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  Pref ace   

 The objective of this book is to compile the concepts essential for the understanding 
of the pharmaceutical science and technology associated with the delivery of subunit 
vaccines. The book’s goal is to provide a comprehensive overview of the scientifi c 
and regulatory challenges facing scientists who research and develop subunit vac-
cines. The scope of the book is wide. It is written in a manner that will enlighten 
newcomers to the fi eld (e.g., Ph.D. students or experienced scientist switching fi elds) 
yet provides an in-depth knowledge that would benefi t a skilled worker in the fi eld. 

 A signifi cant improvement in the safety of modern vaccines has been the develop-
ment of subunit vaccines, as these are composed of very well-defi ned and highly 
pure components, often recombinant proteins. However, since protein-based anti-
gens in general are weakly immunogenic by themselves, co-administration of adju-
vants is required to induce potent and persistent specifi c immune responses. In recent 
years, there has been substantial progress in the discovery of new effi cient adjuvants 
for subunit vaccines that are often classifi ed into delivery systems (e.g., liposomes, 
emulsions, and polymeric nanoparticles) and immunopotentiating compounds that 
constitute pathogen-associated molecular patterns, such as the toll-like receptor 
ligands. The combination of delivery systems and immunopotentiators has created 
highly effi cacious adjuvants due to concomitant enhanced antigen delivery and 
potent stimulation of immunity. Many of these adjuvants are of a particulate nature 
and mimic the structure and/or composition of microbes in a reductionist fashion. 
Examples are liposomes, polymeric nanoparticles, emulsions, and virus- like parti-
cles. However, there are a substantial number of pharmaceutical challenges associ-
ated with the subunit vaccine development process due to the complex nature of the 
antigen–adjuvant combinations. These challenges will be presented and discussed in 
this book.  

  Copenhagen, Denmark     Camilla     Foged   
 Copenhagen, Denmark     Thomas     Rades   
 Birmingham, UK     Yvonne     Perrie   
 Dunedin, New Zealand     Sarah     Hook    
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    Chapter 1   
 Immunological Background 

             Andrew     J.     Highton      and     Roslyn     A.     Kemp    

1.1            Introduction 

 In the eighteenth century, Lady Mary Wortley Montagu, while living in Turkey, 
observed the local practice of variolation to protect against smallpox (Dinc and 
Ulman  2007 ). This involved transferring live smallpox virus harvested from smallpox 
blisters of a patient to another person. Lady Montagu brought this principle home to 
Britain to mixed success—3 % of patients contracted the virus and died, although this 
was still lower than the 20–40 % mortality caused by natural infection. 

 By the end of the eighteenth century, several researchers had tested the idea that 
a related virus could induce protection against smallpox—this was primarily noted 
in the low infection rates of those women who were in close contact with cowpox- 
infected cows. In 1775, Benjamin Jesty used cowpox virus on his family during a 
smallpox outbreak (Pead  2003 ), but it was not until Edward Jenner tested the same 
principle in a series of patients in 1796 (Jenner  1798 ) that the idea of vaccination 
was widely understood and accepted. 

 Over the next 200 years, vaccination was used against many diseases and 
was ultimately successful in eradicating smallpox entirely (Breman and Arita  1980 ). 
It is arguably the most clinically and cost-effective public health measure ever intro-
duced. Live virus vaccines, such as that for smallpox, can be very effective but 
because of the associated dangers, many researchers now concentrate on using only 
parts of infectious organisms in vaccines, which can induce a similar immune 
response as to the original pathogen. 

        A.  J.   Highton      •    R.  A.   Kemp      (*) 
  Department of Microbiology and Immunology ,  University of Otago , 
  PO Box 56 ,  Dunedin ,  New Zealand   
 e-mail: andrew.highton@gmail.com; roslyn.kemp@otago.ac.nz  
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 Despite the success of vaccination against many pathogens in preventing infec-
tion or reducing disease course, effective vaccines generating long-lived immunity 
to many other pathogens have yet to be developed. The problems faced by vaccin-
ologists include (1) complexity of the pathogens (e.g., plasmodium causing malaria), 
(2) high mutation rates of pathogens (e.g., HIV and infl uenza), and (3) the ability to 
generate the right type of immune response (e.g., a cell-mediated response rather 
than an antibody-mediated response). The development of therapeutic vaccines, i.e., 
those that induce an immune response to a noninfectious disease such as cancer is 
another area of intense interest. 

 The immune response to pathogens has three characteristics – inducibility, speci-
fi city, and memory – these characteristics are also important for vaccine develop-
ment. Inducibility refers to the fact that an immune response is quiescent but can be 
invoked quickly and effectively upon infection or vaccination. Specifi city refers to 
the ability of the immune system to respond to specifi c pathogens (or vaccines) – 
and thus ensures that an immune response is ideal for fi ghting off a particular infec-
tion. The memory component of an immune response is its ability to respond more 
quickly and effectively upon re-exposure to an infection. Vaccination exploits all 
three characteristics – it induces an immune response; this response is specifi c to the 
antigen(s) administered in the vaccine; and the vaccine serves to prime the immune 
response and generate memory to allow for quicker response upon infection with 
the real pathogen.  

1.2     The Innate Immune System 

 The immune system is broadly divided into the innate and adaptive immune sys-
tems. In evolution, the innate immune system developed early and is shared by many 
vertebrates. Innate responses are generally non-antigen specifi c but are generated 
early after exposure to infection and are therefore the fi rst line of defense. In con-
trast, the adaptive immune system evolved much later and is a targeted response, i.e., 
antigen specifi c, and takes a much longer time to become activated (see Sect.  1.5 ). 

 The cells of the innate immune system recognize pathogen-associated molecular 
patterns (PAMPs), rather than specifi c antigens. They induce infl ammation and 
recruit the adaptive immune system in order to eradicate infection. The innate 
immune system consists of three key cell types: 

  Macrophages . These cells circulate through the blood and tissue and remove par-
ticulate matter of foreign origin as well as removing damaged or aged host cells by 
the process of phagocytosis (active uptake of pathogen; Ovchinnikov  2008 ). 

  Neutrophils . Neutrophils are polymorphonuclear granulocytes that are recruited to 
sites of infection by infl ammation-induced chemokines (e.g., those produced by 
macrophages). Neutrophils contain granules that destroy microorganisms and also 
form neutrophil extracellular traps (NETs) around an infection site to trap patho-
gens (Brinkmann et al.  2004 ). 

A.J. Highton and R.A. Kemp
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  Dendritic cells  ( DCs ). Similarly to macrophages, DCs can phagocytose microor-
ganisms but their main role is to link the innate and adaptive immune systems. 
Following phagocytosis of a microorganism, DCs can process their components 
into antigens for presentation to lymphocytes (see Sect.  1.3 ). 

 The innate immune system controls whether an adaptive immune response 
develops and thus must determine if the stimulus is foreign or self, and dangerous 
or benign. Pathogens are recognized as foreign because they express PAMPs. These 
are generally a unique structure for a pathogen, e.g., lipopolysaccharide (LPS) in 
Gram-negative bacteria, fl agellin in fl agellated bacteria or single-stranded RNA in 
some viruses (Kawai and Akira  2010 ). Cells of the innate immune system (and also 
other host cells such as epithelial cells) express a range of pattern-recognition recep-
tors (PRRs) to detect these PAMPs. 

 Toll-like receptors (TLRs) were the fi rst PRRs to be discovered and were named 
based on their structural homology to the Toll receptors used by Drosophila for 
detecting infection (Janeway and Medzhitov  2002 ). TLRs form a family of at least 
ten different receptors, each recognizing a distinct PAMP (Kawai and Akira  2010 ), 
although there is considerable redundancy between receptors. TLRs signal via an 
adaptor molecule such as MyD88, which results in activation of transcription factors 
and transcription of infl ammatory mediators (Akira and Takeda  2004 ). Other PRRs 
include NOD-like receptors, RIG-I receptors (intracellular PRRs), and C-type lectin 
receptors specialized for detection of fungal infections (Kawai and Akira  2010 ). 

 The infl ammatory response is a key requirement for both the initiation and qual-
ity of the subsequent adaptive immune response. Infl ammatory cytokines and che-
mokines produced during the innate response recruit and activate other cells, and 
therefore infl ammation must be carefully controlled during vaccination. 

 Cells of the innate immune system can discriminate between foreign and self by 
using PRRs and can also respond to the so-called danger signals. NOD-like receptors 
(among others) are intracellular PRRs that respond to stimuli indicative of danger—
including crystals, microbial peptides, cell death, stress, and some drugs (Franchi 
et al.  2009 ). The signaling pathway downstream of these stimuli is a cytoplasm com-
plex of scaffolding and sensing proteins called the infl ammasome (Franchi et al. 
 2009 ). The infl ammasomes (of which there are several types) act to cleave infl amma-
tory pro-cytokines into active cytokines and therefore enhance the infl ammatory 
response (Martinon et al.  2002 ). 

 Cytokines are proteins that control the type, duration, and amplitude of an 
immune response, and form a communication network between cells of the immune 
system and also between the immune system and other body systems. Cytokines 
bind to specifi c cytokine receptors expressed on the surface of cells and therefore the 
effects of cytokines are dependent on the expression of the receptors. While a  balance 
of cytokines is necessary to maintain immune homeostasis, during infection, an 
increase in infl ammatory cytokines is necessary for induction of an effective immune 
response. Pro-infl ammatory cytokines, such as tumor necrosis factor α (TNF-α), 
interleukin 6 (IL-6), and IL-1, mediate infl ammation by (a) increasing thermoregula-
tion set points (fever), (b) upregulating synthesis of other pro- infl ammatory cyto-
kines (positive feedback), (c) stimulating the production of acute phase proteins, and 

1 Immunological Background
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(d) attracting infl ammatory cells (Dinarello  2007 ). Unregulated infl ammation can 
result in a “cytokine storm,” which can be dangerous (Osterholm  2005 ). 

 Chemokines are a family of chemoattractant cytokines that, like other cytokines, 
bind to specifi c receptors to mediate their effects (Murphy and Baggiolini  2000 ). 
Unlike cytokines, chemokines are much less pleiotropic and do not induce the pro-
duction of other cytokines or chemokines. Chemokines form a concentration gradi-
ent for cell migration in an immune response (Moser and Loetscher  2001 ), and thus 
chemokines produced by the initially infected cells will recruit other immune cells, 
such as neutrophils, to the site of infection.  

1.3      Antigen Uptake and Presentation 

 The role of the innate immune system is to recognize an infection, destroy the 
pathogenic microorganisms, and to activate a specifi c and more effective adaptive 
immune response. The adaptive immune system is specifi c for a defi ned pathogen, 
is based on antigen recognition (rather than PAMP recognition) and involves the 
expansion of lymphocytes expressing receptors specifi c for antigens. 

 Pathogens are taken up at the site of infection by macrophages, DCs, and other 
cells of the innate immune system. They do this via phagocytosis, pinocytosis 
(passive osmosis of pathogen), or receptor-mediated uptake (Aderem and Underhill 
 1999 ). 

 During phagocytosis, pathogens are destroyed by a decrease in pH and the action 
of cytotoxic molecules such as reactive oxygen species within phagolysosomes. 
This process can also result in the degradation of whole proteins into peptides that 
can be presented to T-cells of the adaptive immune system. DCs are present in small 
numbers in tissues in contact with the environment, and process and present antigen 
on their cell surface on major histocompatibility complex (MHC) molecules. 

 Phagocytosed bacteria are degraded in the acidic environment of the phagolyso-
somes into short peptides (~20 amino acids; Turley  2000 ). Vesicles from the Golgi 
contain MHC class II molecules, with an invariant chain blocking the antigen- 
binding site. These vesicles fuse with the phagolysosomes and the short peptide 
antigen replaces the invariant chain. The entire complex then migrates to the cell 
surface for recognition by CD4 +  T-cells (Wolf and Ploegh  1995 ). In contrast, endog-
enous antigens (e.g., in virus-infected cells) are created by degradation of the patho-
gen by the proteasome complex into short peptides (~8–10 amino acids). Antigen is 
transported by transporters associated with antigen processing (TAP) to the Golgi 
where it is loaded onto assembling MHC class I molecules. These peptide–MHC 
complexes are then transported to the surface of the cells for recognition by CD8 +  
T-cells. In reality, there is signifi cant variation in the MHC pathways for different 
pathogens; for example, exogenously acquired proteins can be loaded onto MHC 
class I molecules in a process called cross-presentation (Amigorena and Savina 
 2010 ). Most pathogens will initiate both a CD4 +  and CD8 +  T-cell response.  
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1.4     Generation of T- and B-Cells 

 In order to activate an adaptive immune response, lymphocytes must be able to 
recognize antigen, either in the context of MHC (T-cells) or as a native antigen 
(B-cells). An antigen can be defi ned as a processed macromolecule and is recog-
nized by both T- and B-cells. The antigenic determinant (epitope) is the part of the 
antigen that binds to a specifi c receptor on T-cells or B-cells. To induce an immune 
response, antigenicity is determined by a combination of size, complexity, physical 
form (e.g., aggregates or soluble), dose, route, and degree of difference to self 
(Wang et al.  2011 ). 

 Because of the breadth of pathogens that must be recognized by the immune 
system, it would be impossible to have effector T- and B-cells present in suffi cient 
numbers in the body to eliminate all possible pathogens at any one time. The human 
genome contains around 25,000 genes, but humans have around 50 million different 
receptors on T-cells or B-cells. T- and B-cells use a system of genetic recombination 
and clonal expansion so that the specifi c immune response can be induced only 
when needed. 

 The B-cell receptor (BCR) is a surface protein of the immunoglobulin superfam-
ily. Following activation, this receptor can be produced in a secreted form as anti-
body, thus B-cells produce a soluble version of the specifi c antigen receptor. The 
receptor consists of light and heavy chains (bound to the membrane of the cell as 
BCR). Both chains contribute to the antigen specifi city of the receptor (variable 
region) while only the heavy chain contributes to the core structure (constant 
region). Each heavy chain and light chain (of which there are two types, κ and λ) is 
made from a combination of V (variable), C (constant), and J (joining) genes 
(Market and Papavasiliou  2003 ). There are a variable number of each of these genes 
present in the genome and recombination of these genes for one heavy and one light 
chain creates one of approximately 50 million possible combinations for the struc-
ture of the BCR. Thus, a population exists with the ability to respond to several 
million possible antigens. 

 B-cells are also controlled by allelic exclusion, whereby only one allele of each 
of the heavy and light chains is arranged—if this is successful, the second allele is 
turned off (Pernis et al.  1965 ). If unsuccessful, the second allele will recombine, and 
if both are unsuccessful the cell dies. This prevents expression of multiple antigen 
receptors on one cell, and reduces the likelihood of an autoimmune response. 

 The T-cell receptor is of a similar structure to the B-cell, and consists of an α 
chain and a β chain, with a variable region (for antigen recognition) and a constant 
region. Both α and β chains are coded for by a combination of V, C, D, and J genes 
and this is handled in a similar way to the recombination of the genes involved in 
the BCR. 

 T-cells undergo further development in the thymus, where potentially self- 
reactive cells are eliminated. In the thymus, new T-cells are exposed to self-peptides 
presented by specialized antigen-presenting cells (APCs) (Klein et al.  2009 ). If the 
TCR binds strongly to the host MHC, and will therefore have the ability to be 
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 activated in the periphery by APCs presenting foreign antigen, the cell will survive. 
Cells binding weakly to host MHC will die “by neglect,” i.e., will not receive a 
survival signal. Cells binding strongly to self-antigen receive a death signal and are 
destroyed, to prevent autoimmune responses in the periphery.  

1.5       Activation of T- and B-Cells 

 Following infection, DCs traffi c to the local lymph nodes to present antigens to the 
pool of circulating T-cells. T-cells with a receptor specifi c for antigen will bind to 
the APC presenting antigen in the context of MHC. Binding of CD4 and CD8 mol-
ecules on T-cells to MHC class II and class I, respectively, on APCs stabilizes this 
interaction (and provides a signaling component; Artyomov et al.  2010 ; Wooldridge 
et al.  2005 ). A co-stimulatory signal, via CD28 on T-cells and CD80/86 on APCs, 
provides a second signal to activate T-cells (Nurieva et al.  2009 ). Finally, the infl am-
matory milieu of cytokines produced by APCs activates T-cells. The end result is 
antigen-specifi c T-cells stimulated to divide and acquire effector functions, includ-
ing the ability to traffi c to the site of infection. 

 B-cells can respond to native (unprocessed) antigen and can also act as APCs. 
B-cell activation requires help from T-cells via both cytokine production and ligation 
of CD40. B-cells binding antigens upregulate expression of CD40 on the surface and 
this binds to CD40L expressed on T-cells activated by the same antigen. Cytokines 
produced by activated T-cells help to activate B-cells and trigger antibody produc-
tion (see Sect.  1.6 ). In addition, B-cells acquiring antigen can present it via MHC to 
T-cells and be directly activated by cytokines from the responding T-cells. B-cells 
recognizing native antigen can also be activated without these extra T-cell signals 
(T-cell independent activation).  

1.6      Effector Functions of B-Cells 

 The primary effector function of B-cells is the production of antibodies. After acti-
vation, B-cells clonally proliferate and produce antigen-specifi c antibodies. 
Antibodies must be able to clear pathogens that invade different sites in the body; 
therefore, there are different classes of antibodies. These classes retain the antigen- 
specifi city of the original B-cells and are thus specifi c to the pathogen. 

 Following activation of B-cells, a process called class switching can occur. In 
this process, the constant region of the BCR is changed (Malisan and Brière  1996 ). 
During B-cell proliferation, recombination of the C genes occurs and the constant 
chain can become a different class—this class switching can result in fi ve different 
types of antibodies (Schroeder and Cavacini  2010 ). The class switch decision is 
infl uenced by cytokines produced by T-cells. Antibodies of the IgG class enter tis-
sues readily and are therefore the most abundant class, IgA is present in serum and 
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mucosal tissues, IgM is optimized for complement activation and the fi rst class 
induced upon activation. IgE degranulates mast cells and is therefore responsible for 
allergic symptoms as well as clearing parasitic infections, and IgD is of function 
unknown. Each class of antibody is specifi c for the same antigen as the activated 
B-cell, but now is able to perform different functions in different sites. 

 A second improvement in antibody is affi nity maturation that occurs through a 
process called somatic recombination (Chaudhuri et al.  2007 ). During B-cell prolif-
eration, errors occur in DNA replication, some of which result in small changes in 
the variable region of the BCR/antibody. These mutations can alter the binding 
affi nity of the receptor to the antigen, and those cells with increased affi nity receive 
a stronger survival signal and are selected to continue dividing. Thus, the B-cell 
response evolves continuously throughout the immune response to a pathogen. 

 Antibodies have multiple roles in an immune response—they can bind directly to 
the pathogen and destroy it, or label it as more accessible for phagocytosis (opso-
nization). They can neutralize receptors for toxins on microorganisms or bind to 
pathogens to initiate the complement cascade, an innate immune mechanism that 
destroys pathogens quickly and effi ciently (Schroeder and Cavacini  2010 ). Long- 
lived antibody continues to circulate through the body after the immune response 
clears the pathogen, and is therefore readily available to counter a re-infection with 
the same pathogen. This forms the basis of the bulk of successful vaccines. However, 
to resolve many infections, a T-cell response is required.  

1.7     Effector Functions of T-Cells 

 T-cells have many roles in an immune response. They produce several types of cyto-
kines that infl uence antibody class switching, activate, and differentiate other T-cells 
and cells of the innate immune system, and can lyse infected cells. CD4 +  T-cells 
produce a variety of cytokines that can improve the function of other CD4 +  T-cells, 
as well as CD8 +  T-cells and APCs. CD8 +  T-cells also produce cytokines, but their 
primary role is their cytolytic activity. However, both CD4 +  and CD8 +  T-cells are 
capable of cytotoxic function and enhanced cytokine production, depending on the 
pathogen and the infl ammatory milieu. 

 Cytokines produced by T-cells can activate cells of the innate immune system. In 
particular, interferon γ (IFN-γ) will increase phagocytosis by macrophages and 
increase expression of MHC molecules on target cells (Schroder et al.  2004 ). As 
discussed in Sect.  1.5 , T-cell derived cytokines activate B-cells to become antibody- 
producing cells and also infl uence antibody class switching. T-cells also infl uence 
the development of other T-cells—for example, IL-4 produced by T-cells will bind 
to IL-4 receptors on other T-cells and induce more IL-4 along with production of 
IL-5 and IL-13. 

 CD8 +  and, to a lesser extent, CD4 +  T-cells are able to kill infected cells and 
tumors. Because all cells can be infected by a pathogen, all cells express MHC class 
I and are therefore able to be recognized by antigen-specifi c CD8 +  T-cells at the site 
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of infection. Activated antigen-specifi c CD8 +  T-cells traffi c from the lymph node to 
the site of infection where they recognize antigen in the context of MHC class I 
presented on infected cells. The three most studied mechanisms of killing include 
perforin/granzyme, Fas–Fas ligand (FasL) and cytokine-mediated cytotoxicity. 
When CD8 +  T-cells become activated they produce granules containing toxic gran-
zymes and perforin, a protein that forms pores in cell and vesicle walls (Smyth and 
Trapani  1995 ). These pores provide entry for granzymes that destroy the cell via a 
caspase apoptosis pathway (Trapani et al.  1998 ). Alternatively, FasL is upregulated 
on the surface of activated CD8 +  T-cells and its ligation with Fas on the target cell 
also results in apoptosis (Yonehara et al.  1989 ). Finally, cytokines such as IFN-γ can 
bind to their cognate receptors on the target cells and also induce a caspase pathway 
leading to apoptosis (Schroder et al.  2004 ). 

 At the end of the infection, T-cells produce suppressive cytokines and regulatory 
T-cells are induced. Regulatory T-cells suppress T-cell responses, and therefore 
 vaccine strategies must take into account any effect on this population (Sakaguchi 
et al.  1995 ).  

1.8     Immune Memory 

 At the end of an immune response, the majority of effector cells die, but T and B 
lymphocytes form memory populations, whereby a small number of antigen- 
specifi c cells are retained at a quiescent but easily activated state (Wakim and Bevan 
 2010 ). Upon re-infection with the same pathogen, these memory cells respond more 
quickly and effi ciently than during the primary response. Immune memory prevents 
re-infection or reduces disease severity in a second infection. A memory response is 
more effective than the primary naïve response in a number of ways. It results in a 
higher number of cells recognizing the antigen than naïve cells, a faster activation 
in response to specifi c antigens than naïve cells, a more effective response than 
naïve cells (e.g., targeted cytokine production), and the presence of memory cells at 
the site of infection (resident memory). All of these factors mean that a secondary 
memory response is signifi cantly more effective than the primary naïve response. 

 There are two types of memory B-cells—long-lived plasma cells that reside in 
the bone marrow, receiving survival signals from stromal cells, and producing long 
lasting high affi nity class switched antibodies; and memory B-cells which express 
surface immunoglobulin but do not secrete antibodies (Klein et al.  1998 ; Slifka 
et al.  1998 ). Upon re-exposure to antigen, memory B-cells quickly proliferate and 
generate antibody-producing plasma B-cells. 

 Memory T-cells exist in at least three different activation states—effector mem-
ory T-cells circulate through the lymph and tissue and are quickly activated by anti-
gen presented on APCs. Central memory T-cells are much more effective at 
producing cytokines and granzyme but reside in the lymphoid organs. Finally, resi-
dent memory T-cells do not circulate through the body; instead they are present 
permanently in different sites of infection in the body such as the gut, the lungs, and 
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the skin (Masopust et al.  2001 ; Sallusto et al.  1999 ). These cells recruit other effec-
tor cells quickly to the site of infection as well as acting against the pathogen them-
selves (Schenkel et al.  2013 ).  

1.9     Challenges for Vaccination 

  Pathogen . Microorganisms constantly evolve—the diffi culties of fi nding effective 
and long-lasting vaccines to viruses such as infl uenza and HIV is partly due to the 
mutation rate of these organisms (Barouch et al.  2002 ). Identifying a specifi c and 
constant antigen is often not possible. In rapidly dividing infections, the immune 
response may drive these mutations. 

 Many microorganisms, particularly viruses, have evolved immune evasion strat-
egies. These can be homologs of chemokines or proteins that interfere with antigen 
presentation or lymphocyte activation (Alcami and Koszinowski  2000 ). Handling 
these evasion systems must also be factored into vaccine design. 

 Simple bacteria maintain core structures vital for life and growth. More complex 
pathogens such as parasites have more complex structures, making it more diffi cult 
to identify a simple antigen to use in a vaccine. In addition, many pathogens have 
life cycles passing through different hosts (e.g., infl uenza in ducks and pigs; malaria 
in mosquitoes and humans). This means that antigens expressed in one host may not 
be the dominant antigen in another host. 

  Host Immune Response . Antibodies circulate in the blood, but T and B lympho-
cytes reside in different parts of the body. For a local immune response, it may be 
necessary to have a resident population of memory cells (Woodland and Kohlmeier 
 2009 ). In this situation, vaccination needs to induce both an effector response at the 
site of infection, and a memory response. How to deliver vaccines to different sites 
in the body is another challenge for vaccine development. 

 To date, few adjuvants have been approved for use in the clinic (Mbow et al. 
 2010 ). In order to generate the infl ammatory response required for an effective 
immune response, the incorporation of appropriate adjuvants has become increas-
ingly important. Development of new adjuvants for vaccines would involve induc-
ing infl ammation (via the infl ammasome), differentiation of the immune response 
towards the right cell type and the right cytokine profi le, all of which can be retained 
in the memory population. 

 Successful vaccines either prevent infection or inhibit the replication of the 
infectious organisms and reduce the disease burden. In many situations, the immune 
pathology resulting from infection can lead to death (e.g., infl uenza)—the goal of a 
vaccine can therefore, in these cases, be shifted to reduce pathology or disease pro-
gression rather than prevent infection entirely. 

  Host Populations . The developing world has a higher proportion of young children 
than other demographics whereas the developed world has an ageing population. 
Both groups have impaired immune systems that may not respond to vaccines as 
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well as young adults (Effros  2007 ). Vaccine development must take into account the 
underdeveloped immune system of young children and the less functional immune 
response of the elderly. 

 Another peculiar dichotomy is that part of the world is malnourished and part of 
the world is obese. The immune system is affected greatly by nutrition intake and 
both depleted and excess nutrition can infl uence the type and effi cacy of an immune 
response to a pathogen. To generate a vaccine that works with such an impaired 
immune system but also on a healthy population will be diffi cult. 

 Finally, one third of the world’s population is infected with tuberculosis (TB), 
and many of these people are co-infected with HIV (Sharma  2005 ). Moreover, other 
populations are co-infected with parasites or chronic viral infections that may 
 infl uence the type and duration of immune response to vaccination.     
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    Chapter 2   
 Classifi cation of Vaccines 

             Rie     S.     Kallerup      and     Camilla     Foged    

2.1            Introduction 

 The introduction of human vaccines has had a tremendous impact on global health 
by dramatically reducing the mortality and morbidity caused by infectious diseases, 
and next to the wider availability of potable water, it is considered the most cost- 
effective and successful medical intervention ever introduced. Vaccines have inevi-
tably prevented disease, complications, and the death of millions of infants and 
children by protecting against many deadly infectious diseases (Bloom et al.  2005 ; 
Ehreth  2003 ). 

 Although vaccines have mainly demonstrated their value to human society dur-
ing the past century, the principle of vaccination has been used in China and India 
for more than a thousand years as the practice of variolation, where individuals were 
inoculated with live and virulent smallpox virus to achieve protection against a later 
encounter. Although the procedure did lead to protection, it was not without the risk 
of death or causing an epidemic. However, Edward Jenner is generally honored for 
the pioneering development of the fi rst vaccine more than 200 years ago by demon-
strating that exposure of humans to cowpox virus induced cross-protective immu-
nity towards smallpox (Riedel  2005 ). The word vaccine was in fact coined by 
Jenner, and is derived from the Latin word  vacca , which means cow. 
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 Subsequently, the development of vaccines have for more than a century been 
based on Louis Pasteur’s principle of isolating, purifying, and injecting the caus-
ative microorganisms in order to induce protective immunity (Rappuoli  2007 ). After 
World War II more systematic childhood vaccination programs became a wide-
spread tool for improving public health (Bloom et al.  2005 ). The mortality caused 
by serious and life-threatening diseases has been dramatically reduced as a result of 
these successful global childhood vaccination programs, and the introduction of 
vaccines has led to the eradication of smallpox and near eradication of infectious 
diseases such as polio (Ehreth  2003 ; Rappuoli  2007 ). The World Health Organization 
(WHO) currently recommends routine immunization against 12 different diseases 
(Table  2.1 ). Furthermore, additional vaccines are recommended for populations at 
high risk or regions with special needs.

   Despite this true medical success story, current vaccination efforts do face a 
number of obstacles. Three million people are estimated to die annually from 
vaccine- preventable illnesses, and infectious diseases still remain the leading cause 
of death worldwide for several reasons. The rapid progress towards universal vac-
cination coverage in the 1970s and 1980s has slowed in the past decade, and several 
childhood illnesses have started to re-emerge as a result of ineffi cient vaccine cover-
age. This may be due to public perception of vaccination, where an individual may 
fi nd it rational to refuse vaccination in order to avoid the possible side effects, or due 
to political reasons. The consequence has been the reemergence of diseases such as 
measles and pertussis in certain industrialized countries and of polio in certain 
developing countries (Bloom et al.  2005 ). 

 Infectious disease-caused mortality can also be explained by lack of effi cacious 
vaccines where conventional vaccinology has failed due to factors such as antigenic 
drift, and by the existence of more diffi cult target diseases, for example, tuberculo-
sis (TB), human defi ciency virus-acquired immune defi ciency syndrome (HIV- 
AIDS), and malaria. Antigenic drifts represent a challenge for vaccine development, 

   Table 2.1    WHO recommendations for routine immunization (WHO  2012 )   

 Disease/antigen  Age group 

 Bacillus Calmette-Guérin (BCG)  Children 
 Hepatitis B  Children (+adolescents/adults in high risk groups) 
 Polio  Children 
 Diphtheria  Children, adolescents, and adults 
 Tetanus  Children, adolescents, and adults 
 Pertussis  Children 
  Haemophilus infl uenzae  type B  Children 
 Pneumococcal  Children 
 Rotavirus  Children 
 Measles  Children 
 Rubella  Children 
 Human papilloma virus (HPV)  Adolescent girls 

R.S. Kallerup and C. Foged



17

and the success stories in vaccinology arise to a large extent from development of 
vaccines against pathogens with no or little antigenic drift, for example, vaccines 
against diphtheria and tetanus, where there is no antigenic drift in the target toxin 
antigen. Antigenic shift can result in changes in surface antigens and the infl uenza 
virus is an example of a pathogen where such changes occur annually. This anti-
genic variability is overcome by altering the vaccine on a yearly basis. However, 
pathogens where antigens change faster, e.g., human immunodefi ciency virus 
(HIV), are more diffi cult to approach by conventional vaccinology. To date, conven-
tional vaccinology has been most successful in vaccines against pathogens for 
which protection is antibody mediated. The diffi cult vaccine targets represent to a 
large extent pathogens for which antibodies cannot provide suffi cient protection 
(Rappuoli  2007 ). An example is the intracellular pathogen  Mycobacterium tubercu-
losis . In 2012, 8.6 million people were infected with  M. tuberculosis  and approxi-
mately 1.3 million people died from TB (WHO, Fact sheet 104,  2012 ). Numbers 
like these put great emphasis on the acute need for new prophylactic as well as 
therapeutic vaccines against global killers like TB, malaria, HIV-AIDS, and cancer. 
However not only new vaccines are needed since improvements to conventional 
vaccines could have a tremendous impact on vulnerable population groups such as 
the elderly, since this population is immunologically hyporesponsive. Several vac-
cines approved for human use are listed in Table  2.2 .

2.2        Classifi cation of Vaccines 

 Traditionally vaccines have been based on live attenuated pathogens, whole inacti-
vated organisms or inactivated bacterial toxins and are most often suffi ciently 
immunogenic. Traditional vaccines based on the whole-cell concept possess intrin-
sic immune stimulatory capacity, which is adequate for the induction of long-lived 
protective immunity. However, a great disadvantage related to this approach is that 
these live systems have associated adverse effects that in some cases are mild but 
can be severe or even fatal in others (Huang et al.  2004 ). Safety is of major concern 
in vaccine development and limits the use of the traditional approach in the develop-
ment of new vaccines as traditional vaccines may cause disease in immune- 
compromised hosts or revert back to virulence (Robinson and Amara  2005 ). With 
these issues, new parenteral vaccines are unlikely to be live attenuated vaccines. 

 In light of these limitations, new strategies for vaccine development are emerg-
ing, and vaccine development is moving away from the whole-cell based approach 
of live attenuated or inactivated vaccines and towards the safer spilt and subunit vac-
cine technology. The fi eld of vaccinology has undergone tremendous breakthroughs 
over the past 30–40 years. An important contribution to these breakthroughs is pro-
vided by the introduction of recombinant DNA technology, which solved the prob-
lem of antigen manufacturing. Also the development of conjugate vaccines, subunit 
vaccines, and the non-replicating recombinant virus-like particles (VLPs) has had an 
enormous impact on vaccine development and success (Rappuoli  2007 ). 

2 Classifi cation of Vaccines
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2.2.1     Live Attenuated Vaccines 

 Conventional vaccines have been based on live attenuated pathogens, and contain 
laboratory-weakened versions of the original pathogen. The rationale for using live 
attenuated vaccines is that they mimic the natural infection, which results in an 
effective vaccination strategy. The advantage of this type of vaccine is that both a 
strong cellular and an antibody response are produced. Usually, long-term protec-
tion is also achieved, and a single inoculation is often suffi cient. The attenuation of 
the microorganism results in a non-pathogenic microorganism, which still possesses 
all the pathogenic features as the original microorganism (Clem  2011 ). 

 Attenuation can be achieved via different approaches. Edward Jenner’s approach 
was to use a virus pathogenic in a different host but not pathogenic to humans, as he 
isolated pus from cows with cowpox, and this provided the basis for his smallpox 
vaccine (Riedel  2005 ). Naturally occurring attenuated strains can also be used, 
exemplifi ed by the use of type 2 poliovirus. Attenuation is also possible by applying 
harsh conditions on a virulent virus strain (e.g., cold adaption of infl uenza virus). 

 The Bacillus Calmette Guérin (BCG) vaccine against TB is an example of an 
attenuated live vaccine. The currently used vaccine strains are all descendants of the 
original  M. bovis  isolate that Calmette and Guérin passaged through many cycles. 
Further passages, under different laboratory conditions, have resulted in a variety of 
new BCG strains with phenotypic and genotypic difference. 

 One such strain is the 1331 strain produced at the Danish Serum Institute (WHO 
 2004 ). As adults with lung TB are the major source of disease transmission, BCG 
vaccination of children has had very limited infl uence on the global epidemic. 
Another very important limitation of BCG is the lack of effect in the two billion 
individuals already infected with TB, which underlines the need for the develop-
ment of new TB vaccines (WHO  2004 ). 

 Another example of an attenuated live viral vaccine is the measles, mumps, and 
rubella vaccine (MMR). This vaccine has been available in the United States since 
1971 (Ravanfar et al.  2009 ). Priorix ®  is a marketed MMR vaccine produced by 
GlaxoSmithKline. The vaccine contains attenuated MMR viruses. Each of these 
attenuated virus strains, measles (the Schwarz strain), mumps (the RIT 4385 strain), 
and rubella (the Wistar RA 27/3 strain) is obtained separately by propagation in 
chick embryo tissue cultures (mumps and measles) or MRC5 human diploid cells 
(rubella) (Wellington and Goa  2003 ).  

2.2.2     Inactivated Vaccines 

 The main advantage of killed or inactivated vaccines over attenuated vaccines is 
safety. Since these vaccines are based on killed/inactivated pathogens, the concerns 
regarding reverting back to virulence are obviated. However, this also constitutes a 
huge disadvantage since the lack of replication results in a fast clearance from the 
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body leading to a decreased effi cacy, as compared to the live vaccines. Killed/inac-
tivated vaccines do, however, give rise to a more complex or greater infl ammatory 
immune response in comparison to the newer subunit vaccines due to the fact that 
most of the pathogenic components are preserved. 

 Inactivated vaccines are used widely. An example of such a vaccine is the 
Hepatitis A vaccine Epaxal ®  from Crucell. This vaccine is based on a hepatitis A 
virus (strain RG-SB) which is inactivated by formalin treatment. The inactivated 
vaccine is adsorbed onto a virosome formulation, which constitutes the adjuvant 
system (Bovier  2008 ).  

2.2.3     Subunit Vaccines 

 Subunit vaccines are, by defi nition, vaccine agents that comprise one or more com-
ponents of a pathogen rather than the entire pathogen. Subunit vaccines are com-
posed of one or several recombinant peptides/proteins or polysaccharides normally 
present in the structure of the target pathogen (Dudek et al.  2010 ). In terms of safety 
and cost of production, these vaccines offer considerable advantages over the tradi-
tional vaccines, as these are composed of very well-defi ned and highly pure compo-
nents. This approach results in a more appealing safety profi le due to the lack of 
replication and the removal of material that may initiate unwanted host responses 
(Robinson and Amara  2005 ). 

 For bacterial subunit vaccines, two main types exist. The fi rst type is the toxoid 
vaccines which are generated against bacteria where toxins are the main disease- 
causeing agents. The toxins are inactivated by converting the toxins into detoxifi ed 
versions (toxoids), for instance by treatment with formaldehyde. These toxoids can 
then safely be used for vaccination purposes. The close resemblance of the toxoid to 
the toxin enables the immune system to neutralize and fi ght the natural toxins via 
generation of anti-toxoid antibodies. Examples of toxoid vaccines are the different 
vaccines against diphtheria, tetanus, and pertussis. The second major group of 
 bacterial subunit vaccines as based on the capsular polysaccharides of encapsulated 
bacteria. There are several examples of vaccines of this type, including vaccines 
against  Streptococcus pneumoniae ,  Neisseria meningitidis , and  Haemophilus infl u-
enzae  type b (Hib). A variation of this is the conjugate vaccine, which is created by 
covalently attaching an antigen (often the bacterial polysaccharides) to a carrier pro-
tein, e.g., tetanus toxoid, resulting in the generation of more effi cacious vaccines. 
Common virus subunit vaccines are the split virus vaccines where the structure of the 
viruses has been disrupted, resulting in a mixture of the various viral components. 

 Alternatively, subunit vaccines may consist of one or more viral or bacterial pro-
teins, or peptide fragments of these. In some cases, such antigens might be suffi -
ciently immunogenic by themselves. This is the case for the subunit vaccine for infl u-
enza comprising the two purifi ed surface antigens hemagglutinin (HA) and 
neuraminidase (NA). These two proteins are isolated for the seasonal fl u vaccine from 
three selected virus strains and combined in a trivalent vaccine, with or without an 
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adjuvant. Also for the hepatitis B vaccine, the surface antigen, HBsAg, is suffi ciently 
immunogenic, and a vaccine based on recombinant HBsAg was the fi rst genetically 
engineered vaccine product produced commercially and used worldwide. 

 However, in many cases the highly purifi ed subunit antigens lack many of the 
intrinsic pathogenic features which render these protein-based antigens weakly 
immunogenic by themselves and co-administration of adjuvants is often required. 
The addition of adjuvants not only enables the induction of an effective immune 
response, but also provides the potential to modulate the immune response (Reed 
et al.  2009 ; O’Hagan  2001 ). The use of adjuvants can also allow for a dose-sparring 
effect or can reduce the number of required administrations. 

2.2.3.1     Adjuvants 

 A vaccine adjuvant is defi ned as a component that potentiates the immune response 
to an antigen and/or modulates it towards a desired immune response. The term 
adjuvant is derived from the Latin word  adjuvare , which means to help. The most 
commonly used adjuvants are the aluminum salts commonly, although incorrectly, 
referred to as alum (Chap.   3    ). The adjuvant effect of alum was discovered by Glenny 
in 1926, and alum has now been utilized for more than 70 years in vaccines (Glenny 
et al.  1926 ). For many years alum was the only adjuvant approved worldwide and it 
has been used in large numbers of vaccines for human use (Clements and Griffi ths 
 2002 ). Formulation is achieved by adsorption of antigen onto highly charged alumi-
num particles (Reed et al.  2009 ). 

 In recent years, there has been substantial progress in the discovery of new effi -
cient adjuvants for subunit vaccines [reviewed by (Foged  2011 )], and a handful of 
these have been marketed as components of approved licensed vaccines. Examples 
of adjuvants are emulsions, liposomes, polymeric nanoparticles, immune- stimulating 
complexes (ISCOMs), and VLPs, which are described in the following chapters. 

 Adjuvants can broadly be classifi ed into delivery systems and immunopotentiat-
ing compounds, generally pathogen-associated molecular patterns (PAMPs) such as 
the toll-like receptor (TLR) ligands. The function of delivery systems is to effec-
tively deliver the vaccine components to the target antigen-presenting cells (APCs) 
and thereby enhance the amount of antigen reaching the cells or tissue responsible 
for induction of immune responses. Delivery systems are often particulate in nature 
and mimic nature in terms of size and shape resulting in a delivery system with 
similar dimensions as a given pathogen, which is a natural target for APCs. The 
combination of delivery systems and immunopotentiators has great potential due to 
concomitant enhanced antigen delivery and potent stimulation of innate immunity 
[reviewed by (Reed et al.  2009 ,  2013 )]. 

 Thus adjuvants are a heterogenous group of compounds that can have many dif-
ferent functions, i.e., depot or targeting functions and immunostimulatory or 
 immunomodulatory functions (Guy  2007 ). Adjuvants utilize very different mecha-
nisms in order to potentiate an immune response: (a) depot effect; (b) up-regulation 
of cytokines and chemokines; (c) cellular recruitment at the site of injection; (d) 
increased antigen uptake and presentation to APCs; (e) activation and maturation of 
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APCs and migration to the draining lymph nodes; and (f) activation of the infl am-
masome [reviewed by (Awate et al.  2013 )]. Understanding of the adjuvant mecha-
nism of action can be utilized to develop vaccines with a very specifi c and tailored 
effect. The mechanism behind adjuvanticity is however in many cases poorly under-
stood since immune responses to vaccines involve a very complex cascade of events 
and the isolated effect of an adjuvant can be very diffi cult to dissect. 

 The antigen can be associated to a delivery system by surface adsorption or 
encapsulation, depending on the mode of preparation. In this sense, delivery sys-
tems provide the potential to control antigen kinetics and dynamics. This is done 
(a) by stabilizing as well as protecting the antigen from degradation; (b) by inhibit-
ing/delaying clearance of the antigen from the injection site; (c) targeting and also 
carrying the antigen to the APCs; (d) prolonging the time of exposure of antigen to 
the immune cells; (e) enhancing the antigen uptake in the APCs; and (f) controlling 
the antigen release and intracellular traffi cking (reviewed by Foged  2011 ; O’Hagan 
and De Gregorio  2009 ). 

 Immunopotentiators function via direct activation of the innate immune system 
by interacting with the APCs through pattern recognition receptors (PRRs) 
(O’Hagan and Valiante  2003 ). Examples of such immunopotentiators are ligands of 
innate immune receptors, the TLRs, NOD-like receptors (NLRs), C-type lectin 
receptors (CLRs), and RIGI-like receptors (RLRs) [reviewed by (Reed et al.  2013 ; 
Foged  2011 ; Guy  2007 )]. A wide variety of PAMPs are recognized through TLRs, 
examples thereof are lipopolysaccharide (LPS) and its derivatives which are recog-
nized through TLR4, peptidoglycans from Gram-positive bacteria and lipopeptides 
are recognized through TLR2, RNA is recognized through TLR3, bacterial fl agellin 
through TLR5, single- stranded RNA and imidazoquinolines signal through TLR7 
and TLR8, and unmethylated CpG motifs in bacterial DNA are recognized through 
TLR9 (Gay and Gangloff  2007 ; Medzhitov  2001 ). 

 A growing body of preclinical and clinical data demonstrates that TLR agonists 
are potent vaccine adjuvants and provide the opportunity for tailoring and modulat-
ing the immune response against a vaccine by inducing distinct cytokine profi les 
(Duthie et al.  2011 ). Monophosphoryl lipid A (MPL) is the most studied TLR ago-
nist for vaccination purposes. MPL is derived from LPS which is found in the cell 
wall of Gram-negative bacteria (Casella and Mitchell  2008 ). The adjuvant formula-
tion AS04 from GlaxoSmithKline is based on MPL adsorbed to alum (Garcon 
 2010 ) and is approved for the hepatitis B vaccine Fendrix™ (Garcon et al.  2007 ) 
and the HPV vaccine Cervarix™ in combination with VLPs (Schwarz  2009 ; 
Romanowski et al.  2009 ). In addition new and synthetic TLR agonists are being 
developed and the availability of such immunopotentiators has expanded. 

 Hence rational development and formulation of adjuvant systems can result in a 
wide variety of ways to modulate the immune response in a desired direction. 

 The non-TLRs are not as well described as the TLRs and include intracellular 
innate receptors such as the RLRs, the soluble NLRs, and CLRs. The surface- expressed 
CLRs include the mannose receptor and DC-SIGN that are able to bind a wide range 
of viruses, bacteria, and fungi through recognition of sugar moieties (Guy  2007 ). 

 Adjuvant systems are defi ned as functional excipients and are in that sense 
 components of a specifi c vaccine. Table  2.3  lists adjuvant delivery systems used in 
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vaccines approved for human use. The aluminum salts are described further in 
Chap.   3     of this book, the oil-in-water emulsions MF59 and AS03 are described in 
Chap.   4    , and VLPs are discussed in Chap.   9    .

   In order to achieve the optimal immunological effect, an adjuvant appropriate for 
the formulation must be considered. The choice of formulation is in turn dependent 
upon the choice of antigenic components, the type of immune response that is 
needed, the optimal/desired route of administration, any potential adverse effects, 
and the stability of the vaccine. These factors must be considered in the early phases 
of development. Also the adjuvant must be chemically as well as physically stable 
in order to face the quality control criteria (see Chap.   19    ) which ensures reproduc-
ible manufacturing as well as activity (Reed et al.  2009 ). 

 The inclusion of adjuvants in vaccine formulations should be justifi ed. Effi cacy, 
safety, and tolerability are the most important factors for vaccine development. The 
use of adjuvants should therefore be considered in relation to the target population 
and should be selected based on a risk/benefi t ratio. For example, a higher risk is 
more acceptable for cancer patients than for healthy children.   

2.2.4     DNA Vaccines 

 DNA vaccines represent a new generation of vaccines that are attractive due to their 
simplicity in addition to several other advantages they have over conventional vac-
cines. The principle underlying DNA vaccination is to induce immunity by tran-
siently transfecting host cells with plasmid DNA (pDNA) encoding antigen, as 
opposed to injecting antigen in the form of a peptide or protein. Upon DNA vaccina-
tion, host cells produce the protein (antigen) encoded by the DNA and immunity 
against this particular protein is subsequently induced (Bins et al.  2013 ; Senovilla 
et al.  2013 ). The great advantages associated with DNA vaccines are that they can 
be manufactured relatively easily at low costs, and both humoral and cellular 
immune responses can be elicited. In addition, pDNA is fairly stable at room tem-
perature (Bins et al.  2013 ), which renders the normally required cold chain redun-
dant for DNA vaccine storage. This is certainly of high importance for the 
effectiveness of vaccine programs in developing countries. 

 As yet no DNA vaccines have been approved for human use. Several clinical tri-
als are being conducted at this point in time for different cancers and HIV- 
AIDS. Some DNA vaccines are approved/registered for veterinary use (Bins et al. 
 2013 ; Senovilla et al.  2013 ).  

2.2.5     Dendritic Cell-Based Vaccines 

 Another type of vaccination strategy is based on dendritic cells (DCs). The function 
of these cells is to acquire, process and present antigens to T-cells, and provide the 
stimulatory signals and cytokines required to induce T-cell proliferation and differ-
entiation into effector cells (Chap.   1    ). Therefore, a much-studied vaccination 
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strategy is to load in vitro-generated DCs with antigens and infuse them into a 
patient so as to elicit T-cell-mediated responses, particularly in the context of cancer 
where DC function in vivo is often blunted or subverted by factors released by the 
tumor (Chap.   13    ). While preclinical studies have repeatedly shown that DC-based 
vaccines can delay or prevent tumor progression, human clinical trials have been 
disappointing in comparison, offering only marginal benefi t for patients. There is 
therefore still a need to improve the stimulatory capacity of the injected cells, and 
strategies for how to achieve this are discussed further in Chap.   13    .   

2.3     Pharmaceutical and Delivery Challenges 
for the Development of Subunit Vaccines 

 Research in the fi eld of modern vaccinology is to a large extent conducted in the 
absence of knowledge of how the physicochemical properties of the subunit formu-
lations impact the effi cacy, safety, and mechanism of action (Mortellaro and 
Ricciardi-Castagnoli  2011 ). In order to move towards a more rational process 
regarding vaccine development it is of crucial importance to increase understanding 
of vaccine formulation, which is a great challenge since vaccines are often very 
complex systems (Reed et al.  2009 ). An in-depth understanding of the physico-
chemical properties and what effect production and biological processes impose on 
safety and effi cacy is desirable during development of subunit vaccines, also from a 
stability and quality control point of view. Therefore, there are a substantial number 
of pharmaceutical challenges associated with the subunit vaccine development pro-
cess. With these complex systems a tremendous amount of work on development, 
formulation, and characterization is needed. Also the regulatory challenges facing 
scientists who research and develop subunit vaccines are of great importance for the 
successful development of subunit vaccines. The pharmaceutical analysis and qual-
ity control of vaccines are described further in Chaps.   19    –  21     of this book. 

 A crucial aspect in addressing the challenges in vaccine development is vaccine 
delivery, which encompasses (a) administration of the vaccine formulation to spe-
cifi c sites of the body and (b) delivery of the antigen to, and activation of, relevant 
cells of the immune system. Administration of vaccine formulations to specifi c sites 
of the body can be achieved by various routes, and the most commonly used routes 
have been intramuscular (i.m.) and subcutaneous (s.c.) injection. During the past 
decades, much effort has been devoted to exploring the use of minimally invasive or 
noninvasive administration routes, such as nasal delivery, pulmonary delivery, trans-
cutaneous delivery, oral delivery, and sublingual/buccal delivery. Such alternative 
routes of administration might allow for easier and more convenient administration, 
e.g., needle-free approaches, and might eventually result in increased vaccine cover-
age by increasing the willingness of the public to be vaccinated. In addition, the use 
of alternative administration routes might affect the quality of the immune response. 
One example is mucosal vaccination. Most pathogens access the body through the 
mucosal membranes. Therefore, effective vaccines that protect at these sites are 
much needed. However, despite early success with the live attenuated oral polio 
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 vaccine, only a few new mucosal vaccines have been approved for human use. This 
is partly due to problems with developing safe and effective mucosal adjuvants. 

 Each of these immunization routes requires specially designed formulations 
(e.g., suspensions, emulsions, powders, tablets) and specially designed delivery 
devices (such as microneedles, nasal sprayers, and pulmonary inhalers). To license 
a product for vaccination applying alternative administration routes, the combina-
tion of formulation and device should be licensed as a whole. For this reason, for-
mulation development and development of a suitable device should go hand in 
hand. In Chaps.   14    –  18    , different administration routes are discussed together with 
formulations and devices used specifi cally for these routes. 

 Finally, the development of stable vaccine formulations is important to consider, 
in particular the development of thermostable vaccines that can be distributed inde-
pendently of the expensive cold chain are highly in demand for the developing 
countries. Processes for drying of vaccines such as spray drying, spray freeze dry-
ing, and supercritical fl uid technology are further described for pulmonary formula-
tions in Chap.   16    .  

2.4     Conclusions 

 Prophylactic vaccination is the medical intervention with by far the largest impact 
on public health and has greatly reduced the incidences of bacterial and viral infec-
tions. Despite this the fi eld of vaccinology faces a number of challenges, and there 
is still an unmet medical need for new vaccines due to the existence of a number of 
infectious diseases for which no effective vaccine is available (e.g., HIV-AIDS, 
malaria), or for which existing vaccines provide insuffi cient immunity (e.g., TB) or 
are unaffordable for those most in need (e.g., Pneumococcal disease). Conventional 
vaccines include the live, attenuated, or inactivated whole organism vaccines. Novel 
vaccine development strategies aim towards more safe, effi cient, and stable vaccines 
in the future. New generation vaccines are usually of the subunit vaccine type, 
which are based on highly purifi ed recombinant or synthetic antigens. A number of 
adjuvant technologies are used to enhance effi cacy and there are efforts ongoing to 
explore the usage of noninvasive administration routes. This poses special demands 
in terms of formulation development and device technology for optimizing the 
delivery of antigens and immunopotentiators to the immune system.     
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    Chapter 3   
 Aluminum Adjuvants: Basic Concepts 
and Progress in Understanding 

             Erik     B.     Lindblad    

3.1            Introduction 

 In 1926 A.T. Glenny and co-workers demonstrated the adjuvant effect of aluminum 
compounds (Glenny et al.  1926 ). He was inspired by the work of Hartley who 
showed that antigen–antibody complexes induced higher titers than injection of the 
antigen alone. Glenny prepared a variety of diphtheria toxoid precipitates and inves-
tigated their immunogenicity (Glenny et al.  1926 ,  1931 ). Among these were toxoids 
precipitated by addition of potassium alum (KAl(SO 4 ) 2 ·12H 2 O). He observed that 
injecting the diphtheria toxoid as an alum precipitate led to a signifi cant increase 
in the immune response against the toxoid. Vaccines prepared in accordance 
with this principle have been used for vaccination and are generally referred to as 
  alum - precipitated   vaccines . 

 Such preparations are usually highly heterogeneous (Holt  1950 ), depending on 
which anions (e.g., bicarbonate, sulfate, or phosphate) are present at the time of 
precipitation, e.g., as buffer constituents or growth media residuals in the antigen 
solution. It soon became clear that a number of disadvantages are associated with 
using this approach. As the adjuvant itself is formed upon co-precipitation with the 
antigen, it is not possible to characterize the adjuvant before mixing. In addition, the 
precipitation with antigen requires alkaline conditions, which are detrimental to 
some antigens. Therefore, the attention was shifted towards preformed aluminum 
hydroxide hydrated gels that have the ability to adsorb protein antigens from an 
aqueous solution, and such gels can be preformed in a well-defi ned and standardized 
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way (Maschmann et al.  1931 ). Vaccine preparations based on this approach are 
 generally referred to as  aluminum adsorbed vaccines . Aluminum phosphate was 
introduced as an adjuvant somewhat later. In 1946 Ericsson devised a method where 
diphtheria toxoid was co-precipitated into a matrix of aluminum phosphate (Ericsson 
 1946 ). Holt shortly after demonstrated that preformed aluminum phosphate pre-
pared using equimolar amounts of aluminum chloride and trisodium phosphate, 
acted as an adsorbant and was adjuvant active with diphtheria (Holt  1947 ). 

 In addition to the alum precipitation and the preformed aluminum hydroxide and 
aluminum phosphate gels, a number of other aluminum compounds have been 
investigated as adjuvants, e.g., aluminum hydrochloride, which was used to raise 
anti-snake venom (Kawamura and Sawai  1989a ,  b ), and aluminum silicate, which 
was applied for studying the immunoglobulin E (IgE) synthesis in experimental 
animal models (Fujimaki et al.  1984 ). 

 Finally, aluminum compounds are a constituent of some patented composite 
adjuvant formulations, such as AS04 (a formulation of aluminum hydroxide with 
monophosphoryl lipid A) (Garcon et al.  2006 ; Giannini et al.  2006 ) and of 
Algammulin™, a composite adjuvant formulation consisting of aluminum hydrox-
ide and gamma-inulin (Cooper et al.  1991 ). 

 In the literature the word alum is often, but incorrectly, used to describe both 
aluminum hydroxide and aluminum phosphate gels. The aluminum salt used for 
co-precipitation with antigen, potassium alum, (KAl(SO 4 ) 2 ·12H 2 O), is in accor-
dance with the chemical defi nition of alum, whereas neither aluminum hydroxide 
nor aluminum phosphate is. The general term aluminum adjuvants is therefore pre-
ferred in this chapter. 

 Data on the use of alum-precipitated vaccines can be found in older literature 
(Volk and Bunney  1942 ), but in modern vaccination the adsorption onto preformed 
aluminum hydroxide and aluminum phosphate gels is now preferred over the alum 
precipitation in vaccine preparations.  

3.2     Application in Vaccines 

 Aluminum adjuvants are by far the most commonly used adjuvants in vaccine for-
mulations for both human and veterinary use. For human prophylactic vaccination, 
aluminum adjuvants have primarily been used in vaccines as part of standard child-
hood vaccination programs in tetanus, diphtheria, pertussis and poliomyelitis vac-
cines and various polyvalent combination vaccines thereof. Later aluminum 
adjuvants were also introduced in vaccines against hepatitis A virus, hepatitis B 
virus, Haemophilus infl uenzae b (Kanra et al.  1999 ,  2003 ) and Japanese encephali-
tis virus (Dubischar-Kastner et al.  2010 ), in vaccines (LYMErix™) against Lyme’s 
Disease (tick-borne  Borrelia burgdorferi  infection) (Poland and Jacobson  2001 ) 
and in vaccines against meningococcal disease. Among the more recent successful 
vaccines containing aluminum adjuvants are the vaccines against human papilloma 
virus (HPV) to protect against cervical cancer and genital warts, e.g., Cervarix™ 
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and Gardasil™, (Giannini et al.  2006 ; Han et al.  2010 ). Aluminum-adsorbed vac-
cines against, e.g., anthrax, although not part of standard vaccination programs, are 
available for special risk groups, including military servicemen at risk of being 
exposed to weapons of biological warfare. Use of aluminum adjuvants in therapeu-
tic vaccines is known from hyposensitizing treatment of allergic patients using 
aluminum- adsorbed allergens. 

 In veterinary medicine aluminum adjuvants have been used in a large number of 
vaccine formulations against viral (Pini et al.  1965 ; Hyslop and Morrow  1969 ; 
McDougall  1969 ; Sellers and Herniman  1974 ; Wilson et al.  1977 ) and bacterial 
diseases (Nagy and Penn  1974 ; McCandlish et al.  1978 ; Ris and Hamel  1979 ; 
Thorley and Egerton  1981 ), as well as in attempts to make anti-parasite vaccines 
(Gamble et al.  1986 ; Carlow and Bianco  1987 ; Leland et al.  1988 ; Monroy et al. 
 1989 ) (Table  3.1 ).

   Hundreds of millions of doses of aluminum-adjuvanted vaccines have been admin-
istered over a time span comparable to the average life time of a human being. Hence, 
the long-term safety profi le is very well documented and these adjuvants are gener-
ally regarded as safe when used in accordance with current vaccination schedules and 
recommended dose limitations (WHO Technical Report Series vol 595  1976 ; 
Edelman  1980 ; Goldenthal et al.  1993 ). For an extensive review, see Lindblad  2007 . 

 For vaccines intended for use in humans there are well-defi ned limitations for the 
content of aluminum allowed. These limits are 1.25 mg aluminum per dose in 
Europe (Ph.Eur. 3 ed.  1997 ). In USA 0.85 mg aluminum per dose is accepted if 
determined by assay, 1.14 mg if determined by calculation and 1.25 mg if safety and 
effi cacy data justifi es it (Code of Federal Regulations 21  2003 ). 

 In veterinary vaccines there is no defi ned maximum limit for the allowed content 
of aluminum. Here the dose is normally set from a balance between effi cacy and 
local reactogenicity, which may differ considerably in different animal species. The 
optimal dose of adjuvant is usually determined empirically in a pilot trial.  

   Table 3.1    Examples of application of aluminum adjuvants in veterinary vaccinology   

 Viral vaccines  Bacterial vaccines 
 Experimental 
anti-parasite vaccines 

 Avian infectious bronchitis virus   Bacteroides nodosus    Cooperia punctata  
 Canine hepatitis virus   Bordetella bronchiseptica    Nematospiroides dubius  
 Foot-and-mouth disease virus   Clostridium botulinum    Onchocerca lienalis  
 Newcastle disease virus   Clostridium chauvoei    Trichinella spiralis  

  Clostridium novyi  
  Clostridium perfringens  
  Clostridium septicum  
  Clostridium sordellii  
  Haemophilus somnus  
  Leptospira interrogans  
  Pasteurella multocida  
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3.3     Limitations to Use 

 The choice of adjuvant for a particular application should obviously be based on 
the idea that it should primarily stimulate those reaction patterns of the immune 
response that are responsible for protection against the target disease. For some 
diseases, protection is provided by an adequate antibody response. Other diseases 
require cellular immunity for protection. Aluminum adjuvants are effi ciently gen-
erating an early, high-titered and lasting antibody response, biased towards the Th2 
immune response profi le (Grun and Maurer  1989 ). This introduces an obvious 
limitation to the use of these adjuvants. A Th2-biased immune response is not 
likely to protect effi ciently against diseases for which Th1 immunity and major 
histocompatibility complex (MHC) class I-restricted cytotoxic T-lymphocytes 
(CTLs) are essential for protection, such as intracellular parasites or tuberculosis 
(Lindblad et al.  1997 ). 

 For vaccines against typhoid fever and seasonal infl uenza, aluminum adjuvants 
have failed to provide satisfactory augmentation of the immune response in a num-
ber of cases (Cvjetanovic and Uemura  1965 ; Davenport et al.  1968 ). 

 Both aluminum hydroxide and aluminum phosphate adjuvants have been tested 
in a few DNA vaccine formulations (Ulmer et al.  2000 ; Kwissa et al.  2003 ) includ-
ing experimental vaccines against hepatitis B virus and in vaccine formulations 
where the DNA oligonucleotides were combined with aluminum-adsorbed protein 
antigens (Kwissa et al.  2003 ). Here it was shown that aluminum hydroxide had an 
inhibiting effect, whereas aluminum phosphate adjuvant augmented the immune 
response against the antigen encoded by the DNA. A very plausible explanation is 
that the content of phosphate in the DNA molecule apparently gives a high binding 
affi nity of the nucleotides to the aluminum hydroxide, which in turn prevents the 
transcription of RNA and subsequent translation of the nucleotides into protein 
(Kwissa et al.  2003 ). 

 There is some discussion about the ability of aluminum adjuvants to potentiate 
the immune response against peptide-based vaccines (Francis et al.  1987 ). In some 
cases, e.g., with foot-and-mouth disease (FMD) virus peptides, the problem could 
be overcome by conjugating the small peptides to a larger carrier molecule (Francis 
et al.  1985 ), whereas in other cases this is not a viable strategy (Lew et al.  1988 ; 
Geerligs et al.  1989 ). 

 The overall picture that aluminum adjuvants give a fairly clear Th2 immune 
response profi le in mice (Grun and Maurer  1989 ), however, dates back from a time 
when Th1 and Th2 were the only effector T-cell subsets known. Since then, addi-
tional effector T-cell subsets have been identifi ed, e.g., Th17 T-cells, regulatory 
T-cells (T regs ), and follicular T-helper cells (T FH ). Further research is required to 
elucidate to what extent aluminum adjuvants may encompass the stimulation of 
these additional T-cell subsets. 
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3.3.1     Thermostability of Aluminum Adjuvants 

 The EP monograph 1664 for aluminum hydroxide prescribes that the aluminum 
hydroxide adjuvant should be stored at temperatures between 4 and 30 °C. However, 
the characteristics in terms of thermostability introduce some limitations to the use 
of aluminum adjuvants. 

 Traditional aluminum-adsorbed vaccines are frost sensitive, and attempts to 
lyophilize adsorbed vaccines in the absence of lyoprotectants have therefore failed. 
Freezing of aluminum adjuvants leads to the destruction of the hydrated colloid 
structure and induces the formation of larger aggregates. For samples that have been 
frozen completely this is easily recognized by a collapse of the gel, leaving behind 
a signifi cantly increased fraction of clear supernatant and quick sedimentation of 
the precipitate (Fig.  3.1 ). Partial freeze damages may be less easily detected visu-
ally, but as the freeze destruction is accompanied by a loss of protein adsorption 
capacity, partial destruction of the adjuvant will be accompanied by partial loss of 
protein adsorption capacity (Lindblad and Schønberg  2010 ).  

 Freezing of adsorbed vaccines, i.e., the situation where commercial vaccines 
are exposed to freezing, has also been studied by a group under the World 
Health Organization (WHO) (Kurzatkowski et al.  2013 ). Also here a faster sedimen-
tation (2–15 times as fast), as compared to non-freeze damaged vials, was seen. 

  Fig. 3.1    Two vials of aluminum hydroxide gel adjuvant. The vial to the  left  has not been exposed 
to freezing. The vial to the  right  has been frozen and subsequently thawed: The gel structure in the 
vial is collapsed and the colloid bound water released into the supernatant       
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Electron microscopy and X-ray analysis demonstrated the formation of larger 
aggregates, primarily consisting of aluminum salt in the precipitate. 

 Similar fi ndings have led to the development of the so-called  shake test  (Kartoglu 
et al.  2010 ), which was validated against phase contrast microscopy analysis. Non- 
frozen samples showed a fi ne-grain structure under phase contrast microscopy, but 
freeze-damaged samples showed large agglomerates of massed precipitates with 
amorphous, crystalline, solid, and needle-like structures. Particles in the non-frozen 
samples had an average diameter above 1 μm (vaccines against diphtheria-tetanus- 
pertussis; Haemophilus infl uenzae type b; hepatitis B; diphtheria-tetanus-pertussis- 
hepatitis B) to 20 μm (diphtheria and tetanus vaccines, alone or in combination). By 
contrast, aggregates in the freeze-damaged samples measured up to 700 μm (max 
value) for diphtheria-tetanus-pertussis and 350 μm on average (Kartoglu et al.  2010 ). 

 Attempts are made to develop procedures that allow freezing of vaccines without 
the described damages by adding lyoprotectants such as trehalose to the adjuvant/
vaccine formulations (Clausi et al.  2008 ; Hassett et al.  2013 ). 

 Both aluminum hydroxide and aluminum phosphate adjuvants can be autoclaved 
to obtain sterility, not only as part of their production process, but can also be re- 
autoclaved later if sterility is questioned. 

 What is referred to as aluminum hydroxide adjuvant is poorly crystalline alumi-
num oxyhydroxide corresponding to the mineral form Boehmite (Shirodkar et al. 
 1990 ) whereas aluminum phosphate adjuvant is better described as aluminum 
hydroxy phosphate (Shirodkar et al.  1990 ). Accordingly X-ray diffraction crystallog-
raphy can be used to study possible changes induced by autoclaving. This is typically 
done by studying the width of the diffraction bands at half their height. When alumi-
num hydroxide adjuvant is autoclaved the main diffraction band decreased in width, 
indicating an increase in crystallinity. Also the pH value is slightly decreased follow-
ing autoclaving indicating deprotonization (Burrell et al.  1999 ). Aluminum phosphate 
adjuvant is amorphous when studied by X-ray diffraction and retains the amorphous 
pattern after autoclaving (Burrell et al.  1999 ). However, autoclaving, as well as re-
autoclaving, leads to a slight reduction of the protein adsorption capacity for both 
aluminum hydroxide and aluminum phosphate adjuvants (Burrell et al.  1999 ).   

3.4     Mechanisms of Action 

 In the older literature, the function    of a depot-forming or repository adjuvant was 
originally described as to delay the clearance of the antigen from the injection site 
and to sustain the release of adsorbed antigen from the inoculated depot (Glenny 
et al.  1931 ), thereby ensuring a prolonged exposure of the antigen to the cells of the 
immune system. Although it quickly became obvious that the sustained release was 
inadequate for explaining the adjuvant mechanism of aluminum adjuvants, the phys-
ical adsorption of antigen onto the adjuvant is still considered a very important 
parameter for the effect of these adjuvants in the early phases of the immune response. 
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3.4.1     Mechanisms of Antigen Adsorption 

 The physicochemical mechanisms behind the antigen adsorption process are 
 complex and depend on the nature and composition of the antigen itself, as well as 
on the chemical composition of the buffer applied during the adsorption process. 
The two main mechanisms for adsorption are electrostatic attraction and ligand 
exchange. 

 It is well-established that charged particles in aqueous suspension attract ions of 
opposite charges (counter ions), as illustrated by the Gouy-Chapman double layer 
model (Fig.  3.2 ). This model describes the existence of an inner layer, the  Stern 
layer , and an outer, more diffuse layer surrounding the particles. The electrical 
potential decreases with the distance from the particle surface. The electrical poten-
tial at the outer rim of the diffuse layer is known as the zeta potential.  

 Electrostatic attraction between the aluminum adjuvant and a protein antigen is 
possible when the adjuvant and the antigen have opposite electrical charges. 
Aluminum hydroxide has an alkaline  point of zero charge  (PZC). At pH values 
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  Fig. 3.2    The Gouy-Chapman double layer model       
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below the PZC, aluminum hydroxide is positively charged and at pH values above 
the PZC, the aluminum hydroxide is negatively charged. This is refl ected in the zeta 
potential of the particle. A similar situation exists for aluminum phosphate adjuvant, 
only here the PZC is acidic. The actual pH value for the PZC for both aluminum 
hydroxide and aluminum phosphate adjuvant depends on details in their production. 
In the pH interval between the isoelectric point (IEP) of the protein antigen and the 
PZC of the aluminum adjuvant, the adjuvant and the antigen will have opposite 
electrical charges, facilitating electrostatic attraction and adsorption (Fig.  3.3 ).  

 Seeber et al. ( 1991 ) concluded that aluminum hydroxide should be superior to 
aluminum phosphate in adsorbing proteins with an acidic IEP and vice versa for pro-
teins with an alkaline IEP. Some protein antigens, for example fusion proteins may 
show a distinct polarity regarding their charge. Such proteins may adsorb readily to 
aluminum hydroxide as well as to aluminum phosphate by electrostatic attraction, but 
with different parts of the antigen attached to the surface of the adjuvant (Dagouassat 
et al.  2001 ). As vaccines are usually prepared at pH values close to physiological pH 
in order to minimize local reactions and vaccination discomfort, there are in reality 
limited degrees of freedom when choosing the optimal pH for adsorption. 

 The other main mechanism of adsorption is known as ligand exchange. Some 
highly charged anions, such as phosphate, have a high binding affi nity for alumi-
num adjuvants, in particular aluminum hydroxide, and are able to displace surface- 
bound hydroxyl groups. If the antigen contains phosphorylated groups, for example 
if there is phosphoserine in the amino acid sequence, this mechanism may account 

Al(OH)3 +   +   +   +  +  +   +   +   +   +   +   +   +  +   +     +   +   +   +   - - - -
– – – – –———————————//—————————/——— – – – –

PZC

Albumin + +  + + +    - - - - - - - - - - - - - - - - - - - - - - - - - - - -
– – – – –————/———————//———————————— – – – –

pH 0

pH 0

IEP 7 pH 14

AlPO4 +  + +  +  +  +    - - - - - - - - - - - - - - - - - - - - - - - - - - - -
– – – – –————/———————//———————————— – – – –

PZC

HEL +  +  +  +  +  +  +  +  +  +  +  +  +  +  +  +  +  + +  +  + +  +  +    - - - - - -
– – – – –———————————//—————————/——— – – – –

7 IEP pH 14

  Fig. 3.3    In the pH range between the IEP of the antigen and the PZC of the mineral adjuvant there is 
basis for electrostatic attraction, due to opposite charge. The alkaline PZC for Al(OH) 3  makes it suit-
able for adsorption of acidic IEP proteins, as exemplifi ed by albumin, whereas the acidic PZC of 
AlPO 4  makes it suitable for adsorption of alkaline IEP proteins, as exemplifi ed by hen egg lysozyme       
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for a high-affi nity binding to the adjuvant. Ligand exchange is also important for the 
adsorption of, e.g., HBsAg particles, which contain fragments of phospholipid 
bilayer (Iyer et al.  2004 ), and has been demonstrated in experiments using phos-
phorylated alpha-casein as model antigen (Iyer et al.  2003 ). Ligand exchange pro-
vides a stronger binding than electrostatic attraction, since it might account for 
adsorption of proteins even when repulsive electrostatic forces between antigen and 
adjuvant exist (Iyer et al.  2003 ). 

 In addition, other intermolecular binding forces, like hydrophobic interactions, 
may play a role in protein adsorption (Al-Shakhshir et al.  1995 ) and each type of 
binding force may play distinct roles for a given antigen-adjuvant combination, 
depending on the nature of the antigen and the chemical environment (pH, ionic 
strength, presence of surfactants, etc.) (Rinella et al.  1995 ,  1998a ,  b ).  

3.4.2     Antigen Targeting 

 Adsorption of soluble antigen to aluminum adjuvant particles leads to presentation 
of the antigenic epitopes as particulate structures. This is of importance because 
antigen-presenting cells (APCs) are believed to take up particles by phagocytosis 
more effi ciently than they take up soluble protein by pinocytosis. This line of 
research was pioneered by Mannhalter and co-workers ( 1985 ), who investigated the 
uptake of soluble tetanus toxoid (TT) versus Al-adsorbed TT in human macro-
phages. When these were subsequently incubated with autologous T-cells in the 
absence of antigen, a highly increased T-cell proliferation was seen in the cultures 
of macrophages that had been exposed to Al-adsorbed antigen, as compared to cul-
tures exposed to soluble antigen. Also, cultures of macrophages pulsed with 
Al-adsorbed  125 I radiolabelled TT expressed higher radioactivity than cultures, 
which had been pulsed with soluble  125 I-TT (Mannhalter et al.  1985 ). This led to the 
conclusion that adsorbing a soluble antigen onto aluminum adjuvants favors antigen 
uptake by APCs (antigen targeting).  

3.4.3     The Infl ammatory Focus 

 Upon injection of the adsorbed vaccine a mild infl ammatory reaction is established 
at the injection site. Neutrophils, eosinophils, lymphocytes, macrophages, and 
immature dendritic cells (DCs) are attracted to the injection site (White et al.  1955 ; 
Walls  1977 ). At this point, weakly bound antigens may be partly dissociated from 
the aluminum adjuvant under infl uence of interstitial fl uid, whereas tighter bound 
antigens may remain adsorbed (Chang et al.  2001 ; Morefi eld et al.  2005 ; Jiang et al. 
 2006 ). Antigen thus released can reach the lymph nodes through the afferent lym-
phatics and react directly with surface-bound immunoglobulin on B-cells within 
minutes (Hem and HogenEsch  2007 ). Alternatively, the antigen-adjuvant complex 
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can be taken up by immature DCs and transported to the lymph nodes for T-cell 
presentation (Guermonprez et al.  2002 ). This involves cellular migration and may 
take 8–12 h (Itano et al.  2003 ; Sixt et al.  2005 ; Hem and HogenEsch  2007 ). Further, 
an encapsulation process may take place at the injection site resulting in granuloma 
formation as part of the infl ammatory reaction  sensu latu . The relative signifi cance 
of these reaction patterns may vary from case to case, depending on the specifi c 
antigen and the host response. 

 The formation of an infl ammatory focus seems to contribute to stimulating the 
immune response. This can be seen as a consequence of disturbing the tissue integ-
rity, release of uric acid crystals from dying cells and heat-shock proteins (HSP, e.g., 
HSP-70) as danger signals (Goto et al.  1997 ; Asea et al.  2000 ,  2002 ; Lindblad 
 2006 ). John Naim and co-workers found a direct correlation between the magnitude 
of the antibody response and the local infl ammatory response elicited after injection 
of different plurivalent metal oxides, tested as adjuvants, including aluminum 
(Naim et al.  1997 ).  

3.4.4     The NALP3 Infl ammasome 

 Until approximately 10 years ago vaccine adjuvants were traditionally subdivided 
into immunomodulators and delivery systems or vehicles. Immunomodulators are 
defi ned as compounds, which interact with pattern-recognition receptors (PRRs) 
such as the Toll-like receptors (TLRs), whereas delivery systems do not. Little was 
known about the mechanisms of action of the adjuvants, which had a documented 
adjuvant effect, but did not function as TLR agonists. Brewer and co-workers inves-
tigated cultures of DCs in the presence of aluminum adjuvants and did not observe 
increased expression of MHC class II and co-stimulatory molecules (Sun et al. 
 2003 ). This demonstration in vitro led to the conclusion that aluminum adjuvants 
did not act through TLRs (Sun et al.  2003 ), which is consistent with the fact that 
mineral adjuvants are devoid of pathogen-associated molecular patterns (PAMPs). 

 In 2002 Jürg Tschopp’s group at University of Lausanne defi ned the infl amma-
some as a molecular platform triggering activation of infl ammatory caspases and 
processing of pro-IL-1β (Martinon et al.  2002 ). Further work lead to a possible 
explanation for the mechanisms of action of aluminum adjuvants. According to this, 
uptake of Al-adjuvanted vaccines by DCs is accompanied by K +  effl ux and the three 
intracellular proteins NALP3, CARDINAL, and ASC then join to form the NALP3 
infl ammasome (Fig.  3.4 ).  

 NALP3 is belonging to the  N ucleotide-binding  o ligomerization  d omain (NOD)-
like receptors (NLRs). CARDINAL is also known as CARD-8, or  Ca spase  r ecruit-
ment  d omain-8 and ASC is an  A poptosis-associated  S peck-like protein including a 
 C ARD. Once the NALP3 infl ammasome is assembled it induces cleavage of the 
45 kDa pro-caspase-1 to the active caspase-1 enzyme, which is a cysteine-rich 
asparaginase able to cleave pro-IL-1β and pro-IL-18 into their active counterparts 
IL-1β and IL-18, which are secreted by DCs as active, pro-infl ammatory cytokines 
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(Kool et al.  2008 ; Li et al.  2007 ,  2008 ; Eisenbarth et al.  2008 ). In NALP3 knockout 
mice, vaccination with aluminum-adjuvanted antigen resulted in IL-1β levels com-
parable to the levels seen in mice receiving saline or antigen alone (Kool et al.  2008 ). 
Apparently, this pathway does not require MyD88, as the process could take place 
in MyD88-defi cient mice (Li et al.  2007 ). The synthesis of pro-IL-1β and pro-IL- 18 
is affected by TLR agonists reacting with TLRs on the surface of DCs thus resulting 
in activation of the nuclear factor-κB (NF-κB) pathway leading to the transcriptional 
activation of the genes for pro-IL-1β and pro-IL-18 in the nucleus of DCs. 

 Additional mechanisms may hypothetically contribute to the upregulation of 
the precursor molecules pro-IL-1β and pro-IL-18 in vivo. One such possible mech-
anism draws a line back to my previous hypothesis (Lindblad  2006 ), suggesting 
that the infl ammatory focus induced by injection of Al-adjuvanted vaccines and the 
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compromisation of tissue integrity elicit a secondary cascade effect in vivo which 
results in the release of danger signals and HSP-70, which stimulate both TLR2 
and TLR4 for pro-infl ammatory signal transduction in a CD14-dependent fashion 
(Lindblad  2006 ). Also, one should not disregard that the antigen preparation itself 
may contain PAMPs, such as lipopolysaccharides, and thereby act as TLR ago-
nists. This draws a line back to the original  gradual - release  way of thinking, as 
antigen released from an Al-adjuvanted depot would expose antigen-associated 
PAMPs making them available to surface TLRs on nearby DCs attracted to the site 
of injection. 

 Hornung and co-workers found that NALP3 activation following uptake of alu-
minum compounds apparently is a consequence of lysosomal damage and rupture 
(Hornung et al.  2008 ). Inhibition of either phagosomal acidifi cation or cathepsin B 
activity impaired NALP3 activation. The NALP3 infl ammasome can also be acti-
vated after uptake of, e.g., uric acid crystals by DCs. Uric acid crystals are released 
from dying cells as breakdown products of nucleic acids and are very powerful 
danger signals (Shi et al.  2003 ). It has been suggested that phagocytic cells taking 
up aluminum adjuvants may release uric acid crystals as danger signals stimulating 
the formation of the NALP3 infl ammasome in DCs (Al-Akl et al.  2011 ). However, 
it is not clear to which extent this mechanism contributes in parallel to the uptake of 
aluminum adjuvants antigen complexes directly by DCs in the early phases of the 
immune response.  

3.4.5     Cell Surface Marker Expression 

 Monitoring altered surface marker expression is considered an important tool in the 
characterization of the interaction between the adjuvant and APCs. 

 Studies have comprised both bone marrow-derived DCs and peripheral blood 
mononuclear cells (PBMCs). 

 Brewer and co-workers (Sun et al.  2003 ) monitored the expression of MHC 
Class II, as well as CD40, CD80 and CD86 in cultures of BALB/c bone marrow 
DCs after incubation with various adjuvants and using ovalbumin (OVA) as model 
antigen. They found no signifi cant upregulation of mentioned surface markers after 
incubation with aluminum hydroxide and OVA when compared to incubation with 
lipopolysaccharide (LPS, a well-known TLR 4 agonist) and OVA. They concluded 
that aluminum adjuvant failed to demonstrate the ability to activate DCs in vitro 
(Sun et al.  2003 ). 

 In a later study Sokolovska and co-workers looked at surface marker expression 
on DCs from BALB/c bone marrow after incubating with aluminum hydroxide or 
aluminum phosphate respectively (Sokolovska et al.  2007 ) and with OVA as antigen. 
They found that both adjuvants increased the expression of CD86, but only alumi-
num hydroxide also increased the expression of CD80, although only modestly 
(Sokolovska et al.  2007 ). Apparently they found no signifi cant stimulation of the 
expression of neither CD40 nor CD275 after treatment with aluminum adjuvants. 
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 Ulanova et al. investigated the direct effect of aluminum hydroxide in cultures of 
PBMCs (Ulanova et al.  2001 ). They found an increase in the expression of co- 
stimulatory and adhesion molecules: MHC Class II, CD40, CD54 (formerly known 
as ICAM-1), CD58 (formerly known as LFA-3), CD83 (maturation marker) and 
CD86 (formerly known as B7-2) on monocytes as well as an increase of mRNA for 
IL-4. However, in the presence of anti-IL4 antibody or in highly purifi ed monocyte 
cultures (i.e., depleted for CD4 +  T-cells) there was no increase in MHC Class II 
expression. So apparently aluminum adjuvant-induced monocyte-derived cytokines 
stimulate CD4 +  T-cells to secrete IL-4 which in turn stimulate MHC class II expres-
sion on the monocyte surface. 

 Rimaniol et al. also investigated surface marker expression in cultures of PBMCs 
from the blood of healthy donors (Rimaniol et al.  2004 ). They found that aluminum- 
treated macrophages expressed surface markers similar to those described for cultured 
DCs (HLA-DR  high  , CD86  high   and CD14 − ). They also screened for CD1a and CD83. 
Incubation with aluminum hydroxide induced a readily detectable CD83 expression, 
but no CD1a expression (   Rimaniol  2004 ). The conclusion was that the macrophages, 
thus treated, develop into a cell type which, with respect to surface marker expression, 
resembles DCs, although with a phenotype distinctly different from these.  

3.4.6     Cytokine Profi les 

 Studies of cytokines in model systems were initiated almost 35 years ago and were 
subsequently intensifi ed thanks to the later introduction of gene-disrupted mice in 
research. Among the early observations in classical animal models was the demon-
stration that aluminum-adsorbed TT led to an increase in antigen-induced T-cell 
proliferation, apparently due to increased release of IL-1 (Mannhalter et al.  1985 ). 
On the other hand, there was a lack of importance of IL-1 in the augmentation of the 
primary antibody response in rabbits immunized with aluminum adjuvant (Sagara 
et al.  1990 ). 

 The fi rst to conclude that aluminum adjuvants stimulated a Th2-biased immune 
response in animal models were Grun and Maurer ( 1989 ). They demonstrated that 
anti-IL-1α or anti-IL-4 antibody was able to inhibit an antigen-specifi c T-cell prolif-
erative response after immunization with aluminum adjuvant, and the proliferative 
response was inhibited by an anti-CD4 antibody. This indicated that the proliferat-
ing CD4 +  T-cells from mice immunized using aluminum adjuvant were of the Th2 
subset. Later studies, including studies in knock-out mice, have also confi rmed a 
clear Th2 profi le in mice (Brewer et al.  1999 ). Lindblad and co-workers found a 
stimulatory effect looking at IL-4 and IL-10 specifi c mRNA in the regional draining 
lymph nodes at day 7 following vaccination of C57BL/6J mice with aluminum- 
adjuvanted vaccine (Lindblad et al.  1997 ). 

 Important studies by Brewer et al. demonstrated the importance of IL-4 in the 
function of aluminum adjuvants and the impact on Th subset determination. In IL-4 
gene-disrupted mice, immunization with OVA and Al(OH) 3  gave IgG2a titers of a 
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similar magnitude as when OVA was injected together with Freund’s Adjuvant 
(Brewer et al.  1996 ). Interestingly, the group immunized with OVA and Al(OH) 3  
continued to produce IL-5 (a cytokine normally associated with the Th2 profi le). This 
was in support of the idea that the major role of aluminum-induced IL-4 in Th-subset 
stimulation is to down-regulate the Th1 response. In a later study, Brewer’s group 
showed that aluminum adjuvants could induce Th2-associated IL-4 and IL-5 produc-
tion in the absence of IL-4 signaling in mice defi cient in either IL-4Rα or STAT6. It 
was concluded that the Th2 responses could not be due to IL-13 as the IL-13 response 
is also impaired in IL-4Rα- or STAT6-defi cient mice (Brewer et al.  1999 ). 

 As discussed above, uptake of aluminum adjuvants by DCs followed by 
infl ammasome- induced activation of caspase-1 leads to cleavage of pro-IL-1β and 
pro-IL18 into the active pro-infl ammatory cytokines (Kool et al.  2008 ; Li et al. 
 2007 ,  2008 ; Eisenbarth et al.  2008 ). It has been shown that IL-18 defi cient mice 
immunized with OVA and Al(OH) 3  have reduced IL-4 production in lymph node 
cells, as compared to wild-type mice. However, if exogenous IL-18 was added it did 
not further enhance the aluminum-induced Th2 response (Pollock et al.  2003 ). 
Although the aluminum adjuvant led to reduced IL-4 production in IL-18−/− mice, 
this was not accompanied by a reduced level of serum IgG1. Apparently, there is 
poor correlation between this particular antibody subclass and IL-4 production 
(Pollock et al.  2003 ). 

 The overall Th2-biased reaction profi le of aluminum adjuvants may be modifi ed 
by adding IL-12 to the formulation. An (Al(OH) 3 /IL-12) complex induced a Th1- 
like response, rather than a Th2 response, when used as an adjuvant (Jankovic et al. 
 1999 ) and the Th1 promoting effect of the Al(OH) 3 /IL-12 complex was greatly 
augmented by the co-administration of exogenous IL-18 (Pollock et al.  2003 ).   

3.5     In Vivo Clearance of Aluminum Adjuvants 

 In contrast to a number of other metal ions, no physiological function in the mam-
malian organism, e.g., as essential trace element, as coenzyme or otherwise, has 
been established for aluminum. However, due to the abundance of aluminum in the 
environment, both humans and animals are fairly constantly being exposed to alu-
minum in various forms (Martyn et al.  1989 ; Tomljenovic  2011 ; HogenEsch  2013 ). 
As a consequence, aluminum is normally found in the blood and serum of humans 
and animals, whether or not they have been vaccinated using aluminum adjuvants 
(Martyn et al.  1989 ; Flarend et al.  1997 ; Tomljenovic  2011 ). The major source of 
this aluminum is apparently oral intake of food and drinking water, which was 
reported to be in the magnitude of 5–10 mg daily for humans in Britain (Martyn 
et al.  1989 ). This aluminum uptake is excreted with the urine by individuals with 
normal renal functions. 

 Previous claims that aluminum adjuvants are not broken down in vivo and sub-
jected to excretion, however, have been challenged. The clearance in vivo of alumi-
num adjuvants was investigated in rabbits using adjuvants prepared from the isotope 
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 26 Al (Flarend et al.  1997 ). Excretion of  26 Al was followed in the urine and in the blood 
using accelerator mass spectroscopy for a period of 28 days. As early as 1 h following 
i.m. injection radioactively labeled Al could be detected in the blood. Signifi cant phar-
macokinetic differences were found in the excretion rates of aluminum hydroxide and 
aluminum phosphate adjuvant. It was found that approx. three times more  26 Al was 
excreted from animals vaccinated with aluminum phosphate than from those vacci-
nated with aluminum hydroxide. Assumingly, interstitial fl uid containing organic 
acids with an α-hydroxy carboxylic acid, able to chelate Al, was more capable in 
 dissolving aluminum phosphate than aluminum hydroxide (Flarend et al.  1997 ). 

 According to the calculation of Flarend it seems that the amount of aluminum 
administered via vaccination does not contribute signifi cantly to the general expo-
sure to aluminum in humans and serum levels of aluminum. 

 It is likely that the excretion through blood and urine described above primarily 
involves Al dissolved by interstitial fl uid, whereas the radioactivity detected in 
lymph nodes and spleen might involve also Al-adjuvant taken up by APCs. In addi-
tion to this, one might expect to fi nd a residual level of radioactivity encapsulated at 
the injection site.  

3.6     Side Effects 

 Any visible or palpable reaction at the injection site after vaccination is in principle 
 non grata . Aluminum hydroxide and aluminum phosphate adjuvants have been 
used for more than half a century now and are generally regarded as safe when used 
according to current immunization schedules (WHO Technical Report Series vol. 
595,  1976 ; Edelman  1980 ). In 1993 the U.S. NCVDG Working Group on Safety 
Evaluation of Vaccine Adjuvants with the participation of the Food and Drug 
Administration (FDA) representatives concluded that “the extensive experience 
with this class of adjuvant for vaccine use has indicated that it is safe” (Goldenthal 
et al.  1993 ). Contact hypersensitivity to aluminum is not commonly seen, and alu-
minum adjuvants are not considered pyrogenic, carcinogenic, or teratogenic in 
themselves (Edelman  1980 ; Böhler-Sommeregger and Lindemayr  1986 ). However, 
as discussed above, injection of a vaccine adjuvanted with a repository adjuvant will 
normally be accompanied by the formation of an infl ammatory focus at the injec-
tion site (WHO Technical Report Series vol. 595  1976 ). 

3.6.1     Local Reactions 

 Several cases of local reactions after administration of aluminum-adjuvanted vac-
cines have been reported (White et al.  1955 ; Frost et al.  1985 ; Böhler-Sommeregger 
and Lindemayr  1986 ; Vogelbruch et al.  2000 ; Bergfors et al.  2003 ). These can be 
seen  sensu latu  as a consequence of the infl ammatory focus at the injection site. 
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They comprise swellings, indurations, erythemas, and cutaneous nodules that can 
persist for up to 8 weeks or sometimes longer (Frost et al.  1985 ). The reports often 
describe cases of hyposensitization of allergic patients who receive a large number 
of injections of adsorbed allergenic extracts over a limited period of time, or cases 
where injections were made incorrectly (Vogelbruch et al.  2000 ). In a vaccination 
program in Sweden, itching local reactions were found in 0.8 % out of 76,000 vac-
cinees (Bergfors et al.  2003 ). A follow-up study was carried out 5–9 years later 
comprising 241 children, who all reacted positively in the previous study in a test 
for delayed (type IV) hypersensitivíty. Of the 241 individuals tested, 186, corre-
sponding to 77.2 %, were now negative, 37 had a weak positive reaction whereas 15 
had a positive reaction and 3 had a strongly positive reaction (Lidholm et al.  2013 ). 

 There are inconsistent observations whether adsorption onto aluminum adju-
vants leads to increased or decreased vaccine reactogenicity (Butler et al.  1969 ; 
Collier et al.  1979 ). 

 On one hand Collier and co-workers ( 1979 ) found that booster vaccination 
with Al-adsorbed tetanus-induced more frequent local reactions than vaccination 
with plain toxoid. This could in part be explained by the plain toxoid vaccine being 
dispersed from the injection site before a local infl ammatory reaction was 
established. 

 On the other hand, Butler’s group found that adsorption onto aluminum hydroxide 
signifi cantly reduced the side-effects with combined DTP vaccines (Butler et al.  1969 ). 

 It is conceivable that in the presence of reactogenic or toxic vaccine constituents, 
like pertussis toxin, peptidoglycans from Gram-negative cell walls or LPS the acute 
toxicity is reduced in adsorbed vaccines simply by blocking or delaying their release 
from the injection site. 

 The binding of LPS to aluminum hydroxide is well established and is much 
higher than to aluminum phosphate (283 μg/mg Al vs. 3 μg/mg Al, respectively) 
(Shi et al.  2001 ). This is ascribed to the phosphate content of LPS enabling a strong 
binding by ligand exchange onto the surface of aluminum hydroxide. Norimatsu 
found that adsorption of LPS onto aluminum hydroxide prior to injection inhibited 
or mitigated systemic effects like the trembling, transient leucopenia and elevated 
serum tumor necrosis factor (TNF)-α otherwise observed following i.m. injection of 
LPS in saline (Norimatsu et al.  1995 ). Also the level of IL-6 after administration of 
LPS was reduced when the LPS was adsorbed to aluminum hydroxide prior to 
injection (Shi et al.  2001 ).  

3.6.2     Impact of Administration Route 

 Vaccinations may be given subcutaneously (s.c.) or intramuscularly (i.m.) and the 
injection modus is not without importance in relation to the perception of local reac-
togenicity. When immunizing by the s.c. route, the vaccine inoculum is introduced 
into a compartment with numerous sensory neurons (in contrast to the intramuscular 
compartment). The introduction of a local infl ammatory response here may more 
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easily give lead to irritation and itching reactions. Besides, a transient swelling, as a 
consequence of the infl ammatory focus formed, may more easily be palpable through 
the skin. When immunizing by the intramuscular route even a similar size swelling 
may be less easily visible and palpable as it is located in deeper lying tissue.  

3.6.3     Macrophagic Myofasciitis 

 Local granuloma formation in infl ammatory foci after injection of aluminum adju-
vants were described already back in the mid-1950s (White et al.  1955 ). Attempts 
were later made to link the presence of a local infl ammatory focus in the myofascii 
(the condition is referred to as macrophagic myofasciitis or MMF) after i.m. injec-
tions of Al-adjuvanted vaccines to conditions like myalgia and muscle fatigue. Such 
manifestations can be partly explained by the formation of adjuvant granulomas in 
the muscle. However, MMF has also been claimed to be statistically correlated to 
neurological disorders with no obvious etiological relation to the vaccination 
(Authier et al.  2001 ). Such correlations are, however, associated with statistical 
problems. The vaccination coverage in the western countries is very high. Hence, it 
is expected statistically that patients suffering from a wide range of etiologically 
unrelated diseases would all have been vaccinated with Al-containing vaccines at 
some point in their medical history. Another problem is that adequate statistical 
control groups of non-vaccinated individuals may be hard to fi nd in the same popu-
lation (Batista-Duharte et al.  2011 ). In a controlled study in primates by Verdier and 
co-workers in France it was not possible to detect any histological changes after 
injection of an aluminum adjuvanted vaccine besides the local infl ammatory focus 
itself and they found no abnormal clinical signs associated to it (Verdier et al.  2005 ).  

3.6.4     The IgE Controversy 

 It is a well-established fact that aluminum adjuvants in addition to stimulating IgG1 
also stimulate the production of IgE as part of the overall Th2 profi le in mice 
(Hamaoka et al.  1973 ; Kenney et al.  1989 ). This has often been mentioned as a 
disadvantage, as it may hypothetically introduce a risk of inducing allergic condi-
tions. However, it has been diffi cult to demonstrate cases where vaccination with 
aluminum adjuvants has led to IgE-mediated allergy towards the vaccine antigen. In 
contrast, aluminum adjuvants have been used to hyposensitize allergic patients for 
many years with good results. 

 Much of the work on the IgE/Th2 stimulation by aluminum adjuvants in rodent 
models has been carried out in a dual setup model where groups of animals have 
been immunized with either aluminum hydroxide adjuvant or Freund’s complete 
adjuvant (FCA) using the same antigen, (FCA is known as having a suppressive 
effect on IgE), subsequently assessing antibody and cytokine profi les in comparison. 
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Early studies using keyhole limpet hemocyanin as antigen showed that glycosylation- 
enhancing factors and Fc γ R +  T-cells were involved in a regulatory pathway whereby 
aluminum adjuvant stimulated the synthesis of IgE (Uede et al.  1982 ; Uede and 
Ishizaka  1982 ). Later it was found (Brewer et al.  1996 ) that IgE production was 
abrogated in IL-4 gene disrupted mice (IL-4−/−) regardless whether aluminum adju-
vant or FCA was used as adjuvant. This suggests that IL-4 is an essential prerequisite 
for the induction of IgE by aluminum adjuvants.  

3.6.5     Evaluation of Reactogenicity 

 It is important to realize that the infl ammatory response described is part of a nor-
mally functioning immune system. Hence, it may not be achievable to use reposi-
tory adjuvants without temporarily also inducing an infl ammatory focus around the 
inoculums (Technical Report Series vol 595, WHO  1976 ). 

 Realistically, evaluating reactogenicity is a question of when to judge that a mild 
and normal local reaction moves from being a temporary and minor cosmetic prob-
lem and develops into a toxic adverse reaction ( A. Batista Duharte ,  personal 
communication ).  

3.6.6     Other Safety Considerations 

 Signifi cant resources have been spent on throwing light on a possible link between alu-
minum exposure and the prevalence of Alzheimers disease (AD) (Tomljenovic  2011 ). 

 Some researchers have found aluminum deposits in AD brain tissue biopsies 
(Perl and Brody  1980 ; Andrasi et al.  2005 ) whereas others have not (Chafi  et al. 
 1991 ; Landsberg et al.  1992 ). In a later report it was suggested that the aluminum 
detection was an artifact caused by the staining reagents used in the preparation of 
the specimen (Landsberg et al.  1993 ). 

 Persons with normal kidney function are known to excrete aluminum with the 
urine whereas persons with impaired renal function may to some extent accumulate it 
and may over a life-long exposure reach Al-levels associated with adverse reactions. 

 What is important in the present context, but often overlooked, are the propor-
tions. The exposure to aluminum from vaccination, seen over a life time, is minimal 
compared to the daily intake of aluminum by drinking water, antiperspirants, and 
food additives in convenience food. For example, bread made with aluminum-based 
baking powder may contain up to 15 mg aluminum per slice and processed American 
cheese as much as 50 mg aluminum per slice (Mitkus et al.  2011 ). Even if it is taken 
into consideration that only as little as 0.25 % of the ingested aluminum may be 
taken up from the GI tract (Tomljenovic  2011 ) exposure to aluminum from the use 
of adsorbed vaccines in normal vaccination schedules will still be minimal. 
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 The Canadian Alzheimers Society (  http://www.alzheimer.ca/en/Research/
Alzheimer-s-disease-research/Aluminum    ) concluded on their webpage (accessed 
February 2014): “Most researchers no longer regard aluminum as a risk factor for 
Alzheimer’s disease. However, some researchers are still examining whether some 
people are at risk because their bodies have diffi culties in handling foods containing 
the metals copper, iron, and aluminum”.   

3.7     Conclusive Remarks 

 Slowly we are beginning to unveil the mechanisms of how aluminum compounds 
exert their function as adjuvants. 

 Although there is still a lot of research to be done, altered surface marker expres-
sion on monocytes after uptake of aluminum adjuvants, as well as the discovery of 
the infl ammasome has provided important information about the mechanisms by 
which the aluminum adjuvants lead to expression of co-stimulatory molecules on 
APCs and elicit the release of pro-infl ammatory cytokines, such as IL-1β and IL-18 
from DCs. 

 The infl ammatory reaction at the injection site may give lead to  danger signals , 
such as uric acid crystals as breakdown products of nucleic acids released from 
phagocytic cells at the injection site. These may act as co-activators of the infl am-
masome and HSPs may interact with TLRs stimulating the NF-κB pathway. 
However, cellular interaction in the early phases of the immune response is highly 
complex and T-cell derived IL-4 seems important for the stimulation of increased 
expression of MHC class II molecules on APCs. 

 When evaluating an adjuvant for possible new applications very few adjuvants 
can match the extremely comprehensive cohorts that are available for aluminum 
adjuvants in terms of records of effi cacy and safety profi les. After almost 70 years 
of application with very few problems, the use of aluminum adjuvants may reach 
practically over a life-long time span in humans. It is interesting that evaluation of 
the relative contribution of aluminum from vaccination and from the diet in infants 
did not give lead to concerns when held up against the so-called  Minimal Risk Level  
(MRL) as set up by the Agency for Toxic Substances and Disease Registry (Keith 
et al.  2002 ; Mitkus et al.  2011 ). 

 The aluminum adjuvants have their limitations, especially due to their Th2-
biased reactivity, which means that there are vaccines in which they will have little 
or no effect. However, in the future modifi ed formulations with a more balanced 
Th1–Th2 profi le may fi nd their way into practical vaccinology. AS04, a composite 
formulation in which aluminum hydroxide is combined with MPL, is one such 
example that is now used in practical vaccination. The potential application of the 
Al(OH) 3 /IL-12 complex, as well as other approaches to expand the use of aluminum 
adjuvants into new vaccine applications where a more balanced immune response is 
desired, are yet to be explored in detail.     
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    Chapter 4   
 Emulsions as Vaccine Adjuvants 

             Ruchi R.     Shah     ,     Luis A.     Brito     ,     Derek     T.     O’Hagan     , and     Mansoor M.     Amiji    

4.1            Introduction 

 Early vaccines were based either on whole inactivated pathogens or attenuated 
pathogens; the advent of recombinant DNA technology facilitated expression of 
recombinant antigens from cells, thus reducing complexity, improving purity, and 
addressing unmet medical needs that live attenuated pathogens or bacterial toxins 
could not meet (new targets and limitation in method of production of non- cultivable 
pathogens),  e.g. , meningitis type B vaccine Bexsero (Hansson et al.  2000 ; Rappuoli 
 2000 ; Ott and Nest  2006 ). However, due to the high purity of these recombinant 
proteins, their immunogenicity is low compared to whole pathogens, due to lack of 
pathogen-associated molecular patterns (PAMP), structures normally found on and 
within whole organism’s surface (Tritto et al.  2009 ). 

 Adjuvants improve the effectiveness of vaccines by enhancing and sustaining 
immune responses, reducing the dose of antigen, enhancing the breadth of the 
immune response, increasing immunological memory associated with the adaptive 
immune system, and reducing the frequency of vaccination (Foged et al.  2012 ). 
Emulsion adjuvants have been shown to promote or enhance T-cell responses that 
are typically absent after recombinant protein immunization and have been used 
successfully within a diverse group of patients for fl u, from pediatric to geriatric and 
from healthy individuals to immune-compromised patients (Lima et al.  2004 ). 
Vaccines are different than other biopharmaceuticals as they are administered to 

        R.R.   Shah      •    M.M.   Amiji      (*) 
  Department of Pharmaceutical Sciences ,  School of Pharmacy, 
Northeastern University ,   Boston ,  MA ,  USA   
 e-mail: shah.ru@husky.neu.edu; m.amiji@neu.edu   

    L.A.   Brito      •    D.  T.   O’Hagan      
  Novartis Vaccines & Diagnostics ,   350 Massachusetts Avenue ,  Cambridge ,  MA   02139 ,  USA   
 e-mail: luis.brito@novartis.com; derek.ohagan@novartis.com  

mailto: shah.ru@husky.neu.edu
mailto: m.amiji@neu.edu
mailto: luis.brito@novartis.com
mailto: derek.ohagan@novartis.com


60

healthy individuals some as young as a few hours old. Potent and well-tolerated 
adjuvants will be needed for treating diseases using the immune system  e.g. , thera-
peutic vaccines.  

4.2     Role of Vaccine Adjuvants 

 An immune response is generated as a reaction to foreign substances termed anti-
gens, which induce  anti body  gen eration (Murphy et al.  2008 ). The immune response 
against an antigen is collectively produced by innate immunity working to clear a 
pathogen and adaptive immunity providing immune memory. It is a consequence of 
a complex cascade of events involving immune cells, cytokines, and chemokines. 
Adjuvants can be used to modulate the immune response,  e.g. , the squalene water-
in- oil emulsion MF59 can enhance both antibody titers and T-cell-mediated immune 
responses (O’Hagan et al.  2012 ). Adjuvants are known to work through a variety of 
different mechanisms including (1) improved antigen presentation to the immune 
system, (2) facilitating transport of antigens, (3) activation of immune cells, and (4) 
induction of production of cytokines (Schijns and Lavelle  2011 ). A single adjuvant 
such as MF59 can engage in all of the above mentioned functions wherein, the adju-
vant provides “danger signals” to the surrounding tissue and generates a controlled 
induction of proinfl ammatory cytokines, subsequently recruiting immune cells to 
the site of injection and promoting antigen uptake and traffi cking to the lymph node, 
thus improving the immune response when compared to an unadjuvanted vaccine 
(Batista-Duharte et al.  2011 ).  

4.3     History of Vaccine Adjuvants 

 The use of adjuvants has spanned almost a century with alum being the most com-
monly used adjuvant for over 80 years. Aluminum compounds which have been 
used as adjuvants (Chap.   3    ), are incorrectly, but collectively known as alum and 
include aluminum phosphate, aluminum hydroxide, and other aluminum adsorbed 
vaccine preparations (Gupta and Rost  2000 ). Despite 70 years of clinical experi-
ence, the exact mechanism of action of alum is still an active area of research. 
Recently alum was found to activate the NALP3 infl ammasome which induces the 
production of IL1β, innate responses and increase in the number of antigen-specifi c 
T-cells (Kool et al.  2008 ; Eisenbarth et al.  2008 ). These act as the signals for the 
recruitment of infl ammatory monocytes and immature dendritic cells (DCs) to the 
site of injection (Kool et al.  2008 ; Eisenbarth et al.  2008 ). Antigen adsorption on 
alum and antigen presentation in particulate form enhances phagocytosis by macro-
phages, DCs, and B-cells (Lambrecht et al.  2009 ). It has been found that macro-
phages and monocytes are the primary targets of alum and induce secretion of 
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chemokines, which leads to recruitment of immune cells, enhanced endocytosis by 
monocytes, and the differentiation to DCs which in turn prime T-cells in a 
 TLR- independent mechanism (Seubert et al.  2008 ). 

 Emulsion adjuvants also have an extensive history of clinical use dating back to 
the 1930s. Emulsions are biphasic systems comprising of a hydrophilic phase and 
hydrophobic phase which require surfactants to stabilize the oil–water interface and 
are classifi ed as oil-in-water, water-in-oil, or multiple emulsions like water-in-oil- 
in-water or oil-in-water-in-oil emulsions (O’Hagan  2007 ). Freund’s Complete 
Adjuvant (FCA) and Freund’s Incomplete Adjuvant (FIA) are water-in-oil emulsion- 
based adjuvants that were fi rst described in 1937 and 1950s, respectively (Vogel 
et al.  2009 ). FCA is composed of 85–90 % (v/v) oil with 15–10 % mannide mono-
oleate emulsifi er (Arlacel A) and 500 μg of heat-killed  Mycobacteria tuberculosis  
(FIA has the same composition but does not contain any mycobacteria). The mix-
ture is homogenized with an equal volume of antigen dissolved in the aqueous phase 
and then emulsifi ed prior to use (Lindblad  2000 ). FCA was found to be highly 
reactogenic due partly to the quality of mineral oil used for formulation (Whitehouse 
et al.  1974 ; Stills  2005 ; Stuewart-Tull et al.  1976 ). Some components of Freund’s 
adjuvant were also found to be oncogenic in preclinical studies excluding FCA and 
FIA from widespread clinical use (Murray et al.  1972 ; Hilleman  1966 ). The reacto-
genicity of FIA was found to be directly proportional to the immunogenicity further 
limiting its use clinically. Taken together this adjuvant illustrated that emulsions are 
able to produce potent immune responses, but required further refi nement before 
being used extensively in the clinic. 

 Several alternative formulations have been identifi ed; the most prominent being 
Montanide ISA 51 VG, Montanide ISA 720 VG, and Adjuvant 65. Montanides ISA 
51 and 720 manufactured by Seppic are water-in-oil emulsion adjuvants that are 
similar to IFA and have been evaluated for therapeutic applications in cancer, 
malaria, AIDS, and other autoimmune diseases. Montanide ISA 51 is composed of 
white medicinal oil of mineral origin, while Montanide ISA 720 is composed of 
squalene oil. The surfactants used in Montanides are from the mannide monooleate 
family (esters of oleic acid and mannitol). In case of Montanide ISA 51 the oil-to- 
water ratio is 50:50, while in case of Montanide ISA 720 it is 70:30 (Aucouturier 
et al.  2002 ). An alternative emulsion adjuvant commonly described is Adjuvant 65 
which is composed of 45 % peanut oil, 3 % synthetic emulsifi er isomannide mono-
oleate, 2 % aluminum monostearate, mixed 1:1 (v/v) with various strains of infl u-
enza vaccine. Clinical data have shown that by using Adjuvant 65 it is possible to 
reduce the antigen dose by fourfold, but as peanut oil is the main component, it has 
never been broadly adopted due to concerns with peanut allergies (Smith et al.  1975 ; 
Hilleman  1969 ). 

 Biodegradable oil-in-water emulsions have been explored in efforts to improve 
tolerability by decreasing the amount of oil in the adjuvant and improving the bio-
degradability of the oil. Initial formulations included immune stimulators such as 
threonyl muramyl dipeptide (t-MDP), bacterial cell wall (BCW), and monophos-
phoryl lipid A (MPL). Syntex Adjuvant Formulation (SAF) consists of 5 %  squalane, 
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Pluronic L121, Tween 80, and t-MDP (Hjorth et al.  1997 ). A squalene oil emulsion 
developed at Ribi called DETOX™, included in the vaccine Melacine ®  for the treat-
ment of melanomas, is composed of 1 % squalene and 0.2 % Tween 80 with immune 
stimulators like bacterial cell wall and MPL (Fox  2009 ; Ribi et al.  1984 ). Ribi’s 
Adjuvant System (RAS) has the composition of 2 % squalene, 0.2 % Tween 80, and 
synthetic trehalose dicorynomycolate, bacterial cell wall, and MPL (Fox  2009 ; Ribi 
et al.  1975 ). Using metabolizable oils in oil-in-water emulsion adjuvants improves 
the tolerability, but it was not until the late 1990s when it was discovered that MF59 
(an oil-in-water squalene emulsion) improved immune responses without the need 
of muramyl tripeptide phosphatidylethanolamine (MTP-PE), an additional 
immunostimulator. 

 We will now describe MF59, Adjuvant System 03 (AS03) and AF03 with a focus 
on clinical experience, formulation, and mechanism of action. MF59 and AS03 are 
components of licensed vaccines, whereas AF03 was initially approved but subse-
quently (Withdrawal by European Medical Agency  2011 ) (EMA) since June 2011 
(European Medicines Agency  2011 ). Table  4.1  summarizes all emulsion adjuvants 
included in licensed vaccines in addition to other emulsion adjuvants that are being 
evaluated in preclinical and clinical settings.

4.4        MF59 

 MF59, the emulsion adjuvant developed by Novartis Vaccines & Diagnostics, was 
originally developed by Ciba Geigy and Chiron Corporation in the 1990s (O’Hagan 
et al.  2013 ). With over 150 million administered doses in >35 countries, MF59 has 
been the most successful emulsion adjuvant (O’Hagan et al.  2013 ). Originally 
developed as a delivery vehicle for MTP-PE, MF59 was later found to be better 
tolerated and equally immunogenic without the inclusion of MTP-PE, and the 
removal of MTP-PE was a key milestone in the development of MF59 (O’Hagan 
and Singh  2007 ). It is an oil-in-water emulsion which has been licensed in Europe 
since 1997 as part of the infl uenza vaccine Fluad ®  (Table  4.1 ). It has also been 
included as an adjuvant in the pandemic infl uenza vaccine Afl unov ®  against H5N1 
and in Focetria ®  and Celtura ®  against pandemic H1N1 infl uenza (Gasparini et al. 
 2012 ). MF59 has been administered to various populations from infants to elderly, 
provides improved protection, lasting immunity, is well tolerated and was found to 
improve immunogenicity in vaccines for infl uenza, human immunodefi ciency 
virus (HIV), herpes simplex virus (HSV), hepatitis B/hepatitis C virus (HBV/
HCV), parvovirus, human papilloma virus (HPV), and cytomegalovirus (CMV) in 
the clinic (O’Hagan et al.  2013 ). MF59 has been shown to provide cross clade 
immunity in fl u vaccines,  e.g. , broader responses for avian H5N1 vaccine (Khurana 
et al.  2010 ). 
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4.4.1     Formulation Composition 

 The composition of MF59 in a human dose is described in Table  4.2  (Tsai et al. 
 2010 ). Squalene is a biodegradable oil that can be obtained from shark liver, olive 
oil, yeast, carrot, germ oil, and other natural sources (Fox  2009 ). It is a precursor to 
cholesterol and is an intermediate in hormone synthesis. It is found in the human 
body, particularly in the skin where the level is the highest (478.1 μg/g dry tissue), 
but is also found in other tissues such as adipose tissue, the liver, and the small 
intestine (Liu et al.  1976 ). Span ®  85 and Tween ®  80 are nonionic surfactants that are 
added to stabilize the emulsion in a citrate buffer aqueous phase at pH 6.5 (Peek 
et al.  2008 ). MF59 is made by fi rst preparing a primary emulsion consisting of an 
outer aqueous phase of polysorbate 80 (Tween ®  80) dissolved in citrate buffer and 
an inner oil phase of sorbitan trioleate (Span ®  85) dissolved in squalene oil. The 
micron-sized emulsion is then passed through a high-pressure homogenizer at 
12,000 PSI (O’Hagan and Singh  2007 ). MF59 is subsequently sterile fi ltered using 
a 0.22 μm membrane fi lter to remove larger particles. The resultant emulsion has a 
mean droplet size of approximately 160 nm, contains less than 0.1 % particles 
greater than 1.2 μm in size and has 4.3 % (v/v) of shark liver-derived squalene oil 
(Seubert et al.  2008 ). MF59 has shown comparable activity with plant-derived squa-
lene oil as well in mice, identifying a potential renewable source of oil over the 
animal-derived squalene oil (Brito et al.  2011 ), though extensive clinical data are 
needed to justify a switch-in-oil source.

4.4.2        Mechanism of Action 

 The mechanism of action of MF59 is still an area of active research, though prog-
ress has been made (Tritto et al.  2009 ; Seubert et al.  2008 ; Calabro et al.  2011 ; 
O’Hagan et al.  2012 ). Unlike alum, MF59 does not create a depot of antigen at the 
injection site; MF59 and the antigen are independently cleared from the site of 
injection. MF59 creates an immunocompetent environment at the injection site by 
recruiting immune cells like neutrophils, macrophages, granulocytes, monocytes, 
and other immune cells which take up the antigen; monocytes are subsequently dif-
ferentiated into DCs in a TLR-independent manner (Seubert et al.  2008 ). These DCs 
prime naïve T-cells and generate potent immune responses in the local draining 

    Table 4.2    Composition of MF59 and AS03 in a single dose   

 Component  Milligrams in MF59  Milligrams in AS03  Role 

 Squalene  9.75  10.69  Oil 
 Tween 80  1.17   4.86  Surfactant 
 Span 85  1.17  Surfactant 
 α-Tocopherol  11.86  Immune potentiator 
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lymph node (Seubert et al.  2008 ). The activated immune cells at the injection site 
also induce secretion of chemokines which attract additional immune cells initiating 
a self-limiting positive immune feedback loop. Administration of MF59 was found 
to upregulate genes that enhance the production of chemokines and cytokines in 
mice (Mosca et al.  2008 ). The individual components of MF59 do not act as adju-
vants, only when formulated together as an emulsion do they improve the immune 
response (Calabro et al.  2013 ).   

4.5     AS03 

 AS03 developed by GlaxoSmithKline is an oil-in-water emulsion adjuvant that 
contains squalene oil and alpha-tocopherol. It has been used as an adjuvant in 
Prepandrix ®  (pre-pandemic H5N1) and Pandemrix ®  (pandemic H1N1) infl uenza 
vaccines (Morel et al.  2011 ; Garcon et al.  2012 ). Both vaccines consist of a split 
inactivated virus mixed with the emulsion adjuvant. AS03 was selected as the fi nal 
formulation from a pool of more than 70 formulations of the family of Adjuvant 
System on the basis of size, ability to be sterile fi ltered, and stability (Garcon et al. 
 2012 ). AS03 was shown to have dose sparing effect and cross-clade immunogenic-
ity (Vogel et al.  2009 ). Recently there has been concern related to the safety and 
tolerability of vaccines containing AS03 due to an association of narcolepsy in 
children post vaccination with the adjuvanted vaccine in Europe (Vajdy  2011 ; 
Nohynek et al.  2012 ; Miller et al.  2013 ). However, immunization with the adju-
vanted vaccine in Canada has shown no increased incidence of narcolepsy (Nohynek 
et al.  2012 ). This is an active area of research that is ongoing and it will likely take 
years to understand what factors led to an association of AS03 with narcolepsy 
incidences. 

4.5.1     Formulation Composition 

 AS03 is comprised of two oils, squalene and α-tocopherol. Alpha-tocopherol is the 
most bioavailable form of vitamin E and has been shown to enhance both cell- 
mediated and humoral immunity by acting as an immune potentiator (Vajdy  2011 ). 
The adjuvant composition for humans consists of 4.86 mg of polysorbate 80, 
10.69 mg of squalene and 11.86 mg of α-tocopherol in phosphate-buffered saline 
(PBS) as aqueous vehicle (Garcon et al.  2012 ). The dose of hemagglutinin (antigen) 
in Prepandrix ® , an AS03-adjuvanted prepandemic A/Vietnam/1194/2004 NIBRG- 14 
infl uenza vaccine, is 3.8 μg for adults in the age group of 18–60 years and is a multi- 
vial vaccine preparation with the antigen and adjuvant mixed in a 1:1 ratio immedi-
ately prior to administration (Leroux-Roels  2009 ). The fi nal composition of AS03 in 
a human dose is described in Table  4.2  (Morel et al.  2011 ).  
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4.5.2     Mechanism of Action (Morel et al.  2011 ; 
Garcon et al.  2012 ) 

 The mechanism of action of AS03 was found to be dependent upon the spatial and 
temporal colocalization of antigen after immunization (Garcon et al.  2012 ). It 
induces production of cytokines, chemokines, and regulation of certain genes by 
activating the transcription factor nuclear factor-κB (NF-κB). These upregulated 
cytokines, chemokines, and genes regulate differentiation and recruitment of 
immune cells which increase in number in muscles and draining lymph nodes after 
immunization. In contrast to MF59, AS03 directly activates innate immunity in the 
draining lymph node, due to the presence of α-tocopherol (Morel et al.  2011 ). AS03 
enhances antigen uptake by targeting macrophages, monocytes, and DCs, which 
leads to an increase in CD4 +  T-cells, neutralizing antibodies, and antigen-specifi c 
memory B-cells in the draining lymph node. A mixed Th1/Th2 response has also 
been observed with AS03 (Coffman et al.  2010 ). Unlike MF59 where none of the 
components are immunogenic, AS03 has the immune potentiator α-tocopherol, 
which must be incorporated in the adjuvant to achieve full potency as an adjuvant.   

4.6     AF03 

 AF03 is a squalene oil-based adjuvant that has been included in the pandemic infl u-
enza split virion vaccine Humenza ®  developed by Sanofi  Pasteur. Although 
Humenza ®  was licensed but never commercialized, various clinical trials conducted 
in the age groups of 3–17 years indicated that it produces strong seroprotective titers 
against H1N1 pandemic strain with just one immunization (Vesikari et al.  2012 ). In 
a large study involving children and infants for pandemic infl uenza A H1N1, it was 
observed that the AF03-adjuvanted vaccine generated high titers and reduced the 
HA needed per dose (Vesikari et al.  2012 ). 

4.6.1     Formulation Composition 

 AF03 is composed of 32.5 % (w/w) squalene, 6.2 % eumulgin™ B1-PH, 4.8 % 
montane™ 80 PH, 6 % mannitol, and 50.5 % PBS prior to administration (Klucker 
et al.  2012 ). AF03, unlike other emulsion adjuvants such as MF59 and AS03 is not 
microfl uidized, it is prepared by a process called the phase inversion temperature 
(PIT) emulsifi cation process. Briefl y, an oil phase consisting of montane (surfactant) 
and squalene and an aqueous phase consisting of Eumulgin (surfactant), PBS, and 
mannitol are prepared. These two phases are mixed into a stainless-steel jacketed 
mixing vessel. The mixture is then emulsifi ed at 1,000 rpm for 4 min under nitrogen 
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and subsequently heated up to 57 °C (PIT) under constant stirring at 400 rpm. 
Once the conductivity becomes zero (inversion from o/w emulsion to w/o emulsion) 
the emulsion is cooled to room temperature. This process produces an initial bulk 
emulsion that is further diluted to a fi nal squalene concentration of 5 % or 3.3 % 
depending on the target patient population (Klucker et al.  2012 ). The dose of AF03 in 
children in the ages of 3–17 years is 2.5 % (w/w), whereas in children in the ages of 
6–35 months it is halved to 1.25 % (w/w) (Vesikari et al.  2012 ). The average particle 
size of the resulting emulsion is around 100 nm and is easily fi lterable through a 
0.2 μm membrane fi lter.   

4.7     Recent Developments in Emulsion Adjuvants 

 Addition of immune potentiators to emulsion adjuvants can improve the overall 
immune response and can also impact the T-cell bias and is an active area of emul-
sion adjuvant research. However one must fi rst question whether it is necessary to 
incorporate an additional stimulator. If a vaccine provides protection while being 
safe and tolerable, there is little need to include an immune potentiator and risk rais-
ing the reactogenicity of the vaccine (Fox and Haensler  2013 ). There are many 
adjuvants available to vaccinologists; one should evaluate approved and well- 
accepted adjuvants (e.g., alum) before venturing into developing a novel adjuvant. 
MF59 has been tested for enhancement of immunogenicity by mixing the TLR9 
agonist CpG and by incorporating the TLR4 agonist E6020 (Baudner et al.  2009 ). 
The results using the trivalent fl u vaccine and Balb/c mice indicated that although 
MF59 did not increase the immune response with TLRs, it shifted the immune 
response to a more Th1-biased response. 

 Stable emulsions (SE) developed by Ribi consists of 10 % (v/v) squalene oil, 
1.9 % (w/v) lecithin, 0.091 % (w/v) Pluronic F68, 0.05 % (w/v) α-tocopherol, and 
1.8 % (v/v) glycerol in 25 mM ammonium phosphate buffer pH 5.1 and is prepared 
similarly to MF59 (Anderson et al.  2010 ). Recently SE containing the TLR4 ago-
nist glucopyranosyl lipid A (GLA) has been tested as a potential new adjuvant and 
is in clinical trials for infl uenza vaccine (Coler et al.  2010 ). GLA-SE has been 
shown to be effective in combination with split virus vaccine by enhancing Th1 
responses. GLA-SE has also shown promise in a tuberculosis vaccine where it 
exhibited a Th1- biased response, reduced the bacterial burden, and enhanced the 
cellular infi ltration in the lung (Windish et al.  2011 ). Infectious Disease Research 
Institute (IDRI) launched a phase I clinical trial with GLA-SE by incorporating it in 
a vaccine against leishmaniasis with antigen LEISH-F3 (IDRI  2012 ). An alternative 
emulsion adjuvant containing immune potentiators is being tested by 
GlaxoSmithKline in a HBV vaccine that is in clinical trials. The vaccine is adju-
vanted by an oil-in-water emulsion adjuvant, AS02, which contains MPL and QS21 
(saponin). This vaccine called HB-AS02 was developed for patients with renal 
insuffi ciency and for individuals who show reduced or no response to recombinant 
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HBV vaccine (Surquin et al.  2010 ). Surquin et al. showed that HB-AS02 is success-
ful in inducing antibody response in patients with renal insuffi ciency (Surquin et al. 
 2011 ). In Beran et al., the HB-AS02 vaccine showed lot-to-lot consistency in terms 
of immune responses and also seroprotection after two doses of the vaccine (Beran 
et al.  2010 ). AS02 is also included in a malaria vaccine RTS, S/AS02 (currently in 
phase 2 trials) where it has shown antibody and T-cell responses and proven to be 
safe and well tolerated (Bojang et al.  2001 ).  

4.8     Future Trends in Emulsion Adjuvants 

 MF59 and AS03 have shown success as adjuvants and have encouraged researchers 
to explore and incorporate emulsions to improve immune responses for prophylac-
tic and therapeutic vaccines. Complexity of the immune system, compatibility with 
the paired antigen, stability of the vaccine, tolerability of the adjuvant, and strict 
regulatory guidelines are some reasons for relatively few licensed emulsion- 
adjuvanted vaccines in the market (Mbow et al.  2010 ). This section looks forward 
to future trends to what we believe will be key areas of interest for emulsion 
adjuvants. 

 As noted throughout this chapter success of an adjuvant not only depends on its 
effi cacy, but also on its safety and tolerability. Use of adjuvants should be consid-
ered in relation to the target patient population and should be judged as a ratio of 
risk to benefi t,  e.g. , prophylactic vaccines for healthy infants versus therapeutic vac-
cines for cancer patients. While vaccines for infants must be well tolerated and safe, 
the main concern in cancer vaccines is effi cacy and survival of the patient. Initial 
studies of vaccines are performed on smaller animals,  e.g. , mice, rats, rabbits, etc. 
where it is diffi cult to predict adverse reactions that can correlate with humans. This 
is compounded with the small size of early clinical trials, illustrating why safety 
issues are sometimes not known immediately. Applying the burgeoning fi eld of 
systems biology to vaccine development can help to organize and analyze existing 
and new clinical data (Oberg et al.  2011 ). Exploratory clinical studies to understand 
the human response to adjuvanted vaccines will accelerate the development of the 
next generation vaccines (Rappuoli and Aderem  2011 ). Long-term stability for 
emulsion adjuvants must be examined on a case-by-case basis. Properly formulated 
emulsions on their own are stable formulations,  e.g. , MF59 has a shelf life of 3 years 
at 2–8 °C (Ott et al.  2000 ). Mixing of antigens within this complex mixture can lead 
to destabilization and unfolding of the antigen due to the presence of hydrophobic 
interfaces and an aqueous environment. As the fi eld of structural vaccinology deliv-
ers well-defi ned antigens, formulation scientists will need better analytical tools to 
understand the impact of changes in the antigen conformation (Dormitzer et al. 
 2012 ). Approaches such as lyophilization of antigen and emulsion in one vial can 
be explored to develop a single vial vaccine which can be reconstituted prior to 
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administration. Alternatively, mixing of the antigen with the adjuvant can be done 
bedside for highly labile antigens. 

 Administration to alternative immune compartments is an area of potential 
interest for next generation emulsion adjuvants. A large number of pathogens 
invade the body through various mucosal routes. For example, in a study, chito-
san-coated emulsion adjuvants were applied for intranasal delivery where they 
proved to retain the antigen long enough for mucosal uptake (Nagamoto et al. 
 2004 ). In contrast, MF59 tested mucosally showed no differences in responses 
when comparing adjuvanted and unadjuvanted vaccine (Boyce et al.  2000 ). 
Recently a novel mucosal adjuvant delivery system has been described, W 80 5EC, 
composed of soybean oil emulsifi ed in water to form nano-sized oil droplets and 
developed by NanoBio Corporation. This nano-sized emulsion (NE) is prepared 
by emulsifi cation of an aqueous phase composed of 1 % cetylpryridium chloride, 
5 % Tween ®  20 and 8 % ethanol with soyabean oil (64 %) in a high-speed emulsi-
fi er. The NE obtained has an average particle size in the range of 300 nm. This NE 
has shown potential in intranasal vaccine delivery for smallpox, HBV, anthrax, 
and infl uenza (Makidon et al.  2008 ; Bielinska et al.  2007 ,  2008a ; Hamouda et al. 
 2011 ) by enhancing both mucosal and systemic immunity with a Th-1 biased 
immune responses. Extensive toxicology studies concluded that this NE is well 
tolerated and is found to be safe in mice and larger animals like dogs (Makidon 
et al.  2008 ). 

 An alternate way to change the bio-distribution of an emulsion adjuvant is to 
make changes to biophysical properties of the emulsion adjuvant such as, size, 
charge, etc., to modulate the bio-distribution and immune responses by passively 
targeting them to alternate sites. The size of MF59 was shown to be one of the 
factors responsible for its potent immune response (Ott et al.  1995 ). Thus far the 
fi eld has struggled to prepare adjuvants smaller than 100 nm in size. The trend is 
that smaller is better for polymeric particles, but is there a theoretical limit to 
this (Fifi s et al.  2004 ) In Figs.  4.1  and  4.2  we have highlighted structures of 
some of the oils and immunostimulators commonly used or studied for adjuvant 
formulation.    
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4.9     Conclusion 

 Emulsion adjuvants have evolved since their inception around 75 years ago. 
Techniques adopted from pharmaceutical industries like rapid mixing over high- 
pressure homogenization to PIT, have proven that emulsions can be made with 
proper pharmaceutical properties, are stable and also highly immunogenic as adju-
vants. Extrapolating from the success of emulsions like MF59 and AS03, one could 
imagine that in the next 10 years, emulsion adjuvants will be used in a greater num-
ber of vaccines and will become a much more commonly used adjuvant. To date 
squalene oil is the oil of choice for emulsion adjuvants, likely due to its extensive 
safety record in vaccine adjuvants, biodegradability, biocompatibility, and ubiqui-
tous distribution within humans; we envision that trend to continue going forward. 
This versatile adjuvant class has the potential to impact modern medicine by 
improving immune responses for a number of unmet medical needs that alum adju-
vants have not been successfully applied to. The extensive experience with MF59 
has illustrated that emulsion adjuvants can be safe, well tolerated, and immunogenic 
indicating that a balance between maintaining immunogenicity and tolerability is 
possible when developing new adjuvants.     
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    Chapter 5   
 The Application of Liposomes as Vaccine 
Adjuvants 

             Elisabeth     Kastner     ,     Signe     T.     Schmidt    ,     Alexander     Wilkinson    , 
    Dennis     Christensen    , and     Yvonne     Perrie    

5.1             Liposomes: A Brief Introduction 

 Liposomes, meaning lipid bodies, were fi rst identifi ed by Bangham in 1965 who used 
phospholipid and cholesterol-based liposomes as a model of cell walls to investigate 
receptors (Bangham et al.  1965 ). Building on this, it was Gregoriadis who fi rst used 
liposomes as a vehicle for delivery of drugs, and suggested they were effective as 
vaccine delivery systems (Allison and Gregoriadis  1974 ), and extensive research and 
development of liposome technologies has brought several candidates into clinical 
trials and use in humans (Watson et al.  2012 ). When Gregoriadis fi rst suggested the 
use of liposomes for vaccine delivery, very little was known of the intricacies of the 
immune system. As knowledge pertaining to the function of the immune system has 
expanded, so has the underpinning principles of liposome design and their formula-
tions have been modifi ed and adapted to the requirements of effective adjuvants. 

 In a subunit vaccine, the non-immunogenic antigen must be delivered in associa-
tion with immunostimulatory compounds that drive the immune response. The anti-
gens in a subunit vaccine are often proteins or peptides derived from the pathogen, while 
the immunostimulatory compounds can be lipids, proteins, peptides, DNA, or RNA-
derived. All these different compounds require a carrier system that facilitates the 
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delivery to the antigen presenting cells (APCs). However, the carrier system must be 
readily modifi able to allow incorporation of different compound groups. Liposomes 
are good candidates for such a carrier system, as they offer numerous design possi-
bilities for incorporation of a range of moieties including non-lipid compounds and 
can be tailored for various delivery routes and immune response required.  

5.2     The Versatility of Liposomes: Formulation Considerations 
in the Preparation of Liposomal Adjuvants 

 Liposomes are by defi nition vesicles comprised of lipids, with polar head groups and 
cylindrical structure of the hydrophobic carbon tails, that cause spontaneous forma-
tion of lipid bilayers when suspended in an aqueous medium (Fig.  5.1 ), rather than for 
example micelles, where the lipids are oriented with their hydrophobic carbon chains 
in one lipid layer and the hydrophilic head group in contact with the aqueous medium 
(Lasic  1998 ). The formation of liposomes only occurs when lipids are above their 
transition temperature (T m ) and can be described as in a fl uid state. The lipid bilayer 
fl uidity of liposomes is mainly determined by the choice of lipids, and in particular 
their hydrocarbon tails. At temperatures below the phase transition temperature, the 

Hydrophilic head

Lipophilic tail

Multilamellar vesicles
(MLV)Large  unilamellar vesicles

(LUV)Small  unilamellar vesicles
(SUV) 

Bilayer formation in
aqueous environment

Lipid molecule 

Vesicle diameter

~50 – 100 nm > 100 nm 500 nm - 15 µm

  Fig. 5.1    The structural attributes of liposomes       
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lipid bilayers are in an ordered, solid gel-like phase which changes to a liquid crystal-
line phase upon heating above the T m.  (Fig.  5.1 ). As would be expected, the choice of 
lipid in the formulation of liposomes, combined with their method of manufacture 
determine important physicochemical parameters such as vesicle size, surface charge, 
adjuvant loading, and membrane rigidity (Watson et al.  2012 ; Lasic  1998 ).  

 Liposomes can be classifi ed by their physical sizes (diameters) and numbers of 
membrane bilayers (Mozafari  2005 ). Typical sizes range between 50 nm to several 
microns; and are furthermore categorized by the number of bilayer membranes 
incorporated (Fig.  5.1 ) (Taylor et al.  2005 ).

    1.    Small unilamellar vesicles (SUV); size ≤0.1 μm; single bilayer membrane   
   2.    Large unilamellar vesicles (LUV); size >0.1 μm; single bilayer membrane   
   3.    Multilamellar vesicles (MUV); size >0.1 μm; multi-bilayer membrane   
   4.    Multivesicular vesicles (MVV); size >0.1 μm multi-bilayer membrane incorpo-

ration of several vesicles into a single bilayer    

  The orientation of the lipids in the bilayer gives a hydrophobic core and polar 
surfaces surrounding a closed-off aqueous volume. This unique feature enables 
incorporation of both hydrophilic and hydrophobic compounds, entrapped in the 
aqueous interior or embedded in the lipid bilayer, respectively. Furthermore, com-
pounds can be attached to the surface of the liposomes, for example by electrostatic 
association or covalent bonding to lipophilic anchors which are then incorporated 
into the lipid bilayer (Watson et al.  2012 ). The extent of antigen incorporation in the 
aqueous interior or lipid bilayer depends on the liposome composition and manu-
facturing method.  

5.3     Liposome Manufacturing Methods 

 Common to the variety of methods for the manufacturing of liposomes is the use of 
an aqueous buffer system (Taylor et al.  2005 ). Methods can be either categorized as 
“top down” method, referring the initial production of larger-sized liposomes, 
which are subsequently reduced in size and lamellarity by mechanical methods. 
“Bottom up” methods refer to the direct manufacturing of small vesicles, often 
accompanied by a kind of fl uid fl ow or fl uid channel system (Fig.  5.2 ).  

5.3.1     Mechanical Methods 

5.3.1.1     Lipid Hydration Method 

 The lipid fi lm hydration method, or “Bangham-method” refers to Bangham, who 
fi rst synthesized liposome in 1961 (Bangham et al  1965 ; Bangham  1961 ). Initially, 
lipids are dissolved in a solvent, often a mixture of chloroform and methanol. The 
organic solvent is removed by applying a vacuum to the lipids; this process is 
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usually performed by rotary evaporation and allows for the formation of a dried 
lipid fi lm. Residues of solvent are removed by fl ushing the fi lm under a stream of 
nitrogen, followed by the addition of an aqueous vehicle. This is referred to as the 
hydration step, which should be performed above the critical transition temperature 
of the lipids (   Bangham et al.  1965 ; Szoka and Papahadjopoulos  1980 ). Due to addi-
tion of the polar phase, accompanied by mechanical stresses like agitation, the lip-
ids arrange themselves into MLV by swelling lamella from the fl ask bottom. This 
method leads to the formation of MLV, ranging up to several microns in size and 
polydisperse. Controlling the size of the vesicles is not easily achieved with this 
method and generally dictated by the choice of lipids, the hydration media, and 
temperatures in the process (Bangham et al.  1965 ; Gregoriadis et al.  2002 ). Using 
this method, drug loading is achieved by adding the compound of interest into the 
aqueous phase during the hydration stage (aqueous solvent compounds) or addition 
into the initial solvent phase (lipophilic compounds). Unfortunately, despite the 
ease of this method, encapsulation effi ciencies are usually quite low with this 
method (Riaz  1996 ).  

  Fig. 5.2    Summary of the various methods used in the preparation of liposomes       
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5.3.1.2     Detergent Depletion Method 

 The detergent depletion method is based on the initial formation of micelles. 
Following, the detergent is removed in order to form liposomes (Brunner et al. 
 1976 ). This relatively mild process is compromised by a high dilution of resulting 
liposomes as well as low entrapment of nonpolar compounds and the rate of deter-
gent removal can affect the size and heterogeneity of resulting liposome formula-
tion (Brunner et al.  1976 ).  

5.3.1.3    Reverse-Phase Evaporation Method: Emulsifi cation Methods 

 As fi rst described by Szoka and Papahadjopoulos in 1978, lipids are initially 
 dissolved in an organic phase followed by addition of a small volume of aqueous 
vehicle in order to form inverted micelles (   Szoka and Papahadjopoulos  1980 ). 
The aqueous vehicle may contain the compound to be encapsulated. After sonica-
tion, the two-phase system forms a one-phase dispersion. The organic solvent is 
removed by rotary evaporation step, which results in the formation of LUV that are 
often referred to as reverse-phase evaporation vesicles (REV). Even though high 
encapsulation effi ciencies are reported, issues with this process arise as the com-
pounds entrapped are in contact with the organic phase, which may compromise 
their stability and effi cacy (Meure et al.  2008 ).  

5.3.1.4    Homogenization and Extrusion 

 As vesicles can easily be disrupted by shear or pressure forces, those methods rely 
on size reduction of preformed MLV. The liposomes are introduced into a micro-
fl uidization, high-pressure homogenization, or other shear force-induced homoge-
nizer (Szoka and Papahadjopoulos  1980 ; Wagner and Vorauer-Uhl  2010 ), which 
allow for a high and constant pressure and can be used for continuous and scalable 
downsizing method (Wagner and Vorauer-Uhl  2010 ). At pressures as high as 
20,000 psi, the MLV dispersions are forced through a small gap and collide with a 
stainless steel wall, where turbulences or high shear forces result in the break-up of 
larger vesicles into smaller ones (Barnadas-Rodriguez and Sabés  2001 ; Bergstrand 
et al.  2003 ). Many systems are available in continuous processing mode and pump 
the liposome solution through a system for continuous reduction of liposome sizes, 
which makes the resulting liposome sizes dependent on pressure and number of 
recirculation cycles. The same principle is applied by extrusion methods, where 
MLV are forced though a polycarbonate membrane or other fi lter mesh at low or 
medium pressures in order to produce smaller-size liposomes. The resulting lipo-
some diameter is dictated by the pore size of the fi lter and recirculation cycles 
(Meure et al.  2008 ).  
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5.3.1.5    Sonication 

 Probe, cup, or bath sonication is used for breaking down larger vesicles into smaller 
unilamellar vesicles at sonication temperatures above the lipid transition temperature 
(Wagner and Vorauer-Uhl  2010 ). Internal volume/encapsulation effi ciencies and 
industrial scalability are often low and a main drawback of this method (Riaz  1996 ). 
Additionally, degradation of lipids or encapsulated material might occur. At very 
high energy input, the MLV are broken down into smaller SUV. The energy input 
releases heat, which necessitates a water/ice bath. In a bath sonication process, the 
liposome dispersion does not come directly into contact with a probe, which is an 
advantage as the probe can provide a source of contamination (Kataria et al.  2011 ).   

5.3.2     Methods Based on Fluidic Control 

 These methods involve the control of fl uids by means of pumps, channels, or micro-
channels by either stepwise addition or continuous fl ow. 

5.3.2.1    Supercritical Fluid Method 

 The supercritical fl uid method was described by Frederiksen et al., in 1997 which 
results in the formation of SUV (Frederiksen et al.  1997 ). Here, the lipids are dis-
solved in supercritical carbon dioxide. Liposomes are formed upon expansion into 
the aqueous vehicle that may also contain the hydrophilic drug to be encapsulated. 
Nevertheless, encapsulation effi ciencies reported here were generally low (Karn 
et al.  2013 ).  

5.3.2.2    Ethanol Injection 

 The ethanol injection method was fi rst described in the 1970s by Batzri and Korn 
( 1973 ). Initially, the lipids are dissolved in a solvent system that is injected into an 
aqueous buffer system. The rapid injection into an aqueous buffer system leads to 
the precipitation of lipids and the subsequent formation of SUV. Despite the sim-
plicity of the method, the formation of the liposomes and resulting heterogeneity 
strongly depends on the solubility of the lipids in ethanol. Remaining solvent is 
removed by heating up the solution as in the related ether-injection method. High 
encapsulation effi ciencies were reported for the use of a hydrophobic drug, 
whereas the encapsulation of a hydrophilic drug was relatively poor (Jaafar-Maalej 
et al.  2010 ). Injection methods are generally relatively scalable, rapid, simple, and 
easy to use for standard lipid solution and low transition temperature lipids. 
Hauschild et al. recently developed a variation of the ethanol injection method, 
called inkjet method, where high control of liposome sizes are reported (Hauschild 
et al.  2005 ).  
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5.3.2.3    Microfl uidics Methods 

 The usage of microfl uidics for the size-controlled preparation of liposomes is based 
on controlled mixing of streams in a micro-sized channel. The process of liposome 
formation is dependent on the increase in polarity and liposome formation is dic-
tated by resulting nanoprecipitation reaction. Using microfl uidic channels, lipids in 
a solvent are mixed with an aqueous buffer system and pumped through the mixing 
chamber, often aided by syringe pumps. Flow in all microchannels is generally cat-
egorized as laminar, which may lead to tight control of liposome sizes. Advantages 
in all microfl uidics methods are the tight control of fl ow rates as well as the fl ow rate 
ratios (solvent to aqueous buffer stream) which can provide highly reproducible 
vesicle formulations. Furthermore, much smaller liquid volumes, along with reduced 
time for sample handling, mixing, and detection are required (Weigl et al.  2003 ). 
Systems are designed for high-throughput with the option of continuous manufac-
turing by parallelization. The two most common methods are described below. 

 There are a range of options that can be considered in microfl uidics. For example, 
Zhigaltsev et al. demonstrated the application of a staggered herringbone micro-
mixer (SHM), as a passive micromixer based on chaotic advection, for limit- size 
synthesis of liposomes. The main advantage here is the control of resulting liposome 
size by alteration in fl ow rate and fl ow rate ratios (Zhigaltsev et al.  2012 ; Belliveau 
et al.  2012 ). The fl uid streams are passed through the series of herringbone structures 
and the chaotic fl ow profi le and increasing advection and diffusion leads to the 
increase in polarity (Zhigaltsev et al.  2012 ; Belliveau et al.  2012 ). An alternative 
option considered the use of fl ow-focusing techniques for size-controlled prepara-
tion of liposomes as described by Jahn et al. and Valencia et al. with liposome size 
ranges from 35 to 180 nm (   Jahn et al.,  2007 ; Valencia et al.  2010 ). Here, the central 
lipid-solvent stream is passed between two streams of aqueous buffer, where mixing 
occurs at the interfaces and liposome sizes can be tightly controlled.    

5.4     Industrial Manufacturing of Liposomes: Requirements 

 As outlined, there are a range of methods that can be adopted for the preparation of 
liposomal adjuvants and the protocol adopted will be dependent on a range of fac-
tors including industrial applicability and the resultant liposomal characteristics can 
be dictated by the method employed. For example, comparing four of the main 
methods for laboratory manufacturing of liposomes outlined above (rotary evapora-
tion, sonication, high shear mixing, microfl uidics) by dynamic light scattering 
(DLS) the difference in intensity-based size distributions of MLV (500 nm), SUV 
produced by sonication (120 nm), and homogenization (230 nm) as well as SUV 
produced with microfl uidics-chaotic advection (160 nm) is depicted and the polydis-
persities being relatively unaffected by the respective methods, (Fig.  5.3 ). However 
for the industrial manufacturing of liposomes several key characteristics are crucial, 
based on the FDA draft-guide “Liposomes Drug Products” (  www.fda.gov    ). 
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•     Scalability : The process, as developed and optimized at bench-scale, should be 
easily scalable without alterations in key liposomal parameters.  

•    Organic solvent residuals : Any in vivo application should be free of Class I and 
II organic solvent residues (classifi cation according to US Pharmacopeia).  

•    Sterility : A Large-scale manufacturing process should be sterile, easy to sterilize 
or with implementation of disposable unit operations in order to avoid cross 
contamination between batches. Liposomes should be sterile and pyrogen free.  

•    Consistency : The process should provide minimal batch-to-batch variability and 
consistent results, including physicochemical properties, morphology, lamellar-
ity, net charge, entrapment volume, liposome size (mean and distribution pro-
fi le), phase transition temperature, spectroscopic data, in vitro release of the drug 
substance encapsulated or attached to the liposomal vesicles, osmotic properties, 
and light scattering index.  

•    Throughput : The ideal process should have a high throughput and the option for 
continuous manufacturing in order to increase throughput.    

 Table  5.1  summarizes the key advantages and disadvantages of several methods 
used in liposome preparation; as can be seen there are now laboratory protocols, 
such as microfl uidics and homogenization that fi t much of the above requirements.

  Fig. 5.3    The effects of four commonly used manufacturing method on liposomal size       
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5.5        Liposomal Characteristics That Infl uence 
the Immune Response 

 The above impact of the liposome preparation method on vesicle size is an impor-
tant factor when considering adjuvant effi cacy (Fig.  5.4 ). Particles less than 200 nm, 
with an optimum at 40 nm, are generally believed to be able to drain from the site 
of injection at the classical parenteral administration routes to the draining lymph 
nodes, and thereby promote cross-presentation and a CTL-driven immune response 
(Bachmann and Jennings  2010 ; Manolova et al.  2008 ). Larger particles are retained 
at the site of injection as they cannot cross the loose epithelium of the lymphatic 
ducts (Swartz  2001 ). In a DNA-vaccine, the reduction of the particle size of the 
cationic liposomal adjuvant improved the humoral and CTL responses (Carstens 
et al.  2011 ). Moreover, SUV less than 155 nm have also been shown to induce pri-
marily a Th2 response identifi ed by increased IL-5 production, while lipid vesicles 
larger than 225 nm induced a Th1 response based on the presence of IgG2a in 
plasma and IFN-γ production (Brewer et al.  1998 ). In line with this, vaccination 
with a cationic liposomal adjuvant resulted in induction of an increased Th1 
response at particle sizes of 685 nm compared to smaller and larger liposomes 
(Henriksen-Lacey et al.  2011 ). Thus, the adjuvant particle size can determine the 
localization of the vaccine particles by controlling the draining kinetics, and thereby 
determine the obtained immune response   .  

  Fig. 5.4    Summary of the impact of vesicle characteristics on liposomal adjuvant action       
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 However in addition to the particle size, the vesicle charge is an important con-
sideration. The charge of the liposomal delivery system is controlled via the choice 
of lipids and added modifying compounds. Neutral liposomes are the least effective 
inducers of the immune response, whereas both cationic and anionic liposomes 
have been used as vaccine delivery systems with success (Watson et al.  2012 ). 
Especially, cationic liposomes have been extensively investigated as vaccine deliv-
ery systems (Christensen et al.  2007 ,  2011 ), and have been shown to elicit increased 
immune responses compared to a neutral analogue (Carstens et al.  2011 ). The adju-
vant effect of charged liposomes may be caused by their ability to interact with cell 
membranes; several studies have shown enhanced cell association in vitro of posi-
tively charged adjuvants compared to the neutral or anionic counterparts (Foged 
et al.  2004 ; Miller et al.  1998 ; Li et al.  2011 ). However it is unlikely that such cat-
ionic vesicles will only interact with cell membranes, and aggregation with any 
anionic moieties found at the injection site is most likely (Henriksen-Lacey et al. 
 2010a ,  b ,  c ). The charge of liposomes can be further modifi ed by grafting the lipid 
bilayer with hydrophilic polymer-linked lipid molecules, of which the most used is 
poly(ethylene glycol) (PEG), thereby creating the so called “stealth” liposomes 
(Romberg et al.  2008 ). The grafting of liposomes with PEG-lipids shields the sur-
face charge which hampers the association with immune cells (Foged et al.  2004 ; 
Miller et al.  1998 ). This feature has been applied in liposomes intended for drug 
delivery, such as Doxil, because it prolongs circulation times in the body, due to 
decreased uptake by macrophages (Barenholz  2012 ). However, it has been shown 
that even extensively grafted cationic liposomes can induce an immune response. 
The PEGylated liposomes skewed the immune response towards a Th2 response, 
compared to the non-PEGylated cationic liposomes, which primarily induced a Th1 
response (Kaur et al.  2012 ). 

 As mentioned, the phase transition temperature of a lipid depends on the carbon 
chain lengths and saturation degree, with longer carbon chains and higher satura-
tion degree increasing the T m  (Feitosa et al.  2006 ; Christensen et al.  2012 ). When 
referring to fl uid liposomes, they are in a fl uid state at body temperature, i.e., the 
T m  is lower than 37 °C and the fl uidity of liposomes can impact on their adjuvant 
action. In one study, liposomes based on dimethyldioctadecylammonium (DDA) 
bromide were compared with the unsaturated analogue dimethyldioleoylammo-
nium (DODA); it was shown that a strong Th1 response was induced with the 
DDA-containing adjuvant, but almost completely abrogated with the adjuvant sys-
tem containing DODA (Christensen et al.  2012 ). Another study compared dis-
tearoyl, dipalmitoyl, and dimyristoyl-based liposomes with progressively lower 
phase transition temperatures, and found there was no difference in the induction 
of a humoral immune response following vaccination with a  Leishmania  antigen. 
However, the CMI response was increased with increasing rigidity of the lipid 
bilayer (Mazumdar et al.  2005 ). It has also been shown that induction of a humoral 
response is optimal with liposomes of intermediate fl uidity, with T m ’s close-to-
body temperature (van Houte et al.  1981 ). Generally, rigid liposomes are preferred 
as vaccine delivery systems, as they overall are more potent inducers of both 
humoral and CMI responses (Christensen et al.  2012 ).  
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5.6     The Effect of Liposomal Composition on the Targeting 
of Specifi c APCs 

 The choice of lipid composition of liposomes and thereby the obtained physical 
characteristics, such as particle size, membrane fl uidity and charge, are important 
when formulating delivery systems for targeting of specifi c APCs. In addition to this, 
the formation of a depot of vaccine at the site of injection is controlled by the deliv-
ery system. Positively charged liposomes are retained at the site of injection to a 
much higher degree than neutral or PEGylated liposomes because of interaction with 
negatively charged interstitial proteins (Kaur et al.  2012 ; Henriksen-Lacey et al. 
 2010b ; Khan et al.  2013 ), while decreasing the particle size enhances free drainage 
away from the site of injection (Carstens et al.  2011 ). Furthermore, increased mem-
brane fl uidity decreased the depot formation but also increased the amount of anti-
gen positive and adjuvant negative APCs in the draining lymph nodes (Christensen 
et al.  2012 ). Studies compared DDA-based, depot forming cationic liposomes with 
fl uid, uncharged or PEGylated analogues with less depot formation at the injection 
site. In both cases the Th1 response induced by the depot forming delivery system 
was skewed towards a Th2 response or completely abrogated by the analogues (Kaur 
et al.  2012 ; Christensen et al.  2012 ; Henriksen-Lacey et al.  2010b ). Supporting this, 
retention at the injection site and ability to induce a CMI response was positively 
correlated comparing 3β [N-(N′, N′-dimethylaminoethane)-carbamoyl] cholesterol 
(DC-Chol) -, DDA- and 1,2-dioleoyl-3-dimethylammonium propane (DOTAP)-
based liposomes with the latter performing poorly compared to the other formula-
tions (Henriksen-Lacey et al.  2010a . Seemingly, there is a connection between the 
ability of a given adjuvant to form a depot at the site of injection and the induction 
of a Th1-driven immune response, possibly because of the recruitment of monocytes 
at the site of injection (Henriksen-Lacey et al.  2010c ). 

 Targeting of the lymphatics for the induction of a CTL response is the goal of 
many studies, as there is a lack of CTL-inducing vaccines against intracellular 
pathogens such as viruses (Rappuoli  2007 ). As mentioned above, a small particle 
size is an important factor for the targeting of the draining lymph nodes, while nega-
tively charged liposomes are reported to drain faster than positively charged lipo-
somes to the lymph nodes due to electrostatic repulsion at the site of injection (Khan 
et al.  2013 ). In one study, negatively charged liposomes were recovered in the lymph 
nodes at a higher percentage than positively charged liposomes, but since the study 
focuses on drug delivery and not vaccines, it does not investigate the charge- 
determined uptake by APCs (Kaur et al.  2008 ). It is likely though that the negatively 
charged liposomes would not associate with the APCs to the same degree as posi-
tively charged liposomes cf. the studies mentioned above (Miller et al.  1998 ). 

 The presented variety of lipids and physicochemical characteristics illustrates 
the versatility of liposomes, and how they can be tailored to induce certain immune 
responses. Thus, it is possible to design a liposomal delivery system to suit the vac-
cine by knowing the pathogen in question, effective antigens and the immune 
responses that are most effective to prevent infection. However, sometimes the 
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choice to design one parameter may at once enhance and work against the desired 
immunostimulatory ability of the adjuvant. For example, cationic liposomes inter-
act to a high degree with APCs in the lymph nodes, but their positive charge cause 
them to form a depot at the site of injection, so they never reach the lymph nodes. In 
those cases it may be necessary to apply more sophisticated designs such as surface 
coatings (Romberg et al.  2008 ). In other cases tailoring of different parameters may 
counteract each other, such as when small, cationic liposomes are used as adjuvants. 
They should be able to drain to the lymph nodes, but the charge may cause retention 
at the site of injection. It is diffi cult to predict which immune response will be pre-
dominant by administration of such an adjuvant.  

5.7     Incorporation of Immunomodulating Compounds 

 Choice of lipids and manufacturing method can control the action of the liposomes 
by determining depot formation at the site of injection and interaction with APCs. 
However, to specify the immune response towards a certain pathogen, immuno-
modulators and pathogen-specifi c antigen must be incorporated into the liposomes. 
Because liposomes resemble cell walls with their bilayer structure, it is often rela-
tively easy to attach immunomodifying molecules and the antigen. This is because 
these molecules are often derived from pathogen cell-wall-associated complexes 
such as LPS, mycobacterial cord factor, and fl agella (Mifsud et al.  2014 ; Rosenkrands 
et al.  2005 ). 

 The association between the liposomal adjuvant and the antigen is important for 
the induction of a Th1 and Th17 response, as vaccination with a Tuberculosis anti-
gen, Ag85B-ESAT-6, electrostatically associated with a DDA-based cationic lipo-
somal delivery system showed signifi cantly increased responses compared to 
administration with the same antigen and adjuvant administered unassociated. The 
same study also showed that prior administration of the free antigen abrogated the 
Th1/Th17 response (Kamath et al.  2012 ). Supporting this, lysozyme, unable to elec-
trically associate with cationic liposomes, was found as free antigen in draining 
lymph nodes, while Ag85B-ESAT-6 to a much higher degree localized at the site of 
injection with the liposomal delivery system (Henriksen-Lacey et al.  2010b ). 
Similar results were obtained in a study with human MUC1 peptides either encap-
sulated inside or associated to the surface of phospholipid-based liposomes contain-
ing MPL. Only peptides associated with the liposomes induced a Th1 immune 
response, whereas free peptides were non-immunogenic. Moreover, peptides asso-
ciated to the surface of the liposomes were able to induce a humoral immune 
response, whereas encapsulated peptide did not (Guan et al.  1998 ). Surface- 
associated antigens are probably better inducers for a humoral immune response, as 
the B cell has a direct access to the antigen with no internalization required. 

 When liposomes are used for vaccine delivery, it is in most cases necessary to 
modify the liposomes by incorporation of immunostimulatory or –potentiating com-
pounds to obtain acceptable levels of immune responses. Especially (synthetic) 
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PAMPs which are ligands for the PRRs have been used to modulate the immune 
response, as they are often specifi c to natural ligands from certain types of pathogens. 
When using PAMPs, dendritic cells (DCs) are targeted and activated, forming a link 
between the innate and adaptive immune responses (Hafner et al.  2013 ). The PRRs 
include TLRs, NLRs, RLRs, and CLRs (Hafner et al.  2013 ; Kumar et al.  2011 ). 

 The synthetic double-stranded RNA, polyI:C has been investigated for the induc-
tion of a CTL response (Hafner et al.  2013 ;    Nordly et al.  2011a ). PolyI:C is a ligand 
of TLR3, which has the endogenous double-stranded RNA produced solely by 
viruses as a ligand. TLR3 is located in endosomes of lymph node resident DCs, and 
the polyI:C-containing vaccine particles must reach the lymph nodes unchanged to 
be taken up by the TLR3 expressing DCs and induce a CTL response (Jelinek et al. 
 2011 ). Incorporation of polyI:C into liposomes can be done both by encapsulation 
or electrostatic association if the liposomes are cationic. Besides acting as a delivery 
vehicle for the polyI:C, the liposomes abrogate the infl ammatory responses polyI:C 
cause when injected in a non-complexed form (Nordly et al.  2011a ). 

 The TLR9-ligand, the bacterially derived DNA-sequences CpG have also been 
used as immunostimulators after incorporation into liposomal adjuvants. TLR9 is 
located in the endosomes, just as TLR3, and it is probably therefore CpG has the 
same CTL inducing effect as polyI:C (Kumar et al.  2011 ). CpG-associated lecithin 
and cholesterol-based liposomes increased antigen uptake by and maturation of 
APCs, causing increased CD8+ T-cell IFN-γ production and induced higher antigen- 
specifi c antibody titers (Neeland et al.  2014 ). 

 Immunostimulators can also be of a lipophilic origin. TDB and MMG are syn-
thetic analogues of the immunostimulatory cord factor derived from  M. Tuberculosis  
cell walls and have been incorporated into DDA-based liposomes. Without either 
TDB or MMG, the liposomes were not able to induce an immune response, while 
incorporation of TDB- or MMG-induced strong Th1/Th17 responses (Rosenkrands 
et al.  2005 ; Nordly et al.  2011b ). 

 By targeting PRRs with the adjuvant system, the antigen is delivered directly to 
the main link of the innate and adaptive immune system, the DCs. The immunopo-
tentiating compounds used e.g. as ligands for TLRs, cause the DCs to recognize the 
vaccine particles as a certain class of pathogen be it a virus, a bacterium, or another 
type. The DCs will react accordingly, promoting an immune response directed 
towards this class of pathogens, e.g., a Th1-, Th2-, humoral, or CTL-response or a 
combination of these (Mifsud et al.  2014 ).  

5.8     Summary 

 To develop a vaccine against a given pathogen it is desirable to know which immune 
response is optimal to achieve the best protection against the pathogen. Knowledge 
of the required immune response enables rational development of vaccines targeting 
certain cells in the body. Cellular targeting is controlled by the adjuvant used in 
subunit vaccines combined with the administration route. By exploiting the 
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versatility of liposomes in terms of lipid compounds, manufacturing methods and 
further incorporation of immunostimulatory compounds it is  possible to tailor the 
vaccine to induce the correct immune response.     
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Chapter 6
Developing Bilayer-Based Delivery Systems 
for Oral Delivery of Subunit Vaccines

Jitinder S. Wilkhu and Yvonne Perrie

6.1  The Advantages Offered by Oral Vaccination

Whilst advanced public health strategies are embedded in most developed countries, 
many areas of the world still lack the required infrastructure to support mass-scale 
public health vaccination programmes (Di Fabio and de Quadros 2001; Graham 
et al. 2012). Currently, most vaccines available are injectables; these have several 
disadvantages including the need for administration by trained personnel, irritation 
at the site of injection causing a lack of patient compliance, and needle phobia in 
adults and children which can make immunisation a stressful procedure (Breau 
et al. 2001; Wilkhu et al. 2011). In addition, injuries associated with needles and the 
reuse of needles and syringes is leading to unsafe injection practices. For example, 
the number of HIV infections resulting from the reuse of needles by healthcare 
providers has been reported as 80,000–160,000 annually (Kane et al. 1999). 
Therefore it is essential to find a new delivery route for vaccines, with needle-free 
immunisations being an important goal.

The oral route for vaccine delivery offers a range of advantages compared to the 
parenteral route due to its non-invasive nature and low infection risk and, most 
importantly, mucosal immunity can be promoted by oral vaccines by offering strong 
resistance against many pathogens that infect via the mucosal lining (Clark et al. 
2001). The safety profile of oral vaccines is also more acceptable as side effects, such 
as flu-like symptoms, fever and diarrhoea associated with parenteral formulations, 
are reduced or absent (Santiago 1995). The use of oral vaccines may also improve 
vaccine efficacy as we age given that the mucosa-associated lymphoid  tissue (MALT) 
function does not diminish through the ageing process, unlike the lymphoid tissue 
exploited by intramuscularly administered vaccines (Santiago 1995). However, there 
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is conflicting data that the mucosal immune response in the GI tract is compromised 
by ageing: In a review, Ogra suggests that ageing reduces the number of Peyer’s
patches, which are required for the uptake of antigens and carrier systems (Ogra 
2010).

However, despite the oral route being the most accessible route with good patient 
compliance, only a small number of vaccines is administered via this route due to 
problems with vaccine stability within the GI tract. Within the GI tract vaccines are 
subjected to metabolism and degradation, where low pH and proteolytic enzymes 
promote degradation (Russell-Jones 2000; Wilkhu et al. 2011). In addition, the resi-
dence time of the vaccines at the immune induction sites within the GI tract is rela-
tively short due to normal GI transit. As a result, higher doses, or an increased 
frequency of dosing can be required to supply a sufficient amount of antigen to elicit 
an immune response (Webster et al. 2003). However, it is also essential to avoid 
promoting systemic tolerance and low secretion of antigen-specific IgA through 
excessive dosing (Mowat 2003; Russell-Jones 2000).

6.2  Currently Licensed Oral Vaccines

An effective vaccine can be described as one which prevents infection and disease 
with the capability of eliciting specific immune responses with the aim of providing 
protective immunity. A range of vaccines have been developed and these may be 
divided into three categories; live attenuated, inactivated and subunit vaccines 
depending upon their properties. Currently, commercially available oral vaccines 
are mostly based on the live attenuated or inactivated vaccines (Table 6.1).

This is mainly due to the efficacy of live attenuated vaccines, which promote 
strong immune protection; they are very effective in initiating mucosal and humoral 
immune responses as they are able to mimic a natural infection (Webster et al. 2003). 
The ability of some live attenuated vaccines to replicate intracellularly allows suffi-
cient quantities of the antigenic peptides to be produced which are presented by 
major histocompatibility complex (MHC) class I molecules, in turn activating cyto-
toxic T lymphocyte (CTL) responses (Webster et al. 2003; Burgdorf et al. 2007). 
However, in general live vaccines tend to have higher associated risks compared to 
other types of vaccines, including the risk of live attenuated vaccines reverting back 
to the wild form, and inducing a diseased state, especially in immunocompromised 

Table 6.1 Current licensed 
commercially available oral 
vaccines

Vaccine Brand name Type

Adenovirus Type 4 and 7a Live
Cholera Dukoral Inactivated
Polio Live attenuated
Rotavirusa Rotarix Live attenuated
Rotavirus Pentavalenta RotaTeq Live
Typhoida Vivotif Live attenuated

aFDA approved updated on 11th August 2013
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individuals (Chadwick et al. 2010). Indeed, the oral polio vaccine (OPV) developed
in 1958 by Dr. Albert Sabin, which is an attenuated wild-type polio virus, has been 
replaced by the inactivated polio vaccine (IPV) in many public healthcare policies
due to considerations of risk vs. benefit. The most common form of the OPV is the
trivalent system, which contains live attenuated strains of the three serotypes of 
poliovirus (Fine and Carneiro 1999). As attenuated vaccines show transient growth, 
an advantage of OPV is that it allows prolonged exposure of the immune system to
the attenuated organism. As a result, the OPV confers long-lasting immunity.
However, as OPV is a live attenuated vaccine, there is a risk of the attenuated form
of the polio virus reverting back to the virulent form. This is a major problem in 
developing countries as other GI tract viruses can interfere with the replication of the 
attenuated polio vaccine virus in the intestine (Fine and Carneiro 1999). Indeed, the 
use of OPV can cause vaccine-associated paralytic poliomyelitis (VAPP), either in
the vaccinees or people who are in close proximity to them (Troy et al. 2011). The 
OPV mutations are associated with VAPP and more recently, prolonged replication
of the OPV can cause up to 15 % mutation to a vaccine-derived poliovirus (VDPV).
This, in turn, can cause outbreaks of poliomyelitis (Minor 2009). The VDPV rever-
tant strains are reported to be transmissible and hence pose significant population 
risks (Hull and Minor 2005). Thus in countries where the risk of polio is low, IPV
which offers lower immune protection but also less associated side effects, is now 
more widely used to prevent risk of outbreaks from the regular use of wild-type OPV
and its mutant forms (Troy et al. 2011; Heinsbroek and Ruitenberg 2010). Whilst the 
use of inactivated vaccines offer advantages in terms of reduced side- effect profiles 
compared to live vaccines, inactivated vaccines tend to offer reduced efficacy as they 
are unable to multiply in the host to give a strong signal to the adaptive immune sys-
tem hence, further doses are required when using inactivated vaccines (Baxter 2007).

A third group of vaccines are the subunit vaccines which are based on recombi-
nant protein or synthetic peptide-based antigens and therefore offer advantages in 
terms of improved safety profiles compared to other types of vaccines. However, 
subunit vaccines are generally limited by their poor immunogenicity and are unable 
to elicit strong CTL responses when administered without adjuvants. Adjuvants 
augment the effects of vaccines due to the increased stimulation of the immune 
system in its response to the vaccine, allowing increased immunity to a specific 
disease (Schijns 2000). Therefore, whilst live vaccines such as OPV have been
shown to be effective when administered via the oral route, the move to subunit vac-
cines offers reduced side effects but these vaccines present problems in terms of 
delivery and stability within the GI tract.

6.3  Developing New Oral Vaccines

Given the safe profiles of the various vaccine systems outlined above, research 
has focused on the development of effective ways to deliver subunit vaccines orally, 
and a range of systems are being investigated including edible vaccines and 
particulate- based systems. Oral delivery of plant-based vaccines has been 
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investigated as they offer a range of advantages including (1) relatively easy scale 
up of production and (2) plant components such as unmethylated CpGs have adju-
vant properties (Jacob et al. 2013). Such edible vaccines are engineered to contain 
antigens without genes that would enable pathogens to form, thus eliminating the 
risk of reversion of the vaccine to virulence. Studies have been undertaken in a vari-
ety of plant systems including bananas, potatoes and tomatoes as alternatives to 
injectable vaccines. However, there are several challenges in growing edible vac-
cines; for example potatoes generally require cooking which can denature the 
 antigens, bananas take years to mature and the fruit spoils fairly rapidly, and 
 tomatoes can vary from batch to batch as they are cultivated broadly (Langridge 
2000). Transgenic plants also present issues in ensuring uniformity of dosage, 
purity, potency and safety of antigens that would be viable against human or other 
infectious diseases (Langridge 2000; Jacob et al. 2013). In addition, the complexity 
of producing a highly expressive plant variety containing stable antigen production 
is currently a long and expensive task (Jacob et al. 2013).

Particulate delivery systems have also been considered for the oral delivery of
subunit vaccines. They offer a range of advantages given that their size, surface 
characteristics and immunogenicity can be easily manipulated to improve antigen 
retention and appropriate uptake thereby improving immune responses (Fig. 6.1). 
Fundamentally, for the delivery of soluble antigens, carrier systems should be 
designed with the target site in mind. Therefore, for oral vaccines these carriers 

Fig. 6.1 Overview of the gastrointestinal (GI) tract and oral delivery systems highlighting barriers 
and advantages of particulate delivery systems
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must be sufficiently acid/enzyme resistant and be formulated to promote uptake by 
the gut-associated lymphoid tissue (GALT). There are a range of particulate con-
structs that are being considered for drug and vaccine delivery including solid par-
ticulate systems (which can be built from polymers, lipids, proteins, etc.) and 
bilayer type vesicles (which are built from molecules with surfactant type proper-
ties) (Fig. 6.1).

6.4  Barriers for Oral Vaccines: The Journey Down 
the Gastrointestinal Tract

The GI tract presents a range of barriers to an oral vaccine including the acid envi-
ronment, enzyme digestion and solubilisation by bile salts (Fig. 6.1). The mucosal 
surface area is extremely large (in the range of 400 m2) and it offers several func-
tions (Baudner and O’Hagan 2010): the main functions of the mucosal immune 
system are to protect the mucous membrane from invasion and colonisation of 
potentially harmful microbes, whilst preventing the uptake of foreign proteins 
derived from food sources or airborne matter. This hinders the development of inap-
propriate immune responses against ingested foreign proteins (Holmgren and 
Czerkinsky 2005).

The MALT acts as a physical barrier between the external environment and the 
internal cavities of the body, protecting and preventing invasion by bacteria, foreign 
pathogens and micro-organisms. However, due to the large surface area of the over-
all mucosal surface, it is highly susceptible to many pathogenic microorganisms, 
and therefore has a highly specialised immune system in order to confer immune 
protection. The immune system is adapted to establish a difference between patho-
gens that enter via mucosal surfaces to those entering via the blood supply or 
through tissues (Neutra and Kozlowski 2006). It is essential to develop vaccines 
which target the effective cells required to achieve immunity. For example, injected 
vaccines are poor inducers of mucosal immunity hence, are less effective against 
infection at mucosal surfaces (Levine 2000). Mucosal immune responses are initi-
ated via the MALT which is comprised of several sites including Peyer’s patches,
mesenteric lymph nodes (MLN), appendix, tonsils and adenoids in the respiratory 
tract (Kiyono and Fukuyama 2004). In terms of oral vaccination, the key aspects are 
to deliver vaccines to the Peyer’s patches which contain specialised epithelial cells
known as the Microfold ‘M’ cells which capture the antigens (Fig. 6.2). These spe-
cialised epithelial cells deliver antigens from the lumen of the gut to the underlying 
epithelial lymphocytes and subsequently to the subepithelial lymphoid tissues 
(Mitragotri 2005; Mahato et al. 2003; des Rieux et al. 2006) and process and deliver 
the antigen to local antigen-presenting cells (APCs) such as dendritic cells (DCs),
macrophages and B lymphocytes (Fig. 6.2) (Bilsborough and Viney 2004; des Rieux 
et al. 2006).

Coombes and Powrie (2008) discuss the immunological properties of DCs; 
findings indicate that DCs within the Peyer’s patches secrete higher levels of
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Interleukin-10 (IL-10) than those DCs present within the spleen (Coombes and 
Powrie 2008). In addition, the CD4+ T-cells (which are activated by the Peyer’s
patches) produce higher levels of IL-4 and IL-10 (which are represented by a T 
helper 2 phenotype) than those of the spleen DCs (Iwasaki and Kelsall 1999).

Depending on their size, particulates can enter the intestinal mucosa via a series 
of routes that include the tips of villi where enterocytes are extruded, across or 
between enterocytes, or by M cells (Norris et al. 1998). Figure 6.2 outlines how 
particulates and subunit antigens can be taken up by M cells or epithelial cells which 
predominantly consist of enterocytes and mucus-secreting goblet cells. M cells have 
sparse, irregular microvilli on their apical surface in addition to the presence of a 
basolateral cytoplasmic invagination which creates a pocket containing lympho-
cytes and macrophages (Clark et al. 2001; Norris et al. 1998). These features of the 
M cells are believed to be involved in establishment of mucosal immunity by allow-
ing a route for antigens to be delivered to underlying lymphoid tissues where a 
secretory immune response is initiated. The epithelial cells play a major role in 
mucosal defence as they are able to detect foreign bodies through pattern- recognition 
receptors (PRRs) such as the Toll-like receptors (TLRs). The release of cytokine
and chemokine signals to the DCs and macrophages which underline the mucosal 
cells, as shown in Fig. 6.2, allow an innate and adaptive immune response to be trig-
gered (Kagnoff and Eckmann 1997; Izadpanah et al. 2001; Kraehenbuhl and Neutra 
2000; Neutra and Kozlowski 2006). Although the mechanism of action upon 
absorption by the Peyer’s patches remains unknown, the M cells remain good tar-
gets for subunit particulate and other oral vaccine delivery systems.

Peyer’s Patch
containing M cell

Migration to 
mesenteric lymph

tissues

Cells migrate to
common mucosal

sites

Antigen re-exposure

Local sensitisation
of IgA B Cells and
CD4 Th Cells from
the dendritic cells

Mature SigA and
effector T cells

Dendritic Cell

Systemic Circulation

Lymphatics

Particulate Delivery
Systems containing

Subunit vaccine

Subunit
Antigen

Epithelial Cells

Fig. 6.2 Stimulation of an immune response upon antigen and vesicle exposure to Peyer’s patches
and M cells
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6.5  Strategies for Effective Delivery to M-Cells

As Fig. 6.1 demonstrates, to reach the target site, an orally delivered vaccine must 
firstly overcome the low pH conditions within the stomach and avoid enzymatic 
degradation to then face the bile acids/salts prior to reaching the small intestine 
where particulate uptake occurs. The small intestine is the site of absorption for 
electrolytes, nutrients and fluids. However, it also acts as a barrier which prevents 
the absorption of potentially toxic or harmful substances. In order for vaccine to be 
absorbed in the small intestine, they must penetrate through two barriers, the mucus 
gel layer and the mucosa. The intestinal mucosa comprises of epithelial cells and 
their associated glands and a mucus layer which is a secretion of high molecular 
weight glycoproteins and other non-specific defences including mucins and antimi-
crobial peptides (Kraehenbuhl and Neutra 2000). These structures of the mucosal 
lining trap enzymes and create an environment which is highly degradative to sub-
stances (Clark et al. 2001). This layer plays a major role in protecting the mucosa 
from harmful bacteria, pathogens and chemicals. In addition to protecting the 
mucosa, the mucus layer maintains the pH difference that is observed between the 
GI lumen and the mucosa. Therefore, the mucus layer will hinder the diffusion of 
certain compounds and as a result, size, pH and electric charge will be major design 
parameters when targeting the delivery of oral vaccines to these areas. As well as 
the mucus layer acting as a diffusion barrier, it also acts as a physical barrier by 
preventing the absorption of particles. The mucus entraps the particles, causing 
agglomeration in the mucus layer which then causes an increase in net size and a 
decrease in the diffusion coefficient through the mucus layer.

The surface charge also has a significant impact upon the uptake of particulate 
delivery systems, e.g. studies by Tabata and Ikada have shown that the peak uptake 
of particles occurs with a zeta potential of −70 mV (Tabata and Ikada 1988). This 
zeta potential also shows excellent stability and avoids coagulation of the particles 
due to the high surface charge (Freitas and Müller 1998; González-Rodríguez and 
Rabasco 2011). Based on fluorescence microscopy studies, anionic liposomes for-
mulated using phosphatidyl serine (PS) were also shown to have improved uptake
by Peyer’s Patches compared to liposomes formulated without the inclusion of PS
(Tomizawa et al. 1993; Aramaki et al. 1993). Norris et al. (1998) and Eldridge et al. 
(1990) also found that the uptake of negatively charged particulates was favoured 
(Norris et al. 1998; Eldridge et al. 1990). The work carried out by Shakweh et al. 
(2005) also compared the binding and uptake of differently charged PLGA
microsphere formulations and noted that whilst the binding to Peyer’s Patch free
tissue was similar for all microspheres over 48 h, the uptake by Peyer’s patches was
notably higher for negatively charged or neutral particles in mice compared to posi-
tively charged particles (Shakweh et al. 2005).

However cationic formulations (e.g. employing cationic lipids or chitosan), often 
used for DNA delivery, have also been shown to be effective oral vaccine adjuvants. 
For example, a cationic liposomal oral mycobacterial DNA vaccine formulated 
using LipofectamineTM 2000 (Invitrogen Corporation, USA) was shown to be effec-
tive in protecting and delivering plasmid DNA via the oral route to the epithelium, 
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M cells, DCs and Peyer’s patches of the small intestine of mice, and subsequently
they were able to promote expression of the encoded Ag85A antigen at these sites. 
By doing so, the cationic liposome formulation was able to induce higher specific 
mucosal cellular and humoural immune responses compared to DNA alone (Wang 
et al. 2010). The use of oral DNA vaccines using cationic particulates is also being 
extensively investigated for vaccination of fish (Rajesh Kumar et al. 2008; Ning 
et al. 2009; de las Heras et al. 2010).

Overall, it is important to remember that the zeta potential measured in an elec-
trolyte double layer surrounding particulates is linked to the electrolytes present 
(both their concentration and valency) within the suspending aqueous media. Indeed 
the zeta potential of cationic liposomes was shown to be dramatically different 
(~40 mV vs. ~15 mV) when the liposomes were in simulated gastric or intestinal 
media respectively (Perrie et al. 2002). In recent studies, we have also investigated 
the impact of GI tract pH on the zeta potential of anionic lipid vesicles and have 
shown that whilst these vesicles were prepared with a zeta potential of −100 mV 
(sodium bicarbonate buffer pH 7.6), as they move through the various regions of the 
GI tract the zeta potential varies from −20 mV in acidic conditions (pH 1.2) back to 
−100 mV in intestinal pH conditions (pH 8.4, Fig. 6.3). Whilst changes in the zeta 
potential of the vesicles, due to changes in pH, are often reversible, such changes 
may impact on antigen loading which relies on electrostatic interactions.

Fig. 6.3 The effects of pH changes during GI transit upon vesicle characteristics such as vesicle 
size and zeta potential. Adapted from Wilkhu et al. 2013a, b
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6.6  Solid Particulate Delivery Systems for Oral Vaccines

Solid particulate delivery systems have also been extensively investigated for their 
potential as vaccines adjuvants. They can be prepared in a range of sizes (from 
nanoparticles to microspheres), with a choice of surface characteristics and include 
a selection of immunomodulators. Polymeric particles are generally formulated
from natural or synthetic polymers with the most commonly studied polymers being 
those which are biodegradable such as poly(lactide-co-glycolide) (PLGA), polylac-
tic acid (PLA), polycaprolactone (PCL) and polysaccharides (particularly chitosan).
These polymers offer the advantage that they are well-characterised and used in a 
range of clinical products, particularly PLGA. Alternatively, solid particulate deliv-
ery systems can be prepared from solid (high melting point) lipids dispersed in an 
aqueous phase. Examples of lipids used include solid triglycerides, saturated phos-
pholipids and fatty acids which are well tolerated by the body. Due to their composi-
tion, they are sometimes described as ‘solidified’ o/w emulsions in which the oil
globule is replaced by solidified lipids. In general, in these solid particles the anti-
gen is incorporated within the solid polymer or lipid matrix of the particle or by 
attaching the antigen to the surface of the particles.

Microspheres for vaccine delivery have been useful in the delivery of antigens 
which are ingested by the immunocompetent cells, in turn providing controlled anti-
gen release and lasting immunity. Microspheres have been reported to protect the 
antigen from intestinal bile salts, the variation in pH along the GI tract and from the 
degradative enzymes (Hanes et al. 1995; O’Hagan and Illum 1990). Several studies 
with microspheres have shown that antigens encapsulated in microspheres can elicit 
secretory IgA and circulating antibody IgG responses in comparison to unencapsu-
lated antigen (Langer et al. 1997). Studies by Eldridge et al. (1989) have suggested 
that the Peyer’s patches readily take up particles less than 10 μm in size and prefer 
hydrophobic surfaces (Florence 2005). In addition to vesicle size, surface charge and 
hydrophobicity are also crucial factors in the uptake of microparticles via the Peyer’s
patches. Both are essential as particles have to translocate between a hydrophobic 
mucus layer and then across a hydrophilic interior of the cells (Hussain et al. 2001).

Given the biodegradable nature and sustained release properties that PLGA can
offer, microspheres formulated from these polymers appear to be an ideal candidate 
for the delivery of subunit vaccines, due to their relative biocompatibility and con-
trollable drug release profile. Given their particulate nature, such delivery systems 
can promote also uptake, transport and presentation of the antigen to APCs. For
example, it has been reported that PLGA microparticles exhibit an adjuvant effect
for both humoral (Eldridge et al. 1990; O’Hagan et al. 1991) and cell-mediated 
immunity (Audran et al. 2003). Indeed, sub-10 μm PLGA microspheres are readily
recognised and ingested by macrophages and DCs, an important property for stimu-
lating an immune response (Storni et al. 2005). After oral administration, PLGA
microspheres have been shown to elicit immune responses, in some cases compa-
rable to immune responses achieved via parenteral routes; for example, Igartua et al. 
(1998) compared subcutaneous and oral immunisation using PLGA microspheres.
They showed that, whilst by a single oral administration of microspheres it was not 
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possible to induce appropriate responses, dosing on three consecutive days enabled 
the induction of IgG responses similar to those induced by subcutaneous immunisa-
tion, and a later booster dose provided no further advantage (Igartua et al. 1998). 
The success of the PLGA systems as oral delivery systems was attributed to their
ability to promote an initial burst release (~20 %) followed by a sustained release
(~50 % by day 35; Igartua et al. 1998). Sarti et al. (2011) were also able to stimulate 
immune responses to ovalbumin (OVA) delivered orally in PLGA-based particu-
lates, with both IgG and IgA responses being measured and shown to be higher than 
those of OVA given orally in PBS. However, there is the possibility of PLGA micro-
spheres inducing oral tolerance to their entrapped antigen (Fattal et al. 2002) and 
whilst PLGA based systems have demonstrated their ability give protection to ani-
mals in challenge studies (e.g. Conway et al. 2001), studies have not yet reported a 
protective immunity induced in humans.

Whilst the use of polymer-based particulates as vaccine adjuvants has been 
strongly investigated, more recent work that has refocused investigations into the 
potential advantage of using these systems in the nano range. Alongside stability 
and protection, the polymers used to formulate nanoparticles can be modulated to 
control physicochemical characteristics such as zeta potential and hydrophobicity. 
In a review by des Rieux et al. (2006) it is suggested that in addition to the above 
advantages, the drug/antigen release properties and biological behaviour of the 
nanoparticles can also be modified (des Rieux et al. 2006). The resulting nanopar-
ticles are subsequently taken up by the epithelial cells within the mucosa, M cells 
and Peyer’s patches (Gelperina et al. 2005).

When considering the formulation of such nanoparticles, the main consideration 
for oral delivery involves finding the balance between the desired surface properties 
and the matrix used in the formulation. These factors control nanoparticle uptake 
and stability; hence it is vital to establish a relationship between these two factors. 
Nanoparticles work on a mechanism of releasing their loaded antigen either by par-
ticle degradation, erosion, diffusion out of the matrix or swelling (Gelperina et al. 
2005). Due to these release mechanisms, the particulates must be sensitive to the 
local milieu of the environment such as pH, temperature or enzymes including the 
presence of other particulates such as food. The size of the nanoparticles also plays 
an important role as colloidal instability leads to aggregation and flocculation. 
Similarly the chemical stability of a nanoparticle matrix is crucial for its biodegrad-
ability and release of the encapsulated antigen (Florence 2005). A review by 
Chadwick et al (2010) summarises, in depth, the different polymers available for 
producing nanoparticles, and how the size of the particulates vary depending on the 
polymer used and its properties.

6.7  Bilayer Vesicle-Based Delivery Systems for Oral Vaccines

Bilayer vesicles systems, which can be built from a range of surfactant molecules 
have also been widely investigated as oral vaccine delivery systems. The most 
 commonly studied delivery systems are the liposomes. These systems were first 
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recognised by Bangham (Bangham and Horne 1964) and then used as delivery 
 systems by Gregoriadis and Ryman (1971). Liposomes were identified as being 
effective immunological adjuvants by Allison and Gregoriadis (1974) where the 
ability of negatively charged liposomes (prepared with the inclusion of dicetyl 
phosphate (DCP)) to deliver and potentiate immune responses against diphtheria
toxoid (DT) was demonstrated; from this work a plethora of investigations have 
subsequently steamed. There are a wide number of variations, based on these initial 
liposome systems, that have been developed including stealth liposomes to improve 
circulation profiles (Lasic et al. 1991), vesicles built from non-ionic surfactants also 
known as non-ionic surfactant vesicles (NISVs) or niosomes, e.g. for cosmetics 
(Handjani- Vila et al. 1979) or as drug/antigen carriers (Azmin et al. 1985; Baillie 
et al. 1985), surfactant polymers (e.g. polymersomes (Okada et al. 1995), cationic 
systems which can electrostatically bind DNA (e.g. lipoplexes (Felgner et al. 1987), 
vesicles incorporating bile salts to improve stability (e.g. bilosomes; (Conacher 
et al. 2001; Wilkhu et al. 2013b), or virus components (e.g. virosomes, Almeida 
et al. 1975) to name but a few. Many of these systems use alternatives to phospho-
lipids to circumvent potential issues related to storage instabilities and cost (e.g. 
synthetic-based systems), to improve stability within harsh biological environments 
(e.g. bilosomes and polymersomes), or alternatively to modulate the properties of 
the vesicles in terms of immunological efficacy (e.g. virosomes).

Liposomes have been used in vaccine technology as carriers of antigens, which 
are either encapsulated into the aqueous space, incorporated into the bilayer of the 
liposomes or associated with the surface of the vesicles. Liposomes as carriers of 
antigens allow a reduction in biodistribution but enhance targeting which are vital 
for immunotherapy (Gregoriadis et al. 1999). In general, lipid-based vesicles pro-
vide several advantages of antigen delivery where they can be tailored to have 
desired effects in vivo. A major issue in the use of lipid-based vesicles for oral deliv-
ery is their stability when exposed to intestinal bile salts, which can cause the mem-
brane of the lipid vesicles to deform and lyse resulting in the release of macromolecules 
from the vesicle prior to it reaching its intended site of action, thereby resulting in 
poor vaccine efficacy (Chen et al. 1996). The potential of vesicle lysis and drug leak-
age of lipid-based delivery systems when administered orally has been the key con-
sideration in the development of lipid-based vesicles which have increased stability 
including liposomes (e.g. (Lasic et al. 1991), polymerised liposomes (e.g. (Okada 
et al. 1995; Chen et al. 1996; Gaucher et al. 2010), niosomes and bilosomes (Wilkhu 
et al. 2013b; Azmin et al. 1985; Baillie et al. 1985; Conacher et al. 2001).

In the development of oral liposomal vaccines the use of high-transition tempera-
ture lipids has been shown to be advantageous. For example, we have studied cat-
ionic liposomes as oral vaccine delivery systems for DNA vaccines where DNA 
encoded HBsAg was entrapped within multilamellar vesicles (MLV) (Perrie et al.
2002). Studies in mice orally dosed with liposomal-DNA vaccines, revealed that 
secretory IgA responses against the encoded antigen were substantially higher after 
dosing with 100 mg liposome-entrapped DNA compared to naked DNA and IgA 
responses in mice were consistently higher with cationic formulations containing 
the high-transition temperature lipid, distearoylphosphatidylcholine (DSPC), which
correlated well with their ability to protect the DNA loading in simulated GI tract 
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conditions. To investigate gene expression sites, mice were also orally dosed with 
liposome-entrapped plasmid DNA expressing the enhanced green fluorescent pro-
tein; fluorescence intensity in the draining MLN was much greater in mice dosed 
with liposomal DNA than in animals dosed with the naked DNA (Perrie et al. 2002). 
These results demonstrate the potential of these systems for oral delivery of DNA 
vaccines.

The potential of vesicle lysis when administered orally has also promoted the 
development of bilayer vesicles using non-ionic surfactants or niosomes. It has been 
suggested that these allow a greater chance for the antigen/drug to reach the site of 
action and to have increased absorption through the GI tract compared to free anti-
gen/drug (Azmin et al. 1985; Yoshida et al. 1992). Hence, further modifications to 
the niosome vesicles by incorporation of bile salts to form bilosomes have also been 
investigated. Bilosomes protect antigens from the enzymes present in the GI tract, 
are resistant to bile acids, and can act as potent immunological adjuvants. Alexander 
and Brewer first developed and formulated bilosomes by exploiting the NISV tech-
nology (Conacher et al. 2001). They achieved this by incorporating bile salts such 
as sodium deoxycholate into the formulation thereby increasing the stability of the 
carrier thus, preventing premature release of the protein/antigen via the oral route. 
Schubert et al. (1983) suggested that by incorporating bile salts into the vesicles 
they resist degradation and disruption from the digestive enzymes (Fig. 6.4) there-
fore making the formulation more stable and giving the potential rise for an oral 
route of delivery for vaccines (Schubert et al. 1983). By preventing premature 
release, bilosomes deliver the vaccines to the mucosal tissue and thus smaller con-
centrations of antigen are required to elicit an effective immune response. The ben-
eficial effect of bile salts may not be limited to non-ionic systems; Hu et al. (2013) 
also note that liposomes containing bile salts (sodium glycocholate) retained signifi-
cantly higher levels of insulin than conventional liposomes prepared with phospha-
tidylcholine and cholesterol (Hu et al. 2013). It was concluded that liposomes 
containing bile salts protected the insulin from degradation and release through the 
GI tract and contributed to enhanced oral absorption of insulin. Furthermore, stud-
ies by Niu et al. (2012) confirm that the presence of bile salts (sodium glycocholate) 
within conventional liposomes resulted in increased hypoglycaemic effects and oral 
bioavailability which was attributed to better protection of the encapsulated insulin 
with the highest oral bioavailability of 11 % in diabetic rats (Niu et al. 2012). In 
addition, the pharmacological actions of the insulin-loaded vesicles were deemed to 
be dose- and size-dependent.

As vaccine delivery systems, various studies using bilosomes have proven to be 
successful in animal models with a range of antigens, e.g. the A/panama (Mann et al. 
2004), tetanus toxoid (Mann et al. 2006), and hepatitis B (Shukla et al. 2008). These 
studies on the various antigens have shown increased antibody production, lower 
temperatures and reduced side effects (in relation to IM injections) when dosing with 
influenza haemagglutinin entrapped bilosomes (Bennett et al. 2009). Bile salt incor-
poration within the vesicles stabilises and protects the vesicles from the GI tract and 
other enzymes present in the body allowing bilosomes to be used orally as vaccine 
drug delivery system. In several bilosome studies (e.g. Bennett et al. 2009; Mann 
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et al. 2004, 2006) the anionic surfactant, DCP is used and these studies all show that,
by orally administering the bilosome vesicles with the antigen entrapped, a mucosal 
immune response is elicited with specific IgA production increased from the muco-
sal cells in the small intestine. The incorporation of DCP within the bilosome formu-
lation, giving the vesicles a highly negative surface charge, could potentially be the 
reason for the increased immunity achieved given that previous studies showed that 
the peak uptake in the epithelial cells of particles occurs with a zeta potential of 
−70 mV (Tabata and Ikada 1988). This is also in line with studies by Eldridge et al. 
(1990) and Norris et al. (1998) where they also found that the uptake of negatively 
charged particulates is favoured. In addition, work by Shakweh and co-workers also 
suggest that negatively charged or neutral particles in mice have a greater affinity for 
the Peyer’s patches than positively charged particles (Shakweh et al. 2005).

Fig. 6.4 Formation of bilayer vesicles and modifications with the addition of bile salts to improve 
GI stability
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6.8  Incorporation of Adjuvants

The inclusion of an adjuvant within the vaccine formulation can enhance immuno-
logical memory and coverage, and allows for antigen sparing and reduced number 
of doses (Tritto et al. 2009). Currently there are only a handful of adjuvants licensed 
for human clinical use. One of the oldest type of adjuvants is the aluminium adju-
vants, also referred to as alum (Chap. 3), which, since the 1920s, has been incorpo-
rated into various human vaccines as an aluminium salt such as aluminium hydroxide 
(Al(OH)3) and aluminium phosphate (AlPO4). More recently ASO4 [oil-in-water 
emulsion (Chap. 4) combining alum and Monophosphoryl Lipid A] has been 
approved by European regulators and by the Food and Drug Administration (FDA) 
as an adjuvant for vaccines (Baldwin et al. 2012; Mbow et al. 2010). In addition, 
European regulators have approved and licensed MF59 (squalene oil-in-water emul-
sion) as an adjuvant, e.g. in the flu vaccine known as Fluad. Preclinical and clinical
studies have shown that alum is often less potent than adjuvants such as the oil-in- 
water emulsion ones and has shown to be a poor inducer of protective Th-1 immune 
responses which are crucial for protection against intracellular pathogens (Mbow 
et al. 2010).

A range of immunostimulatory agents are available and have been used in con-
junction with lipid-based systems such as monophosphoryl lipid A, Quillaja sapo-
naria (Quil-A), CpG oligodeoxynucleotides, and trehalose 6,6-dibhenate (TDB). 
Currently, the most potent mucosal adjuvants which are studied for immunisation 
are the cholera toxin (CT) and the heat labile enterotoxin Escherichia coli (LT) 
(Tamura and Kurata 2000, Holmgren et al. 2003; Plant and Williams 2004). These 
mucosal adjuvants provide long-lasting immune responses either systemic or muco-
sal in turn, allowing the body to induce immunity at low antigen concentrations and 
doses (Holmgren and Czerkinsky 1992; Rappuoli et al. 1999). The major drawback 
of these two mucosal adjuvants is that they are extremely toxic, hence are not in 
human clinical trials. As a result, research is being carried out on acceptable deriva-
tives of these toxins with reduced toxicity but retaining the adjuvant activity for use 
in humans. One of these products includes a non-toxic recombinant produced 
Cholera toxin B (CTB) subunit which promotes mucosal immunity sIgA which is 
important in the elucidation of an oral immune response. In addition to mucosal 
immunity, the CTB also provides anti-inflammatory tolerance to self-antigens 
(Holmgren and Czerkinsky 2005; Stanford et al. 2004). Other examples of current 
mucosal adjuvant derivatives include detoxified mutants of LT where the active 
toxic subunit has been modified to remove the toxic components. This has resulted 
in the loss of adjuvanticity; however, studies show that there are a few proteins with 
significant adjuvanticity, even without the presence of the detectable toxic compo-
nent when administered intranasally (Pizza et al. 2001). A review by Baudner and 
O’Hagan (2010) and studies by Holmgren and Czerkinsky (2005) show different 
mucosal adjuvants and their effectiveness; however, the majority of studies focus on 
nasal administration (Holmgren and Czerkinsky 2005). A promising approach has 
been identified where hybrid molecules of the cholera toxin subunit has been linked 
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to specific APC (CTA1-DD) from a bacteria Staphylococcus aureus (Lycke 2004). 
The incorporation of this CTA1-DD and antigen into immune-stimulating com-
plexes (ISCOMs, Chap. 8) may provide oral use, possibilities by maintaining adju-
vant effectiveness (Holmgren and Czerkinsky 2005).

Novasome™ adjuvants, also referred to as non-phospholipid liposomes 
(Chambers et al. 2004) are multicomponent adjuvant systems made up of dioxyeth-
ylene cetyl ether, cholesterol, and oleic acid have been licensed for veterinary appli-
cation (for the immunisation of fowl against Newcastle virus disease and avian 
rheovirus). The Novasome™ technology, made with glycerol monostearate and 
butyl alcohol and the potent adjuvant monophosphoryl lipid A (Chambers et al. 
2004), was shown to offer protection of guinea pigs against an aerosol challenge 
with virulent Mycobacterium bovis.

Overall, mucosal adjuvants show promising data in terms of eliciting an immune 
response by increasing the immunity to low concentration antigens; however, due to 
the toxicity of the adjuvants they have been rendered unsafe to use for human clini-
cal trials. Mucosal adjuvants essentially if formulated to show minimal toxicity can 
be administered and used in combination with other particulate delivery systems to 
enhance mucosal immune responses therefore, reducing the requirement for multi-
ple dosing or high concentrations of antigen use. Despite these systems, further 
adjuvants and vaccine delivery systems are needed.

6.9  Case Study: Development of Non-ionic-Based Vesicles 
for an Oral Influenza Vaccine

Through a series of studies within our laboratories we have developed a delivery 
system for an influenza subunit antigen. Based on the above outlined attributes, we 
selected non-ionic-based vesicles as our delivery platform and through a series of 
investigations we built a carrier system that can be used to facilitate the design of 
these systems for oral vaccines.

6.9.1  Designing the Vesicles: Surfactant Selection

In terms of design parameters for bilayer vesicles for oral vaccines, first is the selec-
tion of the correct lipids/surfactants to enable antigen entrapment, retention and 
protection during transit down the GI tract. There are a wide range of surfactants 
that can be used to prepare bilayer vesicles; non-ionic surfactants offer advantages 
in terms of low cost, good chemical stability and low toxicity profile. In general, the 
formation of non-ionic surfactants into bilayer vesicles is dependent on many fac-
tors including temperature, surfactant concentration, electrostatic and electrody-
namic interactions of the surfactants within the aqueous phase. The molecular 
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geometry of the surfactant is also an important parameter, as this influences their 
packing arrangement and the subsequent structure formed. The shape of a surfactant 
may be expressed as its critical packing parameter (CPP) which is defined as:

 

CPP
o c

=
v

a l  

(6.1)

where CPP is the critical packing parameter, v is the molecular volume of the hydro-
phobic part of the lipid, ao is the surface area of the hydrophilic head group, and lc 
is the length of the hydrocarbon chain.

CPP can be used to predict the geometry of surfactants and the resultant struc-
tures they can form: a CPP value <0.5 (which will arise from a large hydrophilic
head group in the molecule) suggests the surfactant forms spherical micelles, a 
value between 0.5 <CPP <1 forms bilayer vesicles and a CPP>1 (due to large con-
tribution from the hydrophobic group volume) results in inverted micelles 
(Israelachvili and Mitchell 1975; Israelachvili et al. 1977; Uchegbu and Vyas 1998). 
Therefore, for bilayer vesicles a CPP of between 0.5 and 1 is required. However,
many non-ionic surfactants are single chain with a CPP<0.5. These will not form
niosomes without additional components. For example, soluble surfactants such as 
solulan C-24 and polysorbate 20 readily form micelles. To use these surfactants to 
form bilayer vesicles, the addition of cholesterol is required (Uchegbu and Florence 
1995). This is due to cholesterol increasing the overall CPP of the surfactant mix-
ture; in cases where a mixture of surfactants and additives such as cholesterol is 
used to prepare vesicles, the operational CPP values will consider the average of the
overall components (Kumar 1991) and Manosroi et al. (2003) have confirmed that 
as cholesterol is incorporated within a Tween 61 surfactant mixture, an average CPP
value between 0.5 and 1 was obtained and hence bilayer vesicles rather than micelles 
are formed (Manosroi et al. 2003). Similarly, Tween 20 has a CPP below 0.5 but can
form niosomes when mixed with cholesterol (Carafa et al. 1998) as does with Span 
60 (e.g. Ning et al. 2005; Uchegbu et al. 1995). The incorporation of cholesterol has 
also been shown to stabilise the vesicles by enhancing the hydrophobic bonding 
within the bilayer (Srinivas et al. 2010; Uchegbu and Vyas 1998).

In the development of a particulate-based oral influenza vaccine, we used 
monopalmitoyl-glycerol (MPG) as our main surfactant. This has been commonly
used to formulate niosomes, e.g. (Brewer and Alexander 1994), and due to its low 
CPP requires the inclusion of additional surfactants to support vesicle construction.
To improve stability we incorporated cholesterol in the system. In terms of surface 
charge, for most oral vaccine particulate systems, anionic charges have been used. 
Therefore we combined MPG with cholesterol and DCP to form niosomes. Vesicles
were prepared by high shear homogenisation using different blends of MPG, CHO
and DCP. In the case of bilosomes, sodium deoxycholate (bile salt) was also incor-
porated. Briefly, the lipids were heated to 120 °C for 10 min in an oil bath and whilst 
maintaining the melted lipid solution an emulsion was created by the addition of 
5.2 mL of 25 mM sodium bicarbonate buffer pH 7.6 (50 °C) and homogenised for 
2 min. Whilst homogenising, various concentrations of bile salt in 25 mM sodium 
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bicarbonate buffer (pH 9.7) was added and homogenised for a further 3 min. Upon 
cooling, the vesicle formulations were incubated for 2 h with gentle shaking at 
220 rpm. The size of the bilosomes was determined using a sympatec 2005 (Helos/
BF) analyser and zeta potential was measured using a zeta plus Brookhaven instru-
ment analyser.

When considering the impact of surfactant blend ratios, our results (Wilkhu et al. 
2013c) showed that vesicle size was not notably influenced by the ratio of choles-
terol to DCP included in the vesicles. However, size was influenced by bile salt
content, with increasing bile salt concentrations reducing vesicle size: vesicles 
reduced by approximately 1 μm in size (from 5.38 to 4.26 μm) with the addition of 
800 mM bile salt. A previous study incorporating bile salt within lipid vesicles by 
Chen et al. (2009) showed a similar decrease in vesicle size with increasing bile salt 
concentration and the authors attributed this to enhanced bilayer flexibility and a 
lowering of surface tension between the vesicles (Chen et al. 2009). In terms of zeta 
potential, the bile salt concentration made no significant difference; however, the 
cholesterol and DCP content made a significant impact on the zeta potential of the
vesicles, as might be expected given the anionic nature of DCP. However, results
were not as expected: a higher DCP content resulted in a reduced negativity of
the vesicles (Fig. 6.5). We subsequently demonstrated this was a result of the DCP
influencing the pH of the vesicle suspension. As increasing concentrations of 

Fig. 6.5 The impact of vesicle components on the vesicle attributes. Adapted from Wilkhu et al. 
2013a, b

6 Developing Bilayer-Based Delivery Systems for Oral Delivery of Subunit Vaccines



112

DCP was added to the formulations, the pH of the vesicles suspension became more
acidic. Through dissociation of the H+ ion from DCP, the pH drops, and reduces the
zeta potential. This was confirmed by measuring the zeta potential of a fixed (5:4:1 
weight ratio MPG:Chol:DCP with 100 mM bile salt) bilosome formulation over a
pH range from 1 to 10. Our results (Wilkhu et al. 2013c showed that as we increase 
the pH from 1 to 10, the zeta potential of the vesicles changes from around −15 to 
−120 mV confirming the controlling role of pH on the anionic nature of the vesicles. 
Therefore, by varying the DCP content in the bilosome formulations, this modulates
the pH of the suspension system which in turn impacts on the zeta potential of the 
vesicles (Wilkhu et al. 2013c).

6.9.2  Vaccine Efficacy of Optimised Vesicle Formulation

From the above studies, we then progressed to investigate the efficacy of the opti-
mised bilosome formulations containing the rHA directed against influenza viruses. 
Ferrets were orally on days 0, 3, 14, and 17, and 14 days later challenged with a 
clinical rHA isolate of influenza (Wilkhu et al. 2013c). The median temperature dif-
ferential and inflammatory cell counts in nasal washes were measured to follow 
protection against fever. Ferrets immunised with the bilosome vaccine incorporat-
ing the recombinant haemagglutinin (rHA) shows a reduced median temperature 
differential change compared to a dose of empty bilosomes suggesting that the 
antigen-containing bilosomes administered via the oral route provided strong pro-
tection from fever. Furthermore, the bilosome plus rHA vaccine also promoted a 
reduction in viral cell load counts in ferrets compared to those that received 
bilosomes administered without antigen (Wilkhu et al. 2013c). Thus, the bilosome 
formulation containing the influenza vaccine promoted protection against fever and 
suppressed lung inflammation to extents comparable to empty vesicles showing 
promising results for vaccine delivery via the oral route (Wilkhu et al. 2013c).

6.9.3  Incorporation of Bile Salts: Do They Offer Enhanced 
Antigen Protection?

Given that the primary role of the bile salts in the formulation was to improve the 
stability of the vesicles and protect the vaccine antigen in transit through the GI 
tract, the NISVs (5:4:1 MPG:Chol:DCP, weight ratio) with and without the addition
of 100 mM bile salt were tested in simulated gastric and intestinal conditions 
(Wilkhu et al. 2013a). Our results showed that the niosome preparation significantly 
decreased (p<0.05) in volume mean diameter from 6.54 ±0.04 μm (t = 0 h; prior to 
exposure to gastric media) to 5.46 ±0.05 μm after 1 h incubation in gastric media, 
down to 3.57 ±0.03 μm after 4 h in simulated intestinal medium. In contrast, 
bilosome vesicles significantly increase in diameter (p<0.05) from 6.19 ±0.04 μm 
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to 9.13±0.31 μm when incubated in gastric medium for 1 h, yet they returned to 
their original vesicle size when placed back in simulated intestinal fluid SIF (to 
6.11±1.27 μm; t = 4 h). Directly adding the vesicles into simulated intestinal fluid 
made no significant difference to the size of the niosomes or the bilosomes, demon-
strating that the vesicle size was only influenced by the acidic gastric conditions 
(Wilkhu et al. 2013c).

When comparing the antigen retention of niosomes and bilosomes in GI tract 
conditions, there was no notable difference in antigen incorporation between nio-
somes and bilosomes (39 ± 3 vs. 33 ± 3 % for niosomes and bilosomes, respec-
tively) on initial formulation. However after 15 min in gastric medium (pH 1.2) the 
niosome antigen retention decreased by approximately 10 % and then remained
around 30 % level for up to 60 min in gastric media. In contrast, bilosomes were
able to retain their antigen payload in the gastric media (Wilkhu et al. 2013a), sug-
gesting the bile salt is able to enhance vesicle stability. However, in the intestinal 
media both the niosomes and bilosomes showed reduced antigen retention with 
only ∼10–15 % of the antigen being retained suggesting the vesicles were less
stable in SIF conditions compared to SGF conditions (Wilkhu et al. 2013a). These 
studies suggested that the incorporation of bile salts was advantageous in terms of 
offering protection through the gastric media.

6.9.4  Biodistribution of Vesicle Systems After Oral 
Administration

To investigate the biodistribution of our vesicular systems after immunisation we 
developed a dual-labelling system (Henriksen-Lacey et al. 2010) which allows us 
to follow the fate of both antigen and vesicle carriers after oral immunisation. 
Briefly, vesicles are prepared containing antigen radio-labelled with 125I and vesi-
cles are labelled with 3H. To investigate the biodistribution after oral immunisation, 
mice were dosed with 200 μL of vesicle formulations, and at various time points, 
mice were euthanised and organs collected and analysed for both 125I (to measure 
antigen) and 3H (to measure vesicles). Through these investigations we demon-
strated that formulating the antigen within bilosome vesicles increased antigen 
transit through the GI tract and antigen delivery to the target site by facilitating 
uptake via cells within the Peyer’s patches (Wilkhu et al. 2013c) and that biodistri-
bution was influenced by formulation attributes (Fig. 6.6). However when antigen 
is administered without a carrier system, only low levels of antigen are measured 
across the GI tract, with less than 10 % being detected in the small intestine after
1 h, suggesting antigen is either degraded and/or cleared quickly (Wilkhu et al. 
2013c). In terms of antigen targeting to the site of action, antigen recovery at the 
Peyer’s patches and mesenteric lymph tissue was significantly higher (p < 0.05)
when delivered using the bilosome carrier compared to antigen without a carrier 
system (Wilkhu et al. 2013c).
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6.9.5  Comparing the Biodistribution of Niosomes 
and Bilosomes

When considering the impact of incorporating bile salts into the bilayer vesicles on 
their biodistribution after oral immunisation, our results (Wilkhu et al. 2013a) show 
that around 30 % of the initial dose was detected within the small intestine after
30 min with no significant difference between the two formulations. By 4 h, the 
levels in the small intestine had decreased with higher levels being detected in the 
cecum and colon, as would be expected for the formulations as they transit through 
the GI tract. However, again there was no significant difference in the profiles of 
niosomes and bilosomes ((Wilkhu et al. 2013a). Similarly, there was no significant 
difference in uptake of antigen and vesicle within the Peyer’s patch or mesenteric
lymph tissue between the niosomes and bilosomes at the time points measured. 
Thus whilst in vitro studies suggest the addition of bile salts improved vesicle sta-
bility, this did not translate to differences to in vivo transit.

6.9.5.1  The Impact of Vesicle Size on Biodistribution

As already noted, particle size is a critical factor in determining the fate of orally 
delivered particulates, both in terms of their uptake and the type of response the 
systems potentiate. Whilst three possible routes for GI uptake of small particles 

Fig. 6.6 The impact of vesicle vaccine design and dose on dose recovered in the small intestine 
and Peyer’s Patch 1 h after administration
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have been previously considered (intracellular uptake by enterocytes, intercellular/
paracellular transfer and uptake via the M cells of the Peyer’s patch), it is now
mainly agreed that particulate uptake in mammals is chiefly via the M cells of 
Peyer’s patches (Lavelle et al. 1995). Studies by Eldridge et al. (1990) on vesicle 
size uptake in the Peyer’s patches show that uptake is dependent on both the vesicle
size and hydrophobicity (Eldridge et al. 1990).

From our studies, using MPG, cholesterol and DCP at a molar ratio of 5:4:1,
respectively, with 100 mM bile salts produced vesicles of the desired size and sur-
face charge for oral immunisation without the need for further processing. However 
to consider the impact of size, we prepared bilosomes at 1.88±0.4 μm (via size 
reduction through probe sonication) and compared their biodistribution in mice 
after oral administration with larger (6.44±0.5 μm) vesicles (Wilkhu et al. 2013c). 
The antigen and vesicle recovery data suggests that after 30 min the majority of both 
formulations were present within the small intestine of mice. Considering the target 
site uptake of antigen and bilosomes into the Peyer’s patch and mesenteric lymph
tissue, significantly higher (p<0.01) levels of the larger vesicles were found in the
Peyer’s patches compared to the smaller vesicle size formulation (Wilkhu et al.
2013c). However, this did not translate into significantly increased levels of 
bilosomes or antigen in the MLN.

These findings were comparable to studies by Ebel (1990); in their studies the 
larger (9 μm) polystyrene latex beads were retained within the Peyer’s patches with
no presence in the MLN, whereas the smaller 2 μm particles were more notable in 
the MLN (Ebel 1990). Similarly, Eldridge et al (1990) used PLA microparticles to
demonstrate that Peyer’s patch uptake was restricted to particles less than 10 μm and 
microspheres less than 5 μm were transported through the efferent lymphatics 
within macrophages. These studies also suggested that that this pattern of absorp-
tion and redistribution may determine the type of immune response elicited by the 
vaccines, with microspheres below 5 μm inducing a predominantly circulating anti-
body response, whilst those above this size would stimulate a mucosal (IgA) 
immune response (Eldridge et al. 1990).

6.9.5.2  The Impact of Lipid Dose on Antigen Delivery

To consider if the uptake of bilosomes after oral administration was dose dependent, 
we investigated the lipid and antigen uptake based on four increasing doses: (1) 
antigen 180 μg/mL, lipid 27 mg/mL, (2) antigen 90 μg/mL, lipid 13.5 mg/mL, (3) 
antigen 45 μg/mL, lipid 6.75 mg/mL and (4) antigen 22.5 μg/mL, lipid 3.375 mg/ mL.

Uptake of vesicles and antigen at the Peyer’s patches and mesenteric lymph tis-
sue was considered (Wilkhu et al. 2013a). Our studies show that there was no sig-
nificant difference in the percentage of antigen or vesicle recovery between different 
dose concentrations in the organs collected after a 30 min period and total percent-
age recovery of antigen was comparable (40–70 %) between all doses administered
based on the initial dose. This suggesting that the clearance rate and the gastric 
emptying time were not dose dependent over the range tested (Wilkhu et al. 2013a). 
However, when considering concentrations of lipid and antigen uptake rather than 
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percentage dose, there was a general trend of increased concentrations of antigen 
and carrier within both the Peyer’s patches and the mesentery lymph tissue as the
dose increases up to 90 μg/mL antigen, 13.5 mg/mL lipid. This suggests that increas-
ing the dose of a vaccine can improve delivery to the Peyer’s patches and mesentery
lymphatics. However, a saturation point may be reached. This would suggest that 
uptake at the target site is dose-limited and therefore the lipid-antigen dose ratio 
may be a key factor in vaccine efficacy (Wilkhu et al. 2013a).

6.9.6  Options for Preparation of Bilosomes

Depending on the method of preparation, NISVs consist of one or more bilayer 
membranes (lamellae) from small unilamellar vesicles (SUV) with a diameter of 
about 75 to 100 nm, to large unilamellar vesicles (LUV) which can be several 
microns in size, and MLV which vary in size from anywhere above 100 nm to sev-
eral microns. There are a wide range of methods that can be used to prepare nio-
somes, and nearly all of which are adaptations from the methods used to prepare 
liposomes (Chap. 5). The method of choice, combined with the surfactant types 
used, drug/antigen attributes and concentration will all contribute to the vesicle size, 
surface characteristics, loading efficacy, and release characteristics of entrapped 
drug or antigen. In addition to the method of preparation, the nature of the solute 
and hydration temperature also affect entrapment efficiency (Uchegbu and Florence 
1995). However many of the methods used involve high process temperatures which 
can be detrimental to thermosensitive antigens or where the antigen is added to 
preformed vesicles resulting in increased surface adsorption of antigen which 
exposes antigen to the extensive milieu of the GI tract. Thus, we have recently 
developed a method of producing niosome vesicles which offers thermostability 
and allows the use of thermolabile antigens by lowering the process temperatures 
and the addition of the antigen stage in the production of the niosome vesicles 
(Wilkhu et al. 2013a). Briefly, appropriate amounts of MPG, Chol, and DCP are
melted by heating at 120 °C for 10 min with occasional mixing. Using the molten 
lipids at 120 °C, an emulsion is created by the addition of the pre-incubated (30 °C) 
antigen buffered stock solution and homogenised. Once homogenisation has fin-
ished, the bilosome formulation is cooled to 30 °C in an incubator/shaker at 220 rpm 
By employing lower processing temperatures of 30 °C for the antigen it is protected 
from prolonged temperature stresses (Wilkhu et al. 2013a). To consider the location 
of the antigen and the ability of the vesicles to protect antigen from enzymatic deg-
radation, both niosomes and bilosomes were subjected to protein (trypsin) diges-
tion. Results showed that after incubation with trypsin, both formulations show low 
antigen loss (~5 %) suggesting that in both systems the antigen is predominately
located within the vesicles (and hence protected from protease digestion).

Interestingly, by considering the melting points of the components individually, 
and combined at a 5:4:1 MPG:Chol:DCP weight ratio, we have shown that lower
(90 °C) than previously reported (120–140 °C) temperatures could be adopted to 
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produce molten surfactants for the production of niosomes (Wilkhu et al. 2014). 
This is advantageous for surfactant stability; whilst thermogravimetric studies 
showed that the individual surfactants (MPG, Chol and DCP) were stable to above
200 °C, the 5:4:1 MPG:Chol:DCP weight ratio mixture show ∼2 % surfactant deg-
radation at 140 °C, compared to 0.01 % was measured at 90 °C. Furthermore, vesi-
cles formed at this lower temperature offered comparable characteristics to vesicles 
prepared using higher temperatures commonly reported in literature. In the forma-
tion of niosome vesicles, cholesterol played a key role. Langmuir monolayer studies 
demonstrated that intercalation of cholesterol in the monolayer did not occur in the 
MPG:Chol:DCP (5:4:1 weight ratio) mixture. However cholesterol may support
bilayer assembly, with molecular simulation studies demonstrating that vesicles 
cannot be built without the addition of cholesterol, and higher concentrations of 
cholesterol (5:4:1 vs. 5:2:1, MPG:Chol:DCP) decreasing the time required for nio-
some assembly (Wilkhu et al. 2014).

6.9.7  Scale Up and Suitability as a Vaccine Product

For niosomes and bilosomes to be effective as a vaccine formulation suitable for 
application in public health strategies, formulations must be able to be prepared in a 
large scale and in a stable format. Using the above outlined method for the prepara-
tion of niosomes and bilosomes, scale up is straight forward; within the laboratory 
we have been able to quickly scale up production to 500 mL batches which offer 
reproducible vesicle characteristics (data not shown) showing this method is suitable 
for larger scale production. To enhance the shelf-life of these vesicles, we freeze-
dried the vesicle suspensions. Lyophilisation was performed with the Virtis Advantage 
(Bio Pharma) freeze dryer. The samples to be freeze dried were stored at −70 °C and
the freeze drying protocol was set as: primary drying to occur at −40 °C for 35 h, 
secondary drying at 20 °C for 10 h with a condenser temperature set at −75 °C. Initially, 
the lyophilisation procedure was based on a freeze drying protocol we developed for 
liposomes (Mohammed et al. 2006). As the preparation of vesicles for oral vaccines 
used higher lipid concentrations within the formulations compared to liposome ves-
icles the lyophilisation cycle was further optimised for drying times. This was carried 
out as presented in Fig. 6.7 where thermocouples were added to vials containing the 
vesicle suspension; the shelf temperature was kept constant at −40 °C and the change 
in temperature based on the thermocouples recorded the temperatures with and with-
out a cryoprotectant. Figure 6.7 shows that there was no deviation in temperature 
change between 30 and 75 h of primary drying, implying that the temperature within 
the lipid cake is constant and that a primary drying cycle within this time frame could 
be effectively implemented. Figure 6.7 also demonstrates that the addition of a cryo-
protectant (200 mM sucrose) allows primary drying to take place at a much higher 
temperature (−20 °C) and the vesicle attributes in terms of size and surface charge 
were retained throughout the process. Thereby we are able to produce an oral vaccine 
formulation using niosome- based vesicles which is effective in animal studies and 
that can be produced in a stable freeze-dried format.
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6.10  Summary

Overall, there are a wide range of particulate systems that may be considered for the 
oral delivery of vaccines, all with associated advantages and disadvantages. However 
all must offer safe transit through the GI tract and promote appropriate uptake and 
stimulation of the required immune cells. Our work has focused on the development 
of niosome and bilosome systems and we have shown that by appropriate surfactant 
selection choice and optimisation of the physicochemical parameters of these vesi-
cles we are able to produce vesicles entrapping influenza antigen that can promote 
protective immune responses in animal studies and these vesicles can be prepared 
using an easy-to-scale-up process in a stable freeze-dried format.
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    Chapter 7   
 Cubosomes: Structure, Preparation 
and Use as an Antigen Delivery System 

             Shakila     B.     Rizwan      and     Ben     J.     Boyd    

7.1            Introduction 

 Certain amphiphilic lipids and surfactants are able to self-assemble into highly 
ordered structures in an aqueous environment, with long-range order in one, two or 
three dimensions (3D) and short-range disorder at atomic distances (Quantan et al. 
 2004 ; Yano et al.  2005 ). Consequently, these structures have properties intermediate 
between those of solid crystals and isotropic liquids and are referred to as lyotropic 
liquid crystals or mesophases. 

 A unique feature of lyotropic systems is that in the absence of any physical or 
chemical changes, they remain thermodynamically stable in excess solvent. In con-
trast, other self-assembled lipid systems such as micelles dissociate into monomers 
upon dilution. This particular feature has led to signifi cant research efforts to utilize 
these mesophases for various applications and some examples include (1) a plat-
form for crystallization of membrane proteins (Cherezov et al.  2006 ), (2) delivery of 
food actives (Amar-Yuli et al.  2009 ) and (3) delivery of drugs (Rizwan et al.  2010 ). 

 This chapter is in three parts; fi rstly an overview of the self-assembling proper-
ties of lipids is provided with a view to introduce the reader to polymorphism in 
lipid–water systems. We then discuss the use of lyotropic mesophases for drug 
delivery, with a focus on the bicontinuous cubic phase (V 2 ). The remainder of the 
chapter will then focus on cubosomes, dispersions of the V 2  phase and their poten-
tial application in the fi eld of vaccine delivery.  
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7.2     Polymorphism in Lyotropic Liquid Crystal Systems 

 The spectrum of lyotropic self-assemblies that can be formed on exposure of lipids 
to aqueous environments range from simple micelles arranged in a cubic or hexago-
nal packing to fl at lipid bilayer structures such as the lamellar phase (L α ), and to 
more complex non-lamellar structures composed of a lipid bilayer that have greater 
intrinsic curvature, such as the inverted hexagonal (H) and cubic (V) phase (Fig.  7.1 ). 
It is important to note that not all self-assemblies may be observed in any given 
lipid–water system. Lipid self-assembly is critical for several biological processes 
(Luzzati  1997 ; Lindblom and Rilfors  1989 ). The lamellar phase, in combination 
with membrane proteins and fatty acids provides the basic building block for all 
biological membranes. Non-lamellar structures have also been shown to play cru-
cial roles in cellular processes such as cell stress, starvation and fusion (Colotto and 
Epand  1997 ; Almsherqi et al.  2006 ; Deng et al.  2002 ).  

 The rich array of polymorphism is primarily governed by the concentration of 
the solvent, geometric properties of the amphiphile and temperature. Exposure to a 
polar solvent causes the amphiphiles to position themselves in such a way to mini-
mize the free energy of the system, where the polar solvent penetrates between the 
amphiphilic molecules exposing the hydrophilic parts to the aqueous environment 
and causes the hydrophobic parts to be sheltered from the solvent. This phenome-
non is commonly referred to as the hydrophobic effect (Pratt  1985 ; Kaasgaard and 
Drummond  2006 ). 

Hydrophilic headgroup 

Hydrophobic tail 

Increasing mean curvature

Zero mean curvature

Normal
micelle

Micellar
cubic

Normal 
hexagonal 

Lamellar Bicontinuous 
cubic

Reversed
micelle

Lyotropic liquid crystals

Positive mean curvature
(Type I or ‘normal’ phases)

Negative mean curvature
(Type II or ‘reversed’ phases)

Reversed
hexagonal

  Fig. 7.1    Schematic representation of common liquid crystalline phases formed by self-assembly 
of amphiphiles in water. Figure modifi ed after (Garti et al.  2012 ; Shearman et al.  2006 )       
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 In addition to the hydrophobic effect as a driving force for self-assembly, a 
 number of packing constraints also play a critical role in the resulting structures and 
are determined by the geometric properties of the amphiphilic molecule, specifi -
cally packing and curvature. The critical packing parameter ( P ) described by 
Israelachvilli (Israelachvili et al.  1976 ), is given by the equation:

  
P

v

al
=

  
 ( 7.1 ) 

   

where  v  and  l  denote the volume and the length of the hydrophobic chain and  a  is 
the optimal surface area of the polar head group. This equation provides a useful 
measure of aggregation morphology. The packing parameter is useful for predicting 
which phases may be preferentially formed for a given lipid. It connects the molecu-
lar shape and properties of a given lipid to its favoured curvature at the lipid–water 
interface, and therefore the topology and shape of the resulting aggregate as shown 
in Fig.  7.1  (Shearman et al.  2006 ). Curvature towards the chain region is conven-
tionally designated as the normal (oil-in-water) or Type 1 phase where  P  < 1, whilst 
curvature towards the water region is denoted as the reverse (water in oil) or Type 2 
phase where  P  > 1. Planar or lamellar phase structures are evident when  P  = 1.  

7.3     Bicontinuous Cubic Phase 

 The most common non-lamellar mesophase with a curved interface that is observed 
in lipid–solvent systems is the inverted or reversed hexagonal phase (H 2 ) (Seddon 
and Templer  1993 ). It consists of densely packed, water-fi lled cylindrical micelles 
arranged in a continuous matrix of fl uid hydrocarbon chains (Fig.  7.1 ). In contrast, 
the inverted bicontinuous cubic phase (V 2 ) consists of a single continuous lipid 
bilayer, separating two non-intersecting water channels. The topology of the V 2  
phase is categorized into the gyroid, diamond and primitive structures based on 
concepts of differential geometry and minimal surfaces and are associated with the 
space groups Ia3d, Pn3m and Im3m, respectively (Hyde  2001 ) (Fig.  7.2 ).  

 Various classes of synthetic lipids have been investigated, however, only a hand-
ful are capable of forming stable inverted mesophases (Fig.  7.3 ) (Boyd et al.  2006 ; 
Fong et al.  2007 ; Hato and Minamikawa  1996 ). A large amount of research in the 
literature is centred on unsaturated mono- and diglycerides, particularly monoolein 
and mixtures of monoolein with other lipids or its structural derivatives (Clogston 
and Caffrey  2005 ; Lara et al.  2005 ; Chang and Bodmeier  1997 ). These lipids are 
commonly used as emulsifying agents and food additives (Amar-Yuli et al.  2009 ; 
Ganem-Quintanar et al.  2000 ). However, the propensity, for example of monoolein 
and oleic acid to undergo esterase catalyzed hydrolysis can limit their applications 
in vivo. There is signifi cant research effort to increase the repertoire of lipids that 
are able to form stable non-lamellar mesophases in water as alternatives to fatty-
acid- based materials such as monoolein. One such alternative is phytantriol, an 
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additive used in cosmetics for improving moisture retention (Ribier and Biatry 
 1998 ; Barauskas and Landh  2003 ; Rizwan et al.  2009 ). Both phytantriol and glyc-
eryl monooleate (GMO) differ structurally (Fig.  7.3 ), however, interestingly they 
both display similar phase behaviour, forming V 2  phases in excess water at low 
temperatures and transforming to the H 2  at higher temperatures (Barauskas et al. 
 2005a ; Dong et al.  2006 ).  

 The nanostructure and thermodynamic stability of lyotropic mesophases has 
stimulated intense research, particularly towards exploring the potential of these 
lipid systems for various pharmaceutical applications. Macroscopically, the inverted 
mesophases are extremely viscous, almost solid-like, materials with a large specifi c 

  Fig. 7.2    Schematic representations of the inverse bicontinuous cubic phases: Ia3d (gyroid), Pn3m 
(diamond) and Im3m (primitive) phase. Individual lipids are shown as ball-stick fi gures, whilst the 
regions fi lled with green and red colour represent water. Figure modifi ed from (Caffrey  2000 )       
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  Fig. 7.3    Chemical structures of lipids known to form lyotropic mesophases. Figure modifi ed after 
(Mulet et al.  2013 )       
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surface area that can solubilize materials of varying polarity and provide a slow 
release matrix for drugs (Fig.  7.4 ) (Rizwan et al.  2009 ; Boyd et al.  2000 ; Clogston 
and Caffrey  2005 ). Retarded release of entrapped bioactives from the V 2  phase is a 
consequence of diffusion through the tortuous matrix.  

 In addition to the properties of the bioactive itself, factors believed to be regulat-
ing the release kinetics are the pore size and tortuosity of the water channels and the 
stiffness and high viscosity of the mesophase. However, the viscous nature of non- 
lamellar phases limit their pharmaceutical applications. To overcome this, the ther-
modynamic stability of these mesophases in excess water is exploited. Non-lamellar 
liquid crystals in equilibrium with excess water can be dispersed into submicron- 
sized particles which retain the unique microstructure of their respective ‘parent’ 
phase (Fig.  7.2 ) and are sometimes collectively referred to as non-lamellar liquid 
crystalline nanoparticles (LCPs). Dispersion of the H 2  and V 2  phases are known as 
hexosomes and cubosomes, respectively, analogous to liposomes, dispersions of the 
L α  phase.  

7.4     Cubosomes 

 The term ‘cubosome’ was fi rst mentioned in a review on cubic lipid/water phases by 
Kåre Larsson in the 1980s (Larsson  1983 ). Previous studies dating back prior to 
Larsson’s description of cubosomes do exist. Patton and Carey (Patton and Carey 
 1979 ) in 1979 described their observation in studies involving fat digestion, where 

Reversed cubic phase (Pn3m)

a

b

Lipid bilayer

Water channel

Lipophilic drugs

Hydrophilic drugs

Amphiphilic drugs

Stabilizers

Internal water domain

Reversed hexagonal phase

  Fig. 7.4    Structures of ( a ) reversed bicontinuous cubic and ( b ) hexagonal phase showing the pos-
sible locations of drugs. Figure reproduced from (Guo et al.  2010 )       

 

7 Cubosomes: Structure, Preparation and Use as an Antigen Delivery System



130

simulated stomach contents combined with lipase and bile salts resulted in dis-
persed particles of the bicontinuous cubic phase. However, Larsson has pioneered 
the work on cubic phases and is credited with discovering that they can be formed 
from the bulk non-dispersed phases and on dispersion exist as submicron particles 
which have an identical internal nanostructure. Consequently, cubosomes have the 
potential to offer high solubilization of actives with different physicochemical prop-
erties and the potential for sustained release of therapeutics by virtue of their unique 
nanostructure. The nanostructure, like the parent phase, is composed of a highly 
twisted lipid bilayer and two congruent, non-intersecting water channels and imparts 
on the particle both hydrophobic and hydrophilic domains and a large surface area 
(Rizwan et al.  2007 ) (Fig.  7.1 ). 

7.4.1     Structure and Classifi cation 

 Based on principles of differential geometry (Andersson et al.  1995 ), an ‘open’ 
structure and a ‘closed’ cubosome structure has been proposed (Larsson  1999 ). The 
two aqueous channels are in contact with the external environment in the open 
structure, whilst the closed cubosome has one water channel open towards the exter-
nal environment with the other compartment closed in relation to the outside. The 
closed cubosome was proposed as the more stable structure of the two forms; how-
ever, recent studies strongly support the open model (Rizwan et al.  2007 ; Tilley 
et al.  2013 ). Like the bulk parent cubic phase, cubosomes are also classifi ed into 
gyroid (Ia3d), primitive (Im3m) or diamond (Pn3m).  

7.4.2     Components of Cubosomes 

 Various lipids have been used to prepare cubosomes and other LCPs [for an 
 extensive summary the reader is referred to a review by Yaghmur (Yaghmur and 
Glatter  2008 )]. Though the bulk mesophases are thermodynamically stable, when 
dispersed, the particles are not kinetically stable from a colloidal stability perspec-
tive, and tend to aggregate due to the exposure of the hydrophobic domains to the 
external aqueous environment (Dan and Poo  2004 ). In order to circumvent aggre-
gation, stabilizing agents are required (Almgren  2003 ; Larsson  1999 ; Dan and Poo 
 2004 ). The main role of the stabilizing agent is to provide a steric or electrostatic 
barrier to prevent close particle contact (Nakano et al.  2001 ). The choice of a sta-
bilizing or dispersing agent is crucial and should participate in the lipid–water 
assembly without disrupting the cubic liquid crystallinity of the structure (Dan and 
Poo  2004 ). Larsson’s early cubosomes studies used bile salts to stabilize cubic 
phase dispersions (Larsson  1989 ). 

 Pluronics, in particular F 127, are the most commonly used stabilizing agents 
and even considered to be the ‘gold standard.’ Pluronics are a group of water  soluble, 
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self-assembling triblock co-polymers composed of polyethylene oxide (PEO) and 
polypropylene oxide (PPO) in a PEO–PPO–PEO confi guration, where the PPO por-
tion gives the polymer hydrophobic characteristics and the PEO portion is respon-
sible for the hydrophilic character. The stabilizing effects of F 127 is thought to be 
brought about by the adsorption or incorporation of the hydrophobic PPO block 
onto the surface of the particles, whilst the hydrophilic PEO portion extends out into 
the aqueous environment to provide steric shielding (Dan and Poo  2004 ). The struc-
ture type of the dispersions can be infl uenced by the proportion of F 127 used in 
relation to the particular liquid crystal forming lipid (Almgren et al.  1996 ; Gustafsson 
et al.  1997 ; Larsson  2000 ). In GMO formulations, at relatively low F 127 concentra-
tions (3 %), the D-type cubic phase is dominant, with minimal presence of the 
P-type cubic phase. Increases in the polymer concentration lead to an increase in the 
portion of the P-type cubic phase (Nakano et al.  2001 ; Almgren et al.  1996 ; 
Gustafsson et al.  1997 ; Larsson  2000 ). This has been attributed to the preferential 
location of F 127 on the surface of the particles at low concentrations, so very little 
polymer is thought to be involved with the internal cubic structure. However, when 
the F 127 is in excess, the surface is saturated and the polymer can incorporate 
within the lipid bilayer. As a consequence a transition from the Im3m structure to 
the Pn3m cubic structure is observed in monoolein–water system. In contrast, the 
nanostructure of phytantriol-based cubosomes appears to be unaffected by high 
concentrations of F127 (Dong et al.  2006 ). 

 Recently, Chong et al. investigated the ability of a wide range of non-ionic mol-
ecules to stabilize dispersions of phytantriol and GMO and compared them to F 127 
(Chong et al.  2011 ). Interestingly, they showed that the poly(ethyleneoxide) stearate 
class of stabilizers, in particular Myrj 59 ®  (100 poly(ethyleneoxide) units), was 
more effective in stabilizing phytantriol cubosomes when compared to the gold- 
standard F 127. The reason for the improved stability remains unclear.  

7.4.3     Production of Cubosomes 

 Current research efforts, in addition to increasing the repository of available liquid 
crystal forming lipids, are focused on formulation of cubosomes. Although great 
progress has been made, there is still no consensus on an optimal method of cubo-
some production. Stability, biocompatibility and optimal drug release still remain 
unresolved. Generally, cubosomes reported in the literature have been produced by 
one of the following methods: 

 Application of high energy methods such as ultrasonication, microfl uidization 
and homogenization of the viscous cubic phase in the presence of excess water 
(Larsson  1989 ; Gabizon et al.  2004 ; Almgren et al.  1996 ; Gustafsson et al.  1997 ). 

 Dry lipid fi lms of lipid/stabilizer are produced, rehydrated and subsequently dis-
persed in excess water and fragmented into cubosomes using mechanical mixing 
methods such as homogenization (Nakano et al.  2002 ). 
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 Dry powder precursors are prepared and form cubosomes upon hydration with a 
solvent (Spicer et al.  2002 ). 

 Microfl uidization of a lipid/stabilizer mix followed by heat treatment at elevated 
temperature and subsequent cooling resulting in liquid crystalline dispersions with 
a narrow size distribution (Barauskas et al.  2005a ; Wörle et al.  2006a ). 

 Mixtures of liquid crystal forming lipid in ethanol or other organic solvents (liq-
uid precursors) are dispersed in excess water (or the solvent of choice) resulting in 
the spontaneous formation of cubosomes (Rizwan et al.  2011 ; Spicer et al.  2001 ; 
Zheng et al.  2003 ; Chung et al.  2002 ).  

7.4.4     Characterization of Non-lamellar Liquid Crystalline 
Dispersions 

 The physicochemical properties of LCPs have been characterized using various 
techniques. Amar-Yuli et al. ( 2009 ) recently grouped these techniques into two cat-
egories,  direct techniques  and  indirect techniques . Direct techniques include small 
angle X-ray and neutron scattering and optical and electron microscopy. Indirect 
techniques include spectroscopy, including nuclear magnetic resonance, dynamic 
light scattering and rheology and provide supplementary information. Selected 
techniques will now be discussed in more detail. 

7.4.4.1     Electron Microscopy 

 Cryogenic transmission electron microscopy (cryo-TEM) allows direct visualiza-
tion of samples in the hydrated state through vitrifi cation in a thin fi lm suspended 
between polymer coated grids (Almgren et al.  1996 ). This is preferred over conven-
tional (negative staining) TEM where samples are dried on carbon grids prior to 
viewing under the microscope, due to problems associated with dehydration. 
 Cryo- TEM provides direct visualization and verifi cation of lattice symmetry and is 
a powerful complementary technique to scattering data. The combination of cryo- 
TEM and scattering is considered the gold standard for characterizing the structure 
type of non-lamellar liquid crystalline dispersions. Cubosomes are generally recog-
nized as cubic faceted particles as shown in Fig.  7.5 .  

 The advantage of cryogenic fi eld emission scanning electron microscopy 
 (cryo- FESEM) as a complementary microscopy technique for investigating the 
nanostructure of non-lamellar mesophases has been recently reported (Boyd et al. 
 2007 ; Rizwan et al.  2007 ). Cryo-FESEM allows dispersions to be viewed in a fro-
zen, close-to-natural state. Results summarized in Fig.  7.6  support the descriptions 
of the nanostructure of LCPs, particularly cubosomes based on differential geome-
try, where a single continuous lipid bilayer is contorted such that it divides space 
into two congruent and non-intersecting water channels. The nanostructure of the 
dispersions was also comparable to the microstructure of the non-dispersed phases 
determined by cryo-FESEM (Rizwan et al.  2007 ).  
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 One of the limitations of using a scanning microscopy technique to probe the 
structure of submicron particles when compared to microscopy in the transmission 
mode is the lower resolution [in the range of 50–100 nm (Pawley  1997 )] and the 
other is the potential formation of ice crystals during sample transfer. Ice crystals 
are often large and can cover areas of interest. In addition to large ice crystals, fro-
zen condensed water droplets can also make data interpretation diffi cult and mis-
leading. Plunge freezing in liquid propane has been shown to reduce ice crystal size 
to below the resolution of the microscope. Additionally, samples are generally sub-
limed for a few minutes to remove unwanted surface ice prior to coating (Krauel 
et al.  2007 ).  

7.4.4.2     X-ray Scattering 

 Scattering techniques are crucial in assigning unambiguously the structure of the 
mesophase of interest. Three different types of radiation are typically used in scat-
tering studies; light, X-ray and neutron. Discussions will be restricted to X-ray scat-
tering as this is the most frequently used approach for characterising liquid 
crystalline systems. 

 Typically small angle X-ray scattering (SAXS) experiments are used to measure 
the intensity of scattered X-rays at small angles to probe structure at the mesoscale, 

  Fig. 7.5    Cryo-TEM images of non-lamellar nanoparticles with a reversed bicontinuous ( a – d ) and 
reversed hexagonal ( e ,  f ) lyotropic liquid crystal phases. Figure adapted from (Barauskas et al. 
 2005b )       
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which can be expressed by the length of the scattering vector  q  (Bergman et al. 
 2000 ):
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where  λ  is the wavelength and  θ  the scattering angle. Typical values for the spacing 
of X-ray refl ections characteristic of selected liquid crystalline mesophases are 
summarized in Table  7.1 . Characteristic diffraction patterns are generated from an 
ordered microstructure due to specifi c repeat distances of the associated interlayer 
spacings,  d . Furthermore, the mean lattice parameter,  a , can be calculated from  d . 

  Fig. 7.6    Representative cryo-FESEM micrographs of cubosomes dispersions with spherical ( a – c ) 
or cubic morphology ( d – h ) compared with the proposed mathematical models based on differen-
tial geometry by Andersson et al. The  bar  represents 100 nm       
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The value for the interlayer spacings  d  is calculated using ( 7.3 ) (Dong et al.  2006 ) 
and is related to ( 7.2 ) by:

    
d

q
=

2p

  
 ( 7.3 ) 

   

SAXS is an indispensible tool for identifying the various mesophases; however, it is 
not without some drawbacks. Problems associated with SAXS include weak refl ec-
tions when acquired using a lab source, especially in dispersed liquid crystalline 
systems due to their small size and potentially non-uniform crystallographic micro-
structure. Furthermore, some systems may exhibit two or more co-existing meso-
phases and assignment of peaks to specifi c space groups becomes diffi cult 
(Amar-Yuli et al.  2009 ).   

7.4.5     Cubosomes for Vaccine Delivery 

 Lipid-based particulate carriers have long been known to have the potential to 
increase the amount of antigen reaching antigen-presenting cells (APCs) and to 
stimulate a stronger immune response compared to antigen alone (Gregoriadis 
 1990 ). Furthermore, co-delivery of antigen and adjuvant(s) such as pattern- 
recognition receptors (PRRs) is also possible within a particulate system. This facil-
itates concurrent antigen processing and presentation as well as signalling via the 
relevant PRR pathway, and has been demonstrated as an effective strategy for 
increasing antigen delivery to APCs and expansion of effector T-cells (Kaisho and 
Akira  2002 ; Schlosser et al.  2008 ). 

 Liposomes, dispersions of lamellar liquid crystals, have been extensively studied 
as drug and vaccine carriers (Myschik et al.  2009 ). In contrast, research in the area 
of non-lamellar dispersions for vaccine delivery is limited. Given their unique nano-
structure, cubosomes are fl exible in the types of antigens and adjuvants that can be 
incorporated. Furthermore, encapsulation within the complex cubosome structure 
may also offer protection of the active against rapid degradation (Barauskas et al. 
 2005a ). Cubosomes are also stable over time and upon dilution. These attributes 
make cubosomes an attractive candidate for delivery of subunit vaccines. 

   Table 7.1    Selected lyotropic mesophases and their corresponding peak ratios observed using 
SAXS   

 Mesophase  Descriptor  Peak spacing ratios in q space 

 Lamellar  L α   1:2:3:4:5:6:7… 
 Inverse hexagonal  H II   1:√3:√4:√7:√9:√12:√13… 
 Bicontinuous cubic  P (Im3m)  1:√2:√4:√6:√8:√10:√12… 

 D (Pn3m)  1:√2:√3:√4:√6:√8:√9… 
 G (Ia3d)  1:√6:√8:√14:√16:√20:√22… 

  Table compiled from Hyde ( 2001 ) and Wörle et al. ( 2006b )  
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 Cubosomes have been shown to successfully encapsulate a high percentage (as 
compared to liposomes) and show sustained release of the model antigen ovalbumin 
(OVA) in vitro (Rizwan et al.  2011 ). Whilst in vitro studies provide useful predic-
tions of release kinetics, the correlation with antigen release in vivo is multifactorial 
and uncertain. To confi rm this, in vivo release kinetics of OVA from various formu-
lations were investigated. This was achieved by determining proliferation of car-
boxyfl uorescein diacetate succinimidyl ester (CFSE)-labelled CD8 +  and CD4 +  
T-cells at various time points following immunization. The continued expansion of 
CFSE-labelled T-cells from vaccinated animals indicated that OVA in cubosomes 
was delivered in a sustained manner and therefore was available for processing and 
presentation for at least 14 days (Rizwan et al.  2013 ), providing a clear in vitro and 
in vivo correlation. 

 In order to generate antigen-specifi c responses, APCs such as dendritic cells 
(DCs) need to recognize and take up particles containing the antigen of interest, 
process it and present it in the context of major histocompatibility complex (MHC) 
molecules for recognition by naïve T-cells, leading to subsequent T-cell prolifera-
tion (Cools et al.  2007 ). In addition, the APCs must become activated, up-regulating 
the expression of co-stimulatory molecules and cytokines (Lee and Iwasaki  2007 ; 
Cools et al.  2007 ). Cubosomes were subsequently modifi ed to include the toll-like 
receptor (TLR) agonists, monophosphoryl lipid A (MPL) and imiquimod. All cubo-
some formulations were investigated in vitro in bone marrow-derived dendritic cells 
(BMDCs). The formulations were taken up by BMDCs in a lipid concentration- 
dependent manner. Co-stimulatory molecules, CD86 and MHC class-II, crucial for 
expansion of T-cells (Cools et al.  2007 ) were also expressed on the surface of acti-
vated BMDCs in a concentration-dependent manner. The greatest up-regulation of 
co-stimulatory molecules was observed when DCs were incubated with imiqui-
mod + MPL cubosomes. Subsequently, cellular and humoral responses in mice were 
investigated after vaccination with cubosomes and comparable liposomal formula-
tions. It was found that cubosomes containing the adjuvants imiquimod and MPL 
were more effi cient at inducing antigen-specifi c immune responses than liposomes. 
Furthermore, cubosomes were more effi cient at generating antigen-specifi c cellular 
responses and were equally as effective in generating humoral responses when com-
pared to alum, the most widely used vaccine adjuvant, and to liposomes (Rizwan 
et al.  2013 ). 

 Needle-free immunization using cubosomes has also been investigated 
(Rattanapak et al.  2012 ). Transcutaneous immunization (TCI) is a promising vac-
cination strategy for obvious economic and social reasons. However, from a scien-
tifi c view point, this approach is particularly attractive due to the abundance of 
APCs residing in the skin. The main obstacle for TCI, however, is the delivery of the 
vaccine through the stratum corneum to the APCs that reside in the deeper skin lay-
ers. Rattanapak et al. used a novel approach, where cubosomes and microneedles 
(MCNs) were utilized as a synergistic approach for vaccine delivery through the 
skin (   Rattanapak et al.  2013 ). Initially, permeation of various lipid-based particulate 
formulations (with or without MCN pretreatment) through stillborn piglet skin was 
investigated in vitro under occlusive conditions using Franz diffusion cells 
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(Rattanapak et al.  2012 ). Intriguingly, cubosomes showed superior skin retention 
compared with liposomes and transfersomes. Subsequently, the combined approach 
with cubosomes + MCN was applied. This approach leads to signifi cantly improved 
vaccine uptake into skin as compared to cubosomes alone. Vaccine antigen appeared 
to be preferentially taken up by a subpopulation of skin APC known as dermal DCs. 
Interestingly delivery of vaccine using MCNs in conjunction with cubosomes 
appeared to stimulate a CD8 +  T-cell biased immune response, crucial for effective 
therapeutic vaccines (van Duikeren et al.  2012 ).   

7.5     Conclusions 

 Cubosomes represent an intriguing new delivery system for various applications. In 
the context of vaccine delivery, although the research fi eld is still at early stages, 
cubosomes have been already shown to have the potential to encapsulate a high 
antigen load and can be modifi ed to include adjuvants such as PRRs. They are rec-
ognized by processional APCs, with the antigen being processed and presented via 
the elusive MHC class I pathway in vitro and in vivo. They are also well tolerated 
in vivo and lead to greater expansion of T-cells compared to liposomes. However, a 
lot remains to be understood about these novel lipid-based carrier systems before 
they can be used in a clinical setting.     
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    Chapter 8   
 ISCOMs as a Vaccine Delivery System 

             Hanne     M.     Nielsen     ,     Henriette     B.     Hübschmann     , and     Thomas     Rades    

8.1            Introduction 

 Vaccination utilizing adjuvants based on particles ranging from relatively small 
 particles such as virus-like (VLP) particles or larger particles as liposomes and 
emulsion droplets is a feasible way to stimulate specifi c immune responses. Immune 
stimulating complexes (ISCOMs) can be categorized as small 40–60 nm lipid-based 
particles that have shown potential as adjuvants and carriers for antigens aiming at 
prophylactic or therapeutic vaccination. Both cellular and humoral immune 
responses have been reported after vaccination with antigens and ISCOM adjuvants 
(Sun et al.  2009 ; Morelli et al.  2012 ); some of which are in clinical trials (Hook and 
Rades  2013 ). Immune stimulation has been observed after administration by injec-
tion, via administration to mucosal sites and after cutaneous application (Morein 
et al.  1984 ; Sjölander et al.  1998 ; Pearse and Drane  2005 ; Sun et al.  2009 ; Alving 
et al.  2012 ; Morelli et al.  2012 ). The adjuvant particles are formed in solution by 
self-assembly at well-defi ned ratios of phospholipid, saponin, and cholesterol. 
In aqueous dispersion, they appear as cage-like structures with a hollow centre. 
The state-of-the-art with regards to formulation design, characterization, and assess-
ment of the mechanisms of action for ISCOMs are summarized and discussed along 
with addressing the different routes of administration and the future perspectives of 
using ISCOMs as vaccine adjuvants.  
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8.2     Characteristics 

 ISCOMs, similar to VLPs (Chap.   9    ), are self-assembling particles of a size compa-
rable to most typical viruses; and are a type of vaccine adjuvant and delivery system 
that is attracting continuous attention for development of vaccines (Scheerlinck and 
Greenwood  2008 ). The resemblance to viruses in terms of geometry has been pro-
posed to be a benefi cial feature, as ISCOMs like VLPs may easily be recognized 
and taken up by antigen-presenting cells (APCs) due to their composition, size, and 
surface structure (Scheerlinck and Greenwood  2008 ), followed by processing and 
presentation of the antigen incorporated into the vaccine leading to induction of an 
immune response (Morein et al.  1984 ). ISCOMs may be comparable to other 
phospholipid- based vesicle adjuvants, as they have a hollow (albeit open) core, such 
as liposomes, niosomes, fl exosomes, vesosomes, exosomes, and ethosomes 
although these are usually larger in size being in the size range of 100 nm and larger. 
Likewise, emulsions and other lipid-based nanoparticles with potential as future 
adjuvants (like solid lipid nanoparticles and cubosomes) usually appear larger 
(Nordly et al.  2009 ). 

 Microscopic characterization of ISCOMs dispersed in aqueous medium by 
cryotransmission electron microscopy (TEM) displays spherical hollow particles in 
the size range of 40–60 nm (Fig.  8.1a ) with the presumed 3D hollow and open 
structure depicted in Fig.  8.1b . Recently, small angle X-ray scattering (SAXS) was 
employed to describe ISCOMs in suspension confi rming the organization of the 
constituents in the expected structure (Fig.  8.1c ) (Pedersen et al.  2012 ). Still, only 
qualifi ed theories exist as to how the single constituents self-assemble and are orga-
nized to form spherical hollow particles. One hypothesis is that the constituents are 
placed in stacks with the hydrophobic parts of the molecules facing the interior of 
the particle bilayers and the more hydrophilic parts oriented towards the aqueous 
dispersion medium inside and outside the particle structure (Kersten et al.  1991 ; 
   Kersten and Crommelin  1995 ). This hypothesis has been used to explain the orga-
nization of different types of ISCOM particles, irrespective of whether their net 
surface charge is negative or positive, as illustrated in Fig.  8.1d  (Lendemans et al. 
 2005 ). The particles are thus organized into hollow structures with both locally 
charged areas and lipophilic bilayers, with which the antigens of choice may inter-
act, and are shaped and stabilized by hydrophobic interactions, electrostatic repul-
sion, steric factors, and possibly hydrogen bonds (Kersten et al.  1991 ; Lendemans 
et al.  2005 ).   
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8.3     Lipid Components 

 By formulation design and exchange of the traditionally used excipients, new gen-
erations of ISCOMs have appeared with slightly improved safety as well as immu-
nostimulatory profi les. Such optimizations of the ISCOM properties have been done 
by partly or fully exchanging the neutral cholesterol component with the positively 
charged 3β-[ N -( N ′, N ′-dimethylaminoethane)-carbamoyl](DC)-cholesterol (   Kirkby 
and Samuelsen  2006 ; Lendemans et al.  2005 ) or by exchanging the zwitterionic 
phospholipids with the cationic dioleoyl-trimethyl-ammonium-propane (DOTAP) 
(Lendemans et al.  2007 ) (Fig.  8.2 ), to decrease the anionic surface charge (Posintros) 
or to provide them with a cationic surface charge (PLUSCOMs). The net cationic 
surface charge of PLUSCOMs (approximately +25 mV) (McBurney et al.  2008 ) 
will increase the likeliness of (electrostatic) interaction with antigens usually 
 possessing a pI value below 7.4, and thus carrying an overall negative charge at 

  Fig. 8.1    ( a ) Cryo-TEM image of ISCOMs in suspension (Pedersen et al.  2012 ), ( b ) schematic 
3D-model of the ISCOM cage-like structure, ( c ) structure of ISCOMs as derived from SAXS 
analysis (Pedersen et al.  2012 ), ( d ) proposed molecular alignment of components in lipid bilayers 
(Lendemans et al.  2005 ).  Reprinted with permissions from Elsevier  ( Figure 8.1A and 8.1C )  and 
from Wiley  ( Figure 8.1D )       
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physiological pH. This will also be the case for the Posintro nanoparticles (Kirkby 
and Samuelsen  2006 ), which are net anionic (approximately −30 mV), but contain 
a higher degree of cationic charges as compared to the fi rst generation of ISCOMs 
with a net charge of −40 mV. Incorporation of other components with lipidic back-
bone structures into the ISCOM particle could also prove benefi cial for the physical 
stability and/or the effect of the vaccine.  

 The presence of phospholipids in the ISCOMs has been reported to be important 
for the formation of the cage-like geometry (Myschik et al.  2006 ), yet also argued 
not to be crucial for particle formation, although important for the incorporation or 
association of antigens into the structure (Lövgren and Morein  1988 ). These dis-
crepancies refl ect the delicate balance between the molar ratios of the constituents 
that must be fi nely tuned when preparing ISCOMs by one of the various preparation 
methods, as will be described below. Also, the presence of cholesterol seems to be 
crucial in order to assemble the ISCOM structure together with the saponin adjuvant 
(Lövgren and Morein  1988 ).  

8.4     Immunostimulating Component 

 In order to improve the effi cacy of the formulation, also the immunogenic compo-
nent may be changed. Saponins are natural products, which are surface active, nega-
tively charged, possess strong adjuvant properties (   Dalsgard  1974 ; Alving et al. 
 2012 ) and are used as the main adjuvant in the preparation of ISCOMs. The crude 
saponin mixture used for fi rst generation ISCOMs is obtained from extracts from 
the  Quillaja saponaria  tree and is now partly purifi ed to give the currently most 
often used, although still complex mixture, Quil A, or completely purifi ed to obtain 
one of the main and most safe components, QS-21 from the extracts (Fig.  8.3 ) 
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  Fig. 8.2    Structures of lipid excipients used for the preparation of ISCOMs. ( a ) 1-palmitoyl- 2-
oleoyl- sn -glycero-3-phosphocholine (POPC), ( b ) dioleoyl-trimethyl-ammonium-propane (DOTAP), 
( c ) cholesterol, and ( d ) 3β-[ N -( N ′, N ′-dimethylaminoethane)-carbamoyl]((DC)-cholesterol)       
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(Hook and Rades  2013 ). The QS-21 fraction has also been used as an adjuvant 
together with other adjuvants leading to non-ISCOM type structures. Examples of 
these are the adjuvants AS01, AS02, and AS15 from GSK, all containing QS21 and 
monophosphoryl lipid A (MPL) and one also CpG (AS15), in liposomal (AS01, 
AS15) or oil-in-water emulsion formulations (AS02). Structurally, these saponins 
consist of a rigid lipophilic backbone and two large polar head groups and belong to 
the group of bola surfactants. They are characterized as triterpene glycosides, and 
the presence of the glucoronic acid present in the sugar units of the molecule is the 
main contributor to the negative charge. Their surfactant properties seem to be 
important for their role in the structure formation of the ISCOMs. Saponins have the 
ability to bind cholesterol, which is the reason for their known effect on cell plasma 
membranes mediating lysis at high concentrations due to cholesterol depletion, but 
may also contribute to the stabilization of the ISCOM structure, which at the same 
time reduces the side effects of the saponin upon injection (Pham et al.  2006 ). 
Although incorporation of the saponins into the ISCOMs has been shown to reduce 
the cytotoxic effect of the compound (Cox et al.  1998 ; Kamstrup et al.  2000 ), the 
high content of the immune stimulating and negatively charged saponin is respon-
sible for the often overall negative charge of the resulting ISCOM nanoparticles. 
The unique capacity to stimulate both the production of T-lymphocytes as well as to 
stimulate a Th1-based immune response makes saponins ideal adjuvants in thera-
peutic as well as prophylactic subunit vaccines (Sun et al  2009 ).  

 The structure–activity relationship of the saponins in terms of adjuvanticity is 
infl uenced by the hydrophilic sugar side chains and the hydrophobic aglycone back-
bone, but it is also thought to be related to the aldehyde groups present in the lipo-
philic backbone of the molecules or to the acyl residue bearing the aglycone (Sun 
et al.  2009 ; Soltysik et al.  1995 ). Yet, the overall adjuvant mechanism is not com-
pletely understood. Modifi cations in the acyl backbone (Wang et al.  2013 ) have, 
however, been shown to induce specifi c alterations in the antibody and cytotoxic 
T-cell responses as well as in the hemolytic activity of QS-21 variants (Chea et al. 
 2012 ). Also, synthetic versions of QS-21 including carbohydrate modifi cations of 
the apiose and xylose moieties along with acyl chain modifi cations have been shown 
to have an impact on the immunological response and on how well the QS-21 deriv-
ative is tolerated (Chea et al.  2012 ). Besides altering the properties described above 

  Fig. 8.3    Molecular structure of QS-21.  Reprinted with permission from Chea et al .  2012 . 
 Copyright  ( 2012 )  American Chemical Society        
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and improving the chemical stability of, e.g., the ester bond in the QS-21 acyl chain, 
the modifi ed versions may incorporate better in the ISCOM particles and thus pro-
vide improved properties of the ISCOMs in terms of tailoring the formulation 
towards a specifi c immune response. However, this remains still to be proven. Also, 
despite the fact that the use of novel QS-21 derivatives may improve the safety pro-
fi le, it may at the same time alter the immunostimulatory effect and thus, options to 
incorporate other potent immunostimulatory molecules could be explored, but has 
not yet been reported (Brito et al.  2013 ).  

8.5     Antigen Component 

 Due to the hollow geometry, the lipid bilayers and the presence of anionic (and 
sometimes cationic) patches in the ISCOM, the antigen may be enclosed in the 
pores, in the interior of the particle or closely associated to the surface of the parti-
cle, but cannot as such be encapsulated in the ISCOM structure like it is the case for, 
e.g., liposomes. The complexation with the ISCOM may thus be mediated by both 
electrostatic as well as hydrophobic interactions depending on the properties of the 
antigen. As mentioned above, a way to enhance the interaction between the adjuvant 
and the usually negatively charged antigen may be to modify the ISCOM to carry 
more positive charges, and it was indeed demonstrated that when using (partially) 
positively charged ISCOMs (e.g., PLUSCOMs), a high association of (negatively 
charged) antigen was achieved, likely due to electrostatic interactions between the 
ISCOM particles and the antigen (McBurney et al.  2008 ). Further, modifi cation of 
the ISCOM by incorporating molecules that may bind directly with a given antigen 
is a strategy to improve the loading of hydrophilic peptides or proteins in ISCOM- 
adjuvanted vaccines (Andersson et al.  2000 ; Cruz-Bustos et al.  2012 ). Some anti-
gens derived from membrane spanning proteins may by nature contain hydrophobic 
domains that are likely to interact with the hydrophobic parts of the ISCOM, and 
some antigens, such as tetanus toxoid, can be partly unfolded to expose hydrophobic 
patches (Morein et al.  1990 ) that can interact with the ISCOM lipid bilayers. Another 
viable approach is to conjugate lipophilic moieties to antigens to promote hydropho-
bic interactions with the ISCOM bilayers. An example of the latter approach 
includes conjugation of palmitic acid to ovalbumin (Könnings et al.  2002 ). However, 
care should be taken that this does not compromise the antigenicity of the 
molecule. 

 In effi cacy studies, the antigen is usually co-administered with the adjuvant and 
detailed systematic studies regarding the localization of the antigen on or in the 
ISCOM structure prior to and after administration remains still to be reported. Electron 
microscopy does not provide suffi cient resolution unless a thick antigen corona covers 
the ISCOMs, thus possible quantitative adsorption experiments along with biophysical 
analysis by, e.g., isothermal calorimetry may be used to describe the interaction 
between ISCOMs and antigens. Also, as recently demonstrated, modelling of SAXS 
data might provide valuable information about the localization and the amount of 
antigen interacting with the ISCOM particles (Pedersen et al.  2012 ).  
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8.6     ISCOM Terminology 

 The terminology used in literature for describing the various ISCOM nanoparticles 
is depending on the specifi c composition, and to some extent refl ects their proper-
ties. In Table  8.1 , the most often used terminologies are described. The differences 
mainly lie in whether a crude saponin mixture or the different fractions of the Quil 
A components are used resulting in different preparations that may be recommended 
for different species depending on the species sensitivity to the saponin component 
(Fossum et al.  2014 ).

   Table 8.1    Overview of the composition and properties of different ISCOM-based adjuvants and 
vaccines   

 Terminology  Composition  Properties  References 

 ISCOM  Used to describe the original 
technology for the adjuvant consisting 
of Quil A, cholesterol, and 
phospholipids; which has subsequently 
been optimized. Currently used as a 
general term describing the self-
assembled structures (Fig.  8.1 ) used for 
vaccination purposes, i.e., with or 
without content of antigen 

 Hollow 
structure, size: 
40–50 nm, zeta 
potential: 

 Morein et al. 
( 1984 ); Brito 
et al. ( 2013 ); 
Hook and Rades 
( 2013 )  −10 to −40 mV 

(depending on 
preparation 
procedure) 

 ISCOM-Matrix  Often used to describe the adjuvant 
nanoparticle without antigen content 

 As ISCOM 

 ISCOMATRIX  Preformed adjuvant with different ratio 
of a more purifi ed Quil A as opposed to 
the original ISCOM technology. 
Without content of antigen 

 As ISCOM  Vujanic et al. 
( 2010 ); Brito 
et al. ( 2013 ); 
DiStefano et al. 
( 2013 ) 

 MATRIX-M  Two different fractions of Quil A as 
immunopotentiators 

 As ISCOM  Fossum et al. 
( 2014 ) 

 MATRIX-Q  Quil A incorporated as 
immunopotentiator 

 As ISCOM  Fossum et al. 
( 2014 ) 

 Posintro  Positively charged DC-cholesterol 
partly exchanged with cholesterol. Less 
negative than ISCOM prepared under 
same conditions (−40 mV) 

 Size: 40–50 nm  Madsen et al. 
( 2009 ); Madsen 
et al. ( 2010 ) 

 Zeta potential: 
−30 mV 

 PLUSCOM  Cholesterol fully exchanged with 
DC-cholesterol 

 Size: 40–50 nm  Lendemans 
et al. ( 2005 ); 
McBurney et al. 
( 2008 ) 

 Zeta potential: 
+25 mV 

 ISCOPREP 
saponin 

 Specifi c type of saponin for use in the 
preparation of ISCOMs or 
ISCOMATRIX 

 n.a.  DiStefano et al. 
( 2013 ) 

  DC-cholesterol = 3β-[ N -( N ′, N ′-dimethylaminoethane)-carbamoyl]-cholesterol 
 Most names are registered trademarks and some commercially available  
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8.7        Preparation and Characterization of ISCOM-Based 
Vaccines 

 The properties of ISCOM adjuvants or ISCOM-based particles depend on a variety 
of factors; some of which are described below. 

8.7.1     Preparation Methods 

 The methods used for preparation of ISCOMs are similar to the methods used for 
preparation of liposomes, and include dialysis, ultracentrifugation, lipid fi lm hydra-
tion, freeze drying, and ethanol or ether injection. The methodologies and their pros 
and cons are thoroughly described elsewhere (Hook and Rades  2013 ; Sun et al.  2009 ) 
and will not be further addressed in the present chapter. However, briefl y it should be 
mentioned that although each of the mentioned methods results in colloidal disper-
sions, the main differences lie in (a) the time needed for reaching equilibrium mainly 
due to the need for removing the lipid solubilizing surfactant, (b) the sample yield, 
and (c) the homogeneity of the resulting dispersion. Overall, despite the relatively 
long dialysis time needed to remove the solubilizing surfactant, the dialysis method 
is often preferred due to the high homogeneity of the resulting ISCOMs.  

8.7.2     Component Ratio 

 The need for including both phospholipid and cholesterol for the formation of 
ISCOMs is well recognized (Kersten et al.  1991 ; Myschik et al.  2006 ) although it 
has been extensively debated. The type of the three components, the exact ratio as 
well as the preparation method and conditions used determine the properties of the 
resulting self-assembled dispersed structures (Myschik et al.  2006 ; Hook and Rades 
 2013 ). Moreover, the total concentration of lipids is important for the outcome of 
the preparation. As mentioned, the molecular ratio of the different lipids and the 
saponin are important for the preparation of the ISCOMs. Thus, the narrow window 
of molar ratios that lead to ISCOM formation under the specifi ed conditions must 
be identifi ed, optimally by constructing ternary phase diagrams (Hook and Rades 
 2013 ). Briefl y, as described in literature, in the absence of the saponin, liposomes 
are formed, whereas even relatively low amounts of saponin induce the formation of 
ISCOM structures. If the concentration of the saponin is too low, the dispersion will 
appear as a mixture of liposomes with ISCOM and/or ring-like micelles. Worm-like 
micelles and helical structures are typically formed if only cholesterol and saponin 
are present. Also, as the critical micellar concentration (CMC) of saponin is low 
compared to the large concentrations required for ISCOM preparation (e.g., the 
CMC for Quil A was determined to 0.03 % (Özel et al.  1989 )), the appearance of 
saponin micelles may occur in the sample (Madsen et al.  2009 ). Further, lamellar 
structures are dominant if no or only a very little fraction of cholesterol is present. 
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 The optimal window for ISCOM preparation may thus more realistically be 
described as the ratios where mainly ISCOM structures are present after the com-
plete preparation process rather than the more unlikely case of obtaining a sample 
with only ISCOM structures present. It should be emphasized that the theoretical 
ratios used may not represent the fi nal ratios in the ISCOMs. As an example, the 
preparation of ISCOMs and Posintro by the dialysis method (Höglund et al.  1989 ) 
was done with an initial weight ratio of 5:1:1 for Quil A, POPC, and cholesterol and 
when exchanging some of the cholesterol with DC-cholesterol, quantitative lipid 
analysis showed that the relative amount of DC-cholesterol compared to the other 
lipids in the resulting particles was much higher than theoretically expected, due to 
loss during the dialysis process (Madsen, et al.  2010 ). In a study by Behboudi et al. 
( 1995 ), it was also shown that for fi ve different types of ISCOMs, the measured 
amount of lipids, especially the phospholipid, was much lower than the theoretical 
value, whereas the amount of saponin in most cases was close to the expected value. 

 Although the colloidal stability of some ISCOM dispersions has been reported to 
be longer than a year, the colloidal stability is critical to consider when handling 
ISCOM-based vaccines. Especially as it is a self-assembled particle in an equilib-
rium state, the colloidal stability of the dispersion will depend on the surrounding 
conditions, e.g., the storage medium and temperature, and changes to this as for 
example mixing and diluting with an antigen solution prior to use.  

8.7.3     Structural Characterization 

 As the sample stability is dependent on, e.g., the ISCOM concentration and the 
ionic strength of the dispersion medium, care must be taken when preparing sam-
ples for analysis and when interpreting results obtained on for example diluted 
samples. Dilution of samples may be needed for proper determination of the size by 
using dynamic laser scattering (DLS) or of the zeta potential by using laser Doppler 
electrophoresis, which is often measured on diluted samples in low-ionic strength 
buffer. However, the size and shape characteristics may change upon storage or 
dilution, as results of  in vitro  studies have demonstrated that with higher dilution, 
the structure changes from ISCOM structures to more liposomal-like structures 
indicating a diffusion of the saponin out of the ISCOM (   Lendemans et al.  2006 ). As 
an expression of negative surface charge density, the mobility of ISCOM particles 
has been monitored by titration with a cationic polymer, which clearly showed the 
change in surface charge density when incorporating the positively charged 
DC-cholesterol (Madsen et al.  2010 ).  

8.7.4     Size and Structure 

 For confi rmation of size and structural properties, transmission electron microscopy 
(TEM) or cryo-TEM has traditionally been applied elucidating ISCOMs as spheri-
cal particles in the size range of 40–60 nm and composed of ring-like subunits and 
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a hollow centre (Özel et al.  1989 ; Kersten et al.  1991 ). The pores of around 7–10 nm 
in the structure (Kersten et al.  1988 ; Özel et al.  1989 ) has also been indicated by 
freeze fracture electron microscopy. 

 Recently, SAXS was applied on an undiluted ISCOM sample prepared by 
 dialysis with a resulting size of 43.9 ± 0.2 nm and a polydispersity index of 0.14, 
measured by DLS, indicating a rather narrow and homogeneous size distribution 
of the ISCOM particles. Based on Monte Carlo simulation integrations, a novel 
modelling method was developed and implemented in order to describe the 
obtained SAXS data. The sample clearly showed a more polydisperse distribution 
with three types of perforated bilayer vesicles; namely icosahedral (29 nm), foot-
ball (49 nm), and tennis ball (38 nm) structures. The predominant species that was 
named the tennis ball structure, accounted for 76–79 % of the ISCOMs in the 
dispersion by number and mass fractions, respectively. Modeling of these 
ISCOMs showed 20 pores per tennis ball of a diameter of 5–6 nm and a lipid 
bilayer membrane thickness of 4.6 nm (Pedersen et al.  2012 ), corresponding to 
the general perception of the ISCOM pore size. The structures determined by 
SAXS were very similar to structures observed in cryo-TEM images on the same 
batch (Fig.  8.4 ) strongly indicating that SAXS may be used to model ISCOM 
structures.   

  Fig. 8.4    Cryo-TEM image of dispersed ISCOMs (scale bar 50 nm) and SAXS-derived suggested 
structures indicating three different populations of ISCOMs in the sample (not to scale).  Reprinted 
from Pedersen  et al. ( 2012 )  with permission from Elsevier        
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8.7.5     Association of Antigen 

 Co-administration of antigens to preformed ISCOM-based adjuvants likely broad-
ens the use of the adjuvants as compared to ISCOM-based vaccines with antigens 
incorporated or chemically bound to the surface. In both cases, however, the stabil-
ity and the localization of the antigen are considered key for the effi cacy of the vac-
cine (Brito et al.  2013 ). How and to which extent the antigens may incorporate into 
the ISCOMs is speculated to depend strongly on the properties of both components. 
Only rarely, the ISCOMs with associated antigens are distinguishable from the 
ISCOMs without the antigen present, as visualized by electron microscopy (Barr 
and Mitchell  1996 ), which indicates that only a low number of antigen molecules 
may (partly) be incorporated in the adjuvant system (Hook and Rades  2013 ). This 
hypothesis was confi rmed based on modeling of data obtained by using SAXS, as it 
was evident that only one molecule on average of the tetanus toxoid antigen mono-
mer associated to one ISCOM structure with a size of 38 nm, which did not lead to 
a detectable change in the size as measured by using DLS. Further, and surprisingly, 
it was indicated that the tetanus toxoid was located just below the membrane inside 
the particles (Fig.  8.5 ). Thus, scattering may provide a useful tool to predict the 
further information on the interaction of specifi c antigens with ISCOMs.    

8.8     Administration and Mechanisms of Action 

 The exact mode of action for ISCOMs to induce an immune response is not com-
pletely understood, yet at the cellular level, the endocytotic uptake in APCs is stimu-
lated by the particulate nature of the adjuvant/drug delivery system (Kersten and 
Crommelin  2003 ), which is likely to be dependent on the interaction with the plasma 
membrane of the cell.  

  Fig. 8.5    Localization of tetanus toxoid on the predominant ISCOM species (38 nm, pore size 
5–6 nm) derived from SAXS analysis. Surface representation (left) and cross-section (right) 
 Reprinted from Pedersen  et al. ( 2012 )  with permission from Elsevier        
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8.8.1     Interaction with Cells and Lipid Bilayer Membranes 

 The cellular interaction may also be unspecifi cally increased due to the interaction 
between the saponin carbohydrate and specifi c receptors on dendritic cells (DCs) 
(Jiang et al.  1995 ) or by interaction with the cholesterol component of the plasma 
membrane (   Bangham et al.  1962 ). Also, the overall charge and thus composition of the 
particle may be important. An example is the clear increase in the interaction between 
net negatively charged stratum corneum-like liposomes and the Posintro, which has 
(theoretically) 25 % of the cholesterol exchanged with DC-cholesterol as compared to 
ISCOMs without DC-cholesterol and thus a higher degree of cationic charges (Madsen 
et al.  2010 ). This entropy-driven interaction was clearly dependent on the content of 
DC-cholesterol in the ISCOMs and resulted in interference with the lipid bilayer. In 
addition, the uptake specifi city and kinetics may be modulated by formulation design 
to target, e.g., B-cells, by incorporating specifi c receptor ligands (Lycke  2004 ; Helgeby 
et al.  2006 ). The uptake and resulting specifi c cytokine responses may be dependent 
not only on the incorporated or co-administered antigen, but also on the adjuvant/car-
rier composition as well as the route and mode of administration.  

8.8.2     Injection of ISCOM-Based Vaccines 

 The structure of the nanoparticles will inevitably be affected by the administration 
due to dilution or interaction with the surrounding biological matrix. Upon either 
subcutaneous (s.c.) or intramuscular (i.m.) injection, the ISCOMs may form a depot 
at the injection site and by this attract APCs although the results of some studies 
claim that the particles quickly disappear from the site of injection (Pearse and 
Drane  2005 ; Morein and Bengtsson  1998 ). Given the charged properties of ISCOMs, 
it is likely that some aggregation occurs as reported (Henriksen-Lacey et al.  2010 ) 
for the somewhat larger liposome adjuvant CAF01 currently in clinical trials, fol-
lowed by disintegration and diffusion of individual components from the depot over 
time. The kinetics of the depot formation and disassembly will depend on the spe-
cifi c formulation and site of injection. However, it has been demonstrated that the 
size of nanoparticles in a range from 25 to 100 nm is a prerequisite for their ability 
to be transported via the lymphatic capillaries to the draining lymph nodes after 
injection, thus targeting lymph node-residing DCs (Reddy et al.  2007 ). This corre-
sponds with reports that the DCs in the lymphoid organs and the spleen have been 
shown to be a target after s.c. or intraperitoneal injection of ISCOMs in mice 
(Sjölander et al.  1996 ,  1997 ). 

 Recent studies have shown promising results using ISCOMs as adjuvants admin-
istered by injection; one being a phase 1 clinical study in healthy adults demon-
strating effi cacy of infl uenza vaccination (Fries et al.  2013 ). Further, chickens were 
effi ciently vaccinated by i.m. administration resulting in increased levels of 
antigen- specifi c intestinal IgA and CD4 and CD8 positive intestinal intraepithelial 
T-lymphocytes after a subsequent oral challenge with the antigen (Zhang et al.  2014 ).  
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8.8.3     Non-injectable Administration 
of ISCOM-Based Vaccines 

 Non-injectable administration of vaccines constitutes a more patient friendly, more 
convenient, and potentially also safer alternative to i.m. and s.c. vaccination strate-
gies. At the same time it provides the possibility for induction of a local immune 
response at the site of dosing, e.g., to obtain a higher mucosal IgA response after 
dosing to mucosal sites. Mucosal administration of nanoparticle vaccines includes 
dosing primarily via the airway and oral routes, which are also the primary sites of 
infection. 

 Oral administration and single-dose vaccines have long been desired, yet major 
challenges remain to formulate a vaccine that is effectively delivered to the target, 
the gut-associated lymphoid tissue (GALT) within a time frame ensuring suffi cient 
colloidal stability of the drug delivery system and also the appropriate chemical 
stability of the antigen or subunit antigen in the harsh environment of the gastroin-
testinal tract. Although the oral mucosa in general is considered to be relatively 
immune tolerant rather than mediating immune responses (Scheerlinck and 
Greenwood  2008 ) it is intriguing to aim for an oral vaccine with ISCOMs and 
indeed some are tested after oral administration (Gregory et al.  2013 ; Mowat 
et al.  1999 ). 

 Immunization via the airways may be achieved via the nose- or bronchial- 
associated lymphoid tissue (NALT and BALT, respectively) and ISCOMs are also a 
realistic option to be applied for this route of vaccination. Administration via the 
nose was recently demonstrated to be effective in boosting an existing immunity in 
draining nasal lymph nodes, whereas pulmonary administration induced strong 
immune responses in both the lung lavage as well as in the blood (Vujanic et al. 
 2012 ). Pulmonary administration of the ISCOMATRIX™ was also shown effective 
for infl uenza vaccination (Vujanic et al.  2010 ). Also, for vaccination against respira-
tory syncytial virus, the particle size of the nanoparticles was found to signifi cantly 
infl uence the immune response (Mottram et al.  2007 ), which should attract attention 
for the development of future vaccines. 

 Transcutaneous immunization by cutaneous application of ISCOM-based vac-
cines has also been investigated (Combadiere and Mahe  2008 ). This is mediated by 
the fact that the strongly immune competent Langerhans cells (LC) are present in 
high numbers in the epidermis and thus covering a large area underneath the skin 
surface (Huang  2007 ). Upon stimulation, these LCs, and activated DCs residing in 
the dermis, migrate to the lymph nodes resulting in cellular immune responses and 
antibody production resulting in also mucosal immunity (Frech et al.  2008 ). 
Penetration of the adjuvant and an antigen through the outermost layer of the skin, 
the stratum corneum, constitutes a delivery challenge and considerable efforts are 
put into creation of novel devices and strategies for expanding the repertoire of skin- 
breaching modalities, such as the use of microneedles (Bal et al.  2010 ). Also, the 
development of novel adjuvants suitable for transcutaneous immunization is a focus 
area, and it was demonstrated that the application of Posintro particles to human 
skin  in vitro  signifi cantly enhanced the penetration of an incorporated dye into 
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 stratum corneum, and that the application of ISCOMs using a hydrogel patch 
resulted in ultrastructural changes in the human stratum corneum (Madsen et al. 
 2009 ). Previously, indications that the hair follicles may be a route of entry for 
ISCOM- based vaccines were given when fl uorophore-labeled Posintro particles 
were observed to localize in the hair follicles of mouse skin after cutaneous applica-
tion  in vivo  (Madsen  2010 ). Especially, since the appearance of LC protrusions is 
pronounced close to the hair follicles, this fi nding is valuable.  

8.9     Summary and Perspectives 

 Since the fi rst description of the potential of ISCOMs as adjuvants by Morein et al. 
( 1984 ), the technology has matured signifi cantly, and several vaccines with this 
adjuvant have been tested in clinical trials (Hook and Rades  2013 ). Extensive modi-
fi cation of the basic technology was fi rst made to mitigate the toxicity due to the 
presence of the saponin, which included use of purifi ed fractions of the crude 
mixture of saponins, a different Quil A-to-lipid ratio (Brito et al.  2013 ) as well as 
synthetic, more specifi c immunopotentiators prepared from chemical modifi cations 
of the saponin skeleton. Recent mechanistic insight into the infl uence of the glycol 
moieties on the adjuvant is opening new perspectives for improved design of 
carbohydrate- based vaccines (Berti and Adamo  2013 ) and by use of the progressing 
biosynthetic technologies, novel glycoconjugates may be pursued for use in future 
ISCOM-based vaccines. 

 Research is ongoing with regards to optimizing the formulation design of the 
ISCOM-based adjuvants and vaccines, especially on the control of the type and 
specifi city, as well as effi cacy of the immune response generated, which seem to 
depend on both the properties of the nanoparticles, the administration route, the 
dose and dosing regimen as well as the antigen used. The stability and localization 
of the co-delivered antigens are key factors for the concept to be a success, and since 
the performance of ISCOM-based vaccines appears to be partially dependent on 
antigen association (Brito et al.  2013 ) various approaches to improve the association 
and binding of the antigens to the particles have been described. The successful use 
of for example Matrix-M as an adjuvant simply admixed with the antigen, poses the 
question as to what extent incorporation of the antigen into the ISCOM structure is 
really needed (Bengtsson et al.  2011 ). The concept of using preformed ISCOM 
adjuvants to which the antigen of choice is added prior to use seems therefore prom-
ising both from a manufacturing perspective as well as with regards to broader 
application ranges. However, also in this case it is of importance to investigate the 
antigen-to-particle association behavior and the importance of this to the effi cacy of 
the vaccine. Many open or only partially answered questions still remain in order to 
fully understand and develop ISCOM adjuvants and vaccines further: The molecular 
level mechanism of ISCOM adjuvanticity is still not well understood, nor is the fate 
of ISCOMS after administration. Also the question of what importance the different 
colloidal structures, which are found when slightly modifying the component ratios 
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in ISCOM formulations, are for adjuvanticity or immunogenicity needs to be further 
investigated. The question regarding in which cases co-localization of the antigen 
and the ISCOM is advantageous and in which cases co-administration is suffi cient 
should be investigated further. Finally, alternative application routes need to be 
explored and exploited in more detail. These are only a few of the remaining    chal-
lenges that inspire current application of ISCOM as adjuvants and require future 
research. Despite these open questions, as ISCOM-based vaccines are generally 
well tolerated and only inducing minor local side effects upon injection, they are 
likely to be a part of the future adjuvants and vaccines also for, e.g., cancer vaccines 
and for both human and veterinary use.     
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    Chapter 9   
 Virus-Like Particles, a Versatile Subunit 
Vaccine Platform 

             Braeden     Donaldson    ,     Farah     Al-Barwani    ,     Vivienne     Young    ,     Sarah     Scullion    , 
    Vernon     Ward    , and     Sarah     Young    

9.1            Introduction 

 Novel vaccine development requires a balance between eliciting a potent immune 
response while limiting the unintentional induction of hypersensitivity and off- 
target effects. Virus-like particles (VLPs) are a form of subunit vaccine consisting 
of self-assembling shells derived from virus capsid proteins. Due to the absence of 
viral genomic material, VLPs are rendered non-replicative and non-infectious, 
enhancing their safety profi le. In comparison to other subunit vaccines, the resem-
blance of VLPs to their corresponding native virus provides enhanced immunoge-
nicity and specifi city. VLP capsid proteins retain their natural structural 
conformation, harbouring undamaged antigenic motifs in a more immunologically 
relevant state than an inactivated virus vaccine. VLPs can also resemble a live atten-
uated virus without replicative or infectious capacity due to structural similarity and 
utilisation of similar processing pathways. In general, VLPs are considered signifi -
cantly safer than many other virally derived vaccines by avoiding potential hazards 
such as attenuated virus reversion or incomplete inactivation. 
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 The fi rst VLP identifi ed and studied was isolated from patients infected with 
Hepatitis B virus (HBV) in 1968 (Bayer et al.  1968 ). Due to the ability of some viral 
capsid proteins to spontaneously form stable particles, many viruses produce VLPs 
as a natural by-product of their infection cycle. Engerix (GlaxoSmithKline) was the 
fi rst human VLP-based vaccine, licensed in 1989 for vaccination against HBV. Since 
then a number of VLP vaccines have been approved for clinical use, including Epaxal 
(Crucell) for Hepatitis A virus (HAV), Recombivax (Merck), Hepavax (Crucell), and 
many others for HBV, Gardasil (Merck), and Cervarix (GlaxoSmithKline) for human 
papillomavirus (HPV), and Infl exal V (Crucell) for Infl uenza. Bolstered by the suc-
cess of these vaccines many new VLPs are being developed, with a selection of 
examples summarised in Table  9.1 . In addition, VLPs have also been produced from 
various non-human mammalian viruses, primarily for vaccination of livestock. 
Examples include porcine circovirus (Kim et al.  2002 ), bovine rotavirus (Rodriguez-
Limas et al.  2011 ), chicken anaemia virus (Noteborn et al.  1998 ; Koch et al.  1995 ), 
SARS coronavirus (Liu et al.  2011 ), Nipah virus (Walpita et al.  2011 ), and swine 
vesicular stomatitis virus (Ko et al.  2005 ).

9.2        VLP Structural Conformation 

 Spontaneous polymerisation of a range of viral capsid proteins can yield VLPs with 
authentic geometric symmetry, usually icosahedral, spherical or rod-like in shape, 
depending on the source virus. VLPs can be generally categorised into groups based 
on their structural complexity, including single-protein non-enveloped (e.g. VLPs 
derived from caliciviruses (Jiang et al.  1992 ), papillomaviruses (Kirnbauer et al. 
 1992 ), and parvoviruses (Lopez de Turiso et al.  1992 )), multi-protein non- enveloped 
(e.g. VLPs derived from infectious bursal disease virus (Kibenge et al.  1999 ), polio-
virus (Brautigam et al.  1993 ), and reoviruses (French et al.  1990 ; French and Roy 
 1990 )) and enveloped VLPs (e.g. VLPs derived from Hantaan virus (Betenbaugh 
et al.  1995 ), hepatitis C virus (Baumert et al.  1998 ), infl uenza A (Latham and 
Galarza  2001 ), and retroviruses (Yamshchikov et al.  1995 )) as illustrated in Fig.  9.1 . 
While single-protein VLPs have a relatively simple structure, multi-protein VLPs 
can contain unique structural features such as several distinct capsid layers. For 
example, expression of various combinations of the VP2, VP4, VP6, and VP7 cap-
sid proteins of rotavirus can produce stable VLPs with double or even triple capsid 
layers (Crawford et al.  1994 ; Sabara et al.  1991 ).  

 Multi-protein VLPs can also be produced from variant copies of the same protein 
derived from different viral strains. These mosaic VLPs effi ciently confer protec-
tion against several strains of the same virus (Buonamassa et al.  2002 ). An alterna-
tive means of increasing VLP versatility is through the incorporation of antigens 
from heterologous sources. Chimeric VLPs contain antigenic material from a target 
source supported by a stable VLP framework. These antigens can be inserted as 
peptides into the VLP capsid protein or substructural secondary VLP proteins, or 
covalently coupled to the surface of VLP. Chimeric VLPs have an extensive range 
of potential applications, and will be discussed later in this chapter. Enveloped 
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VLPs consist of either a single-protein or multi-protein VLPs encapsulated in a 
lipid bilayer captured from the cell membrane. Co-expression of haemagglutinin 
(HA), neuraminidase (NA), matrix protein M1, and ion channel protein M2 from 
infl uenza virus produces enveloped VLPs with the same size and morphology as 
native infl uenza virions, including the characteristic surface spikes HA and NA 
(Latham and Galarza  2001 ). The lipid bilayer of enveloped VLPs can also support 
the incorporation of transmembrane anchored proteins from multiple viral strains 
(enveloped mosaic VLPs) or even heterologous pathogens (enveloped chimeric 
VLPs) (Buonaguro et al.  2001 ; Halsey et al.  2008 ; Visciano et al.  2011 ). VLP struc-
tural complexity appears to have few limitations, with intriguing novel constructs 
still frequently theorised and investigated.  

9.3     Production of VLPs 

 VLPs are a natural by-product produced during the infection cycle of certain viruses 
(Bayer et al.  1968 ). The same characteristics that benefi t effi cient virus reproduc-
tion, such as spontaneously polymerising capsid proteins, also promote the 

  Fig. 9.1    VLP Structure. VLPs can be categorised based on characteristic structural features such 
as capsid protein composition, encapsulation inside a lipid bilayer envelope, and incorporation 
of antigens by recombinant insertion or chemical conjugation. Additional combinations other 
than those illustrated also exist, such as multi-protein chimeric VLPs and enveloped mosaic or 
chimeric VLPs       
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formation of VLPs; however, the isolation of VLPs produced from virally infected 
cells is not an effi cient means of purifi cation. An expansive range of protein 
 expression systems have been developed for a variety of applications, and can be 
effectively commandeered for the production and purifi cation of high quality VLPs. 
Recombinant expression of viral capsid proteins through tailored expression sys-
tems can also enable the production of VLPs from viruses not routinely cultured in 
laboratories. Common VLP expression systems include bacteria, yeast, insect cell 
lines, mammalian cell lines, plants, and cell-free cultures. Each expression system 
has its benefi ts and pitfalls as outlined in Table  9.2  (Rebeaud and Bachmann  2012 ). 
While most VLPs can be produced in multiple expression systems, the quaternary 
structural conformation of the capsid proteins produced can vary due to differences 
in post-translational modifi cations such as phosphorylation and glycosylation. This 
can have signifi cant effects on the immunogenicity of VLPs, as these modifi cations 
are often essential for eliciting the desired immune response.

    Escherichia coli  ( E. coli ) has long been a primary laboratory workhorse bacte-
rium, facilitating the expression and purifi cation of recombinant proteins through 
plasmid transformation or bacteriophage vector delivery. Expression in  E. coli  is 
often preferred when producing small proteins with limited post-translational modi-
fi cations; however, larger proteins with post-translational modifi cations require a 
more complex expression system (e.g. Chinese hamster ovary (CHO) mammalian 
cell line). The presence of endotoxins during downstream purifi cation also presents 
a signifi cant challenge for vaccine development from a bacterial expression system. 
Each VLP is unique, with optimal expression identifi ed through trial and error by 
comparing the translated products of multiple expression systems. For example, 
Rabbit Haemorrhagic Disease Virus (RHDV) VLPs can be optimally produced by 
expressing the RHDV VP60 capsid protein in  Spodoptera frugiperda  (SF) cells 
using a recombinant baculovirus vector (Young et al.  2004 ,  2006 ; Peacey et al. 
 2007 ). Icosahedral T = 3 VLPs with a diameter of around 40 nm spontaneously form 
when VP60 is expressed in SF21 cells. Each VLP contains 180 copies of the VP60 
capsid protein, representing a relatively simple single-protein non-enveloped 
VLP. These VLPs structurally resemble native RHDV virions, as illustrated in 
Fig.  9.2  (Katpally et al.  2010 ; Wang et al.  2013 ).  

 Production of VLPs in transgenic plants (e.g. tobacco, potato, tomato) is a rela-
tively new concept with interesting applications. Expression of recombinant pro-
teins in plants is achieved through transgene insertion into the nuclear or plastid 
genome, or using plant viral vectors. While plant cells do not have a mammalian- 
like post-translational modifi cation system, plant-specifi c glycosylation can have an 
immunostimulatory effect. Some examples of VLPs produced in a transgenic plant 
system include Norwalk virus (Tacket  2007 ; Tacket et al.  2000 ), HIV-1 (Scotti et al. 
 2009 ), and infl uenza virus VLPs (Medicago). Another recently developed expres-
sion platform is the cell-free system. This usually consists of extracts from  E. coli  
or yeast cells, and was developed primarily to enable the production of viral capsid 
proteins which have toxic intermediate protein forms. Development of VLPs con-
taining unnatural amino acids (UAAs) has also been achieved using the cell-free 
system. The non-replenishing nature of a cell-free system renders this method 
highly demanding with some scalability limitations. The infl uenza vaccine 
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   Table 9.2    VLP expression    systems   

 Advantages  Limitations 

  Bacteria  
(e.g.  Escherichia coli )

     

 • Rapid cell growth  • No post- translational 
modifi cation 

 • Highest yield  • Limited applications for 
mammalian VLPs 

 • Low production cost  • May form inclusion bodies 
 • Scalable  • Requires removal of 

endotoxins 
  Yeast  
(e.g.  Saccharomyces 
cerevisiae )

     

 • Rapid cell growth  • Limited post-translational 
modifi cation 

 • High yield  • May form inclusion bodies 
 • Low production cost 
 • Scalable 
 • Already has some regulatory 

approval 
  Insect cells/Baculovirus  
(e.g.  Spodoptera 
frugiperda )

     

 • Average cell growth  • Requires removal of 
baculovirus proteins 

 • High yield  • May form inclusion bodies 
 • Scalable 
 • Complex post- translational 

modifi cation 
 • Formation of multi-protein 

VLP 
  Plant cells  
(e.g.  Nicotiana  sp.)

     

 • Rapid production  • Limited post-translational 
modifi cation 

 • Low production cost  • Relatively new system 
 • Scalable 

  Mammalian cells  
(e.g. Chinese hamster 
ovary cells)

     

 • Scalable  • Slow growth 
 • Complex post- translational 

modifi cation 
 • Low yield 

 • Formation of multi-protein  • Demanding culture 
conditions 

 • VLP  • High production cost 
 • Potential infectious 

contamination 
  Cell free

      

 • Almost exclusive production 
of target protein 

 • Very high production cost 

 • Limited cellular contaminants  • Limited scalability 
 • Enables production of VLPs 

containing non-natural amino 
acids or toxic protein 
intermediates 

 • Relatively new system, not 
well characterised 

  Adapted from Rebeaud and Bachmann ( 2012 )  
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Infl exal V (Herzog et al.  2009 ), and the hepatitis A vaccine Epaxal (Bovier  2008 ) 
(Crucell) are two commercialised VLP vaccines that consist of virosomes produced 
in a cell-free expression system. 

 Following production, VLPs must be isolated from the expression system and 
purifi ed to suffi cient quality for downstream applications. VLPs are usually isolated 
through a combination of cell lysis, removal of cellular debris, VLP concentration, 
and selective purifi cation. Some mammalian and insect cell lines secrete VLPs into 
the supernatant, negating the necessity for cell lysis (Vicente et al.  2011 ). Resilient 
cells (e.g. bacteria, plant cells) may require more robust mechanical manipulation 
such as ultrasonication, compression, abrasion, repeated freeze/thawing, or enzymatic 

  Fig. 9.2    Comparison of RHDV and RHDV VLP structure. RHDV VLPs expressed in insect cells 
visibly share structural characteristics with the native virus as viewed by transmission electron 
microscopy ( a ,  b ) and 3D modelling from cryo-electron microscopy and crystallography ( c ,  d ). ( a ,  c ) 
Adapted from Wang et al. ( 2013 ). ( d ) Generously supplied by Thomas J. Smith (Katpally et al.  2010 )       
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degradation for VLP release (Cull and McHenry  1990 ; Salazar and Asenjo  2007 ). 
VLPs can be purifi ed by differential centrifugation; however, this can pose limitations 
on scalability. GMP production of vaccine-grade purifi ed VLPs for commercial appli-
cations often involves industrial-scale protein purifi cation methods such as size-
exclusion, ion exchange, or affi nity chromatography columns (Vicente et al.  2011 ). 
Optimal solvent conditions must also be identifi ed to maintain VLP stability. Solution 
pH is critical, as some VLPs irreversibly denature and disassemble beyond a specifi c 
pH range. For example, RHDV VLPs deteriorate in an alkaline environment, with 
complete VLP disruption above pH 9 (Fig.  9.3 ). VLP solubility is another important 
consideration as some VLPs may aggregate at higher concentrations, forming an 
insoluble precipitate.   

9.4     VLPs as an Antigen Scaffold 

 VLPs are an incredibly versatile vaccination tool. In addition to harbouring multiple 
copies of immunologically recognisable antigens from their source virus, VLPs 
can also be used as a nanoparticulate delivery vector for heterogenous antigenic 
molecules. Each VLP can be considered a polymerised protein subunit vaccine, 

  Fig. 9.3    RHDV VLP stability at an alkaline pH. RHDV VLPs are visibly perturbed under transmis-
sion electron microscopy in an elevated solvent pH, resulting in irreversible particle disassembly       
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supporting modifi cations such as recombinant peptide insertion and chemical conju-
gation of peptides, proteins, lysate, carbohydrates, and lipoproteins to form chimeric 
VLPs. Some VLPs can support insertion of short peptide sequences at specifi c sites 
in their structural capsid proteins without impairing VLP formation. For example, 
RHDV VP60 is known to retain its ability to spontaneously form VLPs despite 
recombinant insertion of peptides at the N-terminus, C-terminus, or at amino acid 
residue 306 (Crisci et al.  2009 ); however, these sites have restrictions on inserted 
peptide length and residue sequence. The N-terminus of RHDV VP60 can support 
an insertion of <33 amino acids (Peacey et al.  2007 ), while other viral proteins such 
as polyomavirus VP1 can support insertions ranging from 9 to 120 amino acids 
(Eriksson et al.  2011 ; Lasickiene et al.  2012 ; Mazeike et al.  2012 ; Middelberg et al. 
 2011 ). Inclusion of secondary capsid proteins, such as polyomavirus VP2, with a 
limited contribution to VLP stability, can support large insertions including trun-
cated proteins (Tegerstedt et al.  2005 ). HBV core antigen (HBcAg) has been one of 
the most popular VLP forming viral capsid proteins for recombinant insertion of 
immunogenic epitopes. Notable recombinant HBc vaccines include Malariavax, 
which targets  Plasmodium falciparum  ( P. falciparum ); the protozoan responsible for 
malaria (Gregson et al.  2008 ), and a pan-infl uenza A vaccine against the infl uenza 
matrix protein 2 (M2e) ectodomain universally conserved between strains (Fiers 
et al.  2009 ). The phase I clinical trial of the recombinant infl uenza A M2e vaccine 
ACAM-FLU-A reported a 90 % seroconversion rate amongst participants after two 
vaccinations, with no severe adverse side-effects observed (Fiers et al.  2009 ). 

 Recombinant non-mammalian VLPs can also be used to deliver immunogenic 
peptides derived from mammalian pathogens. Various plant viruses have demon-
strated promise as recombinant antigen scaffolds, including alfalfa mosaic virus 
(AlMV) VLP containing epitopes from HIV-1 or rabies virus (Yusibov et al.  2002 ), 
cowpea mosaic virus (CPMV) VLP containing epitopes from  Bacillus anthracis  
(Phelps et al.  2007 ) or HPV16 (Matic et al.  2011 ) and tobacco mosaic virus (TMV) 
VLP containing epitopes for  P. falciparum  (Turpen et al.  1995 ). The potential appli-
cations of chimeric VLPs extend far beyond the incorporation of epitopes from 
mammalian pathogens. VLPs containing auto-antigens naturally present in humans 
have been harnessed for a variety of novel roles, such as targeting angiotensin II to 
combat hypertension (Ambuhl et al.  2007 ; Maurer and Bachmann  2010 ), targeting 
Aβ protein to treat Alzheimer’s disease (Zamora et al.  2006 ; Wiessner et al.  2011 ; 
Chackerian et al.  2006 ), or interrupting cytokine signalling pathways (Spohn et al. 
 2008 ; Link and Bachmann  2010 ). VLPs that stimulate an immune response against 
nicotine have even been investigated for their potential to break smoking addiction 
(Maurer et al.  2005 ; Cornuz et al.  2008 ). The therapeutic application of VLPs can 
also be used to develop novel vaccines for cancer. For example, recombinant inser-
tion of a truncated form of Her2 protein into polyomavirus VP1/VP2 VLP confers 
protection against Her2 positive mammary carcinoma (Tegerstedt et al.  2005 ). 

 The selected site of recombinant insertion in chimeric VLP provides an inherent 
limitation on vaccine applications. Recognition of native unprocessed antigen is an 
essential component of B cell activation in the humoral immune system leading to 
antibody production. Internal site insertion prevents such interactions, and restricts 
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these sites to insertion of antigenic epitopes that utilise intracellular processing 
pathways. External site insertion is required for effective B cell activation and 
depending on the selected VLP this method of chimeric VLP design can have sig-
nifi cantly increased complexity. While internal site insertions are typically cloned 
onto an internal terminus of the VLP capsid protein, external site insertion requires 
in-depth understanding of the capsid protein quaternary structure and the interac-
tions between each protein subunit to identify the optimal site for insertion. For 
example, the RHDV VP60 capsid protein is arranged with its N-terminus facing 
internally and C-terminus facing externally; however, the quaternary structural con-
formation has the C-terminus folded backwards into the central protein bulk. Amino 
acid 306 of RHDV VP60 capsid protein was instead identifi ed as a potential exter-
nal insertion site for exposure of immunogenic peptides tailored for B cell recogni-
tion (Crisci et al.  2009 ). 

 An alternative means of avoiding the limitations imposed by recombinant pep-
tide insertion is to utilise VLPs as a particulate scaffold for chemical conjugation of 
antigenic molecules such as peptides, proteins, lysate, carbohydrates, and lipopro-
teins. Advancement in coupling chemistry continues to expand the list of viable 
conjugation candidates, primarily limited by their effects on the resulting particles 
size, solubility, and processing. Conjugation uses a chemical linker as a bridge, 
commonly conjugating proteins by acylation of amino groups, alkylation of sulfhy-
dryl groups, or the activation of carboxylic acid residues. Some of the most com-
monly used protein coupling chemistries are illustrated in Fig.  9.4  (Smith et al. 
 2013 ). Azide-alkyne click chemistry (Patel and Swartz  2011 ) and biotin–streptavi-
din complexes (Chackerian et al.  2008 ) are also used in VLP conjugation. 
Heterobifunctional crosslinkers have two reactive groups enabling effi cient protein 
crosslinking; however, this has the unfortunate side-reaction of non-specifi c conju-
gation, which can result in protein aggregation in a complex solution such as tumour 
lysate. Bioorthogonal crosslinkers are a specifi c alternative that enables selective 
conjugation, limiting side-reactions by targeting chemical motifs absent in biologi-
cal systems (e.g. phosphines).  

 Chemical conjugation of immunogenic peptides is a relatively simple alternative 
to recombinant insertion, using commercial protein crosslinkers such as Sulfo- 
SMCC (Thermo Fisher Scientifi c Inc., Rockford, IL, USA). Sulfo-SMCC is a het-
erobifunctional crosslinker which permits a stepwise conjugation process targeting 
the amino groups on the VLP surface (NHS-ester) and the sulfhydryl group 
(maleimide group) from a cysteine residue introduced at the N-terminus of a target 
epitope (Peacey et al.  2008 ). Direct comparison between recombinant insertion 
and chemical conjugation of an H2k b -restricted peptide from lymphocytic 
 choreomeningitis virus (LCMV) gp33 in chimeric RHDV VLP indicated that the 
recombinant form induced a superior in vivo cytotoxic response (Li et al.  2013 ). 
Remarkably both the coupled and recombinant forms induced 20 % and 50 % 
tumour-free survival, respectively, following a single vaccination without adjuvant 
in mice grafted with Lewis’ lung carcinoma tumours expressing gp33. The addition 
of a 4 week vaccination boost with VLP and adjuvant increased tumour-free survival 
to 70 % in mice vaccinated with the recombinant gp33 RHDV VLP (Li et al.  2013 ). 
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Conjugation of large proteins or cell lysate onto the surface of VLPs enables the 
induction of an immune response without identifi cation of specifi c immunogenic 
peptides. Tumour lysates derived from the MART-1 expressing melanoma cell line 
Mel888 conjugated onto RHDV VLP provides more effi cient lysate delivery to den-
dritic cell antigen processing compartments and enhances MART-1-specifi c CD8+ 
T cell stimulation compared to lysate alone (Win et al.  2012 ). The use of tumour 
lysate in VLP vaccines has potential applications for personalised anti-cancer 
immunotherapy.  

  Fig. 9.4    Chemical conjugation onto the surface of VLPs. Various molecules can be coupled onto 
the surface of VLPs through chemical conjugation, targeting primary amines (e.g. lysine, 
N-termini), thiols (e.g. cysteine), carboxylic acids (e.g. glutamic acid, aspartic acid), and phenols 
(e.g. tyrosine). Unnatural amino acids (UAAs) incorporated into the structure of VLPs can also be 
used as potential chemical conjugation targets by introducing reactive azide or alkyne groups. 
Adapted from Smith et al ( 2013 )       
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9.5     Intraparticulate Encapsulation 

 Although VLPs are devoid of genomic material from their source virus, they are not 
necessarily always empty. Many viral structural proteins have an inherent ability to 
bind specifi c nucleic acids, facilitating packaging of the viral genome during the 
infection cycle. This property is retained in some VLPs and can be appropriated for 
encapsulation of negatively charged molecules such as oligonucleotides and chemi-
cal polymers. The primary limitations on intraparticulate encapsulation are the 
VLPs internal cavity volume and the availability of positively charged amino acids 
(Zeltins  2013 ). VLPs with the ability to encapsulate exogenous DNA have been 
explored as a possible means of gene delivery. VLPs produced from the VP1 capsid 
protein of the human polyomavirus John Cunningham (JC) virus are a promising 
candidate, with the ability to harbour DNA plasmids up to 14 kbp in length (Fang 
et al.  2012 ). Delivery of pEGFP-C1 plasmid into human epithelial kidney 293 
(HEK293) cells and subsequent EGFP production was achieved by loading the plas-
mid into JC virus VLPs through osmotic shock, which disrupts the VLP structure 
and increases permeability (Ou et al.  1999 ). More recently in vivo plasmid loading 
during expression of VP1 in  E. coli  was found to result in superior plasmid loading 
over osmotic shock or VLP reassembly, validated with JC virus VLPs encapsulating 
pEGFP-N3 plasmid (Chen et al.  2010 ). This loading method was subsequently used 
with pUMVC1-tk plasmid containing the herpes simplex virus thymidine kinase 
(tk) suicide gene. JC virus VLPs containing pUMVC1-tk were found to selectively 
target human colon carcinoma (COLO-320 HSR) cells grafted in nude mice, signifi -
cantly reducing tumour volume following administration of ganciclovir (Chen et al. 
 2010 ). 

 Chimeric VLPs have also been used to encapsulate DNA plasmids, enabling 
 successful gene delivery upon cellular uptake. Recombinant insertion of the 
DNA  binding site from HPV type 16 (HPV-16) L1 (VP60Δ-L1BS) or L2 (VP60Δ-
L2BS) capsid protein onto the N-terminus of RHDV VP60 produces chimeric VLPs 
with the capacity to encapsulate pCMV-β in vitro through VLP reassembly. 
β-Galactosidase expression was identifi ed in a range of cell lines (Cos-7, R17, HuH- 
7, and CaCo 2 ) treated with VP60Δ-L1BS containing pCMV-β plasmid (El Mehdaoui 
et al.  2000 ). It is possible that any VLP that supports internal site insertion may be 
capable of DNA plasmid encapsulation and delivery by incorporation of an appro-
priate DNA binding site. VLPs have even been used to induce the expression of 
their own structural capsid protein, enhancing immunogenicity by mimicking viral 
replication in vivo (Pichlmair et al.  2010 ). A variety of molecules other than nucleic 
acids have also been successfully encapsulated into VLPs, including enzymes into 
Qβ VLPs (Fiedler et al.  2010 ), polymerase into rotavirus VLPs (Boudreaux et al. 
 2013 ), and fl uorophores into cucumber mosaic virus VLPs (Lu et al.  2012 ). 
Recombinant insertion of a heterodimeric coiled-coil amino acid motif at the 
N-terminus of a capsid protein from cowpea chlorotic mottle virus (CCMV) pro-
duced CCMV VLPs capable of encapsulating up to 15 EGFP proteins (Minten et al. 
 2009 ). Encapsulating exogenous proteins inside VLPs is an interesting concept with 
multiple potential therapeutic applications.  
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9.6     VLP Vaccine Immunogenicity 

 The immune response to VLP vaccines is primarily determined by particle size, 
capsid structure, and innate immunity activation. Particles larger than 200 nm 
require transportation to the lymph nodes by peripheral antigen presenting cells 
(APCs) at the vaccination site (e.g. macrophages, dendritic cells) (Manolova et al. 
 2008 ). VLPs are usually below 200 nm, facilitating free circulation and drainage 
directly to lymph nodes in addition to peripheral APC transportation. Once in the 
lymph node, free VLPs are internalised by resident APCs. The repetitive structure 
of VLPs promotes effi cient uptake by APCs through mechanisms such as phagocy-
tosis and macropinocytosis (Win et al.  2011 ; Xiang et al.  2006 ; Scheerlinck and 
Greenwood  2008 ). Due to VLPs consisting of native viral capsid proteins, they 
often contain receptor binding motifs that also enable receptor-mediated endocyto-
sis. An example of this is the binding of haemagglutinin in infl uenza VLPs to the 
sialylose receptor on the cell surface (Pan et al.  2010 ). 

 The processing of VLPs by APCs can lead to the stimulation of both the humoral 
and cell-mediated arms of the immune system. Historically vaccines have been 
designed to target the initiation of humoral immunity, generating vaccine-specifi c 
antibodies. While this type of immune response is essential for the clearance of 
extracellular pathogens, establishing protection against intracellular conditions 
such as viral infections and cancer often requires the generation of cell-mediated 
immunity. The ability of VLPs to stimulate both arms of the immune system is 
advantageous, as the combination of immune responses often work synergistically 
to ensure disease clearance and the initiation of effective immunological memory. 
The immune response to VLPs is summarised in Fig.  9.5 .  

 Following internalisation VLPs are degraded and processed through the exoge-
nous antigen processing pathway with immunogenic peptides loaded onto MHC 
class II (MHC-II) molecules for surface presentation. Processed antigens are recog-
nised by CD4 +  T helper cells, resulting in activation and release of immunostimula-
tory cytokines, such as Interleukin (IL) 4, IL-5, which are essential for B cell 
activation or IL-2 and IFNγ, which are essential for induction of cell-mediated 
immunity. For successful activation of the humoral immune system, B cells must 
also interact with native antigen through B cell receptors (BCRs). The repetitive 
nature of VLPs promotes crosslinking of BCRs, enhancing activation and promot-
ing memory-cell formation. This stimulation is notably superior to soluble peptides 
or non-repetitive proteins (Jegerlehner et al.  2007 ; Bachmann and Jennings  2010 ). 
Antibodies produced in response to VLPs can neutralise native virions to prevent 
active infection, and memory- cell formation promotes long-term immunity. Notable 
examples of licensed VLP vaccines that successfully induce high titres of long-
lasting  neutralising antibodies include the Hepatitis B vaccine Engerix (Keating and 
Noble  2003 ) and the HPV vaccines Cervarix and Gardasil (Romanowski  2011 ). 

 Some VLPs are also cross-presented by APCs, primarily CD8 +  dendritic cells, 
facilitating loading of exogenous antigen onto MHC class I (MHC-I). With addi-
tional stimulation from co-stimulatory molecules (e.g. CD40, CD80/86), MHC-I 
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loaded with immunogenic peptides can activate CD8 +  T cells to initiate a cell- 
mediated immune response. Cytotoxic T lymphocyte (CTL) activation is advanta-
geous for clearance of intracellular conditions such as viral infection or cancer. For 
example, RHDV VLPs are processed through the receptor-recycling pathway for 
cross-presentation. Immunogenic peptides are loaded onto MHC-I when phagoly-
sosomes containing degraded VLPs fuse with endosomes containing MHC-I mol-
ecules recycling from the cell surface (Win et al.  2011 ). The endosomes return to 
the cell surface, displaying new MHC–peptide complexes on the cell membrane as 
illustrated in Fig.  9.6 .  

 The site of vaccine administration can play an important role in VLP immuno-
genicity. As the mucosal membranes (e.g. respiratory tract, digestive tract, urogeni-
tal tract) are a common route of infection, generation of mucosal immunity can 
provide early protection against pathogenic intrusion. A number of preclinical 
VLP vaccine trials have demonstrated that VLPs have the ability to initiate 
potent mucosal immunity. For example, intranasal vaccination with cholera toxin B 
 conjugated to simian immunodefi ciency virus VLPs signifi cantly increased the 

  Fig. 9.5    Antigen presenting cell (APC) cross-presentation pathways. APCs can cross-present 
exogenous antigens onto MHC-I through pathways including: ( a ) Gap junctions; ( b ) Endosome-
to- cytosol; ( c ) ER-Endosome fusion; ( d ) Receptor recycling; and ( e ) Exosomes. Peptides derived 
from RHDV VLPs are known to be crosspresented through the receptor recycling pathway (Win 
et al.  2011 ). Adapted from Groothuis and Neefjes ( 2005 )       
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levels of antibody detected in the mucosae compared to unconjugated cholera toxin 
B (Kang et al.  2003 ). 

 Depending on the protein expression system used, some VLPs can contain exog-
enous immunogenic molecules such as bacterial RNA which promote APC activa-
tion through stimulation of pattern recognition receptors such as toll-like receptors 
(TLRs) (Rebeaud and Bachmann  2012 ). This can have an adjuvanting effect due to 
activation of the innate immune system; however, we have found that successful 
vaccination can be achieved in the absence of these adjuvanting molecules (Li et al. 
 2013 ). RHDV VLPs produced in insect cell cultures do not stimulate innate cells 
cultured in vitro, but effectively activate the cell-mediated and humoral immune 
systems in vivo. Despite the success of VLP vaccination alone, the inclusion of an 
adjuvant can still be benefi cial in driving specifi c immune pathway activation and 
leading to further enhancement of immune stimulation. 

 A number of adjuvants have been used in humans; these include mineral salts (e.g. 
aluminum hydroxide, aluminum phosphate, and aluminum hydroxy phosphates), 
emulsions (e.g. MF59, AS01, and AS02), and microbial derivatives (mono- 
phosphoryl lipid A and CpG) (Rappuoli et al.  2011 ). Traditionally adjuvants were 
used to enhance vaccine immunogenicity by stimulating the humoral immune system 
to induce antibody production and isotype-switching. This was thought to be facili-
tated by formation of a slow-release antigen depot. Modern adjuvants are designed to 
directly target immune activation and to tailor vaccination to drive a specifi c immune 
response, enabling selective stimulation of the cell-mediated immune system. TLR 
agonists such as unmethylated CpG DNA can induce a potent cell-mediated response 
by stimulating upregulated expression of co-stimulatory molecules in innate immune 
cells. We have found that the addition of CpG to recombinant RHDV VLP containing 
the SIINFEKL peptide derived from the model antigen OVA (VLP.OTI) led to an 
enhancement in the generation of SIINFEKL- specifi c cytotoxic T cells (Fig.  9.7 ) 
(Scullion  2012 ). This association was also confi rmed using the Lewis’ lung carcinoma 
model with recombinant gp33 RHDV VLP (Li et al.  2013 ).  

  Fig. 9.6    The immune response to VLPs. VLPs have the capacity to stimulate both the cell- 
mediated and humoral immune system. The desired immune response can be promoted through 
adjuvant selection       
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 Co-delivery of vaccine adjuvants and antigens to cells through physical associa-
tion or linkage leads to enhanced immunogenicity and a reduction in  adjuvant- related 
side effects. Viruses often bind molecules that facilitate entry into host cells. RHDV 
VLPs retain the ability of its native virus to bind carbohydrate moieties, providing 
a useful mechanism for modifi cation and vaccine enhancement (Ruvoen-Clouet 
et al.  2000 ; McKee et al.  2012 ). α-Galactosylceramide is a glycolipid adjuvant 
which was found to directly associate with RHDV VLP, forming a composite par-
ticle. α-Galactosylceramide activates natural killer-like T cells, leading to the 
enhancement of both the innate and acquired immune responses (Bendelac et al. 
 2007 ). Prophylactic vaccination with recombinant gp33. RHDV VLP and 
α-galactosylceramide led to the generation of gp33-specifi c T cells and enhanced 
protection against subcutaneous tumour challenge. The adjuvanting effect of 
α-galactosylceramide was increased >10-fold when delivered as a composite parti-
cle compared to the co-delivery of unassociated α-galactosylceramide and recombi-
nant gp33.RHDV VLP (McKee et al.  2012 ).  

9.7     Conclusion 

 The primary requirements of a successful vaccine include safety, reliability, and 
effi cacy. Along with other subunit vaccines VLPs have an impeccable safety record, 
with some vaccines already approved for routine use. The absence of the viral 
genome renders VLPs incapable of infection or replication, preventing inadvertent 
reversion as has occurred with attenuated viruses. Extensive purifi cation of VLPs 

  Fig. 9.7    The effect of CpG 
adjuvant on in vivo 
cytotoxicity. 
Co-administration of RHDV 
VLP containing the 
SIINFEKL peptide (VLP.
OTI) with CpG signifi cantly 
increased % specifi c lysis of 
target cells loaded with 
SIINFEKL peptide (Scullion 
 2012 )       
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produced using protein expression systems helps to limit contamination with sub-
stances which might induce allergies or undesirable side effects. Each new VLP is 
extensively characterised during development, containing immunogenic epitopes in 
a more natural state than inactivated virus vaccines. The particulate nature of VLPs 
also provides some protection from degradation. VLPs are uniform in structure, 
providing consistency between preparations and a reliable vaccine. VLPs are read-
ily processed by the immune system and can stimulate cytotoxic and humoral 
immune responses. VLPs can provide protection against their source virus, or they 
can harbour exogenous antigens. This unprecedented versatility in vaccine design 
enables the utilisation of VLP vaccines in a wide range of applications including 
prophylactic viral vaccines, therapeutic cancer vaccines, and even gene delivery. 
VLP vaccines have only begun to unveil their true potential as a versatile subunit 
vaccine platform.     
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    Chapter 10   
 Polymeric Particulates for Subunit 
Vaccine Delivery 

             Thomas     Schuster     ,     Martin     Nussbaumer     ,     Patric     Baumann     ,     Nico     Bruns     , 
    Wolfgang     Meier     , and     Anja     Car    

10.1            Introduction to Polymeric Particulates 

 Nanoparticles are defi ned as particles with a diameter in the sub-micrometer range 
that exhibit properties not found in the same bulk material. This classical defi nition 
is not very specifi c but is compatible across different areas of science. 

 The basic concept of using nanoparticles for drug delivery appeared in the late 
1950s (Holdermann and Greiling  1954 ), followed by other articles, which addressed 
infections such as tetanus, diphtheria, and other diseases that require multiple doses 
of vaccines (Birrenbach  1973 ). The vaccines described in the articles were based on 
micellar formulations (Kreuter  2007 ). Since then and due to progress in pharmaceu-
tical technology and immunology, various types of particulates have been devel-
oped as delivery platforms (Rice-Ficht et al.  2010 ; Moon et al.  2012 ; Naahidi et al. 
 2013 ; Leleux and Roy  2013 ). The diversity of structures ranges from micro- and 
nanoparticles, nanogels, micro- and nanocapsules to dendrimers, vesicles, and 
micelles, as illustrated in Fig.  10.1 .  
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 Within the past few years, the number of articles published on subunit vaccines 
(antigen, protein, peptides, deoxyribonucleic acid (DNA), etc.) has increased 
 signifi cantly, and so have reviews dealing with specifi c delivery platforms. The fi rst 
review published 20 years ago by Couvreur et al. focused on the progress and devel-
opment of nanoparticulate systems for delivery of peptides and proteins (Couvreur 
and Puisieux  1993 ). Furthermore, in 2006 Pinto Reis et al. summarized the advances 
on biomedical applications and the status of peptide delivery systems (Pinto Reis 
et al.  2006 ). More recently, an excellent review compiling advances on vaccine 
delivery system using different polymeric nanocarriers was published (Correia- 
Pinto et al.  2013 ). Although 247 nanomedicine products (as for January 2013) are 
presently approved or in one of the three clinical phases, it should be clearly noted 
that none of these products are polymeric particulates applied in vaccine delivery. 
Rather, these systems are used as standard drug delivery platforms (Etheridge et al. 
 2013 ). Vaccine delivery using nanoparticles is still in its infancy and requires over-
coming some challenges (e.g., prevention of toxic side effects by high-effi ciency of 
encapsulation of the bioactive material, eases of administration, and introduction of 
an antigen-specifi c immune response) before proceeding from fundamental research 
to clinical applications (De Temmerman et al.  2011 ; Kamaly et al.  2012 ). For exam-
ple, small molecules such as peptides acting as antigens are not recognized by the 
immune system, i.e., they are not immunostimulating, and therefore they rely solely 
on a vaccine delivery platform (Janeway et al.  2004 ). Thus, a suitable delivery plat-
form has to combine high loading effi ciency of antigens/adjuvants with a controlled 

  Fig. 10.1    Overview of currently available delivery systems based on polymeric particulates. 
Adapted from (Chacko et al.  2012 ; Wu and Zhou  2010 ; Sadler and Tam  2002 ; De Geest et al.  2007 ) 
with permission       
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release mechanism and a versatile chemistry of targeting ligands on the surface 
(Li and Mooney  2013 ). 

 Various delivery platforms based on polymeric particulates and their current sta-
tus as vaccine delivery systems is discussed in this chapter.  

10.2     Micro- and Nanoparticles 

 Currently, the most commonly used polymers in controlled drug release are 
poly(lactic-co-glycolic acid) (PLGA), poly(lactic acid) (PLA), poly(glutamic acid) 
(PGA), polycaprolactone,  N -(2-hydroxypropyl)-methacylate copolymers (HPMA) 
and polyamido acids. PLGA, PLA, and PGA are biocompatible, biodegradable, and 
approved for biomedical application by the U.S. Food and Drug Administration 
(FDA) (Panyam and Labhasetwar  2003 ; Uto et al.  2013 ). PLGA particles, used in 
subunit vaccines delivery, can be prepared by various methods including spray dry-
ing, phase separation, solvent evaporation, and solvent extraction (Byrd et al.  2005 ). 
The fi rst step of preparation includes the formation of a primary water-in-oil emul-
sion from an aqueous antigen solution and a solubilized organic polymer. The sec-
ond step, which differs for each of the methods listed above, yields dispersed 
oil-containing microparticles. Several PLGA-based particles have been specifi cally 
designed to obtain an initial burst release and to guarantee that the encapsulation 
process provides inert and insulated environmental conditions for the active com-
pound (Sanchez et al.  1996 ; Sah et al.  1995 ; Youan et al.  2001 ). This design is based 
on the combination of two microparticle formulations with carefully selected copo-
lymer composition and preparation parameters, and enables a single dose vaccina-
tion, which mimics the effect of a booster dose (Sanchez et al.  1996 ; O’Hagan et al. 
 1998 ; Crotts and Park  1998 ). In this context, polyesters are often used as they 
undergo hydrolysis after parenteral administration, and the biocompatible break-
down products (e.g., lactic and glycolic acid) are easily cleared from the body 
(Andriano et al.  1999 ). In addition, early release of the immunogenic cargo before 
internalization in antigen-presenting cells (APC) is reduced by a slow degradation 
rate (Hamdy et al.  2011 ). Moreover, it has been shown that micro- and nanoparticles 
exhibit advantageous properties such as passive dendritic cell (DC) targeting, high 
storage stability, ease of scale-up, controlled release, and delivery of antigens, 
which are afterwards presented by both major histocompatibility complex (MHC) 
class I and II pathways (Men et al.  1999 ; Shen et al.  2006 ). All of these properties 
make them an attractive delivery system for tumor vaccines (Mueller et al.  2012 ). 
PLGA particulates have also been investigated for use in vaccinations against, e.g., 
tetanus, malaria, human immunodefi ciency virus (HIV) and hepatitis B (Saroja 
et al.  2011 ). Several examples of vaccine formulations have been selected from a 
large number of publications in order to demonstrate the progress in this area. 

 In the 1990s, a single dose administration of tetanus toxoid-loaded PLGA mic-
roparticles was investigated by Men and coworkers (Men et al.  1995 ), who demon-
strated that this delivery system elicits similar or superior T-cell and antibody 
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response compared to alum formulations. The same group later investigated a 
PLGA particulate delivery system loaded with malaria-specifi c cytotoxic 
T-lymphocyte CTL peptides, which was capable of inducing antigen-specifi c CTL 
responses in vivo (Men et al.  1997 ). They showed that injection of mice with a short 
CTL epitope—microencapsulated or adsorbed on empty PLGA—enhanced specifi c 
CTL responses comparable to those obtained with incomplete Freund’s adjuvant. 
Similar studies were performed by Igartua et al. where PLGA microspheres were 
loaded with SPf66 (synthetic malarial antigen) (Igartua et al.  2008 ). The aim was to 
evaluate the effect of γ-irradiation on the biopharmaceutical properties of particles. 
It was demonstrated that subcutaneous administration of irradiated and nonirradi-
ated microspheres into mice induced a similar immune response (IgG, IgG1, IgG2a 
levels), to the one observed when SPf66 was emulsifi ed with Freund’s complete 
adjuvant. Preclinical studies by Hamdy et al. showed that PLGA particles were effi -
ciently taken up in vitro by murine DCs (Elamanchili et al.  2007 ). The same study 
also demonstrated that the Toll-like receptor ligand (TLR) 4 was signifi cantly more 
effective at inducing maturation of DCs in vitro when provided in PLGA particles 
rather than in the soluble form (Hamdy et al.  2008 ). 

 Experiments carried out by Uchida et al. using ovalbumin (OVA) entrapped in 
PLGA particles (Uchida et al.  1996 ) showed that only one subcutaneous administra-
tion was necessary to generate a maximal OVA-specifi c antibody response. 
Furthermore, PLGA-OVA encapsulated particles were more effective at inducing 
responses than complete Freund’s adjuvant combined with soluble OVA. Similar 
results were obtained by a different group using bovine serum albumin (BSA) with 
the immunogen entrapped in PLGA microparticles (Igartua et al.  1997 ,  1998 ). 
Interestingly, it was reported that PLGA microparticles decorated with anti-CD40 
antibody and human IgG immobilized on the surface induced enhanced maturation 
and activation of DCs (Kempf et al.  2003 ). 

 Another important aspect to be considered is the stability of the encapsulated 
cargo. It has been reported that some protein antigens aggregate or degrade upon 
entrapment or release from the matrix. These problems have been partially solved 
by optimizing manufacturing parameters, through the addition of stabilizers and by 
avoiding exposure of proteins to organic solvents (Crotts and Park  1998 ; Zhu et al. 
 2000 ; Tamber et al.  2005 ). 

 Although much progress has been made and encouraging results have been 
reported, none of the vaccine delivery systems investigated have yet been approved 
for clinical use. This is most probably due to the fact that the co-delivery of antigens 
and adjuvants is very limited. Furthermore, the slow release mechanism of the anti-
gen from the particles is possibly not favorable to induce a strong immune response. 
In addition to the aforementioned reasons, technological and economic issues also 
play an important role (Johansen et al.  2007 ). However, in contrast to vaccine deliv-
ery, various drug delivery systems based on PLGA, PLA, and PGA particulates 
have been developed, clinically approved, and commercialized. They are applied, 
for instance, in cancer treatment, acromegaly, periodontal disease, and schizophre-
nia (Danhier et al.  2012 ; Choi et al.  2012 ). 

T. Schuster et al.



185

 In addition to PLGA, other materials such as chitosan (CS) and its derivatives 
have been applied in immunotherapy. In general, CS has been in use for decades in 
biomedical applications due to its non-toxicity, biodegradability, and abundance in 
nature (the polymer is derived from chitin, a component of exoskeletons of crusta-
ceans and insects) (Pangburn et al.  1984 ). Alonso and coworkers were among the 
fi rst to study different CS systems for protein delivery, with focus on nasal and 
ocular administration (Calvo et al.  1997 ; Fernandez-Urrusuno et al.  1999 ; De 
Campos et al.  2001 ; Vila et al.  2004 ; Angelatos et al.  2006 ). More recently, this 
group demonstrated the possibility of intranasal delivery of hepatitis B antigens 
using different CS-based nanocarriers (Prego et al.  2010 ). In parallel, the group of 
Kawahima, Pan, and Leong demonstrated the potential of CS particulates for oral 
and intestinal delivery. Moreover, nanoparticles synthesized by salt-induced com-
plex coacervation of cDNA and polycations such as gelatin and chitosan were eval-
uated as gene delivery vehicles for a variety of cell lines (Leong et al.  1998 ; 
Kawashima et al.  2000 ; Pan et al.  2002 ). 

 Another interesting platform, based on acetalated dextran (Ac-DEX), was 
described by the group of Fréchet for small interfering RNA (siRNA) delivery (Cui 
et al.  2012 ). Such an acid-sensitive, biocompatible, and biodegradable micropar-
ticulate delivery system demonstrated effi cient gene knockdown in HeLa-luc cells 
while exhibiting minimal toxicity (Cohen et al.  2011 ). Since controlled, nonviral, 
intracellular delivery of genetic material for vaccines remains a major challenge, the 
authors studied the effect of co-encapsulating DNA and antigens in the Ac-DEX 
delivery system in vivo. A cytotoxicity assay proved that co-encapsulation of a 
model antigen protein (OVA) and an immunostimulatory agent (CpG DNA) in par-
ticles led to superior CTL activity when compared to particles co-administrated 
with adjuvant in the soluble form (Beaudette et al.  2009 ). Another study on protec-
tive immunity utilizing an Ac-DEX delivery system have demonstrated that, 
depending on the degree and type of acetal modifi cation, antigen presentation path-
ways (MHC class I and MHC class II) can also be tuned (Broaders et al.  2009 ). 
Furthermore, blends of Ac-DEX and poly(β-amino ester) particles, prepared by the 
double emulsion technique with controlled degradation kinetics and surface func-
tionality, were successfully utilized for gene delivery (Cohen et al.  2010 ). In other 
studies, Ac-DEX particles were modifi ed with mannose in order to enhance inter-
nalization and activation of APCs (Cui et al.  2011 ).  

10.3     Hydrogel Nanoparticles (Nanogels) 

 Hydrogel nanoparticles or nanogels are cross-linked polymeric particles composed 
of amphiphilic or polyionic polymers (Oh et al.  2008 ). The materials used are gen-
erally biocompatible and possess moderate mechanical properties (Raemdonck 
et al.  2009 ). Their tunable size, the large surface area available for bioconjugation, 
their injectability and the possibility of achieving prolonged release make them 
interesting delivery platforms (Carvalho et al.  2011 ; Wu et al.  2012 ). Nanogels 
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made from natural polymers (e.g., alginate) and synthetic hydrogel nanoparticles 
based on poly(vinyl alcohol) (PVA), poly(ethylene oxide) (PEO), poly(ethyleneimine) 
(PEI), poly(vinyl pyrrolidone) (PVP), and poly( N -isopropyl acrylamide) (PNIPAm) 
have been widely investigated in drug delivery applications (Vinogradov et al. 
 2002 ). The interior of the swollen networks provides a space for the incorporation 
of bioactive molecules (small molecule drugs, proteins, DNA, etc.), which can be 
released from the polymeric matrix under specifi c conditions (Kabanov and 
Vinogradov  2009 ). Regardless of the type of polymer, the release of the active com-
pound from hydrogel nanoparticles follows a complex mechanism and depends on 
three main factors: (1) drug diffusion, (2) hydrogel matrix swelling (degree of cross- 
linking), and (3) the chemical affi nity between drug and matrix (Dorwal  2012 ). The 
fi rst hydrogel nanoparticles used for vaccination purposes were prepared by Kreuter 
et al., who synthesized poly(methyl methacrylate) (PMMA) particles by polymer-
izing methyl methacrylate monomers in the presence of infl uenza virus or by addi-
tion of the virus to preprepared PMMA (Kreuter and Speiser  1976 ). The results 
showed that the simultaneously polymerized system of methylacrylate monomers 
and viruses was considerably more effective than the simple addition of viruses to 
pre-polymerized polymer. Antibody responses were measured in mice and guinea 
pigs, the morphology of particles was investigated using electron microscopy and 
the immunological reactivity of the particles was studied using hemagglutination 
and antibody-binding assays. At the same time, the Sjoholm group explored poly-
acrylamide particles cross-linked with  N ,  N′ -methylene-bis-acrylamide and incor-
porated human serum albumin (HSA) (Ekman et al.  1976 ). Recently, Fréchet and 
coworkers cross-linked polyacrylamide hydrogel particles with acid-sensitive moi-
eties and co-administrated them with immunostimulatory DNA. They paid particu-
lar attention to the impact of particle size on the activation of T-cells (Cohen et al. 
 2009 ). In contrast to previous reports, the authors suggested that there was no sig-
nifi cant difference in the magnitude of T-cell activation between particles of micro- 
and nanometer size carrying protein antigens. 

 In addition to research on polyacrylamide hydrogel particles, the group of 
Sjoholm extensively studied polyacryldextran and polyacryl starch during the 1980s 
in order to improve the biodegradability of these nanoparticles. Enzyme kinetics, 
release profi les, surface localization, and heat stability were investigated. 
Additionally, the degradation of microparticles in serum and in the target organ-
elles, the lysosomes, was tested in vitro (Edman et al.  1980 ; Artursson et al.  1984 ). 
This was followed by the encapsulation of HSA and mouse serum albumin (MSA) 
antigens, and the investigation of their ability to stimulate an immune response in 
mice. In the case of MSA entrapped in particles, no detectable response was obtained 
after administration, while encapsulated HSA induced a dose-dependent immune 
response. However, injection of free HSA or in combination with empty micropar-
ticles did not cause any response (Artursson et al.  1985 ). 

 A decade later, in the 1990s, the group of Akiyoshi described different 
 polysaccharides nanogels, which were further developed for the delivery of proteins 
such as insulin, interleukin 12, and HER2 (Akiyoshi et al.  1991 ; Akiyoshi et al. 
 1993 ; Hirakura et al.  2010 ). This work triggered research interest towards 
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polysaccharide- based nanogels and their chemical and surface variations for protein 
and DNA delivery. Polysaccharide-based vaccine delivery systems obtained from 
CS and dextran sulfate (DEXS) loaded with capsid protein of HIV-1 were studied, 
and a specifi c immune response was observed in mice with high production of anti-
bodies (Weber et al.  2010 ). Other groups focused on targeting particular DC recep-
tors using dextran-based nanogels, which were surface decorated with alginate or 
mannosylated alginate carrying model antigen OVA. It was demonstrated that the 
delivery of OVA using nanogels with mannose surface decoration was superior to 
free OVA for the induction of interferon-γ production by T-lymphocytes (Thomann- 
Harwood et al.  2013 ). 

 In the same context, alginate and its derivatives have been thoroughly studied. 
This polymer is polyionic and can form intermolecular electrostatic bonds with 
multivalent cations. Hence, polyvalent cations (e.g., Ca 2+ , Zn 2+ ) induce cross- linking 
and lead to the formation of particles. The incorporation of model proteins, such as 
BSA, human hemoglobin, and  Helicobacter pylori  antigen, into these matrices has 
been investigated (Leonard et al.  2004 ; George and Abraham  2006 ), and the results 
suggested that alginate particulate delivery platforms have potential as vaccine 
nanocarriers. 

 Responsive systems that release active compounds upon environmental changes, 
such as pH-responsive nanogels for endosomal release and intracellular delivery, 
are of particular interest. The ability of pH-sensitive nanogels to escape from endo-
somes, kill the cells, and migrate to adjacent cells (in a virus-like way) is very 
promising for vaccine delivery (Lee et al.  2008 ). A detailed discussion of pH- 
responsive systems can be found in a recent review (Ferreira et al.  2013 ). Thermo- 
responsive nanogels are mostly based on PNIPAm and are most frequently used for 
conventional drug delivery. A general overview about past, present, and future pros-
pects regarding nanogels can be found elsewhere (Amidi et al.  2010 ; Garcia-Fuentes 
and Alonso  2012 ).  

10.4     Micro- and Nanocapsules 

 Micro- and nanocapsules are hollow or fi lled spherically shaped structures that can 
be used to encapsulate pharmaceuticals (Nill  2005 ). Polypeptide assemblies such as 
bio-nanocapsules (BNCs) from the hepatitis B virus surface antigen (HBsAg) 
(Yamada et al.  2001 ; Jung et al.  2011 ) or poly- γ -glutamic acid capsules also fall 
under this defi nition (Rhie et al.  2003 ; Schneerson et al.  2003 ; Wang et al.  2004 ; 
Chabot et al.  2004 ; Joyce et al.  2006 ). Although these natural structures are fascinat-
ing, their further description is beyond the focus of this chapter. 

 The invention of the layer-by-layer (LbL) microencapsulation technique in the 
late 1990s by Decher inspired scientists to apply this technique to vaccine delivery 
(Decher  1997 ). Iterative and alternating adsorption of oppositely charged polyelec-
trolytes, i.e., polycations and polyanions, was used to build-up multilayers on col-
loidal substrates, thereby forming polyelectrolyte microcapsules (Donath et al.  1998 ; 
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Sukhorukov et al.  1998 ; Caruso et al.  1998 ) as carrier systems for vaccines (De 
Geest et al.  2009 ; De Temmerman et al.  2011 ;). A variety of polyanion/polycation 
pairs have been used, poly(styrene sulfonate)/ poly(allylamine hydrochloride) (PSS/
PAH) (Donath et al.  1998 ; Sukhorukov et al.  1998 ; Caruso et al.  1998 ), dextran 
 sulfate/poly-ʟ-arginine (DEXS/pARG) (De Geest et al.  2006 ), DNA /poly-ʟ- lysine 
or poly-ʟ-glutamic acid (DNA/PLL or PGA), (Johnston et al.  2005 ; Johnston and 
Caruso  2007 ) and poly(methacrylic acid)/poly(vinylpyrrolidone) (PMA/PVPON) to 
name a few (De Geest et al.  2009 ; Chong et al.  2009 ). These examples include non-
degradable (e.g., PSS/PAH) and biodegradable (e.g., DEXS/pARG) polyelectro-
lytes, which can be selected according to specifi c requirements. 

 The choice of polymer defi nes the surface chemistry, which strongly infl uences 
the interaction with the targeted APC (De Rose et al.  2008 ). As template, i.e., 3D 
structure for polyelectrolyte adsorption, several materials have been used such as 
dextran-hydroxyethyl methacrylate microgels copolymerized with dimethylamino-
ethyl methacrylate (DEX-HEMA-DMAEMA) (De Geest et al.  2005 ), SiO 2  (Chong 
et al.  2009 ), and CaCO 3  particles (De Koker et al.  2007 ; De Temmerman et al. 
 2011 ). The latter can be used to incorporate the antigen within the particles, which 
are dissolved upon addition of EDTA after LbL deposition, and thus combine mini-
mal stress for the antigens while obtaining high loading effi ciencies (De Temmerman 
et al.  2011 ). Capsules do not have to be loaded with biological entities before the 
polyelectrolyte multilayer is established; however, “post-loading” the capsules after 
removal of the scarifying template may affect their integrity (De Geest et al.  2006 ). 

 Different release mechanisms have been reported based on these materials. 
Polyelectrolyte capsules with HEMA microgel cores release their payload through 
biodegradation of the gel, which also causes rupture of the multilayer shell (De 
Geest et al.  2005 ; De Geest et al.  2009 ). Biodegradable DEXS/pARG capsules are 
effi ciently taken up by DCs through the macropinocytotic route and release their 
payload upon intracellular degradation (De Koker et al.  2007 ; De Koker et al. 
 2009a ). This system was modifi ed with immunopotentiators to further activate DCs. 
Thus, a pulmonary adaptive immune response was stimulated, which was character-
ized by induction of a strong Th17-polarized response (De Koker et al.  2009b ; De 
Temmerman et al.  2011 ; De Temmerman et al.  2012 ). PMA SH /PVPON polyelectro-
lyte capsules, which are controllable in their size and peptide vaccine loading, were 
designed to disintegrate and release the peptide vaccine by rupture of disulfi de link-
ages upon exposure to reductive conditions. It was shown that they were internal-
ized into APCs, released, and presented their payload within an MHC class I context 
to elicit an immune response (Chong et al.  2009 ; De Rose et al.  2008 ). Furthermore, 
whole encapsulated OVA was internalized by mouse APCs, which led to the presen-
tation of OVA epitopes and subsequent activation of OVA-specifi c CD4 +  and CD8 +  
T-cells in vitro, and greater proliferation in vivo (Sexton et al.  2009 ). 

 A relatively novel approach is DNA vaccination, where a plasmid encoding a 
protein from a pathogen is introduced into human cells. Once the plasmid is inside 
the cells, the pathogen’s protein is produced, recognized as foreign and displayed on 
the host cells surface, which activates the immune system. Drawbacks of this 
approach are the poor targeting of APCs and low immunogenicity. Microcapsules 
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have been tested using this approach (Jewell and Lynn  2008 ), where effi cient 
 delivery and processing of DNA, i.e., production of suffi cient amount of encoded 
antigen, is of key importance (Saurer et al.  2009 ). In these systems, DNA is used as 
natural polyanion in the LbL technique, which leads to reduced enzymatic degrada-
tion of the polynucleotides (Briones et al.  2001 ). Erodible microcapsules with well- 
controlled DNA loading, accomplished through the LbL technique, were useful in 
transporting the payload into a mouse macrophage cell line, and led to a gradual 
release of plasmid DNA under physiological conditions (Saurer et al.  2009 ).  

10.5     Dendrimers 

 The word “dendrimer” arises from the Greek words  dendron , “tree” and  meros , 
“part.” The core in the center of the structure has at least one branching point and 
three anchoring groups. Thus, in second generations, at least three monomers can be 
incorporated. With every additional generation, the molecular mass and the number 
of surface groups increase by a factor of two. The stepwise synthesis allows highly 
symmetric structures with a well-defi ned molecular weight to be produced. The 
branches of the polymer arrange in a way that the dendrimer possesses a globular 
structure. In contrast to linear or randomly branched polymers, they are spatially 
structured. Dendrimeric polymers were fi rst reported by Vögtle et al. (Buhleier 
et al.  1978 ). In the past years, the synthesis of dendrimers evolved to allow the pro-
duction of larger molecules (Denkewalter et al.  1981 ; Tomalia et al.  1985 ; Hawker 
and Frechet  1990 ). 

 A high degree of branching leads to high density of functionalities on the sur-
face, and therefore to a multivalent structure. With higher dendrimer generation 
numbers, the dendrimer properties become dominated by the end groups and its 
size, while the core is shielded (Heegaard et al.  2010 ). Additionally, a high degree 
of functionalities at the end groups allows various modifi cations, which makes den-
drimers attractive as vaccine delivery systems. 

 Traditionally, antigens are attached to small proteins in order to increase their 
immunogenicity (Van Regenmortel et al.  1988 ). This effect can also be achieved by 
attaching antigens to dendrimers, with the advantage of well-defi ned molecular 
structures provided by the dendrimer. Such systems with a high number of T- and 
B-cell epitopes also enhance the immunostimulatory effect through multiple inter-
actions with cells of the immune system (de Oliveira et al.  1994 ; Wang et al.  1995 ; 
Cavenaugh et al.  2003 ; Sadler and Tam  2002 ; Iglesias et al.  2005 ; Fujita and Taguchi 
 2011 ; Tarradas et al.  2012 ). 

 In 1988, Tam and coworkers developed the so-called multiple antigenic peptide 
(MAP) system, the fi rst immunostimulatory dendrimer-like system (Posnett et al. 
 1988 ; Tam  1988 ). The dendritic part of the MAP was built from lysine. MAP sys-
tems are asymmetrical and possess a wedge-like shape, because the α- and ε-amines 
of the core-lysine act as an anchor point for the next generation, and the carboxylic 
group of the core-lysine is modifi ed with other amino acids or lipids. Frequently, the 
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second- or third-generation lysine dendrimers are used, presenting either four or 
eight anchor points for small molecular weight antigens, e.g., short peptides 
(Heegaard et al.  2010 ). The simple design and ease of synthesis has contributed to 
the success of this system (Crespo et al.  2005 ), and MAP dendrimers are promising 
candidates for vaccine delivery against AIDS, (Defoort et al.  1992 ) foot and mouth 
disease (de Oliveira et al.  2002 ), infl uenza (Zhao et al.  2010 ), swine fever (Tarradas 
et al.  2012 ), or malaria (Nardin et al.  2001 ; Kublin et al.  2002 ). However, when 
some of these vaccines were tested in Phase I clinical trial, it was reported that 
simple linear systems worked as well (Calvo-Calle et al.  2006 ). While some groups 
reported that adjuvants are needed to make MAP systems more effi cient and that 
best results were obtained with saponin adjuvants (Moreno et al.  1999 ), others 
reported that MAPs exhibit self-adjuvanticity (Tam  1996 ; Olive et al.  2003 ;). 

 Compared to the lysine-based MAP systems, immunostimulatory systems based 
on other monomers are less common. Dendrimers used as vaccines often present 
specifi c carbohydrates on their surface. Carbohydrates found at the outer cell mem-
brane are important in a number of biological processes, such as intercellular inter-
actions and cell recognition, which is of particular interest for vaccines. Anomalous 
patterns of carbohydrates are present, for example, in cancer cells (Shiao and Roy 
 2012 ; Baek et al.  2001 ; Roy and Baek  2003 ). Carbohydrates not only represent 
interesting antigens for cancer vaccines but also for vaccines against viruses, which 
are often heavily glycosylated (Niederhafner et al.  2008 ; Šebestík et al.  2012 ). 
Dendrimers decorated with carbohydrates can exhibit adjuvant properties (Sorensen 
et al.  2011 ), e.g., potentiation of immunogenicity can be achieved by conjugation of 
lectin-binding carbohydrates to antigenic-peptide modifi ed poly(amidoamine) 
(PAMAM) dendrimers. This potentiation can be partially ascribed to increased 
binding and recognition of antigens by DCs (Sheng et al.  2008 ). Another example 
of self-adjuvanting systems are phosphoric acid-capped dendrimers, which target 
and activate monocytes (Poupot et al.  2006 ). Dendrimer nanoparticles can also be 
formulated by conjugation of a B-cell epitope to a hydrophobic dendrimer. The 
resulting amphiphiles can form immunogenic nanoparticles, which have an epitope 
outer layer and a polymer core (Skwarczynski et al.  2010 ). 

 Furthermore, dendrimers have been utilized to deliver DNA vaccines. Daftarian 
et al. conjugated MHC class II-targeting peptides onto a generation 5 (G5)-
PAMAM), and reported a high transfection effi ciency, specifi c targeting to the 
APCs and increased immunogenicity (Daftarian et al.  2011 ).  

10.6     Polymersomes and Micelles 

 Block copolymers with amphiphilic properties can be synthesized using monomers 
with different polarities (i.e., hydrophobic/hydrophilic). The groups of Discher and 
Eisenberg discovered that amphiphilic block copolymers self-assemble in aqueous 
solution into vesicular structures (polymersomes) (Discher et al.  1999 ; Discher and 
Eisenberg  2002 ). Polymersomes have an aqueous cavity surrounded by a 
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hydrophobic membrane. Drugs or antigens can be encapsulated in the hydrophilic 
core or hydrophobic interior of the polymersome membrane without destroying 
their functionality (Christian et al.  2009 ; Grzelakowski et al.  2009 ). In contrast to 
vesicles, micelles are smaller and have a hydrophobic core surrounded by a hydro-
philic corona. According to vaccine delivery platform demands, where hydrophilic 
(antigen) and hydrophobic (adjuvants) cargos are required to be encapsulated simul-
taneously, the vesicular morphology is benefi cial. 

 Polymersomes are tunable in size, and can be transported via the blood stream or 
into cells via endocytosis. An additional benefi t of polymersomes is that different 
ligands can be attached onto the surface to yield targeted delivery systems (Egli 
et al.  2011a ,  b ). Triggerable polymersome systems can also be created for controlled 
release (Johansen et al.  2007 ; Cabane et al.  2011 ; Du et al.  2012 ). Such systems 
were developed to transport siRNA into cells; the release was controlled through the 
incorporation of pH-triggerable linkers, which were cleaved inside the cells due to 
the acidic environment in lysosomes and caused the polymersomes to burst 
(Christian et al.  2009 ). The use of cationic diblock copolymers allows electrostatic 
interactions with DNA and RNA molecules, and therefore a higher loading effi -
ciency compared to passive encapsulation (Korobko et al.  2005 ; Korobko et al. 
 2006 ). In contrast to liposomes, polymersomes offer a stable and chemically more 
tunable structure to protect the antigen or DNA/RNA against degradation processes 
(Hao et al.  2006 ). In the past few years, there have been countless reports on poly-
mersome and micellar formulations for drug delivery and medical application 
(Brinkhuis et al.  2011 ; Renggli et al.  2011 ). Therefore, the examples discussed 
herein are restricted to those with a direct application to vaccination. 

 The group of Kataoka was one of the fi rst to use polyionic complexed micelles 
for vaccine delivery (Harada and Kataoka  1995 ). They used poly(ethylene glycol)-
poly(ʟ-lysine) block copolymers (PEG-PLL) to form micelles, and exploited the 
reversible electrostatic interaction between DNA and polymer for self-assembly 
(Katayose and Kataoka  1997 ). The DNA was trapped within the core of the micelle 
surrounded by PEG, thereby protecting the DNA from chemical or enzymatic dena-
turation. Using a similar polymersome, Cheng et al. showed that a number of differ-
ent proteins can be loaded into vesicles and released (Cheng et al.  2011 ). This 
provided a universally applicable platform for vaccine delivery, which does not 
need to be adapted to particular antigens. 

 Christian et al. designed a vaccine system by conjugating a TAT peptide to the 
exterior of the polymersome (Christian et al.  2007 ). Characterization showed that 
such surface modifi cation increased the uptake to around 70,000 vesicles per cell. 
Loading of such targeted polymersomes with antigens or siRNA would thus be suit-
able for vaccine delivery. Due to the biocompatibility and biodegradability of most 
of the polymers used for polymersome formation, the resulting vaccine delivery 
systems would hold potential for clinical trials. Liposome-based antigen delivery is 
reportedly more immunogenic than the antigen alone (Childers et al.  2000 ), as lipo-
somes mimic the uptake of viruses and bacteria better than the antigen itself (Brewer 
et al.  2004 ); hence, polymersomes may exhibit similar effects (Christian et al. 
 2007 ). One possible strategy to control the release, while benefi ting from the higher 

10 Polymeric Particulates for Subunit Vaccine Delivery



192

stability of the polymersomes, would be to insert the antigen in the membrane of the 
vesicles in a way that could be presented to the immune system. The fi rst studies 
made in this direction are the integration of membrane proteins into polymeric 
 vesicles, and their functionalization (Stoenescu et al.  2004 ; Egli et al.  2011a ,  b ). 
However and to the best of our knowledge, no such experiments have been carried 
out for vaccine delivery.  

10.7     Conclusions 

 Scientists are trying to successfully increase effi cacy of vaccines against severe dis-
eases like AIDS, malaria, Leishmaniasis, or cancer. In general, the objectives of 
vaccine development are to make them safer, more effective, easy to administrate, 
and cheaper. Towards obtaining these goals, new drugs and delivery platforms are 
explored. Although some polymeric particulate platforms have already been 
approved and are commercialized as drug delivery applications, vaccine delivery is 
currently in its infancy. Each of the presented particulate systems show advantages 
and drawbacks, but fail to fully comply with general requirements like biocompat-
ibility, non-toxicity, high encapsulation effi ciency, versatile surface chemistry, and 
smart behavior. It will take a few more years of research to obtain synthetic-based 
carriers that completely fulfi ll these requirements.     
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    Chapter 11   
 Gels as Vaccine Delivery Systems 

             Sarah     Gordon    

11.1            Background 

 The majority of the gel systems presented in this chapter, and indeed the majority of 
gel systems utilised for the purposes of vaccine delivery, can be further defi ned as 
hydrogels. While numerous defi nitions for both gels and hydrogels can be found, in 
basic terms gels may be considered as semi-solid systems of two or more compo-
nents in which a small amount of solid is dispersed in a comparatively larger quan-
tity of liquid (Almdal et al.  1993 ; Gupta et al.  2002 ). Hydrogels may therefore be 
defi ned in simple terms as gel systems in which the liquid component is water. More 
specifi cally, hydrogels consist of networks of natural or synthetic hydrophilic poly-
mers that are capable of taking up large amounts of water and swelling, while still 
maintaining their distinct three-dimensional structure (Gupta et al.  2002 ; Kashyap 
et al.  2005 ; Sood et al.  2013 ). Their high molecular permeability, low interfacial 
tension, and similar mechanical properties to physiological soft tissue (Gupta et al. 
 2002 ) make them attractive for drug and vaccine delivery alike, while the low poly-
mer content of hydrogels (typically of the order of 1–20 %) generally means that the 
administration of such systems is unlikely to result in concentration-induced irri-
tancy (Gupta et al.  2002 ; Ishihara et al.  2006 ). 

 In addition to these properties, the ability of hydrogels to facilitate sustained 
release of actives makes them systems of considerable interest for both drug and 
vaccine delivery. With respect to the latter, subunit antigens are well known to have 
a good safety profi le but a poor inherent immunogenicity, which often necessitates 
the administration of multiple vaccine doses in order to induce an appropriate and 
effective immune response (Ellis  2001 ). The employment of immunopotentiating 
adjuvants and incorporation of antigens into particulate systems are discussed in 
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detail in other chapters of this book as potential strategies to combat the poor 
 immunogenicity of subunit vaccines; an additional strategy that has demonstrated 
considerable promise is the incorporation of antigen into a sustained release deliv-
ery system. The probability of inducing an effective immune response to a specifi c 
antigen appears to increase if release of antigen occurs in a sustained manner, due 
to the fact that antigen is present and available for interaction with immune cells for 
an extended period of time (Lofthouse  2002 ). By increasing the likelihood of a more 
effective immune response being induced, delivery systems that facilitate the sus-
tained release of antigen may enable a reduction in the need for multiple immunisa-
tions, or potentially abolishment of this requirement altogether. Such an occurrence 
could in turn facilitate a decrease in expenses associated with immunisation 
 programmes, and a corresponding increase in patient compliance with resulting 
simpler and cheaper immunisation courses (Zhao and Leong  1996 ).  

11.2     Classifi cation and Manufacture of Gel Systems 
for Vaccine Delivery 

 Not only may gels be defi ned in a variety of ways, but they may also be classifi ed 
according to a number of different criteria. In this chapter, the mechanism of gela-
tion will be used to broadly group gel systems employed for the purposes of vaccine 
delivery into three major categories: namely, gelation by precipitation, as a result of 
crosslinking, or due to solidifi cation (Agarwal and Rupenthal  2013 ). 

11.2.1     Gelation by Precipitation 

11.2.1.1     Gelation by Precipitation: Thermosensitive, 
In Situ-Forming Gels 

 Thermosensitive, in situ-forming gels constitute a subclass of precipitating gel 
 systems with particularly promising applications in the fi eld of vaccine delivery. 
As their name suggests, such systems are polymeric solutions that transform into 
gel depots (gels) upon in vivo administration. While the exact mechanism driving 
this transformation may vary from polymer to polymer (and as such, will be dis-
cussed in more detail in the context of specifi c thermosensitive gel systems), gel 
formation generally occurs as a result of decreased polymer solubility in response 
to an increase in temperature from ambient to physiological levels (Ruel-Gariépy 
and Leroux  2004 ). Temperature change is considered to be a particularly advanta-
geous stimulus for induction of gelation, as there is no reliance on the use of poten-
tially harsh reagents such as organic solvents or copolymerisation agents (Jeong 
et al.  2002 ). The mild nature of thermosensitive gel formation is therefore associ-
ated with little risk of damage to the gel-incorporated active—a particularly 
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important consideration in the context of vaccine delivery, where the active is often 
a protein or peptide. The fact that thermosensitive, in situ-forming gels are liquids 
at room temperature is also a considerable advantage, as this allows for incorpora-
tion of desired actives into thermosensitive solutions by a simple mixing process. 
Furthermore, there is no need for surgical implantation of such systems, as thermo-
sensitive solutions can be easily injected; and, if the gel-forming polymer is biode-
gradable, subsequent surgical removal of the system is also unnecessary (Jeong 
et al.  2002 ). 

 Thermosensitive, in situ-forming gels can be produced from a wide range of 
polymers, which in turn are often further functionalised or copolymerised in order 
to achieve control over specifi c system properties such as precise gelation tempera-
ture and required polymer concentration. The following will focus on description of 
vaccine delivery systems formed from chitosan and poloxamer, two polymers which 
are often employed for the preparation of thermosensitive, in situ-forming gels. 

   Chitosan Gels 

 Chitosan is a polymer of  N -acetylglucosamine and glucosamine which is derived 
from the partial deacetylation of chitin, a naturally occurring component of crusta-
cean exoskeletons (Chenite et al.  2000 ). The term “chitosan” can be used to describe 
any member of this large group of chitin derivatives, having various molecular 
weights and degrees of deacetylation (Fig.  11.1 ) (Chenite et al.  2001 ). Chitosans col-
lectively are ideal candidates for in vivo applications, being both biocompatible and 
biodegradable in nature and exhibiting low systemic and local toxicity (Agarwal and 
Rupenthal  2013 ; Qin et al.  2006 ). As is indicated in Fig.  11.1 , amine groups present 
in the chitosan structure may be protonated under acidic conditions,  rendering the 
polymer soluble. However, at neutral or alkaline pH levels, where a deprotonation of 
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  Fig. 11.1    Chemical structure of chitosan. Glucosamine and  N -acetylglucosamine monomers are 
shown. In the case of the parent polymer chitin,  m  ≪  n ; the term “chitosan” is generally conferred 
on polymers with a degree of deacetylation >50 % (Cho et al.  2005 ), with degree of deacetylation 
given by ( m /( m  +  n )100). Figure reproduced from Berger et al. ( 2005 ) with kind permission 
(Elsevier)       
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such groups occurs, a hydrated gel-like precipitate is formed (Ganguly and Dash 
 2004 ). Chitosan solutions therefore typically exhibit  pH- dependent gel formation; 
however, if polyol salts such as glycerol phosphate are used as pH-altering agents, 
gel formation does not occur purely as a result of an increase in pH. Use of these 
agents instead leads to the conversion of purely  pH- dependent gel-forming chitosan 
solutions into temperature-controlled,  pH- dependent gel-forming solutions (Chenite 
et al.  2000 ; Mao et al.  2006 ). The mechanism by which addition of glycerol phos-
phate and other polyol salts to chitosan solutions facilitates temperature-controlled, 
pH-dependent gel formation is proposed to be the result of a number of processes. A 
decrease in electrostatic repulsion and increase in hydrogen bonding of chitosan 
chains due to neutralisation of chitosan charge, together with the occurrence of elec-
trostatic interactions between ammonium groups of chitosan and phosphate groups 
of glycerol phosphate are considered to be responsible for the pH-dependent nature 
of chitosan gel formation; an increase in hydrophobic interactions between chitosan 
chains as a consequence of the structuring effect of the salt glycerol moiety on water 
is thought to be responsible for the temperature-controlled gelling property of such 
systems (Chenite et al.  2000 ; Cho et al.  2005 ).  

 In addition to having the general advantages of thermosensitive gel systems, 
such as existence as a solution at ambient temperature allowing for ease of incorpo-
ration of actives, chitosan gels have the additional benefi t of a residual positive 
charge at physiological pH. This facilitates the ready entrapment of anionic moi-
eties (including many antigens and adjuvants), and also allows for adhesive interac-
tions with negatively charged sites on cell surfaces and body tissues. Chitosan has 
also been shown to attract and activate infl ammatory cells such as neutrophils and 
macrophages upon in vivo administration (Peluso et al.  1994 ; Porporatto et al.  2005 ; 
VandeVord et al.  2002 ), and to exhibit an inherent immunogenicity (Bueter et al. 
 2011 ; Gordon et al.  2008 ; Li et al.  2008 ; Porporatto et al.  2003 ). Such properties 
may prove highly advantageous for a vaccine delivery system; however, the induc-
tion of severe infl ammatory reactions due to chitosan administration has been dem-
onstrated in some cases (Tomihata and Ikada  1997 ). Such adverse reactions may 
potentially be avoided through the use of highly deacetylated chitosans, which have 
been shown to form gels with a slower rate of degradation and a correspondingly 
lower level of reactogenicity than chitosans with a low degree of deacetylation 
(Chenite et al.  2000 ). 

 Thermosensitive chitosan gels have found particular application to date for the 
delivery of vaccines via the nasal route (Çokçalışkan et al.  2013 ; Günbeyaz et al. 
 2010 ; Wu et al.  2012b ,  c ), where antigen residence time is often a limiting factor 
for vaccine effi cacy. Wu et al. successfully formulated a thermosensitive gel com-
posed of a quaternary ammonium derivative of chitosan ( N -[(2-hydroxy-3- 
trimethylammonium) propyl] chitosan chloride) together with α,β-glycerophosphate, 
which proved to be a free-fl owing solution at room temperature (allowing for 
incorporation of antigens) and gelled rapidly upon intranasal administration to 
mice (Wu et al.  2012b ,  c ). Such a system facilitated an increase in antigen resi-
dence time as well as an enhancement of paracellular antigen transport, consistent 
with the  well- known ability of chitosan to act as a permeation enhancer via altera-
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tion of tight junctions (Amidi et al.  2006 ; Prego et al.  2005 ). Potentiation of both 
mucosal and systemic immune responses was observed as a result of incorporation 
of an H5N1 antigen into the developed thermosensitive chitosan gel, together with 
promotion of a CD8 +  T-cell memory response in the nasal-associated lymphoid tis-
sue (Wu et al.  2012b ). Similarly, delivery of an envelope glycoprotein antigen 
derived from adenovirus- based Zaire Ebola virus within such a gel has been shown 
to result in the induction of both local respiratory and systemic immune responses 
(Wu et al.  2012c ). Potentiation of humoral immunity together with an enhanced, 
Th1-biased cellular immune response relative to antigen in the absence of a gel 
component was induced; an acceptable biocompatibility of the gel formulation was 
also demonstrated, even following repeated administrations. 

 In addition to their use for intranasal vaccine delivery, thermosensitive chitosan 
hydrogels have also shown promise as injectable delivery systems. For example, a 
thermosensitive chitosan gel produced from chitosan and glycerophosphate and 
loaded with the model protein antigen ovalbumin has shown the ability to facilitate 
a sustained release of antigen in vitro, and to induce both the proliferation of CD4 +  
T-cells and production of antigen-specifi c IgG as a result of subcutaneous adminis-
tration to mice (Gordon et al.  2008 ). Similarly, gel delivery systems prepared from 
purifi ed poly- N -acetylglucosamine have been investigated as injectable delivery 
systems for peptide- as well as DNA-based vaccines. These systems have shown the 
ability to induce greater antigen-specifi c T-cell responses than those produced by 
administration of antigen in the absence of gel, and to confer protection in tumour 
challenge studies (Cole et al.  1997 ; Maitre et al.  1999 ; Nguyen et al.  2001 ; Salem 
et al.  2010 ).  

   Poloxamer Gels 

 Poloxamers, often referred to by their common commercial name, Pluronics ® , are 
triblock copolymers of poly(ethylene oxide)- b -poly(propylene oxide)- b - 
poly (ethylene oxide). Such copolymers have a non-ionic, amphiphilic surfactant 
character, and spontaneously form micelles in aqueous solutions due to the rela-
tively hydrophilic character of poly(ethylene oxide) and comparatively more hydro-
phobic nature of poly(propylene oxide) (Klouda and Mikos  2008 ). Gelation of 
poloxamer solutions is facilitated by an increase in temperature, and is thought to 
occur as a result of association of poloxamer surfactant micelles. As the temperature 
of poloxamer solutions is increased and the critical gel-forming temperature (dis-
cussed further later) is approached, a dehydration of the more hydrophobic 
poly(propylene oxide) residues occurs, leading to an increasingly tight packing of 
poloxamer micelles (Cabana et al.  1997 ). The progressive condensation of micellar 
structures is accompanied by an increase in entanglement of poloxamer polymer 
chains, which ultimately leads to the induction of gel formation (Fig.  11.2 ) (Brown 
et al.  1991 ; Cabana et al.  1997 ; Hvidt et al.  1994 ). While the micellar structure of 
poloxamer gels confers a number of advantages on these systems, including the 
ability to encapsulate both hydrophilic and hydrophobic actives, it is also 

11 Gels as Vaccine Delivery Systems



208

responsible for the generally weak mechanical strength of poloxamer gels and their 
typically short residence time (Chitkara et al.  2006 ; He et al.  2008 ). This is due to 
the fact that a rapid drop in the effective concentration of poloxamer occurs on 
exposure of poloxamer gels to excess (biological) fl uid, causing micelles within the 
gel structure to fall apart (Chung et al.  2008 ). The effect of poloxamer dilution may 
be somewhat countered by the use of higher polymer concentrations, however given 
that a polymer concentration of at least 15 % w/w is generally needed to facilitate 
thermosensitive gel formation, further increases may lead to toxic effects (Agarwal 
and Rupenthal  2013 ). Poloxamers are additionally non-biodegradable, which may 
prove a hindrance to their use in vivo (Chitkara et al.  2006 ).  

 Poloxamer-based thermosensitive gels have long been investigated for their abil-
ity to act as gene and drug delivery systems, and in more recent years have begun to 
fi nd application in the fi eld of tissue engineering (Chung et al.  2008 ; Kabanov et al. 
 2002 ). Poloxamer-based thermosensitive gels commonly consisting of poloxamer 
P407 (commercially known as Pluronic ®  F127) have also been investigated for use 
as vaccine delivery systems, often in combination with additional polymer compo-
nents in an effort to increase the resulting gel strength and stability (Kojarunchitt 
and Hook  2012 ). Such a system, consisting of P407 and used in combination with a 
reverse poloxamer (Pluronic ®  25R4) in an attempt to enhance gel stability, was 
investigated by Kojarunchitt et al. ( 2011 ). An increased in vitro stability of the pro-
duced thermosensitive gel was achieved as a result of the combination of P407 with 
Pluronic ®  25R4. Thermosensitive hydrogels consisting of P407 in combination with 
chitosan have also been investigated for their ability to act as effective vaccine deliv-
ery systems (Coeshott et al.  2004 ; Westerink et al.  2001 ). In one such case where 
delivery to mucosal surfaces was intended, chitosan was chiefl y employed for its 
ability to act as a penetration enhancer rather than being utilised in an attempt to 
improve gel stability. In this instance, a combination of P407/chitosan gel incorpo-
rating tetanus toxoid as an antigen was able to enhance both local and systemic 
humoral immune responses relative to a formulation consisting of antigen in buffer 
alone, when administered intranasally to mice (Westerink et al.  2001 ). 

  Fig. 11.2    Schematic representation of micelle and gel formation of poloxamer 407 in water. 
‘PO’ and ‘EO’ denote poly(propylene oxide) and poly(ethylene oxide) blocks respectively, while 
‘T’ signifi es temperature. Figure reproduced from Dumortier et al. ( 2006 ) with kind permission 
(Springer Science + Business Media)        
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 The same combination P407/chitosan gel formulation has also been employed 
for the purposes of systemic vaccine delivery (Coeshott et al.  2004 ). In this case, 
tetanus toxoid (or alternatively, diphtheria toxoid or anthrax recombinant protective 
antigen) was added to P407 solutions in combination with either chitosan or immu-
nopotentiating CpG motifs and administered subcutaneously to mice, upon which 
gel formation occurred. Administration of gel-based formulations resulted in long- 
lived and enhanced IgG antibody production relative to the administration of anti-
gens and immunopotentiators in the absence of a gel component. A single dose of 
gel-based formulations also proved to be more immunogenic than several adminis-
trations of tetanus toxoid adsorbed to aluminium phosphate; tetanus toxoid deliv-
ered by P407 gels in combination with CpG was also seen to result in the initiation 
of superior immune responses in comparison to a formulation of tetanus toxoid 
together with CpG in incomplete Freund’s adjuvant. Lethal challenge experiments 
further demonstrated that P407 gels incorporating tetanus toxoid and either chitosan 
or CpG were capable of conferring protective immunity. 

 Also worthy of mention is the existence of studies in which poloxamers are for-
mulated in combination with the mucoadhesive polymers polycarbophil or 
poly(ethylene oxide) in order to produce thermosensitive, in situ-gelling systems for 
the delivery of plasmid DNA (Han et al.  2006 ; Oh et al.  2003 ; Park et al.  2002 ). 
When administered intranasally to mice, such systems have been shown to demon-
strate an improvement in retention and a corresponding increase in the absorption of 
plasmid DNA (Park et al.  2002 ). Similar systems incorporating hepatitis B surface 
antigen have also been used successfully for the purposes of intravaginal vaccination 
(Oh et al.  2003 ). Administration of these in situ-gelling, mucoadhesive systems 
resulted in the production of IgA antibody in both vaginal secretions and saliva, and 
also induced systemic immunity as measured by production of serum IgG antibody.  

   PECE and PCEC Gels 

 The copolymers poly(ethylene glycol)-poly(ε-caprolactone)-poly(ethylene glycol) 
(PECE) (Gong et al.  2009 ) and poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε- 
caprolactone) (PCEC) (Wu et al.  2012a ) have also been utilised as the basis for 
thermosensitive, in situ gel-forming systems for vaccine delivery. Incorporation of 
basic fi broblast growth factor (bFGF) into a solution of PECE has been shown to be 
possible at ambient temperature, allowing for subcutaneous administration via sim-
ple injection. Equilibration of the injected solution to physiological temperature 
resulted in formation of an antigen gel depot. Robust and long-lived humoral 
immune responses were observed following such administration, with detectable 
levels of serum IgG persisting in immunised mice for as long as 14 weeks following 
administration of thermosensitive gel systems (Gong et al.  2009 ). Formulation of 
PCEC thermosensitive gels has been proposed to offer additional advantages over 
those prepared using PECE, including an improved biocompatibility and prolonged 
gel residence time (Wu et al.  2012a ). Thermosensitive gels composed of PCEC have 
also been formulated incorporating bFGF, as well as mannan, in order to target 
the lectin receptor present on the surface of dendritic cells (DCs). Subcutaneous 
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administration of such a PCEC-based gel also demonstrated the ability to induce 
appreciable humoral immune responses, resulting in production of serum IgG anti-
body in excess of that produced in response to vaccination with control formula-
tions (Wu et al.  2012a ).   

11.2.1.2     Gelation by Precipitation: pH-Sensitive Gels 

 As alluded to above in the case of chitosan, gelation of polymer solutions may also 
occur in response to a change in pH. Polymeric macromolecules containing ionisa-
ble groups, also known as polyelectrolytes, behave in a similar manner to weak 
acids and bases, in that they exhibit different degrees of ionisation in solution 
dependent on solution pH. Such a characteristic proves very useful with respect to 
gel formation. Solutions of polymers which exhibit a decrease in solubility or a 
change in polymer chain arrangement with a change in pH can be used to form gel- 
based delivery systems; this behaviour may be tailored to occur upon a change to 
physiological pH, enabling such polymers to be used as a basis for in situ-forming 
gel delivery systems. 

   Carbopol (Poly-Acrylic Acid) Gels 

 Carbopols are a group of hydrophilic polyanionic polymers (or carbomers) consist-
ing of cross-linked acrylic acid residues. Carbopol has been utilised widely as a 
basis for controlled release and bioadhesive delivery systems, and is often employed 
in veterinary vaccines in the form of suspensions (Dey et al.  2012 ; Krashias et al. 
 2010 ). Although a number of mechanisms are thought to contribute to carbopol 
gelation, this may be considered to occur chiefl y in response to an increase in pH 
(Kumar and Himmelstein  1995 ). Dispersion of carbopol in water results in the for-
mation of an acidic solution of partially coiled polymer chains; neutralisation of this 
solution by addition of a base confers a negative charge on carbopol polymer chains, 
which in turn leads to electrostatic repulsion, complete chain uncoiling, and the 
formation of a rigid gel structure (Felt et al.  2002 ). 

 Carbopol gels appear to have found particular application as vaccine delivery 
systems for intravaginal administration, possibly due to the already approved 
employment of carbopol in numerous products for vaginal use. Cranage et al. for-
mulated a pre-neutralised carbopol gel containing an HIV-1 envelope glycoprotein 
antigen, and investigated the immune response resulting from topical administration 
of such a formulation in rabbits (Cranage et al.  2009 ). Administration of the carbo-
pol gel-based formulation was well tolerated, and was considered to form a depot of 
antigen at the mucosal surface. One-off administration of such a system was seen to 
stimulate the production of both local (mucosal) and systemic (seral) IgG antibody, 
with further potentiation of antibody titres occurring with successive administra-
tions of gel-incorporated antigen. Topical administration of a similar carbopol 
gel formulation in a more advanced animal model, namely macaques, was shown to 
be capable of B-cell priming, leading to antibody production after a subsequent 
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intramuscular boost; in a similar vein, humoral immune responses were noted upon 
intramuscular priming followed by an intravaginally administered boost with gel- 
based antigen (Cranage et al.  2011 ). Carbopol gels incorporating HIV-1 envelope 
glycoprotein-based antigen have further been employed as vaccine delivery systems 
for subcutaneous administration in mice. Following delivery via such a route, 
humoral and cell-mediated immune responses comparable to those induced by anti-
gen administered in complete Freund’s adjuvant were noted (Krashias et al.  2010 ). 
Moreover, incorporation of purifi ed infl uenza haemagglutinin into carbopol gels 
followed by subcutaneous administration has been shown to result in the production 
of high antigen-specifi c antibody titres and protection in lethal challenge experi-
ments, demonstrating the versatility of carbopol gel delivery systems in facilitating 
the induction of effective immune responses to various antigens.    

11.2.2     Gelation by Crosslinking 

 Crosslinking of polymer chains in order to form gels may occur via a number of 
different mechanisms, and instances of the use of gel-based vaccine delivery sys-
tems formed as a result of ion-mediated crosslinking or photopolymerisation may 
be found in the literature. Examples of systems relying on each of these gel-forming 
mechanisms are therefore mentioned below. 

11.2.2.1     Alginate Gels 

 Alginates are naturally occurring biopolymers generally sourced from brown algae, 
or kelp. They are linear, non-branched polysaccharides, incorporating 1,4′-linked 
β- D -mannuronic acid and α- L -guluronic acid residues in varying amounts and 
sequences to form an overall block-like structure (Gombotz and Wee  1998 ). 
Alginate gel formation occurs as a result of ionic crosslinking, initiated by divalent 
cations such as Ca 2+ . Incubation of alginate with Ca 2+  in an aqueous solution leads 
to the formation of polymer chain-connecting ionic bridges and a stacking of gulu-
ronic acid residues within alginate polymer chains. This results in the formation of 
the so-called egg-box structure, which is characteristic of alginate gel networks 
(Agarwal and Rupenthal  2013 ; Gombotz and Wee  1998 ). While not widely 
employed in the fi eld of vaccination, alginate gels have shown a promising ability 
to act as in situ-gelling vaccine delivery systems. Hori et al. demonstrated that an 
antigen-loaded, in situ-gelling alginate formulation could be prepared by mixing 
antigen-loaded DCs and Ca 2+ -incorporating alginate microspheres with a bulk algi-
nate solution (Hori et al.  2008 ). Mixing of formulation components followed 
directly by subcutaneous administration to mice resulted in gel depot formation, 
due to the liberation of Ca 2+  from formulation microspheres and subsequent diffu-
sion into the bulk alginate solution. Alginate gel depots formed in this manner were 
observed to act as sites of attraction for host DCs and T-cells; transport of 
formulation- incorporated DCs to host lymphatic tissues was also noted.  
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11.2.2.2    Modifi ed Poly(Ethylene Glycol) Gels 

 Similarly to the case of alginate mentioned above, polymers capable of forming 
cross-linked gels in the presence of a photoinitiator have not been commonly 
employed as the basis for vaccine delivery systems to date. An example can be 
found in the area of veterinary vaccination however, in which photopolymerised 
poly(ethylene glycol)-cross-linked gels were investigated as systems for remote bal-
listic delivery not of a subunit vaccine antigen, but of a live, poorly bioactive 
Brucella vaccine (Christie et al.  2006 ). For this purpose, poly(ethylene glycol) mod-
ifi cation was fi rst carried out in order to incorporate degradable glycolide or lactide 
residues, which were functionalised with photopolymerisable methacrylate groups. 
The resulting polymer was then fi lled into commercially available “Biobullets”, 
together with a photoinitiator (Irgacure ® 184) and polystyrene microspheres as a 
model for live Brucella bacteria. Crosslinking of modifi ed poly(ethylene glycol) 
chains was then initiated by exposure of delivery systems to UV light, resulting in 
the formation of a gel. A sustained release of model polystyrene particles was 
observed from “Biobullet”-encased gels in vivo, demonstrating the ability of such a 
system to act as an antigen depot.   

11.2.3     Gelation by Solidifi cation 

 When employed as vehicles for vaccine delivery, solidifying gel systems have 
 typically been formed from hot melts that solidify upon a reduction in temperature 
to physiological levels. Examples of carrageenan gels and surfactant-based organo-
gels formed as a result of solidifi cation and utilised in the fi eld of vaccine delivery 
are detailed below. 

11.2.3.1    Carrageenan Gels 

 Carrageenans are a group of hydrophilic, sulphated polysaccharides which are com-
monly employed in food products for their thickening, stabilising, and gelling prop-
erties. Carrageenans in general are soluble at high temperatures in excess of their 
melting temperature, and are capable of forming gel networks upon cooling (Tecante 
and del Carmen Núñez Santiago  2012 ). Carrageenan gel-based systems have been 
employed as vehicles for an oral coccidiosis vaccine for poultry (Danforth et al. 
 1997 ; Dasgupta and Lee  2000 ). Vaccine preparation involved dissolving a carra-
geenan gum at high temperatures, followed by cooling in order to allow for antigen 
incorporation. Gel formation was then facilitated by further cooling of the system. 
Such a vaccine was shown to be capable of inducing protective immune responses 
in vaccinated animals.  
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11.2.3.2    Water-in-Sorbitan-Monostearate Organogels 

 As detailed above in this chapter, a gel may be classifi ed as a hydrogel when the 
liquid component of the system is water. The liquid component of a gel may also 
consist of an organic solvent however, in which case the gel may be designated as 
an organogel (Murdan  2005 ). While their applications have been far less commonly 
explored to date, instances of the employment of organogels as vaccine delivery 
systems may be found in literature. Murdan et al. demonstrated the production of 
such an organogel consisting of the non-ionic surfactant and principal gelation- 
inducing agent (or organogelator) sorbitan monostearate, together with polysorbate 
20, and isopropyl myristate as the organic solvent (Murdan  2005 ). The gel system 
was produced by preparing a water-in-oil emulsion containing the above compo-
nents at elevated temperatures, followed by cooling to room temperature in order to 
facilitate setting of the emulsion to an organogel. Gel formation in this instance was 
proposed to be due to a reduction in the oil solubility of sorbitan monostearate as a 
result of the decrease in temperature, leading to the formation and subsequent 
entanglement of surfactant aggregates (within which the aqueous phase is situated) 
and the ultimate formation of a gel network. Loading of such a system can be 
achieved by directly dissolving/dispersing the active in the solution prior to cooling 
in the case of hydrophobic entities, or dissolution of the active in an aqueous solvent 
followed by addition to the solution in the case of a hydrophilic entity. With respect 
to the latter case, incorporation of the model antigen bovine serum albumin into the 
aqueous phase of such an organogel has been successfully demonstrated. 
Intramuscular administration of the pre-formed gel to mice was shown to result in 
depot formation, and to facilitate a sustained release of the incorporated model 
 antigen (Murdan et al.  1999a ).    

11.3     Characterisation of Gel Systems 

 While quantifi cation of the immunogenicity of gel-based vaccine delivery systems is 
of clear and primary importance (as seen above in the context of various preclinical 
studies), additional properties of such systems may also be investigated as part of the 
characterisation process. Parameters of interest for further characterisation may vary 
depending on the polymer constituent of individual systems and the mechanism by 
which gelation occurs, however characterisation of certain gel properties may be 
considered to be of general relevance. Such properties include gel morphology, 
which may be visualised using electron microscopy techniques such as cryo-fi eld 
emission scanning electron microscopy (cryo-FESEM, Fig.  11.3 ) or freeze-fracture 
transmission electron microscopy (freeze fracture-TEM). The degree of swelling of 
gel systems is also a parameter of general interest. Swelling behaviour may be char-
acterised by determining changes in gel mass or volume over time, or by quantifi ca-
tion of gel water content (Gupta et al.  2002 ). Determination of the degradation 
behaviour of gel systems may also be of value, together with assessment of the 
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biocompatibility of the parent gel as well as any degradation products. Determination 
of the release kinetics of any gel-entrapped active is also of great importance; this 
may be carried out in either in vitro or in vivo environments (Gordon et al.  2008 , 
 2010 ). Characterisation of the rheological behaviour of both solution and gel forms 
is also of great importance for the majority of gel-based vaccine delivery systems. 
Such information may for example be used to determine the pH at which the transi-
tion from solution to gel occurs in the case of pH-dependent gelling systems, or the 
temperature at which gelation occurs in the case of thermosensitive gelling systems. 
A case example of the rheological characterisation of a thermosensitive gel system is 
given by Kojarunchitt et al. ( 2011 ), where oscillatory shear measurements of the 
storage (elastic response) and loss (viscous response) moduli of a poloxamer P407 
gel-based vaccine delivery system were conducted over a range of oscillatory fre-
quencies and temperatures. Such measurements allowed for quantifi cation of the 
complex viscosity of the gel system as a function of temperature, and subsequent 
determination of the solution-to-gel transition temperature. Further kinetic measure-
ments of storage and loss moduli at the determined temperature of gelation were then 
carried out in order to give a more precise indication of the time required for gelation 
of the system to occur (Kojarunchitt et al.  2011 ; Winter and Chambon  1986 ).   

11.4     Combination Systems: Gel-Incorporated Particulate 
Systems for Vaccine Delivery 

 The use of more complex gel-based vaccine delivery systems is also noted in the 
literature. Specifi cally, gel systems which incorporate antigen (and in some cases 
also adjuvant) associated with a particulate carrier are being increasingly utilised, 

  Fig. 11.3    Cryo-FESEM 
image illustrating the 
morphology of a chitosan gel 
containing the model antigen 
ovalbumin following 
immersion in phosphate- 
buffered saline at 
37 °C. Figure reproduced 
from Gordon et al. ( 2008 ) 
with kind permission (John 
Wiley and Sons)       

 

S. Gordon



215

in order to combine the advantages associated with both gel-based and particulate 
delivery. Careful fi ne-tuning of such systems is however extremely important in 
order to realise the full potential of such a combination strategy, and to ultimately 
demonstrate an immunological advantage. The stability of the particulate system 
within the gel matrix must be ensured; particle-related characteristics such as size, 
antigen loading, and gel incorporation concentration must also be optimised. 

 Thermosensitive, in situ-forming chitosan gels containing antigen and adjuvant 
in a number of different particulate carriers have been formulated and tested for 
their ability to stimulate an immune response. In particular, gel systems consisting 
of cationic liposomes and cubosomes encapsulating the model antigen ovalbumin 
together with the adjuvant Quil A have been prepared (Gordon et al.  2012 ). The 
incorporation of a particulate component into chitosan gel systems was noted to 
impact on the kinetics of antigen release from gels, as well as on the immune 
response resulting from subcutaneous administration of gel-based systems to mice 
(Gordon et al.  2012 ). This is consistent with previous observations related to 
changes in the characteristics of chitosan gel delivery systems upon addition of 
lipid-based particulate systems, such as an increase in gel strength and a prolonga-
tion of release of incorporated active (Ruel-Gariépy et al.  2002 ). Chitosan gels con-
taining ovalbumin incorporated into silica nanoparticles in both the presence and 
absence of the adjuvant Quil A have also been formulated, and have been shown to 
stimulate both cell-mediated and humoral immune responses in vivo (Gordon et al. 
 2010 ). Poloxamer-based thermosensitive, in situ-forming gels have also been uti-
lised as the basis for combination vaccine delivery systems, and have been formu-
lated to contain human papilloma virus (HPV) virus-like particles (VLPs) together 
with cholera toxin as an additional adjuvant (Park et al.  2003 ). Intravaginal admin-
istration of such systems to mice induced a greater production of vaginal and sali-
vary IgA and serum IgG antibody than that induced by adjuvanted HPV VLPs 
delivered in an aqueous vehicle. 

 The previously mentioned copolymers PCEC and PECE have also been employed 
in order to form combination vaccine delivery systems, as has the discussed water-
in- sorbitan-monostearate organogel system. In the case of PCEC and PECE, PCEC 
nanoparticles loaded with human bFGF were incorporated into a PECE-based ther-
mosensitive gel. Entirely consistent with the general properties of gel delivery sys-
tems, a prolonged release of antigen was noted from such combination formulations 
in comparison to release from PCEC nanoparticles alone; moreover, subcutaneous 
administration of combination systems to mice resulted in the production of potent 
and long-lived humoral immune responses, as well as indications of the induction of 
protective immunity (Wu et al.  2011 ). A strong humoral immune response was also 
noted as a result of vaccination of mice with the aforementioned water-in-sorbitan- 
monostearate organogel, used in combination with haemagglutinin-loaded niosomes 
(non-ionic surfactant vesicles) (Murdan et al.  1999b ). This modifi ed formulation was 
composed of a vesicle-in-water-in-oil gel, in which the aqueous phase containing 
antigen-loaded niosomes was dispersed within surfactant structures in the oil com-
ponent. Interestingly, the level of antibody production induced by an organogel for-
mulation containing non-particulate haemagglutinin was not signifi cantly different 
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to that produced in response to vaccination with the combination system, and in fact 
a greater effi cacy at lower antigen dose was noted as a result of vaccination with the 
organogel system in the absence of a particulate component. 

 A combination system consisting of the in situ-gelling and mucoadhesive poly-
mer polygalacturonic acid incorporating Norwalk virus VLPs has also been investi-
gated by Velasquez et al. ( 2011 ): such a system was initially prepared as a liquid, 
which was then spray dried in order to produce a dry powder formulation, termed 
GelVac™. GelVac™ formulations were shown to be capable of inducing local and 
systemic antibody responses equal to or greater than those resulting from the admin-
istration of VLPs together with an adjuvant in an aqueous vehicle.  

11.5     Clinical Studies 

 As is clearly evident, all above discussions of the application of gels as vaccine 
delivery systems have been in the context of preclinical research. Indeed, there is a 
paucity of clinical studies involving gels for the delivery of vaccines, indicating that 
considerable development is still necessary in order for the preclinical promise of 
gels for vaccine delivery to be realised in the clinical setting. In one of few examples, 
Lewis et al. conducted a Phase I, double-blind randomised controlled trial investi-
gating the effi cacy of a carbopol gel system containing an HIV-1 envelope protein 
antigen following repeated intravaginal administration (Lewis et al.  2011 ). The gel-
based vaccine system was demonstrated to be well tolerated, but was not observed 
to induce any appreciable immune responses. An intranasal H5N1 infl uenza vaccine 
based on the above mentioned GelVac™ system is also currently being investigated 
in the context of Phase I clinical testing (ClinicalTrials.gov Identifi er NCT01258062, 
  http://clinicaltrials.gov/ct2/show/NCT01258062?term=GelVac&rank=1    ).  

11.6     Outlook 

 This chapter has attempted to give a comprehensive overview of the body of litera-
ture currently available concerning the application of gels as vaccine delivery sys-
tems. Overall, the information currently available indicates that gel-based vaccine 
delivery systems are associated with numerous advantages. Gels have the potential 
to facilitate a sustained release of antigen, a property which has positive fl ow-on 
effects with respect to requirements for boosting and patient compliance. In many 
cases, gels also demonstrate excellent biocompatibility and biodegradability char-
acteristics, and may also exhibit inherent biological activity due to their constituent 
polymers. In situ gel-forming systems (which exist as solutions at the benchtop and 
form gels upon administration and adjustment to the physiological environment) are 
also associated with signifi cant advantages, including the ready incorporation of 
antigens and adjuvants, and ease of administration. Furthermore, the concept of 
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combination systems in which antigen is associated with a particulate carrier prior 
to incorporation into a gel matrix holds great promise in the area of vaccine delivery, 
with such systems having the potential to considerably enhance or direct the result-
ing immune response. These advantages are clearly demonstrated in a considerable 
number of preclinical studies employing gel-based vaccine delivery systems; the 
translation of this promise into the clinical setting will be a process to be monitored 
with considerable interest in the coming years.     
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    Chapter 12   
 Implants as Sustained Release Delivery 
Devices for Vaccine Antigens 

             Julia     Engert    

12.1            Background and History 

 Implant systems have been investigated for the controlled and sustained release of 
drugs for several decades. In particular, depot systems for highly active drugs deliv-
ering a low dose per day have been investigated. Implants are small, mainly cylin-
drical rods in which the drug is either embedded in a polymer matrix, or the 
drug-loaded matrix is coated with a polymer, or a combination of both. In the 1980s, 
Norplant was the fi rst implant containing the contraceptive drug levonorgestrel, 
which consisted of either silastic capsules or covered rods (Peralta et al.  1995 ). 
Implantable systems have also been investigated in research areas such as controlled 
and sustained release of antibiotics, ocular treatment, or chemotherapeutics. 

 The use of implantable systems for vaccine delivery has, however, not been 
investigated in such depths. Implants could be a valuable delivery system for vac-
cines as they may release the antigen (and adjuvant) over a prolonged period of 
time, thereby reducing the need for frequent administrations. In addition, patient 
compliance may increase based on this therapy regime and the in vivo stability of 
the antigens may be enhanced. First reports of the advantages for the employment 
of implants as vaccine delivery systems were published as early as 1976 by Langer 
and Folkman. The authors reported the successful preparation of a polymer pellet 
made of ethylene-vinyl-copolymer, which was prepared by a molding procedure, 
that released the incorporated drug over >100 days with zero-order kinetics (Langer 
and Folkman  1976 ). One major obstacle during the production process was the 
incorporation of peptides or proteins into the matrix (Langer and Folkman  1976 ). 
Proteins are prone to chemical or physical degradation during manufacture, storage, 
and release due to their sensitive three-dimensional structure. However, only a few 
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years later Preis and Langer published a study where they investigated the use of 
polymer pellets loaded with bovine serum albumin (BSA), γ-globulin, or ribonucle-
ase. These implants were administered to C57Bl/6 mice, and antibody IgG responses 
to the antigen were compared to the antigen administered in complete Freund’s 
adjuvant (Preis and Langer  1979 ). In response to the extended antigen delivery 
facilitated by implant incorporation, antibody production increased and no induc-
tion of tolerance was observed (Preis and Langer  1979 ). In 1987, Wise and co- 
workers concluded in a review on implantable polymeric systems that biodegradable 
implants releasing antigens could be attractive devices in vaccine delivery (Wise 
et al.  1988 ). They proposed that it was conceivable to deliver two distinct pulses of 
antigen to suffi ciently stimulate immune responses. In addition, they highlighted the 
possibility to further incorporate an adjuvant into the matrix to deliver both antigen 
and adjuvant at the same time. In the early 1990s the search for controlled release 
vaccine delivery systems mainly focused on biocompatible or biodegradable mic-
roparticles for various delivery routes (Aguado and Lambert  1992 ; O’Hagan et al. 
 1991 ), but research on implant systems continued at the same time. One obstacle all 
researchers were facing was the fear of inducing tolerance by delivering the antigen 
over a prolonged time period. Dixon and Maurer had observed that specifi c immu-
nogenic unresponsiveness can be induced in rabbits after long-term administration 
of excess antigen (Dixon and Maurer  1955 ). In the early 1960s Dresser had reported 
that the delivery of non-particulate soluble antigen (bovine γ-globulin) caused 
immunological tolerance in mice (Dresser  1962 ). Furthermore, Ramsdell and 
Fowlkes had pointed out in 1992 that the persistence of antigen can lead to in vivo 
tolerance (Ramsdell and Fowlkes  1992 ). However later, Walduck and Opdebeeck 
found in their study that antibody responses were not signifi cantly affected by the 
dose administered at either one time or by continuous delivery of an antigen 
(Walduck et al.  1998 ). In contrast to the proposed required pulsed delivery of anti-
gen by Wise et al. ( 1988 ), they found that a continuous slow release of antigen was 
effective in stimulating immune responses (Walduck et al.  1998 ). Similarly, Khan 
et al. evaluated the use of cholesterol-lecithin implants loaded with BSA in mice, 
and showed that BSA-specifi c antibodies were produced in response to the BSA 
released from the implant (Khan et al.  1991 ). Investigations on cholesterol-lecithin 
implants containing the adjuvant Quil-A were fi rst reported by Demana et al. in 
2005, showing that immunostimulating complexes (ISCOMs) and related colloidal 
structures were released from compressed pellets (Demana et al.  2005 ). This 
research was further extended to a preparation of implants for an in vivo study, in 
which the implant induced comparable immune responses to two immunizations 
given by injection (Myschik et al.  2008a ,  c ,  d ). The co-delivery of an antigen plus 
adjuvant from an implant was further explored using the small molecular weight 
immunopotentiator imiquimod and an α-galactosylceramide analogue (Myschik 
et al.  2008b ). In summary, implants appear to have potential as controlled or sus-
tained release vaccine delivery systems. However, the transfer from model antigens 
to true vaccines has not been performed so far. It still needs to be investigated in the 
future if real vaccines can be incorporated into implant matrices and how this type 
of delivery affects immune responses in vivo.  
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12.2     Types of Implants 

 Different types of implants can be prepared, depending on the manufacturing 
 process and the manufacturing equipment. An overview is given in Fig.  12.1 .  

12.2.1     Rod-Shaped Implants 

 Mainly rod-shaped strands are described in literature, as these implants can be 
 produced with varying diameters. In addition, these types of implants can be 
 easily implanted subcutaneously through a trochar or a needle, depending on their 
diameter.  

12.2.2     Tablet-Shaped Implants 

 Implants may be produced by direct compression of lipids, e.g., compressed by a 
hydraulic press. The resulting implants can therefore display a form that is similar 
to that of a tablet, or implants having a cylindrical shape can also be prepared. The 
use of tableting technology may be benefi cial as this is a commonly used technique 
for the preparation of solid dosage forms.  

12.2.3     Single-layer or Multilayer Coated Implants 

 Prepared implants may be coated with one or more layers in order to increase the 
diffusion layer, resulting in a slowing of drug/antigen release (Walduck et al.  1998 ; 
Lofthouse et al.  2002 ) by increasing the thickness of the diffusional layer.   

a b c d

  Fig. 12.1    Overview of different implant shapes. ( a ) Rod-shaped implant, ( b ) disc-shaped implant, 
( c ) cross-section single-layer coated rod, ( d ) cross-section double-layer coated rod       
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12.3     Choice of Materials and Excipient(s) 

 For the preparation of implants, different techniques are available and their use is 
infl uenced by the type of material and/or excipients used for the implant matrix. 
Different materials have been utilized for the preparation of antigen-loaded implants. 
But all materials have certain advantages and disadvantages. 

12.3.1     Silicone 

 Silicone can be used as a nonbiodegradable polymer for the preparation of sili-
cone matrix implants or rod-shaped silicone implants. The material has been 
employed for a number of different model proteins and vaccines such as human 
serum albumin (HSA), interferon (INF), avidin,  Clostridium tetani , or  Clostridium 
novyi  toxoids (Lofthouse et al.  2001 ,  2002 ; Kajihara et al.  2000 ,  2001 ; Kemp et al. 
 2002 ). The preparation usually requires the use of a catalyst and a cross-linking 
agent to ensure the formation of a stable silicone matrix. The mixture is pressed 
through an extruder equipped with a die, and the implants are then left to cure at 
room temperature for 3–4 days prior to use. The advantage of using silicone as the 
matrix former is the absence of pH or temperature effects during manufacture as 
well as the avoidance of organic solvents. The disadvantage of using silicone-
based implants is their non-biodegradability, resulting in the need for surgical 
removal of the drug-depleted matrix.  

12.3.2     Ethylene-Vinyl-Acetate Copolymer 

 Langer and Folkman ( 1976 ) developed an implant using ethylene-vinyl acetate 
copolymer as matrix and reported that this type of implant was inert, noninfl amma-
tory, and capable of releasing macromolecules for over 100 days in vitro and in vivo 
(Langer and Folkman  1976 ). The advantage of using this sort of polymer is its inert-
ness as well as the manufacturing procedure. Here, dry protein powder was mixed 
with a small volume of methylene chloride containing the copolymer. After vacuum- 
drying the resulting pellets were cut into pieces and then dipped into a polymer- 
methylene chloride solution for 20 s. The disadvantages of these systems are similar 
to those of the silicone implants, as the material is nonbiodegradable, so surgical 
removal of the implant is necessary.  

12.3.3     Collagen 

 Collagen minipellets have been employed by Lofthouse et al. to deliver avidin plus 
interleukin-1β or a clostridial vaccine to sheep and mice (Lofthouse et al.  2001 ). 
The authors were able to show that the cylindrical-shaped implants degraded within 
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35 days of implantation. Surprisingly, only a few studies can be found in literature 
using this type of polymer: the studies by Lofthouse and co-workers and a study by 
Higaki et al. using tetanus and diphtheria toxoids (Higaki et al.  2001 ). One more 
study by Ochiya et al. utilized a collagen minipellet for the controlled delivery of 
plasmid DNA to mice (Ochiya et al.  1999 ).  

12.3.4     Lipids 

 Current research focuses on using lipids or lipid mixtures as matrix formers for the 
delivery of proteins, as it was shown that the use of triglycerides can overcome at 
least some of the problems that have been encountered when using polymers. Lipids 
are a promising alternative to polymer-based systems, as they can be relatively eas-
ily formed into microparticles or implants. It was furthermore shown that macro-
molecules such as INF-α can be incorporated into and released from implants 
almost exclusively in a monomeric form (Mohl and Winter  2004 ). Tripalmitin- 
based implants have also been developed and employed for the delivery of protein 
drugs such as insulin (Appel et al.  2006 ), interleukins (Koennings et al.  2006 ), lyso-
zyme, and neurotropic factor (Koennings et al.  2007 ). Also, lipid implants prepared 
from cholesterol alone or mixtures of cholesterol and phospholipids, as well as 
implants made of triglycerides and blends of cholesterol and phospholipids (Guse 
et al.  2006 ) have been explored for the delivery of model antigens such as ovalbu-
min (OVA) and BSA (Khan et al.  1991 ,  1993 ; Myschik et al.  2008a ,  b ,  d ), showing 
that the sustained release of antigen with or without the inclusion of an adjuvant is 
possible. The shift from polymeric matrix material to lipids can be explained by the 
fact that lipids are naturally occurring substances and therefore, a foreign body 
response is less likely to be raised by the immune system. However, even for 
triglyceride- cholesterol implants blended with phospholipids, an infl ammatory 
reaction was reported when phospholipid content in the implants was increased to 
higher concentrations (Guse et al.  2006 ).  

12.3.5     Further Additives/Excipients 

 In some cases, it is necessary to incorporate further additives and excipients into the 
implants to allow for ease of production and/or to modify the antigen release 
behavior. 

12.3.5.1     Excipients 

 As proteins and peptides are molecules sensitive to changes in pH and susceptible 
to degradation upon heat, shear stress, or hydrolysis, the addition of further addi-
tives or excipients may be necessary to stabilize the protein or peptide. Cases in 
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which this approach has been successfully employed have been reported in 
 literature. Hydroxypropyl-β-cyclodextrin was used in the case of INF-α as a lyopro-
tectant during the freeze-drying step, when dry IFN-α powder was incorporated into 
a lipid implant (Schulze and Winter  2009 ). This excipient had been proven to stabi-
lize the protein not only during the freeze-drying step, but also to increase storage 
stability of the protein in compressed lipid implants (Mohl and Winter  2004 ).  

12.3.5.2     Pore-Forming Agents 

 Pore-forming agents may be added to the implant matrix in order to adjust the 
release profi le of the protein. For instance, polyethylene glycol 6000 (PEG 6000) 
has been used as a pore former in lipid implants containing IFN-α (Herrmann et al. 
 2007b ; Schulze and Winter  2009 ).    

12.4     Manufacturing Processes 

 A number of different manufacturing processes can be used to prepare implants, 
including direct compression, molding/melting, casting, and extrusion. These pro-
cesses are discussed further below. 

12.4.1     Direct Compression 

 The easiest method to prepare an implant matrix is usually direct compression, 
meaning that a dry powder of the matrix plus any drug (which is also in a dry form) 
is compressed using a punch and die system in a hydraulic press by applying a 
defi ned mass (Myschik et al.  2008a ). Alternatively, a single punch tableting machine 
can be employed (Khan et al.  1991 ; Cardamone et al.  1997 ). Direct compression has 
been utilized for the preparation of pure cholesterol implants (Opdebeeck and 
Tucker  1993 ), cholesterol/lecithin implants (Khan et al.  1991 ,  1993 ; Walduck et al. 
 1998 ), tristearin implants (Mohl and Winter  2004 ; Herrmann et al.  2007b ), and 
glyceryl palmitostearate implants (Pongjanyakul et al.  2004 ), showing that this 
method can be employed for a variety of different excipients and excipient mixtures. 
The main disadvantage of direct compression is the limitation towards scale up of 
the production of implants. Most hydraulic presses are operated manually and there-
fore only production at a very small lab-scale can be achieved. In addition, fl ow-
ability of the lipid powder may be poor, which results in unfavorable loading of the 
punch/die system, and necessitates the use of large amounts of lubricants in order to 
achieve good fl owability of the powder. The addition of lubricants may in turn 
impact on the release kinetics of antigen from implants. Direct compression does 
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however usually result in a continuous distribution of the drug in the matrix, as 
shown by Kreye et al. ( 2008 ).  

12.4.2     Molding/Melting 

 Using a melt of the matrix former and employing subsequent controlled cooling has 
been less frequently reported in the literature. Pongajanyakul et al. utilized polyeth-
ylene tubes with an internal diameter of 2.5 mm fi lled with a suspension of lyso-
zyme in molten glyceryl palmitostearate (Pongjanyakul et al.  2004 ). Similarly, 
Yamagata et al. heated a lipidic matrix former above its  T  m  to subsequently force 
this molten mixture through an 14G stainless steel needle (Yamagata et al.  2000 ). 
This molding technique was used for IFN-α as a model protein, but has so far not 
been reported for antigens. This method is limited to materials that do not show 
polymorphic transition and therefore different physicochemical characteristics. 
During this process, some lipids may undergo polymorphic changes that during 
storage result in transformation into a more stable crystalline form (Kreye et al. 
 2008 ). These changes may have a profound impact on the release characteristics of 
incorporated drugs or proteins.  

12.4.3     Casting 

 Applying this process, a lipid or a lipid mixture is heated and then the drug or anti-
gen is homogenously dispersed in the melt. The melt is subsequently cast into molds 
of different geometries and dimensions (Kreye et al.  2011a ). For this technique, one 
needs to consider the thermal stress drugs or protein antigens will be exposed to, 
and the fact that the choice or composition of lipid/lipid blends impacts on drug 
release (Kreye et al.  2011b ).  

12.4.4     Extrusion 

 A simple extrusion process has been employed for collagen-based implants. For 
example, Higaki et al. ( 2001 ) used a lyophilized cake of collagen containing the 
antigens tetanus toxoid or diphtheria toxoid, and added a small amount of distilled 
water to achieve a swelling of the lyophilized matrix (Higaki et al.  2001 ). The 
spongy mass was then passed through a nozzle with an inner diameter of 1.7 mm 
and the resulting rod-shaped implants were air dried at 4 °C in a humid atmosphere 
for 24 h. Similarly, Yamagata et al. utilized a melted mixture of monoglycerides and 
lyophilized IFN-α which was loaded into a 14 G stainless steel needle and extruded 
to form a rod with a diameter of 1.2 mm (Yamagata et al.  2000 ). 
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12.4.4.1     Twin-Screw Extrusion 

 Twin-screw extrusion is a method that has been employed extensively for mixing 
and compounding of polymeric materials, not only in pharmaceutical processes but 
also in food processing. Two types of twin-screw extruders exist: corotating and 
counter-rotating screw extruders. They are often used to process heat- and shear- 
sensitive material. The extrusion process converts raw material into a product of 
uniform density and shape by pushing it through a die under controlled conditions. 
The lipid raw material can be fed into the extruder as a lipid mixture (premix), or 
alternatively some extruders offer the possibility to feed the single components into 
the extruder through one or two side stuffers. Extrusion offers the advantage of 
being a continuous process that can be scaled up according to production needs. 
The resulting extrudates often have a slightly larger diameter than the die, a phe-
nomenon referred to as “die swell” where the sudden drop in pressure causes the 
polymer to show stress relaxation. In the pharmaceutical context, twin-screw extru-
sion has been used successfully for the preparation of implants from triglycerides 
and mixtures of triglycerides for the delivery of drugs and proteins (Reitz and 
Kleinebudde  2007 ; Schulze and Winter  2009 ; Sax et al.  2012a ). Twin-screw extru-
dates have been prepared containing IFN-α-2a (Schulze and Winter  2009 ; Sax et al. 
 2012a ) and lysozyme (Schwab et al.  2009 ; Sax and Winter  2012 ). However, this 
method has not been utilized for the preparation of implants for vaccine delivery 
where the implants have a much lower protein/peptide load (5 mg in drug delivery 
vs. 1–50 μg for vaccines). Studies on using twin-screw extrudates containing OVA 
as a model antigen are currently underway (Even et al.  in preparation ). One disad-
vantage of twin-screw extrusion is the temperature which needs to be utilized in 
order to extrude the lipids. The lipid mass must be converted into a semisolid mass 
that can be transported and mixed by the extrusion process. The temperature needed 
for this depends on the chosen lipid or lipid mixture. One needs to take into account 
that this elevated temperature may not only alter the lipid, but may also have an 
effect on the incorporated drug or protein.    

12.5     Characterization 

12.5.1     Surface Structure 

 To investigate the surface structure of the implants, the simplest method is to use an 
optical imaging system and acquire images, for example, at different time points of 
a release study. However, sometimes the magnifi cation that can be achieved using 
optical microscopy may not be suffi cient, meaning that further analysis involving 
the use of scanning electron microscopy is necessary. Here surface properties such 
as roughness, porosity, or pore formation during release can be investigated in more 
depth (Guse et al.  2006 ; Myschik et al.  2008a ). Pore formation can also be analyzed 
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after drying of the implants using mercury porosimetry where the application of a 
high pressure forces a non-wetting liquid, e.g., mercury, into the implant matrix. By 
doing so, the pore size can be determined based on the pressure needed to force the 
mercury into a pore against the force of the liquid’s surface tension. Implants are 
usually dried and then placed in a vacuum (Mohl and Winter  2004 ). The degree of 
intactness of the implant surface as well as any observed pore formation will have a 
considerable effect on the release kinetics from implants, as will the occurrence of 
erosion or swelling. If erosion from the implant matrix occurs, the determination of 
the release profi le becomes more challenging, as release is not independent on ero-
sion. Some implant matrices exhibit swelling due to the choice of excipients. This 
is often the case if, for example, class II lipids such as phospholipids or monoglyc-
erides are used (Witzleb et al.  2012 ; Small  1967 ).  

12.5.2     Distribution Within the Matrix 

 Drug or antigen distribution within the implant matrix can be analyzed using tech-
niques such as confocal microscopy. In order to do this, a fl uorescently labeled drug 
has to be used and the concentration needs to be suffi ciently high for signal detec-
tion. Depending on the implant preparation process, drug distribution can be 
strongly affected, as reported by Kreye et al. ( 2008 ). Directly compressed lipid 
implants generally display a continuous protein network in the matrix, whereas 
other preparation techniques may result in protein patches throughout the matrix.  

12.5.3     Stability of the Matrix 

 An important aspect particularly for lipid-based implants is the stability of the lipid 
matrix. Differential scanning calorimetry can be employed to analyze the lipid 
matrix to detect the potential formation of unstable polymorphic forms of lipids, 
which may occur as a result of the extrusion procedure or impact of temperature 
(Schulze and Winter  2009 ; Pongjanyakul et al.  2004 ; Reitz and Kleinebudde  2007 ).  

12.5.4     Antigen Stability Within the Matrix 

 Protein or antigen integrity within the implant matrix needs to be analyzed after 
implant formation. This can be done either in situ using spectroscopic techniques or 
following extraction of the protein or antigen from the solid matrix. The integrity of 
extracted protein can then be analyzed using a number of different techniques such 
as electrophoresis, chromatography, or in activity assays. 
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 Fourier-transform infrared (FT-IR) spectroscopy can be used to analyze changes 
in the protein when present in the implant matrix, and attenuated Fourier-transform 
infrared (ATR-FITR) spectroscopy has been reported as a useful technique for 
locating drug either in the local surface layer or in deeper implant layers (Reitz and 
Kleinebudde  2007 ). For FT-IR measurements, usually the second derivative spectra 
is recorded and analyzed to observe conformational changes. Changes in the band 
intensity or a shift from α-helical to β-sheet or random coil-rich structures can be 
observed. However the low concentration of the antigen often makes the use of this 
technique challenging. 

 Electrophoresis and chromatography can be used to assess physical character-
istics (such as size or charge) of the extracted protein. The extracted protein is 
commonly run on a polyacrylamide gel and protein integrity is analyzed by com-
parison to a standard (Mohl and Winter  2004 ; Herrmann et al.  2007a ). Additionally 
occurring bands, or disappearance of bands may be a hint that protein integrity 
has been compromised. Size-exclusion chromatography can also be employed to 
determine the stability of the protein after extraction from the implant matrix. 
Here, the amount of monomeric protein in comparison to the presence of dimers, 
trimers, etc. can be analyzed. Again, the very low concentration of antigen in the 
implant matrix may pose a challenge in terms of antigen detection. Therefore, 
the use of fl uorescence detection may be necessary. For proteins such as lyso-
zyme, activity assays can be performed, and the amount of active drug released 
can be determined using  Micrococcus lysodeikticus  as a substrate (Pongjanyakul 
et al.  2004 ).   

12.6     Drug Release Mechanisms 

 Drug release from a polymer or lipid matrix may occur as a result of diffusion 
through water-fi lled pores, diffusion through the polymer or lipid matrix, osmotic 
pressure, or erosion or degradation of the implant matrix. Sometimes processes 
such as diffusion and erosion may overlap, making drug release prediction more 
diffi cult. In addition, some excipients may lead to a swelling of the implant matrix, 
thereby increasing the diffusional barrier and hence also making prediction of drug 
release problematic. In some cases, it is the aim to achieve a longer-term zero-order 
kinetics release profi le. However for vaccine delivery, it has been proposed that a 
bimodal or dual-pulsed release profi le for antigens may be benefi cial in order to 
induce protective immune responses (Wise et al.  1988 ). For this purpose, the use of 
pulsatile release implants may be feasible (Cardamone et al.  1997 ; Vogelhuber et al. 
 2001 ; Sanchez et al.  1996 ). An overview of different release profi les is given in 
Fig.  12.2 .  
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12.6.1     In Vitro Release 

 Determination of the in vitro release of proteins or antigens from implants is usually 
carried out in buffers such as phosphate-buffered saline (PBS), often at pH 7.4. Such 
a buffer is used to simulate isotonic conditions, and the temperature is kept to 37 °C 
in order to mimic physiological conditions. Sodium azide at a concentration of 
0.01–0.05 % can be added as a preservative if studies are carried out over a period 
of several days, weeks, or even months. Sampling is usually carried out at predeter-
mined time points. In some studies, a full exchange method is used, meaning that 
the release medium is completely removed and then replaced by fresh buffer. Other 
authors report a partial exchange of the buffer medium, which makes calculation of 
the fi nal concentration of released drug/antigen more diffi cult. Even though most 
proteins and antigens are very soluble, one needs to take into account that sink- 
conditions should be maintained for the duration of a release study. Analysis of 
released drug may be carried out using UV-spectroscopy or fl uorescence spectros-
copy, or the protein concentration and monomer content may be assessed by size- 
exclusion chromatography (Lofthouse et al.  2001 ; Higaki et al.  2001 ; Schulze and 
Winter  2009 ). In addition, Kajihara et al. have observed drug release from silicone 

t

a

b

c

  Fig. 12.2    In vitro release profi les: ( a ) fi rst-order release profi le with large amount of antigen 
released during the fi rst time period, ( b ) zero-order release profi le where the same amount of anti-
gen is released per time period (idealized), ( c ) dual-pulsed release profi le where a fi rst pulse is 
released followed by a second pulse (idealized)       
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implant formulations optically by confocal laser scanning microscopy. This was 
achieved using HSA labeled with Texas red, which conferred suffi cient fl uorescence 
for such analysis to be possible (Kajihara et al.  2000 ,  2001 ).  

12.6.2     In Vivo Release 

 In vivo release kinetic studies have been less frequently reported in literature with 
respect to implant systems. Here, the expenses in performing an animal study in 
addition to complicated data analysis pose a challenge. For small molecular weight 
drugs, in vivo kinetics may be analyzed by determining the plasma or serum values 
of the drug at certain time points. For antigens however, the formation of anti-drug- 
antibodies may eventually interfere with simple detection methods, requiring the 
development and use of more complex analytics. Kajihara et al. performed pharma-
cokinetic analysis in a mouse model by determining the maximum concentration 
( C  max ), time of occurrence of ( T  max ), and the elimination rate ( K  e ) for IFN-silicone 
formulations (Kajihara et al.  2000 ).   

12.7     Preclinical Studies 

 A number of preclinical studies on implants for vaccine delivery have been per-
formed in different animal species, utilizing compressed, molten or extruded implants 
either from nonbiodegradable or biodegradable material. The most commonly used 
species include mice and sheep. Administration of the implant was either performed 
through a trochar or by minor surgery using a small incision. In the majority of stud-
ies, the antibody response was measured using an enzyme-linked immunoassay 
(ELISA). In some studies, histological investigation of the site of administration was 
also performed. An overview of these studies is given in Table  12.1 .
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12.8        Important Considerations 

12.8.1     Tissue Responses 

 As a result of implantation, a tissue response may occur. This may be in the form of 
an encapsulation, or the development of tissue edema or infl ammation. Encapsulation 
of implants in a membrane were reported by Opdebeeck and Tucker following 
administration of a BSA-loaded cholesterol pellet (Opdebeeck and Tucker  1993 ), 
and Khan et al. after the administration of cholesterol/lecithin implants (Khan et al. 
 1991 ). In addition, granuloma formation or increased vascularization may occur. 
Fibrous capsule formation was also reported by Sax et al. for implants prepared 
from a mixture of high and low melting point lipids (Sax et al.  2012b ). Cardamone 
et al. observed some local foreign body responses to their implant, however, the 
authors concluded that this response may be benefi cial for vaccination (Cardamone 
et al.  1997 ). Guse et al. observed foreign body reactions to implants made of 
 phospholipids and glyceroltripalmitate (Guse et al.  2006 ).  

12.8.2     Biocompatibility 

 For implant administration, the biocompatibility of the material is of major impor-
tance as the delivery system will remain at the site of implantation for several days, 
weeks, or even months. Good biocompatibility has been reported for glyceryl tripal-
mitate (Reithmeier et al.  2001 ), glyceryl palmitostearate (Gao et al.  1995 ), as well 
as implants made of triglycerides and cholesterol (Guse et al.  2006 ).  

12.8.3     Biodegradability Versus Non-Biodegradability 

 One aspect that needs to be considered early on in implant formulation development 
is the decision as to whether biodegradable or nonbiodegradable systems are 
desired. Each system has its advantages and disadvantages. Biodegradable systems 
may degrade via bioerosion processes, meaning that over the time of incubation (or 
implantation), the diffusional barrier of the matrix becomes smaller. If, for example, 
the antigen is incorporated into a lipid matrix, this matrix may undergo enzymatic 
degradation via the action of lipases, as shown by Schwab et al. (2009,  2009 ,  2013 ). 
The occurrence and impact of lipase degradation depends on the type of lipid. Only 
in the case of defi ned triglycerides can degradation be investigated systematically. 
Short-chain triglycerides, for example, are degraded faster than long-chain triglyc-
erides. Therefore, drug release can only be predicted for defi ned, synthetic triglyc-
eride matrices. 

12 Implants as Sustained Release Delivery Devices for Vaccine Antigens
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 In the case of polymers as matrix formers, three major approaches may be taken 
in order to facilitate degradation. If water-insoluble polymers are hydrolyzed, some 
can degrade into water-soluble fragments. This can also be achieved if functional-
ized groups within the polymer are affected by hydrolysis, ionization, or proton-
ation, thereby converting the water-insoluble polymer into a soluble polymer. 
Thirdly, hydrophilic polymers can be converted into water-insoluble polymer 
 networks through polymerization (Voigt  2000 ). 

 A disadvantage of implants that degrade over time is the loss of surface area due 
to the degradation process. This results in the observation of a decrease in drug 
release; a constant drug release profi le can therefore not be achieved using these 
systems. Also, the time required for biodegradation depends heavily on the choice 
of lipid and the manufacturing technique (Schwab et al.  2009 ; Sax et al.  2012b ). Sax 
et al. for example, observed that surprisingly, implants prepared by twin screw 
extrusion from a mixture of a high melting lipid (D118), a low melting lipid (H12 
or E85), and a pore-forming agent (PEG 6000) showed biodegradability when 
tested in vivo in a rabbit model for over 6 months (Sax et al.  2012b ). Compressed 
implants of D118 however stayed intact for more than 4 weeks (Schwab et al.  2008 ) 
and no macroscopic encapsulation was visible after surgical removal. 

 If the matrix is of a nonbiodegradable nature, later surgical removal of the 
implant matrix is in most circumstances inevitable. The nonbiodegradable material 
must have an excellent biocompatibility profi le and must not show any adverse tis-
sue reactions (Wise et al.  1988 ).  

12.8.4     Immunogenicity 

 Last but not least, the immunogenicity of any antigen or vaccine must be preserved 
when incorporated into a controlled or sustained release implant. During sustained 
delivery, protein aggregation or the formation of protein particles may occur, thereby 
increasing the chance of generating immune responses. While this is an unwanted 
in the case of controlled delivery of therapeutic biopharmaceuticals (Jiskoot et al. 
 2012 ), it may prove advantageous and desirable in the controlled or sustained deliv-
ery of proteins for vaccine applications.   

12.9     Summary 

 Certainly given the reports presented in literature, research on implants for con-
trolled or sustained release of antigen is justifi ed. However, a number of challenges 
as outlined above still need to be overcome in order to make such delivery systems 
applicable not only for veterinary vaccines but also for human applications.     

J. Engert
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    Chapter 13   
 Dendritic Cell-Based Vaccines 

             Olivier     Gasser      and     Ian     F.     Hermans    

13.1            Introduction 

 Early observations from half a century ago have implicated cell-mediated immunity 
in resistance and protection against cancer (Habel  1962 ). Decades later, the identi-
fi cation of the fi rst tumor-associated antigens launched the era of cancer immuno-
therapy (Traversari et al.  1992 ; van der Bruggen et al.  1991 ), and there is now a 
large body of evidence that suggests that antigen-specifi c T-cells play a prominent 
role in the immunological control of cancer (Galon et al.  2012 ; Sato et al.  2005 ; 
Shankaran et al.  2001 ; Tosolini et al.  2011 ). Dendritic cells (DCs) are antigen- 
presenting cells (APCs) that stimulate proliferation of antigen-specifi c T-cells, and 
provide the key molecular signals required to drive optimal effector functions, 
including cytotoxicity (Steinman  1991 ). In terms of immunological potency, DCs 
are orders of magnitude better than any other professional APCs (Nussenzweig 
et al.  1980 ) and this heightened functionality has been shown to apply to cancer 
immunosurveillance (Petersen et al.  2010 ). Given this key role, optimizing DC 
function is essential to achieving potent immune responses, and it is for this reason 
that these cells are often the targets of the immunological adjuvants used in vaccina-
tion strategies (Gallucci et al.  1999 ; Steinman and Banchereau  2007 ; Coffman et al. 
 2010 ). With the advent of methodological approaches to culturing DCs in vitro, it 
became theoretically possible to precisely control aspects of DC activity, including 
the antigens and stimulation they receive, with the aim of maximizing their stimula-
tory function for antigen-specifi c T-cells; these cells could then be injected back 
into the patient to elicit desired responses. This approach to vaccination is attractive 
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in the cancer setting, where DC function is often blunted or subverted by factors 
released by the tumor. Building on promising preliminary successes in animal mod-
els (Flamand et al.  1994 ; Inaba et al.  1990 ), the fi rst attempt to use such DC-based 
vaccines therapeutically in humans was carried out in patients with B-cell lym-
phoma in the mid-1990s (Hsu et al.  1996 ). Several in vitro generated DC-based 
vaccine strategies have since been validated, culminating with the US-Food and 
Drug Administration (FDA)-approval of Sipuleucel-T for metastatic prostate can-
cer, a product composed of peripheral blood mononuclear cells differentiated with 
a proprietary fusion protein of granulocyte-macrophage colony stimulating factor 
(GM-CSF) and prostatic acid phosphatase (Small et al.  2006 ). 

 The immunotherapeutic use of DC vaccines in their various forms has been 
extensively documented, largely supporting their clinical safety (Aarntzen et al. 
 2008 ; Kalinski et al.  2013 ; Schuler  2010 ). However, a clear relationship between 
their immunological potency, as assessed by expansion of cancer-specifi c T-cells, 
and clinical impact has been hard to confi rm. Among the disappointments, clinically, 
was a pioneering phase III clinical trial of DC vaccines in metastatic melanoma 
patients, which failed to demonstrate any effi cacy as compared to standard of care 
alone (Schadendorf et al.  2006 ). A recent meta-analysis of 38 published DC-vaccine 
studies, including a total of 626 stage III-IV melanoma patients, concluded that less 
than a third of patients objectively respond to DC immunotherapy (including stable 
disease) (Engell-Noerregaard et al.  2009 ). An equally sobering fact is the modest 4 
months median survival benefi t from Sipuleucel-T-treatment in patients with meta-
static castration-resistant prostate cancer, while the initial target of progression-free 
survival never reached statistical signifi cance (Higano et al.  2009 ; Kantoff et al. 
 2010 ; Small et al.  2006 ). In this chapter, we aim at providing an extensive overview 
of the necessary steps to bring DC-based immunotherapy closer to wide, and justifi -
able, clinical use.  

13.2     Challenges and Emerging Opportunities of DC-Based 
Immunotherapy 

 The in vitro generation of DCs offers a range of options including various culture 
conditions, sources of antigen and maturation protocols (Palucka and Banchereau 
 2012 ). Early attempts to isolate DCs directly from the peripheral circulation were 
successful but limited by a very low blood DC yield (Hsu et al.  1996 ). The genera-
tion of clinical grade DCs now typically involves the isolation of large numbers of 
monocytes from the peripheral circulation of patients, without the need for any 
pharmaceutical preconditioning, and in vitro culture for 5–7 days in the presence of 
GM-CSF and interleukin (IL)-4 (Romani et al.  1994 ; Sallusto and Lanzavecchia 
 1994 ). To induce maturation of immature DCs, a cytokine “cocktail” of IL-6, IL-1β, 
tumor necrosis factor (TNF-)α and prostaglandin (PG)E 2  represents the reference 
standard (Feuerstein et al.  2000 ; Schuler-Thurner et al.  2002 ). This particular com-
bination of cytokines essentially represents a synthetic and standardized form of 
monocyte-conditioned medium (Jonuleit et al.  1997 ). Current standard operating 
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procedures (SOPs) for the in vitro generation of clinical grade DCs are aimed at 
generating mature DCs with a stable phenotype. Validation studies are typically 
conducted to show that cells generated by the SOPs can effi ciently present antigens 
to T-cells in vitro (Figdor et al.  2004 ). 

 In an effort to render DC-based immunotherapy more accessible in terms of 
costs and labor, attempts have been made to signifi cantly shorten the ex vivo cell 
culture period. Mature DCs obtained after a mere 2-day culture period, the so-called 
“fastDCs,” were shown, in seminal work conducted a decade ago, to be equivalent 
to standard mature DCs with regard to the essential capacity to induce antigen- 
specifi c T-cell responses (Dauer et al.  2003 ). The capacity of fastDCs to prime 
tumor-specifi c T-cells in particular was documented shortly after (Dauer et al. 
 2005 ). Herein we will use the term “fastDCs” broadly to encompass the various 
protocols described that last no more than 3 days. A few important implications of 
the shortening of the DC differentiation process have since been revealed. 
Importantly, fastDCs feature a lower spontaneous uptake of antigen and although 
amenable to genetic transduction, require proprietary electroporation protocols 
(Burdek et al.  2010 ; Kvistborg et al.  2009 ). They release less IL-12p70 (an impor-
tant DC-derived soluble mediator of T-cell activation and polarization, as will be 
discussed in more detail later) in culture compared to DCs generated according to 
lengthier protocols (Kvistborg et al.  2009 ). By contrast, compared to standard DCs, 
fastDCs are characterized by higher yields, a higher CCL19-induced chemokinesis, 
better intracellular processing of antigen after it has been acquired, and a more 
effective priming of tumor-specifi c cytotoxic T-cells (CTLs) (Burdek et al.  2010 ; 
Dauer et al.  2005 ; Kvistborg et al.  2009 ). Based on preliminary recent observations, 
similarly functional fastDCs can be generated from unfractionated peripheral blood 
mononuclear cells (Kodama et al.  2013 ). 

 The qualitative enhancement of DC-vaccine products can occur on several levels, 
largely mirroring the essential signaling events that control effective T-cell activation 
(Arens and Schoenberger  2010 ). To yield maximal protection, in vitro generated 
DC-vaccines need to be able to effi ciently present antigen for a prolonged duration 
suffi cient to engage the T-cell receptor (“signal 1” for effective T-cell activation) and 
provide T-cells with appropriate co-stimulation through cell surface CD80/86 and 
CD70 (engaging T-cell-encoded CD28 and CD27 respectively; “signal” 2). Finally, 
the immunogenic cytokine IL-12p70 is thought to represent a crucial “third signal” 
for T-cell proliferation and function and should be ideally provided by DC-vaccines 
as well. In the section below we will discuss how these various requirements can be 
instilled into ex vivo generated DCs to yield highly effective vaccines. 

13.2.1     Source of Antigen 

 Various DC antigen-loading strategies have been tested to date. Prominent among 
in vitro methodologies is the loading of DCs with tumor-derived peptides (Figdor 
et al.  2004 ), or cellular material from lysates or irradiated tissue. It is also possible 
to transduce DCs with autologous tumor-derived messenger (m)RNA or DNA 
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(Shurin et al.  2010 ) or to directly fuse DCs with autologous tumor cells (Lee  2011 ; 
Shu et al.  2007 ). The advantage of “whole cell” approaches, where cellular or 
genetic material is sourced from tumor cells, is that they are highly personalized, 
and will drive immunity towards patient-specifi c tumor-associated antigens (TAAs). 
A downside of such custom DC products is the level of diffi cultly, the variability 
between patients, the need for specialized equipment, and overall signifi cant labor 
and costs. Most clinical trials to date have adopted a more off-the-shelf strategy, 
loading the DCs with common TAA(s), or peptides derived thereof. While acceler-
ating the DC-manufacturing process, this selective strategy entails more restrictive 
patient selection criteria in terms of HLA-genotype and tumor phenotype, and is 
intrinsically biased. Indeed, in contrast to most pathogen-associated antigens that 
are reasonably well defi ned, the antigen-selection in cancer immunotherapy is far 
less established and still largely empirical (Buonaguro et al.  2011 ). In addition, 
while some TAAs such as cancer-testis antigens (CTAs) are shared among various 
cancer types, the restriction of other TAAs to specifi c tissues such as the mammary 
or prostatic epithelium prevents an excessively translational research approach 
(Buonaguro et al.  2011 ). Thus, while peptide-loaded DC-vaccines have enjoyed 
preferential attention, stringent comparative studies are needed to consolidate cur-
rent antigen/peptide-selection criteria. Importantly, TAA selection and expression 
patterns signifi cantly impact the quality of the ensuing immune response. As docu-
mented recently, sustained release of melanocyte-derived antigens promotes the 
induction of long-lived effector memory (EM) T-cells that are protective against 
melanoma (Byrne et al.  2011 ). 

 It is also important to note that mature DCs express the immunoproteasome, and 
therefore process and present antigen in a different manner than cells that have no 
professional antigen-presenting function (Van den Eynde and Morel  2001 ). The dif-
ferent proteolytic activities of the immunoproteasome compared to the ubiquitously 
expressed “constitutive” proteasome imply that DCs might prime T-cells that are 
unable to recognize antigenic peptides on target cells. DCs engineered to present 
antigen in the same form as encountered by T-cells in the periphery are therefore 
likely to provide better therapeutic benefi t, as very recently described (Dannull et al. 
 2013 ).  

13.2.2     Release of IL-12 

 A large body of work has focused on the capacity of DCs to produce bioactive 
IL-12p70, the third signal for optimal CTL expansion and acquisition of effector 
functions (Curtsinger et al.  1999 ; Trinchieri et al.  2003 ). Overall, current protocols 
do not seem to provide the necessary signals to optimally prime DCs for IL-12p70 
production (Mailliard et al.  2004 ), a process that is known to rely on concerted acti-
vation of CD40 or toll-like receptors (TLR) and interferon (IFN)-γ-associated sig-
naling pathways (Mosca et al.  2000 ; Snijders et al.  1998 ). CD40-mediated 
“licensing” of DCs to produce IL-12p70, and thus initiate productive CTL responses, 
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has empirically been equated to CD4 +  T-cell “help.” However it has recently become 
clear that the contribution of CD4 +  T-cells to a robust, memory-forming CTL 
immune response is not always restricted to CD40-signaling (Ballesteros-Tato et al. 
 2013 ) and that CD40-signaling itself can be mediated by other T-cell subsets such 
as CTLs themselves and type 1 (invariant) NKT (iNKT) cells (Bendelac et al.  2007 ; 
Frentsch et al.  2013 ). 

 Systemic administration of recombinant IL-12p70 is associated with dose- 
limiting toxicities (Atkins et al.  1997 ; Leonard et al.  1997 ) and thus cannot be incor-
porated into current vaccine designs. Emphasis has therefore been on changes to 
in vitro DC differentiation/maturation protocols that encourage IL-12p70 release 
(Mailliard et al.  2004 ). In this context, DCs matured in the presence of CD40 ligand 
and IFN-γ have shown promise in clinical application, with levels of DC-vaccine- 
derived IL-12p70 positively correlating with time to progression in a cohort of met-
astatic melanoma patients (Carreno et al.  2013 ). Another strategy has been to 
substitute IL-15 for IL-4 during in vitro DC differentiation, which enhances 
IL-12p70 secretion upon CD40-ligation (Anguille et al.  2009 ), and has other advan-
tageous aspects such as shorter DC culture periods (2-3 days) and a superior capac-
ity to prime CTLs (Anguille et al.  2009 ; Dubsky et al.  2007 ). Similar results were 
observed with “alpha-type-1-polarized” DCs (αDC1s), which are differentiated 
with IL-4 and GM-CSF but, in contrast to conventional monocyte-derived DCs, are 
matured with a combination of IFN-α, polyinosinic:polycytidylic acid (polyI:C), 
TNF-α, IL-1β, and IFN-γ. Improved functionality of αDC1 was observed both 
in vitro (Mailliard et al.  2004 ) and in vivo (Giermasz et al.  2009 ; Lee et al.  2008 ; 
Park et al.  2011 ; Wieckowski et al.  2011 ). Despite higher levels of IL-12p70 secre-
tion, strong adherence to cell culture vessels was observed which unfortunately low-
ered yields; this might represent a signifi cant impediment to the broad application 
of such type-1/IL-12p70-polarized DC-products (Arimoto-Miyamoto et al.  2010 ). 

 It is possible that type-1/IL-12p70-polarized programming of DCs can be pro-
moted in vivo, thereby bypassing the challenges associated with strong adherence 
and low yields. To achieve this, DC-vaccination strategies must deliberately harness 
in vivo CD4 +  T-cell help. While short peptides with particular human leukocyte 
antigen (HLA)-restriction have been favored to date, synthetic long peptides (SLP), 
including both CD8 +  and CD4 +  T-cell epitopes, could address this problem. 
Importantly, simultaneous presentation of both CD4 +  and CD8 +  T-cell epitopes by 
vaccine DCs has been shown to act synergistically upon the induction of antitumor 
CTL responses (Tomita et al.  2013 ). The activation of CD4 +  T-cells would have the 
additional benefi t of making use of their own antitumor activities, including local 
cytokine release, activation of local APCs, and direct cytotoxic activity towards 
tumor cells (Quezada et al.  2010 ). 

 Another strategy to provide in vivo IL-12p70-polarization of vaccine DCs is 
through interaction with innate-like T-cells. These are populations of T-cells with a 
restricted TCR repertoire that express markers and functions typical of Natural 
Killer (NK) cells. Included are iNKT cells, Vγ9Vδ2 T-cells, and mucosal-associated 
invariant T-cells (MAIT cells). The loading of DCs with the prototypical iNKT cell 
agonist α-galactosylceramide (α-GalCer) initiates in vivo crosstalk between these 
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two cell types. The bipartite interaction induces CD40-ligand upregulation and 
 IFN-ɣ- secretion by iNKT cells that in turn provide DCs with necessary signaling 
for IL-12p70 production (Kawano et al.  1997 ). Although iNKT cells have been 
 successfully targeted in human clinical trials, a deliberate strategy to provoke iNKT 
cell crosstalk to DC vaccines presenting tumor antigens has yet to be assessed 
(Cerundolo et al.  2009 ; Hermans et al.  2003 ; Hunn and Hermans  2013 ). Interest is 
growing in incorporating agonists for Vγ9Vδ2 T-cells and MAIT cells in a similar 
manner. In this context, in vitro studies have shown improved T-cell responses to 
antigen-loaded DCs pulsed with bisphosphonates, as these compounds are known 
to stimulate Vγ9Vδ2 T-cells (Castella et al.  2011 ). Agonists for MAIT cells have 
only just been defi ned (Kjer-Nielsen et al.  2012 ), so there is still much to learn about 
exploiting crosstalk between these cells and DC vaccines. While iNKT cells are 
known to recognize glycolipids presented by the MHC class I-like molecule CD1d, 
there are other classes of T-cells that are restricted by the other CD1 molecules 
expressed in human that remain to be fully defi ned; some are likely to exert similar 
functionality (Vincent et al.  2002 ). Intriguingly, the in vivo interaction between vac-
cine DCs and innate-like T-cells may have the additional benefi t of activating intrin-
sic anticancer activities in responding T-cells (Braza and Klein  2013 ; Song et al. 
 2009 ), resulting in an immunological “double-hit,” as discussed above for CD4 +  
T-cells. 

 Of note, the maximal IL-12p70 production by clinical grade DC-vaccines can 
vary massively between cancer patients (Carreno et al.  2013 ). Consistent with this 
fi nding, IL-12p70-secretion has been shown to be restricted to a specifi c fraction of 
in vitro cultured DCs that express high levels of CD1a. This cell subset represents 
10-90% of any given vaccine product (Chang et al.  2000 ; Gogolak et al.  2007 ), thus 
possibly accounting for the large differences observed among patients. The lower 
capacity of IL-12p70 production by fastDCs (see above) is similarly associated with 
lower levels of CD1a expression (Kvistborg et al.  2009 ). The underlying 
mechanism(s) are as of yet poorly understood but will be instrumental for the vali-
dation of next-generation DC-manufacturing processes. 

 Importantly, the production of IL-12p70 is also a component of humoral immu-
nity, both directly, by acting on naïve B-cells (Dubois et al.  1998 ), and indirectly, 
through the differentiation of follicular helper T-cells (Schmitt et al.  2009 ). As can-
cer cells are a known target for natural antibodies, providing the immunological 
environment for B-cell differentiation is likely to contribute to cancer-related immu-
nosurveillance (Vollmers and Brandlein  2009 ). Furthermore, DCs that have been 
genetically engineered to produce bioactive IL-12 have been shown, in animal can-
cer models, to mediate their effi cacy at least partly through the activation of NK-cells 
(Miller et al.  2003 ; Rodriguez-Calvillo et al.  2002 ; Tatsumi et al.  2007 ). The intra-
tumoral injection of an autologous DC-vaccine harboring an adenoviral-encoded 
IL-12 gene has been evaluated in humans, inducing detectable peripheral blood 
NK-cell activation in 5 out of 17 patients (Mazzolini et al.  2005 ). More generally, it 
is well accepted that non-modifi ed DC-vaccines, even in the absence of antigen, can 
induce NK-cell activation to a level that signifi cantly contributes to antitumor activ-
ity (Lion et al.  2012 ). Preclinical observations have indeed demonstrated that 
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NK-cell activation is necessary, albeit not suffi cient, to initiate T-cell mediated 
 antitumor responses (Lion et al.  2012 ). Although the monitoring of NK-cell activity 
has been largely neglected in human DC-vaccine trials, some preliminary fi ndings 
have been reported (Lion et al.  2012 ). Interestingly, the large majority of human 
DC-vaccine trials that recorded NK-cell data demonstrate some level of NK-cell 
activation, although these changes do not always seem to correlate with clinical 
outcome. Somewhat inconsistently, NK-cells, in the context of DC-vaccination 
studies, have been reported not to infl uence disease progression to any signifi cant 
extent (Alfaro et al.  2011 ; Baek et al.  2011 ; Qi et al.  2012 ), to synergize with T cell- 
mediated immunity (Van Tendeloo et al.  2010 ), or to univariately predict disease 
outcome (Osada et al.  2006 ). The overwhelming number of variables that affect 
NK-cell recruitment and function in the context of DC vaccination, such as admin-
istration routes and regimen, and antigen choice, make it hard to draw unequivocal 
conclusions about their impact as of yet. More consistent monitoring of NK-cell 
parameters is needed to draw solid conclusions, but DC-vaccine improvement 
through NK-cell recruitment is likely to receive increasing attention (Schnurr et al. 
 2002 ; Tosi et al.  2004 ; Vujanovic et al.  2010 ).  

13.2.3     Co-stimulation 

 Co-stimulation is a requirement for effective T-cell activation. The main 
 co- stimulatory receptor for T-cells is CD28, which is constitutively expressed on the 
surface of naïve T-cells. Its two DC-encoded activatory ligands, CD80 and CD86 
are rapidly upregulated upon DC maturation and licensing (Greenwald et al.  2005 ; 
Sharpe and Freeman  2002 ). Another group of important co-stimulatory molecules 
expressed by T-cells is the TNF receptor family, prominently represented by CD27. 
The monitoring of its DC-expressed ligand, CD70, is often overlooked, but is asso-
ciated with improved survival of primed CTLs (Bowman et al.  1994 ; Dolfi  and 
Katsikis  2007 ; Hendriks et al.  2003 ). Ideally, monitoring of its expression should be 
permanently integrated into DC-vaccine quality control (Arimoto-Miyamoto et al. 
 2010 ).  

13.2.4     Combination with Check-Point Inhibitors 

 Infi ltration of tumors by T-cells (Gooden et al.  2011 ), and having a favorable ratio 
of effector T-cells to regulatory T-cells (Tregs), has been associated with better 
 disease prognosis (Gooden et al.  2011 ). However tumor-infi ltrating lymphocytes 
(TIL) represent a largely “exhausted” T-cell population (Ahmadzadeh et al.  2009 ; 
Baitsch et al.  2011 ) reminiscent of similar populations found in human chronic 
infections (Day et al.  2006 ; Kim and Ahmed  2010 ). The specifi c triggering of inhib-
itory T-cell receptors by the tumor microenvironment—an “immune checkpoint” 
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that halts T-cell activation—lays the basis for this dysfunction (Benencia et al.  2012 ; 
Condamine and Gabrilovich  2011 ; Teng et al.  2011 ). The blockade of such immune 
checkpoint(s) by monoclonal antibody-based therapy has been shown to effi ciently 
antagonize the premature exhaustion of tumor-specifi c immune responses. 
Prominent among clinical targets are cytotoxic T-lymphocyte antigen (CTLA)-4 
and programmed cell death (PD)-1 receptors. Bypass of both checkpoints (Freeman 
et al.  2000 ; Walunas et al.  1994 ) results in unbridled T-cell activity which is a poten-
tially attractive prospect for cancer immunotherapy, if appropriately directed and 
controlled. The FDA has currently approved one such drug for cancer immuno-
therapy, ipilimumab, which blocks the interaction between the checkpoint molecule 
CTLA-4 and its ligands CD80 and CD86 (Hodi et al.  2010 ). Based on remarkable 
clinical results, an agent blocking interactions between another checkpoint mole-
cule PD-1, and its ligands PDL1 and PDL2 has received breakthrough therapy des-
ignation from the FDA (Hamid et al.  2013 ). DC immunotherapy represents a prime 
candidate for combinatorial therapy with immune checkpoint regulators (Vanneman 
and Dranoff  2012 ). Importantly, as these “immunomodulatory” drugs are reliant on 
there being an immune response present in the fi rst place, DC vaccines encoding 
whole tumor material may be particularly useful in driving broad immune responses 
that benefi t from checkpoint blockade. Timely cycles of vaccination and checkpoint 
inhibition may prove to be very effective.   

13.3     Conclusion 

 Over the past decades, the prospect of modulating the immune system to fi ght can-
cer has gone from being a possibility to a viable therapeutic option, particularly 
with the recent development of drugs that serve as checkpoint inhibitors. DC-based 
vaccines, while initially very exciting, have not yet progressed to practical thera-
pies, although they have played an immense role in developing our understanding 
of tumor immunology and framing relevant questions regarding T-cell priming. 
Whether DC vaccines will yet fi nd application in the clinic will depend on under-
standing and exploiting further intricacies of DC-mediated T-cell programming. 
Strategies that provide vaccine-DCs functional support in vivo, such as through 
engagement of CD4 +  T-cells, innate-like T-cells and NK-cells, are worthy of further 
examination. However, the improvements in effi cacy will have to be signifi cant to 
justify the complexity of vaccine manufacturing, although strategies to shorten and 
simplify the ex vivo generation of DC-vaccines are in development. With check-
point inhibitors likely to become a common therapy in a range of cancers, it is 
important to evaluate the potential of combining simple DC vaccines with these new 
drugs, especially in patients who have not generated a spontaneous T-cell response 
to their tumors. Thus, despite early disappointments, DC-based immunotherapy 
may yet fi nd a place in the fi ght against cancer.     
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    Chapter 14   
 Parenteral Vaccine Administration: 
Tried and True 

             Pål     Johansen      and     Thomas     M.     Kündig    

14.1            Immunogenicity Is Defi ned by Antigen Location: 
A Roadmap for Immunogenicity 

 During lymphocyte development and differentiation, a variety of antigen-specifi c 
receptors on B- and T-cells are generated as a result of random rearrangement of 
genes encoding for B- and T-cell receptors. By consequence, the receptors can rec-
ognise a nearly infi nite number of antigens derived from the environment. But on 
the other hand and in the case of autoimmunity, even endogenous or self-antigens 
can be recognised. Since the precursor frequency of a specifi c lymphocyte is less 
than one in a million, the probability that the lymphocyte will encounter the antigen 
in the periphery is rather low. Therefore, antigen recognition and induction of 
immune responses requires the transport of microbial or vaccine antigens from the 
port of entry into the parenchyma of draining lymph nodes where the antigens are 
presented to a large number of lymphocytes with a broad range of specifi cities. 
Today, with more exact knowledge of the signalling pathways leading to immune 
response induction, also thanks to technological inventions that improve and sim-
plify assessment, this simplistic geographic concept of immunogenicity (Frey and 
Wenk  1957 ; MartIn-Fontecha et al.  2003 ) may look superfi cial and out-dated, but it 
remains a fact that the arrival of the antigen in a secondary lymphatic organ, e.g. 
lymph nodes, the spleen, and the gut- (GALT), bronchial- (BALT) and mucosal- 
associated lymphoid tissues (MALT), is the most undisputable requirement for the 
triggering or regulation of immune responses. 

 Draining antigens follow the one-way fl ow of the lymph. The lymph absorbs 
interstitial fl uid from peripheral tissues and returns it back to blood after passing the 
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thoracic duct and after having passed through several lymph nodes (Randolph et al. 
 2005 ; von Andrian and Mempel  2003 ). This antigen drainage typically starts in the 
highly endocytic and permeable initial lymphatic vessels. In the skin, these 
10–80 μm wide vessels form a network with channels lying approximately 100 μm 
apart just below the epidermis. The network has a structural function for lympho-
cytes and antigen-presenting cells (APCs), and it serves as a molecular sieve to 
allow entrance of only small molecules and particles (Roozendaal et al.  2008 ,  2009 ). 
Small antigens that are introduced in the upper layer of the skin will ultimately be 
captured by this conduit network before entering the more vascularised and ana-
tomically deeper layer of the dermis. The cut-off for entering the vessels without the 
help of APCs is approx. 70 kDa (Pape et al.  2007 ). In the dermis, the lymph vessels 
assemble into larger ducts (100–220 μm), which further drain the lymph to collect-
ing vessels in the subcutis. From here, the antigen-containing lymph is driven by 
peristalsis towards the next draining lymph node (Catron et al.  2004 ; Itano and 
Jenkins  2003 ), where it enters through the subcapsular sinuses. In the lymph node 
parenchyma, local APCs survey the lymph to acquire microbial or vaccine antigens 
(Bajenoff et al.  2003 ; Sixt et al.  2005 ). 

 If the antigens are not drained to the lymph node, they may arrive as cargo of 
professional APCs. This is normally the case for antigens larger than 70 kDa as well 
as for large particles and whole bacteria; smaller particles as well as viruses may 
passively drain to lymph nodes (Manolova et al.  2008 ). The APCs are majorly den-
dritic cells (DCs), Langerhans cells (LCs), macrophages and monocytes, and are 
situated in the body’s periphery, typically in the skin and in the gut epithelia where 
they scavenge for infectious agents. In the skin, resident DCs are equipped with a 
wide array of pathogen or pattern recognition receptors such as Toll-like receptors 
(TLRs) that recognise bacteria and viruses, and C-type lectins such as Langerin, 
DC-SIGN, Dectin-1, and Dectin-2 that recognize carbohydrate moieties on patho-
gens. Upon encountering pathogens, antigens or other danger molecules, the APCs 
get activated and change their expression of surface adhesion and co-stimulatory 
molecules. This is part of the maturation and differentiation programme that serves 
two major tasks: fi rstly, the switching of cellular machinery from antigen uptake to 
antigen presentation, secondly, acquisition of a motile state that allows active and 
passive migration from the place of antigen encounter and uptake, to that of antigen 
presentation, which is within the T-cell zone of draining lymph nodes (Forster et al. 
 2012 ). Activation causes disruption of the E-cadherin-mediated adhesion to kerati-
nocytes as well as upregulation of surface CCR7 levels (Jiang et al.  2007 ), which 
facilitate mobilisation of APCs. Activated LCs, but not dermal DCs (Kissenpfennig 
et al.  2005 ), also produce basement membrane-degrading enzymes such as matrix 
metalloproteinase (MMP)-2 and MMP-9 that allow the translocation of epidermal 
LCs to dermis (Ratzinger et al.  2002 ). This process further depends on the chemo-
kine CXCL12 and its receptor CXCR4 on the LCs (Ouwehand et al.  2008 ). While 
these events of cell-surface adhesion and chemotaxis enable homing of APCs to 
secondary lymphatic tissues, the upregulation of co-stimulatory molecules such as 
CD80, CD86 and CD40 ensure effective presentation of antigen to T- and B-cells 
and thereby amplify the immune response (Cavanagh and Von Andrian  2002 ). 
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 Hence, whether and how antigens fi nd their way to the lymph nodes from the 
periphery highly depends on their size and on their nature, e.g. particulate or solu-
ble. However, size alone is not a parameter that allows predicting the immunologi-
cal fate of an antigen. On the one hand, large soluble antigens that remain in the 
periphery will hardly encounter specifi c lymphocytes and therefore remain immu-
nologically ignored. On the other hand, small soluble antigens that drain through 
the lymph by their own means are often immunologically ignored due to lack of 
adjuvants, which typically activate the infl ammasome (De Gregorio et al.  2009 ; 
Eisenbarth et al.  2008 ) or TLRs (Duthie et al.  2011 ) that would facilitate pro- 
infl ammatory reactions and co-stimulatory signals. Moreover, the specifi c instruc-
tions made by APCs depend on the state of their maturation, which then programmes 
the type and strength of the immune response, e.g. antibody production by B-cells, 
cytotoxicity by CD8 +  T-cells, effector CD4 +  T-cell responses, or regulatory immune 
responses by CD4 +  T-regulatory cells. Due to their potency in stimulating and regu-
lating immune responses, DCs are often subject to specifi c targeting (Birkholz et al. 
 2010 ; Kretz-Rommel et al.  2007 ; Tenbusch et al.  2012 ) or even used directly in 
autologous vaccines (Kantoff et al.  2010 ), as described in Chap.   13    . In the latter 
case, DCs are isolated from human blood, loaded with antigen ex vivo and returned 
to the vaccinee/patient by injection. Sipuleucel-T (Provenge ® ) is a DC vaccine 
approved for treatment of prostate cancer (Kantoff et al.  2010 ).  

14.2     Vaccine Development: From Live to Subunit Vaccines 

 When the father of vaccinology, Edward Jenner, in 1796 inoculated “a lad of the 
name of Phipps” with infectious material from infected cow utters ( vaccinia  cow-
pox virus) and then 2 months later challenged him with matter from a small pox 
( variola  virus) pustule, he demonstrated that vaccination can prevent infections 
with the same or a related pathogen ( 1923 ). During the following 150–200 years, 
dozens of new vaccines were developed based on such live or attenuated pathogens, 
e.g. measles, mumps, rubella, yellow fever, polio,  M. bovis  Bacillus Calmette- 
Guérin (BCG), typhoid fever, cholera, pertussis, and infl uenza. These vaccines have 
been administered by almost all possible routes, subcutaneously, intradermally, 
intramuscularly, orally and nasally. Indeed, it appears to be an intrinsic property of 
live vaccines that they very effi ciently drain to secondary lymphoid organs, inde-
pendent of the site of inoculation. When certain routes are recommended, it is there-
fore often due to safety concerns, such as local toxicity. Subcutaneous delivery of 
BCG is for instance contraindicated in man, for which reason it is given intrader-
mally. Also, the fear of faecal-oral transmissions of live oral polio virus vaccine 
(Sabin) is one reason why the subcutaneously given inactivated polio vaccine (Salk) 
is often preferred. 

 For reasons of safety and for reproducibility in the production and standardisa-
tion of vaccines, the last two decades have seen a preferential development of sub-
unit vaccines, as new vaccines against new diseases or to replace already existing 
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suboptimal live vaccines. However, the immunogenicity of subunit vaccines is typi-
cally poor. Therefore, the development of subunit antigens has been closely backed-
 up by the development of new and improved adjuvants, which may mimic some of 
the adjuvant properties of live vaccines (Duthie et al.  2011 ). The type and the nature 
of the adjuvants strongly affect the immunogenicity of a vaccine (Bachmann and 
Jennings  2010 ; Manolova et al.  2008 ). Other factors that infl uence vaccine proper-
ties are the antigen dose, as well as the frequency and kinetics in which the vaccine 
is administered (Johansen et al.  2008 ). These factors determine the type and strength 
of the local infl ammation or innate immune responses, and this again orchestrates 
the adaptive immune responses. Moreover, the administration route of these new 
subunit vaccines has been shown to be more critical than was the case for their live 
predecessor. Hence, vaccine development has become a complex algorithm of anti-
gen, adjuvant and route of administration. In the following, we will discuss some of 
the limitations and possibilities of parenteral administration of vaccines, including 
the classical subcutaneous, intradermal and the intramuscular routes, as well as sys-
temic intravenous applications. In addition, we will discuss the potential of intra-
lymphatic administration, a new method of delivering vaccines by direct injection 
into subcutaneous lymph nodes.  

14.3     Routes of Administration 

 The route of vaccine administration unambiguously infl uences the outcome of 
immunisation with regard to the type and the strength of the stimulated immune 
responses. When the fi rst anatomical hurdle is cleared, the composition of the 
underlying tissue decides the further fate of a vaccine, e.g. the lymph or blood per-
fusion of the tissue. The latter will determine whether the vaccine will spread or be 
cleared by the innate defence mechanisms, or if a vaccine is forwarded to the sec-
ondary lymphoid organs for elicitation of immune responses. Similarly, the route 
can be vital with respect to whether crucial vaccine properties such as safety, quality 
and effi cacy will be successfully discovered or not. An inappropriate route of 
administration may render a potential vaccine ineffective (Cubas et al.  2009 ). On 
the other hand, to predict the effi cacy of a new vaccine based on the known proper-
ties of a certain route is diffi cult. Table  14.1  lists a number of confounding factors 
that will infl uence the choice of route and consequently the effi cacy and appropri-
ateness of vaccination by that route.

   In a simplistic view, a stronger immune response may be expected the closer a 
vaccine is administered to a lymph node or to an afferent lymphatic vessel, assum-
ing epitope correctness and further appropriateness of the antigen and adjuvant. 
However, the above-described concept of lymphatic drainage may suggest that this 
is not necessarily the case as the upper layers of the skin are better equipped with 
lymphatic conduits and vessels as well as professional APCs than the lower skin 
layers. While microbes and intelligent antigen delivery systems may be tailored to 
fi nd their way into the lymphatic organs, subunit vaccines would certainly benefi t 
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   Table 14.1    Factors that affect whether a certain route of vaccine administration is appropriate for 
a certain vaccine   

 Factor  Comment 

 Species  Anatomical and physiological differences 
    Various expression of molecules (e.g. TLR molecules)  
    Distribution of lymph nodes  
    Thickness of skin  
    Organisation of nasal cavity,  
    Vascularisation of target organ  
 Behaviour, life style 
    Indoor or outdoor  
 Nutritional habits, microfl ora and hygiene 

 Antigen  Virus 
    Live, inactivated, recombinant  
 Bacteria 
    Live, inactivated, recombinant  
 Cellular 
    Dendritic cells  
    Cell lysates, e.g. tumour  
 Protein or peptide 
    Molecular weight, hydrophobicity  
 DNA or RNA 
    Cytoplasmic, transmembrane or secreted expression  
    Promoter type  

 Adjuvant  Soluble or particulate 
 Depot 
 Type of innate immune activation 
    Infl ammasome  
    TLR stimulation  

 Disease  Infection 
    Cytopathic or non-cytopathic microbes  
    Intracellular or extracellular live cycles  
    Replication speed  
 Autoimmune disease 
 Tumour 
 Allergy 

 Wanted immune response  B-cells and antibodies 
    Antibody isotype and subclass  
    T-cell independent antibody responses (e.g. Alzheimer)  
 T-cells 
    Th1 or Th2 cells  
    T-regulatory cells (e.g. allergy and autoimmunity)  
    Cytotoxic CD8   +    T-cells  
 Tolerance or anergy 
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from being administered into an anatomical site, which is rich in immune cells. The 
anatomical concept of vaccination also unveils different tissue-related bystander 
effects, which are related to disparities in the type, number and quality of cells avail-
able in a certain tissue. For instance, the most potent cells for the priming of immune 
responses, especially of CD8 +  T-cell responses, are DCs (Banchereau and Steinman 
 1998 ; Lee and Iwasaki  2007 ; Zitvogel  2002 ). DCs are positioned as sentinels in the 
periphery, where they frequently encounter foreign antigens or microbes, upon 
which they readily relocate to secondary lymphoid organs, particularly lymph 
nodes, to position themselves optimally for interactions with naïve or central mem-
ory T-cells. However, DCs in the skin, peritoneum, lung, muscles and secondary 
lymphatic organs have different potentials in priming immune responses and gener-
ating immunity (Everson et al.  1996 ). Moreover, DCs may receive highly variable 
tissue-dependent bystander signals from neighbouring cells for activation, migra-
tion and maturation (Rupec et al.  2010 ; Schroder et al.  2006 ). Within heterogeneous 
tissues, such as the skin, thorough knowledge of the structural differences between 
the epidermis, dermis and the subcutaneous layers are important for the decision 
whether to administer a vaccine to one of these sites (Azzi et al.  2005 ). 

14.3.1     Epidermal Immunisation 

 The epidermis is the outer layer of the skin, and its thickness varies considerably 
across the body surface area. The human epidermis varies from typically 50–150 μm 
to more than 1,000 μm on the palms and the soles. By comparison, murine epider-
mis is typically less than 15 μm thick (Azzi et al.  2005 ). The top layer of the human 
epidermis, the  strateum corneum , contains only dead and cornifi ed keratinocytes 
that are constantly shed. In the deeper layers of the epidermis, the viability of the 
cells increases towards the basal membrane that separates the epidermis from the 
dermis. Of immunological importance is the high density of LCs present in the 
epidermis. LCs provide the frontline defence of the immune system. Similar to 
DCs, LCs are very effi cient in recognising and taking up pathogens and antigens, 
and to migrate to lymph nodes for presentation of antigen. Their neighbouring kera-
tinocytes, with which LCs interact via E-cadherins (Tang et al.  1993 ), can produce 
infl ammatory cytokines such as tumour necrosis factor (TNF-)α, interleukin (IL)-1β 
and IL-18 (Cumberbatch et al.  2001 ; Trevejo et al.  2001 ; Wang et al.  1999 ) as well 
as chemotactic signals (Homey et al.  2006 ; Kimber et al.  2000 ; Stutte et al.  2010 ; 
Villablanca and Mora  2008 ; Xu et al.  2001 ) that effi ciently activate LCs and epider-
mal macrophages to mature and to migrate. Importantly, the initial lymphatic ves-
sels that capture antigens and pathogens for delivery to the lymph nodes are located 
below the basal membrane. Therefore, vaccines delivered into the epidermis have a 
very good chance of ending up in the lymph node parenchyma for stimulation of 
immune responses. While delivery of compounds to the epidermis is feasible by 
using transdermal patches and micro-needle arrays, as discussed in detail in Chap. 
  18     of this book, epidermal injection using conventional needles is not practical.  
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14.3.2     Intradermal Immunisation 

 Vaccines can also be administered into the dermis, which consists of a matrix of 
collagen, elastic tissue, reticular fi bres, sweat glands, sebaceous glands and hair fol-
licles. The dermis also varies in thickness depending on the location of the skin. In 
humans, the dermis is typically 3–10 mm on the back. In 13–15-week-old C57BL/6 
mice, the dermis was on average 171 μm in females and 500 μm in males (Azzi et al. 
 2005 ). The only vaccine that is currently approved in the United States for adminis-
tration by the intradermal route is a fl u vaccine (Fluzone ® ). The same vaccine was 
originally licenced in Europe, Canada and Australia (Intanza ® ). The live viral rabies 
vaccine and  vaccinia  small pox vaccine were also given intradermally. The same 
holds for live  M. bovis , the only vaccine against tuberculosis. BCG is still given in 
many part of the world, including many European countries. However, the methods 
of intradermal injection vary, and they typically require more training than the more 
conventional subcutaneous and intramuscular routes of vaccine administration. 

 Intradermal BCG injection is done by injecting only 0.05 mL using a special 
BCG syringe with a special BCG 26G needle. With the bevel of the needle facing 
up, the syringe and needle is laid almost fl at along the skin, and the tip of the needle 
is inserted just under the skin, so that only the bevel and a little bit more disappears 
beneath the skin surface. If the vaccine is injected correctly, a clear, fl at-topped 
swelling on the skin, like a mosquito bite, can be observed. If the BCG vaccine is 
injected too deep, i.e. into the subcutis, an abscess or enlarged glands may result 
(Centers for Disease Control and Prevention  2012 ). 

 An alternative way of intradermal vaccine administration has been done by scari-
fi cation. This method was used in ancient India for variolation, i.e. smallpox vacci-
nation using the  variola  virus. Pus or scab or the  variola  lesions of one patient was 
administered by scratching it on the forearm of the vaccinee. The method was 
brought to Europe from Turkey in the eighteenth century by Lady Mary Wortley 
Montagu and her family’s physician Dr. Charles Maitland. Dr. Maitland “vario-
lated” the Montagus’ daughter as well as members of the royal family, though only 
after the forced smallpox inoculation of several condemned British prisoners. Also 
Edward Jenner used scarifi cation when he later performed his famous  vaccinia  
(cowpox) inoculations, and the method that was to be named vaccination by Louis 
Pasteur was extensively used for smallpox eradication, but provided variable and 
ineffi cient delivery into the skin. 

 Intradermal immunisation has more recently been shown to offer improved 
immunity with activation of innate immune responses in the skin (Pearton et al. 
 2010a ,  b ), including protection against infl uenza and yellow fever (Roukens et al. 
 2012 ). Intradermal vaccination may also improve and simplify logistics of delivery, 
as compared to the most abundantly intramuscular immunisation, but the intrader-
mal method in medicine is limited by the need for simple, reliable delivery methods 
(Hickling et al.  2011 ; Kenney et al.  2004 ; Lambert and Laurent  2008 ). Therefore, 
the current intradermal fl u vaccines are provided with special applicators, the micro-
injection system Soluvia ® , as to enable a safe and reproducible method for vaccine 
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administration. Likewise, more experimental methods of intradermal vaccine 
administration using microneedle arrays are currently under development (Kim 
et al.  2012 ), as described in Chap.   18     of this book. Next to the relative diffi culty in 
effi cient intradermal vaccine administration, the very low number of intradermal 
vaccines might be due to the fact that they often contain adjuvants. Many adjuvants 
are contraindicated for intradermal applications due to the risk of local and long- 
lasting adverse reactions (Carlsson et al.  1996 ). Finally, studies on fl u vaccines 
(Kenney et al.  2004 ), virosomal hepatitis A vaccines (Frosner et al.  2009 ) and rabies 
vaccines (World Health Organization  2000 ) in humans have demonstrated that vac-
cination costs can be signifi cantly cut by changing to intradermal administrations 
just by reducing the immunising dose via intradermal administration. Intradermal 
administration with only 20 % of the recommended intramuscular dose of infl uenza 
or rabies vaccines elicited an immune response that was similar to or better than that 
elicited by intramuscular injection.  

14.3.3     Subcutaneous Immunisation 

 Many vaccines, e.g. inactivated vaccine polio (Salk), measles, mumps, rubella, vari-
cella, yellow fever, zoster, typhoid and Japanese encephalitis vaccines are adminis-
tered just beneath the dermis into the subcutis. The subcutaneous tissue comprises a 
loose organisation of connective and adipose tissues in addition to blood vessels and 
nerve bundles. One great advantage of the subcutis is that it can take up larger vac-
cine volumes than the dermis. Its fl exible structure causes less stimulation of pain 
and pressure noiceptors in the skin, for which reason the patients typically tolerate 
subcutaneous injections better than intradermal injections. 

 Due to the rather static properties of the connective and adipose tissue, the subcu-
tis is particularly suited for vaccine depots, and the poorer vascularisation in the 
subcutis as compared to the dermis may result in slow mobilisation and processing 
of the vaccine. However, this longer persistence may also cause degradation of the 
vaccine before immunologically utilised (Zuckerman  2000 ). This is often a cause of 
vaccine failure (Poland et al.  1997 ) for example of hepatitis B, rabies and fl u vaccines 
(Groswasser et al.  1997 ; Shaw et al.  1989 ). Due to the lower blood perfusion the 
subcutis is less effi cient than the epidermis and the dermis in draining antigens via 
the conduits and lymphatic vessels, i.e. less of the administered vaccine is likely to 
reach the parenchyma of the lymph nodes. From an evolutionary viewpoint, the 
higher effi ciency in recognising and draining antigens from the epidermis and the 
dermis makes perfect sense, because any immunological challenge is expected to 
originate from the exterior of the host organism and not from the interior. However, 
the lower draining effi ciency in the subcutis can often be compensated for by the fact 
that the subcutis can take larger vaccine volumes (0.5–2 mL) or doses than the dermis 
(0.05–0.1 mL). The recommended site for subcutaneously administered vaccines are 
the thigh for infants and the upper triceps for those older than 1 year old, and a 
23–25G needle is typically used (Centers for Disease Control and Prevention  2012 ). 
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 The translation of data from immunological experiments on small rodents to 
humans is typically associated with many pitfalls. One diffi culty in using small 
rodents is associated with the difference in the skin between species. Not only does 
the thickness of human and rodent skin vary, factors that will especially affect the 
quality of epidermal and intradermal vaccine administration, but also the anatomi-
cal build-up of the skin and especially its connection to neighbouring tissues is dif-
ferent in mice and men. While the subcutaneous tissue in humans is closely 
connected to its underlying tissues, such as bone and muscles, rodent skin is hardly 
attached to the underlying tissues. Such factors may very well infl uence the perfor-
mance and developmental destiny of new vaccines. Hence, screening of vaccine 
candidates solely by the easy and convenient subcutaneous injection in mice may 
cause the rejection of vaccines with potential effi cacy in other animal models, 
including humans.  

14.3.4     Intramuscular Immunisation 

 Almost all inactivated vaccines are injected intramuscularly. Such vaccines are 
mostly based on protein and polysaccharide antigens [DTP, hepatitis A, hepatitis B, 
fl u, haemophilius infl uenza type B (Hib), meningitis C, pneumococcus, and human 
papilloma virus (HPV)], and they often contain an adjuvant. For almost a century, 
salts of aluminium were the only adjuvants approved for human use (Chap.   3    ). The 
use of aluminium salts began in the 1930s, before regulatory guidelines became 
more stringent. More recently, approval has been obtained for MF59, an oil-in- 
water emulsion of squalene, polysorbate (Tween 80) and sorbitan trioleate (Span 
85) (Chap.   4    ). MF59 is used as an adjuvant component of fl u vaccines for elderly 
patients. Viral vaccines against hepatitis B as well as HPV have been approved with 
the adjuvant AS04, which is a combination of aluminium salts and monophosphoryl 
lipid A. However, because adjuvants can cause exaggerated local reactions, e.g. 
pain, swelling and erythema in the skin, the intramuscular route is generally recom-
mended for adjuvanted vaccines (Centers for Disease Control and Prevention  2012 ). 
The site of intramuscular vaccine administration is typically the  vastus lateralis  
muscle (anterolateral thigh) and the deltoid muscle (upper arm). Injection at these 
sites reduces the risk of injecting into larger neuronal or vascular structures, because 
such tissues are void in the mentioned sites. A 22–25G needle is used. 

 If the administration of several vaccines is planned for a single doctor visit, it is 
recommended that each vaccine preparation is administered to a different site 
(Centers for Disease Control and Prevention  2012 ). If several vaccines are injected 
in a single limb of infants or young children, it is recommended to use the thigh 
because of the greater muscle mass. The injections should be separated by at least 
2–3 cm as to be able to distinguish any local reaction from one vaccine to that of 
another. Vaccines that frequently produce local reaction should be split on different 
limbs if possible.  
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14.3.5     Intravenous Immunisation 

 Systemic administration of vaccines has been used widely in small animals, e.g. 
intravenous and intraperitoneal vaccine administration in mice, but not in humans. 
However, and as indicated above, during pre-clinical development of vaccines, 
other routes are often used to test immunogenicity and effi cacy of the vaccine—
often only for the sake of convenience. For instance, live attenuated sporozoites 
 Plasmodium falciparum  has long been an attractive approach to vaccinate against 
malaria (Mons  1991 ), because such sporozoites administered by mosquito bites are 
the only immunogens that have clearly been demonstrated to induce protection in 
humans (Roestenberg et al.  2009 ,  2011 ). During the pre-clinical testing of a candi-
date vaccine in mice, intravenous administration was compared and found superior 
to subcutaneous and intradermal vaccine administrations (Epstein et al.  2011 ). 
However, for the fi rst clinical testing in 80 volunteers, intradermal and subcutane-
ous routes of administration were applied, but failed reaching the primary outcome, 
for which reason the authors have concluded that vaccine should be given intrave-
nously in man (Epstein et al.  2011 ). 

 The last decade has also seen the development of several autologous vaccines 
based on DCs (Chap.   13    ). Such vaccines have especially found resonance in cancer 
immunotherapy. Briefl y, DCs are prepared by purifi cation and culturing of the 
patient’s own blood. The cells are then cultured and pulsed with tumour antigens 
and then returned to the patient by injection. The route of administration of autolo-
gous DC vaccines has been intradermal, but mostly intravenous. Indeed, the only 
FDA-approved autologous DC vaccine, sipuleucel-T, which is indicated for the 
treatment of asymptomatic or minimally symptomatic metastatic castrate resistant 
prostate cancer, is given by intravenous injection (Kantoff et al.  2010 ).  

14.3.6     Intralymphatic Vaccination: As Good as It Gets 

 When the fi rst anatomical hurdle is cleared, the composition of the underlying tissue 
decides the further fate of a vaccine. The environment, including the tissue perfu-
sion will determine whether the vaccine will be spread or cleared by the innate 
defence mechanisms, or if a vaccine is carried forward to the secondary lymphoid 
organs for induction of immune responses. Consequently, the chosen route can be 
crucial with respect to whether vaccine properties such as safety, quality and effi -
cacy will be successfully discovered or not, and the incorrect choice may render a 
possible vaccine ineffective. 

 Independent on where the vaccine is administered, the goal of vaccination is to 
bring the vaccine to a lymph node, the major site for adaptive immune stimulation. 
For that simple reason, direct lymph node injection represents a short cut and the 
strongest possible method for stimulation of immune responses. In many ways, 
lymph nodes function as in vivo petri dishes where APCs and lymphocytes are in 
close proximity and where the antigen concentration can be kept high, situations that 
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are highly benefi cial for effective APC activation and antigen presentation. Although 
direct intralymphatic injection is not a generally recommended method of vaccina-
tion, it has been employed in a number of pre-clinical investigations as well as in 
human clinical trials of cancer and allergen immunotherapy (Johansen et al.  2012 ). 

 In mice, but not in humans, the procedure is invasive. In mice, a 5–10 mm inci-
sion is typically made in the inguinal region of anesthetised animals (Johansen et al. 
 2005 ). This enables the localisation of the inguinal lymph node, which is then 
immobilised by help of forceps. Using a syringe with a 28–30G short hypodermic 
needle and a short bevel, 10–20 μL of the vaccine is injected under visual control, 
e.g. the swelling of the lymph node. During the injection, the bevel should be facing 
up. Finally, the incision is closed with a single stitch using surgical sutures. A video 
article describes the procedure of intralymphatic injections in mice in detail 
(Johansen and Kündig  2014 ). 

 In humans, the procedure is guided by ultrasound, which is used to image both 
the lymph node and the inserted needle. In contrast to in mice, there are typically 
several subcutaneous lymph nodes in the inguinal region of humans. The one cho-
sen for injection is typically among the group localised in the outer upper quadrant 
of the groin area, because these lymph nodes are superfi cially localised and have a 
slower fl ow-through of lymph than the bigger ones draining the lymph from the leg 
which are also located deeper down in the dermis. This will facilitate longer reten-
tion times of the vaccine, which again is benefi cial for effective stimulation of 
immune responses (Huppa et al.  2003 ). A 0.5–1 mL syringe equipped with a 25G 
hypodermic needle is used for injection, and the injection volume is typically 
100 μL. Figure  14.1  illustrates the procedure.  

  Fig. 14.1    Intralymphatic vaccine administration is done by locating subcutaneous lymph nodes 
(LNs) with the aid of ultrasound. The hypodermal needle is inserted into the paracortex of the LN, 
and the injection can be controlled by observation immediate LN swelling in the ultrasound image. 
This fi gure is reprinted, with minor modifi cations, with kind permission from Springer (Kündig 
et al.  2012 )       
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 Only a small fraction of a vaccine injected into a peripheral tissue reaches a 
lymph node. This is one of the reasons why so far intralymphatic vaccination or 
immunotherapy has been superior to any other peripheral route of administration 
with regard to the lymphatic system. In mice, and using a radioactively labelled 
antigen, 100-fold more antigen was found in the lymph nodes upon direct injection 
as compared with subcutaneous injection in the same anatomical region (Martinez- 
Gomez et al.  2009 ). Comparable observations were made in humans (Senti et al. 
 2011 ) as illustrated in Fig.  14.2 . Proteins were labelled with 99mTc and injected in 
an inguinal lymph node or subcutaneously 10 cm above the contralateral inguinal 
lymph nodes. While the lymph node injection cause 100 % uptake and draining to 
the deeper pelvic lymph nodes within minutes of injection, most of the subcutane-
ously injected protein remained at the site of injection 24 h after administration 
(Senti et al.  2011 ). In line with this, three intralymphatic injections of an aluminium- 
adjuvanted and protein-based hay fever vaccine within 2 months stimulated the 
same level of protection as did conventional desensitisation with 54 subcutaneous 
injections over 3 years (Senti et al.  2008 ). Similar results were obtained for treat-
ment of patients with cat-dander allergy (Senti et al.  2012 ).  

 A large number of studies, both pre-clinical and clinical have been based on the 
intralymphatic administration of vaccines. For comprehensive reviews, see refs. 
Johansen et al. ( 2010 ), Johansen et al. ( 2012 ), Senti et al. ( 2009 ), Senti et al. ( 2011 ), 
and Table  14.2  lists a summary of investigations where vaccine antigens were 
administered by intralymphatic injection. A large variety of vaccines have been 
tested in animals for the applicability of intralymphatic vaccination. In mice, pep-
tides, proteins, DNA, mRNA as well as DC-based vaccine were investigated in vari-
ous models. Direct administration of major histocompatibility complex (MHC) 
class I binding peptide vaccines into lymph nodes showed strongly enhanced CD8 +  
T-cell responses that were protective against a viral challenge and tumour growth in 
mice (Johansen et al.  2005 ). Similarly, intranodal immunisation also dramatically 

  Fig. 14.2    Biodistribution of 99mTc-labelled human IgG after intralymphatic (IL) and subcutane-
ous (SC) injection in man. The tracing of radioactive substance was made by gamma imaging. The 
 arrows  indicate were the injection was made: directly into the right lymph node or subcutaneously 
10 cm above the contralateral left lymph node. This fi gure is reprinted, with minor modifi cations, 
with kind permission from Springer (Kündig et al.  2012 )       
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enhanced the effi cacy of plasmid DNA (pDNA) vaccination in mice (Heinzerling 
et al.  2006 ; Maloy et al.  2001 ) as well as RNA vaccination (Kreiter et al.  2010 , 
 2011 ). By changing the route of pDNA delivery from subcutaneous, intradermal or 
the most abundantly used intramuscularly route of administration to the intralym-
phatic route, the dose of pDNA necessary to stimulate cytotoxic T-cell responses 
could be reduced by several orders of magnitude, e.g. 0.2 μg pDNA by intralym-
phatic injection was more effective than intramuscular injection of 200 μg of the 
same pDNA (Maloy et al.  2001 ).

   Intranodal immunisation with proteins for induction of antibodies was performed 
surprisingly early. At a time when it was diffi cult to purify large quantities of pro-
teins, researchers were looking for a more effi cient route of immunisation (Sigel 
et al.  1983 ). By intralymphatic immunisation, only nanograms of protein were 
required to elicit suffi ciently strong immune responses (Nilsson et al.  1987 ) 
Likewise, targeted lymph node administration is also extensively documented to be 
the most effi cient way to immunise macaques against SIV (Kawabata et al.  1998 ; 
Lehner et al.  1998 ; Lu et al.  1998 ). Similar results were obtained in macaques 

   Table 14.2    An overview of investigations describing intralymphatic immunisation and 
immunotherapy in experimental models and in man   

 Specie  Comment  References 

 Mouse  Soluble, particulate and bacterial 
vaccines. Intralymphatic 
vaccination always superior to 
intramuscular, subcutaneous 
and/or intradermal vaccination 

 Johansen et al. ( 2005 ); Johansen et al. 
( 2010 ); Maloy et al. ( 2001 ); Martinez-Gomez 
et al. ( 2009 ); Mohanan et al. ( 2010 ); 
Waeckerle- Men et al. ( 2013a ) 

 Cat  Protein-based HIV (FIV) 
vaccine 

 Finerty et al. ( 2001 ) 

 Dog  Cellular- and protein-based 
cancer therapy studies 

 Juillard and Boyer ( 1977 ); Juillard et al. 
( 1979 ); Juillard et al. ( 1976 ); Juillard et al. 
( 1977 ) 

 Non- human 
primate 

 Protein-based HIV vaccines 
with ISCOMs or with 
aluminium adjuvant 

 Koopman et al. ( 2007 ); Lehner et al. ( 1994 ); 
Lehner et al. ( 1998 ); Lu et al. ( 1998 ) 

 Human  Cancer immunotherapy with 
DCs 

 Bedrosian et al. ( 2003 ); Lesimple et al. 
( 2003 ), Lesterhuis et al. ( 2011 ), Schwaab 
et al. ( 2009 ) 

 Cancer immunotherapy with 
tumour cells 

 Juillard et al. ( 1978 ); Lacour et al. ( 1992 ); 
Moy et al. ( 1985 ); Williams et al. ( 1992 ); 
Wiseman et al. ( 1986 ); Wiseman et al. ( 1989 ) 

 Cancer immunotherapy with 
pDNA/peptide 

 Ribas et al. ( 2011 ); Weber et al. ( 2008 ); 
Weber et al. ( 2011 ) 

 Cancer immunotherapy with 
recomb. virus 

 Adamina et al. ( 2010 ); Brown et al. ( 2003 ); 
Spaner et al. ( 2006 ) 

 Cancer adjuvant therapy with 
BCG 

 Kirkwood et al. ( 1980 ); Kirkwood et al. 
( 1982 ) 

 Allergy immunotherapy with 
protein and aluminium 

 Senti et al. ( 2012 ); Senti et al. ( 2008 ) 
Hylander et al. ( 2013 ) 
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 vaccinated with other proteins (Bogers et al.  2004a ,  b ; Kawabata et al.  1998 ; 
Klavinskis et al.  1996 ; Lehner et al.  1994 ,  2000 ). Also DCs (Johansen et al.  2008 ; 
Waeckerle- Men et al.  2013b ) and bacteria (Waeckerle-Men et al.  2013a ) have been 
used as vehicles for antigen in intralymphatic vaccination in mice for stimulation of 
CD4 +  and CD8 +  T-cell responses against tumours and tuberculosis. 

 Several clinical trials with intranodal therapy have confi rmed these initial pre- 
clinical studies. Most of these studies have been performed in cancer patients usu-
ally as autologous vaccination using antigen-pulsed DCs (Barth et al.  2010 ; 
Czerniecki et al.  2007 ; Fadul et al.  2011 ; Lesimple et al.  2006 ; Lesterhuis et al. 
 2011 ; Schwaab et al.  2009 ; Yi et al.  2010 ). While some clinical trials using intrano-
dal therapy with DCs have suggested enhanced immune responses (Bedrosian et al. 
 2003 ; Lesimple et al.  2003 ), other trials failed to demonstrate an advantage of intra-
nodal over intradermal DC delivery (Brown et al.  2003 ; Fong et al.  2001 ). We also 
found that non-professional APCs, such as a fi bro-sarcoma cell line effi ciently 
induced antigen-specifi c CD8 +  T-cell responses in lymph nodes via direct antigen 
presentation on MHC class I molecules present on the fi bro-sarcoma (Kündig et al. 
 1995 ; Ochsenbein et al.  2001 ). Intranodal therapy with tumour cells has been tried 
in both human cancer patients and dogs with indication of success (Juillard and 
Boyer  1977 ; Juillard et al.  1976 ,  1977 ,  1978 ,  1979 ). 

 In other cancer trials, the intranodal vaccines were based on pDNA (Weber et al. 
 2008 ) or pDNA prime and peptide boost (Ribas et al.  2011 ; Weber et al.  2011 ). 
Intranodal injections of vaccines based on viral vectors have been studied in mela-
noma patients, who responded with strong cytotoxic and other immunological T-cell 
responses as well as some clinical benefi ts (Adamina et al.  2010 ; Spaner et al.  2006 ). 

 Finally, three recent trials on patients with hay fever revealed that  allergen- specifi c 
immunotherapy in this patient group can be strongly improved by changing from 
the conventional subcutaneous route to the novel intralymphatic route of injection. 
While subcutaneous immunotherapy (SCIT) typically requires more than 50 injec-
tions over at least 3 years, successful intralymphatic immunotherapy (ILIT) was 
achieved by only three injections with 1 month interval (Hylander et al.  2013 ; Senti 
et al.  2008 ,  2012 ). Moreover, SCIT is frequently associated with local and systemic 
adverse events (Windom and Lockey  2008 ). Because the number of injections as 
well as the injected dose is much lower in ILIT than in SCIT, and because the lymph 
nodes do not contain mast cells, there is also a safety benefi t with ILIT. Finally, the 
short treatment and the few side effects have strongly improved the patient compli-
ance of ILIT as compared to SCIT (Senti et al.  2008 ). Hence, it is expected that ILIT 
will become a real alternative to SCIT as well as the sublingual immunotherapy 
(SLIT), which is approved and practiced in Europe (Dretzke et al.  2013 ).   

14.4     Comparative Studies of Administration Routes 

 Compared to the rather weak immunogenicity of modern sub-unit vaccines, the 
historical and still abundant live or attenuated microbial childhood vaccines have 
been very effective in protecting vaccinees from infectious diseases (Chap.   2    ), for 
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which reason an increase in effi cacy was seldom pursued. For weakly immunogenic 
sub-unit vaccines however, there may be much to gain in optimising not only the 
antigen and the adjuvant, but also the route of administration. Therefore, several 
studies have been conducted in a variety of animal models as to test how the route 
infl uences the immunological performance as well as the safety of new vaccines or 
model vaccines. Pre-clinical works in rodents often tested and evaluated several 
parenteral routes side-by-side. In larger animals, in non-human primates and in 
man, such studies have often been performed to compare invasive and non-invasive 
methods, such as an injection method against a mucosal vaccination method, e.g. 
nasal, oral and vaginal. However, few studies are available that compare the real 
effi cacy of various invasive methods of vaccination. Table  14.3  lists a number of 
comparative studies done in animals, and Table  14.4  summarises a representative, 
but not complete selection of such studies in man. The overview is limited to the 
comparison of two or more invasive or injectable vaccination methods only. 
Comparisons between one injectable method and one or more mucosal vaccination 
methods as to demonstrate effi cacy of the latter are ignored in the current review.

   When reviewing the data from studies in animals, it is unfortunately not the fact 
that the different administration routes produce a clear fi ngerprint with respect to 
the type and the strength of immune responses they stimulate. A rather stronger 
effect on the stimulated immune responses is found with respect to the species, the 
type and the dose and the dosing frequency of antigen, the adjuvant, as well as 
the type and the severity of pathogenicity when the vaccine effi cacy is tested in a 

   Table 14.3    Comparative studies on the effect of administration routes on vaccine performance in 
animals   

 Animal 
model  Vaccine formulation  References 

 Mouse  Virus or bacteria  Brockstedt et al. ( 1999 ); Delagrave et al. ( 2012 ); 
Eo et al. ( 2001 ); Goetsch et al. ( 2001 ); Goetsch 
et al. ( 2000 ); Nnalue and Stocker ( 1989 ); 
Waeckerle-Men et al. ( 2013a ) 

 Synthetic particles  Baldwin et al. ( 2009 ); Carcaboso et al. ( 2004 ); 
Cubas et al. ( 2009 ); Mohanan et al. ( 2010 ); Slutter 
et al. ( 2011 ); Stertman et al. ( 2004 ) 

 Dendritic cells  Eggert et al. ( 1999 ); Malowany et al. ( 2006 ); Okada 
et al. ( 2001 ) 

 Protein with alum or other 
adjuvant 

 Johansen et al. ( 2005 ); Koutsonanos et al. ( 2012 ); 
Lobaina et al. ( 2010 ); Martinez-Gomez et al. ( 2009 ) 

 Plasmid DNA  Boutennoune et al. ( 2012 ); Hartikka et al. ( 2012 ); 
Lai et al. ( 2009 ); Maloy et al. ( 2001 ); Morel et al. 
( 2004 ); Tu et al. ( 2007 ); Yoshida et al. ( 2000 ) 

 Bovine and 
sheep 

 Virus, bacteria, blood 
lysate or alum- adsorbed 
protein 

 Gramzinski et al. ( 1998 ); Samina et al. ( 1998 ); 
Tomita et al. ( 1998 ); Woolums et al. ( 2013 ) 

 Non-human 
primates 

 Protein or pDNA with 
ISCOMs, liposomes or 
alum 

 Gramzinski et al. ( 1998 ); Koopman et al. ( 2007 ); 
Lehner et al. ( 1998 ); Lu et al. ( 1998 ) 
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challenge model of the disease. Consequently, the most optimal route for a given 
vaccine must be investigated individually. In each case, one also has to consider the 
safety of vaccine administration as one route may be safe for one vaccine and one 
specie, but not for another. Also, the global compliance or vaccination coverage 
may be favoured by a certain administration route, e.g. non-invasive, and especially 
oral methods of vaccination are favoured by many vaccinees or patients and enable 
vaccine experts and health authorities or institutions such as    WHO to reach out to a 
greater number of persons.

   One often met dogma in vaccinology is that the induction of mucosal immunity 
with IgA switch for antibodies must be obtained by mucosal vaccination, and vice 
a versa, the systemic immunity with serum IgG antibodies must be raised by paren-
teral vaccination. However, numerous studies have shown that this ruling is not that 
stringent. Many parenteral vaccines can produce protective mucosal immunity 
(Delagrave et al.  2012 ; Opriessnig et al.  2011 ). The properties of mucosal vaccine 
are described in detail in the Chaps.   6     (oral), 15 (nasal),   16     (pulmonary) and   17     
(vaginal) of this book.  

14.5     Conclusion 

 In conclusion, parenteral routes of vaccine administration have been and will main-
tain perhaps the most important way of immunisation or vaccination. While some 
of the potential parenteral routes can easily be excluded for a new vaccine based on 
safety issues, the prediction of the most effective routes with regard to vaccine effi -
cacy is diffi cult, if not impossible. However, minor, moderate and even large differ-
ences in the effi cacy can be found for certain vaccines, but these differences are not 
independent on the type of vaccine formulation tested. Hence, vaccine development 
is a complex algorithm of antigen, adjuvant, disease and route of administration. 
Similarities with previous studies with similar vaccines may be sought and found, 
and this review should provide a tool to start searching in the ocean of publications 
on vaccine administration.     

   Table 14.4    Comparative clinical studies on the effect of administration routes on vaccine 
performance   

 Formulation  Vaccine  References 

 Protein, polysaccharide 
with alum 

 DT, DTP, DTP-Hib, 
MenC, Antrax 

 Carlsson et al. ( 1999 ); Mark et al. ( 1999 ); 
Pittman ( 2002 ); Pittman et al. ( 2002 ); 
Ruben et al. ( 2001 ) 

 Protein ± MF59  Flu  Van Damme et al. ( 2010 ) 
 DNA  HIV  Bansal et al. ( 2008 ) 
 DCs  Melanoma  Lesterhuis et al. ( 2011 ) 
 Adenovirus  HIV  Koblin et al. ( 2011 ) 
 Live/attenuated virus  HepA  Fisch et al. ( 1996 ); Reynolds et al. ( 2006 ) 
 Bacteria  BCG  Davids et al. ( 2006 ) 
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    Chapter 15   
 Nasal Administration of Vaccines 

             Regina     Scherließ    

15.1            Anatomy and Physiology of the Nasal Cavity 

 Nasal administration of vaccines makes use of the inner nasal surface to induce an 
immune response. The human adult nose has an inner surface area of about 160 cm 2 , 
separated into two sides being separated by the nasal septum and can be divided in 
different sections (Jones  2001 ). The anterior region of the nose is represented by the 
nostrils (the “outer part of the nose”); their inner surface is covered by squamous 
epithelium similar to normal skin (Harkema et al.  2006 ) and also bears nasal hairs 
fi ltering the inspired air. The nasal valve separates this part from the nasal cavity. 
The nasal valve is the narrowest part of the nose with a free diameter of as less as 
0.25 mm (Swift  1981 ). The nasal turbinates can be differentiated in the lower, mid-
dle and upper turbinates (where the olfactory region is located) (Jones  2001 ). Small 
holes allow entrance to the nasal sinuses. The turbinates of both nasal passages are 
reunited in the nasopharynx, which is the posterior part of the nose. As the olfactory 
bulb in the upper turbinates has a direct connection to the central nervous system 
(CNS), this route is believed to mediate nose-to-brain transport. With respect to vac-
cines, this could be dangerous as pathogens or other immunogenic compounds such 
as antigens or adjuvants may cause side effects in the CNS (Neutra and Kozlowski 
 2006 ; Lycke  2012 ). 

 The nasal epithelium is a ciliated respiratory epithelium covered with a mucus 
fi lm (Mygind and Dahl  1998 ). The ciliary beat moves the mucus lining towards the 
posterior part of the nose, clearing the nose from particles being deposited on the 
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mucus. Nasal clearance takes 12–15 min in healthy adults, but may be prolonged 
signifi cantly if ciliary function is impaired (Turker et al.  2004 ). Nasal clearance is 
an important challenge for nasally administered vaccines, as the formulations only 
have a short period of time for interaction with the epithelium and the immunocom-
petent cells. Residence time, however, can be extended signifi cantly by the use of 
mucoadhesives (Jabbal-Gill  2010 ). 

 It has to be mentioned that the nose is a highly patient-individual organ which 
may differ in size, air passages and obstruction due to an asymmetric nasal septum, 
nasal polyps and the nasal cycle, which is present in 80 % of the population and is 
characterised by alternate swelling of one side of the nose and preferential breezing 
through the other side (Hanif et al.  2000 ). This cycle changes every 3–5 h through-
out the day. With a pH of about 6.4 (Washington et al.  2000 ) and low enzymatic 
activity compared to the gastro-intestinal tract, the nasal mucosa offers a good target 
for subunit vaccines. 

 The physiological function of the nose is to pre-warm and humidify the air upon 
nasal inhalation (Harkema et al.  2006 ). The nose is designed to fi lter, heat and 
humidify the inspired air before entering to the lungs (Mygind and Dahl  1998 ), 
hence, it has certain particle collection capabilities. It has been stated that in vivo, 
about 80 % of particles of a size up to 12.5 μm and 100 % of particles being larger 
than 50 μm are retained in the nose (Jones  2001 ), whereas about 50 % of small 
particles in the range of 2–4 μm will pass to the lower airways (Chap.   16    ). Particles 
are not deposited in certain regions of the nose, but may be found distributed 
throughout the nasal cavity as the cut-off between different regions of the nose is not 
as sharp as in the lungs. 

 As the respiratory tract and especially the nose as part of the upper respiratory 
tract is one of the main entry ports for pathogens, it is well equipped with immuno-
competent cells which are the target for nasal vaccines. The lymphoid tissue of the 
nose (nose-associated lymphoid tissue, NALT) is located in the nasopharynx (Davis 
 2001 ). It is part of the common mucosal immune system and as such, may induce 
an immune response in distant mucosal sites such as the urogenital tract, in addition 
to a local immune response in the respiratory tract and systemic immune reactions 
(Neutra and Kozlowski  2006 ). Whereas the NALT is located in confi ned structures, 
dendritic cells (DCs) as antigen-presenting cells (APCs) are present throughout the 
complete epithelium. 

 Intranasal vaccination stimulates an immune response in these tissues and has 
been shown to be especially effective for live-attenuated vaccines such as the intra-
nasal infl uenza vaccine FluMist (MedImmune) or Fluenz (AstraZeneca), respec-
tively, and can be a promising strategy for vaccination against sexually transmitted 
diseases due to the induction of an immune response in the uro-genital tract upon 
nasal vaccination (Lycke  2012 ). Furthermore, nasal vaccination can be an attractive 
alternative for those infections where the respiratory mucosa is the normal entry 
route for the pathogen, such as pertussis (Haneberg and Holst  2002 ).  
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15.2     Formulation Requirements for Nasal Administration 

 To induce an immune response in the nose, the antigen has to be taken up by APCs 
in a particulate form (Pavot et al.  2012 ). Hence, the antigen needs to be formulated 
with a particulate vaccine carrier. This is easy if the antigen itself is particulate such 
as an attenuated pathogen, but is more complicated for subunit vaccines. A detailed 
description of particulate vaccine preparations, which may comprise liposomes, 
immunostimulating complexes, emulsion droplets and polymeric particles, can be 
found in Chaps.   2    –  10     of this book and in literature (Alpar et al.  2005 ; Kaye et al. 
 2009 ; De Temmerman et al.  2011 ; Csaba et al.  2009 ). The antigen carrier should 
also protect the antigen from instability and degradation and may further be func-
tionalised to guide uptake, release and adjuvant effect (Nicolas et al.  2012 ). 

 For effective uptake of particulate antigen carriers via DCs, the size of the particles 
should be in the nanometer range above 50–100 nm (De Temmerman et al.  2011 ), as 
very small nanoparticles are not processed locally, but are directly drained to the 
lymph nodes similar to soluble antigens. It could also be shown that there is a certain 
size-dependent effi cacy in terms of immune response, as smaller particles of about 
200 nm provoke a higher immune response than larger particles of 700 nm (Li et al. 
 2011 ). Other studies found a particle size of 200–300 nm to be optimal for DC uptake. 
Nonetheless, nanoparticles may only carry a small antigen load. This can be increased 
largely with microparticulate carriers, which are not very well taken up by DCs, but 
can be taken up by M-cells in the NALT up to a size of 10 μm (Tafaghodi et al.  2004 ). 

 All primary antigen carriers are too small to be delivered directly to the nasal cav-
ity, they would mostly get inhaled to the lung; hence, they need to be processed 
further to a formulation which can be deposited in the nose. Due to their large surface 
area, dry nanoparticles tend to form agglomerates, whereas nanoparticles in suspen-
sion would be delivered within larger spray droplets. Spray droplet size will mainly 
be defi ned by the spray nozzle of the device as well as by further parameters like 
viscosity and surface tension of the dispersion medium. For nasal spray products, 
FDA guidelines require most of the spray droplets to be larger than 10 μm to ensure 
nasal deposition without a major postnasal fraction which would get inhaled to the 
lung (FDA  2002 ). For nasal dry powders, Hickey et al. propose to use particles larger 
than 50 μm to ensure predominant nasal deposition (Garmise and Hickey  2009 ).  

15.3     Formulation Aspects 

 Unlike parenteral vaccine formulations, which need to be injectable liquids, nasal 
formulations comprise solutions or suspensions administered by nasal sprays, pres-
surised nasal sprays or nebulisers as well as dry powder formulations which can be 
administered by passive or active dry powder dispensers. Examples of these devices 
are given below. Liquid preparations face a high risk of instability over storage due 
to high molecular mobility and with this, increased likelihood of chemical reactions 
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and physical instability (Hasija et al.  2013 ). This is the reason why many liquid vac-
cine preparations need to be stored and transported under refrigeration. For a liquid 
antigen preparation, stability can be optimised via appropriate selection of pH buff-
ering salts, and often amino acids are also used for stabilisation (Brandau et al. 
 2003 ; Taneja and Ahmad  1994 ). The aim is to ensure and maintain optimal antigen 
hydration without physical instability or chemical degradation. Hence, osmolarity 
may also play a critical role. For the nasal mucosa, osmolarity and pH of the admin-
istered liquid (solution or suspension) are also important parameters, as prepara-
tions, which deviate largely from physiological conditions may cause irritancy. In 
addition, it has been shown that buffer ionic strength may infl uence the uptake of 
nanoparticles into M-cells (Rajapaksa et al.  2010 ). 

 Stability, especially thermal stability, can be increased largely if the antigen can 
be stabilised and dried. Liquid preparations are often freeze-dried to enhance stor-
age stability, with this minimising molecular mobility and hence, risk of intermo-
lecular reactions, and need to be redispersed in buffer directly prior to administration. 
Here, the antigen needs to be stable in the liquid pre-step and has to be stabilised 
during freezing (cryoprotection) and the subsequent drying step (lyoprotection). 
During freezing the molecules need to be protected from harmful effects of the 
forming ice crystals and a shift in pH, which may easily occur due to the formation 
of saturated solutions differing in salt composition from the original buffer during 
freezing. Afterwards, the molecule needs to be stabilised from dehydration during 
the removal of water. This can be achieved by an exchange of water with other 
hydrophilic molecules which may replace it as hydrogen bond forming partner. 
Another possibility is the formation of a sugar glass matrix, which has been shown 
to stabilise vaccine preparations (Amorij et al.  2007 ). This principle can also be used 
in other drying techniques such as spray-freeze drying or spray drying (Chap.   16    ). 

 Formulations, which are administered as dry powders, face the same problem as 
intermediate formulations in the dried state: the antigen and its carrier system need 
to be stabilised during drying. Furthermore, the dried formulations need to have a 
particle size allowing nasal deposition, should have good dispersion characteristics, 
and low agglomeration and adhesive tendencies to allow powder handling, packag-
ing and effi cient release from the device. Particle size can be controlled by the 
parameters of the drying procedure. Here, processes resulting in a dispersible dry 
powder in one step (such as spray drying) are favoured to freeze drying, where the 
freeze dried cake might need to undergo a milling step to obtain the desired particle 
size (Garmise et al.  2006 ). Cohesive and adhesive behaviour are in parts determined 
by particle size: the larger the particles, the better their fl ow characteristics and the 
lower their agglomeration. Powder characteristics can further be controlled by the 
use of dispersion modifi ers, which either cover the surface of the microparticles 
resulting in reduced hygroscopicity and surface energy (Minne et al.  2008 ; Raula 
et al.  2010 ; Weiler et al.  2010 ) or which form separate particles in the dry powder 
(Westmeier and Steckel  2008 ) increasing the dispersion capability. 

 Stability of the antigen may also be achieved by its particulate carrier. 
Drying nanoparticles without further bulking excipients normally leads to highly 
aggregated particles of undefi ned size, which are diffi cult to redisperse, and a very 
low yield. Therefore, further excipients can be added which serve as matrix, embed-
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ding and stabilising the individual nanoparticles and increasing redispersibility 
upon matrix dissolution (Trows and Scherließ  2012a ). The matrix component 
should consist of a material which is capable of quickly releasing the particulate 
vaccine carrier upon dispersion in media or deposition in the nasal cavity, as only 
the nanoparticles will be taken up. Normally this is secured by the use of water 
soluble carbohydrate matrices, which dissolve in the aqueous mucus. 

 If a dry formulation is directly administered to the nose, particles may cause 
physical irritancy depending on their size and concentration. Furthermore, all water 
soluble components start dissolving in the nasal mucus. This may result in a con-
centrated solution of high osmolarity, which can also cause irritancy and increased 
ingression of water to dilute the substance causing a running nose. 

 Finally, the nose is a highly sensitive organ for olfaction. Therefore, formulation 
smell is an important factor for patient compliance as well as taste, because all for-
mulations will be cleared to the pharynx and will also be tasteable on the tongue. 

 In order to increase nasal retention time and with this the time for interaction 
between the formulation and the nasal mucosa to allow uptake of particulate antigen 
preparations, mucoadhesive substances (hydrophilic polymers such as chitosan, 
hydroxypropyl methylcellulose or carbomer) can be used. 

 Apart from the variability in formulations, another advantage of nasal adminis-
tration is the difference in microbiological requirements as a nasal formulation does 
not need to be sterile. Further additives may comprise preservatives, which are man-
datory for liquid multidose devices to ensure microbiological stability, and adju-
vanting substances. Preservatives in nasal formulations are under controversial 
discussion especially in chronic use, as they may have an effect on ciliary function 
(Marple et al.  2004 ; Merkus et al.  2001 ).  

 The choice of an effective and non-toxic adjuvant for nasal vaccination is a chal-
lenging task. Especially, it must be tested, whether vaccine components can enter 
the CNS and cause safety problems. It has been shown by molecular imaging for a 
botulism vaccine in monkeys that the antigen did not enter the CNS upon nasal 
administration (Yuki et al.  2010 ), but the reports on Bell’s palsy following a nasal 
administration of an infl uenza vaccine adjuvanted with the heat labile  E. coli  entero-
toxin (LT) are allocated to translocation of the adjuvant component to the CNS, 
which led to withdrawal of the vaccine from the market (Perrie et al.  2008 ). 
Adjuvants with good effi cacy on mucosal routes comprise lipopolysaccharide 
(LPS)-protein-complexes such as the cholera enterotoxin (CT) and the heat-labile 
enterotoxin (LT) from  E. coli , monophosphoryl lipid A (MPL), muramyl dipeptide, 
oligonucleotids (CpG), saponins like QuilA (e.g. in ISCOMs), nonionic block poly-
mers (Poloxamers), dehydroepiandosterone (DHEA) and cytokines (interleukin 
(IL)-1, IL-12) (Baudner and Del Giudice  2010 ; Chadwick et al.  2009 ; Holmgren 
et al.  2003 ; Ribeiro and Schijns  2010 ; Lawson et al.  2011 ). Antigen-adjuvant inter-
actions are discussed in more detail in Chaps.   20     and   21    . It has to be noted, that 
enterotoxins such as the heat-labile toxin from  E. coli  or the cholera toxin, which 
have proven to be effective mucosal adjuvants, may not be used in the nose due to 
their possible neurotoxic effects (Lycke  2012 ) as mentioned earlier. Non-toxic 
mutants or derivatives such as MPL can be a feasible alternative, but the effi cacy for 
subunit vaccine preparations may be questionable. 
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 In the best case, a nasal vaccine only needs to be given once, possibly with one 
or two boost doses. Here, the preparation should be packed as a single dose, which 
would be protected by a closed container prior to application. Thus, no further doses 
need to be taken from the same container, with this minimising the risk of microbial 
contamination and hence avoiding the use of preservatives. This is especially true 
for dry powder formulations, which are less susceptible to microbial growth due to 
their dry nature. The application scheme can be different in the case of therapeutic 
vaccines, which could be needed in shorter time intervals or even every day. Here, a 
multidose device is of advantage. Again, a dry powder formulation would bear the 
least risk of microbial growth and contamination during storage and use.  

15.4     Formulation Approaches for Nasal Subunit Vaccines 

15.4.1     Mucoadhesive Gels 

 A straight forward approach is to disperse the antigen, or the particulate antigen 
carrier, within a liquid of increased viscosity to enhance residence time on the nasal 
mucosa (Chap.   11    ). This has been tested for several formulations. Nochi et al. pre-
pared a nanogel of a cationic type of cholesteryl-group-bearing pullulan comprising 
a subunit antigen from  Clostridium botulinum , which was administered intranasally 
to mice (Nochi et al.  2010 ). They found a strong antigen-specifi c humoral immune 
response, which could be repeated with a tetanus subunit antigen indicating that the 
nanogel may be used as a “universal” delivery system for vaccines. Furthermore, 
they found no sign for translocation of the antigen to the brain or accumulation in 
the olfactory bulb. For administration purposes the gel should only be slightly vis-
cous. This drawback can be overcome if a thermosensitive gel formulation is used, 
with low viscosity at lower temperatures, but increased viscosity upon warming on 
the nasal mucosa (Wu et al.  2012 ; Gordon et al.  2010 ). 

 Another possibility is to use a dry powder formulation with an excipient which 
instantly gels upon contact with water, so that the particles are glued on the mucosa 
and the nasal retention time of the formulation is increased. This is the principle 
behind ChiSys ® , a proprietary nasal delivery technology based on chitosan gluta-
mate (Illum et al.  2002 ; Koch  2002 ; Illum  2012 ). Utilising this technology, a spray 
dried nasal vaccine comprising virus-like particles (VLPs) with a Norovirus antigen 
is under development and has been shown to be effective in rabbits (Vodak et al. 
 2012 ). A similar system is GelVac ®  (Sullivan et al.  2009 ; Garmise and Hickey  2009 ).  

15.4.2     Polymeric Particles 

 Chitosan is a polymer which is often used for the formulation of antigens for nasal 
vaccination. Formulation can be as simple as utilising a spray drying step of a 
 chitosan solution comprising the antigen, resulting in microparticles (Scherließ 
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and Trows  2011b ; Trows and Scherließ  2012b ; Westmeier  2010 ), but normally 
aims at the formation of nanoparticles as antigen carriers for particulate uptake 
using various techniques. Ionic gelation is one method to produce nanoparticles by 
dissolving chitosan in acidic media to obtain positively charged groups which can 
be complexed by negatively charged counterparts such as tripolyphosphate (Amidi 
et al.  2007 ) or bile salts (Scherließ and Buske  2012 ) resulting in gel-like nanopar-
ticles. If the antigenic protein is introduced during the process, it will also interact 
with the charged groups and with this is incorporated in the nanoparticle. Chitosan 
micro- and nanoparticles have been evaluated as nasal vaccine delivery systems 
comprising a range of antigens such as diphtheria toxoid (van der Lubben et al. 
 2003 ) or cross- reactive material from diphtheria toxin (McNeela et al.  2001 ), per-
tussis (Jabbal-Gill et al.  1998 ), infl uenza subunit antigen (Amidi et al.  2007 ) and 
model antigens such as ovalbumin (Boonyo et al.  2007 ; Gordon et al.  2008 ; Bal 
et al.  2012 ). As chitosan has permeation enhancing effects and mucoadhesive 
properties in addition to an adjuvant activity when administered together with an 
antigen, chitosan-containing vaccine delivery systems are very promising for nasal 
delivery (Illum et al.  2001 ). Hence, chitosan can also be used as coating for other 
polymeric particles (Jaganathan and Vyas  2006 ). Here, it has been shown that 
poly-lactic-co-glycolic acid (PLGA) microparticles prepared by the double emul-
sion method loaded with the Hepatitis B surface antigen (HBsAg) and being coated 
with chitosan rendering them cationic could provoke a higher local as well as 
systemic immune response in mice upon nasal administration than unmodifi ed 
particles. This was mainly attributed to enhanced residence time on the mucosa by 
the authors. 

 Cationic particles have also been shown to be benefi cial in other nasal delivery 
studies using the HBsAg (Debin et al.  2002 ). Vice versa, other polymers have also 
been used to coat chitosan particles. In one study, alginate-coated particles also 
comprising HBsAg were evaluated for their ability to induce an immune response 
upon nasal administration. The alginate coating primarily served as protection of 
the antigen on the surface of chitosan particles and was shown to result in an 
antigen- specifi c humoral immune response, whereas the uncoated particles did not 
(Borges et al.  2008 ). 

 Other polymeric particles under investigation for nasal subunit vaccine delivery 
are particles made from PLGA, which have been shown to be effective upon nasal 
administration, but result in a milder immune response compared to chitosan- 
containing particles (Slütter et al.  2010a ) or more hydrophobic polycaprolactone 
particles (Singh et al.  2006 ). Further modifi cation with poly ethylene glycol (PEG) 
or other surface-active substances such as poloxamer or polyvinylalcohol can 
enhance the immunogenicity of PLGA particles (Csaba et al.  2009 ). 

 A wide variety of other particulate systems is under investigation for mucosal 
vaccination and may also be feasible for nasal delivery; a summary can be found in 
Chadwick et al. ( 2010 ).  
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15.4.3     Conjugates/Complexes 

 With the intention to decrease the size of a vaccine carrier system while maintaining 
the advantages over a soluble small antigen, Slütter et al. evaluated the use of nano-
conjugates to induce an immune response upon nasal administration (Slütter et al. 
 2010b ). For this they covalently linked the model antigen ovalbumin to trimethyl-
chitosan (TMC) and compared antibody response of this system to ovalbumin 
administered by TMC nanoparticles. Nasal uptake and immune response (sIgA and 
IgG) were greatly enhanced by the nanoconjugate system, which led the authors to 
the conclusion that effi cient co-delivery of antigen and adjuvant might be more 
important for immunogenicity than the particulate form. 

 Another complex formulation is the Shigella vaccine Invaplex 50. It is based 
on a macromolecular complex of serotype-specifi c LPS and different Shigella 
integrins in aqueous dispersion. Preclinical studies proved safety, immunogenic-
ity and effi cacy (Tribble et al.  2010 ) and initial clinical trials in human volunteers 
using nasal administration by pipette or by the Dolphin sprayer confi rmed this 
(   Riddle et al. 2011). Interestingly, the integrin complex may also be used as an 
effective nasal adjuvant which can be combined with other antigens (Kaminski 
et al.  2006 ).  

15.4.4     Lipid Systems 

 Differently charged liposomes made with addition of diverse mucoadhesive agents 
such as carbomer, chitosan or hyaluronic acid and with tetanus toxoid as antigen 
were tested for nasal vaccination in mice. It was shown that after the fi rst immuni-
sation only negatively charged liposomes and liposomes containing chitosan 
enhanced the antibody response compared to free antigen (Alpar et al.  2005 ). 
Liposomes may also be functionalised by integration of other substances to 
increase uptake or immune response (Kojima et al.  2008 ; Arigita et al.  2003 ; White 
et al.  2006 ). 

 A variation of liposomes—virosomes—has also been tested for nasal vaccina-
tion using haemagglutinin and neuraminidase as the antigenic subunits of the infl u-
enza virus. The study showed that nasal administration to ferrets resulted in almost 
total prevention of virus shedding in contrast to parenteral vaccination (Lambkin 
et al.  2004 ). 

 To increase the stability of a lipid-based delivery system, lipid microparticles 
can be used instead. Due to their solid nature, they are less prone to physical insta-
bilities. In a study using HBsAg in lipid microparticles made of soy lecithin with 
or without addition of stearylamine (SA) it was shown that the formulation was 
taken up upon nasal administration and resulted in an immune response, which 
was more pronounced in the case of cationic particles comprising SA (Saraf et al. 
 2006 ).  
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15.4.5     Dry Powder Formulations 

 All particulate systems can also be transferred to dry powder formulations having an 
increased stability profi le. In order to formulate a dry powder which fi ts the particle 
size requirements for nasal deposition, different approaches can be chosen. Although 
the primary particle size of a spray dried powder might be too small for nasal deposi-
tion, deposition characteristics strongly depend on agglomeration of the powder and 
dispersion effi ciency of the used device. With this, it is possible to deliver a spray dried 
powder of low micron sized particles to the nasal cavity without the risk of a high 
postnasal fraction (Trows and Scherließ  2012a ). If the particles are well dispersible 
resulting in a large postnasal fraction, a carrier-based formulation can help to deposit 
the majority of the formulation in the nasal cavity (Westmeier  2010 ; Scherließ  2011a ; 
Buske and Scherließ  2012 ). Another approach is to spray- coat the suspension com-
prising the nanoparticulate antigen on a larger carrier particle (Scherließ et al.  2013 ). 

 Dry powder formulations of subunit vaccines, which were investigated in vivo 
following intranasal administration, comprise alginate microspheres with tetanus 
toxoid (Tafaghodi and Rastegar  2010 ), a spray-freeze dried powder of trehalose 
with Anthrax recombinant protective antigen (Wang et al.  2012 ) and the aforemen-
tioned Norovirus vaccine (Vodak et al., 2012). 

 These dry powder studies were performed in rabbits, which might be due to the 
sometimes reported diffi culties to administer dry powder formulations to small 
rodents (Illum et al.  2001 ). Nonetheless, most of the cited studies are performed in 
small rodents such as mice, mostly Balb/c or C57Bl/6 strains, or rats. These are 
standardised laboratory animals with a well-defi ned immunology, which are easy 
and cheap to experiment with. Nonetheless, it has to be kept in mind, that a rodent’s 
nose physiology is far from that of a human (Harkema et al.  2006 ). An animal 
model, which resembles the human respiratory tract more closely, is the guinea pig, 
which also shows a lot of similarities in terms of hormone and immune system 
(Hanif and Garcia-Contreras  2012 ), whereas closest would be macaques or other 
non-human or human primates. Another important point to keep in mind is whether 
the chosen animal model comprises the relevant targets in terms of response to the 
antigen. Finally, the way of administration is an important point. Most studies are 
performed by dispersing the respective vaccine system in a liquid, often PBS, and 
administering this to the nose by using a pipette or a syringe. The used volume is up 
to 100 μL, which will fl ood a mouse’s nose and probably drains down to the lung 
resulting in a more systemic immune response. Furthermore, the immune response 
may differ depending on whether the animal was dosed under anaesthesia or when 
fully awake resulting in a higher systemic immune response upon anaesthesia due 
to increased drainage to the lung (Janakova et al.  2002 ). This needs to be considered 
if the ratio of local vs. systemic response plays a role in the study. Formulations can 
also be administered to animals intranasally using powder formulations. This can be 
easily performed in larger animals as devices can be used, which are equally feasi-
ble for human use (Huang et al.  2004 ), but it is also possible in small animals such 
as mice e.g. by utilising the PennCentury Powder Insuffl ator, which is normally in 
use for intratracheal administration (Duret et al.  2012 ).   
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15.5     Nasal Administration Devices for Humans 

 Nasal administration systems comprise devices for liquid formulations such as 
nasal drops, liquid or suspension sprays, nasal nebulisation as well as dry powder 
systems. The dispersion can be performed by active dispersion, where the device is 
used to actively disperse the formulation to droplets or particles by a defi ned energy 
created by the patient during actuation or from an external source. Here, patient 
inhalation or exhalation is not needed to release the powder from the device, but the 
patient only needs to actuate the system. Other systems rely on the patient’s inhala-
tion/exhalation airfl ow or other mechanisms relying on patient capabilities such as 
pushing a syringe plunger or a belly-like device. Performance of these systems may 
vary from patient to patient and hence, are regarded as less suitable. Whereas liquid 
systems may not be affected largely by the inhalation manoeuvre (Guo et al.  2005 ), 
dry powder systems relying on patient inhalation or exhalation can vary in disper-
sion effi ciency, delivered dose and nasal deposition depending on the patient’s inha-
lation speed and duration. As it is far more diffi cult to teach patients to breathe in a 
controlled manner than to teach them to hold breath during administration of a nasal 
product, it is believed that active dispersion during breath hold will lead to the most 
reproducible results. 

 Aqueous liquid formulations are mostly delivered to the nose by using normal 
spray pumps or nasal drop systems as commonly known from nasal decongestants. 
Whereas drops are appropriate for infants, children and adults should rather use 
nasal sprays as the formulation can be distributed more evenly in the nasal cavity. 

 Nasal sprays are mechanically actuated pump systems which actively disperse a 
single dose of the formulation to a spray. These systems normally comprise a liquid 
reservoir, a volumetric dose metering chamber, the actuation spring and a nozzle 
dispersing the formulation (Bommer  2006 ). As nasal sprays usually are multidose 
devices, contamination must be prevented. This is performed by the use of special 
seals or antimicrobial materials such as a silver-coated spring. To match the device 
to the respective formulation and its viscosity and concentration, adaptations of the 
dosing volume and nozzle characteristics can be made infl uencing device perfor-
mance. Modern trends in nasal spray devices are side actuation and the addition of 
dose indicators. 

 Nasal sprays may also be single-dose or bi-dose systems (Fig.  15.1a ), which are 
more appropriate for discontinuous use such as in migraine or vaccination (Marx 
et al.  2010 ). A very simple, but effective device is the VaxINator (Telefl ex Medical, 
LMA Atomisation, Co. Westmeath, Ireland; Fig.  15.1b ). It consists of a cone-
shaped nozzle as nasal adapter being connected to a syringe (Wolfe and Denton 
 2012 ). When pushing the plunger, the liquid from the syringe is dispersed into fi ne 
droplets. Nasal sprays can also be delivered by using pressurised metered dose 
inhalers (Fig.  15.1c ) similar to oral inhalation products (Righton and Harrison 
 2013 ). The use of these multidose systems overcome some drawbacks of nasal 
spray pumps such as dripping of the formulation to the pharynx and with this an 
unpleasant aftertaste as the dispersed volume is usually smaller and droplets are 
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fi ner than of a nasal pump spray. In this way, the dose gets distributed as a fi ne spray 
in the nasal cavity.  

 Kurve Technology (Lynnwood, WA, USA) has developed a special nasal elec-
tronic atomizer, the ViaNase, which is reported to be capable of delivering a wide 
range of formulations such as solutions and suspensions, vaccines, peptides, pro-
teins and monoclonal antibody formulations to the nose with minimal lung or oral 
deposition, making use of their “Controlled Particle Dispersion” (CPD) technology 
which relies on a vertical fl ow for dispersion (Giroux et al.  2005 ). 

  Fig. 15.1    Nasal devices for the delivery of liquid and dry powder formulations. ( a ) Passive unit- 
dose and bi-dose nasal delivery devices (picture: courtesy of Aptar Pharma), ( b ) VaxINator 
(Courtesy of Telefl ex Medical Europe Limited. Unauthorized use prohibited), ( C ) nasal pMDI 
(Copyright ©  2013, 3 M. All rights reserved), ( d ) three VersiDoser ®  Nasal Delivery Devices 
(Copyright ©  2010–2013 Mystic Pharmaceuticals, Inc.), ( e ) Breath Powered™ Bi-Directional™ 
delivery (courtesy of Optinose), ( f ) Powder UDS device (picture: courtesy of Aptar Pharma), ( g ) 
PowderJet (courtesy of RPC Formatec), ( h ) Naltos ( ©  Alchemy Pharmatech Limited, UK,   www.
alchemypharmatech.com    )       
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 The Versidoser technology from Mystic Pharmaceuticals (Austin, TX, USA; 
Fig.  15.1d ) is designed for aseptic direct fi ll of liquid or dry powder formulations in 
dual dose (to both nostrils), bi-dose or single dose delivery devices (Sullivan  2011 ). 
Actuation is performed by pushing the central belly-like part of the device, which 
disperses the dose. 

 A more sophisticated nasal device has been developed by Optinose AS (Oslo, 
Norway; Fig.  15.1e ). The device makes use of the effect    that the soft palate is closed 
during exhalation with this closing the nasopharynx and preventing lung deposition 
of a formulation being delivered to the nose at the same time. Hence, the device is 
designed to be breath-actuated by an oral exhalation, while the nasal adapter is 
placed in the nostril delivering one dose of a liquid or dry powder formulation to the 
nose (Djupesland  2005 ). This principle is called “bi-directional” delivery as the 
dose will get deposited in both nostrils which are interconnected by the nasopharynx. 
The same principle is used by the DirectHaler Nasal (DirectHaler AS, Copenhagen, 
Denmark; now Trimel Pharmaceuticals) which is made for nasal delivery of a single 
dry powder dose (Keldmann  2005 ,  2006 ). The powder dose is protected in the cap of 
the straw- like disposable device and gets released when the foil is removed. 
Afterwards the cap is removed, one end of the straw is placed in the nostril and when 
blowing air through the other end, the powder is delivered to the nasal cavity. 

 A dry powder dose can also be dispersed to the nose by sniffi ng the powder. This 
is the case for the Rhinocort product (AstraZeneca), which makes use of a dry pow-
der inhaler (Turbohaler) with a nasal adapter so that the patient can nasally inhale 
through the device to disperse the powder dose with his air fl ow instead of an oral 
inhalation. Similarly, the powder gets released from the Aptar bi-dose dry powder 
device (Aptar Pharma, Louveciennes, France). 

 Many of the aforementioned devices are dependent on patient capabilities to 
induce a suffi cient expiration or inspiration airfl ow or to squeeze a belly in the cor-
rect manner. User-dependency, however, is always associated with higher perfor-
mance variability. This can be overcome by the use of user-independent, active 
devices such as the Powder UDS system (Aptar Pharma, Louveciennes, France, 
Fig.  15.1f ) (Marx et al.  2011 ). Here, the single powder dose is placed in a central 
container. Upon actuation of the device, a defi ned volume of air is compressed and 
at the point of release entrains the powder delivering it to the nose. A similar prin-
ciple is used by the PowderJet (RPC Formatec, Mellrichstadt, Germany; Fig.  15.1g ), 
which is an active multidose dry powder device (Scherließ and Trows  2011a ). In 
this device, a volumetric dosing cavity is pushed into the central powder reservoir 
upon actuation, while a defi ned volume of air is compressed in the lower part of the 
device, which results in dispersion of the dose at the point of release. Also for dry 
powder dispersion, a propellant may be used as it is the case for the Naltos device 
(alchemy pharmatech, Daresbury, UK; Fig.  15.1h ). Here, the powder dose and the 
propellant (HFA 134a) are stored in two separate chambers. Upon actuation of the 
device, these chambers are connected and the propellant disperses the powder 
(Harrison  2013 ).  
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15.6     Physicochemical Characterisation of Nasal Vaccine 
Formulations 

 Apart from the immunological effect of a nasal subunit vaccine, a range of physico- 
chemical parameters are of importance for characterising a nasal subunit vaccine 
formulation (Fig.  15.2 ). Firstly, an essential parameter to characterise is the size of 
the nanoparticulate vaccine carrier, which should fi t the requirements for uptake to 
immunocompetent APCs. This can be done by means of dynamic light scattering 
(DLS); visual confi rmation might be performed by scanning electron microscopy 
(SEM) or transmission electron microscopy (TEM). Here, attention should be given 
to the sample preparation not to alter the particle characteristics largely (e.g. by the 
drying step or evacuation). The size of the particulate vaccine carrier should not only 
be looked at directly after preparation, but also after drying and redispersion and 
during storage to ensure stability. As the formulation will be in contact with the nasal 
fl uid and might redisperse therein in the case of dry powder formulations, effect of 
changes in the dispersion media on vaccine carrier size should also be taken into 
account. Aggregation upon contact with the nasal fl uid can lead to a signifi cant 
increase in particle size and the vaccine carrier might not be taken up any more.  

  Fig. 15.2    Important parameters for characterising a nasal subunit vaccine formulation, adapted 
from Garmise and Hickey ( 2009 )       
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 Surface characteristics such as charge might be important parameters depending 
on the formulation and can be looked at by measuring for example the zeta-potential 
of the particles, but these may also change largely with a change in environment. 

 Similar to oral inhalation products, nasal product performance is strongly depen-
dent on the dispersion device being used with the formulation. Hence, formulation 
development and characterisation should be performed in combination with the 
respective administration system. Particle or droplet size upon dispersion is an 
important determinant for nasal deposition and location of deposition. Particle size 
distribution is usually analysed by means of laser diffraction using a nasal spray 
actuator, where the device can be fi tted to the system and can be actuated making 
use of the dispersion mechanism (Kippax and Fracassi  2003 ). Dispersion differs 
from device to device and this can alter particle size of the dispersed formulation. 
Actuation can be standardised either by constant actuation force or by constant 
actuation distance. Nasal deposition can be estimated from these particle size data 
taking into account a cutoff size for nasal deposition. 

 More accurate nasal deposition studies can be performed utilising a nasal cast 
model representing a human nose of the respective patient group (adults, children) 
(Scherließ  2011b ; Hughes et al.  2008 ; Newman et al.  2004 ; Schönbrodt et al.  2010 ; 
Kelly et al.  2004 ). As nasal administration can be performed without or during 
inspiration, different modes can be tested with these casts either simulating inspira-
tion airfl ow (normal nasal breathing for an adult is estimated to be 15 L/min) or 
simulating breath hold or oral exhalation leading to closure of the soft palate and 
with this closure of the nasopharynx towards the lower airways resulting in a lack 
of airfl ow in the nasal passage. This may alter deposition signifi cantly and should 
be taken into account when defi ning user instructions. If a more detailed look at the 
post-nasal fraction is needed to determine the fraction of fi ne particles in the for-
mulation, which might get inhaled to the lung, it is recommended to use of an 
impactor such as the Next Generation Pharmaceutical Impactor (NGI) in combina-
tion with a cast model or an expansion chamber for collection of the nasal fraction 
(Scherließ  2010 ). 

 As a vaccine preparation for nasal delivery should interact with APCs within the 
nose, nasal retention time can be an important parameter to test (Soane et al.  2001 ). 
Nonetheless, this is diffi cult to test in vitro. Here, viscosity may serve as a surrogate 
and can be tested using artifi cial nasal fl uid and performing viscosity measurements 
(Callens et al.  2003 ). Another method, more resembling natural conditions, is to use 
freshly excised pig nasal mucosa and measure strip-off forces of a defi ned specimen 
covered with the formulation or the respective mucoadhesive agent used in the for-
mulation from the mucosa (Zscherpe  2009 ) or to look at adhesion of microparticles 
of the respective polymer on ex vivo mucosa (Lehr et al.  1992 ). In vivo it can be 
measured by radioactive labelling of the formulation of interest, so that deposition 
and clearance can be followed by gamma-scintigraphy (Tafaghodi et al.  2004 ). 

 Usually, a particulate nasal vaccine formulation should not release the antigen into 
the nasal fl uid upon nasal deposition, but should fi rst release the antigen after uptake, 
because soluble antigens on mucosal surfaces or fl ooding with large amounts of anti-
gen might result in tolerance (Neutra and Kozlowski  2006 ). Hence, formulations 
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should be designed for delayed release or release following a certain trigger such as 
change of temperature, pH or enzymatic conditions. Once taken up, the particulate 
vaccine carrier should easily release the antigen to allow rapid recognition and pro-
cessing. Testing release triggers and release rate can hence be an interesting param-
eter to analyse during formulation characterisation. 

 Finally, registration authorities (EMA, FDA) like to see data for spray pattern 
and plume geometry for nasal spray formulations (Suman  2009 ), but these are mea-
sures for batch-to-batch quality rather than being linked to any performance charac-
teristic in terms of action.  

15.7     Outlook 

 Until now, there are no subunit vaccines for nasal administration on the market. This 
may be due to the low immunogenicity compared to attenuated pathogens, which 
goes along with increased safety, but complicates induction of a sound immune 
response. This must be mediated with adjuvants, as it is done for parenteral admin-
istration of subunit vaccines. Here, the diffi culty is to fi nd a powerful, non-toxic and 
effective nasal mucosal adjuvant (De Magistris  2006 ). Nonetheless, a range of prod-
ucts is under investigation and extensive research is done in the area of nasal subunit 
vaccines targeting different antigens and making use of various formulation 
approaches, so that nasal administration of subunit vaccines will be a viable option 
in the near future.     
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    Chapter 16   
 Pulmonary Administration of Subunit 
Vaccines 

             Wouter     F.     Tonnis     ,     Anke     L.    W.     Huckriede     ,     Wouter     L.J.     Hinrichs     , 
and     Henderik     W.     Frijlink    

16.1            Introduction 

 Traditionally, vaccines are administered by intramuscular or subcutaneous 
 injection. The administration time by needle is short and the dosing is very precise. 
Although this percutaneous route of administration has been used for many years, 
injection of vaccines has some major disadvantages. First, due to the re-use of nee-
dles and accidental needle stick injuries, transmission of HIV and hepatitis B virus 
can increase. Second, the administration of vaccines by needle is depending on 
trained healthcare workers. Third, usage of needles leads to needle waste, which is 
expensive to discard. In the fourth place, due to needle phobia some people might 
not get vaccinated at all. A fi nal disadvantage of administration by needle is the 
limited stimulations of mucosal immunity. 

 Needle-free administration of vaccines can overcome these disadvantages. 
The lungs are an interesting site for administration of vaccines since they provide 
an enormous interface between the outside world and the body. Due to this large 
interface the respiratory tract is a preferred port of entry for many pathogens. 
By  applying vaccines to this site, pulmonary vaccination follows the natural route 
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of infection. For pathogens that are not transmitted via the respiratory tract, 
 pulmonary administration has still the advantage of being a needle-free way of 
vaccine administration. 

 In the past, pulmonary vaccination with non-subunit vaccines against measles, 
infl uenza, and tuberculosis has been proven to be effective in humans (Rosenthal 
et al.  1968 ; Waldman et al.  1969 ; Khanum et al.  1987 ; Dilraj et al.  2000 ; Bennett 
et al.  2002 ; Low et al.  2008 ). However, little is known about the pulmonary admin-
istration of subunit vaccines in clinical studies. In this chapter the immune system 
of the lungs, the devices, and dosage forms, the target populations and the safety of 
pulmonary administration of subunit vaccines will be described.  

16.2     The Lung Immune System 

 Anatomically, the respiratory tract can be divided into an upper part, comprising the 
nose, the oral cavity and the throat, and a lower part comprising the trachea and the 
lungs, the two parts being separated by the glottis (Sato and Kiyono  2012 ). The 
upper respiratory tract is directly exposed to the incoming air and is generally colo-
nized by (commensal) microorganisms. The lower respiratory tract was long con-
sidered to be sterile in healthy individuals. However, molecular techniques, being 
much more sensitive than traditional microbiological techniques, provided evidence 
that the same microorganisms found in the upper respiratory tract are also present in 
the lungs, albeit in much lower numbers (Charlson et al.  2011 ). Maintenance of the 
immunological homeostasis of the respiratory tract is a major challenge and involves 
a range of physical, chemical, and immunological mechanisms. Profound knowl-
edge of these mechanisms is important for exploitation of the respiratory tract for 
vaccination. 

16.2.1     Innate Immune Mechanisms 

 The conducting airways in the different parts of the respiratory tract are lined by 
ciliated epithelial cells, which are covered by a thick layer of mucus (Martin and 
Frevert  2005 ). Invading microorganisms as well as other particles are trapped in the 
mucus and are transported with the mucus to the mouth (mucociliary clearance) 
where they are expelled or swallowed. The mucus also contains a range of antimi-
crobial substances such as lysozyme, lactoferrin, defensins, and surfactants (Martin 
and Frevert  2005 ). 

 The next line of defence against microorganisms invading the airways is formed 
by cellular components, epithelial cells, and alveolar macrophages in particular 
(Sato and Kiyono  2012 ). The epithelial cells of the airways express a set of pattern- 
recognition receptors, including the Toll-like receptors (TLR), with which they can 
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sense the presence of invaders (Martin and Frevert  2005 ). In response they can 
produce defensins as well as a range of proinfl ammatory chemokines and cytokines, 
thus recruiting neutrophils and natural killer (NK) cells. Alveolar macrophages 
form by far the largest population of leukocytes in the lungs (Guilliams et al.  2013 ). 
They phagocytize very actively all sorts of particles that reach the alveolar space. 
Yet, in the non-infected host they are of an anti-infl ammatory phenotype and usually 
repress the induction of immune responses to the phagocytized compounds in order 
to keep the homeostasis in the lungs.  

16.2.2     Adaptive Immune Mechanisms 

 The adaptive immune system of the respiratory tract comprises overall antibodies of 
diverse subclasses, T-helper (Th) cells (CD4 + ) and cytotoxic T lymphocytes (CTL, 
CD8 + ). Immunoglobulin A (IgA) is the most prominent and a particularly important 
subtype of antibodies in the respiratory tract (Renegar et al.  2004 ). IgA produced by 
B-cells in the submucosa can be transported to the airway lumen where it is released 
as secretory IgA (SIgA) (Sato and Kiyono  2012 ). There is evidence that IgA can 
neutralize microorganisms present in the lamina propria, inside epithelial cells as 
well as at the luminal side of the respiratory epithelium (Sato and Kiyono  2012 ). 
Experiments with a murine infl uenza infection model revealed that IgA alone can 
protect against nasal infection with infl uenza virus (Renegar and Small  1991 ). 
Furthermore, IgA but not immunoglobulin G (IgG) can neutralize infl uenza virus in 
the nasal cavity and prevent initial infection (Renegar et al.  2004 ). In contrast, IgA 
is dispensable for clearance of pulmonary infl uenza infection (Mbawuike et al. 
 1999 ) although it probably contributes to protection (Onodera et al.  2012 ). 
Furthermore, infl uenza-specifi c IgA can provide some cross-protection against het-
erologous infl uenza strains [recently reviewed in Van Riet et al. ( 2012 )]. In contrast 
to IgG, IgA does not fi x complement and thus does not trigger infl ammatory 
responses. 

 IgG is also highly important in protection of the respiratory tract from and clear-
ance of respiratory infections, particularly in the lower respiratory tract (Renegar 
et al.  2004 ). This is illustrated by the fact that parenteral vaccines, e.g., infl uenza 
vaccines, inducing systemic IgG, but not mucosal IgA, are highly effective in pre-
venting infection (Clements and Murphy  1986 ). 

 Antibodies in the respiratory tract are produced by local B-cells present in the 
submucosa of the linings of the airways and in the interstitial space of the lungs 
(Sato and Kiyono  2012 ). These B-cells have undergone differentiation in local ger-
minal centres (Onodera et al.  2012 ). Alternatively, antibodies produced by long- 
lived plasma cells in the bone marrow can reach the lower airways by transudation 
from serum. It is becoming increasingly clear that memory B-cells located in the 
lungs can rapidly differentiate into IgA- and IgG-producing plasma cells and play 
an important role in protection from infection (Onodera et al.  2012 ). 
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 The role of local T-cells in respiratory infections has been extensively reviewed 
recently by Kohlmeier and Woodland ( 2009 ). In the airways of the naïve host T-cells 
are present in low numbers. Upon primary infection, T-cells start to appear in the 
airways and lung parenchyma after about 6–7 days, peak about 10 days post infec-
tion, and then undergo a phase of contraction. Both Th-cells and CTLs are contrib-
uting to the clearance of infections and protection. The type of T-cells activated and 
the pattern of chemokines/cytokines they produce depends on the infectious agent. 
Studies in a murine infl uenza infection model showed that during the fi rst months 
after infection, substantial numbers of infl uenza-specifi c CD4 +  and CD8 +  T-cells 
remain present in the lungs and can effectively control reinfection. The T-cell num-
bers in the respiratory tract wane with time but a limited number of memory T-cells 
stays indefi nitely. These can respond very quickly upon reinfection by producing 
cytokines and limit virus replication in the early phase of the infection. Later, the 
lung-resident T-cells are replaced by memory T-cells recruited from the blood and 
from the local lymph nodes (Kohlmeier and Woodland  2009 ). 

 An increasing body of evidence indicates that the local presence of memory B- 
and T-cells is very important for optimal protection against respiratory infections 
(Joo et al.  2008 ; Teijaro et al.  2011 ). The induction of these cells, which probably 
will require local or at least mucosal presence of antigen, should therefore be a pri-
mary aim of vaccination.  

16.2.3     Uptake and Processing of Antigen 
in the Respiratory Tract  

 An effective immune response in the respiratory tract requires homing of B- and 
T-cells to this site. Only when activated by specialized dendritic cells (DCs) coming 
from a mucosal site to a nearby lymph node will the B- and T-cells be imprinted to 
express mucosal homing receptors (Lycke  2012 ). Originally it was thought that 
mucosally primed lymphocytes could recirculate through all mucosal tissues. Yet, 
currently it is known that effi cient induction of immune responses in the respiratory 
tract requires immunization via the intranasal, sublingual, or pulmonary route 
(Lycke  2012 ). 

 Immune-inductive sites in the mucosal tissues are called mucosa-associated lym-
phoid tissue (MALT). In the upper respiratory system, MALT is found in the nasal- 
associated lymphoid tissue (NALT) of mice and the adenoid glands and tonsils, 
which together form Waldeyer’s Ring in humans. The lower respiratory tract of 
specifi c pathogen-free mice and young children does not contain organized lym-
phoid tissue (Moyron-Quiroz et al.  2004 ). However, bronchus-associated lymphoid 
tissue (BALT) is induced upon respiratory infection and is referred to as iBALT 
(Moyron-Quiroz et al.  2004 ). 

 Presentation of antigen by activated DCs to T-cells is an essential step in the 
initiation of immune responses. Diverse populations of DCs are present throughout 
the respiratory tract in the submucosal tissue or in the airway or alveolar lumen 
[see Guilliams et al. ( 2013 ) for a recent review]. A specialized DC population, 
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delineated as CD11b low CD103 +  DC, can acquire antigen directly from the airway 
lumen via protrusions which extend through the epithelial cell layer. Alternatively, 
antigen is taken up by the so-called M-cells and transported to underlying DCs 
which are mostly of a CD11b high CD103 -  phenotype. M-cells are found in the NALT 
and BALT but possibly also outside organized lymphoid tissue (Sato and Kiyono 
 2012 ). There is convincing evidence that T-cell induction can take place directly in 
the iBALT (Moyron-Quiroz et al.  2004 ). Yet, the more common mechanism is that 
upon antigen uptake the DCs migrate to draining lymph nodes (Moyron-Quiroz 
et al.  2004 ). Only if properly activated these DCs can mature and are then capable 
of activating naïve T-cells, either directly or through antigen transfer to lymph 
node-resident DCs. 

 While DCs and M-cells are important in antigen sampling, the vast majority of 
particles reaching the lungs will be taken up by alveolar macrophages (Blank et al. 
 2013 ). Macrophages are by far the most abundant cell type in the alveolar space and 
are very active in phagocytosis. They have an important function in dampening 
immune responses in the lungs. Accordingly, they are poorly migratory and do not 
contribute decisively to the induction of adaptive immune responses (Braciale et al. 
 2012 ). Tissue-resident macrophages also actively take up antigen and transport it to 
local lymph nodes but do probably not participate in the activation of naïve T-cells.  

16.2.4     Implications for Pulmonary Vaccine Design 

 With respect to optimization of pulmonary vaccines, four important conclusions can 
be drawn from the above: (1) The induction of iBALT by pulmonary vaccines might 
be advantageous; (2) vaccine antigen uptake by macrophages should as far as pos-
sible be avoided; (3) instead antigen should be designed for optimal uptake by DCs; 
and (4) the vaccine needs to be capable of properly activating DCs. So far, very few 
studies have been published that investigate the signifi cance of iBALT formation 
and targeting of vaccines to specifi c cell populations which could provide a rational 
basis for pulmonary vaccine design. 

 One aspect of optimization that has been studied is the place in the respiratory 
tract where the antigen should be delivered. The two studies available on this issue 
both underline that delivery to the deep lungs results in better immune responses 
than delivery to the upper parts of the airways (Minne et al.  2007 ; Todoroff et al. 
 2013 ). These studies discuss a prolonged residence time of the antigens as a possi-
ble reason for the improved immune responses. No attempt was made to investigate 
whether the site of delivery had an effect on the specifi c type of DC taking up and 
presenting the antigen. 

 Another aspect, which has been studied recently, is the effect of particle size on 
antigen uptake by different cell populations in the lungs (Blank et al.  2013 ). This 
study showed that in all parts of the lung investigated (trachea, bronchoalveolar 
fl uid (BALF), lung parenchyma) particles predominantly ended up in macrophages. 
In the BALF and lung parenchyma, CD11 low  DCs were more active than CD11b high  
DCs in particle uptake, while in the trachea both DC populations contributed 
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equally. Furthermore, smaller particles (20–100 nm) were more effi ciently taken up 
than large ones (1,000 nm). 

 While these studies give fi rst indications of how to optimize pulmonary vaccines, 
they also emphasize that much has to be learned from a detailed and systematic 
analysis of the fate of vaccines in the respiratory tract and its relation to the immune 
response induced.   

16.3     Delivery to the Lungs 

 To successfully deliver subunit vaccines to the lungs, an aerosol of powder particles 
or droplets containing the vaccine in the correct size range should be inhaled by the 
vaccinee via the mouth. When the powder particles or droplets are too small, they 
will be exhaled (Byron  1986 ). On the other hand, when the particles or droplets are 
too large, they will not pass the upper part of the trachea, simply because larger par-
ticles cannot take the sharp bend at the back of the throat. Particles with an aerody-
namic size between 1 and 5 μm are considered to be ideal for pulmonary administration 
(Patton and Byron  2007 ). When the inhalation maneuver is performed correctly, the 
majority of the particles in this size range will be deposited in the lungs. 

 Until today, it is not clear which part of the lungs should be targeted for the optimal 
immune response to the inhaled vaccine, although it seems that, as mentioned before, 
deep lung delivery yields the highest immune response (Minne et al.  2007 ; Todoroff 
et al.  2013 ). If peripheral delivery to the alveoli is aimed for, the median particle size 
should be closer to 1 μm than to 5 μm. If, however, the upper part of the lungs should 
be targeted, the median particle size should be closer to 5 μm than to 1 μm.  

16.4     Devices and Dosage Forms for Mass Vaccination 
Programs 

 The lungs have been studied for many years as delivery site for drugs, especially for 
local therapy with corticosteroids and bronchodilators for patients suffering from 
asthma and chronic obstructive pulmonary disease (COPD). Many devices have 
been developed for this patient population. These inhalation devices can be divided 
into three major categories: Nebulizers, pressurized metered dose inhalers (pMDIs), 
and dry powder inhalers (DPIs). Within each category, a distinction can be made 
between single-use and multi-use devices. For the administration of vaccines, 
single- use devices are preferred, since administration of vaccines is done only once 
per vaccinee or in some cases once per year (infl uenza). Multi-use devices could in 
theory be used for mass vaccination programs, but would need thorough cleaning 
after each usage to prevent transmission of diseases from one person to another. 
Multi-use devices can also be used with a disposable user part that could prevent 
contamination of the device by the vaccinee. The three types of devices are dis-
cussed in the next paragraphs. 
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16.4.1     Nebulizers 

 Nebulizers generate an aerosol of an aqueous solution or suspension of the active 
compound and can be divided in ultrasonic, jet and vibrating mesh nebulizers 
(Le Brun et al.  2000 ). Ultrasonic nebulizers use high-frequency waves to disperse 
the solution into small droplets. These waves are generated by applying high- 
frequency pulses from an oscillating piezo element to the aqueous solution or sus-
pension. The droplet size is dependent on the frequency of the pulses. Jet nebulizers 
use a two- fl uid nozzle to produce an aerosol. Air from a compressor or pressurized 
air (from the mains) passes the two channels by which droplets are formed. To nar-
row down the size distribution, a baffl e is placed above the nozzle, which collects 
the large particles that subsequently fl ow back into the fl uid reservoir. The aerosol 
generated by both ultrasonic and jet nebulizers is inhaled by tidal breathing. With 
every inhalation only a small part of the dose is deposited in the lungs, depending 
on the output rate of the nebulizer. Therefore, it can last up to 10–15 min before the 
whole dose is inhaled. For young children both types of nebulizers can be equipped 
with a facemask that covers the nose and the mouth. 

 In the more recently developed vibrating mesh nebulizers, the piezo technol-
ogy is combined with a perforated membrane (mesh) which is in contact with the 
drug solution (Kesser and Geller  2009 ). Two different technologies are available; 
those in which the oscillation is applied to the membrane itself and those in 
which the oscillation comes from a piston that vibrates in the liquid reservoir 
(Kesser and Geller  2009 ). Vibrating mesh nebulizers deliver more condensed 
aerosols than jet nebulizers, which increases the output rate and reduces the 
administration time. 

 Since most nebulizers are re-usable devices, they need to be cleaned and disin-
fected after each usage. This makes nebulizer less suitable for mass vaccination 
programs. Some single-use (disposable) jet nebulizers are available, but may not be 
as effective as re-usable jet nebulizer in terms of output rate and droplet size distri-
bution (Vecellio et al.  2011 ). Furthermore, these devices still require clean pressur-
ized air, which makes them less portable. 

 In most studies on pulmonary administration of measles vaccine in Mexican 
children, a jet nebulizer has been used, the so-called “Classical Mexican Device” 
(Fig.  16.1 ). In these studies, the lyophilized measles vaccine is reconstituted and 
placed on crushed ice to limit microbial growth (Bennett et al.  2002 ). A compres-
sor that is connected to a power supply is used to generate the aerosol, which is 
subsequently inhaled by the children through a facemask. A disposable paper cone 
is used to prevent contamination of the mask by the children. Even though this 
device has been used for immunizing large groups of children, the device is not 
portable and needs an external power source. Therefore, the World Health 
Organization (WHO) is searching for a substitute nebulizer in the context of the 
“Measles Aerosol Project” (Laube  2005 ). However, it is at present not known 
which nebulizer will be or has been chosen by the WHO (Henao-Restrepo et al. 
 2010 ).  
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16.4.1.1     Vaccine Formulations for Nebulization 

 Developing aqueous vaccine formulations for nebulization is relatively straight 
 forward, as compared to other formulations for pulmonary administration. The few 
requirements for aqueous formulations for inhalation as described by the European 
Pharmacopoeia are (1) a pH between 3 and 8.5, and (2) preferably the solution should 
be sterile and isotonic, although the latter two are not strict requirements (European 
Pharmacopoeia  2008 ). Preservatives can be added to maintain sterility during storage. 

 Parameters like the viscosity of the aqueous solution or suspension, the jet 
 pressure, and the breathing pattern of the vaccinee infl uence the fi nal droplet size 
coming out of the nebulizer (McCallion et al.  1995 ; Brand et al.  2000 ; de Boer et al. 
 2003 ). When developing formulations for nebulizers, these infl uences should be 
simulated in vitro to make sure droplets within the correct size range are adminis-
tered and deposited properly in the lungs (Lexmond et al.  2013 ). 

 In clinical research, two aqueous subunit vaccine formulations suitable for 
administration by using a nebulizer have been developed, one against the human 
papilloma virus (HPV16) and one against  Streptococcus pneumoniae  (23-PPV) 
(Nardelli-Haefl iger et al.  2005 ; Menzel et al.  2005 ). The formulations consisted 
solely of the antigen suspended in saline. Pulmonary administration of the HPV 
vaccine resulted in both a systemic and a mucosal immune response in healthy adult 

  Fig. 16.1    Components of the “Classical Mexican Device.” Air from the compressor is fed through 
the vaccine solution or suspension which is subsequently aerosolized. The aerosol is inhaled by the 
vaccinee through the disposable paper cone [reprinted from Bennett et al. ( 2002 ) with permission 
from the World Health Organization]       
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female (Nardelli-Haefl iger et al.  2005 ). The 23-PPV vaccine induced serum IgG 
antibodies after pulmonary administration, although the level of antibodies was not 
as high as after intramuscular administration (Menzel et al.  2005 ).  

16.4.1.2     Application in Vaccine Delivery 

 Nebulization is used in the majority of clinical trials on pulmonary administration 
of subunit vaccines as well as non-subunit vaccines (Tonnis et al.  2013 ). The main 
reason for this is probably the relatively simple formulation work that is required, as 
well as the availability of nebulizers to be used for almost any aqueous product (in 
contrast to pMDIs and DPIs for which no of-the-shelf device exists that can be used 
for a standard formulation). Although nebulization is used in many studies, there are 
a couple of disadvantages that limit the use of this type of device in mass vaccina-
tion programs. First of all, the deposition in the lungs is low due to the tidal breath-
ing. With every exhalation, the fraction of the aerosol that is still in the dead volume 
(trachea and bronchi) is exhaled. Therefore, the administration time is long, usually 
around 10–15 min, and a large amount of the vaccine formulation is needed leading 
to increased costs per dosage. Furthermore, classic nebulizers (both jet and ultra-
sonic) have relatively large residual volumes (several milliliters), which further 
increases the costs per dosage. Since vaccines are often expensive to prepare, this, 
in addition to the relatively high price of most nebulizers, makes nebulization a 
costly method to administer vaccines to the lungs. Another disadvantage is that the 
classical nebulizers are dependent on a power source in order to operate, which is 
not always available. The newer mesh nebulizers may overcome some of these dis-
advantages. However, these devices are often equipped with chip technology to 
adjust the nebulization procedure to the drug solution and to the breathing maneu-
ver of the patient (adaptive aerosol delivery) or to monitor patient adherence and 
 compliance. This makes such devices expensive and therefore, their use is mainly 
confi ned to therapies against relatively rare diseases like cystic fi brosis. 

 Another concern about nebulization of vaccines is the chemical and physical 
 stability of the vaccine during nebulization. Shear stresses can severely damage the 
antigen leading to administration of degraded products (Khatri et al.  2001 ). Furthermore, 
during ultrasonic nebulization the temperature of the solution can increase (Phipps 
et al.  1990 ), which may lead to heat-induced degradation of the antigen.   

16.4.2     Pressurized Metered Dose Inhalers 

 A pressurized metered dose inhaler (pMDI) consists of a canister closed off by a 
metering valve, an actuator, and a mouthpiece. The canister contains the vaccine, 
either dissolved or suspended in a propellant under pressure (Smyth  2005 ). By 
pressing the canister down, a fi xed amount of formulation is released. The rapid 
expansion of the propellant disperses the vaccine formulation into small, inhalable 
particles. pMDIs are multidose devices by virtue of their design. 
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 The aerosol is released from the pMDI at high velocity (5 m/s) (Hochrainer and 
Hölz  2005 ). Therefore, the release of the dose and the inhalation should be at the 
exact same moment. When the inhalation is too late, the whole dose is deposited in 
the back of the mouth. To properly administer the dose to the lungs, good hand-lung 
coordination is required. This coordination can be taught, but takes time to learn. For 
everyday administration of drugs to the lungs, this might be worth the investment, 
but for a one-time administration of vaccines this might require too much time. To 
improve the lung deposition in children, the dose can be dispersed into a spacer or 
valved holding chamber (VHC), from which it can be slowly inhaled in multiple 
inhalations. The fi nal lung deposition, however, is quite low due to losses in the 
spacer/VHC resulting from impaction and sedimentation of the aerosol. Furthermore, 
electrostatic charging may lead to attraction of the aerosol particles to the wall of the 
spacer/VHC, also resulting in improper dosing. On the other hand, an advantage of 
using a VHC is that the multidose pMDI cannot be contaminated by the vaccinee, 
because exhalations are diverted from the chamber by the valve. For mass vaccina-
tion programs, a cheap and disposable VHC is preferred. Another option would be a 
VHC with a cheap and disposable mouthpiece (including the valve). 

16.4.2.1     Vaccine Formulations 

 Formulations for pMDIs consist of the antigen dissolved or dispersed in a propel-
lant [nowadays only hydrofl uoroalkane (HFA) propellants are allowed for use]. 
When the antigen is suspended in the propellant, dose fl uctuations due to sedimen-
tation or fl oating of the antigen may occur. Therefore, the canister should be shaken 
properly before use and the suspension should be physically stable. Another option 
is to dissolve the antigen in the propellant by using surfactants or cosolvents (e.g., 
ethanol) (Smyth  2005 ). 

 The main challenge in developing vaccine formulations for pMDIs is protein 
integrity and stability in the propellant. The hydrophobic nature of the propellant 
may induce denaturation of protein-based antigens (Shoyele and Slowey  2006 ). So 
far only one study on pulmonary vaccine administration by using a pMDI has been 
published (Brown et al.  1997 ), although not on subunit vaccines. In this study, the 
killed whole bacterium  Streptococcus suis  was dissolved in a propellant (dimethyl-
ether, liquefi ed by high pressure) using a surfactant for pulmonary administration to 
swine with the help of a nose-cone. Only 7–12 % of the aerosol particles had an 
aerodynamic diameter in the correct size range. Moreover, the antigenicity was par-
tially lost after aerosolization.  

16.4.2.2     Application 

 Hardly any studies have been performed using pMDIs as device for the delivery of 
vaccines to the lungs. Even though pMDIs are cheap and portable, the diffi culties of 
developing stable vaccine formulations make them less suitable for this application. 
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Additionally, the administration is ineffi cient in case of improper hand–lung 
 coordination. The effi ciency can be improved by using a spacer/VHC, although 
losses in this accessory device occur as well. The use of an entirely disposable VHC 
or one with a disposable mouthpiece would allow for the use of multidose pMDIs 
for mass vaccination programs when the antigen is found to be stable in the 
propellant.   

16.4.3     Dry Powder Inhalers 

 Many different dry powder inhalers (DPIs) are commercially available, which can 
be classifi ed into devices for single use and devices for multiple uses. Multi-use 
devices can be further classifi ed into single-dose, multiple unit-dose, and multidose 
devices. Multiple unit-dose devices have an interchangeable part holding multiple 
doses (e.g., a disk with eight doses). Multidose devices have a compartment that 
contains multiple doses of the powder formulation. Both multiple unit-dose and 
multidose devices are extensively used in the treatment of chronic lung diseases that 
require daily administration (Laube et al.  2011 ). Vaccination however, requires no 
more than a few administrations in a lifetime or annually in the case of infl uenza 
vaccination. Therefore, multi unit-dose and multidose devices are considered to be 
less suitable for pulmonary vaccination. On the contrary, multiuse single-dose 
devices are loaded with one dose at a time, for example with a capsule. These 
devices are more suitable, although the use of one device by more than one person 
is not ideal due to the risk of transmission of diseases from one vaccinee to another. 
To decrease the risk of transmission, the device should have a disposable user inter-
face, preferably with a one direction valve, which prevents that one can exhale into 
the device. 

 Single-use, thus disposable devices would be ideal for pulmonary administration 
of vaccines, since there is no risk of transmission of diseases. These disposable 
devices should be cheap to produce in order to keep the price per dose low. 

 Dry powder vaccine formulations (see Sect.  16.4.3.1 ) consist of particles in the 
appropriate size range. These small particles attract each other by van der Waals 
forces resulting in the formation of agglomerates, which are too large to be depos-
ited in the lungs. Therefore, the DPI should have a dispersion mechanism to break 
up these agglomerates and deliver the powder particles of their primary particle 
size. Several dispersion mechanisms have been developed, which are either based 
on shear forces between the powder and the device, on drag and lift forces exerted 
by the moving air on the powder, or on impaction forces generated by particle–
device or particle–particle collisions (Frijlink and De Boer  2004 ; Islam and Cleary 
 2012 ). The forces exerted on the agglomerates are generated by the inhaled air-
stream. Therefore, the powder is delivered from the DPI only when the vaccinee is 
inhaling through the device. Proper hand–lung coordination, as encountered with 
pMDIs, is therefore not important when using DPIs. 
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16.4.3.1      Vaccine Formulations 

 Antigens are produced as aqueous solutions. Obviously, when the antigen is envis-
aged to be administered as a powder, the aqueous antigen solution should be dried. 
Dry powder particles with the appropriate particle size distribution can be produced 
either by one-step or by two-step processes (Amorij et al.  2008 ). One-step processes 
for the production of powder particles are (1) spray drying, (2) spray-freeze drying, 
or (3) supercritical fl uid drying. Two-step processes consist of a combination of a 
drying technique (e.g., freeze drying, vacuum drying, foam drying) and a particle 
size reduction method, e.g., milling. However, one-step processes are preferred 
because two-step processes can lead to contamination and increased production 
costs. 

 During each of the mentioned drying processes the antigen is exposed to harsh 
conditions, e.g., to shear, heat, and dehydration stresses during spray drying, shear, 
freezing, and dehydration stresses during spray-freeze drying and shear and dehy-
dration stresses during supercritical fl uid drying. Because of their proteinaceous 
nature, subunit vaccines are usually fragile molecules which can easily deteriorate 
when exposed to these harsh conditions. Consequently, stabilizing excipients should 
be used to maintain the immunogenicity of the antigen during drying. Often used 
excipients that stabilize proteinaceous drug substances are sugars. If dried properly, 
the sugar forms a glass which also stabilizes the antigen during subsequent storage. 
It has even been shown that infl uenza subunit vaccine spray dried or spray-freeze 
dried in the presence of inulin is stabilized to such an extent that it does not require 
refrigerated storage and transport, the so-called cold chain (Saluja et al.  2010 ). 
Therefore, to increase the shelf-life and to avoid dependence on the expensive cold- 
chain, also antigens intended to be administered as a liquid formulation (e.g., for 
nebulization), might be dried in the presence of sugar after production and reconsti-
tuted before use. 

 Various theories have been described to explain the protective action of sugars 
(Grasmeijer et al.  2013 ). The two main ones are (Chang and Pikal  2009 ):

•    The water replacement theory: In an aqueous solution, the antigen forms many 
hydrogen bonds with the surrounding water molecules. During drying the water 
molecules are gradually replaced by sugar molecules. The hydroxyl groups of 
the sugar form hydrogen bonds with the antigen comparable with water by which 
the structural integrity of the antigen is maintained.  

•   The vitrifi cation theory: During drying the sugar turns into its glassy state thereby 
incorporating the antigen. Because the molecular mobility of the sugar mole-
cules in the glassy state is very low, the mobility of the molecules of the antigen 
is very low as well. Because most degradation reactions require molecular mobil-
ity, the degradation rate of the antigen incorporated in the matrix of sugar glass 
will decrease.    

 The glassy state of the sugar is essential for its protective action. Above the so- 
called glass transition temperature ( T  g ), sugar glasses turn into the rubbery state 
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which is undesirable for two reasons. First, the molecular mobility of the sugar and 
thereby the incorporated drug strongly increases. Second, in the rubbery state, 
sooner or later, crystallization of the sugar will occur. By this phase separation, the 
hydrogen bonds between the sugar and the antigen are broken by which the protec-
tive action of the sugar is lost. Moreover, the crystallization process itself may cause 
severe damage to the antigen. Therefore, a sugar with a high  T  g  is preferred. 
However, the  T  g  not only depends on the type of sugar but also on the water content 
after drying. Water acts as a plasticizer that strongly decreases the  T  g . Due to the 
hygroscopic nature of sugar glasses, the  T  g  may drop below ambient temperature 
when the glass is exposed to air of relatively high humidity. Because subunit vac-
cines contain amino groups, the applied sugar should not contain reducing groups 
to prevent Maillard browning. Often used sugars for the stabilization of protein-
aceous drug substances, such as subunit vaccines, are the disaccharides, trehalose 
and sucrose (Wang  2000 ; Amorij et al.  2008 ). However, also the oligosaccharide 
inulin has been shown to be an excellent stabilizer (Saluja et al.  2010 ). 

 The formulation used in a DPI should have a primary aerodynamic particle size 
distribution that is optimal for inhalation (1–5 μm). Usually, particle size distribu-
tions are measured by laser diffraction. However, with laser diffraction the geomet-
ric particle size is measured and not the aerodynamic particle size. The aerodynamic 
particle size can be calculated from the geometric particle size using the equation:

  

d d= =ae

r
r c

0    

where  d  ae  is the aerodynamic diameter, d e  the geometric particle size,  ρ  p  the density 
of the particles (g/cm 3 ),  ρ  0  the unit density (1 g/cm 3 ), and  χ  the dynamic shape factor 
(one for a sphere). 

 More information on the aerodynamic particle size distribution can be obtained 
by cascade impactor analysis through which the so-called fi ne particle fraction 
(FPF) can be determined. The FPF is defi ned as the volume fraction of powder par-
ticles with an aerodynamic particle size smaller than 5 μm. 

 Generally, two types of powder formulations can be distinguished: Drug-only 
agglomerates and carrier-based formulations (Fig.  16.2 ). Drug-only agglomerates 
consist of primary powder particles containing the antigen, which form agglomer-
ates. During inhalation the agglomerates are broken up into the primary particles 
(which should thus be 1–5 μm). Carrier-based formulations are blends of the 
micron-sized formulated antigen powder particles and a coarse carrier (usually lac-
tose). These formulations are prepared by blending agglomerates of the primary 
formulation with the carrier. During blending the agglomerates are broken up and 
the particles are dispersed over the surface of the coarse carrier. During inhalation, 
the primary particles should detach from the carrier. In general, carrier-based for-
mulations have a better fl owability and are physically more stable than drug-only 
agglomerates.   
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16.4.3.2     Application 

 Until today, no clinical studies have been published on pulmonary vaccination using 
a dry powder inhaler. Recently, a clinical trial was fi nalized, in which two different 
DPIs [the Puffhaler ®  and Solovent™ (Fig.  16.3 )] were investigated for the adminis-
tration of a measles vaccine, but the results have not been published yet. Both 
devices are re-usable devices but have a disposable user interface. The powder is 
dispersed into a disposable reservoir or spacer by applying pressure on a blister or 
capsule using a squeeze bulb or a syringe, respectively. Next, the reservoir is 
detached and the dose is subsequently inhaled by the vaccinee. Both devices have 
been tested in macaques with drug-only agglomerates of a myo-inositol-based pow-
der formulation produced by supercritical fl uid drying (Lin et al.  2011 ). The results 
showed that both devices performed equally well in inducing an immune response.  

 Although no clinical trials have been published on DPI vaccine formulations, a 
lot of preclinical research has been performed on this type of formulation 
(Table  16.1 ). In many of these studies, a Dry Powder Insuffl ator™ was used to 

  Fig. 16.2    Two types of powder formulations as described by Islam and Cleary ( 2012 ). ( a ) Drug- 
only agglomerates; ( b ) carrier-based formulation. The dispersion mechanism in the delivery device 
breaks up the formulation into primary particles upon inhalation [reprinted from Islam and Cleary 
( 2012 ), with permission from Elsevier].       
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  Fig. 16.3    Two DPIs: ( a ) PuffHaler ® ; ( b ) Solovent™ [reprinted from (Lin et al.  2011 ), with per-
mission from PNAS]       

    Table 16.1    Powder formulations of subunit vaccines tested in preclinical research using the Dry 
Powder Insuffl ator™   

 Antigen  Formulation 
 Production 
method 

 Primary 
particle 
size (μm) 

 Fine particle 
fraction (<5 μm) 
from insuffl ator  Animal  Ref 

 Diphtheria 
toxoid 

 Antigen 
encapsulated 
in chitosan and 
dextran 
microparticles 

 SCF  1–7 a   55 % c   Guinea 
pigs 

 Amidi 
et al. 
( 2007 ) 

 Hepatitis B 
surface 
antigen 

 Microparticles 
of leucine and 
antigen 
encapsulated 
in PLGA/PEG 
nanoparticles 

 SD  7 a   50 % 3  (MMAD 
= 4.8 μm) 

 Guinea 
pigs 

 Muttil 
et al. 
( 2010 ) 
2010 

 Infl uenza 
subunit 
vaccine 

 Antigen 
encapsulated 
in lipid 
microparticles 

 SD  1–5 b   NA  Rats  Smith 
et al. 
( 2003 ) 

 Infl uenza 
subunit 
vaccine 

 Antigen 
encapsulated 
in inulin 

 SFD  4–24 a   38 % c   Mice  Amorij 
et al. 
( 2007 ) 

 Infl uenza 
subunit 
vaccine 

 Antigen 
encapsulated 
in inulin 

 SD 
 SFD 

 1–6 a   37 % c,d   Mice  Saluja 
et al. 
( 2010 ) 

 4–24 a   23 % c,d  

 Antigen 85B 
(tuberculosis 
vaccine) 

 Antigen 
encapsulated 
in PLGA 

 SD  NA  69 % c   Guinea 
pigs 

 Lu et al. 
( 2010 ) 

   MMAD  mass mean aerodynamic diameter, NA not available,  PEG  polyethylene glycol,  PLGA  
poly(lactic-co-glycolic acid),  SCF  supercritical fl uid drying,  SD  spray drying,  SFD : spray-freeze 
drying 
  a Determined by laser diffraction analysis 
  b Determined by scanning electron microscopy 
  c Determined by cascade impactor analysis 
  d Fine particle fraction from Twincer inhaler, not from insuffl ator  
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administer the powder to the lungs of small animals. Various subunit vaccine pow-
der formulations have been produced and tested using this device (Table  16.1 ). 
Saluja et al. ( 2010 ) compared spray drying with spray-freeze drying of the infl uenza 
subunit vaccine in the presence of inulin. It was found that both powder formula-
tions induced an immune response after pulmonary administration, which was sig-
nifi cantly higher than after intramuscular administration of the vaccine. Furthermore, 
in vitro characterization showed that both formulations could be dispersed by using 
the Twincer™ (Fig.  16.4 ) in a particle size suitable for pulmonary administration. 
The Twincer™ is a disposable DPI, which consists of three plastic plates and an 
aluminum blister, and is therefore cheap to manufacture (Friebel and Steckel  2010 ).

16.5           Target Populations 

 Proper deposition of a vaccine in the lungs is mainly dependent on three factors: (1) 
The formulation, (2) the device, and (3) the performance of the vaccinee. Not every 
device is suitable for all age groups. Whether or not an inhalation device is suitable 
for a target group for vaccination depends on (1) the inspiratory fl ow rate that they 
can generate, (2) their lung volume, (3) their emotional state, as well as (4) their 
understanding of and ability to master the inhalation maneuver. Infants are an 
important target group for administration of vaccines. This group is not capable of 
performing a controlled inhalation maneuver simply because infants do not compre-
hend how to do it. Furthermore, infants are nose breathers only. When a nebulizer 
with face mask or a DPI with a spacer attached to a facemask (e.g., Puffhaler or 
Solovent) is used for this group, the antigen will most likely be deposited in the 

  Fig. 16.4    The Twincer™ 
DPI       
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nasal cavity instead of in the lungs. A risk of nasal administration is that the antigen 
might be transported to the central nervous system of the infant via the olfactory 
bulb, which directly connects the nose with the brain (Illum  2000 ). 

 With increasing age, children become increasingly more capable of understand-
ing how to perform the desired inhalation maneuver. In general, from the age of 6 or 
7 years onwards, DPIs can be used. However, many DPIs need 1.5 L of air or more 
to disperse and release the total dose, for which the lung volume of young children 
may be insuffi cient (Koopman et al.  2011 ). For this age group, a DPI is desirable 
that releases its entire dose within the fi rst 0.5 to 1.0 L of air. 

 From adolescence onwards, any type of device is generally suitable in terms of 
the understanding and physical capacities of the vaccinee. Elderly on the con-
trary, who receive the annual infl uenza vaccine and might need revaccination at 
some point, may have physical constraints that would limit the use of DPIs. 
Table  16.2  shows different age groups and pulmonary delivery devices that would 
be suitable.

   Table 16.2    Pulmonary delivery device options specifi ed per age group   

 Age 
(years)  Physical limitation 

 Ability to master 
inhalation 
maneuver 

 Suitable pulmonary delivery 
devices 

 Infants  0–1  Small lung volume, 
nose breathing 

 None  None 

 Toddlers  1–3  Small lung volume  None to poor  Nebulizer, pMDI-VHC or 
active DPI in combination 
with facemask 

 Preschool 
children 

 3–6  Small lung volume  Poor  Nebulizer, pMDI-VHC or 
active DPI (in combination 
with facemask) 
 Possibly DPI 

 School 
children 

 6–12  (Small lung 
volume) 

 (Mostly) good  Nebulizer 
 pMDI-VHC 
 DPI 

 Adolescents  12–18  None  Good  Nebulizer 
 pMDI-VHC 
 DPI 

 Adults  18–65  None  Good  Nebulizer 
 pMDI-VHC 
 DPI 

 Elderly  >65  Reduced lung 
capacity, possibly 
impaired fi ne 
motor skills 

 Possibly 
impaired 

 Nebulizer 
 pMDI with VHC (Active) DPI 

   pMDI-VHC  pMDI equipped with a valved holding chamber,  active DPI  aerosol is formed by the 
device itself, independent of the patient  
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16.6        Delivery Systems for Pulmonary Administration 
of Vaccines 

 In the past decade, various new delivery systems for pulmonary delivery of subunit 
vaccines have been developed (Table  16.3 ). Antigens for subunit vaccines are often 
poorly immunogenic, especially in the dissolved state. When formulated with 
immune potentiators (TLR ligands) or formulated as for example polymeric mic-
roparticles, nanoparticle conjugates, liposomes or incorporated in the immunostim-
ulating complex matrix (ISCOMATRIX) their immunogenicity can be increased. 
Although all formulations listed in Table  16.3  are dry products, they are all sus-
pended in an aqueous solution prior to administration in animals. In theory, these 
formulations could be administered as a powder using a DPI.

   Thomas et al. found that the immune response to the hepatitis B vaccine formu-
lated as poly(lactic-co-glycolic acid) (PLGA) microparticles is highly dependent on 
the size and the charge of the microparticles (Thomas et al.  2009 ,  2010 ). It was 
found that PLGA particles with a low positive charge induced a greater immune 
response after pulmonary administration than PLGA microparticles with a negative 
surface charge. Pulmonary administration of PLGA particles with a mass mean 
aerodynamic diameter (MMAD) of 1 μm as well as PLGA particles with a MMAD 
4.5 μm induced an immune response that was comparable to pulmonary administra-
tion of a hepatitis B vaccine formulation containing the antigen in saline. 
Interestingly, pulmonary administration of PLGA particles with a MMAD of 2.5 μm 
led to a three- to fourfold increase in the immune response, as compared to pulmo-
nary administration of the plain formulation. The difference in immune response is 
explained by the authors as the difference in geometrical particle size. Due to the 
low density of the particles, the aerodynamic diameter of all formulation is in the 
correct size range (MMAD of 1, 2.5, and 4.5 μm, respectively) but the geometrical 
particle size is much larger (mean values of 3, 5, and 12 μm, respectively). 

    Table 16.3    New delivery systems for pulmonary vaccination   

 Pathogen or toxin/Antigen  Delivery system  Animal  Ref 

 Cytomegalovirus/Glycoprotein B  ISCOMATRIX  Sheep  Vujanic et al. ( 2010 ) 
 Hepatitis B virus/Hepatitis B 
surface antigen 

 PLGA microparticles  Rats  Thomas et al. ( 2009 , 
 2010 ) 

 Hepatitis B virus/Hepatitis B 
surface antigen 

 PLGA nanoparticles  Rats  Thomas et al. ( 2011 ) 

 Infl uenza virus/Infl uenza subunit 
vaccine 

 ISCOMATRIX  Sheep  Wee et al. ( 2008 ) 

  Mycobacterium tuberculosis /
Antigen 85B 

 Conjugate of antigen 
and nanoparticles 

 Mice  Ballester et al. ( 2011 ) 

 Ricin Ricin toxoid  Liposome  Rats  Griffi ths et al. ( 1997 ) 
  Yersinia pestis /F1 and V subunit 
vaccine 

 PLGA microparticles  Mice  Eyles et al. ( 2000 ) 

  All of these particulate formulations are administered as suspensions 
  ISCOMATRIX  immunostimulating complex matrix,  PLA  polylactic acid,  PLGA  poly(lactic-

co- glycolic acid)  
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The  geometrical particle size determines whether the particle is internalized by 
antigen- presenting cells (APC). It was found that particles with a geometrical size 
above 10 μm were not phagocytized by alveolar macrophages, while 4–5 μm par-
ticles were. Therefore, a geometrical particle size above 10 μm is simply too big to 
allow for uptake by APC, leading to a lower immune response after pulmonary 
administration. When developing non-dissolving delivery systems like PLGA mic-
roparticles, it is important that not only the aerodynamic diameter is taken into 
account but also the geometrical diameter of the particles.  

16.7     Safety 

 One of the main concerns for every new dosage form is its safety profi le. Vaccines 
are given to large groups of healthy people, in whom a lower risk-benefi t ratio is 
acceptable than for new drugs for diseased people. In some cases, vaccination can 
lead to an allergic reaction to the vaccine or to a component of the formulation (e.g., 
egg protein-containing vaccines). Side effects might be minor if this happens at the 
site of injection, but might be far more invasive when this is manifested in the lungs. 

 Groups that need extra attention concerning safety are immunocompromised 
patients (e.g., HIV-infected patients) and patients suffering from pulmonary dis-
eases such as COPD and asthma. Pulmonary administration of a vaccine might lead 
to bronchoconstriction or exacerbations in asthmatic patients. In a study by Minne 
et al. ( 2008 ), an ovalbumin-sensitized murine model of asthma was used to deter-
mine whether pulmonary administration of a split infl uenza virus vaccine would 
cause exacerbations. Results showed that there was no development of airway 
hyperreactivity, no signifi cant increase in allergen-specifi c IgE, and no increase in 
infl ammatory cells in the bronchoalveolar lavage (BAL). 

 In another safety study, the measles vaccine was pulmonary administered to 
immunocompetent and immunosuppressed macaques (de Swart et al.  2006 ). The 
immune system of the second group of animals was suppressed by a combination of 
cyclosporine A and prednisolone. Although the number of animals was low, results 
showed that there was no safety hazard for pulmonary administration of the vaccine 
both to healthy and immunosuppressed animals. 

 In a study by Audouy et al. ( 2011 ) the safety profi le of a powder formulation and 
a liquid formulation of an infl uenza vaccine after pulmonary administration in mice 
was researched. It was found that pulmonary administration led to a temporary 
increase (up to 72 h) of neutrophils and a decrease in the number of macrophages in 
the lungs. Histopathological examination of the lungs showed no changes compared 
to the control group. It was concluded that the reaction to the administration was 
short and mild, but not absent. 

 Until today, safety studies on pulmonary vaccination are scarce. The studies 
that have been published show that in those cases pulmonary vaccination was safe. 
At this stage, large clinical trials are required to assess the short- and long-term 
safety profi les of pulmonary administrated vaccines. In these studies, not only 
healthy volunteers should be included but in particular groups that might be at risk.  
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16.8     Perspectives for Future Developments 

 As has been shown in many studies, pulmonary administration of vaccines can be a 
promising alternative to administration by using needles. Although a lot of research 
has been performed, not one single product has been licensed for vaccination via the 
lungs yet. To license a product for pulmonary vaccination, the combination of for-
mulation and inhalation device should be licensed as a whole. For this reason, for-
mulation development and development of a suitable device should go hand in hand. 
Next to the combined licensure, developing a powder formulation when there is no 
device available for both the formulation and the target group is rather useless. 

 In all published clinical trials until today, nebulization was used as inhalation 
technique and proven to be effective in terms of inducing an immune response. 
However, the long administration time, the portability of the device, and the micro-
bial and chemical stability of the aqueous solutions remain an issue. Mesh nebuliz-
ers might be an alternative to the traditional jet nebulizer, but these devices are 
re-usable devices and therefore need proper cleaning after each administration, 
which makes them less suitable for mass vaccination programs. The fi rst choice of 
device would be a cheap and disposable dry powder inhaler or a dry powder inhaler 
with a disposable user interface. The development and production of powder formu-
lations for pulmonary administration is more diffi cult than liquid or semi-liquid 
formulations, but this is outweighed by the improved stability of the antigen in the 
dry state. The next step in development should therefore be clinical trials in which 
DPIs are tested. 

 A concern regarding the use of DPI in mass vaccination programs is the under-
standing and capability of the vaccinee. A large target group for vaccination is small 
children who might not be able to use a DPI properly. Especially for deep lung 
delivery the inhalation maneuver should be performed properly. The alveoli has 
been suggested to be the optimal part of the lungs for vaccine deposition, (Minne 
et al.  2007 ; Todoroff et al.  2013 ). However, delivery to the upper part of the lungs 
has also been shown to elicit an immune response (Sievers et al.  2012 ). Therefore, 
more research is needed to elucidate the infl uence of the site of deposition of the 
antigen on the immune response. If deep lung targeting is not essential for inducing 
an immune response, concerns about proper inhalation technique are less important, 
which would facilitate the application of DPIs especially in small children.     
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    Chapter 17   
 Vaginal Delivery of Subunit Vaccines 

             Deborah     Lowry    

17.1            Vaginal Drug Delivery 

 Vaginal drug administration has a long history dating back to the Middle Ages. This 
route of administration has long been employed for postmenopausal delivery of 
hormones, and vaginal administration of recreational drugs such as cocaine has 
been reported in the medical literature. Clinicians are already using drugs routinely 
in the vagina; bromocriptine is used vaginally in the treatment of hyperprolac-
tinemia in women who suffer from nausea and vomiting with oral administration. 
A study of vaginal delivery of misoprostol compared with oral administration for 
the induction of labour showed the vaginal route to be superior (Zieman and Fong 
 1997 ), while a further study demonstrated that vaginally administered indomethacin 
was more effective than oral indomethacin for halting preterm labour (Abramov 
et al.  2000 ).  

17.2     The Human Vagina Anatomy and Physiology 

 The vagina is the terminal portion of the female genital tract. It is a fi bromuscular 
tube lined by non-keratinized stratifi ed epithelium which extends from the vestibule 
to the uterus. The bladder and urethra lie anteriorly; the rectum and anal canal lie 
posteriorly. The vagina ascends in a shallow S-shaped curve at an angle of over 90° 
to the uterine axis, but which varies with the contents of the bladder and rectum 
(Gray and Williams  1995 ). It extends from the lower part of the uterine cervix to the 
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external part of the vulva known as the labia minora. The vault of the vagina is 
divided into four areas relative to the cervix. These are the posterior fornix, which 
is capacious, the anterior fornix, which is shallow and two lateral fornices. The 
inner surface of the walls of the vagina, are ordinarily in contact with the other, its 
lumen forming an H-shaped cleft. The anterior wall of the vagina averages 6–7.5 cm 
in length; the posterior is slightly longer about 9 cm; its width increases as it ascends 
(Gray and Williams  1995 ). 

 In addition to the barrier properties offered by the vaginal epithelial tissue, the 
cervical mucus, vaginal secretions and local bacterial fl ora also help to protect the 
vagina against infection. The stratifi ed squamous epithelium sheds constantly mak-
ing it diffi cult for organisms to invade or access the basement membrane/capillary 
bed (Alexander et al.  2004 ). 

17.2.1     Mucosa 

 The mucosa of the vagina adheres fi rmly to the muscular layer. It has numerous 
transverse folds or rugae of about 2–5 mm in thickness and is lined with non- 
keratinized stratifi ed squamous epithelium. The cellular structure of the vaginal 
mucosal epithelium consists of fi ve distinct cytological layers: the basal, parabasal, 
intermediate, transitional and superfi cial layers. The basal cells, typically cuboidal 
in shape and characterised by the presence of microvilli on the surface of the cell 
membrane, are responsible for the continuous production of squamous cells. 
Parabasal cells are polygonal in shape and differ slightly from the basal cells in 
having a substantially greater amount of surface microvilli (Tubin and Novak 
 1956 ). These cells store considerable amounts of glycogen. The vaginal wall 
 consists of an inner mucosal layer, an intermediate muscular layer and an outer 
adventitial layer. 

 On average, the human vaginal epithelium consists of 32 ± 5 layers in thick 
regions and 19 ± 5 layers in thin regions (Thompson and Van der Bijl  2001 ). 
Beneath the squamous epithelial cells lies the lamina propria, which exhibits two 
distinct regions. The outer region immediately below the epithelium is highly cel-
lular loose connective tissue. The deeper region, adjacent to the muscular layer, is 
more dense and the cells here are joined by junctional complexes. This layer may 
be considered a submucosa. The epithelium must therefore receive nourishment 
from the underlying connective tissue, which has larger intercellular spaces that 
can accommodate blood vessels and nerves. Numerous elastic fi bres are present 
immediately below the epithelium and some of the fi bres extend into the muscular 
layer. Many lymphocytes and leukocytes are found in the lamina propria and many 
migrate into the epithelium. The number of lymphocytes and leukocytes in the 
mucosa and vaginal lumen dramatically increases around the time of menstrual 
fl ow (Ross and Lee  1995 ).  
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17.2.2     Arterial Supply and Venous Drainage 

 Arteries, blood vessels and lymphatic vessels are abundant in the walls of the vagina. 
The main blood supply to the vagina originates from the internal iliac artery; the 
uterine artery and ovarian artery supply the anterior and posterior walls of the vagina 
and the lower urethra with oxygen and nourishment. The veins are continuous with 
the course of the arteries and form a plexus which communicates with the vesicle, 
uterine and rectal plexuses and with the veins of the vulva. These drain into the 
internal iliac vein.  

17.2.3     Immune Cells 

 The lymphatic drainage of the vagina is distributed between the left and right sides 
of the pelvis. Generally the upper third of the vagina drains into the external iliac 
nodes, the middle third drains into the common and internal iliac nodes and the 
lower third drains into the common iliac, superfi cial vaginal and perirectal nodes. 
Protective immunity is provided by both the cellular and humoral systems. 
Langerhans cells can be found with dendritic extensions exposed to the lumen of the 
vaginal epithelium, thus possibly serving as guardians of the local immune system. 
These cells can pass antigens to dendritic cells (DCs) that migrate to the lymph 
nodes where they activate B-cells and CD4 +  T-cells. Activated B lymphocytes return 
to the subepithelium where they become IgA-secreting cells. The IgA is taken up by 
the epithelial cells and dimerized prior to release into the lumen. Cervical mucus 
contains both IgG and IgM as well as IgA antibodies (   McGhee et al.  1992 ). An 
antigenic challenge at the epithelial surface is afforded by intraepithelial T lympho-
cytes, DCs and a subepithelial population of B lymphocytes that synthesize IgA 
locally (Alexander et al.  2004 ).  

17.2.4     Vaginal pH 

 The vaginal pH varies throughout life, being approximately 6 at birth, rising to 
near neutrality within 1 month and staying at this value until puberty (Lang  1995 ). 
In a healthy mature woman, the vaginal fl uid has a typical pH of between 3.5 and 
5 thereby creating an inhospitable environment for the growth of most endogenous 
pathogenic bacteria. Desquamated cells have a secondary use to provide a source 
of intracellular glycogen that can be converted to lactic acid by the lactobacilli that 
proliferate near the epithelium. The pH value is maintained by  Lactobacillus 
 acidophilus  which produces lactic acid from the glycogen contained in the 
sloughed mature cells of the vaginal mucosa (Graves et al.  1980 ; Croughan and 
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Behbehani  1988 ; Pettit et al.  1999 ; Aroutcheva and Simoes  2001 ). Some species 
of  Lactobacillus  suppress the growth of other endogenous bacteria in the vagina 
through the production of organic acids such as lactic acid, hydrogen peroxidase 
and bacteriocins or lactocins (Aroutcheva and Simoes  2001 ; Mardh  1991 ; Antonio 
et al.  1999 ). Vaginal secretions contain a mixture of aerobic and anaerobic bacte-
rial fl ora, at an average concentration of 10 million/mL in healthy women of repro-
ductive age (Roy et al.  1994 ).  

17.2.5     Vaginal Fluid 

 The vaginal fl uid consists primarily of transudate which passes through the vaginal 
wall from the blood vessels. It is mixed with vulval secretions from sebaceous and 
sweat glands, with minor contributions from Bartholin’s and Skene’s glands (Burgos 
and Roig de Varnas-Linares  1978 ; Deschpande  1992 ). The fl uid then becomes con-
taminated with cervical mucus and sloughed cells from the vaginal epithelia. 
Endometrial and oviduct fl uids may also contribute to its chemical composition. 
Vaginal fl uids may also contain various proteinase inhibitors, proteins, carbohy-
drates, lactic acid, acetic acid, glycerol, urea, glycogen, glucose, hydroxy-ketones 
and aromatic compounds (Owen and Katz  1999 ). The chief component of vaginal 
fl uid is cervical mucus, produced by glandular units within the cervical canal. 
Studies suggest that approximately 6 g of vaginal fl uid is produced daily with 
approximately 0.5–0.75 g present at any one time in the vagina. Human cervical 
mucus contains proteins in two basic forms, soluble and mucin. Mucin plays an 
important role in the physicochemical characteristics of cervical mucus, including 
viscosity and surface tension (Wang and Lee  2002 ). The epithelium of the cervix 
and its glands secrete mucin which has a defence function in the uterus and vagina. 
Mucin keeps pathogens out, maintains moisture and acts as a lubricant. 

 Vaginal hormonal levels are affected during hormonal changes introduced by 
pregnancy and delivery. Medication has been found to have a direct infl uence on the 
vaginal microfl ora, bacterial adherence to the vaginal epithelium and local vaginal 
antibodies. A signifi cant factor in the pathogenesis of any infection appears to be the 
ability of bacteria to adhere to the epithelial surface. The degree of adherence is 
governed by the nature of the bacterial and vaginal cells themselves, for example the 
hydrophobic/hydrophilic nature of bacterial cell membranes and surface epithelial 
antibodies.   

17.3     Advantages of Vaginal Drug Delivery 

 The main advantages of vaginal drug delivery are summarized in Table  17.1 . The 
vagina has a rich system of defences and a dynamic microbiology, as well as a rich 
vascular plexus that makes it ideal for absorbing drugs. Vaginal administration 
enables the use of prolonged dosing regimes, lower daily doses and continuous 
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release of medication. The presence of vaginal rugae increases the surface area of 
the vagina, helping to retain a medication that is placed in the vagina and enhancing 
drug absorption (Nelson  2005 ).

   The vaginal histology is defi ned by a stratifi ed squamous epithelium; the upper 
vagina is a mucous membrane that is highly vascular and contains elastic fi bres, as 
well as dense connective tissue and muscle. Arteries and veins form a plexus around 
the vagina, and venous drainage of the vagina does not immediately pass through 
the liver. These features make the vagina effective in the uptake of many drugs and 
stable for long-term, continuous drug delivery systems such as a vaginal ring 
(Nelson  2005 ). 

 The vaginal defence system is analogous to those in the gastrointestinal (GI) and 
respiratory tracts. Langerhans cells (specialized DCs) scavenge bacterial antigens 
on the vaginal surface and present the antigens to T- and B-cells, which eventually 
results in cell-mediated immunity and in the secretion of vagina-specifi c antibodies. 
In addition, continuous epithelial sloughing creates a physical barrier to bacterial 
invasion. 

 One of the major advantages of vaginal administration over oral administration 
is that drugs avoid GI absorption and the hepatic fi rst-pass effect. Blood leaving the 
vagina enters the peripheral circulation via a rich venous plexus which empties pri-
marily into the internal iliac veins and ultimately into the vena cava, thus initially 
bypassing the portal circulation (Richardson and Illum  1992 ). GI blood drains into 
the portal vein and is passed directly through the liver before reaching the general 
circulation and target tissues. Absorption from the GI tract can be unpredictable and 
may be compromised by vomiting, drug–drug interference or decreased intestinal 
absorption capacity. Also the GI lumen and the liver are sites of elimination for 
many compounds (Wu and Benet  1995 ). Avoidance of the hepatic fi rst-pass effect is 
particularly advantageous for compounds that undergo a high degree of hepatic 
metabolism. Therefore the potential benefi ts include lower dosing and lower sys-
temic exposure plus lower incidences of side effects while achieving the same phar-
macodynamic effect (Alexander et al.  2004 ). 

 Hormones placed in the vagina are absorbed as through other mucosae. 
Absorption is dependent upon transport in blood and/or lymph (Einer-Jensen and 
Kotwica  1993 ). Lymph vessels are found that run from the cranial part of the vagina 
toward those originating from the uterine cervix, both ending into the hypogastric 
lymph glands (Williams and Warwick  1989 ). The lymphatic system of the upper 
part of the vagina being in direct communication with those of the uterus may 
 represent a potential route of substances applied into the vagina (Cicinelli and 
deZiegler  1999 ).  

  Table 17.1    Advantages of 
vaginal drug delivery  

 Advantages of vaginal drug delivery 

 Large surface area (rugae) 
 Dense vascular network 
 Avoids fi rst-pass effect 
 Local delivery minimizes side effects 
 Ease of administration 
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17.4     Factors Affecting the Vaginal Absorption of Drugs 

 Drugs administered vaginally can be transported across the vagina membrane by a 
number of different mechanisms. These are (1) the intracellular route by diffusion 
through the cell due to a concentration gradient, (2) by a vesicular or receptor- 
mediated transport mechanism and (3) by the intercellular route where there is dif-
fusion between the cells through the tight junctions (Richardson and Illum  1992 ). 

17.4.1     Physiological Factors 

 Cyclic changes in the thickness and porosity of the vaginal epithelium may affect 
the vaginal absorption of drugs. It is thought that the increased vascularity of the 
vagina could contribute to the improved absorption (Richardson and Illum  1992 ). 
It is thought that the volume, viscosity and pH of vaginal fl uids may also affect the 
absorption of drugs. The presence of a fi lm of moisture on the vaginal epithelium 
is an advantage as the drug must be in solution before it is absorbed. However, the 
presence of thick cervical mucus may present a barrier to drug absorption, and a 
large volume of vaginal secretions may cause the removal of a vaginal dosage 
form, thereby reducing absorption. The pH can also affect vaginal absorption, as 
most drugs are weak electrolytes and it is expected that they will be absorbed more 
readily when unionized. The pathways for drug diffusion across vaginal epithelium 
are essentially similar to other epithelial tissues (Richardson and Illum  1992 ) and 
are well represented by the ‘fl uid mosaic model’ as a lipid continuum interspersed 
with aqueous pores, the latter forming an aqueous ‘shunt’ route (Singer and 
Nicolson  1972 ). The lipid continuum predominates in vaginal drug absorption 
(Woolfson  2003 ).  

17.4.2     Physiochemical Properties 

 Vaginal absorption of drugs may also be affected by the physicochemical properties 
of the drug itself such as molecular weight, lipophilicity, ionization, surface charge 
and chemical nature (Hussain and Ahsan  2005 ). Vaginal permeability is much 
greater to lipophilic steroids such as progesterone and estrone than to hydrophilic 
steroids such as hydrocortisone and testosterone (Brannon-Peppas  1992 ). It is gen-
erally accepted that low molecular weight lipophilic drugs are absorbed to a higher 
extent than the high molecular weight hydrophilic drugs. However, it has been sug-
gested that higher molecular weight drugs are absorbed more in the vagina than for 
other mucosal surfaces (Sanders and Matthews  1990 ). Drugs intended for vaginal 
delivery should show some degree of solubility in water as vaginal fl uid contains a 
large amount of water. A proposed physical model for the uptake of drugs across the 
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vaginal epithelium suggests that the epithelium could be regarded as an aqueous 
diffusion layer in series with a membrane consisting of aqueous pores and lipoidal 
pathways (Hwang and Owada  1976 ). The external cell layers and the basal cell lay-
ers of the vagina retain most of the enzyme activity (Woolfson and Malcolm  2000 ). 
Among the enzymes present proteases are likely to be the prominent barrier for the 
absorption of intact peptide and protein drugs and vaccines into the systemic circu-
lation (Lee  1988 ). 

 For drugs with a high vaginal membrane permeability coeffi cient, absorption is 
mainly controlled by the permeability across the hydrodynamic diffusion layer 
formed by vaginal fl uid sandwiched between the vaginal epithelial membrane and 
the delivery device (Chien  1982 ). For drugs with low vaginal membrane permeabil-
ity, vaginal absorption is mainly controlled by the permeability across the vaginal 
epithelium (Chien  1982 ). For systemic drug delivery to occur, the penetrating sub-
stance must have suffi cient lipophilicity to diffuse through the lipid continuum of 
the membrane, but also require some degree of aqueous solubility to ensure dissolu-
tion in vaginal fl uid (Woolfson et al.  2003 ).   

17.5     Vaginal Immunity 

 Developments in controlled release methods for drug delivery have extended the 
means by which vaccine antigens may be delivered with microspheres, implants and 
pumps being available. These systems introduce prolonged antigen delivery profi les 
as an alternative delivery technique, in contrast to bolus administration by injection 
or short-term delayed release resulting from injection with adjuvants such as alum 
or emulsions (Lofthouse  2002 ). 

 There is great interest and demand for the development of vaccines that target 
mucosal sites of infection so as to prevent virus entry and/or the establishment and 
dissemination of infection (Azizi et al.  2010 ; Chen and Cerutti  2010 ). Numerous 
strategies have been proposed to reduce or prevent sexually acquired human immu-
nodefi ciency virus (HIV) infection. An effective HIV vaccine would be the most 
obvious solution, but despite extensive research, an effective HIV vaccine for human 
use has not been successfully developed. Mucosal immunization with an HIV-1 
vaccine aims at inducing a specifi c humoral response either systemically or locally 
as well as inducing cellular immunity (Letvin  1998 ; Mascola et al.  2000 ). It has 
been shown that for HIV-1, the envelope spike is the only viral target available for 
neutralizing antibodies (Zhou et al.  2007 ) resulting in the majority of vaccine can-
didates being targeted to the envelope glycoproteins of the virus. Many vaginal 
vaccination approaches involve antigen in a buffer solution (Bernstein  2000 ; Kwant 
and Rosenthal  2004 ), which have the potential for leakage, rapid enzymatic degra-
dation of the antigen and inadequate exposure of antigen to the mucosal lymphoid 
tissue possibly resulting in ineffective uptake of the antigen by the vaginal mucosa 
(O’Hagan  1992 ; Park et al.  2003 ). 
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17.5.1     Structure of HIV 

 HIV is spherical in shape with a diameter of approximately 100 nm and containing 
an electron-dense core surrounded by a lipid envelope derived from the host cell 
membrane (Fig.  17.1 ). The outer core of the virus, known as the viral envelope, is 
composed of a phospholipid bilayer derived from the membrane of the host cell 
from which a newly formed virus particle buds. Embedded in this envelope are 
proteins from the host cell which often form spikes. The virus core contains several 
core proteins, two strands of genomic RNA and the enzyme reverse transcriptase. 
The major HIV proteins associated with the envelope are gp120 and gp41. Gp160 is 
a glycoprotein that is cleaved into gp120 and gp41. These function as the viral 
attachment proteins, binding to the CD4 receptors on certain cells and facilitating 
entry into the cells. Gp120 is a glycoprotein which is heavily glycosylated and is 
bound to the outside of the membrane and it is noncovalently attached to gp41, the 
transmembrane protein spanning the bilayer.  

 A cellular protease cleaves gp160 to generate gp41 and gp120. The gp41 moiety 
contains the transmembrane domain of  Env , while gp120 is located on the surface 
of the infected cell and of the virion through noncovalent interactions with gp41. 
 Env  exists as a trimer on the surface of infected cells and virions (Bernstein et al. 
 1995 ). T- and B-cells may be attracted to mucosal sites by cytokines such as tumour 
necrosis factor (TNF)-α and interferon (INF)-γ which are secreted by DCs in the 
vagina and macrophages in the vaginal subepithelium (Lehner et al.  1991 ,  1994 ; 
Lehner  2003 ). Macrophages, DCs, and natural killer (NK) cells also secrete chemo-
kines such as RANTES, macrophage infl ammatory protein (MIP)-1α, and MIP-1β 
(CCL 5, 3, and 4) which can bind to M-tropic-CCR5 or T-tropic-HIV-1-CXCR4 

  Fig. 17.1    Structure of the human immunodefi ciency virus (HIV)       
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co-receptors and accordingly mediate HIV infection in vitro. Some studies have 
also shown that high amounts of these chemokines may down-regulate the cell- 
surface expression of the CCR5 receptor (Cocchi et al.  1995 ). NK cells are able to 
destroy HIV-infected cells directly or through antibody-dependent cellular toxicity 
(ADCC) (Chung et al.  2009 ). These fi ndings support the view that innate immunity 
may control HIV-1 replication. Figure  17.2  presents the mechanisms of vaginal 
immunity and shows how HIV can penetrate through the vaginal mucosal.    

17.6     Vaccines for the Female Genital Tract 

 The female genital tract is considered a component of the common mucosal immune 
system (McDermott and Bienenstock  1979 ). Mucosal immune responses in the 
genital tract can be induced by the administration of antigen to distal or local muco-
sal surfaces (Sato and Igarashi  1990 ). Studies comparing immunization at the female 
genital tract by delivering plasmid DNA intranasally, intrarectally and vaginally 
demonstrate that vaginal immunization induces better mucosal immunity (Livingston 
and Lu  1998 ). Professional antigen-presenting cells (DCs, Langerhans cells), T-cells 
and B-cells populate the cervix and vagina of the human and murine female genital 
tract, indicating the potential for production of mucosal immunity at the genital tract 
by the local application of plasmid DNA (Parr and Parr  1991 ). Ease of access to the 
vaginal surface also makes the local immunization practically possible.  

  Fig. 17.2    Vaginal immunity and entry of HIV. IgA, produced by mucosal B cells, is present in 
vaginal secretions which intercept antigens. Mucosal IgG is derived from the blood by diffusion 
from local fenestrated capillaries. Pathogens may be captured by dendritic cells (DCs) and macro-
phages which are carried to draining nodes. The current consensus is that at least two main routes 
are available for HIV to cross the vaginal epithelium, transepithelial migration of infected 
Langerhans cells and penetration of the virus through damaged epithelial tissue       
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17.7     HIV/SIV Vaginal Immunization Strategies 

 Many vaginal immunization strategies against HIV/SIV have been investigated. 
Protein subunit vaccines were initially developed based on monomeric HIV-1 
gp160 (Zhang et al.  2004 ; Phogat et al.  2008 ), these were later followed by gp120. 
The antigens were present in their soluble form using alum as an adjuvant. These 
envelope (Env) subunit vaccines have been shown to induce neutralizing antibod-
ies and were able to protect chimpanzees against a challenge with a homologous of 
near-homologous HIV-1 strain but not against a challenge with a distant virus strain 
(Berman et al.  1990 ,  1996 ; Girard et al.  1991 ; Fultz et al.  1992 ). Similar results 
were found with vaccines based on gp120 in the SIV/macaque model. A trial car-
ried out between 1988 and 1996 on a candidate Env vaccine found no induction of 
neutralizing antibodies to HIV-1 isolates (McElrath et al.  1996 ; Burton and Moore 
 1998 ). Modifi ed Env molecules were developed and two Phase II clinical trials of 
a gp120 subunit vaccine found that neither study showed a statistically signifi cant 
reduction of HIV infection (Graham et al.  1998 ; Gilbert et al.  2010 ). 

 Various formulations for vaginal delivery have been investigated for HIV vac-
cines. These are listed in Table  17.2  and summarized below. A tampon containing 
200 μg of ADP 740-8 resulted in enhanced levels in the rat of vaginal IgA and 
IgG. ADP 740-8 is a peptide consisting of residues of 102–121 HIV-1 gp120 in 
lysophosphatidyl glycerol (LPG) (O’Hagan  1992 ). Several strategies have been 
investigated in mice. A phosphate-buffered saline (PBS) solution containing 20 μg 
pcMN160 induced the production of vaginal immunoglobulins (IgG > IgA) which 
specifi cally bind to HIV-1  env  and neutralize cell-free HIV-1 infectivity in vitro 
(Wang et al.  1997 ). VC1/CT, a vaccine candidate, was administered as a wax cylin-
der with 15, 75 and 150 μg of VC1 and 10 μg of CT at 2-week intervals. A strong 
antigen-specifi c IgA response was found in the vaginal wash resulting in a higher 
response after the second and third immunizations. It was also established that the 
vaginal route was better than the oral route (Kato et al.  2000 ). In the monkey model, 
a suspension containing 200 μL of 10 11  cfu of  S. gordoni  (expresses the V3 domain 
of HIV-1 gp120) applied for 1 min on days 0, 54 and 64 induced vaginal IgA, serum 
IgG and T-cell-mediated immune responses (Di Fabio and Medaglini  1998 ).

   Various systems have been investigated to provide sustained and controlled 
release of vaccines vaginally (Pavelic et al.  2001 ,  2005 ). Liposomes have been 
found to be compatible with agents that increase the viscosity of delivery vehicles 

   Table 17.2    HIV vaccine strategies   

 System  Formulation  Animal/human  Results 

 Tampon  200 μg ADP 740-8  Rat  Vaginal IgA and IgG 
 PBS  20 μg pcMN160  Mouse  Vaginal IgG and IgA (IgG > IgA) 
 Wax  15, 75, 150 μg VC1  Mouse  Strong IgA response 

 10 μg CT 
 Suspension  10 11  cfu  S. gordoni   Monkey  Vaginal IgA, serum IgG, T-cells 
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such as cellulose derivatives and acrylic acid polymers (Foldvari  1996 ; Skalko 
et al..  1998 ). Liposomes can be incorporated into hydrogels which provide good 
mucoadhesive properties (Woolfson et al.  2003 ; Owen et al.  2000 ). A further formu-
lation of lyophilized liposome hydroxyethyl cellulose (HEC) rods was evaluated by 
Gupta et al. ( 2012 ). The rods are designed to revert to a gel following vaginal appli-
cation. The liposomes were found to exhibit good encapsulation effi ciency and 
mucoadhesive properties offering a potential dosage form.  

17.8     Non-HIV Immunization Strategies 

 A number of non-HIV immunization strategies have also been reported. These are 
summarized in Table  17.3 . Several strategies have been carried out in the mouse 
vagina model. One dose of a PBS solution containing 10 8  cfu of  S. gordonii  resulted 
in an induction of HPV-specifi c vaginal IgA and serum IgG (Medaglini and Rush 
 1997 ). Vagina ferritin releasing poly(ethylene-co-vinyl acetate-co-carbon monox-
ide) (PEVAc) vaginal rings were applied every 10 days or ferritin soaked tampons 
were applied daily for 10 days. The single vaginal ring produced higher titres than 
the multiple tampons (Wyatt and Sodroski  1998 ). A solution containing 20 μL of 
6.0 × 10 6  PFU/mL of attenuated herpes simplex virus 2 (HSV-2) resulted in an 
increase in the vaginal production of IgG. Vaginal immunization protected the 
vagina against a challenge with wild-type HSV-2 (Parr and Parr  1999 ). In the guinea-
pig model, a PBS solution containing a gH-deleted disabled infectious single cycle 
(DISC) HSV-1 vaccine was applied either intranasally, orally or vaginally in two 
doses 18 days apart. It caused a reduction in the primary disease symptoms in all the 
vaccination regimes. However the intranasal immunization route resulted in greater 
levels than the vaginal route, and the vaginal immunization route resulted in greater 
levels than the oral immunization route. The vaginal immunization gave the biggest 
reduction in the vaginal virus titres (McClean and Reid  1995 ). A poly(ethylene-
co-vinyl) acetate matrix was compared to a PBS solution containing HSV-2 gp 
B (rgB)/CpG oligodeoxynucleotide. A total loading of 45 μg was in the matrix and 
was used for 16 weeks. There was an induction of specifi c IgA in the vaginal secre-
tions after 2 weeks and this was maintained until 11 weeks. The DNA in the PBS did 

   Table 17.3    Non-HIV vaccine strategies   

 System  Formulation  Animal/human  Results 

 PBS   S. gordoni   Mouse  HPV-specifi c vaginal IgA and IgG 
 Solution  HSV-2  Mouse  Increased vaginal IgG 
 PBS  HSV-1  Guinea-pig  Reduction in vaginal titres 
 Vinyl acetate matrix  HSV-2  Guinea-pig  Induction of vaginal IgA 
 Gel  HPV  Guinea-pig  Induction vaginal IgA 
 Gel/solution  CTB  Human  Serum IgA and IgG 
 Gel  CTB  Human  Detectable IgA and IgG 
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not induce detectable IgA levels and there was no serum IgA detected (Sher and 
Fisch  2002 ). A thermoreversible gel system containing 100 μg of HPV-16 L1 protein 
or 100 μg of DNA plasmid was administered in 10 μL of gel. An initial dose was 
given followed by a boost 21 days later. The use of the mucoadhesive, thermorevers-
ible systems signifi cantly enhanced the vaginal IgA titres compared to the buffer 
solutions (Han and Kim  2006 ). Several strategies have also been applied to the 
human vagina. A 1 mL solution containing inactivated Salk polio vaccine was 
administered into the human vagina or uterus on three successive days. This resulted 
in an induction of IgA and IgG in the vaginal secretions which were detectable 
between 1 and 20 weeks post vaccination (Ogra and Ogra  1973 ). A solution contain-
ing 1 mg of cholera toxin B (CTB) was applied three times at 14-day intervals and 
produced an increased IgA in the genital tract secretions (Kozlowski and Cu-Uvin 
 1999 ). A 2 mL polysaccharide gel/ PBS solution containing 1.0 mg CTB was applied 
and was boosted after 2 weeks. It was compared with nasal administration. The 
vaginal and nasal administration induced the IgA and IgG in the serum (Johansson 
et al.  2001 ).

   A clinical trial conducted by Wassen et al. ( 2006 ) compared local vaginal and 
oral vaccination of a whole cell/B subunit (CTB) oral cholera vaccine. Two groups 
of unimmunized volunteers received either an oral vaccine or a local vaccination 
applied vaginally. The CTB vaccine was mixed with a gel (eldexomer) for vaginal 
application. Three doses of vaccine were administered at 2-week intervals. The fi rst 
dose was given on day 10 of the menstrual cycle. Before the fi rst dose and at 8–10 
days following the fi nal vaccination peripheral blood and cervical mucus was sam-
pled. Detectable IgA and IgG anti-CTB antibodies were found in 6 out of the 7 vagi-
nally immunized volunteers compared to 3 out of 7 for the oral vaccine. Serum 
anti-CTB IgG increased in orally vaccinated volunteers with 4 out of 7 exhibiting 
specifi c IgA serum titres. Only 3 of out 7 vaginally vaccinated volunteers showed 
an increase in serum IgG and IgA. 

 The major factor which impedes absorption at mucosal sites is the low and 
incomplete transport across the epithelial barrier. A transient and reversible opening 
of the tight junctions between the epithelium cells by safe penetration enhancers 
would allow for the permeation of non-absorbable drugs across the epithelial barrier 
and subsequent uptake of the drugs into the systemic blood circulation (Junginger 
and Verhoef  1998 ). For vaccine delivery, the lymphoid tissue should be targeted. 
Access to mucosal lymphoid tissue is provided by antigen-sampling cells. These M 
cells are located in between the epithelial cells and take up antigens and micropar-
ticles smaller than 10 μm (Wang and Xiang  1998 ). However, the use of penetration 
enhancers for the administration of HIV vaccines would be a very risky strategy 
since the tissue disruption associated would also facilitate uptake of the virus, and 
provide access to a much higher population of immune cells contained within the 
underlying tissue. Another possibility is to sustain the release of antigen at the 
mucosal surface through increased residence time of the antigen delivery system. In 
an attempt to overcome these problems, the aim is to develop a non-invasive, female 
controlled, antigen-delivery modality with enhanced retention and immunogenicity 
in which prolonged duration of delivery may sustain protective mucosal immune 
responses.  
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17.9     Conclusion 

 The large surface area of the vagina allows for effi cient absorption of drugs and vac-
cines. Studies have found local and systemic production of IgA and IgG after deliv-
ery of subunit vaccines for HIV and HSV. The studies detailed above have shown 
that the vagina has potential for the delivery of subunit vaccines. Further research 
must be explored to enhance understanding of the immune response found in the 
vagina.     
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    Chapter 18   
 Transcutaneous Immunization 

             Teerawan     Rattanapak     ,     Camilla     Foged     , and     Sarah     Hook    

18.1            Introduction 

 Vaccination is regarded as the most cost-effective approach for controlling 
 infectious disease (Coudeville et al.  2005 ). Currently, the main routes of delivery for 
vaccines are via either the oral or parenteral routes. Delivery by injection has many 
drawbacks; for example, vaccinators require injection training and there is a risk of 
needle-borne diseases associated with improper disposal of needles (Miller and 
Pisani  1999 ; Aylward et al.  1995 ). As a consequence, needle-free immunization has 
been investigated and developed for the safety of the vaccinator, patient and com-
munity. Additionally, it is likely that compliance will be improved by decreasing or 
eliminating injection site pain (Brown et al.  2006 ). The non-invasive vaccination 
routes include oral, buccal, nasal, pulmonary, vaginal and topical routes. In this 
chapter vaccination via the skin, transcutaneous immunization will be reviewed.  

18.2     The Skin 

 The skin provides the fi rst barrier of protection against the invasion of pathogens 
into the body. The skin is composed of two main layers, the dermis and the epider-
mis, which are separated by the epidermal-dermal junction (Fig.  18.1 ). The dermis 
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is made up of connective tissue, collagen, glycosaminoglycans and elastin. 
The  dermis is a highly vascularized layer and provides the avascular upper layer, the 
epidermis, with nutrients. The epidermis is the most superfi cial layer of the skin 
consisting of keratinocytes and has a thickness of approximately 50–200 μm 
depending on the body region (Lambert and Laurent  2008 ).  

 The epidermis is divided into four different layers (Fig.  18.1 ). The stratum basale 
is a single layer of columnar basal cells which remain attached to the basement 
membrane. The cells begin to fl atten and elongate in the stratum spinosum and the 
cells have lost their nuclei in the stratum granulosum. The stratum granulosum pro-
duces and organizes keratin proteins and water-proofi ng lipids. The stratum cor-
neum (SC) is primarily composed of corneocytes (~90 %), which are fl attened, 
dead, keratin-fi lled cells. These cells are surrounded by a cell envelope consisting of 
an inner layer of cross-linked proteins (cornifi ed envelope proteins) and an outer 
layer of covalently bound lipid envelope (Menon  2002 ; Bouwstra et al.  2003 ; 
Proksch and Jensen  2008 ). 

 The SC resembles a brick wall. The corneocytes serve as the bricks and extracel-
lular lipids as the mortar (Michaels et al.  1975 ). The densely packed and highly 
conformationally ordered arrangement of the SC results in low diffusion of drugs 
into skin. Thus, diffusion into the SC can be described as the rate limiting step and 
the main obstacle to transdermal delivery (Barry  2001 ).  
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  Fig. 18.1    The structure of human skin. The epidermis and dermis are separated by the basement 
membrane. The epidermis ( inset ) is composed of the stratum basale, the stratum spinosum, the 
stratum granulosum and the stratum corneum. Figure taken with permission from Fuchs and 
Raghavan ( 2002 )       
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18.3     Immune Surveillance in the Skin 

 Different skin layers contain different types of immune cell. CD8 +  T-cells and 
Langerhans cells (LCs) are found in the epidermis (Krueger and Stingl  1989 ), while 
the dermis contains various immune cells including macrophages, mast cells, der-
mal dendritic cells (DDCs), CD4 +  T-cells, γδ T-cells and natural killer T (NK T) 
cells (Nestle et al.  2009 ). The two key antigen-presenting cell (APC) subsets in the 
skin are the LCs and DDCs. These skin APCs possess the ability to take up and 
process antigen, migrate to draining lymph nodes and to present processed antigen 
to naïve T-cells (Glenn et al.  2003 ). 

18.3.1     Langerhans Cells 

 LCs were fi rst discovered by Paul Langerhans in 1868. LCs reside in the epidermis, 
where approximately 1,000 LCs are present per mm 2  (Flacher et al.  2010 ) of skin, 
equating to about 3–5 % of the total epidermal cells (Merad et al.  2008 ). LCs are 
surrounded by keratinocytes and the dendrites branching out from the LCs extend 
between individual keratinocytes (Pearton et al.  2010 ). Once activated, LCs disen-
gage from the surrounding keratinocytes and migrate across the epidermal/dermal 
junction to the local draining lymph node (Dearman et al.  2004 ). LCs can be identi-
fi ed by their unique physical characteristics (presence of many dendrites), their 
location, the presence of Birbeck granules and high levels of expression of the 
C-type lectin langerin (CD207) (Valladeau et al.  2000 ). 

 LCs have been speculated to be the fi rst APCs involved in capturing antigens 
delivered by transcutaneous immunization (TCI) due to their location in the epider-
mis. Kubo and colleagues ( 2009 ) found that LCs can extend their dendrites through 
tight junctions (TJ) and take up antigens via the dendrite tip. Romani et al. ( 2010 ) 
have postulated that the role of LCs in TCI will be dependent on several factors, such 
as the vaccination area, the amount of vaccine applied and the type of antigen and 
adjuvant used. For example, LCs were found to express toll-like receptor (TLR) 2, 
TLR4, and TLR9 but lack TLR7 (Mitsui et al.  2004 ). Hence, the type of adjuvant used 
in TCI should be taken into consideration when designing vaccine formulations to 
activate LCs. In addition, the site of vaccination has been shown to impact on LC 
activation. Wang et al. ( 2008 ) found LC activation was observed at the fl ank area but 
was absent in the ear. They suggested this was due to the SC in the fl ank area being 
much thicker than in the ear resulting in the vaccine accumulating in the upper skin 
layer leading to more opportunities for LCs to take up vaccine. More recently there 
have been confl icting reports on the role of LCs in stimulating effector immune 
responses and they have been reported to have an immunoregulatory function. In 
mice specifi cally depleted of LCs, contact hypersensitivity (CHS) responses were 
signifi cantly augmented (Bobr et al.  2010 ). However in mice defi cient in CD207 +  
DDCs there was no difference in the CHS response (Honda et al.  2010 ). It can thus be 
concluded that LCs suppressed antigen-specifi c CHS responses (Bobr et al.  2010 ).  
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18.3.2     Dermal Dendritic Cells 

 The role of DDCs in TCI has been less studied due to their location in the dermis 
and the idea that therefore antigen uptake by DDCs would occur only rarely. 
However, recent evidence suggests that DDCs play a vital role in antigen-specifi c 
immune responses in the skin. Bursch et al. ( 2007b ) found that LCs were not acti-
vated after epicutaneous immunization with a combination of peptide vaccine and 
adjuvant whereas DDCs migrated and accumulated in the dermis beneath the immu-
nized area. In addition, surface expression of maturation makers was increased and 
DDCs migrated to draining lymph nodes stimulating T-cell proliferation. 

 DDCs reside in the dermis and are mostly found adjacent to the epidermal- 
dermis junction. Some DDCs cluster around hair follicles which has been suggested 
to facilitate contact with antigens that penetrate via hair follicles (Bursch et al. 
 2007a ). Skin DDCs can be categorized into two subsets based on the expression of 
CD207. The main population of DCs in the dermis are the CD207 -  DDCs (82.1 %) 
(Henri et al.  2010 ). Although LCs and CD207 +  DDCs both express CD207 and are 
possibly derived from the same monocyte precursor, they do not have the same 
function (Ginhoux et al.  2006 ). Several studies have shown that effi cient cross- 
presentation (Igyártó Botond et al.  2011 ) and activation of CD8 +  T-cells requires 
priming by CD207 +  DDCs (Elnekave et al.  2010 ; Henri et al.  2010 ; Stoecklinger 
et al.  2011 ). Stoecklinger et al. ( 2011 ) reported that following gene gun immuniza-
tion with plasmid DNA CD207 +  DDCs were critical for the activation and func-
tional differentiation of CD8 +  T-cells, but not for CD4 +  T-cell activation. In addition, 
the function of CD207 +  DDCs was specifi cally infl uenced by the nature of the anti-
gen with protein vaccines being unable to stimulate protective immune responses. 
In the same study, they also reported that CD207 -  DDCs biased towards CD4 +  T-cell 
stimulation.   

18.4     Immune Modulators for Transcutaneous Immunization 

 Most transcutaneous vaccines use proteins or peptide antigens and an issue with 
these are that they are either poorly immunogenic or non-immunogenic. Therefore, 
potent substances known as adjuvants are required to be delivered with the antigens 
to improve the immune response. Adjuvants enhance the immune response to vac-
cine antigens by several different means. For example, adjuvants are capable of 
increasing the immunogenicity of weak antigens and also of improving the speed 
and duration of the resulting immune response (Singh and O’Hagan  2003 ). 
Additionally, the utilization of adjuvants might decrease in the amount of antigen 
required to induce immunity, thus reducing costs and helping to overcome antigen 
competition in combination vaccines (O’Hagan et al.  2001 ). 

 Adjuvants play a critical role in TCI. The most common adjuvants used for TCI 
are cholera toxin (CT) and heat-labile enterotoxin (LT) (O’Hagan et al.  2001 ; Glenn 
et al.  1999 ). Numerous studies have demonstrated that these mucosal adjuvants can 
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enhance immune responses without toxicity after topical application (Scharton- 
Kersten et al.  1999 ; Chen et al.  2002 ; Eyles et al.  2004 ; Skountzou et al.  2006 ). 
Recently, bacterial lipopolysaccharide (LPS) has become an attractive adjuvant for 
TCI. According to Kahlon and Dutz ( 2003 ), LPS and its derivatives can activate 
TLR4 expressed by LCs and DCs. Additionally, Quil A (QA) has been incorporated 
into TCI formulations to enhance skin penetration and immune responses (Madsen 
et al.  2009 ). Combining adjuvants that act through different pathways can be used 
to further optimize immune responses (Garçon et al.  2007 ).  

18.5     Transcutaneous Delivery Strategies 

 There are three possible pathways for compounds to penetrate into skin; the intra-
cellular, the intercellular and the appendageal routes. The intracellular pathway is 
where the compound penetrates through the cells deeper into skin. The compounds 
that preferentially take this route are small hydrophilic molecules (Sznitowska et al. 
 1998 ). The intercellular pathway is where the compounds can penetrate into the 
skin through the extracellular lipids, fatty acids and cellular fl uids, located between 
cells. Most of the compounds that preferentially use this pathway are lipophilic. The 
last pathway is the appendageal pathway which utilizes the sweat glands and hair 
follicles (Bolzinger et al.  2012 ). This route is of interest for nanoparticle delivery 
into the skin as the appendages can also act as a depot for particles from which drug 
can be slowly released (Liu et al.  2011 ; Morgen et al.  2011 ; Patzelt et al.  2011 ). 
Despite drug delivery via hair follicles being an effective delivery route, it cannot be 
a major route due to the fact that the number of pores in skin is only 0.1 % of the 
entire surface (Otberg et al.  2004 ). For larger molecules such as peptide and pro-
teins, transcutaneous delivery is a challenge as even if minimal CD4 and CD8 pep-
tides are used, they are still in excess of 500 Da and will therefore not be able to 
penetrate into the skin according to the “500 Dalton rule” which states that mole-
cules with a molecular weight above 500 Da cannot cross the skin barrier (Bos and 
Meinardi  2000 ). Moreover, peptides and proteins are mostly hydrophilic com-
pounds and according to Fick’s law of diffusion (equation shown below) penetration 
of these large hydrophilic molecules without utilization of a skin penetration 
enhancer is not possible.

  
J

DK c

h
=

D

   

where  J  is the fl ux per unit area and per unit time,  D  is the diffusion coeffi cient,  K  
is the skin-vehicle partition coeffi cient,  Δc  is the concentration difference across the 
skin and  h  is the length of the diffusion path. 

 The major obstacle for TCI is therefore penetration of the vaccine antigen 
 (peptide, protein and DNA) through the densely packed and highly conformation-
ally ordered corneocytes of the SC. As a result, diffusion through the SC can be 
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described as the rate limiting step for TCI (Michaels et al.  1975 ). Several approaches 
have been investigated to enhance skin penetration. These include both chemical 
and physical methods that, in general, work by temporarily reducing or disrupting 
the skin barrier and/or by providing a mechanism for actively driving the vaccine 
into the skin. These methods do not need to be utilized in isolation and there may be 
advantages or synergies to using combined approaches, for example Rattanapak 
et al. reported that using a physical penetration enhancer (microneedles) in combi-
nation with a lipid-based colloidal system (cubosomes) improved vaccine retention 
in the skin (Rattanapak et al.  2013 ). 

18.5.1     Chemical Penetration Enhancers 

 The main mechanism for enhanced penetration by chemical enhancers is through the 
removal of the barrier provided by the SC. This occurs through a disordering of the 
intercellular lipid structure of the SC and through interactions with keratin. In addi-
tion, chemical enhancers increase the partitioning of drugs resulting in an increased 
diffusion rate (Hadgraft and Walters  1992 ; Parhi et al.  2012 ). The most commonly 
used penetration enhancers are alcohols (Morimoto et al.  2002 ), propylene glycol 
(Díez-Sales et al.  2005 ) and surfactants such as polysorbate (Akhtar  2011 ). 

 Ethanol is widely used as a solvent because it can increase the solubility of active 
ingredients in formulations. Ethanol is also well known as a potent skin penetration 
enhancer. Many studies have shown that ethanol can signifi cantly increase drug 
permeation through the skin (Obata et al.  1993 ; Morimoto et al.  2002 ; Kobayashi 
et al.  1994 ). Ethanol enhances skin permeation and penetration by decreasing skin 
polarity (Kobayashi et al.  1994 ) and solubilizing the lipid components of the SC 
(Kai et al.  1990 ). Due to the concentration-dependent effect of ethanol on skin per-
meation enhancement, ethanol has been described by Heard et al. ( 2006 ) as having 
a so-called “pull” or “drag” effect. 

 Propylene glycol (PG) is regularly used in the cosmetics industry as a penetra-
tion enhancer. The skin penetration enhancement is due to hydrogen bonding with 
keratin (Takeuchi et al.  1992 ) and interactions with the polar head groups of the 
lipid bilayers (Bouwstra et al.  1991 ). Consequently, the structure of the SC is disor-
dered and drug penetration into the skin is increased. Díez-Sales et al. ( 2005 ) 
reported the enhancing effect of PG on acyclovir penetration through human epider-
mis. Adding 50 % PG to a carbopol gel formulation increased drug permeation as 
compared to the unmodifi ed gel (Díez-Sales et al.  2005 ). 

 Surfactants can be anionic, cationic or non-ionic. Cationic surfactants have the 
most potential to enhance skin penetration due to electrostatic interactions with 
negatively charged fatty acids in the SC (Lampe et al.  1983 ). However, the effi -
ciency of the surfactant action is directly proportional to the amount of skin irrita-
tion induced. Thus, non-ionic surfactants are extensively incorporated into topical 
formulations due to their non-toxic properties. A mechanism for skin penetration 
enhancement by non-ionic surfactants proposed by Nokhodchi et al. ( 2003 ) is that 
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the surfactant molecules may fl uidize SC intercellular lipids and also bind to the 
keratin, leading to disordering of the densely packed SC. Tween 80 is a commonly 
used non-ionic surfactant in topical formulations. The structure of tween 80 with its 
ethylene oxide and long hydrocarbon chain is relevant to the surfactant role. The 
lipophilic part modifi es the intercellular lipid lamellae in the SC and the hydro-
philic part disrupts protein domains of the corneocytes (Shokri et al.  2001 ). Akhtar 
( 2011 ) reported that tween 80 increased the permeation of ascorbic acid through a 
hairless rabbit skin with an enhancement ratio of 5.07 in relation to the control 
formulation.  

18.5.2     Lipid-Based Colloidal Systems 

 One of the most controversial methods for enhancing drug penetration into skin is 
the utilization of lipid vesicles. Around 30 years ago, vesicles were introduced for 
topical drug delivery by Mezei and Gulasekharam ( 1980 ). These authors suggested 
that intact liposomes were able to penetrate into skin. This investigation brought 
about numerous studies on vesicles for skin delivery (Fang et al.  2008a ; Deshmukh 
et al.  2008 ; Lopes et al.  2007 ). 

18.5.2.1     Liposomes 

 Liposomes are spherical phospholipid vesicles (see Chap.   5    ). They self-assemble 
spontaneously into bilayered structures containing an inner aqueous cavity (Castro 
and Ferreira  2008 ). Liposomes can be classifi ed into three categories according to 
vesicle size and the number of lipid bilayers (Torchilin  1996 ). Vesicles with sizes in 
the range of 500–5,000 nm with several lipid bilayers are categorized as multilamel-
lar vesicles (MLVs). Large unilamellar vesicles (LUVs) are liposomes with a single 
lipid bilayer with sizes in the range of 200 to 800 nm. Vesicles with a size of about 
100 nm and a single lipid bilayer are referred to as small unilamellar liposomes 
(SUVs). Multilamellar liposomes can be reduced to LUVs or SUVs by extrusion 
through stacks of fi lters. 

 Phospholipids are biocompatible and biodegradable and these properties make 
liposomes a safe system, able to be used in the pharmaceutical fi eld (Cosco et al. 
 2008 ). Liposomes can prevent the degradation of antigens resulting in prolonged 
primary activation of T-cells in vivo (Combadiere and Mahe  2008 ). Many studies 
have investigated the ability of liposomes to act as an immunological adjuvant and 
delivery system for subunit vaccines (Davidsen et al.  2005 ; Brunel et al.  1999 ; 
Holten-Andersen et al.  2004 ). 

 The ability of liposomes to increase transdermal drug delivery (as compared with 
non-vesicle formulations such as aqueous solutions, hydro-gels and creams) has 
been proposed to be due to the ability of vesicular systems to enhance drug penetra-
tion (Betz et al.  2005 ), improve pharmacological properties (Sharma et al.  1994 ), 
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control drug release (Fang et al.  2004 ) and serve as a photoprotection system for 
drugs (Arsic and Vuleta  1999 ). The penetration enhancement mechanism of lipo-
somes is thought to be through disruption of the stratum corneum. Liposomes 
remain on the exterior of the skin, mixing with and fl uidizing skin lipids thus disor-
dering and loosening the SC resulting in improved drug penetration (El Maghraby 
et al.  2008 ). Because of their rigid membranes liposomes do not appear to be able 
to utilize the intercellular mechanism of penetration leading to the development of 
elastic vesicles such as transfersomes and ethosomes to improve skin penetration.  

18.5.2.2     Transfersomes 

 Transfersomes, a more recent class of modifi ed liposomes, was fi rst reported by 
Cevc and Blume ( 1992 ) and are variously described as deformable, highly deform-
able, elastic or ultra-fl exible liposomes or vesicles (Benson  2006 ). They are claimed 
to improve in vitro transdermal delivery of a variety of drugs. The deformability 
possessed by transfersomes is the outcome of incorporation of an edge activator 
within the phospholipid bilayers and this improves elasticity by means of lipid 
bilayer destabilization (Dubey et al.  2007 ). Edge activators commonly used are 
single chain surfactants such as sodium cholate (Boinpally et al.  2003 ) and tween 80 
(Akhtar  2011 ). Transfersomes are claimed to be able to squeeze through conduits 
one-tenth the diameter of the vesicles, allowing them to spontaneously penetrate the 
stratum corneum (Cevc  1996 ). Moreover, Cevc and Blume ( 1992 ) reported that the 
driving force for penetration into the skin was the osmotic gradient. The osmotic 
gradient is caused by the difference in water content between the relatively dehy-
drated skin surface (varying from 15 to 20 % water in the SC) and the hydrated 
viable epidermis (approximately 70 % water). Aqueous lipid colloidal dispersions 
applied to the skin are subject to evaporation and this provides the impetus for the 
lipid system to follow the natural water gradient across the epidermis. Therefore, 
assuming this proposed mechanism is correct, transfersomes should not be applied 
under occluded conditions since this would decrease the osmotic effect (Cevc et al. 
 2002 ). Interestingly, transfersomes have been found to enhance skin permeation 
under occlusive condition in vitro whereas the opposite trend was observed when 
transfersomes were applied in vivo. It was suggested that the difference between 
in vitro and in vivo occurred because simple diffusion of free drug was a major 
pathway for permeation in vitro while the osmotic effect of vesicles was the major 
pathway in vivo (Cevc et al.  2008 ). 

 Topical delivery of peptides and proteins by transfersomes has been extensively 
investigated (Mishra et al.  2006 ). Transfersomes have been reported to improve 
 vaccine entrapment effi ciency, skin retention and penetration across the SC as com-
pared to traditional vesicles (Paul et al.  1998 ). More robust immune responses were 
induced by antigen-loaded transfersomes compared with those induced by antigen- 
loaded liposomes and vaccine solutions (Li et al.  2011 ). Mishra ( 2010 ) reported that 
hepatitis B surface antigen (HBsAg)-loaded transfersomes triggered improved 
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antigen- specifi c systemic and mucosal responses against HBsAg in vivo as com-
pared to other formulations including a physical mixture of transfersomes and 
HBsAg, HBsAg solution and intramuscularly administered alum-adsorbed HBsAg.  

18.5.2.3     Ethosomes 

 Ethosomes have also shown potential for TCI. The effi cacy and safety of ethosomal 
formulations has been convincingly demonstrated as compared to other transcuta-
neous carriers such as gels (Ainbinder and Touitou  2005 ), patches (Touitou et al. 
 2001 ) and conventional liposomes (Fang et al.  2008b ). Ethosomes were fi rst devel-
oped by Touitou and colleagues ( 2000 ). They are vesicles composed of phospho-
lipid hydrated in water with a high ethanol concentration (up to 45 %). Some of the 
physical characteristics of ethosomes are their softness, fl exibility and deformabil-
ity. An additional characteristic of ethosomes is their multilayered structure, which 
is expected to increase drug entrapment, resulting in improved therapeutic effi cacy. 
Furthermore, ethosomes have a negatively charged surface, due to the presence of 
high amounts of ethanol, which is one factor implicated in their ability to increase 
the permeation of drugs through the skin (Verma and Pathak  2010 ). According to 
Ogiso et al. ( 2001 ), the penetration rate of melatonin entrapped in negatively 
charged liposomes across the skin was higher than that of positively charged 
liposomes. 

 Touitou et al. ( 2000 ) developed a model to describe how ethosomes facilitate 
penetration. They proposed that free ethanol disrupts the SC by interacting with 
the polar head group region of lipid molecules. This interaction with free ethanol 
causes the structure of the SC to become loosely disordered, increasing fl uidity 
and membrane permeability. Then ethosomal vesicles, which are fl exible and 
deformable, easily penetrate through the disordered SC into deeper layers of the 
skin. Free drug in the ethosomal system can also penetrate into the skin via the 
loosened SC. An additional proposed mechanism is the fusion of ethosomes with 
skin lipids, resulting in drug release from the vesicles. Dayan and Touitou ( 2000 ) 
reported that ethosomes signifi cantly increased the depth of penetration of a fl uo-
rescent probe (D-289) into skin as compared to classic liposomes. Moreover, the 
transcutaneous delivery of ammonium glycyrrhizinate in ethosomes was able to 
improve the anti- infl ammatory effect of this drug as compared to ethanolic or 
aqueous solutions (Paolino et al.  2005 ). The immune enhancing abilities of etho-
somes have also been reported. Mishra et al. ( 2010 ) reported enhanced antigen 
uptake by human DCs incubated with HBsAg-loaded ethosomes and the subse-
quent triggering of an effi cient Th1-type immune response. However, it must be 
noted that the presence of ethanol as a component of ethosomes increased cell 
apoptosis. As regards safety, organic solvents are not necessary for the production 
of ethosomes whereas liposomes or transfersomes require organic solvents for 
 dissolving the lipid phase, which may be a problem if these formulations contain 
residual solvents.  
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18.5.2.4     Cubosomes 

 Cubosomes are colloidal dispersions of the bicontinuous cubic liquid crystalline 
phase (see Chap.   7    ) and they possess the same microstructure as the parent cubic 
phase. Cubosomes have a signifi cantly larger surface area and a lower viscosity than 
the bulk cubic phase. The low aqueous solubility of cubic phase-forming lipids 
allows cubosomes to exist at almost any dilution level, as opposed to most liquid 
crystalline systems that convert into micelles at higher dilutions. Thus, cubosomes 
can be easily incorporated into product formulations. 

 Variable entrapment and release of active pharmaceutical ingredient (API) from 
cubosomes has been reported and it has been suggested that this is due to the size of 
the API and any interactions occurring between the API and the cubosomes. Boyd 
(Boyd  2003 ) reported that release from bulk cubic phases was driven by simple dif-
fusion resulting in the burst release of a small lipophilic drug. However, drug release 
from cubosomes is possibly infl uenced by the molecular weight of the drug. Rizwan 
et al. ( 2009 ) reported high entrapment and retarded release of the model protein 
ovalbumin (MW ~45,000 Da) from cubosomes. These particles have also been 
reported to act as an effective vaccine delivery system with increased interferon 
(IFN)-γ production in animals vaccinated subcutaneously with cubosomes contain-
ing ovalbumin and QA as compared to control groups (Gordon et al.  2012 ). 

 Cubosomes have been utilized as transdermal drug carriers. The penetration of 
hinokitiol, a hair growth promotion agent, was increased upon formulation into 
cubosomes (Kwon and Kim  2010 ). It has been reported that the penetration enhanc-
ing effect of cubosomes is due to the lipids of the particles forming a mixture with 
the lipids of the SC, which is facilitated by their similar cubic phase structure 
(Norlen and Al-Amoudi  2004 ; Esposito et al.  2005 ). Bender et al. ( 2008 ) visualized 
skin penetration of a fl uorescence hydrophilic model drug formulated in cubic phase 
monoolein using two-photon microscopy and found high fl uorescence intensity in 
micro-fi ssures and in a three-dimensional network of thin threads in the skin.   

18.5.3     Other Delivery Systems 

 In addition to the lipid-based delivery systems, polymer-based delivery systems and 
virus-like particles (VLPs) have been investigated for transdermal delivery, although 
with variable success. Encapsulation of antigen in negatively charged poly(lactic 
acid) (PLA) nanoparticles did not enhance antigen delivery when applied on intact 
skin (Mattheolabakis et al.  2010 ). The nanoparticles were detected in the duct of the 
hair follicles indicating that the nanoparticles can penetrate the skin barrier through 
the hair follicles. However, when combining the microneedle approach (see below) 
with antigen-loaded PLGA nanoparticles, Zaric et al. observed effi cient antitumour 
and antiviral immune responses upon transcutaneous vaccination (Zaric et al.  2013 ). 
In contrast, smaller VLPs (40 nm) adjuvanted with CpG were able to induce antigen- 
specifi c immune responses in mice characterized by high levels of IFN-ɣ and IgG1 
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(Young et al.  2006 ). Mittal et al. delivered ovalbumin-containing negatively charged 
poly(lactide-co-glycolide) (PLGA) or positively charged chitosan-coated PLGA 
nanoparticles to APCs in hair follicles, without any disruption of the skin (Mittal 
et al.  2013 ). Both formulations improved the delivery effi ciency of ovalbumin into 
the hair follicles on excised pig ears by a factor of 2–3 compared to an ovalbumin 
solution, but it remains to be investigated if this improved delivery results in 
enhanced immune responses. 

 Slutter et al. compared different vaccine delivery systems for intradermal admin-
istration and found that N-trimethyl chitosan (TMC) nanoparticles were more effec-
tive carriers than PLGA nanoparticles (Slutter et al.  2010 ), positively charged 
liposomes (Slütter et al.  2011 ) and chitosan nanoparticles (Slütter et al.  2009 ). Bal 
et al. applied TMC nanoparticles loaded with diphtheria toxoid on skin pre-treated 
with microneedles to overcome the skin barrier (Bal et al.  2010a ). After 1 hour of 
application of the nanoparticles, there was no enhancement of the immune response 
compared to a diphtheria toxoid solution. However, the authors suggest that TMC 
nanoparticle diffusion might be an important limiting factor for potency in TCI 
since the nanoparticles were more effi cient in potentiating the immune response 
than a diphtheria toxoid solution when utilizing longer application times (Bal et al. 
 2010b ). 

 Co-encapsulation of additional immunopotentiators with the ovalbumin antigen 
into TMC nanoparticles further improved the immunogenicity of the vaccine, since 
after intradermal vaccination, ovalbumin-loaded TMC nanoparticles modifi ed with 
CpG and LPS provoked higher IgG titres than plain ovalbumin-loaded TMC 
nanoparticles (Bal et al.  2012 ). The potential of TMC as adjuvant was further 
increased by conjugating the antigen to the polymer, thereby creating a smaller unit 
(Slütter et al.  2010 ). Bal et al. found that TMC-ovalbumin conjugates were more 
immunogenic than physical mixtures of TMC and ovalbumin and ovalbumin-loaded 
nanoparticles after transcutaneous administration, likely because they penetrate the 
skin more easily than nanoparticles and consequently are better delivered to DCs 
(Bal et al.  2011 ). Size, choice of immunopotentiator and the use of combination 
approaches incorporating physical disruption of the SC thus play an important role 
for transcutaneous immunization.  

18.5.4     Microneedle Arrays 

 Microneedle (MCN) arrays are novel drug delivery devices for percutaneous admin-
istration of bioactives developed in the 1970s by Gerstel and Place ( 1976 ). MCNs 
are breakthrough systems facilitating transdermal delivery by transiently and physi-
cally disrupting the SC and creating micron-sized pores. MCNs are attractive deliv-
ery devices because they allow painless drug delivery (Kaushik et al.  2001 ). 
Although, the length of the needles can be up to 1,000 μm and are likely to penetrate 
into the superfi cial dermis where pain receptors are located, the micron-sizes of 
needles reduce the chances of encountering and stimulating nerves (Prausnitz  2004 ). 
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MCNs have great market potential due to their low manufacturing and product dis-
tribution costs and the fact that they are easy to use do not require vaccine- 
administration expertize (Birchall et al.  2011 ). 

18.5.4.1     Designs and Modes of Action 

 MCNs disrupt the SC and allow drug to pass through the skin. MCNs generally have 
a pyramidal shape with a sharp or dull tip and can be manufactured in different ways 
from a variety of materials. They are divided into four general categories depending 
on their mode of action (Fig.  18.2 ).  

   Solid MCNs: “Poke and Patch” 

 The “poke and patch” approach is to utilize MCNs to create micro-channels and 
then apply vaccine patches or formulations to the skin. Drugs penetrate into the skin 
via simple diffusion (McAllister et al.  2003 ). Solid MCNs were fi rst used to enhance 
calcein permeation (Henry et al.  1999 ). Multiple studies have since reported the use 
of MCNs to enhance skin permeability, including studies using solid MCNs to 
transport recombinant virus (Carey et al.  2011 ; Hirschberg et al.  2012 ) and protein 
(Kumar et al.  2011 ; Ding et al.  2011 ) vaccines into the skin. Needles can be pre-
pared using a variety of materials. Silicon has been commonly used to prepare MCN 
arrays. However, the fabrication of microneedles from silicon requires expensive 
microfabrication procedures and silicon needles may break off in the skin due to the 
brittle nature of silicon. Nowadays solid MCNs are usually made from polymers 
such as polyvinyl acetate (Donnelly et al.  2011 ) and polyetherimide (You et al. 
 2010 ). Their mechanical strength reduces the risk of needle breakage in the skin 
(Park et al.  2005 ).  

  Fig. 18.2    Types of MCNs used for transdermal drug delivery. Adapted from Kim et al. ( 2012b )       
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   Solid MCNs: “Coat and Poke” 

 The “coat and poke” approach is similar to the fi rst approach except that the drug is 
not applied to the skin but is instead coated onto the needle surface. The solid-state 
vaccine on the surface of needle dissolves off in the skin following MCN insertion. 
Coated MCNs are an attractive approach as solid-state formulations are stable for 
longer periods of time as compared to liquid formulations (Kim et al.  2010 ). 
However, the amount of vaccine that can be coated onto the needles is limited. As a 
result, newer vaccine-coating processes have been developed in order to achieve 
increased vaccine coating. An example of this is an embossing process that fabri-
cates groove-embedded MCNs (Han et al.  2009 ). An issue encountered with coated 
MCNs is loss of vaccine immunogenicity (Kim et al.  2011 ) and the use of stabilizers 
such as trehalose is essential to prevent this occurring (Kim et al.  2010 ).  

   Dissolving MCNs 

 Dissolving MCNs were developed due to environmental contamination issues aris-
ing upon improper disposal of used solid MCNs (Kim et al.  2012a ). Dissolving 
MCNs are made from biodegradable materials such as polymers (Sullivan et al. 
 2008 ; Lee et al.  2008 ) and sugars (Lee et al.  2011 ; Martin et al.  2012 ) which dis-
solve upon exposure to intracellular fl uids in the skin. Vaccines entrapped in the 
polymer matrix release into the skin after matrix degradation. Additionally, dissolv-
ing MCNs containing entrapped nanoparticles have been developed as complex 
controlled-release drug delivery devices (Kang et al.  2006 ).  

   Hollow MCNs 

 Hollow MCNs utilize the same mechanism of action as that used for traditional 
needle injection. Liquid vaccine formulations are transferred into the skin by active 
fl uid fl ow or pressure-driven fl ow. Hollow MCNs are generally used with syringes 
and existing vaccine formulations but the injection rate through hollow MCNs is 
faster than subcutaneous injection (Burton et al.  2011 ). BD Soluvia™ and the 
MicronJet Needle (NanoPass) are examples of commercial hollow MCNs in the 
market.    

18.5.5     Laserporation 

 Lasers have been used in medicine since the 1980s to remove or destroy tissue. 
Much work has focused on developing technologies that can be accurately targeted 
and have reduced heating and damage of surrounding tissue (Scheiblhofer et al. 
 2013 ). Ablative fractional laser (AFL) technologies are now available which can 
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generate a predefi ned pattern of micropores. A proposed advantage of AFL over 
other penetration enhancing technologies includes the degree of precision possible 
with laser technologies in the creation of the size and depth of microchannels which 
heal quickly to maintain skin integrity. Re-epithelialization of channels 71 μm wide 
and 40 μm deep was reported to occur within 24 h (Chen et al.  2012 ). The 
P.L.E.A.S.E. ®  (Precise Laser Epidermal System) technology uses a diode-pumped 
Er:YAG laser to painlessly create several hundred micropores with a typical diam-
eter of 100–150 μm at a targeted depth sequentially in only a few seconds in an area 
with a diameter of approximately 3 cm (Yu et al.  2011 ). Studies using this technol-
ogy have demonstrated the induction of both T- and B-cell responses that appear to 
be dependent upon antigen presentation by langerin negative DCs (Weiss et al. 
 2012 ). Interestingly laserporation has been reported to bias responses towards a Th2 
phenotype; however this appears to be at least partially dependent upon the layer of 
skin targeted and could be modifi ed through the inclusion of adjuvants into the vac-
cine (Weiss et al.  2012 ). As well as being used for TCI, laserporation can also be 
used to improve immune responses to vaccines delivered intramuscularly (Zeira 
et al.  2003 ) and intradermally (Zeira et al.  2007 ).  

18.5.6     Other Emerging Technologies 

 Many different technologies are being investigated for the delivery of drugs into and 
through the skin. This includes the use of technologies such as electroporation, 
iontophoresis, sonoporation and jet injection (reviewed in Gratieri et al.  2013 ). Less 
work has been done utilizing these systems for vaccine delivery. However electro-
poration has been utilized for the delivery of DNA vaccines in to a variety of animal 
species including non-human primates. Laddy et al. compared immune responses to 
vaccination with an avian infl uenza DNA vaccine delivered either intramuscularly 
(i.m.) or intradermally (i.d.) using electroporation to macaques (Laddy et al.  2009 ). 
They found that while i.m. immunization induced superior antibody responses i.d. 
immunization provided better protection, suggesting the importance of cellular 
immunity in protection against this infection. Electroporation has also been used in 
combination with intradermal jet injection (whereby a CO 2 -propelled needle-free 
device injects vaccine as a liquid stream into skin) in mice to deliver high doses of 
plasmid DNA (Hallengard et al.  2012 ).   

18.6     Conclusions 

 The importance of being able to deliver vaccines without needles in a simple 
 manner that does not require medical personnel or expensive or technical equip-
ment should not be underestimated. While much of the research here is still in the 
early stages it is easy to imagine such vaccines being available in the future. 
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However research still needs to be done to develop formulations that effi ciently 
activate the most relevant populations of APCs and induce the appropriate immune 
response. Such research will require multidisciplinary research teams including 
immunologists and pharmaceutical scientists.     
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    Chapter 19   
 Pharmaceutical Analysis and Quality Control 
of Vaccines 

             Michele     Pallaoro    

19.1            Background 

 Subunit vaccines can be classifi ed as special biological products in the sense that 
they share many common features with more classical Biologics like therapeutic 
proteins. In fact, subunit vaccines are composed of recombinant proteins (Zepp 
 2010 ), glycoconjugates (Avci et al.  2011 ; Rappuoli and De Gregorio  2011 ) or varia-
tions of these such that they only include the components (antigens) that best stimu-
late the immune system, instead of using the entire virus or bacterium (Rappuoli 
et al.  2011 ). Over the years, subunit vaccines have been evolving towards the goal 
of further refi ning antigens towards enrichment with the small antigen portions 
called epitopes, which are the very specifi c parts of the antigen that antibodies or 
T-cells recognize and bind to. Some recent examples describe epitope optimization, 
grafting, and epitope combination to improve even further this approach (Scarselli 
et al.  2011 ). Because subunit vaccines contain only the essential antigens and not all 
the other molecules that make up the microbe, the risk of adverse reactions to the 
vaccine is reduced, and this constitutes a big safety advantage (Ahmed et al.  2011 ); 
this is due to the intrinsic nature of the microbial components that the innate immune 
system has evolved to recognize on the spot to mount an immediate reaction against. 
This advantage has been regarded as one of those rare scientifi c quantum leaps that 
happen every now and then, but it has enabled the preparation of vaccines using 
highly pure and well-defi ned reagents, in a way very similar to Biologics. 

 Subunit vaccines can contain a variable number of antigens, generally several 
(3–5), but there is no intrinsic limit for the number of antigens, which can be above 
20 or as little as one. Identifying which antigens stimulate the immune system in an 
optimal way and how to combine them with the adjuvant, develop and characterize 
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the components for a new vaccine is a complicated and long process. However, inde-
pendently of how researchers approach this Holy Grail of vaccinology, subunit vac-
cines are made either by tearing apart bacteria or viruses and selecting the relevant 
portions by purifi cation or, alternatively, are manufactured by producing the micro-
bial antigenic molecules using recombinant DNA technology. Vaccines produced 
this way are referred to as subunit or recombinant subunit vaccines respectively. 

 The fi rst recombinant subunit vaccine ever made was a vaccine against the hepa-
titis B virus (Andre and Safary  1987 ). Scientists inserted the relevant hepatitis B 
genes coding for the desired antigens into common baker’s yeast. The yeast then 
produced the antigens, which were collected and purifi ed for use in the vaccine. 
Since then, many additional vaccines have been produced on the basis of a similar 
approach (   CDC  1999 ; Giuliani et al.  2006 ; McNeil  2006 ). 

 As far as what has been described to date, there is little or no difference between 
the production of subunit vaccines and classic biological products. However, what 
differentiate vaccines from classical biological products are the frequent addition of 
an adjuvant and the schedule of administration. The adjuvant, by defi nition from the 
Latin word  adjuvare , is a component that is added to the antigens to help obtaining 
a stronger, more durable immune response. Classically, adjuvants are suspensions 
of aluminum salts (Chap.   3    ) or oil-in-water emulsions (Chap.   4    ); adjuvants can be 
classifi ed as delivery systems and immunopotentiators at the same time, depending 
on their characteristics, and are not limited to the ones cited above, as many addi-
tional adjuvants are under development. 

 It is important also to spend a few words on the frequency of administration; vac-
cines are usually administered only a few times in a lifespan as their effect is long 
lasting, which is different for many Biologics that usually are administered repeat-
edly and regularly over the course of many years. 

 Given the similarities to classical Biologics described above, vaccines are a spe-
cial case for several reasons; for example (1) the presence of the adjuvant compli-
cates the characterization of the antigens, (2) it is more diffi cult to establish a clinical 
potency correlate, (3) vaccines usually target a prophylactic patient population, in 
contrast to a therapeutic population, and fi nally (4) it is more diffi cult to measure 
changes of the critical quality attributes (CQA), as per defi nition of a quality-by- 
design (QbD) approach, for vaccines than for other types of Biologics.  

19.2     State of the Art 

 When determining the stability and quality of a vaccine it is important to understand 
and defi ne the key parameters of that particular biopharmaceutical product (EMA 
 2005 ). It is also important to have a comprehensive knowledge of the stressors pres-
ent in each step along the way from antigen preparation, to formulation and storage 
and the impact they have on the drug substance and drug product in relation to their 
CQAs. Subsequently, it is essential to develop key analytical assays for character-
ization of the biophysical and physicochemical characteristics of the biologic 
 compounds under investigation. 
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 As of today, there are six pillars defi ning the characteristics that a vaccine should 
meet according to regulatory agencies: (1) identity, (2) integrity, (3) quantity, (4) 
functionality, (5) adsorption (where applicable), and (6) desorption (where appli-
cable) (EMA  2005 ). 

 In brief, the purpose of identity is to ensure that materials used for immunization 
are consistent with the drug substance, where drug substance/s refer to the active 
single components that once mixed together produce the drug product, more simply, 
antigens are the quintessential drug substances of vaccines. The purpose of integrity 
is to ensure that stability assays for formulated/desorbed antigens can be used to 
detect antigen changes. Quantity determination is important to make sure that the 
antigen dose is accurate, whereas the functionality aspect ensures via functional 
assays to evaluate the impact of the formulation on the antigen’s stability/function-
ality and aims to establish a correlation between in vivo protection and resistance to 
different stresses in order to make sure that a clear relationship can be established 
between a stress, the induced biophysical change, and immunological protection. 
Adsorption, where applicable, ensures that antigens used for immunization are sta-
bly adsorbed on the surface of the adjuvant, and fi nally desorption ensures opti-
mized desorption/separation methods are developed for proper analysis. 

 As mentioned above, it is important to have a detailed understanding of what 
could go wrong during manufacture and storage by performing a risk evaluation of 
all the critical steps leading to the fi nal product. For example, it could be that some 
molecules do have weak points that could be due to (1) the intrinsic characteristics 
of the antigen molecule itself, (2) the sequence in the case of deamidation, (3) 
adsorption and slow changes on the surface of the adjuvant, and (4) the presence of 
residual detergents or particular excipients that can destabilize the drug substance or 
drug product in other cases. Stressors in processing and formulation could be hid-
den in each step and may include production and storage conditions, adsorption, 
excipient combination, time, temperature, freeze-thaw, mechanical stresses, pH, 
oxidizing agents, metals, light, leachables, and interactions with the container. All 
these factors may have an impact on the stability, aggregation behavior, and func-
tionality of the antigen(s). 

 For these reasons, appropriate analysis methods for physical and chemical modi-
fi cations that could happen during drug substance and drug product production and 
storage should be established to monitor reversible/irreversible aggregation, pre-
cipitation and partitioning, creaming, changes in structure, function, particle size, 
hydrophobicity, surface charge, deamidation, oxidation, hydrolysis, fragmentation, 
and many more. 

 Given the information above it appears key to propose a stepwise approach 
where it is fi rst necessary to defi ne the critical parameters having an impact on effi -
cacy and safety of the product. Second, it is necessary to develop analytical assays 
for characterization of biophysical, physical, and chemical changes in the character-
istics of the antigen(s) and of the adjuvant under evaluation. Finally, it is recom-
mended to determine the root cause of any change, if possible, by deliberately 
applying predetermined stresses and observing the effect. This approach has the 
advantage of generating awareness on these factors and the level at which they 
induce a determined change thus becoming stressors, which will help correlating 

19 Pharmaceutical Analysis and Quality Control of Vaccines



376

cause and effect. This concept is of paramount importance, as it is used to establish 
the boundaries within which a certain component is stable and that cannot be crossed 
without compromising its stability. 

 To develop the required analytical assays with the appropriate characteristics 
needed, it is necessary to take into consideration some general characteristics of 
many vaccines. In particular, it should be taken into account that antigens are usu-
ally formulated at rather low concentrations, and, differently from many classical 
Biologics that may be formulated at a concentration of tens of mg/ml, antigens are 
usually formulated in the range of 0.1 mg/mL. In the cases where there is the need 
to desorb antigens for characterization, the fi nal concentration may be reduced even 
further depending on the desorption protocol. In addition, several antigens are usu-
ally present concomitantly, which poses further challenges in terms of optimal sepa-
ration or reciprocal interference. 

 One of the major challenges is due to the presence of the adjuvant. In these cases, 
special measures to desorb and/or separate the antigens from the matrix of the adju-
vant are required to eliminate most if not all of its interference. All these challenges 
live together with the need to provide the information required to answer to the 
questions raised by the characterization pillars mentioned above. 

 At this point, there is a clear distinction on how vaccines should be treated before 
characterization; the fi rst difference lies in the presence or absence of an adjuvant 
whose matrix has the consequence of interfering with the vast majority of available 
analytical techniques. The second difference depends on the type of adjuvant. Each 
adjuvant has its own characteristics, and we will restrict the following discussion to 
the two major classes present in most of the marketed vaccines. The two classes of 
adjuvant are very different in nature and require the use of different approaches.  

19.3     Characterization of Aluminum-Adjuvanted Vaccines 

 Aluminum salts based adjuvants (Chap.   3    ) have three major characteristics; a very 
large surface area, a highly charged surface, either positive or negative, and a well-
defi ned particle size distribution (Gupta  1995 ; Hem and White  1995 ). The combina-
tion of these characteristics, and others, give them a very high adsorptive capacity, 
which is extended to a broad set of antigens. Adsorbed antigens are attracted to the 
surface of the adjuvant and adsorb to it with different strengths. The parameter 
describing this process is referred to as the adsorptive coeffi cient. 

 The characteristics described introduce the need to analyze and control addi-
tional parameters, as compared to an unadjuvanted formulation, namely particle 
size, antigen adsorption and adsorption stability, and the impact of adsorption on 
antigen identity, integrity, and immunogenicity. In the case of more complex adju-
vant mixtures like AS04, which is a combination of a medium-sized molecule of 
natural origin, monophosphoryl lipid A (MPL) (Desombere et al.  2002 ), subjected 
to chemical detoxifi cation reactions, and aluminum hydroxide, there are even more 
layers of complexity. These are given by the need to develop all the assays required 
for the characterization of MPL, its adsorption to alum, and the impact it has on the 
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other components of the formulation. While some of these characteristics may 
 simply be measured using appropriate techniques, others may require the develop-
ment of very specifi c assays. 

 One of the most important parameters to follow is the antigen adsorption during 
the entire lifespan of the drug product, according to the guidelines set by EMA (EMA 
 2005 ). Antigen adsorption can be divided into (1) the analysis of adsorption over a 
specifi ed time and temperature range and (2) the analysis of the antigen post adsorp-
tion. Although there are no guidelines specifying if the antigen needs to be adsorbed 
or not, there are clear guidelines specifying that whatever the adsorption extent is, it 
needs to remain constant for all the points of the analysis. This is pretty intuitive if we 
consider that the characteristics of the product and of the components need to remain 
constant, as mentioned earlier. Due to the broad nature of the adsorptive capacity and 
the different interactions occurring between the antigen(s) and the mineral salt adju-
vant, it is common to observe complete or nearly complete antigen adsorption. 
However, the consequences of a lower desorption over time are yet unclear, as well 
as the pitfalls of basic adsorption characterization that should be avoided. 

 Formulations containing aluminum salts, for example, can be mildly centrifuged 
to easily separate the dispersed adjuvant from the liquid phase, and the amount of 
antigen in the liquid phase can then be quantifi ed by different means with different 
degrees of accuracy by determining the level of un-adsorbed antigen(s) and indirectly 
the amount of adsorbed antigen(s). However, it is more important to quantify the 
amount of adsorbed antigen(s) than determining the amount of un-adsorbed 
antigen(s). In this case, there are currently two major possibilities; dissolving the 
adjuvant gel or treating the adjuvant in order to release the bound antigen(s). The fi rst 
solution might be challenging as many mineral salts may not easily dissolve in the 
presence of citrate or phosphate buffer. The second solution might be easier and could 
be performed by treating the aluminum pellet with agents that interfere with antigen(s) 
binding, respectively. In our experience, this is the preferred and always the fi rst 
choice, but often there is still reference to the other approach which is honestly more 
dated and much less effi cacious at least in our experience. Detailed knowledge of the 
nature of the force(s) driving antigen adsorption onto the surface of the adjuvant is a 
critical step in this phase as it suggests how to attempt antigen desorption. 

 Antigen adsorption onto the surface of aluminum salts is mostly driven by three 
different mechanisms. The strongest is ligand exchange with potential to establish a 
dative bond between the antigen and the adjuvant. Second in order of strength is 
electrostatic interaction, which in most cases drives the adsorption process. Last but 
not least are the hydrophobic interactions, van der Waals forces, and hydrogen 
bonding, which act in a more proximal situation, but provide a very high number of 
low-energy bonds that eventually may become the most important factor involved. 
Thus, to interfere with adsorption, the most commonly used techniques employ 
combinations of (1) salts, citrate, or phosphate ions at concentrations and/or pH that 
do not support antigen adsorption interfering with all charge-related contributions, 
and (2) ethylene glycol or detergents to interfere with the hydrophobic interactions. 
Often, a combination of these agents is required to optimize desorption conditions. 
As an alternative, it is possible to dissolve the aluminum gel by using sodium citrate 
solutions (Hem and White  1995 ). 
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 In all cases it is very relevant, but often neglected, to set appropriate controls to 
understand the impact of the formulation and desorption conditions used on the sta-
bility of the antigen(s) per se, as a non-successful antigen recovery from the formula-
tion supernatant or desorption process may be misinterpreted as a strong adsorption 
of the antigen or antigen precipitation. Thus, before attempting to study antigen 
desorption, it is crucial to assess antigen stability under formulation conditions in the 
absence of adjuvant, followed by understanding the impact of the desorption condi-
tions on the physicochemical stability of the antigen; once conditions maintaining 
appropriate antigen stability are established, desorption can be attempted. It is appar-
ent that antigen desorption is not as straightforward as it seems because it depends on 
the combined nature of the antigen/adjuvant interaction and on the stability of the 
antigen under the formulation and desorption conditions. Therefore, starting from a 
restricted panel of conditions interfering with the basic nature of each of the factors 
infl uencing adsorption, each antigen may need development of a specifi c “desorption 
cocktail.” It is also important to consider that adsorption and formulation aging do 
themselves induce changes in protein conformation impacting antigen’s structural 
stability, as reported in a few recent reports (Watkinson et al.  2013 ). As a matter of 
fact, it has been reported in several papers and for several different antigens that 
desorption becomes more diffi cult as the formulation matures over time; this phe-
nomenon has been suggested to be associated with antigenic structural changes inter-
preted as an indication of partial unfolding, although there are no defi nitive indications 
on this. Such unfolding might result in a greater degree of contact between the anti-
gen and the adjuvant’s surface and therefore in an increased resistance to desorption 
(Jones et al.  2005 ; Vessely et al.  2009 ). 

 Particular attention needs to be paid also to the characterization methods used to 
quantify the antigen(s) because of the differential nature of the interference that the 
specifi c excipient combination used for desorption may cause in different assays. 
A very common semiquantitative method largely employed because of the low 
impact of various interferences is sodium dodecyl sulfate polyacrylamide gel elec-
trophoresis (SDS-PAGE). The method is simple and fast and allows for Western 
blotting to determine the identity of the antigen(s), but it has limitations in terms of 
accuracy and detection of small qualitative modifi cations, but also in terms of the 
total amount of phosphate that remains soluble under denaturing conditions and can 
be loaded in each well of the SDS-PAGE gel without compromising the solubility 
of the antigens, eventually resulting in technical artifacts. Other methods for quan-
tifi cation rely on UV or fl uorescence, but these methods on their own are more 
prone to misinterpretation as the amount of information they provide is lower than 
SDS-PAGE. It would be ideal to combine them, especially in the cases where more 
than one antigen is present and recoveries are not complete. Reverse phase chroma-
tography and immunoassays provide a much greater degree of accuracy and infor-
mation allowing simultaneous quantifi cation of several antigens but also providing 
additional information on stability, integrity, and functionality of the antigens, 
depending on how the assay is developed or the nature of the reagents used (mono-
clonal antibodies). 
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 In conclusion, antigen desorption can be challenging, and several parameters 
need to be kept under consideration for an accurate evaluation. Furthermore, this 
needs to be considered in conjunction with the limitations posed by the desired 
analysis of the desorbed antigen(s). Depending on the level of accuracy desired in 
the analysis of the desorbed antigen(s), different scenarios can be envisaged; each 
scenario may have an increasing level of complexity and challenge, which is directly 
proportional to the increasing level of the desired characterization.  

19.4     Characterization of Vaccines Adjuvanted 
with Oil-in- Water Emulsions 

 Only two oil-in-water emulsions are approved for human use, and both are a 
 combination of squalene oil and Tween 80 surfactant with either a second surfactant 
like SPAN 85 (MF59) or α-tochopherol (AS03) in mildly acidic citrate buffer or 
neutral phosphate-buffered saline (PBS), respectively. Oil-in-water emulsions 
appear very different from the mineral salts discussed earlier and are characterized 
by a narrow oil droplet size distribution, and the presence of larger particles is con-
sidered a consequence of aging and is constantly monitored (McClements  2007 ). 
Several techniques are available to monitor interactions among emulsion compo-
nents, other to determine component concentration, particle size, charge and other 
interfacial  properties, and new techniques are available to study the antigen in the 
presence of the adjuvant and to monitor the quality and quantity of the excipients 
used for the emulsion. 

 As in the case of formulations containing mineral salts, also in the case of emul-
sions, the antigen(s) and the adjuvant need to maintain constant characteristics upon 
formulation. The presence of the emulsifi ed oil droplets and of some spare detergent 
offers the antigen(s) a very different environment, as compared to other formula-
tions, and these pose different challenges. The hydrophobic surface of the droplets 
and the residual free detergent could be viewed from a biochemical point of view as 
more challenging for the development of a long-term stable protein formulation. 
Thus, the impact on antigen stability needs to be carefully addressed, especially in 
light of long-term storage. 

 Also in this case the analysis of antigen post formulation needs attention. Usually, 
an ultracentrifugation step is required to separate the oil droplets from the remain-
ing solution. If no strong interaction occurs between the antigen(s) and the droplets, 
the antigen can be recovered from the clear bulk solution, and SDS-PAGE could 
again be of great help for a basic semiquantitative evaluation. Also in this case there 
are various pitfalls that need to be considered, especially if the desired fi nal accu-
racy is high, but again immune-reagents and reverse phase chromatography are 
excellent tools available to researchers for a more accurate quantifi cation and 
 stability analysis.  
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19.5     How to Study Antigen/Adjuvant Interaction 

 We have seen that the nature of the adjuvant and the antigen(s) infl uence one another 
in a sort of never-ending dialogue; this dialogue is mediated by the different nature 
of the interactions being developed and is subject to changes over time or as the 
nature of the components change. This to say, that it is diffi cult to establish a gener-
alized way of looking at these interactions and how they evolve, although the central 
point is noting that, these interactions will evolve (Jones et al.  2005 ; Estey et al. 
 2009 ; Vessely et al.  2009 ). 

 For this reason it is of crucial importance to understand the tools available to 
study such evolution and the information they provide. Only in this way it would be 
possible to design the appropriate controls and develop new ideas to address the 
unanswered questions we can foresee at the moment. 

 Table  19.1  highlights some of the major techniques that have been employed 
recently to get a deeper understanding of these interactions and their evolution try-
ing to avoid extensive sample manipulation.

   As an example, for the characterization of aluminum-based formulations, only a 
limited subset of the characteristics can be followed with the different techniques 
described, but also that these can be generally referred to as energy exchange, par-
ticle scattering, charge, overall shape, antibody recognition, and spectroscopic char-
acteristics. However, none of these, with the exception of the antibody-based 
techniques and NMR, has the level of detail required for an in-depth structural char-
acterization of the changes occurring. More generally, all these techniques can be 
used to describe average changes like rearrangements of elements of secondary 

   Table 19.1    Recently described techniques used for direct vaccine characterization   

 Direct  Suspension  Emulsion 

 Isothermal titration calorimetry (ITC)  x  x a  
 Differential scanning nano calorimetry (nDSC)  x  x 
 Dynamic light scattering  x  x 
 Zeta potential  x  x 
 Static light scattering  x  x 
 Electron microscopy (EM)  x  x 
 Flow cytometry  x  – 
 Direct alhydrogel formulation immunoassay (DAFIA)  x  – 
 Fourier transformed infrared spectroscopy (FTIR)  x  – 
 solid state Circular Dichroism (ssCD)   x  x 
 Front face fl uorescence spectroscopy  x  – 
 Raman spectroscopy  x a   – 
 Bio-layer interferometry  –  x 
 Single particle optical sensing  –  x 
 NMR  –  x 
 Surface tension  –  x 

   a Theoretically possible but not tested  
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structure, stability of thermal domains, or changes in exposure of aromatic or hydro-
phobic residues as a consequence of the measurement conditions employed (Jones 
et al.  2005 ; Ausar et al.  2011 ). 

 Currently, by taking advantage of these techniques we understand that both the 
adjuvant and the antigen(s) change as a matter of their reciprocal interaction. It is 
also clear that these changes depend not only on the adjuvant but also on the nature 
of the antigen(s), and as the nature of the antigen changes, the interactions will 
change with all the consequences. 

 The next question relates to the kinetics of these changes; once the antigen(s) and 
the adjuvant interact, they might change all at once so that these interactions remain 
constant over time, or the changes might occur more gradually with a different 
kinetics. By following the same samples over time it has been established that the 
situation is not static. Although data are not conclusive because only a few examples 
are reported in the literature, all data available seem to provide the same indication, 
which suggest that the antigen(s)–adjuvant interaction becomes stronger over time, 
resulting in lower desorption, changes in the thermal profi le or changes in the expo-
sure of secondary elements of structure or of hydrophobic residues. This being said, 
it is possible to prepare reference control samples where the adjuvant is missing but 
the treatment of the test sample is the same in order to discriminate between the 
changes induced by the process and those induced by adsorption on the adjuvant. 

 Finally, in light of the technical improvements in the past 30 years and a more 
favorable product complexity, a QbD approach extended to vaccine research could 
offer new avenues to determine with unprecedented precision drug product break 
points and offer the possibility to defi ne the boundaries of formulation stability, 
effi cacy, and safety. The consequence of that might be that understanding the nature 
and intensity of the parameters that affect stability, effi cacy, and safety of the prod-
uct will offer a way to approach them and improve the CQAs by pinpointing and 
correcting the exact residue(s) responsible for the undesired effect.  

19.6     Perspectives for Future Development 

 Since subunit vaccines represent a signifi cantly lower composition complexity, as 
compared to other classes of vaccines, they represent a better model to study more 
in detail some outstanding questions. As of today, for example, we still have no 
defi nitive answer on the relationship between immunogenicity and its relationship 
with the adsorption-induced structural and stability changes that the antigens 
undergo. It is clear that immunogenicity is impacted by antigen adsorption to the 
adjuvant, but we are still far away from understanding the factors that make an anti-
gen more immunogenic as systematic studies that compare antigen adsorption 
capacity, adsorption coeffi cient, desorption potential, and stability in relationship to 
immune response are only a handful. An interesting study in this regard has recently 
been published where, for the fi rst time, the authors attempt a systematic study of 
these different parameters and substantiate the hypothesis present in the literature 
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that a strong interaction between the antigen and the adjuvant may hamper process-
ing of the antigens by the immune system resulting in a lower immune response and 
suggest the importance of studying the antigen–adjuvant adsorption (Ausar et al. 
 2011 ). From this question, which is probably the central one, more questions arise 
on how to understand and control adsorption maturation and the impact on the 
immune response: This question could be very important to connect formulation 
maturation to immunogenicity and one day may have the potential to impact how 
we will determine the shelf-life of a product. 

 A question is how to study in more detail the structural changes that the antigens 
undergo upon adsorption. This last point will require very close collaboration 
between formulations scientists, immunologists, and structural biologists in com-
plex experimental settings where a high degree of structural information and 
immune-tools are available. In my opinion, understanding the immunological deter-
minants that make an antigen more immunogenic under varying conditions will be 
crucial to preserve and follow the subtended antigenic elements impacted by the 
different conditions explored. Until we understand this, we will not be in the posi-
tion to make rational changes to improve the formulation’s stability and effi cacy. 

 From a characterization point of view, we can foresee that assays based on the 
direct alhydrogel formulation immunoassay (DAFIA) or fl ow cytometry (Zhu et al. 
 2009 ; Ugozzoli et al.  2011 ) developed to exploit monoclonal antibodies may be of 
more immediate use than other techniques to shed light on the antigenic elements 
that do best stimulate antibody-mediated protection. 

 In conclusion, the day we will be able to uncover the protective elements of each 
antigen we will have an idea of the antigenic determinants that should be preserved 
and presented to the immune and will be able to develop analytical tools necessary 
to follow and characterize them.     
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    Chapter 20   
 The Physical Analysis of Vaccines 

             Yuan     Cheng     ,     Justin     C.     Thomas     ,     Sangeeta     B.     Joshi     ,     David     B.     Volkin     , 
and     C.     Russell     Middaugh    

20.1            Methods for the Physical Analysis of Vaccines 

20.1.1     Analysis of Primary Structure 

 The primary structure (i.e., chemical structure and post-translational modifi cations) 
of protein and virus-like particle-based (VLP) vaccines (see Chap.   9    ) can be easily 
probed by the use of peptide mapping. This is now routinely done with high- 
performance liquid chromatography mass spectrometry (HPLC-MS) methods in 
which proteins are fi rst fragmented with enzymes of high specifi city and the frag-
ments are subsequently identifi ed with MS. Peptide maps can be used to establish 
the integrity of the entire sequence of a protein as well as the presence of modifi ca-
tions such as glycosylation and/or chemically degraded amino acid side chains by 
reactions such as oxidation and deamidation. In the case of vaccines that contain 
more than one protein antigen, this method is often used to examine the proteins 
independently after their chromatographic separation. Once this is done, more rou-
tine methods such as reversed phase HPLC (RP-HPLC) and capillary isoelectric 
focusing (cIEF) can often be used for this purpose to increase throughput. In prac-
tice, such methods could also be used for viral antigens, but the presence of only 
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small quantities of some viral proteins in vaccine formulations has made this diffi -
cult to implement on any routine basis. 

 Standard methods of nucleic acid sequencing and restriction mapping are also 
available for nucleic acid-based vaccines. With the increasing availability of highly 
specifi c glycosidases and certain spectrometric methods, chemical analysis of the 
carbohydrate components of vaccines is also now fairly routine (Alley et al.  2013 ; An 
et al.  2013 ). In addition, nuclear magnetic resonance (NMR) assays have become 
more routinely used to monitor the composition and chemical stability of sugar units 
comprising carbohydrate-based vaccines (Jones  2005 ). At much lower resolution, 
methods such as polyacrylamide gel electrophoresis [PAGE, with and without sodium 
dodecyl sulfate (SDS) and reducing agents] for proteins and agarose gel electropho-
resis for nucleic acids can be used to detect chemical changes to a limited extent.  

20.1.2     Analysis of Secondary Structure 

 The secondary structure types of most concern to a vaccinologist are the helices, 
sheets, and turns in proteins and the various types of helices found in nucleic acids. 
Three methods are commonly used to evaluate the secondary structure of vaccine 
antigens. Circular dichroism (CD) in the far ultraviolet (250–180 nm) region is 
probably the most widely employed. By measuring the difference in absorbance of 
left- and right-handed circularly polarized light, signals characteristic of optically 
active chromophores can be observed and directly related to both the type and 
amount of secondary structure in proteins and nucleic acids. By varying concentra-
tion and optical pathlength, measurements can be made over a wide array of condi-
tions of pH, temperature, protein concentration, and in the presence of other solutes. 
Deconvolution of spectra and use of reference spectra permit estimates of the 
amount of secondary structure with accuracy on the order of a few percent. While 
this procedure works for purifi ed macromolecules, it can only sometimes be used 
quantitatively for more complex systems such as viruses. This is because the spectra 
obtained refl ect contributions from all components present (e.g., each protein and 
the nucleic acid present in a virus). In many cases, a single component may domi-
nate the spectrum (such as a viral coat protein), greatly simplifying interpretation. 
The particulate nature of many vaccines does make CD susceptible to a number of 
artifacts including absorption fl attening (shadowing of one particle by another) and 
differential scattering (scattering of one handedness of light more than another) 
which require careful consideration by the analyst. 

 Fourier transform infrared (FTIR) spectroscopy provides a second method that 
can be used to monitor secondary structure. For proteins, the amide bands (most 
commonly the Amide I or III) which contain distinct signals for α-helix, β-sheet, 
turns and random structure can be obtained by derivative and/or deconvolution 
analysis and used to obtain quantitative estimates of the relative amounts of second-
ary structure. Distinct peaks for intermolecular β-sheet structure are also often 
resolvable. Although at one time considered much less sensitive than CD (due to the 
need to use D 2 O as a solvent to shift water bands so Amide signals could be mea-
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sured), recent developments, especially those employing attenuated total refl ec-
tance (ATR) geometries, allow this technique to be used at much lower protein 
concentration in aqueous conditions. An advantage of FTIR spectroscopy is that it 
can also be used with solid (dried) samples. This ability has frequently been 
employed to look at the structure of lyophilized and spray-dried macromolecular 
systems. Of course, the same problem of interpretation with complex samples 
remains with this method. While lipids and carbohydrates are often CD transparent, 
FTIR spectroscopy may permit one to simultaneously detect signals from these 
moieties, making this method useful for carbohydrate- and lipid-containing vac-
cines. DNA molecules contain structurally sensitive spectral features as well. 
Signals from the nucleotide bases, carbohydrates and phosphate groups are all eas-
ily resolved, some of which are sensitive to the nature of any secondary structure 
present (e.g., A-form, B-form, Z-form DNA). FTIR can be especially useful for 
DNA-based vaccines which employ a carrier (e.g., cationic lipid, polyethyleni-
mine) since the structure of both the DNA and cationic partner can be simultane-
ously examined (Middaugh and Ramsey  2007 ). 

 The third technique that can be used to examine the secondary structure of 
vaccine components is Raman spectroscopy. Like FTIR spectroscopy, Raman 
methods are used to examine vibrational transitions; but, rather than being based 
on the absorption of IR photons, small shifts in the frequency of scattered pho-
tons through interactions with vibrational states are detected. The selection rules 
for Raman spectroscopy are different than those for IR spectroscopy (i.e., a 
change in polarizability rather than an alteration in dipole moment is required). 
One consequence of this is that water causes less interference in the Raman tech-
nique. It is, however, signifi cantly less sensitive than FTIR spectroscopy, usually 
requiring >5 mg/mL of protein for good signals. In the past several years, how-
ever, two versions of the Raman technique have been developed which at least 
partially alleviate this problem (Wen  2007 ). In the resonance Raman method, the 
sample is excited within an electronic absorption band. This produces a dramatic 
enhancement in the intensity of the vibrational transitions in the excited chromo-
phores. Using an ultraviolet laser, both the peptide bonds and the aromatic side 
chains can be examined. This permits proteins to be characterized at very low 
concentrations. In surface-enhanced Raman   , samples are adsorbed to a rough 
metal surface resulting in signals as much as 10 10 –10 11  times that of their usual 
magnitude. This method has not yet seen application to vaccines but may in the 
future prove of use. Similar comments are appropriate for surface-enhanced IR 
absorption (Brown et al.  2013 ). A major advantage of Raman spectroscopy is that 
it can simultaneously be used to examine secondary structure and aromatic- and 
sulfhydryl-containing side chains. Extensive studies of viruses have been per-
formed with the Raman technique (Blanch et al.  2003 ), but it has not yet been 
extensively applied to vaccines. Finally, it is probable that at some point NMR 
will be used in some instances to characterize the secondary structure of vaccine 
components. Although natural isotope abundance has been successfully employed 
with small proteins, the necessity for isotope labeling and the size of vaccines 
currently prohibit its general application for examining the higher order struc-
tures of vaccines.  
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20.1.3     Analysis of Tertiary Structure 

 A wide variety of methods are available for tertiary structure analysis of vaccine 
antigens, most of which depend on detecting changes in the environment of aro-
matic side chains or nucleic acid bases or the use of environmentally sensitive 
extrinsic dyes. The three most commonly used techniques for this purpose are 
near- UV absorption, intrinsic tryptophan fl uorescence, and near-UV CD spectros-
copy. In near UV absorption, all three aromatic side chains (Phe, Tyr, Trp) con-
tribute to the observed spectra between 250 and 300 nm. Their individual 
contribution can be resolved by derivative spectroscopy. Since Phe side chains are 
usually buried, while Tyr are interfacial due to their hydroxyl group and Trp resi-
dues more randomly dispersed, specifi c regions of structural change can occa-
sionally be detected by using this method. Some additional information can 
sometimes be obtained by perturbing proteins with variable conditions of pH and 
temperature. Information about protein dynamic structure can also be obtained 
from the pre-transition slope of a second derivate peak (in a wavelength versus 
temperature plot) (Esfandiary et al.  2009 ) and shifts in peak position induced by 
added cations (Lucas et al.  2006 ). In nucleic acids, the spectra of the bases are 
very sensitive to their local intramolecular interactions and this can be used for 
detection of secondary structure changes. In the case of RNA, such changes may 
also be sensitive to alteration in tertiary structure. In both instances, the technique 
is most often used in a temperature-variation (melting) format. Additionally, the 
absorption spectra of a wide variety of external dyes can be altered by changes in 
the structure of proteins and nucleic acids (most often by binding at hydrophobic 
sites in proteins or between the bases/in the grooves of nucleic acids). In some 
situations, they can be used as probes for tertiary structure in RNA. Furthermore, 
a number of dyes can interact with membranes either at their surface or within a 
lipid bilayer. They can also be used to probe membrane integrity as well as fl uid-
ity. Most often, however, it is the fl uorescent properties of such probes that are 
used as structural tools. 

 Fluorescence tends to be more sensitive than absorbance when changes in envi-
ronment are monitored. The emission of fl uorescence from Trp residues in proteins 
is often very sensitive to small structural changes. Interpretation of such spectral 
changes is often complicated by the presence of multiple Trp residues in proteins 
(Phe and Tyr residues usually produce quite limited fl uorescence and this can be 
minimized by excitation at ≥295 nm). If, however, a component protein in a vaccine 
lacks Trp residues, this can allow localization of signal changes to other protein(s). 
There are a variety of ways in which intrinsic fl uorescence can be used to character-
ize vaccines including quenching (using various probes such as O 2 , acrylamide, and 
iodide to detect relative Trp exposure and molecular dynamics), resonance energy 
transfer (to measure the distance between fl uorophores) and polarization (to charac-
terize molecular mobility), but we will not consider these approaches further here. 
In general, nucleic acids lack fl uorophores (the bases are not fl uorescent), with the 
exception of the rarely encountered pseudouridine in RNA. 
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 Although some macromolecular systems may lack intrinsic fl uorophores, they 
may still be characterized using extrinsic fl uorescent probes. In the case of proteins, 
many of the relevant probes are only weakly fl uorescent in polar solutions, but 
strongly emit light when they bind to apolar sites. Probably the most commonly 
used dye is 8-anilino-napthalene sulfonic acid (ANS), but a wide variety of extrinsic 
fl uorophores are available for varied uses. Molecules which bind either between the 
bases (intercalation) or in one of the grooves can be applied in a similar way to 
nucleic acids. For example, release of DNA or RNA from viruses during degrada-
tion can be measured in this manner (Volkin et al.  1997 ). Fluorescent probes can 
also be used to study membranes. Of particular note is the interaction of probes with 
lipid bilayers which can be used to probe the fl uidity of the membrane. 

 As noted above, the near-UV region contains CD spectral peaks from the aro-
matic groups in proteins (as well as disulfi des). Thus, it can also be used to detect 
tertiary structure changes. Very conveniently, under appropriate conditions of con-
centration and pathlength, the near and far UV region in a CD spectrum can be 
acquired in a single scan (Hu et al.  2011a ). Tertiary structure changes in RNA can 
also, in principle, be studied by CD, but it is diffi cult to separate any such alteration 
from secondary structure changes. Although FTIR spectra are notoriously insensi-
tive to tertiary structure changes, this is not the case with Raman spectroscopy 
where a variety of such signals are available. As in the case with secondary structure 
analysis, NMR can ultimately be expected to be a particularly powerful tertiary 
structure method. For the reasons mentioned above, however, it is currently of lim-
ited use.  

20.1.4     Analysis of Macromolecular Size 

 Size is often a particularly important attribute of vaccine antigens. This is especially 
the case with particulate macromolecular systems such as viruses, VLPs and bacte-
ria. We can differentiate between two different types of intermolecular association. 
In stoichiometric systems, complexes of well-defi ned monomer content (such as 
protein oligomeric association or VLPs) are formed. In the second, much more 
extensive association occurs, typically of ill-defi ned stoichiometry and more amor-
phous structure. This is generally referred to as aggregation. Similar analytical 
methods are often used to study both phenomena (Wang et al.  2013 ). 

 Size exclusion chromatography (SEC) is probably the most commonly used 
method to study macromolecular association. While calibration with size standards 
makes this a useful technique for monomeric and oligomeric species, larger aggre-
gates and particles are frequently found in SEC column void volumes or irreversibly 
bound to the column matrix, making it less quantitative than desired. Furthermore, 
the dilution which takes place during chromatographic separation makes the method 
less useful for analysis of associating systems. 

 Light scattering methods are particularly useful for size analysis. In static light 
scattering experiments, the intensity of light scattered at one or more angles from a 
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sample is monitored. In an ideal situation, the resultant data can be used to estimate 
size (the radius of gyration) and the molecular weight. Simple increases in scatter-
ing intensity can be used to follow aggregation. This can be performed using 
 scattering monitored during intrinsic fl uorescence measurements (by a dedicated 
detector or as part of the emission spectrum itself) or in the form of turbidity (optical 
density) using a conventional absorbance spectrometer. Light scattering detectors 
are also available for addition onto chromatography systems. In dynamic light scat-
tering (DLS), the fl uctuations in intensity of scattered light are monitored in the 
form of an auto-correlation function. This permits the diffusion coeffi cient of the 
scattering particles to be obtained and converted to a hydrodynamic radius by using 
the Stokes-Einstein equation. Either an average value and polydispersity of the tar-
get molecule can be obtained or the auto-correlation function can be deconvoluted 
into individual particle distributions, albeit with considerable uncertainty. It should 
be noted that size determination by DLS is generally limited to 1 μm or less. 

 The most accurate method of molecular size determination is probably analytical 
ultracentrifugation (AUC) in either the velocity or equilibrium mode (Philo  2009 ). 
In the sedimentation velocity method, the rate of migration of a particle during cen-
trifugation is measured and quantifi ed in the form of a sedimentation coeffi cient. 
This can be converted to a molecular weight if the diffusion coeffi cient is known 
(often obtained by DLS) and the partial specifi c volume of the particle is known 
(usually obtained by some type of density measurement) or can be estimated. 
Individual species quite close in size can often be resolved by this method. 

 In sedimentation equilibrium, the sample is spun to an equilibrium state in which 
its mass is distributed throughout the sample-containing centrifuge tube. This distri-
bution can be converted to a molecular weight or analyzed to defi ne the nature of 
any association present. Both AUC methods are somewhat specialized but often 
provide less ambiguous results than SEC or DLS. It is, of course, also possible to 
analyze the size of particles by methods such as transmission or scanning electron 
microscopy (TEM/SEM) or some version of scanning tunneling or atomic force 
microscopy. Although possessing some intuitive advantages, microscopy methods 
suffer from the artifi cial state of the sample during observation. 

 A wide variety of other methods are available for the characterization of large 
particles and aggregates; we will mention only a few here. These methods are usu-
ally used in combination because the coverage of size range varies with each 
method. They are often employed in conjugation with the methods described above. 
In nanoparticle tracking analysis, single particle DLS is performed with a laser 
through a microscope. Not only can the size of the scattering particles be deter-
mined (in the range 50–1,000 nm) but their number can be counted and size distri-
butions obtained. Another method that can be employed to detect aggregation is the 
quartz crystal microbalance (QCM). In a recent version of this method (“the 
Archimedes instrument”), a mechanically resonant sampling device in the form of 
a hollow beam undergoes changes in its resonance frequency when it is modifi ed by 
the presence of a sample’s mass. This permits information about particle size, mass, 
volume, density, and concentration to be obtained over the range of approximately 
50 nm–5 μm. Of particular importance, protein aggregates can be distinguished 
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from air bubbles and silicone oil droplets by this method. For large particles, the 
coulter method is often used. In this technique particles are passed through a pore 
resulting in conductance changes which are proportional to a particle’s volume. 
This allows samples in the range of 0.5–50 μm to be analyzed. 

 Another class of methods used to characterize large particles is based on light 
obscuration and digital imaging (Narhi et al.  2009 ). Samples are passed through a 
light illuminated orifi ce and the decrease in light intensity due the presence of the 
particles can be related to the size and volume of the particles. It is most effective 
in the range of 2–100 μm. In microfl ow digital imaging, samples are passed through 
a fl ow cell and magnifi ed images are obtained by using a digital camera. Analysis 
of the images obtained permit information about particle size and morphology as 
well as the total number of particles. Like the recent QCM method, protein aggre-
gates can be distinguished from air bubbles and silicone oil droplets by this method 
as well. Other techniques which are often useful for particle analysis include light 
and fl uorescence microscopy and visual assessments, Zeta potential (surface 
charge) measurements, fl uorescence activated cell sorting (FACS) and FTIR/Raman 
microscopy. 

 It is often necessary to examine antigens adsorbed to the surface of aluminum 
salt adjuvants (see Chaps.   3     and   19    ). The number of techniques available for such 
analyses is limited but includes fl uorescence, FTIR and Raman spectroscopy as well 
as differential scanning calorimetry (DSC) (Jones et al.  2005 ; Peek et al.  2007 ; 
Katzenstein et al.  1986 ). This will be considered in greater detail in the examples 
described below. 

 It has recently been recognized that the array of data often obtained in vaccine 
characterization can be conveniently summarized in various graphical forms. This 
was initially done using an approach known as the empirical phase diagram (EPD). 
In this method, normalized values of experimental methods such as CD, fl uores-
cence, and light scattering are presented in the form of multidimensional vectors in 
which the components of the vectors represent the experimental measurements 
(Maddux et al.  2011 ; Joshi et al.  2010 ). The resultant vectors are converted to colors 
using a red-green-blue (RGB) scheme. Recently, the colors have been assigned 
meaning in terms of secondary, tertiary, and associated structures. New versions of 
these diagrams have also been developed in the form of radar diagrams in which the 
length of the axes of polygons represent the measurements and Chernoff faces in 
which the experimental values are mapped to facial features. Details of these meth-
ods are described elsewhere (Kim et al.  2012 ). A method to compare macromolecu-
lar structure known as comparative signature diagrams has also been developed 
based on combining various types of measurements (Iyer et al.  2013 ). All of the 
above data visualization diagrams are usually generated as a function of variables 
such as temperature, pH, concentration, and ionic strength as well as pharmaceuti-
cal stresses such as agitation and freeze/thaw events. 

 We will now illustrate the use of the biophysical methods described above for 
vaccine characterization with examples. Due to familiarity, we will focus on work 
from our own laboratory but the approaches outlined in the following case studies 
are similar to those described by others.   
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20.2     Examples of the Physical Analysis of Vaccines 

20.2.1     Protein-Based Vaccines 

 An example of the physical analysis of protein-based vaccines involves the 
 development of novel powder formulations of a recombinant Protective Antigen 
(rPA)-based anthrax vaccine for nasal mucosal delivery (Jiang et al.  2006 ). In this 
case, the physical stability of rPA as a function of pH and temperature was fi rst 
examined by CD, UV-Visible absorption, intrinsic and ANS fl uorescence spectros-
copies (Fig.  20.1a–e ). To summarize and interpret the data from these biophysical 
techniques, an EPD was constructed using the results of CD, intrinsic and ANS fl uo-
rescence (Fig.  20.1f ). The EPD clearly revealed changes in the conformational sta-
bility of the protein antigen as a function of pH and temperature and facilitated the 
selection of optimal conditions for subsequent excipient screening. Initial biophysi-
cal assessment identifi ed aggregation as a major degradation pathway for rPA. As a 
result, a turbidity-based high throughput screening assay was employed to identify 
excipients that would inhibit the aggregation of rPA. The effect of the aggregation 
inhibitors identifi ed on the conformational stability of rPA was then examined by 
CD and intrinsic Trp fl uorescence. The aggregation inhibitors that also stabilized 
the secondary and tertiary structures of rPA were chosen for subsequent preparation 
and characterization of dry powder formulations. The effect of spray-freeze drying 
(SFD) on the stability of rPA was investigated using SDS-PAGE and SEC. These 
techniques were also used in assessing the storage stability of the SFD powder for-
mulation by accelerated degradation studies at various temperatures. The results 
suggested that the SFD powder formulation developed in this study had much 
higher stability than liquid formulations. In combination with a noninvasive nasal 
delivery system, this SFD formulation can serve as a potential alternative to conven-
tional parental delivery by injection.  

 A second example of a protein-based vaccine involves the development of a 
 non- glycosylated (NG) protein antigen, EBA-175 RII-NG, for use as a candidate 
malaria vaccine (Peek et al.  2006 ). Since malaria largely exists in tropical regions 
where a cold chain is often not readily available, the stability of EBA-175 RII-NG 
becomes a particularly important issue for its use in a vaccine. This study estab-
lished a systematic approach to identifi cation of the optimal stabilizing formulations 
for EBA- 175 RII-NG. Structural changes of EBA-175 RII-NG in response to ther-
mal stress under various pH conditions were fi rst examined using high-resolution 
second derivative absorbance spectroscopy in the absence or presence of 5 % 
sucrose. The tertiary structure of the protein was evaluated by analyzing shifts in the 
UV absorption spectrum’s second derivative negative peak positions as a function 
of temperature and pH. The EPDs constructed from the secondary derivative absor-
bance data (Fig.  20.2a, b ) reveal that the presence of 5 % sucrose has very little 
effect on the conformational stability of EBA-175 RII-NG. To obtain greater detail 
concerning the degradation pathway of EBA-175 RII-NG, structural changes in 
EBA-175 RII-NG as a function of temperature and pH were analyzed by a variety 
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  Fig. 20.1    Physical stability of recombinant Protective Antigen (rPA) as a function of pH and 
temperature as determined by optical density at 360 nm ( a ); CD spectra of rPA at 10 °C ( b ); CD 
signal at 222 nm ( c ); Trp fl uorescence peak position ( d ); and ANS fl uorescence intensity ( e ). 
Empirical phase diagram (EPD) of rPA generated using CD, Trp fl uorescence, and ANS fl uores-
cence measurements ( f ). Regions of similar color signify a similar physical state of rPA while 
changes in color represent transitions between such states. Five distinct phases were observed and 
defi ned as follows: (1) most stable phase [ red -colored region in the  lower right -hand corner]; (2) 
molten globule-like state [ blue/purple  area at pH 3, <45 °C]; (3) severely structurally altered phase 
[ dark brown  area at pH 3, >45 °C]; (4) structurally altered and aggregated state [ light purple–light 
brown  region at pH 4–7, >50 °C and pH 8, 50–65 °C]; (5) highly structurally disrupted form [ green  
area at pH 8, >65 °C]. From: Jiang G, Joshi SB, Peek LJ, Brandau DT, Huang J, Ferriter MS, 
Woodley WD, Ford BM, Mar KD, Mikszta JA, Hwang CR, Ulrich R, Harvey NG, Middaugh CR, 
Sullivan VJ. Anthrax vaccine powder formulations for nasal mucosal delivery. Journal of 
Pharmaceutical Sciences 95 (1):80-96. Copyright 2006 by John Wiley Sons, Inc. Reprinted by 
permission of John Wiley & Sons, Inc.       
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of  techniques including CD, intrinsic and extrinsic fl uorescence spectroscopies 
(Fig.  20.2c–e ). An EPD was then developed to summarize the results from these 
techniques and select the condition used for subsequent screening of stabilizing 
excipients for the protein (Fig.  20.2f ). Screening of stabilizers started from the iden-
tifi cation of aggregation inhibitors using a turbidity assay. The effect of some 
selected aggregation inhibitors on the conformational stability of the protein was 
then examined using CD and fl uorescence spectroscopies. Combinations of the best 
stabilizers were then examined to identify the optimal stabilizing conditions. As the 
last step in this study, the interaction of EBA-175 RII-NG with an aluminum salt 
adjuvant, including adsorption and desorption, was examined under various condi-
tions. The systematic approach employed in this study can serve as the guide for 
future routine development of malaria protein therapeutics.  

 More examples examining the chemical and physical characterization of protein- 
based vaccines can be found from other previously published work, including stud-
ies of a 2-fl uorohistidine-labeled analogue of recombinant anthrax protective 
antigen (Hu et al.  2012 ),  Clostridium diffi cile  toxins and toxoids (Salnikova et al. 
 2008a ,  b ), gram-negative bacterial type III secretion system-based protein vaccines 
(Barrett et al.  2010 ; Markham et al.  2010 ), an aluminum salt-adjuvanted trivalent 
recombinant protein-based vaccine candidate against  Streptococcus pneumonia  
(Iyer et al.  2012 ), and a recombinant pneumolysin protein antigen as a pneumococ-
cal vaccine candidate (Hu et al.  2013 ).  

20.2.2     Virus-Like Particle-Based Vaccines 

 VLPs are typically formed by the self-assembly of recombinantly expressed virus 
capsid proteins and may also contain other viral surface proteins or membrane pro-
teins from the cell-based production source (see Chap.   9    ). VLPs mimic the surface 
protein structure of viruses, but are noninfectious due to the lack of viral genetic 
materials. As a result, VLPs usually serve as more effective vaccine antigens than 
monomeric subunit viral proteins. Two successful examples of VLP-based vaccines 
include hepatitis B virus (HBV) and, more recently, human papilloma virus (HPV) 
vaccines. The methods for the physical analysis of VLPs are largely similar to those 
described above for protein antigens. The major difference arises from the more 
complex structure and particulate nature of VLPs. Signals from VLPs are usually 
composite, refl ecting contributions from all structural components. Accordingly, it 
is often diffi cult to identify the origin of structural perturbations induced by envi-
ronmental stresses. Here we will discuss recent examples of the physical analysis of 
prospective VLP-based antigens. 

 The fi rst example involves the conformational stability of Norwalk VLPs (Ausar 
et al.  2006 ). Norwalk virus (NV) is the major cause of acute nonbacterial gastroen-
teritis, accounting for 23 million reported cases annually in the United States. 
Consequently, NV vaccines are of vital importance. Previous studies found that 
NV-VLPs, formed by the self-assembly of 180 copies of the major NV capsid 
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  Fig. 20.3    Physical stability of Norwalk virus-like particles (NV-VLPs) as a function of tempera-
ture and pH as determined by changes in CD signal at 222 nm ( a ), ANS fl uorescence intensity ( b ); 
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 protein (58 kDa), serve as an appropriate vaccine antigen. In this case, the inherent 
stability of NV-VLPs as a function of pH and temperature was examined by various 
biophysical techniques including high-resolution second derivative UV absorption 
spectroscopy, CD, DLS, DSC, TEM and both intrinsic and extrinsic fl uorescence 
spectroscopies (Fig.  20.3a–g ). An EPD was developed to summarize the results 
from these analyses (Fig.  20.3h ). The EPD revealed that the thermal stability of 
NV-VLPs was pH dependent. The NV-VLPs displayed very good stability over the 
range of pH 3–7 up to 55 °C. At pH 8, however, reversible capsid dissociation was 
observed accompanied by perturbations in secondary and tertiary structure. 
Turbidity-based thermal melt analysis under a suboptimal condition identifi ed from 
the initial biophysical characterization was employed to screen for stabilizers of 
NV-VLPs (Kissmann et al.  2008a ). The stabilizers identifi ed by turbidity analysis 
were then examined for their effects on the conformational stability of NV-VLPs 
using CD, DSC, and ANS fl uorescence. The stabilizing conditions identifi ed in this 
manner were used for the preparation of the NV-VLP formulation employed for the 
ensuing human clinical studies.  

 Another example of VLP-based vaccines subject to physical analysis involves 
the characterization and formulation of an engineered H1N1 infl uenza VLP, which 
represents an important step toward the development of a commercially viable vac-
cine (Kissmann et al.  2008a ). Respiratory infection caused by the infl uenza virus is 
a leading cause of mortality and morbidity worldwide. Recombinant enveloped 
VLPs that consist of self-assembled murine leukemia virus (MLV) gag proteins and 
surrounding the membrane-bound primary infl uenza antigens hemagglutinin (HA) 
and neuraminidase (NA) have been developed as promising H1N1 infl uenza vac-
cine antigens. A combination of spectroscopic and light scattering techniques was 
employed in the initial assessment of the stability of the infl uenza VLP as a function 
of pH and temperature (Fig.  20.4a–d ). The membrane-sensitive fl uorescence dye 
Laurdan was used to study changes in membrane fl uidity in response to changes in 
temperature and pH (Fig.  20.4e ). The EPD constructed from the initial biophysical 
assessment revealed approximately ten distinct phases, refl ecting the structural 
complexity of the infl uenza VLP and its distinctive response to pH and temperature. 
A turbidity-based analysis was employed as an initial screening assay for stabiliz-
ers, with the excipients identifi ed being further screened by intrinsic and Laurdan 
fl uorescence for conformational stabilizers. Trehalose, sorbitol, and glycine were 
found to best stabilize the infl uenza vaccine based on all of these criteria.  

Fig. 20.3 (continued) DLS ( e ); and Trp fl uorescence intensity and peak position ( f ). TEM images 
of NV-VLPs at various temperatures ( g ). EPD generated for NV-VLPs based on second derivate 
absorbance spectroscopy, Trp and ANS fl uorescence, and CD ( h ). Four distinct phases of the 
NV-VLP were observed;  P1  native, intact form;  P2  disassembled;  P3  soluble VP1 oligomers;  P4  
aggregated. This research was originally published in The Journal of Biological Chemistry. Ausar 
SF, Foubert TR, Hudson MH, Vedvick TS, Middaugh CR. Conformational stability and disassem-
bly of Norwalk virus-like particles. Effect of pH and temperature.  The Journal of Biological 
Chemistry . 2006; 281 (28):19478- 19488. Copyright The American Society for Biochemistry and 
Molecular Biology       
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  Fig. 20.4    Physical stability of H1N1 infl uenza VLPs as a function of temperature and pH as deter-
mined by DLS ( a ); fl uorescence peak position and intensity ( b ); ANS fl uorescence peak position 
and intensity ( c ); CD signal at 227 nm ( d ); Laurdan fl uorescence ( e ). EPD of infl uenza VLPs ( f ). 
The EPD was prepared from temperature- and pH-dependent effective DLS diameters, static light 
scattering, polydispersity, CD at 227 nm, intrinsic fl uorescence (peak position and relative inten-
sity at 330 nm), ANS fl uorescence (peak position and relative intensity at 485 nm), and generalized 
polarization of laurdan fl uorescence data. The major phases observed are: the least structurally 
disrupted state of the VLPs (pH 6–8, low temperature,  blue ); a transition region that appears above 
the  blue  phase between 35 and 55 °C for pH 6 and 7, and from 35 to 50 °C at pH 8 ( purple ); 
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 A third example of the physical analysis of VLP-based vaccines is the character-
ization of Ebola (eVLPs) and Marburg VLPs (mVLPs) (Hu et al.  2011b ). As mem-
bers of the Filoviridae family, the Ebola (EBOV) and Marburg viruses (MARV) 
cause severe hemorrhagic fevers in both humans and nonhuman primates. There are 
currently no licensed vaccines available for the prevention or treatment of these usu-
ally fatal viral infections. eVLPs and mVLPs, comprising assembled version of 
glycoprotein VP40 and NP, are considered promising vaccine antigens. Following 
an initial biophysical characterization by DLS, CD, and intrinsic fl uorescence, an 
EPD was developed to display the conformational changes and aggregation behav-
ior of the two enveloped VLPs in response to pH and temperature [due to the com-
plexity of the fi gures, readers are referred to the original paper for details (Hu et al. 
 2011b )]. The EPDs showed that the stability of both eVLPs and mVLPs were highly 
pH-dependent, being more stable at higher pH values (Fig.  20.5 ) with maximal 
thermal stability observed within the pH range of 7–8. Both VLPs were least stable 
at pH 3 and 4 due to the susceptibility of the VLPs to aggregation. The knowledge 
gained from this study provided a basis for additional formulation development and 
long-term stability studies of these two vaccine candidates.  

 Two additional examples of the biophysical analysis of VLP-like systems are the 
needles of the type III secretion system of gram-negative bacteria (Barrett et al. 
 2010 ) and the particles formed by the E1 glycoprotein of the hepatitis C virus 
(He et al.  2009 ), both candidates for use as novel vaccine antigens.  

20.2.3     Virus-Based Vaccines 

 As one of the most commonly used and effective approaches to vaccine develop-
ment, the attenuated live virus approach has led to the development of a series of 
vaccines including measles, mumps, rubella, varicella, and rotavirus. In addition, 
inactivated viral vaccines have been successfully developed including polio and 
hepatitis A. Virus-based vaccines typically feature complex structures and signifi -
cant lability. Physical analysis of virally based vaccines not surprisingly can resem-
ble that of VLP-based vaccines. While biological assays have previously been the 
basis of viral vaccine structural characterization and stability studies, more physical 
approaches are beginning to make inroads into these activities. 

Fig. 20.4 (continued) the variably colored area above 60 °C for pH 6 and 7 corresponding to 
particle aggregation; a conformationally altered state that lacks signifi cant aggregation (pH 8, high 
temperature,  dark red ); a signifi cantly structurally disrupted phase (pH 4 and 5, low temperature, 
 light blue ); and various conformationally altered states that give rise to multiple phases (above 
35 °C in the low pH region,  green/orange ). From: Kissmann J, Joshi SB, Haynes JR, Dokken L, 
Richardson C, Middaugh CR. H1N1 infl uenza virus-like particles: physical degradation pathways 
and identifi cation of stabilizers. Journal of Pharmaceutical Sciences 100 (2):634-645. Copyright 
2011 by John Wiley Sons, Inc. Reprinted by permission of John Wiley & Sons, Inc.       
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 In the fi rst example, we consider human respiratory syncytial virus (RSV), which 
is the major cause of both lower respiratory tract infection among young children 
worldwide and of hospitalization in adults with community-acquired respiratory 
diseases (Ausar et al.  2005 ). Despite decades of effort, an effective vaccine for the 
prevention and treatment of RSV infection remains unavailable. Live attenuated 
RSV viruses have long been considered as promising vaccine antigens. The devel-
opment of virus-based RSV vaccines, however, is very challenging due to their 
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  Fig. 20.5    EPDs of eVLPs ( a ,  b ) and mVLPs ( c ,  d ). The phases in the eVLP phase diagram ( a ) 
were assigned as follows: (1) native-like state and thermally stable; (2 and 3) intermediate phase 
with marginal stability; (4) structurally altered and prone to aggregation. In the mVLP phase dia-
gram ( c ), the distinct phases present are: (1) native-like state and thermally stable (less stable in 
sample at pH 6); (2) intermediate phase with marginal stability; (3) structurally altered and prone 
to aggregation. These transitions were also evident in the data from the specifi c techniques used to 
generate the EPDs. The EPDs for ( b ) and ( d ) were prepared from dynamic light scattering (DLS), 
static light scattering, CD at 225 nm, tryptophan fl uorescence (peak position and normalized inten-
sity), and Laurden fl uorescence data collected over the temperature range 10–87.5 °C. The EPDs 
for ( a ) and ( c ) were generated with the sample biophysical data, excluding DLS measurements. 
From Hu L, Trefethen JM, Zeng Y, Yee L, Ohtake S, Lechuga-Ballesteros D, Warfi eld KL, Aman 
MJ, Shulenin S, Unfer R, Enterlein SG, Truong-Le V, Volkin DB, Joshi SB, Middaugh 
CR. Biophysical characterization and conformational stability of Ebola and Marburg virus-like 
particles. Journal of Pharmaceutical Sciences 100 (12):5156-5173. Copyright 2011 by John Wiley 
Sons, Inc. Reprinted by permission of John Wiley & Sons, Inc.       
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labile nature and complex structure. RSV is a single-stranded negative-sense RNA 
virus comprising ten different proteins, a genome of approximately 15,222 nucleo-
tides and a lipid envelope. In this study, a crude human RSV was fi rst purifi ed by 
sucrose gradient centrifugation to remove cell impurities that might interfere with 
subsequent biophysical characterization. The thermal stability of RSV at different 
pH values was then examined using a variety of techniques, including high- 
resolution second derivative absorption spectroscopy, CD, DLS, turbidity, and both 
intrinsic and ANS fl uorescence (Fig.  20.6a–f ). The EPD constructed from the data 
(Fig.  20.6g ) demonstrated that the secondary, tertiary, and quaternary structures of 
RSV are susceptible to both pH and temperature stresses, with maximal stability 
observed at near neutral pH. Turbidity and DLS data showed that RSV was prone to 
aggregation below pH 6. Based on these observations, turbidity analysis was 
selected as the initial screening approach to identify stabilizers that inhibit the 
aggregation of RSV (Ausar et al.  2007 ). The results revealed a variety of aggrega-
tion inhibitors of RSV including sugars, amino acids, polyols, and polyanions, with 
the latter especially effective. The effects of these aggregation inhibitors on the 
conformational stability of RSV was further examined using CD, DLS, UV absorp-
tion, and the generalized polarization of Laurdan fl uorescence. Sugars, polyols, and 
polyanions all demonstrated an enhancement in the thermal stability of the second-
ary and tertiary structures of RSV proteins, as well as the lipid membrane of 
RSV. These results provided valuable information for future rational development 
of stabilizing formulations for live attenuated RSV vaccines.  

 Another example of a virally based vaccine that has been subjected to physical 
analysis is the measles virus, which also belongs to the family of negative-sense 
single-stranded RNA viruses (Kissmann et al.  2008b ). Besides the RNA genome, 
the measles virion consists of six different structural proteins and an associated lipid 
membrane. The labile nature of existing attenuated live measles virus (MV) vac-
cines has hindered their use in some parts of the developing world. This study again 
started with a comprehensive characterization of the thermal stability of MV under 
different pH conditions using a variety of biophysical techniques including static 
light scattering, CD, intrinsic and ANS fl uorescence (Fig.  20.7a–d ). In addition, the 
fl uidity of the lipid membrane was examined by Laurdan fl uorescence (Fig.  20.7e ). 
The results of these studies were synthesized into an EPD that allows the simultane-
ous visualization of the entire multi-dimensional data set (Fig.  20.7f ). As seen with 
RSV, the EPD obtained is complex and contains at least six regions of distinct con-
formational states, refl ecting the multifaceted structure of measles viruses. Guided 
by the EPD, screening assays were developed to identify stabilizers that inhibit the 
aggregation of viral particles, and enhance the structural integrity of the viral pro-
teins and membrane. The stabilizers identifi ed were demonstrated to signifi cantly 
improve the infectivity of MV. This example provides additional evidence that 
accelerated thermal stability evaluation can be used to identify conditions that pro-
tect the biological activity of MV vaccines.  

 Similar physical characterization has been performed with different rotavirus 
serotypes (Esfandiary et al.  2010 ) and multiple types of adenoviruses (Rexroad 
et al.  2006a ; Rexroad et al.  2006b ; Rexroad et al.  2003 ; He et al.  2010 ).  
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20.2.4     Bacterial Vaccines 

 Bacterial vaccines are also characterized by a labile nature and complex structures. 
Physical analysis of bacterial vaccines resembles that of virally based vaccines, 
focusing on the assessment of the two major structural components of bacteria, 
their proteins and lipid membranes. An example of the physical analysis of bacterial 
vaccines involves the Ty21a typhoid vaccine developed from the wild type 
 Salmonella enterica  Serovar Typhi strain through chemical mutagenesis (Zeng 
et al.  2009 ). Despite their excellent potency, the liquid formulations of this vaccine 
exhibit low thermal stability. Thus, development of more stable liquid formulations 
is of signifi cant importance. In this case, the integrity of the cell membrane was 
examined by  Bac Light™ fl uorescence (Fig.  20.8a ), and the membrane fl uidity was 
assessed by Laurdan fl uorescence (Fig.  20.8b ). In addition, the thermal stability of 
the protein components of Ty21a cells was examined by CD (Fig.  20.8c ). The EPD 
constructed from these studies provided a global picture of the thermal stability of 
Ty21a cells over the pH and temperature ranges examined (Fig.  20.8d ). On the basis 
of the EPD, a  Bac Light™ fl uorescence-based assay was employed to screen for 
excipients that enhance the thermal stability of the bacterial cell membranes. The 
stabilizing effect of selected excipients in a foam-dried formulation was also evalu-
ated. The results suggest that the stabilizers identifi ed for liquid formulations also 
enhance the stability of Ty21a cells in dried foam formulations, indicating that 
information gleaned from the physical characterization of a liquid formulation of 
something as complex as a live bacterial cell can facilitate the development of other 
types of formulations.   

20.2.5     DNA Vaccines 

 DNA vaccines represent a new generation of vaccines that hold signifi cant promise 
because of several advantages over conventional vaccines. There have been several 
successful developments of veterinary DNA vaccines, but human DNA vaccines are 
still in clinical trials and not yet available. The methods commonly used for protein 
analysis, such as CD, DLS, DSC, and FTIR, are also applicable to the physical 
analysis of DNA vaccines. Since DNA is not intrinsically fl uorescent, extrinsic fl uo-
rescent dyes are often used for the analysis of DNA by fl uorescence spectroscopy. 
DNA is usually characterized by very high melting temperatures. Consequently, 
temperature is not usually employed as an environmental stress in the physical anal-
ysis of the structural stability of DNA. 

 The example to be discussed here involves the characterization of polymeric and 
liposomal gene delivery systems (Ruponen et al.  2006 ). A plasmid DNA and its 
complexes with four cationic carriers at various ionic strengths and pH were exam-
ined by DLS, CD, and extrinsic fl uorescence (Fig.  20.9a–c ). The EPDs synthesized 
from the results of these techniques revealed two to three distinct regions for the 
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  Fig. 20.8    Physical stability of Ty21a cells a function of temperature and pH as determined by 
 Bac Light™ fl uorescence intensity ratios ( I  510 / I  600 ) ( a ); Laurdan fl uorescence ( b ); and CD signal at 
225 nm ( c ). EPD of Ty21a cells constructed with fl uorescence and CD data shows at least four 
apparent phases that correspond to Ty21a cells of different viabilities ( d ). The  orange  colored 
phase II is a relatively stable phase in which the cells are primarily viable. In the other three phases, 
cell integrity is disrupted to various extents. Reproduced with permission from Landes Bioscience, 
Inc. Zeng Y, Fan H, Chiueh G, Pham B, Martin R, Lechuga-Ballesteros D, Truong V, Joshi S, 
Middaugh C. Toward development of stable formulations of a live attenuated bacterial vaccine: A 
preformulation study facilitated by a biophysical approach. Human Vaccine 2009; 5:322–331       

plasmid itself (Fig.  20.9d ), but three to fi ve such regions for the complexes of 
the plasmid DNA with cationic carriers (Fig.  20.10 ), implying that the presence of 
cationic carriers altered the nature of the plasmid DNA and its response to ionic 
strength and pH. A few structural features, including size, extent of collapse, and 
conformation of the DNA, were assigned to the regions present in the EPDs. The 
approach established here is also applicable to the physical analysis of other DNA 
vaccines, as well as those containing an RNA component.     
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  Fig. 20.9    Physical stability of uncomplexed plasmid DNA and its complexes with cationic 
 carriers as a function of ionic strength and pH as determined by DLS ( a , size of the plasmid), CD 
( b , changes in the secondary structure), and YOYO-1 fl uorescence ( c , condensation of the plas-
mid). In ( a – c ), the  left panel  is data acquired on uncomplexed DNA, the  middle panel  is data 
acquired on DNA complexed with cationic carriers at a charge ratio of 0.5, and the  third panel  is 
data acquired on DNA complexed with cationic carriers at a charge ratio of 4.0. The EPD for 
uncomplexed DNA ( d ) was constructed using the data shown in the  left panels  of ( a – c ). Regions 
of similar color signify a similar physical state of the plasmid while changes in color represent 
transitions between such states. From: Ruponen M, Braun CS, Middaugh CR. Biophysical charac-
terization of polymeric and liposomal gene delivery systems using empirical phase diagrams. 
Journal of Pharmaceutical Sciences 95 (10):2101-2114. Copyright 2006 by John Wiley Sons, Inc. 
Reprinted by permission of John Wiley & Sons, Inc.       
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  Fig. 20.10    EPDs of various nonviral gene delivery complexes at positive:negative charge ratios of 0.5 
( a – d ) and 4.0 ( e – h ) as a function of ionic strength and pH ( a ,  e , DOTAP;  b ,  f , DOTAP/DOPE [D/D]; 
 c ,  g , PLL;  d ,  h , PEI). The EPDs were generated using biophysical data collected from DLS (Fig.  20.9a ), 
CD (Fig.  20.9b ), and fl uorescence (Fig.  20.9c ). Regions of similar color signify a similar physical state 
of the gene delivery complex while changes in color represent transitions between such states. From: 
Ruponen M, Braun CS, Middaugh CR. Biophysical characterization of polymeric and liposomal gene 
delivery systems using empirical phase diagrams. Journal of Pharmaceutical Sciences 95 (10):2101-
2114. Copyright 2006 by John Wiley Sons, Inc. Reprinted by permission of John Wiley & Sons, Inc.       
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20.3     Conclusion 

 In summary, it should be clear from the examples presented above that the physical 
analysis of vaccines has the potential to contribute signifi cantly to their character-
ization, formulation, and evaluation of their stability. Major questions that remain to 
be answered include (1) the relationship between such physical measurements, bio-
logical activity, and in vivo immune responses, and (2) the effect of the macromo-
lecular complexity of many vaccines on the interpretability of resultant biophysical 
data. In many cases, a single component may dominate the data obtained, but higher 
resolution data may ultimately be necessary to further increase the utility of lower 
resolution biophysical data. Whatever the case, such approaches promise to make 
increasing contributions to the world of vaccinology, especially in terms of improved 
stabilization to better preserve potency and extend shelf-life during storage and 
administration.     
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    Chapter 21   
 Characterizing the Association Between 
Antigens and Adjuvants 

             Mette     Hamborg      and     Camilla     Foged    

21.1            Introduction 

 Subunit vaccines consist of two principal components: Antigen(s) and adjuvant. 
The selected antigen(s) should be the component(s) of the pathogen that best stimu-
late the immune system, and the choice of adjuvant should be based on the type of 
desired immune response. In addition, the adjuvant should be formulated with the 
antigen(s) in a way that ensures an optimal type of response and minimal side 
effects. Thus, during the development of new subunit vaccines it is crucial to 
 characterize and possibly optimize the antigen–adjuvant interactions (association 
and de-association) to ensure optimal effi cacy, safety, and quality of novel vaccine 
formulations. 

 Compared to the vast number of studies in the literature describing new antigens 
and/or adjuvants and their immunological profi les, studies regarding the physico-
chemical characterization of antigen–adjuvant interactions are sparse. Thus, the 
physicochemical characterization of the association and de-association between the 
two components is often neglected in the early stages of development mainly because 
vaccine formulations are usually characterized by a very high degree of complexity, 
and the combination of low antigen doses and colloidal systems poses analytical 
challenges (   Volkin and Middaugh  2010 ; Dormitzer et al.  2008 ). In addition, demon-
strating direct links between specifi c physicochemical formulation characteristics 
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and vaccine effi cacy may in practice be very challenging (   Mortellaro and Ricciardi- 
Castagnoli  2011 ). 

 Nevertheless, a thorough understanding of the physicochemical properties of 
vaccines is an important and necessary step on the way to an optimal vaccine for-
mulation, and throughout the vaccine development process, suffi cient knowledge 
about a vaccine formulation should be gathered to directly or indirectly link changes 
in the physicochemical parameters to the performance of the vaccine. This includes 
identifying and optimizing critical parameters, such as the degree of antigen adsorp-
tion and the colloidal stability that may have an impact on the effi cacy, safety, and 
stability of the vaccine product and to optimize these. Also parameters which 
describe the interactions that cannot be linked to the effi cacy and safety may still be 
monitored to guarantee the quality and consistency of the vaccine production pro-
cess (Clapp et al.  2011 ). 

 Stanley Hem and coworkers pioneered the fi eld emphasizing the importance of 
characterizing antigen–adjuvant interactions by combining thorough physicochemi-
cal characterization with immunological studies, and today the various vaccine 
guidelines from regulatory agencies require that aspects that are critical for the bio-
logical properties of the adjuvant–antigen combination, such as antigen association/
de-association and binding characteristics, should be identifi ed and monitored 
(EMA, FDA, WHO). More specifi cally, the EMA guideline states that it is crucial 
to defi ne and describe the mechanism of association (and de-association) and the 
association effi ciency between antigen(s) and adjuvant. Quality evaluation of a vac-
cine–adjuvant formulation must therefore include a proof of adequate and consis-
tent association of the antigen(s) with the adjuvant, also throughout the shelf life of 
the vaccine, and demonstrate that no signifi cant de-association takes place in the 
course of the shelf life (Table  21.1 ) (EMEA  2005 ).

   The understanding of aluminum adjuvant–antigen association/de-association 
and of the important factors to address when preparing vaccine formulations con-
taining aluminum-based adjuvants has been greatly improved during the past 
decades (Clapp et al.  2011 ;    Hem and Hogenesch  2007 ). The experiences can serve 
as inspiration in the characterization of other particulate adjuvant–antigen interac-
tions, although each new type of adjuvant system has its own challenges. Therefore, 
the important characterization parameters for each type of antigen–adjuvant 
 formulation must be selected on a case-by-case basis, depending on the physico-
chemical properties of the adjuvant and the vaccine’s mechanism of action. The key 
is to maintain both the antigen’s and the adjuvant’s integrity. 

 Proteins are delicate three-dimensional molecules with distinct hydrophobic 
regions and localized charges that govern the protein folding. Any small changes in 

  Table 21.1    Aspects of 
adjuvant–antigen interactions 
which should be 
appropriately characterized  

 Physical characteristics (e.g., particle size, size 
distribution, surface charge, sedimentation) 
 Level and consistency of antigen association 
to the adjuvant 
 Physical and chemical integrity of the antigen 
 Extent of antigen release (de-association) 
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the primary, secondary, or tertiary structure of a protein antigen upon interaction 
with the adjuvant can potentially impact its immunogenicity, either by altering the 
three-dimensional structure which can potentially affect the structural epitopes or 
by chemical alterations which can potentially alter the linear epitopes. Additionally, 
changes in the antigen conformation and fl exibility may also potentially affect pro-
cessing and presentation by antigen-presenting cells (APCs) to T-cells (Dai et al. 
 2001 ; Tynan et al.  2005 ; Thai et al.  2004 ). 

 In the following the interactions between adjuvants and antigens are presented 
and discussed. Emphasis is put on aluminum and emulsions adjuvants, which are 
components of marketed vaccines, as well as on lipid vesicles for which we present 
brief examples from our own research. The discussion highlights the important 
physicochemical parameters that describe the interactions and the analytical tech-
niques currently used to address these.  

21.2     Aluminum Salts 

21.2.1     Physical Characteristics 

 The most commonly used aluminum salts are aluminum phosphate and aluminum 
hydroxide (Chap.   3    ). They have different physical characteristics: Aluminum 
hydroxide has a point of zero charge (PZC) of 4–5.5, whereas aluminum phosphate 
has a PZC of 11 (Lindblad  2004 ). Thus, at neutral pH aluminum hydroxide is net 
positively charged while aluminum phosphate is net negatively charged. 
Furthermore, aluminum hydroxide is a crystalline salt and has only hydroxyl groups 
on its surface, whereas aluminum phosphate, which is amorphous, has both hydroxyl 
and phosphate groups on its surface (Hem and Hogenesch  2007 ). Aluminum salts 
are dispersions that sediment over time and thus the speed of sedimentation is used 
as a measure of the colloidal stability of the formulation. Sedimentation speed may 
in fact be affected by antigen adsorption providing a tool to detect differences in the 
degree of antigen association and batch-to-batch variations (Fox et al.  2013a ). 
Changes in sedimentation speed upon formulation have been addressed by standard 
spectrophotometric methods using a 500 nm laser beam (Capelle et al.  2005 ) or by 
laser scattering optical profi ling (Fox et al.  2013a ). Here the light transmission from 
a 870 nm laser is measured in a setup, which is suited for obtaining real-time kinetic 
analysis throughout the vertical profi le of the sample (Fox et al.  2013a ).  

21.2.2     Antigen Association 

 The two predominant mechanisms of antigen adsorption to aluminum-containing 
adjuvants are electrostatic interactions and ligand exchange, although hydrophobic 
interactions and van der Waal forces may also be involved (Seeber et al.  1991 ; 
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Alshakhshir et al.  1994 ; Rinella et al.  1998a ; Rinella et al.  1998b ; Iyer et al.  2004 ; 
Iyer et al.  2003a ). The weak non-covalent interaction forces are highly dependent 
on the buffer species, pH, ionic strength, and the isoelectric point (pI) of the anti-
gen. Thus, the degree of antigen adsorption can be adjusted via selection of buffer 
conditions (a high ionic strength can reduce the electrostatic forces). Ligand 
exchange is an adsorption mechanism that involves the exchange of a phosphate 
group of the antigen with a surface hydroxyl group of the adjuvant (Hem et al. 
 2010 ). It means that the antigen must be phosphorylated to covalently interact with 
alum via ligand exchange (Lu et al.  2013 ). Of notice is that phosphate buffer salts 
can interfere with alum and modify its surface by exchanging hydroxyl groups on 
the surface of alum with phosphate. Consequently, phosphate buffer is usually 
avoided in aluminum- based formulations because antigen adsorption could be 
affected during storage. 

 In general, antigens with a pI above 7.4 will adsorb stronger to aluminum 
 phosphate, while antigens with a pI below 7.4 will adsorb better onto aluminum 
hydroxide (Lindblad  2004 ; Gupta  1998 ). Antigens adsorbed via electrostatic 
attractions are less strongly adsorbed and do generally desorb from the adjuvant 
under physiologically relevant conditions. On the other hand, antigens adsorbed 
by ligand exchange are strongly adsorbed and show a more irreversible nature of 
adsorption (Hem and Hogenesch  2007 ; Iyer et al.  2003b ). The optimal strength of 
adsorption seems to be a delicate balance between on the one hand having 
the  antigen adsorbed but on the other hand not having it too strongly adsorbed. 
A strong adsorption might impede the immune response (Lu et al.  2013 ), and the 
strength of antigen adsorption to aluminum-based adjuvants has in fact been shown 
to be inversely related to the immune response (Hem et al.  2010 ; Chang et al. 
 2001 ; Iyer et al.  2003b ). 

 The most common way to quantify antigen adsorption is an indirect method 
involving centrifugation of the aluminum salt particles and assaying the supernatant 
for unbound protein to extrapolate the amount of bound material (   Lindblad and 
Schonberg  2010 ). This approach can be used to construct adsorption isotherms from 
which the strength of adsorption and adsorption capacity may be estimated (Clapp 
et al.  2011 ). The mechanism(s) of antigen adsorption and the degree of desorption 
can be investigated by testing the degree of elution in different solvents (Iyer et al. 
 2004 ), i.e., if the antigen elutes when increasing the ionic strength, electrostatic 
attraction is likely to be the main force driving adsorption.  

21.2.3     Antigen Integrity 

 The physical and chemical stability of proteins upon adsorption onto aluminum 
adjuvants have been studied to some extent, but due to analytical challenges such 
as analytical incompatibilities with the aluminum particles as well as low antigen 

M. Hamborg and C. Foged



417

concentration, biophysical studies in particular are not easily performed. Jones 
et al. presented one of the fi rst studies, which demonstrated that the secondary 
structure of a number of model proteins was perturbed upon adsorption to alum 
(Jones et al.  2005 ). Since then, several studies have been carried out with vaccine-
relevant antigens. However, a number of discrepancies are evident and no general 
statements regarding the structural perturbation and its signifi cance for effi cacy 
can be deduced. Some proteins unfold upon immobilization (Jones et al.  2005 ; 
Zheng et al.  2007a ; Zheng et al.  2007b ; Regnier et al.  2012 ) while others maintain 
their conformational integrity and/or are even stabilized (Dong et al.  2006 ; Agopian 
et al.  2007 ). The discrepancies between the studies can been explained by (1) the 
highly unique characteristics of each protein, (2) the difference in the analytical 
approach taken, and (3) protein concentration may infl uence and change protein 
adsorption patterns (   Bai and Dong  2009 ; Clapp et al.  2011 ). Direct characteriza-
tion of aluminum-bound antigen has been achieved by using techniques such as 
fl uorescence, Fourier transform infrared spectroscopy (FTIR), microcalorimetry 
techniques, and circular dichroism (CD) (Regnier et al.  2012 ). Since the particu-
late nature of alum is a potential source of artifacts for the above-mentioned tech-
niques, some antigen integrity studies are performed upon desorption/separation 
from the adjuvant (Hutcheon et al.  2006 ). Desorption generally requires high salt 
and/or surfactant concentrations, depending on the mechanism of adsorption, 
which has the obvious disadvantage that the separation process itself may compro-
mise antigen integrity. For the biophysical methods, additional complications are 
the low dose of antigen and the choice of desorption-medium, which should be 
compatible with the specifi c assay (Clapp et al.  2011 ). SDS-polyacrylamide gel 
electrophoresis (SDS-PAGE) and immunodetection techniques such as enzyme-
linked immunosorbent assay (ELISA) and Western blotting (WB) offer good alter-
natives to the biophysical methods based on spectrophotometry. These methods 
are not compromised by the low antigen concentrations and recently more nonde-
structive characterization methods (performed in the presence of alum) have been 
developed, e.g., binding assays and intrinsic fl uorescence (Mulder et al.  2012 ; 
Wagner et al.  2012 ). Changes in the chemical stability of antigens upon adsorption 
to alum are often neglected for vaccine formulations, but reactions such as oxida-
tion and deamidation could disrupt linear (and structural) epitopes. D´Souza et al. 
observed rapid deamidation of an anthrax antigen when adsorbed on aluminum 
hydroxide gel which correlated with reduced potency of the vaccine. This and 
other studies highlight the importance of also characterizing the chemical stability 
upon adsorption (Table  21.2 ) (D’Souza et al.  2013 ; Estey et al.  2009 ).
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21.3         Emulsions 

21.3.1     Physical Characteristics 

 Adjuvants based on emulsions are dispersions, which consist of a disperse phase in 
a continuous phase, e.g., water droplets dispersed in a continuous oil phase (w/o 
emulsion) or oil droplets dispersed in a continuous aqueous phase (o/w emulsion) 
(Chap.   4    ). Emulsions are thermodynamically unstable systems and the dispersed 
droplets may eventually coalesce and separate out into the component phases. 
The droplet size is essential for the stability of emulsions since small droplets are 
generally better stabilized compared to larger droplets due to Brownian motion 
(Wilde  2000 ). 

 Because the single components of an emulsion adjuvant rarely are very immuno-
genic on their own the characteristics of the emulsion (droplet size and antigen 
association) are likely to play an important role for evoking the intended immune 
response (Calabro et al.  2013 ; Brito et al.  2013 ). For example, the droplet size of 
MF59 is believed to be critical for the adjuvant effect (Ott et al.  2000 ).  

   Table 21.2    Analytical tools used to characterize alum adjuvant–antigen interactions   

 Interaction 
parameter  Techniques  Challenges  Reference 

 Physical 
characteristics 

 Visual appearance  Lindblad and 
Schonberg 
( 2010 ) Capelle 
et al. ( 2005 ) 

 Particle size and 
distribution (DLS, SLS) 
 Zeta potential 
 Sedimentation 

 Adsorption  Adsorption isotherms  Clapp et al. 
( 2011 ) 

 Structural 
integrity of the 
antigen 

 DSC  Vaccine concentration is 
usually too low compared to 
the sensitivity of the method 

 Jones et al. 
( 2005 ), Bai 
and Dong 
( 2009 ) 

 FTIR 

 Intrinsic fl uorescence  Light scattering artifacts 
 CD 

 Structural 
integrity of 
specifi c epitopes 
(binding assays) 

 ELISA  Monoclonal antibodies that 
bind to structural epitopes 
diffi cult to produce/expensive. 
Extraction of the antigen from 
the alum is sometimes needed. 

 Mulder et al. 
( 2012 ), 
Hutcheon 
et al. ( 2006 ) 

 Surface plasmon 
resonance 
 Western blotting 

 Chemical 
stability 

 MS  Separation necessary  D’Souza et al. 
( 2013 ) 
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21.3.2     Antigen Association 

 Antigen association to oil droplets does not seem to be a prerequisite for emulsions 
to be effective adjuvants (Brito et al.  2013 ). For MF59 and AS03 association 
between antigen and the emulsion droplets has not shown to be critical for the adju-
vant activity (Ott et al.  2000 ; Lai et al.  2012 ; Brito et al.  2013 ). Antigen distribution 
and association in the emulsion is not easy to address and it is frequently based on 
an indirect estimate which requires a phase separation of the emulsion followed by 
a determination of the amount of antigen in the aqueous phase (Zhu et al.  2011 ). 
Alternatively, the importance of association has been studied by separate injections 
of the antigen and the emulsion in animals. MF59 that was injected 24 h prior to the 
antigen or 1 h after the antigen still elicited the same response as the co- administration 
of the antigen and MF59 (Dupuis et al.  1999 ). Similar fi ndings were shown for 
AS03 which could also be administered 1 h prior to the antigen and still elicit the 
same result as upon co-administration, however co-localization appeared to be 
important (Morel et al.  2011 ). This suggests that direct association is not crucial for 
the vaccine response.  

21.3.3     Antigen Integrity 

 Emulsions possess oil–water interfaces that protein antigens are prone to adsorb 
to and the adsorption can infl uence the stability of the emulsion as well as the 
protein stability (Wilde  2000 ; Jorgensen et al.  2004 ; Jorgensen et al.  2003 ). The 
particulate and turbid nature of emulsions is an analytical challenge as it interferes 
with many of the conventional methods including reverse phase high pressure 
liquid chromatography (HPLC), size exclusion chromatography, dynamic light 
scattering (DLS), and CD. The difference in the refractive index between the 
aqueous phase and the oil phase causes light scattering artifacts. Husband et al. 
showed how refractive index matching between the two phases by addition of 
glycerol can circumvent the artifacts caused by light scattering (Husband et al. 
 2001 ). Nevertheless, most emulsions are characterized by different refractive 
indexes and thus the challenges caused by light scattering have to be overcome in 
other ways. One possibility is to separate the oil phase and the water phase by 
destabilizing the emulsion, e.g., by benzyl alcohol as done for vaccines containing 
Montanide ISA 720 (Miles et al.  2005 ). The protein integrity may be analyzed in 
the water phase but a prerequisite is that the protein affi nity for the water phase is 
favorable and that phase separation of the emulsion is feasible. If the protein can 
be recovered in the aqueous phase, the antigen stability can be tested by SDS-
PAGE, WB, ELISA, and N-terminal sequencing (Miles et al.  2005 ). For MF59, it 
has been suggested that a phase separation via removal of the oil droplets by high 
speed centrifugation may be undertaken to allow for the use of some of the 
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traditional methods described above. This procedure will minimize the number of 
particles/lipid droplets present, but not all of the particles are removed (Brito et al. 
 2013 ). Another possibility is to analyze the antigen structure by techniques com-
monly used for therapeutic proteins which are less sensitive to light scattering 
such as FTIR, front-face fl uorescence, and differential scanning calorimetry 
(Jorgensen et al.  2004 ; Jorgensen et al.  2003 ). As compared to vaccine formula-
tions, therapeutic protein formulations contain higher protein concentrations, and 
the methods mentioned above are currently not suffi ciently sensitive to allow for 
measuring structural changes at the low antigen concentrations existing in an 
emulsion matrix. Alternatively, protein gel electrophoresis and ELISA have been 
applied to study the integrity of the antigen gp140 upon interaction with MF59 
(Lai et al.  2012 ). Minor changes in protein conformation were observed after 
extracting the antigen from the adjuvant (Lai et al.  2012 ). 

 The plethora of potential interactions and conformational changes between pro-
tein antigens and emulsion formulations emphasize the importance of structural 
characterization, and several studies have shown that the secondary and tertiary 
structure of proteins is altered in emulsion formulations as compared to aqueous 
solutions. In some cases these interactions, though detectable, did not appear to 
affect the immunogenicity. Fox et al. tested a panel of emulsions and found that 
although structural changes of the H5N1 recombinant antigen were apparent from 
intrinsic fl uorescence measurements, the differences did not appear to correlate to 
immunological activity (Fox et al.  2013a ). Many different antigens have success-
fully been formulated with the MF59 formulation (Chap.   4    ). A few antigens were 
not stable post formulation with MF59. HIV gp120 underwent conformational 
changes over time in MF59 whereas CMV Gb existed in an equilibrium of different 
multimeric stages, which was shifted in the presence of MF59. Therefore these vac-
cines are formulated as dual vials, which are mixed immediately prior to immuniza-
tion (Ott et al.  2000 ). 

 As in the case of alum, it is not straightforward to analyze the antigen integrity 
in the presence of emulsion-based adjuvants and it is hardly possible without 
 altering the formulation either by extracting the antigens from the emulsion or 
increasing the antigen concentration. Both approaches leave the open question of 
whether the  antigen in the altered formulation still represents the antigen in the 
actual vaccine formulation    (Table  21.3 ).
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21.4         Lipid Vesicles 

21.4.1     Physical Characteristics 

 Adjuvants based on lipid vesicles are self-assembling systems consisting of lipid 
bilayer(s) with an aqueous core. Classical liposomes are composed of phospholip-
ids and cholesterol but many other surfactants can also form lipid vesicles, and by 
modifying the surfactant composition their surface charge and fl uidity can be 
altered. In the following all lipid vesicles are referred to as liposomes. The effect of 
protein interaction with lipid vesicles can be characterized by measuring the size 
distribution, the zeta potential, and the thermotropic phase behavior of the lipo-
somes. Additionally, microscopy-based techniques (such as cryo-TEM) are also 
useful to study morphological changes of the liposomes.  

   Table 21.3    Analytical tools used to characterize emulsion adjuvant–antigen interactions   

 Interaction parameter  Techniques  Challenges  Reference 

 Physical characteristics  Visual appearance  –  Xue et al. ( 2010 ), 
Ott et al. ( 2000 )  Zeta potential 

 Particle size 
(DLS/SLS) 
 Viscosity 

 Antigen association/
integrity 

 Protein gel 
electrophoresis 

 Requires separation of the 
bound and unbound 
protein. Usually estimated 
from the antigen content 
in the aqueous phase after 
phase separation caused 
by centrifugation 

 Ott et al. ( 2000 ), 
Lai et al. ( 2012 ), 
Xue et al. ( 2010 ) 

 Integrity of the antigen  Intrinsic 
fl uorescence 

 The antigen concentration 
is usually too low 
compared to the 
sensitivity of DSC and 
FTIR 

    Fox et al ( 2013a ), 
Jorgensen et al. 
( 2004 ), Jorgensen 
et al. ( 2003 ), 
Miles et al. ( 2005 ) 

 DSC 
 FTIR 
 N-terminal 
sequencing 
 SDS-PAGE 

 Structural integrity of 
specifi c epitopes 
(binding assay) 

 ELISA  Monoclonal antibodies 
diffi cult to access/
expensive. Extraction of 
the antigen from the 
emulsion is needed 

 Lai et al. ( 2012 ), 
Xue et al. ( 2010 ), 
Miles et al. ( 2005 ) 

 Western blot 
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21.4.2     Antigen Adsorption 

 Protein antigens may be associated with liposomes in a number of ways: Encapsulated 
in the aqueous core, intercalated into the bilayer, covalently bound to modifi ed lipids, 
or adsorbed to the surface of the liposomes. In most liposome adjuvant formulations, 
the antigen is externally associated, either by simple mixing or by surface adsorption. 
In this case, the main driving force is electrostatic interaction, although hydrophobic 
interactions may also come into play (Henriksen-Lacey et al.  2011 ). One exception 
are virosomes in which virus antigens are intercalated into the bilayer mainly through 
hydrophobic interactions (Herzog et al.  2009 ). Encapsulation may also be approached 
if the antigen needs to be protected against enzymatic degradation. However, loading 
effi ciencies can sometimes be low due to the surface active nature of the proteins 
which will challenge their encapsulation (Gregoriadis et al.  1999 ). 

 Charged liposomes are ideal for surface adsorption of antigens but the formulation 
pH, the pI of the protein, the excipients, and the ionic strength will infl uence adsorption 
effi ciency. In general, most antigens with a pI below the pH (typically 7.4) will adsorb 
to cationic liposomes while antigens with a pI above the pH will adsorb to anionic 
liposomes (Henriksen-Lacey et al.  2010b ; Henriksen-Lacey et al.  2011 ) The impor-
tance of antigen association to the liposomes tends to vary for different systems. In a 
study by Yanasarn et al. no correlation could be found between the degree of adsorption 
and the immunological response: The anionic liposomes showed a similar immunoge-
nicity as compared to cationic liposomes demonstrating higher levels of association 
(Yanasarn et al.  2011 ). However, for the CAF01 adjuvant, which besides the cationic 
surfactant dimethyldioctadecylammonium (DDA) bromide also contains the immuno-
potentiator trehalose dibehenate, a certain degree of antigen adsorption (>50 %) and 
co-localization of the antigen and the adjuvant has been shown to be important to 
achieve an immune response (Henriksen-Lacey et al.  2010b ; Kamath et al.  2012 ). Yet, 
for many other liposomal formulations little is known about the degree of adsorption or 
its importance, e.g., for a malaria vaccine formulation containing the liposomal system 
AS01 and the malaria antigen RTS,S for which no information is available regarding 
the degree or mechanism(s) of absorption (Fox et al.  2013b ). 

 The degree of adsorption can in principle be determined in the same manner as 
for alum. However, in contrast to alum, which easily sediments upon centrifugation 
liposomes often have a lower density than water and therefore require a larger gravi-
tational force to sediment (Davidsen et al.  2005 ; Henriksen-Lacey et al.  2010a ). 
This practical challenge can be overcome by using ultracentrifugation or by adding 
additional oppositely charged protein which causes liposomes to aggregate, facili-
tating sedimentation (Henriksen-Lacey et al.  2010a ).  

21.4.3     Antigen Integrity 

 As described for emulsions, there are several challenges involved in characterizing 
the antigen in an emulsion and the same is the case when replacing the emulsion with 
liposomes. The stabilized particulate structures induce light scattering artifacts when 
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using most spectroscopy-based techniques and depending on the antigen-to- lipid 
ratio, the colloidal stability of the liposomes may be more or less affected (Hamborg 
et al.  2013a ). Very few studies have addressed antigen integrity in vaccine formula-
tions adjuvanted with liposomes probably due to the analytical challenges described 
above. However by choosing suitable analytical techniques such as DSC, intrinsic 
fl uorescence, and FTIR, antigen integrity can be measured. For tuberculosis antigens 
and model antigens adsorbed to cationic liposomes, no structural changes were 
observed (Hamborg et al.  2013a ; Hamborg et al.  2013b ). To make DSC and FTIR 
studies feasible, the system was modifi ed to contain higher protein concentrations 
than the relevant concentration in vaccines (Table  21.4 ) (<0.1 mg/mL).

21.5         Conclusion 

 In the past decade the approaches taken to describe and characterize subunit vac-
cines have progressed from labelling it an unknown mixture to a well-defi ned for-
mulation. This change has been driven by research activities combining the fi elds of 
immunology and pharmaceutical sciences, along with the development of methods 
to characterize aluminum-based (or subunit) vaccine formulations. Some of these 
methods are today generally accepted, e.g., “determining the degree of antigen 
adsorption.” Yet, several characterization aspects remain to be developed into stan-
dard tools to characterize new vaccine formulations, e.g., antigen integrity which is 
only sometimes feasible to characterize depending on the availability of a suitable 
method. However, the most suitable analytical methods for a given formulation 
must be identifi ed on a case-by-case basis. Also for emulsion-based vaccines which 

   Table 21.4    Analytical tools used to characterize liposome adjuvant–antigen interactions   

 Interaction 
parameter  Techniques  Challenges  Reference 

 Physical 
characteristics 

 Visual appearance  The resolution limit of 
cryo-TEM is 4–5 nm 

 Davidsen et al. 
( 2005 )  Particle size and distribution 

(DLS, NTA) 
 Zeta potential 
 Thermotropic phase behavior 
(DSC) 
 Morphology (cryo-TEM) 

 Adsorption  Sedimentation of the 
liposomes with the bound 
protein followed by a 
quantifi cation of the antigen 
content in the supernatant 

 Requires separation of 
the bound and the 
unbound protein 

 Davidsen et al. 
( 2005 ), 
Hamborg et al. 
( 2013a ), 
Henriksen-Lacey 
et al. ( 2010a ) 

 Structural 
integrity of 
the antigen 

 Intrinsic fl uorescence  Vaccine concentration is 
typically too low 
compared to the 
sensitivity of the method 

 Hamborg et al. 
( 2013a ), 
Hamborg et al. 
( 2013b ) 

 DSC 
 FTIR 
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have been on the market for several years, there is no general consensus for how to 
characterize the formulation and which parameters to characterize. The reason for 
this is probably found in the high degree of complexity of this type of formulation 
and the lack of optimal analytical methods. There are no easy choices and proper 
characterization of subunit vaccines is an evolving fi eld which requires expertise 
and experience in all aspects of its assessment.     
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