 LBP Features and LBP Histograms 207
8.4.7 Combining Detectors into Cascades and Complex Descriptors 208
8.4.8 Case Study: Parking Space Monitoring Using a Combined

Feature Detector 208
8.4.9 Detection Using Artificial Neural Networks 211
8.5 Introduction to Vehicle Detection with 3D Methods 213
8.6 Stereo Vision Methods 215
8.6.1 Introduction to Stereo Methods 215
8.6.2 Limits on the Accuracy of Stereo Reconstruction 216
8.6.3 Computing the Stereo Correspondence 217
8.6.4 Simple Stereo for Volume Occupation Measurement 218
8.6.5 A Practical System for Parking Space Monitoring Using a Stereo System 218
8.6.6 Detection Methods Using Sparse 3D Reconstruction 220
 Acknowledgment 223
 References 223

9 Video Anomaly Detection 227
Raja Bala and Vishal Monga

9.1 Introduction 227
9.2 Event Encoding 228
9.2.1 Trajectory Descriptors 229
9.2.2 Spatiotemporal Descriptors 231
9.3 Anomaly Detection Models 233
9.3.1 Classification Methods 233
9.3.2 Hidden Markov Models 234
9.3.3 Contextual Methods 234
9.4 Sparse Representation Methods for Robust Video Anomaly

Detection 236
9.4.1 Structured Anomaly Detection 237
9.4.1.1 A Joint Sparsity Model for Anomaly Detection 238
9.4.1.2 Supervised Anomaly Detection as Event Classification 242
9.4.1.3 Unsupervised Anomaly Detection via Outlier Rejection 242
9.4.2 Unstructured Video Anomaly Detection 243
9.4.3 Experimental Setup and Results 245
9.4.3.1 Anomaly Detection in Structured Scenarios 246
9.4.3.2 Detection Rates for Single‐Object Anomaly Detection 246

Contentsx

9.4.3.3 Detection Rates for Multiple‐Object Anomaly Detection 246
9.4.3.4 Anomaly Detection in Unstructured Scenarios 250
9.5 Conclusion and Future Research 253
 References 254

Part II Imaging from and within the Vehicle 257

10 Pedestrian Detection 259
Shashank Deshpande and Yang Cai

10.1 Introduction 259
10.2 Overview of the Algorithms 259
10.3 Thermal Imaging 260
10.4 Background Subtraction Methods 261
10.4.1 Frame Subtraction 261
10.4.2 Approximate Median 262
10.4.3 Gaussian Mixture Model 263
10.5 Polar Coordinate Profile 263
10.6 Image‐Based Features 265
10.6.1 Histogram of Oriented Gradients 265
10.6.2 Deformable Parts Model 266
10.6.3 LiDAR and Camera Fusion–Based Detection 266
10.7 LiDAR Features 268
10.7.1 Preprocessing Module 268
10.7.2 Feature Extraction Module 268
10.7.3 Fusion Module 268
10.7.4 LIPD Dataset 270
10.7.5 Overview of the Algorithm 270
10.7.6 LiDAR Module 272
10.7.7 Vision Module 275
10.7.8 Results and Discussion 276
10.7.8.1 LiDAR Module 276
10.7.8.2 Vision Module 276
10.8 Summary 280
 References 280

11 Lane Detection and Tracking Problems in Lane Departure Warning Systems 283
Gianni Cario, Alessandro Casavola and Marco Lupia

11.1 Introduction 283
11.1.1 Basic LDWS Algorithm Structure 284
11.2 LD: Algorithms for a Single Frame 285
11.2.1 Image Preprocessing 285
11.2.1.1 Gray‐Level Optimization 286
11.2.1.2 Image Smoothing 286
11.2.2 Edge Extraction 287
11.2.2.1 Second‐Order Derivative Operators 288
11.2.2.2 Canny’s Algorithm 290

Contents xi

11.2.2.3 Comparison of Edge‐Detection Algorithms 291
11.2.3 Stripe Identification 291
11.2.3.1 Edge Distribution Function 292
11.2.3.2 Hough Transform 292
11.2.4 Line Fitting 294
11.2.4.1 Linear Fitting 295
11.2.4.2 LP Fitting 295
11.3 LT Algorithms 297
11.3.1 Recursive Filters on Subsequent N frames 298
11.3.2 Kalman Filter 298
11.4 Implementation of an LD and LT Algorithm 299
11.4.1 Simulations 300
11.4.2 Test Driving Scenario 300
11.4.3 Driving Scenario: Lane Departures at Increasing Longitudinal Speed 300
11.4.4 The Proposed Algorithm 302
11.4.5 Conclusions 303
 References 303

12 Vision‐Based Integrated Techniques for Collision Avoidance Systems 305
Ravi Satzoda and Mohan Trivedi

12.1 Introduction 305
12.2 Related Work 307
12.3 Context Definition for Integrated Approach 307
12.4 ELVIS: Proposed Integrated Approach 308
12.4.1 Vehicle Detection Using Lane Information 309
12.4.2 Improving Lane Detection using On‐Road Vehicle Information 312
12.5 Performance Evaluation 313
12.5.1 Vehicle Detection in ELVIS 313
12.5.1.1 Accuracy Analysis 313
12.5.1.2 Computational Efficiency 314
12.5.2 Lane Detection in ELVIS 316
12.6 Concluding Remarks 319
 References 319

13 Driver Monitoring 321
Raja Bala and Edgar A. Bernal

13.1 Introduction 321
13.2 Video Acquisition 322
13.3 Face Detection and Alignment 323
13.4 Eye Detection and Analysis 325
13.5 Head Pose and Gaze Estimation 326
13.5.1 Head Pose Estimation 326
13.5.2 Gaze Estimation 328
13.6 Facial Expression Analysis 332
13.7 Multimodal Sensing and Fusion 334
13.8 Conclusions and Future Directions 336
 References 337

Contentsxii

14 Traffic Sign Detection and Recognition 343
Hasan Fleyeh

14.1 Introduction 343
14.2 Traffic Signs 344
14.2.1 The European Road and Traffic Signs 344
14.2.2 The American Road and Traffic Signs 347
14.3 Traffic Sign Recognition 347
14.4 Traffic Sign Recognition Applications 348
14.5 Potential Challenges 349
14.6 Traffic Sign Recognition System Design 349
14.6.1 Traffic Signs Datasets 352
14.6.2 Colour Segmentation 354
14.6.3 Traffic Sign’s Rim Analysis 359
14.6.4 Pictogram Extraction 364
14.6.5 Pictogram Classification Using Features 365
14.6.5.1 Effect of Number of Features 367
14.6.5.2 Classifying Disoriented Traffic Signs 368
14.6.5.3 Training and Testing Time 368
14.7 Working Systems 369
 References 371

15 Road Condition Monitoring 375
Matti Kutila, Pasi Pyykönen, Johan Casselgren and Patrik Jonsson

15.1 Introduction 375
15.2 Measurement Principles 376
15.3 Sensor Solutions 377
15.3.1 Camera‐Based Friction Estimation Systems 377
15.3.2 Pavement Sensors 379
15.3.3 Spectroscopy 380
15.3.4 Roadside Fog Sensing 382
15.3.5 In‐Vehicle Sensors 383
15.4 Classification and Sensor Fusion 386
15.5 Field Studies 390
15.6 Cooperative Road Weather Services 394
15.7 Discussion and Future Work 395
 References 396

Index 399

xiii

List of Contributors

Raja Bala
Samsung Research America
Richardson, TX
USA

Edgar A. Bernal
United Technologies Research Center
East Hartford, CT
USA

Orhan Bulan
General Motors Technical Center
Warren, MI
USA

Aaron Burry
Conduent Labs
Webster, NY
USA

Yang Cai
Carnegie Mellon University
Pittsburgh, PA
USA

Gianni Cario
Department of Informatics, Modeling,
Electronics and System Engineering (DIMES)
University of Calabria
Rende
Italy

Alessandro Casavola
Department of Informatics, Modeling,
Electronics, and System Engineering (DIMES)
University of Calabria
Rende
Italy

Johan Casselgren
Luleå University of Technology
Luleå
Sweden

Zezhi Chen
Kingston University
London
UK

Shashank Deshpande
Carnegie Mellon University
Pittsburgh, PA
USA

Timothy J. Ellis
Kingston University
London
UK

Rodrigo Fernandez
Universidad de los Andes
Santiago
Chile

List of Contributorsxiv

Hasan Fleyeh
Dalarna University
Falun
Sweden

Patrik Jonsson
Combitech AB
Östersund
Sweden

Vladimir Kozitsky
Conduent Labs
Webster, NY
USA

Matti Kutila
VTT Technical Research Centre of Finland Ltd.
Tampere
Finland

Yuriy Lipetski
SLR Engineering GmbH
Graz
Austria

Robert P. Loce
Conduent Labs
Webster, NY
USA

Marco Lupia
Department of Informatics, Modeling,
Electronics and System Engineering (DIMES)
University of Calabria
Rende
Italy

Vishal Monga
Pennsylvania State University
University Park, PA
USA

Brendan Tran Morris
University of Nevada
Las Vegas, NV
USA

Wiktor Muron
Carnegie Mellon University
Pittsburgh, PA
USA

Peter Paul
Conduent Labs
Webster, NY
USA

Pasi Pyykönen
VTT Technical Research Centre of Finland Ltd.
Tampere
Finland

Ravi Satzoda
University of California
San Diego, CA
USA

Mohammad Shokrolah Shirazi
Cleveland State University
Cleveland, OH
USA

Oliver Sidla
SLR Engineering GmbH
Graz
Austria

Mohan Trivedi
University of California
San Diego, CA
USA

Sergio A. Velastin
Universidad Carlos III de Madrid
Madrid
Spain

Wencheng Wu
Conduent Labs
Webster, NY
USA

List of Contributors xv

Beilei Xu
Conduent Labs
Webster, NY
USA

Muhammad Haroon Yousaf
University of Engineering and Technology
Taxila
Pakistan

xvii

There is a worldwide effort to develop smart transportation networks that can provide travelers with
enhanced safety and comfort, reduced travel time and cost, energy savings, and effective traffic law
enforcement. Computer vision and imaging is playing a pivotal role in this transportation evolution.
The forefront of this technological evolution can be seen in the growth of scientific publications and
conferences produced through substantial university and corporate research laboratory projects.
The editors of this book have assembled topics and authors that are representative of the core
 technologies coming out of these research projects. This text offers the reader with a broad compre-
hensive exposition of computer vision technologies addressing important roadway transportation
problems. Each chapter is authored by world‐renowned authorities discussing a specific transporta-
tion application, the practical challenges involved, a broad survey of state‐of‐the‐art approaches, an
in‐depth treatment of a few exemplary techniques, and a perspective on future directions. The mate-
rial is presented in a lucid tutorial style, balancing fundamental theoretical concepts and pragmatic
real‐world considerations. Each chapter ends with an abundant collection of references for the
reader requiring additional depth.

The book is intended to benefit researchers, engineers, and practitioners of computer vision,
 digital imaging, automotive, and civil engineering working on intelligent transportation systems.
Urban planners, government agencies, and other decision‐ and policy‐making bodies will also benefit
from an enhanced awareness of the opportunities and challenges afforded by computer vision in the
transportation domain. While each chapter provides the requisite background required to learn a
given problem and application, it is helpful for the reader to have some familiarity with the funda-
mental concepts in image processing and computer vision. For those who are entirely new to this
field, appropriate background reading is recommended in Chapter 1. It is hoped that the material
presented in the book will not only enhance the reader’s knowledge of today’s state of the art but also
prompt new and yet‐unconceived applications and solutions for transportation networks of
the future.

The text is organized into Chapter 1 that provides a brief overview of the field and Chapters 2–15
divided into two parts. In Part I, Chapters 2–9 present applications relying upon the infrastructure,
that is, cameras that are installed on roadway structures such as bridges, poles and gantries. In Part II,
Chapters 10–15 discuss techniques to monitor driver and vehicle behavior from cameras and sensors
placed within the vehicle.

In Chapter 2, Burry and Kozitsky present the problem of license plate recognition—a fundamental
technology that underpins many transportation applications, notably ones pertaining to law enforce-
ment. The basic computer vision pipeline and state‐of‐the‐art solutions for plate recognition are
described. Muron, Deshpande, and Cai present automatic vehicle classification (AVC) in Chapter 3.
AVC is a method for automatically categorizing types of motor vehicles based on the predominant

Preface

Prefacexviii

characteristics of their features such as length, height, axle count, existence of a trailer, and specific
contours. AVC is also an important part of intelligent transportation system (ITS) in applications
such as automatic toll collection, management of traffic density, and estimation of road usage
and wear.

Chapters 2, 4, 5, and 8 present aspects of law enforcement based on imaging from the infrastruc-
ture. Detection of passenger compartment violations is presented in Chapter 4 by Bulan, Xu, Loce,
and Paul. The chapter presents imaging systems capable of gathering passenger compartment images
and computer vision methods of extracting the desired information from the images. The applica-
tions it presents are detection of seat belt usage, detection of mobile phone usage, and occupancy
detection for high‐occupancy lane tolling and violation detection. The chapter also covers several
approaches, while providing depth on a classification‐based method that is yielding very good results.
Detection of moving violations is presented in Chapter 5 by Wu, Bulan, Bernal, and Loce. Two prom-
inent applications—speed detection and stop light/sign enforcement—are covered in detail, while
several other violations are briefly reviewed.

A major concern for urban planners is traffic flow analysis and optimization. In Chapter 6,
Fernandez, Yousaf, Ellis, Chen, and Velastin present a model for traffic flow from a transportation
engineer’s perspective. They consider flow analysis using computer vision techniques, with emphasis
given to specific challenges encountered in developing countries. Intersection modeling is taught by
Morris and Shirazi in Chapter 7 for the applications of understanding capacity, delay, and safety.
Intersections are planned conflict points with complex interactions of vehicles, pedestrians, and
bicycles. Vision‐based sensing and computer vision analysis bring a level of depth of understanding
that other sensing modalities alone cannot provide. In Chapter 8, Sidla and Lipetski examine the
state of the art in visual parking space monitoring. The task of the automatic parking management is
becoming increasingly essential. The number of annually produced cars has grown by 55% in the past
7 years. Most large cities have a problem of insufficient availability of parking space. Automatic deter-
mination of available parking space coupled with a communication network holds great promise in
alleviating this urban burden.

While computer vision algorithms can be trained to recognize common patterns in traffic, vehicle,
and pedestrian behavior, it is often an unusual event such as an accident or traffic violation that war-
rants special attention and action. Chapter 9 by Bala and Monga is devoted to the problem of detect-
ing anomalous traffic events from video. A broad survey of state‐of‐the‐art anomaly detection models
is followed by an in‐depth treatment of a robust method based on sparse signal representations.

In Part II of the text, attention is turned to in‐vehicle imaging and analysis. The focus of Chapters
10–12 are technologies that are being applied to driver assistance systems. Chapter 10 by Deshpande
and Cai deals with the problem of detecting pedestrians from road‐facing cameras installed on the
vehicle. Pedestrian detection is critical to intelligent transportation systems, ranging from autono-
mous driving to infrastructure surveillance, traffic management, and transit safety and efficiency, as
well as law enforcement. In Chapter 11, Casavola, Cario, and Lupia present lane detection (LD) and
lane tracking (LT) problems arising in lane departure warning systems (LDWSs). LWDSs refer to
specific forms of advanced driver assistant systems (ADAS) designed to help the driver to stay into
the lane, by warning her/him with a sufficient advance that an imminent and possibly unintentional
lane departure is going to take place so that she/he can take the necessary corrective measures.
Chapter 12 by Satzoda and Trivedi teaches the technologies associated with vision‐based integrated
techniques for collision avoidance systems. The chapter surveys related technologies and focuses on
an integrated approach called efficient lane and vehicle detection using integrated synergies (ELVIS)
that incorporates the lane information to detect vehicles more efficiently in an informed manner
using a novel two part–based vehicle detection technique.

Preface xix

Driver inattention is a major cause of traffic fatalities worldwide. Chapter 13 by Bala and Bernal
presents an overview of in‐vehicle technologies to proactively monitor driver behavior and provide
appropriate feedback and intervention to enhance safety and comfort. A broad survey of the state of
the art is complemented with a detailed treatment of a few selected driver monitoring techniques
including methods to fuse video with nonvisual data such as motion and bio‐signals.

Traffic sign recognition is present in Chapter 14 by Fleyeh. Sign recognition is a field‐concerned
detection and recognition of traffic signs in traffic scenes as acquired by a vehicle‐mounted camera.
Computer vision and artificial intelligence are used to extract the traffic signs from outdoor images
taken in uncontrolled lighting conditions. The signs may be occluded by other objects and may suffer
from various problems such as color fading, disorientation, and variations in shape and size. It is the
field of study that can be used either to aid the development of an inventory system (for which real‐
time recognition is not required), or to aid the development of an in‐car advisory system (when
real‐time recognition is necessary). Road condition monitoring is presented in Chapter 15 by Kutila,
Pyykönen, Casselgren, and Jonsson. The chapter reviews proposed measurement principles in the
road traction monitoring area and provides examples of sensor solutions that are feasible for vehicle
on‐board and road sensing. The chapter also reviews opportunities to improve performance with the
use of sensor data fusion and discusses future opportunities. We do have an enhanced eBook avail-
able with integrated video demonstrations to further explain the concepts discussed in the book.

Robert P. Loce
Raja Bala

March 2017

xxi

Acknowledgments

We would like to take this opportunity to thank each and every author for their painstaking efforts in
preparing chapters of high quality, depth, and breadth, and also for working collaboratively with the
editors to assemble a coherent text in a timely manner.

xxiii

Don’t forget to visit the companion website for this book:

www.wiley.com/go/loce/ComputerVisionandImaginginITS

There you will find valuable material designed to enhance your learning, including:

 ● Videos
 ● Figures

About the Companion Website

1

Computer Vision and Imaging in Intelligent Transportation Systems, First Edition.
Edited by Robert P. Loce, Raja Bala and Mohan Trivedi.
© 2017 John Wiley & Sons Ltd. Published 2017 by John Wiley & Sons Ltd.
Companion website: www.wiley.com/go/loce/ComputerVisionandImaginginITS

With rapid advances in driver assistance features leading ultimately to autonomous vehicle
 technology, the automobile of the future is increasingly relying on advances in computer vision for
greater safety and convenience. At the same time, providers of transportation infrastructure and
services are expanding their reliance on computer vision to improve safety and efficiency in trans-
portation and addressing a range of problems, including traffic monitoring and control, incident
detection and management, road use charging, and road condition monitoring. Computer vision is
thus helping to simultaneously solve critical problems at both ends of the transportation spectrum—
at the consumer level and at the level of the infrastructure provider. The book aims to provide a
comprehensive survey of methods and systems that use both infrastructural and in‐vehicle computer
vision technology to address key transportation applications in the following three broad problem
domains: (i) law enforcement and security, (ii) efficiency, and (iii) driver safety and comfort. Table 1.1
lists the topics addressed in the text under each of these three domains.

This chapter introduces and motivates applications in the three problem domains and establishes
a common computer vision framework for addressing problems in these domains.

1.1 Law Enforcement and Security

Law enforcement and security are critical elements to maintaining the well‐being of individuals and
the protection of property. Societies rely on law enforcement agencies to provide these elements.
Imaging systems and computer vision are means to sense and interpret situations in a manner that
can amplify the effectiveness of officers within these agencies. There are several common elements
shared by computer vision law enforcement and security applications, such as the detection and iden-
tification of events of interest. On the other hand, there are also distinctions that separate a security
application from law enforcement. For instance, prediction and prevention are important for security
applications, while accuracy and evidence are essential for law enforcement. In many cases, modules
and components of a security system serve as a front end of a law enforcement system. For example,
to enforce certain traffic violations, it is necessary to detect and identify the occurrence of that event.

1

Introduction
Raja Bala1 and Robert P. Loce2

1 Samsung Research America, Richardson, TX, USA
2 Conduent Labs, Webster, NY, USA

Computer Vision and Imaging in Intelligent Transportation Systems2

Consider the impact of moving vehicle violations and examples of benefits enabled by computer
vision law enforcement systems. There is a strong relationship between excessive speed and traffic
accidents. In the United States in 2012, speeding was a contributing factor in 30% of all fatal crashes
(10,219 lives) [1]. The economic cost of speeding‐related crashes was estimated to be $52 billion in
2010 [2]. In an extensive review of international studies, automated speed enforcement was estimated
to reduce injury‐related crashes by 20–25% [3]. The most commonly monitored moving violations
include speeding, running red lights or stop signs, wrong‐way driving, and illegal turns. Most traffic
law enforcement applications in roadway computer vision systems involve analyzing well‐defined
trajectories and speeds within those trajectories, which leads to clearly defined rules and detections.
In some cases, the detections are binary, such as in red light enforcement (stopped or passed through).
Other applications require increased accuracy and precision, such as detecting speed violations and
applying a fine according to the estimated vehicle speed. There are other deployed applications where
the violation involves less definitive criterion, such as reckless driving.

Several moving violations require observation into the passenger compartment of a vehicle.
Failure to wear a seat belt and operating a handheld cell phone while driving are two common
safety‐related passenger compartment violations. Seat belt use in motor vehicles is the single most
effective traffic safety device for preventing death and injury to persons involved in motor vehicle
accidents. Cell phone usage alone accounts for roughly 18% of car accidents caused by distracted
drivers [4]. In addition, the National Highway Traffic Safety Administration (NHTSA) describes
other behaviors resulting in distracted driving, including occupants in the vehicle eating, drinking,
smoking, adjusting radio, adjusting environmental controls, and reaching for an object in the car.
The conventional approach to enforcement of passenger compartment violations has been through
traffic stops by law enforcement officers. This approach faces many challenges such as safety, traffic

Table 1.1 Taxonomy of problem domains and applications described in the book.

Problem domains Applications and methods Imaging system employed

Law enforcement and security License plate recognition for violations Infrastructure
Vehicle classification Infrastructure
Passenger compartment violation detection Infrastructure, in‐vehicle
Moving violation detection Infrastructure
Intersection monitoring Infrastructure
Video anomaly detection Infrastructure

Efficiency Traffic flow analysis Infrastructure
Parking management Infrastructure, in‐vehicle
License plate recognition for tolling Infrastructure
Passenger compartment occupancy detection Infrastructure, in‐vehicle

Driver safety and comfort Lane departure warning In‐vehicle
Collision avoidance In‐vehicle
Pedestrian detection In‐vehicle
Driver monitoring In‐vehicle
Traffic sign recognition In‐vehicle
Road condition monitoring In‐vehicle, infrastructure

Introduction 3

disruption, significant personnel cost, and the difficulty of determining cell phone usage or seat belt
usage at high speed. Imaging technology and computer vision can provide automated or semiauto-
mated enforcement of these violations.

Security of individuals and property is another factor in the monitoring of transportation networks.
Video cameras have been widely used for this purpose due to their low cost, ease of installation and
maintenance, and ability to provide rich and direct visual information to operators. The use of video
cameras enables centralized operations, making it possible for an operator to “coexist” at multiple
locations. It is also possible to go back in time and review events of interest. Many additional benefits
can be gained by applying computer vision technologies within a camera network. Consider that,
traditionally, the output of security cameras has either been viewed and analyzed in real‐time by
human operators, or archived for later use if certain events have occurred. The former is error prone
and costly, while the latter has lost some critical capabilities such as prediction and prevention. In a
medium‐sized city with several thousand roadway cameras, computer vision and video analytics
allow a community to fully reap the benefits of analyzing this massive amount of information and
highlighting critical events in real‐time or in later forensic analysis.

In certain security and public safety applications, very rapid analysis of large video databases can
aid a critical life or death situation. An Amber Alert or a Child Abduction Emergency is an emergency
alert system to promptly inform the public when a child has been abducted. It has been successfully
implemented in several countries throughout the world. When sufficient information is available
about the incident (e.g., description of captor’s vehicle, plate number, and color), a search can be
conducted across large databases of video that have been acquired from highway, local road, traffic
light, and stop sign monitoring, to track and find the child. Similar to Amber Alert and much more
common is Silver Alert, which is a notification issued by local authorities when a senior citizen or
mentally impaired person is missing. Statistics indicates that it is highly desirable that an Amber‐/
Silver Alert‐related search is conducted in a very fast and efficient manner, as 75% of the abducted
are murdered within the first 3 h. Consider a statement from the US West Virginia code on Amber
Alert 15‐3A‐7:

The use of traffic video recording and monitoring devices for the purpose of surveillance of a
suspect vehicle adds yet another set of eyes to assist law enforcement and aid in the safe recov-
ery of the child.

Human analysis of video from thousands of camera could take many days, while computer vision
methods have the potential to rapidly extract critical information. The speed can be scaled by the
available computational power, which is rapidly advancing due to high‐speed servers and cloud
computing.

Whether it is safety of individuals or security of property, recognition of a vehicle is a key compo-
nent of a roadway security system. Vehicles traveling on the public roadways in most countries are
required by law to carry a clearly visible placard with a unique identifier that is registered with the
local government. This placard (license plate) can contain various symbols—letters, numbers, logos,
etc.—based on local government regulations and the vehicle class. Given the common requirement
for its presence and ease of visibility, the license plate has become the default means for identifying a
vehicle and/or its registered operator. Automated license plate recognition (ALPR), also referred to
as automated number plate recognition (ANPR), leverages computer vision algorithms to extract
license plate information from videos or still images of vehicles. ALPR has become a core technology
within modern intelligent transportation systems. Surveillance and police enforcement applications
leverage ALPR systems to provide real‐time data gathering to support law enforcement efforts. For

Computer Vision and Imaging in Intelligent Transportation Systems4

example, a 2012 study [5] conducted on the usage of ALPR technology by police agencies found that
80% of larger agencies (those with 1000+ sworn officers) were leveraging ALPR in some way. Results
from this same study also indicated that police agencies using ALPR reported that the use of technol-
ogy had increased the recovery of stolen vehicles by 68% and overall arrests by 55%.

A trend that favors improved law enforcement and security in transportation settings is the increas-
ing intelligence across broad camera networks. Cities such as London and Tokyo are said to have over
500,000 government cameras, while Chicago has linked private, school, roadway, and police cameras
into a massive interconnected network. Several factors are driving this trend. There is the fight
against large‐scale terrorism and crime with limited human resources. Camera and network technol-
ogy are continually becoming more capable and less costly. Cloud computing is also enabling a flex-
ible, scalable architecture for big data analysis. Computer vision becomes the intelligent connecting
element that enables the camera network and computing resources to address the societal need.

1.2 Efficiency

The efficiency of a roadway network impacts expended time of individuals, fuel usage, and pollution
all of which are key factors contributing to the quality of life of a community. Roadway imaging with
computer vision is being increasingly applied to optimize efficiency. Example applications include
traffic flow analysis, video‐based parking management, open road tolling, and high‐occupancy lane
management.

Traffic is the movement of people and goods in a public space, where the movement may involve a
car, public transport vehicle, bicycle, or foot travel. Data derived from traffic volume studies can help
local governments estimate road usage, volume trends, and critical flow time periods. These esti-
mates can be used to optimize maintenance schedules, minimize conflicts, and optimize the timing
of traffic enforcement. Real‐time traffic flow data can also enable efficient incident management,
which consists of incident detection, verification, and response. Traffic variables of interest are flow,
speed, and concentration with respect to road capacity. Each of these variables involves detection and
recognition and tracking of a particular traveling entity (pedestrian, bicycle, car, etc.) Manual meth-
ods involve monitoring a region onsite or via a video feed, both of which are very labor intensive and
tend to provide a limited snapshot of information. The past decade has seen a trend toward increased
automation, leveraging the ubiquity of roadway cameras and advances in computer vision toward
vehicle detection, vehicle classification, and pedestrian detection. This trend is bringing fine‐grain
and persistent analysis to traffic engineers and, in turn, increasing the efficiency of our roadways.

Urban parking management is receiving significant attention due to its potential to reduce traffic
congestion, fuel consumption, and emissions [6, 7]. Real‐time parking occupancy detection is a criti-
cal component of parking management systems, where occupancy information is relayed to drivers
in real time via smartphone apps, radio, the Internet, on‐road signs, or GPS auxiliary signals. This
can significantly reduce traffic congestion created by vehicles searching for an available parking
space, thus reducing fuel consumption. Sensors are required to gather such real‐time data from park-
ing venues. Video‐based sensing for monitoring on‐street parking areas offers several advantages
over sensors such as inductive loops, ultrasonic sensors, and magnetic in‐ground sensors. One
advantage is that one video camera can typically monitor and track several parking spots (see
Figure 1.1), whereas multiple magnetic sensors may be needed to reliably monitor a single parking
space. Another advantage is that device installation and maintenance is less disruptive in the case of
video cameras when compared to in‐ground sensors. Video cameras can also support other tasks
such as traffic law enforcement and surveillance since they capture a wider range of useful visual

Introduction 5

information including vehicle color, license plate, vehicle type, speed, etc. A video‐based parking
occupancy detection system can, therefore, provide a convenient, cost‐effective solution to the
 sensing task and also provide additional functionality for traffic law enforcement and surveillance.

A third problem is highway congestion. Government officials and members of the transportation
industry are seeking new strategies for addressing the problems associated with high traffic volumes.
One such mechanism to reduce the congestion on busy highway corridors is the introduction of
managed lanes such as high‐occupancy vehicle (HOV) lanes that require a minimum number of
vehicle occupants and high‐occupancy tolling (HOT) lanes that set a tolling price depending upon
the number of occupants. Due to imposed limitations and fees, HOV/HOT lanes are often much less
congested than other commuter lanes. However, the rules of the HOV/HOT lane need to be enforced
to realize the congestion reducing benefits. Typical violation rates can exceed 50–80%. Current
enforcement practices dispatch law enforcement officers to the roadside to visually examine passing
vehicles. Manual enforcement can be a tedious, labor‐intensive practice, and, ultimately, ineffective
with enforcement rates of typically less than 10% [8]. Besides enduring environmental conditions of
snow, darkness, sunlight reflections, and rain, law enforcement officers also have to deal with vehi-
cles traveling at high speeds that may have darkened/tinted glass, reclining passengers, and/or child
seats with or without children. As a result, there is a desire to have an automated method to augment
or replace the manual process. Practical imaging‐based systems have been demonstrated using near‐
infrared (NIR) illumination and multiple cameras triggered by induction loops or laser break‐beam
devices (Figure 1.2).

1.3 Driver Safety and Comfort

Many vehicles today employ a so‐called Advanced Driver Assistance System (ADAS) that uses cam-
eras and various sensors to make inferences about both the driver and the environment surrounding
a vehicle. An important element of ADAS is lane departure warning. More than 40% of all fatal road-
way accidents in 2001 involved a lane or road departure [9], resulting primarily from driver distrac-
tion, inattention, or drowsiness [10]. Lane Departure Warning (LDW) systems [11] track roadway
markings using a video camera mounted near the rearview mirror or on the dash board of a vehicle
so the area in front of the vehicle may be viewed. A warning signal is given to the driver if a vehicle
unintentionally approaches a lane marking (i.e., without activating a turn signal). The prevalence of
LDW systems is expected to rapidly increase, with various tax incentives being proposed in the
United States and Europe for vehicles with LDW systems. LDW algorithms face the daunting task of
operating in real‐time and under multifarious weather conditions, in order to detect and decipher
within this limited field of view a wide assortment of lane markings.

Figure 1.1 Examples of a camera view sensing multiple parking stalls.

Computer Vision and Imaging in Intelligent Transportation Systems6

Pedestrian detection is another important element of ADAS. While this problem has been
extensively studied from the viewpoint of fixed video surveillance cameras, many new challenges
arise when a camera is mounted on a common moving vehicle. The detection must comprehend a
wide range of lighting conditions, a continuously varying background, changes in pose, occlusion,
and variation in scale due to the changing distance. Technologies available today for pedestrian
detection use some combination of appearance‐ and motion‐based techniques. A generalization
of this problem is collision avoidance with other vehicles, bicyclists, and animals. Feedback can
include direct control on vehicle motion, with popular examples being adaptive cruise control and
automatic braking.

A third form of ADAS directly monitors the driver’s attention with the use of a driver‐facing cam-
era and possibly other sensors placed in contact with the driver’s body. A significant challenge is
making accurate inferences on the state of the driver by monitoring video of facial expression, eye
movement and gaze in the presence of vehicle motion, varying illumination, and large variation in
affective expression across humans. A promising direction in this domain is the use of adaptive and
online learning techniques whose inferences are personalized to a specific driver and vehicle.

A fourth class of ADAS monitors relevant aspects of the static environment, such as road condi-
tions and traffic signs. The European ASSET program has been actively pursuing within‐vehicle
camera‐based methods to detect the friction (conversely, slipperiness) of roads, a significant factor
in fatalities worldwide. Imaging systems using polarization filters and IR imaging are being explored
to address this problem. Traffic signs provide crucial information about road conditions, and can
often be missed by the driver due to weather, occlusion, damage, and inattention. A computer vision
system that can quickly and accurately interpret traffic signs can be an invaluable aid to the driver.
Challenges pertain to poor image quality due to inclement weather, vehicle motion, the tremendous
variety in the scene and objects being captured, and the need for real‐time inferences.

Front-view NIR
illumination
and camera

36 ft.

24 ft.

Side-view NIR
illumination
and cameraSide view

camera
trigger

Front view
camera
trigger

Direction of
traffic flow

HOV/HOT
lane

Figure 1.2 Illustration of a gantry‐mounted
front‐view and road‐side side‐view
acquisition setup for monitoring a
high‐occupancy lane.

Introduction 7

ADAS can be classified by the degree of autonomy that is enabled during active driving. In the
United States, the NHTSA has defined vehicle automation as having five levels [12] as follows:

No‐Automation (Level 0): The driver is in complete and sole control of the primary vehicle con-
trols—brake, steering, throttle, and motive power—at all times.

Function‐Specific Automation (Level 1): Automation at this level involves one or more specific con-
trol functions. Examples include electronic stability control or precharged brakes, where the vehi-
cle automatically assists with braking to enable the driver to regain control of the vehicle or stop
faster than possible by acting alone.

Combined Function Automation (Level 2): This level involves automation of at least two primary
control functions designed to work in unison to relieve the driver of control of those functions. An
example of combined functions enabling a Level 2 system is adaptive cruise control in combina-
tion with lane centering.

Limited Self‐Driving Automation (Level 3): Vehicles at this level of automation enable the driver to
cede full control of all safety‐critical functions under certain traffic or environmental conditions
and in those conditions to rely heavily on the vehicle to monitor for changes in those conditions
requiring transition back to driver control. The driver is expected to be available for occasional
control, but with sufficiently comfortable transition time.

Full Self‐Driving Automation (Level 4): The vehicle is designed to perform all safety‐critical driving
functions and monitor roadway conditions for an entire trip. Such a design anticipates that the
driver will provide destination or navigation input, but is not expected to be available for control
at any time during the trip. This includes both occupied and unoccupied vehicles.

Full Self‐Driving Automation is embodied in what is often referred to as autonomous vehicles, a
much publicized example being the Google driverless car. As of September 2015, Google’s fleet of
autonomous vehicles have logged 1,200,000 driverless road miles. A key technology used in Google’s
implementation is a roof‐mounted Velodyne 64‐beam laser, which creates a three‐dimensional (3D)
map of the surrounding environment in the immediate area of about 50 ft. The 3D image is combined
with high‐resolution maps that have been programmed into the vehicle’s control system. The laser
system can differentiate among a large variety of objects, including cars, pedestrians, cyclists, and
small and large stationary objects. Four radars (one for front, back, left, and right) sense any fast‐
moving objects at distances further than the laser detection range and are used to give the car far‐
sighted vision for handling high speeds on freeways. A front‐mounted camera and computer vision
algorithms analyze the road ahead of the car, observing road signs and stop lights for information
that a human driver typically uses. Other sensors include a GPS, an inertial measurement unit, and
wheel encoder. While autonomous vehicle technology poses many challenges to current roadway
legislation, it does offer great potential to mobilize citizens with impairments and could make driving
safer due to comprehensive sensing and rapid decision making. For further details, the reader is
referred to the recent IEEE Spectrum Online article [13].

1.4 A Computer Vision Framework for Transportation Applications

Computer vision can be broadly described as the task of interpreting and making sense of the world
around us from images and video. There are many levels and types of interpretation, beginning at the
basic level with detecting and recognizing individual objects and their motion, and evolving onto
higher levels of inference on interactions and relationships between multiple objects, human–object
interactions, and semantic reasoning of human behavior. As such, computer vision falls within the

Computer Vision and Imaging in Intelligent Transportation Systems8

broader domain of artificial intelligence (AI), and can be thought of as the branch of visual sensing,
perception, and reasoning within the field of AI. In the context of transportation systems, computer
vision enables the interpretation of the environment outside of and within automotive vehicles,
whether it is for the purpose of enhancing safety, efficiency, or law enforcement. In many instances,
the computer vision system augments, or if reliable enough, even replaces human interpretation so
as to reduce errors, cost, effort, and time. A basic computer vision pipeline is shown in Figure 1.3.
Each of the blocks is described next.

1.4.1 Image and Video Capture

The pipeline begins with an imaging system comprising one or more cameras that capture digital
images or video of a relevant scene. Infrastructural cameras may be installed on bridges, gantries,
poles, traffic lights, etc. In‐vehicle cameras are positioned either outside the vehicle, providing front
and rearviews of the environment surrounding the vehicle, or within the vehicle usually for the pur-
pose of monitoring the driver’s alertness and attention. Factors that are considered in designing the
imaging system are field of view, coverage of spectral bands, spatial and temporal resolution, form
factor, ruggedness, and cost. A stereo‐ or multicamera network often requires establishing the rela-
tionship among the camera views, and between camera coordinates and 3D world coordinates.
Applications utilizing stereo vision techniques in the book include moving violation detection,
pedestrian detection, and parking management. Also to be considered are the bandwidth and cost of
the data transmission technology used to send video data from the camera to the subsequent com-
putational engines which may be logically and physically co‐located with or separated from the imag-
ing system. Another practical factor is the electrical power source. In urban areas, power is typically
supplied via lines that support traffic controls and lighting, while more remote regions sometimes
harvest energy locally using photovoltaics. The reader will be exposed to different types of imaging
systems throughout the course of the book.

1.4.2 Data Preprocessing

The next step in the pipeline is data preprocessing. Well‐known image processing operations such as
brightness and contrast normalization, distortion compensation, noise filtering, spatial resizing,
cropping, temporal frame rate conversion, and motion stabilization may be carried out to prepare

Roadway or in-
vehicle scene

Image/video
capture

Pre-
processing

Feature
extraction

Decision/
inference

Real-time
feedback, action

Data
visualization

Offline analysis,
optimization

Postprocessing

Non-visual
sensor data

Human
operator

Figure 1.3 Computer vision pipeline for transportation applications.

Introduction 9

the images or video for subsequent analysis. The operations and their parameters are carefully tuned
using knowledge of the characteristics of the imaging system, as well as the requirements of the com-
puter vision task at hand. For example, images of vehicle license plates taken with infrastructure
cameras require normalization for accurate performance in the presence of widely varying contrast
due to ambient lighting and weather conditions. On the other hand, driver‐facing video captured
within a moving vehicle will likely have to undergo motion deblurring and stabilization due to both
vehicle motion and the motion of the driver’s head relative to the camera. Another common type of
preprocessing identifies one or more regions of interest (ROIs) for subsequent interpretation. An
example is human face detection, which is used for driver monitoring and in‐vehicle passenger com-
partment violation detection. A second example is license plate localization, a precursor to plate
recognition. Interestingly, such ROI detection can itself be viewed as a computer vision subproblem,
involving its own feature extraction and decision operations. Edge detection is a very common
 preprocessing step for computer vision, and will be encountered in several applications, including
lane detection and tracking (Chapter 11). Each chapter discusses data preprocessing unique to a
specific problem domain. However, readers who are entirely unfamiliar with the field of image
 processing are encouraged to review the text by Gonzalez and Woods [14] for an excellent introduc-
tory overview of the subject.

Another type of preprocessing involves calibrating for camera characteristics. Two common forms
are colorimetric and geometric calibration. Colorimetric calibration transforms the (typically RGB)
camera color representation of the input image into a standardized color space such as sRGB, XYZ,
or CIELAB. Parameters required to perform such a calibration include knowledge of the spectral
sensitivities of the RGB filters, spectral distribution of the incident illumination, and optoelectronic
transfer functions relating digital camera values to luminance at each pixel. Colorimetric calibration
is important for tasks wherein color provides a critical cue in the inference. An example is locating
features within the driver’s face, wherein human skin color can serve as a cue. Geometric camera
calibration involves relating camera pixel coordinates to real 3D world spatial coordinates. This
problem is treated in detail in Chapter 5 describing moving violations, wherein relative motion
within the coordinates of the video signal must be translated to absolute motion and speed in world
coordinates.

1.4.3 Feature Extraction

The third and fourth steps in the pipeline, namely feature extraction and decision inference, jointly
define the computer vision component underpinning the overall system. Feature extraction is the
process of identifying from the raw pixel data a set of quantitative descriptors that enable accurate
interpretations to be made on the image. Essentially, feature extraction is a mapping from the original
set of (possibly preprocessed) image pixels I to an alternate representation x in a suitably defined
feature space. One benefit of feature extraction is dimensionality reduction; that is, the dimensional-
ity of x is typically much smaller than that of I, and as such retains only the information that is
 germane to the inference task at hand. Numerous feature descriptors have been developed in the
literature and used successfully in practical applications; the optimal choice is made based on knowl-
edge of the domain, the problem, and its constraints. Feature descriptors fall into two broad catego-
ries: global and local features. Global features holistically describe the entire image or video, while
local features represent a spatially or spatiotemporally localized portion of the image or video.
A simple example of a global feature is a color histogram of an image. Such a feature may be employed
for example in a vehicle identification or parking space occupancy detection problem, where color is
an important cue. On the other hand, local features represent some spatiotemporally localized

Computer Vision and Imaging in Intelligent Transportation Systems10

attribute such as gradient, curvature, or texture in the image. A common example is the histogram
of oriented gradients (HoGs) which will be encountered in a variety of transportation problems,
including vehicle classification (Chapter 3), traffic sign recognition (Chapter 14), and pedestrian
detection (Chapter 10). The scale‐invariant feature transform (SIFT) and Haar descriptors are also
commonly used for vehicle classification and other tasks. Note that global features can be modified
to operate locally; for example, one can compute color histograms of N × N image subblocks and
concatenate them to form a composite feature x that captures a spatially varying color distribution
within the image. Local descriptors may also be aggregated into a pooled feature describing the
entire image, using techniques such as Bag‐of‐Words and Fisher Vector encoding, as will be encoun-
tered in one approach to passenger compartment violation detection in Chapter 4.

1.4.4 Inference Engine

The inference stage takes as input the feature descriptors, and emits a hypothesis or decision. The
inference operation can be thought of as a mapping y = h(x) that predicts an outcome y from input
features x under a hypothesis h(·). Parameters of h(·) are learned offline in a training phase using a set
of data samples that are representative of what is to be encountered in the final application. As an
example, if the inference task is to infer from an image of a vehicle whether a passenger compartment
is occupied or vacant, then y ∈ {y0, y1} is a binary class label corresponding to either the “occupied” or
“vacant” outcome, and h(·) is a binary decision function whose parameters are learned to minimize
the classification error on a set of training images of occupied and vacant compartments. If the task
is to interpret a license plate, then features from individual character segments are processed through
a character recognition algorithm that outputs one of 36 alphanumerical class labels, y ∈ {y1, …, y36}.
Hypothesis h(·) is similarly learned from training samples of labeled license plate character images. If
the task is to predict the speed of a vehicle, then y is a continuous valued variable, and may be
 predicted using, for example, a linear regression technique.

There are two broad categories of inference techniques using generative and discriminative models,
respectively. Generative models attempt to describe the joint statistical distribution p(x, y) of input
features and prediction outcomes. Since the joint distribution is often a complex, high‐dimensional
function, simplifying assumptions are made to arrive at computationally tractable solutions.
Commonly, a Bayesian framework is employed, whereby the joint statistics are factored into a
 conditional likelihood function p(x|y), posterior distribution p(y|x), and a prior distribution p(y) for
the output variables, each of which are modeled by tractable parametric forms. At the heart of a
generative model is the search for the most likely outcome y given the observed features x. That is,
the optimum y maximizes the posterior distribution:

y h p p px y x x y yargmax | argmax)(| (1.1)

The last expression in Equation 1.1 is arrived at with Bayes rule. An example of a generative model
that is frequently encountered in the book is the Gaussian mixture model (GMM), used in traffic
flow analysis, video anomaly detection, driver monitoring, parking space occupancy detection, and
other applications. For an excellent introduction to Bayesian generative inference techniques, the
reader is referred to Ref. [15].

Discriminative models, on the other hand, attempt to learn p(y|x) or the inference mapping h(x)
directly from training data without explicitly characterizing the joint probability distribution.
Examples of such models include linear regression, logistic regression, support vector machines
(SVMs), and boosting techniques. Various discriminative approaches are encountered in the book in
the chapters on parking management, traffic sign recognition, and driver monitoring.

Introduction 11

Recently, deep learning methods have gained popularity particularly in various image classification
tasks. The basic concept behind deep learning is that the features themselves are learned from the
image data to optimally perform a specific classification tasks. Thus, rather than parsing the com-
puter vision task in two phases of feature extraction and inference, deep methods perform the task in
one stage, learning both the features and the patterns needed to make inferences. For this reason,
these methods are also referred to as representation learning techniques, and have been shown
to significantly outperform traditional techniques in certain large‐scale image classification tasks.
A practical advantage of deep learning over traditional techniques is not having to manually or heu-
ristically design features for a given task and domain. Chapter 10 provides an excellent tutorial and
application of deep learning to the pedestrian detection problem.

The chapters in the book introduce a broad variety of machine learning and inference models
addressing the various problem domains. The reader will appreciate that the choice of inference
technique depends on many factors, including the required accuracy, computational cost, storage
and memory requirements, and the cost, labor, time, and effort required to train the system. Those
seeking a more basic background on machine learning are referred to Ref. [15] for a fundamental
treatment of the subject. Finally, while the focus of the text is on camera‐based methods, practical
systems often involve input from other non‐visual sensors. One example is in‐vehicle safety systems
that utilize technologies such as radar, LiDAR, and motion sensors to monitor driver and vehicle
behavior. Another example is parking management, discussed in Chapter 8, where magnetic, radio
frequency identification (RFID), laser, and other sensors are commonly utilized to determine parking
space occupancy. Where applicable, discussions are presented on how video‐based systems compete
with or are complementary to these nonvisual modes.

1.4.5 Data Presentation and Feedback

This is the final step in the computer vision pipeline. The inference engine outputs a prediction of an
outcome in the form of a class label probability, or measure of some desired quantity. This outcome
must then be acted upon and communicated to the relevant party, be it the driver, law enforcement
agent, or urban planner. As would be expected, the method and format of presentation and feedback
is strongly dependent on the task and application. In problems relating to driver safety, where the
majority of computation takes place in the vehicle, inferences must be communicated in real time to
the driver in order to allow immediate action and intervention. Built‐in driver assistance systems
employ various feedback mechanisms, including visual display on the dashboard, audio warnings,
and tactile feedback on the steering wheel. An important consideration here is the design of user
interfaces that provide timely feedback without distracting the driver, and that integrate seamlessly
with other familiar functions such as entertainment and navigation. Systems that are more proactive
can directly alter vehicle motion without driver involvement. Examples are adaptive cruise control,
automatic braking in collision avoidance systems and ultimately the driverless vehicle.

Applications relating to transportation efficiency warrant a different type of data visualization. In
a video tolling application, the output of a license plate recognition system may be sent to a tolling
agency to initiate billing. Additionally, for those plates where automatic recognition has low confi-
dence, the localized plate images may be sent for human interpretation. For an urban planning appli-
cation, traffic flow metrics generated by the computer vision system may be presented on a dashboard
to local agencies, who can then interpret and integrate the analysis into future road planning and
optimization efforts. In a parking management system, the vehicle license plate and duration of park-
ing are the relevant metrics that must be made available to the parking administrator for billing
purposes. Parking availability at a given location is a metric that must be continuously measured and
made available to parking authorities and drivers.

Computer Vision and Imaging in Intelligent Transportation Systems12

In the domain of law enforcement, image capture is performed within a transportation infrastruc-
ture such as a gantry or police vehicle. The computer vision pipeline is often executed on a central-
ized server, and various data feedback and presentation mechanisms are invoked. For example, a law
enforcement officer may want to see a relevant metric such as vehicle speed or occupancy, along with
a picture or video clip of the vehicle that can be used for adjudicating a traffic violation, as well as for
evidentiary purposes.

One trend that must be recognized and leveraged in the step of data presentation is the ubiquity of
mobile technologies such as smartphones, tablets, smartwatches, and other wearable devices that are
intimately connected to all human agents in a transportation ecosystem. For example, today it is
customary for a smartphone to be connected via Bluetooth to the audio system in the vehicle, or for
drivers to use the GPS on their mobile device for driving directions. It is expected that the automo-
bile of the future will seamlessly integrate multimedia information from mobile devices with visual
interfaces on the dashboard to present a personalized and context‐sensitive driving experience.

We conclude the chapter by observing that while each module in Figure 1.3 can be individually
designed and tuned, it is highly beneficial to co‐optimize the entire framework at a system level, so as
to account for the interplay and interaction among the modules. For example, the choice of features
and the design of the inference algorithm are closely coupled, and ideally must be co‐optimized for a
given computer vision task. Similarly, the choice of imaging system can strongly affect the optimum
choice of features and algorithms, as seen in numerous examples in the text. In Chapter 13 on driver
monitoring, the choice of data preprocessing and feature extraction method depend on whether
active or passive illumination is used within the vehicle. In Chapter 4 on passenger compartment
violation detection, cameras capturing single versus multiple spectral bands are compared in terms
of detection accuracy. Similarly, Chapter 10 illustrates how thermal infrared cameras can simplify the
pedestrian detection task. Also, as mentioned earlier, road condition monitoring benefits greatly
from the use of thermal IR imaging and optical polarization. Finally, the means and requirements for
information presentation and feedback must be comprehended while designing the preceding steps
in the framework.

 References

1 Traffic Safety Facts, 2012 Data, Speeding. National Highway Traffic Safety Administration, NHTSA’s
National Center for Statistical Analysis, Washington, DC, DOT HS 812 021, 2014.

2 The Economic and Societal Impact Of Motor Vehicle Crashes, 2010 (Revised), NHTSA’s National
Highway Traffic Safety Administration, National Center for Statistical Analysis, Washington, DC,
DOT HS 812 013, 2010.

3 L. Thomas, R. Srinivasan, L. Decina, L. Staplin, Safety Effects of Automated Speed Enforcement
Programs: Critical Review of International Literature, Transportation Research Record: Journal of the
Transportation Research Board, 2078, 117–126, 2008.

4 Distracted Driving 2009, Report, U.S. DOT National Highway Traffic Safety Administration, DOT HS
811 379, September, 2010. http://www‐nrd.nhtsa.dot.gov/Pubs/811379.pdf (accessed September 9,
2016).

5 D. Roberts, M. Casanova, Automated License Plate Recognition (ALPR) Systems: Policy and
Operational Guidance for Law Enforcement, Washington, DC: U.S. Department of Justice, National
Institute of Justice, 2012.

6 D. C. Shoup, The High Cost of Free Parking, Chicago: Planners Press, American Planning Association,
2005, 7.

Introduction 13

7 D. C. Shoup, Cruising for Parking, Transport Policy, 13(6), 479–486, 2006.
8 S. Schijns, P. Mathews, A Breakthrough in Automated Vehicle Occupancy Monitoring Systems for

HOV/HOT Facilities, 12th International HOV Systems Conference, Houston, TX, April 20, 2005.
9 D. P. Jenkins, N. A. Stanton, G. H. Walker, M. S. Young, A New approach to Designing Lateral

Collision Warning Systems, International Journal of Vehicle Design, 45(3), 379–396, 2007.
10 I‐Car Advantage, Lane Departure Warning Systems, September 6, 2005.
11 C. Visvikis, T. L. Smith, M. Pitcher, R. Smith, Study on Lane Departure Warning and Lane Change

Assistant Systems, Transport Research Laboratory Project Rpt PPR 374. http://www.trl.co.uk/
umbraco/custom/report_files/PPR374.pdf and http://www.trl.co.uk/reports‐publications/trl‐reports/
report/?reportid=6789 (accessed October 13, 2016).

12 U.S. Department of Transportation Releases Policy on Automated Vehicle Development. National
Highway Traffic Safety Administration. 30 May 2013. Retrieved December 18, 2013.

13 http://spectrum.ieee.org/automaton/robotics/artificial‐intelligence/how‐google‐self‐driving‐car‐
works (accessed September 9, 2016).

14 R. C. Gonzalez, R. E. Woods, Digital Image Processing, 3rd Ed., Upper Saddle River, NJ: Prentice
Hall, 2008.

15 C. M. Bishop, Pattern Recognition and Machine Learning, New York: Springer, 2007.

15

Part I

Imaging from the Roadway Infrastructure

17

Computer Vision and Imaging in Intelligent Transportation Systems, First Edition.
Edited by Robert P. Loce, Raja Bala and Mohan Trivedi.
© 2017 John Wiley & Sons Ltd. Published 2017 by John Wiley & Sons Ltd.
Companion website: www.wiley.com/go/loce/ComputerVisionandImaginginITS

2.1 Introduction

Vehicles traveling on the public roadways in the United States, and many other countries, are required
by law to carry a clearly visible placard with a unique identifier that is registered with the local
 government. This placard, most commonly called a “license plate,” can contain various symbols—
letters, numbers, logos, etc.—based on local government regulations and the class of the vehicle.

Given the common requirement for its presence and ease of visibility, the license plate has become
the default means for identifying a vehicle and/or its registered operator across a broad range of
applications. For electronic tolling and automated parking solutions, the license plate is used as the
unique identifier that links to the account holder for processing of payment transactions. Enforcement
applications, such as red light, leverage the license plate information to identify the registered opera-
tor as part of processing violations. Surveillance and security systems make use of license plates to
identify particular vehicles of interest and to track the movement of individual vehicles—entry and
exit from protected areas, patterns of movement across large urban areas, etc.

For some applications license plate information can be extracted manually from images or videos of a
passing vehicle. In these cases, human annotators view the footage and produce a hand‐coded result for
the license plate (both the plate string and often the issuing jurisdiction). Given the costs and turnaround
times associated with this type of manual review, industry trends are toward ever‐increasing automation.

Automated license plate recognition (ALPR), sometimes also referred to as automated number
plate recognition (ANPR), is a technology that leverages computer vision algorithms to extract
license plate information from videos or still images of vehicles. ALPR has become a core technology
within modern intelligent transportation systems. Surveillance and police enforcement applications
leverage ALPR systems to provide real‐time data gathering to support law enforcement efforts. In
fact, a 2012 study [1] conducted on the usage of ALPR technology by police agencies found that 80%
of larger agencies (those with 1000+ sworn officers) were already leveraging ALPR in some way.
Results from this same study also indicated that police agencies who were using ALPR reported that
the use of technology had increased recovery of stolen vehicles by 68% and overall arrests by 55%. In
the tolling industry, over 90% of the tolled roadways in the United States leverage some form of
 electronic tolling [2]. Many of these electronic tolling systems rely primarily on radio frequency

2

Automated License Plate Recognition
Aaron Burry and Vladimir Kozitsky

Conduent Labs, Webster, NY, USA

Computer Vision and Imaging in Intelligent Transportation Systems18

 identification (RFID) tags to identify account holders, with ALPR systems used as backup in cases
where tags are not properly read for a passing vehicle. However, there have been several recent
 successful deployments of video‐only tolling solutions in New Zealand [3] and Sweden [4]. In these
video‐only systems, all transactions are processed via captured imagery—leveraging some combina-
tion of ALPR and manual review of the images—thereby eliminating the need for the deployment
and maintenance costs associated with RFID tags. Automated billing and access for off‐street parking
and enforcement of on‐street parking are other areas that have seen recent growth in adoption and
deployment of ALPR‐based solutions.

An ALPR solution must find and recognize the license plate information within an image of a
larger scene containing the vehicle of interest. At a first glance, the ALPR problem appears simi-
lar to that of text recognition from scanned documents—both applications require finding and
recognizing text within images. However, there are several key differences between the chal-
lenges posed in these two domains. One of the primary differences is how much more controlled
the image capture environment is for scanning documents. In contrast, images captured from
real‐world transportation infrastructure can contain a wide array of noises. These include heavy
shadows, poor contrast, non‐uniform illumination (from one vehicle to the next, daytime vs.
nighttime, etc.), challenging optical geometries (tilt, shear, or projective distortions of the license
plate and its characters), plate frames and/or stickers partially touching characters, partial
occlusion of characters from things like trailer hitches, and dirt or other contamination of the
license plate surface.

For ALPR systems deployed in the United States in particular, the inherent variation of license
plate formats further adds to the difficulties for automated recognition systems. Such variations
can include background color, background uniformity (i.e., flat background vs. a pictorial of some
sort), character color, character font, character width, character spacing, and the presence of
special logos. The level of variation in license plate formats is demonstrated by the fact that some
US states, such as Florida, have well over one hundred different types of license plate designs in
circulation [5].

When recognizing words in images of scanned documents, various techniques have been devel-
oped for leveraging known dictionaries for both detecting and correcting errors in automated text
recognition systems (see [6–9], e.g., approaches). Unfortunately, the information contained on
license plates is much more weakly constrained, with far more possible combinations of letters and
numbers. Thus, to achieve the same levels of overall accuracy, the fundamental recognition
 technologies used for ALPR must be more accurate.

2.2 Core ALPR Technologies

The block diagram shown in Figure 2.1 illustrates the set of processing operations comprising a typi-
cal ALPR system. Cameras along a roadway or other observation area capture images (or videos) of
passing vehicles, which are then submitted to the ALPR system for evaluation. The first step in the
ALPR process is the localization of the subregion of the image containing the license plate. Candidate

Image capture
Character

segmentation
Character
recognition

State
identification

License plate
localization

Figure 2.1 Block diagram of a typical ALPR processing flow.

Automated License Plate Recognition 19

license plate regions are then sent to a character segmentation module to extract and crop subimages
containing valid characters, logos, and other license plate symbols. The individual segmented images
are then sent to a recognition module (often generically referred to as optical character recognition
or OCR) to determine the license plate code. Finally, a state identification module leverages
the resultant license plate code and other information extracted from the license plate image—the
 presence or absence of logos, color information, character spacing and font, etc.—to determine the
source jurisdiction that issued the plate.

The following sections will describe in greater detail some of the more common approaches for
implementing each of these fundamental capabilities within an ALPR solution. The goal is not an
exhaustive review of the academic research published in this field—for that see the survey papers of
[10] and [11]. Instead, the following will describe several of the most common methods behind each
subsystem in the ALPR framework. The emphasis here is on giving the reader a basic understanding
of the key requirements, challenges, and the basic methodologies.

2.2.1 License Plate Localization

Depending on the specific application and the image capture geometry, the source images from the
capture device may contain varying amounts of the vehicle and surrounding background scene in
addition to the license plate region of interest. The first step in the ALPR processing pipeline is there-
fore an identification of the coarse subregions of the overall image that are likely to contain a
license plate.

Extracting these region‐of‐interest (ROI) subimages and limiting subsequent processing to only
these areas provides several major benefits. First, constraining the segmentation and recognition
operations to a more limited region of the image can in fact result in higher accuracy results for these
operations. In other words, the localization operation can crop off regions of the image that might,
in some sense, serve as distractions for segmentation and/or character recognition. A second benefit
of starting the ALPR process flow with plate localization is a substantial reduction in the total com-
putational overhead of subsequent processing steps. To realize this gain, however, the localization
step itself must obviously be computationally efficient.

Beyond computational efficiency, another critical performance metric for the license plate locali-
zation method is the missed detection rate (i.e., failure to identify a visible license plate within an
image). Since the plate localization is the first in the processing sequence, a missed detection here
will eliminate any possibility for successful ALPR for that image. Depending on the application, this
could mean lost tolling revenue, a missed red light violator, etc. Conversely, false alarms at this stage
of the process (i.e., candidate subregions of the image that do not actually contain visible license
plates) still provide the opportunity for subsequent processing operations in the pipeline to identify
the correct ALPR result. Note that these additional ROI candidates do however increase the overall
computational burden and can lead to false recognitions—for example, recognizing text on a bumper
sticker rather than from the actual license plate. Thus, there is a design trade‐off to be made in terms
of increasing the detection rate for valid license plate regions as much as possible while not incurring
undue negative impacts (false recognitions and processing overhead) to the overall ALPR system
performance.

Various methods have been demonstrated in the literature for implementing license plate locali-
zation. These approaches can be organized into several major categories: color‐based methods,
edge‐ or texture‐based methods, and methods that utilize image‐based classifiers. A more detailed
description of the types of algorithms underlying each of these general approaches is given in the
following sections.

Computer Vision and Imaging in Intelligent Transportation Systems20

2.2.1.1 Color‐Based Methods
Some countries or local jurisdictions make use of specific color combinations in the design of their
license plates. For instance, the license plate most common for passenger cars in the state of New
York is an orange background with dark blue letters. One approach to localization is then to leverage
this a priori knowledge to search for subregions of an image that conform to these criteria. The idea
here is that the color combination of a plate and characters is unique, and this combination occurs
almost only in a plate region [12]. A prototypical example of this type of approach is outlined in Ref.
[13], wherein a neural network is first used to classify input pixels into one of four color groups
(based on localized pixel information). Color projection histograms in both horizontal and vertical
dimensions are then used to identify likely plate regions.

Although color‐based approaches are intuitive, there are several major drawbacks to using color
information as the primary discriminator for license plate subregions of an image. First, some image
capture systems for transportation applications make use of narrower band, near‐infrared (NIR)
illumination sources and, therefore, output only grayscale images. Obviously color information is not
a viable localization solution for images obtained with these systems.

Color‐based localization methods can also be inherently sensitive to variations in illumination.
Unfortunately, these types of noises are quite common for images obtained for real‐world transpor-
tation applications. Nonuniform illumination can be caused by changes in background illumination
due to time of day, location‐to‐location variability in image capture setup and native levels of ambi-
ent lighting, within‐image variations due to shadows, etc. Some efforts have been made to formulate
the separation of background regions from foreground license plate regions in alternative color
spaces. For instance, in Ref. [14] an input RGB image is converted to the hue, saturation, and intensity
(HSI) color space and a set of pixel level constraints on each color channel are used to identify pixels
as either foreground or background based on learned statistics for several common license plate
designs. Another approach aimed at obtaining robust use of color information is illustrated in Ref.
[15]. Here, the authors compute edge information only for certain color pairs known to be prominent
in the license plate designs they considered: black–white, red–white, and green–white.

Perhaps the biggest limitation of using color as the primary feature for localization is that this type
of an approach is highly tuned to a specific design of the license plate. Unfortunately, there is a high
degree of variability in the format of license plates between states in the United States and from
country to country in other parts of the world. For example, the dominant license plate format for
passenger cars is a yellow background with black letters in New Jersey, a white background with dark
blue letters in Pennsylvania, and yellow letters on a dark blue background for the state of Delaware.
Since travel across state boundaries is quite common in the United States, these examples illustrate
a key challenge with relying on color as the primary cue for plate localization. More specifically, any
color‐based localization approach must comprehend a sufficiently broad set of license plate designs
to handle the mixture of jurisdictions that will be presented to it.

2.2.1.2 Edge‐Based Methods
Regions of images that contain text tend to have locally steep gradients due to the sharp transition
from characters to background. Since license plate content is mainly text, edge information can be
used as a good feature to distinguish license plate regions from other regions in a source image, even
for reasonably complex scenes. Edge information tends to be more robust to changes in illumination
than other features like color, and the computation and analysis required for the class of edge‐based
approaches tends to be relatively low overhead. Because edge‐based methods are extremely popular,
the remainder of this section describes the basic operations and key challenges of several of these
approaches in more detail.

Automated License Plate Recognition 21

The computation of the vertical and horizontal edge information, often using the Sobel operators, is
the first step for most edge‐based methods. A threshold is then applied to eliminate spurious edge
information, leaving only “strong” edges. An example of a partially redacted real‐world vehicle image
and the corresponding edge image after the Sobel filtering and a threshold have been applied are shown
in Figure 2.2. Here, the contrast between the strong local edge content within the license plate region,
as compared to the surrounding image regions, can be clearly seen.

Having computed an edge image, a number of methods can then be used to identify candidate
license plate subregions of the image. Vertical and horizontal projections of the edge information can
be computed (see Figure 2.3), with license plate candidates then taken as those having strong vertical
edge content within a localized region. Similar approaches based on vertical edge density [16] and
local edge statistics [17] are common.

Another strategy for plate localization based on edge information leverages mathematical mor-
phology and connected‐component analysis (CCA) to identify the candidate subregions. There are
many variations on this basic theme, but a typical sequence of operations follows the outline in Ref.
[18]. Morphological filtering operations are used to connect the strong edges in the license plate into
a contiguous foreground “blob,” while at the same time eliminating spurious edge information in
other areas of the image.

The most common morphological operations on binary images are erosion, dilation, opening, and
closing. The erosion of a binary image A by the binary structuring element B is given as follows:

 A B x B Ax : (2.1)

Here, Bx is the translation of binary set B by a point x,

 B b x b Bx : (2.2)

Figure 2.2 Original and resulting edge image.

Figure 2.3 Edge projection‐based detection for license plate localization.

Computer Vision and Imaging in Intelligent Transportation Systems22

Likewise, the dilation of set A by structuring element B can be represented as follows:

 A B Ab B b

(2.3)

The opening operation is defined as an erosion followed by a dilation,

 A B A B B (2.4)

while the closing operation is defined as a dilation followed by an erosion,

 A B A B B (2.5)

The results of applying a morphological close operation to the edge image of Figure 2.2 are illus-
trated in Figure 2.4. Here, the license plate region is seen to be well connected into a foreground blob.
However, there are a number of spurious connections to other foreground blobs as well. Further
morphological filtering, such as an open operation, can then be applied to help further isolate the
license plate from other spurious edge information in the image. The results for this image are illus-
trated in Figure 2.5.

After morphological filtering, CCA can be applied to screen candidate blob regions based on
known general characteristics of license plates. For instance, it can be expected that license plates
will be rectangular in shape and substantially horizontal in orientation. In addition, the aspect ratio

Figure 2.4 Results of morphological close operation on edge image.

Figure 2.5 Results of additional morphological filtering operations.

Automated License Plate Recognition 23

of license plates is roughly 2 : 1 (the width is twice the height). Candidate blobs that are too large or
too small to be of interest can be removed by leveraging some prior knowledge of the image capture
setup and expected license plate size in the image. The results after applying this type of CCA can be
seen in Figure 2.6.

These remaining foreground blobs are then used as selection masks to extract the ROI subimages
for the candidate license plate regions, as illustrated in Figure 2.7. Note that in this example several
false regions are identified along with the correct license plate subimage. As mentioned previously,
there is a design trade‐off between ensuring that the plate containing region is identified and mini-
mizing the number of such false alarms.

2.2.1.3 Machine Learning–Based Approaches
In addition to the image processing‐based methods described before, learning‐based approaches for
object localization can also be applied to the problem of identifying license plate subregions. Here,
there are two main types of approaches. The first category of approaches involves training a classifier
that is used to directly scan the image for the license plate containing subregions. This methodology
can be thought of as analogous to that of scanning an image looking for faces, as in the commonly
referenced Viola–Jones detector [19]. Following an approach similar to Viola–Jones, the authors of
Ref. [20] trained an Adaboost classifier to detect license plates by sweeping the detection window
across the image. To obtain some robustness to the size of the license plate in the image, it is common
practice to sweep the classifier at multiple scales (different magnifications of the image relative to the

Figure 2.6 Results of applying CCA to reduce candidate blob regions.

Figure 2.7 Extracted sub-image regions.

Computer Vision and Imaging in Intelligent Transportation Systems24

classifier’s template size). Beyond the simple Haar‐like features used in Ref. [20], a multitude of other
features can be considered for detecting license plates. In Ref. [21], the authors build a descriptor for
an image patch that is composed of the covariance between simple image features (pixel coordinates,
pixel intensity, and first‐ and second‐order derivatives in both x and y dimensions) at different pixel
coordinates within the patch. The bag‐of‐visual‐words method [22, 23] is another common tech-
nique for image‐based classification. Extending this concept, the authors in Ref. [24] attempt to
abstract the most distinctive scale‐invariant feature transform (SIFT) [25] features. Here, a set of
labeled training images of segmented license plate characters is analyzed. The most distinctive SIFT
features, called principal visual words (PVWs), for each symbol in the dictionary are then identified.
At test time, SIFT features are identified for the full scene image and the previously learned diction-
ary of PVWs are used for screening—those candidate character locations that do not closely match a
PVW in the dictionary are discarded. Regions of the image that contain a high density of candidate
characters with similar geometric orientations are then considered likely license plate regions.

The second category of learning‐based approaches for plate localization involves first generating
candidate license plate regions (“proposals”), for instance, using the types of methods outlined in
Section 2.2.1.2, and then applying a feature‐based classification on these subimage regions to either
rank order them (most likely to least likely) or to screen unlikely candidates from the pool. This type
of an approach is typically taken when the performance of the sweeping classifier type of method
alone is unacceptable. Poor performance here could mean many things—too many missed plates, too
many false alarms on nonplate regions, or too computationally expensive to calculate features and
sweep the classifier template across the entire image.

As a prototypical example of this type of an approach, Cano and Pérez‐Cortés [26] use Sobel filter-
ing followed by application of a threshold to generate edge‐based candidates for license plate regions
(once again very similar to approaches outlined in Section 2.2.1.2). These candidate proposals are
then evaluated with a trained k‐nearest neighbor classification approach, using the gray values within
a defined window as the input feature vectors.

In principle, any of the techniques that could be applied for directly detecting the license plate
subregion could be applied to this secondary task of evaluating candidate region of interest proposals.

2.2.2 Character Segmentation

Given a roughly cropped license plate ROI image, such as that shown in Figure 2.8, the character
segmentation module must extract individually cropped sub-images for each of the characters in
the license plate. This can be a difficult task given that the input image often has poor contrast,
perspective distortion, and license plate frames or other artifacts that can touch or even partially
occlude some of the characters. Although it may be attacked directly, the overall character segmen-
tation problem for license plate images is often broken into two separate steps, as outlined in the
following sections.

Figure 2.8 Cartoon of a coarsely cropped license plate ROI image
output from the localization module.

Automated License Plate Recognition 25

Image processing techniques for extracting text from images is a well‐studied field. Good survey
papers highlighting the breadth of methods in this space can be found in Refs. [27–29]. The intent of
the description in the following sections is to highlight the particular challenges of text segmentation
for license plate images, as well as some of the most common methods for addressing these challenges.

2.2.2.1 Preprocessing for Rotation, Crop, and Shear
The first step is to obtain a much tighter crop of just the subregion of the image containing the char-
acters. This tightly cropped image will also be tilt and shear corrected as much as possible in an
effort to achieve consistent, vertically oriented characters as shown in Figure 2.9. This preprocessing
normalizes the characters in an effort to provide a more consistent, more easily segmented image to
the subsequent step of identifying the actual “cuts” between the individual license plate characters.

For the more general problem of detecting text within an image scene, the line structure of words
can be exploited to assist localization [30]. Applied to license plates, this line structure constraint
can be leveraged by first locating strong candidates for license plate characters within the image,
and then using the location and size information of these character candidates to perform crop-
ping, de‐rotation, and de‐shearing of the image. One common approach to locating candidate
characters in the loosely cropped ROI image is to binarize the image and then leverage a set of
screening techniques—typically a sequence of morphological filtering and CCA, much like the
edge‐based methods for localization. Examples of this type of approach can be found in Refs. [31]
and [32]. Because of their common usage, the basic sequence of operations for this class of meth-
ods will be described in more detail in order to highlight the underlying techniques and some of the
key challenges.

The candidate license plate region is first converted to a binary image to differentiate between
foreground and background pixels. Common methods for binarization of the plate region of interest
image are the statistical methods of Otsu [33], Savola [34], and Niblack [35], or a gradient‐based
approach such as that outlined in Ref. [36]. The images in Figure 2.10 are for a partially redacted
original source and the resulting binary image for a plate region. Similar to the edge‐based methods
for plate localization, the process flow outlined in Refs. [31] and [32] then leverages a combination of
morphological filtering and CCA applied to the binary image to eliminate unlikely candidates from
the character pool. Here, the characters are known to be substantially vertical, roughly the same size,

Figure 2.9 Extracting a tightly cropped ROI image around the
characters.

Computer Vision and Imaging in Intelligent Transportation Systems26

and have about a 2 : 1 aspect ratio. The image of the resulting foreground blobs after applying these
operations is given in Figure 2.11.

To assist with elimination of erroneous foreground blobs, Burry et al. [32] use the residual error
contribution to the centerline fit from each candidate character to estimate the likelihood of a fore-
ground blob being a valid license plate character. Methods such as Random sample consensus
(RANSAC) [37] could also be used to remove outliers from the centerline fit as a method for pruning
the candidates. The result of pruning based on centerline fit for the example case of Figure 2.11 is
given in Figure 2.12. As illustrated in this result, it isn’t necessary to obtain accurate location infor-
mation for each character within the license plate at this stage—just a subset is sufficient to identify
the line along which the license plate text lies within the image. Once the set of candidate characters
has been pruned, the centerline fit to the remaining foreground blobs is used to determine the
required de‐rotation to obtain a horizontally oriented license plate in the image. Based on the size of
the reduced set of candidate character blobs, a tight cropping of the image in the vertical dimension
can then be performed (see the example result in Figure 2.13).

In order to obtain the final horizontal crop of the license plate, one common method is to leverage
gradient information to identify the strong contrast that typically exists between the plate and the

Original

Binary

Figure 2.10 Original and binary images for a coarsely cropped
ROI around a license plate.

Figure 2.11 Remaining foreground blobs after
morphological filtering and CCA.

Figure 2.12 Remaining foreground blobs after pruning based
on centerline fit method of candidate character blobs.

Figure 2.13 Vertically cropped ROI image for a partially redacted license plate.

Automated License Plate Recognition 27

surrounding vehicle body. An example of a dominant license plate on a simple background for which
a gradient‐based approach is intuitive is shown in Figure 2.14. Here, both the original image and a
gradient map, after imposing a minimum threshold, are provided. Clearly for an example such as this,
the gradient information alone is sufficient to accurately locate the license plate boundaries. A more
complex scenario is provided in Figure 2.15. Note the occurrence of dominant edge information well
outside the boundaries of the license plate text region in this example. Accurate determination of the
license plate region is clearly more difficult for this type of image. Thus, when relying on image gradi-
ent information, the degree of contrast between the plate region and the surrounding vehicle, as well
as the potential occurrence of extraneous hard edges outside the plate region, can complicate the
detection of the horizontal boundaries of the license plate.

An image‐based classification approach can also be used to determine the horizontal boundaries
of the license plate text in the image. For instance, one method is to train a detector that recognizes
the difference between valid license plate characters and noncharacter content. By sweeping this
detector horizontally across the image, a profile of detection scores will be generated (see Figure 2.16).
The license plate subregion can then be determined as the region with the highest contiguous detec-
tion scores. One of the biggest challenges for this type of an approach is the strong similarity between
the text symbol “1” used in many license plate fonts and other hard edges in the image around the
plate. Due to this confusion, a classifier‐based approach can suffer from over‐ or under‐cropping of
the license plate region.

To avoid the pitfalls of either approach, hybrid approaches that leverage information from both the
raw gradient and an image‐based classification can be used. An example of such a hybrid method is
described in Ref. [38]. Here, the image‐based classifier is first used to provide a coarse boundary
selection, with the gradient information then allowing for a fine‐tuning of the identified borders.

20
40
60
80

20
40
60
80

100 200 300 400 500 600

100 200 300 400 500 600

Figure 2.14 A simple gradient example.

20
40
60

20
40
60

100 200 300 400 500 600 700 800

100 200 300 400 500 600 700 800

Figure 2.15 An example of a more complex vehicle background.

Computer Vision and Imaging in Intelligent Transportation Systems28

2.2.2.2 Character‐Level Segmentation
The second step in the segmentation process is identifying the cut points between characters to
achieve properly separated sub-images. The desired results of this operation can be seen in the sketch
of Figure 2.17.

Various methods have been proposed in the literature for achieving this character‐level segmenta-
tion of license plate images. One of the simplest and most commonly used approaches is based on the
vertical histogram of the image [10, 11]. This histogram profile, effectively the mean profile of the
image computed in the vertical direction, can be calculated either for the original source gray values
or for a binary version of the tightly cropped license plate image. Cropping points are then identified
in the zero‐valued regions of the profile between characters. An illustration of the approach is
 provided on a partially redacted license plate image in Figure 2.18.

Unfortunately, the vertical histogram approach is sensitive to localized artifacts such as license
plate frames and heavy shadows. An example of the issues that can occur is illustrated in Figure 2.19.
Here, the adjacent background content near the plate characters is sufficient to lead to a significant,
nonzero value for the projection profile of the binary image between the characters “3” and “5.” To
combat this, it is possible to make use of a nonzero or a locally adaptive threshold value. Other
advancements on this basic concept employ additional techniques for identifying over‐ or under‐
segmentations of characters. For instance, in Refs. [39] and [40] the uniformity of the character
spacing on the plate is used to identify outliers in the candidate segmentation cuts. More specifi-
cally, over‐segmented characters will manifest as too narrow a spacing between consecutive charac-
ter centers while under‐segmented regions can be identified by too large a spacing. The candidates
that have been identified as erroneous in this fashion are then either merged with neighbors or split
as required.

2.2.3 Character Recognition

Given an image of a cropped license plate character, the character recognition subsystem must iden-
tify the correct label for this image. At a high level, this problem is synonymous to the OCR problem
associated with labeling/recognizing characters from images of scanned documents. However, for a
number of reasons the similarities end at this broad level. For instance, in the ALPR scenario there is
little control over lighting, especially in open toad tolling (ORT) applications where cameras are

20
40
60
80

0 100 200 300 400 500 600

0 100 200 300 400 500 600

150

140

130

120

110

100

90

80

70

60

Figure 2.16 Original image and detection
scores for valid character detector.

Automated License Plate Recognition 29

mounted on gantries above a roadway of free‐flowing traffic. Another complication seen in the ALPR
application is that license plate text backgrounds can vary substantially across plate types and juris-
dictions. In addition, noises such as shadows, partial occlusions, and perspective distortions contrib-
ute to wide variations in the appearance of characters. Further, standard document OCR engines
heavily leverage a natural language dictionary of common words to ensure optimal performance
[6–9], whereas no such dictionary is available for ALPR.

Figure 2.17 Segmentation cut points as cropping boundaries
between characters.

Original image

Binarized image

Vertical histogram pro�le

100

90

80

70

60

50

40

30

20

10

0
0 50 100 150 200 250 300 350

Pixel column

V
er

tic
al

 h
is

t c
ou

nt

Segmented results

Figure 2.18 Example of vertical projection approach for character segmentation.

Computer Vision and Imaging in Intelligent Transportation Systems30

As illustrated in Figure 2.20, the standard workflow in developing an OCR engine comprises the
following three major steps: character harvesting and sorting, feature extraction, and classifier
training. The optional data augmentation step leverages collected examples to artificially increase
the images available for training.

2.2.3.1 Character Harvesting and Sorting
Given a set of license plates, a functional segmentation algorithm will provide segmented characters
that can be used for training an OCR engine. Segmentation algorithms vary and each produces char-
acters with unique characteristics or bias. This bias comes in several forms such as scaling, cropping,
inconsistent centering, shear, and rotation. Typically, these biases are label dependent and cannot be
automatically corrected. Given this, a dependency exists between the segmentation algorithm and
the OCR engine. Thus, it is important to use the same segmentation algorithm for character harvest-
ing as well as run‐time evaluation to ensure that representative noises are included.

Before starting the harvesting process, it is useful to have some ground truth information available
for each license plate. The minimum information required is license plate jurisdiction at a country
and province/state level since character fonts vary across provinces and states. Thus, with license
plates organized by jurisdiction (i.e., font), character images can be extracted via a segmentation
algorithm. A human observer will then typically need to sort this set of segmented characters into
smaller subsets organized by labels such as “0,” “1,” and “A”. This is an extremely tedious process that
can be made easier with the application of an external OCR engine (i.e., one that was trained for a
different jurisdiction/font) to automatically sort the images. At this stage, this alternate OCR engine
will likely have a substantial error rate, given that it was not tuned specifically for the jurisdictions
being processed. For this reason, the initial output from this external OCR engine will typically still
need to be manually validated.

To simplify the sorting process further, it is helpful to have a second level of ground truth that
includes the license plate code (number). The ground truth code can be used to guide the harvesting
and sorting process in conjunction with an external OCR engine through string alignment methods.
Given a set of segmented images from a single license plate, the external OCR will produce a result.
An edit distance algorithm with backtrace such as Levenshtein distance can be applied to the OCR
result and ground truth code to determine the number of insertions, deletions, and substitutions
required for the two to match. Insertions occur when the segmentation algorithm returns nonchar-
acter imagery such as logos, symbols, and off‐plate content. Deletions arise when real character

Original image

Binary image

Figure 2.19 Difficult example for projective segmentation.

Segmented
characters

Harvesting
and sorting

Data
augmentation

Feature
extraction

Classi�er
training

Trained
OCR

Figure 2.20 Typical OCR training workflow.

Automated License Plate Recognition 31

images are not returned by segmentation—this typically occurs at plate boundaries. Substitutions
are introduced by OCR errors or in combination with deletions when segmentation erroneously
returns a single image containing two individual characters.

A threshold applied to the edit distance value can be used to guide automatic sorting. Typical
license plates have seven characters and setting a threshold at less than or equal to 3 ensures that
many characters can be automatically sorted. License plates that don’t meet the edit distance thresh-
old can have characters extracted to a catch‐all bin that a human may review and sort to gather
 sufficient examples. Setting the threshold too high runs the risk of accepting non license plate content
such as stickers, banners, and other extraneous text content. Non-license plate regions will at times
be generated by the localization algorithm and they may be segmented effectively but would pollute
a training data set for OCR. It is only with plate code‐level ground truth that these cases can be
 automatically rejected.

If the automatic sorting process produces enough examples, there is no need to review the unsorted
bin. How many examples are sufficient? This depends on various factors such as the number of
labels, the type of features/classifier used for OCR, the effectiveness of segmentation in normalizing
characters, and the required level of performance. In general, more data will lead to better perfor-
mance with decreasing accuracy improvement returns past 1500 samples per dictionary symbol.

2.2.3.2 Data Augmentation
Collecting large real‐world data sets is expensive and ground truth generation is error prone—often
requiring double‐blind review of images to ensure error rates less than 1%. Data augmentation
 methods can be applied to supplement the real world data, thereby artificially enlarging the training
sets. In general, training set variability typically rises with sample size. However, improvement via
augmentation for already large sets will be minimal or worse performance may actually result as the
addition of synthetic examples may in fact bias the classifiers to unrealistic imagery—effectively
swamping the nominal range of noises in the initial “real” image sample set. A large amount of work
has been done in modeling degradation of characters for document based OCR [41, 42] where the
population of fonts is known and limited. Parameterized models can be used to generate a large
 volume of character images drawing from a statistical distribution of likely noises [43, 44].

Multiple augmentation options exist—the first is illustrated in Figure 2.21. Existing real world data
is distorted through application of vertical and horizontal spatial offsets, scaling, blur (through
down‐sampling followed by up‐sampling), injection of general image noise, and rotation. This can be
extended to include other residual noise sources that are not completely removed by the segmenta-
tion algorithm, such as perspective distortions or cropping biases. In Ref. [45], the authors computed
mean images for each class and then applied weighted amounts of seven distortions to the mean
images to generate augmented examples. For convolutional neural network (CNN)‐based classifiers,
spatial offsets combined with horizontal reflections have been found to work well [44].

Figure 2.21 Distorted versions of real characters (original is first).

Computer Vision and Imaging in Intelligent Transportation Systems32

The second type of augmentation requires knowledge of character font. The font can be derived
from matching to a font library, or it can be designed from collected examples. Once the font is
known, the distribution of noise sources can be learned from collected character images and then
used to generate a much larger set. In Ref. [46], the authors carry out the synthesis on a plate level
starting with blank templates and then rendering the plate code text onto the template. The synthe-
sis includes a color to infrared (IR) transform as most cameras for ALPR systems operate in the IR
spectrum, while real‐world license plates contain a variety of color content. The images in
Figure 2.22 show a few synthetically generated examples and Figure 2.23 illustrates how the addi-
tion of 2000 synthetic samples per character (SPC) is equivalent to having an additional 600 real
SPC for training.

2.2.3.3 Feature Extraction
Once characters have been harvested and sorted, they need to be resized to a fixed template size
before the feature extraction process can begin. Well‐segmented character images typically have an
aspect ratio of 2 : 1 (height : width), and this aspect ratio should be maintained for the template. The
size of the template is driven by the median character size such that a minimum number of characters
will need to be significantly up‐sampled or down‐sampled. If the segmentation algorithm is effective
at generating well‐centered characters, a good normalization strategy is to resize each image to tem-
plate height allowing the width to float, then to either crop or pad the sides preserving the center.

Choice of template size is driven by several factors. The main factor is native character resolution.
If the native resolution is low, the best option is to avoid down‐sampling as important information

Figure 2.22 Synthetically generated license plates.

1

0.98

0.96

0.94

0.92

0.9

0.88

Y
ie

ld

0.86

0.84

0.82

0.8
0.99 0.991 0.992 0.993 0.994 0.995

Accuracy
0.996 0.997 0.998 0.999 1

Figure 2.23 OCR performance for
three sets of training data: (i) 700 real
SPC (cross‐marks), 2000 synthetic SPC
(dashed curve), and (ii) a mix of 2000
synthetic and 100 real SPC (circle
marks).

Automated License Plate Recognition 33

will be lost. Provided that input resolution is sufficiently high, down‐sampling will be effective at
reducing the number of pixels without compromising recognition performance. The optimal size
can be derived experimentally as there is an interaction between template size and feature type. For
typical license plates that include 36 labels (0–9 A–Z) performance will begin to suffer notably when
templates drop below 24×12 pixels. The greatest impact in performance will be observed in decreased
accuracy for close number/letter pairs such as 0/O, 0/D, 1/I, 2/Z, 5/S, and 8/B. For number plates
(0–9), it has been observed that the OCR template size can be reduced down to 16×8 provided that
contrast is high and blur is minimal.

In general, feature extraction is a dimensionality reduction operation where redundancy on a pixel
level is removed and replaced with a higher lever descriptor. A goal of feature extraction is to reduce
intra‐class variability while increasing it across classes to produce data that will enhance classifica-
tion performance. A number of feature extraction methods have been applied to the OCR problem.
These include template matching, geometric and Zernike moments, contour and spline profiling,
zoning, and projection histograms [47]. Most of the documented features rely on expert insight and
in turn are hand‐crafted.

Edge and gradient‐based features have been found to work well for ALPR as these are robust to
illumination variation that is typical in unconstrained imaging scenarios. Given variability in char-
acter segmentation, features that are robust to spatial variation are preferred as well. The succes-
sive mean quantization transform (SMQT) was originally proposed for face detection by Nilsson
[48] and is used to compute local gradients for each pixel by removing local gain and bias to reveal
the underlying object structure. Nilsson compared this transform to local histogram equalization
(HE), local binary patterns (LBPs), and the modified census transform (MCT) finding that the
SMQT provided a desirable trade‐off between number of quantization levels and computa-
tional load.

In Ref. [49], the SMQT was applied to the recognition of license plate characters with good results.
The authors found that a single‐level (SMQT1) 3×3 pixel local neighborhood was sufficient to handle
illumination variability while ensuring fast processing time. An example illustrating the consistency
of the SMQT output across both gain and offset distortions is given in Figure 2.24. The SMQT‐based
algorithm was both four times faster than a nearest‐neighbor image distortion‐based model in Ref.
[50] as well as more accurate given the same number of training examples.

Original

SMQT1

SMQT2

Offset GainFigure 2.24 Example of SMQT robustness to
gain and offset distortions.

Computer Vision and Imaging in Intelligent Transportation Systems34

Another feature that has been used successfully for real‐world text recognition is histogram of
oriented gradients (HOGs) [51]. The HOG feature, like SMQT, extracts edge‐based information
(here using actual gradient values), thereby providing strong robustness to illumination variation.
The input image is represented by blocks of cells. Illumination and contrast is normalized on a block
level. Each block comprises multiple cells where for each cell a histogram of gradients is computed.
Cells are made up of pixels with cell sizes varying as a function of resolution. By pooling the gradients
on a cell level, the HOG feature provides robustness to small spatial variation. The HOG feature was
originally shown to work well for object detection, namely pedestrians, but has recently been applied
to OCR [51, 52]. An example illustrating the resultant HOG features for a portion of a license plate
image is given in Figure 2.25.

Another popular feature used in object detection and recognition is the SIFT [25]. The basis of
SIFT is a keypoint descriptor where each is represented as a 128‐element vector. Information
 captured for each keypoint includes spatial position, scale, and orientation. Once a keypoint is iden-
tified, a descriptor is generated comprising of a 4×4 spatial histogram of local gradients about the
keypoint. The advantage of SIFT is robustness to scale, orientation, affine distortion, and limited
illumination. However, this robustness creates problems for detecting shape‐based objects like char-
acters where relative spatial position of features is more important than mere presence of these in the
image. This problem was demonstrated in the work done by de Campos [53] for cropped character
classification where SIFT and other appearance‐based features fell short.

In Ref. [54], the authors compare recognition performance for hand‐crafted features like SMQT,
and HOG against methods where the features are learned directly from data in an unsupervised
manner. The two learning methods that were compared were sparse auto‐encoders and k‐means
feature learning [55]. Once the features were learned, they were extracted from training images and
classifiers were trained using the typical supervised approach. The authors found that for the data set
of house numbers captured by Google Streetview, the learned features outperformed hand‐crafted
variants. This finding is consistent with recent work showing superiority of learned features particu-
larly those generated by CNNs for object recognition tasks [44, 56].

2.2.3.4 Classifiers and Training
Once character images have been normalized and features extracted, a number of classification
 algorithms and architectures are available. Classifier algorithms include nearest‐neighbor (kNN),
template matching, artificial neural networks (ANNs) such as multilevel perceptrons (MLPs), support
vector machines (SVMs), and CNNs, among others. Classifier architectures include one‐vs‐one
(OvO), one‐vs‐all (OvA), and cascades.

In kNN‐based classification, all training examples are stored as feature vectors. At test time, a dis-
tance is computed between the test vector and all training vectors. The nearest “k” training examples
are selected and the most frequent label amongt “k” is the classification result. The distance metric

Original image HOG features HOG inverse

Figure 2.25 Extracted HOG features for license plate characters.

Automated License Plate Recognition 35

has a significant impact on kNN classification. Common distance metrics include Euclidian and
Hamming. Learned metrics such as the large margin nearest neighbor (LMNN) where a Mahalanobis
distance metric is learned by semidefinite programming improve classification performance [57].
One drawback of kNN is that training set features must be available at test time and performance is
positively correlated with training set size. This can lead to large memory utilization and run‐time
expense as the training set grows. Dimensionality reduction such as PCA and LDA is typically
applied, but the issue persists. Keysers [50] proposed a two‐stage kNN classifier for character recog-
nition where the first stage used Euclidian distance of Sobel edge maps to find 500 neighbors and a
computationally expensive image distortion model (IDM) distance was used for the second stage to
find three neighbors. They showed competitive results and fast execution.

ANNs are statistical learning methods inspired by neuron structure of animal brains. In ANNs,
neurons are modeled by perceptrons where each neuron takes one or more input values from other
neurons, or the initial feature values if in the first layer, applies an activation function, and then
 outputs the result to one or more connected downstream neurons. Typically, the logistic function,

f x

e x
1

1
 (2.6)

is used for activation because it is differentiable, thereby enabling the computation of cost and gradi-
ent for each neuron. Backpropagation can then be used to propagate errors at the output classifica-
tion layer back through the network and adjust the weights of the hidden layer neurons. Typical
structure of ANNs involves at least three layers with the first “input” layer accepting feature values,
the second “hidden” layer, and the final “output” layer. The hidden layer can comprise one or more
layers with multiple hidden layers typically termed “MLPs.” Consistently high accuracies have been
achieved leveraging MLPs for ALPR in Refs. [58] and [59].

The sparse network of winnows (SNoWs) classifier was used successfully with SMQT features in Refs.
[49, 60] for ALPR character classification. The SNoW classifier is particularly useful for classification
tasks involving a very large number of features. The feature space for a single 40×20 pixel character using
a single‐level SMQT 3×3 pixel representation is 40 × 20 × 29 = 410k. While most of the feature values are
zero for any given test image, the SNoW classifier effectively learns linear classification boundaries on
this sparse network. As a simplification, the SNoW classifier is similar to a single‐layer neural network
where the update rule is multiplicative (winnow) instead of additive (as in the perceptron).

SVM‐based classifiers learn a discriminating hyperplane between two classes and ensure that the
hyperplane has the largest minimum distance to the training examples. The margin is defined as
twice the minimum distance, and often the SVM is referred to as a maximal margin classifier. To
improve linear separability and obtain a higher margin hyperplane, kernel functions are at times used
to remap input features to higher dimensionality feature spaces. The standard formulation for calcu-
lating the raw output of an SVM classifier is

f x y k x x

i
i i i , (2.7)

where x represents the input feature vector (sample) to be classified, k is a kernel function, the xi are
the support vectors (feature vectors for a subset of the training samples), the yi are the binary class
membership values (+1 or −1 for binary classification tasks) for the xi support vectors, and the αi are
the weights learned during training that provide maximal separation of the two classes. For binary
classification problems, a threshold is then applied to this raw output to determine the SVM classifi-
cation result. Typical kernel functions are polynomial, sigmoid, and Gaussian radial basis function
(RBF). Parameters for kernel functions also need to be tuned on a held‐out validation set, and in

Computer Vision and Imaging in Intelligent Transportation Systems36

general the use of kernel functions can lead to significant increase in training and test time. Typically,
performance is evaluated using the linear kernel, and if inadequate, kernel functions are introduced
with RBF being the most popular. In Ref. [61], the authors split each character template into top and
bottom halves and trained 4 OvA SVM classifiers for each half with separate classifiers for numbers
and letters achieving 97.2% character recognition accuracy on Korean license plates.

Recently, CNN‐based classifiers have started to dominate the object detection and recognition
problem sets. In Ref. [44], Krizhevsky introduced a CNN algorithm to classify images that provided
a large gain in accuracy over baselines at that time (2012). In general, CNNs rely on various techniques
to overcome issues that arise when applying standard ANNs. One such technique is weight‐tying
where the network uses multiple copies of the same neuron to express large models while keeping the
number of parameters low. A pooling layer where the max or average value of a feature for an image
region is returned allowing for robustness to small translations. The rectified linear unit (ReLU)
activation function,

 f x xmax 0, (2.8)

in place of the logistic function has also been used to help speed up network computation. Finally, a
dropout method where in training, nodes are randomly dropped or not updated to minimize overfit-
ting. Dropout also has a side benefit of speeding up training. Training speed is key as the network in
Ref. [44] is eight layers deep with 60 million parameters.

One significant advantage of CNNs is completely unsupervised feature learning. It has been shown
that features learned by a CNN increase in complexity from first layer to last [62]. The early layers
learn simple edge‐based features, middle layers learn combinations of edges, and the final layers
learn complex object structure such as faces and characters. Typically, the last layer of a CNN is a
softmax classification layer, representing the following posterior probability calculation:

P y j x e

e

j
T

l
T

x

l
K x

1

 (2.9)

Here, there are k candidate class labels in the multiclass problem, the x values (the observations) are
the outputs of the previous layer, and the θ values are the learned weights within the softmax layer
itself. As stated previously, CNN methods using this softmax output classification layer have been
shown to have state‐of‐the‐art performance on data sets such as the MNIST handwritten digit
 classification challenge.

The features before this layer can also be extracted and used with an alternate classifier such as
SVM to carry out classification for a completely different problem. Here, the benefit of the unsuper-
vised learning of features in the prior layers is leveraged on a new classification task. Indeed, CNNs
like LENET‐5 [63] trained for MNIST character recognition can be used to generate effective features
for use in training ALPR OCR. Although the performance has been observed to improve if LENET‐5
is retrained specifically for ALPR, the overall improvement is modest.

Many classifiers are binary in nature—learning to separate one class from another. The OCR prob-
lem is, by definition, a multiclass problem of identifying one class label from a dictionary of possible
symbols. Various methods exist for leveraging binary classifiers for multiclass classification. Two
options are shown in Figure 2.26. For the OvA case, 36 classifiers are trained, one for each class,
where the positive side contains examples from the class of interest and the negative side contains all
other examples. At test time, all 36 classifiers are applied to the unknown example and the classifier
with the maximum score is selected as the answer. For OvO, N(N − 1)/2 binary classifiers are

Automated License Plate Recognition 37

trained—630 for a symbol dictionary of size 36 (10 digits and 26 letters). Each classifier learns to
discriminate between only two classes. At test time, all classifiers are evaluated and the votes for each
class recorded. The class with the most votes is selected as the answer.

The concept of score or confidence is an important output of a classifier. This is especially true for
the ALPR problem space, wherein the confidence score associated with a result is often used to
determine its expected accuracy or validity. In fact, for applications such as tolling complex business
rules are often used to determine under what conditions the ALPR’s automated result should be
accepted and when an image should still be forwarded for manual review.

For kNN classification approaches, the average distance amongt the k neighbors is a good measure
of classification confidence. For ANN and MLP, the output score is typically acceptable as a confidence
measure. For SVMs, particularly kernel‐based SVMs, the classier score or distance from margin
boundary isn’t a directly useful measure of confidence. One way to overcome this limitation is to
transform the raw SVM score from Equation 2.7 to a posterior probability. This can be achieved, for
instance, using Platt’s method [64] as follows:

P y f

Af B
1 1

1 exp
 (2.10)

Here, A and B are the parameters that are learned on a held‐out training set. The resulting posterior
probability value can be used as a comparative metric to determine the confidence associated with
each resulting classification.

2.2.3.5 Classifier Evaluation
At test time, segmented characters are presented to the OCR module, features are extracted, and
classifiers are evaluated to determine the predicted character label. A typical workflow is captured in
Figure 2.27.

Many ALPR installations involve traffic from multiple jurisdictions. Since fonts can vary substan-
tially across jurisdictions (see example in Figure 2.32), multiple OCR engines typically need to be
trained to ensure optimal performance. For the most part, a general OCR trained across all fonts will
not perform as well as one trained for a specific font.

Classi�er for ‘A’

Positive

All ‘A’
examples

B, C, D, ..., Z

0, 1, 2, ..., 9

Negative

Classi�er for ‘B’

Positive

All ‘B’
examples

A, C, D, ..., Z

0, 1, 2, ..., 9

Negative

Classi�er for ‘A vs B’

Positive

All ‘A’
examples

All ‘B’
examples

Negative

Classi�er for ‘A vs C’

Positive

All ‘A’
examples

All ‘C’
examples

Negative

Figure 2.26 One‐vs‐all (left) and one‐vs‐one (right) classifier architecture.

Computer Vision and Imaging in Intelligent Transportation Systems38

Figure 2.28 illustrates the scenario where multiple OCR classifiers have been trained, one for each
font. The same test characters are presented to each OCR engine, and results from the OCR engines
along with character confidences are recorded as shown in Table 2.1. The average of character con-
fidence for each OCR is calculated, and the result from the OCR with the highest average character
confidence is selected. Another good measure for font selection is the maximum of minimum char-
acter confidences as the OCR result is only as good as the worst character. It may be tempting to
select the OCR result for each position by selecting results across OCR engines. The danger with this
approach is that a font‐specific OCR engine may sometimes return a high confidence, incorrect
score for a single character from another font.

2.2.4 State Identification

The combination of letters and numbers on the license plate is typically unique within a jurisdiction,
but could be repeated in other jurisdictions. For instance, license plates issued in New York and
Pennsylvania, two neighboring states, can have the exact same plate codes. As a result, for many
applications the accurate decoding of the license plate text is insufficient without also recognizing
the state or jurisdiction that issued the plate.

Segmented
characters

Feature
extraction

Classi�er
evaluation OCR result

Figure 2.27 Typical OCR evaluation
workflow.

New York OCR

‘A’ classi�er ‘B’ classi�er ‘9’ classi�er

‘A’ classi�er ‘B’ classi�er ‘9’ classi�er

‘A’ classi�er ‘B’ classi�er ‘9’ classi�er

New Jersey OCR

Pennsylvania OCR

Figure 2.28 OCR with multiple trained fonts.

Table 2.1 Selection of optimal result given multiple fonts.

OCR Result Conf 1 Conf 2 Conf 3 Conf 4 Conf 5 Conf 6 Conf 7 Mean Conf

New York FDR5308 0.8 1 1 1 1 0.6 0.8 0.886
New Jersey EDR5308 0.2 0.9 1 0.7 0.88 0.75 0.5 0.704
Pennsylvania EDR5308 0.4 0.85 1 0.8 0.7 0.65 0.6 0.714

Automated License Plate Recognition 39

License plates from different jurisdictions can be visually differentiated based on a number of
 features—logos, pictorial backgrounds on the plate, state mottos, and the name of the jurisdiction
printed across either the top or bottom of the plate. Given that the ALPR process has already prop-
erly located, segmented, and recognized the license plate characters themselves, one approach would
be to apply these same techniques to attack the problem of identifying the jurisdiction by directly
decoding the printed state name. There are a number of challenges associated with this type of an
approach. First, the characters that make up the state name (or the state motto) are typically printed
in a significantly smaller font (see the partially redacted image in Figure 2.29). Thus, the number of
pixels per stroke width of the font would be insufficient for standard segmentation and OCR meth-
ods. This problem is further complicated by the fact that license plate images can often suffer from
poor contrast and blur. These noise sources make the state name even harder to decode, as can be
seen in Figure 2.30. The prevalence of license plate frames today is another complication for directly
recognizing the state name or motto. As shown in the example on the left of Figure 2.31, these frames
often cover the upper and lower portions of the license plate where the state name is printed. The
image on the right of Figure 2.31 illustrates how features of the car body itself can also occlude the
state name or motto on the license plate.

Figure 2.29 Partially redacted plate image showing a clearly
visible state name.

Figure 2.30 Partially redacted plate image illustrating the
challenges of low contrast and blur in the state name.

Figure 2.31 Partially redacted plate images with occlusion of the state name by license plate frames and car body
features.

Computer Vision and Imaging in Intelligent Transportation Systems40

Given the many challenges associated with direct decoding of the printed jurisdiction information
on the plate, it is typical to leverage other features on the plate to assist with state identification.
These features can include the color of the characters and the plate background (which are often
unique from one jurisdiction to another), the presence (or absence) of a specific state logo, and char-
acter sequence information. Although all of these features can provide clues as to the issuing jurisdic-
tion, most can also suffer from the same challenges of low resolution, poor contrast, and partial
occlusion. One key feature that is known to be available for state identification is the character
sequence itself. After all, if the license plate code itself cannot be accurately recognized—due to
occlusion, poor contrast, etc.—the success or failure of the state identification stage is a moot point
for most ALPR applications.

In the United States, many states have their own requirements for the information on the license
plate. In particular, there are restrictions on whether letters or numbers may occur at different posi-
tions of the plate code. For instance, some states restrict standard license plates for passenger cars to
be formatted as three letters followed by four numbers. However, these layouts can vary substantial
from state to state. To illustrate this, Table 2.2 shows the standard passenger car license plate formats
for a number of US states, where “L” and “N” refer to whether letters or numbers may occur at that
position in the plate sequence. Note that across many states, there is clear separation based solely on
this format information. Unfortunately, as highlighted in the table for the “LLL NNNN” layout, sig-
nificant overlap in formats across multiple states can also occur.

Within this kind of basic format template, most jurisdictions issue license plates serially—starting
with lower values and progressing numerically and alphabetically in sequence (e.g., AAA‐1000,
AAA‐1001, AAA‐1002, …, AAB‐1000, AAB‐1001, AAB‐1002, …, and BAA‐1000, BAA‐1001,
BAA‐1002, …). This means that there are typically only a limited subset of all possible combinations
of a particular layout in circulation for a given jurisdiction. In fact, some license plate enthusiast
groups actually track the “high” and “low” values for different plate designs that have been observed
by group members on the roadway. For instance, according to Ref. [65], the highest issued passenger
car license plate for the state of New York (as of August 2015) contains “HAV” as the first three let-
ters—with all plate sequences below that having been issued at some point and those above not yet
(observed) in circulation.

Due to a number of factors, the valid license plate sequences that are actually in circulation for
 different states do not always overlap, even for the same plate formats. As an example although New

Table 2.2 License plate formats for passenger cars across a sample of US states.

US state Passenger car plate format

Colorado NNN LLL
Connecticut NLL LLN
Florida LLL NNN
Georgia LLL NNNN
Illinois LNN NNNN
New York LLL NNNN
Pennsylvania LLL NNNN
Louisiana LLL NNN
Texas LLL NNNN

Automated License Plate Recognition 41

York and Virginia share the same basic passenger car template (LLL‐NNNN), the plates in circula-
tion in each state occupy a different range within the overall set of possible plate sequences. More
specifically, New York passenger car plates don’t extend beyond those having a first letter of “H” (e.g.,
“HAV‐1000”), whereas Virginia’s plates for this same format occupy the range starting with a first
letter of “V” and above (e.g., “VAA‐1000”).

Thus, sequence information of this form can be used to help distinguish source jurisdictions, even
for the same basic format. Leveraging such information as evidence, one could attempt to manually
construct rules that separate states based on the patterns in the input character sequences. However,
a more efficient and effective approach to the state identification challenge is to construct a classifier
using machine learning techniques. This classifier will accept the OCR output character labels as
input and will provide a predicted source jurisdiction as output. The training data for the classifier
consists of license plate codes (inputs) and source jurisdictions (outputs)—typically extracted from a
database of license plates that have been observed on the roadways. There are various underlying
methodologies that can be used to construct the classifier: simple decision trees, random forests,
hidden Markov models (HMMs), etc.

One important consideration in the training of this classifier is that the overall distribution of juris-
dictions in the training data should be relatively consistent with the expected distributions at the
installation/application site. For instance, if the classifier is trained with data that has been observed
on a roadway with mostly California license plates, the performance of the derived classifier is not
likely to be very good if it is then applied for an ALPR system in operation in Florida (with mostly
Florida plates). Thus, these type of approaches based on character sequence information typically
require an investment in retraining the state identification module for each local installation to
achieve optimal performance. In addition, as states continue to issue new plates, the valid sequences
across states will slowly “drift.” This requires that the state identification module be retrained periodi-
cally to keep up with these shifting distributions of valid sequences. The sensitivity to this type of
prior information is a general limitation of most sequence‐based approaches for state identification.

Another limitation is the fundamental overlap that exists between plate formats and sequences
across states. For applications such as tolling or parking wherein the traffic is expected to be domi-
nated by a local jurisdiction, along with a limited set of surrounding states, sequence information can
prove sufficient for achieving accuracy targets. However, between certain states there would simply
be no separation based solely on the sequence of plate characters. In addition, even where separation
does exist today, as states continue to issue more and more license plates they can in a sense “use up”
the separation that once existed between their valid plate sequences.

To combat this sensitivity to circulation distributions and the fundamental lack of separation
between valid plate sequences across certain jurisdictions, other sources of information beyond the
plate code can be incorporated into the state identification decision. As illustrated in Figure 2.32,
font information can be a very distinctive feature between states. One method for incorporating font
information into the state identification decision is to leverage the selection made in the OCR

New York

California

Figure 2.32 Comparison of fonts for New York and California license plate characters:
“A” and “4.”

Computer Vision and Imaging in Intelligent Transportation Systems42

 module. Referring back to Figure 2.28 and Table 2.1, a common approach for OCR in the ALPR space
is to train a highly tuned OCR engine for each jurisdiction of interest. At test time, the individual
segmented character images are then provided to each trained OCR engine and the “winner” is
selected based on the overall confidence scores across all of the plate characters. To assist with state
identification, the state whose font was selected during the OCR process can be considered. In some
cases, this font information alone can be used to conclude the source jurisdiction for the plate,
 without regard to the underlying character sequence. In other approaches, the OCR/font selection
can be combined with the sequence information—for instance, using a Bayesian merging of these
two pieces of “evidence” (see for instance, Ref. [66]).

 References

1 Roberts, D. and Casanova, M. Automated License Plate Recognition (ALPR) Systems: Policy and
Operational Guidance for Law Enforcement. Washington, DC: U.S. Department of Justice, National
Institute of Justice, 2012.

2 Toll Facilities in the United States, US Department of Transportation, Federal Highway Admin,
Publication no. FHWA‐PL‐13‐037, September 2013.

3 Samuel, P. (2009). New Zealand gets first modern pike—video tolled. TOLLROADSnews.
4 Samuel, P. (2007). Central toll in Stockholm restarts with IR cameras only, 700k transponders

dumped. TOLLROADSnews.
5 2014 Specialty License Plate Rankings, Florida Department of Highway Safety and Motor Vehicles.

Available: http://www.flhsmv.gov/specialtytags/tagsales.pdf (accessed September 10, 2016).
6 Schulz, K. U. and Mihov, S. (2002). Fast string correction with Levenshtein automata. International

Journal on Document Analysis and Recognition, 5(1), 67–85.
7 Kukich, K. (1992). Techniques for automatically correcting words in text. ACM Computing Surveys

(CSUR), 24(4), 377–439.
8 Zobel, J. and Dart, P. (1995). Finding approximate matches in large lexicons. Software: Practice and

Experience, 25(3), 331–345.
9 Takahashi, H., Itoh, N., Amano, T., and Yamashita, A. (1990). A spelling correction method and its

application to an OCR system. Pattern Recognition, 23(3), 363–377.
10 Anagnostopoulos, C.‐N. E., Anagnostopoulos, I. E., Psoroulas, I. D., Loumos, V., and Kayafas, E.

(2008). License plate recognition from still images and video sequences: A survey. IEEE Transactions
on Intelligent Transportation Systems, 9(3), 377–391.

11 Du, S., Ibrahim, M., Shehata, M., and Badawy, W. (2013). Automatic license plate recognition (ALPR):
A state‐of‐the‐art review. IEEE Transactions on Circuits and Systems for Video Technology, 23(2),
311–325.

12 Shi, X., Zhao, W., and Shen, Y. Automatic license plate recognition system based on color image
processing. Proceedings of the International Conference on Computational Science and Its
Applications (ICCSA 2005), Singapore, May 9–12, 2005. Springer, Berlin/Heidelberg,
pp. 1159–1168.

13 Lee, E. R., Kim, P. K., and Kim, H. J. Automatic recognition of a car license plate using color image
processing. Presented at the IEEE International Conference on Image Processing, 1994 (ICIP‐94),
Austin, TX, November 13–16, 1994, vol. 2, pp. 301–305. doi: 10.1109/ICIP.1994.413580.

14 Deb, K. and Jo, K.‐H. HSI color based vehicle license plate detection. Presented at the International
Conference on Control, Automation and Systems, 2008. ICCAS 2008, ICCAS 2008, Seoul, South
Korea, October 14–17, 2008. IEEE, pp. 687–691. doi: 10.1109/ICCAS.2008.4694589.

Automated License Plate Recognition 43

15 Chang, S.‐L., Chen, L.‐S., Chung, Y.‐C., and Chen, S.‐W. (2004). Automatic license plate recognition.
IEEE Transactions on Intelligent Transportation Systems, 5(1), 42–53.

16 Zheng, D., Zhao, Y., and Wang, J. (2005). An efficient method of license plate location. Pattern
Recognition Letters, 26(15), 2431–2438.

17 Bai, H. and Liu, C. A hybrid license plate extraction method based on edge statistics and morphology.
Presented at the 17th International Conference on Pattern Recognition, Cambridge, August 23–26,
2004, pp. 831–834. doi: 10.1109/ICPR.2004.1334387.

18 Suryanarayana, P. V., Mitra, S. K., Banerjee, A., and Roy, A. K. A morphology based approach for car
license plate extraction. 2005 Annual IEEE INDICON Conference, Chennai, India, December 11–13,
2005, pp. 24–27. doi: 10.1109/INDCON.2005.1590116.

19 Viola, P. and Joes, M. Rapid object detection using a boosted cascade of simple features. Presented at
the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2001
(CVPR 2001), Jauai, Hawaii, December 8–14, 2001. Vol. 1. IEEE. doi: 10.1109/CVPR.2001.990517.

20 Zhang, H., Jia, W., He, X., and Wu, Q. Learning‐based license plate detection using global and local
features. Presented at the 18th International Conference on Pattern Recognition, 2006 (ICPR 2006),
Hong Kong, 2006. Vol. 2. IEEE, pp. 1102–1105. doi: 10.1109/ICPR.2006.758.

21 Porikli, F. and Kocak, T. Robust License Plate Detection Using Covariance Descriptor in a Neural
Network Framework. Presented at the IEEE International Conference on Video and Signal Based
Surveillance, 2006 (AVSS’06), Sydney, November 22–24, 2006. IEEE. doi: 10.1109/AVSS.2006.100.

22 Csurka, G., Dance, C., Fan, L., Willamowski, J., and Bray, C. Visual Categorization with Bags of
Keypoints. Workshop on Statistical Learning in Computer Vision, ECCV. Vol. 1. No. 1–22. 2004.

23 O’Hara, S. and Draper, B. A. (2011). Introduction to the bag of features paradigm for image
classification and retrieval. arXiv preprint arXiv:1101.3354.

24 Zhou, W., Li, H., Lu, Y., and Tian, Q. (2012). Principal visual word discovery for automatic license
plate detection. IEEE Transactions on Image Processing, 21(9), 4269–4279.

25 Lowe, D. G. Object recognition from local scale invariant features. Presented at the 7th International
Conference on Computer Vision, Corfu, Greece, 1999. doi: 10.1109/ICCV.1999.790410.

26 Cano, J. and Pérez‐Cortés, J.‐C. Vehicle license plate segmentation in natural images. In Perales, F. J.,
Campilho, A., Pérez, N., and Sanfeliu, A. (eds.), IbPRIA 2003. LNCS, vol. 2652. Berlin/Heidelberg:
Springer, 2003, pp. 142–149.

27 Jung, K., Kim, K. I., and Jain, A. K. (2004). Text information extraction in images and video: A survey.
Pattern Recognition, 37(5), 977–997.

28 Casey, R. G. and Lecolinet, E. (1996). A survey of methods and strategies in character segmentation.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(7), 690–706.

29 Sumathi, C. P., Santhanam, T., and Gayathri, G. (2012). A survey on various approaches of text
extraction in images. International Journal of Computer Science and Engineering Survey, 3(4), 27–42.

30 Epshtein, B., Ofek, E., and Wexler, Y., Detecting text in natural scenes with stroke width transform.
Presented at the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), New York,
June 13–18, 2010, pp. 2963–2970. doi: 10.1109/CVPR.2010.5540041.

31 Yoon, Y., Ban, K. D., Yoon, H., and Kim, J., Blob extraction based character segmentation method for
automatic license plate recognition system, Proceedings of the IEEE International Conference on
Systems, Man, and Cybernetics, Anchorage, AK, 2011, pp. 2192–2196. doi: 10.1109/
ICSMC.2011.6084002.

32 Burry, A., Fillion, C., Kozitsky, V., and Fan, Z. Method and System for Robust Tilt Adjustment and
Cropping of License Plate Images. US Patent App. No. 13/453144, filed April 23, 2012.

33 Otsu, N. (1979). A threshold selection method from gray‐level histograms. IEEE Transactions on
Systems, Man, and Cybernetics, 9(1), 62–66.

Computer Vision and Imaging in Intelligent Transportation Systems44

34 Sauvola, J. and Pietikäinen, M. (2000). Adaptive document image binarization. Pattern Recognition,
33(2), 225–236.

35 Niblack, W. An Introduction to Image Processing. Englewood Cliffs, NJ: Prentice‐Hall, 1986,
pp. 115–116.

36 Gonzalez, R. C. and Woods, R. E. Digital Image Processing. Reading, MA: Addison‐Wesley, 1993,
pp. 454–455.

37 Fisher, M. and Bolles, R. (1981). Random sample consensus: A paradigm for model fitting with
applications to image analysis and automated cartography. Communications of the ACM, 24(6),
381–395.

38 Burry, A., Fillion, C., Kozitsky, V., Bala, R., and Fan, Z. Robust Cropping of License Plate Images. US
Patent App. No 13/448976, filed April 17, 2012.

39 Jia, X., Wang, X., Li, W., and Wang, H. A novel algorithm for character segmentation of degraded
license plate based on prior knowledge. Presented at the 2007 IEEE International Conference on
Automation and Logistics, 2007. IEEE, pp. 249–253. doi: 10.1109/ICAL.2007.4338565.

40 Burry, A., Fillion, C., and Kozitsky, V. Robust Character Segmentation for License Plate Images. US
Patent 8,934,676, issued January 13, 2015.

41 Baird, H. S. The state of the art of document image degradation modelling. In Digital Document
Processing. London: Springer, 2007, pp. 261–279.

42 Kanungo, T., Haralick, R., and Phillips, I. (1994). Nonlinear global and local document degradation
models. International Journal of Imaging Systems and Technology, 5(3), 220–230.

43 Ho, T., and Baird, H. Evaluation of OCR accuracy using synthetic data. Proceedings of the 4th
Symposium on Document Analysis and Information Retrieval, UNLV, Las Vegas, Nevada, April
24–26, 1995, pp. 413–422.

44 Krizhevsky, A., Sutskever, I., and Hinton, G. E. ImageNet classification with deep convolutional
neural networks. Proceedings of the 26th Annual Conference on Neural Information Processing
Systems (NIPS), Lake Tahoe, December 3–6, 2012, Curran Associates, Red Hook, New York,
pp. 1106–1114.

45 Mecocci, A. and Tommaso, C. Generative models for license plate recognition by using a limited
number of training samples. Proceedings of the IEEE International Conference on Image Processing,
Atlanta, GA, October 8–11, 2006, pp. 2769–2772.

46 Bala, R., Zhao, Y., Burry, A., Kozitsky, V., Fillion, C., Saunders, C., and Rodriguez‐Serrano, J. Image
simulation for automatic license plate recognition. Proceedings of the SPIE 8305, Visual Information
Processing and Communication III, Burlingame, CA, USA, January 22, 2012, 83050Z.

47 Trier, O., Jain, A., and Taxt, T. (1996). Feature extraction methods for character recognition: A survey.
Pattern Recognition, 29(4), 641–662.

48 Nilsson, M., Nordberg, J., and Claesson, I. Face detection using local SMQT features and split up
snow classifier. Presented at the IEEE International Conference on Acoustics, Speech, and Signal
Processing, (ICASSP 2007), Honolulu, HI, April 15–20, 2007, vol.2, pp. II‐589–II‐592. doi: 10.1109/
ICASSP.2007.366304.

49 Paul, P., Burry, A., Wang, Y., and Kozitsky, V. Application of the SNoW machine learning paradigm to
a set of transportation imaging problems. Proceedings of SPIE, Visual Information Processing and
Communication III, International Society for Optics and Photonics, 2012, February 15, 2012, 830512.
doi: 10.1117/12.912110.

50 Keysers, D., Deselaers, T., Gollan, C., and Ney, H. (2007). Deformation models for image recognition.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(8), 1422–1435.

51 Dalal, N. and Triggs, B. Histograms of oriented gradients for human detection. Presented at IEEE
Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005. doi: 10.1109/
CVPR.2005.177.

Automated License Plate Recognition 45

52 Bissacco, A., Cummins, M., Netzer, Y., and Neven, H. PhotoOCR: Reading text in uncontrolled
conditions. Presented at the IEEE International Conference on Computer Vision, (ICCV 2013),
Sydney, December 2013. doi: 10.1109/ICCV.2013.102.

53 de Campos, T., Babu, B., and Varma, M., Character recognition in natural images. Presented at the
International Conference on Computer Vision Theory and Applications (VISAPP), Lisbon, Portugal,
February 2009. doi: 10.5220/0001770102730280.

54 Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., and Ng, A. Y. Reading Digits in Natural Images
with Unsupervised Feature Learning. NIPS Workshop on Deep Learning and Unsupervised Feature
Learning, 2011, Curran Associates, Red Hook, New York.

55 Coates, A., Lee, H., and Ng, A. Y. An analysis of single‐layer networks in unsupervised feature
learning. Proceedings of the Fourteenth International Conference on Artificial Intelligence and
Statistics, Gordon, G., Dunson, D., and Dudík, M. eds. JMLR W&CP, vol. 15, Fort Lauderdale, April
11–13, 2011.

56 Jaderberg, M., Simonyan, K., Vedaldi, A., and Zisserman, A. Reading text in the wild with
convolutional neural networks. arXiv:1412.1842v2, 2014.

57 Weinberger, K. Q. and Saul, L. K. (2009). Distance metric learning for large margin nearest neighbor
classification. Journal of Machine Learning Research (JMLR), 10, 207–244.

58 Wang, M.‐L., Liu, Y.‐H., Liao, B.‐Y., Lin, Y.‐S., and Horng, M.‐F. A vehicle license plate recognition
system based on spatial/frequency domain filtering and neural networks. In International Conference
on Computational Collective Intelligence. Berlin, Heidelberg: Springer, 2010, pp. 63–70.

59 Kocer, H. E. and Cevik, K. K. (2011). Artificial neural networks based vehicle license plate
recognition. Procedia Computer Science, 3, 1033–1037.

60 Burry, A., Kozitsky, V., and Paul, P. License Plate Optical Character Recognition Method and System.
US Patent 8,644,561 issued February 4, 2014.

61 Kim, K. K., Kim, K. I., Kim, J. B., and Kim, H. J. Learning‐based approach, for license plate
recognition. Neural Networks for Signal Processing X, 2000. Proceedings of the 2000 IEEE Signal
Processing Society Workshop, Sydney, December 11–13, 2000, vol. 2, pp. 614–623. doi: 10.1109/
NNSP.2000.890140.

62 Zeiler, M. D. and Fergus, R. Visualizing and understanding convolutional networks. CoRR,
abs/1311.2901, 2013.

63 LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., and Jackel, L. D.
(1989). Backpropagation applied to handwritten zip code recognition. Neural Computation, 1(4),
541–551.

64 Platt, J. Probabilistic outputs for support vector machines and comparisons to regularized likelihood
methods. In Smola, A. J. (ed.), Advances in Large Margin Classifiers. Cambridge, MA: The MIT
Press, 2000, pp. 61–74.

65 License Plate News. (n.d.). From: http://www.licenseplates.cc/ (accessed August 6, 2015).
66 Burry, A. and Kozitsky, V. Method and System for Automatically Determining the Issuing State of a

License Plate. US Patent 9,082,037, issued July 14, 2015.

47

Computer Vision and Imaging in Intelligent Transportation Systems, First Edition.
Edited by Robert P. Loce, Raja Bala and Mohan Trivedi.
© 2017 John Wiley & Sons Ltd. Published 2017 by John Wiley & Sons Ltd.
Companion website: www.wiley.com/go/loce/ComputerVisionandImaginginITS

3.1 Introduction

Automatic vehicle classification (AVC) is a method for automatically categorizing types of motorve-
hicles based on the predominant characteristics of their features such as length, height, axle count,
existence of a trailer, and specific contours. AVC is an important part of intelligent transportation
system (ITS). Automatic toll collection at toll plazas is one of the earliest functions that sparked the
development of AVC. Toll collection systems require AVC when tolls vary by vehicle class. A freeway
section with a heavy truck flow may require special rules to manage truck traffic to avoid vehicle
congestion, etc. Pavement management processes pay special attention to trucks because they can
damage the road surface. The growing traffic density of highways rapidly fueled the need to develop
an automated management system for discriminating various types of motor vehicles to enable more
efficient toll computation. Early AVC systems involved mounting sensors such as radar, infrared
detectors, weight sensors, magnetic sensors, loops, and light curtains into the roadbed at toll plazas.
These systems usually classified vehicles on the basis of weight in motion (WiM), number of wheels,
vehicle contour, or the distance between axles. However, these systems have drawbacks including
high installation costs, ongoing maintenance of detectors, and damage to the road surface. They also
fail to provide additional information on the vehicles which can be further used for identification or
tracking.

As the applications of AVC grew from automatic toll collection toward surveillance, abnormality
detection, tracking, and autonomous driving, the demand for more sophisticated algorithms and
cost‐efficient techniques increased rapidly. Today, there are numerous algorithms available for auto-
matic detection and classification of vehicles which are real‐time and utilize cost‐efficient sensors
such as cameras for video‐based classification, LiDAR for depth analysis, and sensor fusion. Although
the criteria for classifying different types of vehicles are still under debate, the recent results of AVC
show promising accuracy.

In this chapter, we introduce a few recent developments in visible‐light cameras and thermal and
LiDAR‐based AVC techniques, including related algorithms, and the differences among them.

3

Vehicle Classification
Shashank Deshpande, Wiktor Muron and Yang Cai

Carnegie Mellon University, Pittsburgh, PA, USA

Computer Vision and Imaging in Intelligent Transportation Systems 48

3.2 Overview of the Algorithms

There are a significant number of algorithms developed for AVC. They can be classified into types of
sensors used for identifying key differences among vehicle types. Figure 3.1 shows an overview of the
methods developed for AVC. In this chapter, we focus on movable sensors, including RGB video
cameras, thermal imaging sensors, and LiDAR imaging sensors. The different categories of algo-
rithms include heuristics and statistics‐based, shape‐based, and feature‐based methods.

3.3 Existing AVC Methods

Many existing AVC systems use special devices such as laser beam curtains (see Figure 3.2), radar,
WiM, stereovision cameras, and so on. The TDS AVC system uses a laser light curtain, a Doppler
radar, and a fiber treadle‐based axle detection system [1]. Each radar message reports the distance

Automatic vehicle classi�cation

Video RGB camera

Heuristics and statistics Shape based Feature based

• Intrinsic proportion model
• Eigenvehicles (PCA)

• 3D model

• Histogram of oriented gradients
• Haar-like features
• SIFT

• Blob measurements
• Transformation-ring-projection
• Edge based

Thermal imaging LiDAR imaging

Figure 3.1 Overview of vehicle classification algorithms.

Figure 3.2 Visualization of a vehicle profile
generated by a system using data from radar/
light curtains. Source: Adapted from [1].

Vehicle Classification 49

and velocity that the radar is currently sensing in its beam. Each light curtain message provides a
report of the beam status of each of the 120 beams. The treadle inputs are sampled each time a light
curtain message is received. The vehicle detection process begins when the light curtain reports suf-
ficient penetration concurrent with a radar report of an object moving in the vicinity of the lane in
the path of the light curtain beams. This approach does not work well in multilane cases. Migma uses
audio, thermal imaging, and visibility to classify vehicles [2]. Their vehicle detection and classifica-
tion system are based on stereoscopic video cameras in which two calibrated cameras and special-
ized software are needed for a single installation. The Central Federal Lands Highway Division
(CFLHD) AVC systems WiM, closed‐circuit television (CCTV), and roadside detection (RS‐D) sys-
tems are used to classify vehicles [3]. Again, RS‐D and WiM do not scale well in multilane situations.
Trafficon AVC systems require thermal imaging cameras to distinguish between bicycles and motor-
cycles [4]. Laser‐based vehicle detection and classification (LVDC) also requires infrared laser scan-
ners and special processing software.

3.4 LiDAR Imaging‐Based

Although camera‐based AVC techniques are robust and yield considerable accuracy in classifica-
tion, they are far from being 100% accurate due to inclement weather, illumination changes, shad-
ows, occlusion, etc. Dealing with these limitations often results in more complex algorithms,
which drastically effect processing speed. LiDAR sensors attracted growing attention recently
because of their applications in autonomous driving vehicles. LiDAR can be applied to AVC as
well. The point cloud from the LiDAR sensor provides depth information for object recognition
and classification. LiDAR produces accurate, high‐density spatial data. Recent research has moved
toward fusing LiDAR and vision‐based approaches. Here, we will divide our LiDAR‐based AVC
techniques into two parts: algorithms that use solely LiDAR sensors and algorithms that combine
LiDAR and vision sensors.

3.4.1 LiDAR Sensors

LiDAR sensor‐based AVC techniques follow a general pipeline as shown in the Figure 3.3. The algo-
rithms differ in the techniques used in all three stages of the pipeline. The LiDAR sensor collecting
the data can either be fixed (i.e., mounted on pavement, a surveillance structure, a traffic light pole,
or a parked vehicle on the roadside), or it can be mounted on a moving vehicle. If the sensor is
mounted on a moving vehicle, the AVC algorithms take into account the speed and, by extension, the
displacement of the host vehicle in the pre‐processing stage. The interpretation of LiDAR data gener-
ally involves dimensionality transformation. The transformed LiDAR data can either directly yield
useful information, or definitive features can be extracted from the data later. This information is
then used to categorize different vehicle types.

Data acquisition depends on the quantity and type of LiDAR sensors used. There are two major
types of LiDAR sensors: airborne LiDARs and terrestrial LiDARs (see Figure 3.4). In terrestrial
LiDARs, algorithms can use multiple stationary LiDAR sensors positioned at a distance in the same

Feature extraction and
feature selection

Training and/or
classi�cation

Data acquisition and
preprocessing

Figure 3.3 Typical steps seen in AVC systems using LiDAR sensors.

Computer Vision and Imaging in Intelligent Transportation Systems 50

horizontal plane, or a single revolving LiDAR sensor, which scans a horizontal plane across the scene.
A few algorithms use multilayered stationary or revolving LiDAR sensors, which provide scans of
multiple horizontal planes across the scene. The major preprocessing involves noise removal, syn-
chronization of data received from multiple sensors, LiDAR image stitching when using revolving
LiDAR sensors, and displacement adjustment when using moving LiDAR sensors.

Once the data collected by the LiDAR is cleaned, the depth data is transformed into more useful
key descriptors in the feature extraction and selection step. These descriptors magnify subtle differ-
ences which stand out for different vehicle classes. Since vehicle categories are more often defined by
the size of the vehicle, most of the AVC algorithms that only use LiDAR data tend to use shape,
height, length, or width parameters. These characteristics can easily be extracted from LiDAR scans
as predominant features.

The training and/or classification model utilizes the extracted features and segments vehicle types
using various techniques. The model may use a complex technique, such as a hyperplane, for division
in multidimensional feature space, or a simple technique such as thresholding depending upon the
quality of the extracted feature. Table 3.1 shows extracted key features and the classification method
employed to categorize vehicle types from significant recent work on LiDAR sensor‐based AVC
algorithms.

3.4.2 Fusion of LiDAR and Vision Sensors

Vision‐based and LiDAR‐based AVC algorithms have matured separately over the years. In recent
years, the limitations of both techniques have surfaced as AVC applications have demanded more
accurate classification methods. However, the separate strengths of these two methods are capable of
overshadowing their shortcomings. For example, LiDAR‐based classification techniques are invari-
ant to lighting and weather conditions, and vision‐based techniques provide sensory information
such as color and texture. Therefore, in recent years, an effort to utilize the complementary proper-
ties of these techniques has emerged. AVC algorithms based on the fusion of LiDAR and vision

(a) (b)

Figure 3.4 (a) With airborne LiDAR, the infrared laser light is emitted toward the ground and is reflected back to the
moving airborne LiDAR sensor. (b) Terrestrial LiDAR collects very dense and highly accurate points, facilitating more
precise identification of objects. These dense point clouds can be used to model the profile of a vehicle.

Vehicle Classification 51

 sensors loosely follow a general pipeline as shown in the Figure 3.5. Algorithms differ greatly, both in
the type of features extracted in the vision and LiDAR modules, and in the decision‐making/classifi-
cation module.

The key in AVC fusing vision and LiDAR sensors is the synchronization of the input data from
both sensors. Even a slight delay in frames can cause an imbalance in the mapping, which may result
in the two modules processing different time stamps. This leads to substantial classification errors.
Generally, less time is needed for camera data acquisition than for LiDAR (by a factor of 2). Since we
are dealing with dynamic environments, both the sensors and the target/scene drastically change
with respect to time, which generates problems in data fusion. Thus, the synchronization of data
from both sensors is absolutely necessary.

Data acquired from both sensors after synchronization generally undergoes a preprocessing step,
such as contrast enhancement, noise removal, geometric transformations, or sharpness enhance-
ment. This step intrinsically adds to feature enhancement for the extraction step. For example, in
shape‐based classification methods using visual features, sharpness enhancement results in cleaner
edges that can be more easily detected. The preprocessed data at this stage have been used in various
ways. For example, LiDAR data can be used as a distance filter to form a rigid region of interest (ROI)
or field of view before vision‐based features are extracted. Vision‐based features can also be used for
preliminary vehicle classification and LiDAR features can be used to strengthen the hypothesis.
Finally, vision‐based features and LiDAR‐based features can be merged to form a highly dimensional
feature vector for classification purposes.

Table 3.1 Comparison of papers according to key features and classification methods for LiDAR AVC systems.

Key features Classification method Comments

Size and shape measurements include [5]:
 ● Vehicle length (VL)
 ● Vehicle height (VH)
 ● Detection of middle drop (DMD)
 ● Vehicle height at middle drop (VHMD)
 ● Front vehicle height (FVH)
 ● Front vehicle length (FVL)
 ● Rear vehicle height (RVH)
 ● Rear vehicle length (RVL)

Thresholding of size
and shape
measurements based
on a defined
classification tree

LiDAR sensors mounted in a side‐fire
configuration. Key features of size and shape
were extracted for each vehicle and these
features were used to classify the vehicle into
one of six categories defined in the paper.
The elaborate use of size‐ and shape‐based
features strengthens the classification model.

Geometric parameters of vehicles to
derive shape [6]:

 ● Height
 ● Length/Width

PCA clustering and
shape‐based
classification

Reference [6] discusses the limitations of
vehicle classification using only geometric
parameters. It argues that using geometric
parameters to derive a shape profile which are
then used for profile‐based classification can
provide better classification.

Size parameters [7]:
 ● Vehicle length
 ● Vehicle height: subdivided into Group 1

(front bumper and roughly the center
of the vehicle)

And Group 2 (roughly the center of the
vehicle and the rear bumper)

Thresholding of
vehicle length and
height using
predefined
classification rules

Based on the measured speed of the vehicle,
the length is extracted. A thresholding‐based
classification approach is then employed to
classify vehicle types.

Computer Vision and Imaging in Intelligent Transportation Systems 52

The overlay of these two modules varies greatly with the algorithm used and application of AVC.
Similarly, the classification or decision‐making module also varies with respect to the weight assigned
to each module. Table 3.2 surveys key features extracted from both modules, and the classification
methods employed to categorize vehicle types based on significant recent works on the fusion of
vision and LiDAR sensor‐based AVC algorithms.

Vision data acquisition—time-stamp synchronization—LiDAR data acquisition

Vision module LiDAR module

Data cleaning
e.g., noise removal

Data cleaning
e.g., contrast
enhancement

Feature/ROI extraction
e.g., Haar-like and

foreground

Feature/ROI extraction
e.g., vehicle speed, size

Information passed
between modules

to act as �lters

Decision/classi�cation module

Figure 3.5 Simplified diagram for AVC that fuses vision and LiDAR sensors.

Table 3.2 Comparison of papers according to vision‐ and LiDAR‐based features and classification techniques
for vision + LiDAR fusion AVC systems.

Vision features LiDAR features Classification techniques

Haar‐like features + AdaBoost [8] ● Shape Support vector machines (SVM)
Haar‐like features representing the following
characteristic properties [9]:

 ● Edge
 ● Line
 ● Symmetry

 ● Contours
 ● Size
 ● Location
 ● Orientation

AdaBoost

Haar‐like features [10] ● Segment centroid
 ● Radius of a circle
 ● Median

 ● AdaBoost for vision‐based features
 ● GMM classifier of LiDAR‐based features
 ● Bayesian decision‐making

Vehicle Classification 53

The fusion of LiDAR and vision‐based AVC algorithms has just started to unfold. The symbiotic
nature of this fusion is already working wonders with AVC by closing in on the perfect classification
accuracy. As autonomous vehicle research and development increases, the need for such fusion is
undeniable. Since the margin of error in such applications is close to zero, the ability for LiDAR and
vision‐based AVC algorithms to nullify the limitations of each other seems to be the best way forward.

3.5 Thermal Imaging‐Based

A thermal camera can be used to overcome some of the drawbacks of visible‐light image sensors.
Vehicles tend to cast shadows, so in the case of visible‐light sensors, sophisticated algorithms can be
used to eliminate shadows from the image before further processing. Furthermore, visible‐light cam-
eras cannot be used at night due to insufficient lighting and additional occlusion effects caused by the
vehicle headlights. Other low‐visibility conditions, such as thick fog or precipitation, may also
decrease the level of detection accuracy. However, it is possible to limit the effects of these obstacles
and improve detection robustness through the usage of a thermal camera. A thermal‐based approach
enables the system to work in scenarios when the vehicle is occluded by any nonthermal insulating
obstacle such as metals (as opposed to using visible light, where even partial occlusion of the vehicle
may deteriorate detection accuracy).

We can divide systems using thermal imagery into two main groups: those using a stationary cam-
era with a nonchanging background and those with a camera mounted on a vehicle or an unmanned
aerial vehicle (UAV). In the latter system, the background changes constantly. Unintended camera
shaking, changes in global intensity contrast, or undetermined obstacles make video recording and
processing all the more difficult. It leads to a different approach in designing vehicle detection algo-
rithms, sometimes involving hybrid systems that employ both thermal and visible‐light cameras. On
the other hand, using a stationary camera with a static background enables us to simplify further
processing (detection, tracking, and optional classification) by employing one of the background
subtraction methods to obtain motion segmentation images. These images depict only the masked
moving vehicles, and can be used to select proper ROIs. Figure 3.6 shows multiple views from a UAV
thermal imaging sensor.

3.5.1 Thermal Signatures

A thermal imaging camera registers the radiation intensity of the infrared portion of electromagnetic
spectrum. In order to use thermal photographs for further image processing, they are converted to a

(a) (b) (c)

Figure 3.6 Different viewpoints of the thermal camera: (a) side view, (b) overpass view [11], and (c) UAV view [12].

Computer Vision and Imaging in Intelligent Transportation Systems 54

grayscale mode, in which every pixel value corresponds to a respectively scaled radiation value. In
the examples shown in Figure 3.7, areas of higher temperature are represented by the brightest pixels.

The heat signature characteristic of vehicles visible in thermal images is dependent on the position
of the camera. As a result, the algorithm used to perform further detection/classification processing
must be adapted to the available thermal image. For instance, we would analyze image features dif-
ferently when using camera footage taken from an overpass, as opposed to from the side of the road.
However, in order to develop a successful traffic surveillance algorithm, we tend to use overpass/
bridge‐positioned cameras as video sources, since their image consists of separable road lanes.
Therefore, we can limit the ruinous effect of mutual occlusion between vehicles in heavy multilane
traffic.

Depending on the method, vehicle detection is based on finding thermal imagery frame features.
Each element of the vehicle, such as the windshield, tires, and engine, has distinct heat signatures,
forming the vehicle’s specific thermal identity [13]. Since different groups of vehicles were created for
various purposes, all with varying sizes, shapes, and positions of windshields; differing engine pow-
ers; and cooling systems, we are often able to determine what category a vehicle belongs to by analyz-
ing its thermal identity, or, at worst, to simply detect the presence and approximate location of a
vehicle. For instance, some publications [13, 14] analyze such features (engine heat area and wind-
shield area; see Figure 3.8) and their locations to classify the vehicles into groups. This classification

(a) (b)

(c) (d)

Figure 3.7 Example frames from a thermal camera for different vehicles: (a) small car, (b) SUV, (c) pickup truck, and
(d) bus.

Vehicle Classification 55

may rely on relative localization, shape, and temperature of heat areas, windshield shape, and the
space between. It is also possible to detect the location of windshields and their surroundings using
a Viola–Jones detector, applying such features as a recognition target.

Another issue that must be addressed is the fact that temperature relationships between vehicles
and the outside environment may vary depending on the season. Namely, windshield temperature is
usually lower than that of the road surface (frequently, even lower than the outside air temperature)
in warmer seasons, while on cold winter days, this relationship is reversed [14]. To resolve this vari-
ation, we can use a simple complement operation on intensity images to reverse this relationship into
a default state, thus enabling us to perform uniform algorithms during all seasons. It can be obtained
by transformation,

I i j I I i jT max, ,() ()

where Imax is the maximum value of a pixel in the intensity image (by default Imax 255 in 8‐bit gray-
scale), I(i, j) is a pixel value of the original image at (i, j) position.

One approach that can be used to detect the thermal signature of a car was proposed in Ref. [15],
where HOG (see Figure 3.9) is calculated at multiple scales and can be used to distinguish cars from
other objects (i.e., animals). The algorithm is based on analyzing the regions containing moving
objects. The analysis is performed by separating every moving object into a set of regions, and

Windshield

Heat area

Figure 3.8 Vehicle temperature regions in thermal imagery.

Figure 3.9 HOG features extracted from a single region containing a car.

Computer Vision and Imaging in Intelligent Transportation Systems 56

extracting the HOGs from each region. This approach, involving using the same moving object at
different resolution levels for gradient calculation, allows us to describe and process vehicles at vary-
ing distances from the camera. To differentiate between classes (vehicles/nonvehicles), we use a
learned set of vehicle signatures stored in a database. We can use, for example, multinomial pattern
matching (MPM) [16] to compare the current signature with the patterns in the database. In order to
make the algorithm more robust, every moving object is tracked in sequential frames, and the match-
ing is based on a sequential probability ratio test (SPRT) [17]. This combines matching decisions for
individual instances of an object in frames into the final classification decision. To overcome the
issue of relative temperature between vehicle and environment, we can modify the HOG algorithm
so that we do not differentiate between positive and negative gradient orientation, thereby immuniz-
ing the method to inconsistencies.

3.5.2 Intensity Shape‐Based

Since thermal cameras represent higher temperature regions as brighter pixels, we can use the char-
acteristic shape of these regions to detect and classify various types of vehicles [13]. Considering an
algorithm without the use of background subtraction (i.e., if the camera is stationary), we can take
the following steps. First, we threshold the intensity image with a desired threshold level (corre-
sponding to proper temperature) so that an initial heat signature blob is obtained (see Figure 3.10).
A threshold level can be fixed or adapted according to maximum pixel intensity in the image, analysis

Figure 3.10 Heat signature extracted from image of a car.

Vehicle Classification 57

of histogram, etc. Second, we use morphological opening to reduce noisy singular pixels and improve
the quality of detected blobs. If the result is not satisfactory, we can utilize one or a few points from
detected blobs as seed points in a mophological watershed algorithm to obtain a more accurate
mask, and then merge both versions. Third, to analyze the mask and separate the blobs, we use con-
nected component labeling. Afterward, we can filter out the blobs that do not fit certain criteria (i.e.,
too small or too big).

Fifth, raw blobs by themselves do not convey enough useful information for further classification.
We can describe these blobs using shape feature descriptors, such as the bounding box, minimal
area bounding box, fitted ellipse, blob area, filled blob area, blob perimeter, convex‐hull area and
perimeter, centroid position and central moments, compactness, eccentricity, etc. These features
and their explanations are covered more extensively in the following section on shape‐based vehicle
classification.

Sixth, we can choose to perform feature dimension reduction. This can be useful when the number
of features is high, increasing the computational cost, and/or when we are not able to manually
specify which features are discriminative between classes or which ones are simply overdescribing
vehicles, since some extracted features may be correlated or even redundant. To reduce feature vec-
tor dimensions, we can use linear discriminant analysis (LDA) [18] or principal component analysis
(PCA) [19]. The main difference between PCA and LDA is that PCA uses data sets (our training
group of manually classified vehicle data) to find a linear combination of features. This maximizes
the total variance in data, which may sometimes lead to loss of discriminative data between classes.
On the other hand, LDA explicitly models the differences between classes by finding combinations
of features and separating them in the best way possible. In order words, LDA tries to maximize the
separation between the means of each class in a new subspace and, simultaneously, minimizes the
variance within each class separately. Finally, we perform learning and further classification with
calculated features. Popular classifiers used in publications include the following: support vector
machine (SVM), k‐nearest‐neighbor algorithm (k‐NN), random forest classifier, [20] etc.

If the camera is stationary, we can alter some parts of the algorithm by using a background subtrac-
tion method. Many systems use an algorithm (recursive or nonrecursive) that in some way models
the background, and then subtracts it from the current frame. As shown in Ref. [13], we can also
subtract free road intensity instead, provided that we model (i.e., using Gaussian modeling) its tem-
perature gray level so that it is robust enough to distinguish the road properly, yet limited enough not
to cover heated parts of the vehicle. Once we have access to the actual vehicle shape, or at least its
bounding box, we can determine which part of a vehicle has a strong heat signature and where it is
positioned within a vehicle shape. For example, buses have much stronger heat signatures in the
back, while big trucks are warmer in front of the vehicle, corresponding directly to the position of
their engines. Values such as relative displacement between the vehicle shape centroid and its heat
signature, and the ratio between heat signature area and vehicle shape area can be derived from this
information, improving vehicle classification robustness.

Regardless, any background segmentation method used must be prepared to handle unpredictable
changes in lighting and weather conditions, while at the same time being able to produce satisfactory
results in real time. The main goal is to separate the moving parts of the image, presumably vehicles
in motion (foreground), from static roads and sidewalks (background). In the case of thermal imagery,
this approach is not ideal, since pixel gray level corresponds to temperature, so often a part of the
vehicle and the road have similar intensities. Because of that, foreground masking can be highly cor-
rupted and certain parts of the vehicle will be misinterpreted as background elements). In order to
improve the level of foreground segmentation accuracy, we can use slightly extended ROI covering
the initial approximation of vehicle shape, and perform edge detection within the extended ROI. The

Computer Vision and Imaging in Intelligent Transportation Systems 58

edge detector parameters should be set to correspond to the given image quality and noise, so that it
extracts only desired contours. Then, we can use logical and morphological operations on masks
from ROI to merge them, fill in regions, remove noise, and improve the accuracy of the detected shape.

For aerial thermal images gathered from UAV for instance, the advantageous thermal signature
from viewing the lower portion of the vehicle is not available. Furthermore, the heat signatures of the
tops of vehicles are not as unique as the ones visible from the side or front of the vehicle [21]. This
signature may also vary substantially depending on weather conditions. One of the approaches to
resolving this issue is to use a hybrid system involving both thermal and visible‐light cameras [21]. To
detect the silhouettes of vehicles (see Figure 3.11), starting with a visible‐light camera, we can use
four Haar classifiers trained on sample vehicle images manually captured and separated in four angu-
lar positions: 0°, 45°, 90°, and 135°. Using trained classifiers, we can detect the positions of the vehi-
cles in the image with a certain level of confidence. As mentioned before, an approach using Haar
features in a Viola–Jones classifier has also been used in the detection of the windshield and its sur-
roundings when the thermal camera views the vehicle from above. Therefore, this method is not
limited to a UAV camera only.

When the thermal signature is strong enough to be detected due to sunlight or engine heat trans-
ferred to the top of the vehicle, we can confirm previously detected positions, thereby increasing the
accuracy of detections. To get such confirmation, we can perform steps one to three as described
previously with a different set of parameters: thresholding temperature, the use of structuring ele-
ments in morphological operations, and the size range of detected blobs. In addition, if the shapes of
detected blobs are corrupted, it is possible to use structural elements as seed points in the watershed
algorithm to capture more accurate silhouettes.

3.6 Shape‐ and Profile‐Based

Many algorithms of shape‐based vehicle classification employ very different approaches to solving
the problem at hand (see Table 3.3). Often, these methods depend on the position of the camera,
which implies further algorithm foundations. For instance, using the width/height ratio of a bound-
ing box around the detected vehicle may yield two very different results, depending on whether the
camera is positioned above the vehicle rather than on the side. Also, the steps performed in each

Figure 3.11 Thermal image [12] with a pixelated car showing Haar features.

Vehicle Classification 59

Table 3.3 Comparison of selected papers related to shape‐based vehicle classification.

View Methods Classification Applications

Static camera, distant,
side‐top view [22]

Edge detection, SIFT descriptor,
constellation model

Sedan, minivan, taxi Video surveillance

Static camera, distant
side view [23]

TRP (transformation‐ring‐
projection), DWT, MFC

Eight classes, including
hatchback, motorcycle, and bus

Video surveillance

Moving camera, distant
aerial view [21]

Oriented Haar classifiers, hybrid
visible‐light/thermal cameras used
to confirm detections

Vehicle/person UAV surveillance

Moving camera,
rearview [24]

Haar features, AdaBoost Vehicle/non‐vehicle Vehicle
mounted camera

Moving camera, distant
aerial view [25]

HOG features, AdaBoost, SVM
linear classifier

Vehicles/other objects Low‐attitude UAV
surveillance

Moving camera, side
view [26]

HOG features, SVM classifier Sedan, minivan, pickup, none Vehicle
mounted camera

Moving camera, various
viewpoints [27]

HOG features, SVM classifier Vehicle/person Vehicle
mounted camera

Static camera, distant,
side‐top view [28]

PCA + SVM/eigenvehicles Car, van, truck Video surveillance

Static camera, distant,
upper view [29]

Segmentation by GMM,
combination of silhouette shape and
HoG features trained SVM

Car, van, bus, motorcycle Video surveillance

Static camera, distant,
upper view [20]

Multiple silhouette shape features to
train SVM

Car, van, bus, motorcycle Video surveillance

Static camera, distant,
upper view [30]

Background subtraction, simple
dimension features

Cars, trucks Video surveillance

Static camera, distant,
upper view [31]

17 blob shape features, LDA and
k‐NN

Seven classes, including sedan,
truck, SUV etc.

Video surveillance

Static camera, distant,
upper view [32]

Shape features, two‐step
classification (coarse and fine)

Seven classes, including sedan,
van, pickup etc.

Video surveillance

Rearview [33] Features such as taillights, license
plate positions and dimensions and
dynamic Bayesian networks

Sedan, pickup, SUV, and others Video surveillance

Moving camera, distant
aerial view [34]

3D models used for matching,
HOG‐based features classifier

Nine classes, including
compact sedan, station wagon,
and truck

UAV surveillance

Static camera, side
view [35]

Edge‐based, FLD – Video surveillance

Static camera, upper
view [36]

11 blob shapes features, LDA, k‐NN People/vehicles, estimation
of color

Video surveillance

Static, omnidirectional
camera [37]

Hybrid: Silhouette + k‐NN and
HOG + SVM

Car, van, motorcycle Video surveillance

Computer Vision and Imaging in Intelligent Transportation Systems 60

particular method differ significantly based on general assumptions of the algorithm (i.e., whether it
is silhouette‐based, using three‐dimensional (3D) model matching, edge analysis, etc.).

However, we can specify a simplified procedure describing general steps, which are incorporated
in such an algorithm. First, we want to select the ROIs containing each vehicle or object visible in a
scene. If the camera is stationary, we can use any background subtraction method to mask the mov-
ing objects, separating vehicles from the outside scene (road, signs, etc.). Then, we perform the nec-
essary preprocessing on the mask to make it cleaner and easier to decipher. Preprocessing may
include various noise removal techniques, morphological filtering, and filling holes. For example, we
can use connected component labeling to separate the blobs and filter out ones which are not likely
to be vehicle candidates based on certain criteria. Depending on the approach, we can extract multi-
ple blobs with a bounding box around each blob, as ROIs to be used in the next steps. Often, we
implement tracking of the blobs in consecutive frames for velocity measurement and other purposes,
such as occlusion avoidance. Next, we use one of the approaches specified in following sections to
extract features from each ROI. After further preprocessing of the set of features, we occasionally
perform dimension reduction using an LDA or PCA method. Finally, we train the specified classifier
with a manually labeled data set. Popular classifiers include SVM and k‐NN.

3.6.1 Silhouette Measurements

One of the basic approaches that has been used in the field of vehicle classification research is to
focus on features extractable from an ROI, including a binary blob of separated object/vehicle.
There are various ways to extract blobs containing objects. One method is using an algorithm for
background subtraction [38], which, combined with proper binary filtering, gives the mask of
approximated blobs containing the vehicles. These methods are covered in greater detail in previ-
ous sections of this book. As mentioned in Ref. [37], if the vehicle blob in a particular frame is noisy
and does not present enough repeatability in separate frames, we can calculate an average silhouette
of a vehicle. To do so, we track a blob of the same vehicle in consecutive frames, add them to each
other so that the centroids are overlapping, and divide them by the number of frames used to obtain
an average blob. Next, we threshold the intensity of the image to filter out the parts of the blob that
did not occur frequently enough. In Ref. [37], such an approach was used to process omnidirec-
tional camera frames, but it can also be used in standard cameras to improve the quality of vehicle
blob segmentation.

Occasionally, we try to track blobs in consecutive frames and estimate the velocity of the vehicles
during the first phase after obtaining the blobs. A method for doing this uses the constant velocity
Kalman filter on the centroids of the blobs [29]. This may be helpful in cases where separate vehicle
blobs are very close to the point of merging. In such instances, the predicted centroid position of
neighboring merged vehicles in the next frame differs significantly from the ones modeled by the
Kalman filter. Thus, the merged blob can be rejected from further analysis. Another approach to
detecting this type of occlusion as described in Ref. [32] is based on analysis of the motion field. This
can be obtained by performing block matching to search the motion vector for each pixel. To improve
both computational efficiency and the motion field approximation accuracy, we can perform it
according to a fixed direction because the vehicle’s velocity direction is not expected to change. Due
to the perspective effect, the motion vectors may differ even for the same object. Objects that are
further from the camera seem to be moving more slowly. To reduce this effect, we can use a transfor-
mation, multiplying a motion vector by a specified scale factor according to its position on the image
so that the perspective effect is compensated. In other words, we can make the motion field of one
blob homogenous. A simple analysis of motion fields of all objects can show if two separate objects

Vehicle Classification 61

have merged because one blob will have an increased variance of motion vector magnitudes. Once
we detect such occlusion, we can divide two distinct objects from one blob according to the different
motion fields (see Figure 3.12).

In previous research [20, 30–32, 36, 37], various sets of binary silhouette features have been used
as shape descriptors [39], including the following:

 ● Bounding box: Smallest rectangle with vertical and horizontal sides that can contain the entire
blob, from which we can calculate features such as width, height, aspect ratio of the box, and/or its
area (see Figure 3.13).

 ● Minimal area bounding box: Similar to the ordinary bounding box, but rotated to more accurately
fit the shape of the blob (can be a decent approximation of object orientation) [40].

 ● Fitted ellipse: Ellipse that best fits the shape (or its contour) in the least‐square sense (see Ref. [41]).
 ● Simple blob shape features: Including blob area (sometimes also filled blob area), blob perimeter

or convex hull area [40], and perimeter.
 ● Blob centroid position: Center of mass of the blob, which can be used to represent the position of

mass in the ROI of the shape,

x
N

x y
N

y
i

N

i
i

N

icentroid centroid .1 1

1 1
,

Cut line

Frame (i) Frame (i+1)

Figure 3.12 Motion field calculated for two vehicles with different velocities in two consecutive frames, indicating
the cut line used later to divide the merged blob.

Figure 3.13 Bounding box, minimal area
bounding box (rotated), and fitted ellipse of
a blob.

Computer Vision and Imaging in Intelligent Transportation Systems 62

 ● Central moments: Image moments calculated about the centroid of such image. Such moments are
only translation invariant. Defined by Sonka et al. [40]

p q centroid centroid,
i

N

i
p

i
qx x y y

1

where N number of pixels in a blob, ()p q specify order of central moment.
 ● Hu‐invariant moments: Set of moments described in Ref. [42], which are translation, rotation, and

scale invariant.
 ● Compactness: Indicates similarity of a shape to a circle. It is independent of linear transformations

[40] and can be calculated using

Compactness where is area is the perimeter of a L
A

A L
2

, , bblob.

 ● Eccentricity, elongation: Measures of the aspect ratio of a shape that can be calculated by the prin-
cipal axes method [39] or more simple minimal bounding box approach (smallest rectangle con-
taining every point of a blob, and can be rotated). Eccentricity is calculated as the length ratio of
major and minor axes of the shape.

Elongation where is width and is length of menti1 W
L

W L, ooned box.

 ● Solidity: Ratio of pixels of a blob and its convex hull [39] (see Figure 3.14), defined by

Solidity where is the area of a blob and is S

CH
S CH

A
A

A A, tthe area of convex hull of this blob

 ● Convexity: Ratio of the perimeter of the convex hull of a blob to the perimeter of a blob [39]:

Convexity where is the perimeter of a blob and CH

S
S

L
L

L L, CCH is the perimeter of convex

hull of this blob.

The problem with using such a high number of features is that upon initial inspection, it is difficult
to determine which are truly useful in discriminating between various classes of vehicles. Some of
the features might be correlated or even redundant [31]. In addition, it is beneficial to keep the

(a) (b) Figure 3.14 A blob (a) and its convex hull (b).

Vehicle Classification 63

 number of features at a reasonable level so that the computational cost is not too high. We can use methods
such as LDA to reduce the feature space to a lower dimension, which actually designs a new feature
space so that the distance between distinct classes is maximized, emphasizing the discriminative
features. The next step of this approach is to teach the classifier with the manually labeled data set.
Popular classifiers used in previous works [29, 31, 43] are SVM and k‐NN.

As mentioned in Refs. [32] and [26], sometimes we can implement a so‐called hierarchical classifi-
cation method and select obviously discriminative features to perform coarse classification first,
prior to the final fine classification (see Figure 3.15). With a certain level of confidence, we can say
that features such as blob areas or lengths (where the camera is positioned toward the side of the
vehicle) are discriminative enough to separate blobs into large and small vehicle classes. The next
step of classification can be focused on finer classification between members of these high‐level
classes separately, thereby more accurately distinguishing between more similar subclasses (i.e.,
between a sedan and a small van in a small vehicle group, or between a bus and a truck in a large
vehicle group).

Vehicle classification can be further refined by using additional features beyond those based on
silhouettes. For example, Ref. [29] extracted intensity‐based HOG features for each blob‐containing
vehicle, and combined them with silhouette‐based features to train the SVM. Research proved such
combination to be beneficial to overall classification accuracy.

As mentioned in Ref. [33], in cases where the camera is facing the rear of the vehicle, the diversity
of blob shapes is much lower than in cases where the camera is aimed toward the side or even top
side of the vehicle. This is quite obvious since we can only perceive the almost universal, roughly
rectangular shape of the back of a vehicle. To overcome this issue, we can focus on purely simple,
low‐level features extractable from the rearview of a vehicle. These include approximate bounding
box of the vehicle (representing car rear width and height), taillight positions and dimensions, license
plate position, and relative distances between them all (see Figure 3.16). Such an approach reduces
the need to have high‐resolution, close‐up images of the rear of the vehicle. Even relatively low‐reso-
lution images can suffice to extract the desired features.

Vehicle blob

Coarse classification

Large vehicle

Fine classificationFine classification

Small vehicle

Sedan Taxi Hatchback Bus SUV Truck……

Figure 3.15 Simplified diagram explaining hierarchical classification.

Computer Vision and Imaging in Intelligent Transportation Systems 64

There are multiple ways to detect a license plate described in previous works [33, 44, 45]. For
example, we can detect edges and use them to generate binary blobs, which we can filter using our
criteria (i.e., similarity to rectangular shape and size similar to that of a license plate), or use so‐
called sliding concentric windows to segment plate shapes [44]. To increase the confidence level of
our detection, we can perform double‐checking with another algorithm and combine both results.
Detecting rear lights can be performed by locating regions with a high concentration of red pixels
in the vehicle silhouette (prior to grayscale conversion [33]). Unfortunately, such an approach
would fail when applied to a red vehicle, so a histogram can be computed to determine if imaging
is in the infrared. If so, we can perform extra steps to segment color regions and filter out regions
that are too big or too small. Only if these regions meet the criteria, we can then effectively isolate
the taillights. After we obtain all of the values describing the rear of a vehicle, we can set it as a
feature vector that can be used in further classification, for example, using a hybrid dynamic
Bayesian network [33].

Another approach, presented in Ref. [23], employs a method called transformation‐ring‐projection
(TRP) [46] to describe the shape of a blob. This method is both rotation and scale invariant and
reduces a 2D pattern to 1D. After performing a normalization of image size (to a minimum bounding
square given that its center is a blob centroid), we can use the following formula to compute the TRP
value for a specified radius (again, with blob centroid as a center of polar coordinates):

f r P r r d() (cos , sin)
0

2

Here, r is the radius for which we calculate integral sum, and P is the normalized image.
The formula is used to compute f(r) for r R0, max , where Rmax is half of a square‐normalized

image side. It gives a distribution of shape presence along concentric circles, which can be repre-
sented as a simple 1D sequence. In order to improve the robustness and reduce the level of detail we
lose during transformation, a variant of TRP called transformation‐semi‐ring‐projection (TSRP; see
Figure 3.17) can be computed. TSRP is obtained by modification of the TRP formula so that we com-
pute the integral for semi‐rings (range equal to [0, π] instead of [0,2π]), and the starting angles for it
are in eight evenly distributed angular locations (every /4). We can decompose eight computed 1D

Figure 3.16 Visualization of rear car features.

Vehicle Classification 65

sequences using discrete wavelet transform (DWT) coefficients, which smoothes and decreases the
level of noise present in the eight sequences. Next, a step of coarse and fine classification (by fuzzy
c‐means clustering [47]) is performed to separate the classes.

3.6.2 Edge‐Based Classification

Another approach to vehicle classification is based on edge detection. This method relies on the
assumption that detected edges themselves may be more immune than other techniques to variables
such as lighting and color changes [22]. However, approaches developed in previous works vary sig-
nificantly in their interpretation of edges and further implementation. Most approaches based on
detecting edges use a camera with the field of view facing the sides or top sides of the vehicle. From
these angles, the shape of a vehicle varies more between different classes, thereby facilitating the
extraction of more significant edge features.

A simple algorithm was described in Ref. [33], which is concerned with describing the external
outline of a vehicle. First, we prepare the blobs of moving objects by foreground segmentation and
shadow removal. Second, we condition extracted blobs so that their silhouette is not interrupted by
extensive noise. Third, we obtain the boundary edges of a blob using morphological or other edge
detection. To describe the outer edge of a shape, we can create a pseudo time series by scanning the
edge from the center of a shape, which assigns a radius distance to the external border of a blob for
each angle (see Figure 3.18).

R
m

ax

(a) (b)

×8

Rmax

Figure 3.17 Transform‐semi‐ring‐projection used to describe one 2D blob image (a) into eight 1D vectors (b).

α

Figure 3.18 Border edge of vehicle shape
used for scanning to create a sequence of
segments.

Computer Vision and Imaging in Intelligent Transportation Systems 66

It gives us a 1D time series, which is the signature of a vehicle shape. To compare the series, we can
use a dynamic time warping (DTW) algorithm [48] and determine the distance between them. DTW
is a method of measuring the similarity between two temporal sequences, which may vary in speed
or timing. It is often used in automatic speech recognition applications [48]. Once we have a way to
calculate the similarity between such “shapes,” we can use a k‐NN classifier to perform actual
classification.

However, this method relies heavily on the assumption that the shape and class of a vehicle can
be effectively determined solely by the outline edge of a vehicle blob, which may itself be cor-
rupted. Also, none of the vehicle’s internal edges (i.e., windshields and side windows) is contribut-
ing to the 1D signature of the car. As a result, this method may not be sufficiently robust for certain
applications.

To overcome this issue, we can analyze all the edges present on a ROI belonging to a single vehicle
(see Figure 3.19). There are methods based on Hausdorff distance [49] or Chamfer matching [50],
which are examples of global edge map matching methods. However, as stated in Refs. [22] and [35],
because of variations between individual edge pixels within the same classes, such an approach is not
robust enough to be used to accurately compare vehicles.

In research conducted by Ma et al. [22], we assume that even though vehicles of the same class have
very strong similarities of edge masks (some of the points are repeatable), there are still certain vari-
ations in such edge structures which, as stated before, makes it inefficient to use global edge maps to
distinguish them. The solution is to group similar edge points together. To determine the similarity
between edge points, a scale‐independent feature transform (SIFT) method with a few modifications
can be used. Namely, edge points can be used as anchor points to create SIFT descriptors in a cor-
responding grayscale image, but in order to make the method most applicable for vehicle classifica-
tion, we do not differentiate between orientations which have a difference equal to 180°. In other
words, instead of the default eight bins for a histogram of orientations, we only use four, which are

Figure 3.19 Vehicles and detected edges.

Vehicle Classification 67

unpolarized. This is meant to increase detection efficacy against unexpected changes in lighting and
contrast. Another modification is to use χ2 distance instead of Euclidean distance, because when
comparing two values for the same bin, the former distance makes the difference relative to the val-
ues of this bin, thereby giving us a better way to compare two distributions. Edge points which are
close to each other and also have similar SIFT descriptors can be grouped to create segments. Such
segments are advantageous, since their positions are more repeatable within classes than just the
edge points considered separately. The next step is to combine all of the segments’ information (edge
point coordinates, their descriptors, the average descriptor as a feature vector) into a group of fea-
tures describing one vehicle. Alternatively, other features such as difference‐of‐Gaussian (DoG) or
saliency [22, 51, 52] features can be computed instead of SIFT. Then, we can use a constellation
model [22] to compile the classes for further classification. Such an approach is a model that consists
of a collection of vehicle parts in which appearance and positions can be flexible.

Additional research by Shan et al. [35] attempts to solve the issues of edge map comparison in a
different way. First, we try to perform a transformation on both edge maps to project them onto a
coordinate system with minimized shape differences. During initial calculations, we can use Chamfer
distance to approximate distance. We want to align the edge maps through analysis of edge map
centroid translation and dominant gradient orientation to determine rotation parameters. Given the
approximate transformation, we perform a coarse search to fine‐tune the parameters of it. Next, a
step involving an iterative closest point (ICP)‐based refinement [35] is carried out. Afterward, a 6D
measurement vector is obtained for every pair of edge maps based on distance and angular and mag-
nitude difference. To obtain a more discrimative classifier, we employ Fisher linear discriminant and
Gibbs sampling.

3.6.3 Histogram of Oriented Gradients

Generally, HOG [53] lets us extract features that describe local intensity gradients and/or edge direc-
tions, which represent the object appearance in the image. As stated in Ref. [26], the HOG approach
is not exactly the best method to classify cars between various classes, but rather to determine the
presence of a vehicle (or other object) in an ROI. However, it may be applied to classify objects in
groups such as vehicles and people. Normally in HOG‐based detection of cars, we could use sliding
windows moving and of gradually increasing size for the whole frame to calculate the features [37].
However, it is not usually computationally feasible in real‐time applications such as traffic surveil-
lance (without additional features and sliding window method improvements [25]). Therefore,
another method must be employed. As an example, we can use a bounding box of a shape blob easily
detectable by background subtraction. A key element is the chosen approximation of a bounding box
of a vehicle. This is crucial to make further image‐based measurements effective and accurate.
Generally, searching on the image for potential regions with objects we want to classify (performed
to decrease the computational cost when compared with sliding window approach for all image) is
called focus of attention’s mechanism [27]. There are various methods to generate focus of attention,
and these may fit into one of the following categories: knowledge‐based, motion‐based, and stereo‐
based. To the first group belong methods generally deriving from our knowledge of the wanted object
(color, shape, vertical symmetry, etc.), while the second group often uses, for example, optical flow.
A stereo‐based category can employ methods such as inverse perspective mapping [54, 55], which is
used to approximate locations of interesting locations such as vehicles and obstacles.

Once we have the approximate bounding box of an object (potentially vehicle), we can use the HOG
method to extract features describing the object inside it (see Figure 3.20). First, we can use the scale‐
space approach described in Ref. [15] to obtain a gradient of the image. Scale space represents a set of

Computer Vision and Imaging in Intelligent Transportation Systems 68

pictures at various resolutions and processes them with Lindeberg’s [56] method to create a gradient
map, which is then used to handle structures (i.e., vehicles) visible in the image at different scales. To
calculate the features from the gradient image, we divide the bounding box into M N subregions, and
for each subregion we quantize the directions of gradients in K bins corresponding to [0 °, 180 °] range.
After further postprocessing of histogram arrays, we can concentrate them to create one feature vector
of the object inside of the bounding box. As a classifier, we can use SVM, but, as stated earlier, the over-
all accuracy of the classification between various vehicle classes is poorer than in using methods such
as edge or shape features. Thus, the HOG‐based approach can be used to coarsely classify between
completely different categories such as vehicle, person, or other object, rather than between objects in
similar classes, such as car and small van. Research conducted in Refs. [29, 43] attempted to overcome
this issue by employing a method combining two approaches: the first approach using vehicle silhou-
ette features (as described in previous sections) and k‐NN classifier, and the second method using HOG
with SVM, which proved to be superior to separate ones in their experiments.

When we cannot clearly state what view of a vehicle we are expecting to encounter, (i.e., when the
camera is not facing the side of a road, but rather is mounted on a vehicle), we can try to improve the
accuracy of our HOG‐based vehicle classifier by creating a few classifiers instead of a general one
[27]. Each of these classifiers corresponds with a different viewpoint of a vehicle (i.e., front, rear,
front‐right side, and front‐left side) and is taught separately with the selected training images from a
proper view category (but with the same negative training examples). Another modification by Han
et al. [27] is to extend HOG description by assigning spatial localization inside subregions during its
calculation, thereby better representing structured objects such as vehicles. To achieve that, in addi-
tion to accumulating orientations inside orientation bins, for each angle bin we also bin distance of
the pixel to the center containing its subregion. Other work by Cao et al. [25] proposed a different
improvement of the HOG‐based method, which was achieved by using discrete AdaBoost algorithm
to decrease the dimensionality of feature vectors, and to speed up detection.

3.6.4 Haar Features

Haar‐like features (see Figure 3.21) are used in cascaded Haar classifiers, which were first described
in Ref. [58]. There were many papers introducing ways of using such classifiers to perform facial
detection, which was later generalized to detect different objects such as vehicles [21, 24, 57, 59].

Figure 3.20 HOG features extracted from a gray‐scale image of a vehicle.

Vehicle Classification 69

Cascaded classifiers use a moving search window for multiple positions and scales to detect possible
locations of vehicles in an image. The process is constructed so that the most discriminative features
corresponding to individual weak classifiers are calculated first (later, further cascades of features).
Then, if the current cascade of these classifiers does not qualify the sample image window as a vehi-
cle, the remaining features do not need to be calculated. Such an approach drastically reduces the
computational cost, which would be extensively high if we attempted to verify all of possible combi-
nations of type, location, and scale of the Haar features in the image. Examples of Haar‐like features
used for vehicle classification [21, 57] are presented in Figure 3.221. Another potential improvement
is if the camera is mounted on a vehicle or a static platform, and we could approximate angle of the
camera and how the road is presented on the image. Namely, we can narrow down the range of
searching window sizes and positions depending on the part of the image where we search for vehi-
cles. An approach called “adaptive sliding window” [59] searches via larger search windows in close
proximity to the camera, and smaller ones when the part of the image corresponding to further dis-
tances is analyzed.

In Ref. [24], the approach is slightly different because we do not use Haar features to search for
candidates in the whole image, but rather to determine whether the given individual image sample
contains a vehicle or a nonvehicle. In such an approach, a method for candidate locations generations
has to be performed, for instance, by using a symmetry evaluation approach (given that the camera
is facing rears of the cars).

As mentioned in Ref. [21], when acquiring the images from the air (see Figure 3.22), we cannot
expect the vehicles to be rotated and positioned in one fixed orientation. To improve detection accu-
racy, we can use an independent set of cascade Haar classifiers and train them separately for different
angular positions. If a higher number of classifiers confirm the presence of the vehicle in a particular
location in the image, we can be quite confident in such detection.

3.6.5 Principal Component Analysis

PCA is a statistical method that uses an orthogonal transformation to project a set of data (observa-
tions described with possibly correlated variables) into a new space so that the axes of new space are
the computed principal components (which are linearly uncorrelated) and, therefore, represent more
important information about observations. The principal components are defined in such a way that
the first one has the greatest variance in the data set and the next ones are orthogonal to the previous
ones and sequentially represent the largest variance remaining in the data. Apart from better repre-
sentation and visualization of data, we can also compress data by rejecting the least‐contributing
components from the new PCA space. The principal components can be calculated as eigenvectors
of covariance matrix computed from given data [19]. We can divide PCA‐based vehicle classification

Figure 3.21 Haar‐like features used in vehicle detection: edge features, center features, and line features.
Source: Bai et al. [57]. Reproduced with permission of IEEE.

Computer Vision and Imaging in Intelligent Transportation Systems 70

approaches into three main categories [28, 60] depending on what kind of purpose the PCA algo-
rithm is used for during the description and classification process:

1) PCA used as a classifier on normalized vehicle images—eigenvehicles approach [28]
2) PCA used as a classifier on features (i.e., Haar wavelet features) extracted from images [60]
3) PCA used as a method to describe vehicle image with a low‐dimensional feature vector before

further classification (i.e., SVM) [28]

In every approach, we assume that we have a rectangular bounding box around the vehicle.
Bounding boxes can be created manually on static frames (for training purposes), or we can use
methods of background subtraction to extract moving objects and their bounding boxes. In any case,
it is advised to perform preprocessing on all vehicle images. First, if needed, we convert the vehicle
image to grayscale. Second, we rescale every image so that they have the same width and height.
However, if the camera does not face a particular side of a vehicle, we can employ a method of orien-
tation and scaling so that each vehicle sample is uniform and oriented in the same direction before
scaling [28]. By using arbitrarily set lane orientation, analysis of the vehicle blob’s elongation, and
tracking its motion direction, we can determine the angle to rotate the image. Third, we try to reduce
the impact of lighting changes, which can be done by histogram equalization, normalization, or using
z‐scores [19, 61]. For example, we can use the following transformation for each pixel in every image:
p i j p i j i j i jz () () () / (), , , , , where μ is average image of all vehicles (see Figure 3.23) and σ(i, j) is
the standard deviation of (i, j) pixel intensity in every image (because we consider it as a variable, or
a feature which is describing each vehicle in multidimensional space, in which every pixel is 1D). An
additional step that we can perform depends on whether we have access to accurate blob data of the
vehicle. We can set the pixel value of rest of the bounding box as 0, so that it does not contribute to
PCA calculations. Typically, we can perform hierarchical classification and, as a first step, only sim-
ple features such as length and area to roughly divide vehicles into more specific groups. We only
employ PCA‐based methods to classify vehicles in groups in a finer manner after rough classifica-
tions have been made [28].

The first approach derives from a method of face recognition using so‐called eigenfaces [28, 62].
Similarly, eigenvehicles are eigenvectors of a set of sample training vehicles, meaning that any of the
initial training vehicles can be projected onto a new PCA space (in other words, built with the proper
combination of principal components) and later reconstructed using these vectors. Eigenvehicles
(see Figure 3.24) represent invariant characteristics of vehicle silhouettes that can be found in various

Figure 3.22 Image with pixelated car manifesting distinct Haar features.

Vehicle Classification 71

vehicles. Because primary components contribute most to representing variation in all training
images, we can pick a few of the first eigenvehicles as a new base of lower dimension space in which
we represent samples. However, if a new vehicle sample is to be projected to new space (i.e., built
with limited number of principal components), we will surely encounter a certain level of error in
case of back projection to primary space, which can be properly interpreted as a sign of belonging or
not belonging to a class for which given eigenvehicles were computed.

The algorithm is as follows: for each class, we gather the samples of vehicles. We obtain normalized
images (bounding boxes) by the same method we used while obtaining bounding boxes in PCA as a
classifier approach. We represent each image of size m n as a vector of size 1 mn (which can be
easily restored to an image anytime). Then, we store (for each class separately) all k sample images (as
1 mn vectors) in a matrix of size k×mn, on which we perform PCA, which gives us eigenvehicles of
a particular class. If we want to classify a new sample vehicle, we perform the same normalization
steps on its image, projecting it to PCA‐based space for each class, and then calculating Euclidean
distances between the new sample and the training set (for every class separately in a proper space).
For example, if the mean distance is small enough, we can then assume that the new sample belongs
to that class. Another way to determine what class a vehicle belongs to is to inspect the truncation

Figure 3.23 Calculated mean of
normalized images.

(a)

(b)

Figure 3.24 (a) Examples of vehicle pictures used to calculate eigenvehicles of sedan class, (b) first eight principal
components—eigenvehicles of sedan class.

Computer Vision and Imaging in Intelligent Transportation Systems 72

error we encounter when we project a new sample to a dimensionally reduced class subspace and
then project it back. The class for which the truncation error is the smallest is chosen as a class of
new sample [60]. However, in a paper by Wu and Zhang [60], instead of using whole vehicle images
as input data for PCA (obtaining eigenvehicles), they used a method employing prior extraction of
Haar features. Then, we use such features to compute PCA and obtain eigenvectors rather than
eigenvehicles. Apart from that, the rest of approach is very similar.

Another approach using PCA is based on the use of different segmented images of vehicles [28].
First, we interpret the vehicle image (without the background) as a point cloud of 3D space. Each
point consists of three values: the x and y coordinates, and the intensity of the corresponding pixel.
Then, we perform PCA on the point cloud and obtain the first principal component (first eigenvec-
tor), which describes the distribution of points best. We follow this approach for each class and every
training image separately, and then we train one class SVM classifier [28] using principal compo-
nents as feature vectors. It gives us a set of one‐class SVM classifiers for every class of vehicles we
want to classify, which we use to determine to which one a new sample belongs.

3.7 Intrinsic Proportion Model

The automatic vehicle classification system described here is a pattern recognition model that relies
on the proportion of the bounding box of a vehicle. To classify vehicle sizes independently from view
angles, we can use an Analogia graph [63] to represent the relationship between vehicles and the
road. An Analogia (Greek, “proportion”) graph is an abstraction of a proportion‐preserving mapping
of a shape. Assume a connected nonrigid graph G, has an edge with a length u. The rest of the edges
in G can be normalized as pi = vi/u.

We first create an Analogia graph of objects. In our case, we consider classifying vehicle types such
as trucks and cars on the known width of a lane. Given n set of observations of vehicle objects, we
have an m‐dimensional feature vector for each vehicle: Vi = (vi1,vi2, …, vim), which are normalized by
a common scale factor u, for example, the highway lane width. We have the proportional features,

V V V V V
i

i i i i m
T

, , ,1 2, , ,

The vehicle classification is to classify the n observations into k vehicle types. This can be formulated
as an unsupervised machine‐learning problem, based on the proportional features. The objective
function is to minimize the inner‐class distances to the mean of the class,

min
i

k

j

n

j iV V
1 1

where Vi is the average of the features in k classes.
The algorithm starts with randomly assigning k samples to be centroids. For each remaining sam-

ple, another sample is assigned to the cluster to which it is the most similar, based on the distance
between the object and the cluster mean. Next, the new mean is computed for each cluster. This
process iterates until the criterion function converges.

Figure 3.25 depicts screenshots for the classification of trucks (large boxes) and cars (small
boxes) of the live videos from three cameras in different angles. Using adaptive proportionality, we

Vehicle Classification 73

Figure 3.25 Screenshots for the
classification of trucks (large boxes)
and cars (small boxes) of the live
videos from three cameras in
different angles.

Computer Vision and Imaging in Intelligent Transportation Systems 74

can scale the truck to car ratio according to the location and angle of the camera based on the
metadata. Therefore, the proportional relationship stays the same even if we move the camera or
use it in a different location. Our preliminary results are very encouraging. Tested with 10,000
frames from PennDOT’s live videos from three cameras, we have results in Table 3.4. Figure 3.25
shows screenshots for the classification of trucks and cars of the live videos from three cameras in
different angles.

3.8 3D Model‐Based Classification

There are several similar prior studies on vehicle classification using dimensional features. For
example, the method in Ref. [64] projects 3D vehicle shapes into 2D line contours and then makes
dimensional measurements in absolute values. The results are dependent on the distance to the
vehicles and the angle of the camera. This does not appear to be very flexible when operating in a
large urban traffic camera network, where pan, tilt, and zoom cameras are common. The authors’
solution does not have such limitations. The 3D modeling approach enables detailed vehicle fea-
ture descriptions, but it needs photorealistic 3D modeling and training samples. It also needs very
accurate background segmentation, which is computationally expensive. Table 3.4 shows that the
vehicle classification results are quite stable despite different camera angles, distances to vehicles,
and locations.

3.9 SIFT‐Based Classification

SIFT [51] is a DoG gradient‐based key‐point feature detection algorithm that requires training sam-
ples. The advantage of using this method is that it is scale and rotation invariant. However, it relies
on the image resolution and the similarities to the training samples. The team [65] trained a SIFT
model with 1000 frames and tested it with different sample frames that came from the same camera.
With 100 frames for the main lane only, we correctly identified three trucks and 19 cars in the video.
However, the algorithm falsely identified one car as a truck on the exit ramp and combined two cars
side by side and identified them as a truck. We found that the SIFT feature provided no separation
between cars and trucks based on feature count compared to training data. From our results, we
found that the Intrinsic Proportion Model is the fastest and most robust method for PTZ cameras.
SIFT needs training samples in similar imaging conditions. It can work with still images, however, it
is rather slow and less robust.

Table 3.4 Vehicle classification test results.

Camera 1 (%) Camera 2 (%) Camera 3 (%)

Positively identified 95 94 93
False positives 4 3 6
False negatives 2 3 1
Mean‐squared errors 8 6 9

Vehicle Classification 75

3.10 Summary

The technologies for automated vehicle classification have been evolving over decades. It began with
hardware solutions such as light curtains and embedded loops merely for single lane and fixed loca-
tion systems. Those systems are relatively laborious in terms of installation and operation. With
rapidly growing affordable sensors such as CCTV cameras, LiDAR, and even thermal imaging
devices, we are able to detect, track, and categorize vehicles in multiple lanes simultaneously.
Meanwhile, we are also able to extract useful information such as license plate characteristics, color,
estimated vehicle velocity, and much more.

The vehicle classification solutions introduced in the chapter each have their advantages and dis-
advantages. Thermal and near‐infrared LiDAR imaging works well at night. However, they might
encounter noisy signals in the daytime or high failure rate in extreme weather conditions. Conversely,
RGB cameras (or visible cameras) work better in broad daylight, but perform poorly at night. LiDAR
imaging creates a 3D model of the vehicles; devices can be installed on cars and unmanned aviation
vehicles; it by far holds the most potential as a solution for automated vehicle classification. However,
LiDAR needs to solve the field of view problem by either rotating its sensory orientation, or merging
the views from multiple sensors.

The shape‐based vehicle classification methods, such as HOG, Haar‐like features require substan-
tial training images and carefully designed preprocessing algorithms, such as deformable model,
sample light and size normalization, and sample rotation resampling. The challenge emerges when
multiple vehicles are clustered with other in the view of the camera. The silhouette‐based methods
such as vehicle contours are one of the simpler classification methods. However, they need relatively
clean blobs to start with. For stationary CCTV cameras, this kind of approach is feasible using back-
ground segmentation methods. Simple methods such as proportion‐based modeling were successful
methods in our highway case studies. However, the amount and variety of vehicles it can handle is
very limited due to lack of proportion specifications for every vehicle type.

In many cases, we can also utilize a hierarchical classification, which allows us to divide the clas-
sification process into a coarse and a fine stage. The former involves a rough filtering based on sil-
houette measurement, while the latter stage is responsible for further distinction between objects in
more similar subclasses.

The accuracy of vehicle classification can be improved by combining multiple sensors such as ther-
mal imaging, LiDAR imaging, and RGB visible cameras. When possible, we can even incorporate
acoustic sound signals to detect unique vehicle signatures, such as distinctive sounds made by motor-
cycles and trucks.

 References

 1 Model 110 Automatic Vehicle Classification System, http://tds‐its.com/pdf/avc_model_110.pdf
(accessed September 12, 2016).

 2 MigmaWalktime™, http://www.migmapd.com/migmawalktime.htm (accessed July 30, 2013).
 3 Automatic Vehicle Classification, Tracking and Speed Estimation, https://www.youtube.com/

watch?v=MvPY1CBapE4 (accessed July 1, 2013).
 4 Kapsch Product Description, https://www.kapsch.net/ktc/Portfolio/products/video‐sensor/

classification‐products (accessed November 17, 2015).
 5 H. Lee and B. Coifman. Side‐fire LiDAR‐based vehicle classification. Transportation Research Record:

Journal of the Transportation Research Board, 2012, 2308: 173–183.

Computer Vision and Imaging in Intelligent Transportation Systems 76

 6 T. Lovas, C.K. Toth, and A. Barsi. Model‐based vehicle detection from LiDAR data. Department of
Photogrammetry and Geoinformatics, Budapest University of Technology and Economics (2004).

 7 R. Yang. Vehicle Detection and Classification from a LiDAR Equipped Probe Vehicle. Dissertation,
The Ohio State University, 2009.

 8 F. Zhang, D. Clarke, and A. Knoll. Vehicle detection based on LiDAR and camera fusion. Proceedings
of the 2014 IEEE 17th International Conference on Intelligent Transportation Systems (ITSC),
Qingdao, October 8–11, 2014. IEEE, New York City, NY.

 9 L. Huang and M. Barth. Tightly‐coupled LiDAR and computer vision integration for vehicle
detection. Proceedings of the 2009 IEEE Intelligent Vehicles Symposium, Xi’an, June 3–5, 2009. IEEE,
New York City, NY.

 10 C. Premebida, et al. A LiDAR and vision‐based approach for pedestrian and vehicle detection and
tracking. Proceedings of the IEEE International Conference on Intelligent Transportation Systems,
(ITSC 2007), Seattle, WA, September 30 to October 3, 2007. IEEE, New York City, NY.

 11 B. Issa, et al. Vehicle Location by Thermal Image Features http://cs426team11.github.io/vltif/
(accessed December 9, 2015).

 12 SDMS, DAAB05A24D, CD‐R with thermal UAV images: https://www.sdms.afrl.af.mil
 13 A. Sangnoree. Vehicular separation by thermal features’ relative angle for nighttime traffic.

Proceedings of the 6th International Conference on New Trends in Information Science and Service
Science and Data Mining (ISSDM), Taipei, Taiwan, October 23–25, 2012. IEEE, New York City, NY.

 14 Y. Iwasaki, M. Misumi, and T. Nakamiya. Robust vehicle detection under various environments to
realize road traffic flow surveillance using an infrared thermal camera. The Scientific World Journal,
2015, 2015: 947272.

 15 M.W. Koch and K.T. Malone. A sequential vehicle classifier for infrared video using multinomial
pattern matching. IEEE Conference on Computer Vision and Pattern Recognition Workshop, 2006
(CVPRW’06), Portland, June 23–28, 2006. IEEE, New York City, NY.

 16 K.M. Simonson. Multinomial pattern matching: A robust algorithm for target identification. Proceedings
of Automatic Target Recognizer Working Group (ATRGW), Huntsville, AL, October 12–14, 1997.

 17 A. Wald. Sequential Analysis. New York City: Courier Corporation, 1973.
 18 R.O. Duda, P.E. Hart, and D.G. Stork. Pattern Classification. New York: John Wiley & Sons, Inc., 2012.
 19 H. Abdi and L.J. Williams. Principal component analysis. Wiley Interdisciplinary Reviews:

Computational Statistics, 2010, 2(4): 433–459.
 20 Z. Chen, T. Ellis, and S. Velastin. Vehicle type categorization: A comparison of classification schemes.

Proceedings of the 14th International IEEE Conference on Intelligent Transportation Systems (ITSC),
2011, Washington, DC, October 5–7, 2011. IEEE, New York City, NY.

 21 A. Gaszczak, T.P. Breckon, and J. Han. Real‐time people and vehicle detection from UAV imagery.
Proceedings of IS&T/SPIE Electronic Imaging, San Francisco, CA, USA, January 23–27, 2011.
International Society for Optics and Photonics.

 22 X. Ma, W. Eric, and L. Grimson. Edge‐based rich representation for vehicle classification. Proceedings
of the Tenth IEEE International Conference on Computer Vision, 2005 (ICCV 2005), Beijing, China,
October 17–21, 2005. Vol. 2. IEEE, New York City, NY.

 23 D. Zhang, S. Qu, and Z. Liu. Robust classification of vehicle based on fusion of TSRP and wavelet
fractal signature. IEEE International Conference on Networking, Sensing and Control, 2008 (ICNSC
2008), Sanya, April 6–8, 2008. IEEE, New York City, NY.

 24 G.Y. Song, K.Y. Lee, and J.W. Lee. Vehicle detection by edge‐based candidate generation and
appearance‐based classification. IEEE Intelligent Vehicles Symposium, Eindhoven, the Netherlands,
June 3–6, 2008. IEEE, New York City, NY.

Vehicle Classification 77

 25 X. Cao, et al. Linear SVM classification using boosting HOG features for vehicle detection in
low‐altitude airborne videos. Proceedings of the 18th IEEE International Conference on Image
Processing (ICIP 2011), Brussels, Belgium, September 11–14, 2011. IEEE, New York City, NY.

 26 T. Gandhi and M.M. Trivedi. Video based surround vehicle detection, classification and logging from
moving platforms: Issues and approaches. IEEE Intelligent Vehicles Symposium, 2007, Istanbul,
Turkey, June 13–15, 2007. IEEE, New York City, NY.

 27 F. Han, et al. A two‐stage approach to people and vehicle detection with HOG‐based SVM.
Performance Metrics for Intelligent Systems 2006 Workshop, Gaithersburg, MD, USA, August
21–23, 2006.

 28 C. Zhang, X. Chen, and W.‐B. Chen. A PCA‐based vehicle classification framework. Proceedings of
the 22nd International Conference on Data Engineering Workshops, Atlanta, GA, USA, April 3–8,
2006. IEEE, New York City, NY.

 29 Z. Chen, T. Ellis, and S. Velastin. Vehicle detection, tracking and classification in urban traffic.
Proceedings of the 15th International IEEE Conference on Intelligent Transportation Systems (ITSC),
Alaska, USA, September 16–19, 2012. IEEE, New York City, NY.

 30 S. Gupte, et al. Detection and classification of vehicles. IEEE Transactions on Intelligent
Transportation Systems, 2002, 3(1): 37–47.

 31 B. Morris and M. Trivedi. Improved vehicle classification in long traffic video by cooperating tracker
and classifier modules. Proceedings of the IEEE International Conference on Video and Signal Based
Surveillance, 2006 (AVSS’06), Sydney, Australia, November 22–24, 2006. IEEE, New York City, NY.

 32 C.‐L. Huang and W.‐C. Liao. A vision‐based vehicle identification system. Proceedings of the IEEE
17th International Conference on Pattern Recognition, Cambridge, UK, August 23–26, 2004. Vol. 4,
IEEE, New York City, NY, pp. 364–367.

 33 M. Kafai and B. Bhanu. Dynamic Bayesian networks for vehicle classification in video. IEEE
Transactions on Industrial Informatics, 2012, 8(1): 100–109.

 34 S.M. Khan, et al. 3D model based vehicle classification in aerial imagery. Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), June 13–18, 2010. IEEE.

 35 Y. Shan, H.S. Sawhney, and R. Kumar. Unsupervised learning of discriminative edge measures for
vehicle matching between nonoverlapping cameras. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2008, 30(4): 700–711.

 36 O. Hasegawa and T. Kanade. Type classification, color estimation, and specific target detection of
moving targets on public streets. Machine Vision and Applications, 2005, 16(2): 116–121.

 37 H.C. Karaimer, I. Cinaroglu, and Y. Bastanlar. Combining shape‐based and gradient‐based classifiers
for vehicle classification. Proceedings of the 2015 IEEE 18th International Conference on Intelligent
Transportation Systems (ITSC), Las Palmas, Spain, September 15–18, 2015. IEEE, New York City, NY.

 38 S. Sen‐Ching, S. Cheung, and C. Kamath. Robust techniques for background subtraction in urban
traffic video. Proceedings of the Video Communications and Image Processing, SPIE Electronic
Imaging, San Jose, CA, January 20–22, 2004. International Society for Optics and Photonics.

 39 M. Yang, K. Kpalma, and J. Ronsin. A survey of shape feature extraction techniques. In P.‐Y. Yin (ed.)
Pattern Recognition Techniques, Technology and Applications. Vienna: I‐Tech, 2008, 43–90.

 40 M. Sonka, V. Hlavac, and R. Boyle. Image Processing, Analysis, and Machine Vision. Stanford:
Cengage Learning, 2015.

 41 A.W. Fitzgibbon and R.B. Fisher. A buyer’s guide to conic fitting. DAI Research paper, University of
Edinburgh, Edinburgh, UK, 1996.

 42 M.‐K. Hu. Visual pattern recognition by moment invariants. IRE Transactions on Information
Theory, 1962, 8(2): 179–187.

Computer Vision and Imaging in Intelligent Transportation Systems 78

 43 Z. Chen, et al. Road vehicle classification using support vector machines. Proceedings of the IEEE
International Conference on Intelligent Computing and Intelligent Systems, 2009 (ICIS 2009),
Shanghai, China, November 20–22 2009. Vol. 4. IEEE, New York City, NY.

 44 C. Anagnostopoulos, et al. A license plate‐recognition algorithm for intelligent transportation system
applications. IEEE Transactions on Intelligent Transportation Systems, 2006, 7(3): 377–392.

 45 H.‐J. Lee, S.‐Y. Chen, and S.‐Z. Wang. Extraction and recognition of license plates of motorcycles and
vehicles on highways. Proceedings of the 17th International Conference on Pattern Recognition, 2004
(ICPR 2004), Cambridge, UK, August 23–26, 2004. Vol. 4. IEEE, New York City, NY.

 46 Y.‐Y. Tang, et al. Ring‐projection‐wavelet‐fractal signatures: A novel approach to feature extraction.
IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 1998, 45(8):
1130–1134.

 47 D.P. Mukherjee, P. Pal, and J. Das. Sodar image segmentation by fuzzy c‐means. Signal Processing,
1996, 54(3): 295–301.

 48 H. Sakoe and S. Chiba. Dynamic programming algorithm optimization for spoken word recognition.
IEEE Transactions on Acoustics, Speech and Signal Processing, 1978, 26(1): 43–49.

 49 D.P. Huttenlocher, G. Klanderman, and W.J. Rucklidge. Comparing images using the Hausdorff
distance. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1993, 15(9): 850–863.

 50 A. Thayananthan, et al. Shape context and chamfer matching in cluttered scenes. Proceedings of the
2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Madison, WI,
USA, June 16–22, 2003. Vol. 1. IEEE, New York City, NY.

 51 D.G. Lowe. Distinctive image features from scale‐invariant keypoints. International Journal of
Computer Vision, 2004, 60(2): 91–110.

 52 R. Fergus, P. Perona, and A. Zisserman. Object class recognition by unsupervised scale‐invariant
learning. Proceedings of the 2003 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, Madison, WI, USA, June 16–22, 2003. Vol. 2. IEEE, New York City, NY.

 53 D. Dalal and B. Triggs. Histograms of oriented gradients for human detection. IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, 2005. CVPR 2005, San Diego, CA,
June 20–26, 2005. Vol. 1. IEEE, New York City, NY.

 54 S. Tan, et al. Inverse perspective mapping and optic flow: A calibration method and a quantitative
analysis. Image and Vision Computing, 2006, 24(2): 153–165.

 55 H.A. Mallot, et al. Inverse perspective mapping simplifies optical flow computation and obstacle
detection. Biological Cybernetics, 1991, 64(3): 177–185.

 56 T. Lindeberg. Scale‐space theory: A framework for handling image structures at multiple scales.
Proceedings of the CERN School of Computing, Egmond aan Zee, September 8–21, 1996.

 57 H.‐L. Bai, T. Wu, and C. Liu. Motion and Haar‐like features based vehicle detection. Proceedings of
the 12th International Conference on Multi‐Media Modelling, Beijing, China, January 4–6, 2006.
IEEE, New York City, NY.

 58 P. Viola and M. Jones. Rapid object detection using a boosted cascade of simple features. Proceedings
of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2001
(CVPR 2001), Kauai, HI, December 8–14, 2001. Vol. 1. IEEE, New York City, NY.

 59 A. Haselhoff and A. Kummert. A vehicle detection system based on Haar and triangle features. IEEE
Intelligent Vehicles Symposium, 2009. IEEE.

 60 J.‐W. Wu and X. Zhang. A PCA classifier and its application in vehicle detection. Proceedings of the
International Joint Conference on Neural Networks (IJCNN’01), Washington, DC, USA, July 15–19,
2001. Vol. 1. IEEE, New York City, NY.

 61 E. Kreyszig. Advanced Engineering Mathematics. New York: John Wiley & Sons, Inc., 1988.

Vehicle Classification 79

 62 M. Turk and A.P. Pentland. Face recognition using eigenfaces. Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern Recognition (CVPR’91), Maui, Hawaii, June 3–6,
1991. IEEE, New York City, NY.

 63 J. Laws, N. Bauernfeind, and Y. Cai. Feature hiding in 3D human body scans. Information
Visualization, 2006, 5(4): 271–278.

 64 A.H.S. Lai, G. Fung, and N. Yung. Vehicle type classification from visual‐based dimension estimation.
Proceedings of the 2001 IEEE Intelligent Transportation Systems, Oakland, CA, August 25–29, 2001.
IEEE, New York City, NY.

 65 Y. Cai, et al. Adaptive feature annotation for large video sensor networks. Journal of Electronic
Imaging, 2013, 22(4): 041110.

81

Computer Vision and Imaging in Intelligent Transportation Systems, First Edition.
Edited by Robert P. Loce, Raja Bala and Mohan Trivedi.
© 2017 John Wiley & Sons Ltd. Published 2017 by John Wiley & Sons Ltd.
Companion website: www.wiley.com/go/loce/ComputerVisionandImaginginITS

4.1 Introduction

A moving violation is any violation of the law committed by the driver of a vehicle while it is in
motion. Moving violations can typically be identified by observing the behavior of a vehicle such as
its speed or running a stop sign or red traffic light. However, several moving violations require obser-
vation into the passenger compartment of a vehicle. Failure to wear seat belts and operating a hand-
held telecommunications device (i.e., cell phone) while driving are two common passenger
compartment violations concerning safety. Another type of passenger compartment violation is
related to efficient use of roadways. Managed lanes such as high occupancy vehicle (HOV) and high
occupancy tolling (HOT) lanes require a minimum number of occupants within the vehicle or a tolling
price that varies depending upon the number of occupants. Imaging technology and computer vision
can provide automated or semiautomated enforcement of these violations.

Seat belt use in motor vehicles is the single most effective traffic safety device for preventing death
and injury to persons involved in motor vehicle accidents. Unrestrained drivers and passengers of
motor vehicles involved in accidents frequently suffer major injury due to their partial or complete
ejection from the vehicle as well as general displacement and impact within the vehicle. Generally,
the severity of these injuries is easily lessened, if not prevented, by utilizing a seat belt. According to
the National Highway Traffic Safety Administration (NHTSA), wearing a seat belt can reduce the
risk of crash injuries by 50%. Statistics shows that seat belts save lives [1].

 ● In total, 14,154 occupants were saved by seat belts in 2002.
 ● A total of 260 additional lives would have been saved if (front seat daytime) belt use had been one

point higher (76%).
Evidence shows that strong enforcement is the major driving force behind the upward trend of com-

pliance of seat belt use. For example, the study in Ref. [2] found that seat belt use continued to be
higher in the United States where vehicles can be pulled over solely for occupants’ nonuse of seat belts
(“primary law states”) as compared to states having weaker enforcement laws (“secondary law states”)
or without seat belt laws. A recent report indicated that seat belt violations are primary enforcement
in 33 states in the United States [2]. With more than 10 years of the Click‐It‐Or‐Ticket campaign

4

Detection of Passenger Compartment Violations
Orhan Bulan1, Beilei Xu2, Robert P. Loce2 and Peter Paul2

1 General Motors Technical Center, Warren, MI, USA
2 Conduent Labs, Webster, NY, USA

Computer Vision and Imaging in Intelligent Transportation Systems82

across multiple states, seat belt usage rate has reached relatively high levels in recent years, reaching
86% in 2012 [3].

Although seat belt use in motor vehicles can significantly reduce the severity of a car accident,
driver distraction remains the key cause of car accidents. The NHTSA considers distracted driving
to include distractions such as: other occupants in the vehicle, eating, drinking, smoking, adjusting
radio, adjusting environmental controls, reaching for an object in the car, and cell phone usage.
Among all distractions, cell phone usage alone accounts for roughly 18% of car accidents caused by
distracted drivers [4]. The studies in Refs. [5–7] found that the overall relative risk of having an acci-
dent for cell phone users when compared to non‐cell‐phone users averaged higher across all age
groups. Studies also found that increasing cell phone usage correlated with an increase in relative
risk. Several states have enacted regulations that prohibit drivers from using cell phones while driv-
ing due to the high number of accidents related to it. Thirty‐nine states and the District of Columbia
have at least one form of restriction on the use of mobile communication devices in effect [8].

Traffic congestion on busy commuter highways brings substantial financial cost and time loss to
commuters, as well as contributing to air pollution, increased fuel consumption, and commuter frus-
tration. Government officials and members of the transportation industry are seeking new strategies
for addressing the problem. One mechanism to reduce the congestion on busy highway corridors is
the introduction of managed lanes, that is, HOV and HOT lanes. Due to imposed limitations and
fees, HOV/HOT lanes are often congestion free or much less congested than other commuter lanes.
However, the rules of the HOV/HOT lane need to be enforced to realize the congestion reducing
benefits. Typical violation rates can exceed 50–80%. To enforce the rules, current practice requires
dispatching law enforcement officers at the roadside to visually examine incoming cars. Manual
enforcement of HOV and HOT lanes can be a tedious and labor‐intensive practice. Ultimately, it is
an ineffective process with enforcement rates typically less than 10% [9]. Besides enduring environ-
mental conditions of snow, darkness, sunlight reflections, and rain, law enforcement officers also
have to deal with vehicles traveling at high speeds that may have darkened/tinted glass, reclining
passengers, and/or child seats with or without children. As a result, there is a desire to have an auto-
mated method to augment or replace the manual roadside process.

Traditionally, enforcement of seat belt and cell phone regulations and counting the number of
vehicle occupants are functions performed by traffic law enforcement officers that make traffic stops
in response to roadside visual inspections. However, inspection by law enforcement officers faces
many challenges such as safety, disruption of traffic, significant personnel cost and the difficulty of
determining vehicle occupancy, and cell phone or seat belt usage at high speed. In response to the
enforcement needs, in‐vehicle systems and roadside solutions have been proposed for detecting seat
belt usage, driver cell phone usage, and automatic counting of occupants in moving vehicles. The
focus of this chapter is roadside‐based sensing. We first briefly review systems that sense within the
passenger compartment assuming particular compliance from occupants, where the systems can
include vehicle instrumentation, smart phone applications, and cellular communications. Given the
requirement on occupant compliance, they are not appropriate for general law enforcement.

4.2 Sensing within the Passenger Compartment

4.2.1 Seat Belt Usage Detection

References [10, 11] proposed two mechanical seat belt detection systems. In Ref. [10], the system
includes a mechanism for detecting the state of a seat belt latch of an occupant; a control unit for

Detection of Passenger Compartment Violations 83

 generating an alarm signal when (i) an occupant detection mechanism detects the presence of an
occupant within a seat and (ii) the latch‐state‐detection mechanism detects if the seat belt is not
latched; and alarm unit for generating an alarm in response to the signal. In Ref. [11], the seat belt
violation detection system includes sensors mounted to each seat belt, such as a retraction detector or
alternatively a detection mechanism inside the seat belt buckle that determines if the seat belt is buck-
led, and a weight detector to determine if a seat belt is being worn by a passenger. Upon determination
of a seat belt not being worn by a passenger, an alarm system activates an exterior visual seat belt viola-
tion indicator that may be observable by law enforcement personnel. Levy in Ref. [12] developed an
in‐vehicle vision‐based seat belt detection system. The seat belt assembly includes strategically pat-
terned indicators to improve the accuracy of image recognition. The indicators are known portions of
the seat belt assembly that are provided with reflective portions. The indicators can include at least
one of a nest indicator, an outer web indicator, an inner web indicator, a seat belt handle indicator, and
a buckle indicator. The method uses an infrared (IR) illuminator and an image sensor located within
the vehicle to capture an image of the seat belt assembly. An image analyzer matches identified indica-
tors from the image sensor to a predefined set of indicators that characterize a particular status for the
seat belt assembly to determine whether a seat belt assembly is buckled or not.

4.2.2 Cell Phone Usage Detection

For detecting driver cell phone usage, various methods that rely on cell phone signals have been pro-
posed [13–19]. For example, Ref. [13] utilizes cell phone activity data from cell phone networks and
vehicle operation data from vehicle monitoring systems to detects a vehicle is in motion. The vehicle
operation data is then used to determine if any vehicles owned by a cell phone subscriber were moving
during the use of an associated cell phone. Reference [15] describes a route‐providing app that can also
be used for cell phone usage control. The app determines the speed of the GPS coordinates and locks
the cell phone when the user is moving at speeds greater than specific cutoffs. TransitHound [19] is a
product that uses a sensor installed in a vehicle with an adjustable range to detect cell phone usage
within that range. One of the limitations of these proposed approaches is the challenge in determining
whether the driver or passenger(s) is the one engaged in the cell phone conversation or whether the
usage is in hand‐free mode or not. To solve these ambiguities, Refs. [14, 18, 20] proposed two alterna-
tive approaches. In Ref. [14], a phone‐based driver detection system (DDS) was developed to determine
whether the user in a car is a driver or passenger based on capturing and detecting key user movements
during the car entry process, as well as specific sound patterns unique to vehicle post entry. Reference
[18] used three‐directional antennas, aimed toward the following three different locations: (i) front seat
passenger side, (ii) head of a driver, and (iii) a location below the location at which the driver antennas
are aimed on the driver side, respectively. A microprocessor processes the received signals and deter-
mines based thereon which antenna provides a strongest signal, which can be correlated to a most likely
location of a cell phone being used by an occupant in the vehicle. Reference [20] used a combination of
blue tooth signals and vehicle speakers to detect the cell phone usage by a driver.

4.2.3 Occupancy Detection

To comply with the mandated standard of having advanced or “smart” air bags in front seats of all
new vehicles sold in the United States, car manufacturers have developed many in‐vehicle tech-
nologies for occupancy detection. Various technologies, such as weight sensors [21–23], ultra-
sonic/radar sensors [24, 25], electromagnetic field based capacity sensors [26], and sensors for
detecting physiological signals [27] or fingerprints [28], have been developed to detect the pres-
ence of an occupant in a vehicle. Although these technologies aimed at detecting occupants for

Computer Vision and Imaging in Intelligent Transportation Systems84

appropriate air bag deployment, coupled with some form of communication, they can potentially
be adapted to meet the need of managed lane enforcement. Owechko et al. [29] discussed an in‐
vehicle imaging‐based solution using stereo cameras. Their sensor system consisted of a pair of
vision sensors mounted near the rearview mirror and pointed toward an occupant. Multiple fea-
ture sets were extracted from synchronized image pairs to perform sensor fusion using a single
vision sensor module. The four types of features utilized were: range (obtained using stereo vision),
edges, motion, and shape. A classifier was trained for each feature type that classified the occupant
into one of a small number of classes, such as adult in normal position or rear‐facing infant seat.
Each classifier generated a class prediction and confidence value. The class confidence outputs of
the classifiers were combined in a vision fusion engine that makes the final decision to enable or
disable the airbag.

4.3 Roadside Imaging

In recent years, traffic photo enforcement systems have been widely deployed in intelligent transpor-
tation systems for applications such as red light enforcement, unauthorized use of a bus lane, license
plate recognition, and parking occupancy estimation. These camera‐based enforcement systems
may be mounted beside or over a road or installed in an enforcement vehicle to detect traffic regula-
tion violations. Currently, the evidentiary packages including the captured photos or videos are typi-
cally manually reviewed by either an on‐site law enforcement officer or human operator at a back‐end
office. The process is slow, labor intensive, and prone to human error. Therefore, there is a need for
an automatic or semiautomatic solution that is robust and can handle the computational burden of
high traffic volume.

Specifically concerning imaging of vehicle occupants from the roadside, various imaging systems
proposed in the past included video, microwave, ultra‐wideband radar, single‐band near infrared
(NIR), and multiband NIR. Studies in Ref. [30] have shown that NIR is the most promising roadside
detection technology with the ability to address many challenges in vehicle occupancy detection
such as windshield penetration and environmental conditions with good imaging resolution and fast
image acquisition. Although recent studies on imaging into vehicles have focused on vehicle occu-
pancy detection, many aspects of these systems and the conclusions of the studies can be extended
to other types of passenger compartment violation detection such as seat belt usage and cell phone
usage violations. Moreover, a comprehensive solution that can detect multiple types of violations
using the same infrastructure can be cost effective.

4.3.1 Image Acquisition Setup

Figure 4.1 shows an illustration of an NIR image acquisition system as taught in Ref. [31]. The
overall system includes front‐ and side‐view camera triggers and camera systems to capture NIR
images of both the front windshield and side view of approaching cars in HOV/HOT lanes. The
exposure time of the cameras is set such that the image acquisition noise and motion blur is traded
off to capture clear images of vehicles driving at a typical speed (30–80 mph). The front‐view cam-
era system is mounted on an overhead gantry, while the side‐view camera is mounted along the
road side. The camera triggers can be either induction loops installed beneath the road as in red
light enforcement systems or laser break‐beam triggers. The distance from the front‐view camera
to front‐view trigger is on average 60‐ft and the horizontal field of view of the camera is approxi-
mately 12 ft at that distance to accommodate the typical width of highway lanes in the United

Detection of Passenger Compartment Violations 85

States. The distance between the side‐view camera and the side‐view trigger is set to 10 ft to cap-
ture side windows of a passing vehicle. The side‐view trigger is placed 24 ft after the front‐view
trigger so that the system first captures the front windshield of an approaching vehicle and then
captures a side view of the vehicle. Each camera system uses its own trigger, IR illuminator, and
control and processing units. Although multiband NIR imaging systems can be employed for this
purpose, the cost of multiband cameras alone can be quite high. Hence, a single‐band NIR imaging
system is still desirable. It is critical to filter out the visible light from the illuminator with a long
pass filter (>750 nm) to reduce its visual impact on drivers. Reference [32] describes an alternative
imaging and illumination system where the illumination is provided through the side window for
a front‐view gantry‐mounted camera.

Figure 4.2 shows NIR images acquired by the HOV/HOT lane front‐ and side‐view cameras of Ref.
[31]. Note that there is a large variation in image intensity due to variations in windshield and win-
dow transmittance, illuminator state, sun position, cloud position, and other factors even though
images were captured by an NIR camera [33]. A violation detection methodology based on these
imaging conditions must be able to comprehend these challenges.

4.3.2 Image Classification Methods

An image classification approach has been shown to reliably detect passenger compartment viola-
tions under challenging imaging conditions. In this section, we present the classification method of
Ref. [31]. A high‐level view of the methodology of Ref. [31] for detecting passenger compartment
violations is shown in Figure 4.3.

Front-view NIR
illumination
and camera

Front-view
camera
trigger

Direction of
traffic flow

HOV/HOT
lane

24 ft

36 ft

Side-view
camera
trigger

Side-view NIR
illumination
and camera

Figure 4.1 Illustration of a gantry‐mounted
front‐view and road‐side side‐view
acquisition setup.

Computer Vision and Imaging in Intelligent Transportation Systems86

4.3.2.1 Windshield and Side Window Detection from HOV/HOT Images
There are many challenges in windshield detection such as (i) large variations in their shape, size,
angle, and relative positions and distances to the imaging system; (ii) varying contrast between the
windshield region and the vehicle body (e.g., against light vehicle exterior vs. dark vehicle exterior);

(a)

(b)

Figure 4.2 NIR images acquired by HOV/HOT lane front‐ and side‐view cameras: (a) front‐view images and (b) side‐
view images.

Front-view
image

Windshield
detection

Front seat occupancy,
driver cell phone usage,
and seat belt violation

detection

Rear seat
occupancy detection

Passenger
compartment

violation detection
Rear-side

window detection
Side-view

image

Figure 4.3 High‐level view of detecting passenger compartment violations images in a classification‐based approach
Source: Artan et al. [31]. Reproduced with permission of IEEE.

Detection of Passenger Compartment Violations 87

(iii) clutter on the dashboard and interior (e.g., variations in the appearance of vehicle occupants and
objects visible through the front windshield). Several approaches have been proposed including geo-
metric‐ and color‐based detection [32, 34–37], using relationships to other objects on the vehicle
[38], and more recently computer‐vision‐based approaches [31, 39]. The approach of Ref. [31] uses
the front‐ and side‐view images captured by an HOV/HOT image acquisition system as illustrated in
Figure 4.1. The first step after image acquisition is localizing the front windshield and rear‐side win-
dow from the front‐ and side‐view images, respectively. This localization eliminates portions of the
captured image irrelevant to passenger compartment violations while maintaining the relevant fea-
tures. While front seat occupancy, driver mobile phone usage, and seat belt violations are detected
from the localized front windshield image, the side‐view image is used to detect rear seat occupancy.
HOV/HOT occupancy violations are detected from processing the localized front‐ and side‐view
images and combining the front and rear seat occupancy information.

For windshield detection, Ref. [40], utilized a deformable parts model (DPM)‐based object detec-
tion method, which jointly considers pose estimation and object detection tasks. This model forms a
mixture of trees with a set of shared parts V, where each object part is considered as a node in the
tree. The model then forms an optimization problem by jointly optimizing appearance and shape of
the windshield parts. For a given image, this optimization problem is solved using dynamic program-
ming to find the best configuration of object parts. Using the DPM framework, Ref. [31] generated a
windshield model by positioning a set of landmarks around the windshield, the 13 landmark points
are labeled manually in a set of training images similar to Figure 4.4 in the same sequence. In the
implementation of Ref. [31], 10 positive and 20 negative images were used for training the front
windshield model. Negative samples were selected from images that do not contain windshields in
the scene. Rather than generating a mixture model, a single topological view was utilized due to the
images being captured with a fixed camera and with vehicles always driving toward the camera along
the same direction and angle with respect to the image plane. The windshield has a unique trapezoi-
dal shape and does not show a significant variation across different vehicle types. A linearly param-
eterized tree‐structured model was generated T = (V, E), where V is the set of parts and E is the set of

(a)

(b)

Figure 4.4 Windshield model learned using DPM‐based method presented in Ref. [40]. (a) Training landmarks (light
gray points) overlaid on top of the captured image and (b) Windshield model learned in training.
Source: Artan et al. [31]. Reproduced with permission of IEEE.

Computer Vision and Imaging in Intelligent Transportation Systems88

edges between parts. A windshield score for a particular configuration of landmarks L = {li; i ∈ V} in a
given image I is defined as follows:

S I L I L L w I l a dx bm m

i V

n

i i
ij E

n

ij ij() () (), App , Shape , 2 ddy c dx d dyij ij
2 . (4.1)

This score function is abridged from the general score function defined for mixtures of trees to
accommodate a single tree structure [41]. In this function, φ(I, li) represents the histogram of gradi-
ents (HoGs) features extracted at pixel location li [42], and li = (xi, yi) stands for the pixel location of
part i. The appearance evidence of each of the landmarks is represented in the App term and the
evidence for the spatial locations of the landmarks with respect to each other is included in the Shape
term. In Ref. [43], this model was viewed as a linear classifier with unknown parameters wi and
{aij, bij, cij, dij}, which is learned during training using a latent support vector machine (SVM). The
training constructs a model by learning the appearance at each landmark point and the relationship
between points as shown in Figure 4.4b.

For an incoming image I, we identify a list of candidate windshield areas by maximizing the score func-
tion Equation 4.2 over L using dynamic programming to find the best configuration of parts [40, 43].

 S I S I L
L

* () ()max , . (4.2)

Similarly, a side‐window model was developed using the DPM framework described before. For the
side‐window model, five mixtures were used corresponding to five different rear‐side windows observed
in the training data (e.g., rear‐side windows for SUVs, sports cars, two different passenger cars, and vans)
as shown in Figure 4.5a. Training utilized 50 positive images from five different side‐window types (i.e.,
10 images per side‐window type) and 50 negative images. Landmark points (white points) overlaid on
top of the side‐view images corresponding to five mixtures are shown in Figure 4.5a. The training stage
learned an appearance and shape model for each mixture component as shown in Figure 4.5b.

For some vehicles, front‐side and rear‐side windows resemble each other; and in these cases, the
five‐mixture side window detector, described earlier, causes false positives by detecting the front‐side

SUV Sports
(a)

Sedan 1 Sedan 2 Van

(b)

Figure 4.5 Side‐window models learned using SVM‐based method presented in Ref. [40]. (a) Training landmarks
(light gray points) overlaid on top of the side‐view images corresponding to five mixtures and (b) five mixture models
learned in the training. Source: Artan et al. [31]. Reproduced with permission of IEEE.

Detection of Passenger Compartment Violations 89

rather than the rear‐side window. To address this issue, Ref. [31] generated a DPM model for the
detection of the B‐pillar, which separates the front‐side and rear‐side windows. The B‐pillar detector
enabled capturing the side‐window boundary more precisely and discarded false positives by com-
paring the location of the detected window and B‐pillar. Assuming that xw and xb show the respective
center of mass of the detected side window and of the B‐pillar along the horizontal axis, respectively,
a detected side window is validated if (xb − xw) > t where t is a predefined threshold based on camera
configuration and geometry. xw and xb are calculated from the detected landmark points as

x

x

n

i
i

n

b w,
1 (4.3)

where n and xi’s represent the number and x‐coordinates of the detected landmark points, respec-
tively. Figures 4.6 (a–c) illustrate B‐pillar sample images with training points overlaid. Figure 4.6d
depicts the trained deformable part model obtained using 15 positive and 20 negative images.

Another approach is classification‐based windshield detection. Li et al. [39] used the cascade
AdaBoost classifier shown in Figure 4.7 to search for the windshield region. The cascade AdaBoost
classifier is trained after the annotation and normalization. In their system, the maximum number of

(a) (b)

(c) (d)

Figure 4.6 Parts (a–c) show a set of landmark points overlaid on three images for B‐pillar detection. Part (d) illustrates
the spatial shape model for tree structure learned in training.

Computer Vision and Imaging in Intelligent Transportation Systems90

weak classifier of each stage is 30. The minimum detection rate is 0.995 and the maximum false‐alarm
rate is 0.5. A sliding window detector is used to detect the vehicle windows, and the size of detection
windows is the same size as the positive samples. Images for detection are scanned by the detecting
window from left to right, top to bottom. The detection operation is performed at multiple resolutions
to enable detection of different size windows. Images for detection pass through every stage of the
cascade classifier and the region that gets through all the stages is the desired target region.

Several other methods for detecting vehicle windows can be found in the literature. In Refs. [32,
34], the extraction of the vehicle windshield involves performing edge detection and Hough trans-
form to detect the upper and lower horizontal lines of the windshield followed by employing a ±60°
line detector mask and integral projection to detect the left and right borders of the windshield.
Besides using edge information, there were also color‐based approaches [35–37]. For example, the
color‐based approach in Ref. [37] used the mean shift algorithm, in which a color clustering is
performed on the image to obtain regions with near‐uniform color. After segmentation, only the
region whose area is bigger than a threshold remains; the small regions are merged to the neighbor
region whose color is most close. The mean shift algorithm of Ref. [37] was performed with the
following steps: (i) choose the appropriate radius r of the search window, (ii) choose the initial
location of the window, (iii) compute the mean shift vector, (iv) translate the search window by the
shift amount, (v) repeat till convergence, and (vi) merge the segments and select dominant region.
To improve the performance of the geometric‐ and color‐based approach, Hao et al. [34] proposed
the maximum energy method based on the observation that the color composition of the wind-
shield region is more complex than the other parts of the vehicle due to its reflection and the
background of vehicle interior. The method utilizes the candidate regions formed by the geomet-
ric‐ and color‐based methods to define an energy function and select the windshield region with
the maximal energy. Instead of searching for the windshield region directly in a scene, Xu et al. [38]
identified other objects such as the headlights on a target vehicle and utilized a priori knowledge
of the relative geometric relationships (e.g., distance and size) between the identified objects and
the windshield.

4.3.2.2 Image Classification for Violation Detection
4.3.2.2.1 Defining Regions of Interest in Localized Windshield and Side Window Images
Following the method of Ref. [31] after front windshield localization, three regions of interest (ROIs)
are defined on the image plane corresponding to the front seat occupancy, driver cell phone usage,
and seat belt violation detections, respectively. These ROIs are illustrated in Figure 4.8. For front seat

All subwindows

1 2 3
p p p

nnn n

n Object subwindows

No object subwindow

Figure 4.7 The structure of cascade classifier.

Detection of Passenger Compartment Violations 91

occupancy detection, the ROI is defined as the left half of the detected windshield as shown in the
figure (i.e., dashed rectangle). Similarly, the ROI for driver mobile phone usage is defined as a rectan-
gle around the driver’s face (i.e., solid rectangle), and the ROI for seat belt detection is defined as the
dotted rectangle in the figure.

The ROIs for occupancy and seat belt detection are calculated using the position of the detected
windshield and landmarks li, i = 1, 2,…, 13. The center of the region for the seat belt detection (r, c),
for example, is defined using landmarks l6, l7, and l8, where r is set to the weighted average of the
x‐coordinates of l6 and l7 and c is calculated as the weighted average of y‐coordinates of l7 and l8. The
height of the region is determined based on the difference between y‐coordinates of l7 and l8, and
the width is determined based on the difference between x‐coordinates of l6 and l7. Similarly, the
location and size of the dashed rectangle corresponding to front seat occupancy detection is calculated
using landmarks l4, l5, and l13.

Defining the ROI for the driver mobile phone usage detection, on the other hand, requires face
detection in the localized windshield image. Detecting the driver’s face from the entire windshield
image is challenging as the driver’s face is often partially occluded by the sun visors, rearview mirror,
or car roof. Figure 4.9 illustrates several instances of partial occlusions in HOV/HOT images. In
order to detect faces in these cases while not increasing false‐positive detections, Ref. [31] restricted
the search space by first cropping the right half of the detected windshield image. Restricting the ROI
for face detection provides flexibility for adjusting the detection threshold. Instead of setting a fixed
threshold for face detection, Ref. [31] picked the window with the highest score calculated by the face
detector as the driver’s face, which enables detection of faces with partial occlusions whose score
otherwise would not pass the detection threshold.

Unlike windshield images, the ROI for occupancy detection from the side‐view images is the entire
localized rear‐side window as the passenger can be at any location in the localized image. The defined
ROIs in the detected windshield image and the localized rear‐side window image are further pro-
cessed as described in Section 4.3.2.2.2 to identify violators.

4.3.2.2.2 Image Classification
For performing the image classification task, Ref. [31] considered local invariant descriptors that
are aggregated into an image‐level vector signature, which is subsequently passed to a classifier.

l4

l3

l2

l8

l9 l10
l1

l13 l12 l11

l5 l6 l7

Figure 4.8 Regions of interest (ROI) defined for each case where white dashed rectangle shows ROI for front seat
occupancy detection, solid rectangle for driver cell phone usage detection, and dotted rectangle for seat belt
violation detection.

Computer Vision and Imaging in Intelligent Transportation Systems92

Reference [31] used three locally aggregated descriptors bag of words (BoWs), vector of locally
aggregated descriptors (VLADs), and Fisher vectors (FVs) due to their extensive usage and success
in image classification and categorization tasks [44–46]. Among these descriptors, BoW has the
oldest history and was the initiative for other locally aggregated descriptors [44]. From a set of
training images, BoW first calculates dense scale‐invariant feature transform (SIFT) features [47]
and constructs a codebook of visual words that consist of K‐centroids calculated by either K‐means
or Gaussian mixture model clustering algorithms applied on the calculated SIFT features. The
dimension d for the SIFT feature vectors was 128. For an image in query I, local image descriptors
I = (x1, x2,…, xN) are calculated and assigned to the closest cluster centers. Following the assign-
ment step, a histogram of local descriptors is calculated and aggregated to generate the final image
signature vector.

Similar to BoW, VLAD is a feature encoding method for image classification tasks that first con-
structs a vocabulary of visual words by clustering dense SIFT features for a set of training images.
The visual vocabulary is generated by K‐clusters calculated by either K‐means or Gaussian mixture
model clustering algorithms. Each cluster is represented by the cluster mean μk. For a query image,
VLAD first calculates local image descriptors and assigns them to the closest cluster centroids. For
the descriptors assigned to the same cluster, it calculates a total distance vector from the cluster
mean as follows:

v xk

x N x k

n

i k
i i:

. (4.4)

The final VLAD descriptor is formed by the concatenation of the d‐dimensional distance vectors vk
for each cluster as φ(I) = [v1, v2,…, vk].

FVs have recently flourished as the probabilistic version of the VLAD and have been reported to
achieve the best performance in several image classification and categorization tasks [45]. FVs have
been proposed to incorporate generative models into discriminative classifiers [46]. Suppose X = {xt,
t = 1…T } denotes the set of T local descriptors extracted from a given image. Assume that the generation

Figure 4.9 Examples for driver face images with partial occlusions.

Detection of Passenger Compartment Violations 93

process of local descriptors can be modeled by a probabilistic model p(X|θ), where θ denotes the
parameters of the function. The gradient vector X is described as [46]

G

T
p xX 1 log | , (4.5)

where the gradient of the log likelihood describes the contribution of the parameter θ to the genera-
tion process. Its dimensionality only depends on the number of parameters in θ.

A natural kernel on these gradient vectors is the Fisher kernel [46],

 K X Y G F GX YT

(), ,1 (4.6)

where Fθ is the Fisher information matrix of p(X|θ),

 F E p x p xx p
T

~ ,[log (| log (|)] (4.7)

where F 1 is symmetric and positive definite; it has a Cholesky decomposition F L LT1 . Therefore,
the kernel K(X, Y) can be written as a dot product between normalized vectors (gθ) shown in
Equation 4.7.

 g L GX X . (4.8)

Typically, g X is referred to as Fisher vector of X. Similar to the earlier work [48], we assume that
p(X|θ) is a Gaussian mixture model (GMM): p x w pi ii

K(|) 1 (x).We denote θ = {wi, μi, σi, i = 1, …, K}
where wi, μi, and σi are the mixture weight, mean vector, and variance matrix (assumed diagonal),
respectively, of Gaussian pi. In this chapter, we only consider gradients with respect to the mean. We
use the diagonal closed form approximation of the Fisher information matrix of Ref. [48] in which
case the normalization of the gradient by Lθ is simply a whitening of the dimensions.

Let αi(t) be the assignment of the descriptor xt to the ith Gaussian,

i
i i

j j
j

Kt w p x

w p x
() ()

()

|

|

t

t

.

1

(4.9)

Let gi
X denote the d‐dimensional gradient with respect to the mean μi of Gaussian i. Assuming that

the xt’s are generated independently by p(X|θ), we obtain Equation 4.9 after mathematical derivations
as follows:

g

T w
i x

i
X

i t

T
i

i

1

1
t

t .() (4.10)

The final vector g X is the concatenation of the gi
X vectors for i = {1…K} and is K × d dimensional.

Experiments were performed for values ranging from K = 32 to K = 512.
After calculating locally aggregated image descriptors using either BoW, VLAD, or FV, Ref. [31]

utilized a linear SVM to construct the classification model and perform the image classification for
each case. The classifiers are trained using a set of positive and negative images. For occupancy
detection, the positive set included images with one or more passengers and the negative set included
images with no passengers.

Computer Vision and Imaging in Intelligent Transportation Systems94

4.3.3 Detection‐Based Methods

4.3.3.1 Multiband Approaches for Occupancy Detection
Although most of the research on vehicle occupancy detection has been focused on the visible or
very NIR spectrum range, multiband cameras have also been under development for more than a
decade. Multiband techniques generally operate by selecting specific spectral bands that allow
image‐wise discrimination of skin, using illuminators and cameras that can provide sufficient signal
in those bands, and applying a band fusing technique that makes the skin pixels apparent for segmen-
tation. A key challenge is the selection of these discriminating spectral bands, along with a practical
illuminator and sensor, where there is sufficient penetration through a windshield in any outdoor
condition and at any time of the day while receiving enough reflected radiation from the objects of
interest (i.e., human skin). A second challenge is computational, where a band fusing method must
be developed that makes the skin pixels image‐wise apparent. Once skin pixels are made apparent,
the fused image can be processed to identify the number of occupants by applying morphological
image processing operations or standard computer vision techniques to cluster the pixels to repre-
sent one or more occupants.

Concerning choice of spectral bands, several different wavelength bands are worthy of consid-
eration. Visible spectral bands are ruled out because a visible flash illuminator at nighttime will
distract drivers with potentially disastrous results. Also, visible range sensors perform poorly
during foul weather conditions, such as rain and snow. Further, the appearance of vehicle occu-
pants is quite variable in the visible range, depending on their physical characteristics, time of
day, and the illumination conditions. This variability makes the machine vision task much more
difficult [49].

The thermal IR band, including the mid wavelength 3–8 µm and long‐wavelength IR 8–15 µm,
initially seems attractive because it would distinguish the radiation from a warm body from the
radiation emanating from the typical interior of a vehicle, and would not require an additional source
of illumination. In practice, it is difficult to exploit thermal IR for HOV purposes because vehicle
windshield glass severely attenuates EM radiation beyond 2.4 µm. An additional challenge arises due
to the vehicle defogger, which can result in the thermal signature of the interior of the vehicle being
dominated by the defogger heat [49].

The so‐called NIR spectrum (0.7–2.4 µm) has been found to be most suitable for vehicle occupancy
applications. A camera in this range can safely operate in both day and night, because a NIR illumina-
tor will enhance the view of a scene in this band without disturbing a driver. The transmittance of
typical vehicle windows in the NIR range is roughly 40%, so a camera is able to see through the vehi-
cle’s windshield and side windows. NIR spectral radiation is particularly effective in penetrating
haze, so the camera can operate in adverse weather conditions. Considering detection of occupants,
Ref. [49] recognized that humans consist of 70% water, and therefore exhibit spectral behavior very
similar to water. Water absorbs NIR radiation heavily above 1.4 µm, and thus has low reflectance in
this region. Human skin can be detected by examining spectral bands above and below 1.4 µm.
Human skin has very high reflectance just below 1.4 µm wavelength, but very low reflectance just
above 1.4 µm. If the NIR range is split into two bands, a lower band (0.7–1.4 µm) and an upper band
(1.4–2.4 µm), then images of vehicle occupants will produce consistent signatures in the respective
imagery. In the upper band images, humans will appear consistently dark, while in lower band
images, humans will appear comparatively lighter.

References [49, 50] propose an occupancy detection system using two wavelength bands around
1.4 µm; the lower band covers 1.1–1.4 µm and the upper band spans 1.4–1.7 µm. In their system, one
camera array was designed for the upper and lower bands, and the camera arrays were co‐registered

Detection of Passenger Compartment Violations 95

spatially and temporally relative to a scene and pixel transmission dynamics. The pairs of corre-
sponding pixels from the two cameras were then fused with certain weights into a single pixel array by

 P i j P i j C P i j() () (), , , ,fused lower band upper band
 (4.11)

where P(i, j) is the pixel intensity at the pixel location i and j and C is the weighting factor. Given a
higher reflectance in the lower band P(i, j)fused is generally positive and a threshold is then applied to
the P(i, j)fused to determine whether a pixel corresponds to human skin or not. The threshold value
was dynamically determined for each image according to the histogram of P(i, j)fused of the respec-
tive frame.

References [51, 52] describe a different spectral approach. A single camera with a single illuminator
is used to capture images at N different infrared wavelength bands sequentially, and a fused image is
generated by calculating the intensity ratios of images captured at the different wavelength bands.
Humans are identified from the surrounding background via intensity ratios such as

P i j P i j P i j

P i j P i j
l m

n m
(,) (,) ()

(,) ()
,
,

, (4.12)

where P(l,m,n)(i, j) is the pixel intensity at the pixel location i and j, and l, m, and n denote to the differ-
ent spectrum bands from a multiband camera (e.g., 3). From the fused image P(i, j), the number
vehicle occupants can be identified based on pixel classification where the pixel intensities in the
fused image are thresholded to create a binary image from which occupants faces are detected by
applying morphological image processing operations. The number of vehicle occupants can also be
identified using standard machine learning computer vision approaches from the fused image.
Reference [50], for example, identifies the number of people from the fused image using a neural
network classifier, where each class corresponds to different number of vehicle occupants.

Although no specific bands are given, Ref. [53] discloses a method to detect face of an occupant by
designing the wavelength bands in a way that the lower and upper bands are sensitive to the eyebrows
and eyes of a human.

4.3.3.2 Single Band Approaches
Another approach for passenger compartment analysis takes advantage of the distinct signatures of
the objects of interest (empty seats, seat belts, passengers). For example, an unoccupied seat typically
possesses images features such as long contiguous horizontal line segments and curved segments,
and substantially uniform areas encompassed by these line segments. These features are not present
in an occupied seat. On the other hand, human face features can typically be detected from an occu-
pied seat. Hence, object detection–based approaches for vehicle occupancy detection rely on detect-
ing empty seats or human face/body. Similar to the classification‐based approaches, detection‐based
approaches can also benefit from a localized windshield area to reduce computation cost as well false
detections.

Fan’s et al. [54] approach for detecting empty seats was based on the observations that when a seat
is occupied, long edges are partially (or fully) obscured by the seat’s occupant. As a result, edges may
be broken into shorter pieces or missing altogether. Occasionally, line segments representing a top
edge of a seat remain intact when a shorter person occupies that seat. Edges associated with seats and
headrests are typically “soft” with a relatively smooth transition. A typical seat and headrest edge
profile is shown in Figure 4.10a. Figures 4.10b and c represent an edge with a sharp transition and a
ridge edge, respectively. These two types of edges are more often seen at boundaries between adjoining

Computer Vision and Imaging in Intelligent Transportation Systems96

fabrics of different colors and sewn seams. The edge profile is helpful in distinguishing seat edges
from other edges. In their work, edge detection is performed using techniques such as horizontal
edge detection followed by edge linking, or a Hough transform. One approach utilizes a complexity
measure processor that incorporates a spatially sensitive entropy operator to calculate a local meas-
ure of complexity (entropy) for a given pixel in the image. This complexity measure is then used to
reference a look‐up table (LUT) to obtain a threshold value which, in turn, is used by the spatial
bilateral filter to process pixels of the image. The detected line and curved segments are evaluated for
their contiguousness. If those detected line segments are substantially contiguous, it is determined
that the seat is unoccupied. Otherwise, it is determined that the seat is occupied.

In addition to edge features, pixels of the image associated with the seat and headrest areas can also
be analyzed for color or intensity and a determination of whether the seat is occupied is based upon
a uniformity of color or intensity in bounded areas. If the color or intensity of the area bounded by
the line and curve segments associated with the seat and headrest is substantially uniform, then the
seat is determined to be unoccupied.

Besides empty seat detection, one can also approach the problem as passenger detection, where
features such as face and seat belt can indicate the presence of a person. Numerous presentations
have been proposed for face detection, including pixel‐based [55], parts‐based [56], local edge fea-
tures [57], Haar wavelets [58], Haar‐like features [59], and more recently deformable part model
based [40].

In addition to directly identifying a face or an empty seat, the presence of a seat belt is most likely
an indication of the presence of a passenger. Various methods have been proposed [32, 34, 60, 61]
based on the observations that seat belt has a 45° approximately in vehicle windshield images. For
example, Ref. [61] employed the Hough transform to detect the seat belt after the Canny edge extrac-
tion. Given that the many straightlines are returned by Hough algorithm, the seat belt can be deter-
mined by two factors including the slope and the length of the line. Only when the slope of a line is
in a neighborhood of 45° and the line length is greater than a certain threshold can the line be identi-
fied as a seat belt. The confidence is evaluated according to the slope and line length.

 References

 1 National Highway Traffic Safety Administration (NHTSA), Lives saved calculations for seat belts and
frontal air bags. DOT HS 811206, U.S. Department of Transportation, Washington, DC, 2009.

 2 Research Note: Traffic Safety Facts, National Highway Transportation System Administration,
January, 2014.

 3 M. Hinch, M. Solomon, and J. Tison, The Click It or Ticket Evaluation, 2012. No. DOT HS 811
989. 201

 4 Distracted Driving 2009, Report, U.S. DOT National Highway Traffic Safety Administration,
September 2010. http://www‐nrd.nhtsa.dot.gov/Pubs/811379.pdf (accessed September 13, 2016).

(a) (b) (c) Figure 4.10 Edge profiles associated with seats and
headrests. Source: US8611608 B2 [54].

Detection of Passenger Compartment Violations 97

 5 C. Laberge‐Nadeau, Wireless telephones and the risk of road crashes, Accident Analysis and
Prevention 35(5): 649–660, 2003.

 6 K. S. Lissy, J. T. Cohen, M. Y. Park, and J. D. Graham, Cellular phone use while driving: Risks and
benefits, Phase 1 Report, Harvard Center for Risk Analysis and Harvard School of Public Health,
Boston, MA, July 2000.

 7 Mobile phone use: A growing problem of driver distraction, World Health Organization, Geneva, 2011,
http://www.who.int/violence_injury_prevention/publications/road_trac/en/index.htm (accessed
September 13, 2016).

 8 J. K. Ibrahim, E. D. Anderson, S. C. Burris, and A. C. Wagenaar, State laws restricting driver use of
mobile communications devices: Distracted‐driving provisions, 1992–2010, American Journal of
Preventive Medicine 40(6): 659–665, 2011.

 9 S. Schijns and P. Mathews, A breakthrough in automated vehicle occupancy monitoring systems for
HOV/HOT facilities, Proceeding of the 12th HOV Systems Conference, Houston, TX, April 20, 2005.

 10 D. Yazdgerdi, Seat belt detection device, U.S. Patent application no. 10/081,687, August 28, 2003.
 11 E. G. Rosenblatt, Seat belt violation alert system, U.S. Patent application no. 13/065,505, September

27, 2012.
 12 U. Levy, Vision based seat belt detection system, U.S. Patent application no. 11/675,101, August

23, 2007.
 13 J. C. Catten and S. McClellan, System and method for detecting use of a wireless device in a moving

vehicle, U.S. Patent No. 7,876,205, January 25, 2011.
 14 H. Chu, In‐vehicle driver detection using mobile phone sensors, Graduation thesis, Duke University,

April 2011.
 15 A. Thiagarajan, J. Biagioni, T. Gerlich, and J. Eriksson, Cooperative transit tracking using smart‐

phones. Proceedings of the 8th ACM Conference/Embedded Networked Sensor Systems (SenSys ’10),
Zurich, Switzerland, November 3–5, 2010.

 16 S. H. Chu, V. Raman, J. Shen, A. Kansal, V. Bahl, and R. R. Choudhury, I am a smartphone and i know
my user is driving, Proceedings of the 6th International Conference on Communication Systems and
Networks, Bangalore, January 7, 2014.

 17 http://bvsystems.com/Products/Security/TransitHound/transithound.htm (accessed September
13, 2016).

 18 D. S. Breed and W. E Duval, In‐vehicle driver cell phone detector, U.S. Patent no. 8,731,530, May 20,
2014.

 19 https://www.bvsystems.com/product/transithound-in-vehicle-cell-phone-detector/
 20 Advanced Vehicle Occupancy Verification Technologies Study: Synthesis Report, Texas

Transportation Institute (TTI), August 2007 (prepared for the HOV Pooled Fund Study Group).
 21 K. Jost, Delphi Occupant Detection for Advanced Airbags, Automotive Engineering International

Online, October 18, 2000. https://trid.trb.org/view.aspx?id=709051 (accessed October 13, 2016).
 22 N. Kuboki, H. Okamura, T. Enomonto, T. Nishimoto, T. Ohue and K. Ando, An occupant sensing

system for automobiles using a flexible tactile force sensor, Furukawa Review 20, 89–94, 2001.
 23 T. Gioutsos and H. Kwun, The use of magnetostrictive sensors for vehicle safety applications, Society

of Automotive Engineers, New York, 1997.
 24 A. P. Corrado, S. W. Decker, and P. K. Benbow, Automotive occupant sensor system and method of

operation by sensor fusion. U.S. Patent No. 5,482,314. January 9, 1996.
 25 J. G. Stanley, Occupant detection system. U.S. Patent No. 6,220,627. April 24, 2001.
 26 B. George, H. Zangl, T. Bretterklieber, and G. Brasseur, A combined inductive–capacitive proximity

sensor for seat occupancy detection, IEEE Transactions on Instrumentation and Measurement 59(5):
1463–1470, 2010.

Computer Vision and Imaging in Intelligent Transportation Systems98

 27 O. A. Basir and B. Zhao, Occupant heartbeat detection and monitoring system. U.S. Patent No.
7,183,930. February 27, 2007.

 28 Siemens system, as reported in “Candid Camera Security” in The Australian, p. 16., April 13, 2000.
 29 Y. Owechko, N. Srinivasa, S. Medasani, and R. Boscolo, Vision‐based fusion system for smart airbag

applications, IEEE Intelligent Vehicle Symposium 1: 245–250, 2002.
 30 B. L. Smith and D. Yook, Investigation of Enforcement Techniques and Technologies to Support High

Occupancy Vehicle and High Occupancy Toll Operations, Final Contract Report VTRC 10‐CR1,
Virginia Transportation Research Council, Virginia, September 2009.

 31 Y. Artan, O. Bulan, R.P. Loce, and P. Paul, Passenger Compartment Violation Detection in HOV/
HOT Lanes, submitted to IEEE Transactions on Intelligent Transportation Systems.

 32 X. Hao, H. Chen, C. Wang, and C. Yao, A near‐infrared imaging method for capturing the interior of
a vehicle through windshield, Proceedings of the 2010 IEEE Southwest Symposium on Image Analysis
and Interpretation, Austin, TX, May 23–25, 2010

 33 N. Bouguila, R. I. Hammoud, and D. Ziou, Advanced off‐line statistical modeling of eye and non‐eye
patterns, in R. I. Hammoud (ed.), Passive eye monitoring. Springer, Berlin, 2008, pp. 55–81.

 34 X. Hao, H. Chen, C. Wang, and C. Yao, Occupant detection through near‐infrared imaging, Tamkang
Journal of Science and Engineering 14(3): 275–283, 2011.

 35 Wang Y. and You Z., A fast algorithm for localization vehicle’s window based on the mean of
chromatism, Computer Applications and Software 21(1): 31–35, 2004, (In Chinese).

 36 H. Fukui and T. Hasegawa, A study on detection of vehicles’ positions using HSV color transformed
template images, IEEE Vehicular Technology Conference Fall 2, 718–722, 2001.

 37 X. Yuan, Y. Men, and X. Wei, A method of location the vehicle windshield region for vehicle occupant
detection system, Proceedings of International Conference on the Software Process, Zurich,
Switzerland, October, 21–25, 2012.

 38 B. Xu and P. Paul, Windshield localization for occupancy detection, U.S. Patent 8971579, 2015.
 39 W. Li, J. Lu, Y. Li, Y. Zhang, J. Wang, and H. Li, Seatbelt detection based on cascade AdaBoost

classifier, Proceedings of the 2013 6th International Congress on Image and Signal Processing (CISP),
Hangzhou, December 16–18, 2013.

 40 Z. Zhu and D. Ramanan, Face detection, pose estimation, and landmark localization in the wild,
Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
Providence, RI, June 16–21, 2012. IEEE.

 41 Y. Artan, O. Bulan, R. Loce, and P. Paul, Driver cell phone usage detection from HOV/HOT NIR
images, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops,
Columbus, OH, June 23–28, 2014.

 42 N. Dalal and B. Triggs, Histograms of oriented gradients for human detection, IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, 2005 (CVPR 2005), San Diego, CA,
June 20–25, 2005, vol. 1. IEEE, pp. 886–893.

 43 P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan, Object detection with
discriminatively trained partbased models, IEEE Transactions on Pattern Analysis and Machine
Intelligence 32(9): 1627–1645, 2010.

 44 G. Csurka, C. Dance, L. Fan, J. Willamowski, and C. Bray, Visual categorization with bags of
keypoints, Workshop on statistical learning in computer vision, ECCV, Prague, 2004, vol. 1, pp. 1–22.

 45 H. Jégou, F. Perronnin, M. Douze, J. Sánchez, P. Pérez, and C. Schmid, Aggregating local image
descriptors into compact codes, IEEE Transactions on Pattern Analysis and Machine Intelligence
34(9): 1704–1716, 2012.

 46 T. Jaakkola and D. Haussler, Exploiting generative models in discriminative classifiers, Advances in
Neural Information Processing Systems 11: 487–493, 1999.

Detection of Passenger Compartment Violations 99

 47 A. Vedaldi and B. Fulkerson, Vlfeat: An open and portable library of computer vision algorithms,
Proceedings of the International Conference on Multimedia, Firenze, Italy, October 25–29, 2010.
ACM, pp. 1469–1472.

 48 F. Perronnin and C. Dance, Fisher kernels on visual vocabularies for image categorization, IEEE
Conference on Computer Vision and Pattern Recognition, 2007 (CVPR’07), Minneapolis, MN, June
17–22, 2007. IEEE, pp. 1–8.

 49 I. Pavlidis, P. Symosek, B. Fritz, M. Bazakos, and N. Papanikolopoulos, Automatic detection of vehicle
occupants: The imaging problem and its solution, Machine Vision and Applications 11(6): 313–320, 2000.

 50 I. Pavlidis, V. Morellas, and N. Papanikolopoulos, A vehicle occupant counting system based on
near‐infrared phenomenology and fuzzy neural classification, IEEE Trans on Intelligent
Transportation Systems 1(2): 72–85, 2000.

 51 Y. Wang, Z. Fan, and L. K. Mestha, Determining a number of objects in an IR image, U.S. Patent no.
8,587,657, November 19, 2013.

 52 Y. Wang, Z. Fan, and L. K. Mestha, Determining a total number of people in an IR image obtained via
an IR imaging system, U.S. Patent no. 8,520,074, August 27, 2013.

 53 J. B. Dowdall and I. Pavlidis, Near‐infrared method and system for use in face detection, U.S. Patent
no. 7,027,619, April 11, 2006.

 54 Z. Fan, A. S. Islam, P. Paul, B. Xu, and L. K. Mestha, Front seat vehicle occupancy detection via seat
pattern recognition, US 8611608 B2, December 17, 2013.

 55 H. Rowley, S. Baluja, and T. Kanade, Neural network‐based face detection, IEEE Transactions on
Pattern Analysis and Machine Intelligence 20: 23–38, 1998.

 56 B. Heisele, T. Serre, and T. Poggio, A component‐based framework for face detection and
identification, International Journal of Computer Vision 74: 167–181, 2007.

 57 F. Fleuret and D. Geman, Coarse‐to‐fine face detection, International Journal of Computer Vision 41:
85–107, 2001.

 58 H. Schneiderman and T. Kanade, Object detection using the statistics of parts, International Journal
of Computer Vision 56: 151–177, 2004.

 59 P. Viola and M. Jones, Rapid object detection using a boosted cascade of simple features, Proceedings
of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2001
(CVPR 2001), Kauai, HI, December 8–14, 2001. pp. 511–518.

 60 Image‐based seat‐belt detection, 2011 IEEE International Conference on Vehicular Electronics and
Safety (ICVES), Beijing, China, July 10–12, 2011, pp. 161–164.

 61 W. Li, J. Lu, Y. Li, Y. Zhang, J. Wang, and H. Li, Seatbelt detection based on cascade AdaBoost
classifier, Proceedings of the 2013 6th International Congress on Image and Signal Processing (CISP),
Hangzhou, December 16–18, 2013.

101

Computer Vision and Imaging in Intelligent Transportation Systems, First Edition.
Edited by Robert P. Loce, Raja Bala and Mohan Trivedi.
© 2017 John Wiley & Sons Ltd. Published 2017 by John Wiley & Sons Ltd.
Companion website: www.wiley.com/go/loce/ComputerVisionandImaginginITS

5.1 Introduction

Law enforcement agencies and municipalities are increasing the deployment of camera‐based road-
way monitoring systems with the goal of reducing unsafe driving behavior. The most common appli-
cations are detection of violations for speeding, running red lights or stop signs, wrong‐way driving,
and making illegal turns. Other applications are also being pursued, such as detection of tailgating,
blocking the box, and reckless driving. While some camera‐based systems use the acquired images
solely for evidentiary purposes, there is increasing use of computer vision techniques for automating
the detection of violations.

Most applications in roadway computer vision systems involve analyzing well‐defined and accepta-
ble trajectories and speeds, which leads to clearly defined rules and detections. In some cases, the
detections are binary, such as in red light enforcement or RLE (stopped or not), or divided highway
driving (wrong way or correct way). Other applications require increased accuracy and precision, such
as detecting speed violations and applying a fine according to the estimated vehicle speed. There are
other deployed applications where the violation involves less definitive criteria, such as reckless driving.

The following sections present various applications, giving the motivation, system requirements,
methodology, and effectiveness. The more common applications of speed and stop light will be
described in detail, while the less common will be briefly noted.

5.2 Detection of Speed Violations

Studies have shown that there is a strong relationship between excessive speed and traffic accidents.
In the United States in 2012, speeding was a contributing factor in 30% of all fatal crashes (10,219
lives) [1]. The economic cost of speeding‐related crashes was estimated at $52 billion for 2010 [2]. In
extensive review of international studies, automated speed enforcement is estimated to reduce
injury‐related crashes by 20–25% [3]. Hence, there is significant motivation to evolve and deploy
speed enforcement systems.

5

Detection of Moving Violations
Wencheng Wu1, Orhan Bulan2, Edgar A. Bernal3 and Robert P. Loce1

1 Conduent Labs, Webster, NY, USA
2 General Motors Technical Center, Warren, MI, USA
3 United Technologies Research Center, East Hartford, CT, USA

Computer Vision and Imaging in Intelligent Transportation Systems102

A typical photo enforcement system for speed violations consists of (i) an imaging module, which
provides visual confirmation of the violation; (ii) a speed measurement module; and (iii) a citation
issuing module, which issues the citation to a violator based on the information collected from the
imaging and speed measurement modules. Many technologies have been developed and deployed to
real‐world environments in all three modules. In this section, we focus the discussion on technolo-
gies applied to speed measurement using computer vision.

Common methods for speed measurement in transportation include the use of in‐ground induc-
tive loops, radar, lidar, and video cameras. There are several advantages to the use of a vision system
over the use of inductive loops or radar/lidar, while presenting new challenges that need to be
addressed. The disruption and expense of installing in‐ground induction loops can be avoided. A
vision system is needed to recognize the vehicle, so extending its capabilities to measure speed elimi-
nates the cost and complexity of additional system components associated with radar and lidar. A
high‐quality vision system can include intelligence to perform additional functions, such as recogni-
tion of tailgating, reckless driving, and accidents; gather usage statistics; and serve as a general sur-
veillance device. Conceptually, it is fairly simple for a vision system to provide some measure of speed
of an object once the object of interest is properly detected, identified, and tracked. The issue is the
accuracy and precision of the measurement. Although a significant body of research exists on apply-
ing computer vision technologies to traffic and traffic flow measurements, only a very small fraction
of published research evaluates accuracy and precision of speed measurement of an individual vehi-
cle, which is critical for speed enforcement applications.

5.2.1 Speed Estimation from Monocular Cameras

In order to yield accurate speed measurement of individual vehicles via computer vision, a first
requirement is good performance of the vehicle detection and tracking methods. Much research
has been conducted in object detection and tracking as fundamental building blocks for video
processing technologies. An excellent survey can be found in Ref. [4]. Although many of these
techniques are readily applicable to vehicle tracking for speed measurement, there is a distinct
aspect that needs to be considered here. More specifically, common methods focus on a coarser
concept of tracking. The objective of most trackers is to track the object “as a whole.” The opera-
tion of a tracker is considered effective as long as it can track the object as it appears or reappears
in the scene over time under various practical noises. For speed measurement, the tracking objec-
tive needs to be more refined: it is necessary to track a specific portion(s) of the object. Consider
a simple example. If a tracker starts with a reference point located about the front of a vehicle, and
as the vehicle moves leading to a change in perspective, ends with a reference point located about
the rear of a vehicle, the tracked trajectory alone is not adequate to estimate speed with sufficient
accuracy for most speed law enforcement applications. Consequently, a suitable tracker for an
accurate speed measurement system adheres to one of the following: (i) directly tracking a spe-
cific portion(s) of the object to determine its trajectory or (ii) coarsely tracking the object as a
common practice while applying additional processing to infer the trajectory of a specific
portion(s) of the object indirectly.

Two common tracking approaches, cross‐correlation tracking and motion‐blob proximity associa-
tion tracking, are presented here to illustrate the fine differences between tracking a specific portion
of the object and coarsely tracking the object. The cross‐correlation method tracks a specific portion
of the object, while motion‐blob proximity association only tracks the object coarsely.

Let I(i, j; t) be the pixel value of an image frame at position (i, j) and time t and v(it, jt), t t t0 1~ be
the resulting trajectory of a tracker on a vehicle. Here, t0 and t1 are the start and end of the tracking

Detection of Moving Violations 103

of the vehicle, respectively. The first common tracking method to be described is cross‐correlation
matching approach. In this approach, first a region, I t I i i j j t i j Rv t t v0 00 0

, ; , , is identified
and used as initial tracking template. In a typical setting, Rv is chosen as a rectangular region
() ()2 1 2 1m n centered around the centroid of the template i jt t0 0

, . In the subsequent frames, the
location that best matches the template Iv(t0) in the current frame I(x, y; t) is then found using the
following optimization criterion:

v i j
I i i j j t I i i j

t t
i j

i m

m

j n

n

t t t

t t

,
,

argmax
, ; ,

0
jj t

I i i j j t I i i

t

i m

m

j n

n

t t
i m

m

j n

n

t

0

0

0

2

;

, ; ,, ;j j tt0 0
2

 (5.1)

Conceptually, Equation 5.1 is equivalent to finding the location in the current image frame where its
appearance is closest to the tracking template. The resulting v(it, jt) is the new center position, where
the image content at time t is most similar to the template at time t0 measured by cross‐correlation.
The tracker would repeat this process for the time duration where the tracked vehicle is in the scene
and eventually yields the full trajectory v(it, jt), t t t0 1~ of the vehicle. Since this approach utilizes
appearance matching, an appropriate selection of template would warrant the tracker to track a spe-
cific portion of the vehicle to determine its trajectory. An excellent example of such a template is a
portion of the license plate of the vehicle.

The second common tracking method to be discussed uses foreground or motion detection fol-
lowed by a proximity association. In this approach, potential pixels with motion are identified
through frame differencing.

M x y t

I x y t I x y t
, ;

, ;
otherwise

1
0

if , ;
 (5.2)

The resulting binary image is then postprocessed with morphological filtering and connectivity anal-
ysis to extract motion blob(s), regions of potential moving objects. These candidate motion blobs
may be further processed with thresholding on size, shape, aspect ratio, etc., to better detect blobs
that are indeed from moving vehicles. Once the motion blob(s) are detected for the current frame,
the tracker associates these blobs with those detected from past frame(s) based on measures such as
proximity, smoothness of the overall trajectory, and coherence of the motions. The trajectory of the
tracked vehicle would then be the collection of some reference points such as centroids of these asso-
ciated blobs over time. Since the tracking of this approach is mainly based on motion blob rather
than the appearance of object, it only tracks the object coarsely.

The schematic illustrations of the two tracking methods discussed earlier are shown in Figure 5.1
to help readers comprehend the fine differences. Figure 5.1a shows the first frame where the tracking
starts. The dashed square is the template used by cross‐correlation tracking to start the tracking,
that is, Iv(t0). The triangle mark is the centroid of the template. The black outlined blob is the detected
motion blob by motion‐blob proximity association tracking. The solid‐circle mark is the centroid of
the motion blob. We set solid‐circle and solid‐triangle marks at the same location for illustration
purpose. Note that the shadow of the vehicle was detected as part of the vehicle. Figure 5.1b shows
the later frame where the tracking ends. The location of dashed square on this frame is found using
Equation 5.1, and the solid‐triangle mark is the centroid. As can be seen in Figure 5.1b, it is on
the same location of the vehicle as before. The solid‐circle mark in Figure 5.1b is the centroid of the

Computer Vision and Imaging in Intelligent Transportation Systems104

new black outlined blob, which is NOT on the same location of the vehicle as before. This is because
the motion blob changes its shape a little bit due to noise and projective distortion. As a result, the
pixel/distance traveled (solid and dash lines in Figure 5.1b) are slightly different by the two tracking
methods (~5% difference). This difference is significant for the purpose of speed enforcement. The
cross‐correlation tracking method is preferred as discussed earlier.

In addition to accurate detection and tracking of vehicles, a computer vision–based speed measure-
ment system requires (i) an accurate camera calibration strategy that produces a geometric mapping
for translating image pixel positions to real‐world coordinates [5–14], (ii) an understanding of the
impact of tracked‐feature height to speed accuracy [8, 14–16], and (iii) an accurate reference measure-
ment system [17]. The geometric mapping is typically performed using a projective matrix transfor-
mation. More detailed discussions on these three requirements are presented in the following text.

Consider the work presented in Ref. [13], which introduces both the approach and potential pitfalls
associated with manual calibration methods. In this work, the calibration is achieved by manually
placing marks on the roadway, identifying image pixel locations that contain the marks, and then
using the pixel location and mark location data to construct the camera calibration mapping. A cou-
ple of issues can arise with this approach. One consideration is that manually placing marks on the
road may be impractical or costly, especially in high traffic areas. Second, both the placement and the
identification of the location of the marks on the road need to be quite accurate. A systematic 10 cm
combined error in the mark placement and pixel location for a 10 m spacing between marks would
translate to a 1% bias error in subsequent speed measurements. Finally, the camera may move or
change field of view over time (intentionally or unintentionally). Hence, camera recalibration may be
needed periodically. Given these issues and constraints in manual calibration methods, it is preferred
to use model‐based techniques, which decompose entries of a projective matrix into functions of a set
of parameters such as focal length, camera pose, etc., and estimate the parameters via scene analyses
rather than the matrix entries directly from manually placed marks.

In camera calibration, the geometric mapping between pixel coordinates (i, j) to real‐world planar
coordinates (, ;)x y z z0 can be characterized by a projective matrix as follows:

k
x
y

H H H
H H H
H H H

i
j

1 1

11 12 13

21 22 23

31 32 33

. (5.3)

(a) (b)

Figure 5.1 Schematic illustrations of cross‐correlation and motion‐blob proximity association tracking methods.

Detection of Moving Violations 105

The 3 3 H(z0) matrix is known as the camera projective matrix for z z0. Different z would have a differ-
ent projective matrix, but they are related across z’s. If real‐world coordinates are chosen such that its z‐
axis aligns with the camera optical axis, then the projective matrices for all z’s can be described as follows:

k
x z
y z

H H H
H H H
H H H

i
j

/
/
1

11 12 13

21 22 23

31 32 33 11
. (5.4)

Here, the projective matrix is the same for all z’s. This is often not the case for speed enforcement
applications since the plane of interest is the road surface, which is roughly on a 2D plane, but its
normal direction rarely aligns with the camera optical axis. There is a conversion that one can use to
relate the two coordinate systems. For a monocular camera, it is necessary to comprehend the z‐position
or depth position to have unique conversion between pixel coordinate and real‐world coordinate.
The task of camera calibration/characterization is now reduced to identifying H(z0) for a given
 camera. A straightforward approach is to manually place reference markers on the plane z z0 whose
(x, y) are known and whose (i, j) can be identified from the images. Due to noise and potential errors
in (x, y) or (i, j) of the reference markers, a common practice is to use many more reference markers
than the minimal number needed (=4) and the random sample consensus (RANSAC) process to
derive a robust and accurate H(z0). This type of approach is referred to as manual calibration, which
directly estimates the projective matrix based on reference data without setting any constraint on the
relationship among entries in the projective matrix.

A model‐based camera calibration method, on the other hand, imposes meaningful structure/
constraint to the projective matrix and derives the corresponding parameters via scene analysis.
Figure 5.2 shows an example camera–road configuration discussed in Ref. [5] for deriving a model‐
based camera calibration method. It utilizes the identification of vanishing points along and perpen-
dicular to the road travel direction and one additional piece of information, such as the height of the
camera above the road. This method is briefly summarized here. Let f, h, 𝜙, and θ be the camera focal
length, camera height above the road, camera tilt angle, and camera pan angle, respectively. Assuming

Road

(a) (b)

(0,0,0)

h
co

t ϕ

h cot ϕ (0,0,0)

h

r y

r

y

x
x, xc

z

z

zc

θ

xc

yc
Road

ϕ

ϕ

Figure 5.2 Illustration example for model‐based camera calibration method: (a) left‐side view of the scene and (b) top
view of the scene. Source: Kanhere and Birchfield [5]. Reproduced with permission of IEEE.

Computer Vision and Imaging in Intelligent Transportation Systems106

that the camera has zero roll and has square pixels, it can be shown that the geometric mapping
between pixel coordinates (i, j) to real‐world coordinates on the road plane is

k
x
y

h
h fh

f

i
j

1

0 0
0
0 1 1

sec
tan

tan
. (5.5)

The form is the same as Equation 5.3, but the entries of the projective matrix are more constrained.
Although the matrix can be determined from actual measurements of f, h, 𝜙, in practice it is difficult
and inconvenient to measure these parameters directly. In Ref. [5], various known methods that uti-
lize scene analysis to estimate these parameters indirectly are discussed and summarized. For exam-
ple, in roadway transportation applications, it is feasible to determine a vanishing point (i0, j0) along
the road travel direction and another vanishing point (i1, j1) perpendicular to the road travel direction
from analyzing the image frame(s). The physical parameters f, 𝜙, θ can then be determined by

f j i i j

f
i

f0
2

0 1
1 0 1 0, tan , tan cos (5.6)

If the height of the camera is also known, then one can recover the projective matrix Equation 5.5
using the detected pixel locations of the two vanishing points from scene analysis and Equation 5.6.
The approach briefly reviewed here is only one of the many known model‐based calibration meth-
ods. Note that there are several advantages to using model‐based calibration methods over using
manual approaches. First, model‐based methods are more robust since fewer parameters need to be
estimated. There is no need for any placement of reference marks on the road. The calibration can
be easily updated and refined as the camera setting is changed or drifted over time since the param-
eters are derived through the scene analysis. In many road‐side settings, the camera height is fixed
but may be paned, zoomed, or tilted over time. The method of Equations 5.5 and 5.6 fits well for
these scenarios.

Next, we review a few examples of model‐based calibration methods from the perspective of
impact on aspects of speed measurement, including accuracy. First, we discuss traffic‐flow vision
applications, where the goal is measurement of average speed and vehicle counting rather than law
enforcement. In Refs. [6–12], the approaches taken focus on the use of vanishing points and/or heu-
ristic knowledge for deriving the projective matrix transform. The vanishing point(s) are identified
directly from the scene. Hence, they can be automatically updated as the scene changes, for example
after pan, zoom, or tilt (PZT) operations. Furthermore, scene changes can be detected by analyzing
the motion activity within the scene [7], which makes the calibration steps fully automated and
dynamic. More specifically, in Ref. [6] the heuristic knowledge used includes a scale factor that varies
linearly as a function of the traveling direction, which reduces the problem to a single dimension with
known vehicle length distributions. The use of a known vehicle length distribution yields reasonable
accuracy for average speeds over 20 s intervals (4% difference from inductive loop methods); how-
ever, the accuracy of individual vehicle speed estimates is quite poor. In Ref. [6], it is noted that the
effect of shadows on centroid tracking is the main contributor for inaccuracies larger than 10%. In
Ref. [8], lane boundaries and vanishing points are detected using a motion activity map. The histogram
of average speed over 20 s intervals shows a bias of 4–8 mph compared to inductive loop measurements.

Detection of Moving Violations 107

Note that unlike Ref. [6], where blob centroids are used for speed estimation, the pixel at the lowest
row of the vehicle blob is used for speed calculation in Ref. [8]. Recently, Ref. [9] proposes a practi-
cal traffic camera calibration method from moving objects. This approach also follows the general
concept of model‐based camera calibration through the identification of vanishing points from the
scene. The key difference of their approach comes from how the vanishing points are identified.
None of the prior methods use the expected general orientations of moving vehicles or humans for
identification of these vanishing points. The clear advantage of Ref. [9] is the sheer volume of avail-
able data since there are many more vehicles moving on the road than lane marks. However, there
are also more challenges in order to get good quality data. Overall, Ref. [9] achieves good accuracy
in a variety of traffic scenarios but no reported accuracy on how it translates to speed measure-
ment accuracy.

Law enforcement is primarily concerned with the speed of individual vehicles, and here accu-
racy of the measurement becomes a critical concern. Accuracy requirements can be as tight as
±1 mph or ±1%. In Ref. [11], vanishing points and the assumption that the mean vehicle width is
14 ft are used to construct a camera calibration and resulting projective matrix transform. The
reported inaccuracy of the estimated speed of an individual vehicle is below 10%, a figure some-
what below that achieved when lane boundaries are used for camera calibration [8]. Note that
the improvement in speed estimation accuracy may not necessarily be due to differences in the
calibration procedure; rather, it may be due to the use of a vehicle tracking method that is insen-
sitive to shadows. In Ref. [12], the vanishing point is first detected from the road edges of the
scene. The camera calibration mapping is then derived in a manner similar to the methods dis-
cussed earlier. The reported inaccuracy of the average speed of three test vehicles with 10 runs
each is 4%. In Refs. [13–15, 18], the camera calibrations are all performed based on the known
real‐world coordinates of some form of landmarks. The reported inaccuracy of the speed esti-
mates for individual vehicles ranges from 1.7, ±3, to ±5 km/h for five tested cars with speeds
ranging from 13 to 25 km/h.

Consider an accuracy issue related to the height of a vehicle image feature being tracked and the
dimensionality of the image acquisition scenario. As shown in Figure 5.3, a camera views a vehicle
from an angle, and a tracking algorithm tracks one or more features (e.g., feature A and B) in the

h: camera height

A

B

A
B hA: tracked feature height (A)

hB: tracked feature height (B)

Observed frame-to-frame travel distance of image feature(s)
when projected to the ground
Note that perceived distance of tracked high feature A, DA, is larger than that of tracked low feature B, DB

DA DB

Figure 5.3 Illustration of an accuracy issue related to tracked vehicle image feature height and the dimensionality of
image acquisition.

Computer Vision and Imaging in Intelligent Transportation Systems108

acquired images. Speed on the road surface is the desired measure, while the feature being tracked is
generally above the road at an unknown height. It is usually not possible to determine the height of
the tracked feature because a single camera image is a 2D representation of a 3D phenomenon, which
introduces mapping ambiguities. The calibration of 2D pixel locations to road locations assumes a
given feature height, such as the road surface. Speed measurement based on tracked features at other
heights will be inaccurate due to the discrepancy between assumed and real feature heights. The
issue is less severe if vehicle speeds are calculated based on features that are the lowest edges or
points of a motion blob (closest to the ground plane) [8, 14–16] rather than the centroids of a motion
blob. Alternatively, if the height of the tracked feature is known or can be estimated, then the meas-
ured speed can be height corrected. Using the example in Figure 5.3, it can be shown that

D h h
h h

DA
B

A
B. This implies that the actual ground speed can be corrected from the tracked speed of

the feature (A) with the factor 1 h
h
A . The higher the tracked feature, the more the reduction

needed. The higher the camera height, the less the tracked height impacts the accuracy of the speed
estimation without correction. As discussed in Section 5.2.2, the height of the tracked feature can be
estimated through stereo imaging, which solves the dimensionality problem described here.

Finally, a typical accuracy requirement for speed enforcement systems can be as tight as ±1 mph
or ±1%. It is thus necessary to have an accurate reference measurement system that is at least an
order of magnitude more accurate and precise. An example of research on this topic is found in
Ref. [17].

5.2.2 Speed Estimation from Stereo Cameras

Speed estimation from monocular imagery presents specific challenges that may be difficult to over-
come. As discussed, vehicle detection is a key step in the process; methods for moving object detec-
tion from monocular video include foreground detection via background estimation and subtraction,
temporal frame differencing, and flow analysis. Shortcomings associated with all three approaches
include the “black hole” problem whereby it becomes difficult to detect an object in motion whose
appearance closely matches that of the background; additionally, when the moving object casts a
shadow, the shadow can be detected as part of the moving object itself, which may pose difficulties
for subsequent tracking tasks. Even when object detection issues are overcome, ambiguities arising
from the projection of the 3D world onto a 2D plane result in increased speed estimate uncertainties
as described before.

Speed estimation based on binocular, depth-capable systems has been developed and deployed to
overcome these limitations. Depth-capable systems rely on the use of two or more calibrated cameras
with overlapping fields of view acquiring simultaneous images of the monitored scene. As illustrated
in Figure 5.4, the speed estimation process from a stereo camera is similar to that from a monocular

Camera 1

Camera 2

Depth map
reconstruction

Vehicle
detection

Vehicle
tracking

Speed
estimation

Figure 5.4 Speed estimation process in a stereo vision system.

Detection of Moving Violations 109

camera, except that imagery from two cameras is processed jointly to obtain information of the scene
including, but not limited to, the distance or range between the system and a feature in the scene, as
well as real‐world coordinates of objects in the scene. With the forthcoming discussion, it will become
clear that the advantages brought about by depth-capable systems based on binocular imaging come
at the cost of tighter design requirements. In particular, the accuracy of depth estimates depends on,
among other factors, the placement of the system relative to the road being monitored, the resolution
of the sensors in each of the monocular cameras in the system, and on the relative positioning between
the cameras and the disparity between the assumed and real relative positioning. For instance, the
monocular cameras comprising the system in Ref. [19] are located 100 cm from each other, have a
1.4 megapixel sensor each, and are housed in a structure made of carbon fiber, alloy, and polycarbon-
ate to ensure high rigidity (torsion is rated at under 6.4 µrad) ensuring the relative positioning of the
cameras is maintained under the most extreme environmental forces. The system is carefully cali-
brated at the factory, and error-checking routines are performed continuously in order to verify that
the mutual geometric constraints between the monocular cameras are maintained so as to guarantee
high precision depth (depth estimation errors are at most 3 cm) and speed (average speed estimation
errors are under 1% in the 20–240 km/h speed range) estimates. The system is placed on a vertical pole
mount at a slight angle from traffic, 15–25 m behind or ahead of the highway area being monitored.

It will also be appreciated with Sections 5.2.2.1–5.2.2.4 that the computational requirements of a
depth-capable system are more demanding than those imposed by a monocular system, not only
because two video streams are processed simultaneously but also because joint processing of the
streams is required in order to extract depth estimates. This means that there is an additional pro-
cessing overhead on top of the already doubled computational requirements, which places stricter
constraints on the computational resources of the system, in particular when real‐time monitoring
of potentially busy multilane highways is desired. Ultimately, the ability to estimate the depth of
objects in the scene leads to improved robustness to environmental and traffic conditions as well as
increased capabilities to extract accurate vehicle trajectories, which in turn translates into added
extensibility to other traffic enforcement‐related applications such as vehicle classification, RLE, and
forbidden turn monitoring.

5.2.2.1 Depth Estimation in Binocular Camera Systems
In the simplest scenario, the depth capable systems consist of two cameras, each defining coordinate
systems x1, y1, z1 and x2, y2, z2 with origins O1 and O2, respectively [20]. Let us (approximately) model
the cameras as pinhole cameras with each optical axis coinciding with their respective z‐axis. Also,
let the cameras have focal points located at F1 and F2 at distances f1 and f2 from their respective ori-
gins along their respective z‐axis, as illustrated in Figure 5.5. Image planes π1 and π2 lie on planes x1y1
and x2z2, respectively.

Coordinates between the two coordinate systems are related by

x
y
z

x
y
z

2

2

2

1

1

1

R T , (5.7)

where R is a 3 × 3 orthonormal matrix describing a rotation and T is a 3 × 1 vector representing trans-
lation. Since the cameras have overlapping fields of view, assume both cameras are imaging an object
point P0 located at [xp0, yp0, zp0]T relative to O1 and [x′p0, y′p0, z′p0]T relative to O2 in the 3D space that
projects onto point P1 on image plane π1 and onto point P2 on image plane π2. Note that [xp0, yp0, zp0]T

Computer Vision and Imaging in Intelligent Transportation Systems110

and [x′p0, y′p0, z′p0]T are related by Equation 5.7. The coordinates of P1 relative to O1 are P1 = [xp1, yp1,
0]T, and the coordinates of P2 relative to O2 are P2 = [xp2, yp2, 0]T given that both P1 and P2 are on their
respective image planes. Since P0, F1, and P1 are collinear, and P0, F2, and P2 are collinear as well, the
relationships P1 = F1 + α1(P0 − F1) and P2 = F2 + α2(P0 − F2) hold for some scalars α1 and α2. Expanding
each of these equations into their scalar forms, we get

x
x

y
y

f z
f

p

p

p

p

p0

1

0

1

01

1

 (5.8)

x
x

y
y

f z
f

p

p

p

p

p0

2

0

2

02

2

 (5.9)

Assuming the focal lengths of the cameras, the rotation matrix R, and the translation vector T, P1,
and P2 are known, Equations 5.7, 5.8, and 5.9 can be used to compute P0 in the 3D world. Note that
this assumes a correspondence between P1 and P2 has been established. A depth map of the scene
can be reconstructed by combining 3D coordinates of points for which correspondences are found.
At other locations, depth information can be inferred via interpolation techniques.

Given two or more images acquired with two or more cameras with at least partially overlapping
fields of view, the correspondence problem refers to the task of finding pairs of points (one in each
image) in the images that can be identified as being projections of the same points in the scene.
Correspondences can be found via local correlations, or via feature extraction and matching. Assume
that the location of an image point P1 on image plane π1 is known and that we need to find the loca-
tion of the corresponding point P2. Instead of searching across the whole image plane π2 for corre-
sponding point P2, the size of the search space can be significantly reduced by noting that P2 must be
located along the line segment defined by the intersection between π2 and the plane defined by the
points P1, F1, and F2. This is referred to as the epipolar constraint.

5.2.2.2 Vehicle Detection from Sequences of Depth Maps
Once a sequence of depth maps of the scene is available, vehicles traversing the scene can be detected with
a high degree of confidence. As mentioned earlier, object detection in monocular video sequences is usu-
ally addressed by detecting differences in appearance (e.g., intensity or color) between the foreground

P0

z1 z2

F1 F2

P1 P2

O1 O2x1 x2

f1

y1
y2

π1 π2
f2

Figure 5.5 Depth capable system comprising two cameras.

Detection of Moving Violations 111

object and a background model, which may lead to erroneous detections when the object’s appearance
closely matches that of the background. In the case of a stereo vision system, in addition to scene appear-
ance, the depth of various points in the scene relative to the camera system is known. Since foreground
objects are usually located between the background and the camera system, more robust foreground
object segmentation can be achieved by augmenting background appearance models with range data.

More specifically, consider modeling the attributes of the background via a statistical model such
as a distribution comprising a mixture of K Gaussian components, as proposed in Ref. [21]. According
to this approach, a historical statistical model for each pixel is constructed and updated continuously
with each incoming frame at a predetermined learning rate. Foreground detection is performed by
determining a measure of fit of each pixel value in the incoming frame relative to its constructed
statistical model: pixels that do not fit their corresponding background model are considered fore-
ground pixels. Instead of modeling attributes related to the appearance of the background only, the
statistical models can be seamlessly extended to capture the behavior of the background in terms of
its depth relative to the scene, as proposed in Ref. [22]. This process is illustrated in Figure 5.6. Let Fi,j
denote the ith video frame, acquired by camera j, where i represents a discrete temporal index, and
j ∈ {1, 2}. Let Fi denote the augmented ith video frame including color and depth information obtained
by fusing frames Fi,1 and Fi,2. Fi will generally be smaller in spatial support, but possibly larger in
terms of number of channels/bits per channel than Fi,1 and Fi,2 since depth information can only be
extracted from scene locations that fall in the common field of view of the cameras. Background
estimation is achieved by estimating the parameters of the distributions that describe the historical
behavior in terms of color and depth values for every pixel in the scene as represented by the aug-
mented video frames Fi. Specifically, at frame i, what is known about a particular pixel located at (x,y)
in Fi is the history of its values{X1, X2, …, Xi} = {Fm(x,y), 1 ≤ m ≤ i}, where Xm is a vector containing
color and depth values, that is Xm = [RXm, GXm, BXm, dXm] in the case of RGB cameras. The value of

FGi

BGi+1
Fi–1

Fi–2
Fi–3

Fi,1

Fi–2,1
Fi–3,1

Fi–1,1
Fi,2

Fi–2,2
Fi–3,2

Fi–1,2

Fi

BGi

Fit test

Model update

Statistical model

Binary image

Color/depth image

Color image

Depth estimation

Figure 5.6 Foreground detection based on augmented background modeling.

Computer Vision and Imaging in Intelligent Transportation Systems112

dXm can be estimated via Equations 5.7, 5.8, and 5.9, while the values of RXm, GXm, and BXm can be
estimated, for example, by averaging the RGB values of the corresponding pixels used to estimate
dXm. For pixels for which a correspondence wasn’t found, but which are still within the reduced field
of view associated with Fi, RGB and depth values can be estimated via interpolation.

The recent history of behavior of values of each pixel can be modeled as a distribution consisting
of a mixture of K Gaussian components, so that the probability of observing the current value is

P wm

k

K

km m km kmX X
1

, , , (5.10)

where wkm is an estimate of the weight of the kth Gaussian component in the mixture at time m, μkm is
the mean value of the kth Gaussian component in the mixture at time m, Σkm is the covariance matrix
of the kth Gaussian component in the mixture at time m, and Φ(·) is the Gaussian probability density
function. Sometimes, a reasonable assumption is for the different pixel attributes to be uncorrelated, in
which case km kmI , for a set of scalars σkm, 1 ≤ k ≤ K, where I is the K × K identity matrix. Let BGi
denote the ith augmented background model, that is, an array of pixel‐wise statistical models of the
form of Equation 5.10 including color and depth information. Then FGi, the ith foreground binary
mask indicating the pixel locations associated with a detected foreground object can be obtained via
comparison between BGi and Fi. Foreground detection is performed by determining a measure of fit of
each pixel value in the incoming augmented frame Fi relative to its constructed statistical model which
is stored in BGi and has the form of Equation 5.10. In the simplest implementation, as a new frame
comes in, every pixel value in the augmented frame Fi is checked against its respective mixture model
so that a pixel is deemed to be a background pixel if it is located within T1 standard deviations of the
mean of any of the K − 1 color components, and its estimated depth is within T2 standard deviations of
the depth component with the largest mean, where T1 and T2 are predetermined thresholds. The for-
mer condition checks for consistency in the color appearance between the current pixel and the back-
ground model, and the latter verifies that the objects in the current frame are as far as possible from the
camera system, relative to what has been observed in the past.

Since scenes are usually dynamic and in order to maintain accurate foreground detection, the back-
ground model BGi can be updated to obtain a background model BGi+1 after incoming augmented
frame Fi is processed. Note that FGi+1 will subsequently be determined via comparison between BGi+1
and augmented frame Fi+1. If the current pixel value is found not to match any of the K components
according to the fit test described before, the pixel is identified as a foreground pixel; furthermore, the
least probable component in the mixture is replaced with a new component with mean equal to the
incoming pixel value, some arbitrarily high variance, and a small weighting factor. If, on the other
hand, at least one of the distribution components matches the incoming pixel value, the model is
updated using the value of the incoming pixel value. Updating of the model is achieved by adjusting
the weight parameters for all components (i.e., for all k, 1 ≤ k ≤ K) in Equation 5.10 according to

 w w Mk i ki ki1 1 , (5.11)

where α is the learning rate, Mki is an indicator variable equaling 0 for every component except
the matching one, in which case Mki 1. After applying Equation 5.11 to update the mixture weights,
the weights are renormalized to sum up to 1. Once the weights are updated, the parameters of the
distribution k0 that was found to match the new observation are updated according to

 k i k i i0 01 1 X (5.12)

Detection of Moving Violations 113

 k i k i i k i
T

i k i0 0 0 01
2 2

1 11 X X (5.13)

where Xi is the value of the incoming pixel and Xi k i k i| ,
0 0

2 . The parameters of the com-
ponents that didn’t match are left unchanged.

5.2.2.3 Vehicle Tracking from Sequences of Depth Maps
Tracking can be performed once the vehicle in motion is detected. Most of the existing video‐
based object trackers are optimized for monocular imagery. Recall that one of the requirements
for the output of a tracking algorithm to provide robust speed‐related information is for it to
 convey positional data of highly localized portions of the vehicle being tracked. In view of this
requirement, and given the fact that salient scene points are extracted when solving the corre-
spondence problem, the authors of Ref. [23] proposed a method for efficiently tracking features
extracted for stereo reconstruction purposes. Assuming the stereo system cameras satisfy the
epipolar constraint, the displacement of corresponding features across frames can be represented
via a 3D vector. For example, in the case where the cameras are vertically aligned, feature displace-
ment across video frames can be uniquely represented by two horizontal offsets, one for each
camera, and a shared vertical offset, D = (d1, d2, dy). This assumption achieves a reduction of one
degree of freedom relative to the more general approach of independent tracking of the features in
their respective video feeds. Let us assume features T1(x1) and T2(x2) from windows centered at
locations x1 and x2 of the point being tracked are extracted from frames acquired by cameras 1 and 2,
respectively, for frame i, as illustrated in Figure 5.7. For simplicity, assume that the extracted fea-
tures are pixel values within the window.

Frame i+1
W2W1

d1

d1* d2*

T1 T2

dy

dy*

d2

Frame i

Camera 1 Camera 2

Figure 5.7 Point tracking in the stereo domain.

Computer Vision and Imaging in Intelligent Transportation Systems114

In the scenario considered by Lucas and Kanade [24], the task of tracking the point consists of find-
ing its displacement between frames i and i + 1, which can be expressed as finding warping parame-
ters p* that satisfy

p x p x*

pargmin ; ,
j x

j j j jI W T
1

2 2 (5.14)

where I(Wj(x; p)) is an image resulting from warping frame i + 1 acquired by camera j at location x
according to warping parameters p. For simplicity, assume that the frame rate of the acquired video
is large enough relative to the apparent motion of the object so that p can be well approximated by
displacements (dj, dy) for j = 1, 2. Equation 5.14 then becomes

d d d I W d d Ty d d d

j x
j j j y jy1 2

1

2

1 2

* * *, , ; ,argmin , , x x jj
2

, (5.15)

where I(Wj(xj; (dj, dy))) is the image window displaced by (dj, dy) from pixel location xj in frame i + 1
acquired by camera j, for j = 1, 2. The expression in Equation 5.15 can be solved iteratively by assum-
ing a current estimate of (d1, d2, dy) is available and solving for increments (Δd1, Δd2, Δdy) as demon-
strated in Ref. [23].

5.2.2.4 Speed Estimation from Tracking Data
Tracking information for features extracted in and around the identified vehicle consists of a tempo-
ral sequence of 3D coordinates P P Ps s s

i1 2, , , , where Ps
k denotes the coordinates at frame k of

feature s being tracked. Pair‐wise instantaneous speed estimation computation for frame k is then
performed by computing

v rs

k
s

k
s

kP P 1 , (5.16)

where r is the frame rate of the image capture system.
There are multiple sources of error that affect the instantaneous speed estimation process described

before. For one, the location of corresponding features is established relative to a discrete set of coor-
dinates determined by the discrete camera sensors, which gives rise to quantization errors intrinsic
to digital systems. It can be shown that quantization errors result in uncertainties on the estimated
depth or range of the features for which a correspondence has been found, and that the magnitude of
the depth estimation error increases as the depth of the feature relative to the sensor increases.
Additionally, for fixed focal length and sensor resolution, the larger the separation between the cam-
eras, the larger the range of depths supported, but the smaller the accuracy in the feature matching;
this conflict gives rise to a trade‐off between how accurately correspondences can be established and
how accurately range estimation can be performed [25]. Clearly, the parameters of a stereo imaging
system affect depth estimation capabilities, and consequently, the accuracy of the estimated speed.
Careful selection of the system parameters is then required to achieve the required accuracy
specifications.

In order to address errors associated with instantaneous speed measurements, Ref. [26] proposes
acquiring a set of measurements at different times and performing regression on the multiple meas-
urements. According to the proposed approach, linear regression is performed on a set of range or
distance measurements; the slope of the resulting linear model indicates whether the vehicle is

Detection of Moving Violations 115

approaching or receding from the camera system. A mean speed estimate can be obtained from the
slope estimate. Additionally, a confidence level represented by the R2 value of the regression process
can be computed, which in turn reflects the confidence of the estimated speed. Estimates with con-
fidence level below certain predetermined thresholds may be discarded.

5.2.3 Discussion

In summary, although individual vehicle speed is a straightforward output from most computer
vision systems, there is an accuracy gap for single camera systems. While stereo cameras [19, 27] for
photo enforcement are becoming widely available, there are very few scientific publications on cali-
bration and practical accuracy of 3D systems. There are also potential issues with a lack of accurate
reference measurements. In addition to 3D solutions, another common approach to photo enforce-
ment of speed has been through use of radar/lidar for speed and a camera for vehicle identification
and evidence recording [28].

5.3 Stop Violations

Driver violations at intersections are the major cause of fatal accidents in urban traffic. According to
the US Department of Transportation (USDOT), nearly half of all traffic accidents and 20% of all fatal
crashes occur in close proximity to an intersection [29]. This statistic has remained substantially
unchanged since the past decade despite significant efforts by transportation agencies for improved
intersection designs and sophisticated applications of transportation engineering [29]. To combat
this persistent trend, municipalities and law enforcement agencies are employing automated stop
enforcement technologies at red lights and stop signs, as well as for stopped school buses.

5.3.1 Red Light Cameras

The most common violation at intersections is running a red light. Several studies found in the litera-
ture show the prevalence and severity of stop light violations [30–32]. One study conducted in Arlington,
Virginia, reported a red light violation occurs on an average of every 20 min at each intersection [33].
The rate of violations significantly increases at peak hours, and rises as high as one per 5 min, which in
turn causes a high number of traffic accidents, with associated damaged property and lost lives [33].

Prevention of intersection‐related crashes to improve public safety and reduce property damage
has led to the adoption of two primary approaches [34], namely optimizing signal light timing and
stop light enforcement via red light cameras (RLCs). Several studies claim that longer yellow light
duration reduces red light running violations [35, 36], and increased yellow light duration with an
all‐red interval can reduce the number of accidents [37, 38]. The Institute of Transportation Engineers
(ITE) has provided a standard for minimum yellow light duration Y, given by Equation 5.17 and com-
puted in Table 5.1.

Y t v

a Gg
1 47

2
. , (5.17)

where

Y = length of yellow interval (s)
t = perception‐reaction time (use 1 s)

Computer Vision and Imaging in Intelligent Transportation Systems116

v = approach speed (mph)
a = deceleration rate in response to the onset of a yellow indication (use 10 ft/s2)
g = acceleration due to gravity (32.2 ft/s2)
G = fractional grade, with uphill positive and downhill negative

Most studies examined increasing Y by 0.5–1.5 s over the ITE minimum.
RLC systems, also known as RLE systems, are deployed extensively throughout the world. The

efficiency of RLCs on reducing number of red light running has been reported in several studies [30,
32, 39, 40]. In Ref. [39], the efficiency of RLCs was evaluated in New York City, Polk County, Florida,
Howard County, Maryland, and it is reported that enforcement cameras yielded 20% reduction in
violations in New York City while showing promising results for the other municipalities. Similarly,
Ref. [40] reports that RLCs reduce stop light violations on average up to 50% based on a study per-
formed on international RLCs.

5.3.1.1 RLCs, Evidentiary Systems
Common RLC systems consist of the following three modules: (i) violation detection, (ii) evidentiary
photo/video capturing, and (iii) control unit [41, 42]. Figure 5.8 shows an illustration of a typical RLC
system. The violation detection module uses in‐ground induction loops to estimate the speed of an
approaching vehicle before the stop bar at the intersection. The speed estimate is used to conjecture
whether the vehicle will run through the red light. The cameras are solely utilized to capture eviden-
tiary images and videos, and vehicle identification information (i.e., license plate number) of viola-
tors is extracted from the evidentiary images by human operators [42].

The violation detection module relies on two magnetic induction loops buried under the pavement
and in communication with the controller unit to estimate vehicle speed as it approaches the stop
bar. The speed estimation can be as simple as dividing the distance between induction loops by the
time difference that vehicle is detected by each loop. More complicated regression models can be
also employed based on the road geometry and historical data. When a vehicle activates the first and
second induction loops within a time threshold (e.g., estimated speed above threshold) when the
light is red, then a violation signal is sent to trigger the evidentiary cameras. The cameras and control
system record information about the violation event, such as date, time, estimated speed, license
plate, and lane of violation. This auxiliary information can be combined with an image or images and
used in a citation document.

Table 5.1 Minimum yellow light intervals given
approach speeds for straight road and 0 grade.

Approach speed (mph) Yellow interval (s)

25 3.0 (rounded up)
30 3.2
35 3.6
40 4.0
45 4.3
50 4.7
55 5.0
60 5.4
65 5.8

Detection of Moving Violations 117

As Figure 5.8 shows, current RLE systems typically include two digital cameras. The first (i.e.,
upper camera in Figure 5.8) is a relatively high‐resolution (e.g., 4080 × 2720 pixels and above) still
image camera that takes two evidentiary pictures (Shot A and Shot B) intended to show a violator
before the stop bar and at the intersection. The license plate of the violator is acquired from high‐
resolution evidentiary images captured by the first camera. The high‐resolution cameras might also
have NIR capabilities to enable night-time functionality with an external IR illuminator. NIR cam-
eras, however, capture images in grayscale, which can be restrictive in some evidentiary settings.
Therefore, in most RLC systems, RGB cameras are used with a visible light illuminator to provide
night-time functionality. The illuminator is flashed behind the violator to view the rear license plate
and to prevent disrupting the driver. The second camera (i.e., the lower camera in Figure 5.8) oper-
ates at lower resolution (e.g., 896 × 596 pixels) and captures a video of the incident given a trigger

Still camera

The second image records the vehicle
proceeding through the intersection

while the light is red

The first image records the
vehicle behind the stop bar

while the light is red

Stop
line

Video
camera

Strobe

Wireless
detection
sensor

Controller

Detection zone

Figure 5.8 Red light enforcement system as described in Ref. [43]. Source: App. No 14/278196.

Computer Vision and Imaging in Intelligent Transportation Systems118

from the violation detection module. The captured video along with the high‐resolution evidentiary
photos are transferred to a processing center for manual review. A citation ticket is mailed to the
registered owner of the vehicle once a violation is manually reviewed.

5.3.1.2 RLC, Computer Vision Systems
Induction loops in RLC systems are typically installed at a distance from the intersection for safety
reasons, so that traffic lights can be automatically switched based on the speed of approaching vehi-
cles to prevent T‐bone crashes [44]. The performance of the violation detection module is adversely
impacted as the speed estimation is performed further away from the traffic lights, especially for
vehicles abruptly stopping before reaching the intersection. In these cases, the violation detection
module identifies the vehicle as a violator based on the measured speed of the vehicle before the stop
bar, and triggers the enforcement camera. In one operating RLC system, for example, it is reported
that only 20% of the detected cases were actual violators and the remainders were false positives
detected by the violation detection module [43]. In current RLC implementations, the evidentiary
photos and videos of potential violators are manually reviewed to avoid issuing improper citations to
the false positives caused by vehicles making a sudden stop at the traffic light.

Most of the computer vision and video analytics algorithms in the literature focus on the violation
detection module [43, 45–50]. The proposed computer vision and video analytics algorithms can be
divided into two main groups. The methods in the first group propose techniques to complement
and support existing RLC systems to reduce the need for the costly manual review process [43, 45].
These methods propose the use of postprocessing techniques on the evidentiary images/videos to
reduce number of false positive that go to human review. Reference [43], for example, proposes an
algorithm to reduce false detections of nonviolators using the two evidentiary images captured
before the vehicle reaches the stop bar (e.g., Shot A) and when the vehicle is at the intersection (e.g.,
Shot B) as shown in Figure 5.9. A feature matching algorithm is applied between the Shot A and Shot
B images using speeded up robust feature (SURF) points and a violation/nonviolation decision is
made based on the attributes of the matched features. The decision is made based on a criterion of
finding “coherent clusters of matched features” that comply with the attributes of the matched fea-
tures on a violating vehicle as shown in Figure 5.10. More specifically, a violation is detected from the

First evidentiary image
(Shot A)

Extract features
and feature
descriptions

Examine
attributes of
the matched

features

Make
decision

Extract features
and feature
descriptions

Second evidentiary image
(Shot B)

Match
features

Figure 5.9 High‐level overview of the red light violation detection system proposed in Ref. [43] from evidentiary
photos. Source: App. No 14/278196.

Detection of Moving Violations 119

evidentiary images if a coherent cluster of matched features is detected satisfying the following
conditions:

 ● Length of lines connecting matched feature pairs within the cluster are longer than a specific
threshold T.

 ● Angle lines connecting matched feature pairs within the cluster are within a specified angular
interval around the road direction.

 ● Matched feature pairs within the coherent cluster should all start before the stop bar and end in the
intersection.

Reference [45] proposes another computer vision method to support existing RLC systems by
reducing false positives. The method analyses the evidentiary video clips to automatically identify
and distinguish violators from nonviolators. The following steps are included in the method: (i)
defining ROIs in the video (i.e., virtual detection zones before traffic lights for vehicle detection); (ii)
detecting the state of traffic lights; (iii) when a vehicle is detected in the ROI and the traffic light is
red, extracting a set of attributes/features from the vehicle and tracking it across frames; and (iv)
processing and analyzing the trajectories of the tracked vehicles to identify a violation. When cou-
pled with the method in Ref. [43], it is reported that a significant reduction can be achieved in auto-
matically reducing false positives of current RLC systems [45].

The second group of computer vision methods eliminate the need for induction loops by using
video cameras to identify violations in real time [46–52]. Video‐based violation detection provides a
nonobtrusive approach that can reduce construction and maintenance costs associated with the
installation of induction loops in the pavement. Figure 5.11 illustrates an overall block diagram of the
video‐based red light violation detection system proposed in Ref. [48]. The system consists of two
main modules: (i) traffic light sequence detection (TLSD) module that determines the spatial coor-
dinates of the lights and estimates light sequence from video, and (ii) vehicle motion estimation
(VME) module to detect a red light running violation. The position of traffic lights in a video can be
determined by performing edge detection and finding the closed loops corresponding to the shape
of the traffic signals within the edge map. This, however, is a challenging task given that outdoor
scenes are uncontrolled and can be quite complex. A better way to find the position of traffic lights
is based on detection of colored regions in video. This detection requires multiple frames as different

(a) (b)

Figure 5.10 Feature matching in evidentiary red light images from Ref. [43]. Matched SURF features in Shot A and
Shot B images (a), and coherent cluster of matched features after eliminating feature pairs irrelevant to red light
violation (b). Source: App. No 14/278196.

Computer Vision and Imaging in Intelligent Transportation Systems120

lights turn on at different times. Colored regions can be detected in various color spaces. Reference
[48] performs color segmentation for red, yellow, and green regions in the Hue-Saturation-Value
(HSV) color space based on the following criteria:

Red region , , and ,I x y I x y t I x y tH h V v:

Yellow region , , and ,I x y I x y t I x y tH h V v:

3

Green region , , and , ,I x y I x y t I x y tH h V v: 2

3

where I(x, y) represents the current frame, IH(x, y) and IV(x, y) represent the hue and value channels
of the current frame. th and tv are threshold values to account for color variations in outdoor environ-
ments. Reference [48] reports typical values for the thresholds th and tv as π/6 and 0.7, respectively.
The location of a traffic light in the video is then determined by finding red, yellow, and green regions
that are spatially related (i.e., in sequence from top to bottom) and having similar sizes. After finding
the location of traffic lights in the video, they are continuously monitored, as well as tracked for
 possible movement, to determine the sequence of the lights as the video is streamed. In the VME
module, the first step is detecting the stop line in the video. This detection is performed from a single
background frame where the stop line is visible. The background frame can be constructed at the
initialization using conventional background subtraction methods [48]. The stop line is then detected
by applying a Hough transform on the constructed background image where the a priori information
about the orientation of the stop line is assumed to be precalculated based on the traffic flow along
the street. The stop line is expected to be orthogonal to the traffic flow, which can be estimated by
the predominant motion vectors calculated in the video over a period of time.

After detecting the stop line, a prohibited zone is defined beyond the stop line toward intersection.
When the lights are red, no moving car is expected to be seen in the prohibited zone moving along

Traffic light sequence detection

Traffic light
detection

Stop line
detection

De
ning virtual
loop detectors

Motion estimation
in virtual loop

detectors

Red light violation
detection

Vehicle motion estimation

Estimating the state
of traffic lights

(Red, yellow, green)

Figure 5.11 Block diagram for the video‐based red light violation detection system based on Ref. [48]. Source: Yung
and Lai [48]. Reproduced with permission of IEEE.

Detection of Moving Violations 121

the road direction. In order to detect moving vehicles, a number of virtual loop detectors (VLDs) are
defined in the prohibited zone. The number of VLDs depends on both the size of the prohibited zone
and the size of the VLDs. Following assignment of VLDs, a reduction process is performed to elimi-
nate redundant VLDs based on the mean and standard deviation of motion vectors across a small set
of frames with vehicle motions. The loop detectors that fall into any of the following categories are
eliminated:

 ● VLD with average motion vector not aligned with the road orientation
 ● VLD with average motion vector magnitude lower than the mean magnitude over all VLDs
 ● VLD with standard deviation of the motion vector magnitude higher than the average standard

deviation of motion vector magnitude over all VLDs

Given a reduced number of VLDs and a signal from the TLSD, the motion of each VLD is esti-
mated by using a block matching algorithm between two consecutive frames. The block matching
algorithm tries to find the best match in the target frame (i.e., the first frame) corresponding to the
block in the reference frame (i.e., the second frame) in terms of mean absolute difference (MAD). A
violation decision is made based on the calculated motion vectors for all VLDs and the signal from
the TLSD. If motion along the road direction is detected in more than half of the VLDs with magni-
tudes larger than half of the mean magnitudes of motion vectors for a given lane, the algorithm
makes a decision that the vehicle is in violation.

While VLDs detect red light runners by mimicking the function of induction loops, alone they are
not able to distinguish legal right‐turning vehicles from the red light violators, which in turn causes
false positives for right‐turning vehicles. Figure 5.12 illustrates three trajectories that a vehicle can
follow at a junction. The first two trajectories correspond to red light runners, while the third tra-
jectory is for the vehicles making a legal right turn. Tracking‐based approaches have been proposed
in the literature to address this issue [45, 49–52]. Similar to the VLD method, these methods also
use video cameras to detect the traffic light sequence without a direct connection to traffic light
controller. Apart from traffic light and stop line detection, these methods typically include the fol-
lowing three main steps to detect red light runners: vehicle detection, vehicle tracking, and trajec-
tory analysis. Reference [51], for example, proposes a tracking‐based method where vehicle
detection is performed using motion analysis. Another common way to detect vehicles is using

Figure 5.12 Three situations in the cross junction. The VLDs cannot distinguish right turns (situation 3) from the red
light violations (situations 1 and 2). Source: Luo and Qin [51]. Reproduced with permission of IEEE.

Computer Vision and Imaging in Intelligent Transportation Systems122

background subtraction where the background image is adaptively updated using the current frame
and background image [49]. Background subtraction can be performed in conventional red, green,
and blue channels [49] or in the hue channel after converting RGB image to HSV color space [52].
Once a vehicle is detected in the prohibited region using either motion analysis or background
subtraction, the detected vehicle is first checked for correspondence with a vehicle already being
tracked. This check ensures that only one tracker is assigned to a vehicle to prevent additional com-
putation burden in tracking. If the detected vehicle is not in the list of vehicles already being tracked,
a set of attributes/features are extracted from the detected vehicle. The extracted attributes/fea-
tures depend on the type of the tracker used. After extracting a set of features/attributes from the

Start of time t frame

End of time t frame

Extract good features

Predict state with Kalman �lter

Group features using world
coordinates

Select group (object)

Is object validated?
N

N

Y

Y

Is object outside
of de�ned area?

Make traveling trajectory

Save images and
traveling trajectory

Delete features

Figure 5.13 Flowchart of the tracking algorithm proposed in Ref. [49]. Source: Lim et al. [49]. Reproduced with
permission of IEEE.

Detection of Moving Violations 123

detected region, they are tracked across the video. The tracking is performed as long as the vehicle
stays within the field of view of the camera. Tracking techniques such as mean shift tracking, con-
tour tracking, Kalman filtering, KLT tracking, and particle filtering can be employed. Figure 5.13,
for example, shows the flowchart of the tracking algorithm used in Ref. [49]. The tracking algorithm
specifically uses Kalman filtering where the state p(t) at time t is defined as the 4D vector including
the center and size of the vehicle. The state transition between time t and t 1 is expressed as
follows:

 p p wt t t t t1 1* , .

Here, t t, 1 and w(t) are a 4 × 4 identity state transition matrix and a noise term, respectively.
The output of the tracking algorithm is a sequence of x–y coordinates {(x1, y1), (x2, y2), …, (xn, yn)}

that shows the pixel position of the vehicle in the image plane at each time instant where n denotes
the number of moving points. Ideally, it is desired that the sequence is continuous along the y‐axis in
a way that for every yi there is a corresponding xi so that violation detection can be determined using
the continuity of the trajectory. This continuity in the sequence, however, is not always possible due
to variations in vehicle speed, occlusion, and camera geometry. References [50] and [51] perform a
cubic spline interpolation in order to complete the missing points in the sequence and provide con-
tinuity in the trajectory. For a viewing geometry similar to Figure 5.12, the violation decision is made
based on the following criteria:

 ● As yi values in the sequence increase, the extent of the change in the corresponding xi values is less
than a predefined threshold T; the vehicle is concluded as going straight, which in turn indicates a
red light violation.

 ● As yi values in the sequence increase, the corresponding xi values also increase and the extent of
the increase is larger than a predefined threshold T; the trajectory is determined to be that of a
left‐turning vehicle and indicates a red light violation.

 ● As yi values in the sequence increase, the corresponding xi values reduce and the extent of the
reduce is larger than a predefined threshold T; the trajectory is determined to be that of a right‐
turning vehicle.

Other alternative methods for trajectory analysis have been also considered in the literature for red
light violation detection [45, 49]. Reference [49], for example, determines a red light violation using
template matching techniques from the calculated trajectories. Reference [45] proposes a technique
that investigates start and end points of the calculated trajectory, where a violation is detected if any
of the calculated trajectories has a component in an ROI defined after the traffic lights. In the case of
a point tracker, a coherent cluster of trajectories, all having a component in the ROI, can be required
to declare a violation.

5.3.2 Stop Sign Enforcement Systems

Nearly 700 thousand annually police‐reported motor vehicle crashes and one‐third of all intersection
crashes in the United States occur at stop signs. Approximately one‐third of intersection crashes
involve injuries, and more than 40 percent of all fatal crashes occur at stop sign–controlled intersec-
tions [53]. Stop sign cameras are a relatively new tool applied to reducing stop sign violations, and
resulting accidents [54–56]. The deployed stop sign camera systems are based roughly on RLC plat-
forms, but they differ in the violation–detection mechanism. Stop sign compliance requires a com-
plete stop (zero velocity), which cannot be detected reliably with induction loops. One proposed

Computer Vision and Imaging in Intelligent Transportation Systems124

system uses a laser speed detector to measure velocity operating within a particular distance range
for a given lane [57]. Reference [55] describes a system using a combination of high‐resolution still
images with full‐motion video for irrefutable evidence.

Stop sign violation detection based solely on computer vision has been proposed in the literature.
Reference [58] proposes a video‐based method using motion vectors. The motion vectors can be
read from the live, incoming video stream, or it can be read from a partially decompressed video file
that may have been sent to a server for processing. Key steps in the method include the following: (i)
capture video using the camera directed at the target stop area; (ii) determine motion vectors from
the incoming video stream; (iii) detect the presence of a vehicle that moves across the target area by
using a cluster of the motion vectors that are above a threshold in length; (iv) determine whether the
detected vehicle stopped within the target area by using a cluster of motion vectors and a motion
vector length threshold; (v) if a violation is detected, provide a signal of violation; and (vi) optionally,
frames that capture the start, middle, or end of the violation event can be encoded as reference
frames to facilitate future searches or rapid retrieval of evidentiary imagery.

In one version of the method proposed in Ref. [58], a block‐based approach is used to generate the
motion vectors. Motion vectors in block‐based approaches describe motion between matching
blocks across adjacent frames. The current frame is divided into a number of blocks of a predeter-
mined size, for example, 16 × 16 pixels. For each reference block of m × n pixels in a reference frame,
a current frame is searched for a target block that is most similar to the reference block. A search
window can be defined around the location of the reference block in the reference frame. The search
for the best‐matching block in a corresponding region of the search window can be conducted using
a process, such as, a full extensive search, a binary search, a three‐step search, spiral search algo-
rithms, and a combination of these.

The search is achieved by computing a similarity measure between each reference block and
potential target blocks in the current frame. Displacements are computed between the select refer-
ence block and the target blocks. The displacement can computed using a mean‐squared error (MSE)
or MAD as follows:

MSE , , , ,d d

mn
B k l j B k d l d j1 2 1 2

21 1, , (5.18)

MAD , , , ,d d

mn
B k l j B k d l d j1 2 1 2

1 1, , (5.19)

where (d1, d2) is the vector that describes the relative displacement between reference and target
blocks, and B(k,l,j) denotes the pixel located on the kth row and lth column of the m × n block of
pixels in the jth frame; (j − 1)th frame is the reference frame, and jth frame is the current frame.
Because both MSE and MAD measure how dissimilar two blocks are, the similarity measure can be
defined as the reciprocal or the negative MSE or MAD. As mentioned earlier, this vector‐based
method can be used on partial uncompressed video that may have been sent to a server for off‐line
processing. Compression/decompression algorithms, such as the H264 and MPEG4 algorithms, can
be used for extracting the motion vectors. If the standard compression block size and motion vectors
are not sufficiently accurate, at minimum they can be used to screen for potential violators that are
more deeply analyzed.

While the previous violations involve stopping at an intersection, school buses present a stop sign
scenario that can occur in various locations along a roadway. The potential for injury to a child is
quite high when vehicles drive past a school bus that is loading and unloading children. Although the

Detection of Moving Violations 125

buses activate flashing red lights and deploy a stop sign, it is estimated that 50,000 vehicles illegally
pass a school bus each day in New York State alone [59]. Cameras are being deployed to aid in the
enforcement of school bus signs. While some enforcement systems are using manual review of video
to detect violators, others are proposing computer vision solutions with significantly reduced labor
and cost [60]. In Ref. [60], the video is partitioned into segments each corresponding to a single bus
stop, moving vehicles are detected using techniques such as frame differencing or analysis of motion
vectors, frames are tagged where moving vehicles are detected, license plates are localized, and auto-
matic license plate recognition (ALPR) is performed.

5.4 Other Violations

Driver violations at intersections are the major cause of fatal accidents in urban traffic. According to
the USDOT, nearly half of all traffic accidents and 20% of all fatal crashes occur in close proximity to
an intersection [29]. This statistic has remained substantially unchanged since the past decade
despite significant efforts by transportation agencies for improved intersection designs and sophisti-
cated applications of transportation engineering [29]. To combat this persistent trend, municipalities
and law enforcement agencies are employing automated stop enforcement technologies at red lights
and stop signs, as well as for stopped school buses.

5.4.1 Wrong‐Way Driver Detection

According to the US National Transportation Safety Board [61], wrong‐way driving is “vehicular
movement along a travel lane in a direction opposing the legal flow of traffic.” Although wrong‐way
driving events occur relatively infrequently (accounting for only 3% of accidents on high‐speed
divided highways), they can result some of the most serious types of accidents that occur on high-
ways. Consequently, accidents resulting from wrong‐way driving are much more likely to result in
fatal and serious injuries than other types of accidents. As a result, considerable effort has been put
into developing technologies that enable prevention and detection of wrong‐way drivers. While
detection systems based on microwave and magnetic sensors, as well as on Doppler radar, have been
proposed [62], we focus on systems relying on video acquisition and processing.

In one instance, the authors of Ref. [63] exploited the fact that a wrong‐way driving event is an
anomalous event and, consequently, detectable by a system that is aware of expected patterns of
motion associated with traffic on a highway. Based on this assumption, they propose a system that
undergoes a learning stage in which optical flow is computed for video sequences in which vehicles
are traversing the highway in a lawful manner. The normal direction of motion for each lane in the
scene is represented by a mixture of Gaussians aimed at modeling the statistical behavior of the ori-
entation parameter in the optical flow field. Once a model is constructed, optical flow is computed
from frames in the incoming video feed. A determination is made that an object is traveling in the
wrong direction when the difference between the direction of the flow associated with the object and
that learned by the model is larger than 2.57 times the standard deviation of the closest matching
Gaussian component in the model. In order to minimize false alarms, a verification stage ensures
that a wrong‐way notification is only issued when an anomalous motion pattern is detected more
than n times across m consecutive frames, for two positive integers n and m. In Ref. [62], the feasibility
of a thermal imaging system aimed at detecting entry of wrong‐way vehicles onto the highway system
was tested. The proposed system relied on a long‐range thermal camera with dual detection zones
that estimated the direction of travel of vehicles entering and exiting the highway based on the

Computer Vision and Imaging in Intelligent Transportation Systems126

sequence of and the temporal intervals between the triggered detections. The performance of the
proposed system was shown to outperform that of competing systems based on regular RGB imag-
ing, which failed to detect wrong‐way vehicles at night when the vehicle headlights were off.

5.4.2 Crossing Solid Lines

Unsafe lane changes account for a high percentage of the total accidents that occur on the road,
 second only to speeding. There are several scenarios for unsafe lane changes, a common one being
overtaking a vehicle by crossing a solid line. The corresponding accidents are often quite severe due
to the head‐on nature of the collisions. Crossing a solid line is a moving violation in many jurisdic-
tions worldwide. One photo enforcement system described in the literature is known as Police Eyes
[64]. Police Eyes operates by detecting moving blobs and their intersection with a violation region.
Key steps in the Police Eyes systems are the following:

1) System Initialization: An operator specifies a violation region and the processing area on an initial
image indicated by manually clicking on image points.

2) Image Acquisition from IP Cameras: Images are acquired from two IP cameras continuously.
A low‐resolution image from one camera is used to detect blobs and to identify violations. A high‐
resolution image from the second camera is used to identify the vehicle. The images and video
clips and can be later used for evidentiary purposes and to reject nontrivial cases such as avoid-
ance of hazards.

3) Update a Background Model and Background Subtraction: The background model is initialized
using a single frame and then updated for every new frame. A Gaussian mixture model is used for
every pixel in the image. The number of Gaussian components is constantly adapted per pixel.
Frame differencing from the background model produces a foreground image.

4) Shadow Detection: Shadow pixels must be removed from the foreground image to avoid false
violation detections. Shadow pixels are identified using a combination of normalized cross‐
correlation between the foreground region and the corresponding background pixels, along with
RGB vector distances between the foreground pixels and underlying background pixels.

5) Blob Extraction: Foreground blobs are extracted from the foreground image through connected
component analysis after performing morphological operations on the foreground image to
remove noisy blobs. The base profile is extracted for each remaining blob. The base of a blob is
identified as the set of lowermost pixels of the external contour of the blob.

6) Violation Analysis: Analysis of the region of intersection of the base profile of each blob with the
violation area is used to detect violations.

 References

1 Traffic Safety Facts, 2012 Data, Speeding, National Highway Traffic Safety Administration, NHTSA’s
National Center for Statistical Analysis, Washington, DC, DOT HS 812 021 (2014).

2 The Economic and Societal Impact of Motor Vehicle Crashes, NHTSA’s National Highway Traffic
Safety Administration, National Center for Statistical Analysis, Washington, DC, DOT HS 812 013,
(2010) (Revised).

3 L. Thomas, R. Srinivasan, L. Decina, and L. Staplin, Safety effects of automated speed enforcement
programs: critical review of international literature, Transportation Research Record: Journal of the
Transportation Research Board, 2078, 117–126, 2008, Transportation Research Board of the National
Academies, Washington, DC.

Detection of Moving Violations 127

4 A. Yilmaz, O. Javed, and M. Shah, Object tracking: a survey, ACM Computing Surveys, 38(4),
1–45, 2006.

5 N. K. Kanhere and S. T. Birchfield, A taxonomy and analysis of camera calibration methods for traffic
monitoring applications, IEEE Transactions on Intelligent Transportation Systems, 11(2), 441–
452, 2010.

6 D. J. Dailey, F. W. Cathey, and S. Pumrin, An algorithm to estimate mean traffic speed using
uncalibrated cameras, IEEE Transactions on Intelligent Transportation Systems, 1(2), 98–107, 2000.

7 S. Pumrin and D. J. Dailey, Roadside camera motion detection for automated speed measurement, in
Proceedings of the IEEE 5th International Conference on Intelligent Transportation Systems,
Singapore, September 3–6, 2002, pp. 147–151.

8 T. N. Schoepflin and D. J. Dailey, Dynamic camera calibration of roadside traffic management
cameras for vehicle speed estimation, IEEE Transactions on Intelligent Transportation Systems, 4(2),
90–98, 2003.

9 Z. Zhang, T. Tan, K. Huang, and Y. Wang, Practical camera calibration from moving objects for
traffic scene surveillance, IEEE Transactions on Circuits and Systems for Video Technology, 36(5),
1091–1103, 2013.

10 F. W. Cathey and D. J. Dailey, A novel technique to dynamically measure vehicle speed using
uncalibrated roadway cameras, in Proceedings of IEEE Intelligent Vehicles Symposium, Las Vegas, NV,
June 6–8, 2005, pp. 777–782.

11 N. K. Kanhere, S. T. Birchfield, and W. A. Sarasua, Automatic camera calibration using pattern
detection for vision‐based speed sensing, in Transportation Research Board Annual Meeting, 87th
Annual Meeting, Washington, DC, January 13–17, 2008, pp. 30–39.

12 J. Wu, Z. Liu, J. Li, C. Gu, M. Si, and F. Tan, An algorithm for automatic vehicle speed detection using
video camera, in Proceedings of 2009 4th International Conference on Computer Science and
Education, Nanning, July 25–28, 2009.

13 L. G. C. Wimalaratna and D. U. J. Sonnadara, Estimation of the speeds of moving vehicles from video
sequences, in Proceedings of the Technical Sessions, 24, March 2008, pp. 6–12, Institute of Physics,
Colombo, Sri Lanka. http://www.ipsl.lk/index.php/technical‐sessions/18‐publications/technical‐
sessions/58‐volume‐24‐2008 (accessed on October 14, 2016).

14 L. Grammatikopoulos, G. Karras, and E. Petsa (GR), Automatic estimation of vehicle speed from
uncalibrated video sequences, in Proceedings of the International Symposium on Modern
Technologies, Education and Professional Practice in Geodesy and Related Fields, Sofia, November
2005, pp. 332–338.

15 A. G. Rad, A. Dehghani, and M. R. Karim, Vehicle speed detection in video image sequences using
CVS method, International Journal of the Physical Sciences, 5(17), 2555–2563, 2010.

16 E. A. Bernal,W. Wu, O. Bulan, and R. P. Loce, Monocular vision‐based vehicular speed estimation
from compressed video streams, in Proceedings of the 16th International IEEE Conference on
Intelligent Transportation Systems for All Transport Modes, The Hague, October 6–9, 2013.

17 P. Bellucci, E. Cipriani, M. Gagliarducci, and C. Riccucci, The SMART project: speed measurement
validation in real traffic condition, in Proceedings of the 8th International IEEE Conference on
Intelligent Transportation Systems, Vienna, September 16–16, 2005.

18 Z. Tian, M. Kyte, and H. Liu, Vehicle tracking and speed measurement at intersections using video‐
detection systems, ITE Journal, 79(1), 42–46, 2009.

19 Available: http://project‐asset.com/data/presentations/P_011‐4.pdf (accessed on September
19, 2016).

20 J. Battle, E. Mouaddib, and J. Salvi, Recent progress in coded structured light as a technique to solve
the correspondence problem: a survey, Pattern Recognition, 31(7), 963–982, 1998.

Computer Vision and Imaging in Intelligent Transportation Systems128

21 C. Stauffer and W. Grimson, Adaptive background mixture models for real‐time tracking, in
Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,
Fort Collins, CO, June 23–25, 1999.

22 G. Gordon, T. Darrell, M. Harville, and J. Woodfill, Background estimation and removal based on
range and color, in Proceedings of the IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, Fort Collins, CO, June 23–25, 1999.

23 K. Ni and F. Dellaert, Stereo tracking and three‐point/one‐point algorithms: a robust approach in
visual odometry, in Proceedings of the IEEE International Conference on Image Processing, Atlanta,
October 8–11, 2006.

24 S. Baker and I. Matthews, Lucas‐Kanade 20 years on a unifying framework, International Journal of
Computer Vision, 56(3), 221–255, 2004.

25 R. Balasubramanian, S. Das, S. Udayabaskaran, and K. Swaminathan, Quantization error in stereo
imaging systems, International Journal of Computer Math, 79(6), 671–691, 2002.

26 L. Hardin and L. Nash, Optical range and speed detection system. U.S. Patent No. 5,586,063,
December 17, 1996.

27 Available: http://www.imagsa.com/main/images/datasheet/Atalaya3D_Speed.pdf (accessed on
September 19, 2016).

28 Available: http://www.foxnews.com/leisure/2011/11/11/russian‐super‐speed‐camera‐can‐issue‐
thousands‐tickets‐per‐hour/ (accessed on September 19, 2016).

29 The National Intersection Safety Problem, Brief Issues #2, U. S. Department of Transportation,
Federal Highway Administration, FHWA‐SA‐10‐005.

30 R. A. Retting, A. F. Feldman, C. M. Farmer, and A. F. Williams, Evaluation of red light camera
enforcement in Fairfax, Va., USA, ITE Journal, 69, 30–35, 1999.

31 R. A. Retting, R. G. Ulmer, and A. F. Williams, Prevalence and characteristics of red light running
crashes in the United States. Accident Analysis and Prevention, 31, 687–694, 1999.

32 T. Supriyasilp, D. S. Turner, and J. K. Lindly, Pilot Study of Automated Red Light Enforcement.
University Transportation Center for Alabama (UTCA) Report 470, September 30, 2003.

33 S. E. Hill and J. K. Lindly, Red light running prediction and analysis. Ph.D. dissertation, University of
Alabama, 2002.

34 R. A. Retting, S. A. Ferguson, and C. M. Farmer, Reducing red light running through longer yellow
signal timing and red light camera enforcement: results of a field investigation, Accident Analysis and
Prevention, 40, 327–333, 2008.

35 J. A. Bonneson and H.J. Son, Prediction of expected red‐light running frequency at urban
intersections. Transportation Research Record: Journal of the Transportation Research Board, 1830,
38–47, 2003.

36 J. A. Bonneson and K. H. Zimmerman, Effect of yellow‐interval timing on the frequency of red light
violations at urban intersections. Transportation Research Record: Journal of the Transportation
Research Board, 1865, 20–27, 2004.

37 P. Guerin, City of Albuquerque Yellow Light Timing Change and All‐Red Clearance Interval Timing
Change Effectiveness Study Final Report. Prepared for: The City of Albuquerque, Department of
Municipal Development and the Office of the Mayor, September 2012. http://isr.unm.edu/
reports/2012/city‐of‐albuquerque‐yellow‐light‐timing‐change‐and‐all‐red‐clearance‐interval‐time‐
change‐effectiveness‐study‐final‐report..pdf (accessed on October 14, 2016).

38 Q. Yang, L. D. Han, and C. R. Cherry, Some measures for sustaining red‐light camera programs and
their negative impacts, Transport Policy, 29, 192–198, 2013.

39 D. M. Smith, J. McFadden, and K. A. Passetti, Automated enforcement of red light running
technology and programs: a review, Transportation Research Record: Journal of the Transportation
Research Board, 1734, 29–37, 2000.

Detection of Moving Violations 129

40 R. A. Retting, S. A. Ferguson, and A. S. Hakkert, Effects of red light cameras on violations and
crashes: a review of the international literature, Traffic Injury Prevention, 4, 17–23, 2003.

41 K. A. Passetti and T. H. Hicks, Use of automated enforcement for red light violations. Texas A&M
University, College Station (1997).

42 R. W. Lock, Image recording apparatus and method. U.S. Patent No. 8,390,476. March 5, 2013.
43 O. Bulan, A. Burry, and R. P. Loce, Short‐time stopping detection from red light camera evidentiary

photos. U.S. Patent App. No 14/278196, filed May 15, 2014
44 M. Glier, D. Reilly, M. Tinnemeier, S. Small, S. Hsieh, R. Sybel, and M. Laird, Method and apparatus

for traffic light violation prediction and control. U.S. Patent App. No. 09/852487, published May
9, 2002.

45 O. Bulan, A. Burry, and R. P. Loce, Short‐time stopping detection from red light camera videos. U.S.
Patent App. No 14/278218, filed May 15, 2014.

46 O. Fucik, P. Zemcik, P. Tupec, L. Crha, and A. Herout, The networked photo‐enforcement and traffic
monitoring system Unicam, in Proceedings of the 11th IEEE International Conference and Workshop
on Engineering of Computer‐Based Systems, Brno, May 27, 2004, pp. 423–428.

47 Camea, Red light monitoring, http://www.camea.cz/en/traffic‐applications/enforcement‐systems/
red‐light‐violation‐detection‐unicamredlight‐2/ (accessed December 3, 2014).

48 N. H. C. Yung and H. S. Lai, An effective video analysis method for detecting red light runners, IEEE
Transactions on Vehicular Technology, 50(4), 1074–1084, 2001.

49 D. W. Lim, S. H. Choi, and J. S. Jun, Automated detection of all kinds of violations at a street
intersection using real time individual vehicle tracking, in Proceedings of the Fifth IEEE Southwest
Symposium on Image Analysis and Interpretation, Sante Fe, NM, April 9, 2002, pp. 126–129.

50 M. Heidari and S. A. Monadjemi, Effective video analysis for red light violation detection, Journal of
Basic and Applied Scientific Research, 3(1), 642–646, 2013.

51 D. Luo, X. Huang, and L. Qin, The research of red light runners video detection based on analysis of
tracks of vehicles, in Proceedings of the IEEE International Conference on Computer Science and
Information Technology, Singapore, August 29 to September 2, 2008, pp. 734–738.

52 K. Klubsuwan, W. Koodtalang, and S. Mungsing, Traffic violation detection using multiple
trajectories evaluation of vehicles, in Proceedings of the 4th International Conference on Intelligent
Systems Modelling and Simulation (ISMS), Bangkok, January 29–31, 2013. IEEE.

53 Insurance Institute for Highway Safety, 37, No 9, October 26, 2000. http://safety.fhwa.dot.gov/
intersection/conventional/unsignalized/case_studies/fhwasa09010/ (accessed on October
14, 2016).

54 TheNewspaper.com: Driving Politics. Stop Sign Ticket Cameras Developed: New Stop Sign Cameras
Will Issue Automated Tickets for Boulevard Stops. http://www.thenewspaper.com/news/17/1742.
asp, September 5, 2007.

55 http://www.bypass.redflex.com/application/files/5814/4902/9070/redflexstop.pdf (accessed October
14, 2015).

56 M. Trajkovic and S. Gutta, Vision‐based method and apparatus for monitoring vehicular traffic
events. U.S. Patent 6,442,474, August 27, 2002.

57 M. Phippen and D. W. Williams, Speed measurement system with onsite digital image capture and
processing for use in stop sign enforcement. U.S. Patent No. 6,985,827. January 10, 2006.

58 E. Bernal, O. Bulan, and R. Loce, Method for stop sign law enforcement using motion vectors in
video streams. U.S. Patent App. No. 13/613174, March 13, 2014.

59 OPERATION SAFE STOP, An Educational Campaign by the New York Association for Pupil
Transportation. Prepared by NYAPT through the National Transportation Safety Administration
under a grant from the Governor’s Traffic Safety Committee. http://slideplayer.com/slide/1508781/
(accessed on October 14, 2016).

Computer Vision and Imaging in Intelligent Transportation Systems130

60 A. Burry, R. Bala, and Z. Fan, Automated processing method for bus crossing enforcement. U.S. Patent
App. No. 13/210447, published February 21, 2013.

61 US National Transportation Safety Board, Wrong‐Way Driving. Special Investigative Report 12/01.
US National Highway Traffic Safety Administration, 2012. pp. 1–77.

62 S. Simpson, Wrong‐way Vehicle Detection: Proof of Concept, Report to the Arizona Department of
Transportation Research Center, FHWA‐AZ‐13‐697, March 2013.

63 G. Monteiro, M. Ribeiro, J. Marcos, and J. Batista, A framework for wrong‐way driver detection using
optical flow, Proceedings of the 4th International Conference on Image Analysis and Recognition,
Montreal, August 22–24, 2007.

64 R. Marikhu, J. Moonrinta, M. Ekpanyapong, M. Dailey, and S. Siddhichai, Police eyes: real world
automated detection of traffic violations, in Proceedings of the 2013 10th International Conference on
Electrical Engineering/Electronics, Computer Telecommunications and Information Technology
(ECTI‐CON), Krabi, May 15–17, 2013.

131

Computer Vision and Imaging in Intelligent Transportation Systems, First Edition.
Edited by Robert P. Loce, Raja Bala and Mohan Trivedi.
© 2017 John Wiley & Sons Ltd. Published 2017 by John Wiley & Sons Ltd.
Companion website: www.wiley.com/go/loce/ComputerVisionandImaginginITS

6.1 What is Traffic Flow Analysis?

6.1.1 Traffic Conflicts and Traffic Analysis

Traffic is the movement of people and goods in the public space. Some people can ride a car, a public
transport vehicle, a bicycle, or travel on foot. This movement will generate interactions between
people: in one moment two individuals who are circulating may coincide at the same point. These
interactions give rise to the so‐called traffic conflicts [1].

Traffic conflict will occur when two or more people intend to use the same resource of the transport
system simultaneously: a section of a road, an area within a junction, a space inside a public transport
vehicle. Depending on how and why traffic conflicts occur, they can be classified into converging
conflicts or directional conflicts. Converging conflicts take place in one portion of a road, traveling
in the same direction but at different speeds. Directional conflicts occur in an intersection due to the
various maneuvers made by vehicles.

Traffic flow can be studied from the point of view of traffic conflicts. Its study can be divided into
two approaches. The simplest one is uninterrupted traffic flow analysis, which studies converging
conflicts at road links, such as highways, rural roads, or viaducts not disrupted by junctions or entry/
exit ramps. Another, more complex alternative, is analysis of interrupted traffic flow, which considers
directional conflicts, such as those found at road junctions. We shall discuss uninterrupted traffic
flow analysis hereafter; however, when necessary, a brief reference to traffic signal analysis is made.

Uninterrupted flow is characterized by the absence of stops along a road due to junctions or ramps.
However, stops may occur because of interactions between vehicles traveling in the same direction.
The study of traffic in these conditions was historically the first to be carried out. There are two
approaches to the problem: the fluid‐dynamic model in which traffic is considered as a continuous
stream and its analysis is based on average steady‐state variables; and the car‐following model, which
studies the interaction between each pair of vehicles and extrapolates that analysis to the whole
 traffic stream. For simplicity, henceforth we discuss fluid‐dynamic traffic analysis.

6

Traffic Flow Analysis
Rodrigo Fernandez1, Muhammad Haroon Yousaf2, Timothy J. Ellis3,
Zezhi Chen3 and Sergio A. Velastin4

1 Universidad de los Andes, Santiago, Chile
2 University of Engineering and Technology Taxila, Taxila, Pakistan
3 Kingston University, London, UK
4 Universidad Carlos III de Madrid, Madrid, Spain

Computer Vision and Imaging in Intelligent Transportation Systems132

A section of road is not necessarily a straight line. There may be horizontal and vertical curves; in
addition, there may be more than one traffic lane and they have some width. However, from a view-
point of a section of 1000 m long, traffic can be represented along one spatial axis. Moreover, traffic
takes place during a time period; therefore, a time axis is also necessary to “see” the traffic. Then,
traffic takes place in a space–time “window.” Figure 6.1 shows how to observe the traffic of a group
of vehicles traveling at different speeds on a section of length L and during a time period T, where the
slopes of the time–space trajectories of vehicles are their speed [2].

In Figure 6.1, the slope of the time–space trajectories of the vehicles is their speed; the more
vertical the curve, the higher the speed. Also, it shows two points where converging conflicts are
solved in different ways. Point A represents an overtaking. At point B, the faster vehicle adjusts
its speed to the slower one. In the figure, traffic can be observed from two viewpoints. In a time
observation, the observer stands at a point s0 and sees what happens throughout the period T. In
this case, n = 5 vehicles. A space observation takes place at one instant of time t0 and the observer
takes a look of the whole section L, for example, from an aerial photograph, observing n′ = 4 vehicles.
Steady‐state variables of the traffic stream are obtained depending on the type of observation;
these are explained next.

6.1.2 Time Observation

Flow (q): It is also called flow rate or volume. It is the number n of vehicles passing the point s0 during
the period T. It is usually expressed in vehicles per hour (veh/h).

q n
T

 (6.1)

Time mean speed (vt): It is the arithmetic average of the instantaneous velocities (time–space
trajectories) of the n vehicles that pass the point s0 during the time period T. It is usually expressed
in kilometers per hour (km/h) or meters per second (m/s).

v
n

v
i

it
1 (6.2)

Space observation

Time observation

t0

s0

s

L
A

B

T

t

Figure 6.1 Time–space traffic
diagram.

Traffic Flow Analysis 133

6.1.3 Space Observation

Concentration (k): It is also called density. It is the space equivalent of the flow rate. It is the number,
n′, of vehicles observed at time t0 in entire section L. It is measured in vehicles per kilometer (veh/km).

k n
L

 (6.3)

Space mean speed (vs): It is the speed based on the average time taken to each vehicle to travel
 section L, in (km/h) or (m/s).

v L
t

L
n t n t L n vii ii ii

s / / / / /1
1

1
1

1 1

(6.4)

Consequently, the average space speed is the harmonic mean of the instantaneous speeds of vehicles
on the section L.

6.1.4 The Fundamental Equation

The relationship between the average steady‐state variables flow (q), concentration (k), and space
mean speed (vs) is called the “fundamental equation of traffic flow” and it can be demonstrated [2]
that it is given by the following equation:

q kvs (6.5)

The equation explains the behavior of an uninterrupted traffic stream. Note that the time mean
speed does not appear in the equation. However, it has been first demonstrated by Wardrop [3] that
the relationship between time and space means is the following:

v
v v v

vt
s

s s s
s

s
.1 2 2

2
 (6.6)

Here, s
2 is the variance of the space mean speed. That is, the time mean speed is greater than the

space mean. To be equal, the variance of space speeds should be 0. Hence, the importance of how the
speed is measured to calculate the appropriate means. On highways, if the traffic composition is
more or less the same, the variance of speeds is not too large. On the contrary, on urban roads, speeds
are quite different.

The fundamental equation establishes a relationship between three variables of traffic flow. As
such, it defines a plane that describes their behavior. However, it is possible to reduce this three‐
dimensional (3D) description establishing relationships between pairs of these variables.

6.1.5 The Fundamental Diagram

It has been postulated that the relationship between vs and k is the following linear function, where
vf is the free‐flow speed and kj is the jam concentration. The free‐flow speed is the speed chosen by
a driver traveling alone on a link, and the jam concentration is that at which a traffic stream stops
because vehicles are too close.

v v
k
ks f

j
1 (6.7)

Computer Vision and Imaging in Intelligent Transportation Systems134

Assuming that vs(k) is a linear function, from the fundamental equation q = kvs, the following
relationship between flow and concentrations q(k) can be found:

q v k v
k

kf
f

j

2 (6.8)

That is, the function q(k) is an inverted parabolic function which crosses the k‐axis at k = 0 and k = kj.
It is easily seen that the vertex of the parabola is located at k = kj/2 (Figure 6.2).

An important property of the flow is derived from the q(k) function. That is, there is a maximum
value for the flow. This maximum is the capacity Q of a road section, which is defined as “the maximum
number of vehicles per unit of time that can pass a point, under the prevailing traffic conditions.”
Therefore, the graphic q(k) is called the “fundamental diagram.” As the vertex of the parabola is
located at kj/2, then it follows that

Q
v kf j .

4
 (6.9)

Note that Q depends on parameters kj vf defined in the vs(k) function. Therefore, the capacity depends
on (i) physical characteristics of the road (e.g., geometric design and road surface); (ii) characteristics
of the driver (e.g., age, personality, and physical and psychological conditions); (iii) vehicle features
(e.g., power, acceleration, and maneuverability); (iv) environmental conditions (e.g., light, weather,
and environment); and (v) traffic composition (e.g., length and proportion of different type of vehicles).

For the aforementioned reasons, in the definition of capacity the statement “under the prevailing
traffic conditions” is included. Therefore, under different circumstances the value of the capacity
may change. Consequently, the capacity is not an absolute value even for the same section of a road.

6.1.6 Measuring Traffic Variables

As mentioned previously, the variables that describe traffic behavior are flow, speed, and concentra-
tion. However, from the viewpoint of traffic analysis in both highways and urban roads, the most
important ones are flow, capacity, and speed. The flow rate represents the demand of traffic through
a given device such as a road link, junction, ramp, and bottleneck. Similarly, capacity is the through-
put that those traffic devices can offer. On the other hand, speed (or inversely, the delay) represents
the quality of the traffic as a function of the rate between flow and capacity which is called the
“degree of saturation” x = q/Q [1].

q

kj /2 kj

k

Q

0

Figure 6.2 Flow concentration function.

Traffic Flow Analysis 135

The simplest data for traffic analysis is the flow of different vehicles passing a point on either a road
link or at a point such as junction, ramp, or bottleneck. Vehicle counting is divided into two classes:
user type and movement type. User‐type categories normally used in traffic counts are cars and light
goods vehicles (LGVs), medium goods vehicles, heavy goods vehicles (HGVs), buses and other public
transport, motorcycles, bicycles, pedestrians, and passengers. On the other hand, movement‐type
categories are through movements, right turns, left turns, and others (e.g., “U” turns) [4].

6.1.7 Road Counts

Traffic flows can be recorded either manually, using paper forms and tally counters, or by portable
electronic devices [5]. This is a simple method, but requires many man‐hours. Alternatively, data can
be obtained using automatic detectors such as pneumatic or piezoelectric sensors which count the
number of axles, instead of vehicles, passing a point on a time period. However, manually sample
counts are necessary to classify vehicles and verify the accuracy of these detectors.

Today, the use of inductive‐loop detectors is common either on top or under the road surface,
which count and classify vehicles according to their magnetic field. The advantage of the loop detec-
tors is that counts may be sent to a traffic control unit (TCU) via any data transmission system.

The use of image processing from video cameras is becoming popular because they “take the field
to the office,” so data can be reprocessed if any doubt arises. Cameras may be public (e.g., belong to
the TCU or the police), or they are located on the field by the traffic engineering team. The advantage
of this method is that flows of all type of vehicles may be obtained from the image instead of using
time‐consuming manual analysis.

6.1.8 Junction Counts

At junctions, counts must record the directional traffic conflicts. Therefore, it is necessary to count
the maneuvers of all vehicles that cross the junction. This task can be carried out either manually or
automatically [4].

Methods are the same as those described before. The main difference is that counters (people
or detectors) must be placed just downstream of the stop‐line of each approach to the junction,
because individual traffic streams are identified more easily at this point. The use of video cam-
eras and visual‐ or image processing should always be considered. In such a case, cameras should
be placed at elevated locations to get an appropriate view of the junction; for example, buildings
or structures.

There are other measurements for modeling purposes that should be carried out at junctions.
Among others are saturation flows at traffic signals (i.e., throughput during the green time); queue
lengths; and queuing times. Traditionally, these data have been collected by human observers because
they require selection and discrimination of traffic events (e.g., the instant at which a vehicles stops),
but video recordings with subsequent human processing are becoming popular among traffic engi-
neers [4, 5].

At complex junctions, large roundabouts or highway interchanges the use of any type of counter
that may be expensive in terms of time and resources. In this case a “plate survey” may be required
[5]. This survey consists of recording some part of the plate number (e.g., the last two digits) of each
vehicle entering and leaving the junction, as well as the time when they enter and leave the junction.
This information may be recorded by any means—from paper forms to electronic data devices—and
then downloaded into computer software that matches the plate numbers of vehicles entering and
leaving the junction. An improvement of the method is the application of image‐processing tech-
niques for recording plate numbers and letters automatically.

Computer Vision and Imaging in Intelligent Transportation Systems136

6.1.9 Passenger Counts

This measurement consists of counting the number of passengers using both public and private vehi-
cles. It can be carried out from either outside the vehicle, in the case of private vehicles, or inside the
vehicles, in public transport. The reader can find more details in Chapter 4.

In the case of public transport, counts can be carried out by either boarding/alighting counts
at stops along a route, or they can be conducted on-board each vehicle. As counting passengers
on-board an overcrowded public transport vehicle may be difficult or time consuming, they are
 usually counted from outside by assigning occupancy categories to the number of passengers inside
the vehicle as shown in Table 6.1 [4]. Then, according to his criterion, the observer assigns an
occupancy category to each public transport vehicle.

Another way to counting public transport passengers is at terminal points (e.g., bus stations or
terminal bus‐stops), in which the amount of all passengers boarding and alighting vehicles at the
terminal is manually recorded [5].

Recently, the use of smartcards as a mean of fare payment may provide information on the number
of boarding passengers to public transport vehicles. The disadvantage is that in some systems, such as
buses or some metros, the smartcard is not required to disembark the vehicle. As a consequence, the
information of the number of alighting passengers is missing. In this case, a survey of the alighting
passengers at bus‐stops or stations must be conducted; this survey usually involves manual counts.

6.1.10 Pedestrian Counts

Pedestrian counts are needed to footway design (width, length, alignment) as well as to provide facili-
ties at crossing points. In the case of crossing facilities, pedestrian counts are required to evaluate the
need to install some form of pedestrian crossing (zebra crossing, traffic signal, etc.). For this purpose,
pedestrian counts will be carried out over some length on either side of the proposed crossing point.

Whatever the objective, pedestrian counts are more difficult to perform than vehicle counts,
because people tend to walk and wait in platoons. For this reason, the use of video cameras and either
visual‐ or image processing is normally required.

6.1.11 Speed Measurement

As stated before, the average speed may be measured in two ways. One way is to measure individual
speeds with a radar speedometer and average arithmetically. The other is to measure travel times of
individual vehicles and get the average over a given road length. The first case would give the time
mean speed vt and the space mean speed vs in the second one. However, it is possible to convert one
into the other by the Wardrop equation. Time mean speed is used for accident analysis or for setting
speed limits. Space mean speed, on the other hand, is applied in traffic modeling and management.

Table 6.1 Occupancy of a 12‐m bus.

Category Occupancy level No. of passengers

A Overcrowding 100
B More than half aisle with standing passengers 70
C Less than half aisle with standing passengers 50
D More than half of seats busy 30
E Less than half of seats busy 15

Traffic Flow Analysis 137

In highways, rural and arterial road speeds can also be measured automatically with a pair of
consecutive inductive‐loop detectors connected to the TCU that manage the road. This can also be
done by image‐processing techniques from the video cameras belonging to the TCU.

Finally, a rather old technique for measuring journey speeds is the “moving observer” method [5].
In this method, a test vehicle travels along a road section at the average speed of the traffic platoon.
At each run, the travel time of the test vehicle is recorder either manually or automatically. After a
number of, say 10, runs a good estimation of the average speed is obtained. In order to do that, the
driver must pass the same number of vehicles that pass him/her.

Having considered the main variables that are relevant to the traffic engineer, we now look at ways
in which computer vision technology may be used to measure some of these variables or other traf-
fic‐related parameters.

6.2 The Use of Video Analysis in Intelligent Transportation Systems

6.2.1 Introduction

Intelligent transportation systems (ITS) have been widely proposed with improvements in computa-
tional technologies and the increasing number of multipurpose camera installations. Researchers
have paid considerable attention to exploring innovative computer vision–based solutions for traffic
flow analysis. Traffic flow analysis covers a wide range of applications for ITS, for example, vehicle
detection, vehicle counting, vehicle classification, traffic density measurement, traffic flow estima-
tion, traffic speed estimation, and traffic rules violation monitoring and incident detection. To pro-
pose solutions for such applications, already installed surveillance cameras are usually preferred to
enhance the usefulness of existing infrastructure. However, surveillance cameras are usually of poor
quality and the height and direction of the camera also play an important role in video analytics. In
an open and cluttered environment, occlusion, illumination, shadows, nonvehicle objects, and vary-
ing weather conditions make traffic flow analysis a challenging task. Section 6.2.2 deals with what has
become a common framework for traffic flow analysis systems and outlines the main state‐of‐the‐art
techniques. Application domains and challenges faced especially in developing and underdeveloped
countries are considered later in Sections 6.2.3 and 6.4.

6.2.2 General Framework for Traffic Flow Analysis

Here, we show a typical framework (Figure 6.3) for a computer vision–based traffic flow analysis sys-
tem (see Section 6.3 for a more detailed example). Online or offline video/image data are the input to
the framework. Vehicle detection is the core element for any application in traffic flow analysis, requir-
ing a region of interest (ROI) or image features that must be extracted to represent the objects in the
scene. The ROI/feature extraction phase transforms the input visual data into a mask/silhouette/fea-
ture vector. The output of ROI/feature extraction is then passed to a classification stage to detect the
identified vehicle or other objects. The classification stage is highly dependent on training data.
Detected objects are analyzed and used for different applications in traffic flow analysis. With refer-
ence to Figure 6.3, the following are the typical stages involved in video‐based traffic flow analysis:

Video data: This required as an input to any computer vision–based system for traffic flow analysis.
This visual data can be processed in both online or offline mode. To capture a useful video dataset,
cameras need to be properly installed at the appropriate location, height, and angle toward the
road. Parameters for installation of cameras may vary for different application domains, that is,
urban, motorways, and tunnels.

Computer Vision and Imaging in Intelligent Transportation Systems138

ROI/feature extraction: Frames are extracted from the video sequences and passed to the ROI/
feature extraction block. This block converts the input frame into a ROI/silhouette/feature
 vector, which is then passed to the classifier. According to the literature, ROI/feature extraction
is categorized into two types, that is, foreground estimation/segmentation or an object recogni-
tion–based approach. A pictorial representation of ROI/feature extraction is presented in
Figure 6.4.

Classification
ROI / feature

extractionVideo data
Analysis w.r.t.

application

Vehicle counting
Vehicle classification

Traffic density
Traffic speed
Traffic flow

Training
data

Input frame ROI/silhouette/feature Detected object

Figure 6.3 Typical/general framework for traffic flow analysis.

ROI/feature extraction

Morphological refinement
shadow removal
connected component
labeling, etc..,

Foreground
extraction/

segmentation

Background
models

Interest-point
descriptors/

appearance-shape
descriptors

ROI/
silhouette/

feature vector
Candidate ROI’s

Input frame

Foreground
estimation/

segmentation

Object
recognition

based approach

Postprocessing
and

ROI extraction

Figure 6.4 ROI/feature extraction.

Traffic Flow Analysis 139

6.2.2.1 Foreground Estimation/Segmentation
Foreground estimation/segmentation is a key step in many computer vision applications. This step is
concerned with the detection of changes or potential objects in the image sequence. Foreground
represents the objects that are not stationary in the scene for a period of time. In ITS, foreground
detection ultimately aims to identify potential objects that can be declared as vehicles after a due
classification process. In the dynamic and real‐time environment of an ITS, foreground estimation
becomes more challenging due to noise, illumination changes, weather conditions, and a cluttered
environment. Generally, foreground estimation can be performed using two approaches, that is,
temporal differencing and segmentation.

Temporal differencing utilizes the motion/change as a clue for the foreground estimation. Simply,
temporal differencing is used to find changes in the scene by taking the difference between the image
frame and some reference frame. A reference frame can be the previous image frame or a model
frame that estimates the static background pixels of the scene. The differencing operation returns
patches of the scene that result from significant change over a certain time period.

Frame differencing: Frame differencing computes the pixel‐by‐pixel difference between two adja-
cent image frames. Postprocessing steps (e.g., thresholding and morphological operation) are used to
establish well‐defined foreground objects. For example, frame differencing is used in Ref. [6] for
vehicle detection to observe street parking violations. Although computationally very fast, frame dif-
ferencing is not robust to noise, illumination changes, and periodic movements of other unwanted
objects that can occur in real‐time traffic scenes.

Background subtraction: A more refined form of temporal differencing, called background sub-
traction uses a background model as a reference image. Various approaches have been proposed in
the literature [6]. An example is to take the temporal average of pixels over a sequence of image
frames, but that is unresponsive to changes in illumination and unable to cope with slow‐moving or
stationary objects, resulting in unwanted patches detected as foreground.

Keeping in view the gradual changes in time and to improve robustness compared to averaging, a
single temporal Gaussian model can be used for every pixel of the background. Observations from
several consecutive frames are used to compute a mean and a variance image for the background
model. For a pixel in the current frame, the pixel value is compared with the Gaussian distribution of
the background model, and the pixels that deviate from the background model are labeled as fore-
ground pixels. A single Gaussian background model is used in Ref. [7] for traffic surveillance to
address occlusions and background variations. However, a single Gaussian is not adequate for traffic
videos because foreground pixels can exhibit significantly different values over short time periods
(due to fast‐moving vehicles of different colors, shadows, and specular reflectances).

Gaussian mixture model (GMM): A significant improvement in background modeling is achieved
by using statistical models to estimate the background color of each pixel, that is, GMM. In GMM,
every pixel in the input frame is evaluated against the background model by comparing it with every
Gaussian in the model in order to find a match. If a matching Gaussian is found, the mean and vari-
ance of the matched Gaussian are updated; otherwise, a new Gaussian with the mean equal to the
input pixel color and some initial variance is introduced into the mixture. Each pixel is classified
based on whether the matched distribution represents the background process. GMMs have been
widely used for vehicle detection in traffic flow analysis [8–10]. In Ref. [11], a recursively updated
GMM with a multidimensional smoothing transform is proposed to segment the foreground based
on vehicle color. The temporal dimension of the transform is used to deal with noise associated with
adverse imaging conditions such as rain and camera shake. As edges are not sensitive to sudden illu-
mination changes, an edge‐based GMM is proposed for moving vehicle detection in Ref. [12]. To
cope with the slow and sudden illumination changes in outdoor traffic scenes, a self‐adaptive GMM

Computer Vision and Imaging in Intelligent Transportation Systems140

is proposed in Ref. [13]. This dynamic learning‐based model shows a better foreground estimation
results as compared to other techniques. A key disadvantage of the GMM for foreground detection
is the higher computational complexity as compared to static and averaging background models.
A much more detailed description of the GMM algorithm for background/foreground segmentation
is presented in Chapter 9.

Others: In Ref. [14], a background subtraction scheme based on histogram‐based filtering and
region properties is proposed for vehicle detection and tracking. The algorithm generates reliable
and actual background instances under different traffic conditions. A fuzzy background subtraction
is proposed in Ref. [15] for moving vehicle detection. The algorithm employs the fusion of color
components and texture features, claiming high accuracy and dealing with the illumination changes
and shadow.

6.2.2.2 Segmentation
The objective of foreground segmentation is to partition the scene into perceptually similar regions,
that is, vehicles, road, and pedestrians in a traffic flow analysis application. Two major evaluation
parameters for foreground segmentation include the criteria of a good partition and a scheme for
achieving better partitioning. The mean shift algorithm proposed by Comaniciu et al. [16] can be
widely seen in the literature for traffic flow analysis. The mean shift algorithm is proposed in Ref. [17]
for the simultaneous detection and tracking of vehicles in the video sequence. The algorithm shows
efficient results for the detection of several vehicles and segmentation even under occlusion. The
mean shift algorithm has also been used for segmentation and tracking of moving objects on an
autonomous vehicle testbed platform in Ref. [18]. Graph cut segmentation is another common
method to extract objects of interest from the background. In traffic flow analysis, the graph cut
algorithm can lead to a robust segmentation as the object (vehicles) shapes are well defined. In Ref. [19],
several types of graph cuts are investigated for segmenting traffic images. Different variations of
graph cuts are explored in detail and compared with others to choose the best for traffic detection.
Several weighting schemes based on grayscale value differences, pixel variances, and mean pixel values
are investigated for vehicle segmentation. The method was applied to video sequences of traffic
under various lighting conditions and locations. A graph cut algorithm is also used for the purpose
of vehicle tracking in Ref. [20].

6.2.2.3 Shadow Removal
Shadow removal plays a critical role in foreground estimation/segmentation in traffic flow anal-
ysis. Moving shadows in outdoor environments are associated with both moving objects and
other objects in the scene. Vehicle shadows will be adjacent to and follow vehicles. Tall static
objects such as trees, signboards, poles, and buildings will cast shadows that move slowly with
the movement of the sun. Therefore, an efficient shadow removal technique is required to ensure
reliable estimation of foreground objects. Shadow removal for different color models (RGB,
HSV, and YCbCr) is evaluated for vehicle detection in Ref. [7]. To deal with real‐time sudden
illumination changes and camera vibration in urban traffic videos, a background GMM and
shadow removal method is proposed in Ref. [21]. The method showed a high accuracy rate for
vehicle detection even in challenging weather conditions. In Ref. [8], shadow removal of moving
vehicles is carried out based on the differences of brightness distortion between vehicle shadows
and moving vehicles relative to background, indicating improved results for vehicle detection
even in the case of a sudden change in illumination. A computationally efficient algorithm using
conditional random fields is proposed by Wang [22] for real‐time vehicle detection with the
removal of cast shadows.

Traffic Flow Analysis 141

6.2.2.4 Morphological Operations
Foreground estimation often results in silhouettes that are incomplete or distorted because
of shadows, occlusion, illumination, and weather conditions. To deal with such artifacts,
morphological operations are employed to recover vehicle‐like shapes. Connected compo-
nent labeling, opening, closing, convex hull, and region filling are typically used as a post-
processing step on the silhouettes to improve the representation. Due to the more structured
nature of highway traffic, morphological operations are also proposed independently for
vehicle detection in Refs. [23–25].

6.2.2.5 Approaches Based on Object Recognition
Another way of classifying objects in traffic scenes is to use object recognition–based approaches.
The quality of foreground estimation/segmentation is impacted by traffic density, varying illumination
and weather conditions, and the range of vehicle types in the scene. Therefore, object recognition
approaches provide a more organized and supervised way of detecting vehicles and other objects in
traffic videos. Object recognition–based approaches generally employ appearance‐based feature
extraction and classification to detect the objects or part of the objects. These approaches can be
categorized into two groups: interest‐point feature descriptors and appearance shape–based feature
descriptors. The following Sections 6.2.2.6–6.2.2.8 provide more insight into the range of object
recognition approaches for traffic flow analysis.

6.2.2.6 Interest‐Point Feature Descriptors
Interest points (also referred to as keypoints) are image positions from where features can be
extracted. The selection of interest points can be based upon appearance‐based algorithm (e.g.,
Harris corners and scale‐invariant feature transform or SIFT) or a dense selection scheme. Once the
interest points are selected, they are required to be described using some feature representation, that
is, a feature descriptor. Feature descriptors are typically a vector representation that is used for both
training and testing a classifier. Therefore, describing an interest point using features is a key toward
better detection of the objects in this process.

SIFT [26] has been proved a powerful feature descriptor for object recognition. A feature based on
edge points and modified SIFT descriptors is proposed in Ref. [27] to provide a rich representation
of vehicle classes. In Ref. [28], groups of SIFT features are matched between successive image frames
to enable vehicle tracking.

Speeded‐up robust feature (SURF) descriptor [29] was introduced to deal with the relatively
higher computational complexity and the lack of robustness against different transformations of
the SIFT descriptor. In Ref. [30], a combination of SURF and edge features are used for vehicle
detection in blind spot areas and showed reliable results for detection of sedan vehicles. SURF is
unable to detect symmetrical objects, which is important in traffic videos. A new symmetrical
SURF descriptor is proposed in Ref. [31] for vehicle detection and recognition of vehicle make
and model.

Histogram of oriented gradients (HOGs) descriptor [32] was initially proposed for human detec-
tion in videos, but it is also used in various object detection and recognition applications. HOG fea-
tures are used for vehicle detection in Ref. [33], where the orientation is determined using
multiplicative kernel leaning. Support vector machine (SVM) is used for HOG feature classification
to detect vehicles. In Ref. [34], on‐road multivehicle tracking is carried by modeling a vehicle as a
deformable object. Local (HOG) and global (latent SVM) features of vehicles are combined to model
a vehicle as a deformable object. A study of feature combinations (HOG, PCA, Gabor filters) for
vehicle detection is investigated and reported in Ref. [35].

Computer Vision and Imaging in Intelligent Transportation Systems142

6.2.2.7 Appearance Shape–Based Descriptors
Object detection and recognition can benefit from modeling objects by their appearance and shape
features, capturing the spatial relationship among the object parts. Haar‐like features are proposed
for vehicle detection in real‐time vehicle detection and tracking [36] using a stationary camera under
various challenges. In Ref. [37], a hybrid approach using Haar‐like features (HOG and SVM) is pro-
posed for robust vehicle detection and verification. A region tracking–based algorithm is proposed
in Ref. [38] for vehicle detection in nighttime traffic videos, addressing a challenging issue in traffic
flow analysis. In Ref. [39], an online adaptive boosting (AdaBoost) approach is employed using Haar‐
like features for real‐time vision‐based vehicle detection. Similarly, a combination of Haar‐like fea-
tures and an AdaBoost classifier is proposed in Ref. [40] for on‐road vehicle recognition and tracking
in highway traffic videos.

6.2.2.8 Classification
Classification is the process of assigning a class label to an unknown instance/object. To recognize a
particular object, the classifier needs information about an object, which is available in terms of fea-
tures (a.k.a. feature vector). To classify an unknown object, the classifier needs to be trained initially
on a representative set of feature vectors. For example, a classifier can be used to differentiate between
vehicles and pedestrians, as well as for categorizing vehicles into different classes. Following segmen-
tation, ROIs can be represented using combinations of region, contour, and appearance‐based fea-
tures. In case of high‐dimensional data, dimensionality reduction techniques can be employed such
as principal component analysis (PCA) and linear discriminant analysis (LDA) to simplify the com-
putation of the classifier. The following discussion is focused on the classifiers that have been applied
to the task of traffic flow analysis.

The nearest‐neighbor (NN) classifier is the simplest nonparametric classifier. Class labels are
assigned on the basis of a simple distance (Euclidean, City‐block, Mahalanobis, etc.) calculation
between the feature vector of an unknown instance and every feature vector of the training data.
A much improved version of the NN classifier is the k‐nearest neighbor (KNN) algorithm, which
assigns the class according to a majority vote of the k closest vectors, which is more robust than the
NN. KNN is employed for vehicle classification and tracking in Refs. [41, 42] for highway traffic vid-
eos. The study in Ref. [43] presents segmentation of vehicle detection data for improved traffic flow
prediction based upon KNN. A key disadvantage of NN and KNN is that they require several dis-
tance calculations and do not scale very well for large training sets in terms of computational com-
plexity and memory requirements.

SVM has been extensively used for vehicle detection and classification in ITS. It is employed for
vehicle detection in Ref. [44] (EOH + SVM), [45] (HOG + SVM), and [29] (HOG + SVM). A fuzzy
SVM is applied over shape, texture, and gradient histogram features in Ref. [46] for vehicle detection
and classification. While only a binary classifier, it can be used to tackle multiclass problems; how-
ever, for multiclass classification it can be computationally expensive.

Boosting: AdaBoost is another useful algorithm for vehicle classification that can also be used in
conjunction with other learning algorithms. The AdaBoost algorithm with Haar‐like features has
been used for real‐time vehicle detection and tracking in Refs. [35, 36]. A much needed requirement
in ITS, both vehicle and pedestrian detection, are carried out by using Haar‐like features and an
AdaBoost classifier in Ref. [47]. AdaBoost classifiers are fast, simple, and versatile, but are vulnerable
to uniform noise and may result in classifiers that are too weak and complex and lead to overfitting.

Random forest: Random forest classification is an ensemble learning algorithm that consists of
many decision trees at training time and output the class that is the mode of the classes returned by
individual trees. A vehicle classification scheme is proposed by Dalka and Czyzewski [48] to classify

Traffic Flow Analysis 143

vehicles into sedans, cars, and trucks using various classifiers including the random forest classifier.
In Ref. [49], vehicle detection from aerial images is carried out on HOG feature descriptor using NN,
decision tree, random forest, and SVM classifiers. In this scheme, rural traffic videos are targeted for
applications in surveillance, traffic monitoring, and military operations. A model‐based vehicle pose
estimation and tracking scheme using a random forest is also proposed in Ref. [50]. Random forest is
one of the accurate learning algorithms on large datasets, but they have been observed to overfit for
some datasets with noisy classification.

6.2.2.9 Analysis
The framework for traffic flow analysis may return the detected vehicles, nonvehicle objects, vehicle
types and models. The outcome can be employed in various applications in ITS, such as vehicle
detection, vehicle counting, automatic number plate recognition, vehicle tracking, vehicle classifica-
tion, traffic density measurement, traffic flow estimation, traffic speed estimation, surveillance, and
traffic rules violation monitoring and incident detection.

6.2.3 Application Domains

Traffic flow monitoring and analysis applications need to be developed for road environments where
different conditions, such as traffic density and speed, vary for each environment. To make the analysis
more explicit, three application domains are considered: urban, highways/motorways, and tunnels.
Table 6.2 shows the comparison of potential challenges in traffic flow analysis for these application
domains. These are affected to differing degrees by the presence of nonvehicle objects, shadows,
occlusion, illumination changes, and the density of traffic. However, under free‐flowing conditions,
typical on highways and through tunnels, there may be fewer problems with occlusion and shadows
associated with high traffic densities, simplifying the video analysis task.

Extensive research work is reported in the literature (as discussed in Sections 6.2.2.1–6.2.2.8)
regarding traffic flow analysis in urban and highway traffic videos. In addition to that, a multishape
descriptor composed of HOG, edge, and intensity‐based features is proposed for urban traffic by
Chen and Ellis [51] for classification of vehicles into four categories, that is, car, van, bus, and motor-
cycle. The work was further enhanced in Ref. [17] by proposing a new background GMM and shadow
removal technique to deal with sudden changes in the illumination in the urban conditions. In Ref.
[52], vehicle detection is carried out to track them in highway surveillance videos using a background
mixture model with a binary classifier, resulting in higher detection accuracy for various quality of
crowded and uncrowded videos. A comprehensive review of video analytics systems for urban and
highway traffic videos is presented in Ref. [53], highlighting algorithms and performance. Keeping in

Table 6.2 Comparison of real‐time challenges in traffic flow analysis for different application domains.

Application
domains

Real‐time challenges

Traffic flow
analysis

Nonvehicle
objects Shadow Occlusion

Impact of
weather

Illumination
changes

Traffic
congestion

Urban Yes Yes Yes Partial Yes Yes Complex
Highways Partial Partial Partial Yes No No Moderate
Tunnels No Partial Partial No Yes No Moderate

Computer Vision and Imaging in Intelligent Transportation Systems144

view the poor imaging conditions and lighting from the vehicles in tunnels, a vehicle detection and
tracking scheme is proposed in Ref. [54] for tunnel surveillance. The same was extended as well for
vehicle classification in Ref. [55] for tunnel surveillance using multicamera videos. The scheme
employs Haar‐like features and a cascade AdaBoost classifier to validate the results for three tunnel
videos. In Ref. [56], a combination of foreground masks, optical flow at corner points, and image
projection profile with a Kalman filter are used as clues for real‐time vehicle tracking in tunnels.

We have seen so far that advances in computer vision in recent years show real promise, and in
Section 6.3 we give an example of vision algorithms applied to traffic flow analysis using standard
closed‐circuit television (CCTV) cameras. Due to space limitations, we focus on vehicle detection,
without considering pedestrians or cyclists.

6.3 Measuring Traffic Flow from Roadside CCTV Video

Roadside CCTV cameras are deployed to enable remote monitoring of critical sections of the road
network. The monitoring is typically performed by trained operators, whose role is to assess the traf-
fic flow rates, identifying and responding to the impact of events that adversely affect the flow and
may lead to congestion, such as accidents, roadworks, adverse weather, and high traffic volumes. In
urban environments, traffic flow is also affected by the road layout (junctions, roundabouts) and
signals (traffic lights, pedestrian crossings) that cause the traffic to slow or come to a halt. As outlined
earlier in this chapter, the primary measurements for estimating traffic flow are based on counting
the number of vehicles over a period of time and estimating vehicle velocities. From these measurements,
other measures can be derived such as vehicle density, average flow rate, and measures of congestion
and queuing. Traffic flow patterns vary according to various influences: time of the day, day of the
week, time of the year, public and personal holidays, school holidays, major events, and so on. The
challenge of traffic flow analysis is to capture and support data to model these varying patterns and
manage the traffic signaling and route planning systems in order to optimize the flow and minimize
congestion. In this section, we consider examples of practical and algorithmic solutions to measuring
the properties of traffic streams based on vehicle speed, density, and flow. The methods analyze the
video feeds by detecting individual vehicles and estimating their speed by tracking them over succes-
sive image frames. Vehicle‐type classification is made with respect to a set of standard classes that
can be used to profile the proportion of vehicle types and their changing volumes over time. The
remainder of this section describes a system developed for the detection, segmentation, classification,
and estimation of flow statistics of traffic from CCTV cameras deployed in an urban environment.
We also describe methods for scene calibration and traffic lane detection that are used to support a
more detailed analysis of the flow patterns.

6.3.1 Video Analysis Framework

Figure 6.5 presents the video analysis system partitioned into four stages. The first stage learns a
background model of the scene (i.e., pixels that do not change significantly over time) to deal with
illumination changes and objects that (temporarily) become stationary, using an adaptive back-
ground estimation process. Detection is then based on subtracting the current image from the most
appropriate background model, segmenting objects that are moving through the static background,
suppressing shadows and “mending” holes in the binary silhouette using a morphological operation
(see Figure 6.6a). Vehicles are sampled within a detection zone that has been manually located in the
image and aligned to the road surface (Figure 6.6b). It is located in the foreground of the image to

Traffic Flow Analysis 145

Camera or
image data New frame MDGKT GMM background

learning

Background
subtraction

No
Dilation and

erosion
Foreground

mask

ML and EL
occupied, and

SL unoccupied?

Vehicle
register

SL and ML
occupied, and

EL unoccupied?

Kalman filter
tracking

Get the vehicle
silhouette

MBF and IPHOG
extraction

Vehicle classification and count module

Yes

Vehicle detection module

Foreground extraction module

Background learning module

Yes

Vehicle type
classification

Count vehicle
for each type

Shadow
removal

Figure 6.5 System’s data flow diagram.

(a) (b)

Figure 6.6 Vehicle segmentation result: (a) background subtraction results: modeled background (black), foreground
object (white), shadow (light gray), or reflection highlights (dark gray); and (b) foreground image (morphologically
dilated), detection zone (the dark lines are lane separators, while the dashed black line designates the bus stop area),
and the vehicle detection lines (dark, gray, and light gray).

Computer Vision and Imaging in Intelligent Transportation Systems146

ensure that the detected vehicles are at their most visible (and hence detectable). The zone includes
three virtual detection lines that are used to minimize errors in vehicle counting by applying a detec-
tion gating logic that counts vehicles only once when they intersect with these lines in the correct
sequence. Detected vehicles are tracked over five image frames by a Kalman filter. A set of size‐,
shape‐, and appearance‐based image features are extracted from each blob and assigned to one of
four classes (car, van, bus, and motorcycle/bicycle) using an SVM classifier. A majority vote of the
classification of each tracked blob instance over the five frames determines the final assigned class
type. Vehicle velocities are estimated over the five image frames, based on the distance traveled on
the ground plane.

6.3.2 Vehicle Detection

The video data we analyze in the following experiments have been captured from roadside CCTV
cameras that are controlled by operators. Although the cameras are pan–tilt–zoom (PTZ), they are
typically deployed in a fixed‐view configuration, and return to a preset viewpoint subsequent to any
manually controlled roaming. Hence, the first stage of our image analysis utilizes vehicle detection based
on temporal differencing, constructing a statistical model that describes the state of each background
pixel. A widely used approach, originally proposed by Stauffer and Grimson [57], models the multimodal
background distribution with a GMM. The method can reliably cope with slow lighting changes,
repetitive motions associated with clutter (e.g., wind‐blown leaves), and long‐term scene changes.

6.3.3 Background Model

Video analysis begins with a noise reduction step that is applied at each image frame using a spati-
otemporal Gaussian filter (3 × 3 × 3). After filtering, background pixels are modeled as a Gaussian mix-
ture (please see Chapter 9 for more details on GMMs) using a recursive updating computation that
suits online operation [58], estimating the mixture parameters and automatically selecting the num-
ber of components for each pixel. Assuming an adaptation period T (e.g., 100 frames), if x(t) is the value
of a pixel at time t, X x x xT

t t t T, , ,1 . For each new sample, we update the model and re‐estimate
the density. These samples may contain values that belong to both the background (BG) and
foreground (FG) object, so the estimated density is denoted as | ,BG FGˆ t

Tp x X [58]. Using a
GMM with a maximum of K components (normally between 3 and 7, and in our case, set to a value 4),

1
,BG FGˆ ;

K
t t

mT m m
m

p wx X x (6.10)

x w et
m m

i

K
i t

d
i t

x xt
i t

T t

; ,
1

2 1 2

1
2

2
,

/
,

/
, i ti t ,,

1

, (6.11)

where each Gaussian distribution is parameterized by the estimated mean value (μm), the estimated
covariance matrix (Σm), and nonnegative estimated mixing weights (wm), normalized (i.e., sum to 1)
for the mth GMM at time t. We use the simplifying assumption that each channel of the color space
is independent of the others (so Σm is a diagonal matrix) and that the red, green, and blue channels
pixel values are independent, with the same variance. Then, the covariance matrix takes the form

m m m mI I , where I is a 3 × 3 identity matrix, which avoids a costly matrix inversion at the
expense of some loss of accuracy.

GMMs are computationally intensive, sensitive to sudden changes in global illumination and
require carefully tuned parameters. The original algorithm uses a fixed learning rate to respond to

Traffic Flow Analysis 147

illumination changes. A low learning rate may yield an inaccurate model with a large variance that
will have low detection sensitivity, while a high learning rate updates the model too quickly and slow
moving objects are absorbed into the background model. Slow moving or stationary objects are a
common occurrence for urban traffic and will be “absorbed” into the background model; when they
finally move, there is a lag in detection, resulting in poor segmentation. To address this transient
stop–start behavior, we introduce a self‐adaptive GMM [59] that remembers the original back-
ground, invoking this model and reacting faster when the traffic begins to move again. This uses a
global illumination change factor g between the learnt background Ir and the current input
image Ic [13] computed from

g I
I

median ,s S
c s

r s

,

,

 (6.12)

where s excludes pixels for which qi i i, where μi and σi are the mean and standard deviation
of the pixel‐wise ratio q I Ii i ic r/, , , which biases the measure in favor of pixels that change signifi-
cantly. This value is used in the detection step for deciding the best background model, and in the
computation of the brightness and chromaticity distortion applied for shadow and highlight detec-
tion. The factor g keeps track of how the global illumination changes, while a counter (cm) keeps track
of how many data points have contributed to the parameter estimation of that Gaussian. Each time
the parameters are updated, a learning rate βm is recalculated based on the basic learning rate α and
the current value of the accumulative counter, cm. Given a new data sample x(t) at time t the recursive
update equations are as follows:

w w o cm m m
t

T1 (6.13)

m
m

m

l c
c

 (6.14)

m m m
t m

m
mo

w
 (6.15)

m m m
t m

m
m
T

m mo
w

2 2 2 (6.16)

c cm m 1. (6.17)

Here, l is a constant, x x x xt T
1 2 3, , , m

T
1 2 3, , , and m

t
mx for a three‐channel color

image. Instead of the time interval T, a constant α defines an exponentially decaying envelope that is
used to limit the influence of the old data. cT is a negative prior evidence weight [58], which means
that the model is accepted to exist only if there is enough evidence from the data for the existence of
this class. This will suppress the components that are not supported by the data and ensures that
components with negative weights are discarded. For a new sample, the ownership om

t is set to 1 for
the “close” component with the largest wm and the others are set to 0. A “close” sample to a component
corresponds to a Mahalanobis distance (MD) from the component that is less than a threshold dis-
tance, dc. The squared MD from the mth component is calculated as follows:

2 1ˆ .ˆt T
m m m mD x (6.18)

Computer Vision and Imaging in Intelligent Transportation Systems148

Here, ˆ t
mg x . If there are no “close” components, a new component is generated with

wm 1 ; m
tx1 ; m 1 0; cm 1 1, where σ0 is an appropriately initialized variance value. If the

maximum number of components K is reached, the component with the smallest wm is discarded.
After each weight update in Equation 6.13, the weights are renormalized such that wkk 1.

The algorithm uses an online clustering algorithm that can be updated on a frame‐by‐frame basis
in real time. Usually, intruding foreground objects are represented by additional clusters with small
weights wm. Therefore, the background model can be approximated by the M largest clusters as
follows:

1
~ .| ,BG , ˆ ;

K
t t

mT m m
m

p wx X x (6.19)

Reordering the components by descending weights wm, we have

M w cb
i

b

i fargmin
1

1 , (6.20)

where cf is a measure of the maximum portion of the data that should be accounted for by the
foreground objects without influencing the background model, and b is the number of Gaussian
background models that satisfy the condition. This approach has three significant benefits: (i) if an
object is allowed to become part of the background, it does not destroy the existing background
model. The original background values remain in the GMM if the object remains static for long
enough, and its weight becomes larger than cf. If the object then moves, the distribution describing
the previous background still exists with the same estimated mean and variance; (ii) from the dynamic
learning rate update Equation 6.14, it can be seen that if the background changes quickly, the value
of cm will become smaller and the new learning rate βm will increase, so the background model will
update quickly. The model will quickly achieve a good estimate of the mean and variance. Maintaining
a dynamic learning rate for each Gaussian component will improve convergence and approximation
of a smaller data cluster. Otherwise, if the background is stable, as more data samples are included in
its parameter estimation, βm will approach the basic learning rate α, while still maintaining the same
temporal adaptability, because the weights update Equation 6.13 still uses the basic learning rate; and
(iii) from Equation 6.18, we can see that the MD calculation will compensate for the global illumina-
tion change, making the MD insensitive to sudden illumination changes [13].

Another challenge to the video analysis is the identification of shadows cast by objects moving
through the scene. It is desirable to discriminate between objects and their shadows and to identify
the type of features that could be utilized for shadow detection. The GMM is susceptible to both
global and local illumination changes, such as shadows, and highlights reflections from specular
surfaces (e.g., shiny car bodies) that can cause the failure of consequent processes, for example, track-
ing and classification, because they change according to object pose, camera viewpoint, and the loca-
tion and strength of the illumination source. The shadow suppression algorithm used in our system
is based on the algorithm proposed by Horprasert [60] that is stable in RGB color space. This has
been modified to cope with sudden changes in the global illumination by incorporating the global
illumination change factor g described by Equation 6.12.

The distorting effect of shadow and highlight in RGB space is decomposed into two components,
a brightness and chromaticity distortion, and computes an adjustment to re‐estimate the chromatic-
ity according the brightness variation. The ith pixel’s brightness distortion Bi is a scalar value that
brings the observed color closer to the expected chromaticity line. For the ith pixel value of
I I I Ii R G B

T
i i i
, , in RGB space, the estimated mean is Ei R G B

T
i i i
, , . The color channels are

Traffic Flow Analysis 149

rebalanced by scaling the color values using the pixel standard deviation i R G Bi i i
, , , and the

distortion of the brightness Bi and chromaticity CDi are computed as follows:

B
g I I I

i
R R R G G G B B B

R R G G

i i i i i i i i i

i i i

/ / /

/ /

2 2 2

2
ii i iB B

2 2/
 (6.21)

CDi
R i R

R

G i G

G

BgI B gI B gI
i i

i

i i

i

i

2 2
Bi B

B

i

i

2

 (6.22)

A foreground pixel is then classified according to the following:

Shadow CD and
Highlight CD and .

i i

i i

B
B

1 2

1 3

1
 (6.23)

Here, 1 10 1 is a threshold to distinguish between chromaticity values of the GMM‐learnt
background and the current image frame. If there is a case where a pixel from a moving object in the
current image contains a very low RGB value, then this dark pixel will always be misclassified as a
shadow, because the value of the dark pixel is close to the origin in RGB space and all chromaticity
lines in RGB space meet at the origin. Thus, a dark color point is always considered to be close or
similar to any chromaticity line. We introduce a second threshold, 2 20 1 , to address this
problem. Similarly, a third threshold, 3 3 1 , is applied to the normalized brightness distortion, in
order to detect highlights.

Figure 6.6a shows the result of image segmentation that applies the earlier classification steps to
segment foreground objects from background by image subtraction, using a background estimated
using the GMM. Shadow and highlight pixels have also been labeled, though for the vehicle blobs we
are more concerned with the shadow pixels, which distort the object size and shape parameterization
if included in the final blob representing the object (vehicle). Hence, the shadow pixels are inter-
preted as background, while the highlight pixels are assigned to the foreground object.

6.3.4 Counting Vehicles

To ensure that vehicles are only counted once as they transit the detection zone, gate detection logic is
employed. This comprises three detection line:, designated StartLine (SL), MiddleLine (ML), and
EndLine (EL). These line detectors are sensitive to misdetection as a consequence of the ragged edge of
a vehicle boundary. To minimize this effect, the detectors have a finite width to ensure a stable detec-
tion of the vehicle when it intersects the line (a width of five pixels was used in the experiments described
later). The separation between detector lines depends on the average traffic speed, and was set to 30
pixels in the experiments described here. A detection line is considered occupied if the proportion of
pixels intersecting the line is above a threshold (30% of the lane width); otherwise, it is unoccupied. This
threshold is chosen as a trade‐off between detecting small vehicles (i.e., bicycles and motorbikes) while
being insensitive to small blobs associated with noise. A vehicle is determined to be “present” only
when both SL and ML are occupied and EL is unoccupied (for traffic moving toward the camera, that
is, the two rightmost lanes in Figure 6.6b). A vehicle is said to be “leaving” when ML and EL are occu-
pied and SL unoccupied. A vehicle is counted only when it changes from the “present” state to the
“leaving” state. This is reasonable in congested situations and for stationary traffic. Lines SL and EL are
swapped to account for vehicles moving away from the camera (e.g., leftmost lane in Figure 6.6b).

Computer Vision and Imaging in Intelligent Transportation Systems150

6.3.5 Tracking

The output of the vehicle detection step is a binary object mask (blob) that is tracked using a constant
velocity Kalman filter model. The state of the filter is the location and velocity, s c c v vx y x y

T[, , ,] of
the blob centroid, and the measurement is an estimate of this entire state, [,ˆ ˆ ˆ , ,]ˆ ˆ T

x y x yy s c c v v . The
data association problem between multiple blobs is addressed by comparison of the predicted
 centroid location with the centroids of the detections in the current frame. The blob whose centroid
is closest to the predicted location is chosen as the best match. The track class label is computed at
each frame, but the final label is assigned by a majority voting scheme, which considers the entire
track in making a decision of class type, rather than employing a single frame that could be corrupted
by different sources of noise. Figure 6.7 shows the results of vehicle labeling with track identifiers.

6.3.6 Camera Calibration

Estimating true (road) velocities requires a calibration process to convert pixel coordinates into real
units (e.g., meters). Note that a similar requirement is encountered in Chapter 5. The commonest
method of performing camera calibration employs the use of a predefined target (calibration) object
that is sampled at different locations in the scene. The target defines a measuring rod that is selected as
an object of known dimensions. It should be easily detectable and present a consistent projection into
the image. Automatic image analysis algorithms can then be used to detect and measure the object size
in pixels, and then translate these into real units. For high accuracy, the measuring rod should be aligned
with and in contact with the plane surface that is to be calibrated (in this case, the road).

Researchers have used various calibration targets; some are static and “native” to the scene, such as
lampposts or traffic signs, which tend to have standard dimensions, or objects (e.g., people) that
move through the scene (which may require an assumption about their average size, such as vertical
height). For the experiments described here, we utilize road markings for calibration that satisfies
our target constraints—that is, they are aligned with (painted onto) the road surface and their real
dimensions can be easily measured (or are known from well‐prescribed regulations that govern their
dimensions). While we could directly measure the locations of significant points on the line (e.g., the
location of the endpoints, or where lines intersect or cross), making such surveys requires the road
to be temporarily closed. Instead, we extract coordinate data from Google Earth imagery, comparing

Figure 6.7 Kalman filter track labeling results.

Traffic Flow Analysis 151

manually located road marking coordinates visible in the CCTV camera image with corresponding
points visible in the Google Earth view of the scene.

Figure 6.8 shows a camera image and the Google Earth view. The mouse is used to select corre-
sponding locations in the two images (indicated by the numbered circles), and Heikkila’s method [61]
is used to compute the camera calibration parameters. The reprojection of the points is indicated by
the asterisks, with average errors of one to two pixels across different cameras. In the United
Kingdom, the lane markings are prescribed to be 10–15 cm in width and are clearly visible in the

(a) (b)

(c)

Figure 6.8 (a) Google Earth image with manually labeled locations, (b) calibration reference image (middle), and (c)
zoomed portion of (b). Circles and index numbers indicate the corresponding points and the asterisks indicate the
reprojected points. The average reprojection error was 0.97 pixels for this view.

Computer Vision and Imaging in Intelligent Transportation Systems152

Figure 6.8a, indicating a ground plane resolution of similar scale. A potential drawback with this
source of calibration coordinate data arises if the road markings are changed, as updates of Google
Earth imagery are infrequent (~1–3 years).

6.3.7 Feature Extraction and Vehicle Classification

Each blob above a minimum size (applied to eliminate noise) is represented by a set of morphological
and appearance‐based features based on (i) 13 shape features comprising measures of size and shape
from the binary silhouette, encompassing bounding box (width, height, and area), circularity (dis-
persedness, equivdiameter), ellipticity (length of major and minor axis, eccentricity), and shape‐fill-
ing measure (filled area, convex area, extent, solidity) [51]; and (ii) a multiscale pyramid of HoGs
(PHOGs [62]). The PHOG descriptors represent local shape properties, capturing the distribution of
intensity gradients within a region, and their spatial layout by tiling the image into multiple resolu-
tions. The descriptor consists of HoGs over each image subregion at each resolution level of the
detection bounding box, normalized for each level. The resulting feature vector is made up of 202
elements (13 morphological and 189 PHOG for three levels of resolution). Figure 6.9 depicts an
object illustrating the first level of tiling and three levels of histogram resolution. Defining stable class
types is challenging because some instances of a class (e.g., MPVs and small vans) may be very similar

0.2

0.15

0.1

0.05

Bus Level 0

Level 2Level 1

0

0
0 5010 20 30 40 100 150

1

0.0350.12

0.1

0.08

0.06

0.04

0.02

0
0

0.03

0.025

0.02

0.015

0.01

0.005

2 3 4 5 6 7 8 9

Figure 6.9 An input image and the shape spatial pyramid representation of HOG for a bus over three spatial scales: 9
features (level 0), 36 features (level 1), and 144 features (level 2).

Traffic Flow Analysis 153

in appearance (especially from particular viewpoints) and the classification may be ambiguous,
resulting in higher error rates. We combine tracking with classification and use a majority voting
over several frames to improve the classification performance. Classification uses SVM with a poly-
nomial kernel, constructing a multiclass classifier using a one‐versus‐all strategy, in which the mth
classifier constructs a hyperplane between class m and the N − 1 other classes. The SVM classifier is
trained on a set of labeled exemplars for which the vehicle silhouette has been manually delineated
and labeled. An effective training set typically requires a large quantity of training data that is repre-
sentative of the object classes under consideration. However, manual annotation of the object silhou-
ette is slow and laborious, so we have developed an approach that eliminates the need to manually
extract many silhouettes and minimizes the number of manual label annotations required [59].

6.3.8 Lane Detection

We learn the location of road and traffic lanes by detecting vehicles and analyzing their pattern of
movement based on vehicle motion trajectories. While individual trajectories may be unreliable for
inferring such information, the collective behavior averaged over a large number of observations
allows more robust estimation associated with both the geometry of the scene and typical patterns of
motion. The detected vehicle blobs are fitted with one of four wireframe models (depicted in
Figure 6.10a) that represent a broad categorization of the vehicle types that commonly use these
urban roads—lorries and buses (including double deckers), vans, motor cars, and motorcycles/bicy-
cles. The wireframe models are projected into the image, scaled, and oriented according to the
ground‐plane resolution and road direction. A grid search of the pose parameters is made to deter-
mine the best‐fit of each model to the blob’s silhouette. Figure 6.10b shows a typical result of the
model fit.

Trajectories are typically constructed using a single point to represent an object instance in each
frame. The blob centroid coordinate is widely used and is quite adequate for tracking, but it is an
inaccurate feature to locate the vehicle with respect to the ground plane (i.e., the road surface). This
is because the centroid position depends on the size and orientation of the object (vehicle) and also
on the position of the camera. For tall vehicles (e.g., a bus or lorry), the blob centroid represents a
point located at approximately half of the vehicle height, which might be 2–3 m above the ground and
its projection (along the optical axis of the camera) can be well beyond the vehicle location on the
ground plane. This biases the lane detection algorithm, as the projection of each vehicle’s centroid is
displaced away from the camera, and in some cases, well beyond the actual lane boundary.

A more suitable point is one on (or close to) the ground plane, such as the centroid of the base face
of a wireframe model fitted to the detected blob, as shown in Figure 6.11. This shows the difference
between the centroid location of the ROI and the centroid of the base face of a wireframe model of a
vehicle.

We use this representation as a reliable object feature to construct the trajectory of the vehicle
through the scene. An agglomerative clustering algorithm is used to group similar trajectories using
a similarity distance measure that can cope with trajectories of different lengths, overlap, and num-
bers of sample points [63]. A low‐degree polynomial approximates the lane prototype (the center-
line), computed from a refined set of trajectories. Vehicle type combined with lane usage statistics
can be used to identify special lane designations (e.g., bus lanes) and atypical trajectories (e.g., lane
changing and U‐turns) can be identified as departures from the lane prototype, as measured by their
similarity distance. Results of trajectory clustering and lane delineation are shown in Figure 6.12. The
projected lane widths are obtained using the 3D lane model according to the lane width (using the
standard value of lane width for urban all‐purpose roads (3.65 m) in the United Kingdom [64]).

6
5
4
3
2
1
0

24
22

20
18

16
14

12
10

Car

Van

Bus

8
6 –5

5

0
Motorcycle

(a)

(b)

Figure 6.10 3D wireframe models with true size (a) and samples of their projections on the ground plane (b).

b—Centroid location
of model base

b

a

a—Centroid location
of ROI

Figure 6.11 Alternative point‐based
representation of a vehicle’s location.

Traffic Flow Analysis 155

6.3.9 Results

The experimental data is taken from 5 h of video recorded from a single pole‐mounted roadside
camera in daytime on a busy road leading into the local town center. Referring to Figure 6.12, the
road comprises two lanes heading into town (lanes 2 and 3), the rightmost of which is a designated
bus lane with traffic restricted to busses, taxis, and cycles during certain periods of the day. The left-
most lane (lane 1) heads out of town, and has a bus stop in the near foreground. There is a pedestrian
crossing midway in the scene that is operated by pedestrian requests. The capture rate is 25 frames
per second and the image is RGB of size 352 × 288. Weather conditions ranged from dry and overcast
(~1 h), to periods of light and heavy rain, after which the road surface was wet and shiny. A total of
7456 vehicles were manually observed over this period (car: 6208, van: 725, bus: 330, motorcycle:
186; and lorry: 7).

(a) (b)

(c)

Figure 6.12 Semantic lane labeling, camera 2: (a) shows initial trajectories clustering results; (b) presents the refined
results obtained using random sample consensus (RANSAC), the black “+” shows the fitted center line of each traffic
lane; and (c) segmented and labeled lanes, boundaries, and the direction of traffic flow (arrows) derived from tracking
results.

Computer Vision and Imaging in Intelligent Transportation Systems156

Table 6.3 shows the results of vehicle counting over a 5‐h period for the four main classes of vehicles.
Automatic detection using the self‐adaptive GMM found a total of 7388 vehicles (car: 5949, van: 734,
bus: 525, motorcycle: 180; the proportion of lorries present was too few to consider), representing an
overall detection rate (DER) of over 97%. As can be seen, cars dominate the traffic volume. Table 6.4
shows the vehicle count data associated with each traffic lane. The larger proportion of traffic is
detected in lane 1, associated with vehicles heading out of town at the end of the working day. The
restricted use of lane 3 for bus, cycle, and taxi traffic is also clearly depicted. Figure 6.13 provides a
graphical representation of traffic flow densities over 10‐min intervals.

Vehicle speed is estimated by computing the ground‐plane distance covered by each vehicle tracked
over five consecutive image frames (i.e., a period of 0.2 s at 25 fps video sampling rate). A vehicle’s
ground‐plane location is computed using the feature point described in Section 6.3.8. Figure 6.14
shows the distribution of speeds for each vehicle type over the period.

6.4 Some Challenges

We conclude this chapter by highlighting some of the challenges facing those developing computer
vision tools to assist traffic flow management. The largest growth in vehicular traffic is taking place
in developing countries and emerging economies. Without proper management and the use of
advanced ITS techniques, this is leading to congestion, pollution, and increased road fatalities.
However, state‐of‐the‐art techniques and technologies which are available for traffic flow analysis
might not be very useful in developing countries such as Pakistan, India, and Africa. These develop-
ing countries neither have a well‐managed and developed road infrastructure, nor do they have

Table 6.3 Hourly counts (and %) by vehicle classification type over a 5‐h period during the middle of the day.

Type/hour 1 2 3 4 5 All

Car 1010 (77%) 1062 (75%) 1271 (81%) 1414 (83%) 1192 (83%) 5949
Van 175 (13%) 182 (13%) 165 (10%) 125 (7%) 87 (6%) 734
Bus 77 (6%) 139 (10%) 104 (7%) 104 (6%) 101 (7%) 525
Cycle 41 (3%) 24 (2%) 25 (2%) 44 (3%) 46 (3%) 180
Other (3) (9) (12) (15) (7) (46)
All 1303 1407 1565 1687 1426 7388

Table 6.4 Lane usage (over a 5 h period) of each vehicle type.

Lane/type Car Van Bus Cycle Other All

1 3667 (81%) 449 (10%) 264 (6%) 112 (2%) (19) 4492
2 2245 (84%) 284 (11%) 107 (4%) 29 (1%) (21) 2665
3 37 (16%) 1 (0%) 154 (65%) 39 (16%) (6) 231
All 5949 734 525 180 (46) 7388

Traffic Flow Analysis 157

enough resources to implement technologies related to traffic flow analysis. Some of the key reasons
as to why new technologies are difficult to deploy in developing countries are given next.

Lack of infrastructure and resources: Many metropolitan regions and large cities in developing
countries lack a well‐managed public transport infrastructure so with the inexorable rise in the num-
ber of vehicle journeys, roads are increasingly congested. Congestion is exacerbated by a failing or
nonexistence/nonfunctional traffic control infrastructure at crossings and intersections, as well as
low level of adherence to traffic rules. Under such conditions, current approaches to traffic flow
analysis are much less robust.

Unstructured road lane marking: Existing technologies and applications rely on road infrastruc-
ture with proper lane marking. Well‐defined lane markings encourage road users to keep their vehicles
in a systematic flow pattern. However, in developing countries lane markings might not exist or are

0 50 100 150 200 250 300
0

50

100

150

200

250

300

350

Time (min)

N
um

be
r

of
 v

eh
ic

le
s

Vehicle density (10-min periods)

Car
Van
Bus
Motocycle
All vehicles

Figure 6.13 Plot of vehicle densities for each
vehicle type sampled in 10‐min periods.

0 10 20 30 40 50 60
0

100

200

300

400

500

600

700

800

900

1000

Vehicle speed (miles per hour)

N
um

be
r

of
 v

eh
ic

le
s

Vehicle speed distribution

Car
Van
Bus
Motocycle

Figure 6.14 Plot of vehicle speed
distributions for each vehicle type.

Computer Vision and Imaging in Intelligent Transportation Systems158

not clearly visible on the majority of urban roads. Even if lanes do exist, erratic driver behavior and
nonadherence to traffic rules are significant problems.

Highly cluttered and occluded vehicles: Current vehicle detection algorithms are not sufficiently
robust to cope with the levels of clutter and occlusion encountered on the roads of developing coun-
tries. Clutter arises from both high traffic densities and a lack of pedestrian crossing control that
results in pedestrians crossing the road at arbitrary times and locations. Occlusion is also a major
factor due to the existence of trees, electricity/telephone poles, and cables over the urban roads.
Placing a camera on a pole at a crossing may not provide a clear view of the traffic stream.

Unconventional customized vehicles: A key task of traffic flow analysis is the detection, counting,
and classification of vehicles which rely on well‐defined knowledge about vehicle size and orienta-
tion. In developing countries, key transportation modes for low‐income people are motorcycles,
bicycles, and unconventional/customized vehicles (rikshaws, motorized rikshaws, trishaws and trol-
leys, etc.). These vehicles will be a real challenge for existing traffic flow monitoring technologies.

Unawareness of traffic rules: Application and implementation of technologies for traffic flow man-
agement and analysis is highly dependent on a driver’s awareness of the rules and regulations govern-
ing road usage. In many countries, public awareness and adherence of the rules is low and enforcement
is patchy or nonexistent. As a consequence, it is very common to see drivers ignoring traffic signals,
lane markings, and junction stop signs. This problem is increasing day by day due to increasing
population, vehicles on the road, and lack of education.

Extreme weather conditions: Extreme weather conditions can also cause failures in a traffic flow
analysis system. Winter fog, heavy rains, and poor lighting are some of the problems that are difficult
for a computer vision system to deal with.

Figure 6.15 illustrates some of the challenges that arise on for automating the analysis of traffic
flow, in this case in the Indian subcontinent, due to less‐structured road environments, unconven-
tional road vehicles, nonexistence of lane markings, and unawareness of traffic rules.

Keeping in view all these highlighted issues, existing technologies have a long way to go to deal
with cluttered and occluded environments, multiclass vehicles, less‐developed road infrastructure,
unstructured traffic patterns, and extreme weather conditions. Therefore, much research is needed
to come up with real‐time solutions that are robust under such operational conditions.

Figure 6.15 Illustration of some challenges in the analysis of traffic flow in developing countries (Pakistan).

Traffic Flow Analysis 159

 References

 1 R. Fernández, Elementos de la teoría del tráfico vehicular. Fondo Editorial, Pontificia Universidad
Católica de Valparaíso Universidad de los Andes (Santiago‐Chile) Universidad Católica del Perú,
Lima, 2011.

 2 Transportation Research Board, “Traffic flow theory—a state‐of‐the‐art report,” Special Report 165,
Federal Highway Administration, Washington, DC, 1992.

 3 J. G. Wardrop, “Some theoretical aspects of road traffic research,” Proceedings of the Institution of
Civil Engineers, Part II, vol. I, pp. 352–362, 1952.

 4 R. Fernández, Temas de ingeniería y gestión de tránsito, RIL Editores, Santiago, 2014.
 5 IHT, Transport in the Urban Environment, The Institution of Highways & Transportation, Mayhew

McCrimmon Printers Ltd, Essex, 1997.
 6 A. Sobral, A. Vacavant, “A comprehensive review of background subtraction algorithms evaluated

with synthetic and real videos,” Computer Vision and Image Understanding, vol. 122, pp. 4–21, 2014.
 7 X. Su, T. M. Khoshgoftaar, X. Zhu, A. Folleco, “Rule‐based multiple object tracking for traffic

surveillance using collaborative background extraction.” In Advances in Visual Computing,
pp. 469–478, Springer‐Verlag, Berlin, 2007.

 8 D. Bloisi, L. Iocchi, “Argos—A video surveillance system for boat traffic monitoring in Venice,”
International Journal of Pattern Recognition and Artificial Intelligence, vol. 23, no. 7, pp. 1477–1502, 2009.

 9 N. Buch, J. Orwell, S. A. Velastin, “Urban road user detection and classification using 3‐D wireframe
models,” IET Computer Vision, vol. 4, no. 2, pp. 105–116, 2010.

 10 B. Johansson, J. Wiklund, P. Forssén, G. Granlund, “Combining shadow detection and simulation
for estimation of vehicle size and position,” Pattern Recognition Letters, vol. 30, no. 8,
pp. 751–759, 2009.

 11 Z. Chen, N. Pears, M. Freeman, J. Austin, “A Gaussian mixture model and support vector machine
approach to vehicle type and colour classification,” IET Intelligent Transport Systems, vol. 8, no. 2,
pp. 135–144, 2014.

 12 Y. Li, Z. Li, H. Tian, Y. Wang, “Vehicle detecting and shadow removing based on edged mixture
Gaussian model,” In Proceedings of the 18th IFAC World Congress, Università Cattolica del Sacro
Cuore, Milano, August 28, 2011–September 2, 2011, pp. 800–805, 2011.

 13 Z. Chen, T. Ellis, “A self‐adaptive Gaussian mixture model,” Computer Vision and Image
Understanding, vol. 122, pp. 35–46, 2014.

 14 N. A. Mandellos, I. Keramitsoglou, C. T. Kiranoudis, “A background subtraction algorithm for
detecting and tracking vehicles,” Expert Systems with Applications, vol. 38, pp. 1619–1631, 2011.

 15 Xiaofeng Lu, Takashi Izumi, Tomoaki Takahashi, Lei Wang, “Moving vehicle detection based on
fuzzy background subtraction,” In Proceedings of the IEEE International Conference on Fuzzy Systems
(FUZZ–IEEE), Beijing, July 6–11, 2014, pp. 529–532, 2014.

 16 D. Comaniciu, V. Ramesh, P. Meer, “Kernel‐based object tracking,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 25, pp. 564–575, 2003.

 17 S. Lefebvre, S. Ambellouis, “Vehicle detection and tracking using Mean Shift segmentation on
semi‐dense disparity maps,” In Proceedings of the IEEE Intelligent Vehicle Symposium, University of
Alcala, Madrid, Spain, June 3–7, 2012.

 18 B. Gorry, Z. Chen, K. Hammond, A. Wallace, G. Michaelson, “Using mean‐shift tracking algorithms
for real‐time tracking of moving images on an autonomous vehicle testbed platform,” International
Journal of Computational Science and Engineering, vol. 1, no. 3, pp. 165–170, 2007.

 19 J. Dinger, “An investigation into segmenting traffic images using various types of graph cuts.”
M.Sc. Engg. thesis, Graduate School of Clemson University, 2011.

Computer Vision and Imaging in Intelligent Transportation Systems160

 20 K. Priyadharshini, S. Vishnupriya, P. Saranya, “Automatic vehicle detection and tracking in aerial
surveillance using DBN and graph cut model,” In Proceedings of the IEEE International Conference on
Emerging Trends in Computing, Communication and Nanotechnology (ICECCN 2013), Tirunelveli,
India, March 25–26, 2013.

 21 Z. Chen, T. Ellis, S. A. Velastin, “Vehicle detection, tracking and classification in urban traffic,”
In Proceedings of the 15th International IEEE Conference on Intelligent Transportation Systems,
Anchorage, AK, September 16–19, 2012.

 22 Y. Wang, “Real‐time moving vehicle detection with cast shadow removal in video based on
conditional random field,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 19,
no. 3, pp. 437–441, 2009.

 23 Z. Zheng, X. Wang, G. Zhoub, L. Jiang, “Vehicle detection based on morphology from highway aerial
images,” In Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium
(IGARSS), Munich, July 22–27, 2012, pp. 5997–6000, 2012.

 24 B. Sharma, V. K. Katiyar, A. K. Gupta, A. Singh, “The automated vehicle detection of highway traffic
images by differential morphological profile,” Journal of Transportation Technologies, vol. 4, pp.
150–156, 2014.

 25 A. Anto, C. Minnu Jayan, “Vehicle detection and classification from high resolution aerial views
using morphological operations,” International Journal of Engineering Research and Technology,
vol. 4, no. 6, pp. 853–860, 2015.

 26 D. G. Lowe, “Object recognition from local scale‐invariant features,” In Proceedings of the
International Conference on Computer Vision (ICCV), vol. 2, Los Alamitos, CA, September 1999,
pp. 1150–1157, 1999.

 27 X. Ma, W. E. L. Grimson, “Edge‐based rich representation for vehicle classification,” In Proceedings of
the 10th IEEE International Conference on Computer Vision, Beijing, China, vol. 2, October 17–21,
2005, pp. 1185–1192, 2005.

 28 T. Gao, Z. G. Liu, W. C. Gao, J. Zhang, “Moving vehicle tracking based on SIFT active particle
choosing,” In Advances in Neuro‐Information Processing, vol. 5507, Lecture Notes in Computer
Science, pp. 695–702, Springer, Berlin/Heidelberg, 2009. 15th International Conference, ICONIP
2008, Auckland, New Zealand, November 25–28, 2008.

 29 H. Bay, T. Tuytelaars, L. Van Gool, “SURF: Speeded‐up robust features,” In Computer Vision—ECCV
2006, vol. 3951, Lecture Notes in Computer Science, pp. 404–417, Springer, Berlin/Heidelberg, 2006.
9th European Conference on Computer Vision, Graz, Austria, May 7–13, 2006.

 30 B.‐F. Lin, Y.‐M. Chan, L.‐C. Fu, P.‐Y. Hsiao, L.‐A. Chuang, S.‐S. Huang, M.‐F. Lo, “Integrating
appearance and edge features for sedan vehicle detection in the blind‐spot area,” IEEE Transactions
on Intelligent Transportation Systems, vol. 13, no. 2, pp. 737–747, 2012.

 31 J. W. Hsieh, L. C. Chen, D. Y. Chen, “Symmetrical SURF and its applications to vehicle detection and
vehicle make and model recognition,” IEEE Transactions on Intelligent Transportation Systems, vol. 15,
no. 1, pp. 6–20, 2014.

 32 N. Dalal, B. Triggs, “Histograms of oriented gradients for human detection,” In Proceedings of the
IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, vol. 1,
San Diego, CA, June 20–26, 2005, pp. 886–893, 2005.

 33 Q. Yuan, A. Thangali, V. Ablavsky, S. Sclaroff, “Learning a family of detectors via multiplicative
kernels,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 33, no. 3, pp. 514–530,
2011.

 34 H. Tehrani Niknejad, A. Takeuchi, S. Mita, D. McAllester, “On‐road multivehicle tracking using
deformable object model and particle filter with improved likelihood estimation,” IEEE Transactions
on Intelligent Transportation Systems, vol. 13, no. 2, pp. 748–758, 2012.

Traffic Flow Analysis 161

 35 J. Arrospide, L. Salgado, “A study of feature combination for vehicle detection based on image
processing,” Scientific World Journal, vol. 2014, Article ID: 196251, 2014.

 36 S. M. Elkerdawi, R. Sayed, M. Elhelw, “Real‐time vehicle detection and tracking using Haar‐like
features and compressive tracking,” Advances in Intelligent Systems and Computing, vol. 252,
pp. 381–390, 2014.

 37 H. Wang, H. Zhang “A hybrid method of vehicle detection based on computer vision for intelligent
transportation system,” International Journal of Multimedia and Ubiquitous Engineering, vol. 9,
no. 6, pp. 105–118, 2014.

 38 J. Wang, X. Sun, J. Guo, “A region tracking‐based vehicle detection algorithm in nighttime traffic
scenes,” Sensors, vol. 13, pp. 16474–16493, 2013.

 39 W.‐C. Chang, C.‐W. Cho, “Online boosting for vehicle detection,” IEEE Transactions on Systems,
Man, and Cybernetics. Part B, Cybernetics, vol. 40, no. 3, pp. 892–902, 2010.

 40 S. Sivaraman, M. Trivedi, “A general active‐learning framework for on‐road vehicle recognition and
tracking,” IEEE Transactions on Intelligent Transportation Systems, vol. 11, no. 2, pp. 267–276, 2010.

 41 J. W. Hsieh, S. H. Yu, Y. S. Chen, W. F. Hu, “Automatic traffic surveillance system for vehicle tracking
and classification,” IEEE Transactions on Intelligent Transportation Systems, vol. 7, no. 2, pp. 175–187,
2006.

 42 B. Morris, M. Trivedi, “Robust classification and tracking of vehicles in traffic video streams,”
In Intelligent Transportation Systems Conference (ITSC 2006), Toronto, ON, September 2006,
pp. 1078–1083, 2006.

 43 M. Bernas, B. Płaczek, P. Porwik, T. Pamuła, “Segmentation of vehicle detector data for improved
k‐nearest neighbours‐based traffic flow prediction,” IET Intelligent Transport Systems, vol. 9, no. 3,
pp. 264–274, 2015.

 44 S. Teoh, T. Brunl, “Symmetry‐based monocular vehicle detection system,” Machine Vision and
Applications (online), vol. 23, no. 5, pp. 831–842, 2012.

 45 S. Sivaraman, M. M. Trivedi, “Active learning for on‐road vehicle detection: A comparative study,”
Machine Vision and Applications, vol. 25, no. 3, pp. 599–611, 2011.

 46 Y. Chen, G. Qin, “Video‐based vehicle detection and classification in challenging scenarios,”
International Journal of Smart Sensing and Intelligent Systems, vol. 7, no. 3, pp. 1077–1094, 2014.

 47 F. Moutarde, B. Stanciulescu, A. Breheret, “Real‐time visual detection of vehicles and pedestrians
with new efficient adaBoost features,” In 2nd Workshop on Planning, Perception and Navigation for
Intelligent Vehicles (PPNIV), at 2008 IEEE International Conference on Intelligent RObots Systems
(IROS 2008), September 2008, Nice, France, 2008.

 48 P. Dalka, A. Czyzewski, “Vehicle classification based on soft computing algorithms,” In Rough Sets
and Current Trends in Computing, vol. 6086, Lecture Notes in Computer Science, pp. 70–79,
Springer, Berlin/Heidelberg, 2010.

 49 J. Gleason, A. V. Nefian, X. Bouyssounousse, T. Fong, G. Bebis, “Vehicle detection from aerial
imagery,” In IEEE International Conference on Robotics and Automation, Shanghai, May 9–13, 2011.

 50 M. Hodlmoser, B. Micusik, M. Pollefeys, M. Liu, M. Kampel, “Model‐based vehicle pose estimation
and tracking in videos using random forests,” In 2013 International Conference on 3D Vision (3DV),
Seattle, WA, June 29–July 1, 2013, pp. 430–437, 2013.

 51 Z. Chen, T. Ellis, “Multi‐shape descriptor vehicle classification for urban traffic,” In Proceedings of the
International Conference on Digital Imaging Computing Techniques and Applications (DICTA),
Brisbane, QLD, December 6–8, 2011, pp. 456–461, 2011.

 52 B. Tamersoy, J. K. Aggarwal, “Robust vehicle detection for tracking in highway surveillance videos
using unsupervised learning,” In Proceedings of the International Conference of Advanced Video and
Signal Based Surveillance, Genoa, September 2–4, 2009.

Computer Vision and Imaging in Intelligent Transportation Systems162

 53 N. Buch, S. A. Velastin, J. Orwell, “A review of computer vision techniques for the analysis of urban
traffic,” IEEE Transactions on Intelligent Transportation Systems, vol. 12, no. 3, pp. 920–939, 2011.

 54 J. N. Castaneda, V. Jelaca, A. Frias, A. Pizurica, W. Philips, R. R. Cabrera, T. Tuytelaars, “Non‐
overlapping multi‐camera detection and tracking of vehicles in tunnel surveillance,” In 2011
International Conference on Digital Image Computing: Techniques and Applications (DICTA), Noosa,
QLD, December 6–8, 2011.

 55 R. R. Cabrera, T. Tuytelaars, L. V. Gool, “Efficient multi‐camera vehicle detection, tracking, and
identification in a tunnel surveillance application,” Computer Vision and Image Understanding,
vol. 116, pp. 742–753, 2012.

 56 V. Jelaca, J. N. Castaneda, A. Pizurica, W. Philips, “Image projection clues for improved real‐time
vehicle tracking in tunnels,” In Proceedings of the SPIE 8301, Intelligent Robots and Computer Vision
XXIX: Algorithms and Techniques, 83010C, Burlingame, CA, USA, January 22, 2012.

 57 C. Stauffer, W. Grimson, “Adaptive background mixture models for real‐time tracking,” In
Proceedings/CVPR, IEEE Computer Society Conference on Computer Vision and Pattern Recognition.
IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Ft. Collins, CO,
USA, June 23–25, 1999, vol. 2, pp. 246–252, 1999.

 58 Z. Zivkovic, F. van der Heijden, “Recursive unsupervised learning of finite mixture models,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 26, no. 5, pp. 651–656, 2004.

 59 Z. Chen, T. Ellis, “Semi‐automatic annotation samples for vehicle type classification in urban
environments,” IET Intelligent Transport Systems, vol. 9, no. 3, pp. 240–249, 2014.

 60 T. Horprasert, D. Harwood, L.S. Davis, “A statistical approach for real‐time robust background
subtraction and shadow detection,” In Proceedings of the IEEE ICCV’99 Frame Rate Workshop, Corfu,
Greece, September 21, 1999.

 61 J. Heikkila, “Geometric camera calibration using circular control points,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 22, no. 10, pp. 1066–1077, 2000.

 62 A. Bosch, A. Zisserman, X. Munoz, “Representing shape with a spatial pyramid kernel,” In CIVR
2007, Proceedings of the 6th ACM International Conference on Image and Video Retrieval,
Amsterdam, the Netherlands, July 9–11, 2007, pp. 401–408, 2007.

 63 Z. Chen, T. Ellis, “Lane detection by trajectory clustering in urban environments,” In IEEE 17th
International Conference on Intelligent Transportation Systems, Qingdao, China, October 8–11,
2014, pp. 3076–3081, 2014.

 64 “Design Manual for Roads and Bridges: Volume 6 Road Geometry,” Available in http://www.dft.gov.
uk/ha/standards/dmrb/vol6/section1/td2705.pdf (accessed July 29, 2015).

163

Computer Vision and Imaging in Intelligent Transportation Systems, First Edition.
Edited by Robert P. Loce, Raja Bala and Mohan Trivedi.
© 2017 John Wiley & Sons Ltd. Published 2017 by John Wiley & Sons Ltd.
Companion website: www.wiley.com/go/loce/ComputerVisionandImaginginITS

 Vision‐Based Intersection Monitoring

7.1 Vision‐Based Intersection Analysis: Capacity, Delay, and Safety

The chapter provides a discussion of traffic analysis at intersections for capacity, delay, and safety
analysis. Traffic cameras are utilized for all three goals through vision‐based measurement of intersection
counts, queue analysis, and finally safety analysis. Sections 7.1.1 and 7.1.2 highlight the importance
of intersection monitoring and the underlying advantages of using computer vision techniques. The
overview of the intersection analysis system is explained in Section 7.2, and each intersection application
is discussed separately in its own section.

7.1.1 Intersection Monitoring

Intersections are planned conflict points on roads which are essential for connecting different
 geographic areas. They are generally monitored for design and safety goals. The design of intersec-
tions includes determining the need and placement of traffic signals, bike paths, and pedestrian
walkway features as well as predicting how the specific layout affects existing and future traffic oper-
ations. The accuracy of this prediction is challenging since many parameters such as vehicle turning,
queuing at intersections, and overall level of service can contribute to this assessment in complex
relations. Still, good intersection design has progressed rapidly in recent years. Features like curb
extensions, permissive and protected bicycle/pedestrian signal phasing strategies, advanced detec-
tion and actuation, signal controller sophistication, and striping and signage have all contributed to
intersections that are safer, easier to understand for all users, and more comfortable for bicyclists and
pedestrians.

However, a key challenge still remaining at intersections is complete understanding of the interactions
between different road users. Motorized and nonmotorized participants come in close proximity
when they cross paths, turn, or travel an intersection which highlights a major safety issue. The common
way of addressing safety at intersections is to use traffic control devices such as signs, signals, and
pavement markings. However, statistical reports stress the need for even more safety techniques and

7

Intersection Monitoring Using Computer Vision Techniques
for Capacity, Delay, and Safety Analysis
Brendan Tran Morris1 and Mohammad Shokrolah Shirazi2

1 University of Nevada, Las Vegas, NV, USA
2 Cleveland State University, Cleveland, OH, USA

Computer Vision and Imaging in Intelligent Transportation Systems164

systems. According to a 2009 report by Cano et al. [1], 30% of all high severity and 20% of all fatal
accidents occur at intersections and junctions. In Europe, the severe and fatal accident rate is in
30–60% and 16–36% range, respectively. In the United States, around two million accidents and 6700
fatalities occur at intersections every year. These constitute 26% of all collisions [2]. As a consequence,
improvements in accident avoidance and safety are greatly desired and efforts have begun to address
these through more active intersection monitoring systems.

Intersections have complicated interactions between traffic participants such as groups of pedes-
trians in Figure 7.1a. Figure 7.1b shows two jaywalkers that require real‐time detection for safety
analysis. Without camera‐based monitoring, an accident or a near‐accident event would go unnoticed
and potential safety hazards left unaddressed.

7.1.2 Computer Vision Application

The traditional method (manual) for intersection monitoring requires a human operator to observe
traffic flows and records important traffic parameters such as the crossing count and time. The
observation can be performed onsite or through watching video recordings which are obtained by
traffic cameras. Traffic monitoring cameras are an innovative and extremely functional use of video
surveillance technology. They are usually mounted on top of traffic signals and placed along busy
roads and intersections. In addition to recording traffic patterns for the monitoring purpose, they
also help cultivate safe driving habits and discourage moving violations [3].

The main difficulty with manual intersection monitoring and data collection is the high cost of
labor. Technicians must be trained and paid for their time which limits the scalability of traditional
intersection monitoring. In addition, since people are recruited to perform data collection, there is a
real possibility of data corruption due to human error. As a result, traffic monitoring cameras at
intersection can greatly facilitate the data collection process. Video frames can be manually evalu-
ated offline and important traffic information such as vehicle counts and accidents can be recorded
in a more efficient manner [4]. This offline evaluation improves the accuracy of the data collection
since complex activities can be viewed at slower speed or repeated. However, this still requires
 significant human resources (evaluation time) and prohibits real‐time usage of traffic data hence is
generally used for before–after analysis.

(a) (b)

Figure 7.1 Example video frames from intersections which highlight the complexity of mixed participants and
important events that occur at intersections: (a) group of pedestrians and (b) two jaywalkers.

Intersection Monitoring Using Computer Vision Techniques for Capacity, Delay, and Safety Analysis 165

As an alternative, automated vision‐based systems can be utilized to detect objects of interest
using computer vision techniques to provide long‐term trajectories of road users without manual
intervention for intersection monitoring [5]. The key advantages of vision‐based systems include the
following:

 ● Computer vision systems are relatively inexpensive and they can be easily installed on a vehicle or
a road infrastructure element. They can recognize objects without the need for complementary
companion equipment.

 ● Cameras can capture a tremendous wealth of visual information over wide areas. Due to advances
in computer vision algorithms, this wealth of visual data can be exploited to identify more subtle
changes and distinctions between objects, enabling a wide array of ever more sophisticated appli-
cations. For example, vehicle type, count, and speed can be provided concurrently [6].

 ● Future events such as an imminent conflict or accidents can be predicted in real time. This predic-
tion is crucial for future cooperative advanced driver assistance systems (ADAS) focused on
improving safety.

 ● Finally, infrastructure mounted cameras are able to monitor an intersection without any additional
devices or hardware embedded in, physically printed on, or attached to the objects of interest. This
gives cameras an operational advantage over radio‐frequency identifier (RFID) tags, bar codes, and
wireless access points since they require additional installation of complementary readers, scan-
ners, and wireless modems, respectively [7].

7.2 System Overview

A typical framework for automated vision‐based intersection analysis is shown in Figure 7.2. Video
data (i.e., a sequence of images) are provided as input to the system in either an online or offline man-
ner. The front‐end system deals with detecting and classifying objects as road users (i.e., vehicles or
pedestrians), while the back‐end provides higher level traffic activity analysis.

Feature extraction methods are common for detecting objects in a dense scene. The salient fea-
tures (e.g., corners) identify parts of an object and can be reliably detected even with occlusion.
These features are identified in consecutive video frames and matched through tracking. The fea-
tures are grouped (e.g., using spatial proximity) to form object proposals for road users. These
object proposals are passed to a classification stage which uses predefined criteria or models to

Tracking road users

Features
extraction

Intersection
video data

Classi
ers and
models

Features tracking
and grouping

Road user
classi
cation

Trajectories World coordinates
conversion

Analysis

Capacity: count analysis
Delay: queue analysis

Safety: accident and con�ict
detection/analysis

Camera calibration

Figure 7.2 Intersection monitoring system overview.

Computer Vision and Imaging in Intelligent Transportation Systems166

classify the road user proposals as vehicles, pedestrians, or bikes. Classifiers can be simple, such as
using a speed measurement, or can be complex appearance models obtained from machine learn-
ing techniques.

Intersection activity analysis is conducted on the extracted trajectories of road users for object‐
specific understanding. Camera calibration is required to convert trajectories in image coordinates
to the three‐dimensional (3D) world coordinates. The same trajectories can be used for different
types of analysis as shown in the bottom right of Figure 7.2. The following sections highlight popular
techniques for front‐end processing and provide example analysis applications.

7.2.1 Tracking Road Users

The aim of tracking is to generate a consistent trajectory of an object over time. Computer vision has
been used to great success for the automatic detection and tracking of vehicles and pedestrians due
to many significant advances. However, an appropriate tracking method for intersection analysis
must contend with some major challenges as follows:

 ● Vehicles and pedestrians are not in continuous motion at intersections. Vehicles might stop behind
the stop bars and pedestrians remain standing on a curb waiting for a red traffic signal to change.
Consequently, detection by using motion (i.e., background subtraction) is not reliable [8].

 ● Intersections are designed conflict points which put vehicles and pedestrians into close proximity
with more complicated motion patterns than on highways. This increases the possibility of inter-
actions and occlusion between participants which is a well‐known and challenging problem for
vision‐based monitoring systems.

 ● Since intersections are designed for various road users, more complex classifiers must be used to
distinguish pedestrians from vehicles. Further, there is a trade‐off between wide‐area field‐of‐view
(FOV) and object resolution which usually leads to small pedestrians of low quality and small size
making them more difficult to detect [8]. Consequently, many vision‐based studies only consider
vehicle tracking at intersections.

Optical flow is a common tracking method for intersection scenarios [9–13]. Optical flow finds
matches between consecutive images to find a displacement vector (pixel translation). Optical flow
assumes brightness constancy (consistent appearance) of corresponding pixels over the frames, and
can be computed by two well‐known methods, Lucas–Kanade [14] and Horn–Schunck [15]. The
methods first detect important features (keypoints) on moving objects and matches are found using
an optical flow optimization process.

Selecting the right features for object representation is an important step for tracking. Among
recent studies, corner features are viewed as the most reliable features for intersection monitoring
since they are still visible even when the object is partially occluded [9]. A corner can be defined as a
point of intersection between two edges that has a well‐defined position and can be robustly detected
for a sequence of images. Corner detection for an object varies for different sizes and image quality,
which affects the performance of the tracking.

The basic method of feature detection is to search for image patches that are distinct. The popular
Harris corner method [16] is a simple and effective keypoint detection method. Consider a grayscale
image I and window function w as a rectangular window or Gaussian window which is convolved
with the image with displacements u and v in x and y directions. The method finds the difference in
intensity for a displacement of (u, v) in all directions. This is expressed in Equation 7.1.

E u v w x y I x u y v I x y

x y
, , , .

,
,

2 (7.1)

Intersection Monitoring Using Computer Vision Techniques for Capacity, Delay, and Safety Analysis 167

The E(u, v) should be maximized in order to detect corners which means the second term in
Equation 7.1 should be maximized. Using Taylor expansion, Equation 7.2 is obtained.

E u v I x y uI vI I x y

x y
x y, , , .

,

2 (7.2)

Ix and Iy are image derivatives in x and y directions, respectively. Expanding the equation and canceling
properly yield

E u v u I uvI I v I

x y
x x y y,

,

2 2 2 22 (7.3)

E u v u v w x y

I I I

I I I

u
v

x y

x x y

x y y
, ,

,

2

2 . (7.4)

The Harris matrix is defined as

M w x y

I I I

I I I
x x y

x y y
, .

2

2
 (7.5)

Finally, the score R M k Mdet trace 2 is computed, where det M 1 2 and trace M 1 2
based on the two eigenvalues λ1, λ2 of the M matrix. Any small image window with an R score
greater than a sensitivity threshold value is considered a “corner.” The method essentially detects a
region as a corner, when λ1 and λ2 are large and 1 2.

Figure 7.3 shows detected corners on vehicles and pedestrians from an intersection. By robustly
locating good corner keypoints, they can be matched over a sequence of frames to build object
 trajectories. After the corner features are detected, they are matched between frames under bright-
ness constancy and small motion constraints using and optical flow tracker such as the Kanade–
Lucas–Tomasi (KLT) tracker [17]. Under brightness constancy and small motion (i.e., small u, v), the
image of a corner remains the same between frames at time t and t 1 as I x y t I x u y v t, , , , 1 .
A first‐order Taylor expansion around points (x, y, t) is taken to linearize the right side as

Figure 7.3 An example of Harris corners
detected for an intersection scenario.

Computer Vision and Imaging in Intelligent Transportation Systems168

 I x u y v t I x y t I u I v Ix y t, , . .1 , , (7.6)

 I x u y v t I x y t I u I v Ix y t, , . .1 , , , (7.7)

where It is a frame difference, and Ix, and Iy are image derivatives along x and y directions, respec-
tively. Since I x u y v t, , 1 is equal to I(x, y, t) under brightness constancy constraint, Equation 7.8
is obtained.

 I u I v Ix y t. . 0. (7.8)

The equation needs to be solved to compute u and v displacement values. Since there is one equa-
tion with two unknowns, the equation can be extended by assuming all points in a local area move in
the same way. Using a 5 5 window results in 25 equations per Harris corner which is compactly
defined as follows:

I P I P
I P I P

I P I P

x y

x y

x y

1 1

2 2

25 25

. .

. .

u
v

I P
I P

I P

t

t

t

1

2

25

.

.
. (7.9)

Equation 7.9 is in the form of A d b25 2 2 1 25 1 which can be solved using a least‐squares solution.
The solution for d is d A A A bT T1 which is shown in Equation 7.10,

u
v

I I I I
I I I I

I I
I I

x x x y

x y y y

x t

y t

1

 (7.10)

with each of the summations over all pixels in the 5 5 window.
Figure 7.4 shows tracks of corner features between two frames for a typical intersection. The features

on moving pedestrians and vehicles are tracked, while the large group of pedestrians on the curb have

Figure 7.4 Tracking features of two frames
using the KLT algorithm.

Intersection Monitoring Using Computer Vision Techniques for Capacity, Delay, and Safety Analysis 169

no trajectories since they are not in motion. It is also important to note that in typical low‐resolution
 traffic video, there are few reliably tracked keypoints per intersection participant.

The final step for object tracking is to group features and associate them to vehicles and pedestrians
based on some meaningful criteria, such as the amount of movement and their direction. Since the
number of vehicles and pedestrians changes over time, a clustering method is required for grouping
which does not need to be initialized with number of clusters. As a result, hierarchical clustering
algorithms are preferred which utilize criteria such as speed, magnitude, and direction of movement
to group tracks. The algorithm steps [9] are as follows:

1) Features detected at frame t are grouped initially only if their overall displacement is large enough
to avoid noise. Each feature fi is connected to other features fj within a maximum distance
threshold Dconnection to build a correspondence graph.

2) The distance is computed for all pairs of connected features (fi, fj) and their minimum and
maximum distances are updated. The features are disconnected (i.e., the edge is broken in the
correspondence graph) if there is enough relative motion between the features, which indicates
inconsistent movement between features.

3) The connected components in the correspondence graph represent vehicles and pedestrians. If
all the features that compose a component are no longer tracked, meaning the object has disap-
peared from the scene, the features are removed from the graph.

The major difficulty in feature‐based tracking by optical flow comes from oversegmentation. This
problem is most apparent for large vehicles, such as a bus, where multiple feature clusters arise due
to its large size. In these scenarios, features at the front of the large vehicle are separated from fea-
tures at the rear. More domain knowledge, such as vehicle size, can be included to help tackle this
problem. Finally, the feature clusters are distinguished as either a vehicle or pedestrian using simple
classifiers. A common criterion for the classification is a threshold on average velocity since pedes-
trians travel more slowly than vehicles.

7.2.2 Camera Calibration

The main purpose of camera calibration is to establish a set of camera parameters in order to find a
relationship between the image plane coordinates and world coordinates. This step is essential for
translation of an image measurement into meaningful world units. For example, the speed of a vehi-
cle is calculated in an image as pixels per second and should be converted to another metric like miles
per hour. The process of converting image coordinates to world coordinates is usually performed for
transportation monitoring through ground‐plane homography normalization [18].

A 2D point (x, y) in an image can be represented as a homogeneous 3D vector x x x xi 1 2 3, , where
x x x1 3/ and y x x2 3/ . A homography is an invertible mapping of points and lines on a projective
plane P2 between two images. In order to calculate the homography which maps each xi to its cor-
responding xj in a second image, it is sufficient to compute the 3 3 homography matrix H which only
has eight degrees of freedom.

Typically, homographies are estimated between images by finding feature correspondences in
those images. The basic method is direct linear transform (DLT) that can be applied to obtain the
homography matrix H given a sufficient set of point correspondences. Since we are working in
homogeneous coordinates, the relationship between two corresponding points xi and xj can be
rewritten as

 cx Hxj i (7.11)

Computer Vision and Imaging in Intelligent Transportation Systems170

c
u
v H

x
y

h h h
h h h
h h h1 1

1 2 3

4 5 6

7 8 9

xx
y
1

, (7.12)

where c is any nonzero‐scale constant.
Dividing the first row of Equation 7.12 by the third row and the second row by the third row results

in the following two equations:

 h x h y h h x h y h u1 2 3 7 8 9 0. (7.13)

 h x h y h h x h y h v4 5 6 7 8 9 0. (7.14)

Equations 7.13 and 7.14 can be written in matrix form as

 A hi 0 (7.15)

with

A

x y ux uy u
x y vx vyi

1 0 0 0
0 0 0 1 1

 (7.16)

h h h h h h h h h h

T
1 2 3 4 5 6 7 8 9 . (7.17)

Since each point correspondence provides two equations, four correspondences are sufficient to
solve for the eight degrees of freedom of H. Figure 7.5 shows an example of defining four‐point
 correspondences for conversion between image and world global positioning system (GPS)
coordinates.

Figure 7.5 Four‐point correspondence between camera image plane and map‐aligned satellite image to estimate
the homography (H) matrix and convert image locations to world latitude and longitude.

Intersection Monitoring Using Computer Vision Techniques for Capacity, Delay, and Safety Analysis 171

7.3 Count Analysis

Count analysis provides a basic measure of the usage of an intersection. Vehicle and pedestrian
counts can be used to determine where there is demand in a network for planning and operations.

7.3.1 Vehicular Counts

Turning movement (TM) counts are a fundamental measurement for intersection analyses including
traffic operations analyses, intersection design, and transportation planning applications. In addition,
TM counts are required to develop optimized traffic signal timings leading to various benefits such
as fuel consumption reduction, air pollution reduction, and travel time improvement.

Traditionally, TM counts were obtained by field observations where technicians observe an inter-
section and hand count the number of vehicles. Technicians usually monitor flow of vehicles turning
right, left, and straight during the peak hours (i.e., 10 a.m. to noon and 4–6 p.m.). The observations
are generally aggregated into a report that provides the counts in 15‐min increments for the {north,
south, east, west}‐bound directions separated into {left, through, right} movements. However, robust
automated counting methods are desirable since manual counting has labor limitations with respect
to the number of locations, observation time periods and frequency, accuracy, and available budgets
[19, 20]. In contrast, automated TM count systems should provide high accuracy as well as long‐time
operation in order to provide daily traffic patterns.

Most TM count systems use the same basic zone definition framework and count a movement
based on the zones traversed [19, 20]. Figure 7.6a shows an example of zone definitions. Each zone is
denoted by number and represents the various sides of the intersection and the internal transition
area. The zones are used to define a regular sequence (RS) set which provides a list of all acceptable
zone traversals. For example, the sequence set {1, 5, 2} indicates a westbound left turn. During track-
ing, the vehicle location is mapped to a zone and only a record of transitions between zones is
recorded to build the tracked zone sequence. If the resulting zone sequence exists in the RS set for
the intersection, a counter for the associated TM count is incremented. The zone counting technique
is very simple to implement but is not effective when a vehicle is not well tracked, which results in
poor zone localization and noise in the tracked zone sequence.

More accurate TM counts can be obtained through better utilization of object trajectories.
Sequence comparison techniques can be used to match an observation with the typical paths defined
at an intersection. Figure 7.6b shows an example of the known paths for one intersection.

A count system can recognize TMs using temporal alignment techniques which measure the simi-
larity between trajectories and paths. The longest common subsequence (LCSS) distance is a popular
technique used to compare unequal length trajectories since it is robust against tracking noise and
has been shown to be effective for intersection monitoring and TM counts [6, 21].

In order to determine the TM count, a trajectory is compared with all the typical paths for the
intersection to find the best match. The first step for comparison is to compute a warping to best
align the trajectory and path using LCSS

LCSS , LCSS , ,F F

T T

F F d f fi
T

j
T

i j

i
T

j
T

E T T
i j i j

i j

0 0 0

1 1 1

|

& |

max ,

T T

F F F F

i j

i
T

j
T

i
T

j
Ti j jLCSS , LCSS , other1 1 wwise

, (7.18)

Computer Vision and Imaging in Intelligent Transportation Systems172

where Ti is the length of trajectory Fi and Fj is a typical path. The LCSS measure provides the total
number of matching points between two ordered sequences. F f ft

t1 ,..., represents the trajectory
centroid up to time t, and two important parameters, ε and δ, are empirically chosen based on an
intersection configuration. ε is used to find matching points within a small Euclidean distance (i.e.,
dE) and δ is a temporal alignment constraint to ensure that lengths are comparable and meaningful.
Finally, the matching path is found as the path with the smallest LCSS distance [22].

D F F

F F
T Ti

T
j
T i

T
j
T

i j

i j

i j

LCSS ,
LCSS ,

,
.1

min
 (7.19)

(a)

(b)

Figure 7.6 Scene preparation process for TM count: (a) zone definition and (b) models of typical paths.

Intersection Monitoring Using Computer Vision Techniques for Capacity, Delay, and Safety Analysis 173

7.3.2 Nonvehicular Counts

Counts of nonvehicular participants include pedestrians and bicycles are used for design of crosswalks
and bicycle routes or trails. Pedestrian counts are also required for designing facilities at crossing
points, such as signals and timers. For this purpose, pedestrian counts are carried out over some
length on either side of the proposed crossing point (e.g., along a crosswalk). Similar to a TM count,
typical trajectories can be modeled along the crosswalk. Unlike for vehicles, nonvehicular traffic is
typically bidirectional (e.g., right to left and left to right), which means that typical paths must be
defined in both directions of a crosswalk in order to keep track of the direction of travel. The same
LCSS trajectory comparison technique used before for vehicles can be implemented for nonvehicle
trajectories as well.

In addition to the counts, nonvehicular crossings are analyzed further for crossing characteristics.
The trajectories are further analyzed to extract information such as crossing speed since this directly
relates to the functionality of an intersection. For instance, a crosswalk countdown timer may be
extended if pedestrians are not able to reliably cross during a walk phase.

In the PedTrack [23] system, moving objects were detected using a background subtraction tech-
nique and potential pedestrians are determined by their size and width/height characteristics. An
inherent cost function was adopted to track subsequent potential objects based on their attributes of
size, height, width, and grayscale color distribution, and occlusion reasoning was performed. Waiting
zones were defined to register when pedestrians entered the scene and measure their crossing time.
The goal of the system was to track pedestrians in complete crossing events (waiting and completing
the crossing from one registration line to another). Figure 7.7 shows the waiting zones defined by two
trapezoids which register a complete crossing event.

Generally, pedestrian counts are more difficult to obtain than vehicle counts since detection and
tracking is a challenging problem in traffic cameras. Pedestrians are small in size, and they tend to
walk in group causing heavy occlusion which degrades tracking performance and undercounts the
number of people in a grouping. Some efforts have addressed these shortcomings by avoiding track-
ing all together and instead learning to count individuals using dynamic textures.

Figure 7.8 shows the overview of a crowd counting system. Foreground objects were extracted and
segmented into different motion directions using background subtraction and set of features, such as
segments, edge and texture, are extracted. The mapping from features to counts is learned using a
Gaussian process (GP) regression model [24, 25]. While effective, the nontracking‐based counting
method has limitations. It is not scalable since new regression models must be learned for every
scene which requires an effort to collect ground truth training data. Additionally, the system is lim-
ited to providing pedestrian counts in aggregate such that behaviors such as crossing speed are dif-
ficult to infer. Finally, tracking methods are able to operate without camera calibration while this
system must explicitly deal with perspective distortion.

7.4 Queue Length Estimation

Vehicle queue analysis is used in intersection control models to improve its passing capacity. The
estimation of queue and associated delay are useful for devising traffic management strategies that
would help to optimize traffic signals and improve the performance of a traffic network. Queue
length is usually estimated either using loop detectors [26] or video cameras [27, 28] at junctions.
Loop detectors are only able to measure the queue at specific lengths cut into the roadway while
cameras can provide more resolution which is desirable.

Computer Vision and Imaging in Intelligent Transportation Systems174

Vision‐based queue analysis can be performed either with or without tracking. Details on nontracking
techniques which only rely on detection are presented in Section 7.4.1, while tracking techniques
are discussed in Section 7.4.2

7.4.1 Detection‐Based Methods

Detection‐based queue methods determine the existence of vehicles based on the appearance of
features over the road. The general idea is that vehicles can be detected, without tracking, by examin-
ing the queue area in a lane (i.e., a predefined zone) based on important features that appear due to
presence of vehicles. Local binary pattern (LBP) [27], spatial edges [29], fast Fourier transform (FFT)
[29], and image gradients [30] are some features that have been used to detect stopped vehicles.

(a)

(b)

Figure 7.7 Complete crossing event [23] defined by traversal between waiting zones (trapezoids): (a) pedestrian crossing
and (b) pedestrian data recorded. Source: Cho et al. [23]. Reproduced with permission of National Academy of Sciences.

Intersection Monitoring Using Computer Vision Techniques for Capacity, Delay, and Safety Analysis 175

The same Harris corner features used for tracking are also useful for detecting stopped vehicles
when they build a queue [28]. The use of such features is based on the observation that the asphalt is
normally uniformly constant while vehicles have a more textured appearance. Therefore, when vehi-
cles are in a queue the zone will be filled with Harris corners, while an empty zone will have none
(Figure 7.9a). Note that while corners can also be detected on road markings (e.g., lane lines), with an
appropriate lane mask, it is straightforward to reject these road features that separate adjacent lanes.
The zone corners are further classified as static or moving features using an optical flow method.
Figure 7.9a shows static corners of one lane with dots, while the lane mask is shown by the shaded
trapezoid. It demonstrates how the presence of a queue results in a high number of static corners
from the queue head (at the bottom of the image) and up to the queue tail.

The queue length is determined by a line fit of the static corner locations. In the work of Albiol et al.
[28], only the vertical y coordinate was needed to denote the extent of the queue in the image. The true
length of the queue is then the end‐to‐end length of the line fit after mapping to world coordinates
through homography as described in Section 7.2.2. Figure 7.9b shows an example of queue length esti-
mation using the static corners of stopped vehicles. In this example, the length of the queue is provided
in meters and an estimate for how long the queue is present in seconds is provided for each lane.

7.4.2 Tracking‐Based Methods

Although queue analysis using detection methods is simple, its application is limited to queue length
estimation. Tracking‐based methods, in contrast, can provide vehicle specific measures of count,
delay, and speed. Queue analysis with tracking must contend with the following two challenges [31]:

1) Detectability: Popular motion‐based techniques (background subtraction) are not able to detect
stopped vehicles in a queue. Further, motion‐based detection leads to occlusion for slow moving
vehicles due to viewing angle and close proximity [8].

2) Trackability: Optical flow tracking works poorly for stationary objects since it is designed for
moving points. Also, with heavy occlusion in queues, there is the possibility of object grouping
drift as stopped vehicles are in close proximity and have similar motion.

Video

Motion segmentation

Feature extraction GP model Count estimate

fr (xt)

fl (xt)

40

15

10

5

0

30

20

10

0
0 200 400 600

Frame

C
ou

nt
C

ou
nt

800 1000

0 200 400 600

Frame

800 1000

Figure 7.8 Crowd counting system [24]. Source: Chan et al. [24]. Reproduced with permission of IEEE.

Computer Vision and Imaging in Intelligent Transportation Systems176

Therefore, tracking‐based queue analysis utilizes tracking algorithms that are able to reliably
 segment vehicles even when stopped in a line. One approach to solve this problem is the use of a
two‐phase tracking algorithm based on the overall vehicle motion state [31]. When a vehicle is in a
moving state, an optical flow tracker can successfully track it. When the vehicle is stopped, there is
no longer a need to actively track it and a vehicle segmentation (e.g., centroid or bounding box) can
be obtained by the last frame of motion. Figure 7.10 shows an example of tracking‐based queue
length estimation using feature points. Vehicles are detected using optical flow (i.e., points) as they
approach the intersection. Once the vehicle stops in the queue, the vehicle position is maintained
solely by the feature grouping. Finally, the queue is estimated as before but includes not only the

(a)

(b)

Figure 7.9 Detection‐based queue length estimation uses nonmoving keypoints to estimate a queue line [28].
(a) Static corner points and (b) estimated queue length. Source: Albiol et al. [28]. Reproduced with permission of IEEE.

Intersection Monitoring Using Computer Vision Techniques for Capacity, Delay, and Safety Analysis 177

length but also the count of cars. Note the vehicle at the head of the queue in the left lane was not
tracked properly, and hence has no bounding box when stopped.

A time‐series analysis of the queue can also be provided. Figure 7.11a shows an example of the
queue length estimation, and Figure 7.11b depicts the corresponding number of waiting vehicles in
two lanes. These figures depict a similar pattern from which the traffic signal phases can be inferred
(no queue during green phase). Note that while the queue length estimate has some variability due to
the consistency of features points (e.g., between 24 and 50 s), the number of vehicles is consistent
which is an advantage of tracking‐based queue estimation.

7.5 Safety Analysis

It is important for intersections to operate safely in addition to efficiently due to the high por-
tion of crashes that occur at these sites. In some cases, a signal is even installed to manage traffic
flow and improve safety (e.g., severe angle crashes at a stop‐controlled intersection). Due to
potential severity, intersections must be systematically and continuously monitored throughout
their life.

Historically, safety practitioners have identified intersections with the highest number of crashes
in a specified time period and focused their efforts and resources at those intersections. This reac-
tive approach can be effective in addressing a small number of high‐crash locations through
 collection of official accident reports and data mining methods are applied to the crash datasets to
find contributing factors and underlying reasons. However, accidents are infrequent and statistical
significance may require many years of data and situational changes may have occurred over this
time period.

Vision‐based systems have emerged as a great tool for safety analysis through automatic behavior
observation, accident detection, and conflict analysis. Since they operate in real time, they can gener-
ate large volumes of historical data quickly without requiring crash data collection.

As a result, there has been a major trend in video‐based traffic analysis to design systems that
understand participant behaviors and detect conflicts and accidents [32, 33].

Figure 7.10 The queue length estimation
(lines), detected stopped vehicles (bounding
boxes), and feature points (points).
Accumulated vehicle count regarding each
lane and the number of waiting vehicles in
the queue are displayed for each lane.

Computer Vision and Imaging in Intelligent Transportation Systems178

7.5.1 Behaviors

A behavior exhibited by an object of interest can be a single event (e.g., braking behavior) or a
sequence of events indicating an action (e.g., “turning right” behavior includes a declaration and
braking behavior). Behavior analysis provides an answer for some challenging questions, such as
what an object (vehicle or pedestrian) is doing right now or what is that object going to do in the
upcoming seconds. Compared to highways, intersections introduce many more attributes of interest
due to more complex layout, structures, and participants. For example, a bus stop may be adjacent to

40

35

Lane 1
Lane 2

Lane 1
Lane 2

30

25

20

15

10

5

0
0

4

3.5

W
ai

tin
g

ve
hi

cl
es

 in
 q

ue
ue

Q
ue

ue
 le

ng
th

 (
m

)

3

2.5

2

1.5

1

0.5

0

50 100

(a)

(b)

150 200 250 300

0 50 100 150

Time (s)

Time (s)

200 250 300

Figure 7.11 Tracking‐based queue length estimation: (a) estimated queue length and (b) waiting vehicles in queue.

Intersection Monitoring Using Computer Vision Techniques for Capacity, Delay, and Safety Analysis 179

an intersection and behaviors of interest might be the number of pedestrians using the crosswalk to
enter the bus or crossing illegally in addition to the wait time for a bus arrival.

In this section, some important behaviors that have been discussed in intersection literature are
explained.

7.5.1.1 Turning Prediction
TMs are of particular interest for safety since these paths intersect with other paths which might lead
to hazardous situations. Predicting turning behavior involves learning turning patterns, building a
model, and finding a match for observed vehicle patterns with the model.

The tracking data up to the current time can be leveraged to infer future behavior and as more
information is gathered the prediction is refined. The intent is conditioned on the set of typical paths
λj allowing for better long‐term prediction [34]. The path prediction ˆ uses a window of recent data
to make the comparison

 arg ˆ ,ˆ max |j t t kw F (7.20)

where wt is a windowing function and t̂ kF is the trajectory up to the current time t with k predicted
future tracking states (obtained by extending the motion model k steps into the future). Different
temporal windows will affect the trade‐off between the accuracy of the prediction and the delay in
recognizing a change in path. When no window function is used, all historical trajectory data up to
the current time are used to make predictions. The most likely predicted paths can be seen in
Figure 7.12 for a left turn at a simulated intersection at three different times.

7.5.1.2 Abnormality Detection
One of the most important tasks in a surveillance system is the detection of unusual events. Abnormal
behaviors can be detected using learned models which account for the typical path locations and
travel speeds. When a new trajectory does not fit a model well and there is enough deviation, it can
be considered an abnormality. Abnormal patterns can then be detected by intelligent thresholding,

p F L*

*| , (7.21)

where λ* is the most likely path and L * a path specific threshold. The threshold can be tuned for each
path individually based on its unique characteristics through training. Abnormal speed behavior is
usually investigated for contextually defined areas. For instance, Kumar et al. [35] defined special areas
before a parking lot to compute speed changes for detection of violation of stop at a checkpost.

7.5.1.3 Pedestrian Crossing Violation
Detection and understanding of nonconforming behavior (violations) can be beneficial in identifying
pedestrian movement patterns or design elements that may be causing safety deficiencies and in
preparing for a sound safety diagnosis as well as for developing safety countermeasures. The detec-
tion process is similar to abnormality detection. Pedestrians are specifically included in crossing
violation systems and crossing paths must be considered for pedestrian crossings. As explained in
Section 7.2.1, optical flow is generally used for tracking since it is able to better handle occlusion
between pedestrians and vehicles in close proximity.

Violation detection starts by identifying a set of movement prototypes that represent what are
considered normal crossing prototypes. Crossing violations can then be categorized as either a spatial
or temporal type. A comparison is conducted between a pedestrian trajectory and the normal cross-
ing prototypes. Any significant disagreement between the two sequences of positions is interpreted

Computer Vision and Imaging in Intelligent Transportation Systems180

1.6 %

95.4 %

3.0 %

49.0 %

51.0 %

100.0 %

3rd match
2nd match
Best match
All data
Window
Current point
Predicted point

2nd match
Best match
All data
Window
Current point
Predicted point

Best match
All data
Window
Current point
Predicted point

Figure 7.12 Trajectory analysis for left‐turn prediction at intersection showing the probability of the top three best
paths [34]. Source: Morris and Trivedi [34]. Reproduced with permission of IEEE.

Intersection Monitoring Using Computer Vision Techniques for Capacity, Delay, and Safety Analysis 181

as evidence a nonconforming pedestrian trajectory. For a temporal violation, traffic signal cycles
should be recorded as well to identify pedestrians traversing an intersection segment during an
improper signal phase. Figure 7.13 shows examples of temporal and spatial violations.

7.5.1.4 Pedestrian Crossing Speed
Pedestrian walking and crossing speed is another key factor for behavior analysis [37–39].
Contributing factors like age, sex, and external design factors such as signal timers and facilities are
also studied to evaluate their influence on pedestrian crossing speed. For instance, Tarawneh [39]

(b)

(a)

Figure 7.13 Crossing violation examples [36]. A spatial violation occurs when a pedestrian does not use the
crosswalk. A temporal violation occurs when pedestrians cross the intersection during a “red‐hand” phase. (a) Spatial
violation and (b) temporal violation. Source: Zaki and Sayed [36]. Reproduced with permission of National Academy
of Sciences.

Computer Vision and Imaging in Intelligent Transportation Systems182

evaluated the effect of age, gender, street width, and number of pedestrians crossing as a group
(group size) on their speed. A walking speed and flow rate (ped/min) relationship was found in Ref. [38]
for shopping and walking areas. They found that walking speed was fixed at first and then was
reduced when the flow rate was less than a 30‐ped/min threshold for an indoor walkway. Montufar
et al. [37] evaluated normal and crossing speed for different gender and ages, weather conditions,
and temperatures. They found that the “normal” walking speed is lower than walking speed while
crossing an intersection. In addition, females and older pedestrians walk slower than males and
younger pedestrians, respectively.

The aforementioned studies used manual observation, either in the field or with recorded video, which
limited the monitoring time period. Vision‐based systems can significantly reduce the manual labor
required to collect data and provide signal design guidance based on crossing times of elderly pedestrians.

However, there are significant challenges for crossing speed analysis. Pedestrians crossing together
in groups result in occlusions which add noise to trajectories. For example, a group bounding box
size may vary as the shape changes through bunching and spreading. These variations actually have
significant impact on crossing speed estimation since even a small image variation can map to large
distances in 3D intersection coordinates. Collection of age and sex is typically not possible with traf-
fic video due to limited resolution which necessitates recordings using more specialized camera con-
figurations. A solution is to build human‐in‐the‐loop assistive systems which are semiautomatic.
These systems use automation to reduce the amount of difficult situations that a human must handle
to provide a significant analysis speedup. One such system used manual frame detections of pedes-
trians which were then used for automatic tracking and activity analysis [4].

7.5.1.5 Pedestrian Waiting Time
The waiting time is a fundamental measurement for signal design, and it has been shown as a crite-
rion which affects safety as well. Hamed et al. [40] found in 2001 that long waiting time resulted in
impatience to cross which could lead to undesirable behavior.

Given a pedestrian trajectory, the waiting time is calculated as the total time that the pedestrian
has a speed value lower than some predefined speed threshold. At each frame, the instantaneous
speed is used to characterize the waiting or walking state of a pedestrian. This is important when
calculating the average pedestrian walking speed since waiting frames should be excluded from the
calculation.

Figure 7.14a shows a heatmap highlighting waiting locations which help transportation engineers
understand the locations of high pedestrian probability. Note the high values in red at the designed
crosswalk corners. Figure 7.14b shows a snapshot from a vision‐based pedestrian tracking system
that used optical flow [8]. This system used a fusion of appearance and motion cues for detection
which made it possible to track the waiting pedestrian around the store who was talking on his cell
phone for a long time.

Fully automated waiting time estimation is difficult since waiting pedestrians lack the necessary
motion required for successful detection and tracking in traffic video. With major advances in pedes-
trian detection [8], the use of both appearance and motion cues has become a promising methodol-
ogy even in lower resolution video.

7.5.2 Accidents

Traffic accidents are abnormal events in traffic scenes and have a high societal cost. If a real‐time
system can accurately predict accidents in advance and then generate warnings, many traffic accidents
may be avoided. As a result, accident‐based safety assessment includes developing systems which

Intersection Monitoring Using Computer Vision Techniques for Capacity, Delay, and Safety Analysis 183

can track road users at intersections and make accurate predictions to prevent accidents. At the same
time, the system can purposefully record the event as it develops. If the accident does indeed occur,
the responsibility for the accident can be judged using the captured video sequences.

Vision‐based methods address accidents between vehicles by predicting their future state using
vehicle dynamics and recent history of movements. Collisions are detected if there is an overlap
between the 3D space occupied by different vehicles at the same time. Note that 3D overlap between
vehicles is utilized since 2D overlap could result from partial occlusion and not a collision. The
 complete process includes three steps: 3D model‐based vehicle tracking, learning of activity patterns
to find movement models, and finally prediction of traffic accidents [41]. Vehicle tracking uses
motion‐based tracking methods such as background subtraction to find regions of interest (ROIs).
The process proceeds with pose prediction and pose refinement by fitting a cube model to foreground
regions. A search for the optimal mapping between the projected 3D model and the 2D image data
is performed to infer 3D vehicle pose. Figure 7.15a shows a 3D model example of an ROI.

60

50

40

30

20

10

0

(a)

(b)

Figure 7.14 Waiting‐time distribution and snapshot of tracking system which indicate a waiting pedestrian who talks
with his phone for a long time period: (a) heatmap of waiting pedestrians and (b) snapshot of tracking system.

Computer Vision and Imaging in Intelligent Transportation Systems184

With accurate 3D tracking, collision prediction can then be performed. Suppose that the observed
partial trajectory of vehicle A is X and that of vehicle B is Y. The collision probability can be calcu-
lated by finding the most probable patterns (i.e., from the learned history of trajectories) for vehicles
A and B. The future locations can be predicted using the LCSS method to find the path. A vehicle is
represented by its ground plane projection as a rectangular box. Thus, the probability of having a
collision can be formulated as whether two rectangular boxes of certain sizes would intersect at a
given future time. In Figure 7.15b, the two solid lines represent the trajectory patterns regarding
vehicles A and B. The solid points are sample points at equal times in the two corresponding pat-
terns, the arrowheads show the direction of motion, the two solid line rectangles represent the vehi-
cle projections at the current time, and the dashed rectangle lines represent the vehicle projections
after some time if the two vehicles move along their associated path.

Suppose that at time t, vehicle A is at position A(x1, y1), with direction of motion (δx1, δy1), and the
length and width of the rectangle are L1 and W1, respectively. The four dashed bounding box lines
can be represented [41] as follows:

x y y x y x x y L x y* * * *1 1 1 1 1 1

1
1
2

1
2

2
0 (7.22)

x y y x y x x y W x y* * * *1 1 1 1 1 1

1
1
2

1
2

2
0. (7.23)

Similarly, suppose that vehicle B is at position B(x2, y2) with direction of motion (δx2, δy2), and the
length and width of rectangles are L2 and W2 at time t. The dashed bounding box can be computed
with similar equations.

A process to investigate whether two vehicles will come into collision is described in Algorithm 7.1.
Each vehicle position is propagated forward in time along its path and a collision is returned if there
is bounding box overlap. Usually, a future overlap is not a good indicator of the likelihood of a
 collision since it is possible for vehicles A and B to make adjustments to avoid this situation. Instead,
a probability of collision is determined based on the time difference t t t0 between the current
time t0 and the future collision time t. A larger time difference produces a lower possibility of

Ground plane

(a) (b)

A

A

B

B

Collision?

ROI

Projected 3D
model from an
initial pose

Figure 7.15 The process of collision inference from 3D pose tracking and prediction of impending collision [41]. (a)
Pose refinement process and (b) collision judgment. Source: Hu et al. [41]. Reproduced with permission of IEEE.

Intersection Monitoring Using Computer Vision Techniques for Capacity, Delay, and Safety Analysis 185

collision, while smaller Δt means a collision is imminent. Therefore, a collision score to rank the
danger between A and B can be computed by using Gaussian weighting as follows:

 S e
t t

a .
0

2

22 (7.24)

Accident detection is a core application of automated recording and reporting systems. In the traf-
fic accident recording and reporting system (ARRS) [33], moving vehicles are detected using frame
differencing and different features such as acceleration, and variation rate of area, direction, and
position are estimated and used in aggregate to indicate an accident occurrence. The system was
evaluated for a 2‐week test period and some accidents that were not officially reported were recorded.
The major problems of such vision‐based systems are a high occurrence of false positives and the
inability to operate during the nighttime. The ARRS incorporated complimentary data sources, such
as acoustic signals, to improve performance in these situations.

7.5.3 Conflicts

Although safety is emerging as an area of increased attention and awareness, it is difficult to assess
due to the lack of strong predictive models of accident potentials and lack of consensus on what con-
stitutes a safe or unsafe facility. As an example, the collision score Sa is simple to compute but does
not necessarily reflect a true probability of accident. In general, there is a lack of accident data (i.e.,
infrequent event) availability to make accurate assessments. Generally, traffic engineers use years of
collisions along with exposure data to assess safety and in the meantime, the characteristics of the
intersection may have changed. The shortcomings of accident data for pedestrian safety analysis are

Algorithm 7.1 The Collision Judgment [41]

1: function prediction
2: t=the current time t0;
3: while (Sample points in patterns Ti and Tj both exists) do
4: Compute intersection points between two line segments regarding vehicles A,

and B at time t;
5: if there are n points of intersection, then
6: for (each point of intersection) do
7: compute distance d1 between the point and A(x1, y1);
8: compute distance d2 between the point and B(x2, y2);

9: if (d
L W

1
1
2

1
2

1
+) or (d

L W
2

2
2

2
2

2
+

) then
10: return collision;
11: end if
12: end for
13: end if
14: t=t+the sampling time;
15: end while
16: return no collision;
17: end function

Computer Vision and Imaging in Intelligent Transportation Systems186

even more acute since collisions involving pedestrians are less frequent than other collision types and
exposure rates much lower.

As a result of this data deficiency, surrogate safety measures have been introduced and validated
to address safety issues [42, 43]. Rather than relying on data from infrequent collisions, other
events in the hierarchical traffic safety pyramid (Figure 7.16) are utilized. At the top are the acci-
dents and going down the pyramid are successively greater number of event instances. The most
often used safety surrogate is a traffic conflict defined as “an observable situation in which two or
more road users approach each other in space and time to such an extent that there is a risk of col-
lision if their movements remained unchanged” [42]. With reliable and consistent definition, con-
flict‐based safety measurements have been proven to be practical for safety assessment [42, 45].

Table 7.1 shows some important metrics which are used for real surrogate safety analysis.
Among the common surrogate safety measurements, TTC and PET are used to quantify the
severity of a conflict since low values for these are directly related to how likely a collision can
be avoided. The severity index (SI) is a criticality measure which can be obtained using the TTC
estimate as

 SI ,
TTC
PRTe

2

22 (7.25)

Accidents

I
F

Serious conflicts

Slight conflicts

Potential conflicts

Undisturbed
passages

Figure 7.16 Traffic safety pyramid measurement
showing hierarchy of traffic events (F, fatal; I, injury)
[44]. Source: Morris and Trivedi [44]. Reproduced
with Permission of SPIE.

Table 7.1 Surrogate safety measurements.

Parameter Definition

Time to collision (TTC) The time for two vehicles (or vehicle and pedestrian) to collide if they continue at their
present speed on their paths

Distance to
intersection (DTI)

The distance until a vehicle reaches a stop bar with current speed. The stop bar is used
as reference point

Time to
intersection (TTI)

The time remaining until a vehicle reaches a stop bar at its current speed. The stop bar
is used as reference point

Time headway Elapsed time between the front of a lead vehicle passing a reference point on the
roadway and the front of the following vehicle passing the same point

Postencroachment
time (PET)

Time lapse between the back end of a turning vehicle and the front of an opposing
through vehicle (or pedestrian) when it actually arrives at the potential point of collision

Intersection Monitoring Using Computer Vision Techniques for Capacity, Delay, and Safety Analysis 187

where SI ranges between [0,1] and the perception reaction time, PRT, is generally approximated as
1 s [11]. The minimum TTC over an observation is extracted to denote the maximum severity of the
intersection. The aggregated TTC values are then normalized by the number of hours and/or traffic
volumes to fully characterize the inherent safety of an intersection. Figure 7.17 shows the vehicle–
vehicle conflict heatmap to highlight the most dangerous regions of intersection [46]. The figure
shows that even with the best designs, there can be regions of potential danger and these can be
identified based on usage patterns and not on design assumptions.

7.6 Challenging Problems and Perspectives

In the chapter, a number of techniques for vision‐based intersection monitoring have been presented
along with important intersection applications. However, there still remain a number of challenges
for widespread implementation and deployment of these systems.

7.6.1 Robust Detection and Tracking

While computer vision techniques have dramatically improved in quality and efficiency over the
years, there are still many limitation and open problems that must be addressed before a fully auton-
omous intersection monitoring system can be operational. These general intersection problems
include the following:

119

100.3333

81.6667

63

44.3333

25.6667

7

Figure 7.17 Vehicle–vehicle conflict frequency heatmap (conflicts/m2) providing spatial danger assessment at Burrard
and Pacific Intersection [46]. Source: Sayed et al. [46]. Reproduced with permission of National Academy of Sciences.

Computer Vision and Imaging in Intelligent Transportation Systems188

 ● Robustness to occlusion due to viewing angle and scene participants
 ● Low‐resolution pedestrian detection in wide FOVs
 ● Long‐term operation over various environmental conditions
 ● Trade‐off between computational efficiency and accuracy

Generally, there are more vehicles and pedestrians at intersections than at highways which increase
the possibility for interactions and occlusion which is a well‐known and challenging problem for
vision‐based monitoring systems. Occlusion is amplified when there is dense traffic or when the
viewing angle does not provide an advantageous perspective leading to corrupt trajectories [47].
Even when using feature‐based tracking, such as optical flow, with high occurrence of occlusion, it is
difficult to disambiguate neighboring objects.

Pedestrian detection and tracking has been a very popular research area since 2005 [48, 49] and
detection systems are now in use in various applications such as driver assistance systems. However,
most of the research has been for larger pedestrians at ground‐level view rather than the small‐size
and overhead perspective from traffic cameras. In the perspective view, the characteristic arms and
legs of pedestrians are difficult to distinguish from complex backgrounds. Motion can be reliable for
small objects and appearance can be used to detect when stopped. Contextual fusion of appearance‐
based classifiers and motion‐based detectors improves intersection detection and tracking robust-
ness [8]. Strategies, such as optical flow, can be utilized to handle partial occlusions and further
improve performance. Tracking is also challenging due to crowds of people all with very similar
appearance and close proximity.

Practical intersection monitoring must be very robust to changing environmental conditions. They
must handle direct sunlight, low light, shadows, rain, snow, and even nighttime deployment.
Additionally, due to limited funding, inexpensive cameras are used instead of IR or stereo systems.
These environmental variations dramatically affect appearance and detection and recognition
frameworks.

Although great progress has been made in recent years, the tracking performance of the various
systems is difficult to report and compare, especially when many of these systems are not publicly
available or their details disclosed, and when benchmarks are infrequent and not systematically used.
As a result, computer vision communities have developed centralized benchmarks for the perfor-
mance evaluation of various tasks including pedestrian detection and tracking. For instance,
MotChallenge [50] has presented a unified evaluation platform that allows participants to submit
their tracking methods and own data including video and annotations. Since centralized evaluation
is performed, the comparison of state‐of‐the‐art methods can be easily inferred using the common
criteria and parameters for a typical video. An extension focusing on surveillance and traffic video
would be beneficial for the field.

7.6.2 Validity of Prediction Models for Conflict and Collisions

There are few opportunities to assess the quality of conflict assessment systems. Conflicts by defini-
tion require participants to be unaware of one another, which is generally not true. The only “real”
conflict is a collision which itself is infrequent making it difficult to collect examples for ground truth
assessment. Furthermore, the prediction of the future trajectories is unreliable. This is especially true
of pedestrians whose movements are not as constrained and restricted as vehicles. Accurate motion
predictions utilize more complex motion models that require precise measurements of dynamics
(e.g., yaw rate and angle) which is difficult if not impossible with traffic video. Extra constraints on
intersection motion, such as predefined paths, help address this but may affect conflict accuracy. The
mapping from a conflict to safety is still an open problem.

Intersection Monitoring Using Computer Vision Techniques for Capacity, Delay, and Safety Analysis 189

7.6.3 Cooperating Sensing Modalities

Each sensing technology encounters challenges for intersection use. Various sensors have been used for
vehicle and pedestrian detection at intersections including GPS, light detection and ranging (LiDAR),
radar, and cameras. Table 7.2 compares different sensors for data collection at intersections.

The use of cameras is most common since they are inexpensive and easy to install; in addition, they
provide large FOV and camera recordings facilitate the traditional observation process. Radar‐based
systems trade‐off FOV for range and must be tuned for specific object size. Camera‐based detection of
pedestrians is difficult in highly occluded scenes and during the nighttime. Newer types of nonvisible
light sensors, such as thermal infrared and LiDAR, show promising results and their cost is decreasing
with mass production. Sensor fusion and integration of sensing modalities with vision can be impor-
tant for performance enhancement. A video provides a data stream that can be easily understood by
humans, while complementary sensors can simplify detection algorithms. Further, infrastructure‐
based sensors can complement vehicle‐based sensing to develop a complete intersection description
without blind spots. Practical safety systems, such as the cooperative intersection collision avoidance
system (CICAS) or forward warning systems, demonstrate the effectiveness of sensor cooperation.

7.6.4 Networked Traffic Monitoring Systems

The technology of cooperative driving with intervehicle communication [51] is a potential solution
to suppress traffic jams and prevent collisions. Driver assistance systems can then be outfit with
operational trajectory planning algorithms which consider potential conflicts. However, it is very
difficult to infer the intention of another driver using only vehicle‐based sensors. Vehicles need to
send an intention signal (e.g., turn signal) to the monitoring system. Since traffic cameras have wider
FOV, they can, in turn, provide more contextual data for planning used in ADAS. Cooperation
between vehicles and infrastructure can be used to augment the effective sensor coverage and pro-
vide preferential views for solving problems such as occlusion and situational awareness.

Figure 7.18 shows two common scenarios with occlusion that can be addressed by vehicle‐
to‐infrastructure communication. Both the infrastructure and driver derive mutual benefit through
cooperation. The situational awareness of the driver (SV) can be improved since infrastructure‐based
cameras provide the trajectories of unseen vehicles.

7.7 Conclusion

In this chapter, we presented vision‐based infrastructure monitoring techniques for intersection
analysis including capacity, delay, and safety. The optical flow tracking method was described as a
popular method to provide participant trajectories. These are used as the key input to various

Table 7.2 Comparison of sensors.

Sensor Perceived energy Raw measurement Hardware cost Units FOV

GPS Microwave radio signal Satellite distance Low – –
Radar Millimeter wave radio signal Distance Medium Meters Small
LiDAR Nanometer wave laser signal Distance High Meters Wide
Camera Visible light Light intensity Low Pixels Wide

Computer Vision and Imaging in Intelligent Transportation Systems190

application systems which consider TM count, queue length analysis, and safety analysis. Robust
detection and tracking is a key element which requires essential improvements such as cooperating
sensing modalities and communicating with other vehicles.

 References

 1 J. A. León Cano, J. Kovaceva, M. Lindman, and M. Brännström, Automatic incident detection and
classification at intersections, in Proceedings of the 21st International Conference on Enhanced Safety
of Vehicles (ESV), Stuttgart, June 15–18, 2009.

 2 Intersection safety. Available: http://safety.fhwa.dot.gov/intersection/ (accessed on October 27, 2015).
 3 Video surveillance for traffic. Available: https://www.videosurveillance.com/traffic.asp (accessed on

November 20, 2015).
 4 M. S. Shirazi and B. Morris, A typical video‐based framework for counting, behavior and safety analysis at

intersections, in IEEE Intelligent Vehicles Symposium (IV), Seoul, June 28 to July 1, 2015, pp. 1264–1269.
 5 M. S. Shirazi and B. Morris, Observing behaviors at intersections: A review of recent studies and

developments, in IEEE Intelligent Vehicles Symposium (IV), Seoul, June 28, 2015, pp. 1258–1263.
 6 M. S. Shirazi and B. T. Morris, Vision‐based turning movement monitoring: Count, speed and waiting

time estimation, IEEE Intelligent Transportation Systems Magazine, 8(1), 23–34, Spring 2016.
 7 S. H. B. Adrian Guan and R. Neelakantan, Connected vehicle insights, trends in computer vision: An

overview of vision‐based data acquisition and processing technology and its potential for the
transportation sector, The Intelligent Transportation Society of America (ITS America), Technical
Report. Technology Scan Series, 2011–2012.

 8 M. S. Shirazi and B. Morris, Contextual combination of appearance and motion for intersection
videos with vehicles and pedestrians, in Proceedings of the ISVC 2014 10th International Symposium
on Visual Computing (ISVC), Las Vegas, December 8–10, 2014, pp. 708–717.

 9 N. Saunier and T. Sayed, A feature‐based tracking algorithm for vehicles in intersections, in
Proceedings of the 3rd Canadian Conference on Computer and Robot Vision, Quebec, June 7–9,
2006, p. 59.

Waiting vehicle

Moving vehicle

(a) (b)

Waiting vehicle

Moving vehicle

SV

SV

Figure 7.18 Two hazardous gap estimation scenarios. (a) Driver (SV) intends to make U‐turn on a flashing yellow, but
waiting vehicles mask the driver view of a moving vehicle. (b) Parked cars (i.e., waiting vehicles) occlude the driver
view (SV) when attempting to make a left turn at a junction.

Intersection Monitoring Using Computer Vision Techniques for Capacity, Delay, and Safety Analysis 191

 10 M. H. Zaki, S. Tarek, A. Tageldin, and M. Hussein, Application of computer vision to diagnosis of
pedestrian safety issues, Transportation Research Record: Journal of the Transportation Research
Board, 2393, 75–84, December 2013.

 11 T. Sayed, K. Ismail, M. H. Zaki, and J. Autey, Feasibility of computer vision‐based safety evaluations:
Case study of a signalized right‐turn safety treatment, Transportation Research Record: Journal of the
Transportation Research Board, 2280, 18–27, December 2012.

 12 N. Saunier and T. Sayed, Clustering vehicle trajectories with hidden Markov models application to
automated traffic safety analysis, in Proceedings of the IEEE International Joint Conference on Neural
Network, Vancouver, July 16–21, 2006, pp. 4132–4138.

 13 K. Ismail, T. Sayed, N. Saunier, and C. Lim, Automated analysis of pedestrian‐vehicle conflicts using
video data, Transportation Research Record: Journal of the Transportation Research Board, 2140,
44–54, December 2009.

 14 B. Lucas and T. Kanade, An iterative image registration technique with an application to stereo
vision, in Proceedings of the 7th International Joint Conference on Artificial Intelligence (IJCAI ’81),
Vancouver, April 1981, pp. 674–679.

 15 B. Horn and B. Schunk, Determining optical flow, Artificial Intelligence, 17, 185–203, 1981.
 16 C. Harris and M. Stephens, A combined corner and edge detector, in Proceedings of the 4th Alvey

Vision Conference, Manchester, August 1988, pp. 147–151.
 17 C. Tomasi and T. Kanade, Detection and tracking of point features, International Journal of

Computer Vision, Technical Report CMU‐CS‐91‐132, April 1991.
 18 Z. Zhang, A flexible new technique for camera calibration, IEEE Transactions on Pattern Analysis

and Machine Intelligence, 22(11), 1330–1334, November 2000.
 19 S. Messelodi, C. M. Modena, and M. Zanin, A computer vision system for the detection and

classification of vehicles at urban road intersections, Pattern Analysis and Applications, 8(1–2),
17–31, September 2005.

 20 J. Gerken and B. Guy, Accuracy comparison of non‐intrusive, automated traffic volume counting
equipment, Albeck Gerken, Inc., Technical Report, White Paper, Tampa, FL, USA, October 2009.

 21 B. Morris and M. Trivedi, Learning trajectory patterns by clustering: Experimental studies and
comparative evaluation, in IEEE Computer Society Conference on Computer Vision and Pattern
Recognition Workshops (CVPR), Miami, FL, June 20–25, 2009, pp. 312–319.

 22 M. Vlachos, G. Kollios, and D. Gunopulos, Discovering similar multidimensional trajectories, in
Proceedings 18th International Conference on Data Engineering, San Jose, CA, February 26 to March
1, 2002, pp. 673–684.

 23 Y. Malinovskiy, Y.‐J. Wu, and Y. Wang, Video‐based monitoring of pedestrian movements at
signalized intersections, Transportation Research Record: Journal of the Transportation Research
Board, 2073, 11–17, December 2008.

 24 A. Chan, Z.‐S. Liang, and N. Vasconcelos, Privacy preserving crowd monitoring: Counting people
without people models or tracking, in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), Anchorage, AK, June 23–28, 2008, pp. 1–7.

 25 S.‐Y. Cho, T. Chow, and C.‐T. Leung, A neural‐based crowd estimation by hybrid global learning
algorithm, IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 29(4), 535–541,
August 1999.

 26 J. J. Bezuidenhout, P. Ranjitkar, and R. Dunn, Estimating queue length at signalized intersections
from single loop detector data, in Proceedings of the Eastern Asia Society for Transportation Studies,
Tokyo, Japan, October 14, 2013.

 27 Q. Chai, C. Cheng, C. Liu, and H. Chen, Vehicle queue length measurement based on a modified
local variance and LBP, in Proceedings of the 9th International Conference, ICIC 2013, Nanning, July
28–31, 2013, pp. 123–128.

Computer Vision and Imaging in Intelligent Transportation Systems192

 28 A. Albiol, A. Albiol, and J. Mossi, Video‐based traffic queue length estimation, in Proceedings of the
2011 IEEE International Conference on Computer Vision Workshops, Barcelona, November 6–13,
2011, pp. 1928–1932.

 29 M. Fathy and M. Siyal, Real‐time image processing approach to measure traffic queue parameters,
IEE Vision, Image and Signal Processing, 142(5), 297–303, October 1995.

 30 M. Zanin, S. Messelodi, and C. Modena, An efficient vehicle queue detection system based on image
processing, in Proceedings of the 12th International Conference on Image Analysis and Processing,
Mantua, September 17–19, 2003, pp. 232–237.

 31 M. S. Shirazi and B. Morris, Vision‐based vehicle queue analysis at junctions, in Proceedings of the
12th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS),
Karlsruhe, August 25–28, 2015, pp. 1–6.

 32 S. Kamijo, Y. Matsushita, K. Ikeuchi, and M. Sakauchi, Traffic monitoring and accident detection at
intersections, IEEE Transactions on Intelligent Transportation Systems, 1(2), 108–118, June 2000.

 33 Y.‐K. Ki and D.‐Y. Lee, A traffic accident recording and reporting model at intersections, IEEE
Transactions on Intelligent Transportation Systems, 8(2), 188–194, June 2007.

 34 B. Morris and M. Trivedi, A survey of vision‐based trajectory learning and analysis for surveillance,
IEEE Transactions on Circuits and Systems for Video Technology, 18(8), 1114–1127, August 2008.

 35 P. Kumar, S. Ranganath, H. Weimin, and K. Sangupta, Framework for real‐time behavior
interpretation from traffic video, IEEE Transactions on Intelligent Transportation Systems, 6(1),
43–53, March 2005.

 36 M. Zaki and T. Sayed, Automated analysis of pedestrians’ nonconforming behavior and data
collection at urban crossings, Transportation Research Record: Journal of the Transportation
Research Board, 2443, 123–133, 2014.

 37 J. Montufar, J. Arango, M. Porter, and S. Nakagawa, Pedestrians’ normal walking speed and speed
when crossing a street, Transportation Research Record: Journal of the Transportation Research
Board, 2002, 90–97, December 2007.

 38 W. H. Lam and C.‐Y. Cheung, Pedestrian speed/flow relationships for walking facilities in Hong
Kong, Journal of Transportation Engineering, 126(4), 343–349, July 2000.

 39 M. S. Tarawneh, Evaluation of pedestrian speed in Jordan with investigation of some contributing
factors, Journal of Safety Research, 32(2), 229–236, 2001.

 40 M. M. Hamed, Analysis of pedestrians’ behavior at pedestrian crossings, Safety Science, 38(1), 63–82,
June 2001.

 41 W. Hu, X. Xiao, D. Xie, T. Tan, and S. Maybank, Traffic accident prediction using 3‐D model‐based
vehicle tracking, IEEE Transactions on Vehicular Technology, 53(3), 677–694, May 2004.

 42 H.‐C. Chin and S.‐T. Quek, Measurement of traffic conflicts, Journal of Safety Science, 26(3),
169–185, 1997.

 43 A. Svensson and C. Hyden, Estimating the severity of safety related behaviour, Accident Analysis and
Prevention, 38(10), 379–385, October 2006.

 44 B. T. Morris and M. M. Trivedi, Understanding vehicular traffic behavior from video: A survey of
unsupervised approaches, Journal of Electronic Imaging, 22(4), 041 113–041 113, 2013.

 45 C. Hyden, The development of method for traffic safety evaluation: The Swedish traffic conflict
technique, Technical Report. Bulletin 70, ISSN 0346‐6256, Lund Institute of Technology,
Department of Traffic Planning and Engineering, Lund, Sweden.

 46 T. Sayed, M. H. Zaki, and J. Autey, A novel approach for diagnosing cycling safety issues using
automated computer vision techniques, Proceedings of the 92nd Annual Meeting of the
Transportation Research Board, Washington, DC, January 13, 2013.

Intersection Monitoring Using Computer Vision Techniques for Capacity, Delay, and Safety Analysis 193

 47 A. J. Lipton, H. Fujiyoshi, and R. S. Patil, Moving target classification and tracking from real‐time
video, in IEEE Workshop Applications of Computer Vision, Princeton, NJ, October 19–21, 1998,
pp. 8–14.

 48 P. Dollar, C. Wojek, B. Schiele, and P. Perona, Pedestrian detection: An evaluation of the state of the
art, IEEE Transactions on Pattern Analysis and Machine Intelligence, 34(4), 743–761, April 2012.

 49 N. Dalal and B. Triggs, Histograms of oriented gradients for human detection, in Proceedings of the
2005 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), San Diego, CA, June
2005, pp. 886–893, vol. 1.

 50 L. Leal‐Taixé, A. Milan, I. Reid, S. Roth, and K. Schindler, MOTChallenge 2015: Towards a
benchmark for multi‐target tracking, arXiv:1504.01942 [cs], April 2015. Available: http://arxiv.org/
abs/1504.01942.

 51 S. Yamamoto, K. Mizutani, and M. Sato, Aichi DSSS (driving safety support system) field verification
test field verification test on vehicle infrastructure cooperative systems, in Proceedings of the 13th
World Congress and Exhibition on Intelligent Transport Systems (ITS) and Services, London,
October 8–12, 2006.

195

Computer Vision and Imaging in Intelligent Transportation Systems, First Edition.
Edited by Robert P. Loce, Raja Bala and Mohan Trivedi.
© 2017 John Wiley & Sons Ltd. Published 2017 by John Wiley & Sons Ltd.
Companion website: www.wiley.com/go/loce/ComputerVisionandImaginginITS

8.1 Introduction

The task of the automatic parking management is becoming increasingly essential nowadays.
According to a report by Idris et al. [1], the number of annually produced cars has grown by 55% in
the past 7 years. In fact, most large cities have a problem of insufficient availability of parking space.
Finding a vacant parking space in a busy city business district, commercial area, near touristic sights,
stadiums, exhibition halls, etc., is often a challenging task. Having no manner of assistance, a driver
can spend a lot of valuable time searching for a parking lot. The result is an unnecessary waste of gas,
increased emissions, and traffic [2, 3] with all its negative consequences. Moreover, when looking for
a parking spot in vain, people can eventually either double park or block exits, bus stops, etc. In addi-
tion, a direct safety issue may also arise—while searching for a parking space, drivers are distracted
and so have a higher probability to produce accidents.

Traffic caused by vehicles searching for a parking place can account for up to 35% of all vehicles in
central business districts of cities such as New York, London, or San Francisco. According to Ref. [4],
half of the fuel consumed in San Francisco is spent by vehicles trying to find a parking space. An
automated free parking space detection system that operates in real time could make use of existing
parking areas much more efficiently—thus, the parking management process could be greatly opti-
mized. The information about actual parking space availability could be sent to drivers via display
panels, smart phone applications, or other mobile devices.

The benefits of driver parking assistance and smart parking management have been proven in the
large‐scale SFpark project [5], which took place as a pilot project in San Francisco. The testing area
covered 7,000 of San Francisco’s 28,800 metered spaces, and 12,250 spaces in 15 of 20 city‐owned
parking garages. There were many wireless in‐ground parking sensors installed, which provided real‐
time data about parking space occupancy states. The actual parking availability information and
current parking rates could be queried with the help of smart phone applications as well as a Web
application, SMS service, signs, and electronic boards.

A core aspect of the project was demand‐responsive parking pricing—the rates were increased
when parking spots were hard to find, and lowered when demand was low. As result, the amount of

8

Video‐Based Parking Management
Oliver Sidla and Yuriy Lipetski

SLR Engineering GmbH, Graz, Austria

Computer Vision and Imaging in Intelligent Transportation Systems196

time that it took for most people to find a space decreased by 43%, traffic volume decreased by 8%,
double parking decreased by 22%, and emissions dropped by 30%.

Another project focusing on driver parking assistance, project iLadezone [6, 7], took place in
the City of Vienna, Austria, in the years 2012–2013. The goal of this pilot project was the
monitoring of commercial loading zones, which are designated for delivery trucks (e.g., spots in
front of supermarkets). Due to the frequent lack of nearby parking lots and the convenience of
the commercial loading zones, private noncommercial vehicles tend to temporarily occupy
those areas. As a result, delivery trucks often have to park in a second row (thus blocking the
road), or make another lap in the hope that the zone will be free at a later time. In order to monitor
the loading areas, video sensors provided by SLR Engineering were mounted nearby to observe
the spaces and monitor their vacancy state. Information from the camera sensors was sent in
real time to a fleet management server, and a smart phone application developed by the com-
pany Fluidtime [7] provided the truck drivers with the current state of the loading zones.
Figure 8.1 gives an example of the user interface presented to the truck driver, and Section 8.4.8
describes the project in more detail.

The Web service parkon.com is one more example of parking management via the cloud. It allows
users to make a parking lot reservation near the largest US airports for a desired date and time span.
The service aggregates information about parking lot availability from different parking area suppli-
ers and shows a list of areas where at least one parking space is vacant—after a reservation, the
 parking space is marked as “occupied” for the specified time period.

Figure 8.1 Example of a smart phone application developed
for use by delivery trucks in the City of Vienna, Austria.
Bright‐colored truck icons indicate free loading zones, dark
icons indicate occupied zones, and mid-gray color means
“not in use.” Source: Adapted from Fluidtime, Vienna.

Video‐Based Parking Management 197

Parking space usage is optimized with this reservation system. Still, the maintainers of the parking
areas have to check frequently and manually if the numbers of reserved and actually occupied park-
ing lots correspond to each other. For example, poorly parked vehicles may occupy two parking
spaces at once, or on the contrary, reserved parking spaces may actually not be used and thus wasted
for the allotted time span.

8.2 Overview of Parking Sensors

Various commercial sensors with differing sensing technologies can be utilized for automated park-
ing space occupancy detection. For their use in commercial parking lots on the street side, in local
communities, campuses, or public places, one has to consider that typically many units have to be
installed in order to completely cover an area. Since this normally involves the burying of devices in
the asphalt, the cost factor for installation and maintenance needs to be considered as part of the
evaluation of a sensor‐based system.

The following active/passive detection modalities are commercially available:

1) Induction loops measure the presence of the ferrous body of a vehicle over the sensor area when
it crosses the loop. Typically, loops are installed at the entrance and the exit of a parking area, thus
allowing the estimation of the total occupancy rate of the area. Loop sensors cannot be used in
on‐street areas where vehicles are to be parked close to the traffic flow.

2) Magnetic in‐ground sensors allow to determine whether a single parking space is free or occupied.
They detect the change of the earth’s magnetic field by the vehicle: while a vehicle is parked, it
causes a change in the local magnetic field strength, which can be detected. The sensors send the
measurement results through a communication channel (e.g., radio) to a collection system, which
in turn reports to a management system. Magnetic sensors are buried within the road in each
parking place. Thus, this technology requires high installation and maintenance costs, and it is
therefore not suitable for large areas were many parking spaces have to be managed. Moreover,
electromagnetic noise coming from overhead transit lines may require some parking spaces to
have two sensors in order to increase the detection quality [4]. Also, a sensor’s battery life is
 typically limited to 3–5 years, which further may increase the total maintenance costs.

3) Laser sensors, radar sensors, or ultrasound sensors allow for parking space monitoring using active
sensing. These sensors work on the principle of distance measurement—when a vehicle enters the
measurement zone, it will be detected by the sensor, which is positioned above the area to be monitored.
One example of a laser‐based sensor system can be found in Ref. [8].

4) Radio frequency identification (RFID) is already a proven technology for the identification of vehi-
cles at greater distances (“long range”). An RFID sensor consists of three units—transceiver, tran-
sponder, and antenna. The transponder unit sends coded information, which is read and processed
by the transceiver. Occupancy detection would be basically possible through evaluation of these
coded radio signals.

The most relevant sensor technologies for parking space monitoring are summarized in
Table 8.1 below.

The development of video‐based sensors aimed at the occupancy detection task is still an active
research area. Generally, an image‐ or video‐based solution can offer several advantages with regard
to other sensor types. One factor is potential cost saving—a single video camera is able to monitor
several parking spaces, or even the whole parking area at once. Thus, hardware and installation costs
can be much lower in comparison to the aforementioned technologies. Moreover, already existing

Computer Vision and Imaging in Intelligent Transportation Systems198

surveillance cameras can be utilized for the monitoring task, resulting in no additional hardware
costs. Since most of the camera‐based systems work on static images, a processing time of several
seconds would be acceptable for many applications. Therefore, low‐power systems or inexpensive
smart cameras can be very well suited for the occupancy detection task. Taken together, these
 properties of vision systems can result in sensors that can cover large areas, are small in size, and are
relatively energy efficient.

Another advantage of a video sensor is that it can provide a live view, or at least a recent static
image of the observed area. In the best case, the parking sensor can be engaged for surveillance and
law enforcement applications as well—additional information like vehicle speed, type, and the number
plate can potentially be extracted (albeit at higher cost for hardware, transmission bandwidth, and
required power). None of the sensors mentioned so far is perfect—all show a degree of inaccuracy. In
the case of a video sensor, one can easily control system performance and fix possible errors, if neces-
sary, by visual inspection.

The design of a computer vision–based occupancy detection system is challenging in many
respects. Various sources of occlusions (caused by both parking and moving vehicles, static, or mov-
ing vegetation), unfavorable weather conditions (rain, snow, fog), a range of extreme lighting condi-
tions, and the temporary presence of pedestrians within a parking space may disturb the image of a
camera sensor.

Another potential issue for visual parking space monitoring is the fact that parking areas naturally
show a large variation in size and shape (see Figure 8.2 below). There can be either large or small
parking areas, or just a single parking row along the roadside. Depending on the size of the observed
area, one or several cameras need to be installed on site. Furthermore, the possible mounting loca-
tions for video sensors are usually limited by existing constraints of surrounding infrastructure. This
in turn implies that vehicles are viewed under different aspect angles, varying sizes, and perspective
distortions in each single installation. All these make it difficult to develop a generic system that is
equally well applicable for an arbitrary parking area. Most of the solutions, therefore, need to be
adapted (re‐trained, or at least fine‐tuned) for a specific site to work well.

Table 8.1 Technologies for the occupancy detection task using nonvisual sensing techniques.

Technology Application Disadvantages Advantages

Metal detectors Vehicle presence, counting High installation and maintenance costs,
limited battery life, false detections
may occur

Robust detection per
parking space

Ultrasonic
sensors

Vehicle presence, possibly
distance for short ranges

Not usable for medium‐to‐long distance,
sensitive to temperature changes and air
turbulence

Easy to install

Induction loops Vehicle presence, double
loops for speed
measurement

Cost of installation, usage is limited to
the counting of entrance/exits of a larger
parking area, false triggers may occur

Well‐studied technology
that provides the best
detection accuracy

Passive IR Vehicle presence, counting,
speed measurement,
classification

Reduced detection accuracy in the
presence of rain, snow, and fog

Easy to install

Radar Vehicle presence, with
Doppler radar also speed
measurement

Doppler radar requires auxiliary sensors
to be installed to detect stopped vehicles

Insensitive to weather
conditions

Video‐Based Parking Management 199

(a)

(b)

Figure 8.2 Examples for two parking area configurations. Ideally a vision‐based system needs only be reconfigured
for those two parking area types: (a) a large parking space area (b) parking spaces along the road.

Computer Vision and Imaging in Intelligent Transportation Systems200

8.3 Introduction to Vehicle Occupancy Detection Methods

As we have outlined, the use of vision‐based systems for parking monitoring applications has the
advantage that potentially large areas can be covered with only a few well‐placed camera sensors.
Nevertheless, the number of required cameras can still be considerable for locations of unfavorable
geometry. Typical parking monitoring applications are very cost sensitive, so that the hardware infra-
structure for a system needs to have the smallest possible cost. The number of imaging sensors must
therefore be minimized, as well as the processing load on the server side. Algorithms used in a low‐
cost vision system therefore need to be simple, but still robust enough to handle low‐resolution and
low‐light situations. They also need to cope with disturbances caused by adverse weather situations,
frequent occlusion, and possibly unstable image geometries caused by moving poles on to which the
cameras are mounted.

In addition, the deployment and configuration of a new parking monitoring system should not be
too complicated for an integrator during the installation process. A detailed configuration of algo-
rithms to tune an installation is not possible for typically available personnel, and even on sites with
just a few cameras this would not be economical.

The following Sections 8.4–8.6 describe possible 2D and 3D parking space monitoring algorithms
and systems with increasing complexity. We present a concrete example for a 2D parking space man-
agement system, as well as an example for a 3D vehicle detection and position measurement applica-
tion. The two systems have proven their robustness in a real‐world extended field test, and they
provide a good reference for the benefits which can be achieved by a well‐tuned system.

8.4 Monocular Vehicle Detection

8.4.1 Advantages of Simple 2D Vehicle Detection

The potential speed and simplicity of 2D image processing for parking space monitoring makes this
class of algorithms a good candidate for inexpensive systems with low processing requirements
(and therefore low server loads). Good implementations for many of the algorithms described in
this section exist, so that development costs for a new parking space monitoring system can also be
quite low.

The disadvantage of 2D algorithms still lies in their sometimes limited robustness and applicability
to difficult imaging environments. Typical 2D parking lot monitoring systems can achieve accuracies
in the range of 80–95%, which is acceptable for many practical purposes, but may be not sufficient
for demanding applications. Optional training and tuning of settings and detectors for every camera
of an installation is possible and may help to drastically improve the accuracy of a system, but for an
integrator this work is too tedious and most of the time not practical.

8.4.2 Background Model–Based Approaches

This is probably the simplest approach for occupancy detection. Typically, it includes initialization of
a background image with an empty parking space, and successive updates of individual pixel values
with each new frame according to the chosen background model algorithm. A binary mask is created
to differentiate foreground/background pixels by thresholding the difference of the new frame rela-
tive to the background model. Morphological operations are used in a postprocessing step to obtain
solid foreground blobs, which mask out image regions where vehicles occupy a parking space.

Video‐Based Parking Management 201

The main advantage of the background modeling approach compared to other 2D methods is that
there is no need to train data for a specific camera view. This is a significant advantage in situations
where a large number of cameras need to be installed. Unfortunately, there are drawbacks as well.
Most of the algorithms need a “clear” (empty) parking area state without vehicles, which is mostly
not possible in real‐world scenarios (this is not the case in the system presented by Bulan [9], see
later).

There are many challenges to cope with as well—changing weather conditions, rapid illumination
changes, and strong reflections from wet road surfaces can easily lead to false detections and disturb
the background model. Therefore, additional techniques have to be applied to deal with such situa-
tions. This makes the originally simple approach increasingly complicated. Also, scenarios with
parking vehicles have low temporal dynamic—a vehicle can stay parked for several hours or even
days. In this case, chances can be high that a car becomes part of the background over time.

Modi [10] in his work used foreground detection and a shadow avoidance approach to suppress
false detections. A set of video cameras was used to cover a large truck parking area in which the
locations of individual parking spaces were specified manually once during system setup. A parking
space was recognized as occupied if more than a certain percentage of the background area was
occluded by a foreground object. Each pixel was modeled as a Gaussian mixture model (GMM) as
described in Ref. [11]. Gray values from a new camera frame updated the mean μ and standard devia-
tion σ of several matched Gaussian distributions for every pixel. A pixel gray value was considered to
be part of the distribution, if its value was within 2.5σ of one of the learned distributions per pixel
(which were continuously updated). Pixel values, which did not fit any of the Gaussian distributions,
were considered to be foreground. The GMM method adapts well to lighting changes and slow
 moving objects. The main drawback is that shadows are often detected as foreground. To eliminate
shadows, the approach described by Joshi et al. [12] for shadow removal is used. The basic idea of
Joshi et al. is the observation that the ratio of a pixel RGB values will remain constant despite the
change of intensity (the color is constant when the brightness changes).

Modi reports several challenges he faced during design of his system. First, fast illumination
changes (e.g., from moving clouds) could trigger false alarms. He tried to overcome this problem by
tracking the changes in the background mask over 1–2 s (assuming the ability to process up to
30 frames/s). Another issue was the occupation of a parking space by humans. To resolve this, Modi
employed a blob tracking approach with successive trajectory analyses to differentiate such occlu-
sions from a parked vehicle. He reports that all these measures have increased the initial accuracy
from 44% up to 100%; however, his testing data set was quite small with only nine vehicles.

 RGB to L*a*b*
conversion

 Quantized
histogram
generation

Histogram
classi�cation

Interest point
search (Harris,

FAST)

Feature
classi�cation

Feature
generation
around IP

Classi�er
merging

Figure 8.3 The working of a combined color/interest point‐based feature detector and classifier. In an off‐line
processing stage, the parking area is divided into single parking spaces, which are stored in the system as ROIs.
Processing as shown in the figure takes place on each of the individual parking spaces.

Computer Vision and Imaging in Intelligent Transportation Systems202

8.4.3 Vehicle Detection Using Local Feature Descriptors

The basic idea of a local feature set is the creation of a general image descriptor which makes it easier
to distinguish between an empty and an occupied parking space, compared to just looking at raw
pixel gray values or comparison with a background model. As described before, the use of simple
features for parking space occupancy detection has the advantage of low computational complexity
and resulting ease of system implementation. The algorithms employed are usually fast and, there-
fore, very well suited for real‐time operation.

Before any feature generation on an image or region of interest (ROI) of a parking space is per-
formed, an important preprocessing operation should be applied: the parking space segments in the
image are to be normalized so that their size and scale become comparable. This includes (i) the
removal of lens distortion, (ii) a scale adjustment, and (iii) the correction of perspective distortion.
Although in practice normalization cannot be perfectly achieved due to the inherent nonlinearities
and perspective changes of viewpoints over the parking area, it is nevertheless an important step in
order to maximize detector performance.

Color histograms within defined ROIs (typically manually assigned regions of single parking
spaces) are probably the simplest means of feature computation. True et al. [13] have tested color
histogram features with reasonably good results (the authors report about 90% of recognition accu-
racy). The important aspect of the use of color is that a transformation from RGB space, as captured
by a camera, into L*a*b or HSV color space can significantly improve the detection performance.
This color space transformation decouples the luminance value from the color components and thus
makes the color features much more independent from illumination changes.

For classification of a parking space as free/occupied, True et al. quantize the a*b* color values into
32 bin histograms and classify the space using Euclidean distance, or chi‐squared distance metric, or
with a support vector machine (SVM).

The k‐NN classifier computes the Euclidean distance

D h h h k h ki j i j

k

n
, 2

1
 (8.1)

between a new (unknown) color feature vector hi and a set of reference vectors hj of size n, which have
been established during the learning phase of the classifier. Similarly, the chi‐squared distance uses the
following distance metric between a new color feature vector hi and a set of reference vectors hj:

2

2

1

1
2

h h
h k h k

h k h k
i j

i j

i jk

n
, . (8.2)

If the new histogram is close enough to at least k of the learned reference vectors of a specific class,
it is assumed to be member of this class.

SVMs [14, 15] learn a high‐dimensional decision surface with maximal margin between two
classes. They are clearly superior to k‐NN classification and, in the case of a linear kernel, can be
computed very efficiently as well.

Simple edge‐based methods as slightly more complex methods (at least in computational terms)
have been used in recent years as feature descriptors in parking space monitoring systems. Čaklović
et al. [16] convert a new RGB image from a camera to grayscale image, then apply a Sobel edge detection
operator and convert the result to binary by thresholding the Sobel edge magnitude result. The result
is postprocessed using morphological operations in order to obtain the edges of possible cars on the
parking spaces. The average count of edge pixels is then used within each parking space polygon to
decide if it is occupied or free.

Video‐Based Parking Management 203

The approach described by Čaklović et al. works well from top view images without occlusions and
in favorable environmental conditions, but it is too simple to cope with shadows, changing vegeta-
tion, or occlusion.

To take things further, the combination of multiple, simple features seems to be a promising approach
because the strengths of each feature type can be combined to form a more robust and stable classifier.
This has been examined by True in the previously mentioned work [13]. His implementation can be used
as a role model for this general class of occupancy detection algorithms, which is shown in Figure 8.3.

First, L*a*b* color space histograms of the parking space are created and classified. Working in par-
allel to the color histogram classification, a feature point detection algorithm takes each parking space
ROI and finds interest points (IPs) within its polygon using a corner detector like the Harris operator
or Rosten’s machine learning algorithm [17, 18]. Based on the gray‐level appearance of a small window
around each IP, it is classified as being part of a vehicle or background. The whole parking space is then
classified as being vacant or occupied according to the number of IPs, which fall into the vehicle class.
This voting allows the algorithm to better cope with patches of the background (empty parking spaces)
that are misclassified because they bear a certain similarity to vehicle structures.

During training, the algorithm creates a vocabulary of positive vehicle features, which are the result
of a clustering of similar features. Instead of using unprocessed image patches, alternative features
could be the scale‐invariant feature transform (SIFT) [19, 20] or speeded up robust feature (SURF)
[21] descriptor. They are more complex to compute, but can lead to better detection results because
they are illumination‐, scale‐, and rotation‐invariant. True [13] uses the trained appearance–based
feature detector for occupancy detection and resorts to the color classifier, when no IPs can be found
in the ROI of a parking space polygon.

8.4.4 Appearance‐Based Vehicle Detection

By extending the area for feature generation to the whole normalized parking space, occupancy
detection is essentially transformed into an appearance‐based vehicle detection task. Several meth-
ods can be used for this task. Viola and Jones [22] started this class of algorithms with their seminal
work in 2001.

A practical implementation for vehicle detection used in parking space management is presented
by Fusek et al. [23]. In their work, the authors present a method that employs a boosting algorithm,
like Viola et al., for car detection on normalized subimages of parking spaces. They train a cascaded
classifier which uses simple Haar features to build a robust and fast vehicle detector. An improve-
ment of the detection rate is achieved by shifting the ROI vehicle detector to several locations around
the parking space center position to increase the chance of a positive vehicle detection.

Like Viola et al., Fusek et al. compute their Haar‐like features using integral images to significantly
speed up the feature generation process (see Section 8.4.5). Haar‐like features consist of rectangular
white and black regions, and the features are defined as the difference of the sum of pixels between
those respective regions and the sign of the difference. Due to their structure, Haar‐like features are
ideally suited for a computation with integral images.

Fusek et al. report that their approach produces better results than a histogram of oriented gradi-
ents (HOGs) detector, as HOG can produce a high number of false‐positive detections in noisy
images. For the training process, the authors used 4500 positive and 4500 negative manually labeled
samples. The detection rate of their classifier was about 94% for images of good quality. On noisy
images, Fusek et al. achieved 78% for positive samples and 94% for negative ones, while the HOG
detector achieved 94% and 44% correct classification, respectively.

Tschentscher et al. [24] have evaluated different combinations of feature extractors and machine
learning algorithms in their work. Their setup consisted of a wide‐angle lens camera which observed
15 nonoverlapping manually labeled parking spaces. They evaluated the following features:

Computer Vision and Imaging in Intelligent Transportation Systems204

 ● Color histograms
 ● Gradient histograms
 ● Difference‐of‐Gaussian histograms (DoGs)
 ● Haar‐like features

For the color histogram features, RGB‐, HSV‐, and YUV‐color spaces were used. For a binary
 classification (occupied/vacant), several classifiers were tested and compared to each other on a
training set of about 10,000 samples:

 ● k‐NN
 ● linear discriminant analysis (LDA)
 ● SVM

As a postprocessing step, temporal integration was applied to increase detection robustness of the
classification result f(t),

 f t Y Yt t* * .1 1 (8.3)

Here, alpha is the learning rate, and Y represents the particular class label (vacant/occupied) for each
parking space.

In the author’s experiments, the color‐ and DoG features have always shown the best results, the
detection rate was up to 97%. Using a combination of those two feature types as well as by applying
the temporal integration, the detection accuracy has increased up to 99.8% in their tests.

8.4.5 Histograms of Oriented Gradients

Dalal and Triggs [25] introduced a new feature descriptor method in 2005, which is conceptually
somewhat similar to SIFT and SURF, but is easier to compute and therefore requires less computa-
tional power. Their HOG descriptor represents a very good baseline (although it is no longer consid-
ered to be the state of the art) in terms of feature creation, sample classification, and detection
performance.

HOG features of a sample window W are computed and classified using the following algorithm:

1. Divide W into nonoverlapping N × M square cells of size C × C pixels (C = 6, 8 typically).
2. Compute the L2 normalized histogram Hc of edge orientations, for each cell, the orientation bins for the

histograms are 22.5° wide, so that each cell histogram has 8 bins.
3. Threshold and saturate Hc, a typical threshold value is 0.2.
4. Combine 2 × 2 neighboring cell histograms Hc into a block histogram B and normalize B using L2 norm.
5. Combine all block histograms B into a feature vector FR, and normalize it using L2 norm.
6. Classify the resulting feature vector FR using a linear SVM.

Figure 8.4 shows the arrangement of cells and blocks for a typical vehicle detection scenario. In
order to detect vehicles in parking spaces, either a sliding window of suitable shape can be used to
detect vehicles within a larger area of interest, or the HOG features can be computed in a fixed area,
which is located directly over the specific parking space to be monitored.

Over time, the classical HOG framework has been improved in several ways to achieve higher process-
ing speed and increased detection robustness and accuracy. By employing a cascade of simple HOG
detectors for example, Zhu et al. [26] can significantly speed up the detection process (see Section 8.4.7).

Video‐Based Parking Management 205

Using a different method for choosing simple HOG features and combining them into cascades,
Sidla [27] reports a similar improvement in detection as well as an improvement of the runtime
performance.

The concept of integral histograms to speed up the creation of local edge orientation histograms in
overlapping windows makes HOG real‐time capable. The computation of edge orientation histo-
grams is done using quantized edge orientation channels OH for each possible orientation bin. The
0–180° resp. 0–360° raw edge orientations from the Sobel operator are for this purpose quantized
into the typical eight HOG orientation bins OH. The computation of an integral histogram IO from
an edge orientation map E is done as follows:

For each orientation channel O,

 I x y I x y I x y I x y M E x yO O O O O, , , , , .1 1 1 1 (8.4)

MO(x) is a function which maps an edge orientation value E to a discretized edge histogram entry
which can be added to the summed edge histogram. This map can be a lookup table for computa-
tional efficiency.

The HOGs for a rectangular region at image coordinates from L(xl, yl) (left upper point) to R(xr, yr)
(right lower point) can then be computed from the integral histogram as follows:

For each orientation channel O,

 H I x y I x y I x y I x yO O O r r O r O r1 1 1 1, , , , . (8.5)

By combining integral histograms with low‐level program optimizations to make use of modern
CPU instructions (single instruction, multiple data (SIMD) instructions like SSE for x86 architectures,

Cell

Block

Figure 8.4 The computation of HOG features on a sample location. Cells of size C × C pixels (C = 6, 8, typically) are
combined into blocks; overlapping blocks span the whole sample window. The concatenated block histograms, after
normalization, form the HOG detector feature vector.

Computer Vision and Imaging in Intelligent Transportation Systems206

and NEON for ARM CPUs), HOG features can be computed an order of a magnitude faster com-
pared to conventional implementations.

Scale invariance of the HOG feature descriptor is achieved by either resizing the original input
image, and running the detector again with identical cell/block size. Alternatively, the HOG
 detection window and its corresponding cells/blocks can be scaled and tested on the same input
image size. The integral histogram makes the latter approach especially easy to apply, and it allows
the computation of HOG features in real time. As can be seen from Equation 8.5, a local histogram
can be computed using 4 × (histogram size) memory accesses only and the remaining normalizing
and scaling operation of the feature vectors can be efficiently parallelized using SIMD vector
instruction techniques.

The resulting high‐dimensional normalized feature vector is classified using a linear SVM, which
is again very well suited for optimization using SIMD programming techniques.

A practical implementation of a vehicle detector using HOG for a parking monitoring system in
the city of Boston is presented by Bulan et al. [9]. Their system can detect the occupancy of parking
spaces from distorted camera images using a multistage algorithm.

Candidate ROIs are first defined by foreground difference blobs, which are separated from
blobs created by motion or occlusion with the help of (i) a simple background model, and
(ii) double image differencing for motion detection. The background model B accumulates all
new camera frames using

 B f F f Bt t t1 1 1* * , (8.6)

where Ft+1 is the next frame from the camera and f is an update factor (typically around 0.05). Note
that single pixels will be updated only in areas where (i) no motion, (ii) no occlusion, and (iii) no
parked vehicle have been detected.

The location of candidate regions in a frame is stored as a binary mask. Since these regions may be
caused not only by a parked vehicle but also may occur due to changes from varying illumination,
shadows, glare, reflections, and other objects, a verification stage is needed. To this end, a HOG clas-
sifier, which has been trained in an off‐line phase, tests the candidate ROIs in sliding window search
mode. By computing HOG only on the masked image pixels, the runtime performance of detection
is significantly improved so that Bulan’s implementation becomes real‐time capable.

The HOG detector is furthermore used on the camera images after applying a perspective correc-
tion, so that the approximate scale of vehicles is similar for all parking spaces under consideration.
Figure 8.5 shows the HOG detection pipeline of the system. Bulan could achieve greater than 91%
average detection accuracy over a test period of 5 days. This would be higher than the required accu-
racy of in‐ground sensors in San Francisco. The processing time was about 5 frames/s. In addition to
the occupancy‐state detection, Bulan proposed methods for parking angle violation detection and
parking boundary violation detection.

First frame

Rotate image and
carve out ROI

Window based search
and window
classification

Nonmaximum
suppression

Figure 8.5 The processing pipeline of the HOG vehicle detector as used by Bulan et al. Raw camera images are
rectified first, on an ROI which has been precomputed using background subtraction for change detection. A sliding
detector window is then run with the pretrained HOG detector.

Video‐Based Parking Management 207

8.4.6 LBP Features and LBP Histograms

The appearance–based object detection principle relies on the fact that object classes exhibit certain
visual properties that can be represented by a compact statistical description. These properties, or
features, which are computed using SIFT, SURF, or HOG are very often based on some form of edge
information. But many other descriptors are possible.

The local binary pattern (LBP) descriptor [28] is a fast and robust measure for texture description,
which uses an efficient strategy to describe local image intensity differences. For some time, LBP
features have been used very successfully in machine vision applications for texture analysis, for
example, in wood sorting machines. In recent years, they have found their way into systems for face
detection, face recognition, and pedestrian detection.

The advantage of the LBP approach is that it is easily and efficiently to compute and that it is relatively
insensitive to illumination changes. Variations of LBP—rotation invariant, and uniform binary patterns
(see below)—are even more robust to small perturbations and illumination changes of local image patches.

Local binary patterns are computed from binarized intensity differences in a small neighborhood
around a central pixel Gc. Typical distances R for the neighborhood are 1 or 3 pixels. Every neighborhood
around a pixel Gc can be sampled by an arbitrary number of P locations, but for the convenience of
storage and representation, P is usually chosen to be 8 or 16.

At every location Pi around the center pixel Gc, we have to sample a gray value gi from the image as follows:

g R i

P
R i

P
ii sin , cos , .2 2 0 7 (8.7)

Here, R is the radius chosen (1 or 3) and P is the number of LBP features. The gray values at the
resulting positions gi are calculated by applying a bilinear interpolation using four neighboring pixel
values. Then each local binary value Bi for the center pixel Gc is computed as follows:

B g

g g T
g g Ti

i

i
c

c

c

1
0
,
, . (8.8)

Here, gc is the gray value of the center pixel, gi is the gray value at the neighborhood Pi, and T is an
empiric gray value difference threshold to reduce noise influence, and it often ranges from T = 2 to 10
in practical implementations.

The pixel gray value information from Equation 8.8 can be transformed into a binary value number
representation by applying the binomial factor 2p.

LBPP R p c, B g p

p

P
2

0

1
 (8.9)

For P = 8, using input from all eight neighboring pixels, a total amount of 256 combinations is pos-
sible. Thus, our feature vector as descriptor for the single pixel location gc has a size of 8 bits and
can be stored as byte value (Figure 8.6).

A collection of LBPs within a region of interest as a histogram, similar to edge histograms in the
HOG descriptor, then becomes a powerful texture descriptor, which can be directly used for object
classification. The unprocessed LBP histogram has a size of 256 entries.

The raw local binary patterns, or their histograms, provide the most detailed representation of a
pixel neighborhood at an image location. Each neighbor pixel Pi contributes 1 bit of information. By
applying a selection and transformation of the raw LBPs, one can achieve rotation invariance as well.
In order to become rotation invariant, the patterns LBPP,R need to be rotated bitwise to the right so
that the least significant bit becomes a “1”.

Computer Vision and Imaging in Intelligent Transportation Systems208

LBP ROR LBPP R

ri
P R, ,min , ,| .i i P0 1 (8.10)

ROR(x, i) is a function which rotates x bitwise, circular, to the right. All in all, 36 rotation‐invariant
patterns LBPR

ri
,8 exist.

A further improvement and invariance of the LBP descriptor can be achieved by choosing “uniform”
patterns—these are all bit patterns that have at most 2 bitwise transitions from 0–1 or 1–0. For example,
000000002 has 0 bitwise transition and 000011112 has 1 bitwise transition. The set of rotation‐invariant
patterns, LBPR

ri
,8
2 , has a total of nine uniform patterns, which are:

00000000 00000001 00000011 00000111 00001111
00011111

2 2 2 2 2, , , , ,
22 2 2 200111111 01111111 11111111, , ,

A histogram of this type of LBP would therefore contain only 9 bins and leads to a very compact

and efficient texture representation of an ROI.

8.4.7 Combining Detectors into Cascades and Complex Descriptors

Different types of descriptors have their own unique properties of computational complexity, locality,
invariance to geometric transformations, etc. By combining descriptors into cascades, a balance
between detection accuracy and computational resources can be achieved.

Beginning with Viola et al. [22], the concept of detector cascades has proven to be extremely worthwhile.
By selecting HOG features in a shallow cascade of detectors, Lipetski et al. [30] have shown that a
very robust and real‐time capable object detector can be trained. This is achieved by using simpler,
but less discriminative, HOG features in the first cascades stages, and testing the more complex and
computationally demanding HOG descriptors only in the last stages of the cascade.

LBPs have been combined by Wang et al. [31] with HOG features in a similar manner in order to create
a strong object detector. The advantage of the LBP approach is that it is computationally very efficient,
and so does not significantly increase computing times. Armanfad et al. [32] use LBP in their texture‐edge
descriptor in blocks of pixels to segment background patches from object candidates with promising results.

The addition of new feature dimensions by adding LBP also improves the recognition performance
of the vehicle detector occupancy detector, which is outlined in Section 8.4.8. Lipetski [30] demon-
strates that the combination of HOG and LBP features can achieve almost 100% accuracy even in
adverse and varying outdoor conditions.

8.4.8 Case Study: Parking Space Monitoring Using a Combined Feature Detector

This section describes a real‐world pilot project for a parking space monitoring application (Lipetski
[30]), which had to operate under demanding outdoor conditions. The detection approach is based
on appearance based modeling—it combines the HOG feature descriptor with LBPs in order to

r
5 9 1 1 1

1

1

Threshold

0 0

1
Binary: 11010011
Decimal: 211

0

6

32

44

7

Figure 8.6 Creation of the decimal encoding of an LBP. Source: Delibaltov [29]. Reproduced with permission of IEEE.

Video‐Based Parking Management 209

 create a strong vehicle occupancy detector. Figure 8.7 shows a typical image of two parking spaces,
which the system had to monitor. The parking spaces are reserved as loading zones for delivery
trucks, and their occupation status (empty/free) is reported to a fleet management server.

Due to the camera viewpoint, the wide‐angle view, and the environmental conditions on site, the
vision system had to deal with strong perspective distortion, extreme lighting conditions, and distur-
bance by adjacent vehicle and pedestrian traffic.

The occupancy detection algorithm implemented for this application has been optimized for a
smart camera. It could execute the vehicle detection task using its built‐in CCD sensor and process-
ing unit, as well as handle communication with an external fleet management system over a UMTS
connection.

The visible parts of the observed parking area were divided into two individual ROIs, which were
independently monitored. Their shapes are marked as polygons in Figure 8.7. It is worthwhile noting
that the classification has been computed on these image patches directly, without geometric nor-
malization. For feature computation and occupancy state detection only pixels, which lie inside these
predefined areas, are considered.

The first part of the classifier relies on HOG feature descriptors, which are trained using manu-
ally annotated samples and a linear SVM as classifier. The vehicle detection areas in the camera
image were of several meters length—every parking space was split into 4 × 4 blocks, each of
which was divided into 4 × 4 nonoverlapping cells. A gradient histogram with a resolution of 8
bins over a 180° orientation range was constructed for each cell, and all cell histograms were
 normalized and merged. Thus, the whole HOG feature vector had a length of 4 × 4 × 4 × 4 × 8 = 2048
elements.

The second part of the classifier computed raw LBP histograms within the detection ROIs, which
were also classified using linear SVMs (see Table 8.2 for an evaluation of the performance of different
LBP variants).

For the final decision, the results of the HOG detector (Figure 8.8) and LBP classifier were fused
and smoothed in time over several camera frames. Due to their different nature, length, and
descriptive power, the LPB and HOG feature vectors were not merged into a large vector, which
was then being classified. Instead, the results of both detectors were combined using some simple
rules. When both detectors recognized a parking space as occupied, the output was flagged as

Figure 8.7 The loading zones which had to be
monitored for the pilot project in the City of Vienna.
This is a nighttime image of the two empty parking
spaces. Harsh lighting situations, reflections, and
adjacent heavy traffic complicate the detection task.

Computer Vision and Imaging in Intelligent Transportation Systems210

occupied. When both marked it as empty, the output was flagged as empty. In the other two con-
tradicting situations, the state of the parking space was not changed and the previous occupancy
state was kept.

The complete workflow of the detector was as follows:

1) The camera triggered image acquisition in 2‐s intervals.
2) Features were extracted from predefined regions (polygons representing parking spaces):

2.1 HOG features, FH
2.2 LBP features, FL.

3) Feature vectors FH and FL were normalized to unit vectors.
4) Classification of FH and FL using the pretrained SVM for both feature types:

4.1. From a generic database of training images
4.2. From a database of images taken at the site.

5) Fusion of HOG and LBP detector results.
6) The last N detection results were kept and the occupancy state only changed if all of them were

identical.

Table 8.2 Detection scores for different LBP configurations, and a comparison with the HOG detector results.

LBP configuration Correct detection rate (%)

LBP, R = 1, uniform 2, bilinear interpolation 67.2
LBP, R = 1, uniform 2, nearest‐neighbor interpolation 33.4
LBP, R = 3, raw, bilinear interpolation 78.1
LBP, R = 3, uniform 2, bilinear interpolation 74.4
LBP, R = 3, rotation invariant, bilinear interpolation 74.3
HOG descriptor 94.4

Interpolation relates to the method which has been used to sample the gray values gi (see Eq. 8.7) from the input image.

(a) (b)

Figure 8.8 Typical detection results using the combined HOG–LBP detector. The disadvantage of site‐ and camera‐
specific training is offset by the excellent detection rate and very low false‐positive rate of this approach. (a) Presence
of pedestrians does not produce false alarms. (b) Cars’ positive detections.

Video‐Based Parking Management 211

The additional time series filtering of Step 6 made the occupancy sensor much more stable in that
it removed spurious false positives, which could be created by passing vehicles, or pedestrians which
came into the field of view, or strong reflections of headlights. The last N occupancy states (typically
N = 7) were taken, and only if all of them were equal to each other, the sensor accepted this value as
the final decision.

Two smart cameras have been installed at test sites in the City of Vienna and operated con-
stantly day and night during a period of several months. The results of an extensive evaluation
were encouraging: 97.4% of all vehicles were detected, at a false positive rate of 0%—despite the
fact that the parking spaces were constantly perturbed by pedestrians, shadows, and reflections.
The robustness against pedestrians can be explained by the fact that people have mostly vertical
edges, while vehicles also contain horizontal edges. All of the 2.6% of the vehicles that have not
been detected were parked in such a way that they occupied only a fraction (mostly <50%) of the
parking space area.

Summarizing the approach by Lipetski et al., the combination of HOG and LBP achieved a very
good detection rate with negligible false positives for several reasons as follows:

 ● The system was made more robust by the combination of two different detectors. Only when both
detectors recognized the presence of a vehicle, the state of a parking space could change to occupied.

 ● A history of N successive detector answers over several images was considered in order to suppress
single false detections.

 ● The site‐specific training optimized the detector for the geometry of the site. This is important for
both HOG and LBP features. Note: this effort would need to be eliminated in a larger production
system to avoid the overhead of manual training for every camera view.

For the evaluation of the performance of different LBP configurations, and a comparison with
HOG, Lipetski et al. have taken video data from one of the test sites for a detailed performance
analysis. The authors used two arbitrary days for training the classifiers and two additional days for
evaluation. From the two training days, they labeled images taken in 10 s intervals. By choosing only
images which had been taken between 6 a.m. and 7 p.m., Lipetski gathered 4680 training samples per
parking space (since the parking spaces were part of a delivery zone, typical business times were
 sufficient for evaluation).

After training, Lipetski et al. tested the occupancy detector on the evaluation set. For comparison,
they applied different neighborhood radii and LBP pattern configurations. The results are shown in
Table 8.2. For comparison, the HOG detector results for the same set of evaluation images are listed
in the last row of Table 8.2.

Considering only the LBP features, it can be seen from Table 8.2 that detectors with R = 3 clearly
provide better results than detectors with R = 1. One can also see that the HOG detector significantly
outperforms any of the LBP feature combinations. The best LBP result of 78.1% is much worse com-
pared to the classification rate of 94.4% obtained by the HOG descriptor alone. One of the main
reasons is the fact that spatial information from the scene is neglected by the LBP descriptor—the
LBP patterns serve as input for only a few histograms, each of which cover a larger image area. The
HOG approach in contrast creates a much more detailed scene representation.

8.4.9 Detection Using Artificial Neural Networks

Artificial neural networks (ANNs) represent a learning approach, which is inspired by biological
NNs. They are widely used in computer vision for object classification tasks, with a resurgence of
interest over the recent years.

Computer Vision and Imaging in Intelligent Transportation Systems212

Typically, an NN consists of the input layer (data to classify), and the output (result) layer and one
or several hidden layers of interconnected neurons. Information is forward propagated over the
 layers from the input to the output. The connections between neurons are linearly weighted; the
weights are to be learned in the training stage. A neuron output signal is calculated as the weighted
sum of connected neurons from the previous layer, and a nonlinear activation function is typically
applied afterward.

y K w x bj

i
i ij i . (8.11)

Here, xi is a value of an input neuron i, wij is a connection weight from the input neuron xi to the
output neuron yi, bi is a bias value, and K() is an activation function—for example, a sigmoid S function
can be used as activation,

S t

e t
1

1
. (8.12)

The neuron output response is passed to the neurons of the next layer, and the calculation is
repeated for all layers, until values of the output layer are finally calculated (Figure 8.9).

NN‐based approaches have become more and more popular and powerful over the recent years, as
new techniques have been developed. One of the essential contributions is the work of LeCun [33],
where he describes his convolutional NN (CNN) approach. Since they preserve spatial information
and the mutual context of features, CNNs are very well suited for object classifications tasks in com-
puter vision (Figure 8.10).

In recent years, effective algorithms for the training of large networks with many hidden layers
(deep networks) have become available, making it possible to perform object classification tasks with
unprecedented accuracy. In fact, approaches that use deep networks show the best results in practi-
cally all actual benchmarks and competitions related to the object classification benchmarks. Deep
networks are even beginning to outperform humans [34] in certain specific recognition tasks. With
today’s available data sets, which sometimes range into 10 million sample images, deep networks
have practically unlimited training potential.

The main drawback of the NN approach is the necessity of a tedious and time‐consuming training
process. To perform well, a NN needs a huge set of manually annotated data. Concerning the parking
space occupancy detection task, it is difficult to build a generic NN for arbitrary input data sets
because in different installations, vehicles appear under very different viewing angles. To achieve the
best detection results, the training process should be performed individually for each camera installation,

Inputs Outputs

Figure 8.9 Data processing in a fully connected NN
with input, intermediate, and output layer.

Video‐Based Parking Management 213

and the training data should include all possible weather and lighting conditions. Ideally, data from
all seasons should be included to cover dry and wet streets, snow, and rain.

There are not many NN‐related approaches used for parking space detection available in the
literature to date. Jermsurawong et al. [35] train two separate networks for day‐ and nighttime
conditions. A single camera was used to simultaneously observe 126 nonoverlapping parking
spaces (9 lanes with 14 parking spaces in each lane). The resolution of a single parking space was
only 30 × 14 pixels in this scenario. Such a setup was possible due to the installation of the camera
on the 29th floor of a building. The number of manually annotated training data was about 40,000
and 14,000 samples for the daytime and the nighttime network. For the network input layer, dif-
ferent features were extracted—brightness‐related, pixel‐related, color‐related, time‐related, and
edge features.

A test over 24 h has shown 99.9% accuracy for occupied spots and 97.9% for empty parking spaces.
The lower second value can be explained with much fewer training samples of empty parking spaces
compared to the occupied ones (about 3% of the whole training set), as the parking area was occupied
most of the time.

8.5 Introduction to Vehicle Detection with 3D Methods

Even the most sophisticated 2D vision systems have to deal with situations were visual analysis is
very difficult or practically impossible. Strong occlusions by vegetation, extreme illumination condi-
tions, perspective distortions, large depth of fields, or even very high required accuracies can limit
the usability of pure 2D image analysis for parking space monitoring.

A 3D monitoring approach can provide the means to cope with some of the aforementioned
 problems, and it can offer additional benefits because more usable information can be extracted with
this approach. For example in heavy traffic, occlusions from vehicles on the street can reliably be

Input image
Convolutional

layer #1
Convolutional

layer #2
Fully connected

layer

Output
layer

Figure 8.10 CNN configuration with input layer, two convolutional layers, fully connected layer, and output layer. The
input layer is a normalized grayscale input image. Each of the convolutional layers consists of several feature maps;
the output layer represents the classification results.

Computer Vision and Imaging in Intelligent Transportation Systems214

separated from parking vehicles on the street side, even when the available 3D depth resolution is
only in the range of several centimeters.

Active methods for 3D sensing use laser scanners or light sources to build up 3D depth maps one
point at a time. Quite a few commercial laser scanners are available (e.g., devices from company Sick),
but they all suffer from disadvantages by being

 ● too expensive
 ● not suitable for continuous use over a long period of time
 ● often not robust enough for outdoor operation
 ● too slow for a parking space monitoring application with traffic flowing next to observed areas

CMOS chips, which work as time‐of‐flight (TOF) sensors, are gradually becoming practicable;
however, for the intended large distances and areas which need to be covered, their spatial resolution
and range is not yet sufficient. In addition, TOF sensors still have difficulty operating reliably in out-
door environments. Nevertheless, they could be an interesting alternative for 3D sensing in the com-
ing years.

Section 8.6 describes algorithms for parking space monitoring using passive 3D sensing with ste-
reo vision. Sections 8.6.5 and 8.6.6 give an example for a practical 3D parking space monitoring sys-
tem, which cover an area of approximately 25 m in length with a medium‐resolution camera pair.

The reconstruction of 3D information from a single monocular image is generally not possible
without additional means of information gathering (e.g., light stripe projectors). Delibaltov et al. [29]
nevertheless try to approximate a 3D volume measurement for parking space occupancy detection.
They model the volume of parking spaces using geometric information, which is manually config-
ured during system setup. They infer occupancy of even partially occluded spaces using a vehicle
detector and the inferred volume of each of the parking spaces. For each pixel, the probability of it
belonging to a specific parking space is modeled so that occlusions can be handled and considered
for a final occupancy decision. The probability density function for each pixel depends on (i) the
distance to the center of the parking space and (ii) the number of possible occlusions from other
parking spaces. Figure 8.11 shows the camera views and the approach for volume approximation,
which Delibaltov used in her work.

The vehicle detector of Delibaltov et al. is based on LBP with an SVM as classifier, very similar to
the approach described in Section 8.4.6. In addition, Delibaltov uses TextonBoost features as
described in Ref. [36]. The aim of the TextonBoost algorithm is that of automatic image segmenta-
tion. This is a trained approach that builds a learning model, based on the extraction and combina-
tion of different kind of visual information. In Delibaltov’s work the following three types of features
are utilized: (i) textural appearance, (ii) layout, and (iii) content. First, a so‐called texton map based
on textons [37] is created. For this purpose, training images are convolved with a 17D filter bank,
which consists of Gaussians, their derivatives, and Laplacians of Gaussians. Thus, each image pixel is
represented by a 17D feature vector. The resulting vectors are clustered using K‐means clustering
algorithm. Finally, image pixels are assigned to the nearest cluster center of a corresponding feature
vector, filling thus a texton map.

On the next stage, texture‐layout filters are applied. One filter consists of a pair (r, t) of a rectangu-
lar image region r, and a texton t. A random set of candidate rectangles is generated and the feature
response at location i is the proportion of pixels having texton index t,

v i

r
T tjj r ir t area, .1 (8.13)

Video‐Based Parking Management 215

To combine different kinds of information (texture, layout, color, location, and edge) into a single
unified framework, Delibaltov uses a conditional random field (CRF) model [38]. Finally, an adapted
version of the Joint Boosting Algorithm [39] is employed. It iteratively selects discriminative texture‐
layout filters as “weak learners,” and combines them into a strong classifier.

Delibaltov used three test sets to evaluate the performance of her detector with 62, 15, and 10
images, respectively. She used 30 images for training of her vehicle detector, and the rest for evalua-
tion. On average Delibaltov could achieve 76.8% accuracy with a pure TextonBoost classifier, 71.3%
with a pure LBP classifier, and 78.1% with a combined TextonBoost/LBP classifier.

8.6 Stereo Vision Methods

8.6.1 Introduction to Stereo Methods

The method of 3D image analysis with the stereo correspondence method has been in practical use for
more than 25 years and can be considered a proven technology. Depth estimation from two or more

(a) (b)

(d)(c)

Figure 8.11 The volume modeling method from Delibaltov: (a) an example image of a parking space, (b) the parking
layout from manual setup, (c) region of 2D parking spaces, and (d) regions of 3D parking space volume. Source:
Delibaltov [29]. Reproduced with permission of IEEE.

Computer Vision and Imaging in Intelligent Transportation Systems216

cameras relies on the triangulation principle from computed point correspondences and a known cam-
era calibration. For details to the basic geometric setup and distance calculation, refer to Section 5.2.2.1.

Once a precise calibration of the camera pair is established, the generation of a 3D point
cloud respective depth image can be achieved in, or close to, real time. At practical resolutions
of 1–4 megapixels, current stereo algorithms can achieve a 0.25–3 Hz measurement rate on a
CPU, and up to 25 Hz with GPU support. This beats other sensors in terms of price/perfor-
mance ratio.

The main properties of stereoscopic imaging for parking space analysis can be summarized in the
following text.

Advantages of Stereo Measurement Methods
 ● Similar to 2D vision systems, a relatively large spatial area can be covered with low‐cost hardware,

compared to magnetic sensors or other nonoptical methods.
 ● Lower installation costs than alternative methods (pole mount of the stereo rig instead of subsur-

face installation of sensors).
 ● Flexible configuration of parking space delimiters using graphical user interfaces.
 ● Additional benefits for the operator: visual control and inspection are possible as by‐product.

Disadvantages of Stereo Measurement Methods
 ● Image analysis requires complex algorithms.
 ● Relatively high computational burden with resulting higher power requirements, larger housings,

and generally higher system complexity.
 ● The semantic analysis of the measured 3D data (interpretation of the captured scene) can become

complex.
 ● Possible reduced range and accuracy in adverse weather conditions.

3D stereo image analysis has the following benefit: in addition to the processing of depth images,
standard visual 2D image analysis can also be performed. This additional information can be used to
estimate the velocity of objects, or support 3D analysis by generating hypothesis for the semantic
interpretation of a scene (e.g., it might be easier to do pedestrian detection in the 2D data than in the
depth image).

8.6.2 Limits on the Accuracy of Stereo Reconstruction

The stereoscopic imaging geometry and achievable sub‐pixel resolution of the pixel matching
algorithm set the limit for the stereo camera depth accuracy, which can be achieved. Typical
sub‐pixel matching accuracies of state‐of‐the‐art algorithms lie in the range of 0.1–0.5 pixels.
The possible theoretical depth resolution dz at a measurement distance z0 (for focal length
f ≪ z0) depends on the camera baseline B, the focal length f, and the sensor element (pixel) dis-
tance D [40],

dz z D

Bf
0
2

, (8.14)

where B, z0 is given in millimeter, f is defined in millimeter, and D is the effective matching accu-
racy on the sensor plane, which considers the pixel distance on the sensor plane weighed by the
possible sub‐pixel matching accuracy. Figure 8.12 plots the achievable distance measurement
resolutions dz for some practical camera/lens configurations. For example, with system parame-
ters D = 0.25 × px (1/4 pixel matching resolution), working distance z0 = 40,000 mm, baseline

Video‐Based Parking Management 217

B = 1,500 mm, and a focal length f = 16 mm, an approximate theoretical accuracy of 67 mm in
depth resolution can be achieved.

8.6.3 Computing the Stereo Correspondence

3D measurements can be extracted from a stereo image pair by means of geometric triangulation.
This process requires the computation of corresponding image locations (ideally single pixels), which
are then, given intrinsic end extrinsic camera calibration, converted into 3D distance measurements
(see Section 5.2.2 for details).

The solution to this so‐called correspondence problem is the most important task of a stereo
matching algorithm, and depending on the captured scene, it is not always trivial. Areas of homoge-
neous texture, overexposed image regions, or repeating patterns may lead to errors in matching,
which can severely affect the 3D reconstruction process. Over the past 25 years, various matching
algorithms have been developed and used in practical systems. For the application in parking space
monitoring, stereo matching need not be extremely precise, since only the relatively large volume of
a car needs to be considered. More important are (i) robustness of the 3D data points (not too many
outliers) and (ii) the computational performance of the algorithm.

The minimum sum of absolute difference (SAD) [41] algorithm calculates gray value differences
within local areas of the image and identifies pairs of points with the minimal sum of gray value dif-
ferences. The advantage of this approach is the high attainable speed, with the disadvantage being
that the quality of the resulting 3D data for many applications and scenarios is not sufficient.

The semi‐global matching (SGM) method by Hirschmüller [42] computes pixel‐wise matching
costs and refines them with dynamic programming to effectively optimize disparities globally over
an image. The idea of Hirschmüller to regularize the costs from several different directions along
paths around a matched pixel avoids the problem of streaking, which affects other local optimization
algorithms.

5,000
0

20

40

60

80

100

120

140

160

10,000 15,000 20,000 25,000

Measurement distance Z0 (mm)

D
ep

th
 a

cc
ur

ac
y
d
z

(m
m

)

30,000 35,000 40,000 45,000 50,000

f = 16, D = 0.001, B = 1000
f = 16, D = 0.001, B = 1500
f = 25, D = 0.00086, B = 1000
f = 25, D = 0.00086, B = 1500

Figure 8.12 Theoretical accuracies for several practical camera configurations.

Computer Vision and Imaging in Intelligent Transportation Systems218

Many SGM implementations use the census transform operator as descriptor for the local patch
around a pixel. Interestingly, the census transform is very similar to the concept of LBP, and it can be
implemented efficiently on a CPU as well as on a GPU. It allows sub‐pixel matching and works well
on the typical textures found in street scenes. SGM is considered to be among the best available ste-
reo algorithms in terms of balance between accuracy and runtime performance.

The pyramidal feature vector matching (PFVM) method (originally developed by Paar [43])
describes each pixel as a vector of local filter responses (gradient, brightness distribution, etc.), which
are called “features.” Matching is performed by searching for the local feature distance minimum
between the feature vector of a reference point in one image and the feature vectors within a search
area in the corresponding image. To speed up processing and to make the algorithm more robust,
stereo matching is performed on a resolution pyramid of the original image pair. PFVM is accurate
and robust, but it is computationally intensive. Its advantage is that it can be parallelized well and
that it can deliver dense point clouds by design.

A practical method for checking disparities for consistency (and outlier rejection) is the com-
putation of the back‐matching distance [44] as shown in Figure 8.13. Every valid matched point
Pl is projected into the right image using its disparity, giving point Pr. Pr is similarly projected
back into the left image using its local disparity, resulting in point P1 . In the ideal case Pl and P1
are identical, their residual distance P P1 1 is called back‐matching distance. By accepting only
matches of a certain maximal back‐matching distance, consistently matched points can be chosen
for 3D reconstruction.

8.6.4 Simple Stereo for Volume Occupation Measurement

Wah tried calibrated and uncalibrated stereo reconstruction in her study [45]. First, the Harris and
Stephens [17] corner detection method was used to extract representative features from single
images. The Harris corner detector searches for points with high variation of gradients in both verti-
cal and horizontal directions in their neighborhood. After that, feature correspondences between the
point sets in both images were established using cross‐correlation. Finally, Wah then fitted a model
using RANSAC [46] in order to remove outliers.

Once feature matching across images was achieved, the 3D reconstruction was performed using
uncalibrated and calibrated camera setups [47, 48]. Wah used the already present landmarks in the
image pairs to calibrate the camera rigs, so that no external calibration target was necessary.

A decision about parking space occupation was made by counting the number of 3D points within
each parking space volume. If the number of points was greater than a predefined threshold, a park-
ing space was considered to be occupied.

8.6.5 A Practical System for Parking Space Monitoring Using a Stereo System

For the purpose of monitoring parking spaces, which are located alongside tracks of trams, the
prototype of a stereo measurement system has been deployed by Sidla [27] in a pilot project for the

Disp RL
Disp LR
Pl′

Pl
Pr

Figure 8.13 Computation of the back‐matching distance
using the disparity images disp LR and disp RL. The back‐

matching distance is the distance between points Pl and P1.

Video‐Based Parking Management 219

City of Vienna. The purpose of the system was to measure as precisely as possible the location and
position of cars relative to the tram tracks. The aim was to detect situations when a car would
potentially block a passing tram and trigger a warning, thus avoiding the costly disruptions of the
tram service.

A vertical imaging sensor arrangement with a baseline of 1500 mm has been chosen for the imaging
setup because it can be mounted easily on a supporting mast. The stereo camera rig observed a
stretch of parking spaces at a distance between 33 and 55 m. Experimental results had previously
shown that the computed stereo disparities from a vertical configuration seem to be slightly more
robust than those from a horizontal sensor configuration. For the system parameters of D = 0.0010 mm
(stereo matching accuracy), a medium working distance of z0 = 40,000 m, a camera baseline
B = 1500 mm, and focal length f = 16 mm, an approximate theoretical depth resolution of 67 mm could
be achieved.

In practice, the authors of this work observed a localization accuracy of the side of the cars of
around 25–60 mm (at 33,000–55,000 mm working distance), which roughly corresponds to the theo-
retical result—probably a better disparity estimation accuracy than the assumed 1/4 pixel resolution
could be achieved.

The processing steps for vehicle detection from the stereo measurement are depicted in Figure 8.14.
Intermediate results from a test setup are shown in Figure 8.15. By using the camera calibration data
and an automatic alignment of the 3D point cloud with the street level, the location of vehicles rela-
tive to the tracks can be computed with acceptable accuracy and robustness.

The system has been successfully tested under real‐world conditions for a period of several months.
It is currently (Summer 2015) being rebuilt with better resolution and more computing power for
long‐term tests at several locations at problem hot spots in the City of Vienna.

Image acqusition
Triggered, synchronized
cameras

Stereo
rectification Offline calibration provided, intrinsic + extrinsic

2D filtering of
disparities

Outlier removal, smoothing, consistency
checks

3D
reconstruction

Offline calibration
Street-level localization

3D point cloud
filtering Remove outliers

3D measurement

Virtual fence,
vehicle
volume
estimation

Figure 8.14 The data flow of the 3D vehicle detection pipeline.

Computer Vision and Imaging in Intelligent Transportation Systems220

8.6.6 Detection Methods Using Sparse 3D Reconstruction

Cook [49] proposes an interesting and extensive vehicle detection approach via sparse 3D scene
reconstruction. A parking area is equipped with several video sensors, each of which observes the
area from different angles (the author has used 12 sensors), so that depth information can be
extracted. The proposed algorithm uses dual 3D sparse reconstruction—one for an empty parking
space, and another one for an occupied parking space. First, an identification of parking places is
performed in a semiautomated mode. An empty parking space is manually labeled with four‐colored
fiduciary markers (the marker positions are found in images automatically by the algorithm). The

(a) (b)

(c)

Figure 8.15 Stereo matching for vehicle detection. This image sequence has been generated from a system test in
the City of Graz prior to installation. (a) One camera image of the stereo rig, resulting stereo disparities are depicted in
(b), and the resulting interpolated 3D point cloud is shown in (c). For vehicle detection, the volume of the vehicle
(shown as cube in (c)) is approximated and its boundaries are tested against a virtual fence, which is shown as a
vertical plane left of the cube in (c).

Video‐Based Parking Management 221

goal of the empty parking space reconstruction is to locate the plane of unoccupied pavement. Once
this is done, only a box normal to this plane is analyzed in operation mode—if a sufficient number of
reconstructed points of vehicles are found, a parking space is marked as occupied.

To generate sparse 3D points, Cook utilizes the Bundler tool chain [50], which in turn uses SIFT
[19] features and bundle adjustment. SIFT as descriptor for point matching has the following advan-
tages: it is invariant to scale, translation, rotation, and local affine distortions. SIFT descriptors are
also partially invariant to illumination and 3D camera viewpoint, and they are therefore well suited
for reidentification across a collection of images. The drawback of SIFT lies in its complexity and
slow calculation time.

To speed‐up processing, a staged filtering approach is used, which allows to run computationally
intensive algorithms only when needed. First, positions of SIFT keypoints are extracted.

A DoG function is computed in scale space (an image pyramid is built), and the keypoints are
selected at local maxima or minima of the function. The convolution with the 2D Gaussian function
is computed by applying the 1D Gaussian in the horizontal and vertical direction [19],

g x e x1

2
2 22/ . (8.15)

For the keypoint localization algorithm, the input image is first convolved with the Gaussian
function using 2 . The resulting image A is convolved with 2 again, giving image B. The
difference of Gaussian function is the pixel‐wise difference B − A.

Maxima and minima are defined at each pyramid level. Every pixel value is compared with its eight
neighbors—if it is one of the extrema, its closest pixel location is calculated at the next lowest level of
the pyramid and the process is repeated.

Finally, the local image regions around the keypoints are described with a 1D feature vector in such
a way that the resulting descriptor is invariant to the location, scale, and orientation. For a particular
keypoint, four small (4 × 4 size) regions are created. Within each region, a HOG in eight directions is
created, and the orientations are measured relative to the keypoint orientation.

The resulting high‐dimensional feature vector is distinctive and useful to find point corre-
spondences between images. Matching of SIFT features across images is realized with a nearest‐
neighbor search using Euclidean distance metric. To increase the matching robustness, the
second closest neighbor in feature space is considered as well. The ratio of distances between the
best and the second best match has to be above a certain threshold; otherwise, the match is con-
sidered ambiguous.

After SIFT correspondences are found, the reconstruction with bundle adjustment begins. This
is an iterative optimization process, performed with a sparse implementation of nonlinear least
squares. The goal is to minimize location error of the reprojection of the predicted locations of 3D
points back into the original images. The reprojection error that has to be minimized is defined as
follows [49, 51]:

d P X xi j iji j

, .,
2 (8.16)

Here, Xj is the 3D location of a feature j, and xij is the estimated 2D position of that point in an
image i. Pi represents the camera matrix of image I, and d is the image distance.

For the nonlinear least‐square minimization, Cook uses a Levenberg–Marquard optimization
procedure. As feature locations in the images contain noise, a maximum‐likelihood estimation is
provided by bundle adjustment as well. Figure 8.16 shows a reconstruction result obtained by Cook.

Computer Vision and Imaging in Intelligent Transportation Systems222

The Bundler output is often too sparse and does not produce a sufficient number of features
needed for a confident decision about vehicle presence. That is why an additional reconstruction is
performed with PMVS approach [52]. PMVS runs parallel to SIFT and bundle adjustment. It gener-
ates its own features based on Harris and DoG detectors. Each image is divided into a grid with
patches size β × β (with β = 32 pixels). Each patch is processed with both detectors and the ɳ strongest
responses are taken with ɳ = 4 (see Refs. [52] and [49] for details to PVMS).

Tests on different parking spaces show very good and robust results—also in rain and after snow-
fall. All vehicles were detected with high confidence and without false alarms. The system can cope
with occlusions very well and is, therefore, applicable for larger parking areas. The main drawback of

(a)

(b)

Figure 8.16 The result of 3D reconstruction by Cook [49]. (a) Empty parking space with colored markers.
(b) Reconstruction example—scenario with four vehicles. Source: Cook [49]. Reproduced with permission of
University of Minnesota.

Video‐Based Parking Management 223

the proposed approach is that it is slow—depending on the number of sensors and their resolution,
calculation time for one set of images can take about 6–74 min. Besides that, the approach requires a
parking area to be empty during the initialization stage. Finally, a large number of sensors is needed,
which increases hardware and installation costs.

 Acknowledgment

The work described was partially funded by the Austrian Federal Ministry for Traffic, Innovation and
Technology (BMVIT): FFG project iLadezone, project number 831775, and FFG project TRAM‐in‐
TAKT, Project number 835756.

 References

 1 M. Y. I. Idris, Y. Y. Leng, E. M. Tamil, N. M. Noor, and Z. Razak, Car park system: A review of smart
parking system and its technology, Information Technology Journal 8, 101–113 (2009).

 2 D. C. Shoup, The High Cost of Free Parking, Planners Press, American Planning Association, Chicago
(2005).

 3 D. C. Shoup, Cruising for parking, Transport Policy 13(6), 479–486 (2006).
 4 R. P. Loce and E. Saber, Fuel Consumption in San Francisco, http://spie.org/x1816.xml (accessed

September 16, 2013).
 5 sfpark.com (accessed September 16, 2013).
 6 https://www2.ffg.at/verkehr/projektpdf.php?id=805&lang=en (accessed September 16, 2013).
 7 http://www.fluidtime.com (accessed September 16, 2013).
 8 Garage Laser Park by MAXSA Innovations, LCC. http://www.maxsainnovations.com/PARK‐

RIGHT‐Dual‐Garage‐Laser‐Park‐with‐LED‐Light/ (accessed September 16, 2013).
 9 O. Bulan, R. P. Loce, W. Wu, Y. Wang, E. Bernal, and Z. Fan, Video‐based real‐time on‐street parking

occupancy detection system, Journal of Electronic Imaging 22(4), 041109 (2013).
 10 P. Modi, Counting Empty Parking Spots at Truck Stops Using Computer Vision, Artificial

Intelligence, Robotics and Vision Laboratory, Department of Computer Science and Engineering,
University of Minnesota, Twin Cities, March 2011.

 11 C. Stauffer and W. E. L. Grimson, Adaptive Background Mixture Models for Real‐Time Tracking,
Proceedings of the International Conference on Computer Vision and Pattern Recognition, Ft. Collins,
CO, June 23–25, 1999, Vol. 2.

 12 A. J. Joshi, S. Atev, O. Masoud, and N. Papanikolopoulos, Moving Shadow Detection with Low and
Mid‐Level Reasoning, Proceedings of the IEEE International Conference on Robotics and Automation,
Rome, April 10–14, 2007.

 13 N. True, Vacant parking space detection in static images, University of California, San Diego,
Technical Report, 2007.

 14 V. Vapnik, Statistical Learning Theory, John Wiley & Sons, Inc., New York (1998).
 15 N. Cristianini and J. Shawe‐Taylor, An Introduction to Support Vector Machines and Other

Kernelbased Learning Methods, Cambridge University Press, New York (2000).
 16 T. Čaklović and I. Aleksi, Managing and monitoring of parking lot by a video camera, Željko

Hocenski University of Osijek, Faculty of Electrical Engineering Kneza Trpimira Croatia.
 17 C. Harris and M. Stephens, A Combined Corner and Edge Detector, Proceedings of the Fourth Alvey

Vision Conference, Manchester, August 31 to September 2, 1988, pp. 147–151.

Computer Vision and Imaging in Intelligent Transportation Systems224

 18 E. Rosten and T. Drummond, Machine Learning for High‐Speed Corner Detection, Proceedings of
the 9th European Conference on Computer Vision, Graz, May 7–13, 2006, pp. 430–443.

 19 D. G. Lowe, Object Recognition from Local Scale‐Invariant Features. Proceedings of the 7th IEEE
International Conference on Computer Vision, Corfu, September 20–27, 1999, Vol. 2, pp.
1150–1157.

 20 D. G. Lowe, Distinctive image features from scale‐invariant keypoints, International Journal of
Computer Vision 60(2), 91–110 (2004).

 21 H. Bay, T. Tuytelaars, and L. Van Gool, Surf: Speeded up Robust Features, Proceedings of the 9th
European Conference on Computer Vision, Graz, May 7–13, 2006, pp. 404–417.

 22 P. Viola and M. Jones, Rapid object detection using a boosted cascade of simple features, Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition 1, 511–518 (2001).

 23 R. Fusek, K. Mozdren, M. Surkala, and E. Sojka, AdaBoost for parking lot occupation detection,
Advances in Intelligent Systems and Computing 226, 681–690 (2013).

 24 M. Tschentscher and M. Neuhausen, Video‐Based Parking‐Space Detection, Proceedings of the
Forum Bauinformatik, Bochum, September 26–28, 2012, pp. 159–166.

 25 N. Dalal and B. Triggs, Histograms of Oriented Gradients for Human Detection, Proceedings of the
IEEE Computer Society Conference on Computer Vision and Pattern Recognition, (CVPR 2005), San
Diego, CA, June 20–25, 2005, pp. 886–893.

 26 Q. Zhu, M.‐C. Yeh, K.‐T. Cheng, and S. Avidan, Fast Human Detection Using a Cascade of Histograms
of Oriented Gradients, Proceedings of the IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, New York, NY, June 17–22, 2006, IEEE Computer Society, Vol. 2.

 27 O. Sidla and Y. Lipetski, Methods for Vehicle Detection and Vehicle Presence Analysis for Traffic
Applications, Proceedings of the SPIE Conference on Video Surveillance and Transportation Imaging
Applications, San Francisco, CA, USA, February 2, 2014, Vol. 9026.

 28 T. Ojala, M. Pietikäinen, and T. Mäenpää, Multiresolution gray‐scale and rotation invariant texture
classification with local binary patterns, Proceedings of the IEEE Transactions on Pattern Analysis
and Machine Intelligence 24(7), 971–987 (2002).

 29. D. L. Delibaltov, W. Wu, R. Loce, and E. Bernal, Parking Lot Occupancy Determination from Lamp
Post Camera Images, Proceedings of the 16th International IEEE Conference on Intelligent
Transportation Systems: Intelligent Transportation Systems for All Modes, ITSC 2013, The Hague,
October 6–9, 2013.

 30 Y. Lipetski and O. Sidla, Vehicle Presence Analysis for Law Enforcement Applications and Parking
Lot Management, Proceedings of the SPIE Conference on Video Surveillance and Transportation
Imaging Applications, Burlingame, CA, February 4–6, 2013, Vol. 8663.

 31 X. Wang, T. Han, and S. Yan, An HOG‐LBP Human Detector with Partial Occlusion Handling,
Proceedings of the IEEE 12th International Conference on Computer Vision, ICCV 09, Kyoto,
September 29 to October 2, 2009.

 32 N. Armanfard, M. Komeili, and E. Kabir, TED: A texture‐edge descriptor for pedestrian detection in
video sequences, Pattern Recognition 45, 983–992 (2012).

 33 Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient‐based learning applied to document
recognition, Proceedings of the IEEE 86, 2278–2324 (1998).

 34 D. Ciresan, U. Meier, and J. Schmidhuber, Multi‐column deep neural networks for image
classification, Arxiv preprint arXiv:1202.2745 (2012).

 35 J. Jermsurawong, M. Umair Ahsan, A. Haidar, H. Dong, and N. Mavridis, Car Parking Vacancy
Detection and Its Application in 24‐Hour Statistical Analysis, Proceedings of the 10th International
Conference on Frontiers of Information Technology (FIT 2012), Islamabad, December 17–19, 2012,
pp. 84–90.

Video‐Based Parking Management 225

 36 J. Shotton, J. Winn, C. Rother, and A. Criminisi, Textonboost for image understanding: Multi‐class
object recognition and segmentation by jointly modeling texture, layout, and context, International
Journal of Computer Vision 81(1), 2–23 (2009).

 37 J. Malik, S. Belongie, T. Leung, and J. Shi, Contour and texture analysis for image segmentation,
International Journal of Computer Vision 43(1), 7–27 (2001).

 38 J. Lafferty, A. McCallum, and F. Pereira, Conditional Random Fields: Probabilistic Models for
Segmenting and Labeling Sequence Data, Proceedings of the 18th International Conference on
Machine Learning, Williamstown, MA, June 28–July 1, 2001, pp. 282–289.

 39 A. Torralba, K. P. Murphy, and W. T. Freeman, Sharing visual features for multiclass and multiview
object detection, IEEE Transactions on Pattern Analysis and Machine Intelligence 19(5), 854–869
(2007).

 40 D. Gallup, J.‐M. Frahm, P. Mordohai, and M. Pollefeys, Variable Baseline or Resolution Stereo,
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2008),
Anchorage, AK, June 23–28, 2008.

 41 F. Tombari, S. Mattoccia, L. Di Stefano, E. Addimanda, Classification and Evaluation of Cost
Aggregation Methods for Stereo Correspondence, Proceedings of the IEEE International Conference
on Computer Vision and Pattern Recognition (CVPR 2008), Anchorage, AK, June 23–28, 2008.

 42 H. Hirschmüller, Stereo processing by semiglobal matching and mutual information, IEEE
Transactions on Pattern Analysis and Machine Intelligence 30(2), 328–341 (2008).

 43 G. Paar, O. Sidla, and W. Pölzleitner, Genetic Feature Selection for Highly Accurate Stereo
Reconstruction of Natural Surfaces, Proceedings of SPIE Conference on Intelligent Robots and
Computer Vision XVII: Algorithms, Techniques, and Active Vision, Boston, MA, November 1, 1998,
Vol. 3522.

 44 W. Pölzleitner and O. Sidla, Accuracy optimization in hierarchical stereo disparity computation
using the back‐matching distance, Proceedings SPIE the International Society for Optical Engineering
3164, 482–493 (1997).

 45 C. Wah, Parking Space Vacancy Monitoring. Projects in Vision and Learning (2009).
 46 M. A. Fischler and R. C. Bollee, Random sample consensus: A paradigm for model fitting with

applications to image analysis and automated cartography, Communications of ACM 24(6), 381–395
(1981).

 47 Y. Ma, S. Soatto, J. Kosecka, and S. Sastry, An Invitation to 3D Vision: From Images to Geometric
Models, Springer Verlag, Heidelberg (2003).

 48 J. Y. Bouguet, Camera Calibration Toolbox for MATLAB, California Institute of Technology,
Pasadena, CA, (2001).

 49 D. Cook, Parking Space Occupancy Detection Utilizing 3D Reconstruction Techniques, M.S. thesis,
University of Minnesota, March 2012.

 50 N. Snavely, S. M. Seitz, and R. Szeliski, Photo Tourism: Exploring Image Collections in 3D,
Proceedings of ACM SIGGRAPH 2006 ACM Transactions on Graphics, Boston, MA, July 30–August
3, 2006.

 51 R. I. Hartley and A. Zisserman, Multiple View Geometry, Cambridge University Press, Cambridge
(2004).

 52 Y. Furukawa and J. Ponce, Accurate, Dense, and Robust Multi‐View Stereopsis, Proceedings of the
IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Chicago, June
17–22, 2007.

227

Computer Vision and Imaging in Intelligent Transportation Systems, First Edition.
Edited by Robert P. Loce, Raja Bala and Mohan Trivedi.
© 2017 John Wiley & Sons Ltd. Published 2017 by John Wiley & Sons Ltd.
Companion website: www.wiley.com/go/loce/ComputerVisionandImaginginITS

9.1 Introduction

The ability to detect anomalous or unusual events has numerous applications in the transportation
domain, including identifying traffic violations, accidents, unsafe driver behavior, street crime, and
other dangerous and suspicious activities [1]. In many surveillance settings, anomaly detection
requires significant human intervention, and is hence not scalable to high volumes of video footage.
Thus a large fraction of transportation video is simply stored without review. Automatic and reliable
detection of anomalies from natural traffic scenarios is clearly of benefit. This problem is challenging
for several reasons. First, video captured in natural urban settings often contains a large amount of
clutter amid a complex dynamically varying scene. Second, since anomalies are by definition rare
events, it is difficult to obtain a sufficiently large number of samples to accurately characterize anom-
alous events and behavior. In this chapter, we present a framework for video anomaly detection,
provide a brief survey of state‐of‐the‐art methods, and elaborate on a few selected techniques that
attempt to address the aforementioned challenges. Last, directions for future investigations in this
topic are pondered. Note that anomaly detection can be thought of as a general framework that
includes as special cases applications like traffic violation detection discussed in previous chapters.

Figure 9.1 shows a simple yet general framework for anomaly detection. At the high level, there are
two stages: event encoding and an anomaly detection model.

In the event encoding stage, raw video is converted into a feature representation suitably chosen to
describe events of interest. Common feature descriptors in transportation applications include
 trajectories and spatiotemporal volumes (STVs). Recently, deep convolutional neural networks
(CNNs) have been built that learn relevant motion‐related representations from video. These event
encoding schemes are described in further detail in Section 9.2.

Given an event encoding, the anomaly detection model makes a binary decision as to whether or
not an event (as represented by the feature descriptor) is an anomaly. It is useful to categorize the
scenarios for anomaly detection based on how much information and structure is known about the
nominal and anomalous samples, as in the following text.

Supervised anomaly detection refers to the setting where anomalous samples are labeled into
known classes. Conversely, unsupervised anomaly detection refers to the scenario wherein there are

9

Video Anomaly Detection
Raja Bala1 and Vishal Monga2

1 Samsung Research America, Richardson, TX, USA
2 Pennsylvania State University, University Park, PA, USA

Computer Vision and Imaging in Intelligent Transportation Systems228

not a sufficiently large number of labeled anomalous samples to warrant characterization of an
anomalous event class. The latter is the more realistic and frequently encountered setting in real‐
world applications. Another dimension to consider is how much structure is known of the nominal
classes. Structured anomaly detection models assume that labels exist for objects, motion, or actions
corresponding to nominal events. Conversely, unstructured models assume that no information is
known about nominal events beyond the fact that they are nominal. The former category allows for
more informative inference of anomaly versus nominal, but it requires more effort to create struc-
tured models. The latter offers the benefit of requiring less knowledge of nominal samples while
possibly compromising accuracy of anomaly detection. The proposed taxonomy of settings is
depicted in Figure 9.2. Selected state‐of‐the‐art techniques are characterized on this plot in terms of
how much structure or supervision is assumed. Several of these techniques will be elaborated in
Section 9.3. In particular, one family of techniques based on sparse representations has shown recent
promise, and will be discussed in detail in Section 9.4. Note that the two stages of Figure 9.1 (i.e.,
event encoding and detection model) are often closely coupled, with the encoding lending itself to a
particular type of model, or vice versa.

9.2 Event Encoding

This stage extracts features from raw video that provide compact descriptive representations of
appearance and/or motion in the scene. Here, we will review two common types of event encoding
methods—trajectories and spatiotemporal descriptors—keeping in mind that the appropriate choice
depends on the specific application setting, performance requirements, and computational consid-
erations. Additional encoding methods that are intimately tied to anomaly detection models will be
mentioned in Section 9.3.

Anomaly
detector

Normal

Anomalous

Unstructured Supervised

Object/event
classes

predefined

No defined
object/event

classes

Labeled
anomalous

samples
available

No labeled
anomalous

samples
available

Normal event
characterization

Anamalous event
characterization

Structured

Event
encoding

Trajectory

Spatiotemporal
volume

Motion labels

Shape activity
model

Unsupervised

Raw input
data

Figure 9.1 Flow diagram of video anomaly detection.

Video Anomaly Detection 229

9.2.1 Trajectory Descriptors

A common event encoding for characterizing moving vehicles and pedestrians is the trajectory gen-
erated by a tracking algorithm. Fortunately, this problem is very well studied, and many state‐of‐the‐
art tracking techniques can be readily leveraged such as background subtraction, mean shift tracking,
Kalman filtering, Kanade–Lucas–Tomasi tracking, and particle Filtering. An excellent survey of
object tracking can be found in Yilmaz et al. [12]. In its simplest form, a trajectory is defined as a vec-
tor [xi, yi] of spatial coordinates of a path traveled by the object. Additional motion‐related variables
such as velocity and acceleration, as well as appearance‐related variables such as size, moments,
shape, and color at each location along the path, can also be incorporated into a trajectory vector.

Object tracking finds application in many problems across transportation imaging. (e.g., tracking
is described in Chapter 5 in the context of traffic violation detection.) We now present in detail an
exemplary tracking approach used in Mo et al. [11] that is particularly well suited for rigid objects
with certain constraints on size and shape, such as vehicles. A flow diagram is shown in Figure 9.3.

First background subtraction is accomplished via the use of a Gaussian mixture model (GMM) as
described in Stauffer and Grimson [13] and also in the Chapter 6 on traffic flow. Specifically, denote
the sequence of pixel values from the last t frames as X Xt0 1, , , where Xi

N , and commonly N = 1
or 3 for grayscale or color video input, respectively. This sequence is modeled as a mixture of K
Gaussian distributions, and the probability of observing a current pixel value Xt is given by

P X w Xt

k

K

k t t k t k t
1

, , ,* , ,£ , (9.1)

where wk,t is the weight or relative importance of the kth Gaussian distribution with mean μk,t and
covariance Σk,t. For simplicity, we assume for the case of color video that the R, G, and B channels are

Sparsity model with low-rank
prior

Mo et al. [4]
Event clustering
Xiang and Gong [3]

Contextual models
Saligrama et al. [1]

Single-class SVM
Piciarelli et al. [2]

Sparsity model
Mo et al. [11]

Bayesian/HMM methods
Vaswani et al. [8]

Pruteanu-Malinici and
Carin [9]

Han et al. [10]

Supervised classification
Li et al. [5]

Zhao et al. [6]
Simon et al. [7]

Structured
model

Anomalous events
Supervised training

Unstructured
model

Unsupervised training

Normal events

Figure 9.2 Taxonomy of anomaly detection scenarios.

Computer Vision and Imaging in Intelligent Transportation Systems230

independent with equal variance so that k t k t I, ,
2 . When a new pixel Xt arrives, it is checked

against the existing K distributions. A match is found if the pixel is within 2.5 standard deviations of
a distribution. The matching Gaussian mode (denoted by index m) is then updated as follows:

m t m t t

m t m t t m t
T

t m t

X

X X
, ,

, , , ,

1

1
1

2
1

2 . (9.2)

Here, ()Xt m m, , and α is the learning rate. If none of the distributions match, the least prob-
able distribution is replaced with a distribution with mean Xt, a high initial variance, and low prior
weight. Additionally, prior weights for the remaining distributions are updated as follows:

 w w Mk t k t k t, , ,1 1 . (9.3)

Here, Mk,t is 1 only for the matching distribution and 0 otherwise.
Next, the Gaussian modes are sorted by the quantity w/σ. The larger the value of this ratio, the

more stable the mode, and thus indicative of background pixels. The top B modes are marked as
background modes, where B is given by

B w Tb

k

b

kargmin .
1

 (9.4)

Pixels that belong to the remaining modes are denoted as foreground. Standard connected‐
component analysis can be used to create foreground “blobs” representing objects of interest. The
centroid of each blob denotes its location and the temporal sequence of centroids forms
the trajectory. In Mo et al. [11], only those blobs whose sizes exceed a predefined threshold are
retrained for trajectory extraction. The size threshold is chosen to track vehicles and pedestrians
and eliminates other noisy moving entities in the scene.

Two issues now remain. First trajectory locations are likely to be noisy; hence, some form of
smoothing is desired. Second, many anomaly detection models necessitate that all object trajectories
are of the same length. To solve both issues, a functional approximation such as a spline curve can
be used to represent trajectories. Specifically, in Mo et al. [11] a B‐spline function with 50 knots
(i.e., 50 x‐ and y‐coordinates) is fit to the raw trajectory data.

Update GMM
Sort Gaussian
modes by w/s

Mark modes with B
highest (w/s) as

background

Xt belongs to
foreground?

Model pixel [Xt–Xt–1]
as K-class GMM

Connected-component
analysis

Blob size
sufficiently

large?

Spline smoothing
of blob centroids

Extract blob
metrics

Y

Y

Input video pixel Xt

Centroid [Xt,Yt]

Size, shape,
color, and so on.

Figure 9.3 Object trajectory generation for anomaly detection.

Video Anomaly Detection 231

The final outcome is a fixed‐length vector of [xi, yi] marking the path of an object of interest. As
stated earlier, other parameters such as object size, shape, color, moments, and texture can also be
computed from the blobs and tracked at each index i along the trajectory. For anomaly detection, it
is logical to track those quantities which are likely to provide strong indicators of anomalous events.

9.2.2 Spatiotemporal Descriptors

Trajectories track a given spatial point or appearance attribute over time, and thus pay separate
attention to the spatial and temporal dimensions. In contrast, spatiotemporal descriptors encode
video information simultaneously in space and time. Many techniques view a video signal as a three‐
dimensional (3D) function of two spatial and one temporal dimension, and extend 2D interest points
and feature descriptors used for analyzing still images to the 3D video counterpart. For example,
Laptev [14] extends Harris interest points for still images to spatiotemporal interest points for video.
Other techniques include analyzing the determinant of the Hessian matrix [15] and spatiotemporal
extensions of image descriptors, such as 3D‐SIFT [16], HOG3D [17], extended SURF [15],
 spatiotemporal Gabor and Gaussian filtering [18], local trinary patterns [19], and combination of
histogram of oriented gradient (HoG) and histogram of optical flow (HoF) [6].

We describe in detail two flavors of spatiotemporal descriptors: one based on HoG/HoF features
[6] and the other based on STV [7]. In the method presented by Zhao et al. [6], interest points are first
identified within the video. These points may be dense (e.g., a regular 3D lattice) or sparse (e.g., points
exhibiting only a certain type of spatiotemporal behavior). The approach by Zhao et al. [6] employs
the interest point detector proposed by Dollar et al. [18], which applies to each pixel a series of tuned
Gaussian and Gabor filter cascades in the spatial and temporal dimensions, respectively, and returns
only those points with significant filter response. Next, a spatiotemporal cuboid is extracted around
each given interest point. The dimensions of the cuboid may be fixed or adapted to the scale of the
detected interest point. The simplest feature descriptor is a flattened list of pixel values within the
cuboid. However, more sophistication can be brought to bear to offer the desired tradeoff between
compactness, discriminability, and robustness to variations in appearance and motion induced by
camera jitter, lighting effects, and so on. Popular approaches include normalization, local gradients,
and histogramming. The method in Zhao et al. [6] applies all of these principles. First, HoG is per-
formed [20] to capture spatial appearance information. The cuboid is divided into (nx, ny, nt) cells, and
a histogram of gradient orientations is accumulated within the cell. Specifically, gradient magnitude
and angle are computed at each pixel; the angle is used as bin index into the histogram, and the vote
in that bin is incremented with a weighting proportional to gradient magnitude. Local photometric
normalization is applied in order to make the HoG descriptor more resilient to lighting and shadow
effects. (See Dalal and Triggs [20] for details.) Cell histograms are then concatenated to form a com-
posite HoG vector for the cuboid. In a similar fashion, HoF descriptors are computed with motion
vectors in the x and y directions replacing the spatial gradients computed for HoG. Optical flow can
be computed using any standard method such as the Lucas–Kanade algorithm [21]. HoG and HoF
vectors are concatenated to form the final descriptor Xi for the ith spatiotemporal cuboid. Finally, a
given video clip is encoded as a set of spatiotemporal descriptors (X1, …, XN) and forms the input for
subsequent anomaly detection modeling.

Simon et al. [7] proposes a different type of spatiotemporal descriptor based on STV. First, back-
ground subtraction is performed, as described earlier in this section. This produces for each video
frame a binary mask separating foreground from background regions. An STV is defined as a collec-
tion of all foreground pixels that are contiguously connected in space and time. At a particular time
instance t, define a window of size ()2 1k , ranging from t k to t k . Let (xi, yi) and (wi, hi), respec-
tively, denote the centroid and bounding box dimensions of the STV slice at time i, where tk i t k .

Computer Vision and Imaging in Intelligent Transportation Systems232

Three groups of features are computed from these quantities. The first set of features describes the
average location and dimensions of the STV as follows:

f
k

x

f
k

y

f
k

w

f

x
i t k

t k

i

y
i t k

t k

i

w
i t k

t k

i

1
2 1

1
2 1

1
2 1

hh
i t k

t k

i

a w h

k
h

f f f

1
2 1

. (9.5)

The second set of features describes temporally localized motion within the STV via changes in
 centroid location and slice dimensions across adjacent slices as follows:

f
k

x x y y

f x x
i t k

t k

i i i i

t k

speed

velocity

1
2 1 1

2
1

2

tt k t k t k

i t k

t k
i i i i

i

k
y y

k

f
k

w h w h
w

2 1 2 1
1

2 1
1 1

area
11 1

1

1

1
2 1

1
2 1

h

f
k

h h
h

f
k

i

i t k

t k
i i

i

i t k

t

height

width

kk
i i

i

w w
w

1

1

. (9.6)

The third and final set of features describes pair‐wise interactions between the mth and nth STV as
follows:

f
k

x x y y m n

f f f

D
i t k

t k

i
m

i
n

i
m

i
n

m

1
2 1

2 2

DS speed speeed

DV velocity velocity

n

m n

R
t k
n

t k
n

t k
n

m n

f f f m n

f
x x y, yy x x y y

x x y y

t k
n

t k
m

t k
m

t k
m

t k
m

t k
n

t k
n

t k
n

t k
n

,

, x x y yt k
m

t k
m

t k
m

t k
m,

. (9.7)

Here, the last feature fR is the ratio between the norm of sums and sum of norms of the velocity vec-
tors of the mth and nth STVs, and tends to 0 and 1 when the two STVs are moving, respectively, in
the opposite or same direction.

The choice of trajectory versus spatiotemporal descriptor depends on the application scenario.
The first approach relies upon robust trackers, and is best suited for tracking objects with constrained

Video Anomaly Detection 233

or well‐defined paths such as vehicles and a small number of pedestrians at a traffic intersection,
captured from a stationary camera. The second approach is more general in its joint treatment of
spatial and temporal dimensions and may be applicable in scenarios involving complex and unstruc-
tured motion such as at a crowded intersection or parking lot.

Recently, dense trajectories have been proposed for video action recognition [22] and can be
thought of as a means to combine the benefits of both trajectory and spatiotemporal approaches.
Here, scene motion is described in terms of a dense set of trajectories computed from a dense opti-
cal flow algorithm. Descriptors including HOGs, HOF, and motion boundary histograms (MBHs)
are computed within small STVs in steps centered along a given trajectory, and together encode
local appearance and motion information along that trajectory. MBH is particularly effective for
canceling out camera motion. Finally, the standard bag‐of‐visual‐words (BOV) approach is used to
create an aggregated feature representation for a given video clip. This approach performs well,
particularly when there is significant camera motion, and object motion is dense and unstructured
(as in crowded scenes).

9.3 Anomaly Detection Models

In this section, we discuss three basic flavors of anomaly detection models. The first one (classifica-
tion methods) is a supervised form of anomaly detection, wherein labeled anomalous samples are
available during training. The remaining two approaches handle the unsupervised case where no
labeled anomalous samples are available. In this scenario, the problem is one of estimating the prob-
ability of a test event and deeming the event to be anomalous if the probability is below a threshold.
Alternatively, the problem can be posed as computing the distance between the test event and classes
or clusters of normal events according to a chosen feature space and distance metric, and casting
distant outliers as anomalies.

9.3.1 Classification Methods

In the structured scenario where both normal and anomalous events are precategorized, anomaly
detection boils down to a classification problem. If the final class is an anomalous one, the event is
labeled as an anomaly. We thus have at our disposal a rich suite of classification techniques that can
be brought to bear. In the work by Simon et al. [7], for example, spatiotemporal features described in
Section 9.2.2 are extracted as the event encoding, and decision trees are trained to categorize input
events as normal or anomalous classes. Decision trees are employed in two stages. First, STV fea-
tures are clustered in an unsupervised fashion into local patterns using binary trees. At each node of
the tree, a binary test on a given STV feature such as size or velocity is used to split the STVs repre-
sented by that node into two child nodes. When the tree is completely constructed, the leaves repre-
sent local clusters of spatiotemporal patterns T1, …, TN. For example, one leaf node may represent
small sedans moving within a certain velocity range in the lower left region of the field of view. In the
second stage, temporal and causal relationships between these patterns are derived using a second
binary decision tree. Again, nodes represent binary tests to assert whether one pattern occurs before,
after, or simultaneously with another pattern. The leaves denote global events comprising certain
sequences of local patterns, and are each associated with a class label during training. Simon et al. [7]
demonstrate their technique on the CAVIAR dataset in order to identify group interactions such as
fighting, meeting, and pocket‐picking. Some of these events are prelabeled as anomalies due to a low
probability of occurrence. Note that many combinations of event encodings and classification

Computer Vision and Imaging in Intelligent Transportation Systems234

 techniques are conceivable, and are generally selected based on the constraints and performance
requirements for a given application.

9.3.2 Hidden Markov Models

The approach described before are either frame based, or treat an entire video sequence as a spati-
otemporal block and perform anomaly detection holistically on the entire block. Another class of
techniques treats the video as a temporally evolving signal, and thus applies sequence modeling tech-
niques to characterize video events. One popular choice is the hidden Markov model (HMM). Briefly,
an HMM is a special form of a Bayesian network, and is characterized by a sequence of observed
event encodings O1, …, OT that are governed probabilistically by a set of latent state variables s1, …, sT
each taking on one of N possible states. A schematic is shown in Figure 9.4.

Fundamentally, an HMM assumes that observation Ot is governed only by hidden state st, and that
states satisfy the Markov property, so that given the value of state st 1 , the value of the current state
st is conditionally independent of all states prior to t 1 . HMM model parameters are given by
(π, A, B). π is the N‐dimensional probability vector for the initial state s1; A is the N N matrix of
state transition probabilities; and B is the N T matrix of state output probabilities. That is, bsi,Oj is
the probability of observing output Oj given state si. As is commonly done, we assume the case of a
homogeneous HMM where A is time invariant. During inference either the likelihood, p st tO | or
the posterior distribution p st t|O may be estimated with an iterative multipass approach [23].
Probability distributions for π and B usually take on a parametric form, such as a GMM, to enable
tractable computation.

Note that any of the previously described event encodings can be used as observation vectors Ot
for the HMM. In the work of Pruteanu‐Malinici and Carin [9], the following three sets of linear
transformations on the input video are compared as feature descriptors: shift‐invariant wavelet
transform (SIWT), independent component analysis (ICA), and independent subspace analysis
(ISA). An infinite‐state HMM is trained for anomaly detection, and conditional observation proba-
bilities B are defined by GMMs. An event is determined to be an anomaly when its likelihood for the
corresponding hidden state is below a threshold. Good results are shown on events around a traffic
intersection involving pedestrians, bikes, and different types of vehicles. Among feature descriptors,
ISA performs the best.

9.3.3 Contextual Methods

A third class of techniques models events in terms of the context and behavior of objects in the scene.
Adopting the definition in Saligrama et al. [1], context in a video refers to the spatiotemporal coordi-
nates (i.e., location and time) of an object passing through the camera’s field of view. Behavioral
attributes include the size, speed, direction, and color of the object passing by a specific location at a
specific time instance. Note the stark contrast between the trajectory descriptor that follows the path

π s1

O1

s2

O2

sT

OT

bs1,01

as1,s2

bs2,02

as2,s3

bsT,OT

Figure 9.4 Hidden Markov model
characterized by initial state probability π,
state transition matrix A, and state output
matrix B.

Video Anomaly Detection 235

of a single object over space and time, and the contextual/behavioral description that observes the
movement of all objects through a single space–time instance.

We now present briefly the contextual model proposed by Saligrama et al. [1]. First, a binary
motion label is computed at each pixel with the two states corresponding to “static” or “moving.”
Such labeling can be accomplished with known techniques such as background subtraction
described earlier. At a fixed 2D pixel location x, label Lt(x) denotes a temporal binary sequence,
with alternative busy (moving) and idle (static) period. Additional features such as size, shape,
color, and speed of an object passing through pixel x during a busy period are collected into a
feature vector Ft(x). Saligrama et al. [1] show that the busy and idle periods are respectively inde-
pendent random variables, and that the features Ft(x) across different busy periods are also inde-
pendent. This forms the basis for a statistical model, namely a Markov chain with two states
corresponding to “busy” and “idle,” a 2 2 state transition matrix for the chain, and a probability
distribution for features Ft(x) conditioned upon the underlying state. An exemplary choice for
the feature distribution is a Gibbs–Markov model. The overall statistical model assumes both
independence among the busy and idle periods of Lt(x) and conditional independence of feature
vectors Ft(x) when conditioned on the state. The latter statement intuitively makes sense, since
the size of one vehicle passing through x is independent of the sizes of preceding or subsequent
vehicles.

Based on the aforementioned premise, Saligrama et al. [1] propose an event encoding and proba-
bilistic model for that encoding as follows. Define a time window W t w t[,]1 , and define an
event encoding that combines the motion labels and appearance features within this window:
l x x F x F xW t w t t w tL L{ , , , , , }() () () ()1 1 . For convenience, x is herein omitted from the following
formulation but implicitly assumed. The aforementioned Markov chain and Gibbs–Markov assump-
tions define a probability distribution g(lW) for the event encoding. Saligrama et al. [1] assert that the
log likelihood of events is given by

x l l

x x x

W W

k t W

t

k k W

g

L A A V A

log

1
1 2 3 ,

 (9.8)

where A1, A2, and A3 are constants; Vk is the potential function from the Gibbs–Markov model
for feature vector Ft(x); and κW(x) is a term that is proportional to the total number of busy–idle
transitions within time window W at location x. While the derivation of Equation 9.8 is outside
the scope of this chapter (see Saligrama et al. [1] for details), we note that likelihood Λ is a func-
tion of both space and time, and thus provides the ability to generate spatiotemporally localized
maps of nominal events from training videos. Specifically in Saligrama et al. [1], the maximum
value of Λx over a time window at each pixel location forms a background behavior image Bmax(x)
representing nominal (background) events during that time period. Test events are processed
through Equation 9.8 and compared against Bmax(x) in a form of “background behavior subtrac-
tion” to determine if an anomaly is present at a given location and time window. A visualization
of the model applied on urban transportation video is reproduced from Saligrama et al. [1] in
Figure 9.5.

Note again that this contextual model is operable in the unsupervised setting in that there is no
explicit characterization or labeling required of anomalies. It also supports the unstructured scenario
in the sense that there is no need to generate distinct categories of anomalous events; rather, it is suf-
ficient to collectively characterize all nominal events by a tractable statistical model.

Computer Vision and Imaging in Intelligent Transportation Systems236

9.4 Sparse Representation Methods for Robust Video
Anomaly Detection

This section describes in detail a fourth flavor of anomaly detection models that can be termed
“analysis by synthesis.” Essentially, the idea is to reconstruct a test event in terms of known normal
events, and quantitatively assess some aspect of the reconstruction to determine if the event is
 normal or anomalous. Specifically, we investigate sparse reconstruction methods as a recent novel
and promising idea in the field of video anomaly detection, and associate anomaly detection with a
carefully derived measure of sparsity. To place this class of approaches in context of our anomaly
detection framework of Figure 9.2, sparsity‐based methods can support both structured and unstruc-
tured scenarios, as well as both supervised and unsupervised settings. The various flavors will be
explained later in this section.

In a typical approach [5], trajectories of objects corresponding to normal events are extracted
from video by traditional object tracking algorithms. Each trajectory is then represented as a
 feature vector by a polynomial spline curves approximation representation [5] and collected into a
dictionary of normal events. The fundamental underlying assumption of these methods is that any

(a) (b)

(c) (d)

Figure 9.5 Contextual anomaly detection model: (a) input video captured at busy traffic scene, (b) motion label Lt,
(c) background behavior image Bmax(x), and (d) anomaly detected via behavior subtraction. Source: Saligrama et al.
[1]. Reproduced with permission of IEEE.

Video Anomaly Detection 237

new normal trajectory can approximately be modeled as a (sparse) linear combination of training
trajectories (or equivalent features). Conversely, adequate reconstruction of anomalous events will
require a dense (i.e., nonsparse) combination of normal events. The advocacy of sparsity over other
competing anomaly detection methods, as surveyed in Section 9.2, is based on two arguments: (i)
recent work in face recognition [24] has shown that sparsity‐based classification can be powerful
even as feature descriptions are missing, for example, occlusion of objects leading to missing
 trajectory information; (ii) the sparse coefficients can additionally withstand noise and quality
 distortions to the video. We next discuss sparsity‐based video anomaly detection methods in both
structured and unstructured scenarios.

9.4.1 Structured Anomaly Detection

Let each trajectory representation lie in n, and let T denote the number of training samples (i.e.,
example trajectory representations) from each of K different classes, that is, behavior patterns in a
video which may be normal or anomalous. The T training samples from the ith class are arranged as
the columns of a matrix Ai

n T . The dictionary A n KT of training samples from all classes is
formed as follows: A A A A[]1 2 K .

Given a sufficient number of training samples from the mth trajectory class, a test trajectory y n
from the same class is conjectured to approximately lie in the linear span of those training samples.
Any trajectory feature vector is synthesized by a linear combination of the set of all training trajec-
tory samples as follows:

y A A A A1 2

1

2
K

K

. (9.9)

Here, each i
T . Typically for an example trajectory y, only one of the αi’s will be active (corre-

sponding to the class/event from which y is generated). Thus, the coefficient vector KT is sparse
and can be recovered by solving the following equation:

˘ argmin . 1 2subjectto y A s (9.10)

Here, the objective is to minimize the number of nonzero elements in α. It is well known from the
compressed sensing literature that minimizing the l0 norm leads to an NP‐hard problem [25]. Thus,
the l1 norm is used as an effective substitute. The residual error between the test trajectory and each
class behavior pattern is computed to find the class to which the test trajectory belongs.

 2 1,2, ,ˆ .i i ir i Ky y A (9.11)

Figure 9.6 shows an example of classification using sparsity model. The training dictionary consists
of two classes, and each class contains four different trajectories. The test trajectory can be well rep-
resented by the linear combination of trajectory no. 1 and trajectory no. 3 from class 1 (see Figure 9.6).
This is in fact tantamount to saying that the coefficient vector α is indeed sparse—in this example,
two of eight entries being active.

Extensions: Several extensions of the aforementioned sparsity model have been developed. To
overcome the limitations of linear models, kernel sparse representations have been proposed by

Computer Vision and Imaging in Intelligent Transportation Systems238

Mo et al. [11]. Note also that in Equation 9.9, fixed dictionaries comprising training trajectories per
class are used. There are two practical issues with this approach as follows: (i) raw dictionaries of
training samples are uneconomical and often large dictionaries are required for adequately good
performance; (ii) as new data/training is accumulated, it is desirable to adapt the dictionaries.
Computationally efficient learning of dictionaries for practical video anomaly detection has been
pursued in Zhao et al. [6] and Mo and Monga [26].

9.4.1.1 A Joint Sparsity Model for Anomaly Detection
Various anomaly detection algorithms have been designed for video surveillance. However, only few
of them have considered the interaction between multiple objects [8, 10, 27]. While it is true that
anomalies are generated by atypical trajectory/behavior of a single object, “collective anomalies” that
are caused by the joint observation of objects are also significant. For example, in the area of trans-
portation, some events, for example, accidents and dangerous driver–pedestrian behavior, are indeed
based on joint and not just individual object behavior. It is possible in fact that the individual events
corresponding to each object’s behavior are not necessarily anomalies by themselves. Take the exam-
ple of a vehicle accidentally changing lanes due to an inattentive driver. Another vehicle in close
proximity may have to also suddenly change lanes in order to avoid colliding with the first vehicle.
Both lane changes, as isolated events are not necessarily anomalous, but when viewed in conjunction
should logically be flagged as a joint anomaly.

Previous methods have employed probabilistic models to learn the relationship between different
individual events. Han et al. [10] and Vaswani et al. [8] use an HMM‐based method to track multiple
trajectories followed by defining a set of rules to distinguish between normal and anomalous events.
Wang et al. [27] present an unsupervised framework using hierarchical Bayesian models to model
individual events and interactions between them.

The sparsity‐based approach reviewed thus far does not capture interactions to detect two or more
object anomalies. We describe next a new “joint sparsity model” developed recently by Mo et al. [11]

y

Test trajectory

0.7 0 0.3 0

0000

Training class 2

Training class 1

A *≈ α

Figure 9.6 An example illustration of sparsity‐based trajectory classification.

Video Anomaly Detection 239

for video anomaly detection which incorporates multiple object trajectories and their interactions.
Hence, even if individually the trajectories may be considered normal, “collective anomalies” could
occur and can be successfully detected in this framework.

In detail, we are interested in detection of anomalies involving P 1 objects. Their corresponding
P trajectories can be represented as a matrix: Y y y y[]1 2 P

n P , where yi corresponds to ith
trajectory. The training dictionary can be defined as A A A A[]1 2 P

n PKT , where each
 dictionary A A A Ai i i i K

n KT i P[] , , , ,, , ,1 2 1 2 , is formed by the concatenation of the
 subdictionaries from all classes belonging to the ith trajectory. The crucial aspect of this formulation
is that the training trajectories for any class j, that is, Ai j i P, , , , ,1 2 are observed “jointly” from
example videos. This generalizes the setup of Li et al. [5] and Zhao et al. [6].

The P test trajectories can now be represented as a linear combination of training samples as
follows:

Y AS A A A A A A1 1 1 2 1 1 2 1, , , , , ,K P P P K P . (9.12)

Here, the coefficient vectors αi lie in PKT and S []1 i P .
It is important to note that the ith object trajectory of any observed set of test trajectories should

only lie in the span of training trajectories corresponding to the ith object. Therefore, the columns of
S should have the following structure:

1

1 1

1 2

1

1

2

,

,

,

,

,

,

,

K
i

i

i

i K0
0

0

0

,
,

,

,

P
P

P

P K

0
0

1

2

. (9.13)

Here, each of the subvectors { } , , , ,,i j j
K i P1 1 2 lies in T, while 0 denotes a vector of all zeros in

KT. As a result, S exhibits a block‐diagonal structure.
From Li et al. [5], we know that for a single object, its trajectory can be represented by a sparse

linear combination of all the training samples. For the multiple trajectories scenario, we assume that
training samples with nonzero weights (in the sparse linear combination) exhibit one–one corre-
spondence across different trajectories. In other words, if the ith trajectory training sample from the
jth class is chosen for the ith test trajectory, then it is necessarily that other P 1 trajectories choose
from jth class with very high probability, albeit with possibly different weights.

We take a simple scenario which only has two objects and two training classes (normal and anoma-
lous class) as an example to explain the structure of Equation 9.12. In this situation, P 2, K 2,
Equation 9.12 becomes

Y AS A A A A

0
0

0
0

1 1 1 2 2 1 2 2

1 1

1 2

2 1

2 2

, , , ,

,

,

,

,

. (9.14)

Computer Vision and Imaging in Intelligent Transportation Systems240

The test trajectory sample is thought of as a collective event. Therefore, all trajectories of the
 sample should be classified into one class. If the first trajectory is classified into jth class, the second
trajectory should also be classified into jth class, which means α1,j and α2,j should be activated simul-
taneously. This characteristic that some coefficients should be activated jointly captures the interac-
tion between objects.

Further, define a new matrix S′ as follows:

S

1 1 2 1

1 2 2 2

, ,

, ,
. (9.15)

In S′, “joint coefficients” are moved into the same row. The joint information can be captured by
enforcing selected rows of S′ to be activated simultaneously.

In general, when there are K classes and P objects, the structure of S′ is

S

1 1 1 1

1 2 2 2

1

, , ,

, , ,

, , ,

i P

i P

K i K P K

KT P . (9.16)

The question that remains to be addressed is the particular way of transforming S. Such a transfor-
mation is realized by defining matrices H PKT P and J KT PKT :

H

1 0 0
0 1 0

0 0 1

J I I I

, KT KT KT . (9.17)

The vectors 1 and 0 are in KT and contain all 1s and 0s respectively, and IKT is the KT‐dimensional
identity matrix.

H S

0 0
0

0
0 0

�
�

�
�

1 1

1 2 1

2 1

1 2

,

, ,

, ,

, ,

,

i

i P

K P

i K

PP K,

, (9.18)

then we have

 J H S S , (9.19)

where the

 indicates matrix Hadamard (entry‐wise) product.
Therefore, we can now solve for the sparse coefficients via the following optimization problem:

minimize
subjectto .

row

F

� � �
� �

J H S
Y AS

,0
 (9.20)

Video Anomaly Detection 241

Here, row,0 refers to the number of nonzero rows in the matrix and the cost function minimization
seeks the J H S() with the minimum number of nonzero rows, while the constraint ensures good
approximation (F denotes the Frobenius norm).

The well‐known row sparsity problem

minimize
subject to ,

row

S
Y AS

,0

F
 (9.21)

is nonconvex but can be solved using greedy pursuit algorithms widely used in the literature. SOMP
[28]—enumerated in Algorithm 9.1—is among the most popular algorithms used. In SOMP, the sup-
port of the solution is sequentially updated (i.e., the atoms in the dictionary A are sequentially
selected). At each iteration, the atom that simultaneously yields the best approximation to all of the
residual vectors is selected.

k

i
k
T

iargmax R a1 2 . (9.22)

The joint sparsity model for representing multiple‐object trajectories involves solving Equation
9.20, which looks quite similar to Equation 9.21, but the Hadamard operator from S to S′ makes the
problem much more involved. We can observe from Algorithm 9.1 that the original SOMP algorithm
effectively gives k0 distinct atoms from a dictionary A that best approximates the data matrix Y for k0
iterations; we apply the general formulation even when the Hadamard operator is present. At every
iteration k, SOMP measures the residual for each atom in A and creates an orthogonal projection
with the highest correlation.

Algorithm 9.1

Simultaneous Orthogonal Matching Pursuit (SOMP)

Input: Dictionary A a a a[]1 2 PKT , data matrix Y y y y[]1 2 P , a stopping criterion {Make sure
all columns in A and Y have unit norm}
Initialization: residual R Y0 , index set Λ0: empty set, iteration counter k 1

1: while stopping criterion has not been met
1. Find the index of the atom that best approximates all residuals: k i k

T
iargmax R a1 2

2. Update the index set k k k1 { }
3. Compute G A A A Yk

T T
k k k

() 1 , A
k

T consists of the k atoms in A indexed in Λk
4. Determine the residual R Y A Gk

T
kk

5. k k 1
2: end while

Output: Index set k 1, the sparse representation S whose nonzero rows indexed by Λ are k rows
of the matrix ()A A A YT T1

Computer Vision and Imaging in Intelligent Transportation Systems242

This idea can also be extended to solve the problem in Equation 9.20. If the atom of jth trajectory
that we selected comes from ith training, the other P 1 atoms of trajectories should also be chosen
from ith training. Then, Equation 9.22 in SOMP can be modified as follows:

k

i j
j k
T

j iargmax , , R a1 2 . (9.23)

Here, R j k
T

, 1 refers to the residual of jth trajectory in iteration k 1 , and aj,i represents the ith train-
ing of jth trajectory. After employing this special rule of choice for atom selection, each row of
parameter matrix S′ will be activated simultaneously or inactivated simultaneously; thus, the row
sparsity requirements will inherently hold. The implementation details of this algorithm can be
found in a technical report [29].

Auxiliary Optimization Problem: The problem in Equation 9.20 is nonconvex, and the solution
obtained using any known optimization solvers is suboptimal. To improve the solution, Mo et al.
[11] propose an auxiliary optimization problem which is in fact convex, with guarantee of global
minima. From the optimization problem (Equation 9.20), we can first get a suboptimal result: Ŝ. A
membership matrix E PKT P is defined which has zeros at locations of nonzero entries in Ŝ and
ones elsewhere. With this enforcement of locations of nonzero entries, the following optimization
 problem results:

minimize

subject to
.

F Y AS

s ei
T

i i P0 1 2, , , ,
 (9.24)

Here, si and ei refer to the ith column of S and E, respectively. The initial choice of S is the Ŝ described
previously.

This problem can be further simplified to mitigate computational complexity. Each column of S
can be optimized in parallel, since the constraints are separable. So we have

minimize

subject to .

 y As

s e
i i

i
T

i

2

0
 (9.25)

9.4.1.2 Supervised Anomaly Detection as Event Classification
Having obtained the sparse coefficient matrix S, we compute class‐specific residual errors and
 identify the class of the test event Y as that which gives the minimum residual,

identity ,FY Y A Sargmin

i
i (9.26)

where δi(S) is the matrix whose only nonzero entries are the same as those in S associated with class
i (in all P trajectories). When sufficient representation (example training trajectories) for anomalous
events is available, then anomalous classes are simply one or more of the K classes in this joint sparsity
based classification framework.

9.4.1.3 Unsupervised Anomaly Detection via Outlier Rejection
If training for anomalies is missing/statistically insignificant, we cannot use Equation 9.26 to identify
anomalies. Inspired by the outlier rejection measure in Wright et al. [24],

Video Anomaly Detection 243

SCI

SCI ,

K
K

i imax /

:

 1 1

1

1
1

y outlier
 (9.27)

and ρi(α) is the new vector whose only nonzero entries are the entries in α that are associated with
class i. We model anomalies as outliers, given training from expected normal event classes that form
the dictionary A. Equation 9.27 can be used to detect single object anomalies. This may be extended
to the multiple‐object case as follows:

JSCI .

row row
S

S SK

K
i imax /, , 0 0 1

1
 (9.28)

Here, JSCI is the joint SCI. If JSCI()S 2, a multiple‐object anomaly is identified.
Figure 9.7 shows an example of anomalous event versus normal event. The left figure shows the

sparse coefficients of an anomalous event. The activated coefficients are scattered all over the nor-
mal classes; therefore, the corresponding event cannot be classified into either class. In this case, it
can be regard as an outlier (anomalous event). The JSCI value in Equation 9.28 will be small. On the
other hand, the activated coefficients in the right figure are gathered in normal class 2. Note further
that 0 1JSCI()S , if JSCI(S′) is close to 0, the event is normal, and if JSCI(S′) is close to 1, the event
is anomalous. A nominal choice of 2 0 5. can be made, but this can further be optimized experi-
mentally based on the underlying video dataset by observing the range of the measure JSCI(S′) for
normal events.

9.4.2 Unstructured Video Anomaly Detection

The setup in Equation 9.9 and the subsequent joint sparsity model (JSM) assumes that training is
available from both normal and anomalous events, and hence anomaly detection reduces to a clas-
sification problem. In the absence of training from anomalous events (the more practical scenario),
outlier rejection measures as in Equations 9.27 and 9.28 may be used to detect anomalies. Both cases
assume a structured sparsity model (SSP), and thus a careful preparation of the dictionary A is
needed often with training examples that are manually labeled to belong to particular event classes.

Object 1 Object 2

Anomalous event with
small JSCI value

Normal event with
large JSCI value

S′

Object 3

Class 1

Class 2

Class 3

Object 1 Object 2

S′

Object 3

Figure 9.7 An example illustration of anomalous
event versus normal event.

Computer Vision and Imaging in Intelligent Transportation Systems244

Such elaborate preparation of the dictionary is sometimes unrealistic and invariably burdensome
requiring a preanalysis of video footage prior to anomaly detection. Figure 9.8a (the video is available
at http://youtu.be/M6_PJigg5CY) shows an example video frame of a structured scenario (detection
of stop sign violations) where preparation of a dictionary clearly separated into class‐specific
 subdictionaries is possible. In many other settings, however, multiple objects and features are
 simultaneously extracted and a clear separation into normal event classes is difficult. An example of
a video frame from such a scenario is shown in Figure 9.8b (the video is available at http://youtu.be/
jEzLkWF65Io).

We therefore seek a more general and practical sparsity prior which can deal with unstructured
scenarios wherein we do not have a well‐classified training dictionary. Note that coefficient matrices
S and S′ in JSM usually contain a small number of active rows per class; hence in those cases, the
sparse coefficient matrix is also of low rank. Inspired by this observation and known connections
between low‐rank and sparse matrices [30], Mo et al. [4] propose using a low‐rank sparsity prior
(LRSP). In addition, if rank is substituted by its convex nuclear norm alternative, then significant
computational benefits can be obtained over existing methods in sparsity‐based video anomaly
detection. We next describe the LRSP model in detail.

LRSP for Anomaly Detection: In this framework, there is no need to group training trajectories
into different normal event classes. All observed training trajectories corresponding to normal events
are collected together as a big dictionary: A N T . We also collect M test trajectories extracted
from the video into a matrix Y y{ } , , ,i

N M i MR 1 .
Under a linear model Y AS, and given sufficient training, the coefficient matrix S T M is

expected to be sparse. Making a departure from the typical row,0 norm, we propose to use a low‐
rank structure to measure the sparsity of S. Then, we propose to replace Equation 9.10 by

minimize rank
subject to ,F

S
Y AS

 (9.29)

(a) (b)

Figure 9.8 (a) Structured scenario and (b) unstructured scenario.

Video Anomaly Detection 245

A convex relaxation of Equation 9.29 can be obtained via substituting rank (X) by X X* ()ii
(where * denotes nuclear norm and σi(X) is the ith singular value of X) [31]. This results in a convex
optimization problem,

minimize
subject to .F

S
Y AS

*
 (9.30)

While low‐rank and sparse matrix structures often simultaneously exist (as is expected here as well),
in general the two are not the same, and low rank does not imply sparsity. To encourage sparse matri-
ces which are simultaneously low rank, we further add a l1 regularization term to the cost function
and convexity still holds,

minimize
subject to .F

S S
Y AS

* 1
 (9.31)

Anomaly Detection: Once we get the optimal coefficient matrix Ŝ, the recovered trajectory can be
computed using columns of 1{ ,...,ˆ ˆ ˆ }MS s s .

 ˆ .ˆ i iy As (9.32)

Here, those test trajectories which are very similar to the recovered trajectories can be regarded as
normal trajectories.

2

2
is

ˆ
.i i

i
i

y y y normal
y

 (9.33)

Computational Complexity: The problem in Equation 9.31 can in fact be cast as a semidefinite
program (SDP) [32]. This SDP can then be solved using a “custom” interior point method [33, 34] and
has an average complexity of O(N2TM) where N, T, M are as stated before.

On the other hand, Equation 9.10 (minimizing the l0 norm) is well known to be an NP‐hard prob-
lem. Thus, the l1 norm is often used as an effective approximation to l0. Several fast l1‐minimization
algorithms have been published [35]. The homotopy method is among the most popular algorithms
and has a computational complexity at the jth iteration as O jN jNT()2 [36]. Let J denote the num-
ber of iterations, the total complexity becomes O j N jNT O J N J NTj

J () ()2
1

2 2 2 . Here,
J depends on the number of nonzero elements in α, so O J O N() (). Therefore, the computational
complexity of evaluating one test trajectory (event representation) using Equation 9.10 is O N N T()4 3 .
Since there are M trajectories, the total computational complexity is O N M N TM()4 3 .

9.4.3 Experimental Setup and Results

In all subsequent experiments, object trajectories are used to represent events. The background
subtraction model described in Section 9.2 is used to extract trajectories as collections of coordi-
nate pairs [x(t), y(t)]. We approximate a raw trajectory using a basic B‐spline function [37] with 50
knots (50 x‐ and y‐coordinates), and these knots are finally used to form the trajectory feature
vector.

Computer Vision and Imaging in Intelligent Transportation Systems246

9.4.3.1 Anomaly Detection in Structured Scenarios
For single‐object anomalies, we test on CAVIAR data set [38] in Figure 9.9a and the Xerox Stop Sign
video database—represented in Figure 9.9b. For multiple‐object anomalies, we test on AVSS data set
[39] —see Figure 9.10a, the Xerox Stop Sign data set—multi‐object example in Figure 9.10b, and
Xerox Intersection data set—see Figure 9.10c. We also compare our experimental results against
three well‐recognized techniques in trajectory‐based anomalous event detection: (i) the recent spar-
sity‐based technique of Li et al. [5], (ii) the approach of Piciarelli et al. [2] using one‐class SVMs, (iii)
the sparsity model with online dictionary learning of Zhao et al. [6], and (iv) the multiple‐object
tracking and rule‐based anomaly detection technique of Han et al. [10].

9.4.3.2 Detection Rates for Single‐Object Anomaly Detection
For the CAVIAR data set, we test on 27 video clips from which 170 trajectories are extracted. Our
training dictionary consists of 10 normal trajectory classes and 3 anomalous trajectory classes; each
class contains 10 different training trajectories. A total of 21 normal trajectories and 19 anomalous
trajectories are used as independent test data.1 Because training for anomalous events is well repre-
sented in this database, Equation 9.11 is used to classify the test trajectories as normal or anomalous.
We note the benefits of sparsity‐based anomaly detection in the form of improved detection rates of
Li et al. and Zhao et al. over Piciarelli’s approach. Second, Zhao et al. perform better than Li et al.
because dictionaries are adapted in Zhao et al. [6] (Table 9.1).

For the Xerox Stop Sign data set, 118 trajectories from 39 video clips are extracted. The training
dictionary comprises nine normal trajectory classes (containing eight trajectories each) and one
anomalous trajectory class (containing four trajectories). Again, we have training for anomalies. So
we use Equation 9.11 to classify a given test trajectory. An independent set of 34 normal trajectories
and 8 anomalous trajectories are used to test our approach. Table 9.2 shows the confusion matrices
of four approaches. Again, the benefits of classification using sparsity model versus SVM‐based
 classifier are readily apparent.

9.4.3.3 Detection Rates for Multiple‐Object Anomaly Detection
For multiple‐ (here two) object anomaly detection, we will compare against Han et al. [10],2 Piciarelli
et al. [2], and Zhao et al. [6]. Since the one‐class SVM method in Piciarelli et al. and the approach of
Zhao et al. are really proposed for single‐object anomaly detection, we build two intuitively motivated
extensions to evaluate its performance in the multiple‐ (here two) object setting:

1) If either of the trajectories corresponding to the two objects is an anomaly, the joint event is called
anomalous. We denote these methods as Piciarelli et al._1 and Zhao et al._1, respectively.

2) If each of the two trajectories corresponding to the two objects is individually found to be anoma-
lous, only then the joint event is anomalous. We denote these methods as Piciarelli et al._2 and
Zhao et al._2, respectively.

To ensure the application of Picarelli et al. and Zhao et al., we separate every two‐object event into
two individual events with known individual class labels (normal or anomalous) so that we can obtain
results for the aforementioned extensions, that is, Piciarelli et al._1, Piciarelli et al._2, Zhao et al._1,
and Zhao et al._2.

1 All training and test trajectories both normal and anomalous are manually hand labeled. The training and test sets are
complete nonoverlapping.
2 The predefined anomaly detection rules in Han et al. are based on underlying scenario.

(a)

(b)

(a1) (a2) (a3) (a4)

(b1) (b2) (b3) (b4)

Figure 9.9 Example frames of single‐object anomalies: (a) a man suddenly falls on floor—from the CAVIAR data set and (b) a driver backs his car in
front of stop sign—from the Xerox Stop Sign data set.

(a)

(b)

(c)

(a1) (a2) (a3) (a4)

(b1) (b2) (b3) (b4)

(c1) (c2) (c3) (c4)

Figure 9.10 Example frames of multiple‐object anomalies: (a) a vehicle almost hits a pedestrian—from the AVSS data set, (b) a car violates the stop
sign rule—from the Xerox Stop Sign data set, and (c) a car fails to yield to oncoming car while turning left—from the Xerox Intersection data set.

Video Anomaly Detection 249

For the Xerox Stop Sign data set, we identify four different two‐object normal event classes. Each
class contains 15 training trajectory pairs. This database inherently contains three multiple‐object
anomalies, one of which is illustrated in Figure 9.10b with the actual video at http://youtu.be/tPR‐
LI3NmiMhttp://youtu.be/tPR‐LI3NmiM. Using the outlier rejection in Equation 9.28, all three
 multiple‐object anomalies are successfully detected by our proposed JSM. The detection rates of all
methods are shown in Table 9.3.

For the AVSS data set, three different two‐object normal event classes (containing 24 training
 trajectory pairs each) are chosen. The database was experimentally found to contain two different
anomalies—corresponding videos can be seen at http://youtu.be/mU5R056zInc and http://youtu.be/
jEzLkWF65Io. Our outlier rejection measure in Equation 9.28 was again successfully able to detect
both these anomalies. Table 9.4 shows the detection rates of six methods.

In Xerox Intersection data, there are 91 trajectory pairs extracted from 13 video clips. We manually
build our training dictionary into six different two‐object normal event classes (containing six trajec-
tory pairs each) and six different anomalous classes (containing four trajectory pairs each). A total of
17 normal trajectory pairs and 14 anomalous trajectory pairs are used for testing. The confusion matri-
ces of our method against the three competing trajectory‐based techniques are shown in Table 9.5.

It can be easily seen from Table 9.5 that the proposed JSM method leads to the best detection rates.
The improvement over the techniques of Piciarelli et al. [2] and Zhao et al. [6] is expected since these

Table 9.3 Confusion matrices of proposed and state‐of‐the‐art trajectory‐based methods on the Xerox Stop Sign
data set—multiple‐object anomaly detection.

Piciarelli et al._1 and Piciarelli et al._2 Zhao et al._1 and Zhao et al._2 Han et al. [10] JSM

Detection rates 3/3, 1/3 2/3, 2/3 2/3 3/3

Table 9.1 Confusion matrices of proposed and state‐of‐the ‐art trajectory‐based methods on CAVIAR data
set—single‐object anomaly detection.

Piciarelli et al. [2] Li et al. [5] Zhao et al. [6]

Normal (%) Anomaly (%) Normal (%) Anomaly (%) Normal (%) Anomaly (%)

Normal 85.7 26.3 90.5 15.8 95.2 15.8
Anomaly 14.3 73.7 9.5 84.2 4.8 84.2

Table 9.2 Confusion matrices of proposed and state‐of‐the‐art trajectory‐based methods on the Xerox Stop Sign
data set—single‐object anomaly detection.

Piciarelli et al. [2] Li et al. [5] Zhao et al. [6]

Normal (%) Anomaly (%) Normal (%) Anomaly (%) Normal (%) Anomaly (%)

Normal 85.3 37.5 91.2 25.0 94.1 25.0
Anomaly 14.7 62.5 8.8 75.0 5.9 75.0

Computer Vision and Imaging in Intelligent Transportation Systems250

techniques is really for single‐object anomaly detection, and the extensions Piciarelli et al._1, Piciarelli
et al._2, Zhao et al._1, and Zhao et al._2 will either strongly compromise detection or lead to high
false alarm. In Han et al. [10], anomalies are detected using context‐based rules on the result of
 multiple‐object tracking. This puts an unreasonable burden on defining these rules and is often
restrictive in practice, that is, not all anomalies can be anticipated. In the proposed joint sparsity
model, interactions between distinct object trajectories are better captured and departures from
expected “joint behavior” (particularly in the case training for anomalies is absent/limited) is
employed which enables the improvement in detection rates.

9.4.3.4 Anomaly Detection in Unstructured Scenarios
For anomaly detection in unstructured scenarios, we work with the Public Dataset of Traffic Video
(PDTV) [40] video data set. Figure 9.11a and b shows an example anomaly in the PDTV data, where
a car fails to yield to an oncoming vehicle while turning left.

Comparison against State‐of‐the‐Art Trajectory‐Based Video Anomaly Detection: The afore-
mentioned method for anomaly detection in unstructured scenarios will henceforth be referred to as
LRSP. A comparison of LRSP is reported next against a widely cited method by Piciarelli et al. [2]
which is based on trajectory extraction and one‐class SVMs. For the experiment involving the PDTV
data set, a training dictionary consisting of 319 normal event trajectories is obtained (no training
corresponding to anomalous events was used). A total of 117 normal trajectories and 24 anomalous
trajectories are used as independent test data. The confusion matrices of LRSP are compared with
Piciarelli et al. [2] in Table 9.6. The benefits of LRSP are readily apparent.

Table 9.4 Detection rates of proposed and state‐of‐the‐art trajectory‐based methods on AVSS data set—multiple‐
object anomaly detection.

Piciarelli et al._1 and Piciarelli et al._2 Zhao et al._1 and Zhao et al._2 Han et al. [10] JSM

Detection rates 2/2, 0/2 2/2, 1/2 2/2 2/2

Table 9.5 Confusion matrices of proposed and state‐of‐the‐art trajectory‐based methods on the Xerox Intersection
data set—multiple‐object anomaly detection.

Normal (%) Anomaly (%) Normal (%) Anomaly (%)

Piciarelli et al._1 Piciarelli et al._2
Normal 58.8 7.1 94.1 64.3
Anomaly 41.2 92.9 5.9 35.7

Zhao et al._1 Zhao et al._2
Normal 64.7 14.3 94.1 57.1
Anomaly 35.3 85.7 5.9 42.9

Han et al. [10] JSM
Normal 82.4 35.7 88.2 14.3
Anomaly 17.6 64.3 11.8 85.7

Video Anomaly Detection 251

(a)

(c)

(e)

(b)

(d)

(f)

Figure 9.11 (a and b) Example anomaly in PDTV data, (c and d) example anomaly in Xerox Stop Sign data set, and
(e and f) example frames that show object occlusion.

Computer Vision and Imaging in Intelligent Transportation Systems252

For the Xerox Stop Sign data set, the training dictionary comprises 72 normal trajectories. This
experiment was conducted to specifically compare the performance of the two methods when object
occlusion is involved, that is, occluded trajectories are used as our test data. Figure 9.11e and f shows
an example where a car is occluded by another car (the video is available at http://youtu.
be/4Azh2yZjA4o). An independent set of 13 normal but occluded trajectories and 6 anomalous but
occluded trajectories are used to test the automated anomaly detection approaches. The confusion
matrices of both methods—LRSP and the method in Picarelli et al. are reported in Table 9.7. In this
case, LRSP is vastly better. This can be reasoned as follows: The optimization problem in Equation
9.31 is well conditioned. A set of occluded trajectories Yo can be thought of as a perturbation on
nonoccluded trajectories Y; if Y Yo 2 is small enough, then by perturbation theory the solution Ŝ
under occlusion should only change slightly. This robustness of LRSP is a major practical benefit in
real‐world surveillance videos for example where noise and occlusion are typical.

Performance Variation with Regular Parameter λ: In our optimization problem in Equation 9.31,
there is parameter λ which controls the relative importance of * and 1 terms. In Figure 9.12, we
plot the detection rate curves against the value of λ for PDTV data. Figure 9.12 reveals that

0 25 0 75. ., leads to good performance. Both excessively low and high values of λ lead to a loss in
performance. In particular, when λ is large, the cost function reduces largely to the 1 matrix norm
and the performance drop is very significant. This emphasizes the value of the low‐rank term which
allows greater generality over row sparsity and can capture sparse matrix structures arising in real‐
world scenarios. Note the results of LRSP in Tables 9.6, 9.7, and 9.8 are reported using the “best” λ.

Computational Benefits and Trade‐Off: We now compare LRSP against SSPs3 of Li et al. [5], Mo
et al. [11], and Zhao et al. [6]. Since SSP can only detect video anomaly in structured scenarios, the
Xerox Stop Sign data set is used to test both LRSP and SSP.

3 Although methods in Li et al. [5], Zhao et al. [6], and Mo et al. [11] use varying event representations, their underlying
sparsity model is the same. We use the abbreviation “ESP” to represent these three techniques.

Table 9.6 Confusion matrices of PDTV data set.

LRSP Piciarelli et al. [2]

Normal (%) Anomaly (%) Normal (%) Anomaly (%)

Normal 78.6 37.5 70.9 41.7
Anomaly 21.4 62.5 29.1 58.3

Table 9.7 Confusion matrices of Stop Sign occluded data set.

LRSP Piciarelli et al. [2]

Normal (%) Anomaly (%) Normal (%) Anomaly (%)

Normal 76.9 33.3 61.5 50.0
Anomaly 23.1 66.7 38.5 50.0

Video Anomaly Detection 253

For the Xerox Stop Sign data set, the training dictionary contains nine normal event classes (con-
taining eight trajectories each) and one anomalous trajectory class (containing four trajectories). An
independent set of 34 normal trajectories and eight anomalous trajectories are used to test our
approach. Table 9.8 shows the execution times of LRSP and SSP. We can see that the proposed LRSP
method runs much faster than the SSP with a small loss in detection rates. This is expected because
ESP has the benefit of prelabeled event classes. In the structured scenarios, the performance of SSP
in fact serves as the practical upper bound for LRSP.

9.5 Conclusion and Future Research

The problem of anomaly detection is encountered in a broad array of applications wherein it is
important to detect unusual patterns in data generated or acquired by machines. In this chapter, we
have attempted to provide a comprehensive overview of techniques focusing on video captured in
transportation settings. Various models are presented that place different requirements on the avail-
ability of labeled and structured data, so that the reader may select the appropriate methodology for
a given application setting. In particular, a family of sparsity models are elaborated upon as a recent
promising approach to the problem.

1

0.9

0.8

0.7

0.6

0.5

0.4
0 0.5 1 1.5 2

D
et

ec
tio

n
ra

te
s

Value of λ

Normal events
Anomalous events

Figure 9.12 Detection rates curves with respect to
the value of λ.

Table 9.8 Confusion matrices and execution times of Xerox Stop Sign data set.

Run time LRSP SSP

37 s 159 s

Normal (%) Anomaly (%) Normal (%) Anomaly (%)

Normal 88.2 25.0 91.2 25.0
Anomaly 11.8 75.0 8.8 75.0

Computer Vision and Imaging in Intelligent Transportation Systems254

In general, supervised and structured techniques are likely to yield high anomaly detection perfor-
mance; however, the requirement for data annotation may not always be practical. On the other
hand, unsupervised and unstructured techniques attempt to tackle a more challenging problem, but
would be practically more viable. We believe there is a lot of scope for further investigation in this
second setting. While the detection results presented in Section 9.3 are promising, there is still sig-
nificant room for improvement, especially for data captured in real‐world scenarios with complex
human and traffic behavior in the presence of many noise sources. A related direction warranting
investigation is the ability to incrementally and automatically update an anomaly detection model
trained for one time instance and geographic location to make accurate inferences in a different
time/space instance where there may be a paucity of labeled data, at least initially. Recent progress in
domain adaptation and online learning within the field of computer vision could be promisingly
leveraged to address these challenges.

Most current methods define anomalies in a purely statistical sense. To the human, an anomaly can
also bear semantic interpretation. In the Boston marathon bombings of 2013, a very specific type of
human behavior and movement warranted special attention, driven purely by the semantic context
of the attack. A systematic means to unify semantic rules with statistical models for anomaly detec-
tion would be an interesting and fruitful step forward.

Finally, many sophisticated anomaly detection models available today are computationally too
 prohibitive for real‐time inference in practical scenarios. On the one hand, one can argue that
Moore’s law comes to the aid to accelerate hardware performance. However on the flip side, there
is a trend to move more of the computing to the edge of a network, so that an increasing fraction
of video processing and analysis takes place within the capture device in order to save network
bandwidth. Furthermore, the capture devices themselves are becoming more portable and minia-
turized. (For instance, at public events, a large fraction of video footage is captured by smart-
phone cameras.) There is thus an ongoing need to develop computationally tractable inference
algorithms.

 References

1 Saligrama V, Konrad J and Jodoin P 2010 Video anomaly identification. IEEE Signal Processing
Magazine 27(5), 18–33.

2 Piciarelli C, Micheloni C and Foresti G 2008 Trajectory‐based anomalous event detection. IEEE
Transactions on Circuits and Systems for Video Technology 18(11), 1544–1554.

3 Xiang T and Gong S 2008 Video behavior profiling for anomaly detection. IEEE Transactions on
Pattern Analysis and Machine Intelligence 30(5), 893–908.

4 Mo X, Monga V, Bala R and Fan Z 2014 Low rank sparsity prior for robust video anomaly detection. In
IEEE International Conference on Acoustics Speech and Signal Processing, May 2014, Florence.

5 Li C, Han Z, Ye Q and Jiao J 2011 Abnormal behavior detection via sparse reconstruction analysis of
trajectory. In Proceedings of the IEEE Conference on Image and Graphics, Hefei, Anhui, China, August
12–15, 2011, pp. 807–810.

6 Zhao B, Fei‐Fei L and Xing E 2011 Online detection of unusual events in videos via dynamic sparse
coding. In Proceedings of the IEEE Conference on Computer Vision Pattern Recognition, Colorado
Springs, June 20–25, 2011, pp. 3313–3320.

7 Simon C, Meessen J and De Vleeschouwer C 2010 Visual event recognition using decision trees.
Multimedia Tools and Applications 50(1), 95–121.

Video Anomaly Detection 255

8 Vaswani N, Roy‐Chowdhury A and Chellappa R 2005 Shape activity: a continuous‐state hmm for
moving/deforming shapes with application to abnormal activity detection. IEEE Transactions on
Image Processing 14(10), 1603–1616.

9 Pruteanu‐Malinici I and Carin L 2008 Infinite hidden Markov models for unusual‐event detection in
video. IEEE Transactions on Image Processing 17(5), 811–822.

10 Han M, Xu W, Tao H and Gong Y 2004 An algorithm for multiple object trajectory tracking. In
Proceedings of the IEEE Conference on Computer Vision Pattern Recognition, Washington, DC, June
29–July 1, 2004, 1, 864–871.

11 Mo X, Monga V, Bala R and Fan Z 2014 Adaptive sparse representations for video anomaly detection.
IEEE Transactions on Circuits and Systems for Video Technology 24(4), 631–645.

12 Yilmaz A, Javed O and Shah M 2006 Object tracking: a survey. ACM Computing Surveys 38(4), 1–45.
13 Stauffer C and Grimson W 2000 Learning patterns of activity using real‐time tracking. IEEE

Transactions on Pattern Analysis and Machine Intelligence 22(8), 747–757.
14 Laptev I 2005 On space–time interest points. International Journal of Computer Vision 64(2–3),

107–123.
15 Williams G, Tuytelaars T and Gool L 2008 An efficient dense and scale invariant spatio‐temporal

interest point detector. In Proceedings of the IEEE European Conference on Computer Vision,
Marseille France, October 12–18, 2008, pp. 650–663.

16 Scovanner P, Ali S and Shah M 2007 A 3‐dimensional sift descriptor and its application to action
recognition. In MM ’07 Proceedings of the 15th ACM International Conference on Multimedia,
Augsburg, Germany, September 24–29, pp. 357–360.

17 Klasser A, Marszalek M and Schmid C 2008 A spatio‐temporal descriptor based on 3D‐gradients. In
BMVC 2008—19th British Machine Vision Conference, September 2008, pp. 275:1–10, British
Machine Vision Association, Leeds.

18 Dollar P, Rabaud V, Cottrell G and Belongie S 2005 Behavior recognition via sparse spatiotemporal
features. In Proceedings of the 2nd Joint IEEE International Workshop on Visual Surveillance and
Performance Evaluation of Tracking and Surveillance (VS‐PETS), October 15–16, 2005, pp. 65–72,
IEEE, Department of Computer Science and Engineering, University of California, San Diego, La
Jolla, CA.

19 Yeffet L and Wolf L 2009 Local trinary patterns for human action recognition. In Proceedings of the
IEEE Conference on Computer Vision, Kyoto, Japan, September 29–October 2, 2009, pp. 492–497.

20 Dalal N and Triggs B 2005 Histogram of oriented gradients for human detection. In Proceedings of
the IEEE Conference on Computer Vision Pattern Recognition, San Diego, June 20–26, 2005, 1,
886–893.

21 Lucas B and Kanade T 1981 An iterative image registration technique with an application to stereo
vision. In Proceedings of the 7th International Joint Conference on Artificial Intelligence, 1981,
Vancouver, BC, August 24–28, 1981, pp. 674–679.

22 Wang H, Klaser A, Schmid C and Liu CL 2013 Dense trajectories and motion boundary descriptors
for action recognition. In Proceedings of the IEEE Conference on Computer Vision Pattern
Recognition, Portland, June 23–28, 2013, pp. 3551–3558.

23 Utasi A and Czuni L 2008 HMM‐based unusual motion detection without tracking. In Proceedings of
the IEEE Conference on Pattern Recognition, Tampa, FL, December 8–11, 2008, pp. 1–4.

24 Wright J, Yang A, Ganesh A, Sastry S and Ma Y 2009 Robust face recognition via sparse
representation. IEEE Transactions on Pattern Analysis and Machine Intelligence 31(2), 210–227.

25 Baraniuk R 2007 Compressive sensing [lecture notes]. IEEE Signal Processing Magazine 24(4),
118–121.

Computer Vision and Imaging in Intelligent Transportation Systems256

26 Mo X, Monga V, Bala R and Rodrguez‐Serrano JA 2013 Practical methods for sparsity based video
anomaly detection. In IEEE International Conference on Intelligent Transportation Systems, The
Hague, the Netherlands, October 6–9, 2013, pp. 955–960.

27 Wang X, Ma X and Grimson W 2009 Unsupervised activity perception in crowded and complicated
scenes using hierarchical Bayesian models. IEEE Transactions on Pattern Analysis and Machine
Intelligence 31(3), 539–555.

28 Tropp J and Gilbert A 2007 Signal recovery from random measurements via orthogonal matching
pursuit. IEEE Transactions on Information Theory 53(12), 4655–4666.

29 Srinivas U., Mousavi H., Monga V., Hattel A. and Jayarao B. 2014 SHIRC: simultaneous sparsity
model for histopathological image representation and classification. IEEE Transactions on Medical
Imaging 33(5), 1–17.

30 Zhang Z, Zha H and Simon H 2002 Low‐rank approximations with sparse factors I: basic algorithms
and error analysis. SIAM Journal on Matrix Analysis and Applications 23(3), 706–727.

31 Candès EJ, Li X, Ma Y and Wright J 2011 Robust principal component analysis? Journal of the ACM
58(3), 11:1–11:37.

32 Mo X, Monga V, Bala R and Fan Z 2014 Low Rank Sparsity Prior for Robust Video Anomaly
Detection. In Proceedings of the IEEE International Conference on Acoustics Speech and Signal
Processing, May 2014, Florence, Italy.

33 Chandrasekaran V, Sanghavi S, Parrilo P and Willsky A 2011 Rank‐sparsity incoherence for matrix
decomposition. SIAM Journal on Optimization 21(2), 572–596.

34 Liu Z and Vandenberghe L 2010 Interior‐point method for nuclear norm approximation with
application to system identification. SIAM Journal on Matrix Analysis and Applications 31(3),
1235–1256.

35 Yang A, Sastry S, Ganesh A and Ma Y 2010 Fast L1‐minimization algorithms and an application in
robust face recognition: a review. In Proceedings of the IEEE Conference on Image Processing, Hong
Kong, September 2010, pp. 1849–1852.

36 Malioutov D, Cetin M and Willsky A 2005 Homotopy continuation for sparse signal representation.
In Proceedings of the IEEE Conference on Acoustics, Speech, and Signal Processing, Philadelphia,
March 2005, 5, 733–736.

37 Knott G 2000 Interpolating Cubic Splines, Birkhäuser, Basel.
38 CAVIAR Datasets. Caviar: EC Funded CAVIAR project/IST 2001 37540. http://homepages.inf.ed.ac.

uk/rbf/CAVIAR/ (accessed October 17, 2016).
39 AVSS2007. AVSS: i‐Lids dataset for AVSS 2007. 2007. http://www.eecs.qmul.ac.uk/~andrea/

avss2007_d.html (accessed October 17, 2016).
40 Public Dataset of Traffic Video (PDTV). Public Dataset of Traffic Video (PDTV) n.d. http://www.tft.

lth.se/video/co_operation/data_exchange/

257

Part II

Imaging from and within the Vehicle

259

Computer Vision and Imaging in Intelligent Transportation Systems, First Edition.
Edited by Robert P. Loce, Raja Bala and Mohan Trivedi.
© 2017 John Wiley & Sons Ltd. Published 2017 by John Wiley & Sons Ltd.
Companion website: www.wiley.com/go/loce/ComputerVisionandImaginginITS

10.1 Introduction

Pedestrian detection is critical to intelligent transportation systems, ranging from autonomous
driving to infrastructure surveillance, traffic management, and transit safety and efficiency—even
law enforcement. Pedestrian detection involves many types of sensors, such as closed‐circuit tel-
evision (CCTV) cameras, thermal imaging devices, near‐infrared (NIR) imaging devices, and
onboard RGB cameras. There is also a broad spectrum of pedestrian detection algorithms based
on IR signatures, shape features, gradient features, machine learning, or motion features. There
have been comprehensive reviews of pedestrian detection algorithms, for example, [1]. In this
chapter, we intend not to duplicate prior reviews, but rather explore new avenues. We focus on
the relationship between the various algorithms, recent progress made in affordable NIR sensors,
and light detection and ranging (LiDAR), and camera fusion–based pedestrian detection
algorithms.

10.2 Overview of the Algorithms

For decades, security, robotics, and defense communities have developed a forest of pedestrian
detection algorithms. Each of them has its basic assumptions, effectiveness, and limitations. How
does one see the forest above the individual trees? We begin with imaging devices and their related
algorithms. Figure 10.1 shows a flowchart of the overall algorithm selection process. The first
question is “Is the camera a thermal camera?” If it is a thermal camera, then we may simply use the
intensity threshold of body temperature to detect humans. The second question is “Is it a depth
imaging sensor such as a LiDAR?” If it is, then we can extract the depth and three‐dimensional
(3D) features for pedestrian detection. If the sensor is a visible RGB or monochrome NIR camera,
then we ask the question “Does the camera move?” If the camera is stationary, then we can use a
background subtraction method to extract the pedestrian shape. Otherwise, we must use either
motion‐based models such as optical flow, or shape‐based methods such as histogram of oriented
gradient (HOG) or generalized Hough transform (GHT). One could also use learning‐based

10

Pedestrian Detection
Shashank Deshpande and Yang Cai

Carnegie Mellon University, Pittsburgh, PA, USA

Computer Vision and Imaging in Intelligent Transportation Systems260

methods such as Haar‐like wavelet features, or feature point‐based methods such as scale‐inde-
pendent feature transform (SIFT) or corners.

Autonomous driving pushes pedestrian detection algorithms to the limit because it requires
responses to be in real time. For a pedestrian detection algorithm to be useful for an autonomous car,
the system must be able to detect pedestrians as soon as one enters the field of view of the camera.
This requires the capacity to detect deformable and noisy pedestrian shapes at an individual frame
basis. Recently, LiDAR‐ and camera fusion‐based algorithms have been promising in completing
complex object classification tasks, which can also be applied to pedestrian detection. In light of this,
we present a sensor fusion algorithm in detail along with an example.

10.3 Thermal Imaging

A pedestrian on the road can be observed as a source of image signals for two different imaging
modalities: visible RGB camera (similarly, monochrome NIR) or thermal imaging camera. Pedestrian
detection using thermal imagery usually involves a preprocessing stage, including the following
 elements: morphological operations to clean up the human shape (e.g., filling in holes), figure back-
ground segmentation to extract the human shape, and aspect ratio filtering to distinguish a human
from another moving entity, such as a dog. After preprocessing, a feature descriptor is used. The
most popular feature descriptors are HOGs [3] and the discriminatively trained deformable part
model [4]. The final output stage involves a binary classifier: pedestrian or not. The support vector
machine (SVM) [5] or AdaBoost‐based classifiers [6] can be used here. Recently, various nighttime
pedestrian detection systems have combined both thermal imagery and visual imagery, showing
better detection rates [7, 8].

Thermal imaging–based systems are robust in detecting pedestrians at nighttime. However, they
are noisy during the daytime, especially in hot environments. In the automotive industry, companies
are beginning to equip vehicles with night vision systems for pedestrian detection. For example, the
Night View Assist PLUS system from Mercedes‐Benz can detect and recognize people and animal at
a range of up to 160 m ahead of the vehicle.

Thermal camera?

Yes
No

LiDAR?

Yes
No

Moving camera?

Yes No

Motion
Shape Feature

Background

Frame difference
Approximate median

Mixture of
gaussian

3D features

Depth
Shape

Threshold and
shape

Intensity (IR)Optical flow
HoG
Haar

SIFT
Corner

Figure 10.1 Overview of the pedestrian detection algorithms as described in Ref. [2].

Pedestrian Detection 261

10.4 Background Subtraction Methods

Given a set of video frames (assuming the camera is stationary), how do we extract the moving
 foreground and remove the static background? A binary blob is the simplest visual form of a shape
description. In fact, the blob is so important that intelligence analysts often refer to video analytics as
“blobology.” Here, we introduce the following three basic background subtraction methods: frame
subtraction, approximate median, and Gaussian mixture model (GMM).

To obtain binary blobs, we need to do some preprocessing. First, we reduce the resolution of
the frames to speed up computation time, since it can be a lengthy process and it is not necessary
to have high‐resolution images for this task. As a rule of thumb, reducing the resolution by a
factor of 5–10 is reasonable. Next, we convert the original image into a grayscale image if
acquired by an RGB camera (as opposed to NIR, which is inherently grayscale). We then use
an appropriate grayscale threshold to produce a binary image and fill in any interior holes left in
the shape.

10.4.1 Frame Subtraction

Frame subtraction is the simplest way to extract a moving object from the video. Assuming the
 camera is fixed, pi is the pixel value of the current frame and pi−1 is the pixel value of the previous
frame. If their pixel difference is larger than the threshold T, then the pixel is the moving foreground.
Otherwise, the pixel is the background.

| |p p Ti i 1

The results of a background subtraction are binary, creating a binary image, wherein foreground
figures are blobs as illustrated in Figure 10.2.

Input frame

Background model Foreground

(a) (c)

(b) (d)

Filtered foreground

Figure 10.2 Background subtraction: (a) original video, (b) background, (c) filtered foreground, and (d) foreground.
We can see that the extracted foreground figure has shadow attached because the shadow is also a moving object.

Computer Vision and Imaging in Intelligent Transportation Systems262

The pseudo code for frame subtraction is as follows:
read first_frame
prev_frame = first_frame
while (frames remaining)
current_frame = read next_frame
 for (each pixel Pi)
 delta = | current_frame – prev_frame |
 if(delta[Pi] > threshold)
 foreground_frame[Pi] = current_frame[Pi]
 elseif (delta[Pi] < threshold)
 foreground_frame[Pi] = 0
 end
 end
 prev_frame = current_frame
 filter foreground_frame
end

However, frame subtraction is sensitive to noise in the video, and is very sensitive to the threshold T.
In addition, it is sensitive to the speed of the foreground objects and the camera frame rate. If the
object was moving too fast or if the frame rate was too low, then results would be poor.

10.4.2 Approximate Median

The approximate median algorithm makes a more advanced assumption on the image background. Using
the approximate median algorithm, we assume the background is somewhat consistent over the short
term, but could still change over longer periods of time. This assumption helps prevent short‐term noise,
while still being able to accommodate a dynamic scene. This algorithm is called “approximate median”
because, rather than storing a large number of frames in memory, we simply add or subtract 1 when the
scene changes, which is much less computationally expensive, and produces similar results. Figure 10.3
shows an example of changes in pixel values occurring due to the passing man in a video sequence.

Figure 10.3 Pixels of a video sequence processed for background/foreground detection, capturing changes
occurring due to the passing man.

Pedestrian Detection 263

Note that long‐term changes, such as the changes in shadows over time, result in pixel value
changes that are below the threshold. These changes are integrated into the median background
value without ever entering the foreground scene.

The pseudo code for the approximate median algorithm is as follows:

read first frame
median_frame = first frame % Assume the first frame is the median
while (frames remaining)
 current_frame = read next_frame
 for (every pixel Pi)
 delta = | current_frame – median_frame|
 if (current_frame[Pi] > median_frame[Pi])
 median_frame[Pi] + 1
 else
 median_frame[Pi] – 1
 end
 if (delta > threshold)
 foreground_frame[Pi] = current_frame[Pi]
 else
 foreground_frame[Pi] = 0
 end
 end
end

10.4.3 Gaussian Mixture Model

The GMM can be expressed as follows:

F x w ei

x

i

k
()

()2

2

1

Here, u is the mean of the background pixels values in each Gaussian function, wi is the weight, and
σ is the standard deviation of each component (where higher weight and lower σ mean higher confi-
dence). There are typically three to five Gaussian components per pixel. Unfortunately, GMM needs
more frames for training, and it is more computationally expensive than the two aforementioned
methods. According to our test results, GMM does not generate better segmentation results than the
approximate median method. Therefore, GMM is not recommended as the first choice. Approximate
median often generates decent foreground segmentation for outdoor and indoor videos. It performs
better than the frame subtraction and GMM methods in many cases [3].

10.5 Polar Coordinate Profile

Contours are the edges along the exterior of an object that can be obtained from binary blobs.
Usually, blobs contain holes and noisy edges, and small spurious blobs may also be present in the
image. To remove holes in the blobs, we can use morphological closing, which is a morphological
dilation followed by an erosion. To remove small spurious blobs, we can use morphological
 opening, which is a morphological erosion followed by a dilation. Several rounds of opening and
closing with different structuring elements may be needed to obtain a clean blob. Note that these

Computer Vision and Imaging in Intelligent Transportation Systems264

morphological operations do change the blob shape slightly, especially the fine details of the
perimeter as illustrated in Figure 10.4.

The main advantage of the polar coordinate profile representation method is that it can transform
a 2D feature space to a 1D feature space, which simplifies many problems. However, it may create
other problems such as modifying the shape of the object slightly. Here, we apply it to represent
human forms as the contour of a blob. The polar coordinate profile is useful in video analytics for
multiple reasons: (i) scale invariance—size does not matter; (ii) rotation invariance—any rotated
 version of the contour should have no impact on the recognition; and (iii) shift invariance—the
 location of the shape within an image should not affect performance. The polar profile is also called
the centroid contour distance curve (CCDC).

How do we find the centroid? In many cases, we can draw a rectangular bounding box around the
shape and place the centroid at the center of the bounding box. If we have a prior knowledge of the
shape, then we may use that knowledge to locate the centroid. An example of this would be placing
the centroid near the navel of a human blob. Next, we can plot the polar coordinate profile. Each
point along the contour is defined by its distance from the centroid, r, and its angle around the
boundary from some arbitrary reference, θ. By default, we normally begin at 0° in the clockwise
direction. We may also normalize the boundary to [1,0] range for scale invariance. Human shapes
are very complex and diverse. Therefore, for some values of θ, there may exist a number of different
values of r. A single‐valued polar profile can be generated by choosing the minimum, maximum,
or average of the different values of r. Figure 10.5 shows a 2D shape and its polar coordinate profile
(r, θ) plot.

How can we match polar coordinate profiles extracted from a scene with those from a training set?
The matching process can be done by sliding the test profile along the candidate profiles and finding
a significant fit. Given a polar coordinate profile, we have at least three methods for matching it with
known profile templates: nearest neighbor, dynamic time warping (DTW), and Fourier descriptors
(FDs). Of the three methods mentioned here, nearest neighbor is the simplest. For θ from 0 to 360°,
we summarize the Euclidian distance between the template profile and the polar coordinate profile
in terms of r. The profile with the minimal distance is a match. DTW incorporates feature point
alignment during the matching process. DTW aligns peaks to peaks and valleys to valleys. As we
discussed in Chapter 6, DTW is computationally expensive. However, with some constraints, such
as search window, slope, ending point, and monotonicity, approximate solutions can be obtained
within a reasonable amount of time. FDs convert the 1D polar coordinate profile into a Fourier
series. We can use fast Fourier transform (FFT) to make the conversion. After the FFT, the contour

Dilation
erosion

Contour
extraction

Holes

Figure 10.4 An example of the morphological operations to fill the holes in the object for better contour extraction.

Pedestrian Detection 265

is represented by an infinite series of Fourier coefficients. What is the physical meaning of these
coefficients? The high‐frequency terms describe microscopic details in the profile, while the low‐
frequency terms describe the metaphor, or macroscopic shape of the profile without the details. In
light of this, we can use a low‐pass filter to remove the curvy details while keeping the high‐level
description of the profile. According to Zahn et al., the first 10 Fourier coefficients should be enough
to represent many 2D shapes for problems such as recognizing handwritten numbers.

10.6 Image‐Based Features

10.6.1 Histogram of Oriented Gradients

HOGs is a shape feature–based pedestrian detection algorithm that works on individual images.
Assuming that we divide an image into small grids and calculate the maximal gradient and its orien-
tation for each cell, we may find that the oriented gradients roughly follow the contour of a pedes-
trian. For example, if the area of a pedestrian is darker than the background, then the HOGs would
portray a rough contour of a human shape with their normal vectors pointed toward the outward
direction. Conversely, if the area of a pedestrian is lighter than the background, then the HOGs
would also constitute a human shape with their normal vectors pointed toward the inward direction.
This assumes that the intensity of a pedestrian shape and the background are relatively uniform,
which is often true in a transportation system environment, such as a highway, tunnel, street inter-
section, and so on. The HOG descriptor [3] was first introduced by Dalal and Triggs. A typical HOG
descriptor is as follows:

1) Divide m cell grids (8 × 8 pixels) in a detection window.
2) Compute gradients for each pixel.

I I
x

I
y

I I
x

I
y

I
x

T

2 2
1tan I

y

3) Create a weighted HOGs for each cell (e.g., use nine bins from 0 to 180°).

A

A

D
is

ta
nc

e
(r

)

B D

DE

E

B

0° 360° θ

C

C

F

F

Figure 10.5 A 2D shape and its polar coordinate profile (r,θ) plot. Here, min r values are chosen.

Computer Vision and Imaging in Intelligent Transportation Systems266

4) Normalize contrast, given a small constant ε, let v be the nonnormalized vector containing all
histograms in a given block.

v v vi i i/

2 2

5) Make a feature vector.

v v v1 2, ,

HOG is in fact a learning algorithm. In order to recognize a pedestrian, we must first train the
model with a classifier, for example, k‐nearest neighbor or SVM. We also need to crop pedestrian
images and nonpedestrian images to create a training sample set. We want the algorithm to learn
what kind of HOG feature vectors constitute a pedestrian shape and which ones do not. Once the
algorithm has been trained, it can be used to detect pedestrians by sliding the detection window from
the top left of the image to the bottom right corner row after row. If we do not know the dimension of
the pedestrians in the image, then HOG is typical run many times with different sizes of the detection
window, which results in slowing of the detection speed.

Besides scalability, HOG has other limitations and shortcomings. For example, HOG typically fails
when there are occlusions between pedestrians. When the shapes of pedestrians overlap each other, the
occluded shape may be dramatically different from the known templates of a pedestrian shape. Also, the
performance of HOG suffers when there are both illumination variation on the pedestrian and shadows
cast by the pedestrian. Other challenges faced by pedestrian detection algorithms include deformation of
human shapes (e.g., walking), unconstrained backgrounds, complex illumination patterns, and a variety of
clothing. The deformation problem can be solved by applying a deformable parts model (DPM). Occlusion
handling was a serious roadblock for pedestrian detection algorithms until the advent of deep feature
learning for occlusion handling [9]. We discuss these two major problems in sections 10.6.2 and 10.6.3.

10.6.2 Deformable Parts Model

Many variations and improvements over the original HOG descriptor for pedestrian detection
have been proposed. One key advancement is the discriminatively trained deformable part based
model (latent SVM). While there are various flavors, there are three core components comprising
a parts‐based model for pedestrian detection and object detection in general. The DPM technique
is known to be computationally expensive, and takes much more time compared to other global
feature representation‐based detection methods. Recent methods [10, 11] using DPM achieving
real‐time performance have been reported.

10.6.3 LiDAR and Camera Fusion–Based Detection

LiDAR or laser imaging is a critical device for autonomous or semiautomatic vehicles to detect pedestri-
ans on the road. Pedestrian detection by fusing LiDAR and camera data is perhaps one of the most heav-
ily explored multisensor fusion techniques in the past decade. The purpose of such a fusion is to exploit
the redundancy and complementary characteristics of the two sensors for improving the reliability and
accuracy of the detection system. The aim of research in this field has been to explore how much valu-
able information can be extracted from both LiDAR sensors and cameras for pedestrian detection and
the ways to combine the information that can lead to better classifier accuracy. Here, we outline the
approach for LiDAR and camera fusion for pedestrian detection, discuss the most recent state‐of‐the‐
art algorithms, and look at a simple implementation that demonstrates the strengths of such fusion.

The description of the outline (shown in the Figure 10.6) for the general flow followed by the algo-
rithms employed in pedestrian detection by fusing LiDAR and vision‐based features has been studied

LiDAR data
segmention, ROI,
threshold/ filtering

LiDAR features
E.g., LiDAR cluster size,
shape, orientation, and

correlation

Coordinate
transformation

Feature extraction module Fusion modulePre-processing module

Combined
feature vector

W

Preliminary
classification

Feature buffer
vector

Decision
making/

classification
model

Weighted fusion
schemes

depending on the
strength of each

classifier
Vision feature–based

classification

LiDAR feature–based
classification

Redundancy
removal

Final decision/
classification

Decision making/
classification

model

Score-based
probability

estimation for
ROI (acts as a
filtering stage)

Camera data
noise removal, ROI,

FOV definition

Vision features
E.g., HOG, Haar-like,
AdaBoost, and COV

Figure 10.6 Overview of the fusion‐based pedestrian‐based methods.

Computer Vision and Imaging in Intelligent Transportation Systems268

very closely in Ref. [12]. Fusing LiDAR and camera data not only helps in improving the classification
accuracy, but it can also be beneficial in extracting more information like distance of the pedestrian
from the vehicle, time to impact, approximating the intent of the pedestrian, and so on.

10.7 LiDAR Features

10.7.1 Preprocessing Module

For the scan of the scene delivered by the LiDAR sensor, we need to discuss several preprocessing
steps prior to discussing extraction of feature vectors and subsequent pedestrian detection/
classification. The general tasks performed in LiDAR preprocessing include data prefiltering,
 coordinate transformation, data point clustering, and region‐of‐interest (ROI) extraction. Before
the data prefiltering stage, LiDAR data points are synchronized with the camera input. This step is
a key to ensure consistency in LiDAR and camera inputs. The data prefiltering smoothes the noisy
LiDAR data points which can occur due to abnormal surfaces, error in data collection, and so on.
Once, the data prefiltering is performed, LiDAR data generally undergoes a polar‐to‐Cartesian
coordinate transformation for projection and efficient understanding of data point distribution.
Data point clustering with ROI extraction is a method for clustering data points corresponding to
each object and to likely pedestrians. Similarly, camera data preprocessing also involves noise
removal, image enhancement, definition of field of view (FoV) and ROI extraction corresponding
to likely pedestrians.

10.7.2 Feature Extraction Module

LiDAR‐based features can be extracted both in polar and Cartesian coordinate systems. Extensive
study of different LiDAR features that can be extracted and the implications of those features for
pedestrian or people detection can be found in Refs. [13] and [14]. LiDAR data strongly brings out
the height, width, and relative shape of an object. Thus, the typical extracted LiDAR features revolve
around the statistical characters of the distribution of LiDAR data points such as standard deviation,
circularity, and mean boundary length and width. Since LiDAR data accurately estimates the longi-
tudinal distance between the obstacle and the sensor, it has also been used for speed‐based features.
For example, obstacles moving at relatively high speeds can be filtered out as nonpedestrians.
Although, the features are relatively simple to extract and comprehend, their distribution corre-
sponding to pedestrian and nonpedestrian obstacles have a significant difference.

Vision‐based features are more inclined toward capturing predominant shape structures that can
differentiate pedestrians from other obstacles. Variations of HOG, deformable HOG, and Haar‐like
features have held the place of favorites in pedestrian detection for over a decade of study. Recent
surveys such as in Refs. [15–17] and [18] have enlisted and effectively compared the advantages of
different vision‐based features that are the most popular for pedestrian detection algorithms. Vision‐
based features are definitely powerful enough to detect and/or classify pedestrians, but the environ-
mental limitations such as illumination changes and weather have prevented vision‐based models
from achieving ideal pedestrian detection performance.

10.7.3 Fusion Module

This module deals with the problem of determining the best classifier model combination to ensure
a good exploitation scheme for the complimentary characteristics of LiDAR‐ and vision‐based

Pedestrian Detection 269

features. Extraction of meaningful and useful information from the fusion of heterogeneous data is
not straightforward. We describe three ways that fusion may be performed:

1) The features extracted both from vision and LiDAR data are combined together to form a single
feature vector per data instance. The process of combining the two vectors can itself have a smart
method such as a weighted combination. For example, if the environmental conditions favor
vision‐based features (clear sunny day, etc.), then we can assume a higher weight for vision fea-
tures. This combined feature vector undergoes a processing stage where redundant features are
removed. Dimensionality reduction techniques such as linear discriminant analysis (LDA) or
principal component analysis (PCA) are generally used to reduce complexity by feature analysis.
Classifiers like SVM, support vector regression (SVR), or GMM then map the N‐dimensional
feature vector in the feature space to predicted decisions.

2) First, the detection model is built using either vision‐ or LiDAR‐based features. The purpose of
this model is to act as a filtering stage which detects high probability windows that are more likely
ROI (containing pedestrians) segments. Thus, this high‐level filtering ensures that the more dom-
inant feature vector, either LiDAR‐ or vision‐based, has reduced false positives. For example, if
LiDAR features are extracted to identify median boundary length, then the classification model
can confuse a pole as a pedestrian. In this case, vision‐based features can effectively filter out
poles as non‐ROIs. A scheme such as this explicitly exploits the complimentary properties of
LiDAR and vision features.

3) LiDAR and vision features are used to separately construct two classification models. These clas-
sification models yield a probability of confidence of detection. A fusion strategy combines the
information provided by each classifier to provide a final decision. The fusion strategy also takes
into account the environmental conditions to weigh the likelihood of the probability that is output
by each classifier. Such a scheme treats both LiDAR‐ and vision‐based classification as two sepa-
rate segments until the point where their decision outputs are fused. This late‐fusion approach
enables tweaking feature extraction or classification stages in each segment without concern
about the impact on the other segment.

Few recent studies have explored pedestrian detection models solely based on LiDAR sensor data.
Zhao et al. [19] describe an efficient way for object modeling and feature extraction based on the
appearance of the LiDAR data stream. The strength of the method lies in the ability to differentiate a
single pedestrian from a group of pedestrians. The paper reports an accuracy of 93% for pedestrian
detection. Oliveira and Nunes [20] propose a featureless approach for detecting objects using LiDAR.
By treating partial segmentation, the method is able to efficiently deal with the problem of object
occlusion, which introduces a large error when dealing with LiDAR features. This approach intro-
duces a flexible pedestrian detector model which can prove to be a very useful technique in highly
dynamic environments. Whereas, Premebida et al. [13] describe the strengths of different LiDAR
features extracted by comparing the receiver operating characteristic (ROC) plots and calculating
their area under the curve (AUC). The paper also compares different classification methods and their
impacts. This work serves as an effective one stop site for understanding the classical LiDAR feature
extraction and classification based pedestrian detection model.

As described in Ref. [12], the integration of a LiDAR sensor and a camera, to exploit the redundant
and complementary properties of the two data types for improving the reliability and accuracy of
pedestrian detection algorithms, has gained the attention of researchers in the field of intelligent
vehicles (IVs), driver assistance systems, and mobile robotics in the past few years. Although the
multisensor fusion approach promises a better detection model, it is a challenging task. Identifying
the underlying symbiotic properties of LiDAR and camera data, and using an appropriate fusion

Computer Vision and Imaging in Intelligent Transportation Systems270

scheme to exploit the best of both techniques, gives rise to a large set of possible combinations.
Exploring these possibilities to develop the most useful application‐specific algorithm has been the
crux of the research for the past decade. Although a significant amount of effort and time has gone
into exploring the best possible fusion schemes, there are many topics in this field that are not fully
exploited. Recent approaches have started to examine fusing more sensors such as radar, inertial
measurement unit (IMU), and GPS in the detection model to study the impact on the accuracy and
robustness of the fusion scheme.

Table 10.1 surveys some interesting recent contributions to pedestrian detection using LiDAR and
visible‐spectrum camera fusion approach.

In Section 10.7.4, we describe a simple implementation of LiDAR and camera fusion for pedestrian
detection. The intent of this demonstration is to show the possibility of such a fusion scheme, discuss
the complementary properties of these sensors, and highlight their impact on the accuracy of pedes-
trian detection. We first discuss the dataset that we have used and the overview algorithm. For our
experiments, we have made use of laser and image pedestrian detection (LIPD) dataset in urban
environment, available online at http://home.isr.uc.pt/~cpremebida/dataset.

10.7.4 LIPD Dataset

The LIPD dataset was collected in the Coimbra University/ISR Campus zone. A Yamaha‐ISR electric
vehicle (ISRobotCar), equipped with a multilayer automotive laser scanner Alasca‐XT from Ibeo; a
TopCon HyperPro GPS device in RTK mode; one IMU Mti from Xsens; and a monocular Guppy
camera were used for the data collection. Table 10.2 lists the specification of LiDAR and camera sen-
sors used for data collection.

The details for system calibration and data collection setup are explained in great detail in Ref. [26].
The camera intrinsic parameters calculated using Ref. [27] have been listed in Table 10.3.

The collected LiDAR data needs to be transformed into Cartesian coordinates for projection onto
the image plane. The transformation matrix for perspective projection (calculation discussed in Ref.
[26]) is as follows:

Transformation matrix

0 999 0 014 0 009 11 92
0 014 0 999 0 026

. . . .

. . . 161 26
0 009 0 027 0 999 0 78

0 0 0 1

.
. . . .

The LIPD dataset contains classification and detection datasets. For the purpose of this implemen-
tation, we have used only the detection dataset. In total, 14,367 raw scans in the laser training subset
of the detection dataset were used to study the threshold for FOV and object labeling, and 19,604
training images from the image training subset were used for training HOG features.

10.7.5 Overview of the Algorithm

Figure 10.7 illustrates the flow of the algorithm. The LIPD dataset provides a timestamp for synchro-
nization of LiDAR and camera data. In the LiDAR module, the data point distribution is first used to
further define the FOV. This is done simply by defining a threshold for the permissible values. The
LiDAR data points in the FOV are segmented by a clustering method to extract the boundaries of
different obstacles. The segments are labeled as pedestrian‐like and nonpedestrian obstacles by
inspecting the shape of the LiDAR data point distribution in each obstacle segment. The segments

Ta
bl

e
10

.1
 F

us
io

n‐
ba

se
d

m
et

ho
d.

Re
fe

re
nc

e
Li

D
A

R
fe

at
ur

es
Vi

si
on

 fe
at

ur
es

Cl
as

si
fic

at
io

n
m

od
el

Co
m

m
en

ts

[2
1]

●

N
um

be
r o

f p
oi

nt
s

●

St
an

da
rd

 d
ev

ia
tio

n

●
M

ea
n

av
er

ag
e

de
vi

at
io

n

●
W

id
th

/h
ei

gh
t

●

Li
ne

ar
ity

●

C
irc

ul
ar

ity
 a

nd
 ra

di
us

●

Bo
un

da
ry

 le
ng

th

●
M

ea
n

cu
rv

at
ur

e

●
M

ea
n

an
gu

la
r d

iff
er

en
ce

●

Ku
rt

os
is

●

PC
A

‐b
as

ed
 sh

ap
e

fa
ct

or
s

●

N
‐b

in
ne

d
hi

st
og

ra
m

●

Bo
un

da
ry

 re
gu

la
rit

y

H
O

G
 fe

at
ur

es
C

‐S
V

M
 fo

r b
ot

h
lig

ht

de
te

ct
io

n
an

d
ra

ng
in

g
(L

iD
A

R)
 a

nd
 v

is
io

n
fe

at
ur

es
. C

on
di

tio
na

l
pr

ob
ab

ili
ty

 is
 d

ef
in

ed
 fo

r
fu

sin
g

th
e

de
te

ct
io

n
pr

ob
ab

ili
ty

 o
f e

ac
h

m
od

ul
e

fo
r f

in
al

 d
ec

is
io

n.

In
 th

e
pr

op
os

ed
 m

et
ho

d,
 th

e
ob

je
ct

’s
po

sit
io

n
is

 d
et

ec
te

d
by

 th
e

Li
D

A
R

(s
tr

uc
tu

re
 in

fo
rm

at
io

n)
, a

nd
 th

e
vi

sio
n‐

ba
se

d
sy

st
em

 (a
pp

ea
ra

nc
e

in
fo

rm
at

io
n)

 c
la

ss
ifi

es
 p

ed
es

tr
ia

ns
.

A
 B

ay
es

ia
n

m
od

el
in

g
ap

pr
oa

ch
 is

 u
se

d
fo

r d
ev

el
op

in
g

th
e

fu
sio

n
ru

le
. T

he
 re

su
lti

ng
 h

um
an

 d
et

ec
tio

n
co

ns
is

ts
 in

 ri
ch

in

fo
rm

at
io

n
th

at
 ta

ke
s i

nt
o

ac
co

un
t t

he
 d

is
ta

nc
e

of
 th

e
cl

us
te

r a
nd

 th
e

co
nf

id
en

ce
 le

ve
l o

f b
ot

h
de

te
ct

io
n

m
et

ho
ds

.

[2
2]

●

Li
D

A
R

da
ta

 p
oi

nt
 p

ro
je

ct
io

n–
ba

se
d

cl
us

te
rs

ar

e s
ub

je
ct

ed
 to

 th
re

sh
ol

di
ng

 to
 o

bt
ai

n
th

e R
O

I.

●
Sh

ap
e

of
 th

e
Li

D
A

R
pr

oj
ec

tio
n

cl
us

te
r.

●

Sp
ee

d
es

tim
at

ed
 b

y
th

e
m

ea
n

of
 th

e
K

al
m

an

fil
te

r w
ith

 a
 c

on
st

an
t v

el
oc

ity
 m

od
el

.

H
aa

r‐
lik

e
fe

at
ur

es
A

da
Bo

os
t c

la
ss

ifi
er

Th
e

Ba
ye

si
an

 fo
rm

al
is

m
 o

ffe
rs

 th
e

po
ss

ib
ili

ty
 to

 in
te

gr
at

e
co

rr
el

at
ed

 d
at

a
in

 th
e

fo
rm

al
is

m
 a

s s
oo

n
as

 th
e

co
nd

iti
on

al

lik
el

ih
oo

ds
 b

et
w

ee
n

a
cu

rr
en

t o
bs

er
va

tio
n

an
d

th
e

pr
ev

io
us

ar

e
m

od
el

ed
. T

hu
s,

th
e

m
od

el
 is

 m
or

e
ro

bu
st

. T
he

 e
st

im
at

ed

sp
ee

d
an

d
th

e
vi

sio
n

sc
or

e–
ba

se
d

lik
el

ih
oo

d
ar

e
fu

se
d

in
 a

Ba

ye
si

an
 m

od
el

 u
sin

g
au

to
re

gr
es

siv
e

(A
R)

 fo
rm

al
is

m
.

[2
3]

●

Sh
ap

e
of

 th
e

Li
D

A
R

pr
oj

ec
tio

n
cl

us
te

r.
Th

is

is
 e

st
im

at
ed

 u
sin

g
po

ly
 li

ne
 a

pp
ro

xi
m

at
io

n
an

d
lin

e
m

er
gi

ng
.

H
aa

r‐
lik

e
fe

at
ur

es
O

bs
ta

cl
e

cl
as

sif
ic

at
io

n
is

pe

rf
or

m
ed

 b
as

ed
 o

n
th

e
Li

D
A

R
pr

oj
ec

tio
n

sh
ap

e.

A
da

Bo
os

t c
la

ss
ifi

ca
tio

n
is

us

ed
 fo

r t
ra

in
ed

 H
aa

r‐
lik

e
fe

at
ur

es
.

Li
D

A
R

da
ta

 d
ist

rib
ut

io
n

is
us

ed
 fo

r i
de

nt
ify

in
g

di
ffe

re
nt

ob

st
ac

le
s.

O
bs

ta
cl

es
 a

re
 c

la
ss

ifi
ed

 in
to

 p
ed

es
tr

ia
ns

 a
nd

 o
th

er

ob
st

ac
le

s b
as

ed
 o

n
th

e
sh

ap
e

of
 th

e
Li

D
A

R
po

in
t

di
st

rib
ut

io
n.

 T
he

 p
ap

er
 a

lso
 d

iff
er

en
tia

te
s b

et
w

ee
n

st
at

ic
 a

nd

m
ov

in
g

ob
je

ct
s t

o
im

pr
ov

e
th

e
ac

cu
ra

cy
 o

f o
bj

ec
t

cl
as

sif
ic

at
io

n.
 T

he
 o

bs
ta

cl
es

 c
la

ss
ifi

ed
 a

s p
ed

es
tr

ia
ns

 o
r

pe
de

st
ri

an
‐li

ke
 a

re
 th

e
RO

Is
. A

n
A

da
Bo

os
t c

la
ss

ifi
er

 tr
ai

ne
d

on
 th

e
H

aa
r‐

lik
e

fe
at

ur
es

 m
ak

es
 th

e
fin

al
 d

ec
isi

on
.

[2
4]

●

A
 co

ur
se

 to
 fi

ne
 se

gm
en

ta
tio

n
em

pl
oy

in
g

β
sk

el
et

on
 m

et
ho

d,
 p

ro
vi

de
s s

eg
m

en
ts

(p

ar
tia

l a
nd

/o
r f

ul
l s

eg
m

en
ts

).

●
Se

gm
en

ts
 a

re
 th

en
 la

be
le

d,
 a

nd
 sc

or
ed

 b
y

a
Pr

oc
ru

st
es

 a
na

ly
si

s.

●

H
O

G

●
Lo

ca
l

re
ce

pt
iv

e
fe

at
ur

es

SV
M

 a
nd

 M
LP

 c
la

ss
ifi

er
s,

fu
zz

y
in

te
gr

al
–b

as
ed

fu

sio
n

m
od

el
.

Th
e

re
gi

on
 o

f i
nt

er
es

t (
RO

I)
is

fo
un

d
by

 lo
ok

in
g

at
 th

e
Li

D
A

R
da

ta
 d

ist
rib

ut
io

n
an

d
an

 im
ag

e
cl

as
sif

ie
r i

s u
se

d
to

 la
be

l t
he

pr

oj
ec

te
d

RO
I.

Th
e

pr
op

os
ed

 sy
st

em
 d

ea
ls

w
ith

 p
ar

tia
l

se
gm

en
ts

; i
t i

s a
bl

e
to

 re
co

ve
r d

ep
th

 in
fo

rm
at

io
n

ev
en

 if
 th

e
Li

D
A

R‐
ba

se
d

se
gm

en
ta

tio
n

of
 th

e
en

tir
e

ob
st

ac
le

 fa
ils

, a
nd

th

e
in

te
gr

at
io

n
is

m
od

el
ed

 th
ro

ug
h

co
nt

ex
tu

al
 in

fo
rm

at
io

n.

Th
e

fu
sio

n
ap

pr
oa

ch
 is

 b
as

ed
 o

n
th

e
“s

em
an

tic
” i

nf
or

m
at

io
n.

[2
5]

U
sin

g
an

 e
xt

en
de

d
K

al
m

an
 fi

lte
r,

lo
ca

l t
ra

ck
in

g
te

ch
ni

qu
es

 a
re

 u
se

d
in

 L
iD

A
R

an
d

th
e

ra
da

r
sy

st
em

 is
 fu

se
d

to
 fo

rm
 a

 g
lo

ba
l t

ra
ck

in
g

ap
pr

oa
ch

.

G
ab

or

fe
at

ur
es

M
ax

im
um

‐li
ke

lih
oo

d
es

tim
at

io
n

to
 fu

se

m
ul

tis
en

so
r t

ra
ck

s

Th
e p

ap
er

 d
es

cr
ib

es
 a

fu
sio

n
st

ra
te

gy
 u

sin
g

Li
D

A
R

an
d

ra
da

r
in

fo
rm

at
io

n
fo

r o
n‐

ro
ad

 o
bj

ec
t d

et
ec

tio
n

w
ith

 em
ph

as
is

on
 a

lo

ca
l a

nd
 g

lo
ba

l t
ra

ck
in

g
ap

pr
oa

ch
.

Computer Vision and Imaging in Intelligent Transportation Systems272

labeled as pedestrian‐like are projected onto the image plane. The region in the image plane where
projected LiDAR data points are present is considered the filtered ROI.

On the ROI in the image plane labeled by the LiDAR module, HOG features are extracted for test-
ing. HOG features are extracted from the training set for training the SVM classifier. The classifier
model maps the testing HOG features to a decision label for final classification. LiDAR range data for
the true label, that is, pedestrian segment, is then projected to obtain the distance for impact informa-
tion. This fusion scheme successfully reduces the false positives generally detected in LiDAR‐based
techniques and false negatives in vision‐based approaches, thereby increasing the overall detection
accuracy of a pedestrian detection system. In Sections 10.7.6 and 10.7.7, we explore in detail both
LiDAR and vision modules. We also discuss the results and advantages of a fusion scheme.

10.7.6 LiDAR Module

We follow four stages in the LiDAR module for ROI extraction: (i) preprocessing, (ii) thresholding,
(iii) Segmentation, and (iv) ROI labeling, as shown in Figure 10.8.

1) Preprocessing: The preprocessing stage is responsible for prefiltering and coordinate transforma-
tion. As described in Ref. [26], the acquired raw LiDAR is defined in ℝ3 space. Let’s denote a single
range point i from the laser data points as pi defined by (ri, αi, ϴi). This can be visualized in the
Cartesian plane as shown in Figure 10.9. Here, ϴi ∈ {−1.6°, −0.8°, 0.8°, 1.6°} represents four vertical
layers of the LiDAR sensor. The (xi, yi, zi) coordinates for projection can be computed using (ri, αi,
ϴi) values per laser data point. Figure 10.10a shows the LiDAR scan for the sample image shown
in Figure 10.10b. LiDAR scans include information of the surroundings that might not be visible
to the camera. Hence, we first filter out data points that are out of the scope of image plane as
these data are irrelevant for processing.

Table 10.2 Sensor specifications.

Sensor type Specifications

LiDAR Lbeo (Alasca XT model)
Vertical res: four layers [−1.6; −0.8; 0.8; 1.6°]
Frequency: 12.5 Hz
Range: 0.3–200 m
Used field of view: 120°

Camera FireWire Allied (Guppy)
Sensor: CCD (Bayer color format)
Lens: 6.5 mm (CS‐mount)
Resolution: 640 × 480 (30f/s)

Table 10.3 Intrinsic camera parameters.

Focal length fc = |623.732; 624.595|
Principal point cc = |360.876; 256.895|
Distortion coefficients Kc = |−0.304; 0.106; −0.00032; −0.000027; 0.0|

Pedestrian Detection 273

2) Thresholding: The thresholding stage is responsible for defining the FOV. This step needs to be
used as required by the given application. We define the FOV considering hints such as pedestri-
ans 20 m or further are not an immediate threat. Hence, the FOV is defined between 1 and 20 m
from the LiDAR sensor. Figure 10.10c shows a sample FOV described by thresholding.

3) Segmentation: The segmentation stage is responsible for clustering of data points that share similar
properties. Reference [28] presents different clustering and segmentation methods and their com-
parison in great detail. For our implementation, we have used jump distance clustering for segmen-
tation. Jump distance clustering is a widely used method for 2D laser range data in mobile robotics
(see Ref. [28] for an overview). It is fast and relatively simple to implement. The basic idea here is
that if the Euclidean distance between two adjacent data points exceeds a given threshold, a new
segment is generated. All the data points with Euclidean distance below the threshold are grouped
together into a segment. Figure 10.10d shows the result of such a segmentation method.

4) ROI labeling: Once different segments are clustered together, we examine the distribution
within each segment. Segments corresponding to pedestrian‐like objects have a linear, tightly
held distribution, whereas, segments corresponding to vehicles or buildings have a broader

Time
syncronization

LiDAR data

Camera data

ROI extraction

HOG features

SVM
classification

SVM–HOG
training

Classifier output

Cluster-based
segmentation

Image
preprocessing for

defined ROls

Thresholding
for

field of view

Figure 10.7 Overview of the algorithm flow followed in our implementation.

LiDAR data Preprocessing Thresholding Segmentation ROI labeling

Figure 10.8 Stages for LiDAR module.

pi

zi

ri

θi

yi

xix-axis

y-a
xis

z-
ax

is

αi

Figure 10.9 Cartesian and polar coordinate representation of a
point pi.

Computer Vision and Imaging in Intelligent Transportation Systems274

Figure 10.10 (a) LiDAR range points in Cartesian plane, all layers grouped together (x‐ and y‐axis as defined in Figure 10.9);
(b) the image corresponding to the LiDAR scan (x‐ and y‐axis corresponding to image plane); (c) range points outside a
threshold (FOV) in x‐ and y‐axis are discarded; (d) segmentation using the jump distance clustering method; (e) number of
data points per segment; (f) the length‐to‐width ratio calculation of each segment; (g) segment labels; (h) ROI in LiDAR
plane; (i) corresponding ROI in image plane; and (j) bounding box displaying the ROI in the image.

8000

(a) (b)

7000

6000

5000

4000

3000

2000

1000

0
–4000 –3000 –2000 –1000 0 1000 2000 3000

2000

(c)

1800

1600

1400

1200

1000

800

600

400

–400 –300 –200 –100 0 100 200 300 400

2000

(d)

1800

1600

1400

1200

1000

800

600

400

–400 –300 –200 –100 0 100 200 300 400

(f)
2000

(e)

1800

1600

1400

1200

1000

800

600

400

–400

Number of points = 5

Number of points = 8

Number of points = 11

Number of points = 25

–300 –200 –100 0 100 200 300 400

2000

1800

1600

1400

1200

1000

800

600

400

–400

Length

Width

–300 –200 –100 0 100 200 300 400

Length–width ratio = 2.72

Length–width ratio = 0.74

Length–width ratio = 1.18

Length–width ratio = 7.40

Pedestrian Detection 275

 distribution. We define a threshold for the number of data points a pedestrian‐like segment
should contain (Figure 10.10e). Among these segments, we calculate the length‐to‐width ratio
of the LiDAR data distribution as can be seen in Figure 10.10f, and we label segments as pedes-
trian‐like if the width‐to‐length ratio falls within a predefined range that is learned from the
training data. The window defined by these labeled segments are the ROIs in the image plane
(Figure 10.10g–j).

10.7.7 Vision Module

The segments labeled by the LiDAR module as pedestrian‐like are mapped to the image plane to
define the ROI for the vision module. Figure 10.11 provides a block diagram representation of the

(h)
2000

(g)

(j)(i)

1800

1600

1400

1200

1000

800

600

400

–400

Nonpedestrian

Nonpedestrian

Pedestrian-like

Pedestrian-like

–300 –200 –100 0 100 200 300 400

2000

1800

1600

1400

1200

1000

800

600

400

–400 –300 –200 –100 0 100 200 300 400

ROI–LiDAR

ROI–LiDAR

Figure 10.10 (Continued)

Camera data HOG feature
extraction

SVM classification

ROI in image
plane and

preprocessing

Figure 10.11 Stages for vision module.

Computer Vision and Imaging in Intelligent Transportation Systems276

steps performed in the vision module. As a preprocessing step, we convert the ROI into a grayscale
image and perform histogram equalization for contrast enhancement.

a) HOG feature extraction
HOGs for human detection was proposed by Dalal and Triggs [3] in 2005. HOG is a set of
 features extracted from a dense and overlapping grid of normalized local histograms of image
gradient orientations over image windows. To compose HOG, the cell histograms of each pixel
within the cell cast a weighted vote, according to the gradient L2 norm, for an orientation‐based
histogram channel. Rectangular cell HOG features are computed from a g × g grid, which defines
the number of cells in the detection window. We have used a 3 × 3 grid in our implementation.
Each cell contains λ bins of the oriented histograms (λ = 9 in our implementation). Reference
[29] describes in detail the selection of the grid size and the number of bins, and their impact on
HOG features for human detection. The nine histograms with nine bins were then concatenated
to make an 81‐dimensional feature vector.

b) SVM classification
SVMs are based on the statistical theory of learning. SVM is very sensitive to parameter tuning.
In our implementation, we have used a radial basis function (RBF) kernel with margin parameter
C = 3000 and a scaling factor (sigma) = 0.1 for tuning the SVM training model. We trained the
model for the HOG features extracted on the training set in the LIPD dataset. Figure 10.12 shows
samples of positive and negative training data.

10.7.8 Results and Discussion

The proposed sample implementation was evaluated in terms of accuracy and ROC curves, discuss
the performance of each module (LiDAR and vision) separately, and compare their performance
against the fusion scheme.

10.7.8.1 LiDAR Module
Figure 10.13 shows some of the pedestrian‐like and nonpedestrian segments classified by the
LiDAR module. A total of 27,309 segments were observed in the FOV for 4823 test image frames
(5–9 segments per frame). Out of the 3417 actual pedestrian segments, 3354 were classified
as pedestrian‐like; whereas out of 23,892 nonpedestrian segments, 4783 segments were classified
as pedestrian‐like. Table 10.4 summarizes these numbers in the form of a confusion matrix. Since
the interest in this stage was to filter out the segments that definitely don’t have pedestrians,
we observe from the confusion matrix that the true negative rate is negligible, whereas the false
positive rate is higher due to the detection of pedestrian‐like segments.

10.7.8.2 Vision Module
While dealing independently with the vision module, within a predefined FOV, we consider a sliding
window of 80 × 160 pixels as shown in Figure 10.14. We consider a 20 pixels horizontal motion per
iteration for the sliding window.

Figure 10.15 shows several of the windows classified as pedestrians using the HOG–SVM
 classifier. A total of 139,867 windows were observed (29 windows per frame). Out of which 3417
windows were pedestrian. Table 10.4 summarizes the confusion matrix for the vision‐based mod-
ule. Here, we can observe that the number of false positives is much lesser than what we observed
with LiDAR module classification. However, in the case of drastic environmental changes, such as
weather or illumination, vision‐based classification is typically not as accurate as observed in the
present study.

(a)

(b)

Figure 10.12 Samples of the training data: (a) positive training images and (b) negative training images.

Computer Vision and Imaging in Intelligent Transportation Systems278

The segments classified as pedestrian‐like in the LiDAR module are the ROI windows for the
vision module in the fusion scheme. In the LiDAR module, a total of 8940 segments are marked as
pedestrian‐like segments. A window of 80 × 160 around these segments are the ROIs for HOG–SVM
classifier. Table 10.4 summarizes the confusion matrix for the fusion scheme. We can observe that by

2000

1800

1600

1400

1200

1000

800

600

400

200

–400 –300 –200 –100 0 100 200

NP

NP

NP

NP

PL

300 400

Figure 10.13 An illustration of segment labeling and its corresponding image plane objects. Here, NP, nonpedestrian
segment; PL, pedestrian‐like segment.

Table 10.4 Confusion matrix for results from LiDAR, visual, and fusion methods.

LiDAR
Pedestrian

Module
Nonpedestrian

Vision
Pedestrian

Module
Nonpedestrian

Fusion
Pedestrian

Scheme
Nonpedestrian

Pedestrian 3354 63 3249 168 3309 108
Nonpedestrian 4783 19,109 1723 134,727 84 4117

(a) (b)

(c)

Figure 10.14 (a) The original frame, (b) cropped FOV, and (c) sliding window in the FOV of a predefined size.

Pedestrian Detection 279

using the fusion scheme, both the number of false positives and true negatives have been drastically
reduced. Also, by using the LiDAR module filtering, we have reduced the number of windows being
processed in the vision module from 139,867 to 7618. This is a huge reduction in computation time.
Other advantage of using the fusion scheme includes the ability to reduce false positives in difficult
weather and illumination conditions, since the LiDAR module is not significantly sensitive to envi-
ronmental variations. Once the pedestrian windows are classified, we can also use the LiDAR range
data to obtain the distance for crossing and estimate the time for impact assuming a constant velocity
model. This aids in alerting the driver with sufficient time for response. Figure 10.16 shows several
still frame results for the fusion scheme.

Figure 10.15 Examples of HOG–SVM‐based vision module results for pedestrian detection. Images at the top are the
input images and the images at the bottom are the windows identified as containing pedestrians.

Figure 10.16 Examples of fusion scheme–based pedestrian detection. Along with detection, we have also measured
the distance for impact.

Computer Vision and Imaging in Intelligent Transportation Systems280

10.8 Summary

Pedestrian detection has been a challenging task for vision systems due to occlusion, deformation,
and complexity of foreground and background data. Thermal imaging and NIR structured lighting
are relatively simple to implement, and are reliable methods to use at night or in indoor environ-
ments. For CCTV applications, approximated median is more accurate than frame subtraction and
faster than GMM. Our empirical results show that approximated median performs well in detecting
pedestrians in outdoor and indoor environments. The polar coordinate profile can map the 2D shape
description to 1D models, which simplifies pattern‐matching algorithms. HOG enables individual
image‐based detection, based on the “cell‐like” HOGs. However, it has several limitations, including
issues with scalability, occlusion, deformation, unconstrained backgrounds, complex illumination
patterns, and a wide variety of articulated poses and clothing. The deformation problem can be
solved by applying a DPM. However, occlusion handling is a serious problem for pedestrian detection
algorithms. LiDAR‐based methods can reduce the false positives and computational time for pedes-
trian detection. By fusing LiDAR and visual camera data, we can improve the reliability and accuracy
of the overall detection rate. Our future work includes incorporating deep knowledge about human
shapes, dynamics, and multiple sensors in pedestrian detection.

 References

1 P. Dollar, C. Wojek, B. Schiele, P. Perona, “Pedestrian Detection: A Benchmark,” in IEEE Conference
on Computer Vision and Pattern Recognition 2009, CVPR, Miami, FL, June 2009.

2 Y. Cai, “Cognitive Video Lecture Handout,” ECE Graduate Course 18‐799K, Spring, 2016.
3 N. Dalal, B. Triggs, “Histograms of Oriented Gradients for Human Detection,” in Proceedings

of the Conference on Computer Vision and Pattern Recognition, San Diego, California, USA,
pp. 886–893, 2005.

4 P. Felzenszwalb, D. McAllester, D. Ramanan, “A Discriminatively Trained, Multiscal, Deformable Parts
Model,” in IEEE Conference on Computer Vision and Pattern Recognition, 2008, Anchorage, AK,
USA. IEEE, 2008.

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Lidar classification
Vision classification

False-positive rate

Tr
ue

-p
os

iti
ve

 r
at

e

Fusion scheme
classification

Figure 10.17 The ROC of LiDAR, vision, and
fusion methods.

Pedestrian Detection 281

 5 B. Boser, I. Guyon, V. Vapunik, “A Training Algorithm for Optimal Margin Classifiers,” in Proceedings
of the 5th Annual Workshop on Computational Learning Theory (COLT’92), Pittsburgh, 1992.

 6 R. Schapire, Y. Freund, “Experiments with a New Boosting Algorithm,” in Proceedings of the 13th
International Conference on Machine Learning, Bari, Italy, 1996.

 7 V. John, S. Mita, Z. Liu, B. Qi, “Pedestrian Detection in Thermal Images Using Adaptive Fuzzy
C‐Means Clustering and Convolutional Neural Networks,” in 14th IAPR International Conference on
Machine Vision Applications, Tokyo, Japan, 2015.

 8 B. Qi, V. John, Z. Liu, S. Mita, “Use of Sparse Representation for Pedestrian Detection in Thermal
Images,” in IEEE Computer Vision and Pattern Recognition Workshops, Columbus, OH, 2014.

 9 W. Ouyang, X. Wang, “A Discriminative Deep Model for Pedestrian Detection with Occlusion
Handling,” in IEEE International Conference on Computer Vision and Pattern Recognition,
Providence, RI, 2012.

10 H. Cho, P. Rybski, A. Bar‐Hillel, W. Zhang, “Real‐Time Pedestrian Detection with Deformable Part
Models,” in IEEE Intelligent Vehicles Symposium, Madrid, Spain, 2012.

11 M. Pedersoli, J. Gonzalez, X. Hu, X. Roca, “Toward Real‐Time Pedestrian Detection Based on a
Deformable Template Model,” in IEEE Transactions on Intelligent Transportation Systems, Vol. 15,
No. 6, December 2014.

12 C. Premebida, O. Ludwig, U. Nunes, “LiDAR and Vision‐Based Pedestrian Detection System,” Journal
of Field Robotics, vol. 26, pp. 696–711, 2009.

13 C. Premebida, O. Ludwig, U. Nunes, “Exploiting LiDAR‐Based Features on Pedestrian Detection in
Urban Scenarios,” in Proceedings of the 12th International IEEE Conference on Intelligent
Transportation Systems, St. Louis, MO, 2009.

14 K. Arras, O. Mozos, W. Burgard, “Using Boosted Features for the Detection of People in 2D Range
Data,” in IEEE International Conference on Robotics and Automation, Rome, Italy, 2007.

15 D. Geronimo, A. Loper, A. Sappa, “Computer Vision Approaches to Pedestrian Detection: Visible
Spectrum Survey,” in Proceedings of the 3rd Iberian Conference on Pattern Recognition and Image
Analysis, Part I, Girona, Spain, 2007.

16 M. Enzweiler, D. Gavrila, “A Multilevel Mixture‐of‐Experts Framework for Pedestrian Classification,”
IEEE Transactions on Image Processing, vol. 20, no. 10, pp. 2967–2979, 2011.

17 M. Perez, “Vision‐Based Pedestrian Detection for Driving Assistance,” Multidimensional DSP
Project, Spring 2005. http://users.ece.utexas.edu/~bevans/courses/ee381k/projects/spring05/perez/
LitSurveyReport.pdf (accessed October 17, 2016).

18 T. Gandhi, M. Trivedi, “Pedestrian Collision Avoidance Systems: A Survey of Computer Vision Based
Recent Studies,” in Proceedings of the IEEE ITSC, Toronto, Canada, 2006.

19 H. Zhao, Q. Zhang, M. Chiba, R. Shibasaki, J. Cui, H. Zha, “Moving Object Classification Using Horizontal
Laser Scan Data,” in IEEE International Conference on Robotics and Automation, Kobe, Japan, 2009.

20 L. Oliveira, U. Nunes, “Context‐Aware Pedestrian Detection Using LiDAR,” in IEEE Intelligent
Vehicles Symposium, 2010, San Diego, CA.

21 L. Spinello, R. Siegwart, “Human Detection Using Multimodal and Multidimensional Features,” in
IEEE International Conference on Robotics and Automation, Pasadena, CA, 2008.

22 L. Pangop, R. Chapuis, S. Bonnet, S. Cornou, F. Chausse, “A Bayesian Multisensor Fusion Approach
Integrating Correlated Data Applied to a Real‐Time Pedestrian Detection System,” in IEEE IROS2008
2nd Workshop on Perception, Planning and Navigation for Intelligent Vehicles, Nice, France, 2008.

23 A. Broggi, P. Cerri, S. Ghidoni, P. Grisleri, H. Jung, “A New Approach to Urban Pedestrian Detection
for Automatic Braking,” IEEE Transactions on Intelligent Transportation Systems, vol. 10, no. 4,
pp. 594–605, 2009.

24 L. Oliveira, U. Nunes, P. Peixoto, M. Silva, F. Moita, “Semantic Fusion of Laser and Vision in
Pedestrian Detection,” Pattern Recognition, vol. 43, no. 10, pp. 3648–3659, 2010.

Computer Vision and Imaging in Intelligent Transportation Systems282

25 H. Cheng, N. Zheng, X. Zhang, J. Din, H. Wetering, “Interactive Road Situation Analysis for Driver
Assistance and Safety Warning Systems: Framework and Algorithms,” IEEE Transactions on
Intelligent Transportation Systems, vol. 8, no. 1, pp. 157–167, 2007.

26 C. Permebida, “Pedestrian Detection Using Laser and Vision,” A Dissertation to Department
Electrical and Computer Engineering of COIMBRA University under the supervision of U.Nunes

27 Y. Bouguet, “Camera calibration toolbox for matlab |on‐line|” at https://www.vision.caltech.edu/
bouguetj/calib_doc/, 2007 (accessed September 28, 2016).

28 C. Premebida, U. Nunes, “Segmentation and Geometric Primitives Extraction from 2D Laser Range
Data for Mobile Robot Applications,” in Proccedings 5th National Festival of Robotics, Scientific
Meeting ROBOTICA, Coimbra, Portugal, 2005

29 O. Ludwig Jr, D. Delgado, V. Goncalves, U. Nunes, “Trainable Classifier‐Fusion Schemes: An
Application to Pedestrian Detection,” in Proceedings of the 12th International IEEE Conference on
Intelligent Transportation Systems, St. Louis, MO, 2009

283

Computer Vision and Imaging in Intelligent Transportation Systems, First Edition.
Edited by Robert P. Loce, Raja Bala and Mohan Trivedi.
© 2017 John Wiley & Sons Ltd. Published 2017 by John Wiley & Sons Ltd.
Companion website: www.wiley.com/go/loce/ComputerVisionandImaginginITS

11.1 Introduction

In this chapter, we focus on lane detection (LD) and lane tracking (LT) problems arising in lane
departure warning systems (LDWSs). LWDSs refer to specific forms of advanced driver assistance
systems (ADASs) designed to help the driver to stay in the lane, by warning her/him in sufficient
advance that an imminent and possibly unintentional lane departure is going to take place so that
she/he can take the necessary corrective measures. These systems work by estimating the current
vehicle position and direction within the lane by identifying the lane demarcating’s stripes from the
processing video or images of the oncoming road sections taken by a camera mounted on the front
windshield of the vehicle (Figure 11.1). According to TRACE [1], a study on traffic accident causation
in Europe, a high penetration of LDWSs will produce the following:

 ● A 25% potential reduction of frontal and run‐off‐road collisions
 ● A 25% potential reduction of severity of injuries associated with frontal collisions and reduction of

15% in run‐off‐road collisions
 ● A 60% potential reduction of lateral collisions

Some interesting contributions to LDWS development can be found in McCall and Trivedi [2] and Lee
[3]. An interesting approach is the so‐called time‐to‐lane‐crossing (TLC)‐based method, first proposed
by Godthelp et al. [4], where an alarm is triggered when the TLC—the time interval by which a lane
crossing is supposed to occur under current vehicle speed and direction—is below a specified threshold.
Such systems typically use acoustic or vibration warnings, the latter applied to the driving seat or the
steering wheel. In general, TLC‐based methods provide earlier warnings than roadside rumble stripes
(RRSs), because alarms are triggered in sufficient advance before the driver really gets into danger.

A standard configuration of an LDWS is depicted in Figure 11.2, where it is assumed that the vehi-
cle is equipped with a camera mounted on the windshield and angular speed sensors mounted on the
rear wheels.

The main devices and functions in a standard LDWS are as follows:

 ● Camera(s)
 ● Longitudinal and angular rear wheel speed sensors

11

Lane Detection and Tracking Problems in Lane Departure
Warning Systems
Gianni Cario, Alessandro Casavola and Marco Lupia

Department of Informatics, Modeling, Electronics and Systems Engineering (DIMES), University of Calabria, Rende, Italy

Computer Vision and Imaging in Intelligent Transportation Systems284

 ● LD and LT software modules
 ● Lane departure warning module

The camera mounted on the windshield provides images of the oncoming road sections from which the
lane stripes are detected and the car position and heading estimated. The speed sensors, mounted on
the rear wheels, measure angular speed. Such information is sufficient to allow one to compute the
longitudinal and lateral speed of the vehicle and to estimate the current TLC. Each single frame of the
camera stream is analyzed to identify the lane stripes, and an LT module is used to reduce the discrep-
ancy in the reconstruction of the lane stripes between two successive frames. Finally, a warning logic is
used to eventually issue an alarm if the computed TLC is shorter than a prescribed threshold.

11.1.1 Basic LDWS Algorithm Structure

A typical LDWS algorithm can be broadly divided into three main functional blocks (Figure 11.3) as
follows:

1) LD: recognition of the two stripes that bound the roadway lane in a single image frame
2) LT: recognition and association of the stripes recognized in consecutive frames of the image

streaming
3) Lane departure: signaling of exceeding the limits of the lane

Figure 11.1 Lane departure warning systems.

Camera

Wheel speed
sensor

Figure 11.2 LDWS overview.

Lane Detection and Tracking Problems in Lane Departure Warning Systems 285

11.2 LD: Algorithms for a Single Frame

The typical steps necessary for the identification of the lane stripes within a single image frame (LD)
are listed in detail in Figure 11.4.

Usually, once having acquired an image frame from the camera, some preprocessing steps are nec-
essary to improve the quality and possibly perform some corrections. Then, the preprocessed image
undergoes filtering steps necessary to extract the contours and identify the pixels belonging to the
stripes of demarcation of the roadway’s lane. The last stage is the fitting of the pixels of the stripes
with a model to obtain a mathematical representation of the stripes within the image. Details on
these tasks are provided in Sections 11.2.1, 11.2.2, 11.2.3, and 11.2.4.

11.2.1 Image Preprocessing

Image preprocessing is performed to simplify and make more effective the subsequent extraction of
the lane stripes and the identification of the lane characteristics. The use of filtering techniques
allows one to do the following:

 ● Improve the image contrast
 ● Reduce the image noise
 ● Improve the separation of the foreground objects from the background

Lane detection

Lane tracking

Lane departure

LDWS
Figure 11.3 LDWS algorithm structure.

Image
acquisition

Edge
extraction

Stripes
identification

Line fitting

Lane detection

Image
preprocessing

Figure 11.4 Lane detection.

Computer Vision and Imaging in Intelligent Transportation Systems286

Frequently used techniques for the aforementioned purposes include gray‐level optimization and
image smoothing [5], described in Sections 11.2.1.1 and 11.2.1.2.

11.2.1.1 Gray‐Level Optimization
The simplest type of image enhancement is the pixel‐wide adjustment of intensity values. One such
operation is contrast stretching that remaps pixel values to utilize the entire set of available values.
The enhancement process can be denoted by

G x y T I x y, , , (11.1)

where I(x, y) is the gray value of the (x, y)th pixel of the input image, G(x, y) is the gray value of the
(x, y)th pixel of the enhanced image, and T is the transformation function. How the gray levels are
changed depends on the remapping function used. For example,

 ● G x y I x y() [()] ., , 0 5 increases the brightness of all pixels. However, because of its nonlinearity, it
increases the intensity of low brightness pixels much more than the brightness pixels.

 ● G x y I x y() [()] /, , 1 , also known as gamma correction. It allows one to increase or decrease the
brightness and contrast depending on the value of γ.

In addition, it is possible to use adaptive techniques such as histogram equalization to optimize
gray level. Histogram equalization rescales pixel intensities to produce an image in which the pixel
brightness values are distributed more evenly. The resulting image tends to exhibit greater contrast.
The mathematical formulation is as follows: Let I be the original image represented as a M N matrix
of integer pixel intensities ranging from 0 to L 1 . L is the number of possible intensity values. Let p
denote the normalized histogram of I with a bin for each possible intensity. So,

p
n

nn

number of pixels with intensity

total number of pixels
0 1, , ,LL 1.

The histogram equalized image IHE will be defined by

I x y L p
n

I x y

nHE

,

, 1
0

 (11.2)

11.2.1.2 Image Smoothing
Smoothing filters are used to reduce noise and to blur the image. Usually, the images are blurred dur-
ing the preprocessing phases in order to eliminate small details or small jumps in lines and curves
before extracting large objects. The noise reduction can be carried out by blurring the image with a
linear or a nonlinear filter.

The action of a linear smoothing or lowpass filter is simply the averaging of the pixels’ brightness
contained within the mask filter. The output brightness value of a pixel is obtained by averaging the
intensity of all pixels in a defined neighborhood. Averaging is performed as follows: Given original
image I and a local neighborhood of size () ()2 1 2 1m m about location (x, y). Then, the resulting
image IS is given by

I x y h i j I x i y j
i m

m

j m

m

S , , , (11.3)

Lane Detection and Tracking Problems in Lane Departure Warning Systems 287

Because random noise typically consists of sharp transitions in the gray level, the most common
application of such filters is in noise reduction.

However, considering that edge contours are characterized by abrupt transitions in gray level, the
smoothing action could have undesirable effects in the identification of the edges. It is therefore
 necessary in practice to find a suitable trade‐off between noise reduction and excessive blurring of
edge features.

11.2.2 Edge Extraction

The edge, or contour, of an object represents the line of separation between the object and back-
ground, or between one object and another. Edge‐based segmentation algorithms seek a connected
discontinuity in some pixel characteristic, for example, the level of gray, the color, and the spatial
regularity [6].

Most detectors of discontinuities make use of derivative operators. These operators are applied
directly to the image (gray levels or Red/Green/Blue levels) or to some derived variable, obtained by
applying a suitable transformation. The points of discontinuity are subsequently detected and
 concatenated so as to obtain closed contours that delimit distinct areas. The first and second derivatives
differ significantly from zero only in correspondence of dark‐to‐light and light‐to‐dark transitions, as
shown in Figure 11.5.

 ● The first derivative of the profile is positive at a dark‐to‐light transition and negative at a light‐to‐
dark transition, and zero in areas where the gray level remains almost constant.

 ● The second derivative is positive in the vicinity of the dark side of a boundary, negative on the light
side, and zero where the gray level is almost constant, or varying at a constant rate. It passes
through zero (zero crossing) in correspondence with the transitions.

In general, for an image described by gray levels I(x, y), an edge is defined from the gradient of
brightness function as follows:

I x y I
x

I
y

D D
T

x y
T, , , (11.4)

First derivative

Second derivative

Figure 11.5 First and second derivates around
an edge.

Computer Vision and Imaging in Intelligent Transportation Systems288

Here, Dx and Dy represent partial first derivatives in the x and y directions, respectively, and edge
metrics are given by the following:

 ● Magnitude: I x y D Dx y(),
 ● Orientation: () tan /()x y D Dy x, 1

The partial derivatives Dx and Dy are approximated using digital derivative operators. Common
first‐order derivative operators use two kernels. One for changes in the vertical axis and the other for
horizontal axis. The convolution of the kernels and the original image provide an approximation of
the partial derivatives.

 ● Sobel

D Dx y

1 0 1
2 0 2
1 0 1

1 2 1
0 0 0
1 2 1

,

 ● Prewitt

D Dx y

1 0 1
1 0 1
1 0 1

1 1 1
0 0 0
1 1 1

,

 ● Roberts

D Dx y
1 0
0 1

0 1
1 0,

Figure 11.6 shows an example roadway image and Figure 11.7 shows a first‐derivative operator
applied to the image.

11.2.2.1 Second‐Order Derivative Operators
11.2.2.1.1 Gaussian’s Laplacian
A common way to obtain the second derivative of a function f(x, y) at a point is to calculate the
Laplacian at that point. Given f(x, y), its Laplacian is defined as follows:

L x y f f
x

f
y

, 2
2

2

2

2 (11.5)

A discrete approximation for the Laplacian can be written as

L x y f x y f x y f x y f x y f x y, ,4 1 1 1 1, , , , , (11.6)

with kernel representation

L
0 1 0
1 4 1

0 1 0
.

Lane Detection and Tracking Problems in Lane Departure Warning Systems 289

Note that the Laplacian is overly sensitive to noise (as a second‐order derivative operator) and unable
to detect the direction of the boundary (as a separate scalar). For these reasons, the Laplacian is
rarely used alone for edge‐detection purposes. One solution, proposed by Marr and Hildreth [7],
uses the Laplacian in connection with a smoothing filter based on Gaussians. The resulting operator
is referred to as the Laplacian of Gaussian (LoG) [8].

Figure 11.6 Original image.

Figure 11.7 Output from Sobel operator.

Computer Vision and Imaging in Intelligent Transportation Systems290

2
2 2

2
2

2

2

2

h r e
r

 (11.7)

The convolution of the image with the given operator is equivalent to filtering the image with a
Gaussian smoothing filter, to reduce the effects of the noise, and then applying the Laplacian opera-
tor on the result. However, for implementation on a digital computer, the continuous operator must
be approximated by a discrete mask whose elements are obtained by sampling the continuous LoG
on a discrete grid [9].

Then, the localization of the contours requires a search for the zero crossings of the second deriva-
tive of the image.

Figure 11.8 shows an example of LoG operator applied to the image of Figure 11.6.

11.2.2.2 Canny’s Algorithm
The derivative operators considered thus far have a heuristic origin. On the contrary, an analytical
approach was adopted by Canny [10], who has studied in detail the behavior of the gradient operator
applied to a noisy image.

Canny set three quality criteria for an edge‐detection algorithm and determined analytically the
optimal filter against these three criteria. The edge detection is performed by convoluting the noisy
image I with a filter impulsive response h, chosen so as to meet the following three criteria:

1) Ability to detect the edge
2) Ability to locate the edge
3) Uniqueness of the solution

An edge is identified in correspondence to a local maximum of the convolution I * h.
Figure 11.9 shows an example of Canny operator applied to the image of Figure 11.6.

Figure 11.8 Output from Laplacian of Gaussian operator.

Lane Detection and Tracking Problems in Lane Departure Warning Systems 291

11.2.2.3 Comparison of Edge‐Detection Algorithms
The various techniques for edge extraction described before have been compared both from a com-
putational and qualitative point of view. In particular, for this second aspect, the Pratt’s figure of
merit (FOM) [11] was used, which computes an error between the locations of estimated versus true
gradient.

FOM 1 1
11

2I ad iN i

IA

 (11.8)

Here,

 ● I I IN I Amax(), , with II and IA, respectively, the number of exactly identified points on the edge.
 ● a is a scale factor, usually set to 1/9.
 ● d(i) is the distance (in pixel units) between the identified ith pixel of the edge and its exact position.

The ideal image (Figure 11.10) is used as a benchmark to assess the results achieved by the various
edge‐detection algorithms and is obtained by manually marking the position of the ideal edge pixels
in an area of interest of the original image. From the results of Table 11.1, it seems that the Sobel or
the Prewitt operators may be the most suitable algorithms for real‐time application with stringent
execution times. In fact, these operators show the highest performance, both in terms of computa-
tional times and FOM index.

11.2.3 Stripe Identification

The next step in the LD pipeline is stripe identification, whose main functions are depicted in
Figure 11.11. Two main approaches are the method of the edge distribution function (EDF) and the
Hough transform, described Sections 11.2.3.1 and 11.2.3.2.

Figure 11.9 Output from Canny operator.

Computer Vision and Imaging in Intelligent Transportation Systems292

11.2.3.1 Edge Distribution Function
The EDF F(d) is defined as the histogram of the gradient magnitude with respect to its orienta-
tion [3].

Note in Figure 11.12 how, on the road surface, the local maxima of F(d) correspond to points on
the lane stripes.

11.2.3.2 Hough Transform
The Hough transform [12] is a technique that recognizes specific configurations of points in an
image, such as line segments, curves, or other patterns. The basic principle is that the form sought
may be expressed through a known function depending on a set of parameters. A particular instance
of the form sought is therefore completely specified by the values taken by such a set of parameters.

(a)

(b)

Figure 11.10 FOM: ideal image: (a) original image and (b) ideal image.

Table 11.1 Comparisons among edge detectors.

Edge detector Execution time (s) FOM

Sobel 0.015 0.315
Prewitt 0.015 0.311
Roberts 0.018 0.275
Canny 0.193 0.217
LoG 0.045 0.252

Lane Detection and Tracking Problems in Lane Departure Warning Systems 293

For example, by taking as a representation of straight lines, the equation y ax b, any straight line
is completely specified by the value of the parameters (a, b). Equivalently, if one takes a different type
of representation, say x ycos sin , the straight line is completely specified by the pair (ρ, θ).

Thus, given a class of patterns of interest and its mathematical representation, one can consider a
transformation from the image plane to the parameter plane. Let us take as an example the cases of
interest depicted in Figure 11.13. A single point in the image plane can be represented by the
 intersection of a collection of two or more straight lines passing through that point, that map to a
collection of points falling on a unique curve in parameter space. Conversely, a straight line in the
image plane corresponds to an intersection point of multiple curves in the parameter plane.

For the determination of the intersection points in the parameter plane, and therefore of the
 corresponding straight lines in the image plane, consider a discretization of the parameters (ρ, θ).
This allows one to represent the plane on an accumulation matrix H(m, n) whose row and column
indexes correspond to quantized values of ρ and θ. Then, for each point P(x, y) in the image, the
 following steps are executed:

 ● For θn [/ , /]2 2 with step dθ,
 – Evaluate () cos() sin()n x yn n
 – Get the index m corresponding to ρ(n)
 – Increase H(m, n) by 1.

RGB image

Gray-scale
conversion Gradient

calculation
derivative
operators Magnitude/

orientation
calculation Magnitude

versus
orientation
histogram Local

maxima
search

EDF stripe identification

Figure 11.11 Stripes identification via edge distribution function.

Right

0° 90° 180°
d

θ1 θ2

LeftF(d)Figure 11.12 Edge distribution function.

Computer Vision and Imaging in Intelligent Transportation Systems294

This process is repeated for all points in the image, and local maxima of H(m, n) are extracted that
denote the straight lines in the image. The overall process is depicted in Figure 11.14. Several param-
eters such as the resolution of the accumulation matrix are tuned heuristically based on the applica-
tion and characteristics of the captured images.

11.2.4 Line Fitting

An image typically consists of a set of tokens, which may be pixels, isolated points, sets of contour
points, etc., and one may want to determine whether or not they belong to a simple prescribed form.
For example, one could be interested to aggregate different tokens because together they form a
 circle. The search for such groups is known as fitting.

θ

θ

ρ

ρ

x

y

θ

ρ

x

y

θ

ρ
ρ0 = x cosθ0 + y sinθ0

x

y

A C

C

B

(a) (b)

(c) (d)

B θ
θ

ρ
ρ

x

y

A (ρ0 , θ0)

Figure 11.13 Hough transform: (a) image plane—parameters plane transformation; (b) single‐point transformation;
(c) three‐point transformation; and (d) straight‐line transformation.

Local
maxima
search

Hough′s transform stripe identification

Accumulation
matrix

calculation

Hough′s
transform

Gray-scale
conversion

RGB image

Figure 11.14 Straight‐line identification via Hough transform.

Lane Detection and Tracking Problems in Lane Departure Warning Systems 295

The fitting process, in general, uses a model to obtain a representation that highlights the image
structures of interest and there are a great variety of possible strategies for fitting. The problem of
fitting can be made more efficient if one knows that certain forms are present in the image and a
good mathematical model to describe them is available. The most used models in lane stripe fitting
problems include the following:

 ● Linear
 ● Polynomial, second or third order
 ● Linear parabolic (LP)
 ● Clothoid
 ● Spline

We elaborate next on linear and LP fitting in Sections 11.2.4.1 and 11.2.4.2.

11.2.4.1 Linear Fitting
Linear fitting can be performed either by using the Hough transform directly, which returns the
parameters of the straight lines in the image as previously described, or by interpolation or least‐
squares methods. The use of the least‐squares method assumes that all points that belong to a par-
ticular line are known and that only the parameters of the mathematical representation of the line
need to be identified. We can represent a line in the image as a collection of points given in the
Cartesian coordinate (x, y), satisfying the relationship ax by c 0 . Least‐squares fitting consists
of determining the triplet (a, b, c) that minimizes the usual quadratic fitting criterion.

11.2.4.2 LP Fitting
Another method used for lane stripes determination is based on LP fitting [13]. The basic idea is to
perform a linear fitting in the near field of the image and a quadratic fitting in the far field
(Figure 11.15a) to better accommodate perspective distortion of road curves when it is required to fit
a large section of road ahead. A fixed threshold xm that separates the two image fields is selected and
the curve that represents the stripe is given by

f x
a b x x x x

a b x x x c x x x x
m m

m m m
2 (11.9)

In order to accomplish such an LP fitting, the first step is to identify the two areas of interest (lane
boundary region of interest or LBROI) within the current frame (Figure 11.15b). This process can be
made easier by exploiting the same division used at previous frame or by an initial calibration phase
performed at system startup.

The parameters a, b, c of Equation 11.9 are determined by an LP fitting minimizing the weighted
quadratic error Elp as follows:

E M y f x M y f x
i

m

n n n
j

n

f f fi i i j j jlp
1

2

1

2
 (11.10)

Here, ()x yn ni i
, , i m1, , , represent the mth pixel coordinates, and Mni

 the corresponding weights in
the near field (only for the pixels 0). Similarly, ()x yf fj j

, and M f j
, j n1, , , represent the same quan-

tities for the n pixels in the far field.

Computer Vision and Imaging in Intelligent Transportation Systems296

The Elp error is minimized analytically by finding a solution to the following linear system of
equations:

A WAc A WbT T . (11.11)

Here,

A

x x

x x

x x x x

x x x x

n m

n m

f m f m

f m f m

m

n n

1 0

1 0

1

1

1

1 1

2

2

� � �

� � �

, W

M

M
M

M

n

n

f

f

m

n

1

1

�

�

 (11.12)

x

xm

Far field

LBROI

(a)

(b)

Near field

y

Figure 11.15 Linear‐parabolic fitting: (a) Near‐ and far‐field image separation and (b) lane boundary region of
interest (LBROI).

Lane Detection and Tracking Problems in Lane Departure Warning Systems 297

c a b c b y y y yT
n n f f

T
m n

, , , , , , ,,
1 1

 (11.13)

Under a persistence‐of‐excitation condition on the columns of A (namely A is full rank), the matrix
ATWA results invertible and the sought solution is given by

c A WA A WbT T: .
1

 (11.14)

The procedure is applied to both stripes of the lane. Note also that linear fitting is a special case of LP
fitting where the weighted quadratic error El reduces to

E M y f x
i

m

n n ni i il
1

2
. (11.15)

Also, one has

A
x x

x x
W

M

M

n m

n m

n

nm m

1

1

1 1

� � �, . (11.16)

c a b b y yT
n n

T
m

, , ,, .
1

 (11.17)

Again, under persistence of excitation, the sought solution is given by (11.14) with A, W, c, and b
given in Equations 11.16 and 11.17.

11.3 LT Algorithms

The discussion thus far has focused on LD from a single image or video frame. This section turns to the
problem of LT from video signals containing both spatial and temporal information. In general, the track-
ing of an object in a video is defined as the problem of establishing correspondences between the same
object identified in subsequent video frames. In LT applications, these correspondences are used for
recognizing the surrounding environment. There are various methods for addressing the tracking
problem that are based on the consistency of motion, and the appearance and transformation of
certain patterns. In general, object tracking is a fairly complex process. If an object moves within the
scene, it changes its position and orientation with respect to the background and in multiple frames
may look different.

Another challenge in object tracking, especially encountered in road environments, is occlusion,
which refers to partial of full coverage of the target object by other objects, for example, a vehicle on
the lane’s stripes, or environmental characteristics such as shadows, snow, or leaves on the road. To
maintain correspondence, it is typically necessary that at least a small part of the object is visible in
successive frames. This may be possible if the segmentation is accurate and resolution sufficient.
Otherwise, the tracking can be lost periodically. In this case, it is important that the algorithm is able
to reset itself and reidentify the object as soon as possible.

In the following text, we present and contrast several algorithms well suited for lane stripe track-
ing. Note also that the tracking algorithms are synergistic with lane stripe reidentification and fitting

Computer Vision and Imaging in Intelligent Transportation Systems298

algorithms, in that the knowledge of stripe position at the previous frame allows a more accurate
identification and fitting of the stripe in the current frame.

The most commonly used fitting algorithms in the LDWS literature include recursive filters on
subsequent N frames [14] and Kalman filters [15], described in Sections 11.3.1 and 11.3.2.

11.3.1 Recursive Filters on Subsequent N frames

The simplest filter that can be used for the tracking of a line within an image is a recursive filter that
works on N consecutive frames. In practice, it performs an average of the position of the line on a
sliding window of N previous frames.

The location of the line in the next frame is assumed to not deviate too much from the location in
the current frame. In particular, if we define ϕ(k) as the parameter vector of the line identified in the
frame k, we have

z k z k k k N k N1 1, (11.18)

with N arbitrarily selected. Then, the LDWS will use the filtered parameter vector z(k) instead of ϕ(k).
For instance, in the case of a Hough transformed binary image with a lane boundary defined by ρ

and θ, the parameter vector is () [(), ()]k k k , and the filtered parameter vector z k k kf f() [,]() ()
is achieved by solving the recursion (11.18).

11.3.2 Kalman Filter

The Kalman filter is frequently employed for object tracking. It is usually assumed that the object
moves with constant or linearly varying speed among successive frames. Thus, if we consider a
dynamical linear model affected by random measurement noise, the Kalman filter is the optimal
estimator if the noise is white, zero mean, and uncorrelated with the process variables. As new meas-
ures are achieved, the estimation of the position is improved at each iteration.

Consider the following linear time‐invariant dynamical system:

x
z

Ax w
Hx v

k

k

k k

k k

1 1
. (11.19)

Here, xk is the state of the system at time k; wk and vk are zero‐mean noises with covariance matrices
Q and R, respectively; A is the state transition matrix; H is the output matrix; and zk are observed
outputs (e.g., parametric estimates of lane stripes). At each sampling time, an estimate of the state is
achieved as

ˆ ,k k k k kx x K z Hx (11.20)

where

1.ˆkx Ax (11.21)

1 .ˆ T
k kP AP A Q (11.22)

.k̂ k kP I K H P (11.23)

K P H HP H Rk k
T

k
T 1

. (11.24)

Lane Detection and Tracking Problems in Lane Departure Warning Systems 299

This iteration is initialized with 0ˆ 0x , and the covariance matrix 0̂P is suitably chosen.
It should be noted that the Kalman filter may give erroneous results in the presence of outliers, a

common situation in many practical applications. One thus needs to test every prediction to deter-
mine if it deviates significantly from what would be nominally expected in light of recent estimates.
If this happens, the object in question is probably partially or completely hidden. A simple solution
is to assume that the object exhibits the same motion and to wait for it to reappear in a future frame.

It is also prudent to store in the computer memory multiple candidate locations for a future frame,
so that the object can be easily reidentified in case it reappears in an unexpected location.

11.4 Implementation of an LD and LT Algorithm

This section presents an algorithmic implementation based on the previously described tech-
niques for LD and LT that are similar to methods commonly present in today’s commercial LDWSs.
It uses images of the roadway directly acquired from a simulated road‐facing camera. Preprocessing
includes corrections for brightness and contrast. The lane departure warning is accomplished by
the analysis of the suitably angled lines representing the lane stripes within the image and through
appropriate thresholds determined experimentally. These methods do not provide an actual meas-
urement in meters of the vehicle position within the lane. Rather, a warning (simulating the
 presence of “rumble stripes”) is issued if the vehicle is excessively close to the lane stripes. The
algorithm uses the Hough transform for LD and the Kalman filter for LT. The whole process is
depicted in Figure 11.16.

Lane Detection

The identification of the lane stripes is obtained by extracting the contours of the scanned image with
the Sobel operator and seeking two local maxima of the Hough transformed binary image that
 provide optimal estimates ρ and θ for the two lane boundaries.

Lane detection

Image
acquisition

Image
preprocessing

Sobel edge
detection

Lane tracking

Kalman
filter

Hough
transform

Local maxima
search

Line fitting

Figure 11.16 Algorithm implementation for
lane detection and tracking.

Computer Vision and Imaging in Intelligent Transportation Systems300

Lane Tracking

A Kalman filter is used to predict and track the values of ρ and θ along consecutive frames. The
details are

x Ax w
z Hx v

k k k

k k k

1 1
 (11.25)

with

x A H
T

, ,

1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1

1 0 0 0
0 1 0 0 .

 (11.26)

The terms w and v denote zero‐mean white noise signals with covariance matrices Q and R,
respectively.

The state estimates are given by Equations 11.20–11.24. The estimates ˆˆ ,]ˆ[z represent the
 current parameters of the lane stripe achieved by the algorithm.

11.4.1 Simulations

This section reports simulations undertaken for performance assessment. The simulations aim at
evaluating the ability of the proposed method to identify the correct position of the lane stripes.

The algorithm has been coded in MATLAB/Simulink and tested in the CarSim simulation frame-
work. The analysis of the algorithms has been performed on a relevant driving scenario generated by
CarSim. For assessment purposes, the accuracy of the identification of the lane stripes position and
their inclination θ within the images was analyzed. Each measure was compared with the true value
provided by the software simulator.

11.4.2 Test Driving Scenario

To test the algorithm under realistic scenarios, it is necessary to know instant by instant the position
of the vehicle within the lane. The software simulator CarSim 8, produced by Mechanic Simulation,
is a software package for the dynamic simulation of vehicles. It allows the use of virtual cameras,
produces three‐dimensional animations, and allows the analysis of the behavior of a vehicle sub-
jected to certain control inputs. The dynamical model of the cars consists of a number of nonlinear
differential equations and more than 150 datasets from which to choose the model parameters to use
in the current run, enabling very realistic vehicle behavior. The maneuvers described later were
 carried out on a straight roadway 1200 m long. The road is 4 m wide and consists of two lanes, one
for each direction of traveling. The road centerline in Figure 11.17 (vehicle position) is the x‐axis, and
that figure depicts the vehicle position along the time in the two lanes, where the right lane has
 negative ordinate values while positive values are those corresponding to the left lane.

11.4.3 Driving Scenario: Lane Departures at Increasing Longitudinal Speed

The vehicle repeatedly executes a series of lane changes (Figure 11.17a), moving from the center of
the right lane (2 []m) to the middle of the left lane (2 [m]) at increasing longitudinal speed as shown

Lane Detection and Tracking Problems in Lane Departure Warning Systems 301

Figure 11.17 Driving scenario: (a) vehicle position, (b) longitudinal speed, (c) lateral speed, (d) longitudinal
acceleration, and (e) lateral acceleration.

0 5 10 15 20 25 30 35 40 45
–4

–3

–2

–1

0

1

2

3

4

(s)

0 5 10 15 20 25 30 35 40 45
0

5

10

15

20

25

30

35

40

45

50
Longitudinal velocity

(s)

(m
/s

)

Distance from road centerline
(a) (b)

(m
)

0 5 10 15 20 25 30 35 40 45
–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1
Lateral velocity

(c) (d)

(e)

(s)

(m
/s

)

0 5 10 15 20 25 30 35 40 45
–0.5

0

0.5

1

1.5

2

2.5

3
Longitudinal acceleration

(s)

(s)

(m
/s

2)

(m
/s

2)

0 5 10 15 20 25 30 35 40 45
–8

–6

–4

–2

0

2

4

6
Lateral acceleration

Computer Vision and Imaging in Intelligent Transportation Systems302

in Figure 11.17b. The longitudinal and lateral accelerations of the vehicle (along the x and y axes,
respectively) are depicted in Figure 11.17d and e.

11.4.4 The Proposed Algorithm

Figure 11.18 depicts the orientation of the right and left lane stripes during the simulations. Note that
the proposed algorithm performs the LT with a Kalman filter.

The tracking of the lines is indeed accurate. Between two consecutive lane changes, the error is
<1 %. On the contrary, in correspondence of lane changes, the Kalman filter is reset and the error
reaches peaks of 100 % because the stripes identification process restarts from scratch. The difficulty
in reidentifying a stripe is increasingly greater with the increase in the longitudinal and lateral speeds
of the vehicle.

0 10 20 30 40
–100

–50

0

50
(a)

(b)

θ r
ig

ht
 (

de
g)

θ le
ft

(d
eg

)
θ r

ig
ht

 e
rr

or
 (

%
)

θ le
ft

er
ro

r
(%

)

0 10 20 30 40
–50

0

50

100

Time (s)

Time (s)

θr est
θr true

θl est
θl true

0 5 10 15 20 25 30 35 40
−300

−200

−100

0

100

0 5 10 15 20 25 30 35 40
−300

−200

−100

0

100

Figure 11.18 Orientation of the right and left lane stripes.

Lane Detection and Tracking Problems in Lane Departure Warning Systems 303

11.4.5 Conclusions

The simulations allow one to draw the following conclusions. In the driving scenario taken into
 consideration, the proposed algorithm shows a considerable capability of achieving good LD and LT
performance, both in terms of estimation accuracy and robustness again noise and model imperfec-
tions. The use of the Kalman filter for LT is probably the main reason for this success. For this
 algorithm, the best results were achieved at constant driving speed (figures not reported here for
brevity), whereas a slightly greater difficulty in tracking the lane stripes was observed in the scenario
where driving speed was increasing. At constant driving speed (50 kmph) scenario (simulations not
reported for brevity), the average error on the estimation of the stripes orientation θ is lower than
1 %, with a maximum of 100 150% . On the contrary, under the considered increasing driving speed
scenario, an average relative error on θ of 1 2 1 8. . % were observed in the simulations, with a
 maximum of 100 200% .

 References

 1 TRaffic Accident Causation in Europe (TRACE Project) 2007 Review of crash effectiveness of
Intelligent Transport Systems’ 2007—Lane Departure Warning and Control, http://www.trace‐
project.org/ (accessed on September 20, 2016).

 2 McCall J.C. and Trivedi M. 2006 Video‐based lane estimation and tracking for driver assistance:
Survey, system and evaluation. IEEE Transactions on Intelligent Transportation Systems, 7(1), 20–37.

 3 Lee J.W. 2002 A machine vision system for lane‐departure detection. Computer Vision and Image
Understanding, 86, 52–78.

 4 Godthelp H., Milgram P., and Blaauw G.J. 1984 The development of a time‐related measure to
describe driver strategy. Human Factors, 26, 257–268.

 5 Gonzalez R.C. and Woods R.E. 2007 Digital Image Processing, 3rd Ed. Upper Saddle River: Prentice Hall.
 6 Muthukrishnan R. and Radha M. 2011 Edge detection techniques for image segmentation.

International Journal of Computer Science and Information Technology (IJCSIT), 3(6), 259–267.
 7 Marr D. and Hildreth E. 1980 Theory of edge detection. Proceedings of the Royal Society of London,

Series B: Biological Sciences, 207(1167), 187–217.
 8 Marr D. 1982 Vision: A Computational Investigation into the Human Representation and Processing

of Visual Information. New York: W.H. Freeman.
 9 Gunn S.R. 1999 On the discrete representation of the Laplacian of Gaussian. Pattern Recognition, 32,

1463–1472.
 10 Canny J.F. 1986 A computational approach to edge detection. IEEE Transaction on Pattern Analysis

and Machine Intelligence, 8(6), 679–698.
 11 Pratt W.K. 1978 Digital Image Processing. New York: Wiley‐Interscience.
 12 Duda, R.O. and Hart P.E. 1972 Use of the Hough transformation to detect lines and curves in

pictures. Communications of the ACM, 15(1), 11–15.
 13 Jung C.R. and Kelber C.R. 2005 A lane departure warning system based on a linear‐parabolic lane

model. XVIII Brazilian Symposium on Computer Graphics and Image Processing, Natal, Rio Grande
do Norte, Brazil, October 9–12, 2005.

 14 Lee J.W. and Yi U.K. 2005 A lane‐departure identification based on LBPE, Hough transform, and
linear regression. Computer Vision and Image Understanding, 99, 359–383.

 15 Voisin V., Avila M., Emile B., Begot S., and Bardet J.C. 2005 Road markings detection and tracking
using Hough transform and Kalman filter. Advanced Concepts for Intelligent Vision Systems, 3708, 76–83.

305

Computer Vision and Imaging in Intelligent Transportation Systems, First Edition.
Edited by Robert P. Loce, Raja Bala and Mohan Trivedi.
© 2017 John Wiley & Sons Ltd. Published 2017 by John Wiley & Sons Ltd.
Companion website: www.wiley.com/go/loce/ComputerVisionandImaginginITS

12.1 Introduction

In recent years, there has been a significant increase in the number of the embedded electronic
 processors in automobiles. For example, according to Chakraborty et al. [1], the prorated cost of
incorporating these embedded systems has increased from 1% in 1980 to over 22% in 2007; this
 percentage is continuously increasing, which has also increased the complexity of the software
 interactions exponentially [2]. The presence of such systems directly impacts the overall power
 consumption, which is especially critical in present times when the automotive industry is moving
toward battery‐powered hybrid and electric vehicles.

Among the different embedded subsystems, vision‐based advanced driver assistance systems (ADAS)
are becoming more popular in recent times because of the availability of low‐cost, high‐resolution, and
pervasive cameras [3]. Figure 12.1 shows some vision‐based ADAS that are being actively researched.
Such ADAS have two levels of processing. The first level of processing is pixel‐level processing where
visual data (pixels) is analyzed to extract features. Operations include filtering, edge detection, and
enhancements. This can be accomplished by single instruction, multiple data (SIMD) type of data pro-
cessing architectures. The complexity of such processing is directly proportional to the amount of
image data that is being processed. The second level of processing is termed “higher order processing.”
This does not involve visual data directly. Instead, features that are extracted from the visual data are
analyzed for different operations. Such features include edges, histograms of gradients, and gradient
magnitudes. Considering that the features can be varied and not uniformly distributed, SIMD process-
ing will no longer be applicable for this data. Therefore, multiple instruction, multiple data (MIMD)
processing is employed. The computational complexity of such tasks is proportional to the complexity
of the operations that are being employed to process the data.

In order to meet the increasing demand in vision‐based ADAS, manufacturers such as Texas
Instruments, etc., are releasing newer embedded platforms that are specifically catered for imple-
menting vision algorithms in automobiles [4]. Although such platforms do provide an advantage over
conventional processors and hardware systems, the efficiency (both power and real‐time operation)
are constrained by the implementation of the constituent vision algorithms [5, 6].

12

Vision‐Based Integrated Techniques for Collision
Avoidance Systems
Ravi Satzoda and Mohan Trivedi

University of California, San Diego, CA, USA

Computer Vision and Imaging in Intelligent Transportation Systems306

Various computer vision algorithms have been explored for ADAS tasks such as detection of lanes,
vehicles, and pedestrians in Refs. [7, 8], wherein various feature extraction methods, classification
techniques, and tracking methods have been proposed for improving accuracy. While robustness is
critical in such vision‐based active safety systems, exporting such data‐intensive algorithms on embed-
ded platforms is still a challenging task [5, 9]. Although implementations such as lane detection in
Refs. [10, 11] demonstrate the realization of ADAS algorithms on embedded platforms, designing the
algorithm itself to cater to more efficient embedded realizations is less explored in the current litera-
ture [6, 9, 11, 12]. For example, consider the illustration in Figure 12.2, which shows an example of
multiscale sliding window approach for vehicle detection such as in Refs. [7, 13, 14]. There are a num-
ber of such techniques in the literature [15, 16]; however, false‐positive windows such as those shown
in Figure 12.2 are commonly found during the vehicle detection phase in Ref. [7]. Such techniques
require additional computational steps such as tracking to further eliminate the false positives.

In this chapter, we propose an integrated approach called efficient lane and vehicle detection using
integrated synergies (ELVIS) that incorporates the lane information to detect vehicles more efficiently

Lane departure warning
Pixel-level

processing

High-order
processing

Collision avoidance

Vision-based
active safety

systems

Driver drowsiness
detection

Driver drowsiness
detection

Blind spot
monitoring

Data intensive

Feature centric
MMID processingComputationalcomplexity and numberof features high-ordertasks

SIMD processing
Computationalcomplexity and amountof image data

Figure 12.1 Vision‐based driver assistance systems (images courtesy google.com).

Multiscale
sliding
window
vehicle

detection

Figure 12.2 Lane and vehicle detection techniques when seen in isolation.

Vision-Based Integrated Techniques for Collision Avoidance Systems 307

in an informed manner using a novel two‐part‐based vehicle detection technique. The vehicle detec-
tion outputs are further used in ELVIS to improve the efficiency of the lane feature extraction process.
We will also present detailed evaluations that show significant gains in computational efficiency
using ELVIS, without compromising on accuracy of both lane and vehicle detection.

12.2 Related Work

In this section, we present a brief survey of some related works. A survey of existing literature shows
a number of techniques that are separately described for lane and vehicle detection. A detailed sur-
vey of recent lane detection methods is presented in Refs. [16, 17]. Most of these lane detection
techniques employ different kinds of filters such as Sobel edge detection kernels, steerable filters
[17], and Gabor filters on the entire input frame (or below the horizon or vanishing line) to extract
lane features. The lane features are further processed and tracked using techniques such as random
sample consensus (RANSAC) [17] and Kalman filtering [18]. Computational efficiency of such esti-
mation methods has been less addressed in most of the aforementioned works, but techniques such
as those in Refs. [9, 11] and the hardware implementation in Ref. [10] present lane detection methods
that are realizable on embedded platforms. The main challenge in such techniques is the robust
extraction of lane features, and presence of features in the region of interest such as shadows and
vehicles introduces incorrect lane features that affect the overall accuracy of lane estimation.
Therefore, the focus is on extracting more accurate features, which increases the accuracy as well as
the computational cost.

On‐road vehicle detection has been extensively investigated in Ref. [19]. Various kinds of features
such as histogram of oriented gradient (HOG) [8] and Haar‐like features [20] have been explored in
multiple studies. As shown in Figure 12.2, the features are computed using a sliding window approach
that is applied on multiple scales in order to detect vehicles of varying sizes. The features are then
sent for classification using support vector machines (SVMs) [21] and cascaded classifiers [20].
Different variants of such classification methods have been proposed, and the primary challenge
such methods face is the variation in the road scene that leads to false detections as shown in
Figure 12.2. In order to improve the accuracy, either the number of features is increased or changed,
or the classifier is made more robust. However, most existing reliable vehicle detection techniques do
not inherently address computational complexity at the algorithmic level, although hardware realiza-
tions such as [22] present hardware architectures for generic object detection including vehicles
using Haar‐like features and AdaBoost classifiers.

12.3 Context Definition for Integrated Approach

In this section, we will define the context under which the proposed integrated approach will func-
tion. Furthermore, we will show that the proposed context caters to most ADAS applications that
involve detection of lanes and vehicles. First, we set the scope of the study presented in the chapter
and limit to highways and marked urban roads, that is, roads that have lane markings, which form
one of the major segment of existing techniques for ADAS. Now, let us look into the requirements
of most commonly researched and deployed ADAS applications in the context of lane and vehicle
detection. Based on commercial products that are available (or being developed), and academic
 literature such as Refs. [3, 23], we present a list of the most commonly researched ADAS appli-
cations involving detection of lanes and vehicles in Table 12.1. For each ADAS application, the

Computer Vision and Imaging in Intelligent Transportation Systems308

 specific requirements of the lane and vehicle detection modules are listed in separate columns in
Table 12.1. In some applications, while both lanes and vehicles are required, some applications need
lanes only.

In all the applications listed in Table 12.1, the following can be deduced:

1) The nearest vehicles to the ego‐vehicle pose the highest risk, and hence they must be detected.
2) Detection of lanes till the nearest vehicles in the lanes is critical for most ADAS applications.

The first item is self‐explanatory from the kind of ADAS application and its specification listed in
Table 12.1. The second item needs further elaboration. In applications such as lane departure warn-
ing and lane‐level micro navigation, lanes that are closest to the host vehicle are sufficient [24]. Other
applications such as lane change assistance require the detection of lanes in deeper field of view of
the host vehicle. However, the primary area of interest in such applications is limited by the leading
vehicles in front of the ego‐vehicle. Therefore, the nearest vehicles can define the region of interest
in which the lane detection needs to be performed.

Based on these observations, we define the context as the detection of the nearest vehicles to
the ego‐vehicle, which are leading or approaching the ego‐vehicle in the host and adjacent lanes.
The listing in Table 12.1 shows that the proposed context of lane and vehicle detection caters to
all the ADAS applications of interest. In Section 1.4, the proposed integrated approach exploits
the context about the vehicles and lanes to detect them robustly in more computationally
 efficient manner.

12.4 ELVIS: Proposed Integrated Approach

In this section, we will first propose the vehicle detection component of ELVIS, followed by the lane
feature extraction method that benefits from vehicle detection.

Table 12.1 Significance of lanes and vehicles in related ADAS applications.

ADAS application Lanes Vehicles

Lane departure warning Host lane —
Lane change assistance Host and neighbor lanes Nearest vehicles in host and

neighbor lanes
Collision avoidance Host lane Nearest leading vehicle
Proximity estimation Host and neighbor lanes Nearest vehicles in host and

neighbor lanes
Lane change intent
prediction

Host and neighbor lanes Nearest vehicles in host and
neighbor lanes

Blind spot monitoring Lanes in blind spots Nearest vehicles from rear and blind spots
Merge assist Neighbor lanes in front, rear,

and blind spots
Nearest vehicles in front, rear, and
blind spots

Lane‐level micro navigation Multiple lane detection —
Leading vehicles intent
prediction

Host and neighbor lanes Nearest vehicles in host and
neighbor lanes

Vision-Based Integrated Techniques for Collision Avoidance Systems 309

12.4.1 Vehicle Detection Using Lane Information

Let us consider a typical road scene as shown in Figure 12.3. Conventional classifier‐based vehicle
detection techniques apply a sliding window of multiple scales (or the image is scaled keeping the
size of the window same) across the input frame as shown in Figure 12.3a to detect vehicles of mul-
tiple sizes. Although such techniques exhaustively look for vehicles, they also result in false positives
and can be computationally overwhelming for embedded realization with a few hundreds of thou-
sands of windows for processing. There is an additional computational overhead for eliminating false
positives using tracking, the cost of which increases with higher number of false‐positive windows.

In ELVIS, we consider the following observations about on‐road vehicle detection. The on‐road
vehicles appear in an orderly manner along the road surface, with sizes that are changing in an orderly
way, especially in highway and urban driving. Therefore, as shown in Figure 12.3b, if the image is
scanned along the road surface, the vehicles that appear first in the direction of the road will appear
bigger than the vehicles that appear later.

In the proposed method, we use the lane information and the contextual information described
before to detect the vehicles in an informed manner. The first part of the proposed method is a one‐
time process to generate a lookup table (LUT) of the positions and sizes of the windows which should
be used to detect the vehicles. In order to do this, we use the inverse perspective mapping (IPM) of
the image, which can be readily derived based on the camera calibration [25]. Considering that IPM
generation is an integral part of most lane detection methods such as in Refs. [9, 17, 25, 26], it will be
reused for lane detection in ELVIS later.

Figure 12.4 illustrates the LUT generation process. Given an input image I, the IPM image IW is
generated using the homography matrix H [25]. Therefore, every point P(x, y) in I is transformed to
Pw in IW using H, that is,

x y k x yw w
T T

1 1H , (12.1)

where k is the calibration constant. Therefore, the four points P1 to P4 in Figure 12.4 in the image
domain correspond to the minimas and maximas in the IPM domain along the x yw w coordinates.
The following parameters for each row IW are determined: (i) the start position of road surface in the

(a) (b)

Figure 12.3 (a) Sliding window of multiple sizes used across the image and (b) relationship between sliding window
and the position of the leading vehicles.

Computer Vision and Imaging in Intelligent Transportation Systems310

row, that is, P1W (Figure 12.4);, (ii) the end position of the road surface P2W; and (iii) point P3W such
that P P wW W V

W
3 1 , where wV

W is the width of the vehicle as can be seen from the top view.
Considering most consumer vehicles usually have a standard axle length, wV

W can be predetermined.
Given P1W, P2W, and P3W, we use the inverse of H, that is, H 1 to determine the corresponding points
P1, P2, and P3 in the image domain. For each row index y in I, we now have the following:

x x x x w x xmin max V1 2 3 1, , . (12.2)

Here, wV is the width of the window that should be used for vehicle detection in the yth row of I, and
xmin and xmax are the minimum and maximum indices along the x‐axis in I where the windows will be
processed. The height hV of the window was set to 1/1.2 times wV, which was found suitable to detect
most consumer vehicles. An LUT is generated with these variables for each row of the input image I.
Therefore, unlike the conventional way of running the sliding window all over the image, we now
have a defined search space and specific scales of the window for every row in the LUT to detect the
vehicles.

In addition to the LUT generation, we will now propose a two‐part‐based vehicle detection scheme
in ELVIS that incorporates the next contextual information about vehicles moving in the road scene.
In an ADAS application that requires on‐road vehicle detection such as collision avoidance or lane
change assistance, it is evident that the vehicles are moving on the road surface. Therefore, the win-
dows are applied in the direction of the decreasing y‐coordinate (referring to the axes in Figure 12.4),
that is, from the front of the host‐vehicle toward the vanishing line. Next, the window IV is divided

P′1

P′3 P′4

P1W

yw

xw
x

y I

wW
v P3W

P2W

P′2

Generate
IPM

LUT of
window

sizes and
positions

Transform
to

image
domain

Set window
sizes and max-

min limits on
x–y

Figure 12.4 Generating the LUT of windows and positions using lane and IPM information.

Vision-Based Integrated Techniques for Collision Avoidance Systems 311

into two parts P1 and P2 such that if the window is placed on the vehicle, they capture the two parts
of the vehicle as shown in Figure 12.5. For an M N (rows by columns) sized image patch IV, P1 and
P2 are defined as follows:

P I P I1 V 2 V1 2
3

1 2
3

1: , : : , : .M N M M N (12.3)

In ELVIS, we first detect the presence of lower part of the vehicle, that is, P2 because while traversing
along the road, the lower part is expected to be seen first. The HOG feature [8] of part P2 in IV
denoted as h2 is computed first, and it is classified using SVM classifier for P2. If the classification of
the lower part is positive, then HOG feature h1 for P1 is computed and classified using the SVM clas-
sifier for P1. The classifier scores from the SVMs of parts P1 and P2 are used in the following way to
give the final classification result:

IV x y p x y p x y T, vehicle if , , p1 2 . (12.4)

Here, p1 and p2 are the probability scores of the SVMs for parts P1 and P2, respectively, and Tp is the
threshold for overall classification score. Nonmaximal suppression is applied to remove overlapping
windows.

P2: HOG
feature

generation

P2

P1

P1: HOG
feature

generation

P2: SVM
classi�er

P1: SVM
classi�er

Found P2
?

h1

h2

Y

N

Combined
classi�cation

score
Next window

Figure 12.5 Two‐part‐based vehicle detection method in ELVIS.

Computer Vision and Imaging in Intelligent Transportation Systems312

12.4.2 Improving Lane Detection using On‐Road Vehicle Information

In this section, the performance of lane detection is improved using the results obtained from the
vehicle detection algorithm. For most ADAS applications, such as lane departure warning, lane change
assistance, and collision avoidance, lanes are required to either localize the ego‐vehicle in the lane or
to maneuver the ego‐vehicle between the host lane and the adjacent lanes. Therefore, if there is a lead-
ing vehicle in front of the ego‐vehicle, detecting the lanes between the two vehicles is sufficient. Also,
the presence of a leading vehicle obstructs the view in front of the ego‐vehicle and lanes are not visible
in the image plane resulting in false lane features that affect the accuracy of lane estimation [18]. We
propose to use the positions of the vehicles that were determined by the proposed vehicle detection
scheme in ELVIS to determine the regions in the input image where the lanes must be detected.

We demonstrate this using one of the recently proposed lane detection methods [9, 24] called
lane analysis using selective regions (LASer). In this chapter, we limit the scope of the proposed
lane detection approach to the host lane detection for the sake of explanation. Also, LASeR algo-
rithm in Ref. [9] is designed for host lane detection, which will be used to demonstrate the proposed
integrated method. In LASeR, NB number of scan bands at positions Y yj

B along the yw axis of
the IPM image are processed where B1 j N . The bands are shown in Figure 12.6 where the band
closest to the ego‐vehicle is indexed as 1. Given that we have the positions of the vehicles at
PV(xV, yV) in the image domain I from ELVIS, we find their positions in the IPM domain using (12.1)
to get P x yW

V
W
V

W
V, , that is, P k PW

V VH . Therefore, with the leading vehicle at yW
V , the index of the

maximum band along yW axis in the IPM image that must be processed in LASeR is computed
using the following equation:

Generate
IPM

Vehicle
detection

Vehicle pos. PV

yw

xw

B5

B4

B3

B2

B1

Lane positions Lane feature extraction
using LASeR

Find max. band
position Nmax

Figure 12.6 Improving lane feature extraction using vehicle positions.

Vision-Based Integrated Techniques for Collision Avoidance Systems 313

N y y
j

W
V

j
Bmax argmax . (12.5)

Referring to Figure 12.6, the conventional LASeR algorithm would have processed all the five scan
bands shown in the IPM image in Figure 12.6. Due to the presence of vehicles in bands B4 and B5,
false lane features could be generated. However, the integration of the vehicle detection method into
the lane detection process allows choosing N max 3 bands, which are processed by the next steps of
LASeR algorithm. We will demonstrate the advantages of the proposed integration between lane and
vehicle detection in terms of computational complexity and accuracy in Section 12.5.

12.5 Performance Evaluation

12.5.1 Vehicle Detection in ELVIS

12.5.1.1 Accuracy Analysis
The accuracy analysis setup involved a training set comprising 1700 positive samples and 2500 nega-
tive samples. Each subimage was divided into two parts as shown in Figure 12.5, and two different
classifiers were trained using the two sets of training samples. The testing of the proposed vehicle
detection component in ELVIS was performed using three different datasets that do not contain any
of the training samples—Caltech 1999 (126 images), LISA dataset 2 (300 images), and LISA dataset
3 (300 images) [7]. We use the following metrics described in Ref. [7] for evaluating and comparing
accuracy with results in Ref. [7]:

True positive rate TPR
True detections

Total number of vehicles

Faalse detection rate FDR
False positives

True detection False poositives

Average FP frame
False positives

Total number of images
/

AAverage TP frame
True positives

Total number of images
/

 (12.6)

Figure 12.7 plots the receiver operating curves (ROCs) showing the TPR versus FDR on applying
ELVIS to the three datasets. It can be seen that the proposed two‐part‐based method performs well
with the Caltech dataset giving over 90% TPR for <5% of false detection rate. Coming to the LISA 2
dataset, the proposed method detected the single vehicle in all cases giving 100% true positive rates
for all data points considered. In LISA 3 dataset, ELVIS gives over 95% TPR for <10% FDR.

Table 12.2 compares the measures for the four different metrics and three different datasets
between the two‐part‐based vehicle detection technique in ELVIS and the passive learning AdaBoost‐
based classifier in Ref. [7]. It can be seen that in most cases the proposed method gives at least 1–2%
better TPRs with more than 15% lower FDRs as compared to Ref. [7]. The lower FDRs in the proposed
method can be explained by the fact that the two‐part‐based method has a self‐check mechanism in
allowing positives. In other words, a subimage is considered positive if and only if both parts (P1 and
P2) give a high classification score for the vehicle parts. This is however missing in conventional

Computer Vision and Imaging in Intelligent Transportation Systems314

non‐part‐based method such as in Ref. [7]. Additionally, the use of IPM and the lane information to
determine the region of interest for vehicle detection also removes false positives due to features
outside the road area. It should also be noted that the figures in Table 12.2 for Ref. [7] involves track-
ing for LISA 2 and 3 datasets, whereas we have reported detection rates for ELVIS without tracking.
We can see that FPs/frame have reduced by 2–3 times in ELVIS, which implies that tracking will be
more effective in reducing the false positives further. Figure 12.8 shows the detection of fully visible
vehicles on sample images from different datasets that were evaluated in Table 12.2.

12.5.1.2 Computational Efficiency
In order to compare the computational efficiency of the proposed vehicle detection method in ELVIS
against variants of existing sliding window–based techniques, the following assumptions are made.
First, the evaluation is performed for feature extraction and classification steps only, and the cost of
peripheral steps such as nonmaximal suppression and tracking is assumed the same for all methods.
Next, all techniques are assumed to use the same kinds of feature vectors and classifiers. It is to be
noted that ELVIS can be implemented using different combinations of the types of feature vectors
and classifiers. Therefore, the computational cost is evaluated based on the number of windows that
are processed in each method. Also, it is to be noted, unlike computation time which is platform‐ and

0
0 0.2

T
ru

e
po

si
tiv

e
ra

te

0.4 0.6

False detection rate

0.8 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Caltech 1999
LISA 3
LISA 2

Figure 12.7 ROCs for detecting fully visible
vehicles using the proposed two‐part‐based
method.

Table 12.2 Comparison between ELVIS and Alvert.

TPR (%) FDR (%) TP/frame FP/frame

Caltech ’99 [7] 85 5 NA NA
LISA 2 [7] 83.5 79.7 1 4
LISA 3 [7] 98.1 45.8 3.16 2.7
ELVIS–Caltech ’99 95 7 0.95 0.07
ELVIS–LISA 2 100 53.1 1 1.13
ELVIS–LISA 3 97.5 26.7 2.92 1.06

Source: Sivaraman and Trivedi [7]. Reproduced with permission of IEEE.

Vision-Based Integrated Techniques for Collision Avoidance Systems 315

implementation‐dependent itself, that computational cost is a more generic metric to compare dif-
ferent techniques. Computation cost can also be directly translated to computation time if required.

Let us first look at the computation cost of existing recent techniques such as in Refs. [7, 13]. In
such methods, a sliding window of multiple scales is traversed all over the image to detect vehicles in
every frame. Therefore, considering an m n (rows by columns) sized image frame I, if the window
slides over every sm and sn pixels along the rows and columns, respectively, the total number of
 windows that will be processed in existing methods is equal to

C n m n
s sm n

1 s , (12.7)

where ns is the number of scales that are used for detection.
In the proposed method, the scale of the window for each row in the image frame, and the start and

end positions to slide the window in each row are determined by the formulations shown in Equations
12.1 and 12.2. Therefore, the total number of windows which is equivalent to the computational cost
C2 of the proposed method is equal to

C
x x

sj

y
s

s j s j

n

m
m

2
0

1
1 1

max
max min

m , (12.8)

where xmax and xmin are the maximum and minimum x‐coordinates in the image plane for the s jm 1
th row. Equation 12.8 is the summation of the number of windows for each row in the image plane

Figure 12.8 Sample results of vehicle detection in ELVIS.

Computer Vision and Imaging in Intelligent Transportation Systems316

and within ymaxth and ymaxth rows of the image where the step size of window traversal is sm and sn
pixels along the rows and columns, respectively. It is to be noted that the number of scales ns is not a
factor in C2. Additionally, Equation 12.8 gives the worst‐case scenario for the proposed method
because (12.8) assumes that the entire window is processed throughout the image. However, as
 discussed in Section 12.4, we process one‐third of the window first, and the next two‐third of the
window is processed only if the lower part is detected.

Figure 12.9 shows the comparison of total computation cost in terms of the number of windows for
four different types of methods. In order to compute the results in Figure 12.9, m 720 , n 1280 ,
ns 10 , sm 1 , and sn 3 are considered. The first two methods (methods 1 and 2 on the x‐axis of
Figure 12.9) refer to the conventional sliding window–based methods such as Ref. [7]. Method 2
refers to approaches where no knowledge of the region of interest is considered and the windows are
applied on the entire image. In method 1, we assume that the vanishing line is available. We consider
ymax 682 and ymin 382 for the results shown in Figure 12.9, which are derived from some of the

test cases we considered during evaluation. Method 3 and 4 refer to the proposed method. As dis-
cussed previously, we are assuming the worst case in Method 3 by considering both parts P1 and P2
of all windows are computed. In Method 4, we consider 10% of the windows only for processing both
parts, whereas the remaining 90% are processed for the lower part only (10% is significantly higher
than the actual percentage we observed during our evaluation). Also, for Methods 3 and 4, we con-
sider the same region of interest as in Method 1 in terms of y‐axis. The x‐axis limits are determined
by the proposed LUT generation step. Figure 12.9 shows that the proposed method involves only
1/10th the number of computations as compared to 1 and 2. When the part‐based computations are
also accounted in Method 4, we see that the computations are further reduced. With such significant
savings in computations, ELVIS is more suitable for embedded realization.

12.5.2 Lane Detection in ELVIS

In this section, we evaluate the performance of lane feature extraction step in ELVIS. Figure 12.10
shows sample results of a sequence on which the conventional LASeR algorithm and ELVIS are
applied. From the first column of Figure 12.10, it can be seen that the LASeR algorithm tries to detect
lane features beyond the obstructing lead vehicle in the ego‐lane. In such scenarios, the leading vehi-
cle tends to introduce features that are often mistaken for lane features. It can be seen that the lanes
are estimated as curving at the far end of the field of view. Therefore, in the presence of an obstruct-
ing vehicle, the lane features that are detected by LASeR are not credible enough to extend the lanes

1.E+07

1.E+06

1.E+05

1.E+04

1.E+03

1.E+02

1.E+01

1.E+00
1

N
um

be
r

of
 w

in
do

w
s

in
 lo

g1
0

sc
al

e

2 3 4

Vehicle detection methods

Figure 12.9 Comparison of
computation costs in terms of number
of windows (in log scale) on the y‐axis
and the following different techniques
on the x‐axis: (1) sliding window
approach such as [7] bound by ymax
and ymin, (2) sliding window approach
on the entire image [7], (3) proposed
method considering both parts of all
windows are computed, and (4)
proposed method considering both
parts are computed for 10% of the
total windows. Source: Sivaraman and
Trivedi [7]. Reproduced with
permission of IEEE.

Vision-Based Integrated Techniques for Collision Avoidance Systems 317

beyond the leading vehicle. Such observation about false lane features was also reported about other
lane detection methods [18].

The second column in Figure 12.10 shows the lane detection results from ELVIS, wherein the lanes
are detected till the position of the leading vehicle. It can be seen that the features of the vehicles do

Sequence from conventional LASeR Sequence from ELVIS

Figure 12.10 The first column shows lane detection on a sequence using the conventional LASeR algorithm. The
second column shows the results of lane detection using the proposed integrated approach.

Computer Vision and Imaging in Intelligent Transportation Systems318

not interfere in the process of lane detection. It can be argued that the lanes are not being detected in
the full field of view. It should be noted that in most ADAS applications, detecting the lanes between
the ego‐vehicle and the leading vehicle (if present) is more critical and necessary. If there is a require-
ment to detect the lanes beyond the obstructing vehicle, it is more accurate to extrapolate the lanes
from existing lanes rather than depending on the lane features that are not visible due to obstructing
vehicles. We compare the accuracy of lane estimation using lane position deviation (LPD) metric,
which computes the average error between the positions of the lanes in ground truth and those esti-
mated by a lane detection algorithm [24] for every frame. Table 12.3 shows the mean, standard devia-
tion, and maximum absolute LPDs for the right lane from a set of 200 frames of the sequence shown
in Figure 12.10. In the case of ground truth marking and ELVIS algorithm, if the lane markings are not
visible due to the leading vehicle, the lanes are extrapolated as a tangent till the maximum y‐coordi-
nate that is used by conventional LASeR. It can be seen that the lanes estimated by ELVIS are more
aligned with the ground truth. In a similar manner, the vehicles detected in the image scene can also
be used to eliminate false lane features that are detected due to vehicles in neighboring lanes.

Let us now consider computational efficiency. If we consider ADAS applications that involve both
lane and vehicle detection tasks, it can be seen that the proposed ELVIS will be computationally
more efficient than LASeR. Considering that the number of bands changes dynamically based on the
presence or absence of the leading vehicles in ELVIS, the computational cost can be compared based
on a given test sequence. Using the formulation of computation cost for LASeR from Ref. [9], the cost
in LASeR is equivalent to C N w hL B B B1 where each band is wB pixels wide and hB pixels high. In
other IPM‐based lane detection algorithms such as in Ref. [17], the cost is given by C w yW

L B max2 ,
where yW

max is the height of the IPM image [9]. However, in ELVIS, the average computational cost
per frame for detecting lanes is given by

C
N

N w h
f j

N

j

f

L
max

B B3
1

1 (12.9)

For the test sequence that is evaluated in the chapter, Table 12.4 lists the average computational cost
per frame. It is assumed that the lane detection is being performed for applications that employ vehi-
cle detection also; therefore, the cost of vehicle detection is assumed to be the same for all methods.
It can be seen that for the sequence considered, the ELVIS gives an average computation cost savings

Table 12.3 Comparison of lane position deviation (LPD) metric between ELVIS and LASeR.

Method Mean absolute LPD (pixels) Stan. dev. of absolute LPD (pixels) Maximum absolute LPD (pixels)

ELVIS 8.3 3.3 18.7
LASeR [9] 9.3 3.3 19.1

Source: Satzoda and Trivedi [9]. Reproduced with permission of IEEE.

Table 12.4 Comparison of computational cost per frame for lane detection.

VioLET 2006 [17] LASeR 2013 [9]

This work 2014

Average Worst case

300,000 50,000 32,500 50,000

Vision-Based Integrated Techniques for Collision Avoidance Systems 319

of nearly 35% as compared to LASeR and reduces the cost of the conventional lane detection method
such as VioLET by at least 90%. The worst‐case computation cost of the proposed approach is maxi-
mum when there are no leading vehicles and all bands in LASeR are processed. Therefore, the worst‐
case average computation cost of the integrated approach will never be more than conventional LASeR.

12.6 Concluding Remarks

In the chapter, a novel integrated approach called “ELVIS” is presented to detect on‐road vehicles and
lanes. We have shown that using the information about the lanes and the vehicle detection in a syn-
ergistic manner can help in detecting both vehicles and lanes in a computationally more efficient and
robust manner. The proposed techniques have been shown to detect fully visible vehicles with lower
false‐positive rates and nearly 90% lesser computations as compared to existing methods. Similarly,
the lane feature extraction method is also shown to benefit with significant cost savings by integrat-
ing the vehicle detection information. The proposed techniques need to be further extended for
occluded vehicles, which is the next step in the proposed research.

 References

1 Chakraborty, S., Lukasiewycz, M., Buckl, C., Fahmy, S., Leteinturier, P., Adlkofer, H. (2012) Embedded
systems and software challenges in electric vehicles. Proceedings of the 2012 15th Design, Automation
and Test in Europe Conference and Exhibition (DATE), Dresden, March 12–16, 2012, 424–429,
doi:10.1109/DATE.2012.6176508.

2 Venkatesh Prasad, K., Broy, M., Krueger, I. (2010) Scanning Advances in Aerospace and Automobile
Software Technology. Proceedings of the IEEE, 98(4), 510–514, doi:10.1109/JPROC.2010.2041835.

3 Trivedi, M.M., Gandhi, T., McCall, J. (2007) Looking‐In and Looking‐Out of a Vehicle: Computer‐
Vision‐Based Enhanced Vehicle Safety. IEEE Transactions on Intelligent Transportation Systems, 8(1),
108–120, doi:10.1109/TITS.2006.889442.

4 Lin, Z., Sankaran, J., Flanagan, T. (2013) Empowering automotive vision with TI’s Vision
AccelerationPac. Texas Instruments White Papers, 1–7. http://www.ti.com/lit/wp/spry251/spry251.
pdf (accessed on September 20, 2016).

5 Stein, F. (2012) The challenge of putting vision algorithms into a car. 2012 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition Workshops, Providence, RI, June 16–21, 2012,
89–94, doi:10.1109/CVPRW.2012.6238900.

6 Satzoda, R.K., Lee, S., Lu, F., Trivedi, M.M. (2015) Snap‐DAS: A vision‐based driver assistance system
on a Snapdragon™ embedded platform. IEEE Intelligent Vehicles Symposium (IV), Seoul, June 28 to
July 1, 2015, 660–665.

7 Sivaraman, S. Trivedi, M.M. (2010) A General Active‐Learning Framework for On‐Road Vehicle
Recognition and Tracking. IEEE Transactions on Intelligent Transportation Systems, 11(2), 267–276,
doi:10.1109/TITS.2010.2040177.

8 Dalal, N. Triggs, W. (2005) Histograms of oriented gradients for human detection. Proceedings of the
2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR05), San
Diego, CA, 1(3), 886–893.

9 Satzoda, R.K., Trivedi, M.M. (2013) Vision‐based lane analysis: Exploration of issues and approaches
for embedded realization. Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern
Recognition Workshops on Embedded Vision, Portland, June 23–28, 2013, 604–609, doi:10.1109/
CVPRW.2013.91.

Computer Vision and Imaging in Intelligent Transportation Systems320

10 Marzotto, R., Zoratti, P., Bagni, D., Colombari, A., Murino, V. (2010) A Real‐Time Versatile Roadway
Path Extraction and Tracking on an FPGA Platform. Computer Vision and Image Understanding,
114(11), 1164–1179, doi:10.1016/j.cviu.2010.03.015.

11 Hsiao, P.Y., Yeh, C.W., Huang, S.S., Fu, L.C. (2009) A Portable Vision‐Based Real‐Time Lane
Departure Warning System: Day and Night. IEEE Transactions on Vehicular Technology, 58(4),
2089–2094.

12 Satzoda, R.K. Trivedi, M.M. (2015) On Enhancing Lane Estimation Using Contextual Cues. IEEE
Transactions on Circuits and Systems for Video Technology, 25(11), 1870–1881, doi:10.1109/
TCSVT.2015.2406171.

13 Felzenszwalb, P.F., Girshick, R.B., McAllester, D., Ramanan, D. (2010) Object Detection with
Discriminatively Trained Part‐Based Models. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 32(9), 1627–45, doi:10.1109/TPAMI.2009.167.

14 Satzoda, R.K. Trivedi, M.M. (2016) Multi‐part Vehicle Detection Using Symmetry Derived Analysis
and Active Learning. IEEE Transactions on Intelligent Transportation Systems, 17, 926–937.

15 Sivaraman, S. Trivedi, M.M. (2013) Looking at Vehicles on the Road: A Survey of Vision‐Based
Vehicle Detection, Tracking, and Behavior Analysis. IEEE Transactions on Intelligent Transportation
Systems, 14(4), 1773–1795, doi:10.1109/TITS.2013.2266661.

16 Bar Hillel, A., Lerner, R., Levi, D., Raz, G. (2012) Recent Progress in Road and Lane Detection: A
Survey. Machine Vision and Applications, 25(3), 727–745, doi:10.1007/s00138‐011‐0404‐2.

17 McCall, J. Trivedi, M. (2006) Video‐Based Lane Estimation and Tracking for Driver Assistance:
Survey, System, and Evaluation. IEEE Transactions on Intelligent Transportation Systems, 7(1), 20–37,
doi:10.1109/TITS.2006.869595.

18 Sivaraman, S. Trivedi, M. (2013) Integrated Lane and Vehicle Detection, Localization, and Tracking:
A Synergistic Approach. IEEE Transactions on Intelligent Transportation Systems, 14, 1–12.

19 Sun, Z., Bebis, G., Miller, R. (2006) On‐Road Vehicle Detection: A Review. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 28(5), 694–711, doi:10.1109/TPAMI.2006.104.

20 Viola, P., Way, O.M., Jones, M.J. (2004) Robust Real‐Time Face Detection. International Journal of
Computer Vision, 57(2), 137–154.

21 Satzoda, R.K. Trivedi, M.M. (2014) Efficient lane and vehicle detection with integrated synergies
(ELVIS). Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops
on Embedded Vision, Columbus, OH, June 23–28, 2014, 708–713.

22 Kyrkou, C. Theocharides, T. (2011) A Flexible Parallel Hardware Architecture for AdaBoost‐Based
Real‐Time Object Detection. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
19(6), 1034–1047.

23 Enkelmann, W. (2001) Video‐Based Driver Assistance: From Basic Functions to Applications.
International Journal of Computer Vision, 45(3), 201–221.

24 Satzoda, R.K. Trivedi, M.M. (2013) Selective salient feature based lane analysis. Proceedings of the
2013 IEEE Conference on Intelligent Transportation Systems, The Hague, October 6–9, 2013,
1906–1911.

25 Bertozzi, M. Broggi, A. (1998) GOLD: A Parallel Real‐Time Stereo Vision System for Generic
Obstacle and Lane Detection. IEEE Transactions on Image Processing, 7(1), 62–81,
doi:10.1109/83.650851.

26 Borkar, A., Hayes, M., Smith, M.T. (2012) A Novel Lane Detection System with Efficient Ground
Truth Generation. IEEE Transactions on Intelligent Transportation Systems, 13(1), 365–374,
doi:10.1109/TITS.2011.2173196.

321

Computer Vision and Imaging in Intelligent Transportation Systems, First Edition.
Edited by Robert P. Loce, Raja Bala and Mohan Trivedi.
© 2017 John Wiley & Sons Ltd. Published 2017 by John Wiley & Sons Ltd.
Companion website: www.wiley.com/go/loce/ComputerVisionandImaginginITS

13.1 Introduction

The US Department of Transportation’s National Highway Traffic Safety Administration (NHTSA)
reports that over 3000 fatalities from automobile accidents are caused by driver drowsiness or dis-
traction [1]. In response, there is an emerging body of research on the use of in‐vehicle cameras and
sensors coupled with computer vision techniques to monitor driver behavior for enhanced safety
[2–5]. As is often the case in the auto‐industry, driver monitoring technologies enter the market
initially in high‐performance automobiles since the technologies rely upon sophisticated image cap-
ture and processing afforded by specialized hardware embedded in the vehicle. Over time, when the
technologies mature and costs reduce due to scale of manufacturing, the same technologies make
their way into the mainstream line of automobiles.

Computer vision is an attractive approach for driver monitoring due to ongoing advances in cam-
era technology that can operate robustly on moving platforms, coupled with recent progress in the
automatic analysis and recognition of facial pose and expression. A successful driver monitoring
system is however not likely to depend solely on camera data, but will rather synergistically combine
video with data from motion sensors, biosensors, and vehicle telematics to keep the driver alert and
engaged with ongoing monitoring and feedback [6]. Such a scheme is shown schematically in
Figure 13.1. A key goal is to look for early signs of driver fatigue so that feedback mechanisms can be
activated ahead of an imminent mishap.

Given the emphasis of this text, we restrict the majority of the discussion on the camera as a sensor
for monitoring driver behavior. A brief treatment on multisensor data fusion is given in Section 13.7.
Broadly, driver monitoring addresses early detection of instances where attention is diverted, or
about to be diverted from the task of driving. Two primary causes for inattention are fatigue and
distraction. The former is induced by involuntary factors on the human condition, while the latter is
usually voluntarily induced. As will be seen in the chapter, there is considerable overlap in techniques
detecting fatigue and distraction as both require the ability to capture and localize the driver’s head,
face, and eyes under challenging conditions subject to motion, as well as widely varying lighting that
can result in shadows and overexposure.

13

Driver Monitoring
Raja Bala1 and Edgar A. Bernal2

1 Samsung Research America, Richardson, TX, USA
2 United Technologies Research Center, East Hartford, CT, USA

Computer Vision and Imaging in Intelligent Transportation Systems322

The literature on the topic of fatigue monitoring can be discussed along two threads of investiga-
tion: methods that use a driver‐facing camera to directly analyze driver state, and techniques that
employ a road‐facing camera to assess driver performance as an indirect indicator of fatigue. Methods
in the second category focus on problems such as lane adherence monitoring and vehicle proximity
estimation, and are covered in other chapters. The chapter is thus devoted primarily toward direct
driver state monitoring with the inward‐facing camera. The following sections describe the key
functional elements required for such a system. Special attention is devoted in Section 13.5 to the
fundamental problem of driver gaze estimation, required for measuring both fatigue and distraction.

13.2 Video Acquisition

The monitoring system begins at the acquisition step that captures video footage of the driver in real
time. Factors to be considered include spatial and temporal resolution, spectral bands being captured,
dynamic range, cost, form factor, lighting, and capture geometry. A variety of devices have been
employed in the literature, ranging from smartphones [7–10] and webcams [11], to specially instru-
mented high‐end cameras [12]. With the increasing abundance and declining cost of high‐performance
image sensors, many cameras today meet the requisite needs for spatial, temporal, and tonal resolu-
tion in a compact form factor. A principal remaining challenge is ensuring consistent and adequate
lighting on the driver, especially during the night when fatigue is likely to occur. The common solution
is to use near‐infrared (NIR) active illumination, since this is effective in both daytime and nighttime
conditions, and is less obtrusive to the driver than visible lighting. The method in Ref. [13], for exam-
ple, uses an LED NIR illuminator with the LEDs distributed symmetrically in two concentric rings
centered about the camera’s focal axis. The two rings are used to generate bright pupil and dark pupil
images to facilitate accurate eye detection and tracking, described in Section 13.4. Note that NIR
imaging also requires that the sensor and filters in the camera be responsive in the NIR spectral
regime. Fortunately, most standard silicon sensors are NIR‐responsive, as are many common filters.

Sensor fusion,
analysis

Contextual
information

Feedback, alert
to user

Motion
sensor

Vehicle
telematicsActive

illumination

Driver-facing
camera

Road-facing
camera

Actuation/modulation of
vehicle telematics

Biosensor

Figure 13.1 Schematic of a driver monitoring system utilizing cameras, sensors, and vehicle telematics.

Driver Monitoring 323

The geometrical setup of the camera is another important factor. The prime considerations are
that the camera be on a stable surface, and that nominal driving behavior place the driver within the
camera’s field of view (FOV). A geometry that facilitates accurate estimation of head pose and gaze
direction is desirable. A location on the dashboard is an obvious choice for a portable after‐market
solution. Automobile manufacturers have additional flexibility to embed the camera into the front
panel or steering column in an unobtrusive manner. Multicamera configurations have also been
proposed for providing enhanced FOV or stereo imaging [13].

Finally, motion stabilization is an important element needed to mitigate jitter due to vehicle movement.
Optical stabilization is becoming increasingly prevalent in digital cameras; however, many digital
algorithmic counterparts are available in the literature [14].

13.3 Face Detection and Alignment

Many fast and robust face detection technologies are available today [15–18] and are commonplace
in almost all consumer digital cameras and smartphones. The classical method by Viola and Jones
[15] is now presented. The algorithm parses the image in local windows of 24 × 24 pixels in size, and
extracts binary Haar features, since these are efficient to compute and are discriminative of facial
regions. The base Haar features are shown in Figure 13.2, wherein differences between sums of pixels
in adjacent blocks are computed as the feature outputs. The base features are computed at multiple
scales within the window resulting in a large number of over 180,000 features.

Next, a classification technique is required that maps the features to a binary class label (face vs.
non‐face). The Viola–Jones detector employs adaptive boosting (AdaBoost), a machine learning
technique that learns both a small set of features and a binary classifier. Specifically, AdaBoost learns
a strong classifier by successively learning and combining T weak classifiers h1,…, hT, each of which
need to only perform better than random chance. For simplicity, each weak classifier performs a
binary test on only on one of the input feature dimensions. In detail, let xi be the D‐dimensional Haar
feature vector for the ith training sample with corresponding binary class label yi, 1 ≤ i ≤ N, where
yi = 0, 1 for negative (i.e., non‐face) and positive (i.e., face) samples, respectively. Let L and M denote
the total number of positive and negative samples, respectively, in the training set, with L + M = N.
The goal is to derive a classifier h: x → y that minimizes training error and generalizes well to
independent test samples. AdaBoost learning proceeds as follows:

 ● Initialize sample weights w M Li1 1 2 1 2, ,/ / respectively for i = 0, 1.
 ● For t = 1,…, T:

1) Normalize the weights to serve as a probability distribution.

w w

w
t i

t i

t jj
N,

,

,1

2) Derive optimal binary classifiers hj(⋅), 1 ≤ j ≤ D, that perform classification only along the jth
scalar component of feature vectors xi to minimize the classification error.

E w h x yj
i

N

t i j i i
1

,

3) Choose the classifier ht(⋅) with the lowest classification error denoted Et.

Computer Vision and Imaging in Intelligent Transportation Systems324

4) Update the weights to assign smaller values to correctly classified samples. w wt i t i t
ei

1
1

, , ,
where ei = 0 if xi is classified correctly and 1 otherwise, and t t tE E/1 .

 ● The final strong classifier is given by

h h x
t

T

t t
tt

T

x 1
2

0
1

1

otherwise

where t tlog 1/ .

Figure 13.3 is an illustration of how 3‐weak binary classifiers operating on a two‐dimensional (2D)
feature space are learned and combined to form a strong classifier with a complex decision boundary.

Two other crucial elements of the Viola–Jones algorithm are (i) the precomputation of an integral
image, that is, an accumulating sum of pixel values over rectangular blocks that enables Haar features
to be calculated in constant time; and (ii) a staged cascade of AdaBoost classifiers designed so that
simpler classifiers (i.e., derived with small T) quickly eliminate a large number of false positives, while
more complex classifiers (i.e., derived with large T) handle the fewer more difficult decisions.

h1(·) h2(·) h3(·)

h(·) = α1h1(·) + α2h2(·) + 3h3(·)

Figure 13.3 Schematic illustration of
AdaBoost. Three weak classifiers h1(⋅), h2(⋅),
and h3(⋅) are trained on 2D training samples
xi, where + and −denote positive and negative
classes, respectively. The first classifier
operates only on the vertical dimension, while
the second and third classifiers operate on the
horizontal dimension. The final strong
classifier formed as a weighted combination
of the weak classifiers produces a more
complex decision boundary, accurately
separating the two classes. A desirable
property of AdaBoost is that it is robust to
overfitting even in the case when the input
features are of very high dimensionality and
the number of training samples is small.

(a) (b) (c) (d)

Figure 13.2 Haar features used in the Viola–Jones face detector. The sum of pixel values within white rectangles is
subtracted from the sum of pixels within gray rectangles: (a) horizontal two‐rectangle feature, (b) vertical two‐
rectangle feature, (c) three‐rectangle feature, and (d) four‐rectangle feature.

Driver Monitoring 325

Several enhancements and variants of this algorithm have been proposed, and the reader is referred
to Refs. [16, 17] for details. Researchers have also treated face detection as an instance of the more
general problem of object detection, and have adapted state‐of‐the‐art object detection techniques
such as the deformable parts model [19] for detecting faces. Yin et al. [20] employ a combination of
Gabor filters, local binary patterns, and dynamic temporal histogramming to extract facial features
for driver fatigue detection. A key requirement for the driver monitoring application is that face
detection executes with speed at or close to the video frame rate.

After the face has been localized within the image or video frame, a useful next step is to identify
features along important facial landmarks such as the eyes, nose, mouth, and chin. One approach is
to train dedicated classifiers to detect each of these landmarks as object classes. Another approach
is facial alignment, wherein a generic face shape with pre‐identified landmarks is warped so that its
landmarks align with those on the specific face within the image. Considerable progress has been
made in the latter methodology in recent years [21–26]. In particular, iterative optimization on cas-
caded regression trees has yielded performance that is both computationally efficient and robust
with respect to pose and illumination variations [21–25].

13.4 Eye Detection and Analysis

Eye behavior provides critical cues for driver fatigue. The first step is to reliably locate the eyes, a
primary challenge being robustness with respect to varying lighting and occlusion from eyewear.
Two categories of methods have been proposed. The first employs a passive methodology to locate
eyes as features based on appearance or geometrical attributes within a detected face. Section 13.5
describes in detail an approach in this category. Face alignment techniques described in Section 13.3
can also be leveraged. The second flavor uses active IR illumination to identify the bright/dark pupil
effect which helps localize the eyes [13, 27]. In the technique in Ref. [13], circuitry is devised to syn-
chronize the inner and outer concentric rings of NIR LEDs with the even and odd fields of the inter-
laced video signal, respectively. Specifically, the inner LED ring produces the bright pupil image that
is captured by even fields, and the outer LED ring produces the dark pupil image captured by odd
fields. The difference between the bright and dark images produces a strong feature at the location of
the feature. The even and odd fields are differenced, thresholded, and passed through various image
processing operations to produce binary blobs denoting candidate eye regions. These regions in the
original image are then classified into eye versus non‐eye regions using a support vector machine
(SVM) classifier. The flow diagram is shown in Figure 13.4.

The approach in Ref. [27] also produces a pair of bright/dark pupil images with a different opti-
cal configuration comprising two sets of NIR LED bars: one set placed immediately adjacent to the
camera and the other placed in two clusters, 19.5 cm on either side of the camera. As with Ref. [13],
camera capture is synchronized with the lighting, and the difference between the bright/dark pair
of images is computed and thresholded. Binary blobs are mapped back to the original dark pupil
image, and these image regions are sent as candidates to a binary classifier predicting the presence
or absence of eye within the region. The step of bright/dark pupil imaging significantly speeds up
eye detection by narrowing down the candidate regions to be processed through the classifier.
Three classifiers are compared: SVM, artificial neural network (ANN), and AdaBoost. In their
experiments, both AdaBoost and SVM performed comparably, reporting 97–98% classification
accuracy, and both slightly outperformed ANN. AdaBoost is much faster to train than the other
techniques; hence, it is recommended by the authors for practical eye detection applications. Once
the eyes are detected, they must be tracked over time. In Ref. [13], the authors track the bright pupil

Computer Vision and Imaging in Intelligent Transportation Systems326

frames using a combination of Kalman filtering and mean‐shift tracking. Many alternative tracking
techniques may be used [28].

Following detection of the eyes, several metrics can be computed as indicators of fatigue. A popu-
lar measure is percent eye closure (PERCLOS) defined as the percentage of time within 1 min that the
driver’s eyelids are at least 80% closed, not counting rapid blinks [29]. If active IR illumination is used
in the eye detection step, then PERCLOS can be measured by the presence and shape of the pupil
since this is directly affected by eyelid occlusion. The authors in Ref. [13] observe that as the eyelid
closes, the pupil shape becomes increasingly elliptical; hence, they track the eccentricity of the pupil
ellipse over time. In a passive appearance‐based framework, a standard classification pipeline can be
used to distinguish “closed” versus “open” eye states over time. In Ref. [7] for example, SURF features
are used in a linear SVM classifier to predict eye state on a per‐frame basis, from which PERCLOS is
easily calculated. Another indicator of driver fatigue is the rate of rapid blinks [7, 13], and can be
obtained using the same techniques used to measure PERCLOS, provided the detection of open
versus closed eye can be performed in real time.

13.5 Head Pose and Gaze Estimation

Head pose and eye gaze direction have been found to be the most important cues to infer driver
attentiveness and intent [30]. There is an inherent trade‐off between how informative a parameter is
and how robustly and affordably it can be estimated. On the one hand, gaze estimates showcase
slightly higher correlations with driving performance metrics than head‐based measures. Gaze has
been shown to be indicative of driving experience and to correlate well with awareness of surround-
ing vehicles [31]. On the other hand, research indicates that sensors required to measure head pose
are more robust and affordable than those required to measure eye gaze [32].

13.5.1 Head Pose Estimation

Murphy‐Chutorian and Trivedi [33] present an excellent overview of camera‐based head pose esti-
mation methods. The task of pose estimation consists of finding three Euler angles of rotation around
three axes orthogonal to each other (i.e., yaw, pitch, and roll) best describing the orientation of a
person’s head. Depending on the type of imagery on which they rely, head pose estimation algorithms

Interlaced
image

Video decoder

Even field image

Image
subtraction

Adaptive
threshold

Odd field image

Eyes
SVM
classifier

Geometric
constraints

Blobs

Binary
image

Eye candidates Connected-
component
analysis

Figure 13.4 Block diagram of driver eye detection using dual active IR illumination. Source: Ji et al. [13]. Reproduced
with permission of IEEE.

Driver Monitoring 327

can be classified into 2D‐ and depth‐based techniques. Approaches that rely on traditional 2D images
can be classified into appearance‐ and feature‐based methods. Appearance‐based models typically
discretize the head pose space and learn a separate classifier for each particular pose. For instance,
the algorithm in Ref. [34] relies on a convolutional neural network (CNN) to achieve synergistic face
detection and pose estimation. Feature‐based models extract appearance features and train classifi-
ers to learn the relationship between the different poses and the features. For example, the algorithm
in Ref. [35] computes Haar‐like features and estimates head pose with a neural network.

Many of these approaches rely on the assumption that the features describing the different poses
of the head can be represented as a set of data points lying on a low‐dimensional manifold, as illus-
trated in Figure 13.5 [36]. The majority of these techniques rely on learning, in a training stage, the
parameters of the manifold that best models the statistical behavior of the feature representation of
head poses in a training dataset. Once the manifold parameters are learned, the incoming test image
of a previously unseen face and pose combination is projected or embedded into the manifold. The
head pose corresponding to the incoming image is estimated based on the known pose of training
images that lie in the neighborhood of the location where the test image was embedded. Manifold
learning can be thought of as a nonlinear dimensionality reduction technique that preserves the
coordinates capturing the intrinsic degrees of freedom of the training data samples. Two classes of
approaches to manifold learning have been proposed: global and local models [36]. Isomap [37] is an
example of a global modeling approach. It operates by constructing local neighborhoods of the train-
ing data in a feature representation space. The neighborhood of a given training sample in the mani-
fold M may include its K‐nearest neighbors or the set of all points within some fixed radius ∈.
A weighted graph G is constructed that represents the local neighborhoods, with the edge between
sample feature i and j having a distance‐based weight d(i,j). Geodesic distances dM(i,j) between all
pairs of points, measured along the surface of manifold M, are then computed by calculating shortest
path distances dG(i,j) in the graph G. Embedding of the data in the lower‐dimensional Euclidean

Dimension 1

Pose variation

D
im

en
si

on
 2

Figure 13.5 Embedding of image
poses in a manifold in two‐
dimensional feature space.

Computer Vision and Imaging in Intelligent Transportation Systems328

space Y in which the manifold M resides is achieved by computing coordinate vectors yi for each data
point i that minimize the cost function

E D DG Y L 2 (13.1)

where DG denotes the matrix of graph distances with entries dG(i,j), DY denotes the matrix of
Euclidean distances with entries d i j yY i j, y , and

 L2 denotes the L2 matrix norm 2
ij ijA .

The τ operator converts distances to inner products.
Local manifold modeling techniques rely on the assumption that the manifold is well represented

by the training data so that the local geometry of the manifold can be well approximated by linear
patches. If the assumption holds, then the error incurred in approximating a sample yi with a weighted
linear combination of its neighbors, that is, ij jjW y , should be small. In order to minimize the
reconstruction error, the optimal set of weights Wij needs to be determined. Two constraints are
enforced on Wij: first, Wij = 0 if yj is not a neighbor of yi; second, the rows of the weight matrix Wij
have to sum to 1. The optimal set of weights is found by solving the least‐squares problem that mini-
mizes the reconstruction error across all training samples subject to the constraints listed earlier.

Another family of head pose estimation techniques rely on depth map acquisition and processing
attempt to overcome the limitations imposed by traditional imagery including sensitivity to illumina-
tion, shadows, and imaging artifacts. The technique proposed in Ref. [38] computes a database of
reference depth maps corresponding to different poses. When a new incoming depth map becomes
available, signatures are extracted and compared with signatures extracted from the reference depth
maps. The algorithm outputs the pose corresponding to the reference depth map that best matches
the incoming depth map. The approach from Ref. [39] relies on offline training of a random forest
regression model that learns the relationship between the nose position in 3D space and the gaze
direction. As new depth maps become available, the location of the nose is determined and input to
the model, which in turns output a head pose estimate. A third category of algorithms relies on both
intensity images and depth maps in order to achieve head pose estimation. For instance, the algo-
rithm in Ref. [40] employs random forests and tensor regression algorithms operating on fused depth
and intensity data to achieve head pose estimation.

In the context of driver monitoring, head pose behavior across time is often more informative than
instantaneous head pose [41]. For instance, frequent head tilts can be indicators of a fatigued driver.
A driver who is looking frequently at directions other than the road may be distracted [13]. Studies
have indicated that head motion is a good indicator of a driver’s intention to turn [42] and change
lanes [43]. The authors of Ref. [44] use continuous, nonrigid face tracking (i.e., determining the
motion of mouth, eyebrows, cheeks, and facial expression) to estimate a driver’s mental health.

13.5.2 Gaze Estimation

Several approaches have been proposed to track eye gaze in order to indirectly measure driver state
[8, 45–47] or to guide attention toward regions of perceived increased risk [48], potentially missed
traffic signs, and road events [49], proving to reduce accident rates. Eye gaze estimation has also been
studied extensively in the domain of human–computer interaction [50, 51]. As mentioned earlier,
gaze estimation approaches can be classified into passive methods which operate in ambient light
conditions, or active methods that rely on external sources of illumination, usually in the NIR or IR
band [52]. A primary challenge with active systems is the presence of interfering ambient light.

Passive gaze estimation systems can be classified into feature‐ and appearance‐based [50]. Feature‐
based methods compute descriptors indicative of landmark locations including the iris and the eye
corners [53] or shape primitives such as ellipses that indicate the location and orientation of the pupil

Driver Monitoring 329

and/or the iris [54]. The main downside of feature‐based approaches is that high‐resolution imagery
is typically needed to accurately extract the relevant features. Appearance‐based models, on the
other hand, do not explicitly extract features, but rather learn a mapping from the image space onto
gaze coordinate space. The learning is performed on large amounts of labeled gaze data [55, 56], and,
as such, the resulting algorithms may not generalize well to conditions beyond those represented in
the training dataset.

In order to address the intrinsic lack of generalizability of learning‐based methods, the algorithm
proposed in Ref. [8] introduces a novel in situ approach whereby a previously trained classifier is
fine‐tuned for a given driver/vehicle/camera setup in a driver monitoring application. This algorithm
is now described in more detail. The primary motivation in Ref. [8] is to democratize real‐time driver
monitoring by foregoing reliance on specialized in‐vehicle imaging and computing devices. To that
end, the driver’s cell phone camera and processing capabilities are used to carry out driver monitor-
ing in real time. Thus computational efficiency and generalizability of the algorithm are critical. The
algorithm implements a staged gaze estimation approach where an initial stage provides a coarse
gaze direction estimate largely based on head pose, and a subsequent stage provides fine‐grain gaze
classification. The coarse estimate corresponds to one of three gaze directions, namely frontal and
left‐ and right‐side profiles, and is effected by a traditional three‐class face detector with an AdaBoost
classifier trained on Haar features of labeled images of the three face poses. The fine estimate oper-
ates only on frontal poses from the first stage, and classifies gaze into one of eight directions that are
prevalent in a driving task, including left, top and right mirror, road, dashboard, traffic sign, music
console, and phone, as illustrated in Figure 13.6.

The flow of the algorithm is illustrated in Figure 13.7. After the first stage of coarse head pose esti-
mation, AdaBoost cascaded classifiers trained to detect the different facial landmarks, including the
eyes, nose, and mouth, are run on the detected frontal face area, as illustrated in Figure 13.8. The
initially identified facial regions are then tracked across subsequent frames as long the frontal pose is
maintained, as determined by the coarse estimate. The location (xi,yi) and size (wi,hi) of each identi-
fied facial region i (where i corresponds to left eye, right eye, nose, and mouth) are used as input
features to a multiclass linear SVM classifier trained to perform fine‐grain gaze classification. The
SVM is an eight‐class classifier where each of the classes corresponds to one of the predetermined

1

2

3

4

5

6

7

8

Figure 13.6 Fine‐grain gaze locations
supported by the algorithm in Ref. [8]. The
fine estimate operates only on frontal poses
from the first stage and classifies gaze into
one of eight directions that are prevalent in a
driving task. As shown in Figure 13.6, the
selected directions are left rear mirror (1),
road (2), dashboard (3), traffic sign (4), top
mirror (5), phone/texting (6), music console
(7), and right rear mirror (8). Source: Chuang
et al. [8]. Reproduced with permission of IEEE.

Computer Vision and Imaging in Intelligent Transportation Systems330

gaze directions. The space on which the SVM operates consists of a 14D feature space resulting from
the concatenation of the location and size parameters for the different facial regions, namely

x y s x y s x y w h x y w hle le le re re re n n n n m m m m, , , , , , , , , , , , , (13.2)

where subscripts le, re, n, and m denote left eye, right eye, nose, and mouth, respectively. Note that
the eye regions are assumed to be square, and consequently only a single size parameter is used to

Input video

Quantized gaze direction

Coarse head pose detection

Feature descriptors

Gaze classifier

Temporal post-filtering

• Frontal, left-profile, and right-profile

• Relative face part location and size

• Feature tracking by kalman filter

• Mapping features to common gaze
 directions

• Sliding window

• Blink rate

Eye open/close classifier

Figure 13.7 Flow diagram of the algorithm in Ref. [8]. Source: Chuang et al. [8]. Reproduced with permission of IEEE.

0

1

1
o

sle sre

sf

sf

wn

wm

(xre,yre)

(xn,yn)

(xm,ym)

hn

hm

Figure 13.8 Features used for fine‐grain gaze classification by the algorithm in Ref. [8]. Source: Chuang et al. [8].
Reproduced with permission of IEEE.

Driver Monitoring 331

describe their size attributes. Per‐frame gaze direction decisions are buffered and a temporal smoothing
filtering is applied to the decisions in order to reduce the effect of outliers and erroneous decisions.
Additionally, analysis of the identified eye regions across time is used to estimate blink rate.

In order to improve generalizability across drivers, cameras, and vehicles, the method further pro-
poses a short training procedure that personalizes the system to each particular driving configura-
tion, whereby training data is gathered at system start‐up, while the vehicle is stationary. To this end,
the driver was asked to gaze in each of the eight supported directions for 4 s while video was acquired.
While this step adapts the system to a specific driver, vehicle and camera, generalization from sta-
tionary to actual driving conditions was still limited. To address this issue, the stationary training
data was augmented with data gathered during a few minutes of driving, and clustered in an unsu-
pervised manner. The underlying assumption is that the dominant gaze direction when driving is
“road facing,” and so data samples belonging to the largest resulting cluster are assigned to the “road”
class. Specifically, let X denote a random variable representing the behavior of the 14D feature vec-
tors corresponding to the different gaze positions. Using the expectation–maximization (EM) algo-
rithm [57], the authors estimated the parameters of a Gaussian mixture model that best describes the
distribution of the features extracted during the driving stage of the training procedure. This model
takes the following form:

1
, ,

K

i i i
i

P wX X (13.3)

In Equation 13.3, K is the number of clusters (i.e., K = 8), wi, μt, and Σi are estimates of the weight,
the mean value, and the covariance matrix of the ith Gaussian component in the mixture, respectively;
Φ(⋅) is the multivariate Gaussian probability density function, namely

X u X u X ui, , exp/ /i i D
i

T
i i

1
2

1
22 1 2

1 (13.4)

where D is the dimensionality of the feature space (i.e., D = 14). Once a set of distribution parameters
has been estimated, the probability that the feature vector extracted from the nth frame belongs to
the jth cluster, (mn)j, can be computed. The dominant or “road” class can be identified by first deter-
mining the index jdom of the class with the largest number of samples assigned to it by the model, and
then by finding the set of samples that satisfies

X m ji j K n j| , ,argmax dom1 (13.5)

The newly formed “road‐facing” class during driving was combined with the training data acquired
in the stationary vehicle to form an augmented training dataset based on which a new SVM classifier
was trained. The obtained results are illustrated in Figure 13.9, which compares the performance of
four different classifiers across four phone/vehicle configurations. The four classifiers considered
include “Self” (i.e., when a classifier is used in the same environment it was trained), “Static to
Moving” (i.e., when a classifier is trained in static conditions and tested in normal driving condi-
tions), “Moving to Moving” (i.e., when a classifier is trained and tested in normal driving conditions),
and “Proposed Method” which implements the described augmented dataset approach. It can be
seen that the classifier based on the augmented dataset generalizes better than other classifiers stud-
ied, and its performance was shown to approach the upper bound case where a classifier is used for
inference in the same environment in which it was trained.

Computer Vision and Imaging in Intelligent Transportation Systems332

This approach of personalizing a computer vision pipeline with a human in the loop can be very
powerful in improving generalizability from a controlled setting to a realistic “in the wild”
environment.

13.6 Facial Expression Analysis

Facial expression can provide important cues about driver fatigue. The general problem of expres-
sion analysis is an active area of research within the computer vision community, and thus there is a
rich body of literature to draw from to address the driver monitoring application. Many facial expres-
sion techniques draw upon the Facial Action Coding System (FACS) [58]. FACS describes every
observable facial expression in terms of 46 basic action units (AUs) and their combinations. AUs
correspond to localized muscular movements and formations in different regions of the face, as
shown in Figure 13.10. A typical FACS‐ based facial expression pipeline comprises three stages: (i)
face detection, (ii) detection of AUs, and (iii) mapping of AU activations to facial expression. A vari-
ety of machine learning techniques can be employed for each of these stages [60, 61]. This pipeline is
typically carried out on a frame‐by‐frame basis.

Gu and Ji [62] apply the FACS framework to predict three classes of expressions pertaining to
fatigue: inattention, yawning, and falling asleep. They identify AUs and AU combinations for each
class; for example, AUs activated for the “falling asleep” category are head nods, blinks, nose wrinkle,
and eyelid tighteners. Their novel contribution is that rather than simply applying static expression
analysis on a frame‐by‐frame basis, they model spatiotemporal dependencies with a dynamic
Bayesian network. Experiments show promising results for posed fatigue expressions.

Vural et al. [60] simulate driver drowsiness by asking subjects to participate in a video game for a
3 h session starting at midnight. The game simulates driving via the use of a steering wheel and a
display, and randomly applies a “wind effect” that drags the vehicle to one side or the other, forcing

120
Self
Static to moving
Moving to moving
Proposed method

110

100

90

80

70

60

50

40

30

20

10

0
Sedan iPhone

near
Sedan iPhone

far
SUV iPhone

Phone/vehicle/camera location scenario

A
cc

ur
ac

y
(%

)

SUV Android Average

Figure 13.9 Generalizability of different classifiers proposed in Ref. [8]. Source: Chuang et al. [8]. Reproduced with
permission of IEEE.

Driver Monitoring 333

the driver to take corrective action to stay on the road. The driver’s facial expression is recorded dur-
ing the entire session, and episodes during crashes are tagged. This procedure provides a dataset of
facial expressions labeled as belonging to either the “alert” or “non‐alert” class.

The computer vision pipeline begins with face detection, followed by preprocessing to align and
crop the facial region to a fixed 96 × 96 block. Next, a Gabor filter bank is applied to the facial image
to obtain 72 filter responses at nine spatial scales and eight orientations. The Gabor features are used
to detect the presence of each of 31 facial AUs shown in Table 13.1 via binary SVM classifiers trained
on several datasets of both posed and spontaneous facial expressions. For each SVM, the distance to
the separating hyperplane is computed as a continuous measure of both the decision on presence of
an AU, and confidence in the decision. The distance measures are then analyzed to assess which AUs
are most discriminative of the alert versus non‐alert classes from the driving simulation. Based on
the principles of signal detection theory, the area under the receiver operating characteristic (ROC)
curve for each binary detector is obtained as a measure of class separation afforded by a given AU.
AU 45 (eye blink) was observed to be the most reliable predictor of drowsiness, confirming earlier
studies on this subject. Interestingly, AU 2 (outer brow raise) was also found to be a discriminating
feature; the authors’ interpretation is that subjects often raised their eyebrows in an effort to stay
awake. Equally interesting is that AU 26 (jaw drop) associated with yawning did not occur frequently
in the moments prior to a crash episode. This suggests that while yawning is an indicator of overall
tiredness, it is not a common occurrence in the final moments prior to falling asleep.

AU 1 AU 2 AU 4

AU 6 AU 7AU 5

AU 1+4

AU 1+2+4 AU 1+2+5+6+7 AU 0(neutral)

AU 4+5 AU 1+2

Inner portion of
the brows is

raised.

Upper eyelids
are raised

Cheeks are
raised.

Lower eyelids
are raised.

Inner and outer
portions of the

brows are raised.

Brows lowered
and drawn

together and
upper eyelids

are raised.

Medial portion
of the brows is

raised and pulled
together.

Brows are pulled
together and

upward.

Brow, eyelids, and
cheek are raised.

Eyes, brow, and
cheek are
relaxed.

Outer portion of
the brows is

raised.

Brows lowered
and drawn
together

Figure 13.10 Examples of action units in the
Facial Action Coding System. Source: Tian
et al. [59]. Reproduced with permission
of IEEE.

Computer Vision and Imaging in Intelligent Transportation Systems334

The aforementioned analysis was carried out for single video frames. The authors additionally
examine the effect of analyzing longer temporal windows, and found that performance improves as
a function of time duration, reaching a plateau of 99% detection accuracy for 30 s intervals, and
achieving diminishing returns beyond. The reader is referred to Ref. [60] for further details on the
analysis.

13.7 Multimodal Sensing and Fusion

As mentioned at the beginning of the chapter, a driver monitoring system is more likely to achieve
robust performance by acquiring and analyzing data from multiple sensors, both visual and nonvis-
ual. Visual sensors offer the benefits of nonintrusiveness and richness of interpretation. Nonvisual
sensors can often provide a more direct and accurate way to measure driver behavior and state; how-
ever, some devices are intrusive and involve contact with and cooperation from the driver. The sub-
sequent discussion focuses on driver‐facing technologies. Note that there is an analogous set of
nonvisual sensors that complement the road‐facing camera, such as radar and ultrasonic devices for
determining proximity to other vehicles and objects. As such, multimodal sensor fusion is useful for
combining complementary information offered by the different data modalities as well as reducing
the effects of noise and disturbances in a moving vehicle.

One class of nonvisual sensors comprises inertial devices such as accelerometers and gyroscopes,
as well as vehicle telematics that measure driving motion patterns indicative of driver inattention.
Vural et al. [60] use accelerometers to observe motion of the driver’s head and the steering wheel, and
make the qualitative observation that both held motion and the correlation between head and steer-
ing wheel motion are greater in the non‐alert than in the alert state. In a similar vein, Takei and
Furukawa [63] perform simulated driving experiments, measure the angle of steering wheel motion,
and suggest that Chaos theory could be used to detect fatigue from a wavelet domain representation
of this signal. One general consideration is that data from motion sensors is often noisy, corrupt or
missing, and thus require suitable preprocessing such as low‐pass filtering, Kalman filtering, or
transformation to an alternate representation such as the Fourier or wavelet domain.

Since drowsiness is a physiological condition, biological sensors are also commonly used to moni-
tor driver behavior. Lee and Chung [11] use a pulse oximeter to measure the photo‐plethysmographic

Table 13.1 Facial action units used for driver drowsiness analysis by Vural et al.

AU Name AU Name AU Name AU Name

1 Inner brow raise 10 Upper lip raiser 18 Lip pucker 27 Mouth stretch
2 Outer brow raise 11 Nasolabial furrow deepener 19 Tongue show 28 Lips suck
4 Brow lowerer 12 Lip corner puller 20 Lip stretch 30 Jaw sideways
5 Upper lid raise 13 Sharp lip puller 22 Lip funneller 32 Bite
6 Cheek raise 14 Dimpler 23 Lip tightener 38 Nostril dilate
7 Lids tight 15 Lip corner depressor 24 Lip presser 39 Nostril compress
8 Lip toward 16 Lower lip depress 25 Lips part 45 Blink
9 Nose wrinkle 17 Chin raise 26 Jaw drop

Source: Vural et al. [60]. Reproduced with permission of Springer.

Driver Monitoring 335

(PPG) signal representing blood flow under the skin of the finger, and from this compute heart rate
and heart rate variability. Miyaji et al. [64] analyze electrocardiogram (ECG) signals to extract
heart rate as an indicator of driver drowsiness. Wang and Gong [65] use contact sensors on the
driver’s left foot to measure skin conductance, respiration, blood pressure, and temperature to pre-
dict a number of emotional states including fatigue. Shin et al. [66] place ECG and PPG sensors on
the steering wheel and estimate heart rate variability (HRV), defined as the variation in beat‐
to‐beat interval in the temporal heart waveform. They compute the power spectral density of the
HRV signal, and compute the ratio of the mean low‐pass to mean high‐pass power as a feature to
distinguish alert versus drowsy states. The signal processing required to extract HRV from sensor
data and infer driver state is carried out on a remote server. Lee and Chung [11] calculate four
 bio‐features from PPG sensor data: (i) HRV, (ii) root mean square of the PPG signal over a specific
time window, (iii) average signal gradient over a time window, and (iv) power spectral density.
Additionally, they capture video of the driver’s face; perform face detection via an active shape
model [67]; and locate the eyes and estimate average eye size for each frame, yielding the following
four features: (i) blink frequency, that is, the number of blinks per unit time period; (ii) speed of
blinking; (iii) PERCLOS; and (iv) average eye closure speed. Electro‐encephalographic (EEG) sig-
nals have also been analyzed for detecting driver drowsiness, although these sensors have not been
generally favored in practical applications due to the difficulty in obtaining recordings in realistic
driving scenarios [68].

Data that have been acquired from the various sensors, synchronized, and preprocessed must then
be combined to facilitate inference on driver attention. Numerous multimodal fusion techniques
exist in the literature. An excellent survey is presented by Shivappa et al. [69] who broadly categorize
information fusion approaches into five categories as shown in Figure 13.11.

1) Signal‐level fusion: Data streams are combined from sensors of the same type, such as a network
of cameras or multiple microphones. A dual‐camera configuration, for example, can help recover
depth, thereby providing accurate information about driver pose and posture.

2) Feature‐level fusion: This is a form of early fusion where features are extracted from each modal-
ity and combined into a single multimodal representation before being processed through a clas-
sifier. Combination techniques can include direct concatenation, weighted concatenation, and
dimensionality reduction techniques such as principal components analysis and linear discrimi-
nant analysis.

3) Classifier‐level fusion: This is a form of intermediate fusion wherein a statistical model such as a
hidden Markov model (HMM) or dynamic Bayesian network (DBN) models each individual data
stream. After each feature vector is separately processed, a composite classifier combines probability
scores using a reliability weighting scheme on a frame‐by‐frame basis.

4) Decision‐level fusion: Late fusion that processes features within a given modality through its own
inference engine and pools class probability scores or likelihood values across all modalities and
all video frames into a single decision via a reliability‐based weighting scheme.

5) Semantic‐level fusion: At this final level, other contextual information such as time of day, the
driver’s calendar and schedule, geo‐location, and traffic conditions can be incorporated to aid the
inference of driver state [70].

Hybrid architectures that fuse data at more than one of these levels are also conceivable [69].
With any of these strategies, it is important that inference take into account the temporally
evolving state of the driver. As just mentioned, temporal Bayesian inference methods such
as HMMs and DBNs have been frequently used for driver monitoring. Details can be found in
Refs. [11, 65, 71].

Computer Vision and Imaging in Intelligent Transportation Systems336

13.8 Conclusions and Future Directions

This chapter has surveyed computer vision–based methods for driver monitoring with the end goal
of safety and accident prevention. A sequence of modules have been described for analyzing eye
behavior, head pose and movement, facial expression, and physiological state. The common aim for
all these modules is early detection that the driver’s attention is compromised due to fatigue or other
distractions. One challenge that pervades all these functions is having to operate in a moving vehicle
with widely varying illumination conditions. Active illumination and motion stabilization are key
technologies for addressing these issues. Another challenge is the high level of inter‐driver variabil-
ity, prompting a need to personalize the inference and interpretation of driver behavior. This is exem-
plified in the driver gaze estimation problem in Section 13.5.

In the overall system, driver‐facing analytics would be combined with environment‐facing analyt-
ics such as lane departure and object proximity detection. Also additional relevant contextual infor-
mation such as distance traveled and traffic conditions can be used to set thresholds for safe versus
unsafe driving. Note that much of the same methodology used to monitor safety can also be used to
monitor driver comfort and well being. For example 3D imaging has been used to monitor driver
posture [72].

Once it has been detected that the driver’s attention has been diverted, a suitable feedback mecha-
nism must be triggered. A common proposal is tactile feedback such as vibration in the steering
wheel [7], seat, or seatbelt [68]. Audio feedback is also a logical choice, ranging from simple alarms
being proposed today [7] to sophisticated systems of the future wherein audio dialogs are auto‐
synthesized to engage the driver much like a companion passenger would. Also envisioned in the
near future is automatic modulation of vehicle telematics as a more proactive form of feedback.
Examples include automatic force feedback of the steering wheel during lane departure [68] or automatic
braking if the vehicle is in close proximity with another object. Since such actions take over control
of the vehicle, they require extremely accurate inferences on driver behavior and must be designed in
such a fashion that the driver can easily override control.

Sematic
modeling

Decision

Classifier

Feature
extraction

Sematic
modeling

Decision

Classifier

Hierarchical
fusion

Hybrid
fusionFeature

extraction

Signal extraction,
preprocessing

Image/video
preprocessing

Semantic-level fusion

Decision-level fusion

Classifier-level fusion

Feature-level fusion

Signal-level fusion

Nonvisual sensor dataVisual sensor data

Figure 13.11 Hierarchy of data fusion at various levels of signal abstraction, described by Shivappa et al. Source:
Shivappa et al. [69]. Reproduced with permission of IEEE.

Driver Monitoring 337

Since driver monitoring must take place in real time, suitable computational architectures must be
designed to accommodate fast execution of sophisticated inference algorithms. One approach is to
design special‐purpose processors embedded into the vehicle’s computational platform and dedi-
cated entirely to monitoring driver behavior [73]. Another alternative is to perform just the sensing,
preprocessing, and feature extraction steps in the vehicle, and to execute computationally intensive
analysis on a remote server [66]. While each has its pros and cons, it is likely that over time, dedicated
in‐vehicle computational engines will dominate as vendors of system‐on‐chip (SoC) architectures
play an increasingly active role in smart automobile applications.

 References

1 “Blueprint for ending distracted driving,” NHTSA Report, 2012. Available in: http://www.
distraction.gov (accessed on September 13, 2016).

2 M. Bertozzi, A. Broggi, A. Fascioli, “Vision‐based intelligent vehicles: state of the art and
perspectives,” Robotics and Autonomous Systems, vol. 32, no. 1, pp. 1–16, July 2000.

3 M. Bertozzi, A. Broggi, M. Cellario, A. Fascioli, P. Lombardi, M. Porta, “Artificial vision in road
vehicles,” Proceedings of the IEEE, vol. 90, no. 7, pp. 1258–1271, July 2002.

4 L. M. Bergasa, J. Nuevo, M. A. Sotelo, R. Barea, M. E. Lopez, “Real‐time system for monitoring
driver vigilance,” IEEE Transactions on Intelligent Transportation Systems, vol. 7, no. 1, pp. 63–77,
March 2006.

5 M. M. Trivedi, T. Gandhi, J. McCall, “Looking‐in and looking‐out of a vehicle: computer‐vision
based enhanced vehicle safety,” IEEE Transactions on Intelligent Transportation Systems, vol. 8,
no. 1, pp. 108–120, 2007.

6 H. Kang, “Various approaches for driver and driver behavior monitoring: a review,” In Proceedings
of the IEEE International Conference on Computer Vision Workshop, Sydney Convention and
Exhibition Centre, Sydney, December 1–8, 2013, IEEE Computer Society, Washington, DC,
pp. 616–623, 2013.

7 C. You, N. D. Lane, F. Chen, “CarSafe App: alerting drowsy and distracted drivers using dual cameras
on smartphones,” In Proceeding of the 11th Annual International Conference on Mobile Systems,
Applications, and Services, Taipei, Taiwan, June 25–28, 2013, ACM, New York, pp. 461–462, 2013.

8 M. Chuang, R. Bala, E. Bernal, P. Paul, A. Burry, “Estimating gaze direction of vehicle drivers
using a smartphone camera,” In Proceedings of the IEEE CVPR Mobile Vision Workshop, IEEE
Computer Society, Washington, DC, pp. 165–170, 2014.

9 S. Makinist, E. Akin, A. Yilmaz, “Estimating driver behavior by a smartphone,” In IEEE Intelligent
Vehicles Symposium, Alcalá de Henares, June 3–7, 2012.

10 iOnRoad mobile app, Available in: http://www.ionroad.com (accessed on September 13, 2016).
11 B. Lee, W. Y. Chung, “Driver alertness monitoring using fusion of facial features and bio‐signals,”

IEEE Sensors Journal, vol. 12, no. 7, pp. 2416–2422, 2012.
12 E. Murphy‐Chutorian, A. Doshi, M. M. Trivedi, “Head pose estimation for driver assistance

systems: a robust algorithm and experimental evaluation,” In IEEE Intelligent Transportation
Systems Conference, September 30–October 3, 2007, Bellevue, WA.

13 Q. Ji, Z. Zhu, P. Lan, “Real‐time nonintrusive monitoring and prediction of driver fatigue,” IEEE
Transactions on Vehicular Technology, vol. 5, no. 4, pp. 1052–1068, 2004.

14 J. Yang, D. Schonfeld, M. Mohamed, “Robust video stabilization based on particle filter tracking of
projected camera motion,” IEEE Transactions on Circuits and Systems for Video Technology, vol.
19, no. 7, pp. 945–954, 2009.

Computer Vision and Imaging in Intelligent Transportation Systems338

15 P. Viola, M. Jones, “Rapid object detection using a boosted cascade of simple features,” In IEEE
Computer Society Conference on Computer Vision and Pattern Recognition, Kauai, HI, December
8–14, 2001.

16 J. Ren, N. Kehtarnavaz, L. Estevez, “Real‐time optimization of Viola–Jones face detection for
mobile platforms,” In IEEE CAS Workshop: SoC—Design, Applications, Integration, and Software,
2008 IEEE Dallas Circuits and Systems Workshop on System‐on‐Chip, SoC: Design, Applications,
Integration, and Software, DCAS 2008, Richardson, TX, October 19–20, 2008.

17 G. Gualdi, A. Prati, “Multistage particle windows for fast and accurate object detection,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 34, no. 8, pp. 1589–1604, 2012.

18 J. Cheney, B. Klein, A. K. Jain, B. F. Klare, “Unconstrained face detection: state of the art baseline
and challenges,” In Eighth International Conference on Biometrics, ICB 2015, Phuket, May 19–22,
2015, Institute of Electrical and Electronics Engineers Inc., pp. 229–236, 2015.

19 P. F. Felzenszwalb, R. B. Girshick, D. McAllester, D. Ramanan, “Object detection with
discriminatively trained part based models,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 32, no. 9, pp. 1627–1645, 2010.

20 B. Yin, X. Fan, Y. Sun, “Multiscale dynamic features based driver fatigue detection,” International
Journal of Pattern Recognition and Artificial Intelligence, vol. 23, pp. 575–589, 2009

21 S. Ren, X. Cao, Y. Wei, J. Sun, “Face alignment at 3000 fps via regressing local binary features,”
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
Columbus, OH, June 24–27, 2014, pp. 1685–1692, 2014.

22 V. Kazemi and J. Sullivan, “One millisecond face alignment with an ensemble of regression trees,”
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
Columbus, OH, June 24–27, 2014, pp. 1867–1874, 2014.

23 D. Lee, H. Park, C. D. Yoo, “Face alignment using cascade Gaussian process regression trees,” In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston,
MA, June 7–12, 2015, pp. 4204–4212, 2015.

24 S. Zhu, L. Cheng, C.C. Loy, X. Tang, “Face alignment by coarse‐to‐fine shape searching,” In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston,
MA, June 7–12, 2015, pp. 4998–5006, 2015.

25 G. Tzimiropoulos, “Project‐out cascaded regression with an application to face alignment,” In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston,
MA, June 7–12, 2015, pp. 3659–3667, 2015.

26 M.A. Haque, K. Nasrollahi, T. B. Moeslund, “Quality aware estimation of facial landmarks in
video sequences,” In Proceedings of the IEEE Conference on Winter Applied Computer Vision,
Waikoloa Beach, HI, January 5–9, 2015, pp. 678–685, 2015.

27 R. C. Coetzer, G. P. Hancke, “Eye detection for a real‐time vehicle driver fatigue monitoring
system,” In IEEE Intelligent Vehicles Symposium, Baden‐Baden, June 5–9, 2011, pp. 66–71, 2011.

28 A. Yilmaz, O. Javed, M. Shah, “Object tracking: a survey,” ACM Computing Surveys, vol. 38, no. 4,
109–153, 2006.

29 D. F. Dinges, R. Grace, “PERCLOS: A valid psychophysiological measure of alertness as assessed
by psychomotor vigilance,” US Department of Transportation, Federal highway Administration.
Publication Number FHWA‐MCRT‐98‐006.

30 A. Doshi, M. M. Trivedi, “A comparative exploration of eye gaze and head motion cues for lane
change intent prediction,” In IEEE Intelligent Vehicles Symposium, Eindhoven, June 4–6, 2008,
pp. 49–54, 2008.

31 M. Mori, C. Miyajima, P. Angkititrakul, T. Hirayama, L. Yiyan, N. Kitaoka, K. Takeda, “Measuring
driver awareness based on correlation between gaze behavior and risks of surrounding vehicles,”

Driver Monitoring 339

In Proceedings of the IEEE ITSC, 15th International IEEE Conference on IEEE, Anchorage, AK,
September 16–19, 2012, pp. 644–647, 2012.

32 H. Zhang, M. Smith, and R. Dufour. A final report of safety vehicles using adaptive interface technology:
visual distraction (online). Available in: https://www.volpe.dot.gov/safety-management-and-human-
factors/surface-transportation-human-factors/save-it-reports-and (accessed on September 13, 2016).

33 E. Murphy‐Chutorian, M. Trivedi, “Head pose estimation in computer vision: a survey,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 31, no. 4, pp. 607–626, 2009.

34 M. Osadchy, Y. Cun, M. Miller, “Synergistic face detection and pose estimation with energy‐based
models.” Journal of Machine Learning Research, vol. 8, p. 1197–1215, 2007.

35 T. Vatahska, M. Bennewitz, S. Behnke, “Feature‐based head pose estimation from images,” In
Seventh IEEE‐RAS International Conference on Humanoid Robots, Omni William Penn Hotel,
Pittsburgh, PA, November 29–December 1, 2007, pp. 330–335, 2007.

36 V. Balasubramanian, J. Ye, S. Panchanathan, “Biased manifold embedding: a framework for
person‐independent head pose estimation,” In IEEE Conference on Computer Vision and Pattern
Recognition, Hyatt Regency, Minneapolis, MN, USA, June 17–22, 2007, IEEE Computer Society,
Washington, DC, pp. 1–7, 2007.

37 J. B. Tenenbaum, V. D. Silva, J. C. Langford. “A global geometric framework for nonlinear
dimensionality reduction,” Science, vol. 290, no. 5500, pp. 2319–2323, 2000.

38 M. Breitenstein, D. Kuettel, T. Weise, I. Van Gool, H. Pfister, “Real‐time face pose estimation from
single range images,” In IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2008, Anchorage, AK, June 23–28, 2008, pp. 1–8, 2008.

39 G. Fanelli, J. Gall, I. Van Gool. “Real time head pose estimation with random regression forests,” In
Computer Vision and Pattern Recognition, CVPR, Colorado Springs, CO, June 20–25, 2011,
pp. 617–624, 2011.

40 S. Kaymak, I. Patras, “Exploiting depth and intensity information for head pose estimation with
random forests and tensor models,” In Proceedings of the Asian Conference on Computer Vision
Workshops, Daejeon, November 5–9, 2012, pp. 160–170, 2012.

41 A. Tawari, S. Martin, M. M. Trivedi, “Continuous head movement estimator for driver assistance:
issues, algorithms and on‐road evaluations,” IEEE Transactions on Intelligent Transportation
Systems, vol. 15, no. 2, pp. 818–830, 2014.

42 S. Y. Cheng, M. M. Trivedi, “Turn‐intent analysis using body pose for intelligent driver assistance,”
IEEE Pervasive Computing, vol. 5, no. 4, pp. 28–37, October–December 2006.

43 J. C. McCall, D. P. Wipf, M. M. Trivedi, B. D. Rao, “Lane change intent analysis using robust
operators and sparse bayesian learning,” IEEE Transactions on Intelligent Transportation Systems,
vol. 8, no. 3, pp. 431–440, September 2007.

44 S. Baker, I. Matthews, J. Xiao, R. Gross, T. Kanade, T. Ishikawa, “Real‐time non‐rigid driver head
tracking for driver mental state estimation,” Carnegie Mellon University, Technical Report, CMU‐
RI‐TR‐04‐10, Robotics Institute, Pittsburgh, PA, February, 2004.

45 T. Ishikawa, S. Baker, I. Matthews, T. Kanade, “Passive driver gaze tracking with active appearance
models”, In Proceedings of the World Congress on Intelligent Transportation Systems, Nagoya,
October 17–22, 2004.

46 E. Wahlstrom, O. Masoud, N. Papanikolopoulos, “Vision‐based methods for driver monitoring,”
In IEEE Proceedings on Intelligent Transportation Systems, vol. 2, 2003 IEEE International
Conference on Intelligent Transportation Systems, ITSC, Shanghai, October 12–15, 2003,
pp. 903–908, 2003.

47 Q. Ji, X. Yang, “Real‐time eye, gaze, and face pose tracking for monitoring driver vigilance,” Real‐Time
Imaging, vol. 8, pp. 357–377, 2002.

Computer Vision and Imaging in Intelligent Transportation Systems340

48 L. Pomarjanschi, M. Dorr, C. Rasche, E. Barth, “Safer driving with gaze guidance,” In Proceedings
of Bionetics 2010—Fifth International ICST Conference on Bio‐Inspired Models of Network,
Information, and Computing Systems, Boston, MA, December 1–3, 2010.

49 L. Fletcher, A. Zelinsky, “Driver inattention detection based on eye gaze—road event correlation,”
International Journal of Robotics Research, vol. 28, no. 6, pp. 774–801, 2009.

50 D. Hansen, Q. Ji, “In the eye of the beholder: a survey of models for eyes and gaze,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 32, no. 3, pp. 478–500, 2010.

51 M. Reale, T. Hung, L. Yin, “Pointing with the eyes: gaze estimation using a static/active camera
system and 3D iris disk model,” In IEEE International Conference on Multimedia and Expo
(ICME), Singapore, July 19–23, 2010.

52 A. Tawari, K. H. Chen, M. M. Trivedi, “Where is the driver looking: analysis of head, eye and iris
for robust gaze zone estimation,” In Proceedings of the IEEE Conference on Intelligent
Transportation Systems, Qingdao, October 8–11, 2014, pp. 988–994, 2014.

53 J. Chen, Q. Ji, “3D gaze estimation with a single camera without IR illumination,” In Proceedings of
the International Conference on Pattern Recognition (ICPR), Rensselaer Polytechnic Institute,
Troy, NY, December 8–11, 2008.

54 S. Kohlbecher, S. Bardinst, K. Bartl, E. Schneider, T. Poitschke, M. Ablassmeier, “Calibration‐free
eye tracking by reconstruction of the pupil ellipse in 3D space,” In Symposium on Eye Tracking
Research and Applications (ETRA), March 26–28, 2008, Savannah, GA, 2008.

55 Y. Sugano, Y. Matsushita, Y. Sato, “Learning‐by‐synthesis for appearance‐based 3D gaze
estimation,” In Proceedings of the IEEE Conference on Computer Vision and Pattern (CVPR),
Greater Columbus Convention Center, Columbus, OH, June 24–27, 2014, pp. 1821–1828, 2014.

56 T. Schneider, B. Schauerte, R. Stiefelhagen. “Manifold alignment for person independent
appearance‐based gaze estimation,” In Proceedings of the International Conference on Pattern
Recognition (ICPR), IEEE, Stockholm, August 24–28, 2014.

57 A. P. Dempster, N. M. Laird, D. B. Rubin, “Maximum likelihood from incomplete data via the EM
algorithm,” Journal of the Royal Statistical Society, vol. 39, no. 1, pp. 1–38, 1977.

58 P. Ekman, W. Friesen, Facial Action Coding System: A Technique for the Measurement of Facial
Movement, Consulting Psychologists Press, Palo Alto, CA, 1978.

59 Y. Tian, T. Kanade, J. F. Cohn, “Recognizing upper face action units for facial expression analysis,”
In Proceedings of the IEEE Conference on Computer Vision Pattern Recognition, Hilton Head, SC,
June 13–15, 2000, pp. 294–301, 2000.

60 E. Vural, M. Cetin, A. Ercil, G. Littlewort, M. Bartlett, J. Movellan, “Drowsy driver detection
through facial movement analysis,” In M. Lew, N. Sebe, T. S. Huang, E. M. Bakker (eds.) Human
Computer Interaction, Lecture Notes in Computer Science, vol. 4796, pp. 6–18, Springer‐Verlag,
Heidelberg, 2007.

61 Y. Tian, T. Kanade, J. F. Cohn, “Recognizing action units for facial expression analysis,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 23, no. 2, pp. 97–115, 2001.

62 H. Gu, Q. Ji, “An automated face reader for fatigue detection,” In Proceedings of the IEEE
Conference on Automatic Face and Gesture Recognition, IEEE Computer Society, Seoul, May
17–19, 2004, pp. 111–116, 2004.

63 Y. Takei, Y. Furukawa, “Estimate of driver’s fatigue through steering motion”, In Man and
Cybernetics, 2005 IEEE International Conference, vol. 2, October 10–12, 2005, Hilton Hotel
Waikoloa, HI, pp. 1765–1770, 2005.

64 M. Miyaji, H. Kawanaka, K. Oguri, “Driver’s cognitive distraction detection using physiological
features by the Adaboost,” In Proceedings of the 12th International IEEE Conference on Intelligent

Driver Monitoring 341

Transportation Systems, Marriott St. Louis Union Station, St. Louis, MO, October 4–7, 2009,
pp. 1–6, 2009.

65 J. Wang, Y. Gong, “Recognition of multiple drivers’ emotional state,” In Proceedings of the 19th
International Conference on Pattern Recognition, Tampa, FL, December 8–11, 2008, pp. 1–4, 2008.

66 H. S. Shin, S. J. Jung, J. J. Kim, W. Y. Chung, “Real time car driver’s condition monitoring system,”
In Proceedings of IEEE Sensors, Waikoloa, HI, November 1–4, 2010, pp. 951–954, 2010.

67 Z. L. Zheng, F. Yang, “Enhanced active shape model for facial feature localization,” In Proceedings
of the International Conference on Machine Learning and Cybernetics, Kunming, July 12–15, 2008,
pp. 2841–2845, 2008.

68 Q. Wang, J. Yang, M. Ren, Y. Zheng, “Driver fatigue detection: a survey,” In Proceedings of the
IEEE Sixth World Congress on Intelligent Control & Automation, Dalian University of Technology,
Dalian, June 21–23, 2006, pp. 8587–8591, 2006.

69 T. S. Shivappa, M. M. Trivedi, B. D. Rao, “Audiovisual information fusion in human–computer
interfaces and intelligent environments: a survey,” Proceedings of the IEEE, vol. 98, no. 10,
pp. 1692–1715, 2010.

70 A. Tawari, M. M. Trivedi, “Contextual framework for speech based emotion recognition in driver
assistance system,” In Proceedings of the IEEE Conference on Intelligent Vehicles Symposium,
University of California, San Diego, CA, June 21–24, 2010, pp. 174–178, 2010.

71 Y. Guosheng, L. Yingzi, B. Prabir, “A driver fatigue recognition model based on information fusion
and dynamic Bayesian network,” Information Sciences, vol. 180, no. 10, pp. 1942–1954, 2010.

72 C. Tran, M. M. Trivedi, “Towards a vision‐based system exploring 3D driver posture dynamics for
driver assistance: issues and possibilities,” In Proceedings of the IEEE Conference on Intelligent
Vehicles Symposium, University of California, San Diego, CA, June 21–24, 2010, pp. 179–
184, 2010.

73 J. Kim, H. Shin (eds.), Algorithm & SoC Design for Automotive Vision Systems, Springer‐Verlag,
Dordrecht, 2015.

343

Computer Vision and Imaging in Intelligent Transportation Systems, First Edition.
Edited by Robert P. Loce, Raja Bala and Mohan Trivedi.
© 2017 John Wiley & Sons Ltd. Published 2017 by John Wiley & Sons Ltd.
Companion website: www.wiley.com/go/loce/ComputerVisionandImaginginITS

14.1 Introduction

Traffic signs define a visual language that can be interpreted by drivers. They represent the current
traffic situation on the road, show danger and difficulties around the drivers, give them warnings
and help them with their navigation by providing useful information that makes driving safe and
convenient [1, 2].

The human visual perception abilities depend on the individual’s physical and mental conditions.
In certain circumstances, these abilities can be affected by many factors such as fatigue and observa-
tory skills. Giving this information in a good time to drivers can prevent accidents, save lives, increase
driving performance and reduce the pollution caused by vehicles [3–5].

Traffic sign recognition is a field which is concerned with the detection and recognition of
traffic signs in traffic scenes acquired by a camera. It is a technique which uses computer vision
and artificial intelligence to extract the traffic signs from outdoor images taken in uncontrolled
lighting conditions where these signs may be occluded by other objects, and may suffer from
different problems such as colour fading, disorientation and variations in shape and size. It is
the field of study that can be used to aid the development of an inventory system (for which
real‐time recognition is not required) or to aid the development of an in‐car advisory system
(when real‐time recognition is necessary). Both road sign inventory and road sign recognition
are concerned with traffic signs, face similar challenges and use automatic detection and
recognition.

A traffic sign recognition system could in principle be developed as part of intelligent transport
systems (ITS) that continuously monitors the driver, the vehicle and the road, for example, to
inform the driver in time about upcoming decision points regarding navigation and potentially
risky traffic situations. Detection of these signs in outdoor images from a moving vehicle will help
the driver to take the right decision at the right time, which means fewer accidents, less pollution
and better safety.

14

Traffic Sign Detection and Recognition
Hasan Fleyeh

Dalarna University, Falun, Sweden

Computer Vision and Imaging in Intelligent Transportation Systems344

14.2 Traffic Signs

Traffic signs are those that use a visual/symbolic language about the road(s) ahead that can be interpreted
by drivers. They provide the driver with pieces of information that make driving safe and convenient.
Road signs are designed, manufactured and installed according to strict regulations [6]. However,
they can appear in different conditions, including partly occluded, distorted, damaged and clustered
in a group of more than one sign [7, 8].

Traffic signs are characterised by a number of features which ideally make them recognisable with
respect to the environment, but certain factors can also affect a driver’s perception. They are, but not
limited to, as follows:

 ● They are designed in fixed two‐dimensional (2D) shapes such as triangles, circles, octagons or
rectangles [7, 9].

 ● The colours of the signs are chosen to contrast with the surroundings, which make them easily
recognisable by drivers [10].

 ● The colours are regulated by the sign category [11].
 ● The information on the sign has one colour and the rest of the sign has another colour.
 ● The tint of the paint which covers the sign should correspond to a specific wavelength in the visible

spectrum [6, 8].
 ● The signs are located in well‐defined locations with respect to the road, so that the driver can,

more or less, anticipate the location of these signs [11].
 ● They may contain a pictogram, a string of characters or both [8].
 ● In every country the traffic signs are characterised by using fixed text fonts and character heights.

14.2.1 The European Road and Traffic Signs

According to 1968 Vienna Convention on Road Signs and Signals, the European traffic signs are
 categorised into four groups:

 ● Warning signs: This group of traffic signs indicates a hazard ahead on the road. It is characterised
by an equilateral triangle with a thick red rim and a white or yellow interior. A pictogram is used to
specify different warnings. Other signs such as the Yield sign, the distance to level crossing signs
and track level crossing also belong to this class.

 ● Prohibitory signs: They are used to prohibit certain types of manoeuvres for some types of traffic.
The no entry, no parking and speed limit signs belong to this category. Normally, they are designed
in a circular shape with a thick red rim and a white or yellow interior. There are few exceptions; the
Stop sign is an octagon with a red background and white rim, the No Parking and No Standing
signs have a blue background. The end‐of‐restriction signs are marked with black bars.

 ● Mandatory signs: They are characterised by a complete blue circle and a white arrow or pictogram.
They control the actions of drivers and road users. Signs ending obligation have a diagonal red slash.

 ● Indicatory and supplementary signs: These signs are characterised by using rectangles with differ-
ent background colours such as yellow, green or blue. The pictograms are either white or black.
This category includes the diamond‐shaped rectangle and the signs which give information about
road priority.

The colours used on road signs have specific wavelengths in the visible spectrum. They are selected
to be distinguishable from the natural and man‐made surroundings so that they can be easily recognisable
by road users. The Swedish traffic signs are illustrated in Figure 14.1.

Traffic Sign Detection and Recognition 345

Figure 14.1 The Swedish traffic signs. (a) Warning signs, (b) prohibitory signs, (c) mandatory signs and (d–f)
indicatory and supplementary signs.

(a)

(b)

(e)

(c) (d)

Figure 14.1 (Continued)

Traffic Sign Detection and Recognition 347

14.2.2 The American Road and Traffic Signs

American traffic signs follow the Manual on Uniform Traffic Control Devices and its companion
‘Standard Highway Signs’. They did not follow Vienna Convention on Traffic Signs and Signals, and
they are divided into eight categories: Regulator, Schools, Warning, Guide, Toll Road Signs, Hospital,
Non‐Compliant to MUTCD Signs and References. Regulatory and Warning signs are further divided
into several subgroups called Series. These groups are completely different than that of European
traffic signs. Yield and Stop signs are grouped in R1 Series, for instance, and speed limit signs are
characterised by white background and black text [12].

14.3 Traffic Sign Recognition

The first paper on the subject was published in Japan in 1984 [13]. The aim was to try various com-
puter vision methods for the detection of road signs in outdoor scenes. Since that time many research
groups and companies have shown interest, conducted research in the field and generated an enor-
mous amount of work. Different techniques have been used to cover different application areas, and
vast improvements have been achieved during the past decade.

The identification of the traffic signs is achieved through two main stages: detection and recog-
nition. In the detection phase, the image is preprocessed, enhanced and segmented according to
the sign properties such as colour or shape or both. The output is a segmented image containing
potential regions which could be recognised as possible road signs. The efficiency and speed of the

(f)

Figure 14.1 (Continued)

Computer Vision and Imaging in Intelligent Transportation Systems348

detection are important factors because they reduce the search space and indicate only potential
regions. In the recognition stage, each of the candidates is tested against a certain set of features
(patterns) to decide whether it is in the group of traffic signs or not, and then according to these
features they are classified into different groups. These features are chosen so as to emphasise the
differences among the classes. The shape of the sign plays a central role in this stage and the signs
are classified into different classes such as triangles, circles and octagons. Pictogram analysis
allows a further stage of classification. By analysing pictogram shapes together with the text avail-
able in the interior of the sign, it is easy to decide the individual class of the sign under considera-
tion. The system can be implemented by either colour information or shape information or both.
Combining colour and shape may give better results if the two features are available, but many
studies have shown that detection and recognition can be achieved even if one component, either
colour or shape, is missing.

14.4 Traffic Sign Recognition Applications

Techniques for traffic sign detection and recognition have been developed in a range of application
areas. These include the following:

 ● Driver support system (DSS): This system can detect and recognise traffic signs in real time.
The system can also help to improve traffic flow and safety [14, 15], and avoid hazardous driv-
ing conditions, such as collisions. Until the past decade, there were very small number of stud-
ies about traffic sign detection and classification. Research groups focused on other aspects of
sign detection, more related to the development of an automatic pilot, such as the detection of
the road borders and/or the recognition of obstacles in the vehicle’s path, for example, other
vehicles or pedestrians. Intelligent vehicles such as Volvo S, V and XC series introduced sys-
tems which could take decisions about their speed, trajectory, etc., depending on the signs
detected [16, 17]. Although, in the future, it can be part of a fully automated vehicle, now it can
be a support to automatically limit the speed of the vehicle, send a warning signal indicating
excess speed, warn or limit illegal manoeuvres or indicate earlier the presence of a sign to the
driver. The general idea is to support the driver in some tasks, allowing him or her to concen-
trate on driving.

 ● Highway maintenance: This is used to check the presence and condition of the signs. Instead of an
operator watching a video, which is a tedious work because the signs appear from time to time and
the operator should pay a great attention to find the damaged ones, the traffic sign detection and
recognition system can do this job automatically for the signs with good conditions and alerts the
operator when the sign is located but not classified which can be interpreted as a sign in poor
condition.

 ● Sign inventory: The many millions of roadway signs necessary to keep roadways safe and traffic
flowing present a particular logistical challenge for those responsible for the installation and main-
tenance of those signs. Traffic signs must be properly installed in the necessary locations and an
inventory of those signs must be maintained for future reference.

 ● Mobile robots: Road and traffic signs can be used to automatically mobilise robots (unmanned
vehicles) depending on the detection and recognition of these landmarks by the robot [14]. Mei
et al. developed an unmanned vehicle which has the ability to navigate in urban environments
without GPS or any other satellite navigation system. The vehicle navigates solely by perceiving
traffic signs [18].

Traffic Sign Detection and Recognition 349

14.5 Potential Challenges

In addition to the complex environment of the roads and the scenes around them, traffic signs can be
found in different conditions such as aged, damaged and disoriented as depicted in Figure 14.2. Hence,
the detection and recognition of these signs may face one or more of the following difficulties:

 ● The colour of the sign fades with time as a result of long exposure to sun light, and the reaction of
the paint with the air [2, 5].

 ● Visibility is affected by the weather conditions such as the fog, rain, clouds and snow [2].
 ● Visibility can be affected by local light variations such as the direction of the light, the strength of

the light depending on the time of the day and the season and the shadows generated by other
objects [8, 19, 20].

 ● Colour information is very sensitive to the variations of the light conditions such as shadows,
clouds and the sun [2, 5, 21]. It can be affected by illuminant colour (daylight), illumination geom-
etry and viewing geometry [22].

 ● The presence of obstacles in the scene, such trees, buildings, vehicles and pedestrians or even signs
which occlude other signs [19, 21].

 ● The presence of objects similar in colour and/or shape to the road signs in the scene under consid-
eration, such as buildings or vehicles [5, 19]. They could be similar to the road sign in colour or
shape or both.

 ● Signs may be found disoriented, damaged or occluded by any kind of obstacles, even by some other signs.
 ● The size of the sign depends on the distance between the camera and the sign itself. Traffic signs

may appear rotated due to the imaging orientation [23].
 ● The acquired image often suffers from motion blur and car vibration [24]. This motion blur cannot

be predicted above a certain level, because the car movements are not known to the recognition
process. It is possible to make an assertion about the movements of objects in the future if the
motion is continuous and unchanged.

 ● Sign boards can appear to have bright white or near‐white spots due to first surface reflection from
the light sources. In first surface reflection the light is reflected prior to penetrating to a depth
where certain wavelengths are absorbed, thereby imparting a colour associated with the sign. This
is called ‘highlight’.

 ● Vandalism of sign boards by people who put stickers or write on them or damage the pictograms
by changing the pictogram shape.

 ● Different countries use different colours (Figure 14.3) and different pictograms (Figure 14.4).
 ● The absence of a standard database for evaluation of the existent classification methods [25].

It is extremely important for the algorithms to be developed for the detection and recognition of
road and traffic signs to have high robustness of colour segmentation, high insensitivity to noise and
brightness variations, and should be invariant to geometrical effects such as translation, in‐plane and
out‐plane rotations and scaling changes in the image [26, 27].

14.6 Traffic Sign Recognition System Design

A system to detect and recognise traffic signs should be able to work in two modes: the training mode
in which a database can be built by collecting a set of traffic signs for training and validation, and the
prediction mode in which the system can recognise a traffic sign which has not been seen before.
Figure 14.5 illustrates the main stages to recognise a traffic sign.

Computer Vision and Imaging in Intelligent Transportation Systems350

Figure 14.2 Potential challenges when working with traffic signs. (a) Faded sign, (b) bad weather condition, (c) bad
lighting geometry, (d) obstacles in the scene, (e) similar background colour, (f) damaged sign, (g) distance related
size, (h) motion blur, (i) reflection from sign board and (j) stickers.

(a) (b)

(c) (d)

(e) (f)

Traffic Sign Detection and Recognition 351

(g) (h)

(i) (j)

Figure 14.2 (Continued)

(a) (b)(a) (b)

Figure 14.3 Different countries have different colour standard. (a) The Netherlands and (b) Sweden.

Computer Vision and Imaging in Intelligent Transportation Systems352

Recognition and classification of traffic signs can be achieved by combining the two main traffic
sign features: colour and shape. This method helps the recognition algorithm to perform in a better
way and to reduce the number of false alarms generated by this algorithm. Therefore, the detection
and recognition of different signs requires testing the presence of different colour combinations in
the image together with the presence of the specific shape. Therefore, recognition and classification
is carried out by two stages. In the first stage colour segmentation is applied. Two rim colours exist
for traffic signs in Sweden: red and blue. A traffic sign shape tree is built according to these two col-
ours as depicted in Figure 14.6. Based on the colour of the traffic sign’s rim, the type of the traffic sign
is specified by combing the shape of the rim with its pictogram. This requires two different shape
analysis stages: the shape of the rim and the analysis of the pictogram. Very often, this shape analysis
is achieved by training two classifiers to classify the rim and the pictogram.

14.6.1 Traffic Signs Datasets

There are three main public traffic sign datasets in Europe; among them are two Swedish datasets
and one German. The datasets were collected for research purposes and create a standard bench-
mark for developing and testing algorithms for traffic sign recognition.

Colour
segmentation

Object
selector

Database of
training
images

Database of
raw images

Classification

Results

Feature
extraction

Testing

Training

Figure 14.5 Block diagram of traffic sign recognition system.

(a) (b)

Figure 14.4 Traffic sign pictograms are different in different countries. (a) Austria and (b) Sweden.

Traffic Sign Detection and Recognition 353

Blue Red

Colour segmentation

Regulatory signs

Stop sign

Yield sign

Forbidden sign

No entry

No standing and parking

Warning signs

Prohibitory signs

Prohibitory signs

Indicatory signs

Informative signs

Shapes

Speed-limit signs

Figure 14.6 Traffic sign tree based on colour and shape information.

Computer Vision and Imaging in Intelligent Transportation Systems354

Dalarna University in Sweden released a traffic sign dataset which consists of 4338 image collected
in Sweden and 330 images collected in other counties [28]. All still images were taken manually when
traffic signs were seen by the camera operator. They were collected in different light conditions, in
different weather conditions and in different road conditions including different speeds. For all
images and without any exception, the camera was set to 640 × 480 pixels. Images in this database are
classified into 30 categories depending on weather conditions, type of the sign, sign condition, image
condition and light geometry.

Ruhr‐Universität Bochum in Germany released the German Traffic Sign Benchmark dataset which
is a multiclass, single‐image in conjunction with the International Joint Conference on Neural
Networks (IJCNN) 2011. The benchmark traffic sign dataset contains 40 traffic sign classes. It con-
sists of more than 50,000 images [29].

Linköping University in Sweden released a public traffic signs dataset in conjunction with
Scandinavian Conference on Image Analysis (SCIA) 2011 conference. The dataset contains 20,000
images with 20% of the images are labelled. It contains 3488 traffic signs which were collected from
highways and cities from more than 350 km of Swedish roads [30].

14.6.2 Colour Segmentation

Colours represent an important part of the information provided to the driver to ensure the objec-
tives of the traffic sign. Therefore, traffic signs and their colours are selected to be different from the
nature or from the surrounding in order to be distinguishable. One of the important steps in Traffic
Sign Recognition (TSR) is segmentation. It is the process by which candidate objects are specified for
further analysis according to certain properties such as colour or shape. Colour segmentation has
always been considered a strong tool for image segmentation because it is computationally inexpensive.
Due to the fact that colour gives more information than grey it is used in segmentation algorithms
instead of edge‐based and luminance histogram‐based techniques.

In order to develop a robust colour segmentation algorithm, it is necessary to understand the
nature of the colour and the circumstances under which the traffic scene image is collected. The
first problem for any colour segmentation algorithm is that the apparent colour of the object varies
because of the chromatic variation of daylight. The second problem is that the colours of traffic sign
boards change with age, which means newly installed traffic signs have different colours than older
traffic signs. In addition to this, different countries use different standard colours for traffic signs.
Finally, traffic sign images may suffer from the effect of shadows and highlights. The effect of shad-
ows occurs when different parts of the object are exposed to different illumination levels, while in the
case of highlight the object reflects some of the light of the illuminant directly to the viewer. These
problems are discussed in the following text in detail.

1) Colour variations in outdoor images
 One of the most difficult problems in using colours in outdoor images is the chromatic variation of

daylight which causes the apparent colour of the object to vary as daylight changes. The irradi-
ance of any object in a colour image depends on the following three parameters:
The colour of the incident light: Daylight’s colour varies along the CIE curve. It is given by

y x x x2 87 3 0 0 275 0 25 0 382.for (14.1)

 The variation of daylight’s colour is a single variable which is independent of the intensity.
 The reflectance properties of the object: The reflectance of an object s(λ) is a function of the wavelength

λ of the incident light. It is given by

Traffic Sign Detection and Recognition 355

s e (14.2)

 where e(λ) is the intensity of the light at wavelength λ and ϕ(λ) is the object’s albedo at each
wavelength.

 The camera properties: The observed intensities depend on the lens diameter d, its focal length f
and the image position of the object measured as angle a off the optical axis. This is given by

E L d
f

a
4

4
2

cos (14.3)

 According to Equation 14.3, the radiance L(λ) is multiplied by a constant which will not affect an
object’s observed colour. By cancelling the camera’s lens chromatic aberration, only the density of
the observed light will be affected.

As a result, the colour of the light reflected by an object located outdoors is a function of the
temperature of the daylight and the object’s albedo [22, 31].

2) Aging of traffic signs
 Traffic signs may be mounted on a pole for a long time without any kind of maintenance or

replacement. Over time the properties of the material used to reflect the light in these traffic signs
changes its properties because of environmental reactions and so its colour fades. Figure 14.7
depicts two traffic signs; the sign on the left is a new one, while that on the right is an old one.

To investigate the effect of aging, a set of equal number of old and new traffic signs was selected.
Colour located in the red part of each traffic sign was extracted and converted from RGB (red,
green, blue) into HSV (hue, saturation, value). HSV was selected because it is invariant to the vari-
ations in light conditions as it is multiplicative/scale invariant, additive/shift invariant, and it is
invariant under saturation changes. In addition, it has been proven by Gevers and Smeulders [32]
that Hue is invariant against shadow and highlights.

Vitabile et al. [8] defined three different areas in the HSV colour space as follows:

1) The achromatic area, characterised by 0.25s or 0.2v or 0.9v .
2) The unstable chromatic area, characterised by 0.25 0.5s and 0.2 0.9v .
3) The chromatic area, characterised by 0.5s and 0.2 0.9v .

(a) (b)

Figure 14.7 Effect of aging. (a) A new traffic sign. (b) An old traffic sign.

Computer Vision and Imaging in Intelligent Transportation Systems356

 Plotting the Hue and Saturation of each traffic sign in the Hue–Saturation plot is shown in
Figure 14.8. The new traffic signs were grouped in the chromatic region, while old traffic signs
shifted either towards the yellow part of the Hue or towards the unstable area or even towards the
achromatic area of this plot. Old traffic signs which moved toward the yellow area but still in
the chromatic area can be colour segmented, while the colour of the remaining traffic signs can-
not be segmented because of the loss of Hue.

3) Traffic signs from different countries
Different countries use different colours for their traffic signs. Figure 14.3 shows two yield traffic
signs from the Netherlands (left) and Sweden (right). To understand the distribution of traffic
signs from different countries on the Hue–Saturation plot, a number of traffic signs were col-
lected from a number of countries in Europe, the United States and Japan, Figure 14.9. Plotting
the red colour on the Hue–Saturation plot clearly indicates that the red colour of these traffic
signs is not similar and those countries do not follow any standard colour.

4) Robustness of colour spaces against shadows and highlights
 Shadows and highlights represent a big challenge to computer vision researchers. In the first case

different parts of the object are exposed to different illumination levels, and in the second case the
object reflects some of the light of the illuminant directly to the viewer.

Consider an image of a certain surface patch which is illuminated by an incident light with a
certain spectral power density (SPD) denoted e(λ).This image is taken by a camera with RGB sen-
sors characterised by their spectral sensitivities f C R G BC for , , . The Cth sensor response
of the camera is given by

C m f e c d m f e c dC Cb b s sn s n s v, , ,

(14.4)

Hue – Saturation plot

1

0.5

+
+

+++
+

+

++
++

+
+

+

0.25

Red
Achromatic

Blue

 = New signs, + = Old signs

Unstable

Chromatic

Green

Figure 14.8 Hue–Saturation plot of
new and old traffic signs.

Traffic Sign Detection and Recognition 357

 for C R G B, , where cb(λ) and cs(λ) are the body and surface albedo, respectively; λ is the wave-

length at which the sensor responds; and n, s, v are unit vectors that represent the direction of the
normal vector to the surface patch, direction of the source of illumination and direction of the
viewer, respectively, Figure 14.10.
 Furthermore, the terms mb and ms denote the geometric dependencies on the body and surface
reflection component, respectively [32].

s

SUN

Traffic sign

n

v

Camera

Figure 14.10 Traffic sign reflection model.

Red colour of different countries

1

0.5

0.25

Red
+

Achromatic

Blue

Unstable

Chromatic

Green

Figure 14.9 Hue–Saturation of traffic
sign colours of different countries.

Computer Vision and Imaging in Intelligent Transportation Systems358

 Assuming that surface albedo cs(λ) is constant and independent of the wavelength, and white
illumination is used (white illumination means equal energy for all wavelengths within the visible
spectrum), then e e and c cs s which are constants. The sensors responses can be modified as
follows:

C em k em c f d C R G BC s Cw b s w w w wforn s n s v, , , , ,

(14.5)

In Equation 14.5, Cw is the response of the RGB sensors under the assumption of white light
source, and kC is given by

k f c dC C b

(14.6)

where kC is the compact formulation depending on the sensors and the surface albedo only.
If the assumption of white illumination holds, then

f d f d f d fR G B

(14.7)

and the reflection of the surface can be given by

C em k em c fCw b s sn s n s v, , , (14.8)

The first term of Equation 14.6 represents the effect of shadows on colour invariance, while the
second term is effect of highlights on colour invariance. Fleyeh [33] has tested different colour
spaces and showed that Hue is the only colour feature which is invariant against viewing direc-
tion, surface orientation, highlight, illumination direction and illumination intensity, as depicted
in Table 14.1.

Colour segmentation can be designed and implemented in different ways. Simple rule‐based colour
segmentation algorithms were developed in the literature [34]. However, these algorithms cannot deal
with all of the aforementioned problems. Therefore, more advanced and adaptive algorithm which
can tackle these problems is needed. Fleyeh and Mumtaz [35] suggested a colour segmentation
 algorithm for traffic signs based on self‐organising maps (SOM). SOM is a powerful unsupervised
clustering technique which can be utilised to solve the problem of colour segmentation. Colour seg-
mentation is based on reducing the number of colours in an image. It is achieved by selecting the most
representative colours from all colours present in the original image, making a colour palette, and then
mapping each colour in the image to the nearest colour in the palette. Since each colour in the seg-
mented image represents an object, only a few colours are desired in the colour palette.

Table 14.1 Invariance of colour models to imaging conditions.

Colour feature Viewing direction Surface orientation Highlight Illumination direction Illumination intensity

I N N N N N
RGB N N N N N
Nrgb Y Y N N N
H Y Y Y Y Y
S Y Y N Y Y

‘Y’ denotes invariance and ‘N’ denotes sensitivity of colour models to imaging conditions.

Traffic Sign Detection and Recognition 359

An important feature on which the quality of segmentation depends is the search space boundaries.
RGB images were converted into HSV colour space and the H and S values of the traffic signs were
observed to assign a reasonable search boundary in the H and S space. Since the values of H and S
differ from one traffic sign to another, it is not wise to choose static boundaries. Instead, boundaries
of a search subspace in the H–S plot are specified dynamically by the SOM which is trained to find
the upper and lower limits of H and S through the best matching neurons. It is, therefore, believed
that the algorithm is adaptive and can be used in a wide range of environmental conditions and in
different countries.

The values Hmin, Hmax, Smin and Smax in Figure 14.11 are specified dynamically by the SOM. This
means that the position and the size of the search space dynamically depends on the desired colour
to be segmented.

The training process divides the grid of nodes into most dominant colours depending on the size
of the grid. For example if the grid size is 3, a maximum of nine dominant colours present in the test
image are obtained. These nine colours can then be used to assign the boundary values for the colour
under consideration through its neurons obtained by the proposed approach. The best matching
neurons have their own associated weight vectors which can be used to segment the image. Therefore
the larger the size of the grid the greater the number of representative colours which will be consid-
ered and thus better segmentation can be achieved. Results of colour segmentation are depicted in
Figures 14.12 and 14.13, respectively.

14.6.3 Traffic Sign’s Rim Analysis

The shape of the traffic sign’s rim can be determined by different methods. One method is by exploiting
Hough transform. Hough transform in its original form is not suitable for complex object detection
such as triangles, circles and rectangles due to noise and shape imperfection. Circular Hough transform
can instead be invoked to detect these shapes. It can be described as a transformation of centre point of
a circle in x–y plane to the parameter space. The equation of a circle in x–y plane is given by

Segmentation dynamic range

1
(Hmax, Smax)

(Hmax, Smin)

(Hmin, Smin)

(Hmin, Smax)

0.5

0.25

Red

Achromatic

Blue

Unstable

Chromatic

Green

Figure 14.11 Dynamic search
boundary by the proposed algorithm
for the red colour.

Computer Vision and Imaging in Intelligent Transportation Systems360

 x a y b r2 2 2 (14.9)

where a and b are the centre point of the circle in the x and y direction and r is the radius of the circle.
The parametric representation of the circle is given by

x a rcos (14.10)

y b rsin (14.11)

Figure 14.12 Colour segmentation results of traffic sign images in different light conditions.

Traffic Sign Detection and Recognition 361

To determine the presence of any traffic sign, it is necessary to accumulate votes in the 3D parameter
space (a, b, r). The objective is to find the coordinates (a, b) of the object’s centroid and the locus of
the objects circumference. A voting mechanism which aims to find the distribution of the votes in
the Hough space is illustrated in Figure 14.14.

This voting mechanism specifies the number of votes given to any object in the image and its location.
In this mechanism, each white pixel of the object is considered as the centre of a set of concentric
circles with different radii. For each radius of the set of circles, a vote is given to each intersection of

Figure 14.13 Traffic sign images from different countries. (Top left to bottom right) Austria, France, Germany, Japan,
The Netherlands, and Poland.

Computer Vision and Imaging in Intelligent Transportation Systems362

the circles, and the maximum number of votes is computed. This means that for each radius of the
concentric circles there is one point in the Hough space (h, k) which represents the maximum voting.

A circle is detected by its peak generated by the voting mechanism, while a triangle is character-
ised by a smooth curve and the absence of the peak in the voting curve, as depicted in Figure 14.15.
Property curves generated by the voting mechanism were smoothed by LOWESS regression [36]
and normalised in both axes to [0, 1] as depicted in Figure 14.16. A training set of curves can be
collected and an SVM classifier can be trained with these curves to recognise the different rims of
traffic signs. In order to reduce the amount of computations in the recognition phase, edge detection
algorithm such as Canny edge detector can be invoked to produce the edges of each of the candidate
objects. These objects will sequentially be separated from the image and a voting curve will
be created, smoothed and exposed to the SVM classifier for classification. Usually, Canny edge
detector generates two edges which represent the outer and inner edges of the object under con-
sideration, as depicted in Figure 14.17. To consider one edge only, the following set of rules were
proposed [37, 38]:

a

b

Unknown
circle

Maximum
vote point

x

y
Figure 14.14 Circular Hough transform voting
mechanism.

140

120

100

80

V
ot

es

0 50 100 150

Radius

200 250

60

40

20

0

V
ot

es

0 50 100 150

Radius

200 250
0

5

10

15

20

25

30

35

40
Curve produced by object Curve produced by object

Figure 14.15 Property curves of a circle (a) and a triangle (b).

Traffic Sign Detection and Recognition 363

 ● If two concentrated edges are detected, the two edges of the traffic sign are healthy and one traffic
sign is detected. The outer edge of the traffic sign is considered.

 ● If one edge, which is located inside another object, is detected, the outer edge of the traffic sign is
destroyed, while the inner edge is healthy. The inner edge of the traffic sign is considered.

 ● If one edge, which is not located inside another object, is detected, the inner edge of the traffic sign
is destroyed, while the outer edge is healthy. The outer edge of the traffic sign is considered.

Another simple method to detect traffic sign rim is by training a classifier by a set of features
extracted from the segmented rim. Invariant image features based on integration over a transformation
group which were introduced by Schulz‐Mirbach [39] can be invoked for this purpose. In many cases
during image retrieval, the exact position and orientation of objects in an image are only of second-
ary value. Thus, it is desirable to have features which are invariant to certain transformations, say
translation and rotation.

0
0

0.1

0.1

0.2

0.2

0.3

0.3

0.4

0.4

0.5

0.5

0.6

0.6

0.7

0.7

0.8

0.8

0.9

0.9

1

1

Normalized radius

N
or

m
al

iz
ed

 v
ot

es

0
0.1

0.1

0.2

0.2

0.3

0.3

0.4

0.4

0.5

0.5

0.6

0.6

0.7

0.7

0.8

0.8

0.9

0.9

1

1

Normalized radius

N
or

m
al

iz
ed

 v
ot

es

Figure 14.16 Smoothed property curves by LOWESS regression.

Computer Vision and Imaging in Intelligent Transportation Systems364

Let I I i j i N j M, , ,0 0 be an image, with I(i, j) representing the grey value at the pixel
coordinate (i, j). Let G be the transformation group of translations and rotations with elements g G
acting on the image, such that the transformed image is gI. An invariant feature must satisfy
F gI F I g G, . Such invariant features can be constructed by integrating f(gI) over the trans-
formation group G.

F I

G
f gI dg

G

1 (14.12)

For a segmented binary traffic sign image, transformations will be restricted to a certain group of
translations. As a kernel function, binary operations among neighbour pixels are proposed. For
example, a two‐point kernel evaluated at a point (x, y) would be

 k x y I x y I x yx y, , ,XOR (14.13)

where the pair (Δx, Δy) determines the local support.
The ith invariant feature is then given by

F

MN
I x y I x yi

x

N

y

M

x
i

y
i1

0

1

0

1
XOR , , , (14.14)

where the pair x
i

y
i, are the translation parameters for the ith kernel. The boundary pixels may

optionally be discarded if the corresponding translated point falls outside the image.
Theoretically, the values of x

i
y
i, are 0 x

i
y
i, ; but practically, they should not exceed

the size of the image. Figure 14.18 illustrates the features which are essentially discriminative for
this classification task. The first column is the original image. The other columns depict the result
of XORing of the original image with its translated version by the amount mentioned in the first row.

14.6.4 Pictogram Extraction

Once the rim of the traffic sign is specified, the next step is to extract its pictogram. All binary objects
in the segmented image are labelled using connected components labelling, and all objects with red
rims, yellow or white interiors, and appropriate dimensions will be selected as candidates for further

Figure 14.17 Results of rim detection.

Traffic Sign Detection and Recognition 365

investigation. As illustrated in Figure 14.19, the process of extracting the pictogram from the image
is described in the following steps [40]:

1) Fill the red region which represents a candidate sign (sub‐image A) with white pixels in order to
produce (sub‐image B).

2) Extract the area corresponding to the pictogram of the sign by XOR operator between sub‐image
A and sub‐image B, that is (sub‐image C = sub‐image A XOR sub‐image B). The resulting area will
correspond to the pictogram of the traffic sign.

3) Extract the corresponding pictogram and convert it into grey level (sub‐image D).

14.6.5 Pictogram Classification Using Features

In order to classify the pictogram, a set of features which describe it is required. A classifier, which
is trained by this set of features, is the tool by which this pictogram is specified. There are many
 features and descriptors in the literature, but histogram of oriented gradients (HOGs), which was
developed by Dalal and Triggs [41] to detect pedestrian, has become a source of attention for many
researchers.

To compute the HOG descriptors of any image containing the extracted pictogram, this image is
divided into a number of cells and a number of orientation bins as depicted in Figure 14.20. For each
cell a local 1D histogram of the gradient directions of edge orientations over the pixels of the cell is
collected. For better invariance to illumination such as shadows, the local histogram is accumulated
over a larger area called ‘blocks’. To improve the contribution of the cells in the final image descriptor,
overlapping between these cells is invoked.

Original Image (0, 1) (1, 0) (1, 1) (0, 2) (1, 2) (2, 0) (2, 1) (2, 2) (3, 3) (4, 4)

Figure 14.18 Binary Haar features of different traffic sign rims.

Computer Vision and Imaging in Intelligent Transportation Systems366

Edge orientations are divided into a number of bins. These bins are equally spaced over the
interval 0–180° for unsigned gradient and 0–360° for signed gradients. Edge orientations should
fit into one of these bins. The histograms collected for the different cells in the bins in the same

Original image Red regions Filled ‘holes’
Result of

colour segmentation

A B C D

Figure 14.19 Steps of pictogram extraction.

C2C1

C1 C2 C3 C4
Pictogram

image

HOG descriptors

C3 C4

Figure 14.20 Computing the HOG
descriptors of a pictogram. Source:
Fleyeh and Roch [42]. Reproduced
with permission of International
Journal for Traffic and Transport
Engineering.

Traffic Sign Detection and Recognition 367

block are concatenated to make the final set of features of the object under consideration as
illustrated in Figure 14.20.

The result of the HOG algorithm is a discrete amount of features which describe the input image.
The number of features depends on the number of cells and orientation bins.

As an example of this stage, HOG features are invoked to classify speed limit traffic signs [42].
The dataset comprises 1727 images from which a total of 1710 speed limit signs and 1025 nontraffic
sign objects were extracted by the pictogram extractor. A number of images that comprise the data-
set are shown in Figure 14.21. Gentle AdaBoost, a boosting algorithm which was introduced by
Friedman [43], was trained by the HOG descriptors of the pictograms. This Gentle AdaBoost is a
robust and stable version of the Real AdaBoost and performs slightly better than the latter on regu-
lar data and considerably better on noisy data. The algorithm uses adaptive Newton steps rather
than exact optimization at each step to minimise the exponential criterion in order to stabilise the
learning processing. The performance of the HOG descriptors for traffic sign recognition is evalu-
ated in the following sections.

14.6.5.1 Effect of Number of Features
A Gentle AdaBoost classifier was trained and tested with different numbers of features. The number
of features was based on different numbers of cells per block and a constant number of orientation
bins. The number of orientation bins was nine, while the number of cells varied from 2 × 2 to 6 × 6
with an increment of 1 in each direction, that is, 2 × 2, 3 × 3, …, 6 × 6. This gives 4, 9, 16, 25 and 36 cells
in each block. A plot of the classification error versus the number of features indicates clearly that
increasing the number of features deduced per block decreases the classification error. Figure 14.22
depicts the relationship between the classification error and the number of features. Since the
extracted traffic signs which were exploited in this experiment were of different scales, it is obvious
that HOG descriptors are scale invariant. This property is essential to traffic sign recognition because
images or footage may contain traffic signs with different sizes depending on the distance between
the vehicle and the traffic sign. To have a set of descriptors which performs with scale invariance
means that time required for normalisation can be saved for real‐time applications.

Figure 14.21 The training dataset includes non‐traffic sign objects and pictograms.

Computer Vision and Imaging in Intelligent Transportation Systems368

14.6.5.2 Classifying Disoriented Traffic Signs
Traffic signs are usually installed on poles which are always vertical with respect to the ground level.
However, for many reasons such as the nature of the ground or environmental effects, these traffic
signs depart from the vertical situation. The Gentle AdaBoost classifier was trained with 360 HOG
features (6 × 6 cells and 10 bins). All of these features were derived from vertically oriented speed
limit signs. The classifier was tested with HOG features derived from speed limit images which were
rotated by different angles in clockwise and counter clockwise directions. Figure 14.23 depicts a plot
of the classification rate versus the angle of rotation.

The plot shows a large drop in the classification rate when disoriented traffic signs were classified
with the trained classifier, which means that HOG descriptors are rotation variant and cannot be
utilised in these situations. As this is a crucial issue as far as traffic signs are concerned, a proper solu-
tion is essential in this case to avoid this kind of invariance.

The Gentle AdaBoost was trained again with a set of HOG descriptors which was derived from
speed limit sign rotated by different angles between −90° and 90°. These HOG descriptors were
derived in the same manner as described before. The classification rate did not drop as traffic signs
rotate. Although there was a slight variation in the classification rate, the average classification rate
was 92%. The plot of the classification rate versus the angle of rotation when Gentle AdaBoost was
trained with rotated signs is depicted in Figure 14.24.

14.6.5.3 Training and Testing Time
Timings of training the Gentle AdaBoost classifier with 2735 descriptors together with the classifica-
tion time of a speed limit sign using different numbers of HOG descriptors are depicted in
Figure 14.25, showing a plot of training and testing times versus number of features. While training
time increases with respect to the number of features, testing time is almost constant regardless of
the number of features. The increment in the testing time between a low number of features and a
high number of features is not crucial.

This system was tested on real traffic scenes collected on different environmental conditions when
the vehicle was driven in the same speed of the traffic sign to be recognised. A number of speed limit
results are shown in Figure 14.26.

0
0

0.5

1

1.5

2

2.5

3

3.5

4
Classification error versus number of features

50 100 150 200 250 300 350
Number of features

C
la

ss
ifi

ca
tio

n
er

ro
r

(%
)

Figure 14.22 Classification errors versus
number of features. Source: Fleyeh and Roch
[42]. Reproduced with permission of
International Journal for Traffic and Transport
Engineering.

Traffic Sign Detection and Recognition 369

14.7 Working Systems

Traffic sign recognition systems are adopted by many car manufacturers. Traffic recognition systems
for speed limit applications similar to the one described earlier was introduced by BMW in 2008 and
then followed by Mercedes‐Benz. A second generation which can detect overtaking restrictions was
introduced by many can manufacturers such as Volkswagen. Volvo used a system called road sign
information (RSI) [44]. The system is designed to lower the risk that the driver misses any traffic sign.
The vehicle is equipped with a camera and a traffic sign recognition system which looks for the traffic

0
–25 –20 –15 –10 –5 0 5 10 15 20 25

Orientation angle (°)

10

20

30

40

50

C
la

ss
ifi

ca
tio

n
ra

te
 (

%
)

60

70

80

90

100
Classification rate versus orientation angleFigure 14.23 Classification rate of the

Gentle AdaBoost trained with vertically
aligned signs versus angle of rotation of
traffic signs. Source: Fleyeh and Roch [42].
Reproduced with permission of
International Journal for Traffic and
Transport Engineering.

0
–20–40–60–80 0 20 40 60 80

Orientation angle (°)

10

20

30

40

50

C
la

ss
ifi

ca
tio

n
ra

te
 (

%
)

60

70

80

90

100
Classification rate versus orientation angleFigure 14.24 Classification rate of the

Gentle AdaBoost trained with rotated signs
versus angle of rotation of traffic signs.
Source: Fleyeh and Roch [42]. Reproduced
with permission of International Journal for
Traffic and Transport Engineering.

Computer Vision and Imaging in Intelligent Transportation Systems370

–2
0 50 100 150 200 250 300 350

Number of features

T
im

e
=

 L
og

10
(Y

)
(s

)

–1.5

–1

–0.5

0

0.5

1

1.5
Training and testing time

Testing

Training

Figure 14.25 Training and testing time of the
classifier with HOG descriptors. Source:
Fleyeh and Roch [42]. Reproduced with
permission of International Journal for Traffic
and Transport Engineering.

Figure 14.26 Correctly classified speed limit traffic signs.

Traffic Sign Detection and Recognition 371

sign in the scene in front of the vehicle in real time; once the traffic sign is detected, it will be displayed
as symbols on the speedometer of the vehicle. This technique, together with other new technologies
such as adaptive cruising system, collision warning, automatic queue assistant system and automatic
lane detection system, increases traffic safety which is one of the most important goals to achieve in
the intelligent vehicles.

 References

1 Fang, C., Chen, S. & Fuh, C. (2003) Road‐sign detection and tracking. IEEE Transactions on
Vehicular Technology, 52, 1329–1341.

2 Fang, C., Fuh, C., Chen, S. & Yen, P. (2003) A road sign recognition system based on dynamic visual
model. The 2003 IEEE Computer Society Conf. Computer Vision and Pattern Recognition, Madison,
WI, 18–20 June 2003, pp. 750–755.

3 de la Escalera, A., Moreno, L., Puente, E. & Salichs, M. (1994) Neural traffic sign recognition for
autonomous vehicles. 20th International Conference on Industrial Electronics Control and
Instrumentation, 1994, IEEE, Bologna, Italy, 5 September 194, pp. 841–846.

4 Estevez, L. & Kehtarnavaz, N. (1996) A real‐time histographic approach to road sign recognition.
IEEE Southwest Symposium on Image Analysis and Interpretation, San Antonio, TX, 8–9 April 1996,
pp. 95–100.

5 Miura, J., Kanda, T. & Shirai, Y. (2000) An active vision system for real‐time traffic sign
recognition. 2000 IEEE Intelligent Transportation Systems, Dearborn, MI, 1–3 October 2000,
pp. 52–57.

6 Vitabile, S. & Sorbello, F. (1998) Pictogram road signs detection and understanding in outdoor
scenes. Conference on Enhanced and Synthetic Vision, Orlando, FL, April 1998, pp. 359–370.

7 Parodi, P. & Piccioli, G. (1995) A feature‐based recognition scheme for traffic scenes. Intelligent
Vehicles ’95 Symposium, Detroit, MI, 25–26 September 1995, pp. 229–234.

8 Vitabile, S., Gentile, A. & Sorbello, F. (2002) A neural network based automatic road sign recognizer.
The 2002 International Joint Conference on Neural Networks, Honolulu, HI, 12–17 May 2002, pp.
2315–2320.

9 Plane, J. (1992) Traffic Engineering Handbook. Englewood Cliffs, NJ: Prentice‐Hall.
10 Jiang, G. & Choi, T. (1998) Robust detection of landmarks in color image based on fuzzy set theory.

Fourth International Conference on Signal Processing, Beijing, China, 12–16 October 1998,
pp. 968–971.

11 Lalonde, M. & Li, Y. (1995) Road sign recognition – survey of the state of art. Technical Report for
Sub‐Project 2.4, Center de recherche informatique de Montrèal, CRIM‐IIT‐95/09‐35.

12 Wikipedia. (2014) Road Signs in the United States (online). Available: https://en.wikipedia.org/wiki/
Road_signs_in_the_United_States (accessed 20 July 2014).

13 Paclik, P. (1984) ITS, Intelligent Transport System (online). Available: http://euler.fd.cvut.cz/research/
rs2/articles/itsp.html (accessed 10 September 2016).

14 de la Escalera, A., Armingol, J. & Mata, M. (2003) Traffic sign recognition and analysis for intelligent
vehicles. Image and Vision Computing, 21, 247–258.

15 Kehtarnavaz, N. & Kang, D. (1993) Stop‐sign recognition based on color/shape processing. Machine
Vision and Applications, 6, 206–208.

16 Volvo. (2011) Samlar den bästa säkerhetstekniken. Aftonbladet (online). Available: http://www.
aftonbladet.se/kampanj/arkiv/volvo/innovation/article13635643.ab (accessed 10 September 2016).

Computer Vision and Imaging in Intelligent Transportation Systems372

17 Volvo. (2015) Säkerhet på en ny nivå (online). Available: http://www.volvocars.com/se/om‐volvo/
innovationer/intellisafe/driver‐support (accessed 10 September 2016).

18 Mei, T., Liang, H., Kong, B., Yang, J., Zhu, H., Li, B., Chen, J., Zhao, P., Xu, T., Tao, X., Zhang, W.,
Song, Y., Wei, H. & Wang, J. (2012) Development of “Intelligent Pioneer” unmanned vehicle. IEEE
2012 Intelligent Vehicles Symposium, Alcalá de Henares, Spain, 3–7 June, pp. 938–943.

19 Blancard, M. (1992) Road sign recognition: a study of vision‐based decision making for road
environment recognition. In: Masaki, I. (ed.) Vision‐based Vehicle Guidance. Berlin, Germany:
Springer‐Verlag.

20 Vitabile, S., Gentile, A., Dammone, G. & Sorbello, F. (2002) Multi‐layer perceptron mapping on a
SIMD architecture. 12th IEEE Workshop on Neural Networks for Signal Processing, Martigny,
Switzerland, 4–6 September 2002, pp. 667–675.

21 Vitabile, S., Pollaccia, G., Pilato, G. & Sorbello, F. (2001) Road sign recognition using a dynamic pixel
aggregation technique in the HSV color space. 11th International Conference on Image Analysis and
Processing, Palermo, Italy, 26–28 September 2001, pp. 572–577.

22 Buluswar, S. & Draper, B. (1998) Color recognition in outdoor images. International Conference on
Computer Vision, Bombay, India, 4–7 January 1998, pp. 171–177.

23 Luo, R., Potlapalli, H. & Hislop, D. (1993) Outdoor landmark recognition using fractal based vision
and neural networks. 1999 IEEE/RSJ International Conference on Intelligent Robots and Systems,
Yokohama, Japan, 26–30 July 1993, pp. 612–618.

24 Paclik, P. & Novovicova, J. (2000) Road sign classification without color information. Sixth Annual
Conference of the Advanced School for Computing and Imaging, Lommel, Belgium, 14–16 June 2000.

25 Paclik, P., Novovicova, J., Pudil, P. & Somol, P. (2000) Road sign classification using Laplace kernel
classifier. Pattern Recognition Letters, 21, 1165–1173.

26 Kang, D., Griswold, N. & Kehtarnavaz, N. (1994) An invariant traffic sign recognition system based
on sequential color processing and geometrical transformation. IEEE Southwest Symposium on Image
Analysis and Interpretation, Dallas, TX, 21–24 April 1994, pp. 88–93.

27 Perez, E. & Javidi, B. (2000) Composite filter bank for road sign recognition. 13th Annual Meeting
IEEE Lasers and Electro‐Optics Society, Rio Grande, Puerto Rico, 13–16 November 2000,
pp. 754–755.

28 Fleyeh, H. (2009) Traffic Sign Database (Online). Available: http://users.du.se/~hfl/traffic_signs/
(accessed 10 September 2016).

29 Stallkamp, J., Schlipsing, M., Salmen, J. & Igel, C. (2011) The German traffic sign recognition
benchmark: a multi‐class classification competition. IEEE International Joint Conference on Neural
Networks, San Jose, CA, 31 July–5 August.

30 Larsson, F. & Felsberg, M. (2011) Using Fourier descriptors and spatial models for traffic sign
recognition. In: Heyden, A. & Kahl, F. (eds.) Image Analysis. 17th Scandinavian Conference on Image
Analysis, SCIA 2011. Berlin/Heidelberg: Springer, pp. 238–249

31 Buluswar, S. & Draper, B. (1994) Non‐parametric classification of pixels under varying outdoor
illumination. Intelligent Robots and Computer Vision XIII: Algorithms and Computer Vision, October
1994, Vol. 2353, pp. 529–536.

32 Gevers, T. & Smeulders, A. (1999) Color‐based object recognition. Pattern Recognition, 32, 453–464.
33 Fleyeh, H. (2006) Shadow and highlight invariant colour segmentation algorithm for traffic signs.

2006 IEEE Conference on Cybernetics and Intelligent Systems, Bangkok, Thailand, June 2006, pp.
108–114.

34 Fleyeh, H. (2004) Color detection and segmentation for road and traffic signs. 2004 IEEE Conference
on Cybernetics and Intelligent Systems, Singapore, 1–3 December 2004, p. 808–813.

Traffic Sign Detection and Recognition 373

35 Fleyeh, H. & Mumtaz, A. (2011) Adaptive shadow and highlight invariant colour segmentation for
traffic sign recognition based on Kohonen SOM. Journal of Intelligent Systems, 20, 15–31.

36 Cleveland, W. & Devlin, S. (1988) Locally weighted regression: an approach to regression analysis by
local fitting. Journal of the American Statistical Association, 83, 596–610.

37 Fleyeh, H., Bhuiyan, N. & Biswas, R. (2011) Prohibitory traffic signs detection using LVQ and
windowed Hough transform. Fifth Indian International Conference on Arificial Intelligence, Tumkur,
India, 14–16 December.

38 Fleyeh, H., Biswas, R. & Davami, E. (2013) Traffic sign detection based on AdaBoost based color
segmentation and SVM classification. IEEE EuroCon 2013, Zagreb, Croatia, 1–4 July 2013.

39 Schulz‐Mirbach, H. (1995) Invariant features for gray scale images. 17 DAGM – Symposium
“Mustererkennung”, Bielefeld. Reihe Informatik aktuell, Springer, pp. 1–14.

40 Fleyeh, H. & Davami, E. (2011) Eigen‐based traffic sign recognition. IET Intelligent Transport
Systems, 5, 190–196.

41 Dalal, N. & Triggs, B. (2005) Histograms of oriented gradients for human detection. IEEE Computer
Society Conference on Computer Vision and Pattern Recognition (CVPR), IEEE Computer Society
Washington, DC, 20 June 2005, pp. 886–893.

42 Fleyeh, H. & Roch, J. (2013) Benchmark evaluation of HOG descriptors as features for classification
of traffic signs. International Journal for Traffic andTransport Engineering, 3, 448–464.

43 Friedman, J., Hastie, T. & Tibshirani, R. (2000) Additive logistic regression: a statistical view of
boosting. Annals of Statistics, 28, 337–407.

44 Wikipedia. (2014) Traffic Sign Recognition (online). Available: https://en.wikipedia.org/wiki/
Traffic_sign_recognition (accessed 20 July 2014).

375

Computer Vision and Imaging in Intelligent Transportation Systems, First Edition.
Edited by Robert P. Loce, Raja Bala and Mohan Trivedi.
© 2017 John Wiley & Sons Ltd. Published 2017 by John Wiley & Sons Ltd.
Companion website: www.wiley.com/go/loce/ComputerVisionandImaginginITS

15.1 Introduction

Statistics regarding road accidents indicate that slippery road conditions are often the primary cause
of severe vehicular crashes or road departures [1]. Hence, a good estimation of traction is of great
importance for safety and handling applications in vehicles; therefore, this has been the subject of
intense research for many years. Incorporating a device that estimates the traction in front of the
vehicle could enable more effective interventions aiming to avoid or mitigate the negative consequences
of accidents. The reduced traction caused by icy or snowy road is estimated to be associated in
approximately 75% of all accidents overall over each winter season in Finland. Moreover, the figures
in the CARE database [2, 3] indicate that adverse road conditions are involved in 3800 annual fatalities
in Europe overall. The primary challenge for the vehicle driver is what is known as “black ice,” some-
thing which is very difficult to see from road surface. A study in Finland [4] arrived at the conclusion
that almost one‐half of the drivers misjudged the available traction on a road. This is a ground for
motivating the development of roadside traction monitoring applications in order to prevent aqua-
planing and warning drivers of slippery road conditions when the degree of traction has degraded.

Today, there are many prototypes of optical devices using optical characteristics to make a classifi-
cation of various road conditions. Yamada et al. [5] pioneered the work in the area of polarization‐
based detection using standard closed‐circuit television (CCTV) cameras. Their work includes
texture and coarseness analysis in order to improve the classification performance. Gustafsson [6]
has reviewed the existing automotive safety systems where tire‐based traction monitoring technol-
ogy has been used. The obvious conclusion is that tire‐monitoring technology is not sufficient on its
own to obtain a reliable state of the road conditions estimation; hence, sensor fusion with alternative
sensors such optical devices should be more exhaustively investigated, not only roadside, but also in
vehicle onboard units.

The modern cooperative traffic safety systems have been developed to make their surveys in
adverse and locally varying road conditions. Moreover, the information is useful for road operators
who plan the necessary maintenance services such as salting or snow plowing. There many examples
of prior European‐level projects which have engaged with development of cooperative traffic safety

15

Road Condition Monitoring
Matti Kutila1, Pasi Pyykönen1, Johan Casselgren2 and Patrik Jonsson3

1 VTT Technical Research Centre of Finland Ltd., Tampere, Finland
2 Luleå University of Technology, Luleå, Sweden
3 Combitech AB, Östersund, Sweden

Computer Vision and Imaging in Intelligent Transportation Systems376

systems related to road conditions [7–11]. The projects have been the driving force in the develop-
ment of camera‐based systems for in‐vehicle and roadside units to support driver decision making.
The existing road condition measurement products use a spectrometric measuring principle [12].

Another somewhat different sensor technique employs laser diodes of two wavelengths and a
photo detector [13]. Two wavelengths are chosen because of the differences in spectral responses
between water, ice, and snow [14, 15]; moreover, they are inexpensive off‐the‐shelf laser diodes.
Yusheng and Higgins‐Luthman have introduced an opportunity to use polarization differences for
black ice detection [16].

In this chapter, we will not only focus on camera‐based technology and classification but also make
a review considering the system called “Road eye.” Casselgren et al. [17] have performed exhaustive
investigations concerning the changes of light intensity with varying incident angle and the spectrum
of light when asphalt is covered with water, ice, or snow with using wavelengths from 1100 to 1700 nm.
They observed that the snow reflection ratio drops consistently at wavelengths above 1400 nm, and
as a conclusion they proposed two different bands in the NIR region (below and above 1400 nm) to
classify road conditions. The benefit of this approach is that the equipment is robust and relatively
cheap, but the drawback is the measuring area limited to one small spot on the road.

The chapter will first review the proposed measurement principles in the road traction monitoring
area and then provide examples of the sensor solutions which are feasible for vehicle onboard and
road sensing. Then, we will review opportunities to improve performance with the use of sensor data
fusion, and finally discuss future opportunities. One important aspect is also the classification algo-
rithms which create the backbone for signal processing algorithms.

15.2 Measurement Principles

The first road‐embedded sensor that was installed for retrieving information about the road surface
condition was the road temperature sensor, which was a crucial sensor in the very first Road Weather
Information System (RWIS) installed in the beginning of the 1980s [18]. Thereafter, common meas-
urement principles involve in situ measurements, where sensors are embedded in the road surface,
and remote sensing technologies using visual cameras and IR sensors or cameras. It has been found
that only knowing the meteorological conditions and the temperature of the road surface does not
provide sufficient information for accurately estimating the slipperiness of the road. Therefore, addi-
tional sensors that could detect the presence of water and ice on the road surface were developed. In
addition, sensors were developed that could also determine the freezing point of the water on road
surfaces. These in situ sensors have some drawbacks, however, such as difficulties in terms of instal-
lation as the lanes need to be closed during the installation plus the sensors are also exposed to con-
tinual wear and degradation from the traffic. Another drawback is that a given sensor only monitors
a very small area of the road surface, which to some extent is solved by the traffic itself as it will drag
new fluid over the sensor area as the vehicles pass [19].

When digital cameras were first available in the 1990s, they were widely installed at the RWIS
installation locations to be used for manual observations of road conditions and the results from
winter road maintenance tasks. However, these camera systems needed a manual operator to be of
sufficient value, and the acquired images were used solely for observations by the operators. It was
more desirable to have camera systems that could automatically determine road conditions. As com-
putational power increased, some initial tests with image analysis and learning‐based computer
models were performed [20]. From these tests, it was realized that it is possible to classify road condi-
tions based on camera image data. In the research that followed, meteorological parameters and

Road Condition Monitoring 377

camera images were used in conjunction together for classifying road conditions. By using this addi-
tional information with image data, it was hypothesized that the classification performance could be
improved compared to only using image data. Even though it was found that the combined RWIS
and image feature dataset could be used for developing accurate road status classifiers, it was found
that the most crucial situations, such as black ice occurring at temperatures in the neighborhood of
0°C, could be missed by using RWIS data and visual camera images.

Some studies found that it would be possible to detect ice and classify road conditions by using NIR
light [21]. This principle was used to develop remote sensing, also called “contactless sensing.” The
typical sensors utilize NIR detectors operating in the wavelength region 1–2 µm and usually together
with a light source. The light source should have an illumination power that is greater than the light
from solar sources at the measurement area during daytime to get reliable measurements. Several
new products based on this principle have recently been released on these markets too. One draw-
back of using the aforementioned NIR sensors is that they measure a relatively small spatial area,
approximately a circle with 30 cm diameter. This means that differences in and between wheel tracks
can be missed. It is thus desired to get broad lane coverage for remote sensing equipment. Although
NIR‐sensitive camera chips are more expensive than single‐point sensors, research has been per-
formed to find a cost‐effective camera system operating in the NIR wavelength region that has the
capability to classify road conditions [22].

15.3 Sensor Solutions

15.3.1 Camera‐Based Friction Estimation Systems

Cameras are widely used in road condition measurement units in roadside installations. Due to the
area they are cover, they need to have an appropriate resolution in order to depict the situation accu-
rately. This follows the typical method of using textural analysis for road monitoring, for example,
Kutila et al. [10]. A roadside camera should also have the ability to process images at nighttime, which
means preferences to operate in the 0.7–0.9 µm wavelength band. It is also desired to have the road
illuminated during nighttime, and at remote locations without any street lighting there is a need to
provide IR lighting. Many cameras have internal light‐emitting diodes that provide IR illumination,
but they are usually only intended for short‐range illumination. Thus, typical built‐in illuminators
will not provide satisfactorily illumination of the road surface during nighttime. Therefore, separate
independent illuminators should be used, such as the powerful NIR illuminators used by common
surveillance systems.

One example of a road condition monitoring system, called IcOR, is based on a stereo camera
arrangement. The reason for use of a stereo camera system (see Figure 15.1) is not actually acquiring
3D measurements, but this is optimal solution for accurate spatial and temporal synchronization
between captured images. This is the key requirement for comparing polarization differences
between two images. For measuring illumination difference between cameras, horizontal and verti-
cal polarization filters are mounted in front of the optics. The IR filter has been removed from the
cameras to improve performance during dark time. On the other hand, the polarization filters allow
only a narrow spectral band to pass to the detectors, which eliminates most of the detrimental ambi-
ent light. One camera with a horizontal field of view of 65° acquires monochrome images with a
maximum resolution of 640 × 480 pixels.

Figure 15.2 shows the image processing part of the camera‐based friction estimation system. There
are two major steps which bases on filtering out the polarization planes and then estimating the

Computer Vision and Imaging in Intelligent Transportation Systems378

Figure 15.1 IR light source and stereo camera inside housing.

Start image capture

Next image sequence

Vertical polarization filteringHorizontal polarization filtering

Capture image from left camera Capture image from right camera

Graininess and polarization calculation

Weather type classification

Friction estimation

Filtering and sensor fusion

Communication module

Additional sensor input, that is, temperature sensor

Figure 15.2 The camera system software algorithm for road friction estimation.

Road Condition Monitoring 379

 difference index. Furthermore, graininess value is estimated using frequency analysis in the image.
These two factors (polarization and graininess) are finally classified into the following categories:
dry, wet, snowy, and icy asphalt.

The user interface of the system enables the option to select, for example, lanes to be monitored
from an intersection area. This is important when no automatic calibration and region‐of‐interest
selection exists. In Figure 15.3, three different areas have been selected for classification. Lane selec-
tion enables monitoring of individual lanes and more precise detection of different road conditions.
Graininess and polarization values from the specified areas are classified into the following road
condition categories: dry, ice, snow, wet, and unknown.

The road condition monitoring system data contains a time stamp in seconds, sensor location,
classified road condition (dry, ice, snow, wet, or unknown), and confidence level of the classified road
condition. Classification of the road conditions is a relatively big operation, and even when the cam-
eras are operated at 25 Hz, the system output frequency remains 1 Hz.

15.3.2 Pavement Sensors

The pavement sensors are installed as close to the road surface as possible without exposing the sen-
sor to undue risk of being broken or otherwise damaged by traffic. The sensors provide information
for prognosis models of when the road will reach a frozen condition. Knowledge about when the road
will freeze is important information for initiating preventive anti‐icing activities. A consequence of
such temperature measurements and associated anti‐icing efforts is that the presence and amount of
anti‐icing materials present on the road should be known in order to be able to determine when

Figure 15.3 User interface of road condition monitoring system.

Computer Vision and Imaging in Intelligent Transportation Systems380

water on the surface will form ice. Several pavement‐mounted sensors have been developed during
the years, and they are primarily of two different types: active sensors and passive sensors. The
 passive sensors are by far the most common as their construction is simpler than the active sensors
that need to perform additional tasks for heating and cooling as well as additional measurements. A
common type of passive sensor detects the freezing point by measuring the conductivity of the road
fluid. This conductivity is then translated to a freezing point value when the anti‐icing substance is
known. Additional passive sensors are needed for detecting the presence of water and snow by utiliz-
ing reflections of light from water and snow on the road surface [19]. Active sensors utilize a Peltier
element for heating and cooling the fluid, ice, or snow on the road surface in order to perform a phase
transition of the material on the road surface from fluid to solid. It is possible to detect this phase
transition, and the temperature at this phase transition indicates the freezing point of the ice, snow,
or fluid on the road surface.

15.3.3 Spectroscopy

When a material is illuminated by electromagnetic waves, the atoms can react in one of two ways
depending upon the energy of the incoming photon. Generally, the atom will scatter the light
 redirecting it without otherwise altering it. This nonresonant scattering occurs when the incoming
radiant energy is far away from the resonance frequencies of the atom (see Figure 15.4). When an
atom in the lowest state interacts with a photon whose energy is too small to cause a transition to a
higher excited state, the electromagnetic field drives the electronic cloud of the atom into oscillation
without any transition.

The vibration of the electron cloud is the same as the frequency of the incident light. Once the
electron cloud starts to vibrate with respect to the positive nucleus, the system constitutes an
oscillating dipole and will immediately begin to radiate at the same frequency. The scattered light
will consist of a photon with the same energy as the incident photon but possibly redirected in
another direction.

Electron cloud

Electr
on cl

oud

Electron cloud

Ele
ct

ro
n

clo
ud

+

E(t)

Figure 15.4 A mechanical representation of an
oscillator in an isotropic material where the
negatively charged shell is fastened to a stationary
positive nucleus by identical springs.

Road Condition Monitoring 381

The other atomic reaction occurs when the photon’s energy matches that of one of the excitation
states of the atom. The atom will then absorb the light and make a quantum jump to that higher
energy level. In solids and liquids, which are used in this application, the atomic landscape is dense.
For such an atomic landscape, it is likely that the excitation energy will rapidly be transferred, via
collision, to random atomic motion (thermal energy) before a photon can be emitted. This process is
referred to as “dissipative absorption.” For a dense material, the closer the frequency of the incident
light to an atomic resonance, the stronger the interaction. This results in more energy absorption. It
is this mechanism that creates much of the visual appearance of matter, and it is the mechanism that
makes it possible to characterize different materials using the absorbing spectra. These mechanisms
also state that the complex refractive index is dependent on frequency (wavelength) [23].

In the NIR spectrum, different phases of water (water, ice, snow, and slush) have a distinctive
absorption for specific wavelengths as shown in Figure 15.5. This physical property is one of the main
characteristics that enable road condition classification using NIR light [13]. In Casselgren et al. [17],
the optimal wavelengths (980, 1310, and 1550 nm) to classify dry, wet, icy, and snow asphalt within
the NIR spectrum were calculated. These wavelengths are utilized in several road condition–moni-
toring sensors where Road eye is one example [24]. In Figure 15.5a, the spectrum between 1100 and
1700 nm are shown for dry asphalt and asphalt covered with water, ice, and snow. It can be seen that
the two road conditions that are closest to each other are water and ice. These are also the conditions
that have the most potential hazard, because a driver can think that a road is simply wet when in fact
it is frozen and slippery. In Figure 15.5b, the spectral reflectance for five different water depths is
shown, moist and 1–4 mm. From the figure, we can see that absorption makes it possible to distin-
guish the thickness of water films.

8
(a)

(b)

6

4

4

3.5

2.5

1.5

3

2

1

2

0

1100 1200 1300 1400

Wavelength (nm)

1500 1600 1700

1100 1200 1300 1400

Wavelength (nm)

1500 1600 1700

Moist

Dry
Water
Ice
Snow

1 mm water
2 mm water
3 mm water
4 mm water

R
ef

le
ct

ed
 in

te
ns

ity
 (

%
)

R
ef

le
ct

ed
 in

te
ns

ity
 (

%
)

Figure 15.5 (a) Reflectance spectrum for dry asphalt and asphalt covered with water, ice, and snow. (b) Reflectance
spectrum for five different depths of water on asphalt.

Computer Vision and Imaging in Intelligent Transportation Systems382

15.3.4 Roadside Fog Sensing

The fog detection system, which is based on a laser scanner (Figure 15.6) on 950 nm band, was imple-
mented in a ROAD SIDE UNIT after the preliminary laboratory tests and results (see Figure 15.7).
Based on the laboratory tests, it was noted that the laser beam does not sufficiently penetrate fog
when fog density is increased. The distance to the reflection point is measured continuously, and the
mean reflectance value over the last 10 s is calculated. This mean value is then compared to a refer-
ence value without fog to get a visibility estimate.

Figure 15.8 illustrates the basic laser scanner fog measurement system method. The scanner is
installed over a road section, attached to a pole bridge structure. The laser scanner beams are orien-
tated to the road surface to obtain a reference point and distance for clear visibility. When fog density
is increasing, measured mean distance for the laser beams is decreasing and showing that fog is limit-
ing visibility as a ratio of decreased distance to road surface.

The ROAD SIDE UNIT has been installed on a motorway ramp for testing and the visibility was
continuously monitored. In addition, the previously mentioned IcOR module was installed onto the
ROAD SIDE UNIT for monitoring the road surface friction at the same time. Thus, the system was
versatile monitoring unit processing both fog and friction with the same laser‐ and camera‐based unit.

In Figure 15.8, the algorithm for camera‐based fog vision system is depicted. The system bases on
assessing laser light reflectance from different distance for estimating visibility index. However, rain
also tends to influence laser scanners, and these situations are classified separately to minimize influ-
ence for fog index calculation.

Figure 15.9 show benchmarking results of the fog measurement unit. The average distance of the
laser reflection is measured over the motorway in meters. The red box on the left indicates a period
when the snowfall was very dense. During dense snowfall, the average distance decreased signifi-
cantly from 30 to 10 m, while the maximum visibility value decrease was proportionally smaller, from
about 200 to 160 m. This result can be explained partially by the operation principle of the scanning

Fog

Ground

Ground

Mean distance

Mean distance

Figure 15.6 Basic measuring principle of fog
detection system with a laser scanner.

Road Condition Monitoring 383

laser, in which the laser sends multiple beams to measure the environment. During snowfall, indi-
vidual laser beams have a higher possibility to pass through snow crystals than to pass through fog
since the fog is denser and more efficiently prevents the penetration of the laser scanner beams.
Hence, in the snowfall condition, the maximum distance over all beams can be measured by a beam
that misses most falling snow crystals and results in a distance closer to the clear visibility condition.

15.3.5 In‐Vehicle Sensors

In‐vehicle systems are used to adapt electronic stability control (ESC) skidding prevention system
according to the available friction level. Current in‐vehicle friction estimation units are based on
lateral vehicle dynamics and rotation speed errors of tires [9]. Some tire‐based sensors have been
developed that utilize tire deformation. These sensors are installed inside the vehicle tire to detect
possible shape changes due to reduced friction.

In addition, in‐vehicle systems utilize inertia sensing of the vehicle to calculate lateral accelera-
tions, which are indicators of skidding. The acceleration and speed variations are available in the
vehicle controller area network (CAN) bus from the standard sensors which typically exists in cars.

Figure 15.7 Targets as seen in various fog densities in the
fog chamber.

Computer Vision and Imaging in Intelligent Transportation Systems384

Capture scan from laser scanner
Next scan from scanner

Limit laser scanner scan sector in degrees

Filter and calculate scan maximum distance

Calculate visibility distance

Calculate scan average distance

Detect if rain exists

Classify between snowfall and rain

Visibility and weather estimation calculation

Communication module

Figure 15.8 Algorithm description of the fog detection system.

40
Average distance

30

20

10

0

Figure 15.9 Average visibility distance measured by the laser scanner in meters. Two areas are marked during which
there was dense snowfall.

Road Condition Monitoring 385

Thus standard sensors are used to avoid an added cost in the manufacturing of the car, therefore are
favored. However, the problem is that these systems do not predict friction in front of the car as the
optical sensors do. Transition to automated vehicles needs this type of prediction where friction in
front of the vehicle is calculated for adapting vehicle systems accordingly similar to a driver viewing
the proceeding road condition.

The environmental system IcOR provides a classification of road conditions over the whole road
surface at distance of 0–40 m in front of sensor, in this case mounted on a vehicle. The IcOR system
was first developed as an onboard driver support system. The visible and NIR spectrum, with the
help of the car’s front lights, were utilized to avoid additional illumination installations for keeping
the system price reasonable. As a detector, the IcOR system uses a stereo camera pair. Each camera
acquires monochrome images with a resolution of 640 × 480 pixels. They have a global shutter that
exposes all the pixels simultaneously. This prevents some artifacts that arise with a rolling shutter
(e.g., skew). The system uses external synchronization, that is, all DSCG devices on the same FireWire
bus capture the images at the same time. This is convenient because there is no need to synchronize
the images afterward. A polarization filter is mounted on each camera in such a way that one camera
measures the incoming horizontally polarized light, while the other measures the vertically polar-
ized light.

The camera pair of the IcOR system was tested positioned inside the cab/interior of the vehicle
behind the windshield, avoiding the windshield wipers and having a clear optical path. The instal-
lation corresponds with the typical lane tracker cameras since they are often mounted behind the
interior rearview mirror together with the rain detector. Another benefit concerning the installa-
tion location is that expensive heated optics is not needed during wintertime. The evaluation of the
IcOR system was first done in a passenger car (see Figure 15.10). To make results fully comparable
between the IcOR and the Road eye systems, both systems were also installed into a specially
instrumented vehicle.

The environmental sensor Road eye provides a classification of road conditions at a short distance
of 0.5–1.5 m and has a short‐wave IR (SWIR)‐active illumination system consisting of three laser
diodes emitting at wavelengths λ1 = 980 nm, λ2 = 1310 nm, and λ3 = 1550 nm. As laser diodes emits
linearly polarized light, it is possible to control the polarization of the illuminated light by mounting
the diodes in a specific manner. The polarization is important because as shown in Figure 15.11 the

Figure 15.10 IcOR’s stereo camera located
inside the test vehicle.

Computer Vision and Imaging in Intelligent Transportation Systems386

light measured by the Road eye needs to propagate into the medium to give a good classification. The
laser diodes were mounted so that the emitted light is vertically polarized in order to allow the
strongest possible signal back to the sensor. Hence, for angles around 50° all vertical polarized light
will propagate down into the medium [25, 26], resulting in a reflection that is as strong as possible.
The Road eye’s focusing optics gives an illuminated spot with a radius of 10 mm on the road surface
at a distance of 0.8 m. In order to acquire data from the reflected light, a lens focuses the reflected
light onto a photodiode. The amplitude‐modulated signals are sampled at 20 Hz. The output signal
consists of three voltages (mV) representing the reflected intensity of the three wavelengths, respec-
tively. The active amplitude‐modulated illumination ensures insensitivity to disturbances, such as
other vehicle’s headlights or daylight.

In one study, the Road eye sensor was tested in a tube in front of the right front wheel of a truck.
The tube was used to keep the sensor clear from splash and pollutions and worked without any prob-
lems. The mounting angle of the tube was around 45°, with a height of 0.8 m from the ground, result-
ing in a measuring distance in front of the wheel of 0.8 m. Due to the sampling rate of the Road eye
sensor and the simple classification algorithm, the response time of the system ensures a preview
measurement 0.8 m in front of the wheel.

In the INTEREG IVA Nord Intelligent Road initiative, the two in‐vehicle optical sensors from
Optical sensors Road Eye and Teconer RCM 411 were evaluated against a continuous road/tire fric-
tion apparatus to evaluate the friction estimation. The results for each road condition are shown in
Figure 15.12. It can be seen that the optical sensors can classify certain slippery road conditions from
nonslippery conditions. What is notable is the difference between the two sensors for slush, and this
is because the definition of slush can alter between different manufacturers of the sensors. Also nota-
ble are the classifications that are erroneous; for example, the road condition is dry but the friction is
below 0.6. This is caused by erroneous classifications, such as an icy road that is sanded.

15.4 Classification and Sensor Fusion

The classification of road conditions is not as easy as it first may seem, partly due to different road
users and road maintenance operators having their own unique way of describing road conditions. It
is possible to develop classifiers with well‐defined functionality by limiting the road conditions to
those that human eyes easily recognize (dry, wet, icy, and snowy). However, the separation of ice and
snow is not obvious if wavelengths between 1 and 2 µm are used for classification. In this wavelength

n1

n2

n3 Asphalt

Water/ice/snow

Road eye

IcOR

Figure 15.11 Road eye and IcOR measuring
principles.

Road Condition Monitoring 387

band, ice and snow could look similar even though snow is clearly white and ice is gray in the visual
spectral range. This phenomenon indicates that manual classification of ground truth road condi-
tions needs to take this into consideration when the data is used for developing road condition clas-
sifiers. The development of classifiers should be done using supervised learning, because it is desired
to map human observations to classified road conditions (see Figure 15.13). Using unsupervised
learning for developing classifiers is not desired in this case, because unsupervised learning may find
groups of classes that cannot be seen in the visual spectra; thus, it will be difficult for users to under-
stand the classification models.

The initial step in the classification phase is to perform a principal component analysis (PCA) to
find the internal relations of the dataset. By using PCA, it is possible to plot the data against the

Figure 15.12 Road condition classifications for the Road eye and a benchmarking sensor for different road
conditions.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

500

1000

Road eye

Dry

0

1000

2000

3000
Wet

0

200

400

600
Ice

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

500

1000

Snow

Friction number (µ)

0

200

400

600

Slush

A
m

ou
nt

A
m

ou
nt

A
m

ou
nt

A
m

ou
nt

A
m

ou
nt

Computer Vision and Imaging in Intelligent Transportation Systems388

orthogonal axes that explains the data with highest variance. If groupings are found using PCA, it is
possible to continue to develop classification models [27].

There are many classification methods, for example, K‐nearest neighbor, neural networks (NNs),
support vector machines, partial least squares (PLS), and discriminant analysis. The choice of a spe-
cific type depends on many things, for example, the success rate of the developed classifier, how
much computational power is available, and how much memory is available in the processing unit,
how the classifier is intended to be used. The performance of the developed classifier cannot be
evaluated until training and validation of a dataset is done. Therefore, it is necessary to test a few dif-
ferent classification methods in order to find the most suitable one. K‐nearest neighbor is an old and
well‐proven classification method with the drawback of being slow. This suggests that it is desirable
to use K‐nearest neighbor as a comparison to classifiers based on the other methods. If real‐time

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

500

RCM411

Dry

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

Moist

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

500

Wet

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

Slush

0
100
200
300

Ice

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

100

200

Friction number (µ)

Snow

A
m

ou
nt

A
m

ou
nt

A
m

ou
nt

A
m

ou
nt

A
m

ou
nt

A
m

ou
nt

Figure 15.12 (Continued)

Road Condition Monitoring 389

calculations are required, methods such as partial least squares, NNs, and support vector machines
should be considered as their resulting classification model is a mathematical polynomial. PLS is a
method that is based on statistical methods, and therefore the performance gained from this classi-
fier is sometimes easier to examine and understand.

The development of classifiers is preferably done in two steps: first a dataset is used to train and vali-
date the classifiers; second, a different dataset is used to test the developed classifiers (see Figure 15.14).

–6

–4

–2

0

2

4

6

8

10

–7 –6 –5 –4 –3 –2 –1 0 1 2 3 4 5 6 7

Component 1

Dry
Ice
Snow
Track
Wet

C
om

po
ne

nt
 2

Figure 15.13 An example plot from a PCA of road
condition data for different road conditions. The different
road conditions can be seen to be grouped, and by
looking at more of the principal components the
groupings for some of the road conditions can be seen
more clearly.

Laboratory experiments

Training and
validation data

Training and
validation data

Field experiments

Outlier
detection

and removal

Test data

Surface
condition

Surface
condition

Classifier
Mij(x)

Classifier
Mij(x)

Figure 15.14 A method for developing road conditions classifiers. In the laboratory, a dataset is used to train and
validate the classifiers. In the field, where the environment conditions are more varying, two datasets are used. One
dataset is used for training and validation of the classifiers and another dataset is used to test the dataset. The test
dataset from field experiments shows the performance of the classifiers.

Computer Vision and Imaging in Intelligent Transportation Systems390

It was also a good idea to develop one classifier for each road condition. Then each classifier has a
much simpler task as it only has to define if data belongs to a specific class or not. The drawback is
that if road condition data is close to each other in the featured space, two or more classifiers can
classify a pixel to belong to their road condition class. This is a multiclass problem that needs to be
handled and one method is to use Bayesian networks. Such a Bayesian network would then use
 probabilities for selecting one of the conflicting road conditions; for example, it is more probable to
have ice rather than being wet if the road temperature is −20°C.

Two sensors were used for road friction estimation: the IcOR camera system producing road fric-
tion classification information and the inertia unit complemented with the GPS data (see Figure 15.15).
Data input structures from the IcOR, inertia, and GPS sensors were adapted from the specification
provided by the German national C2X pilot project SimTD, using the standardized ASN.1 notation.
This specification was selected since the protocol aligns with Car‐2‐Car communication consortium
recommendations and is widely accepted by the European automotive industry. The architecture of
the infrastructure sub‐system is shown in Figure 15.16.

The IcOR system acquires images and executes analysis with 1 Hz frame rate. At 100 km/h speed,
the vehicle will move 28 m during one measurement. To classify road condition in real time, the
measurement area of the IcOR system was selected to be 30 m ahead of the vehicle. This measure-
ment rate is sufficient because the road state is changing slowly and more important is the overall
road condition.

15.5 Field Studies

In Sweden, field tests have been performed to evaluate the performance of classifiers using data from
the visual and NIR spectra 0.4–0.9 µm and data from only the NIR spectra ranging from 1 to 2 µm.

By using a standard visual camera operating in the spectral region 0.4–0.9 µm together with RWIS
data, it was found that it is possible to discriminate between different road conditions. The use of

Data fusion module

Road condition buffer

Road condition

IcOR data

Inertia data

GPS data

Acceleration buffer
D

at
a

re
ce

iv
er

Location buffer

D
ata processing

B
uf

fe
r

w
rit

er

D
at

a
re

ce
iv

er

B
uf

fe
r

w
rit

er

D
at

a
re

ce
iv

er

B
uf

fe
r

w
rit

er

Figure 15.15 Sensor data fusion module for merging in‐vehicle inertia and optical measurement data.

Road Condition Monitoring 391

RWIS data together with image feature data makes it possible to more easily discriminate between a
wet and icy surface because, as an example, temperatures well below 0°C implies an icy surface
instead of a wet surface.

Results from field tests performed in Sweden showed successful results of classifying the overall
road condition using PLS and NNs; see Table 15.1 [28, 29].

However, it was found that this method using standard cameras and RWIS data merely gives an
overall classification of the road condition instead of details of individual parts of the retrieved image.
By using the NIR spectra, 1–2 µm, it was found that it is possible to determine the road condition in
each pixel of the retrieved images [22].

V2I communications

Road condition
Traffic light data
Dynamic objects

Dynamic objects

Detailed map

Vehicle

High level fusion

Object detection,
classification and tracking

Background elimination

Detailed
mapLaser scanner

Traffic light
controller

CameraGPS

M
on

ito
rin

g
In

fr
as

tr
uc

tu
re

se
ns

or
s

Road
condition

monitoring

Figure 15.16 Architecture of the infrastructure subsystem.

Table 15.1 Success rates from road condition classification using 0.4–0.9 µm
camera and RWIS data.

Modeled road condition, percentage
of correct classifications

PLS model (%) NN model (%)

Observed road condition
Dry 100 91
Ice 91 100
Snow 95 100
Wet 95 100

Computer Vision and Imaging in Intelligent Transportation Systems392

Because each pixel is classified as a road condition, it is possible to find situations where the road
condition differs in and between the wheel tracks. Such an analysis was done on the dataset, and it
was found that there had been several occasions when the road condition were different in and
between the wheel tracks; see Table 15.2 [30]. The data was collected during the winter season 2013–
2014 close to the Sweden–Norway border.

Test runs were performed together with Finnish Meteorological Institute (FMI) and Foreca in the
beginning of February 2009 [31]. The test route consisted of a wide variety of road types: interurban
highways, rural roads, and urban roads in the Tampere region. The road conditions varied from
salted, wet highway to snowy gravel road. The weather during the test drives was somewhat cloudy
with temperatures in the neighborhood of −5°C.

In addition to the IcOR system, the test vehicle was also equipped with two of Vaisala’s surface sen-
sors [32]: remote road surface state sensor (DSC111) and remote surface temperature sensor
(DST111). Vaisala sensors were placed on the roof, aiming at the rear of the vehicle (see Figure 15.17).
The surface state sensor was measuring road surface directly behind the left back wheel. For the
other sensor, the IcOR’s camera was mounted on the windshield inside the vehicle, facing toward the
road ahead.

The data consists of road parts giving a typical impression of the winter road condition. The refer-
ence road condition value is based on the measurements from the Vaisala sensor that provides ice,
water, and snow layer thickness. The thickest layer was chosen as the road condition; for example, if
the snow layer had the largest value of the three, the road would be considered snowy.

Table 15.2 Road condition differences in and between the wheel tracks at two sites.

Percentage dry or
wet in wheel tracks

Percentage ice or snow
between wheel tracks

Occasions
at site 1

Occasions
at site 2

70 40 69 86
70 50 50 62
70 60 35 47
70 70 22 33
70 80 14 24
70 90 2 12
80 40 46 75
80 50 33 52
80 60 21 38
80 70 15 27
80 80 11 19
80 90 1 11
90 40 23 60
90 50 17 41
90 60 10 30
90 70 7 23
90 80 5 16
90 90 0 8

Road Condition Monitoring 393

Figure 15.18 shows the polarization differences from certain road parts distinguishing the chang-
ing road conditions (snowy, icy, and wet from left to right). During a snowy route, the polarization
values are quite large, creating a distinct gap between the snowy and icy/wet parts of the road. The
difference between icy and wet road is small, but correlation with the reference can be seen.

Figure 15.19 contains graininess values of the same measurement points presented in Figure 15.18.
There seems to be no significant differences between the values of three different road parts. The
negative values in the snowy area are measurement errors probably due to overexposed images.

Earlier experiences have shown that the graininess analysis has the potential to analyze not just
whether the road is covered by ice, water, or dry asphalt but also to recognize the type of the road.
This would be interesting especially when the vehicle is navigating in an unstructured off‐road

Figure 15.17 Vaisala’s road weather sensors
on the roof of the test vehicle.

Polarization difference

–1

9

19

29

39

49

59

69

79

89

1 27 53 79 10
5

13
1

15
7

18
3

20
9

23
5

26
1

28
7

31
3

33
9

36
5

39
1

41
7

44
3

46
9

49
5

52
1

54
7

57
3

59
9

62
5

65
1

67
7

70
3

72
9

75
5

78
1

80
7

83
3

85
9

88
5

Snow Ice Water

Figure 15.18 Polarization difference.

Computer Vision and Imaging in Intelligent Transportation Systems394

environment. Currently, control algorithms of the robots moving in forest roads, and so on, do not
take into account influence of reduced friction.

15.6 Cooperative Road Weather Services

Vehicle environment perception today is primarily based on onboard units. However, reliability and
versatility of perception can be improved by taking additional measures from other sources into
account [33]. A cooperative safety system can fuse the data available from other vehicles and roadside
units. This fusion utilizes, in many cases, maps of the region to compare in‐vehicle and road weather
service data.

The local dynamic map (LDM) concept has been introduced for detailed road‐ and traffic‐related
information [34]. In the LDM, the road geometry from a standard digital map is integrated with the
information collected by vehicles and the infrastructure. When comparing this information with the
LDM specifications, conflict areas and especially unique map lanes are not included. Lanes are not
separate objects and their properties are linked to road elements. Other differences include, for
example, the coordinate system in which paths are described.

The roadside equipment has been developed to offer processed data for vehicles entering a com-
munication‐equipped intersection. The infrastructure subsystem merges data of the traffic light con-
troller, road condition information, road user locations and speed, and the static map information to
the package which assists a vehicle to adapt speed and maneuvering to safely approach an intersec-
tion. The laser scanners of the infrastructure are used to detect pedestrians, other vehicles, and
bicycles, whereas the camera system detects if the friction level of road surface is changing. The
traffic light controller provides information of traffic signals and intelligently controls traffic flow by
minimizing waiting times and vehicle accelerations. Static data (locations of curbs and poles) is avail-
able in the intersection model which is stored to the local dynamic map database.

Data input structures from the sensors, as well as the intersection topology data from the LDM, are
described using the standardized ASN.1 metalanguage in accordance with the SIMTD specification

Graininess

–0.3

–0.1

0.1

0.3

0.5

0.7

27 53 79 10
5

13
1

15
7

18
3

20
9

23
5

26
1

28
7

31
3

33
9

36
5

39
1

41
7

44
3

46
9

49
5

52
1

54
7

57
3

59
9

62
5

65
1

67
7

70
3

72
9

75
5

78
1

80
7

83
3

85
9

88
5

Snow Ice Water

1

Figure 15.19 Graininess levels.

Road Condition Monitoring 395

[35]. The high‐level fusion (HLF) module receives data from sensors through data receiver processes.
Data is written into the shared memory buffers that enable data transfer and communication across
process boundaries. This approach also enables the attachment of timestamps to the data packets as
they are written into the shared memory buffers. This feature is used in the fusion to associate the
contents of the buffers with a certain moment of time. Incoming data examples are as follows:

 ● Traffic light controller data (signal state buffer) data contains periodic information about the state
of the traffic light signal. Signal state buffer writer writes this data into the buffer approximately
once per second.

 ● Road condition monitor data (road condition buffer) contains information about the road condi-
tions in the intersection. Most critical pieces of information are the number of monitored areas,
road condition type in the monitored areas, and the position of the monitored areas. A road condi-
tion buffer writer writes this data into the buffer approximately once per second.

 ● Laserscanner data (laserscanner buffer) contains information about the detected objects in the
intersection. First of all, this data consists of information about age, time, classification, position,
orientation, velocity, and size of the detected objects. A laserscanner buffer writer writes this data
into the buffer within 12.5–25 Hz frequency.

 ● LDM data (intersection topology) provides a formal representation of the surrounding intersec-
tion topology. The HLF module reads the intersection topology stored in an XML file. This data
has a more static character and is not read‐in continually like the data to the other buffers.

15.7 Discussion and Future Work

In recent years, the automotive industry has introduced numerous new driver assistance systems
into the markets. Measuring road friction is in the interests of original equipment manufacturers
(OEMs) since future vehicles that adopt new autonomous features need predictive friction measure-
ment for autonomy to be feasible in winter time in countries having snow and freezing conditions.
The vehicles need to select an optimum speed and lanes in various road weather conditions for pre-
venting accidents. The current problem is that the reliable sensors based on tire rotation speed dif-
ferences, in practice, report data too late when considering, for instance, aquaplaning. On the other
hand, in the markets where slippery roads due to snow and ice are not commonly encountered, this
has not been a top priority for sensor development.

The optical sensing principle is the most promising to meet the automotive industry and road
operator requirements for future systems. Still both software and, especially, hardware development
is needed. Ice has certain optical properties which favor the use of the NIR band for detecting black
ice on a road. The components unfortunately are still too expensive for moderately priced level cars,
and hence this is one of the biggest future challenges—to design optics, sensor chips, and processing
units to be at a sufficiently low cost (about €1000). The development of these systems will continue
in the RobustSENSE‐ECSEL‐2015 project, which is co‐funded by the European Commission.

Road operators need a system not only to monitor the actual road weather for informing vehicle
drivers but also to be able to predict the changes in road weather‐related conditions as early as pos-
sible. Road operators who are responsible for snowplowing/snowblowing and salting/sanding and
maintenance are required to react before the road conditions change to a dangerous icy condition.
The optical sensors both in‐vehicle and infrastructure side are turning out to be the most promising
option for sensing. However, an important consideration is the development of IT systems that are
able to amalgamate and process the information and have a channel of communication to provide
information to vehicle operators.

Computer Vision and Imaging in Intelligent Transportation Systems396

 References

1 Wallman, C.‐G. & Åström, H. 2001. Tema vintermodell—olycksrisker vid olika vinterväglag,
Technical Report N60‐2001, VTI, Linköping.

2 Annual Statistical Report 2007. 2007. Deliverable 1.16 of SafetyNet. Based on data Community
database on Accidents on the Roads in Europe—CARE. Available in: http://ec.europa.eu/transport/
road_safety/specialist/statistics/care_reports_graphics/index_en.htm, cited on July 29, 2010
(accessed on September 12, 2010).

3 SafetyNet. 2007. Annual Statistical Report 2007. Deliverable No: 1.16. Data based on Community
database on Accidents on the Roads in Europe—CARE. Available in: http://ec.europa.eu/transport/
road_safety/observatory/statistics/reports_graphics_en.htm, cited on February 10, 2010 (accessed on
September 12, 2016).

4 Sihvola, N. & Rämä, P. 2008. Drivers’ opinions about road weather conditions and road weather
information—interviews during winter conditions. Helsinki 2008. Finnish Road Administration
16/2008, p. 62 + app. p. 10.

5 Yamada, M., Ueda, K., Horiba, I. & Sugie, N. 2001. Discrimination of the road condition toward
understanding of vehicle driving environments. IEEE Transactions on Intelligent Transportation
Systems, vol. 2, no. 1, pp. 26–31.

6 Gustafsson, F. 2009. Automotive safety systems. IEEE Signal Processing Magazine, vol. 26, no. 4,
pp. 32–47.

7 Danoy, G., Boyvry, P., et al. 2011. Framework Definition. WiSafeCar EUREKA‐CELTIC project
deliverable 1.4.

 8 Haas, T., Bian, N., Gamulescu, C., Köhler, M., Koskinen, S., Kutila, M., Jokela, M., Pesce, M., Hartweg,
C. & Casselgrein, J. 2008. Fusion of vehicle and environment sensing in Friction project. In
Proceedings of the 17th Aachen Colloquium “Automobile and Engine Technology” Congress, Aachen,
Germany, October 6–8, 2008.

9 Koskinen, S. 2010. Sensor data fusion based estimation of tyre–road friction to enhance collision
avoidance. Dissertation, VTT Publications 730, Espoo, Finland, p. 209.

10 Kutila, M., Jokela, M., Burgoa, J., Barsi, A., Lovas, T. & Zangherati, S. 2008. Optical road‐state
monitoring for infrastructure‐side co‐operative traffic safety systems. In Proceedings of 2008
Proceedings of IEEE Intelligent Vehicles Symposium (IV’08), Eindhoven, The Netherlands, June
4–6, 2008.

11 Kutila, M. & Pyykönen, P. 2011. Prototype and demonstration of instrumented vehicle based data
collection and visualisation in real‐time. TIVIT Oy Cooperative Traffic–ICT subproject—Sensor
Data Fusion and Applications. Deliverable 3.4.

12 Vaisala Oyj. 2010. Available in: www.vaisala.com, cited on February 10, 2010 (accessed September
12, 2016).

13 Holzwarth, F. & Eichhorn, U. 1993. Noncontact sensors for road conditions. Sensors and Actuators,
A: Physical, vol. 37–38, pp. 121–127.

14 Casselgren, J. 2007. Road surface classification using near infrared spectroscopy. Licentiate thesis,
Dept. Appl. Physics and Mech. Eng., Luleå Univ. of Tech, Luleå, Sweden.

15 Irvine, W. M. & Pollack, J. B. 1968. Infrared optical properties of water and ice spheres. Icarus, vol. 8,
pp. 324–360.

16 Yuesheng, L. & Higgins‐Luthman, M. 2007. Black ice detection and warning system. Patent
application. Application number: US2007948086A.

17 Casselgren, J., Sjödahl, M. & LeBlanc, J. 2007. Angular spectral response from covered asphalt.
Applied Optics, vol. 46, pp. 4277–4288.

Road Condition Monitoring 397

18 White, S., Thornes, J. & Chapman, L. 2006. A Guide to Road Weather Systems. SIRWEC (online).
Available in: http://www.sirwec.org/en/rwis_web_guide.pdf (accessed September 12, 2016).

19 Jonsson, P. 2009. Road status sensors—a comparison of active and passive sensors. In 16th ITS World
Congress, Stockholm, Sweden, September 21–25.

20 Kuehnle, A. & Burghout, W. 1998. Winter road condition recognition using video image
classification. Transportation Research Record, vol. 1627, pp. 29–33.

21 Löfwing, S. 2007. Optisk metod att uppskatta egenskaper för ett is‐eller vattenbelagt mätobjekt,
Sweden SE 531949, Optical Sensors, PRV.

22 Jonsson, P., Casselgren, J. & Thörnberg, B. 2014. Road surface status classification using spectral
analysis of NIR camera images. IEEE Sensors Journal, vol. 15, no. 3, pp. 1641–1656.

23 Saleh, B. E. A. & Teich, M. C. 2007. Fundamentals of Photonics, Second edition, John Wiley & Sons,
Inc., New Jersey.

24 Löfwing, S. 2014. Road Eye. Available in: http://www.opticalsensors.se/Roadeye.html, cited on July
29, 2014 (accessed on September 12, 2016).

25 Born, M. & Wolf, E. 2003. Principles of Optics, 7th edition, Cambridge University Press, Cambridge.
26 Hecht, E. 1997. Optics, 3rd edition, Addison Wesley, Reading, MA.
27 Hubert, M. & Vanden Branden, K. 2005. Robust classification in high dimensions based on the

SIMCA method. Chemometrics and Intelligent Laboratory Systems, vol. 79, no. 1–2, pp. 10–21.
28 Jonsson, P. 2011a. Classification of road conditions: from camera images and weather data. In 2011

IEEE International Conference on Computational Intelligence for Measurement Systems and
Applications (CIMSA), September 19–21, 2011. http://ieeexplore.ieee.org/abstract/
document/6059917/ (accessed on October 17, 2016).

29 Jonsson, P. 2011b. Road condition discrimination using weather data and camera images. In 2011
14th International IEEE Conference on Intelligent Transportation Systems (ITSC), October 5–7, 2011,
pp. 1616–1621. http://ieeexplore.ieee.org/document/6082921/ (accessed on October 17, 2016).

30 Jonsson, P., Vaa, T., Dobslaw, F., et al. 2015. Road condition imaging—model development. In
Transportation Research Board 94th Annual Meeting, Washington, DC, USA, January 11–15, 2015.

31 Jokela, M., Kutila, M. & Le, L. 2009. Road condition monitoring system based on a stereo camera. In
Proceedings of the 2009 IEEE 5th International Conference on Intelligent Computer Communication
and Processing (IEEE ICCP), Cluj‐Napoca, Romania, August 27–29, 2009, pp. 423–428.

32 Ewan, L., Al‐Kaisy, A. & Veneziano, D. 2013. Remote sensing of weather and road surface conditions.
Transportation Research Record, vol. 2329, no. 1, pp. 8–16.

33 Kutila, M., Pyykönen, P., Kauvo, K. & Eloranta, P. 2011. In‐vehicle sensor data fusion for road friction
monitoring. In The 2011 IEEE 7th International Conference on Intelligent Computer Communication
and Processing (2011 IEEE ICCP), Cluj‐Napoca, Romania, August 25–27, 2011.

34 Yuen, A., Brown, C., Zott, C., Hiller, A., Ahlers, F., Wevers, K., Dreher, S., Schendzielorz, T., Bartels,
C., Papp, Z. & Netten, B. 2008. Local dynamic map specification. SAFESPOT‐EU‐FP6 project
Deliverable 3.3.3.

35 Hiller, A., Neumann, C., Matthess, M., Festag, A., Santos, H., Zhang, W., Sorge, C. & Wiecker, M.
2009. Spezifikation der Kommunikatiosprotokolle. simTD Deliverable 21.4.

399

Computer Vision and Imaging in Intelligent Transportation Systems, First Edition.
Edited by Robert P. Loce, Raja Bala and Mohan Trivedi.
© 2017 John Wiley & Sons Ltd. Published 2017 by John Wiley & Sons Ltd.
Companion website: www.wiley.com/go/loce/ComputerVisionandImaginginITS

a
accidents 182
advanced driver assistance

system (ADAS) 5–7,
165, 189, 283, 305–308,
310, 312, 318

anomaly and abnormality
detection 179, 227

approximated median 280
augmentation 30–32
automated license plate

recognition (ALPR) 17
automated number plate

recognition (ANPR) 17
automatic vehicle classification

(AVC) 47–53, 72
automation 4, 7, 17, 182
automotive 8, 260, 270, 305,

375, 390, 395
autonomous driving 47, 49,

259, 260
AVC, see automatic vehicle

classification (AVC)

b
background subtraction 53, 56,

57, 59, 60, 67, 70, 120, 122,
126, 139, 140, 145, 166,
173, 175, 183, 206, 229,
231, 235, 245, 259, 261–263

background, subtraction,
model 261

bag of words (BoW) 10,
92, 93

Bayesian model 10, 234,
335, 390

bicycles 49, 149, 173, 394
binocular camera 109
blob 21, 56, 63, 102, 126, 146,

200, 231, 261, 325
area 57
bounding box 57
central moments 57
compactness 57
convexity 62
elongation 62
solidity 62
transform‐ring‐projection

(TRP) 59, 64
blocking the box 101

c
calibration 104

colorimetric 9
geometric 9, 104

camera 3–9, 18, 47, 84, 102,
135, 165, 196, 231, 259,
283, 305, 321, 343, 376

CarSim simulations 300
cell‐phone 2, 3, 81–84, 90, 91,

182, 329
character

recognition 10, 18
segmentation 18, 24

classification
AdaBoost 23, 52, 59, 68, 89,

142, 144, 260, 267, 271,
307, 313, 323–325, 329,
367–369

convolutional neural networks
(CNN) 31, 34, 36, 212,
213, 227, 327

linear discriminant analysis
(LDA) 35, 57, 59, 60,
63, 142, 204, 269, 335

sparse network of winnows
(SNOWS) 35

support vector machine
(SVM) 10, 34–37, 52,
57, 59, 60, 63, 68, 70, 72,
88, 93, 141–143, 146,
153, 202, 204, 206,
209, 210, 214, 246,
250, 260, 266, 269, 271,
272, 276, 307, 311, 325,
326, 329–331, 362,
388, 389

vehicle (automatic vehicle
classification (AVC))
47–53, 72

closed circuit television
(CCTV) 49, 75,
144, 146, 151, 259,
280, 375

collision 126, 164, 183–186,
188, 189, 283, 348, 371, 381

Index

400 Index

avoidance 2, 6, 11, 189,
305–319

colour segmentation 349, 352,
354–360

computational efficiency 19,
60, 188, 205, 307,
314–316, 318, 329

computer vision
framework 1, 7–12
pipeline 8, 11, 12, 332, 333

connected component analysis
(CCA) 21–23, 25,
26, 126

convolutional neural networks
(CNN) 31, 34, 36, 212,
213, 227, 327

counts
non‐vehicle 173
passenger 136
pedestrian 136, 171, 173
vehicle 171–172

d
data augmentation 30–32
data sets

CAVIAR 246–249
German Traffic Sign

Benchmark 354
LIPD 270, 276
Public Dataset of Traffic

Video (PDTV)
250–252

Xerox stop sign 246–253
deformation parts model (DPM)

87–89, 266, 280, 325
depth 47, 49, 50, 105, 108–114,

213–217, 219, 220, 259,
271, 328, 335, 349, 381

detection
eye 322, 325–326
face 9, 33, 91, 96, 207,

323–325, 327, 329, 332,
333, 335

lane 9, 144, 153, 283–303,
306–309, 312–313,
316–319, 371

pedestrian 2, 4, 6, 8, 10–12,
142, 182, 188, 189, 207,
216, 259–280

sign 348
vehicle 4, 49, 53, 54, 69, 102,

108, 110–113, 119, 121,
137, 139–146, 158,
200–215, 219, 220,
306–316, 318, 319

windshield 86, 87, 89
distance to intersection

(DTI) 186
distracted driver 2, 82
DPM, see deformation parts

model (DPM)
driver distraction 5, 82
driver fatigue 321, 325, 326, 332
driver monitoring 2, 9, 10, 12,

321–337
driver safety 1, 2, 5–7, 11
drowsiness 5, 321, 332–335
dynamic time warping

(DTW) 66, 264

e
edge‐based 20–25, 34, 36, 59,

65–67, 139, 202, 287, 354
edge matching 66
edge operators

Canny 96, 290–291, 362
Laplacian 288–291
Prewitt 288, 291, 292
Roberts 288, 292
Sobel 21, 24, 35, 202, 205,

288, 289, 291, 292,
299, 307

efficiency 1, 2, 4–5, 8, 11, 19, 60,
116, 187, 188, 205, 305,
307, 314–316, 318, 329, 347

efficient lane and vehicle detection
using integrated synergies
(ELVIS) 306–319

eigenvehicles 59, 70–72
enforcement 2, 3, 5, 17, 18, 81,

82, 84, 101, 102, 104, 105,
108, 115, 116, 118, 125,
126, 158, 242

evidence 1, 41, 42, 81, 88, 115,
124, 147, 181

eye detection 322, 325–326

f
face detection 9, 33, 91, 96, 207,

323–325, 327, 332, 333, 335
facial expression 6, 328,

332–334, 336
facial expression monitoring 6
feature descriptors 9, 10, 57, 141,

143, 202–204, 206, 208,
209, 227, 231, 234, 260

feature extraction 9–12, 30,
32–34, 50, 110, 137, 138,
141, 152–153, 165, 268,
269, 276, 306, 307, 308,
312, 314, 316, 319, 337

features
color 202
deformable part model

(DPM) 87–89, 96, 260,
266, 280

Haar 10, 24, 48, 52, 58, 59,
68–75, 96, 142, 144, 203,
204, 260, 267, 268, 271,
307, 323–329, 365

Harris corners 175
HOG 34, 55, 59, 63, 68, 141,

143, 204–206, 208–210,
266, 270–272, 276, 311,
367, 368

interest point 141
local binary patterns

(LBP) 33, 174, 207–211,
214, 218

modified census transform
(MCT) 33

principal components 69–72
shape‐based 141
scale‐invariant feature

transform (SIFT) 10,
24, 34, 48, 59, 66, 67, 74,
92, 141, 203, 204, 207,
221, 231, 260

spatial temporal volumes
(STV) 233

collision (cont’d)

401Index

speeded‐up robust features
(SURF) 118, 134, 141,
144, 203, 204, 207,
231, 326

successive mean quantization
transform (SMQT) 35

support vector regression
(SVR) 269

Fisher vectors 10, 92, 93
fog 53, 158, 198, 349,

382–384
foreground 20–23, 25, 26, 57,

65, 103, 108, 110–112,
126, 138–141, 144–146,
148, 149, 155, 173, 183,
200, 201, 206, 230, 231,
261–263, 280, 285

Fourier transform
(FFT) 174, 264

friction 6, 377–379, 382,
383, 385, 386, 390,
394, 395

fusion 47, 50–53, 84, 140, 182,
188, 189, 210, 260, 266,
268–272, 276, 278–280,
321, 334–336, 375, 376,
386–390, 394, 395

g
Gabor filter 141, 231, 271, 307,

325, 333
gantry 6, 12, 84, 85
Gaussian filter 146, 231
Gaussian mixture model

(GMM) 10, 52, 59, 92,
93, 126, 139–156, 201,
229, 230, 234, 261, 263,
269, 280, 331

gaze 6, 322–331
global positioning system

(GPS) 4, 7, 12, 83, 170,
189, 270, 348, 390

h
Haar‐like features 24, 52, 68–69,

75, 96, 142, 144, 203, 204,
268, 271, 307, 327

hidden Markov model
(HMM) 41, 229, 234,
235, 238, 335

hierarchical
classification 63, 70, 75

high occupancy tolling
(HOT) 5, 81, 82

high occupancy vehicle
(HOV) 5, 81, 82, 94

histogram of oriented gradients
(HOG) 10, 34, 55, 56,
59, 63, 67–68, 88,
141–143, 152, 203–211,
221, 231, 233, 259, 260,
265–266, 268, 270–272,
276, 280, 307, 311,
365–368, 370

vehicle detector 206
Hough transform 90, 96, 120,

259, 291–299, 359–362
HOV/HOT lane 5, 82, 84–86

i
illumination 5, 6, 9, 12, 18, 20, 33,

34, 49, 85, 94, 137,
139–141, 143, 144,
146–148, 201–203, 206,
207, 213, 221, 266, 268,
276, 279, 280, 322, 325,
326, 328, 336, 349, 354,
356–358, 365, 377, 385, 386

image acquisition 84–85, 87,
107, 126, 210

image processing 8, 9, 25, 53,
94, 95, 135–137, 200,
325, 377

induction loops 4, 5, 47, 75, 84,
102, 116–123, 197, 198

inference engine 10–11, 335
integrated system 305–319
intersection

accidents 182–185
conflicts 185–187

intersection analysis
163–166, 189

intrinsic proportion
model 72–74

in‐vehicle violations 2
ITS challenges 143, 156

j
joint sparsity model 238,

241–243, 250
junction 121, 131, 134, 135,

144, 158, 164, 173, 190
junction counts 135

k
Kalman filter 60, 123, 144,

146, 150, 229, 271,
298–300, 302, 303, 307,
326, 334

k‐nearest neighbors (k‐
NN) 24, 57, 59, 60, 63,
66, 68, 142, 202, 204, 266,
327, 388

l
lane departure 283, 284,

300–302, 336
lane departure warning

(LDW) 2, 5, 283–303,
308, 312

lane departure warning systems
(LDWS) 283–303

lane detection (LD) 9, 144,
153–154, 283–303,
306–309, 312–313,
316–319, 371

lane tracking (LT) 283–303
laser 5, 7, 11, 48–50, 84, 124,

189, 197, 214, 266,
270, 272, 273, 376,
382–386, 394

law enforcement 1–5, 8, 11, 12,
17, 82–84, 101, 102, 106,
107, 115, 125, 198, 259

LDWS, see lane departure
warning systems (LDWS)

license plate
localization 9, 19–24
recognition 2, 3, 11,

17–42, 84
segmentation 28

402 Index

license plate
recognition 2, 11, 84

LiDAR 11, 47–53, 75, 189, 259,
260, 266–280

linear discriminant analysis
(LDA) 35, 57, 59, 60,
63, 142, 204, 269, 335

line fitting 294–297
local binary patterns (LBP) 33,

174, 207–211, 214, 218

m
machine learning 23, 24, 41,

72, 95, 166, 203, 323, 332
mean shift tracking 123, 140,

229, 326
median, approximate 262
modified census transform

(MCT) 33
monocular camera 102–113,

200, 214, 270
morphological operations 21,

22, 25, 26, 57, 58, 60,
65, 94, 95, 103, 126,
138–141, 144, 145, 152,
200, 202, 260, 263, 264

moving violation detection 2, 8
multiband 84, 85, 94, 95
multimodal data

fusion 334–336
multi‐sensor fusion 266, 269,

271, 321

n
near infra red (NIR) 5, 6, 20,

84–86, 94, 95, 117,
259–261, 322, 325, 328,
376, 377, 381, 385, 390, 391

neural networks 20, 34, 35, 95,
211–213, 325, 327, 388

number plate recognition 3,
17, 143

o
occlusion detection 53, 91,

213, 237, 266, 280
occupancy

high occupancy tolling
(HOT) 5, 6, 81–94

high occupancy vehicle
(HOV) 5, 6, 81–94

occupancy detection 2, 4, 5, 9,
10, 83–84, 91, 93–95,
197, 198, 200, 202, 203,
209, 212, 214

optical character recognition
(OCR) 10, 18, 19, 28–42

optical flow 67, 125, 144, 166,
167, 169, 175, 176, 179, 182,
188, 189, 231, 233, 259

p
Pan Tilt Zoom (PTZ) 74, 146
parking

occupancy 4, 5, 195–223
sensors 197–199
space 195–223
stereo 214–223

parking space monitoring 197,
198, 200, 202, 208–211,
213, 214, 217–220

particle filtering 123, 329
passenger compartment 2, 9,

10, 81–95
passenger counts 136
pedestrian

counts 136, 171, 173
crossing 144, 155–158, 164,

173, 174, 179–182
detection 2, 4, 6, 8–12, 142,

182, 188, 189, 207, 216,
259–276

point cloud 49, 72, 216–220
polar coordinate 64, 273

profile 263–265, 280
polarization 6, 12, 375–379,

385, 393
post encroachment time

(PET) 186
preprocessing 8, 9, 25–27,

49–51, 60, 70, 75,
202, 260, 261, 268,
272–276, 285, 286,
299, 333–336

principal component analysis
(PCA) 35, 48, 51, 57,
59, 60, 69–72, 141, 142,
269, 271, 335, 387–389

profile‐based 51, 58–72
public alert

amber 3
silver 3

pyramidal feature vector
matching (PFVM) 218

q
queue 163, 165, 173–178, 190

r
radio frequency identification

(RFID) 11, 18, 165, 197
random sample consensus

(RANSAC) 26, 105,
155, 218, 307

recognition, see ALPR, optical
character, traffic sign

red light camera 115–123
red light violation

detection 118, 120, 123
road condition

fog 382–383
friction 377–379
pavement sensors 379–380
spectroscopy 380–381

roadside 5, 49, 82, 84–96,
155, 198, 375–377,
382–383, 394

roadside CCTV 144–156

s
safety 1–3, 5–8, 11, 81, 82, 115,

118, 163–190, 195, 259,
306, 321, 336, 343, 348,
371, 375, 394

safety analysis 163–190
scale‐invariant feature transform

(SIFT) 10, 24, 34, 48, 59,
66, 67, 74, 92, 141, 203,
204, 207, 221, 231, 260

seat‐belt 2, 3, 81–84, 87, 90,
91, 95, 96

403Index

security 1–4, 17, 259
segmentation

character 10, 19, 24–29, 33
LiDAR 269, 271
magnetic 197
pavement 379–380
radar 197
spectroscopy 380–81
thermal 53–58
ultrasound 197
visual 8, 334
wheel speed 283

semi‐global matching
(SGM) 217, 218

severity index (SI) 186, 187
shadow 18, 20, 28, 49, 53, 65,

103, 106–108, 126,
137–149, 188, 201, 203,
206, 211, 231, 261, 263,
266, 297, 307, 321, 328,
349, 354–358, 365

shape 22, 50–52, 54–59, 61–68,
72, 74, 84, 86–89, 103,
104, 119, 140–142, 149,
152, 182, 198, 204, 209,
229, 231, 235, 259–261,
264–266, 268, 270, 271,
280, 325, 326, 328, 335,
343, 344, 347–349,
352–354, 359, 383

shape‐based 34, 48, 51, 56–72,
75, 141, 142, 259

shape feature descriptors 57
signs

american road and traffic
signs 347

datasets 352–354
european road and traffic

signs 344–347
pictogram 364–369
recognition 2, 10, 343–371
rim analysis 359–364

silhouette 58–65, 68, 70, 75, 137,
138, 141, 144, 152, 153

simultaneous orthogonal
matching pursuit
(SOMP) 241, 242

skin 9, 94, 335
sparse network of winnows

(SNOWS) 35
sparse representation 228,

236–253
spectroscopy 380
speed

average vehicle 106, 107,
109, 136, 137

estimation
monocular 102–108
stereo 108–115

individual vehicle 102, 106,
107, 115, 136, 144

speeded‐up robust features (SURF)
118, 134, 141, 144, 203,
204, 207, 231, 326

stabilization 8, 9, 323, 336
state 6, 18–20, 30, 36, 38–42,

55, 68, 81, 82, 85, 119,
123, 125, 146, 149, 150,
176, 179, 182, 183, 195,
196, 201, 204, 206,
209–211, 234, 235, 298,
300, 322, 326, 328,
334–336, 375, 380, 381,
390, 392, 395

stereo 8, 84, 108–115, 188,
214–223, 323, 377, 378, 385

stereo matching 217–220
stereo‐vision for speed

estimation 108
stop sign 2, 3, 81, 101, 115,

123–125, 158, 244,
246–249, 251–253,
344, 347

stop sign enforcement 123–125
stripe identification 291–294
support vector machine

(SVM) 10, 34–37, 52, 57,
59, 60, 63, 68, 70, 72, 88,
93, 141–143, 146, 153,
202, 204, 206, 209, 210,
214, 246, 250, 260, 266,
269, 271, 272, 276, 307,
311, 325, 326, 329–331,
333, 362, 388, 389

surrogate safety
measurements 186

SVM, see Support vector
machine (SVM)

t
tailgating 101, 102
thermal imaging 48, 49, 53–58,

75, 125, 259, 260, 280
thermal

signature 53–56, 58, 94
3D model‐based 74, 183
3D reconstruction 217, 218,

220–223
time headway 186
time to collision

(TTC) 186, 187
time to intersection (TTI) 186
tolling 2, 4, 5, 11, 17–19, 37, 41, 81
tracking 4, 9, 47, 53, 60, 70,

102–104, 106–108, 113,
114, 119, 122, 123,
140–144, 148, 150, 153,
155, 165–169, 171,
173–179, 182–184,
187–190, 201, 229, 232,
236, 246, 250, 271,
283–303, 306, 309, 314,
322, 326, 328

Kanade‐Lucas‐Tomasi
(KLT) 123, 167,
168, 229

traffic
camera calibration 107
capacity 4, 134
concentration 133–134
conflicts 131–132, 135, 186
density 133, 137, 143
flow 2, 4, 10, 11, 102,

106, 120, 131–158,
164, 177, 197, 214, 229,
348, 394

framework 137–143
fundamental

diagram 133–134
fundamental

equation 133, 134

404 Index

junction counts 135
law enforcement 2, 4, 5, 82
management 173, 259
monitoring 1, 143,

164, 189
pedestrian counts 136
road counts 135
sign recognition 2, 10, 343,

347–349, 352–369
space mean speed 133, 136
variables 4, 134–135

training 10, 23, 24, 30–39, 41,
50, 57, 68, 70–72, 74, 75,
87–89, 92, 137, 141, 142,
153, 173, 179, 200, 203,
204, 210–215, 233, 235,
237–239, 242–244, 246,
249, 250, 252, 253, 263,
264, 266, 270, 272,
275–277, 313, 323, 324,
327–329, 331, 349, 352,
359, 362, 367–370,
388, 389

trajectory 2, 101–103, 109,
119, 121, 123, 132, 153,
155, 165–167, 169,
171–173, 179–182, 184,
188, 189, 201, 227–234,
236–242, 244–246, 249,
250, 252, 253, 348

transformation 49, 51, 55, 60,
62, 64, 67, 69, 70, 104,
141, 202, 207, 208, 234,
240, 268, 270, 272, 286,
287, 293, 294, 297, 334,
359, 363, 364

compactness 62
geometric mapping 104
Hough’s transform 294
LiDAR sensor 49
local binary pattern 207
matrix for 270
transformation-ring-

projection (TRP) 64
transit safety 259
transportation 1, 17, 47, 82,

102, 137–144, 169,
227, 259

transportation efficiency 11

u
unmanned aerial vehicle

(UAV) 53, 58, 59

v
vector of locally aggregated

descriptions
(VLAD) 92, 93

vehicle
classification 2, 4, 10, 47–75,

109, 137, 141–144,
152–153

counting 106, 135, 137, 143,
146, 156

detection 4, 49, 53, 54,
69, 102, 108, 110–113,
119, 121, 137, 139–146,
150, 158, 200–215,
219, 220, 306–316,
318, 319

queue length 173
video analysis for traffic analysis

137–143
video‐based classification 47

Viola‐Jones detector 23,
55, 323

violations
cell phone 81, 84, 90, 91
crossing solid lines 126
moving 2, 8, 9, 81,

101–126, 164
red light 19, 115,

118–121, 123
speed 2, 101–115
stop

light 115, 116
sign 123, 124, 244

wrong way 2, 101,
125–126

virtual loop detector
(VLD) 121

visible‐light imaging
19, 53

vision‐based tracking
system 182

w
water 94, 376, 380, 381,

392, 393
weather 5, 6, 9, 49, 50, 57,

58, 75, 94, 134, 137,
139–141, 144, 155,
158, 182, 198, 200, 201,
213, 216, 268, 276, 279,
349, 350, 354, 376,
392–395

windshield 54, 55, 58, 66, 84,
85, 87–91, 94–96, 283,
284, 385, 392

y
yellow light 115, 116

traffic (cont’d)

	fmatter
	ch1
	ch2
	ch3
	ch4
	ch5
	ch6
	ch7
	ch8
	ch9
	ch10
	ch11
	ch12
	ch13
	ch14
	ch15
	index

