

How to Build a
Digital Library

The Morgan Kaufmann Series in Multimedia Information and Systems

Series Editor, Edward A. Fox, Virginia Polytechnic University

How to Build a Digital Library
Ian H. Witten and David Bainbridge

Digital Watermarking
Ingemar J. Cox, Matthew L. Miller, and Jeffrey A. Bloom

Readings in Multimedia Computing and Networking
Edited by Kevin Jeffay and HongJiang Zhang

Introduction to Data Compression, Second Edition
Khalid Sayood

Multimedia Servers: Applications, Environments, and Design
Dinkar Sitaram and Asit Dan

Managing Gigabytes: Compressing and Indexing Documents and Images,
Second Edition
Ian H. Witten, Alistair Moffat, and Timothy C. Bell

Digital Compression for Multimedia: Principles and Standards
Jerry D. Gibson, Toby Berger, Tom Lookabaugh, Dave Lindbergh, and
Richard L. Baker

Practical Digital Libraries: Books, Bytes, and Bucks
Michael Lesk

Readings in Information Retrieval
Edited by Karen Sparck Jones and Peter Willett

Documents are the digital library’s building blocks. It is time to step down from our high-level discussion of digital libraries—what they are, how they are organized, and what they look like—to nitty-gritty details of how to represent the documents theycontain. To do a thorough job we will have to descend even further and look at the rep-

resentation of the characters that make up textual documents and the fonts in which those characters are portrayed. For audio, images and video we examine the interplay between signal quantization, sampling rate and internal redundancy that underlies multimedia representations.Documents are the digital library’s building blocks.

It is time to step down from our high-level discussion of dig Documents are the digital library’s building blocks. It is time to step down from our high-level discussion of digital libraries—what they are, how they are organized, and what they look like—to nitty-gritty details of how to represent the documents they contain. To do a thorough

job we will have to descend even further and look at the representation of the characters that make up textual documents and the fonts in which those characters are portrayed. For audio, images and video we examine the interplay between signal quantization, sampling rate and internal redundancy that underlies multimedia repre-

sentations.Documents are the digital library’s building blocks. It is time to step down from our high-level discussion of dig Documents are the digital library’s building blocks. It is time to step down from our high-level discussion of digital libraries—what they are, how they are organized, and what they look like—to nitty-gritty details of how

to represent the documents they contain. To do a thorough job we will have to descend even further and look at the representation of the characters that make up textual documents and the fonts in which those characters are portrayed. For audio, images and video we examine the interplay between signal quantization, sampling rate

and internal redundancy that underlies multimedia representations.Documents are the digital library’s building blocks. It is time to step down from our high-level discussion of dig Documents are the digital library’s building blocks. It is time to step down from our high-level discussion of digital libraries—what they are, how they are orga-

nized, and what they look like—to nitty-gritty details of how to represent the documents they contain. To do a thorough job we will have to descend even further and look at the representation of the characters that make up textual documents and the fontsin which those characters are portrayed. For audio, images and video we exam-

ine the interplay between signal quantization, sampling rate and internal redundancy that underlies multimedia representations.Documents are the digital library’s building blocks. It is time to step down from our high-level discussion of dig Documents are the digital library’s building blocks. It is time to step down from our high-level dis-

cussion of digital libraries—what they are, how they are organized, and what they look like—to nitty-gritty details of how to represent the documents they contain. To do a thorough job we will have to descend even further and look at the representation of the characters that make up textual documents and the fonts in which those

How to Build a
Digital Library

Ian H. Witten

Computer Science Department
University of Waikato

David Bainbridge

Computer Science Department
University of Waikato

Publishing Director Diane D. Cerra
Assistant Publishing Services Manager Edward Wade
Senior Developmental Editor Marilyn Uffner Alan
Editorial Assistant Mona Buehler
Project Management Yonie Overton
Cover Design Frances Baca Design
Text Design Mark Ong, Side by Side Studios
Composition Susan Riley, Side by Side Studios
Copyeditor Carol Leyba
Proofreader Ken DellaPenta
Indexer Steve Rath
Printer The Maple-Vail Book Manufacturing Group

Designations used by companies to distinguish their products are often claimed as trademarks or registered
trademarks. In all instances in which Morgan Kaufmann Publishers is aware of a claim, the product names
appear in initial capital or all capital letters. Readers, however, should contact the appropriate companies for
more complete information regarding trademarks and registration.

Morgan Kaufmann Publishers
An imprint of Elsevier Science
340 Pine Street, Sixth Floor
San Francisco, CA 94104-3205
www.mkp.com

© 2003 by Elsevier Science (USA)
All rights reserved.
Printed in the United States of America

07 06 05 04 03 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by
any means—electronic, mechanical, photocopying, or otherwise—without the prior written permission of the
publisher.

Library of Congress Control Number: 2002107327
ISBN: 1-55860-790-0

This book is printed on acid-free paper.

Chapter 1 Orientation 1...
Example One: Supporting human development 1..........................
Example Two: Pushing on the frontiers of science 2......................
Example Three: Preserving a traditional culture 3..........................
Example Four: Exploring popular music 4......................................
The scope of digital libraries 5..

Libraries and digital libraries 5..
The changing face of libraries 8...

In the beginning 10...
The information explosion 11...
The Alexandrian principle 14..
Early technodreams 15...
The library catalog 16...
The changing nature of books 17...

Digital libraries in developing countries 20..............................
Disseminating humanitarian information 21.....................................
Disaster relief 21...
Preserving indigenous culture 22...
Locally produced information 22...
The technological infrastructure 23..

The Greenstone software 24..
The pen is mighty: Wield it wisely 28..

Copyright 29...
Collecting from the Web 31..
Illegal and harmful material 34...
Cultural sensitivity 34..

Notes and sources 35...

Chapter 2 Preliminaries 39..
Sources of material 40..

Ideology 41...
Converting an existing library 42..
Building a new collection 43...
Virtual libraries 44...

Bibliographic organization 46..
Objectives of a bibliographic system 47...
Bibliographic entities 48..

Modes of access 55...
Digitizing documents 58...

Scanning 59..
Optical character recognition 61...
Interactive OCR 62...
Page handling 67..
Planning an image digitization project 68...

Inside an OCR shop 69..
An example project 70..

Notes and sources 73...

Chapter 3 Presentation 77...
Presenting documents 81...

Hierarchically structured documents 81...
Plain, unstructured text documents 83...
Page images 86..
Page images and extracted text 88..
Audio and photographic images 89..
Video 91...
Music 92...
Foreign languages 93...

Presenting metadata 96..
Searching 99..

Types of query 100...
Case-folding and stemming 104...
Phrase searching 106...
Different query interfaces 108..

Browsing 112...
Browsing alphabetical lists 113..
Ordering lists of words in Chinese 114...
Browsing by date 116...
Hierarchical classification structures 116...

Phrase browsing 119...
A phrase browsing interface 119..
Key phrases 122...

Browsing using extracted metadata 124.....................................
Acronyms 125...
Language identification 126..

Notes and sources 126...
Collections 126...
Metadata 127..
Searching 127..
Browsing 128..

Chapter 4 Documents 131...
Representing characters 134...

Unicode 137...
The Unicode character set 138..
Composite and combining characters 143...
Unicode character encodings 146..
Hindi and related scripts 149..
Using Unicode in a digital library 154...

Representing documents 155..
Plain text 156..
Indexing 157...
Word segmentation 160...

Page description languages: PostScript and PDF 163..............
PostScript 164..
Fonts 170..
Text extraction 173...
Using PostScript in a digital library 178..
Portable Document Format: PDF 179..
PDF and PostScript 183...

Word-processor documents 184..
Rich Text Format 185...
Native Word formats 191..
LaTeX format 191...

Representing images 194...
Lossless image compression: GIF and PNG 195...............................
Lossy image compression: JPEG 197..
Progressive refinement 203..

Representing audio and video 206..
Multimedia compression: MPEG 207...
MPEG video 210..
MPEG audio 211..
Mixing media 212...
Other multimedia formats 214..
Using multimedia in a digital library 215...

Notes and sources 216...

Chapter 5 Markup and metadata 221............................
Hypertext markup language: HTML 224......................................

Basic HTML 225...
Using HTML in a digital library 228...

Extensible markup language: XML 229.......................................
Development of markup and stylesheet languages 230.....................
The XML metalanguage 232..
Parsing XML 235..
Using XML in a digital library 236...

Presenting marked-up documents 237.......................................
Cascading style sheets: CSS 237..
Extensible stylesheet language: XSL 245..

Bibliographic metadata 253..
MARC 254..
Dublin Core 257..
BibTeX 258...
Refer 260..

Metadata for images and multimedia 261...................................

Image metadata: TIFF 262...
Multimedia metadata: MPEG-7 263...

Extracting metadata 266...
Extracting document metadata 267..
Generic entity extraction 268..
Bibliographic references 270..
Language identification 270..
Acronym extraction 271..
Key-phrase extraction 273..
Phrase hierarchies 277...

Notes and sources 280...

Chapter 6 Construction 283..
Why Greenstone? 285...

What it does 285...
How to use it 288..

Using the Collector 292...
Creating a new collection 293..
Working with existing collections 300...
Document formats 301...

Building collections manually: A walkthrough 302....................
Getting started 303...
Making a framework for the collection 304...
Importing the documents 305...
Building the indexes 307..
Installing the collection 308..

Importing and building 309...
Files and directories 310..
Object identifiers 312..
Plug-ins 313..
The import process 314..
The build process 317..

Greenstone archive documents 319..
Document metadata 320..
Inside the documents 322..

Collection configuration file 323..
Default configuration file 324..
Subcollections and supercollections 325..

Getting the most out of your documents 327.............................
Plug-ins 327..
Classifiers 336..
Format statements 342...

Building collections graphically 349...
Notes and sources 353...

Chapter 7 Delivery 355...
Processes and protocols 356...

Processes 357..
The null protocol implementation 357...
The CORBA protocol implementation 359...

Preliminaries 360...
The macro language 360..
The collection information database 369..

Responding to user requests 372..
Performing a search 375..
Retrieving a document 376...
Browsing a hierarchical classifier 377..
Generating the home page 378..
Using the protocol 378..
Actions 384...

Operational aspects 385...
Configuring the receptionist 386...
Configuring the site 391..

Notes and sources 392...

Chapter 8 Interoperability 393.......................................
More markup 395...

Names 395...
Links 397..
Types 402...

Resource description 408...
Collection-level metadata 410..

Document exchange 413..
Open eBook 414...

Query languages 419..
Common command language 419...
XML Query 422..

Protocols 426...
Z39.50 427...
Supporting the Z39.50 protocol 429...
The Open Archives Initiative 430..
Supporting the OAI protocol 433..

Research protocols 434..
Dienst 435..
Simple digital library interoperability protocol 436..............................
Translating between protocols 437...
Discussion 438...

Notes and sources 440...

Chapter 9 Visions 443..
Libraries of the future 445..

Today�s visions 445..
Tomorrow�s visions 448..
Working inside the digital library 451..

Preserving the past 454..
The problem of preservation 455..
A tale of preservation in the digital era 456..
The digital dark ages 457...
Preservation strategies 459..

Generalized documents: A challenge for the present 462........
Digital libraries of music 462...
Other media 466...
Generalized documents in Greenstone 469.......................................
Digital libraries for oral cultures 471...

Notes and sources 474...

Appendix Installing and operating Greenstone 477...

Glossary 481...

References 489...

Index 499...

About the authors 517...

xiii

Figures

Figure 1.1 Kataayi’s information and communication center. 2
Figure 1.2 The Zia Pueblo village. 3
Figure 1.3 The New York Public Library. 6
Figure 1.4 Rubbing from a stele in Xi’an. 9
Figure 1.5 A page of the original Trinity College Library catalog. 13
Figure 1.6 The Bibliothèque Nationale de France. 15
Figure 1.7 Artist’s conception of the Memex, Bush’s automated library. 16
Figure 1.8 Part of a page from the Book of Kells. 18
Figure 1.9 Pages from a palm-leaf manuscript in Thanjavur, India. 19
Figure 1.10 Māori toki or ceremonial adze, emblem of the Greenstone project.

25
Figure 2.1 Scanning and optical character recognition. 59
Figure 2.2 (a) Document image containing different types of data;

(b) the document image segmented into different regions. 64
Figure 2.3 (a) Double-page spread of a Māori newspaper; (b) enlarged

version; (c) OCR text. 71
Figure 3.1 Finding a quotation in Alice’s Adventures in Wonderland. 78
Figure 3.2 Different-looking digital libraries: (a) Kids’ Digital Library (b)

School Journal Digital Library. 80
Figure 3.3 Village-Level Brickmaking: (a) the book; (b) the chapter on

Moulding; (c, d) some of the pages. 82
Figure 3.4 Alice’s Adventures in Wonderland. 84

Figure 3.5 A story from the School Journal collection: (a) “Never Shout
at a Draft Horse!”; (b) with search term highlighted
(mock-up). 86

Figure 3.6 A historic Māori newspaper: (a) page image; (b) extracted text.
88

Figure 3.7 Listening to a tape from the Oral History collection. 90
Figure 3.8 Finding Auld Lang Syne in a digital music library. 92
Figure 3.9 Foreign-language collections: (a) French (b) Portuguese interface

to an English collection. 94
Figure 3.10 Documents from two Chinese collections: (a) rubbings of Tang

poetry; (b) classic literature. 95
Figure 3.11 An Arabic collection: (a) a document; (b) searching. 96
Figure 3.12 Bibliography display. 97
Figure 3.13 Metadata examples: (a) bibliography record retrieved from the

Library of Congress; (b) description of a BBC television
program. 98

Figure 3.14 Searching for a quotation: (a) query page; (b) query response.
100

Figure 3.15 Choosing search preferences. 104
Figure 3.16 Large-query search interface. 109
Figure 3.17 Query with history. 110
Figure 3.18 Form search: (a) simple; (b) advanced. 111
Figure 3.19 Browsing an alphabetical list of titles: (a) plain list;

(b) with A–Z tags. 113
Figure 3.20 Browsing a list of titles in Chinese: (a) stroke-based browsing;

(b) Pinyin browsing. 115
Figure 3.21 Browsing by date. 117
Figure 3.22 Browsing a classification hierarchy: (a) the beginning;

(b) expanding Sustainable development; (c) expanding
Organizations, institutions. 118

Figure 3.23 (a) Browsing for information about locusts; (b) expanding on
desert locust; (c) document about desert locusts. 120

Figure 3.24 (a) Browsing for information on poisson; (b) INFOPECHE Web
page. 122

Figure 3.25 Browsing interfaces based on key phrases: (a) hierarchical
browser; (b) document explorer. 123

Figure 3.26 Browsing based on information mined from the document
collection: (a) acronyms; (b) language identification. 125

Figure 4.1 Unicode excerpt: Basic Latin and Latin-1 Supplement
(U+0000–U+00FF). 142

Figure 4.2 Unicode excerpts: (a) Latin Extended A (U+0100-U+017F);
(b) Cyrillic (U+0400-U+045F). 143

xiv F I G U R E S

Figure 4.3 Encoding Welcome in (a) Unicode; (b) UTF-32, UTF-16, and
UTF-8. 147

Figure 4.4 Examples of characters in Indic scripts. 150
Figure 4.5 Devanagari script: (a) ISCII; (b) Unicode (U+0900-U+0970);

(c) code table for the Surekh font. 152
Figure 4.6 Page produced by a digital library in Devanagari script. 155
Figure 4.7 Entries for the word search in a biblical concordance. 158
Figure 4.8 Alternative interpretations of two Chinese sentences:

(a) ambiguity caused by phrasing; (b) ambiguity caused by
word boundaries. 161

Figure 4.9 (a) Result of executing a PostScript program; (b) the PostScript
program; (c) Encapsulated PostScript version; (d) PDF version;
(e) network of objects in the PDF version; (f) RTF specification
of the same document. 167–169

Figure 4.10 A PostScript document and the text extracted from it. 174
Figure 4.11 Extracting text from PostScript: (a) printing all fragments

rendered by show; (b) putting spaces between every pair of
fragments; (c) putting spaces between fragments with a
separation of at least five points; (d) catering for variants of the
show operator. 175

Figure 4.12 Reading a bookmark-enabled PDF document with Acrobat. 182
Figure 4.13 Structure of an RTF file. 188
Figure 4.14 (a) LaTeX source document; (b) printed result. 192
Figure 4.15 Encoding and decoding processes in baseline JPEG. 199
Figure 4.16 Transform-coded images reconstructed from a few

coefficients. 200
Figure 4.17 Zigzag encoding sequence. 201
Figure 4.18 Images reconstructed from different numbers of bits:

(a) 0.1 bit/pixel; (b) 0.2 bit/pixel; (c) 1.0 bit/pixel. 202
Figure 4.19 Progressive versus raster transmission. USC-IPI image database.

204
Figure 4.20 8 × 8 tiled template used to generate a PNG interlaced file. 205
Figure 4.21 (a) Frame sequence for MPEG; (b) reordering for sequential

transmission. 211
Figure 5.1 (a) Sample HTML code involving graphics, text, and some special

symbols; (b) snapshot rendered by a Web browser. 226–227
Figure 5.2 The relationship between XML, SGML, and HTML. 230
Figure 5.3 Sample XML document. 233
Figure 5.4 Sample DTD using a parameterized entity. 235
Figure 5.5 Sample XML document, viewed in a Web browser. 237

F I G U R E S xv

Figure 5.6 (a) Basic CSS style sheet for the United Nations Agencies example;
(b) viewing the result in an XML-enabled Web browser. 239

Figure 5.7 (a) CSS style sheet illustrating tables and lists; (b) viewing the
result in an XML-enabled Web browser. 241

Figure 5.8 (a) CSS style sheet illustrating context-sensitive formatting;
(b) viewing the result in an XML-enabled Web browser. 243

Figure 5.9 Using CSS to specify different formatting styles for different
media. 245

Figure 5.10 XSL style sheet for the basic United Nations Agencies
example. 247

Figure 5.11 XSL style sheet illustrating tables and lists. 249–250
Figure 5.12 XSL style sheet illustrating context-sensitive formatting. 251
Figure 5.13 XSL style sheet that sorts UN agencies alphabetically. 253
Figure 5.14 Bibliography item in BibTeX format. 259
Figure 5.15 Bibliography item in Refer format. 260
Figure 6.1 Sign at a Tasmanian blowhole. 284
Figure 6.2 Using the Demo collection. 289
Figure 6.3 Using the Collector to build a new collection. 295–296
Figure 6.4 Collection configuration file created by mkcol.pl. 306
Figure 6.5 Collection icon. 307
Figure 6.6 About page for the dlpeople collection. 309
Figure 6.7 Structure of the Greenstone home directory. 311
Figure 6.8 Steps in the import process. 315
Figure 6.9 Steps in the build process. 317
Figure 6.10 Greenstone Archive Format: (a) Document Type Definition

(DTD); (b) example document. 321
Figure 6.11 Plug-in inheritance hierarchy. 333
Figure 6.12 XML format: (a) Document Type Definition (DTD); (b) example

metadata file. 334
Figure 6.13 Classifiers: (a) AZList; (b) List; (c) DateList; (d) Hierarchy;

(e) collection-specific. 337
Figure 6.14 Part of the file sub.txt. 341
Figure 6.15 Excerpt from the Demo collection’s collect.cfg. 345
Figure 6.16 The effect of format statements on (a) the document itself;

(b) the search results. 347
Figure 6.17 Starting to build a collection. 350
Figure 6.18 Mirroring a site. 351
Figure 6.19 Adding new metadata. 352
Figure 7.1 Overview of a general Greenstone system. 356
Figure 7.2 Greenstone system using the null protocol. 358
Figure 7.3 Graphical query interface to a Greenstone collection. 359

xvi F I G U R E S

Figure 7.4 (a) About This Collection page; (b) part of the macro file that
generates it. 362

Figure 7.5 Illustration of macro precedence. 366
Figure 7.6 Greenstone home page. 367
Figure 7.7 Personalizing the home page: (a) new version; (b) yourhome.dm

file used to create it. 368
Figure 7.8 GDBM database for the Gutenberg collection (excerpt). 370
Figure 7.9 The Golf Course Mystery. 371
Figure 7.10 Browsing titles in the Gutenberg collection. 372
Figure 7.11 Greenstone runtime system. 373
Figure 7.12 Searching the Gutenberg collection for Darcy. 375
Figure 7.13 Using the protocol to perform a search. 380
Figure 7.14 Kids’ Digital Library. 381
Figure 7.15 Implementing the Kids’ Digital Library using the protocol. 382
Figure 7.16 A bibliographic search tool. 383
Figure 7.17 Entry in the usage log. 389
Figure 8.1 Adding an XLink to the UN example. 398
Figure 8.2 Adding extended XLinks to the UN example. 400
Figure 8.3 Directed graph for the XLink of Figure 8.2. 401
Figure 8.4 XML Schema for the UN Agency example. 404
Figure 8.5 XML Schema that demonstrates data typing. 406
Figure 8.6 Modeling this book graphically using RDF. 408
Figure 8.7 XML serialization of the example RDF model. 409
Figure 8.8 RSLP description of the Morrison collection of Chinese books.

412
Figure 8.9 Reading an eBook of Shakespeare’s Macbeth. 413
Figure 8.10 Sample Open eBook package. 416
Figure 8.11 Inside an Open eBook. 418
Figure 8.12 Using the Common Command Language. 421
Figure 8.13 Various FIND commands. 422
Figure 8.14 XML library of publications: (a) main XML file (library.xml); (b)

supporting file (bottle_creek.xml). 424
Figure 8.15 XQuery commands. 425
Figure 8.16 XQuery commands that demonstrate element construction. 426
Figure 8.17 Interface to the Library of Congress using Z39.50. 430
Figure 8.18 OAI GetRecord request and XML response. 432
Figure 8.19 Using the Dienst protocol. 435
Figure 8.20 Using SDLIP to obtain property information. 437
Figure 8.21 Mapping SDLIP calls to the Greenstone protocol. 438
Figure 8.22 Using the SDLIP-to-Greenstone translator. 439
Figure 9.1 New York Public Library reading room. 446

F I G U R E S xvii

Figure 9.2 Digital library in the British National Library. 447
Figure 9.3 A peek inside the digital library at the Kataayi cooperative in

Uganda. 447
Figure 9.4 Xandar’s digital library. 448
Figure 9.5 Carpenter’s workshop. 450
Figure 9.6 Reading a document in a digital library. 452
Figure 9.7 Focusing on part of the document and finding pertinent

literature. 453
Figure 9.8 Focusing on part of the document’s subject matter. 454
Figure 9.9 Medieval literature in the library at Wolfenbüttel. 455
Figure 9.10 Combined music and text search. 464
Figure 9.11 Application of an optical music recognition system. 465
Figure 9.12 Home page of the Humanity Development Library. 466
Figure 9.13 Modeling a book as a physical object. 469
Figure 9.14 First aid in pictures: how to splint a broken arm. 472
Figure A.1 The different options for Windows and Unix versions of

Greenstone. 478

xviii F I G U R E S

xix

Tables

Table 2.1 Spelling variants of the name Muammar Qaddafi. 51
Table 2.2 Title pages of different editions of Hamlet. 52
Table 2.3 Library of Congress Subject Heading entries. 54
Table 2.4 An assortment of devices and their resolutions. 60
Table 4.1 The ASCII character set. 135–136
Table 4.2 Unicode Part 1: The basic multilingual plane. 139–141
Table 4.3 Encoding the Unicode character set as UTF-8. 149
Table 4.4 Segmenting words in English text. 163
Table 4.5 Graphical components in PostScript. 165
Table 4.6 International television formats and their relationship with

CCIR 601. 209
Table 4.7 Upper limits for MPEG-1’s constrained parameter bitstream.

213
Table 5.1 Library catalog record. 254
Table 5.2 MARC fields in the record of Table 5.1. 255
Table 5.3 Meaning of some MARC fields. 256
Table 5.4 Dublin Core metadata standard. 257
Table 5.5 The basic keywords used by the Refer bibliographic format. 261
Table 5.6 TIFF tags. 264
Table 5.7 Titles and key phrases—author- and machine-assigned—for three

papers. 275
Table 6.1 What the icons at the top of each page mean. 289
Table 6.2 What the icons on the search/browse bar mean. 289
Table 6.3 Icons that you will encounter when browsing. 290

Table 6.4 The collection-building process. 303
Table 6.5 Options for the import and build processes. 310
Table 6.6 Additional options for the import process. 316
Table 6.7 Additional options for the build process. 318
Table 6.8 Items in the collection configuration file. 323
Table 6.9 Options applicable to all plug-ins. 328
Table 6.10 Standard plug-ins. 330
Table 6.11 Plug-in–specific options for HTMLPlug. 331
Table 6.12 (a) Greenstone classifiers; (b) their options. 339
Table 6.13 The format options. 343
Table 6.14 Items appearing in format strings. 345
Table 7.1 List of protocol calls. 379
Table 7.2 Action. 385
Table 7.3 Configuration options for site maintenance and logging. 387
Table 7.4 Lines in gsdlsite.cfg. 391
Table 8.1 XLink attributes. 399
Table 8.2 Common Command Language keywords, with abbreviations.

420
Table 8.3 Facilities provided by Z39.50. 428
Table 8.4 Open Archive Initiative protocol requests. 433

xx T A B L E S

xxi

Foreword
by Edward A. Fox

Computer science addresses important questions, offering relevant solutions. Some of
these are recursive or self-referential. Accordingly, I am pleased to testify that a
suitable answer to the question carried in this book’s title is the book itself!
Witten and Bainbridge have indeed provided a roadmap for those eager to build
digital libraries.

Late in 2001, with a draft version of this book in hand, I planned the intro-
ductory unit for my spring class Multimedia, Hypertext, and Information
Access (CS4624), an elective computer science course for seniors. Departmental
personnel installed the Greenstone software on the 30 machines in our Win-
dows lab. Students in both sections of this class had an early glimpse of course
themes as they explored local and remote versions of Greenstone, applied to a
variety of collections. They also built their own small digital libraries—all
within the first few weeks of the course.

When the CS4624 students selected term projects, one team of three asked if
they could work with Roger Ehrich, another computer science professor, to
build a digital library: the Germans from Russia Heritage Society (GRHS)
Image Library. After exploring alternatives, they settled on Greenstone. I gave
them my draft copy of this book and encouraged them throughout the spring of
2002 as they worked with the software and with the two GRHS content collec-
tions: photographs and document images. They learned about documents and
metadata, about macros and images, about installation and setting up servers,
about user accounts and administration, about prototyping and documenta-
tion. They learned how to tailor the interface, to load and index the collection,

and to satisfy the requirements of their client. Greenstone was found useful for
yet another community!

Ian Witten has given numerous tutorials and presentations about digital
libraries, helping thousands understand key concepts, as well as how the Green-
stone software can be of use. Talking with many of those attending these ses-
sions, I have found his impact to be positive and beneficial. This book should
extend the reach of his in-person contact to a wider audience, helping fill the
widely felt need to understand “digital libraries” and to be able to deploy a “digi-
tal library in a box.” Together with David Bainbridge, Witten has prepared this
book, greatly extending his tutorial overviews and drawing upon a long series of
articles from the New Zealand Digital Library Project—some of the very best
papers in the digital library field.

This book builds upon the authors’ prior work in a broad range of related
areas. It expands upon R&D activities in the compression, information retrieval,
and multimedia fields, some connected with the MG system (and the popular
book Managing Gigabytes, also in this book series). It brings in a human touch,
explaining how digital libraries have aided diverse communities, from Uganda
to New Zealand, from New Mexico to New York, from those working in physics
to those enjoying popular music. Indeed, this work satisfies the “5S” checklist
that I often use to highlight the key aspects of digital libraries, involving soci-
eties, scenarios, spaces, structures, and streams.

Working with UNESCO and through the open source community, the New
Zealand team has turned Greenstone into a tool that has been widely deployed
by Societies around the globe, as explained at both the beginning and end of the
book. Greenstone’s power and flexibility have allowed it to serve a variety of
needs and support a range of user tasks, according to diverse Scenarios. Search-
ing and browsing, involving both phrases and metadata and through both user
requests and varied protocols, can support both scholars and those focused on
oral cultures.

With regard to Spaces, Greenstone supports both peoples and resources scat-
tered around the globe, with content originating across broad ranges of time.
Supporting virtual libraries and distributed applications, digital libraries can be
based in varied locations. Spaces also are covered through the 2D user interfaces
involved in presentation, as well as internal representations of content represen-
tation and organization.

Structures are highlighted in the chapters on documents as well as markup
and metadata. Rarely can one find a clear explanation of character encoding
schemes such as Unicode, or page description languages such as PostScript and
PDF, in addition to old standbys such as Word and LaTeX, and multimedia
schemes like GIF, PNG, JPEG, TIFF, and MPEG. Seldom can one find a clearer
discussion of XML, CSS, and XSL, in addition to MARC and Dublin Core. From
key elements (acronyms, phrases, generic entities, and references) to collections,

xxii F O R E W O R D

from lists to classification structure, from metadata to catalogs, the organiza-
tional aspects of digital libraries are clearly explicated.

Digital libraries build upon underlying Streams of content: from characters
to words to texts, from pixels to images, and from tiny fragments to long audio
and video streams. This book covers how to handle all of these, through flexible
plugins and classifiers, using macros and databases, and through processes and
protocols. Currently popular approaches are discussed, including the Open
Archives Initiative, as well as important themes like digital preservation.

Yes, this book satisfies the “5S” checklist. Yes, this book can be used in courses
at both undergraduate and graduate levels. Yes, this book can support practical
projects and important applications. Yes, this book is a valuable reference, draw-
ing upon years of research and practice. I hope, like me, you will read this book
many times, enjoying its engaging style, learning both principles and concepts,
and seeing how digital libraries can help you in your present and future endeavors.

F O R E W O R D xxiii

xxv

Preface

On the top floor of the Tate Modern Art Gallery in London is a meeting room with a
magnificent view over the River Thames and down into the open circle of
Shakespeare’s Globe Theatre reconstructed nearby. Here, at a gathering of
senior administrators who fund digital library projects internationally, one of
the authors stood up to introduce himself and ended by announcing that he was
writing a book entitled How to Build a Digital Library. On sitting down, his
neighbor nudged him and asked with a grin, “A work of fiction, eh?” A few
weeks earlier and half a world away, the same author was giving a presentation
about a digital library software system at an international digital library confer-
ence in Virginia, when a colleague in the audience noticed someone in the next
row who, instead of paying attention to the talk, downloaded that very software
over a wireless link, installed it on his laptop, checked the documentation, and
built a digital library collection of his e-mail files—all within the presentation’s
20-minute time slot.

These little cameos illustrate the extremes. Digital libraries?—colossal invest-
ments, which like today’s national libraries will grow over decades and centuries,
daunting in complexity. Conversely: digital libraries?—off-the-shelf technology;
just add documents and stir. Of course, we are talking about very different things:
a personal library of ephemeral notes hardly compares with a national treasure-
house of information. But don’t sneer at the “library” of e-mail: this collection
gives its user valued searching and browsing facilities, and with half a week’s
rather than half an hour’s work one could create a document management sys-
tem that stores documents for a large multinational corporation.

Digital libraries are organized collections of information. Our experience of
the World Wide Web—vibrant yet haphazard, uncontrolled and uncontrol-
lable—daily reinforces the impotence of information without organization.
Likewise, experience of using online public access library catalogs from the
desktop—impeccably but stiffly organized, and distressingly remote from the
actual documents themselves—reinforces the frustrations engendered by orga-
nizations without fingertip-accessible information. Can we not have it both
ways? Enter digital libraries.

Whereas physical libraries have been around for 25 centuries, digital libraries
span a dozen years. Yet in today’s information society, with its Siamese twin, the
knowledge economy, digital libraries will surely figure among the most impor-
tant and influential institutions of this new century. The information revolution
not only supplies the technological horsepower that drives digital libraries, but
fuels an unprecedented demand for storing, organizing, and accessing informa-
tion. If information is the currency of the knowledge economy, digital libraries
will be the banks where it is invested.

We do not believe that digital libraries are supplanting existing bricks-and-
mortar libraries—not in the near- and medium-term future that this book is
about. And we certainly don’t think you should be burning your books in favor
of flat-panel displays! Digital libraries are new tools for achieving human goals
by changing the way that information is used in the world. We are talking about
new ways of dealing with knowledge, not about replacing existing institutions.

What is a digital library? What does it look like? Where does the information
come from? How do you put it together? Where to start? The aim of this book is
to answer these questions in a plain and straightforward manner, with a strong
practical “how to” flavor.

We define digital libraries as

focused collections of digital objects, including text, video, and audio, along with
methods for access and retrieval, and for selection, organization, and maintenance.

To keep things concrete, we show examples of digital library collections in an
eclectic range of areas, with an emphasis on cultural, historical, and humanitar-
ian applications, as well as technical ones. These collections are formed from
different kinds of material, organized in different ways, presented in different
languages. We think they will help you see how digital libraries can be applied to
real problems. Then we show you how to build your own.

The Greenstone software

A comprehensive software resource has been created to illustrate the ideas in the
book and form a possible basis for your own digital library. Called the Green-

xxvi P R E F A C E

stone Digital Library Software, it is freely available as source code on the World
Wide Web (at www.greenstone.org) and comes precompiled for many popular
platforms. It is a complete industrial-strength implementation of essentially all
the techniques covered in this book. A fully operational, flexible, extensible sys-
tem for constructing easy-to-use digital libraries, Greenstone is already widely
deployed internationally and is being used (for example) by United Nations
agencies and related organizations to deliver humanitarian information in
developing countries. The ability to build new digital library collections, partic-
ularly in developing countries, is being promoted in a joint project in which
UNESCO is supporting and distributing the Greenstone digital library software.

Although some parts of the book are tightly integrated with the Greenstone
software—for it is hard to talk specifically and meaningfully about practical top-
ics of building digital libraries without reference to a particular implementa-
tion—we have worked to minimize this dependence and make the book of inter-
est to people using other software infrastructure for their digital collections.
Most of what we say has broad application and is not tied to any particular
implementation. The parts that are specific to Greenstone are confined to two
chapters (Chapters 6 and 7), with a brief introduction in Chapter 1 (Section 1.4),
and the Appendix. Even these parts are generally useful, for those not planning to
build upon Greenstone will be able to use this material as a baseline, or make use
of Greenstone’s capabilities as a yardstick to help evaluate other designs.

How the book is organized

The gulf between the general and the particular has presented interesting chal-
lenges in organizing this book. As the title says, our aim is to show you how to
build a digital library, and we really do want you to build your own collections
(it doesn’t have to take long, as the above-mentioned conference attendee dis-
covered). But to work within a proper context you need to learn something
about libraries and information organization in general. And if your practical
work is to proceed beyond a simple proof-of-concept prototype, you will need
to come to grips with countless nitty-gritty details.

We have tried to present what you need to know in a logical sequence, intro-
ducing new ideas where they belong and developing them fully at that point.
However, we also want the chapters to function as independent entities that can
be read in different ways. We are well aware that books like this are seldom read
through from cover to cover! The result is, inevitably, that some topics are scat-
tered throughout the book.

We cover three rather different themes: the intellectual challenges of libraries
and digital libraries, the practical standards involved in representing documents

P R E F A C E xxvii

digitally, and how to use Greenstone to build your own collections. Many academic
readers will want a textbook, some a general text on digital libraries, others a book
with a strong practical component that can support student projects.

For a general introduction to digital libraries, read Chapters 1 and 2 to learn
about libraries and library organization, then Chapter 3 to find out about what
digital libraries look like from a user’s point of view, and then skip straight to
Chapter 9 to see what the future holds.

To learn about the standards used to represent documents digitally, skim
Chapter 1; read Chapters 4, 5, and 8 to learn about the standards; and then look
at Chapter 3 to see how they can be used to support interfaces for searching and
browsing. If you are interested in converting documents to digital form, read
Section 2.4 as well.

To learn how to build a digital library as quickly as possible, skim Chapter 1
(but check Section 1.4) and then turn straight to Chapter 6. You will need to con-
sult the Appendix when installing the Greenstone software. If you run into things
you need to know about library organization, different kinds of interfaces, docu-
ment formats, or metadata formats, you can return to the intervening material.

For a textbook on digital libraries without any commitment to specific soft-
ware, use all of the book in sequence but omit Chapters 6 and 7. For a text with a
strong practical component, read all chapters in order—and then turn your stu-
dents loose on the software!

We hate acronyms and shun them wherever possible—but in this area you
just can’t escape them. A glossary of terms is included near the end of the book
to help you through the swamp.

What the book covers

We open with four scenarios intended to dispel any ideas that digital libraries
are no more than a routine development of traditional libraries with bytes
instead of books. Then we discuss the concept of a digital library and set it in the
historical context of library evolution over the ages. One thread that runs
through the book is internationalization and the role of digital libraries in devel-
oping countries—for we believe that here digital libraries represent a “killer
app” for computer technology. After summarizing the principal features of the
Greenstone software, the first chapter closes with a discussion of issues involved
in copyright and “harvesting” material from the Web.

Recognizing that many readers are itching to get on with actually building
their digital library, Chapter 2 opens with an invitation to skip ahead to the start
of Chapter 6 for an account of how to use the Greenstone software to create a
plain but utilitarian collection that contains material of your own choice. This is

xxviii P R E F A C E

very easy to do and should only take half an hour if you restrict yourself to a
demonstration prototype with a small volume of material. (You will have to
spend a few minutes downloading and installing the software first; turn to the
Appendix to get started.) We want you to slake your natural curiosity about
what is involved in building digital collections, so that you can comfortably
focus on learning more about the foundations. We then proceed to discuss
where the material in your library might come from (including the process of
optical character recognition or OCR) and describe traditional methods of
library organization.

As the definition of digital library given earlier implies, digital libraries
involve two communities: end users who are interested in access and retrieval,
and librarians who select, organize, and maintain information collections.
Chapter 3 takes the user’s point of view. Of course, digital libraries would be a
complete failure if you had to study a book in order to learn how to use them—
they are supposed to be easy to use!—and this book is really directed at the
library builder, not the library user. Nevertheless it is useful to survey what dif-
ferent digital libraries look like. Examples are taken from domains ranging from
human development to culture, with audiences ranging from children to library
professionals, material ranging from text to music, and languages ranging from
Māori to Chinese. We show many examples of browsing structures, from simple
lists to hierarchies, date displays, and dynamically generated phrase hierarchies.

Next we turn to documents, the digital library’s raw material. Chapter 4
begins with character representation, in particular Unicode, which is a way of
representing all the characters used in all the world’s languages. Plain text for-
mats introduce some issues that you need to know about. Here we take the
opportunity to describe full-text indexing, the basic technology for searching
text, and also digress to introduce the question of segmenting words in lan-
guages like Chinese. We then describe popular formats for document represen-
tation: PostScript; PDF (Portable Document Format); RTF (Rich Text Format);
the native format used by Microsoft Word, a popular word processor; and
LaTeX, commonly used for mathematical and scientific documents. We also
introduce the principal international standards used for representing images,
audio, and video.

Besides documents, there is another kind of raw material for digital libraries:
metadata. Often characterized as “data about data,” metadata figures prominently
in this book because it forms the basis for organizing both digital and traditional
libraries. The related term markup, which in today’s consumer society we usually
associate with price increases, has another meaning: it refers to the process of
annotating documents with typesetting information. In recent times this has been
extended to annotating documents with structural information—including
metadata—rather than (or as well as) formatting commands. Chapter 5 covers

P R E F A C E xxix

markup and metadata and also explains how metadata is expressed in traditional
library catalogs. We introduce the idea of extracting metadata from the raw text of
the documents themselves and give examples of what can be extracted.

Up to this point the book has been quite general and applies to any digital
library. Chapters 6 and 7 are specific to the Greenstone software. There are two
parts to a digital library system: the offline part, preparing a document collec-
tion for presentation, and the online part, presenting the collection to the user
through an appropriate interface. Chapter 6 describes the first part: how to
build Greenstone collections. This involves configuring the digital library and
creating the full-text indexes and metadata databases that are needed to make it
work. Given the desired style of presentation and the input that is available, you
come up with a formal description of the facilities that are required and let the
software do the rest.

To make the digital library as flexible and tailorable as possible, Greenstone
uses an object-oriented software architecture. It defines general methods for
presentation and display that can be subclassed and adapted to particular collec-
tions. To retain full flexibility (e.g., for translating the interface into different
languages) a macro language is used to generate the Web pages. A communica-
tions protocol is also used so that novel user interface modules can interact with
the digital library engine underneath to implement radically different presenta-
tion styles. These are described in Chapter 7.

In Chapter 8 we reach out and look at other standards and protocols, which
are necessary to allow digital libraries to interoperate with one another and with
related technologies. For example, electronic books—e-books—are becoming
popular, or at least widely promoted, and digital libraries may need to be able to
export material in such forms.

Finally we close with visions of the future of digital libraries and mention
some important related topics that we have not been able to develop fully. We
hope that this book will help you learn the strengths and pitfalls of digital
libraries, gain an understanding of the principles behind the practical organiza-
tion of information, and come to grips with the tradeoffs that arise when imple-
menting digital libraries. The rest is up to you. Our aim will have been achieved
if you actually build a digital library!

Acknowledgments

The best part of writing a book is reflecting on all the help you have had from
your friends. This book is the outcome of a long-term research and develop-
ment effort at the University of Waikato—the New Zealand Digital Library Pro-
ject. Without the Greenstone software the book would not exist, and we begin

xxx P R E F A C E

by thanking Rodger McNab, who charted our course by making the major
design decisions that underlie Greenstone. Rodger left our group some time
ago, but the influence of his foresight remains—a legacy that this book exploits.
Next comes Stefan Boddie, the man who has kept Greenstone going over the
years, who steers the ship and navigates the shoals with a calm and steady hand
on the tiller. Craig Nevill-Manning had the original inspiration for the expedi-
tion: he showed us what could be done, and left us to it.

Every crew member, past and present, has helped with this book, and we
thank them all. Most will have to remain anonymous, but we must mention a
few striking contributions (in no particular order). Te Taka Keegan and Mark
Apperley undertook the Māori Newspaper project described in Chapter 3.
Through Te Taka’s efforts we receive inspiration every day from the magnificent
Māori toki that resides in our laboratory and can be seen in Figure 1.10, a gift
from the Māori people of New Zealand that symbolizes our practical approach
to building digital libraries. Lloyd Smith (along with Rodger and Craig) created
the music collections that are illustrated here. Steve Jones builds many novel
user interfaces, especially ones involving phrase browsing, and some of our key
examples are his. Sally Jo Cunningham is the resident expert on library organi-
zation and related matters. Stuart Yeates designed and built the acronym extrac-
tion module and helped in countless other ways, while Dana McKay worked on
such things as extracting date metadata, as well as drafting the Greenstone man-
uals that eventually turned into Chapters 6 and 7. YingYing Wen was our chief
source of information on the Chinese language and culture, while Malika
Mahoui took care of the Arabic side. Matt Jones from time to time provided us
with sage and well-founded advice.

Many others in the digital library lab at Waikato have made substantial—nay,
heroic—technical contributions to Greenstone. Gordon Paynter, researcher and
senior software architect, built the phrase browsing interface, helped design the
Greenstone communication protocol, and improved many aspects of metadata
handling. Hong Chen, Kathy McGowan, John McPherson, Trent Mankelow,
and Todd Reed have all worked to improve the software. Geoff Holmes and Bill
Rogers helped us over some very nasty low-level Windows problems. Eibe Frank
worked on key-phrase extraction, while Bernhard Pfahringer helped us concep-
tualize the Collector interface. Annette Falconer worked on a Women’s History
collection that opened up new avenues of research. There are many others: we
thank them all.

Tucked away as we are in a remote (but very pretty) corner of the Southern
Hemisphere, visitors to our department play a crucial role: they act as sounding
boards and help us develop our thinking in diverse ways. Some deserve special
mention. George Buchanan came from London for two long and productive
spells. He helped develop the communications protocol and built the CD-ROM

P R E F A C E xxxi

writing module, and continues to work with our team. Elke Duncker, also from
London, advised us on cultural and ethical issues. Dave Nichols from Lancaster
worked on the Java side of Greenstone and, with Kirsten Thomson, helped eval-
uate the Collector interface. The influence of Carl Gutwin from Saskatoon is
particularly visible in the phrase browsing and key-phrase extraction areas.
Gary Marsden from Cape Town also made significant contributions. Dan
Camarzan, Manuel Ursu, and their team of collaborators in Brasov, Romania,
have worked hard to improve Greenstone and put it into the field. Alistair Mof-
fat from Melbourne, Australia, along with many of his associates, was responsi-
ble for MG, the full-text searching component, and he and Tim Bell of
Christchurch, New Zealand, have been instrumental in helping us develop the
ideas expressed in this book.

Special thanks are due to Michel Loots of Human Info in Antwerp, who has
encouraged, cajoled, and occasionally bullied us into making our software avail-
able in a form designed to be most useful to people in developing countries,
based on his great wealth of experience. We are particularly grateful to him for
opening up this new world to us; it has given us immense personal satisfaction
and the knowledge that our technological efforts are materially helping people in
need. We acknowledge the support of John Rose of UNESCO in Paris, Maria
Trujillo of Colombia, and Chico Fernandez-Perez of the FAO in Rome. Rob
Akscyn in Pittsburgh has been a continual source of inspiration, and his wonder-
ful metaphors occasionally enliven this book. Until he was so sadly and unex-
pectedly snatched away from us, we derived great benefit from the boundless
enthusiasm of Ferrers Clark at CISTI, the Canadian national science and technol-
ogy library. We have learned much from conversations with Dieter Fellner of
Braunschweig, particularly with respect to generalized documents, and from
Richard Wright at the BBC in London. Last but by no means least, Harold Thim-
bleby in London has been a constant source of material help and moral support.

We would like to acknowledge all who have translated the Greenstone
interface into different languages—at the time of writing we have interfaces in
Arabic, Chinese, Dutch, French, German, Hebrew, Indonesian, Italian, Māori,
Portuguese, Russian, and Spanish. We are very grateful to Jojan Varghese and
his team from Vergis Electronic Publishing, Mumbai, India, for taking the time
to explain the intricacies of Hindi and related scripts. We also thank everyone
who has contributed to the GNU-licensed packages included in the Greenstone
distribution.

The Department of Computer Science at the University of Waikato has sup-
ported us generously in all sorts of ways, and we owe a particular debt of grati-
tude to Mark Apperley for his enlightened leadership, warm encouragement,
and financial help. In the early days we were funded by the New Zealand Lotter-
ies Board and the New Zealand Foundation for Research, Science and Technol-

xxxii P R E F A C E

ogy, which got the project off the ground. We have also received support from
the Ministry of Education, while the Royal Society of New Zealand Marsden
Fund supports closely related work on text mining and computer music. The
Alexander Turnbull Library has given us access to source material for the Māori
Niupepa project, along with highly valued encouragement.

Diane Cerra and Marilyn Alan of Morgan Kaufmann have worked hard to
shape this book, and Yonie Overton, our project manager, has made the process
go very smoothly for us. Angela Powers has provided excellent support at the
Waikato end. Ed Fox, the series editor, contributed enthusiasm, ideas, and a very
careful reading of the manuscript. We gratefully acknowledge the efforts of the
anonymous reviewers, one of whom in particular made a great number of perti-
nent and constructive comments that helped us improve this book significantly.

Much of this book was written in people’s homes while the authors were trav-
eling around the world, including an extraordinary variety of delightful little
villages—Killinchy in Ireland, Great Bookham and Welwyn North in England,
Pampelonne in France, Mascherode in Germany, Canmore in Canada—as well
as cities such as London, Paris, Calgary, New Orleans, and San Francisco. You all
know who you are—thanks! Numerous institutions helped with facilities,
including Middlesex University in London, Braunschweig Technical University
in Germany, the University of Calgary in Canada, and the Payson Center for
International Development and Technology Transfer in New Orleans. The gen-
erous hospitality of Google during a two-month stay is gratefully acknowledged:
this proved to be a very stimulating environment in which to think about large-
scale digital libraries and complete the book.

All our traveling has helped spin the threads of internationalization and
human development that are woven into the pages that follow. Our families—
Annette, Pam, Anna, and Nikki—have supported us in countless ways, some-
times journeying with us, sometimes keeping the fire burning at home in New
Zealand. They have had to live with this book, and we are deeply grateful for
their sustained support, encouragement, and love.

About the Web site

You can view the book’s full color figures at Morgan Kaufmann’s How to Build a
Digital Library Web site at www.mkp.com/DL. There you will also find two
online appendices: a greatly expanded version of the printed appendix,
Installing and Operating Greenstone, and another appendix entitled Greenstone
Source Code for those who want to delve more deeply into the system. There is
also a novel full-text index to the book that allows you to locate the pages in
which words and word combinations appear.

P R E F A C E xxxiii

1

Orientation
The world of digital libraries

Example One: Supporting human development

Kataayi is a grassroots cooperative organization based in the village of Kakunyu
in rural Uganda. In recent years its enterprising members have built ferro-
cement rainwater catchment tanks, utilized renewable energy technologies such
as solar, wind, and biogas, and established a local industry making clay roofing
tiles—among many other projects. But amid such human resourcefulness,
information resources are scarce. The nearest public phone, fax, library, news-
papers, and periodicals are found in the district town, Masaka, 20 km distant
over rough roads. Masaka boasts no e-mail or Internet access. The difficulty of
getting there effectively discourages local inhabitants from taking advantage of
the information and communication technologies that we take for granted in
developed countries.

The Kataayi community believe that an information and communication cen-
ter will have a major development impact in their area. They laid the groundwork
by acquiring a computer and solar power generation equipment. They estab-
lished an e-mail connection via cellular phone and set up a computer training
program. They constructed a brick building to house the center (Figure 1.1). And
they gathered several books. But they need more information resources—lots
more. They are looking for books covering topics such as practical technology,

Documents are the digital library’s building blocks. It is time to step down

from our high-level discussion of digital libraries—what they are, how they

are organized, and what they look like—to nitty-gritty details of how to rep-

resent the documents they contain. To do a thorough job we will have to

descend even further and look at the representation of the characters that

make up textual documents and the fonts in which those characters are

portrayed. For audio, images and video we examine the interplay

between signal quantization, sampling rate and internal redundancy that

underlies multimedia representations.Documents are the digital library’s

building blocks. It is time to step down from our high-level discussion of dig1

2 O N E | O R I E N T A T I O N

fair-trade marketing, agriculture, environmental conservation, spirituality, and
social justice issues.

Then they discovered digital libraries. The Humanity Development Library is
a compendium of some 1,200 authoritative books and periodicals on just such
topics, produced by many disparate organizations—UN agencies and other
international organizations. In print these books would weigh 340 kg, cost
$20,000, and occupy a small library bookstack. Instead the collection takes the
form of a digital library and is distributed on a single CD-ROM throughout the
developing world at essentially no cost. Related digital library collections cover
topics such as disaster relief, agriculture, the environment, medicine and health,
food and nutrition; more are coming. These digital libraries will increase
Kataayi’s information resources immeasurably, at a miniscule fraction of the
cost of paper books.

Example Two: Pushing on the frontiers of science

Leave this local community and enter a very different one that operates interna-
tionally and on a far larger scale. For the last decade physicists have been using
automated archives to disseminate the results of their research. The first archive,
in high-energy physics, began in the early 1990s. It targeted a tiny group of fewer
than 200 physicists working on a particular set of research problems, who
wanted to communicate their progress. Within months the clientele had grown
fivefold. Numerous other physics databases sprang into existence. Within a few
years these archives served tens of thousands of researchers; by the year 2000
they had grown to 150,000 papers and processed 150,000 requests per day.

The physics archival digital libraries are entirely automated. To submit a
research paper, contributors fill out title, author, and abstract on an electronic
form and transmit the full text of the paper. Upon receipt, which is instanta-
neous, the paper immediately and automatically becomes part of the archive,

Figure 1.1 Kataayi’s information and communication center.

permanently accessible to others. The contributions are not reviewed or moder-
ated in any way, except for a quick scan to ensure that they are relevant to the
discipline. The chaff is simply ignored by the community. The upshot is that
research results are communicated on a dramatically accelerated timescale, and
the expense and waste of hard-copy distribution is eliminated.

For some areas of physics, online archives have already become the dominant
means of communicating research progress. Many people believe that the
scheme has effectively replaced commercial publication as a way of conveying
both topical and archival research information. Why don’t researchers in every
discipline follow suit? Soon, perhaps, they will. Proponents of these online
archives forecast the imminent demise of commercially published research jour-
nals and believe that communicating research results using “chemicals adsorbed
onto sliced processed dead trees” will rapidly become a quaint anachronism. On
the other hand, many disagree: they argue that peer review is still highly valued
in most scientific disciplines, and that even in the small, specialized communi-
ties where they are used, online archives augment rather than replace peer-
reviewed journals.

Example Three: Preserving a traditional culture

The physics archive is centered at the Los Alamos National Laboratory in New
Mexico. Only 36 miles away as the crow flies, but light-years distant in other
respects, is the Zia Pueblo, home of one of a score of Native American tribes in
New Mexico (Figure 1.2). By 1900 the population had fallen to less than 100,

I N T R O D U C T I O N 3

Figure 1.2 The Zia Pueblo village.

and the tribe was expected to die out during the 20th century. With the return of
some land, and medicine and education provided by U.S. government pro-
grams, fortunes have improved and the people now number 600. But a major
problem is facing the Zia Pueblo today: the loss of its language and traditional
culture. Young people are not learning the Zia Pueblo traditions, nor Keresan,
its language. This is a common complaint in traditional societies, overexposed
as we all are to the deafening voice of popular commercial culture blaring every-
where from television, radio, and advertising billboards.

To preserve the Zia language and traditions, a digital library has been pro-
posed. It will include an oral history compilation, with interviews of tribal
elders conducted in their native language. It will include an anthology of tradi-
tional songs, with audio recordings, musical scores transcribed from them, and
lyrics translated by a native speaker. It will include video recordings of tribal
members performing Pueblo dances and ceremonies, along with a synopsis
describing each ceremony and a transcription and translation of the recorded
audio. The goal is to produce a multimedia artifact, the purpose of which is not
so much to archive the material as to make it publicly available and to involve
members of the tribe in collecting and disseminating it.

Example Four: Exploring popular music

Turn from this small, esoteric group in New Mexico to the wide-ranging, disor-
ganized, eclectic panoply of music that is played in the Western world today. In all
human societies music is an expression of popular culture. Different generations
identify strongly with different musical styles and artists. People’s taste in music
reflects their personality and sense of identity: teenagers, in particular, regard
their musical preferences as being strongly bound up with who they are. Music is
a medium that is both popular and international. Pop music culture transcends
social boundaries, be they national borders or socioeconomic groupings. Yet
music also exhibits strong cultural diversity: folk music is specific to a particular
country or region, and different styles characterize local ethnic groupings.

Imagine a digital music library that reflects popular taste, a library that peo-
ple from all walks of life will want to use. From an immense music collection
you can retrieve tunes in many ways: by humming a theme, by recalling words
from the title or lyrics, by giving the composer’s name—or you can specify any
combination of these. Flexible browsing facilities allow you to meander through
the collection, listening to tunes rendered by a synthesizer, or indeed to live
recordings. Almost any song you can think of is there, often in dozens of differ-
ent versions.

Experimental versions of such libraries already exist. A huge volume of musi-
cal material is already on the Web in the form of MIDI files, the musical repre-
sentation used by synthesizers. It is easy to locate and download hundreds of

4 O N E | O R I E N T A T I O N

thousands of files covering a wide range of styles, from classical symphonies to
current pop songs, from jazz classics to ethnic folk songs. In a very real sense
these reflect popular taste, comprising whatever people have decided to spend
their time entering. You will find a score of versions of the Beatles’ Yellow Sub-
marine and Bach’s Air on a G-string. All these tunes can be indexed by automati-
cally identifying melodic themes and extracting text containing the title, artist,
composer, and lyrics. Contentious copyright issues can be avoided by leaving all
source material on its home site: what the library provides is not a repository
but a catalog and means of access. And the Web is a prolific source of other
musical resources, from record stores to guitar tablatures for popular tunes.
Having found a tune, you can listen to samples of recordings by different artists,
obtain a CD, watch a rock video, or buy sheet music.

The scope of digital libraries

These four examples, at different stages of development and deployment, hint at
the immense range of digital libraries. From the perspective of ordinary people,
libraries often seem scholarly and esoteric. But they are not necessarily so. Prac-
tical topics are of interest to practical people like Kataayi’s members. Academic
libraries have as their purpose research and education: high-energy physicists
already base their research activity on electronic document collections. Digital
libraries offer unique ways of recording, preserving, and propagating culture in
multimedia form. Collections that reflect popular taste in music (or film, or
TV) will become a mass-market consumer product, with delivery to teenagers
on miniature, mobile, Web-capable, pocket devices.

An application that makes a sustained market for a promising but underuti-
lized technology is often called a “killer app.” The term was coined in the mid-
1980s for the Lotus spreadsheet, then the major driving force behind the business
market for IBM PCs. (VisiCalc had previously played a similar role in the success
of the Apple II.) The World Wide Web is often described as the Internet’s killer
app. The killer app for digital libraries may well be music collections; in turn, we
will see in Section 1.3 that as far as the developing world is concerned, digital
libraries themselves may be killer apps for computer technology.

1.1 Libraries and digital libraries

Is a digital library an institution or a piece of technology? The term digital library,
like the word library, means different things to different people. Many people
think of libraries as bricks and mortar, a quiet place where books are kept. To pro-
fessional librarians, they are institutions that arrange for the preservation of litera-
ture, their collection, organization, and access. And not just for books: there are

1 . 1 L I B R A R I E S A N D D I G I T A L L I B R A R I E S 5

libraries of art, film, sound recordings, botanical specimens, and cultural objects.
To researchers, libraries are networks that provide ready access to the world’s
recorded knowledge, wherever it is held. Today’s university students of science and
technology, sadly, increasingly think of libraries as the World Wide Web—or
rather, they misguidedly regard the Web as the ultimate library.

But a digital library is not really a “digitized library.” We hope that you, dear
reader, are reading How to Build a Digital Library because you are thinking of
building a digital library. But we do not imagine that you are the director of the
New York Public Library, contemplating replacing that magnificent edifice by a
computer (Figure 1.3). Nor do we want you to think, even for a moment, of
burning your books at home and sitting by the fireside on winter evenings
absorbed in a flat-panel computer display. (Some say that had books been
invented after computers were, they would have been hailed as a great advance.)
Rather, we hope that you are inspired by a vision—perhaps something like the
scenarios above—of achieving new human goals by changing the way that
information is used in the world. Digital libraries are about new ways of dealing
with knowledge: preserving, collecting, organizing, propagating, and accessing
it—not about deconstructing existing institutions and putting them in an elec-
tronic box.

In this book, a digital library is conceived as an organized collection of infor-
mation,

a focused collection of digital objects, including text, video, and audio, along with
methods for access and retrieval, and for selection, organization, and maintenance of
the collection.

6 O N E | O R I E N T A T I O N

Figure 1.3 The New York Public Library.

This broad interpretation of “digital objects”—not just text—is reflected in the
scenarios above. Beyond audio and video we also want to include such things as
3D objects, simulations, dynamic visualizations, and virtual-reality worlds. The
second and third parts of the definition deliberately accord equal weight to user
(access and retrieval) and librarian (selection, organization, and maintenance).
The librarian functions are often overlooked by digital library proponents, who
generally have a background in technology and approach their work from this
perspective rather than from the viewpoint of library or information science.

But selection, organization, and maintenance are central to the notion of a
library. If data is characterized as recorded facts, then information is the set of
patterns, or expectations, that underlie the data. You could go on to define
knowledge as the accumulation of your set of expectations, and wisdom as the
value attached to knowledge. All information is not created equal, and it is wis-
dom that librarians put into the library by making decisions about what to
include in a collection—difficult decisions!—and following up with appropriate
ways of organizing and maintaining the information. Indeed it is exactly these
features that will distinguish digital libraries from the anarchic mess that we call
the World Wide Web.

Digital libraries do tend to blur what has traditionally been a sharp distinc-
tion between user and librarian. The collections in the scenarios above were not,
in the main, created by professional librarians. Nevertheless it is important to
keep in mind the distinction between the two roles. Digital library software sup-
ports users as they search and browse the collection; equally it supports librari-
ans as they strive to provide appropriate organizational structures and maintain
them effectively.

Digital libraries are libraries without walls. But they do need boundaries. The
very notion of a collection implies a boundary: the fact that some things are in
the collection means that others must lie outside it. And collections need a kind
of presence, a conceptual integrity, that gives them cohesion and identity: that is
where the wisdom comes in. Every collection should have a well-articulated
purpose, which states the objectives it is intended to achieve, and a set of princi-
ples, which are the directives that will guide decisions on what should be
included and—equally important—what should be excluded. These decisions
are difficult ones; we return to them in Section 2.1.

Digital collections often present an appearance that is opaque: a screen—typ-
ically a Web page—with no indication of what, or how much, lies beyond. Is it a
carefully selected treasure or a morass of worthless ephemera? Are there half a
dozen documents or many millions? At least physical libraries occupy physical
space, present a physical appearance, and exhibit tangible physical organization.
When standing on the threshold of a large bricks-and-mortar library, you gain a
sense of presence and permanence that reflects the care taken in building and

1 . 1 L I B R A R I E S A N D D I G I T A L L I B R A R I E S 7

maintaining the collection inside. No one could confuse it with a dung heap! Yet
in the virtual world the difference is not so palpable.

We draw a clear distinction between a digital library and the World Wide
Web: the Web lacks the essential features of selection and organization. We also
want to distinguish a digital library from a Web site—even one that offers a
focused collection of well-organized material. Existing digital libraries invari-
ably manifest themselves in this way. But a Web site that provides a wealth of
digital objects, along with appropriate methods of access and retrieval, should
not necessarily be considered a “library.” Libraries are storehouses to which new
material can easily be added. Most well-organized Web sites are created manu-
ally through hand-crafted hypertext linkage structures. But just as adding new
acquisitions to a physical library does not involve delving into the books and
rewriting parts of them, so it should be possible for new material to become a
first-class member of a digital library without any need for manual updating of
the structures used for access and retrieval.

What connects a new acquisition into the structure of a physical library is
partly where it is placed on the shelves, but more important is the information
about it that is included in the library catalog. We call this information meta-
data—data about data—and it will figure prominently in the digital libraries
described in this book.

1.2 The changing face of libraries

Libraries are society’s repositories for knowledge: temples, if you like, of culture
and wisdom. Born in an era where agriculture was humankind’s greatest preoc-
cupation, libraries experienced a resurgence with the invention of printing in
the Renaissance, and really began to flourish when the industrial revolution
prompted a series of inventions that mechanized the printing process—the
steam press, for example.

Libraries have been around for more than 25 centuries, although only one
individual library has survived more than about 5 centuries, and most are far
younger. The exception is a collection of more than 2,000 engraved stone slabs
or “steles,” situated in Xi’an, an ancient walled city in central China with a long
and distinguished history. The collection was established in the Song dynasty
(ca. 1100 A.D.) and has been gradually expanded with new work since that time.
Each stele stands 2 or 3 meters high and is engraved with a poem, story, or his-
torical record (Figure 1.4). For example, Confucius’s works are here, as is much
classic poetry, and an account of how a Christian sect spread eastward to China
along the Silk Road. Chinese writing is an art form, and this library gathers
together the works of many outstanding calligraphers over a period of two mil-
lennia. It also contains the heaviest books in the world!

8 O N E | O R I E N T A T I O N

We think of the library as the epitome of a stable, solid, unchanging institu-
tion, and indeed the silent looming presence of 2,000 enormous stone slabs—
often called the “forest of steles”—certainly projects a sense of permanence. But
this is an exception. Over the years libraries have evolved beyond recognition.
Originally intended for storage and preservation, libraries have refocused to
place users at the center, with increased emphasis on information exchange.

Ancient libraries were only useful to the small minority of people who could
read and were accessible within stringent limitations imposed by social conditions.

1 . 2 T H E C H A N G I N G F A C E O F L I B R A R I E S 9

Figure 1.4 Rubbing from a stele in Xi’an.

Medieval monastic and university libraries held chained copies of books in public
reading areas. Other copies were available for loan, although substantial security
was demanded for each volume borrowed.

The public library movement took hold in the 19th century. Still, the libraries
of the day had bookstacks that were closed to the public: patrons perused the
catalog and chose their books, which were then handed out over the counter. In
continental Europe, most libraries still operate this way. However, progressive
20th century librarians came to realize the advantage of allowing readers to
browse among the shelves and make their own selections, and the idea of open-
access libraries became widely adopted in English-speaking countries, marking
the fulfillment of the principle of free access to the contents of libraries by all—
the symbolic snapping of the links of the chained book.

Today we stand on the threshold of the digital library. The information revo-
lution not only supplies the technological horsepower that drives digital
libraries, but fuels an unprecedented demand for storing, organizing, and
accessing information—a demand which is, for better or worse, economically
driven rather than curiosity driven as in days gone by. If information is the cur-
rency of the knowledge economy, digital libraries will be the banks where it is
invested. Indeed Goethe once said that visiting a library was like entering the
presence of great wealth which was silently paying untold dividends.

In the beginning

The fabled library of Alexandria is widely recognized as the world’s first great
library—although long before it, Assyrian king Assurbanipal (668–626 B.C.)
established a comprehensive, well-organized collection of tens of thousands of
clay tablets, and long before that, Chinese written records began, having a his-
tory extending at least as far back as the 18th century B.C. Created around 300
B.C., the Alexandrian Library grew at a phenomenal rate and, according to leg-
end, contained some 200,000 volumes within 10 years.

The work of the acquisitions department was rather more dramatic than in
the libraries of today. During a famine, for example, the king refused to sell
grain to the Athenians unless he received in pledge the original manuscripts of
some leading authors. The manuscripts were diligently copied and the copies
returned to the owners, while the originals went into the library. By far the
largest single acquisition occurred when Mark Antony stole the rival library of
Pergamum and gave it lock, stock, and barrel—200,000 volumes—to Cleopatra
as a love token; she passed it over to Alexandria for safekeeping.

By the time Julius Caesar set fire to the ships in the harbor of Alexandria in 47
B.C. and the fire spread to the shore, the library had grown to 700,000 volumes.
More than 2,000 years would pass before any other library would attain this size,

10 O N E | O R I E N T A T I O N

notwithstanding technological innovations such as the printing press. Tragically
the Alexandrian library was destroyed. Much remained after Caesar’s fire, but
this was willfully laid waste (according to the Moslems) by Christians in 391 A.D.
or (according to the Christians) by Moslems in 641 A.D. In the Arab conquest,
Amru, the captain of Caliph Omar’s army, would apparently have been willing
to spare the library, but the fanatical Omar is said to have disposed of the prob-
lem of information explosion with the immortal words, “If these writings of the
Greeks agree with the Koran, they are useless and need not be preserved; if they
disagree, they are pernicious and ought to be destroyed.”

The information explosion

Moving ahead a thousand years, let us peek at what was happening in a library
at a major university near the center of European civilization a century or two
after Gutenberg’s introduction of the movable-type printing press around
1450.1 Trinity College, Dublin, one of the oldest universities in Western Europe,
was founded in 1592 by Queen Elizabeth I. In 1600 the library contained a mea-
ger collection of 30 printed books and 10 handwritten manuscripts. This grew
rapidly, by several thousand, when two of the Fellows mounted a shopping
expedition to England, and by a further 10,000 when the library received the
personal collection of Archbishop Ussher, a renowned Irish man of letters, on
his death in 1661.

At the time, however, even this collection was dwarfed by Duke August’s of
Wolfenbüttel, Germany, whose collection had reached 135,000 imprints by his
death in 1666 and was the largest contemporary library in Europe, acclaimed as
the eighth wonder of the world. These imprints were purchased in quires (i.e.,
unbound) and shipped to the duke in barrels, who had them bound in 31,000
volumes with pale parchment bindings that you can still see today. Incidentally
this collection inspired Casanova, after spending seven days visiting the library
in 1764, to declare that “I have sometimes thought that the life of those in
heaven may be somewhat similar to [this visit].” Coming from the world’s most
renowned lover, this is high praise indeed!

Returning to Ireland, another great event in the development of Trinity Col-
lege occurred in 1801, when an act was passed by the British Parliament decree-
ing that a copy of every book printed in the British Isles was to be donated to the
Trinity College Library. This privilege extends to this day and is shared by five
other libraries—the British National Library, the University Libraries of Oxford
and Cambridge, and the National Libraries of Scotland and Wales. This “legal

1 . 2 T H E C H A N G I N G F A C E O F L I B R A R I E S 11

1. The printing press was invented in China much earlier, around five centuries before
Gutenberg.

deposit” law had a much earlier precedent in France, where King François I
decreed in 1537 that a copy of every book published was to be placed in the Bib-
liothèque du Roi (long since incorporated into the French National Library).
Likewise the Library of Congress receives copies of all books published in the
U.S. But we digress.

There were no journals in Ussher’s collection. The first scholarly journals
appeared just after his death: the Journal des Sçavans began in January 1665 in
France, and the Philosophical Transactions of the Royal Society began in March
1665 in England. These two have grown, hydralike, into hundreds of thousands
of scientific journals today—although, as we have seen, some are being threat-
ened with replacement by electronic archives.

In the 18th century the technology of printing really took hold. For example,
more than 30,000 titles were published in France during a 60-year period in the
mid-1700s. The printing press that Gutenberg had developed in order to make
the Bible more widely available became the vehicle for disseminating the Euro-
pean Enlightenment—an emancipation of human thinking from the weight of
authority of the church—some 300 years later.

In the U.S., President John Adams created a reference library for Congress
when the seat of government was moved to the new capital city of Washington
in 1800. He began by providing $5,000 “for the purchase of such books as may
be necessary for the use of Congress—and for putting up a suitable apartment
for containing them therein.” The first books were ordered from England and
shipped across the Atlantic in 11 hair trunks and a map case. The library was
housed in the new Capitol until August 1814, when—in a miniature replay of
Julius Caesar’s exploits in Alexandria—British troops invaded Washington and
burned the building. The small congressional library of some 3,000 volumes
was lost in the fire. Another fire destroyed two-thirds of the collection in 1851.
Unlike Alexandria, however, the Library of Congress has regrown—indeed its
rotunda is a copy of the one in Wolfenbüttel two centuries earlier. In fact today it
contains approximately 22 million volumes.

The information explosion began to hit home in Ireland in the middle of the
19th century. Work started in 1835 on the production of a printed catalog for
the Trinity College Library (Figure 1.5), but by 1851 only the first volume, cov-
ering letters A and B, had been completed. The catalog was finally finished in
1887, but only by restricting the books that appeared in it to those published up
to the end of 1872. Other libraries, however, were wrestling with much larger
volumes of information. By the turn of the century, the Trinity College Library
had around a quarter of a million books, while the Library of Congress had
nearly three times that number. Both were dwarfed by the British Museum (now
part of the British National Library), which at the time had nearly 2 million
books, and the French National Library in Paris with over 2.5 million.

12 O N E | O R I E N T A T I O N

Figure 1.5 A page of the original Trinity College
Library catalog.

The Alexandrian principle

In an early statement of library policy, an Alexandrian librarian was reported as
being “anxious to collect, if he could, all the books in the inhabited world, and,
if he heard of, or saw, any book worthy of study, he would buy it”—and two
millennia later this was formulated as a self-evident principle of librarianship:
It is a librarian’s duty to increase the stock of his library. When asked how large a
library should be, librarians answered, “Bigger. And with provision for further
expansion.”

Only recently has the Alexandrian principle begun to be questioned. In 1974,
following a 10-year building boom then unprecedented in library history, the
Encyclopedia Britannica noted that “even the largest national libraries are . . .
doubling in size every 16 to 20 years” and gently warned that “such an increase
can hardly be supported indefinitely.” And the struggle continues. In the past
decade the national libraries of the U.K., France, Germany, and Denmark all
opened new buildings. The ones in London and Paris are monumental in scale:
their country’s largest public buildings of the century. Standing on the bank of
the Seine River, the Bibliothèque Nationale de France consists of four huge tow-
ers that appear like open books, surrounding a sunken garden plaza (Figure
1.6). The reading rooms occupy two levels around the garden, with bookshelves
encircling them on the outer side.

Sustained exponential growth cannot continue. A collection of essays pub-
lished in 1976 entitled Farewell to Alexandria: Solutions to Space, Growth, and
Performance Problems of Libraries dwells on the problems that arise when
growth must end. Sheer limitation of space has forced librarians to rethink their
principles. Now they talk about “aggressive weeding” and “culling,” “no-growth
libraries,” the “optimum size for collections,” and some even ask, “Could
smaller be better?” In a striking example of aggressive weeding, the library world
was rocked in 1996 by allegations that the San Francisco Public Library had sur-
reptitiously dumped 200,000 books, or 20 percent of its collection, into landfills,
because its new building, though lavishly praised by architecture critics, was too
small for all the books.

The notion of focused collections is replacing the Alexandrian model that the
ideal library is vast and eternally growing. The notion of service to library users
is replacing the idea of a library as a storehouse of all the world’s knowledge.
These movements will surely be reinforced by the experience of the World Wide
Web, which amply illustrates the anarchy and chaos that inevitably result from
sustained exponential growth. The events of the last quarter century have even
shaken librarians’ confidence in the continued existence of the traditional
library. Defensive tracts with titles like Future Libraries: Dreams, Madness and
Reality deride “technolust” and the empty promises of the technophiles.

14 O N E | O R I E N T A T I O N

Early technodreams

Let us, for a moment at least, give an ear to the technophiles. Over 60 years ago,
science fiction writer H. G. Wells was promoting the concept of a “world brain”
based on a permanent world encyclopedia which “would be the mental back-
ground of every intelligent [person] in the world. It would be alive and growing
and changing continually under revision, extension and replacement from the
original thinkers in the world everywhere,” and he added sardonically that “even
journalists would deign to use it.”

Eight years later, Vannevar Bush, the highest-ranking scientific advisor in the
U.S. war effort, urged us to “consider a future device for individual use, which is
a sort of mechanized private file and library . . . a device in which an individual

1 . 2 T H E C H A N G I N G F A C E O F L I B R A R I E S 15

Figure 1.6 The Bibliothèque Nationale de France.
Dominique Perrault, architect; © Alain Goustard,
photographer.

stores all his books, records, and communications, and which is mechanized so
that it may be consulted with exceeding speed and flexibility” (Figure 1.7).

Fifteen years later, J. C. R. Licklider, head of the U.S. Department of Defense’s
Information Processing Techniques Office, envisioned that human brains and
computing machines would be tightly coupled together and supported by a “net-
work of ‘thinking centers’ that will incorporate the functions of present-day
libraries together with anticipated advances in information storage and retrieval.”

Toward the end of the 20th century we became accustomed to hearing similar
pronouncements from the U.S. Presidential Office, rising above the road noise
of the information superhighway.

The library catalog

Wells, Bush, Licklider, and other visionary thinkers were advocating something
very close to what we might now call a virtual library. To paraphrase the dictio-
nary definition, something is virtual if it exists in essence or effect though not in
actual fact, form, or name. A virtual library is a library for all practical purposes,
but a library without walls—or books.

In truth a virtual representation of books has been at the core of libraries
right from the beginning: the catalog. Even before Alexandria, libraries were

16 O N E | O R I E N T A T I O N

Figure 1.7 Artist’s conception of the Memex, Bush’s automated library. Courtesy of
Mary and Alfred Crimi Estate.

arranged by subject and had catalogs that gave the title of each work, the num-
ber of lines, the contents, and the opening words. In 240 B.C. an index was pro-
duced to provide access to the books in the Alexandrian library that was a classi-
fied subject catalog, a bibliography, and a biographical dictionary all in one.

A library catalog is a complete model that represents, in a predictable man-
ner, the universe of books in the library. Catalogs provide a summary of, if not a
surrogate for, library contents. Today we call this “metadata.” And it is highly
valuable in its own right. As a late 19th century librarian wrote, “Librarians clas-
sify and catalog the records of ascertained knowledge, the literature of the whole
past. In this busy generation, the librarian makes time for his fellow mortals by
saving it. And this function of organizing, of indexing, of time-saving and
thought-saving, is associated peculiarly with the librarian of the 19th century.”

Other essential aids to information-seeking in libraries are published bibliogra-
phies and indexes. Like catalogs, these are virtual representations—metadata—
and they provide the traditional means of gaining access to journal articles, gov-
ernment documents, microfiche and microfilm, and special collections.

A possible interpretation of “digital library”—which is quite different from
the concept developed in this book—is a system designed to automate traditional
library functions by helping librarians to manage physical books. Computer-
searchable catalogs are standard in libraries today. And there are many other
functions that are automated: acquisitions, loans, recalls, interlibrary services,
and library planning. However, this kind of library automation system is not
closely related to the digital libraries we encountered in the opening scenarios.

The changing nature of books

The technophile visionaries whose dreams we shared above were not talking
about a virtual library in the sense of an automated catalog. They wanted the
full text of all documents in the library to be automated, not just a metadata sur-
rogate. They took it for granted that books are adequately represented by the
information they contain: the physical object is of no consequence.

The information in library catalogs and bibliographies can be divided into
two kinds: the first having reference to the contents of books; the second treat-
ing their external character and the history of particular copies. Intellectually
only the abstract content of a book—the information contained therein—seems
important. But the strong visceral element of books cannot be neglected and is
often cited as a reason why book collections will never become “virtual.”

Bibliophiles love books as much for the statements they make as objects as for
the statements they contain as text. Indeed early books were works of art. The steles
in Xi’an are a monumental example, studied as much for their calligraphic beauty
as for the philosophy, poetry, and history they record, a priceless, permanent record

1 . 2 T H E C H A N G I N G F A C E O F L I B R A R I E S 17

of earlier civilizations. The Book of Kells in Ireland, produced by Irish monks at the
scriptorium of Iona about 1,200 years ago, is one of the masterpieces of Western art.
Figure 1.8 shows part of a page and illustrates the extraordinary array of pictures,
interlaced shapes, and ornamental details. Indeed Giraldus Cambrensis, a 13th
century scholar, fancifully wrote that “you might believe it was the work of an angel
rather than a human being.”

Beautiful books have always been highly prized for their splendid illustra-
tions, for colored impressions, for heavily decorated illuminated letters, for
being printed on uncommon paper, or uncommon materials, for their unusual
bindings, and for their rarity and historic significance. In India one can see
ancient books—some 2,000 years old—written on palm leaves, bound with
string threaded through holes in the leaves. Figure 1.9 shows an example, which
includes a picture of a deity (Sri Ranganatha) reclining with his consort on a
serpent (Adishesha). In the castle library of Königsburg are 20 books bound in
silver, richly adorned with large and beautifully engraved gold plates. Whimsical
bindings abound: a London bookseller had Fox’s History of King James II bound

18 O N E | O R I E N T A T I O N

Figure 1.8 Part of a page from the Book of Kells.

in fox skin. History even provides many instances of books bound in human
skin. It is hard to resist just one macabre example: a book in the Boston
Athenaeum collection.

James Allen, alias George Walton, was a burglar, bank robber, horse thief and highway-
man when, in 1833, he attacked John Fenno Jr. on the Massachusetts Turnpike with
intent to rob. Fenno resisted his attacker and was shot, but saved by a suspender buckle.
Allen fled, was caught and sent to prison where he wrote a boastful autobiographical

1 . 2 T H E C H A N G I N G F A C E O F L I B R A R I E S 19

Figure 1.9 Pages from a palm-leaf manuscript
in Thanjavur, India. Thanjavur Maharaja
Serfoji’s Sarasvat Mahal Library, Thanjavur,
Tamil Nadu (1995).

account of his life of crime called The Highwayman. Admiring Fenno’s bravery, he
asked that Fenno be given a copy of his book bound in the author’s skin.

On July 17, 1837 upon Allen’s death, Massachusetts General Hospital “accepted his
body for anatomical and pathological studies” and removed enough skin to provide
the covering of his book. Bookbinder Peter Low treated the skin to look like gray deer-
skin and edged it with gold tooling. It is embossed with the Latin inscription “Hic
Liber Waltonis Cute Compactus Est” (This book by Walton is bound in his own skin).

Those who feel nauseous may find this the best argument of all for digital
libraries!

Catalogs and bibliographies comprise metadata: virtual information about
books. In the kind of virtual library sketched in the early technodreams above,
the very concept of the book as an individual physical entity seems to be at risk.
However, technology has advanced to the point where it need not be: surrogates
can substitute for physical works. A picture of the cover may be displayed as a
“tangible”—or at least memorable—emblem of the physical book itself. Users
can browse the collection using graphical techniques of virtual reality. Maybe
they will even be able to caress the virtual cover, smell the virtual pages. But it is
unlikely, perhaps inappropriate, that readers will love simulated books the way
that bibliophiles love real ones, and eventually surrogates may become anachro-
nistic and fade away. For what really matters in libraries is information, even
knowledge. Ask Kataayi.

1.3 Digital libraries in developing countries

It sometimes happens that technological advances in developing countries
leapfrog those in developed ones. This occurs because established infrastructure,
a strong and necessarily conservative force, is absent. Alternative sources such as
solar energy are widely used in place of traditional power generation and distrib-
ution, while many developing countries have experienced far higher levels of
mobile phone growth than developed ones. Digital libraries provide another
example, compensating for the failure of traditional distribution mechanisms to
address local requirements and deliver information where it is needed.

Many current technology trends are not benefiting developing countries—
indeed, some bring serious negative consequences. Just as industrialization and
globalization have increased the gulf between haves and have-nots, so informa-
tion and communications technology is creating a chasm between “knows” and
“know-nots.” By and large, developing countries are not participating in the
information revolution, although knowledge is critical for development. The
knowledge gap between rich and poor is widening.

20 O N E | O R I E N T A T I O N

In the developing world digital libraries provide perhaps the first really com-
pelling raison d’être for computing technology. Priorities in these countries
include health, food, hygiene, sanitation, and safe drinking water. Though com-
puters are not a priority, simple, reliable access to targeted information meeting
these basic needs certainly is. Digital libraries give system developers a golden
opportunity to help reverse the negative impact of information technology on
developing countries.

Disseminating humanitarian information

Traditional publishing and distribution mechanisms have tragically failed the
developing world. Take medicine, a field of great importance in this context.
Whereas a U.S. medical library subscribes to about 5,000 journals, the Nairobi
University Medical School Library, long regarded as a flagship center in East
Africa, received just 20 journals in 1998 (compared with 300 a decade before).
In Brazzaville, Congo, the university has only 40 medical books and a dozen
journals, all from before 1993, and the library in a large district hospital consists
of a single bookshelf filled mostly with novels.

Digital libraries, by decoupling production and distribution costs from intel-
lectual property charges, offer a desperately needed lifeline. A wealth of essential
humanitarian material is produced by various international organizations, such
as the United Nations, as well as national units such as the U.S. Peace Corps.
Being produced by internationally oriented, nonprofit organizations, funded by
all people on the planet, this information is—at least in principle—in the public
domain: it could be made freely available in the form of networked digital
libraries. While those 5,000 medical journals cannot be distributed for free
because copyright on the articles is held by commercial publishers, this problem
does not arise in many areas of physics, as we have seen. The world is changing,
and the rate of change will accelerate.

Disaster relief

Natural disasters such as earthquakes or hurricanes, and man-made ones such
as terrorist attacks or nuclear accidents, demand immediate and informed
response. Disaster relief situations are complex and are addressed by a broad
range of players in a variety of organizations acting in parallel. They present an
overwhelming need for information: information that is tailored for the prob-
lem at hand, organized so that it can be accessed effectively, and distributed even
in the absence of an effective network infrastructure. The response to a crisis is
characterized by the generation of large amounts of unstructured multimedia

1 . 3 D I G I T A L L I B R A R I E S I N D E V E L O P I N G C O U N T R I E S 21

data that must be acquired, processed, organized, and disseminated sufficiently
rapidly to be of use to crisis responders.

Digital library technology allows organized collections of information,
graced with comprehensive searching and browsing capabilities, to be created
rapidly. Intelligence specific to the nature of a disaster, the geographical region,
and the logistic resources available for the relief effort can all be gathered into a
built-to-order digital library collection that combines targeted knowledge with
general medical and sanitary information.

Preserving indigenous culture

Libraries and their close relatives, museums, have always been involved in pre-
serving culture. These institutions collect literature and artifacts and use them
to disseminate knowledge and understanding of different times and cultures.
Digital libraries, however, open up the possibility of flexible and coherent multi-
media collections that are both fully searchable and browsable in multiple
dimensions—and permit more active participation by indigenous people in
preserving and disseminating their own culture. The scenario described above
with the Zia Pueblo provides a good example. The principal participants here
are by definition the indigenous people themselves: the technological world
assumes the role of catalyst, midwife, and consumer; for once indigenous cul-
ture has been recorded, it will find a fascinated, sympathetic, and perhaps influ-
ential audience elsewhere.

Information about indigenous culture takes many guises: oral history in the
form of narration and interviews; artifacts in the form of images and descrip-
tions; songs in the form of audio recordings, music transcriptions, and lyrics;
dances and ceremonies in the form of video, audio, written synopses, and inter-
pretations. Multimedia digital libraries allow such information to be integrated,
recorded, browsed, and searched, all within a uniform user interface.

Because language is the vehicle of thought, communication, and cultural iden-
tity, a crucial feature of digital libraries for culture preservation is the ability to
work in local languages. This strengthens individual cultures, promotes diversity,
and reduces the dominance of English in the global information infrastructure.

Locally produced information

In digital library applications for culture preservation, the relevant information
is, of necessity, readily available locally. But there are countless other scenarios
that involve creating and distributing locally produced information collections.
At first glance one might think that there is such a wealth of content on the Inter-
net that surely there must be something of benefit to everyone. However, this

22 O N E | O R I E N T A T I O N

ignores not only the problem of language—most information is available only in
English or other major languages—but also the fact that there are many local
community content issues that contribute toward effective information use.

Teachers prepare educational material that addresses specific community
problems, and they adapt published material to employ local examples. Indige-
nous people have invaluable medicinal knowledge based on local plants or long-
acquired knowledge of the cultivation and protection of local species. Such
knowledge is vital: more than half of the world’s most frequently prescribed
drugs are derived from plants or synthetic copies of plant chemicals—and this
trend is growing.

Local groups assemble information collections that describe and reflect
neighborhood conditions, providing new material for sociocultural studies, fos-
tering cultural exchange while retaining diversity, and increasing international
understanding. Web sites for community and social development might include
information on health problems endemic to a particular African community, or
information on commodity prices of a particular good traded in Brazilian mar-
kets, or examples of curricular projects suitable for use in Indian schools.

The development of content that addresses the specific needs of a particular
community stimulates the demand for information technology among that
community. Getting learners to produce their own content is one of the best
ways to exploit information technology in learning situations. Not only does it
improve the learning experience, it also creates material that benefits the com-
munity. Teachers and students can work together to create their own content
that has value for the community, and for the nation too.

Effective human development blossoms from empowerment rather than gift-
ing. As the Chinese proverb says, “Give a man a fish and he will eat for a day;
teach him to fish and he will eat for the rest of his days.” Disseminating informa-
tion originating in the developed world is a useful activity for developing coun-
tries, as Kataayi members will testify. But a more effective strategy for sustained
long-term human development is to disseminate the capability of creating
information collections, rather than the collections themselves. This will allow
developing countries to participate actively in our information society, rather
than observing it from outside. It will stimulate the creation of new industry.
And it will help ensure that intellectual property remains where it belongs, in
the hands of those who produce it.

The technological infrastructure

Computers are not so hard to come by in developing countries as one might
think. Their extraordinarily rapid rate of obsolescence, coupled with the devel-
oped world’s voracious appetite for the latest and greatest, makes low-end

1 . 3 D I G I T A L L I B R A R I E S I N D E V E L O P I N G C O U N T R I E S 23

machines essentially free: instead of clogging landfill sites many (though cer-
tainly not enough) find their way to developing countries. A 1998 World Bank
survey of developing countries found 3 to 30 PCs per 1,000 people, depending
on the poverty level. With growth predicted at 20 percent per year, we estimate
that at the turn of the millennium there were fifty million PCs in developing
countries, serving a population of four billion.

A more serious obstacle is that network access varies widely around the
globe. Whereas in 1998 more than a quarter of the U.S. population was surfing
the Internet, the figure for Latin America and the Caribbean was 0.8 percent, for
Sub-Saharan Africa 0.1 percent, and for South Asia 0.04 percent. Schools and
hospitals in developing countries are poorly connected. Even in relatively well-
off South Africa, many hospitals and 75 percent of schools have no telephone
line. Universities are better equipped, but even there up to 1,000 people can
depend on just one terminal. The Internet is failing the developing world. While
global satellite communication networks may eventually bring relief, this takes
time and money.

Because of the difficulty of network access, the structure and organization of
digital libraries should be separated from their distribution media. Physical dis-
tribution of information on recordable devices can provide an attractive alter-
native to networks. Compact disk read-only memory, CD-ROM, is a practical
format for areas with little Internet access. Their 650 Mb capacity can hold a
useful volume of information, such as the 1,200 fully illustrated and fully
indexed books in the Humanity Development Library. Most of the space in a
collection such as this is consumed by pictures: several times as many books
could be included if they were not so lavishly illustrated. CDs are giving way to
digital versatile disk, DVD, which can hold from 5 to 20 Gb of data. A year’s sup-
ply of those 5,000 medical journals mentioned above could fit, fully indexed, on
a single DVD. And save lives.

1.4 The Greenstone software

This is a practical book about how to build a digital library. While the concepts
developed in the book are quite general, we keep it tightly focused and practi-
cally oriented by using a particular digital library system throughout the book:
the Greenstone Digital Library software from the New Zealand Digital Library
Project at the University of Waikato. Illustrations in the book are nearly all taken
from collections built with this software, or with associated software tools: this
serves to keep our feet firmly on the ground. For example, three of the four
opening scenarios use Greenstone: the Humanity Development Library is built
with it (along with many other humanitarian collections), the Zia Pueblo collec-

24 O N E | O R I E N T A T I O N

tion is a planned project that will use it (along with other heritage-preservation
projects), and the popular music library is a research project that centers around
it (along with many other music library activities). The fourth, the physics
archives, could use Greenstone quite easily—as similar collections readily testify.

The Greenstone software provides a convenient way of organizing informa-
tion and making it available over the Internet. A collection of information com-
prises several (typically several thousand, or several million) documents. A doc-
ument, in turn, is any information-bearing message in electronically recorded
form. Documents are the fundamental unit from which information collections
are built, although they may have their own substructure and associated files.
Documents generally comprise text, although they may be images, sound files,
or video. A collection may contain many different types of documents. Each col-
lection provides a uniform interface through which all documents in it can be
accessed—although the way that documents are displayed will depend on their

1 . 4 T H E G R E E N S T O N E S O F T W A R E 25

Figure 1.10 Māori toki or ceremonial adze, emblem of
the Greenstone project.

medium and format. A library generally includes many different collections,
each organized differently—although there is a strong family resemblance in
how collections are presented.

Making information available using this system is far more than just “putting
it on the Web.” The collection becomes maintainable, searchable, and browsable.
Prior to presentation, each collection undergoes a building process that, once
established, is completely automatic. This process creates all the structures that
are used at runtime for accessing the collection. Searching is based on various
indexes involving full text and metadata. Browsing is based on various metadata
and on phrase structures, and other information, abstracted from the full text of
the documents. Support structures for both are created during the building oper-
ation. When new material appears, it can be fully incorporated into the collec-
tion by rebuilding.

To address the exceptionally broad requirements of digital libraries, the
Greenstone system is public and extensible. It is issued under the GNU General
Public License, and, in the spirit of open-source software, users are invited to
contribute modifications and enhancements. Only through an international
cooperative effort will digital library software become sufficiently comprehen-
sive to meet the world’s needs. Currently the Greenstone software has been used
by several United Nations agencies, including the Food and Agriculture Organi-
zation in Rome, UNESCO in Paris, the United Nations University in Tokyo, and
the Centre for Human Settlements (Habitat) in Nairobi. It is used at sites
throughout the world, and interfaces and collections exist in languages ranging
from Portuguese to Chinese, from Māori to Arabic. Collections range from
newspaper articles to technical documents, from educational journals to oral
history, from visual art to folk songs. Further details, and many examples, can
be obtained over the Internet from www.nzdl.org.

Throughout the book we will learn about the needs of digital libraries and
how the Greenstone software helps to meet them. To give an idea of the breadth
of these requirements, here is a list of features of the software.

Collections are accessed through a standard Web browser (e.g.,
Netscape or Internet Explorer). The browser is used for both local and
remote access.

Collections can be served on either Windows (3.1/3.11, 95/98/ME/,
NT/2000, and XP) or Unix (for example, Linux or SunOS); any of these
can operate as a Web server.

The user can search the full text of the documents or choose among
indexes built from different parts of the documents. Some collections
have an index of full documents, an index of sections, an index of
titles, and an index of authors, each of which can be searched for par-
ticular words or phrases. Results can be ranked by relevance or
sorted by a metadata element.

Permits full-text and fielded
search

Runs on Windows and Unix

Accessible via Web browser

26 O N E | O R I E N T A T I O N

The user can browse lists of authors, lists of titles, lists of dates, clas-
sification structures, and so on. Different collections offer different
browsing opportunities, and even within a collection a broad variety
of browsing facilities are available. Browsing and searching inter-
faces are constructed during the building process, according to col-
lection configuration information.

All collections are easy to maintain. Searching and browsing struc-
tures are built directly from the documents themselves. No links are
inserted by hand. This means that if new documents in the same for-
mat become available, they can be merged into the collection auto-
matically. However, existing links in the original documents, leading
both within and outside the collection, are preserved.

Metadata may be associated with each document, or with individual
sections within documents, and forms the raw material for browsing
indexes. It must be provided explicitly or derivable automatically from
the source documents. Standard schemes for expressing metadata
are used, with provision for extensions as necessary.

“Plug-ins” can be written to accommodate new document types.
Plug-ins currently exist for plain text files, HTML documents,
Microsoft Word, RTF, PDF, PostScript, Powerpoint, and Excel files,
e-mail, some proprietary formats, and for generic tasks such as recur-
sively traversing directory structures containing such documents. A
collection may have source documents in different forms. To build
browsing indexes from metadata, an analogous scheme of “classi-
fiers” is used: classifiers create browsing indexes of various kinds,
based on metadata.

Unicode is used throughout the software, allowing any language to be
processed in a consistent manner. To date, collections have been built
containing French, Spanish, Māori, Russian, Chinese, Arabic, and
English. On-the-fly conversion is used to convert from Unicode to an
alphabet supported by the user’s Web browser.

The interface can be presented in multiple languages. Currently the
system is available in Arabic, Chinese, Dutch, French, German,
Hebrew, Indonesian, Italian, Māori, Portuguese, Russian, Spanish,
and English. New languages can be added easily.

Greenstone collections can contain text, pictures, audio, and even
video clips. Most nontextual material is either linked to the textual
documents or accompanied by textual descriptions (such as figure
captions) to allow full-text searching and browsing. However, the
architecture permits implementation of plug-ins and classifiers for
nontextual data.

Hierarchical phrase and key-phrase indexes of text or any metadata
can be created using standard classifiers.

Collections can contain millions of documents, making the Green-
stone system suitable for collections up to several gigabytes.

Designed for multi-gigabyte
collections

Allows hierarchical browsing

Can handle collections of text,
pictures, audio, and video

Can display user interface in
multiple languages

Can handle documents in any
language

Capabilities can be extended
by plug-ins

Makes use of available
metadata

Creates access structures
automatically

Offers flexible browsing
facilities

1 . 4 T H E G R E E N S T O N E S O F T W A R E 27

Compression is used to reduce the size of the indexes and text. Small
indexes have the added advantage of faster retrieval.

A built-in access control mechanism allows collections, and even
individual documents, to be restricted to authorized users using a
password protection scheme.

All queries made to every Greenstone collection can be recorded in
user logs.

An “administrative” function enables specified users to authorize
other users to build collections, have access to protected collections,
examine the composition of all collections, turn logging on and off,
and so on.

Collections can be updated and new ones brought online at any time,
without bringing the system down; the process responsible for the
user interface will notice (through periodic polling) when new collec-
tions appear and will add them to the list presented to the user. End
users can easily build new collections in the same style as existing
ones from material on the Web or in local files—or both.

Greenstone collections can be published, in precisely the same form,
on a self-installing CD-ROM. The interaction is identical to accessing
the collection on the Web (Netscape is provided on each disk)—
except that response times are faster and more predictable.

A flexible process structure allows different collections to be served
by different computers, yet be presented to the user in the same way,
on the same Web page, as part of the same digital library. The Z39.50
protocol is fully supported, both for accessing external servers and
for presenting Greenstone collections to external clients.

The Greenstone Digital Library is open-source software, available
from the New Zealand Digital Library (www.nzdl.org) under the terms
of the GNU General Public License. The software includes everything
described above: Web serving, CD-ROM creation, collection building,
multilingual capability, and plug-ins and classifiers for a variety of dif-
ferent source document types. It includes an autoinstall feature to
allow easy installation on both Windows and Unix. In the spirit of
open-source software, users are encouraged to contribute modifica-
tions and enhancements.

1.5 The pen is mighty: Wield it wisely

Collecting information and making it widely available to others has far-ranging
social implications, and those who build digital libraries must act responsibly by
making themselves aware of the legal and ethical issues that surround their par-
ticular application. Copyright is the place to begin.

Everything you see, you
can get

Supports distributed
collections

Publishes collections on
CD-ROM

Updates and adds new
collections dynamically

Provides an administrative
function

Offers user logging

Permits authentication of users

Uses compression techniques

28 O N E | O R I E N T A T I O N

Copyright

Digital libraries can easily be made far more accessible than physical ones. And
the fact that they are widely accessible brings its own problems: access to the
information in digital libraries is generally less controlled than it is in physical
collections. Putting information into a digital library has the potential to make
it immediately available to a virtually unlimited audience.

This is great news. For the user, information around the world becomes avail-
able wherever you are. For the author, a greater potential audience can be
reached than ever before. And for publishers, new markets open up that tran-
scend geographical limitations. But there is a flip side. Authors and publishers
ask how many copies of a work will be sold if networked digital libraries enable
worldwide access to an electronic copy of it. Their nightmare is that the answer
is one. How many books will be published online if the entire market can be
extinguished by the sale of one electronic copy to a public library?

How will publishers react to this situation? The threat for users is that pub-
lishers will adopt technical and legal means to implement restrictive policies
governing access to the information they sell—for example, by restricting access
to the purchaser (no lending to friends) or imposing expiry dates (no perma-
nent collections). The net result could easily damage the flow of information far
beyond the current status quo.

Possessing a copy of a document certainly does not constitute ownership in
terms of copyright law. Though there may be many copies, each document has
only one copyright owner. This applies not just to physical copies of books, but
to computer files too, whether they have been digitized from a physical work or
created electronically in the first place—“born digital.” When you buy a copy of
a document, you can resell it, but you certainly do not buy the right to redistrib-
ute it. That right rests with the copyright owner.

Who owns a particular work? The initial copyright owner is the creator,
unless the work is made for hire. Works made for hire are ones created by
employees within the scope of their employment, or under a specific contract
that explicitly designates the work as being made for hire, in which case it is the
employer or contracting organization that owns the copyright. The owner can
transfer or “assign” copyright to another party through a specific contract,
made in writing and signed by the owner.

Copyright protection begins and ends at different times, depending on when
the work was created. In the U.S., older works are protected for 95 years after the
date of first publication. Through the 1998 Copyright Extension Act, newer
ones are protected from the “moment of their fixation in a tangible medium of
expression” until 70 years after the author’s death. Works for hire are protected
for 95 years after publication or 120 years after creation, whichever comes first.

1 . 5 T H E P E N I S M I G H T Y : W I E L D I T W I S E L Y 29

Copyright law is complex, arcane, and varies from one country to another.
Most countries are signatories to the Berne Convention, which governs interna-
tional copyright law. Most countries allow material to be copied for research pur-
poses by individuals, a concept known as fair use. However, making copies for
distribution, or resale, is prohibited. Copyright law applies regardless of whether
the document bears the international copyright symbol ©. Unlike patents, it is
not necessary to register documents for copyright—it applies automatically.

The legal situation with regard to computer files, and particularly documents
published on the World Wide Web, is murky. Lawyers have questioned whether
it is legal even to view a document on the Web, since one’s browser inevitably
makes a local copy, which has not explicitly been authorized. Of course, it is
widely accepted that you can view Web documents—after all, that’s what they’re
there for. If we allow that you can view them, next comes the question of
whether you can save them for personal use. Or link to them. Or distribute them
to others. Note that documents are copied and saved behind the scenes all over
the place: to economize on network traffic and accelerate delivery, Web cache
mechanisms save copies of documents locally and deliver them to other users.

The way that computers in general, and the Web in particular, work has led
people to question whether the notion of a “copy” is perhaps no longer the
appropriate foundation for copyright law in the digital age. Legitimate copies of
digital information are made so routinely that restrictions on the act of copying
no longer serve to regulate and control use on behalf of copyright owners. Com-
puters make many internal copies when they are used to access information: the
fact that a copy has been made says little about the legitimacy of the behavior. In
the digital world, copying is so bound up with the way computers work that
controlling it provides unexpectedly broad powers, far beyond those intended
by copyright law.

Many digital library projects involve digitizing documents. First you must
consider: Is the work to be digitized in the public domain, or does it attempt to
faithfully reproduce a work in the public domain? If the answer to either ques-
tion is yes, you may digitize the work without securing anyone’s permission. Of
course, the result of your own digitizing efforts will not be protected by copy-
right either, unless you produce something more than a faithful reproduction of
the original. If material has been donated to your institution for digitizing, and
the donor was the copyright owner, you can certainly go ahead provided the
donor gave your institution the right to digitize—perhaps in a written form
using words such as “the right to use the work for any institutional purpose, in
any medium.” Even without a written agreement, it may reasonably be assumed
that the donor implicitly granted the right to take advantage of new media, pro-
vided the work continues to be used for the purpose for which it was donated.
You do need to ensure, of course, that the donor is the original copyright owner

30 O N E | O R I E N T A T I O N

and has not transferred copyright. You cannot, for example, assume permission
to digitize letters written by others.

If you want to digitize documents and the above considerations do not apply,
you should consider whether you can go ahead under the concept of fair use.
This is a difficult judgment to make. You need to reflect on how things look
from the copyright owner’s point of view and address those concerns. Institu-
tional policies about who can access the material, backed up by practices that
restrict access appropriately, can help. Finally, if you conclude that fair use does
not apply, then you will have to obtain permission to digitize the work or
acquire access to it by licensing it.

If you are building a digital library, you must pay serious attention to the
question of copyright. Digital library projects must be undertaken with a full
understanding of ownership rights and with full recognition that permissions
are essential to convert materials that are not in the public domain. Because of
the potential for legal liability, any prudent library builder will consider seeking
professional advice. A full account of the legal situation is far beyond the scope
of this book, but the “Notes and sources” section at the end of the chapter (Sec-
tion 1.6) does contain some pointers to sources of further practical information
about the copyright question. These sources include information on how fair
use can be interpreted and discuss the issues involved when negotiating copy-
right permission or licensing.

Looking at the situation from an ethical rather than a legal point of view
helps to shed light on the fundamental issues. It is unethical to steal: deriving
profit by distributing a book on which someone else has rightful claim to copy-
right is wrong. It is unethical to deprive someone of the fruit of their labor: giv-
ing away electronic copies of a book on which someone else has rightful claim to
copyright is wrong. It is unethical to pass someone else’s work off as your own:
making a digital library collection without due acknowledgment is wrong. It is
unethical to willfully misrepresent someone else’s point of view: modifying doc-
uments before including them in the collection is wrong even though author-
ship is acknowledged.

Collecting from the Web

All of these points have an immediate and practical impact on digital libraries.
Digital libraries are organized collections of information. The Web is full of
unorganized information. Downloading parts of it in order to organize infor-
mation into focused collections and make the material more useful to others is a
prime application area for digital libraries.

Search engines, one of the most widely used services on the Internet, provide a
good example. They use software “robots” to continually download huge portions

1 . 5 T H E P E N I S M I G H T Y : W I E L D I T W I S E L Y 31

of the Web and create indexes to them. Although they may retain documents on
their own computers, users are presented with a summary and directed to the
original source documents rather than to local copies. Search engines are com-
mercial operations. Their services are not sold directly to users, however, but rev-
enue is derived from advertising—in effect, a tax on the user’s attention. Although
they are widely accepted as a good thing, their legal status is unclear.

Web sites can safeguard against indiscriminate downloading. A generally
accepted robot exclusion protocol allows individual Web sites to prevent por-
tions of their sites from being downloaded and indexed. Although compliance
with this protocol is entirely voluntary, widely used search engines certainly do
so. But the onus of responsibility has been shifted. Previously, to use someone
else’s information legitimately, one had to request explicit permission from the
information provider. Now search engines automatically assume permission
unless the provider has set up an exclusion mechanism. This is a key develop-
ment with wide ramifications. And some Web sites threaten dire consequences
for computers that violate the robot exclusion protocol—for example, denial-
of-service attacks on the violating computer. This is law enforcement on the
wild Web frontier.

Different, but equally fascinating, copyright issues are raised by projects that
are archiving the entire World Wide Web. The reason for doing this is to offer
services such as supplying documents that are no longer available and providing
a “copy of record” for publicly available documents, in effect supplying the raw
material for historical studies. Creating this archive raises many interesting
issues involving privacy and copyright, issues that are not easily resolved.

What if a college student created a Web page that had pictures of her then-
current boyfriend? What if she later wanted to “tear them up,” so to speak, yet
they lived on in the archive? Should she have the right to remove them? In con-
trast, should a public figure—a U.S. senator, for instance—be able to erase data
posted from his or her college years? Does collecting information made avail-
able to the public violate the “fair use” provisions of copyright law?

Most digital libraries aim to provide more comprehensive searching and
browsing services than do search engines. Like archives, they most likely want to
store documents locally, to ensure their continued availability. Documents are
more likely to be seen as part of the library, rather than as products of their orig-
inating Web site. Digital libraries are more likely to modify documents as an aid
to the user, least invasively by highlighting search terms or adding metadata,
more invasively by re-presenting them in a standard format, most invasively by
producing computer-generated summaries of documents, or extracting key-
words and key phrases automatically.

Those responsible for such libraries need to consider carefully the ethical
issues above. It is important to respect robot exclusion protocols. It is important

32 O N E | O R I E N T A T I O N

to provide mechanisms whereby authors can withdraw their works from the
library. It is helpful if explicit permission can be sought to include material. If
information is automatically derived from, or added to, the source documents,
it is necessary to be sensitive to possible issues of misrepresentation.

The world is changing. Digital libraries are pushing at the frontiers of what is
possible by way of organizing anthologies of material. And they are pushing at
the frontiers of society’s norms for dealing with the distribution of intellectual
property. Those who run large-scale Internet information services tell interest-
ing “war stories” of people’s differing expectations of what it is reasonable for
their services to do.

For example, search engine operators frequently receive calls from computer
users who have noticed that some of their documents are indexed when they
think they shouldn’t be. Sometimes users feel their documents couldn’t possibly
have been captured legitimately because there are no links to them. Most search
engines have a facility for locating any documents that link to a specified one
and can easily find the offending link. On other occasions people put confiden-
tial documents into a directory that is open to the Web, perhaps just momentar-
ily while they change the directory permissions, only to have them grabbed by a
search engine and made available for all the world to find.

Search technology makes information readily available that may previously
have been public in principle, but impossible to find in practice. When a major
search engine took over the archives of USEnet, a huge corpus of Internet discus-
sion groups on a wide range of topics, it received many pleas from contributors to
retract indiscreet postings from the past because, being easily available for any-
one to find, they were now causing their authors considerable embarrassment.

A system that downloads research papers from the Web, extracts citations
from them, and compiles them into a citation index receives many complaints
about incorrect references, complaints that should be directed to the authors of
the citing papers rather than to the extraction service. Indeed it had to be
pointed out to one irate user that a particular, incorrect reference to one of his
papers that he had noticed on the system had actually been extracted from
another paper on the complainant’s own Web site.

As a final example, several years ago a researcher was describing to an audience
at a major U.S. university an early, noncommercial digital library collection of
research reports. The reports had been downloaded from the Internet (using the
FTP file transfer protocol, for which there is no established exclusion protocol).
One member of the audience indignantly denounced this as theft of information;
others volubly defended the system as providing a useful service to researchers
using publicly available material. The detractor demanded that all reports from
that university be immediately withdrawn from the collection; the others
requested that they be retained because they helped publicize their research.

1 . 5 T H E P E N I S M I G H T Y : W I E L D I T W I S E L Y 33

Illegal and harmful material

Some material is illegal and harmful and clearly inappropriate for public pre-
sentation. Examples are distasteful. A 1999 UNESCO Expert Meeting on Pae-
dophilia on the Internet noted,

Violence and pornography have invaded the Internet. Photos and videos of children
and young teenagers engaged in sexual acts and various forms of paedophilia are
readily available. Reports of children being kidnapped, beaten, raped and murdered
abound. . . . The Internet has in many cases replaced the media of paedophiliac mag-
azines, films and videos. It is a practical, cheap, convenient and untraceable means
for conducting business as well as for trafficking in paedophilia and child pornogra-
phy. The Internet has also become the principal medium for dialogue about pae-
dophilia and its perpetuation.

UNESCO has taken the lead on breaking the silence on this topic and is engaged
in a number of initiatives to provide safety nets for children online.

Whether information is considered harmful or not often depends on the cul-
tural, religious, and social context in which it is circulated. Standards vary enor-
mously both within and among nations. However, the international nature of
the Internet means that it is no longer possible to police the transfer of informa-
tion. The difficulty of sustaining local legal and cultural standards is a huge
challenge that faces society today. It revolves around the dilemma of balancing
freedom of expression against citizens’ rights to be protected from illegal or
harmful material.

A well-publicized example of different views on access to information arose
in early 2000 around information concerning online sales of Nazi memorabilia
on U.S. Web sites accessed using the Yahoo Internet portal. A Paris judge ruled
that the sites are barred under French law and ordered them to be blocked.
However, the sites are governed by less restrictive U.S. laws, and a U.S. judge
ruled that the First Amendment protects content generated in the U.S. by Amer-
ican companies from being regulated by authorities in countries that have more
restrictive laws on freedom of expression. Suit and countersuit followed, and the
matter is still not settled as this book goes to press two years later.

Online gambling, where laws are restrictive (or at best muddy) in countries
such as the U.S., China, and Italy, provides another example. Some international
gambling sites claim to comply with local laws by checking the geographical ori-
gin of the user (a difficult and unreliable procedure which is easily circumvented)
and refusing to offer their services in countries where gambling is illegal.

Cultural sensitivity

Most digital libraries are international. More often than not they are produced
by people from European and North American backgrounds, yet the majority of

34 O N E | O R I E N T A T I O N

people in the world live in countries that have very different cultures. Some digi-
tal libraries are specifically aimed at people in different parts of the world: col-
lections for developing countries, for example, or collections aimed at preserv-
ing and promoting indigenous cultures. It is clearly essential for digital library
developers to consider how their creations will affect other people.

We pointed out earlier that language is the vehicle of thought, communica-
tion, and cultural identity, and so digital library users should be able to work in
whatever language suits them. But the need for cultural sensitivity goes deeper
than this. Particular labels can have strong, and unexpected, connotations: cer-
tain car models have failed to sell in certain countries because the manufac-
turer’s name had a serious negative association. So too for icons: dogs, for exam-
ple, are offensive in Arabic cultures, and users will transfer negative associations
if they are adopted as user interface icons. Different cultures have different color
preferences, and particular colors have different associations.

In Polynesian cultures the concept of tapu, usually translated as “sacred,” has
rich and complex connotations that are difficult for those from Western cultures
to appreciate. Many objects have different degrees of tapu, and it is rude and
offensive to refer to them inappropriately, in the same way that many Western-
ers find blasphemy rude and offensive. One particular example that can affect
digital library design is that representations of people—including pictures—are
tapu, and it is generally inappropriate for them to be on public display.

1.6 Notes and sources

To avoid breaking up the flow of the main text, all references and explanatory
notes are collected in a section at the end of each chapter. This first “Notes and
sources” section describes information sources, papers, books, and other
resources relevant to the material covered in Chapter 1.

We learned about the Kataayi Cooperative from Emmanuel Kateregga-
Ndawulu, the chairman. If you would like to learn more about this fascinating
initiative, a Web search for Kataayi will turn up some interesting information
(and, at least at the time of writing, no false hits!). Jon Miller kindly provided
the photographs in Figure 1.1 (and Figure 9.3 in Chapter 9). The Humanity
Development Library is produced by Michel Loots of the Humanity Libraries
Project in Antwerp, Belgium, using the Greenstone software, and widely distrib-
uted in the developing world. The development of the physics archives is
described by Paul Ginsparg, its originator, in a paper called “Winners and losers
in the global research village” (Ginsparg, 1996); he is responsible for the memo-
rable “sliced dead trees” metaphor. (Note incidentally that adsorbed is a physics
term, not a misprint; it means the assimilation of dissolved matter by the surface
of a solid.) Lloyd Smith at New Mexico Highlands University conceived of the

1 . 6 N O T E S A N D S O U R C E S 35

Zia Pueblo project and came up with the vision described here; the Zia Pueblo
kindly supplied the photograph in Figure 1.2. The digital music library is ongo-
ing work in the Department of Computer Science at Waikato, initiated by
Rodger McNab and Lloyd Smith and currently led by one of the authors (Bain-
bridge et al., 1999; Bainbridge, 2000).

The definition of killer app is from the online Jargon File (version 4.2.2, at
http://info.astrian.net/jargon/Preface.html), a comprehensive compendium of
hacker slang. Our definition of digital library in Section 1.1 is from Akscyn and
Witten (1998); it is abstracted from 10 definitions of the term digital library
culled from the literature by Ed Fox (on the Web at http://ei.cs.vt.edu/fox/dlib/
def.html). It was the computer pioneer Maurice Wilkes who said that books
would be hailed as a great advance if they were invented today. The “data . . .
information . . . knowledge . . . wisdom” sequence and characterization is due to
Harold Thimbleby at University College, London.

A good source for the development of libraries is Thompson (1997), who for-
mulates some principles of librarianship, including the one quoted, that it is a
librarian’s duty to increase the stock of his library. Thompson is the source of
some of the material with which Section 1.2 begins, including the metaphor
about snapping the links of the chained book—in fact, he formulates open
access as another principle: libraries are for all. The imaginative architectural
developments that have occurred in physical libraries at the close of the 20th
century are documented, and beautifully illustrated, by Wu (1999). Gore
(1976b) recounts the fascinating history of the Alexandrian Library; he edited
the book entitled Farewell to Alexandria (Gore, 1976a). The information on
Trinity College, Dublin, was kindly supplied by David Abrahamson; that on the
Library of Congress was retrieved from the Internet. Much of the other histori-
cal information is from an excellent and thought-provoking paper by Gaines
that is well worth reading (Gaines, 1993). Thomas Mann (1993), a reference
librarian at the Library of Congress, has produced a wonderful source of infor-
mation on libraries and librarianship, full of practical assistance on how to use
conventional library resources to find things.

H. G. Wells’s “world brain” idea was published in 1938 and not long ago was
still being pursued (Wells, 1938; Goodman, 1987). Vannevar Bush’s vision was
described in the year the United Nations was founded (Bush, 1947)—although
certainly no connection between virtual libraries and the plight of developing
countries was made in those days. Licklider’s vision dates from 1960 (Licklider,
1960), while the U.S. Presidential Office weighed in early in 1993 (Clinton and
Gore, 1993).

The 19th-century librarian who “makes time for his fellow mortals” is Bowker
(1883), quoted by Crawford and Gorman (1995), while the quotation about
Allen’s human-skin book is from Kruse (1994). The modern term “metadata” is
an impressive-sounding moniker, but the catchphrase “data about data” is glib

36 O N E | O R I E N T A T I O N

but not very enlightening. In some sense, all data is about data: where does one
stop and the other begin? We return to this discussion at the beginning of Chap-
ter 5. Meanwhile we continue to use the term freely, always in the context of digi-
tal library collections in which it is clear that the metadata is information about a
particular resource.

More information on the promise of digital libraries in developing countries
can be found in Witten et al. (2001). The figures on the Nairobi and Brazzaville
universities are from the United Nations Human Development Report (United
Nations, 1999), as is some of the information on Internet penetration in devel-
oping countries. Arunachalam (1998) tells how the Internet is “failing the devel-
oping world.” Statistics on the numbers of computers available in developing
countries can be found in the World Bank’s (2000) World Development Indica-
tors. Information on mobile phone penetration can be found in an Interna-
tional Telecommunication Union report (1999). There is much information on
the “digital divide,” the widening knowledge gap between rich and poor: read
the United Nations’ 1997 statement on Universal Access to Basic Communication
and Information Services, the International Telecommunication Union’s 1998
World telecommunication development report, or the World Bank’s 1998/99
World Development Report. Some of the examples of the potential uses of locally
produced information in Section 1.3 come from an excellent article that Mark
Warschauer is writing, entitled “What is the digital divide?”—it’s available on
his Web site at www.gse.uci.edu/markw.

The Greenstone software is produced by the New Zealand Digital Library Pro-
ject and is described by Witten et al. (1999b, 2000). Information about the GNU
General Public License can be obtained from www.gnu.org/copyleft/gpl.html. The
toki (adze) shown in Figure 1.10 was a gift from the Māori people in recognition
of the Digital Library’s contributions to indigenous language preservation; it
resides in the project laboratory at the University of Waikato. In Māori culture
there are several kinds of toki, with different purposes. This one is a ceremonial
adze, toki pou tangata, a symbol of chieftainship. The rau (blade) is sharp, hard,
and made of pounamu or greenstone—hence the Greenstone software, at the
cutting edge of digital library technology. There are three figures carved into the
toki. The forward-looking one looks out to where the rau is pointing to ensure
that the toki is appropriately targeted. The backward-looking one at the top is a
sentinel that guards where the rau can’t see. There is a third head at the bottom of
the handle which makes sure that the chief ’s decisions—to which the toki lends
authority—are properly grounded in reality. The name of this taonga, or art trea-
sure, is Toki Pou Hinengaro, which translates roughly as “the adze that shapes the
excellence of thought.” Haramai te toki, haumi e, hui e, tāiki e.

Samuelson and Davis (2000) provide an excellent and thought-provoking
overview of copyright and related issues in the information age, which is a syn-
opsis of a larger report published by the National Academy of Sciences Press

1 . 6 N O T E S A N D S O U R C E S 37

(Committee on Intellectual Property Rights, 2000). Section 1.5 draws heavily on
this material. An earlier paper by Samuelson (1998) discusses specific digital
library issues raised by copyright and intellectual property law, from a U.S. per-
spective. The Association for Computing Machinery has published a collection
of papers that give a wide-ranging discussion of the effect of emerging technolo-
gies on intellectual property issues (White, 1999).

There’s plenty of information on copyright on the Web. For example,
http://scholar.lib.vt.edu/copyright is a useful Web site developed by staff at Vir-
ginia Tech to share what they learned about policies and common practices that
relate to copyright. It includes interpretations of U.S. copyright law, links to the
text of the law, sample letters to request permission to use someone else’s work,
links to publishers’ e-mail addresses, advice for authors about negotiating to
retain some rights, as well as current library policies. Georgia Harper at the Uni-
versity of Texas at Austin has created an excellent Crash Course in Copyright
(www.utsystem.edu/ogc/intellectualproperty/cprtindx.htm) that is delightfully
presented and well worth reading. The information about the duration of copy-
right protection is from Lolly Gasaway, director of the Law Library and profes-
sor of law at the University of North Carolina, through his Web site at
www.unc.edu/~unclng/public-d.htm.

The Internet archiving project is described in a Scientific American article by
Brewster Kahle (1997); this is the source for the hypothetical college student sce-
nario. The war stories will remain unattributed. Information on the UNESCO
initiative to attack paedophilia on the Internet can be found at www.unesco.org/
webworld/child_screen/conf_index.html. Elke Duncker is a marvelous source of
information on cultural sensitivity and user interfaces: some of her experiences
with user interface issues in different cultures are described in Duncker (2000).

Standard library automation systems are described by Cooper (1996). The
first book on digital libraries is Practical Digital Libraries by Lesk (1997), a pio-
neering work that gives a fascinating early account of this emerging field. In con-
trast, Crawford and Gorman (1995) fear that virtual libraries are virtual non-
sense that threatens to devastate the cultural mission of libraries. Chen (1998)
describes the past, present, and future of digital libraries from his perspective as
Program Director of the NSF/DARPA/NASA Digital Libraries Initiative in the
U.S. from 1993–1995. Sanders (1999) offers an edited collection of papers that
give a librarian’s perspective on many aspects of digital libraries and their use.
Although Borgman’s (2000) title focuses on the global information infrastruc-
ture, most of her material is relevant to the kind of digital libraries discussed
here. Arms (2000) gives an authoritative, comprehensive, and balanced account
of digital libraries from many different perspectives. He includes a historical per-
spective, a survey of the state of the art, and an account of current research.

38 O N E | O R I E N T A T I O N

39

Preliminaries
Sorting out the ingredients

Building a library is a major undertaking that needs to be carefully planned. Before
beginning, you should reflect on the fact that distributing any kind of informa-
tion collection carries certain responsibilities. There are legal issues of copy-
right: being able to access documents doesn’t necessarily mean you can give
them to others. There are social issues: collections should respect the customs of
the community out of which the documents arise. And there are ethical issues:
some things simply should not be made available to others. The pen is mightier
than the sword!—be sensitive to the power of information and use it wisely.

One of the first questions to ask when building a digital library is what tech-
nology will be used. You are probably reading this book because you are a prac-
tical person and are itching to get on with actually building your library. If you
plan to use the Greenstone software introduced in Section 1.4, on which the
implementation-dependent aspects of this book (Chapters 6 and 7) are based,
now is a good time to turn to the first section of Chapter 6 and construct an ini-
tial collection to give you a preview of how things will work. The technical part
of building a digital library is easy if you know what you want and it matches
what can be done with the tools you have available. Section 6.2 leads you
through the process of building a collection with Greenstone. First, to download
and install the software, you need to consult the Appendix.

Having laid your mind at rest regarding the technology, begin by fixing some
broad parameters of your digital library. The other chapters in this book assume

Documents are the digital library’s building blocks. It is time to step down

from our high-level discussion of digital libraries—what they are, how they

are organized, and what they look like—to nitty-gritty details of how to rep-

resent the documents they contain. To do a thorough job we will have to

descend even further and look at the representation of the characters that

make up textual documents and the fonts in which those characters are

portrayed. For audio, images and video we examine the interplay

between signal quantization, sampling rate and internal redundancy that

underlies multimedia representations.Documents are the digital library’s

building blocks. It is time to step down from our high-level discussion of dig2

40 T W O | P R E L I M I N A R I E S

that the raw material for your library is provided in machine-readable form. Of
course, one overriding question is where it is going to come from. There are
three broadly different answers to this question, leading to three rather different
kinds of digital library. We discuss these in Section 2.1.

As well as the raw material, you also need metadata—summary information
about the documents in your collection. Librarians are expert in creating meta-
data and using it to facilitate access to large information collections. If you are
building a sizable digital library, the team will include people with training in
library science—and you will need to know something about their job. Section
2.2 introduces the principles and practices of bibliographic organization in con-
ventional libraries.

You must also consider what kinds of access your digital library will support,
and we review some of the possibilities, and the pitfalls, in Section 2.3.

Probably the single most important issue in contemplating a digital library
project is whether you plan to digitize the material for the collection from ordi-
nary books and papers. Because this inevitably involves manually handling
physical material, and probably also involves manual correction of computer-
based text recognition, it generally represents the vast bulk of the work involved
in building a digital library. Section 2.4 describes the process of digitizing tex-
tual documents, by far the most common form of library material. Most library
builders end up outsourcing the operation to a specialist; this section alerts you
to the issues you will need to consider when planning this part of the project.

2.1 Sources of material

There are fundamental questions about the nature of the library you are build-
ing: what its purpose is, what the principles are for including documents, and
when one document differs from another. While we cannot help you in making
these decisions, it is essential that you ask—and answer—these questions.

Next we consider three scenarios for where your digital library material
originates:

■ You have an existing library that you wish to convert to digital form.
■ You have access to a collection of material that you want to offer as a digital

library.
■ You want to provide an organized portal into a focused subset of material

that already appears on the Web.

These scenarios are neither exclusive nor exhaustive, and in practice you often
encounter a mixture. But they are useful in helping to focus on the questions
that should be asked before embarking on a digital library construction project.

Ideology

Begin by formulating a clear conception of what it is that you intend to achieve
with your proposed digital library collection—this might be called the “ideology”
of your enterprise. The ideology can be formulated in terms of the collection’s
purpose, the objectives it is intended to achieve, and its principles, the directives
that will guide decisions on what should be included and—equally important—
what should be excluded. These decisions are difficult ones. Section 1.1 intro-
duced “wisdom” as the value attached to knowledge and argued that librarians
exercise wisdom when they make decisions about what to include in a collection.

Whenever you build a digital library collection, you should formulate its pur-
pose and state it clearly as an introduction to the collection. You should make it
plain to users what principles have been adopted to govern what is included.
You should also include a description of how the collection is organized.

We assume that you have established the purpose of the digital library collec-
tion and its scope in terms of what works it will include. You will also have to
decide what to do about different manifestations of a single work. In the tradi-
tional library world, there is an important, but rather slippery, distinction
between a work and a document. A work is the disembodied content of a mes-
sage and might be thought of as pure information. In traditional libraries a doc-
ument is a particular physical object (say a book) that embodies or manifests the
work. We will elaborate on this distinction in Section 2.2 below.

In the case of digital libraries, a document is a particular electronic encoding
of a work. The work/document distinction surfaces when we have to deal with
different versions of a document. Digital representations of a work are far easier
than printed ones to both copy and change. You will have to decide not only
which documents to include and which to exclude, but also when two docu-
ments are the same and when they are different. Collections often contain many
exact duplicates of documents; should duplicate copies be retained? And when a
new version of a document appears, should it supersede the old one, or should
both be kept? The answers will depend on the purpose of your collection.
Archival or historical records must not be allowed to change, but errors in col-
lections of practical or educational information must be correctable.

Here’s a further complication that affects the identity of documents. Digital
libraries are not ephemeral, but have a continued existence over time. For exam-
ple, they often keep records of the interaction history of individual users to facil-
itate future interaction. When identifiers are allocated to documents, decisions
must be made about whether duplicates are significant and when new versions
of documents supersede old ones. For instance, one way of assigning identifiers
is to compute a number from the word sequence that makes up the document.
This is attractive because exact copies receive the same identifier and are there-
fore mapped into the same object. However, sometimes you might want to

2 . 1 S O U R C E S O F M A T E R I A L 41

make an updated version of a document supersede the original by giving it
exactly the same identifier even though its content is slightly different, and you
cannot do this if identifiers are computed from the content.

Converting an existing library

Converting a conventional library into digital form, often the image that springs to
mind when people first mention digital libraries, is the most ambitious and expen-
sive kind of digital library project. It involves digitizing the contents of an existing
paper-based collection, which is usually a huge and daunting undertaking.

Before embarking on such a task, you need to consider carefully whether
there is really a need. Digital libraries have three principal advantages over con-
ventional ones: they are easier to access remotely, they offer more powerful
searching and browsing facilities, and they serve as a foundation for new value-
added services. You should look at the customer base for the existing library and
assess how advantageous it will be for customers to access the new digital library
instead. You should look at the value of the collections in the library and con-
sider whether the customer base will expand if the information can be made
available electronically. You should look at what new services the digital library
could support, such as automatic notification of new documents that match
clients’ interest profiles, and assess the demand for them. You need to evaluate
the cost/benefit of the proposed digital library.

There are many further questions to ask. Will the new digital library coexist
with the existing physical one, or supplant it? Maintaining two separate libraries
will be a continual drain on resources. At what rate is the collection growing, or
changing? In many situations digitization of material is not just a one-time capi-
tal cost, but an ongoing operational expenditure. Should you outsource the
whole digital library operation? There exist organizations that can arrange fully
searchable Web access to, for example, newspapers of your choice. Such organi-
zations provide a full range of services, including conversion of existing docu-
ments and ongoing digitization of new material. Services like these are growing
dramatically.

Can user needs be satisfied, or partially satisfied, in alternative ways? For
example, it might be possible to buy access to part of your holdings through
external organizations that amortize their costs by supplying services to a whole
range of other customers. Converting an existing library is such a large and
expensive proposition that all alternatives should be carefully explored before
making a commitment.

Once you have decided to go ahead, a key question will be how to prioritize
material for conversion. Library materials can be divided into three classes: spe-
cial collection and unique materials, such as rare books and manuscripts; high-
use items that are currently in demand for teaching and research; and low-use

42 T W O | P R E L I M I N A R I E S

items including less frequently used research materials. One set of criteria for
digital conversion includes the intellectual content or scholarly value of the
material, the desire to enhance access to it, and available funding opportunities.
Another concerns the educational value, whether for classroom support, back-
ground reading, or distance education. A third may be the need to reduce han-
dling of fragile originals, especially if they are heavily used. Other reasons are
institutional: promoting special strengths such as unique collections of primary
source material—the jewels in the crown of a research library—or resource-
sharing partnerships with other libraries. Cost and space savings may also play a
role. Of course copyright will have a crucial influence and is the first thing to
consider (see Section 1.5).

Six principles have been identified that drive the development of library col-
lections.

■ Priority of utility: Usefulness is the ultimate reason behind all collection
decisions. Predicting utility is, however, notoriously difficult.

■ Local imperative: Local collections are built to support local needs, and
expenditure of local resources must have a demonstrable local benefit.

■ Preference for novelty: Although historical collections are essential for
research, only limited resources can be devoted to the collection and main-
tenance of older material.

■ Implication of intertextuality: To add an item to a collection is to create a
relationship between it and other items. Building a collection always cre-
ates new textual relationships.

■ Scarcity of resources: All collection development decisions have to balance
scarce resources: funding, staff time, shelf space, and user time and attention.

■ Commitment to the transition: More and more information will become
available in digital form. Libraries are responsible for promoting this tran-
sition and assisting users to adjust to it.

These principles apply equally well to the selection of material for digitization.

Building a new collection

We argued in Chapter 1 that digital libraries are about new ways of dealing with
knowledge—of achieving new human goals by changing the way that informa-
tion is used in the world—rather than about deconstructing existing institu-
tions. Many digital library projects build new collections of new material, rather
than digitizing existing libraries.

If this is what you plan to do, you should ask—and answer!—the question,
“Why you?” Are other organizations better placed to undertake this task? For a
start, do you own the material?—or, more to the point, do you own the copy-
right? If not, you need to quickly ascertain whether you will be able to acquire

2 . 1 S O U R C E S O F M A T E R I A L 43

permission for your project from the copyright holders before going any fur-
ther. Copyright holders are naturally cautious about permitting their material
to be made available electronically because of the potential for uncontrolled
access (whether intended or not). The natural organization to create a digital
collection is the copyright holder; if that is not you, you need to have strong
arguments as to why your organization is the appropriate one for the job.

The scale of your library-building project will be largely determined by
whether the material is already available electronically, or whether material in
conventional paper form needs to be digitized. If everything is already electronic,
things are immeasurably easier. Even if operations such as collecting and orga-
nizing files, and converting formats, are necessary, they will be far cheaper than
digitizing the material because once the appropriate procedures have been deter-
mined, the computer can be used to apply them rapidly and on a large scale.

The next question to consider is where the metadata will come from. Obtain-
ing the necessary metadata and converting it to electronic form is likely to be a
major task. Indeed, in situations where the raw documents are already available
electronically, manual input of metadata will usually dominate the cost of the
digital library project. When digitizing an existing library the metadata is already
available, but when making new collections it imposes a substantial burden.

Virtual libraries

Another kind of digital library provides a portal to information that is available
electronically elsewhere. This is sometimes referred to as a virtual library to
emphasize that the library does not itself hold content. Librarians have used this
term for a decade or more to denote a library that provides access to distributed
information in electronic format through pointers provided locally. As we noted
in Chapter 1, the Web lacks the essential digital library features of selection and
organization. But it does contain a vast wealth of useful information. People
who sift through this information and build organized subcollections of the
Web do a useful job, and an important subclass of digital libraries comprises
those that provide access to information that is already available on the Web.

Information portals usually concentrate on a specific topic or focus on a par-
ticular audience. Commercial Web search engines are unable to produce consis-
tently relevant results, given their generalized approach, the immense amount
of territory they cover, and the great number of audiences they serve. The prob-
lem is likely to be exacerbated by the increasing use of the Web for commerce.
Search engine companies strive to support themselves by enhancing the level of
service they provide for commercial activity, with the aim of becoming attrac-
tive vehicles for advertising.

Virtual libraries present new challenges. Clearly the source information is
already available electronically, in a form that can be readily displayed with a

44 T W O | P R E L I M I N A R I E S

Web browser. Some metadata will also be present—notably title and possibly
author. The value that is added by imposing a digital library organization on a
subset of the Web is twofold: selection of content and the provision of further
metadata whereby it can be organized.

First, consider content selection. You need to define a purpose or theme for
your library, and then discover and select material on the Web that relates to this
theme. You can do this by manually seeking and filtering information, using
whatever tools are available—search engines and the like. You can also attempt
it automatically, with programs that crawl the Web, following links and seeking
out new information that is relevant to the defined theme. Such systems typi-
cally start with a small and focused selection of relevant documents and traverse
the Web seeking new documents to augment the collection. In a domain-
specific search the Web is not explored indiscriminately, but in a directed fash-
ion that seeks relevant documents efficiently. This raises interesting questions of
how to direct and control the search. Focused Web crawling is an important
topic that is likely to develop into a major technique for information discovery.
In practice, to build a high-quality collection it will probably always be neces-
sary to manually filter the results of automatic Web crawling.

Second, consider the provision of further metadata. Like content selection,
this can also be done either manually or automatically. Categorizing and classi-
fying Web pages helps to connect researchers and students with important
scholarly and educational resources. Of course techniques for automatically
assigning metadata are extremely valuable for any digital library, and in Chapter
5 we will encounter various metadata operations, ranging from phrase extrac-
tion to acronym identification. In libraries of material gathered from the Web,
these techniques assume a special importance since they constitute the bulk of
the raison d’être for a digital library portal.

A good example of a virtual library is INFOMINE, a cooperative project of the
University of California and California State University (among others). Run by
librarians, it covers most major academic disciplines through access to important
databases, e-journals, e-texts, and other digital collections. It contains descrip-
tions and links to a wealth of scholarly and educational Internet resources, each
of which has been selected and described by a professional academic librarian
who is a specialist in the subject and in resource description generally. Librarians
see this as an important expenditure of effort for their users, a natural evolution
of their traditional task of collecting and organizing information in print.

It takes an hour or two to prepare a traditional library catalog entry for a new
book or journal. At the other extreme, Web search engines provide no metadata
and no access mechanism other than searching the text for particular words and
phrases, but automatically recrawl and reindex the entire Web every few weeks.
Virtual libraries occupy an intermediate position. INFOMINE asks human cat-
alogers to complete each record in 25 minutes on average. In addition a variety

2 . 1 S O U R C E S O F M A T E R I A L 45

of semiautomated techniques are used to determine when information has been
moved or altered significantly, and to automatically update links, or flag the site
for manual reindexing, accordingly.

In general the higher the scholarly or educational value of a resource, the
greater the amount of expert time that can be invested in its description. A sce-
nario for semiautomated resource discovery and description might involve
three levels of material:

1. Automatically generated, with URL, author-supplied metadata, signifi-
cant keywords and phrases extracted from the full text, and generalized
subjects assigned automatically

2. Manually reviewed by a human expert who edits and enriches the auto-
matically derived metadata, checking it for accuracy and adding annota-
tions and subject headings

3. Intensively described by a human expert who provides extensive metadata
from scratch

Information could move from the first to the second level if it is judged to be
sufficiently central to the collection’s focus on the basis of automatic classifica-
tion information, and from the second to the third level on the basis of suffi-
ciently high usage.

2.2 Bibliographic organization

We have discussed where the documents in the digital library might originate.
Now let’s talk about how the metadata is produced: the summary information
that provides the hooks on which all library collections are organized.

Organizing information on a large scale is far more difficult than it seems at
first sight. In his 1674 Preface to the Catalogue for the Bodleian Library in
Oxford, Thomas Hyde lamented the lack of understanding shown by those who
had never been charged with building a catalog:

“What can be more easy (those lacking understanding say), having looked at the
title-pages than to write down the titles?” But these inexperienced people, who think
making an index of their own few private books a pleasant task of a week or two, have
no conception of the difficulties that arise or realize how carefully each book must be
examined when the library numbers myriads of volumes. In the colossal labor, which
exhausts both body and soul, of making into an alphabetical catalogue a multitude of
books gathered from every corner of the earth there are many intricate and difficult
problems that torture the mind.

In this section we will look at traditional principles of bibliographic organi-
zation, and at current practice. Librarians have a wealth of experience in classi-

46 T W O | P R E L I M I N A R I E S

fying and organizing documents in a way that makes relevant information easy
to find. Although some features are less relevant to digital libraries—such as the
physical constraint of arranging the library’s contents on a linear shelving sys-
tem—there is nevertheless a great deal to be learned from their experience, and
would-be digital librarians would be foolish to ignore it. Most library users
locate information by finding one relevant book on the shelves and then looking
around for others in the same area. In fact conventional libraries provide far
more powerful retrieval structures.

Objectives of a bibliographic system

It was not until the late 19th century, long after Thomas Hyde bemoaned the
difficulty of building a catalog, that the objectives of a bibliographic system were
first explicitly formulated. There were three: finding, collocation, and choice.

The first objective, finding, was to enable a person to find a book of which
either the author, title, or subject is known. In modern terms this involves find-
ing information in a database, confirming its identity, and perhaps ascertaining
its whereabouts and availability. The user is assumed to be seeking a known doc-
ument and has in hand author, title, or subject information. The modern library
catalog is designed expressly to support these features.

The second objective, collocation, was to show what the library has by a given
author, on a given subject, or in a given kind of literature. To “collocate” means
to place together or in proper order. This objective is concerned with locating
information that is nearby in one of several information spaces. The organiza-
tion of the library catalog and the spatial arrangement of the books on the
shelves help satisfy the objective.

The third objective, choice, was to assist in the choice of a book either biblio-
graphically, in terms of its edition, or topically, in terms of its character. The
assumption is that the reader is faced with a number of different documents—
perhaps several different editions of a work—and must choose among them.

In the last few decades these three objectives have been refined and restated
several times. Recently they have been expanded into the following five.

1. To locate entities in a file or database as the result of a search using attrib-
utes or relationships of the entities:
a. To find a single entity, that is, a document
b. To locate sets of entities representing

■ all documents belonging to the same work
■ all documents belonging to the same edition
■ all documents by a given author
■ all documents on a given subject
■ all documents defined by “other” criteria

2 . 2 B I B L I O G R A P H I C O R G A N I Z A T I O N 47

2. To identify an entity, that is, to confirm that the entity described in a
record corresponds to the entity sought, or to distinguish among several
entities with similar characteristics

3. To select an entity that is appropriate to the user’s needs with respect to
content, physical format, and the like

4. To acquire or obtain access to the entity described, through purchase,
loan, and so on, or by online access to a remote computer

5. To navigate a bibliographic database: to find works related to a given one
by generalization, association, and aggregation; to find attributes related
by equivalence, association, and hierarchy

The Latin word entity lacks the Anglo-Saxon directness of book and work. It
serves to broaden the scope of the objectives beyond books and documents to
include audio, video, and both physical and digital objects. It also serves to
broaden the search criteria from the particular metadata of author, title, and sub-
ject. The existence of a catalog of metadata is acknowledged explicitly as the basis
of searching, along with the use of attributes and relationships. A new acquisition
objective has been added, along with a navigation objective that greatly general-
izes the traditional notion of collocation expressed by objective 1b.

Bibliographic entities

The principal entities in a bibliography are documents, works, editions, authors, and
subjects. Sets of these, such as document collections, the authors of a particular doc-
ument, and the subjects covered by a document, are also bibliographic entities.
Other entities are more directly related to the production process: for example, an
imprint is the set of printings of a document that preserve the image of a previous
printing. We also deal below with titles and subject classifications, which strictly
speaking are attributes of works rather than entities in their own right.

Documents
Documents are the basic inhabitants of the physical bibliographic universe. We
characterized them in Section 2.1 as particular physical objects that embody or
manifest the intellectual content of a work. Although traditional documents are
physical objects, they are not necessarily physically independent of other objects:
an article in a journal or a chapter in an edited collection is really a document in
its own right.

In the case of digital libraries, a document is a particular electronic encoding
of a work. Since one document can form an integral part of another, documents
have a fundamental hierarchical structure that can be more faithfully reflected in
a digital library than in a physical one. On the other hand, digital documents
have a kind of impermanence and fluidity that makes them hard to deal with.

48 T W O | P R E L I M I N A R I E S

They can be instantly (and unthinkingly) duplicated, they frequently have uncer-
tain boundaries, and they can change dynamically. This creates difficulties that
we have already met in Section 2.1: helpful digital libraries need to present users
with an image of stability and continuity, as though electronic documents were
identifiable, discrete objects like physical ones.

Works
Works are the basic inhabitants of the intellectual bibliographic universe. They
can be conceptualized as the disembodied content of documents. In practice an
important operational question for traditional librarians is this: when are two
documents sufficiently alike that they can be considered to represent the same
work? For books, operations such as revision, updating, expansion, and transla-
tion into different languages are generally held to preserve the identity of a work.
Translation to another medium may or may not. An audiotape of a book would
likely be considered the same work; a video production would generally not.

The distinction between a work and a document may appear to be an
abstract one, far removed from the world of real libraries. However, it has
important practical consequences. A particular work may appear in several dif-
ferent editions. Some editions of children’s books may be lavishly illustrated,
others plain. New editions of scientific books may contain important revisions
or substantial additional material. Editions may appear in different languages.
They may be condensed versions (“Reader’s Digest” editions) or expanded with
scholarly annotations and footnotes. Assuming that different manifestations all
have the same, or approximately the same, intellectual content, they may be
considered to represent the same work. However, whether the differences are
significant or not really depends on the reader’s orientation and purpose.

A work’s identity is even more seriously compromised when it is reinter-
preted in a different medium. Different movie versions of a story usually repre-
sent radically different interpretations and are generally considered to be differ-
ent works. The case of poetry or story readings is less clear-cut. If, as Marshall
McLuhan claimed, the medium really is the message, then interpretations in dif-
ferent media certainly do imply different works.

Editions
Editions are the book world’s traditional technique for dealing with two difficult
problems: different presentation requirements, and managing change of content.
The various editions of a work share essentially the same information but differ
with respect to both printing details and updated content. A large-font edition
for the visually impaired or a pocket edition for the traveler address different pre-
sentation requirements. Revised editions correct and update the content.

Electronic documents generally indicate successive modifications to the same
work using terms such as version, release, and revision rather than edition. These

2 . 2 B I B L I O G R A P H I C O R G A N I Z A T I O N 49

terms are not standardized, and different people use them in different ways. No
matter what term you use, the underlying problem is that new editions of an
electronic document may be produced extraordinarily rapidly, unencumbered
by traditional processes of physical book production. We cannot even estimate
how many versions we have generated of the present book while writing it, if a
new version had been declared every time a file was saved. Yet these changes
over time could easily have been captured by a dynamic digital library that
always presented the current incarnation of the work but allowed you to exam-
iner earlier versions too.

Authors
Of all bibliographic entities, authors seem the most straightforward, and
authorship has been the primary attribute used to identify works since medieval
times. All Western libraries provide an author catalog that places books by the
same author together. However, authorship is not always straightforward. Some
works appear to emanate from organizations or institutions; are they then
“authors”? Modern scientific and medical papers often have numerous authors
because of the complex and collaborative nature of the work and institutional
conventions about who should and should not be included. Many works are
anthologies: is the editor to be regarded as an “author”? If not, what about
anthologies that include extensive commentaries by the editors; when is this
deemed worthy of authorship? And what about ghostwriters?

For a concrete example of some of the difficulties, turn to the “References”
section at the end of the book and locate the entry under “Library of Congress
(1998).” Who is the author of this book? A particular person or group of people?
The Library of Congress? The Library of Congress Cataloging Policy and Sup-
port Office?

In the digital world, documents may or may not represent themselves as
being written by particular authors. If they do, authorship is commonly taken at
face value. Of course many documents may end up authorless by this criterion.
However, even if many works are anonymous, when authorship is clearly identi-
fiable, users of a digital library will expect to be able to locate documents by
author.

Taking authorship at face value has significant drawbacks—not so much
because people misrepresent authorship, but because differences often arise in
how names are written. For one thing, authors sometimes use pseudonyms. But
a far greater problem is simply inconsistency in spelling and formatting. Tradi-
tional librarians go to great pains to normalize names into a standard form.

Table 2.1, admittedly an extreme example, illustrates just how difficult the
problem can become. It shows different ways in which the name of Muammar
Qaddafi (the Libyan leader) is represented on documents that have been received

50 T W O | P R E L I M I N A R I E S

by the Library of Congress. The Library catalog chooses one of these forms,
ostensibly the form in which the author is most commonly known—Qaddafi,
Muammar in this case—and then groups all variants under this one spelling—
with appropriate cross-references in the catalog from all of the variant spellings.
In this case, ascribing authorship by taking documents at face value would end
up with 47 different authors!

The creation of standardized names for authors is called authority control,
and the files that librarians use to record this information are called authority
files. This is one instance of a general idea: using a controlled vocabulary or set of
preferred terms to describe entities. Terms that are not preferred are deprecated
(a technical term that does not necessarily imply disapproval) and are often
listed explicitly with a reference to the associated preferred term—as in Table
2.1. Controlled vocabularies are to be contrasted with the gloriously uncon-
trolled usage found in free text, where there are no restrictions at all on how
authors may choose to express what they want to say.

Titles
Titles are really attributes of works rather than entities in their own right. Obvi-
ously they are important elements of any bibliographic system. In digital collec-
tions, titles, like authors, are often taken at face value from the documents

2 . 2 B I B L I O G R A P H I C O R G A N I Z A T I O N 51

Table 2.1 Spelling variants of the name Muammar Qaddafi.

Qaddafi, Muammar Muammar al-Qadhafi Qathafi, Muammar
Gadhafi, Mo ammar Mu ammar al-Qadhdhafi Gheddafi, Muammar
Kaddafi, Muammar Qadafi, Mu ammar Muammar Gaddafy
Qadhafi, Muammar El Kazzafi, Moamer Muammar Ghadafi
El Kadhafi, Moammar Gaddafi, Moamar Muammar Ghaddafi
Kadhafi, Moammar Al Qathafi, Mu ammar Muammar Al-Kaddafi
Moammar Kadhafi Al Qathafi, Muammar Muammar Qathafi
Gadafi, Muammar Qadhdhafi, Mu ammar Muammar Gheddafi
Mu ammar al-Qadafi Kaddafi, Muammar Khadafy, Moammar
Moamer El Kazzafi Muammar al-Khaddafi Qudhafi, Moammar
Moamar al-Gaddafi Mu amar al-Kad’afi Qathafi, Mu’Ammar el
Mu ammar Al Qathafi Kad’afi, Mu amar al- El Qathafi,Mu’Ammar
Muammar Al Qathafi Gaddafy, Muammar Kadaffi, Momar
Mo ammar el-Gadhafi Gadafi, Muammar Ed Gaddafi, Moamar
Muammar Kaddafi Gaddafi, Muammar Moamar el Gaddafi
Moamar El Kadhafi Kaddafi, Muamar

themselves. However, in the world of books they can show considerable varia-
tion, and librarians use vocabulary control for titles as well as for authors. For
example, Table 2.2 shows the titles that are represented on the title pages of 15
different editions of Hamlet.

Subjects
Subjects rival authors as the predominant gateway to library contents. Although
physical library catalog systems boasted card-based subject catalogs, which were
sometimes a useful retrieval tool, computer-based catalogs have breathed new
life into subject searching and are now widely used in libraries. However, sub-
jects are far harder to assign objectively than authorship, and involve a degree of,
well, subjectivity. Interestingly, the dictionary defines subjective as both

Pertaining to the real nature of something; essential

and

Proceeding from or taking place within an individual’s mind such as to be unaffected
by the external world.

Perhaps the evident conflict between these two meanings says something about
the difficulty of defining subjects objectively!

As with authorship, digital documents sometimes explicitly represent what
they are about by including some kind of subject descriptors. Otherwise there are
two basic approaches to automatically ascribing subject descriptors or “key
phrases” to documents. One is key-phrase extraction, where phrases that appear
in the document are analyzed in terms of their lexical or grammatical structure,
and with respect to phrases that appear in a corpus of documents in the same
domain. Phrases, particularly noun phrases, that appear frequently in this docu-
ment but rarely in others in the same domain are good candidates for subject
descriptors. The second is key-phrase assignment, where documents are auto-
matically classified with respect to a large corpus of documents for which subject

52 T W O | P R E L I M I N A R I E S

Table 2.2 Title pages of different editions of Hamlet.

Amleto, Principe di Danimarca Montale Traduce Amleto
Der erste Deutsche Buhnen-Hamlet Shakespeare’s Hamlet
The First Edition of the Tragedy of Hamlet Shakspeare’s Hamlet
Hamlet, A Tragedy in Five Acts The Text of Shakespeare’s Hamlet
Hamlet, Prince of Denmark The Tragedy of Hamlet
Hamletas, Danijos Princas The Tragicall Historie of Hamlet
Hamleto, Regido de Danujo La Tragique Histoire d’Hamlet
The Modern Reader’s Hamlet

descriptors have already been determined (usually manually), and documents
inherit descriptors that have been ascribed to similar documents. We return to
this topic in Chapter 5 (Section 5.6).

It is far easier to assign subject descriptors to scientific documents than to lit-
erary ones, particularly works of poetry. Many literary compositions and artistic
works—including audio, pictorial, and video compositions—have subjects that
cannot readily be named. Instead they are distinguished as having a definite
style, form, or content, using artistic categories such as genre.

The Library of Congress Subject Headings (LCSH) are a comprehensive and
widely used controlled vocabulary for assigning subject descriptors. They cur-
rently occupy five large printed volumes, amounting to about 6,000 pages each,
commonly referred to by librarians as “the big red books.” The aim is to provide
a standardized vocabulary for all categories of knowledge, descending to quite a
specific level, so that books—books on any subject, in any language—can be
described in a way that allows all books on a given subject to be easily retrieved.

The red books contain a total of around two million entries, written in three
columns on each page. Perhaps 60 percent of them are full entries like the one
for Agricultural Machinery in the first row of Table 2.3. This entry indicates that
Agricultural Machinery is a preferred term, and should be used instead of the
three terms Agriculture—Equipment and supplies, Crops—Machinery, and Farm
machinery. UF stands for “use for.” Each of these three deprecated terms has its
own one-line entry that indicates (with a USE link) that Agricultural Machinery
should be used instead; these deprecated terms account for the remaining 40
percent of entries in the red books. The UF/USE links, which are inverses, cap-
ture the relationship of equivalence between terms. One of each group of equiva-
lent terms is singled out as the preferred one, not because it is intrinsically spe-
cial but purely as a matter of convention.

Another relationship captured by the subject headings is the hierarchical rela-
tionship of broader and narrower topics. These are expressed by BT (broader
topic) and NT (narrower topic), respectively, which again are inverses. The Agri-
cultural Machinery example of Table 2.3 stands between the broader topic
Machinery and narrower topics such as Agricultural implements and Agricultural
instruments—there are many more not shown in the table. Each of these nar-
rower topics will have links back to the broader topic Agricultural Machinery;
and Agricultural Machinery will appear in the (long) list of specializations under
the term Machinery.

The abbreviation RT stands for “related topics” and gives an associative rela-
tionship between a group of topics that are associated but neither equivalent nor
hierarchically related. The fact that Farm equipment is listed as a related topic
under Agricultural Machinery indicates that the converse is also true: Agricul-
tural machinery will be listed as a related topic under Farm Equipment.

2 . 2 B I B L I O G R A P H I C O R G A N I Z A T I O N 53

Finally, the SA or “see also” entry indicates a whole group of subject head-
ings, often specified by example—like the e.g., Corn—Machinery under Agricul-
tural Machinery in Table 2.3. The dash in this example indicates that there is a
subheading Machinery under the main entry for Corn. However, there is no
back reference from this entry to Agricultural machinery.

Subject classifications
Books on library shelves are usually arranged by subject. Each work is assigned a
single code or classification, and books representing the work are physically placed
in lexicographic code order. Note that the classification code is not the same as the
subject headings discussed above: any particular item has several subject headings
but only one classification code. The purpose of a library classification scheme is

54 T W O | P R E L I M I N A R I E S

Table 2.3 Library of Congress Subject Heading entries.

Agricultural Machinery

UF Agriculture—Equipment and
supplies
Crops—Machinery
Farm machinery

BT Machinery
RT Farm equipment

Farm mechanization
Machine-tractor stations

SA subdivision Machinery under
names of crops, e.g., Corn—
Machinery

NT Agricultural implements
Agricultural instruments
…

Agriculture—Equipment and supplies

USE Agricultural Machinery

Crops—Machinery

USE Agricultural Machinery

Farm machinery

USE Agricultural Machinery

Machinery

UF …
BT …
RT …
SA …
NT …

Agricultural machinery
…

Agricultural Implements

UF …
BT Agricultural machinery
…

Farm Equipment

UF …
BT …
RT Agricultural machinery

…
…

to place works into topic categories, so that volumes treating the same or similar
topics fall close to one another. Subject classification systems that are in wide use
in the English-speaking world are the Library of Congress Classification (originat-
ing from the U.S.), the Dewey Decimal Classification (from England), and the
Colon Classification System (used in India).

Physically browsing library shelves is a popular way of finding related mater-
ial. Of course readers who browse books in this way have access to the full con-
tent of the book, which is quite different from browsing catalog entries that give
only a small amount of summary metadata. Indeed most readers—even schol-
ars—remain blithely unaware that there is any way of finding related books
other than browsing library shelves, despite the existence of the elaborate and
carefully controlled subject heading scheme described above. Physical place-
ment on library shelves, being a one-dimensional linear arrangement, is clearly
a far less expressive way of linking content than the rich hierarchy that subject
headings provide.

Placing like books together adds an element of serendipity to searching. You
catch sight of an interesting book whose title seems unrelated, and a quick
glance inside—the table of contents, chapter headings, illustrations, graphs,
examples, tables, bibliography—gives you a whole new perspective on the sub-
ject. Catalog records—even ones that include abstracts or summaries of the
contents—are nowhere near as informative as full text, and no mere catalog can
substitute for the experience of browsing full texts of related works. This helps
to explain why most readers perform a simple author or title search for a specific
book, or one with a suitable title, and then follow up by browsing through
nearby books—ignoring the whole machinery of controlled vocabularies and
subject classifications that librarians have taken such pains to provide.

Whereas physical libraries are constrained to a single linear arrangement of
books, digital libraries, of course, are not restricted to such an organization. The
entire contents of a digital collection can (in principle) be rearranged at the click
of a mouse, and rearranged again, and again, and again, in different ways depend-
ing on how you are thinking. The whole reason for the subject classification van-
ishes: there is no single linear arrangement of works. The only circumstance in
which you might need subject classifications is when you reach outside the library
to systems whose users are not so fortunate as to have access to full texts.

2.3 Modes of access

The purpose of libraries is to give people access to information, and digital
libraries have the potential to increase access tremendously. Now you do not
have to go to the library, it comes to you—in your office and home, in your
hotel while traveling, even at the café, on the beach, and in the plane.

2 . 3 M O D E S O F A C C E S S 55

Most digital libraries are on the Web (although many restrict access to in-
house use). This provides convenient and universal access—at least in the devel-
oped world, and for people who possess the necessary technology. You can work
in the library whenever you want, wherever you are, and so can others.

If a physical library decides to offer a digital library service to the general
public, terminals will need to be installed for people to use. Service is no longer
confined to a central library building; terminals can be deployed in publicly
accessible locations that are closer to individual user groups. Each workstation
may need additional equipment for library use, such as printed reference mater-
ial and a color printer for users, along, perhaps, with general application soft-
ware and other devices such as scanners. Reliance on external networks may be
reduced by configuring clusters of workstations with local servers that contain a
copy of the entire digital library—this is often called mirroring.

As we learned in Chapter 1, Web access may be infeasible or inappropriate in
situations such as developing countries and disaster relief operations. In this
case digital libraries may be delivered on read-only mass-storage consumer
devices such as CD-ROM or DVD. Even when this is not necessary for logistic
reasons, users may like to own a physical, permanent, immutable copy of the
library contents. Sometimes this is valuable psychologically. A large private col-
lection of hardly read books makes many people feel that they somehow possess
the knowledge therein. Also, on the Web you are always at the mercy of someone
else. Finally, one way of controlling access is to distribute the library on tangible
physical devices instead of putting it on universal networks.

You can have the best of both worlds. Digital library collections can coexist
both on the Web and on read-only mass storage devices, and be accessible in
exactly the same way from either medium.

From a user interface point of view, Web browsers implement a lowest com-
mon denominator that falls well below the state of the art in interface technol-
ogy. Apart from a few local operations—scrolling, menu selection, button high-
lighting—the only possible response to a user action is to display a new page,
and response time is unpredictable and often far from immediate. The many
small differences among browsers, and different versions of browsers, exacer-
bate the lowest common denominator effect and suck up inordinate quantities
of development effort. Of course the use of scriptable browsers (e.g., JavaScript)
and local applets (e.g., in Java) helps to some extent. However, fully reactive user
interfaces call for tighter coupling between the user’s workstation or “client”
and the central digital library server.

Again you can have the best of both worlds. A digital library system can pro-
vide a basic end-user service over the Web, as well as a more intimate connec-
tion with the digital library server using an established protocol (such as the
“common object request broker architecture” or CORBA protocol). Then more

56 T W O | P R E L I M I N A R I E S

sophisticated user interfaces can be implemented that use the protocol to access
the basic library services of searching, browsing, and delivery of documents and
metadata. Experimental or special-purpose interfaces can share the same cen-
tral library system with ordinary users who work on standard Web browsers.
Such interfaces might provide services as varied as virtual reality interfaces for
physically navigating through a digital library, or query visualization using Venn
diagrams, or content visualization via dynamic three-dimensional cluster dia-
grams. If necessary, network delays can be mitigated by temporary caching or by
permanently mirroring the digital library contents locally.

Some digital library applications—notably video libraries and reactive inter-
faces involving sophisticated visualizations—need higher bandwidth than can
be provided by general-purpose network technology. These call for special
treatment and are beyond the scope of this book.

Even though the library is delivered by the Web, access may have to be
restricted to authorized users. Software firewalls that restrict access to particular
named sites are one solution; password protection is another. Since the basic
Web infrastructure provides universal access, password protection must be
implemented within the digital library system itself. Access can be restricted to
the library as a whole, or to certain collections within it, or to certain docu-
ments, or even to certain pages or paragraphs. For example, any user may be
allowed to present text searches and view the results in the form of extracts or
summaries of the target documents, but users may have to authenticate them-
selves when it comes to viewing the full text of a document—or of particular
“classified” documents. The basic technology of reliable password protection is
well-developed and easy to provide.

Digital watermarking is another control mechanism: it guards against unau-
thorized distribution of information taken from the library. While data can be
encrypted to prevent unauthorized access during transmission, it is difficult to
devise reliable technical means that prevent a user authorized to read a document
from copying and distributing it—particularly remote users who are capable of
installing their own software on library workstations. Instead documents in the
form of pictures and document images can be “watermarked” by embedding a
secret, imperceptible, ineradicable code into their structure. This may not pre-
vent copying, but it does ensure that the owner of the copied material can be
identified. To help track down the source of the leak, different watermarks can be
used that identify the workstation to which the material was served.

Another form of access is communicating with other digital library systems.
Conventional library systems use an international standard communication
protocol (Z39.50; see Chapter 8) to give individual users and other libraries
remote access to their catalog records. Digital libraries may offer their users
integrated access to the world’s library catalogs by integrating “client” software

2 . 3 M O D E S O F A C C E S S 57

into the user interface. Furthermore, by embedding a “server” for the standard
protocol, they can offer their own content to external libraries and their users.

Finally, a digital library system may be implemented as a distributed system.
Replicated servers on different computers—perhaps widely dispersed—offer
their own collections, or their own parts of a single collection. The servers com-
municate among themselves and present a single unified view to users. Some
collections may be replicated in different places, perhaps to reduce network traf-
fic by permitting local responses to local users, or perhaps to accelerate access by
dispatching different queries to different processors. Other collections may be
geographically distributed, the results from different servers being integrated
before presentation to the user, who perceives a single seamless collection. Such
an architecture permits “virtual” digital libraries that do not actually hold their
own library material but merely act as a broker to information served elsewhere.

2.4 Digitizing documents

One of the first things to consider when starting to build a digital library is
whether you need to digitize existing documents. Digitization is the process of
taking traditional library materials, typically in the form of books and papers,
and converting them to electronic form where they can be stored and manipu-
lated by a computer. Digitizing a large collection is an extremely time-consum-
ing and expensive process, and should not be undertaken lightly.

There are two stages in digitization, illustrated in Figure 2.1. The first pro-
duces a digitized image of each page using a process known as scanning. The sec-
ond produces a digital representation of the textual content of the pages using a
process called optical character recognition (OCR). In many digital library sys-
tems it is the result of the first stage that is presented to library readers: what
they see are page images, electronically delivered. The second stage is necessary
if a full-text index is to be built automatically for the collection that allows you
to locate any combination of words, or if any automatic metadata extraction
technique is contemplated, such as identifying the titles of documents by find-
ing them in the text.

Sometimes the second stage may be unnecessary, but this is rare because a
prime advantage of digital libraries is automatic searching of the full textual con-
tent of the documents. If, as is usually the case, the second stage is undertaken,
this raises the possibility of using the OCR result as an alternative way of display-
ing the page contents. This will be more attractive if the OCR system is not only
able to interpret the text in the page image, but can retain the page layout as well.
Whether or not it is a good idea to display its output depends on how well the
page content and format is captured by the OCR process. We will see examples in
the next chapter of collections that illustrate these different possibilities.

58 T W O | P R E L I M I N A R I E S

Scanning

The result of the first stage is a digitized image of each page. These images
resemble digital photographs, although it may be that each picture element or
pixel is either black or white—whereas photos have pixels that come in color, or
at least in different shades of gray. Text is well represented in black and white,
but if the images include nontextual material such as pictures, or contain arti-
facts like coffee stains or creases, grayscale or color images will resemble the
original pages more closely.

When digitizing documents by scanning page images, you will need to decide
whether to use black-and-white, grayscale, or color, and you will also need to
determine the resolution of the digitized images—that is, the number of pixels

2 . 4 D I G I T I Z I N G D O C U M E N T S 59

Scanning

Optical
character

recognition the

Paper document

Digitized image

ASCII text

Figure 2.1 Scanning and optical character recognition.

per linear unit. For example, ordinary faxes have a resolution of around 200 dpi
(dots per inch) in the horizontal direction and 100 dpi vertically, and each pixel
is either black or white. Faxes vary a great deal because of deficiencies in the low-
cost scanning mechanisms that are typically used. Another familiar example of
black-and-white image resolution is the ubiquitous laser printer, which gener-
ally prints 600 dots per inch in both directions. Table 2.4 shows the resolution of
several common imaging devices.

The number of bits used to represent each pixel also helps to determine
image quality. Most printing devices are black and white: one bit is allocated to
each pixel. When putting ink on paper, this representation is natural—a pixel is
either inked or not. However, display technology is more flexible, and many
computer screens allow several bits per pixel. Monochrome displays often show
16 or 256 levels of gray, while color displays range up to 24 bits per pixel,
encoded as 8 bits for each of the colors red, green, and blue, or even 32 bits per
pixel, encoded in a way that separates the chromatic, or color, information from
the achromatic, or brightness, information. Grayscale and color scanners can be
used to capture images having more than 1 bit per pixel.

More bits per pixel can compensate for a lack of linear resolution and vice
versa. Research on human perception has shown that if a dot is small enough, its
brightness and size are interchangeable—that is, a small bright dot cannot be
distinguished from a larger, dimmer one. The critical size below which this phe-
nomenon takes effect depends on the contrast between dots and their back-
ground. It corresponds roughly to a 640 × 480 pixel display at normal viewing
levels and distances.

When digitizing documents for a digital library, think about what you want
the user to be able to see. How closely does what you get from the digital library
need to resemble the original document pages? Are you concerned about pre-
serving artifacts? What about the pictures in the text? Will users see one page on
the screen at a time? Will they be allowed to magnify the images?

60 T W O | P R E L I M I N A R I E S

Table 2.4 An assortment of devices and their resolutions.

Device Resolution (dpi) Depth (bits)

Laptop computer screen 92 × 92 8, 16, 24, or 32
(14-inch diagonal,
1024 × 768 resolution)
Fax machine 200 × 100 or 200 × 200 1
Scanner 300 × 300 or 600 × 600 1, 8, or 24
Laser printer 600 × 600 1
Phototypesetter 4800 × 4800 1

You will need to obtain scanned versions of several sample pages, choosing
the test pages to cover the various kinds and quality of images in the collection,
digitized to a range of different qualities—different resolutions, different num-
bers of gray levels, color and monochrome. You should perform trials with end
users of the digital library to determine what quality is necessary for actual use.

It is always tempting to say that quality should be as high as it possibly can be!
But there is a cost: the downside of accurate representation is increased storage
space on the computer and—probably more importantly—increased time for
page access by users, particularly remote users. Doubling the linear resolution
quadruples the number of pixels, and although this increase is ameliorated some-
what by compression techniques, users still pay a toll in access time. Your trials
should take place on typical computer configurations using typical communica-
tions facilities, so that you can assess the effect of download time as well as image
quality. You might also consider generating thumbnail images, or images at sev-
eral different resolutions, or using a “progressive refinement” form of image
transmission (see Chapter 4), so that users who need high-quality pictures can be
sure that they’ve got the right one before embarking on a lengthy download.

Optical character recognition

The second stage of digitizing library material is to transform the scanned image
into a digitized representation of the page content—in other words, a character-
by-character representation rather than a pixel-by-pixel one. This is known as
“optical character recognition” or OCR. Although the OCR process itself can be
entirely automatic, subsequent manual cleanup is invariably necessary and is
usually the most expensive and time-consuming process involved in creating a
digital library from printed material. You might characterize the OCR operation
as taking “dumb” page images that are nothing more than images, and produc-
ing “intelligent” electronic text that can be searched and processed in many dif-
ferent ways.

As a rule of thumb, you need an image resolution of 300 dpi to support OCR
of regular fonts of size 10-point or greater, and an image resolution of 400 to 600
dpi for smaller font sizes (9-point or less). Note that some scanners take up to
four times longer for 600 dpi scanning than for 300 dpi. Many OCR programs
can tune the brightness of grayscale images appropriately for the text being rec-
ognized, so grayscale scanning tends to yield better results than black-and-white
scanning. However, if you scan offline, black-and-white images generate much
smaller files than grayscale ones.

Not surprisingly the quality of the output of an OCR program depends criti-
cally on the kind of input that is presented. With clear, well-printed English, on
clean pages, in ordinary fonts, digitized to an adequate resolution, laid out on

2 . 4 D I G I T I Z I N G D O C U M E N T S 61

the page in the normal way, with no tables, images, or other nontextual mater-
ial, the result of a leading OCR engine is likely to be 99.9 percent accurate or
above—say 1 to 4 errors per 2,000 characters, which is a little under a page of
this book. Accuracy continues to increase, albeit slowly, as technology improves.
Replicating the exact format of the original image is more difficult, although for
simple pages an excellent approximation will be achieved.

Unfortunately life rarely presents us with favorable conditions. Problems
occur with proper names, with foreign names and words, and with special ter-
minology—like Latin names for biological species. They also occur with strange
fonts, and particularly foreign alphabets with accents or diacritical marks, or
non-Roman characters. With all kinds of mathematics. With small type or
smudgy print. With overdark characters that have smeared or bled together, or
overlight ones whose characters have broken up. With tightly packed or loosely
set text where, to justify the margins, character and word spacing diverge widely
from the norm. With hand annotation that interferes with the print. With
water-staining, or extraneous marks such as coffee stains or squashed insects.
With multiple columns, particularly when set close together. With any kind of
pictures or images—particularly ones that contain some text. With tables, foot-
notes, and other floating material. With unusual page layouts. When the text in
the images is skewed, or the lines of text are bowed from trying to place book
pages flat on the scanner platen, or when the book binding has interfered with
the scanned text. These problems may sound arcane, but even modest OCR
projects often encounter many of them.

The highest and most expensive level of accuracy attainable from commercial
service bureaus is typically 99.995 percent, or 1 error in 20,000 characters of text
(approximately seven pages of this book). Such levels are often most easily
achievable by keyboarding. Regardless of whether the material is rekeyed or
processed by OCR with manual correction, each page is processed twice, by dif-
ferent operators, and the results are compared automatically. Any discrepancies
are resolved manually.

As a rule of thumb, OCR becomes less efficient than manual keying when the
error rate drops below 95 percent. Moreover, once the initial OCR pass is com-
plete, costs tend to double with each additional percentage increase in accuracy
that is required. However, the distribution of errors over pages in a large image
conversion project is generally far from uniform: often 80 percent of the errors
come from 20 percent of the page images. It may be worth considering having
the worst of the pages manually keyed and performing OCR on the remainder.

Interactive OCR

Because of the difficulties mentioned above, OCR is best performed as an inter-
active process. Human intervention is useful both before the actual recognition,

62 T W O | P R E L I M I N A R I E S

when cleaning up the image, and afterward, when cleaning up the text pro-
duced. The actual recognition part can be time-consuming—times of one or
two minutes per page are not unusual—and it is useful to be able to perform
interactive preprocessing for a batch of page images, have them recognized
offline, and return to the batch for interactive cleanup. Careful attention to such
practical details can make a great deal of difference in a large-scale OCR project.

Interactive OCR involves six steps: image acquisition, cleanup, page analysis,
recognition, checking, and saving.

Acquisition
In the initial scanning step, images are acquired either by inputting them from a
document scanner or by reading a file that contains predigitized images. In the
former case the document is placed on the scanner platen and the program pro-
duces a digitized image. Most digitization software can communicate with a
wide variety of image acquisition devices: this is done using a standard interface
specification called TWAIN. Your OCR program may be able to scan many page
images in one batch and let you work interactively on the other steps afterward;
this will be particularly useful if you have an automatic document feeder.

Cleanup
The cleanup stage applies certain image-processing operations to the whole
image, or to parts of it. For example, a despeckle filter cleans up isolated pixels
or “pepper and salt” noise. It may be necessary to rotate the image by 90 or 180
degrees, or to automatically calculate a skew angle and deskew the image by
rotating it back by that angle. Images may be converted from white-on-black to
the standard black-on-white representation, and double-page spreads may be
converted to single image pages. These operations may be invoked manually or
automatically. If you don’t want to recognize certain parts of the image, or if it
contains large artifacts—such as photocopied parts of the document’s bind-
ing—you may need to remove them manually by selecting the unwanted area
and clearing it.

Page analysis
The page analysis stage examines the layout of the page and determines which
parts of it to process, and in what order. Again this can take place either manu-
ally or automatically. The result is to segment the page into blocks of different
types. Typical types include text blocks, which will be interpreted as ordinary
running text, table blocks, which will be further processed to analyze the layout
before reading each table cell, and picture blocks, which will be ignored in the
character recognition stage. During page analysis multicolumn text layouts are
detected and sorted into correct reading order.

2 . 4 D I G I T I Z I N G D O C U M E N T S 63

Figure 2.2a shows an example of a scanned document with regions that con-
tain different types of data: text, two graphics, and a photographic image. In
Figure 2.2b, bounding boxes have been drawn (manually in this case) around
these regions. This particular layout is interesting because it contains a region—
the large text block halfway down the left-hand column—that is clearly nonrec-
tangular, and another region—the halftone photograph—that is tilted. Because
layouts such as this present significant challenges to automatic page analysis
algorithms, many interactive OCR systems show users the result of automatic
page analysis and offer the option of manually overriding it.

It is also useful to be able to set up manually a template layout pattern that
applies to a whole batch of pages. For example, you may be able to define header
and footer regions, and specify that each page contains a double column of text—
perhaps even giving the bounding boxes of the columns. Perhaps the whole page
analysis process should be circumvented by specifying in advance that all pages
contain single-column running text, without headers, footers, pictures, or tables.

64 T W O | P R E L I M I N A R I E S

(a) (b)

Figure 2.2 (a) Document image containing different types of data; (b) the document
image segmented into different regions. Copyright © 1992 Canadian Artificial
Intelligence Magazine.

Finally, although word spacing is usually ignored, in some cases spaces may be
significant—as when dealing with formatted computer programs.

Tables are particularly difficult to handle. For each one, the user may be able
to specify interactively such things as whether the table has one line per entry or
contains multiline cells, and whether the number of columns is the same
throughout or some rows contain merged cells. As a last resort it may be neces-
sary for the user to specify every row and column manually.

Recognition
The recognition stage reads the characters on the page. This is the actual “OCR”
part. One parameter that may need to be specified is the font type, whether regu-
lar typeset text, fixed-width typewriter print, or dot matrix characters. Another is
the alphabet or character set, which is determined by the language in question.
Most OCR packages only deal with the Roman alphabet; some accept Cyrillic,
Greek, and Czech too. Recognizing Arabic text, the various Indian scripts, or
ideographic languages like Chinese and Korean is a task that calls for specialist
software.

Even within the Roman alphabet there are some character-set variations.
While English speakers are accustomed to the 26-letter alphabet, many lan-
guages do not employ all the letters— Māori, for example, uses only 15. Docu-
ments in German include an additional character, ß or scharfes s, which is
unique because unlike all other German letters it exists only in lowercase. (A
recent change in the official definition of the German language has replaced
some, but not all, occurrences of ß by ss.) European languages use accents: the
German umlaut (ü); the French acute (é), grave (à), circumflex (ô), and cedilla
(ç); the Spanish tilde (ñ). Documents may, of course, be multilingual.

For certain document types it may help to create a new “language” to restrict
the characters that can be recognized. For example, a particular set of docu-
ments may be all in uppercase, or consist of nothing but numbers and associ-
ated punctuation.

In some OCR systems, the recognition engine can be trained to attune it to
the peculiarities of the documents being read. Training may be helpful if the text
includes decorative fonts, or special characters such as mathematical symbols. It
may also be useful when recognizing large batches of text (100 pages or more) in
which the print quality is low.

For example, the letters in some particular character sequences may have bled
or smudged together on the page so that they cannot be separated by the OCR
system’s segmentation mechanism. In typographical parlance they form a liga-
ture: a combination of two or three characters set as a single glyph—such as fi, fl
and ffl in the font in which this book is printed. Although OCR systems recog-
nize standard ligatures as a matter of course, printing occasionally contains

2 . 4 D I G I T I Z I N G D O C U M E N T S 65

unusual ligatures, as when particular sequences of two or three characters are
systematically joined together. In these cases it may be helpful to train the sys-
tem to recognize each combination as a single unit.

Training is accomplished by making the system process a page or two of text
in a special training mode. When an unrecognized character is encountered, the
user has an opportunity to enter it as a new pattern. It may first be necessary to
adjust the bounding box to include the whole pattern and exclude extraneous
fragments of other characters. Recognition accuracy will improve if several
examples of each new pattern are supplied. When naming a new pattern, its font
properties (italic, bold, small capitals, subscript, superscript) may need to be
specified along with the actual characters that comprise the pattern.

There is a limit to the amount of extra accuracy that can be achieved with
training. OCR still does not perform well with more stylized type styles, such as
Gothic, that are significantly different from modern ones—and training may
not help much.

Obviously, better OCR results can be obtained if a language dictionary is
incorporated into the recognition process. It is far easier to distinguish letters
such as o, 0, O, and Q if they are interpreted in the context of the words in which
they occur. Most OCR systems include predefined language dictionaries and are
able to use domain-specific dictionaries containing such things as technical
terms, common names, abbreviations, product codes, and the like. Particular
words may be constrained to particular styles of capitalization. Regular words
may appear with or without an initial capital letter and may also be written in all
capitals. Proper names must begin with a capital letter (and may be written in
all capitals too). Some acronyms are always capitalized, while others may be
capitalized in fixed but arbitrary ways.

Just as the particular language determines the basic alphabet, many letter
combinations are impossible in a given language. Such information can greatly
constrain the recognition process, and some OCR systems allow it to be pro-
vided by the user.

Checking
The next stage of OCR is manual checking of the output. The recognized page is
displayed on the screen, with problems highlighted in color. One color may be
reserved for unrecognized and uncertainly recognized characters, another for
words that do not appear in the dictionary. Different display options allow some
of this information to be suppressed. The original image itself will be displayed
for the user’s convenience, perhaps with an auxiliary magnification window that
zooms in on the region in question. An interactive dialog, similar to that pro-
vided by word processors in spell-check mode, focuses on each error and allows
the user to ignore this instance, ignore all instances, correct the word, or add it

66 T W O | P R E L I M I N A R I E S

to the dictionary as a new word. Other options allow you to ignore words with
digits and other nonalphabetic characters, ignore capitalization mismatches,
normalize spacing around punctuation marks, and so on.

You may also want to edit the format of the recognized document, including
font type, font size, character properties such as italics and bold, margins, inden-
tation, table operations, and so on. Ideally, general word-processor options will
be offered within the same package, to save having to alternate between the OCR
program and a standard word processor.

Saving
The final stage is to save the OCR result, usually to a file (alternatives include
copying it to the clipboard or sending it by e-mail). Supported formats might
include plain text, HTML, RTF, Microsoft Word, and PDF. There are many pos-
sible options. You may want to remove all formatting information before sav-
ing, or include the “uncertain character” highlighting in the saved document, or
include pictures in the document. Other options control such things as page
size, font inclusion, and picture resolution. In addition, it may be necessary to
save the original page image as well as the OCR text. In PDF format (described
in Chapter 4), you can save the text and pictures only, or save the text under (or
over) the page image, where the entire image is saved as a picture and the recog-
nized text is superimposed upon it, or hidden underneath it. This hybrid format
has the advantage of faithfully replicating the look of the original document—
which can have useful legal implications. It also reduces the requirement for
super-accurate OCR. Alternatively you might want to save the output in a way
that is basically textual, but with the image form substituted for the text of
uncertainly recognized words.

Page handling

Let us return to the process of scanning the page images in the first place and
consider some practical issues. Physically handling the pages is easiest if you can
“disbind” the books by cutting off their bindings; obviously this destroys the
source material and is only possible when spare copies exist. At the other
extreme, source material can be unique and fragile, and specialist handling is
essential to prevent its destruction. For example, most books produced between
1850 and 1950 were printed on paper made from acid-process wood pulp, and
their life span is measured in decades—far shorter than earlier or later books.
Toward the end of their lifetime they decay and begin to fall apart. (We return to
this in Chapter 9.)

Sometimes the source material has already been collected on microfiche or
microfilm, and the expense associated with manual paper handling can be avoided

2 . 4 D I G I T I Z I N G D O C U M E N T S 67

by digitizing these forms directly. Although microfilm cameras are capable of
recording at very high resolution, quality is inevitably compromised because an
additional generation of reproduction is interposed; furthermore, the original
microfilming may not have been done carefully enough to permit digitized images
of sufficiently high quality for OCR. Even if the source material is not already in
this form, microfilming may be the most effective and least damaging means of
preparing content for digitization. It capitalizes on substantial institutional and
vendor expertise, and as a side benefit the microfilm masters provide a stable long-
term preservation format.

Generally the two most expensive parts of the whole process are handling the
source material on paper, and the manual interactive processes of OCR. A bal-
ance must be struck. Perhaps it is worth using a slightly inferior microfilm to
reduce paper handling at the expense of more labor-intensive OCR; perhaps not.

Microfiche is more difficult to work with than microfilm, since it is harder to
reposition automatically from one page to the next. Moreover, it is often pro-
duced from an initial microfilm, in which case one generation of reproduction
can be eliminated by digitizing directly from the film.

Image digitization may involve other manual processes apart from paper
handling. Best results may be obtained by manually adjusting settings like con-
trast and lighting individually for each page or group of pages. The images may
be skewed, that is, slightly rotated from their correct orientation on the scan-
ning platen, and a deskewing operation may have to be applied. This can be
done either manually or automatically. It may be necessary to split double-page
spreads into single-page images; again this may be manual or automatic. In
some cases pictures and illustrations will need to be copied from the digitized
images and pasted into other files.

Planning an image digitization project

Any significant image digitization project will normally be outsourced. As a
rough ballpark estimate, you can expect to pay $1 to $2 per page for scanning
and OCR if the material is in a form that can easily be handled (e.g., books
whose bindings can be removed), the text is clear and problem-free, there are
few images and tables that need to be handled manually, and you have a signifi-
cant volume of material. If difficulties arise, costs increase to many dollars per
page. Companies that perform image digitization often contract the labor-
intensive parts of the process to specialists in other countries.

Using a third-party service bureau eliminates the need for you to become a
state-of-the-art expert in image digitization and OCR. However, it will be neces-
sary for you to set standards for the project and ensure that they are adhered to.

Most of the factors that affect image digitization can only be evaluated by
practical tests. You should arrange for samples of the material to be scanned and

68 T W O | P R E L I M I N A R I E S

OCR’d by competing commercial organizations and compare the results. For
practical reasons (because it is expensive or infeasible to ship valuable source
materials around), the scanning and OCR stages may be contracted out sepa-
rately. Once scanned, images can be transmitted electronically to potential OCR
vendors for evaluation. You should probably obtain several different scanned
samples—at different resolutions, different numbers of gray levels, from differ-
ent sources such as microfilm and paper—to give OCR vendors a range of dif-
ferent conditions. You should select sample images that span the range of chal-
lenges that your material presents.

Once sample pages have been scanned and OCR’d, you might consider build-
ing a small digital library prototype that will allow others to assess the look and
feel of the planned collection. This is often a good way to drum up support by
getting others excited about the project.

Quality control of the scanned images is obviously an important concern in
any image digitization project. The obvious way is to load the images into your
system as soon as they arrive from the vendor and check them for acceptable
clarity and skew. Images that are rejected are then returned to the vendor for
rescanning. However, this strategy is time-consuming and may not provide suf-
ficiently timely feedback to allow the vendor to correct systematic problems. It
may be more effective to decouple yourself from the vendor by batching the
work. Quality can then be controlled on a batch-by-batch basis, where you
review a statistically determined sample of the images and accept or reject whole
batches.

Inside an OCR shop

Being labor-intensive, OCR work is often outsourced from the Western world to
developing countries such as India, the Philippines, and Romania. In 1999 one
of the authors visited an OCR shop in a small two-room unit on the ground
floor of a high-rise building in a country town in Romania. It contained about a
dozen terminals, and every day from 7:00 AM through 10:30 PM they were occu-
pied by operators who were clearly working with intense concentration. There
are two shifts a day, with about a dozen people in each shift and two supervi-
sors—25 employees in all.

Most of the workers are university students and are delighted to have this kind
of employment—it compares well with the alternatives available in their town.
Pay is by results, not by the hour—and this is quite evident as soon as you walk
into the shop and see how hard people work! In effect, they regard their shift at
the terminal as an opportunity to earn money, and they make the most of it.

This firm uses two different commercial OCR programs. One is better for
processing good copy, has a nicer user interface, and makes it easy to create and

2 . 4 D I G I T I Z I N G D O C U M E N T S 69

modify custom dictionaries. The other is preferred for tables and forms; it has a
larger character set with many unusual alphabets (e.g., Cyrillic). The firm does
not necessarily use the latest version of these programs; sometimes earlier ver-
sions have special advantages that are absent in subsequent ones.

The principal output formats are Microsoft Word and HTML. Again, the lat-
est release of Word is not necessarily the one that is used—obsolete versions
have advantages for certain operations. A standalone program is used for con-
verting Word documents to HTML because it greatly outperforms Word’s built-
in facility. These people are expert at decompiling software and patching it. For
example, they were able to fix some errors in the conversion program that
affected how nonstandard character sets are handled. Most HTML is written by
hand, although they do use an HTML editor for some of the work.

A large part of the work involves writing scripts or macros to perform tasks
semiautomatically. Extensive use is made of Word Basic to write macros.
Although Photoshop is used extensively for image work, they also employ a
scriptable image processor for repetitive operations. MYSQL, an open-source
SQL implementation, is used for forms databases. Java is used for animation
and for implementing Web-based questionnaires.

These people have a wealth of detailed knowledge about the operation of dif-
ferent versions of the software packages they use, and they keep their finger on
the pulse as new releases emerge. But perhaps their chief asset is their set of in-
house procedures for dividing up work, monitoring its progress, and checking
the quality of the result. An accuracy of around 99.99 percent is claimed for
characters, or 99.95 percent for words—an error rate of 1 word in 2,000. This is
achieved by processing every document twice, with different operators, and
comparing the result. In 1999 throughput was around 50,000 pages/month,
although capability is flexible and can be expanded rapidly on demand. Basic
charges for ordinary work are around $1 per page (give or take a factor of two),
but vary greatly depending on the difficulty of the job.

An example project

In the New Zealand Digital Library we undertook a project to put a collection of
historical New Zealand Māori newspapers on the Web, in fully indexed and
searchable form. There were about 20,000 original images, most of them double-
page spreads. Figure 2.3 shows an example image, an enlarged version of the
beginning, and some of the text captured using OCR. This particular image is a
difficult one to work with because some areas are smudged by water-staining.
Fortunately not all the images were so poor. As you can see by attempting to deci-
pher it yourself, high accuracy requires a good knowledge of the language in
which the document is written.

70 T W O | P R E L I M I N A R I E S

(a)

44 KO TE KARERE O NUI TIRENI.
Rongo mai, Kahore he poaka? kahore
he ringaringa hei mahi i etahi moni
hei hoko i etahi kakahu? he tini ra
o koutou mea hei hoko kakahu mo
koutou.

HE TUTAKINGA TANGATA
Ka taea tawhiti te rerenga o Ta-
wera, ka ngaro e tahi o nga whetu
maori, ka oti te hura te kaha mangu
o te po, ka kitea nga kapua ma te
marangai (te ita) ka mea te tangata
“ka takiri te ata” me reira ka ara
kororia mai i runga i tona torona
whero, te rangatira o te ao; na, ka

…
haere pai ratou i tenei ao, kia tae
atu hoki ki te okiokinga tapu i te
rangi. Otiia aua ahau e poka ke.—
Na, ka moni te ra i runga kau o te
pae, ka mea toku whakaaro ka
maranga i te moe te tahi tangata, a
haere mai ana tetahi i te huarahi,
tutaki pu taua, a ka noho ki raro.
Ko “Pai-Maori” tetahi o taua
hunga, he tangata poto, he moko tu-
kupu, tu a kaumatua, he mawhatu te
upoko, i pararahi te ihu, takataka ana
nga kanohi, e tokii ana nga paparinga,
matotoru ana nga ngutu, keokeo ana
nga tukimata, a hua nui nga wae-

(c)

(b)

Figure 2.3 (a) Double-page spread of a Māori newspaper;
(b) enlarged version; (c) OCR text.

The first task was to scan the images into digital form. Gathering together
paper copies of the newspapers would have been a massive undertaking, for the
collection comprises 40 different newspaper titles which are held in a number of
libraries and collections scattered throughout the country. Fortunately New
Zealand’s national archive library had previously produced a microfiche con-
taining all the newspapers for the purposes of historical research. The library
provided us with access not just to the microfiche result, but also to the original
35-mm film master from which it had been produced. This simultaneously
reduced the cost of scanning and eliminated one generation of reproduction.
The photographic images were of excellent quality because they had been pro-
duced specifically to provide microfiche access to the newspapers.

Having settled on the image source, the quality of scanning depends on scan-
ning resolution and the number of gray levels or colors. These factors also deter-
mine how much storage is required for the information. After conducting some
tests, we determined that a resolution corresponding to approximately 300 dpi
on the original printed newspaper was adequate for the OCR process. Higher
resolutions yielded no noticeable improvement in recognition accuracy. We also
found that OCR results from a good black-and-white image were as accurate as
those from a grayscale one. Adapting the threshold to each image, or each batch
of images, produced a black-and-white image of sufficient quality for the OCR
work. However, grayscale images were often more satisfactory and pleasing for
the human reader.

Following these tests, the entire collection was scanned to our specifications
by a commercial organization. Because we supplied the images on 35-mm film,
the scanning could be automated and proceeded reasonably quickly. We asked
for both black-and-white and grayscale images to be generated at the same time
to save costs, although it was still not clear whether we would be using both
forms. The black-and-white images for the entire collection were returned on
eight CD-ROMs; the grayscale images occupied approximately 90 CD-ROMs.

Once the images had been scanned, the OCR process began. Our first attempts
used Omnipage, a widely used proprietary OCR package. But we encountered a
problem: this software is language-based and insists on utilizing one of its known
languages to assist the recognition process. Because our source material was in
the Māori language, additional errors were introduced when the text was auto-
matically “corrected” to more closely resemble English. Although other language
versions of the software were available, Māori was not among them. And it
proved impossible to disable the language-dependent correction mechanism.2

The result was that recognition accuracies of not much more than 95 percent

72 T W O | P R E L I M I N A R I E S

2. In previous versions of Omnipage one can subvert the language-dependent correction by
simply deleting the dictionary file, and we know of one commercial OCR organization that
uses an obsolete version for precisely this reason.

were achieved at the character level. This meant a high incidence of word errors
in a single newspaper page, and manual correction of the Māori text proved
extremely time-consuming.

A number of alternative software packages and services were considered. For
example, a U.S. firm offered an effective software package for around $10,000
and demonstrated its use on some of our sample pages with impressive results.
The same firm offers a bureau service and was prepared to undertake the basic
OCR form for only $0.16 per page (plus a $500 setup fee). Unfortunately this
did not include verification, which we had identified as being the most critical
and time-consuming part of the process—partly because of the Māori language
material.

Eventually we did locate a reasonably inexpensive software package that had
high accuracy and allowed us to establish our own language dictionary. We
determined to undertake the OCR process in house. This proved to be an excel-
lent decision, and we would certainly go this route again. However, it is heavily
conditioned on the unusual language in which the collection is written, and the
local availability of fluent Māori speakers.

A parallel task to OCR was to segment the double-page spreads into single
pages for the purposes of display, in some cases correcting for skew and page-
border artifacts. We produced our own software for segmentation and skew
detection and used a semiautomated procedure in which the system displayed
segmented and deskewed pages for approval by a human operator.

2.5 Notes and sources

A useful source of information on criteria for selecting material for digitization
is de Stefano (2000), who is specifically concerned with digital conversion. The
problem of selecting for preservation raises similar issues, described by Atkin-
son (1986) in the predigital era. The six principles for the development of
library collections are Atkinson’s.

McCallum et al. (2000) describe methods for using machine learning tech-
niques to automate the construction of Internet portals, that is, virtual libraries.
Their techniques, which are still under development, help to automate the cre-
ation and maintenance of domain-specific virtual libraries. As an example, a
virtual library of computer science research papers is available on the Web at
www.cora.justresearch.com.

The term virtual library was characterized in 1993 as “remote access to the
contents and services of libraries and other information resources, combining an
on-site collection of current and heavily used materials in both print and elec-
tronic form, with an electronic network which provides access to, and delivery

2 . 5 N O T E S A N D S O U R C E S 73

from, external worldwide library and commercial information and knowledge
sources” (Gapen, 1993, p. 1). The pioneering INFOMINE project is described
by Mason et al. (2000), an inspiring paper from which much of our information
about virtual libraries was taken. Begun in January 1994, INFOMINE now pro-
vides organized and annotated links to over 20,000 scholarly and educational
Internet resources, all selected and described by professional librarians. This
project shows how librarians and librarian-designed finding tools can play a
welcome role in making the Web a more useful environment for researchers and
students.

The person who first formulated the objectives of a bibliographic system was
Charles Ammi Cutter, an outstanding late Victorian library systematizer (Cut-
ter, 1876). He was a great champion of users who astonished dyed-in-the-wool
librarians with radical opinions such as “the convenience of the user must be
put before the ease of the cataloger.” According to Svenonius (2000), he prac-
ticed what he preached, rejecting the traditional European classified catalog,
designed for scholars, in favor of a new alphabetic subject approach more suit-
able for the person in the street.

Section 2.2 on bibliographic organization has been strongly influenced by
two classic works: The Intellectual Foundations of Information Organization by
Svenonius (2000), and Library Research Models by Mann (1993). It is difficult,
perhaps, to make books on library science racy, but these come as close as one is
ever likely to find. The five objectives of a bibliographic system are from Svenon-
ius. Mann’s book has already been cited in Chapter 1 as a wonderful source of
information on libraries and librarianship.

Development of the Library of Congress Subject Headings began in 1898,
and the first edition came out in 1909. A recent edition of the big red books was
published in 1998 (Library of Congress, 1998).

A good source of further information to help stimulate thought on the basic
structure and parameters of your digital library is The Digital Library Toolkit
from Sun Microsystems (2000). This provides a series of questions that people
undertaking a digital library construction project should consider. It also raises
issues that affect the planning and implementation of a digital library, summa-
rizes a host of technological resources (with Web pointers), and briefly reviews
existing digital library systems.

Steganography takes one piece of information and hides it in another. Digital
watermarking is a kind of steganography where what is hidden is a trademark or
identification code. Brassil et al. (1994) wrote an early article on watermarking
textual images; Katzenbeisser and Petitcolas (1999) have collected a number of
papers on all aspects of digital watermarking; and Cox, Miller, and Bloom
(2001) have written a comprehensive reference book on the subject.

High-performance OCR products are invariably proprietary: we know of no
public-domain systems that attain a level of performance comparable to com-

74 T W O | P R E L I M I N A R I E S

monly used proprietary ones. However, at least two promising projects are under-
way. One is GOCR (for “Gnu OCR”), which aims to produce an advanced open-
source OCR system; its current status is available at http://jocr.sourceforge.net.
Another is Clara OCR, which is intended for large-scale digitization projects and
runs under X Windows; it is available at www.claraocr.org/.

The interactive OCR facilities described in Section 2.4 are well exemplified by
the Russian OCR program FineReader (ABBYY Software, 2000), an excellent
example of a commercial OCR system. Lists of OCR vendors are easily found on
the Web, as are survey articles that report the results of performance comparisons
for different systems. The newsgroup for OCR questions and answers is
comp.ai.doc-analysis.ocr. Price-Wilkin (2000) gives a nontechnical review of the
process of creating and accessing digital image collections, including a sidebar on
OCR by Kenn Dahl, the founder of a leading commercial OCR company. The
OCR shop we visited in Romania is Simple Words (www.sw.ro), a well-organized
and very successful private company that specializes in high-volume work for
international and nongovernment organizations.

The Māori language has fifteen sounds: the five vowels a, e, i, o, and u, and ten
consonant sounds written h, k, m, n, p, r, t, w, ng, and wh. Thus the language is
written using fifteen different letters. The first eight consonant sounds are pro-
nounced as they are in English; the last two are digraphs pronounced as the ng
in singer and the wh in whale, or as f. Each vowel has a short and long form, the
latter being indicated by a macron as in the word Māori.

The ß or scharfes s character in German has been the source of great contro-
versy in recent years. In 1998 a change in the official definition of German
replaced some, but not all, occurrences of ß by ss. However, spelling reform has
proven unpopular in German-speaking countries. Indeed in August 2000 Ger-
many’s leading daily newspaper, the Frankfurter Allgemeine Zeitung, returned to
traditional German spelling. Acting on its own and virtually alone among Ger-
many’s major newspapers, FAZ suddenly announced that it was throwing out
the new spelling and returning to the previous rules. Today there are ever-
increasing calls for a “reform of the reform.”

TWAIN is an image-capture application programming interface, originally
released in 1992 for the Microsoft Windows and Apple Macintosh operating
systems, which is typically used as an interface between image processing soft-
ware and a scanner or digital camera. The TWAIN Working Group, an organi-
zation that represents the imaging industry, can be found at www.twain.org.
According to The Free On-Line Dictionary of Computing (at www.foldoc.org), the
name comes from the phrase “and never the twain shall meet” in Kipling’s The
Ballad of East and West. It reflects the difficulty, at the time, of connecting scan-
ners and personal computers. On being uppercased to TWAIN to make it more
distinctive, people incorrectly began to assume that it was an acronym. There is

2 . 5 N O T E S A N D S O U R C E S 75

no official interpretation, but the phrase “Technology Without An Interesting
Name” continues to haunt the standard.

The design and construction of the “Niupepa” (the Māori word for “newspa-
pers”) collection of historical New Zealand newspapers sketched at the end of
Section 2.4 is given by Keegan et al. (2001). A more accessible synopsis by
Apperley et al. (2001) is available, while Apperley et al. (in press) give a compre-
hensive description. The project was undertaken in conjunction with the
Alexander Turnbull Library, a branch of the New Zealand National Library,
whose staff gathered the material together and created the microfiche that was
the source for the digital library collection. This work is being promoted as a
valuable social and educational resource and is partially funded by the New
Zealand Ministry of Education.

76 T W O | P R E L I M I N A R I E S

77

Presentation
User interfaces

How do you build a digital library? Where do you start? How do you explain how to
build a digital library? “Begin at the beginning,” the King of Hearts said gravely,
“and go on till you come to the end: then stop” (Figure 3.1). But we will ignore
his advice and begin our story at the end: what you might expect the final
library system to look like. Then in the next two chapters we jump to the begin-
ning and look at the forms in which the library material might be provided.
Chapters 6 and 7 fill in the middle by explaining how it’s all done. Despite the
Red King’s words, this is quite logical. It corresponds to looking first at the goal,
what you hope to achieve; then at the starting point, what you have to work
with; and finally in between, how you get from where you are now to where you
want to be.

Our digital library definition from Chapter 1 begins

a focused collection of digital objects, including text, video, and audio . . .

and a good place to start is with the objects themselves. We will mostly be con-
cerned with textual objects—we call them documents—and how they appear on
the user’s screen. The next section illustrates how different documents can
appear within a digital library system. There are many possibilities, and we
include just a smattering: structured text documents, unstructured text docu-
ments, page images, page images along with the accompanying text, speech

Documents are the digital library’s building blocks. It is time to step down

from our high-level discussion of digital libraries—what they are, how they

are organized, and what they look like—to nitty-gritty details of how to rep-

resent the documents they contain. To do a thorough job we will have to

descend even further and look at the representation of the characters that

make up textual documents and the fonts in which those characters are

portrayed. For audio, images and video we examine the interplay

between signal quantization, sampling rate and internal redundancy that

underlies multimedia representations.Documents are the digital library’s

building blocks. It is time to step down from our high-level discussion of dig3

78 T H R E E | P R E S E N T A T I O N

audio, photographic pictures, and videos. A digital library might include “non-
standard” information such as music, which has many different representa-
tions—synthesized audio, music notation, page images, recorded MIDI perfor-
mances, recorded audio performances. We also take the opportunity, when
surveying examples of documents, to illustrate the wide range of uses to which
digital libraries are being put.

In addition to documents, digital libraries include metadata of the kind used
conventionally for bibliographic organization as discussed in Section 2.2, although
metadata potentially involves a wider range of information and formats. We next
examine some examples of metadata display, which will help convey the idea of
what kind of metadata might accompany a digital library collection.

The definition goes on to say

. . . along with methods for access and retrieval . . .

Figure 3.1 Finding a quotation in Alice’s Adventures in
Wonderland.

The second part of this chapter illustrates different methods for access and
retrieval. Conventionally these are divided into searching and browsing,
although in truth the distinction is not a sharp one. We first examine interfaces
that allow you to locate words and phrases in the full text of the document col-
lection. Searching is also useful for metadata—such as finding words in title and
author fields—and we look at digital library interfaces that allow these searches,
and combinations of them, to be expressed. It is often useful to be able to recall
and modify past searches: search history interfaces allow you to review what you
have done and reuse parts of it. Next we examine browsing interfaces for meta-
data, such as titles, authors, dates, and subject hierarchies, and show how these
relate to the structure that is implicit within the metadata itself.

But searching and browsing are not really different activities: they are differ-
ent parts of a spectrum. In practice people want to be able to interact with infor-
mation collections in different ways, some involving searching for particular
words, some involving convenient browsing—perhaps browsing the results of
searching. We examine two schemes that effectively combine searching and
browsing. Both are based on phrases extracted automatically from the docu-
ments in a digital library: one on an enormous—almost exhaustive—set of
phrases that appear in the text; the other on carefully selected sets of key phrases
for each document.

The final part of the definition is

. . . and for selection, organization, and maintenance of the collection.

We will not address this activity explicitly in this chapter, except insofar as
browsing structures reflect the organization of the collection. In truth this entire
book is about organizing and maintaining digital libraries—or rather, about
organizing them in such a way that they are easy to maintain.

Figure 3.1, like most of the illustrations here, shows a screen shot from a Web
browser. However, the browser does not show a static Web page: the digital
library software has constructed this page dynamically at the time it was called
up for display. The navigation bar at the top, the book title at the top left, the
buttons underneath, and the page selector at the top right are all composed
together with the text at display time, every time the page is accessed. The infor-
mation is actually stored in compressed form in a textual database system. If you
look on the computer that is the Web server for this digital library, you will not
find this page stored there. Likewise in the next examples, in Figure 3.2, these
pages are also put together, along with all images and links, at the time
requested—not before. And in Figures 3.3a and b, the cover picture at the top
left and the table of contents at the top right are stored internally in such a way
that they can be accessed, and searched, and browsed, independently of the text.

I N T R O D U C T I O N 79

This is why in Chapter 1 we distinguished a digital library from a Web site—
even one that offers a focused collection of well-organized material. The fact
that documents are treated as structured objects internally enhances the
prospects for providing comprehensive searching and browsing facilities.

The general look and feel of a digital library system can easily be altered by
changing the way the screen is laid out and the icons used on it. Figure 3.2a
shows the front page of the Kids’ Digital Library, which uses a hand-printed
font, chunky, hand-drawn icons, and bright pastel shades to promote a feeling
of friendliness and informality—contrasting strongly with the austere, busi-
nesslike image conveyed by Figure 3.1. Figure 3.2b shows a page of a collection
taken from a School Journal (we will return to this collection and give more
information about it shortly): again, colorful pictures are available and are used
wherever possible in place of textual descriptions, and the logo at the top is
designed to help communicate the intended feeling. Exactly the same underly-
ing technology can be used to support many different styles of digital library.
Because all Web pages are generated dynamically from an internal representa-
tion, it is easy to change the entire look and feel of all pages associated with a
collection—immediately, at runtime, without regenerating or even touching the
content of the collection. None of the underlying information need be altered,
just the output processing routines.

80 T H R E E | P R E S E N T A T I O N

(a) (b)

Figure 3.2 Different-looking digital libraries: (a) Kids’ Digital Library (Middlesex
University, London, England); (b) School Journal Digital Library (Learning Media
Limited, Wellington, New Zealand).

3.1 Presenting documents

If you want to build a digital library, the first questions that need to be answered
are: What form are the documents in? What structure do they have? How do
you want them to look?

Hierarchically structured documents

Figure 3.3 shows a book in the Humanity Development Library entitled Village
Level Brickmaking. A picture of the front cover is displayed as a graphic on the
left of Figure 3.3a, and the table of contents appears to its right. Below this is the
start of the main text, which begins with title, author, and publisher. The books
in this collection are generously illustrated: many pictures are included in the
text. On the screen these images appear in-line, just as they did in the paper
books from which the collection was derived. Figures 3.3c and d show some of
the images, obtained by scrolling down from Figure 3.3b.

All books in this collection have front-cover images, and the appropriate
image always appears at the top of any page where a book, or part of a book, is
displayed. This ever-present picture gives a feeling of physical presence, a con-
stant reminder of the context in which you are reading. The user interface look
and feel may be a poor substitute for the real look and feel of a physical book—
the heft, the texture of the cover, the crinkling sound of pages turning, the smell
of the binding, highlighting and marginal notes on the pages, dog-eared leaves,
coffee stains, the pressed wildflower that your lover always used as a book-
mark—but it’s a lot better than nothing.

The books in the Humanity Development Library are structured into sec-
tions and subsections. The small folder icons in Figure 3.3a indicate chapters—
there are chapters on Standardization, Clay Preparation, Moulding, and so on.
The small text-page icons beside the Preface, Extraction, and Acknowledgements
headings indicate leaves of the hierarchy: sections that contain text but no fur-
ther subsection structure.

Clicking on Moulding in Figure 3.3a produces the page in Figure 3.3b, which
shows the chapter’s structure in the form of a table of contents of its sections.
Here the user has opened the book to the Sand moulding section by clicking on
its text-page icon; that section heading is shown in bold and its text appears
below. By clicking on other headings the reader can learn about such topics as
Slop moulding, How to mould bricks, and Drying.

You can read the beginning of the Sand moulding section in Figure 3.3b: the
scroll bar to the right of the screen indicates that there is more text underneath.
Figures 3.3c and d show the effect of scrolling further down the same page.

Sometimes you want to see the full table of contents, with all chapters and
their sections and subsections included. Sometimes you want to see the text of

3 . 1 P R E S E N T I N G D O C U M E N T S 81

82 T H R E E | P R E S E N T A T I O N

(c) (d)

Figure 3.3 Village-Level Brickmaking: (a) the book; (b) the chapter on Moulding; (c, d)
some of the pages. Beamish, A., and Donovan, W. Village-Level Brickmaking. Copyright
© 1989 GTZ Deutsches Zentrum für Entwicklungstechnologien-GATE in Deutsche
Gusellschaft für Technische Zusammenarbeit (GTZ) GmbH.

(a) (b)

the whole book—apart from getting a complete view, a common reason for
doing this is in order to print it out. In Figure 3.3 the button labeled “Expand
contents” expands the table of contents into its full hierarchical structure. Like-
wise the Expand Text button expands the text of the section being displayed. If
we pressed Expand Text in Figure 3.3a we would get the text of the entire book,
including all chapters and subsections; if we pressed it in Figure 3.3b we would
get the complete text of the Moulding chapter, including all subsections. Finally,
the Detach button duplicates this window on the screen, so that you can leave
the text in it while you go and look at another part of the library in the other
window—invaluable when comparing multiple documents.

The Humanity Development Library is a large compendium of practical
material that covers diverse areas of human development, from agricultural
practice to foreign policy, from water and sanitation to society and culture, from
education to manufacturing, from disaster mitigation to microenterprises. It
contains 1,230 publications—books, reports, and magazines—totaling 160,000
pages, which as noted in Chapter 1 would weigh 340 kg in print form and
occupy a small library bookstack.

This material was carefully selected and put together by a dedicated collec-
tion editor, who acquired the books, arranged for permission to include each
one, organized a massive OCR operation to convert them into electronic form,
set and monitored quality control standards for the conversion, decided what
form the digital library should take and what searching and browsing options
should be provided, entered the metadata necessary to build these structures,
and checked the integrity of the information and the look and feel of the final
product. The care and attention put into the collection is reflected by its high
quality. Nevertheless it is not perfect: there are small OCR errors, and some of
the 30,000 in-text figures (of which examples can be seen in Figures 3.3c and d)
are inappropriately sized. The amount of effort required to edit a high-quality
collection of a thousand or more books is staggering—just ask a publisher what
goes into the production of a single conventional book like this one.

Plain, unstructured text documents

Figure 3.4, and Figure 3.1 earlier, show screen shots from a far plainer collection,
a set of documents that have been treated as unstructured text. There is no hier-
archical structure here—at least none that is known to the digital library system.
Neither are there front-cover images. In place of Figure 3.3’s cover picture and
table of contents at the top of each page, Figure 3.4 shows a more prosaic dis-
play: the title of the book and a page selector that lets you turn from one page to
another. Browsing is less convenient because there is less structure to work with.
Even the “pages” do not correspond to physical pages, but are arbitrary breaks

3 . 1 P R E S E N T I N G D O C U M E N T S 83

made by the computer every few hundred lines—that’s why Alice’s Adventures in
Wonderland appears to have only 28 pages! The only reason for having pagina-
tion at all is to prevent your Web browser from downloading the entire book
every time you look at it.

In fact, this book does have chapters—in Figure 3.4 you can see the beginning
of Chapter 1, Down the rabbit-hole. However, this structure is not known to the
digital library system: the book is treated as a long scroll of plain text. At some
extra cost in effort when setting up the collection, it would have been possible to
identify the beginning of each chapter, and its title, and incorporate this infor-
mation into the library system to permit more convenient chapter-by-chapter
browsing—as has been done in the Humanity Development Library. The cost
depends on how similar the books in the collection are to one another and how
regular the structure is. For any given structure, or any given book, it is easy to
do; but in real life any large collection (of, say, thousands of books) will exhibit
considerable variation in format. As we mentioned before, the task of proof-
reading thousands of books is not to be undertaken lightly!

Another feature of this collection is that the books are stored as raw ASCII text,
with the end of each line hard-coded in the document, rather than (say) HTML.
That is why the lines of text in Figure 3.4 are quite short: they always remain exactly
the same length and do not expand to fill the browser window. Compared with the
Humanity Development Library, this is a low-quality, unattractive collection.

84 T H R E E | P R E S E N T A T I O N

Figure 3.4 Alice’s Adventures in Wonderland.

Removing the end-of-line codes would be easy for the text visible in Figure 3.4, but
a simple removal algorithm would destroy the line breaks in tables of contents and
displayed bullet points. It is surprisingly difficult to do such things reliably on large
quantities of real text—reliably enough to avoid the chore of manual proofreading.

Figure 3.1 shows another feature: the words begin and beginning are high-
lighted in boldface. This is because the page was reached by a text search of the
entire library contents (described in Section 3.3), to find the quotation with
which this chapter begins. This digital library system highlights search terms in
(almost) every collection: there is a button at the top that turns highlighting off
if it becomes annoying. In contrast, standard Web search engines do not high-
light search terms in target documents—partly because they do not store the
target documents but instead direct the user to the document held at its original
source location.

Alice’s Adventures in Wonderland is a book in the Gutenberg collection. The
goal of Project Gutenberg is to encourage the creation and distribution of elec-
tronic text. Although conceived in 1971 with the exceedingly ambitious aim of a
trillion electronic literature files by the year 2001, work did not begin in earnest
until 1991, and the aim was scaled back to 10,000 electronic texts within ten years.
The first achievement was an electronic version of the U.S. Declaration of Inde-
pendence, followed by the Bill of Rights and the Constitution. Then came the
Bible and Shakespeare—unfortunately, however, the latter was never released
because of copyright restrictions. The growth rate of the collection was planned to
double each year, with one book per month added in 1991, two in 1992, four in
1993, and so on; at this rate the final goal should have been reached in 2001. At the
time of writing the project was a little behind schedule, with nearly 4,500 books
entered by the end of 2001 and a rate of increase of perhaps 100 per month.

Project Gutenberg is a grassroots phenomenon. Text is input by volunteers,
each of whom can enter a book a year or even just one book in a lifetime. The
project does not direct the volunteers’ choice of material; instead people are
encouraged to choose books they like and enter them in the manner in which
they feel most comfortable. Central to the project’s philosophy is to represent
books as plain text, with no formatting and no metadata other than title and
author. Professional librarians look askance at amateur efforts like this, and
indeed quality control is a serious problem. However, for a vision that dates back
more than two decades before the advent of the World Wide Web, Gutenberg is
remarkably farsighted and gives an interesting perspective on the potential role
of volunteer labor in placing society’s literary treasures in the public domain.

In keeping with the Project Gutenberg spirit, little effort has been made to
“pretty up” this digital library collection. It represents the opposite end of the
spectrum to the Humanity Development Library. It took a few hours for a per-
son to download the Project Gutenberg files and create the collection and a few

3 . 1 P R E S E N T I N G D O C U M E N T S 85

hours of computer time to build it. Despite the tiny amount of effort spent con-
structing it, it is fully searchable—which makes it indispensable for finding
obscure quotations—and includes author and title lists. If you want to know the
first sentence of Moby Dick, or whether Hermann Melville wrote other popular
works, or whether “Ishmael” appears as a central character in any other books,
or the relative frequencies of the words he and her, his and hers in a large collec-
tion of popular English literature, this is where to come.

Page images

The page of the children’s story “Never Shout at a Draft Horse!” shown in Figure
3.5 is represented not as text but as a facsimile of the original printed version.
This example is taken from a collection of literature written for children, the
New Zealand School Journal. The collection’s designer decided to show digi-
tized images of the books’ pages rather than text extracted from them. From a
technical point of view there is a big difference: a textual representation gener-
ally occupies only about one-twentieth as much storage space as a page image,

86 T H R E E | P R E S E N T A T I O N

(a) (b)

Figure 3.5 A story from the School Journal collection: (a) “Never Shout at a Draft
Horse!”; (b) with search term highlighted (mock-up). “Never Shout at a Draft Horse”
by Diana Noonan. New Zealand School Journal, 1994, Part 3, No. 2.

greatly reducing the space required to store the collection and the time needed
to download each page. However, the picture of the horse would have to be rep-
resented as an image, just as the pictures are in Figures 3.3c and d, sacrificing
some of the storage space gained.

One good reason for showing page images rather than extracted text in this
collection is because the optical character recognition (OCR) process that iden-
tifies and recognizes the text content of page images is inevitably error-prone.
When schoolchildren are the target audience, special care must be taken not to
expose them to erroneous text. Of course errors can be detected and corrected
manually, as in the Humanity Development Library, but at a substantial cost,
well beyond the resources that could be mustered for this particular project.

Text is indeed extracted from the New Zealand School Journal pages using
OCR, and that text is used for searching. But the reader never sees it. The conse-
quence of OCR errors is that some searches may not return all the pages they
should. If a word on a particular page was misrecognized, then a search for that
word will not return that page. It is also possible that a word on the page is mis-
interpreted as a different word, in which case a search for that word will incor-
rectly return the page, in addition to other pages on which the word really does
appear. However, neither of these errors was seen as a big problem—certainly
not so serious as showing children corrupted text.

Figure 3.5 shows the journal cover at the top left and a page selector at the
right that lets you browse around the story more conveniently than the numeric
selector in Figure 3.2. These stories are short: “Never Shout at a Draft Horse”
(Figure 3.5) has only four pages.

A disadvantage of showing page images is that it is hard to find search terms
on the page. In Figure 3.1 the terms begin and beginning are in boldface. While it
is easy to highlight words in a page of text, it is more difficult to highlight them
in a page image. It is not impossible—Figure 3.5b shows the same page with the
word Hamish highlighted as though it had been marked with a yellow marker
pen. It looks impressive, and indeed it is not difficult to process the page image
in this way to simulate yellow highlighting. However, it is necessary to find out
exactly where the word occurs in the page in order to know what areas to high-
light. It is difficult to infer from the page image the information required to do
this, although some OCR systems generate information on word positions.

The School Journal is a magazine for New Zealand schoolchildren, delivered
free to schools throughout the nation by the Ministry of Education. Its purpose is
to provide quality writing that is relevant to the needs and interests of New
Zealand children, and the real aim is to foster a love of reading. The material it
contains is widely used throughout the school curriculum. Not only is it used for
teaching reading, but also for social studies, science, and many other subjects.

3 . 1 P R E S E N T I N G D O C U M E N T S 87

The magazine originated over 90 years ago, and the cover of the very first issue
is the top left image in Figure 3.2b. Like most children’s literature of the time, the
content of early issues was based around conveying attitudes and values of soci-
ety at large. During the 1930s the journal began to encourage children’s intellec-
tual curiosity by relating the material to the student’s environment. This collec-
tion of a small sample of School Journals gives a fascinating historical perspective
on the development of attitudes toward children’s education—and indeed the
development of society in general—throughout the 20th century.

Page images and extracted text

While readers of the School Journal digital library collection see page images only,
in other situations it is useful to provide a facility for viewing the extracted text as
well. Figure 3.6 shows an example from a collection of historical New Zealand
Māori newspapers, in both image and text form. As you can see, the tabular infor-
mation at the top of the page just beneath the masthead and issue details, which
represents sums of money (although it is difficult to make out), is missing from
the text version. Because it is the text version that supports searching, this infor-
mation is not visible to searches. On the other hand, the word Rotorua, which was
the search term for this page, is highlighted in the text but not in the page image.

88 T H R E E | P R E S E N T A T I O N

(a) (b)

Figure 3.6 A historic Māori newspaper: (a) page image; (b) extracted text.

Both forms are provided in this collection because the advantage of being
able to locate search terms in these rather long pages was deemed to outweigh
any damage that might be wrought by showing readers incorrect versions of the
text. The reader can choose whether to view text or image and can move quickly
from one to the other. A magnified version of each page image is also available,
should it be required—this facility is provided in most image collections.

The Māori newspapers record fascinating historical information that is useful
from many points of view. They were published from 1842 to 1933, a formative
period in the development of New Zealand, which, being so far from Europe,
was colonized quite late. Far-reaching political developments took place during
these years, and the collection is a significant resource for historians. It is also an
interesting corpus for linguists, for changes in the Māori language were still tak-
ing place and can be tracked through the newspapers.

The collection contains 40 different newspaper titles that were published
during the period. They are mostly written in Māori, though some are in Eng-
lish and a few have parallel translations. There are a total of 12,000 images, vary-
ing from A4 to double-page tabloid spreads—these images contain a total of
around 20,000 newspaper pages. The images had previously been collected on
microfiche. They are in a variety of conditions: some are crisp, others are yel-
lowish, and still others are badly water-stained.

Construction and distribution of the microfiche was an enormous effort and
was undertaken to make this national treasure available to scholars. However,
the material was entirely unindexed. Although a research project has begun that
is producing summaries of the articles, these will take many years to complete.
The digital library collection completely transforms access to the material. First,
the documents are available over the Web, which makes them readily accessible
to a far wider audience. Second, they can be fully searched, which makes almost
any kind of research immeasurably easier. Third, the collection does not require
any research skills to use, so that ordinary people can discover things that they
would never otherwise know about their heritage, ancestry, or home town.

Audio and photographic images

Some years ago the public library in the small New Zealand town where we live
began a project to collect local history. Concerned that knowledge of what it was
like to grow up here in the 1930s, 1940s, and 1950s would soon be permanently
lost, they decided to interview older people about their early lives. Armed with
tape recorders, local volunteers conducted semistructured interviews with resi-
dents of the region and accumulated many cassette tapes of recorded reminis-
cences, accompanied by miscellaneous photographs from the interviewees’ fam-
ily albums. From these tapes, the interviewer developed a brief typewritten

3 . 1 P R E S E N T I N G D O C U M E N T S 89

summary of each interview, dividing it into sections representing themes or
events covered in the interview. And then the collection sat in a cardboard box
behind the library’s circulation desk, largely unused.

Recently all the tapes and photos were digitized and made into a digital
library collection, along with the summaries. Figure 3.7 shows it in use. The
small control panel in the center is being used to replay a particular recording,
using a standard software audio-player that sports regular tape-recorder func-
tions—pause, fast forward, and so on. You don’t have to wait until the whole
audio file is downloaded: the software starts playing the beginning of the file
while the rest is being transmitted. Behind the control panel is the interview
summary. In the background on the right can be seen a photograph—in this

90 T H R E E | P R E S E N T A T I O N

Figure 3.7 Listening to a tape from the Oral History collection. Hamilton Public
Library, Hamilton, New Zealand.

case of the celebrations in our town on VE Day near the end of the Second World
War—and on the left is the query page that was used to locate this information.

The interview page is divided into sections with a summary for each. Clicking
on one of the speaker icons plays back the selected portion of the audio inter-
view; interviews also can be played back in full using buttons at the top of the
page (not visible in Figure 3.7). When the tapes were digitized, timings were
generated for the beginning and end of each section. Flipping through a tape in
this way, scanning a brief textual synopsis and clicking on interesting parts to
hear them, is a far more engaging and productive activity than trying to scan an
audiotape with a finger on the fast-forward button.

It is the contents of the interview pages that are used for text searching.
Although they do not contain a full transcript of the interview, most keywords
that you might want to search on are included. In addition, brief descriptions of
each photograph were entered, and these are also included in the text search.
These value-adding activities were done by amateurs, not professionals. Stan-
dard techniques such as deciding in advance on the vocabulary with which
objects are described—a so-called controlled vocabulary—were not used. Nev-
ertheless it seems to be easy for people to find material of interest.

Imagine the difference in access between a box of cassette tapes at the
library’s circulation desk and the fully indexed, Web-accessible digital library
collection depicted in Figure 3.7. Text searching makes it easy to find out what it
was like at the end of the war, or to study the development of a particular neigh-
borhood, or to see if certain people are mentioned—and you can actually hear
senior citizens reminisce about these things. Casual inquiries and browsing
immediately become simple and pleasurable—in striking contrast to searching
through a paper file, then a box of tapes, and finally trying to find the right place
on the tape using a cassette tape player. In fact, although this collection can be
accessed from anywhere on the Web, the audio files are only available to users on
terminals in the local public library because when the interviews were made the
subjects were not asked for consent to distribute their voices worldwide. There is
a message here for those engaged in local history projects—think big!

Video

Including videos as documents in digital libraries is just as easy as including
audio or photographic images. Web browsers, suitably equipped with plug-ins,
are capable of playing video in a variety of formats. Of course a great deal of
storage space will be required for a large collection of videos. And the feasibility
of downloading video material over the Internet depends on numerous techni-
cal factors, such as the bandwidth of the connection.

3 . 1 P R E S E N T I N G D O C U M E N T S 91

Just as the oral history audiotapes are accessed through textual summaries of
the interviews and descriptions of the photographs, so with videos it is possible
to supply appropriate descriptive text so that they can be located. Summaries
and reviews are readily available and provide a good start.

Music

As Chapter 1 mentioned, digital collections of music have the potential to cap-
ture popular imagination in ways that more scholarly libraries will never do.
Figure 3.8 shows the process of trying to find the tune Auld Lang Syne. The
player in the front window is controlling playback of audio generated by a music
synthesizer program from an internal representation of the music. Also visible is
the musical notation for the tune, which is generated from the same internal
representation, this time by a music-typesetting program that produces an
image suitable for display in a Web browser. In this collection the same internal
representation supports musical searching: we return to this in Chapter 9.

92 T H R E E | P R E S E N T A T I O N

Figure 3.8 Finding Auld Lang Syne in a digital music library.

The music representation for this collection was produced by an optical
music recognition (OMR) program—similar to an OCR program but working
in the domain of printed music—from a scanned page of a music book that
includes the tune. Not shown in Figure 3.8, but just a click away for the user, is
an image of the actual book page that contains the song. Also available are the
lyrics. In other music collections it is easy to locate and listen to prerecorded
renditions of the tune that people have keyed into their computer and stored in
the widely used MIDI (musical instrument digital interface) format, which is a
standard adopted by the electronic music industry for recording and controlling
electronic instruments. It is even possible to click through to music sites that
contain actual recordings and play those too.

The twin keys to creating a rich digital library music collection that is inter-
esting and entertaining to search and browse are (1) being able to convert
between the different forms that music takes, and (2) making resourceful use of
the Web to locate relevant information. There are several possible representa-
tions of music:

■ printed notation
■ human-produced MIDI file
■ audio replayed from a human MIDI file
■ audio synthesized from an internal representation
■ audio file representing a human performance
■ internal representation, suitable for searching

An internal representation can be generated without difficulty from a human-
produced MIDI file, though not from a human audio performance (at least not
without excessive difficulty). And it is certainly not possible for a computer to
synthesize a human performance! All other conversions are possible, with vary-
ing quality of results. For example, using optical music recognition to convert
from printed notation to an internal representation is by no means a perfect
process; printed music generated from a MIDI file is nowhere near as legible as
professionally typeset music.

Foreign languages

We have already seen an example of a foreign-language collection: the Māori
newspapers in Figure 3.6. Māori uses the standard Roman character set,
although it does include one diacritical mark, a bar that occurs over vowels to
lengthen them. In Chapter 5 (Section 5.1) we show how to represent such char-
acters in Web documents.

Figure 3.9 shows interfaces in French and Portuguese. The French illustration
is from a UNESCO collection called Sahel Point Doc that contains information

3 . 1 P R E S E N T I N G D O C U M E N T S 93

about the Sahel region of sub-Saharan Africa. Everything in this collection is in
French: all target documents, the entire user interface, and the help text. Figure
3.9b shows a Portuguese interface to an English-language collection—the same
Gutenberg collection that we examined earlier. Again, the entire user interface
(and help text) has been translated into Portuguese, but in this case the target
documents are in English. In fact the user interface language is a user-selectable
option on a Preferences page: you can instantaneously switch to languages such
as German, Dutch, Spanish, and Māori too.

Figure 3.10 shows documents from two different Chinese collections. The first
comes from a collection of rubbings of Tang poetry—not unlike those stone ste-
les described in Chapter 1, the world’s oldest surviving library. These documents
are images, not machine-readable text. Like the School Journal collection, there
are machine-readable versions of each document—although in this case they
were entered manually rather than by OCR—but the user never sees them: they
are used only for searching. Because of the difficulty of locating particular words
in the images, search terms are not highlighted in this collection.

94 T H R E E | P R E S E N T A T I O N

(a) (b)

Figure 3.9 Foreign-language collections: (a) French (Contrôler la mosaïque africaine du
manioc by J. Guthrie, CTA, 1990); (b) Portuguese interface to an English collection (The
Life of Christopher Columbus by Edward Everett Hale, Electric Umbrella Publishing).

The second Chinese example is from a small collection of classic literature.
Here books are represented in the same way as they are in the Humanity Devel-
opment Library, with chapters shown by folders. The work illustrated is here
The Plum in the Golden Vase, an anonymous early 17th-century satirical novel
that recounts the domestic life of a corrupt merchant with six wives and concu-
bines who slowly destroys himself with conspicuous consumption, political
imbroglios, and sexual escapades. One of the three most famous Ming Dynasty
novels, it reflects the debaucheries of society at the time—and is still banned in
China. In this collection, being textual, search terms are highlighted by putting
them in bold. Boldface characters (and indeed italics) are used in Chinese just as
they are in Western languages.

It’s easy to display documents in exotic languages within Web browsers. In
the early days you had to download a special plug-in for the character set being
used, but today’s browsers incorporate support for many languages. Figure 3.11
shows pages from an Arabic collection of information on famous mosques, dis-
played using an ordinary browser. If your browser does not support a particular
character set, you may need to download an appropriate plug-in.

As Figures 3.10a and 3.11b imply, the text of both the Chinese and Arabic col-
lections (as well as all other languages) is fully searchable. Again, the browser
does the hard part, facilitating character entry and ensuring that Arabic text is

3 . 1 P R E S E N T I N G D O C U M E N T S 95

(a) (b)

Figure 3.10 Documents from two Chinese collections: (a) rubbings of Tang poetry;
(b) classic literature.

composed from right to left, not from left to right as in other languages. To enter
ideographic languages like Chinese, which go beyond the normal keyboard, you
need special software. All documents in this digital library system are repre-
sented internally in Unicode, and the system converts between this and the rep-
resentation supported by the browser (which can differ from one browser to
another). We discuss how to handle different character sets in Chapter 4 (Sec-
tion 4.1), while Chapter 5 (Section 5.1) mentions how to embed them in Web
documents.

3.2 Presenting metadata

As we saw in Chapter 2, traditional libraries manage their holdings using cata-
logs that contain information about every object they own. Metadata, charac-
terized in Chapter 1 as “data about data,” is a recent term for such information.
Metadata is information in a structured format, whose purpose is to provide a
description of other data objects to facilitate access to them. Whereas the data
objects themselves—the books, say—generally contain information that is not
structured, or (as in the Gutenberg collection in Figure 3.4) whose structure is
not apparent to the system, the essential feature of metadata is that its elements
are structured. Moreover, metadata elements are standardized so that the same
type of information can be used in different systems and for different purposes.

96 T H R E E | P R E S E N T A T I O N

(a) (b)

Figure 3.11 An Arabic collection: (a) a document; (b) searching.

In the computer’s representation of a book it may not be obvious what is the
title, the author, the publisher, the source of the original copy, and so on. How-
ever, if this information is represented in metadata, it is done so in a standard
way using standard elements, so that the computer can identify these fields and
operate on them.

Figure 3.12 shows metadata presented as a conventional bibliographic listing.
These items have been located in a large collection of computer science refer-
ences: the hyperlinks at the end of each reference link to the source bibliogra-
phies. Many of the bibliographic entries have abstracts, which are viewed by
clicking the page icon to the left of each entry. In this case all the icons are grayed
out, indicating that no abstracts are available. The metadata here includes title,
author, date, the title of the publication in which the article appears, volume
number, issue number, and page numbers. These are standard bibliographic
metadata items. Also included are the URL of the source bibliography and the
abstract—although you may argue whether this is structured enough to really
constitute metadata.

Metadata has many different aspects, corresponding to different kinds of infor-
mation that might be available about an item, that are not included in the abbrevi-
ated reference format of Figure 3.12. Historical features describe provenance,
form, and preservation history. Functional ones describe usage, condition, and
audience. Technical ones provide information that promotes interoperability
between different systems. Relational metadata covers links and citations. And,
most important of all, intellectual metadata describes the content or subject.

3 . 2 P R E S E N T I N G M E T A D A T A 97

Figure 3.12 Bibliography display.

Metadata provides assistance with search and retrieval; gives information about
usage in terms of authorization, copyright, or licensing; addresses quality issues
such as authentication and rating; and promotes system interoperability.

Figure 3.13a shows a metadata record retrieved over the Internet from the
Library of Congress information service and displayed within a simple interface
that shows all the fields in the record (only half of which are visible). The more
common fields are named, while obscure ones are labeled with identification
numbers (e.g., field 35). You can see that there is some redundancy: the princi-
pal author appears in both the Personal Name field and a subfield of the title; the
other authors also appear further down the record in separate Author
Note–Name fields. This metadata was retrieved using an information inter-
change standard called Z39.50 that is widely used throughout the library world
(described in Section 8.5) and is represented in a record format called MARC,
for “machine-readable cataloging,” that is also used by libraries internationally
(described in Section 5.4).

Library metadata is standardized—although, as is often the case with stan-
dards, there are many different ones to choose from. (Indeed MARC itself comes
in more than 20 variants, produced for different countries.) Metadata is impor-
tant in contexts other than bibliographic records, but these areas often lack any

98 T H R E E | P R E S E N T A T I O N

(a) (b)

Figure 3.13 Metadata examples: (a) bibliography record retrieved from the Library of
Congress; (b) description of a BBC television program.

accepted standard. Figure 3.13b shows a record from a BBC catalog of radio and
television programs and gives information pertinent to this context—program
title, item title, date, medium, format, several internal identifiers, a description,
and a comments field. This database also includes many other fields.

Metadata descriptions often grow willy-nilly, in which case the relatively
unstructured technique of text searching becomes a more appropriate way of
locating records than the conventional way of searching a structured database
with predefined fields. Because of increased interest in communicating infor-
mation about radio and television programs internationally, people in the field
are working on developing a new metadata standard for this purpose. Develop-
ing international standards requires a lot of hard work, negotiation, and com-
promise; it takes years.

3.3 Searching

Electronic document delivery is the primary raison d’être for most digital
libraries. But searching comes a close second—in particular, searching the full
text of the documents’ contents. Whereas conventional automated library cata-
log searches are restricted to metadata, digital libraries have access to the entire
contents of the objects they contain. This is a great advantage.

Figure 3.14a shows a request for the search that was used to find this chapter’s
opening quotation: it seeks paragraphs in English that contain both the words
begin and beginning. Figure 3.14b shows the computer’s response: a list of docu-
ments that contain paragraphs matching the query. These pages provide a delib-
erately plain, stripped-down, unadorned search mechanism with only rudi-
mentary functionality. In digital libraries—particularly ones targeted at
nonacademic users—simple facilities should be available to satisfy the basic
things that most people want most of the time. Options may be provided for
more advanced interactions, but not at the expense of simplicity for the casual
user. As Alan Kay, a leading early proponent of the visually based paradigm of
human-computer interaction, said, “Simple things should be simple, complex
things should be possible.”

The screens shown in Figure 3.14 allow readers to choose the unit that is
searched, the language, and the type of search. The units that can be chosen vary
from collection to collection. They typically include such items as paragraphs,
sections, documents; also section titles, document titles, and authors. The first
group of items involves the full text. The second group is quite different in that it
involves metadata elements—but it is unnecessary to point this out explicitly to
the user, at least for casual users.

3 . 3 S E A R C H I N G 99

What is returned, as shown in Figure 3.14b, is a list of the titles of the docu-
ments. Even though the search may be for paragraphs, not just the relevant para-
graph is returned, but also the enclosing document in its entirety. In this digital
library system, the units that the user finally sees on the screen as the result of
searching or browsing operations are defined to be the “documents.” If you
wanted the system to present paragraphs as individual units, you would need to
define paragraphs to be the “documents”—and arrange for paragraphs to
include internal links, perhaps to preceding and succeeding ones. This is not
hard to do.

In multilingual collections it is useful to restrict searches to a specified lan-
guage in order to avoid false hits on words in other languages. The type of
search, in this interface, can be either all of the words (as chosen in Figure 3.14)
or some of the words (not shown). Technically these are interpreted as a Boolean
AND query and a ranked query respectively.

Types of query

In the field of information retrieval, an important distinction is made between
Boolean and ranked queries. Both comprise a list of terms—words to be sought
in the text. In a Boolean query, terms are combined using the connectives AND,
OR, and NOT, and the answers, or responses, to the query are those units of text

100 T H R E E | P R E S E N T A T I O N

(a) (b)

Figure 3.14 Searching for a quotation: (a) query page; (b) query response.

that satisfy the stipulated condition. In a ranked query, the list of terms is treated
as a small document in its own right, and units of text that are “similar” to it are
sought, ranked in order of the degree of match. It may be more logical to view
ranking as a separate operation that can be applied to any kind of query; from
this perspective what we are calling a ranked query is usually interpreted as an
OR query, which seeks documents containing any of the specified words, fol-
lowed by a ranking operation. In both Boolean and ranked retrieval, what is
searched may be units of text such as paragraphs or metadata elements such as
authors, whichever the reader chooses. The unit returned is not necessarily the
same as the unit searched—in the above examples the entire enclosing docu-
ment is returned regardless of what search unit is specified.

AND is the most common Boolean query type, and this is how all of the words
is interpreted in Figure 3.14. A query such as

digital AND library

might be used to retrieve books on the same subject as this one. Both terms (or
lexical variants that are considered equivalent, as described below) must occur
somewhere in every answer. They need not be adjacent, nor need they appear in
any particular order. Documents containing phrases such as library manage-
ment in the digital age will be returned as answers. Also returned would be a
document containing the text a software library for digital signal processing—
perhaps not quite what is sought, but nonetheless a correct answer to this
Boolean query. And a document in which the word library appeared in the first
paragraph and digital in the last would be considered equally correct.

Retrieval systems inevitably return some answers that are not relevant, and
users must filter these out manually. There is a difficult choice between casting a
broad query to be sure of retrieving all relevant material, albeit diluted with
many irrelevant answers, and a narrow one, where most retrieved documents
are of interest but others slip through the net because the query is too restrictive.
A broad search that identifies virtually all the relevant documents is said to have
high recall, while one in which virtually all retrieved documents are relevant has
high precision.

An enduring theme in information retrieval is the tension between these two
virtues. When searching you must decide whether you prefer high precision or
high recall and formulate your query appropriately. In typical Web searches, for
example, precision is generally more sought after than recall. There is so much
out there that you probably don’t want to find every relevant document—you
likely couldn’t handle them all anyway—and you certainly don’t want to have to
pay the price of checking through a lot of irrelevant documents. However, if you
are counsel for the defense looking for precedents for a legal case, you probably
care a great deal about recall—you want to be sure that you have checked every

3 . 3 S E A R C H I N G 101

relevant precedent, because the last thing you want is for the prosecutor to
spring a nasty surprise in court.

Another problem is that small variations of a query can lead to quite different
results. Although you might think the query electronic AND document AND col-
lection is similar to digital AND library, it is likely to produce a very different
answer. To catch all desired documents, professional librarians become adept at
adding extra terms, learning to pose queries such as

(digital OR virtual OR electronic) AND (library OR (document AND collection))

where the parentheses indicate operation order.
Until around 1990 Boolean retrieval systems were the primary means of

access to online information in commercial and scientific applications. How-
ever, Internet search engines have taught us that they are not the only way a
database can be queried.

Rather than seeking exact Boolean answers, people—particularly nonprofes-
sional and casual users—often prefer simply to list words that are of interest and
have the retrieval mechanism supply whatever documents seem most relevant.
For example, to locate books on digital libraries, a list of terms such as

digital, virtual, electronic, library, document, collection, large-scale, information,
retrieval

is, to a nonprofessional at least, probably a clearer encapsulation of the topic
than the Boolean query cited earlier.

Identifying documents relevant to a list of terms is not just a matter of con-
verting the terms to a Boolean query. It would be fruitless to connect these par-
ticular terms with AND operators, since vanishingly few documents are likely to
match. (We cannot say that no documents will match. This page certainly does.)
It would be equally pointless to use OR connectives since far too many docu-
ments will match and few are likely to be useful answers.

The solution is to use a ranked query, which applies some kind of artificial
measure that gauges the similarity of each document to the query. Based on this
numeric indicator, a fixed number of the closest matching documents are
returned as answers. If the measure is good, and only a few documents are
returned, they will contain predominantly relevant answers—high precision. If
many documents are returned, most of the relevant documents will be
included—high recall. In practice, low precision invariably accompanies high
recall since many irrelevant documents will almost certainly come to light
before the last of the relevant ones appears in the ranking. Conversely, when the
precision is high, recall will probably be low, since precision will be high only
near the beginning of the ranked list of documents, at which point only a few of
the total set of relevant ones will have been encountered.

102 T H R E E | P R E S E N T A T I O N

Great effort has been invested over the years in a quest for similarity measures
and other ranking strategies that succeed in keeping both recall and precision
reasonably high. Simple techniques just count the number of query terms that
appear somewhere in the document: this is often called coordinate matching. A
document that contains five of the query terms will be ranked higher than one
containing only three, and documents that match just one query term will be
ranked lower still. An obvious drawback is that long documents are favored over
short ones since by virtue of size alone they are more likely to contain a broader
selection of the query terms. Furthermore common terms appearing in the
query tend to discriminate unfairly against documents that do not happen to
contain them, even ones that match on highly specific ones. For example, a
query containing the digital library might rank a document containing the digi-
tal age alongside or even ahead of one containing a digital library. Words such as
the in the query should probably not be given the same importance as library.

Many ranking techniques assign a numeric weight to each term based on its
frequency in the document collection. Common terms receive low weight.
These techniques also compensate for the length of the document, so that long
ones are not automatically favored.

It is difficult to describe ranking mechanisms in a few words. It is difficult
even to describe the idea of ranking to end users in a way that is both succinct
and comprehensible. That is why the digital library system illustrated ducks the
issue, in the simple form of interface illustrated in Figure 3.14, by mentioning
only that answers should match “some of the words.” Hopefully the reader will
not be too confused by the responses he or she receives.

Professional information retrieval specialists like librarians want to under-
stand exactly how their query will be interpreted and are prepared to issue com-
plex queries provided that the semantics are clear. For most tasks they prefer
precisely targeted Boolean queries. These are especially appropriate if it is meta-
data that is being searched, and particularly if professional catalogers have
entered it, for the terms that are used are relatively unambiguous and pre-
dictable. Casual users, on the other hand, may not want to grapple with the
complex matter of how queries are interpreted; they prefer to trust the system to
do a good job and are prepared to scroll further down the ranked list if they
want to expend more effort on their search. They like ranked queries. These are
especially appropriate if full text is being searched, for term usage is relatively
unpredictable.

A compromise between Boolean and ranked queries emerged in early Inter-
net search engines. By default they treated queries as ranked, but allowed users
more precise control by indicating certain words that must appear in the text of
every answer (usually by a preceding + sign) and others that must not appear
(preceded by –). Of course there are many other possibilities, and as the Web

3 . 3 S E A R C H I N G 103

grew and the quest for precision began to dominate recall, some search engines
began to return only documents that contained all of the search terms, corre-
sponding to a ranked Boolean AND. An obvious generalization of these ideas is
to undertake a full Boolean search and rank the results. And many other
schemes have been proposed. Some use nonstandard logic, such as fuzzy logic,
instead of the standard Boolean operators; this provides an alternative rationale
for ranking the results.

It is difficult to design querying methods that scale up satisfactorily to hun-
dreds of millions of documents—particularly given the additional constraint
that it must be possible to implement the scheme so that queries are answered
almost immediately. The usual one- or two-word query soon becomes com-
pletely inadequate except for very special queries. Long Boolean expressions are
hard to enter, manage, and refine, tipping the balance toward automatic meth-
ods of ranking to assist users in their quest for satisfactory means of information
retrieval.

Case-folding and stemming

Two operations that are often needed when querying are case-folding and stem-
ming. Figure 3.15 shows a Preferences page that allows users to choose between
different types of query interface and different query options. In the lower part,
case-folding and stemming options are selected. An attempt has been made in
the interface to describe these operations in three or four words whose meaning

104 T H R E E | P R E S E N T A T I O N

Figure 3.15 Choosing search preferences.

will hopefully be grasped immediately by casual users; here we discuss them in
more detail.

In our earlier example queries, uppercase versions of words—such as Digital
and DIGITAL, Library and LIBRARY—should probably be considered equiva-
lent to the query terms digital and library, respectively. This is easily accom-
plished by case-folding—in other words, replacing all uppercase characters in
the query with their lowercase equivalents. There will be situations where users
wish to disable this feature and perform an exact-match search, perhaps looking
for documents containing Digital AND Equipment AND Corporation (the now-
defunct computer manufacturer), to avoid being flooded with answers about
corporation policy on capital equipment for digital libraries. Users need to be able
to specify either option in their query.

The second process, stemming, relaxes the match between query terms and
words in the documents so that, for example, the term libraries is accepted as
equivalent to library. Stemming involves reducing a word by stripping off one or
more suffixes, converting it to a neutral stem that is devoid of tense, number,
and—in some languages—case and gender information.

The process of altering words by adding suffixes (and, in some languages,
affixes) is governed by many linguistic rules. Converting the y in library to the ies
in libraries is one simple example; another is the final-consonant doubling when
the word stem is augmented to stemming. The process of reducing a word to its
root form, which is called morphological reduction, is correspondingly complex
and typically requires a language dictionary that includes information about
which rules apply to which words.

However, for the purposes of information retrieval, simpler solutions suffice.
All that is necessary is for different variants of a word to be reduced to an unam-
biguous common form—the stem. The stem does not have to be the same as the
morphological root form. So long as all variants of a word are reduced to the
same stem, and no other words reduce to that stem, the desired effect will be
obtained. There is a further simplification: only certain kinds of suffixes need be
considered. Linguists use the word inflectional to describe suffixes that mark a
word for grammatical categories. In contrast, derivational suffixes modify the
major category of a word—for example, when -less is appended to words such as
hope or cloud, it converts a noun to an adjective. Derivational suffixes should
not be stripped because they alter the meaning—radically, in this example.

Like case-folding, stemming is not necessarily appropriate for all queries,
particularly those involving names and other known items.

Stemming is language-dependent: an algorithm for English will not work well
on French words and vice versa. If no stemmer is available for the language under
consideration, it is probably best not to stem. Indeed the very concept of stem-
ming differs widely from one language to another. Many languages use prefixes

3 . 3 S E A R C H I N G 105

as well as suffixes to indicate derivational forms; others involve complex com-
pound words that should be split into constituent parts before taking part in a
query. Case-folding, too, is not relevant to certain languages, such as Chinese and
Arabic.

Stemming and case-folding complicate the task of highlighting search terms
in the retrieved documents. You cannot simply find the stem and highlight all
words that contain it, for this would often highlight the wrong word. For exam-
ple, a particular system might stem both library and libraries to librar so that
they match, but avoid stemming librarian because this is a derivational suffix
that changes the meaning of the word. (In practice, many stemmers are not so
sophisticated.) However, the form librarian does contain the letters librar and so
will be highlighted if this is based on a simple textual match—incorrectly, for
this system. And this method may fail to highlight a correct term—a different
stemming algorithm might stem libraries to the root form library, and then fail
to match when the text is highlighted.

Correct results would be obtained by stemming each word in the retrieved
document using the same stemming algorithm and seeing if the result matched
the stemmed query word, but this is likely to be prohibitively time-consuming.
An alternative is for the information retrieval system to record the stemmed
form of each word and expand the query by adding each stemmed form of these
terms prior to the highlighting operation.

Phrase searching

Users often want to specify that the search is for contiguous groups of words, or
phrases. Indeed, most of our examples—digital library, Digital Equipment Cor-
poration—would be better posed as phrase searches. Phrases are generally indi-
cated in a query by putting the phrase in quotation marks.

Although from a user’s point of view phrase searching is a simple and natural
extension of the idea of searching, it is more complex from an implementation
perspective. Users think phrase searching is as easy and natural as, say, Boolean
searching, because they visualize the computer looking through all the docu-
ments, just as they would, but faster—a lot faster! Given that you can find the
individual words in all those documents, surely it doesn’t make much difference
if you have to check that they come together as a phrase.

Actually it does. When computers search, they don’t scan through the text as
we would: that would take too long. Computers are not all that fast at working
through masses of text. For one thing the documents will be stored on disk, and
access to the disk is by no means instantaneous. Instead computers first create
an index that records, for each word, the documents that contain that word.
Every word in the query is looked up in the index, to get a list of document

106 T H R E E | P R E S E N T A T I O N

numbers. Then the query is answered by manipulating these lists—in the case of
a Boolean AND query, by checking which documents are in all the lists. (The
process is described in a little more detail in Section 4.2.)

Phrase searching changes everything. No longer can queries be answered
simply by manipulating the lists of document numbers. There are two quite dif-
ferent ways of proceeding. The first is to look inside the documents themselves:
checking through all documents that contain the query terms to see if they
occur together as a phrase. We refer to this as a postretrieval scan. The second is
to record word numbers as well as document numbers in the index—the posi-
tion of each occurrence of the word in the document as well as the documents it
occurs in. We refer to this as a word-level index. Then when each word in the
query is looked up in the index, the computer can tell from the resulting list of
word positions if the words occur together in a phrase by checking whether they
are numbered consecutively.

The mechanism that is used to respond to phrase queries greatly affects the
resources required by an information retrieval system. With a postretrieval scan,
only a document-level index is needed. But it can take a great deal of time to
respond to a phrase query because—depending on how common the terms
are—many documents might have to be scanned. Phrases containing unusual
words can be processed quickly, for few documents include them and therefore
few need be scanned for the occurrence of the phrase. But phrases containing
common words, such as digital library, will require substantial computer time,
and response will be slow.

With a word-level index, the exact position of each occurrence of each word
is recorded, instead of just the documents in which it occurs. This makes the
index significantly larger. Not only are word numbers larger than document
numbers, and hence require more storage space, but any given word probably
appears several times in any given document and each occurrence must be
recorded.

Which mechanism is employed also affects how phrases can be used in
queries. For example, people often want to specify proximity: the query terms
must appear within so many words of each other, but not necessarily contigu-
ously in a phrase. If word numbers are stored, responding to a proximity query
is just a matter of checking that the positions do not differ by more than the
specified amount. If phrase scanning is employed, proximity searching is far
more difficult.

Users sometimes seek a phrase that includes punctuation and even white
space. A word-level index treats the documents as sequences of words, and
punctuation and spacing are generally ignored. Distinguishing between differ-
ently punctuated versions of phrases requires a postretrieval scan even if a
word-level index is available—unless the index also includes word separators.

3 . 3 S E A R C H I N G 107

Phrases complicate ranked searching. Ranking uses the frequency of a query
term throughout the corpus as a measure of how influential that word should be
in determining the ranking of each document—common words like the are less
influential than rare ones like aspidistra. However, if a phrase is used in the
query, it should really be the frequency of the phrase, not the frequency of the
individual words in it, that determines its influence. For example, the English
words civil, rights, and movement are used in many contexts, but the phrase civil
rights movement has a rather specific meaning. The importance of this phrase
relative to other words in a query should be judged according to the frequency
of the phrase, not of the constituent words.

As we have seen, the simple idea of including phrases in queries complicates
things technically. In practice, building digital library systems involves prag-
matic decisions. A word-level index will be included if it is feasible, if phrase
searching is likely to be common, and if the space occupied by the system is not
a significant constraint. In simple systems a postretrieval scan will be used, par-
ticularly if phrase searching will be rare or if phrases might contain punctua-
tion. In either case ranking will be based on individual word frequencies, not
phrase frequencies, for practical reasons.

One of the problems in digital libraries is ensuring that users grasp what is
happening. As we have seen, it is difficult to fully understand what is happening
in phrase searching! An alternative is the kind of phrase browsing technique
described in Section 3.5: this provides a natural interface whose workings are
easy to grasp.

Different query interfaces

Different query interfaces are suitable for different tasks, and users can choose
different search preferences, as shown in Figure 3.15, to suit what they are doing.

For example, the search pages we have seen (e.g., Figure 3.14) have miniscule
query boxes, encouraging users to type just one or two terms. In reality many
queries contain only a few words. Indeed studies have shown that the most com-
mon number of terms in actual queries to actual Web search systems is—zero!
Most often people just hit the search button, or the Return key, without typing
anything in, presumably either by accident or without understanding what is
going on. The second most common type of query has just one term. Note that
for single-term queries, the difference between Boolean and ranked retrieval is
moot. There is a difference—most Boolean systems will return the retrieved
documents in a particular, predetermined, order—say, date order—whereas
ranked systems will return them in order of how often they contain the query
term (normalized by document length). But the user probably doesn’t focus on
this difference and is just as likely to enter the query term in either mode—or far
more likely, in practice, to use whatever default the system provides. The third

108 T H R E E | P R E S E N T A T I O N

most common query has two terms; after that, frequency falls off rapidly with
query length.

Most search systems implicitly encourage short queries by not providing
enough space on the screen for users to specify long ones! But modern search
engines are capable of dealing with large queries: indeed they can often be
processed more efficiently than small ones because they are more likely to con-
tain rare words, which greatly restricts the scope of the search. Figure 3.16 shows
a large query box into which users can paste paragraph-sized chunks of text—
and it is scrollable to facilitate even larger queries.

A useful feature for all kinds of search is to allow users to examine and reuse
their search history. “Those who ignore history,” to adapt George Santayana’s
famous dictum, “will be forced to retype it.” New queries are routinely con-
structed by modifying old ones—adding new terms if the query is too broad, to
increase precision at the expense of recall, or removing terms if it is too restric-
tive, to increase recall. Figure 3.17 shows an interface that presents the last four
queries issued by the user. If one of the buttons to the left is clicked, the corre-
sponding query is reentered into the search box, where it can be further modi-
fied. For example, clicking on the button to the left of the field containing begin
beginning will place those words in the search box. The interface, and the num-
ber of history items displayed, is selected by making appropriate choices on the
Preferences page in Figure 3.15.

A slightly awkward situation arises when the user changes search options, or
even collections, between queries. It could be misleading to display query his-
tory in a way that ignores this. And it is possible that the user is experimenting
with these options to ascertain their effect on a query—to see if the number of
results changes if stemming is enabled, for example, or determine whether one

3 . 3 S E A R C H I N G 109

Figure 3.16 Large-query search interface.

collection or the other contains more potential answers. This is why details are
given alongside the history item when such changes occur, as can be seen in Fig-
ure 3.17. In most situations these details never appear, because users rarely alter
their query options. The details, when they do appear, clarify the context within
which the query history should be interpreted.

The query facilities shown so far let users search the full document text, or
certain metadata fields which were chosen when the collection was created.
Often, particularly for academic study, searches on different fields need to be
combined. You might be seeking a book by a certain author with a particular
word in the title or with a particular phrase in the main text. Library catalog sys-
tems provide a search form that consists of several individual fields into which
specifications can be entered.

Figure 3.18a shows a form for a fielded search. The user types each field spec-
ification into one of the entry boxes, uses the menu selector to the right of the
box to select which field it applies to, and decides whether to seek documents
that satisfy some or all of these conditions. If you need more than four entry
boxes, the Preferences page (Figure 3.15) gives further options.

Using the form in Figure 3.18b, more complex fielded searches can be under-
taken. Again, up to four specifications are placed in the entry boxes, and the
fields to which they apply are selected. Case-folding and stemming can be deter-
mined for each field individually, rather than being set globally using the Prefer-
ences page as before. The selection boxes that precede the fields allow Boolean
operators: they give the three options and, or, and and not. In fact, completely
general Boolean queries cannot be specified using this form because the user
cannot control the order of operation—there is no place to insert parentheses.
The specifications are executed in sequential order: each one applies to all the
fields beneath it.

110 T H R E E | P R E S E N T A T I O N

Figure 3.17 Query with history.

The line near the top, just beneath the navigation bar, allows users to decide
whether the results should be sorted into ranked or natural order (the latter is
the order in which documents appear in the collection, usually date order).
Below the field specification boxes there is an opportunity to limit the search to
certain date ranges. In some collections more than one date may be associated
with each document, corresponding to different kinds of metadata. For exam-
ple, in a historical collection there is a big difference between the period that a
document covers and the date it was written. If the metadata involves multiple
date fields, a particular one is chosen using the selection box to the right of the
year specifications—and here the beginning and end year is shown as well, to
clarify what it is sensible to type in as a “limit” specification.

This interface is intended for expert users. However, experts often find it frus-
trating to have to specify what they want by filling out a form: they prefer to type
textual queries rather than having to click from one field to another. Behind the
form-based interface is an underlying textual specification of queries, and users
may prefer to enter their queries directly in this query language.

The box at the bottom of Figure 3.18b allows queries to be entered textually.
Whenever a form-based query is executed, its textual equivalent appears in this
box, above the query results. The query specification language used is CCL,
standing for “common command language.” This was a popular language for
expressing queries in the library world, especially before the widespread avail-
ability of graphical interfaces—which are universally preferred by nonexpert
users. CCL is described in Section 8.4.

3 . 3 S E A R C H I N G 111

(a) (b)

Figure 3.18 Form search: (a) simple; (b) advanced.

This system makes it particularly easy to learn the language syntax because
queries entered on the form are automatically converted to CCL and displayed
underneath when the query is executed. Users who are unsure about the prece-
dence order in which their field specifications are interpreted can look at the
CCL equivalent (which is fully bracketed) to find out—and alter the interpreta-
tion order by inserting brackets into the textual query and reexecuting it. This
provides a relatively easy path for frequent users of the form interface to evolve
into power users of CCL.

It is difficult to provide a useful history facility with a forms-based interface
because the representation of previous queries is cumbersome—several copies
of a form consume a lot of screen space and are only rarely informative. How-
ever, the textual query language provides a natural way of utilizing history
within the advanced search interface. Previous queries can be expressed in CCL
and displayed in boxes just like those of Figure 3.17. They can be recalled into
the query specification box, and reexecuted, or modified, there.

3.4 Browsing

Browsing is often described as the other side of the coin from searching, but
really there is an entire spectrum between the two. Our dictionary describes
browsing as “inspecting in a leisurely and casual way,” whereas searching is
“making a thorough examination in order to find something.” Other dictionar-
ies are more loquacious. According to Webster’s, browsing is

to look over casually (as a book), skim;

to skim through a book reading at random passages that catch the eye;

to look over books (as in a store or library), especially in order to decide what one
wants to buy, borrow, or read;

to casually inspect goods offered for sale, usually without prior or serious intention
of buying;

to make an examination without real knowledge or purpose.

The word browse originally referred to animals nibbling on grass or shoots, and
its use in relation to reading, which is now far more widespread, appeared much
later. Early in the 20th century, the library community adopted the notion of
browsing as “a patron’s random examination of library materials as arranged for
use” when extolling the virtues of open book stacks over closed ones—the sym-
bolic snapping of the links of the chained book mentioned in Section 1.3.

In contemporary information retrieval terms, searching is purposeful,
whereas browsing tends to be casual. Terms such as random, informal, unsystem-
atic, and without design are used to capture the unplanned nature of browsing
and the lack of a specific plan of action for reaching a goal—if indeed one exists.

112 T H R E E | P R E S E N T A T I O N

Searching implies that you know what you’re looking for, whereas in browsing
the most you can say is that you’ll know it when you see it—and the activity is
often far less directed than that, perhaps even no more than casually passing
time. But the distinction is not clear—pedants are quick to point out that if
when searching you really know what you’re looking for, then there’s no need to
find it! The truth is that we do not have a good vocabulary to describe and dis-
cuss various forms or degrees of browsing.

The metadata provided with the documents in a collection offer handles for
different kinds of browsing activities. Information collections that are entirely
devoid of metadata can be searched—that is one of the real strengths of full-text
searching—but they cannot be browsed in any meaningful way unless some
additional browsing structures are present. The structure that is implicit in
metadata is the key to providing browsing facilities that are based on it. And
now it’s time for some examples.

Browsing alphabetical lists

The simplest and most rudimentary of structures is the ordered list. In Figure
3.19a a plain alphabetical list of document titles is presented for browsing. The
list is quite short: if it were not, it might take a long time to download over a net-
work connection, and the user would have to scroll through it using the browser’s
scroll bar—which is an inconvenient way to find things in extremely long lists.

3 . 4 B R O W S I N G 113

(a) (b)

Figure 3.19 Browsing an alphabetical list of titles: (a) plain list; (b) with A–Z tags.

Notice incidentally that the ordering is not strictly alphabetical: the article
The (and also A) is ignored at the beginning of titles. This is common practice
when presenting sorted lists of textual items. For special kinds of text the order-
ing may be different yet again: for example, names are conventionally ordered
alphabetically by surname even though they may be preceded by first names and
initials.

Figure 3.19b shows part of a much larger list, with tags at the top to select
alphabetic ranges. The user clicks on a tag, and the list of titles beginning with
that letter appears underneath. The letter ranges are automatically chosen so
that each one covers a reasonable number of documents. That is, letters in the
three ranges J–L, Q–R and U–Y have been merged, because the number of docu-
ments that fall under each of these letters is rather small. In fact Figure 3.19a was
generated by exactly the same scheme—but in this case there were so few docu-
ments that no alphabetic ranges were generated at all.

With very many documents, this interface becomes cumbersome. It is incon-
venient to use tabs with multiletter labels, such as Fae–Fal. Although we are used
to seeing these at the top of the pages of dictionaries and telephone directories,
we are more likely to estimate the place we are trying to find on the basis of bulk,
rather than going strictly by the tabs. Moreover, if the interface presents a
sequence of such decisions during the process of locating a single item (e.g., F,
Fa–Far, Fae–Fal, . . . ,) it is a tedious way of narrowing down the search. It forces
you to think about what you are doing in a rather unnatural way.

The final tab, 0–9, indicates another snag with this scheme. There is no
knowing what letters titles may start with!—they may even include punctuation
characters or arithmetic operators. This is not a big problem in English because
such documents rarely occur, and when they do they can be included in a single
Miscellaneous tab at the end.

Ordering lists of words in Chinese

Some languages are not alphabetic. Chinese has no single universally used way
of ordering text strings analogous to alphabetic ordering in European lan-
guages. Several different ordering schemes are used as the basis of printed dic-
tionaries and telephone directories. For example, characters, or ideographs, can
be ordered according to the number of strokes they contain. Or they can be
ordered according to their radical, which is a core symbol on which they are
built. Or they can be ordered according to a standard alphabetical representa-
tion called Pinyin, where each ideograph is given a one- to six-letter equivalent.
Stroke ordering is probably the most natural way of ordering character strings
for Chinese users, although many educated users prefer Pinyin (not all Chinese
people know Pinyin). Browsers for these languages call for special design.

114 T H R E E | P R E S E N T A T I O N

For an appreciation of the issues involved, see Figure 3.20, which shows a list
for browsing titles in a large collection of Chinese books and articles. In Figure
3.20a, which is invoked by the rightmost of the three buttons on the access bar
near the top, titles are ordered by the number of strokes contained in their first
character when written. The number of strokes is given across the top: the user
has selected six. The first character in all the book titles that follow has six strokes.
If you don’t know Chinese this will not be obvious from the display: you can only
count the number of strokes in a character if you know how the character is writ-
ten. To illustrate this, the initial characters for the first and seventh titles are sin-
gled out and their writing sequence is superimposed on the screen shot: the first
stroke, the first two strokes, the first three strokes, and so on, ending with the
complete character, which is circled. All people who read Chinese are easily able
to work out the number of strokes required to write any particular character.

In most cases there are more than 200 characters corresponding to a given
number of strokes, almost any of which could occur as the first character of a
book title. Hence the titles in each group are displayed in a particular conven-
tional order, again determined by their first character. This ordering is a little
more complex. With each character is associated a radical, or basic structure
that is contained in it. For example, in the first example singled out in Figure
3.20a (the first title), the radical is the pattern corresponding to its initial two

3 . 4 B R O W S I N G 115

(a) (b)

Figure 3.20 Browsing a list of titles in Chinese: (a) stroke-based browsing; (b) Pinyin
browsing.

strokes, which in this case form the left-hand part of the character. Radicals have
a conventional ordering that is well known to educated Chinese; this particular
one is number 9 in the Unicode sequence. Because this character requires four
more strokes than its radical, it is designated by the two-part code 9.4. In the
second example singled out in Figure 3.20a (the seventh title), the radical corre-
sponds to the initial three strokes, which form the top part of the character, and
is number 40; thus this character receives the designation 40.3. These codes are
shown to the right of Figure 3.20a; they would not form part of the actual Web
page display.

The codes form the key on which titles are sorted. Characters are grouped
first by radical number, then by how many strokes are added to the radical to
make the character. Ambiguity occasionally arises: the code 86.2, for example,
appears twice. In these cases the tie is broken randomly.

The stroke-based ordering scheme is quite complex. In practice, Chinese
readers have to work harder to identify an item in an ordered list than we do. It
is easy to decide on the number of strokes. Once a page like Figure 3.20a is
reached, however, people often simply scan it linearly. One strength of computer
displays is that they can at least offer a choice of access methods.

The central button in the navigation bar near the top of Figure 3.20 invokes
the Pinyin browser shown in Figure 3.20b. This orders characters alphabetically
by their Pinyin equivalent. The Pinyin codes for the titles are shown to the right
of the figure; they would not form part of the actual Web page display. Obvi-
ously this kind of display is much easier for Westerners to comprehend.

Browsing by date

Figure 3.21 shows newspapers being browsed by date. An automatically gener-
ated selector at the top gives a choice of years; within each range the newspapers
are laid out by month. Just as Figure 3.19 was created automatically based on
Title metadata, so Figure 3.21 was created automatically based on Date meta-
data. Again the year ranges are chosen by the computer to ensure that a reason-
able number of items appear on each page.

Hierarchical classification structures

The browsers we have seen are essentially linear, and this restricts them to situa-
tions where the number of documents is not excessive. Hierarchical classifica-
tion structures are standard tools in any area where significant numbers of
objects are being considered. In the library world, the Library of Congress clas-
sification and the Dewey Decimal classification are used to arrange printed
books in categories, the intention being to place volumes treating the same or

116 T H R E E | P R E S E N T A T I O N

similar subjects next to each other on the library shelves. These schemes are
hierarchical: the early parts of the code provide a rough categorization that is
refined by the later characters.

Figure 3.22 shows a hierarchical display according to a particular classifica-
tion scheme that was used for the Humanity Development Library. Nodes of the
hierarchy are represented as bookshelves. Clicking one opens it up and displays
all documents that occur at that level, as well as all nodes that lie underneath it.
For example, node 2.00, shown in Figure 3.22b, contains one document and
eight subsidiary nodes, of which one—node 2.06—is shown in Figure 3.22c.
Just as bookshelf icons represent internal nodes of the hierarchy, so book icons
represent documents, the leaves of the classification tree. One is visible in Figure
3.22b for the Earth Summit Report, which is the only document with classifica-
tion 2.00.

This browsing structure was generated automatically from metadata associ-
ated with each document. Consider the information that must be given to the
system to allow the hierarchical display to be built. Each document must have
associated with it its position in the hierarchy. In fact, in this classification
scheme an individual document may appear in different places, so there needs
to be a way to specify classification information multiple times for a single doc-
ument. In addition to the hierarchical information, names must be provided for
the interior nodes—so that all the “bookshelf ” nodes in Figure 3.22 can be
labeled appropriately. This involves a separate file of information, distinct from
the document collection itself.

3 . 4 B R O W S I N G 117

Figure 3.21 Browsing by date.

The classification scheme in Figure 3.22 is nonstandard. It was chosen by the
collection editor as being the most appropriate for the collection’s intended users.
Implementers of digital library systems have to decide whether to try to impose
uniformity on the people who build collections, or whether instead to provide
flexibility for them to organize things in the way they see fit. Opting for the latter
gives librarians freedom to exercise their professional judgment effectively.

118 T H R E E | P R E S E N T A T I O N

(b)

(c)

Figure 3.22 Browsing a classification hierarchy:
(a) the beginning; (b) expanding Sustainable
development; (c) expanding Organizations,
institutions.

(a)

3.5 Phrase browsing

Naturally people often want to browse information collections based on their
subject matter. As we have seen, this kind of browsing is well supported by dis-
plays based on hierarchical classification metadata that is associated with each
document. But manual classification is expensive and tedious for large docu-
ment collections. What if this information is not available? To address this prob-
lem, one can build topical browsing interfaces based on phrase metadata, where
the phrases have been extracted automatically from the full text of the docu-
ments themselves.

A phrase browsing interface

The browser illustrated in Figure 3.23 is an interactive interface to a phrase hier-
archy that has been extracted automatically from the full text of a document col-
lection. In this case the collection is simply a Web site: the site of the United
Nations Food and Agriculture Organization (FAO). As we pointed out earlier,
Web sites are not usually digital libraries. Even though they may be well orga-
nized, the organization is provided by a manual insertion of links, which con-
flicts with an essential feature of libraries: that new material can be added easily
and virtually automatically, merely by supplying appropriate metadata. How-
ever, digital libraries can certainly be created from Web sites by adding automat-
ically generated organization, and this collection is a good example. Figure 3.23c
(and also Figure 3.24b) shows typical target documents. They are just Web
pages, complete with all internal and external links, which are fully functional.

This interface is designed to resemble a paper-based subject index or the-
saurus. In Figure 3.23a the user enters an initial word in the search box at the
top—in this case the word locust. On pressing the Search button the upper of the
two panels appears. This shows the phrases at the top level in the hierarchy that
contain the search term. The list is sorted by phrase frequency; on the right is
the number of times the phrase appears in the entire document collection, and
beside that is the number of documents in which the phrase appears.

Only the first 10 phrases are shown, because it is impractical with a Web
interface to download a large number of phrases, and many of these phrase lists
are huge. At the end of the list is an item that reads Get more phrases (displayed
in a distinctive color); clicking this will download another 10 phrases, and so on.
The interface accumulates the phrases: a scroll bar appears to the right for use
when more than 10 phrases are displayed. The number of phrases appears above
the list: in this case there are 102 top-level phrases that contain the term locust.

So far we have only described the upper panel in Figure 3.23a. The lower one
appears as soon as the user clicks one of the phrases in the upper list. In this case

3 . 5 P H R A S E B R O W S I N G 119

120 T H R E E | P R E S E N T A T I O N

(b)

(c)

Figure 3.23 (a) Browsing for information
about locusts; (b) expanding on desert locust;
(c) document about desert locusts. United
Nations Food and Agriculture Organization.

(a)

the user has clicked Desert locust (which is why the first line is highlighted in the
upper panel), causing phrases containing the string Desert locust to be displayed
in the lower panel.

If you continue to descend through the phrase hierarchy, eventually the leaves
will be reached. In this system any sequence of words is a “phrase” if it appears
more than once in the entire document collection. Thus a leaf corresponds to a
phrase that occurs in a unique context somewhere in the collection (although
the document that contains that contextually unique occurrence may include
several other occurrences too). In this case the text above the lower panel shows
that the phrase Desert locust appears in 82 longer phrases and also in 719 docu-
ments. These 719 documents each contain the phrase in some unique context.
The first 10 documents are visible when the list is scrolled down, as is shown in
Figure 3.23b.

In effect both panels show a phrase list followed by a document list. Either list
may be empty: in fact the document list is empty in the upper panel because
every context in which the word locust occurs appears more than once in the
collection. The document list displays the titles of the documents.

In both panels of Figures 3.22a and b, you can click Get more phrases to
increase the number of phrases that are shown in the list. In the lower panels
you can also click Get more documents (again it is displayed at the end of the list
in a distinctive color, but to see that entry you must scroll the panel down a little
more) to increase the number of documents shown.

Clicking on a phrase expands that phrase. The page holds only two panels,
and if a phrase in the lower one is clicked, the contents of that panel move up to
the top to make space for the phrase’s expansion. Alternatively clicking on a
document opens that document in a new window. In fact the user in Figure
3.23b has clicked on Desert Locust Information Service of FAO: Locust FAQs, and
this brings up the page shown in Figure 3.23c. As Figure 3.23b indicates, that
document contains 38 occurrences of the phrase Desert locust.

Figure 3.24 shows another example of the interface in use. In this case a
French user has entered the word poisson, exposing a weakness of the phrase
extraction algorithm. The FAO Web site contains documents in French, but the
phrase extraction system is tailored for English. The French phrases displayed
are of much lower quality than the English ones shown earlier; of the ten
phrases in the upper panel, only four are useful. Phrases like du poisson (mean-
ing “of fish”) are not useful and can obscure more interesting material. How-
ever, the system is still usable. Here the user has expanded commercialisation du
poisson and, in the lower panel, has clicked on a document titled INFOPECHE
which is shown in Figure 3.24b.

Utilizing phrases extracted automatically from the document text, as these
example phrases are, has the great advantage that no manual processing is needed

3 . 5 P H R A S E B R O W S I N G 121

to generate these indexes. However, the amount of computer processing required
is substantial. This phrase interface has the advantage that it is readily compre-
hensible by users. The notion of browsing documents based on phrases that
they contain has great intuitive appeal because you are in direct contact with the
raw material of the documents themselves, without any intermediary opera-
tions that you may only dimly understand.

An important feature of this interface is that it scales up to large collections.
Other browsing techniques, such as alphabetic lists of titles and authors, do not
scale well: ranges of letters are uncomfortable to use for large collections. Hierar-
chical classification schemes scale well, but require manual classification of each
document. This phrase interface is easy to browse even for colossal collections,
and users are not overwhelmed with information, nor with difficult choices. It is
unique in being both scalable and automatically generated. We return to the
question of how to generate the phrase hierarchy at the end of Section 5.6.

Key phrases

The phrase browsing interface is based on a staggeringly large number of
phrases—essentially all those that appear in the full text of the documents.
Sometimes it helps to be more selective, choosing perhaps half a dozen repre-
sentative phrases for each document. Such phrases are usually called key phrases.

122 T H R E E | P R E S E N T A T I O N

(a) (b)

Figure 3.24 (a) Browsing for information on poisson; (b) INFOPECHE Web page.

Authors of scholarly or academic documents often provide accompanying key
phrases, particularly in scientific and technological disciplines.

Figure 3.25a shows a hierarchical phrase browser just like that in Figures 3.23
and 3.24—except that in this case the phrases are author-assigned key phrases,
rather than being taken automatically from the full text of the documents. Not
surprisingly these key phrases are of much higher quality. In fact this example
shows a collection of bibliographic entries in the computer science area: the full
text is not available, just the bibliographic references and author-supplied key
phrases.

The person using this interface has entered the term user, and the key phrases
that contain this word are shown in the upper panel. There are 165 of them in
total; only the 10 most frequent are shown. Of these, end user has been selected,
and the phrases that appear below give a good synopsis of the way the term is
used in the computer science literature. The key phrases are all high quality
because they have been carefully chosen by the papers’ authors, and the result is
an excellent interactive taxonomy of terms and concepts in the field of computer
science. Although the key-phrase metadata is supplied manually, the hierarchy
is constructed automatically.

Figure 3.25b shows a different style of interface to a document collection, also
based on key phrases. At the very top the user has typed the word query. Under-
neath are three large panels. The left-hand one displays all key phrases in the
document collection that contain the word query. Unlike the earlier displays,

3 . 5 P H R A S E B R O W S I N G 123

(a) (b)

Figure 3.25 Browsing interfaces based on key phrases: (a) hierarchical browser; (b)
document explorer.

this is not hierarchical—the number of key phrases is not so great that a hierar-
chy is necessary, although, as Figure 3.25a illustrates, it could be helpful. The
user has selected one of these phrases, dynamic query; the number beside it indi-
cates that it has been identified as a key phrase for eight documents. In the bot-
tom panel appear the titles of these eight documents (only six are visible). Click-
ing on a document icon displays that document.

Whereas hierarchical phrase browsers allow users to focus on a particular
area by selecting more and more specific terms from the choices that are offered,
this interface provides a good way of broadening the concepts being considered.
The panel at the right of Figure 3.25b gives the other key phrases that are associ-
ated with these eight documents. In a sense these key phrases “share a docu-
ment” with the selected phrase dynamic query. The fact that Library of Congress
appears in this list, for example, indicates that there is a document—namely,
one of the eight displayed—that has both dynamic query and Library of Congress
assigned to it as key phrases. Clicking on Library of Congress would transfer
these words to the query box at the top of the screen, and then any key phrases
containing them would be displayed in the panel on the left, with associated
documents underneath.

The scheme in Figure 3.25b provides another convenient way to explore a
document collection. Unlike the other interfaces in this chapter, it is not Web-
based and does not operate in a Web browser. However, it could easily be reengi-
neered to do so.

3.6 Browsing using extracted metadata

The browsing methods we have examined all rely on metadata that must be pro-
vided for all documents in the collection. With the exception of the phrase hier-
archy metadata, which is extracted from the document text, metadata must be
entered manually for each document. This is a tedious and time-consuming
chore, which makes you wonder whether metadata can be automatically
extracted from the documents’ full text.

For example, titles may be identified by seeking capitalized text close to the
beginning of documents—and if information about font size is available, it pro-
vides extra clues.

Names may be identified in the text of all documents by looking for the capi-
talization and punctuation patterns that characterize forms such as Surname,
Forename and Forename Initial. Surname. Once this metadata is available, a
browsing index could be provided that allows you to look through all people
who are mentioned in the document collection and check references to them.
Even if the method used to extract name metadata had some deficiencies, so

124 T H R E E | P R E S E N T A T I O N

that some names were omitted and some non-names included, the browsing
facility could still be useful.

Dates that appear in documents could be identified. In historical collections
it is useful to be able to restrict searches to documents that describe events
within a certain time period—searching for information about Trade Unions in
the 1930s, for example. Of course, dates of historical events must be distin-
guished from other dates—particularly ones that give the publication date of
references. In many cases this distinction can be made automatically on the
basis of punctuation, such as parentheses, that typically appears in references
(e.g., dates are often included in brackets). Again, some errors in date identifica-
tion are not necessarily disastrous.

Acronyms

We end our tour of browsing interfaces with two unusual examples based on
metadata extraction. Figure 3.26a shows a list of acronyms in a document collec-
tion, along with their definitions. The tabs at the top allow you to select alphabetic
ranges—although in this case there are only two. Where an acronym is defined in
more than one document, a bookshelf is shown, with the number of documents
in parentheses; clicking on the bookshelf will bring up the list of documents.

3 . 6 B R O W S I N G U S I N G E X T R A C T E D M E T A D A T A 125

(a) (b)

Figure 3.26 Browsing based on information mined from the document collection:
(a) acronyms; (b) language identification.

These acronyms were extracted automatically from the full text of the docu-
ment collection using a technique described in Chapter 5 (Section 5.6). Essen-
tially the idea is to look for a word containing (mostly) uppercase letters—the
acronym—preceded or followed by a sequence of words that begins with those
letters, generally capitalized. Although the results are not perfect, the acronym
browser is particularly useful for political and scientific documents. Because the
information is mined automatically, no human effort at all goes into creating
browsers for new collections.

Language identification

Figure 3.26b shows another example of metadata extraction in which docu-
ments are grouped by language, the language of each document having been
identified automatically. This collection comprises a set of Japanese folktales
that have been translated into a variety of languages. The same language meta-
data could be used to provide a separate subcollection for each language, in
which the language could be selected when searching.

The language of each document was automatically identified by a system that
looks at letter patterns, described in Section 5.6. For example, yes is characteris-
tic of English, whereas oui is French and ja is German. However, instead of look-
ing at complete words, the system looks at groups of up to five letters—because
these are more general and sensitive indicators of language. Particular words
may not occur in a given document (yes does not occur often in this book), yet it
is hard to imagine any stretch of English writing that does not include the char-
acters the. (Hard, but not impossible—surprising as it may seem, a complete
book has been written that does not use the letter e!)

3.7 Notes and sources

“Begin at the beginning” is what the King of Hearts said to the White Rabbit in
the trial scene in Alice in Wonderland. The screen shot in Figure 3.1, like most of
the figures in this chapter, came from a collection in the New Zealand Digital
Library Project, which is publicly accessible on the Web at www.nzdl.org. All these
collections are created and served using the Greenstone Digital Library Software.

Collections

The Kids’ Digital Library in Figure 3.2a is from a project at Middlesex Univer-
sity, London, that also uses Greenstone (http://kidsdl.mdx.ac.uk/kidslibrary).
The Humanity Development Library in Figure 3.3 is mentioned in the “Notes
and sources” of Chapter 1 (Section 1.6); it is available both on CD-ROM and at

126 T H R E E | P R E S E N T A T I O N

www.nzdl.org. More information about the Gutenberg Project from which Fig-
ure 3.1 comes can be found at www.promo.net/pg.

The New Zealand School Journal is produced by the Ministry of Education
and published by Learning Media Ltd. in Wellington, New Zealand. Figures 3.2b
and 3.5 are taken from a prototype collection containing a few sample journals
across the entire range of years from 1907 to 1998; it was designed by Mankelow
(1999). For copyright reasons, this collection is not publicly available. Note that
Figure 3.5b is a fake: while we have worked on software to highlight words in
images, this is not at present incorporated into the School Journal collection.

Information on the “Niupepa” (the Māori word for “newspapers”) collection
of historical New Zealand newspapers in Figure 3.6 is given in Chapter 2’s
“Notes and sources” (Section 2.5). The Oral History collection in Figure 3.7 was
originally produced on audiotapes by Hamilton Public Library; Bainbridge and
Cunningham (1998) describe its conversion into digital form. Work on music
collections and music searching, some of which is illustrated in Figure 3.8, is
described by McNab et al. (1996) and Bainbridge et al. (1999).

The Sahel Point Doc collection shown in Figure 3.9a is on a CD-ROM of the
same name distributed by UNESCO; it also appears at www.nzdl.org. The collec-
tion of Tang Dynasty rubbings in Figure 3.10a was produced in conjunction
with the Chinese Department of Peking University; it can be found on the Web
at http://162.105.138.23/tapian/tp.htm. The collection of Chinese literature in
Figure 3.10b, and the Arabic collection in Figure 3.11, are small demonstrations
built out of material gathered from the Web.

Metadata

Figure 3.12 comes from a large collection of computer science bibliographies
assembled and maintained by Alf-Christian Achilles at the University of Karl-
sruhe, Germany. The original source is at http://liinwww.ira.uka.de/bibliography;
this material has been mirrored as a Greenstone collection. Figure 3.13a was
obtained from the Library of Congress using the Z39.50 client that is embedded
in the Greenstone software. This feature makes it possible to reach any Z39.50
server from a Greenstone installation. Figure 3.13b is from a large collection of
the BBC radio and television archives with around one million entries. It was
produced for the BBC in the form of a coordinated set of five CD-ROMs that
can be loaded onto disk and searched either individually or together in a seam-
lessly coordinated fashion, making any laptop into a full catalog server.

Searching

Much of the material on searching is taken from the book Managing Gigabytes
(Witten, Moffat, and Bell, 1999), which gives a comprehensive and detailed

3 . 7 N O T E S A N D S O U R C E S 127

technical account of how to compress documents and indexes, yet make them
rapidly accessible through full-text queries. There are many standard reference
works covering the area of information retrieval; the best-known are Salton
(1989), Salton and McGill (1983), van Rijsbergen (1979), Frakes and Baeza-Yates
(1992), Korfhage (1997), and Baeza-Yates and Ribeiro-Neto (1999). Lovins
(1968) and Porter (1980) are two of many authors who have produced particular
algorithms for stemming. Frakes surveys this area in a chapter of a book that he
coedited (Frakes, 1992); Lennon et al. (1981) have also examined the problem.
We return to the topic of text searching, briefly, in Chapter 4 (Section 4.2).

Alan Kay, quoted near the beginning of Section 3.3, is a guru in the interac-
tive computing world; an interesting article about him appeared in New Scientist
(Davidson, 1993). George Santayana, who feared that those who ignored history
would have to relive (not retype!) it, was a philosopher, poet, critic, and best-
selling novelist (Santayana, 1932). Oscar Wilde, on the other hand, said that
“the one duty we owe to history is to rewrite it.” Perhaps it doesn’t do to take
these bon mots too seriously!

Browsing

Chang and Rice (1993) examine the activity of browsing from a broad interdis-
ciplinary point of view. Hyman (1972) discusses how the notion of browsing in
traditional libraries was linked to the rise of the open-stack organization; the
quotation at the beginning of Section 3.4 about the “patron’s random examina-
tion of library materials” is his. The brief characterization of browsing is from
our favorite dictionary, the Houghton Mifflin Canadian Dictionary of the English
Language; the longer one is from Webster’s Third New International Dictionary.

The list of titles in Figure 3.19a shows the Demo collection, which is supplied
with every Greenstone installation and contains a small subset of the Humanity
Development Library; Figure 3.19b is from the full Humanity Development
Library, as is Figure 3.22. The Chinese title browsers in Figure 3.20 are mock-
ups and have not yet been implemented, although the Greenstone structure
makes it easy to add new browsers like this by adding a new “classifier” module
(see Sections 6.6 and 6.7 of Chapter 6). The date list in Figure 3.21 was gener-
ated within the Niupepa collection noted earlier.

Phrase browsing is a topic of lively current interest. The interface shown in
Figures 3.23 and 3.24 has developed over several years; the current version is
described in Paynter et al. (2000). Much work has gone into algorithms for
extracting hierarchies of phrases from large document collections, and we
return to this topic in Chapter 5 (Section 5.6). The collection is built from the
FAO Web site at www.fao.org, which contains the documents shown.

128 T H R E E | P R E S E N T A T I O N

Key-phrase browsing is another burning issue. The illustration in Figure
3.25a is from Alf-Christian Achilles’ Computer Science Bibliography collection
mentioned earlier. Figure 3.25b is taken from a collection of Computer Science
Technical Reports that includes author-assigned key phrases. The interface is
described by Gutwin et al. (1999); similar ones are described by Jones and Payn-
ter (1999). Although these collections have manually assigned key-phrase meta-
data, key phrases can be extracted automatically from the full text of documents
with a surprising degree of success, as we shall see in Section 5.6.

The acronym extraction software, and the interface shown in Figure 3.26a, is
described by Yeates, Bainbridge, and Witten (1999); the collection used to illus-
trate it is a subset of the FAO Web site. The methods used to identify languages
and extract acronyms are described further in Chapter 5 (Section 5.6).The illus-
tration in Figure 3.26b is built from the material at http://mhtml.ulis.ac.jp/
~myriam/deuxgb.html, a site that contains a charming collection of old Japanese
folktales in different languages (Dartois et al., 1997). The book without any e’s is
Gadsby, by E. V. Wright (1939).

3 . 7 N O T E S A N D S O U R C E S 129

131

Documents
The raw material

Documents are the digital library’s building blocks. It is time to step down from our
high-level discussion of digital libraries—what they are, how they are organized,
and what they look like—to nitty-gritty details of how to represent the docu-
ments they contain. To do a thorough job we will have to descend even further
and look at the representation of the characters that make up textual documents
and the fonts in which those characters are portrayed. For audio, images, and
video we examine the interplay among signal quantization, sampling rate, and
internal redundancy that underlies multimedia representations.

A great practical problem we face when writing about how digital libraries
work inside is the dizzying rate of change in the core technologies. Perhaps the
most striking feature of the digital library field, at least from an academic point
of view, is the inherent tension between two extremes: the very fast pace of tech-
nological change and the very long-term view that libraries must take. We must
reconcile any aspirations to surf the leading edge of technology with the literally
static ideal of archiving material “for ever and a day.”

Document formats are where the rubber meets the road. Over the last decade
a cornucopia of different representations have emerged. Some have become
established as standards, either official or de facto, and it is on these that we
focus. There are plenty of them: the nice thing about standards, they say, is that
there are so many different ones to choose from!

Documents are the digital library’s building blocks. It is time to step down

from our high-level discussion of digital libraries—what they are, how they

are organized, and what they look like—to nitty-gritty details of how to rep-

resent the documents they contain. To do a thorough job we will have to

descend even further and look at the representation of the characters that

make up textual documents and the fonts in which those characters are

portrayed. For audio, images and video we examine the interplay

between signal quantization, sampling rate and internal redundancy that

underlies multimedia representations.Documents are the digital library’s

building blocks. It is time to step down from our high-level discussion of dig4

132 F O U R | D O C U M E N T S

Internationalization is an important component of the vision of digital
libraries that motivates this book, and in the last chapter we saw examples of
collections and interfaces in many different languages. It is all too easy from the
native English speaker’s perspective (which includes most of our readers and
both this book’s authors) to sweep under the carpet the many challenging prob-
lems of representing text in other languages. The standard ASCII code used on
computers (the A stands for “American,” of course) has been extended in dozens
of different and often incompatible ways to deal with other character sets—
including, for example, ISCII for Hindi and related languages, where the initial I
stands for “Indian.” To take a simple example, imagine searching for an accented
word like détente in French text where the non-ASCII character é is sometimes
represented as a single character in extended ASCII, sometimes in regular 7-bit
ASCII as e followed by a backspace followed by ´, and sometimes by the HTML
incantation é. Or suppose the character set is specified explicitly: Web
pages often do this. Internet Explorer recognizes over 100 different character
sets, mostly extensions of ASCII and EBCDIC, some of which have half a dozen
different names. Without a unified coding scheme, search programs must know
about all of this to work correctly under every circumstance.

Fortunately there is an international standard called Unicode which aims to
represent all the characters used in all the world’s languages. Unicode emerged
over the last 10 years and is beginning to be widely used. It is quite stable,
although it is still being extended and developed to cover languages and charac-
ter sets of scholarly interest. It allows the content of digital libraries, and their
user interfaces, to be internationalized. Using it, text stored in digital libraries
can be displayed and searched properly. We describe Unicode in the next sec-
tion. Of course it only helps with character representation. Language translation
and cross-language searching are thorny matters of computational linguistics
that lie completely outside its scope (and outside this book’s scope too).

Section 4.2 discusses the representation of documents in text form—plain
text. Even ASCII presents ambiguities in interpretation (you might have won-
dered about the difference between the ASCII and binary modes in the FTP file
transfer protocol, or encountered the junk characters ^M at the end of each line
in a TELNET window). We also sketch how an index can be created for textual
documents that contains for each word a list of documents it occurs in, and per-
haps even the positions where it occurs, in order to facilitate rapid full-text
searching. Before creating the index the input must be split into words. This
involves a few mundane practical decisions—and introduces some deeper issues
for some languages, such as Chinese and Japanese, that are not traditionally
written with spaces between words.

Desktop publishing empowers ordinary people to create carefully designed
and lavishly illustrated documents and publish them electronically, often dis-
pensing with print altogether. In a short space of time we have become accus-

tomed to reading publication-quality documents online. It is worth reflecting
on the extraordinary sea change in our expectations of online document presen-
tation since, say, 1990. This revolution has been fueled largely by Adobe’s Post-
Script language and its successor, PDF or Portable Document Format. These are
both page description languages: they combine text and graphics by treating the
glyphs that comprise text as little pictures in their own right and allowing them
to be described, denoted, and placed on an electronic page alongside conven-
tional illustrations.

Page description languages portray finished documents, ones that are not
intended to be edited. In contrast, word processors represent documents in ways
that are expressly designed to support interactive creation and editing. As soci-
ety’s notion of document has become more fluid—from painstakingly engraved
Chinese steles, literally “carved in stone,” to hand-copied medieval manuscripts;
from the interminable revisions of loose-leaf computer manuals in the 1960s
and 1970s to continually evolving Web sites whose pages are dynamically com-
posed on demand from online databases—it seems inevitable that more and
more documents will be handed around in word-processor formats.

As examples of word-processor documents we describe the ubiquitous
Microsoft Word format and Rich Text Format (RTF). Word is intended to repre-
sent working documents inside a word processor. It is a proprietary format that
depends strongly on the exact version of Microsoft Word that was used and is
not always backward compatible. RTF is more portable, intended to transmit
documents to other computers and other versions of the software. It is an open
standard, defined by Microsoft, for exchanging word-processor documents
between different applications. We also describe the format used by the LaTeX
document processing system, which is widely used to represent documents in
the scientific and mathematical community.

The final part of the chapter describes image, audio, and multimedia formats.
There is less variation here in the basic representation of the data. But because of
the raw, quasi-analog nature of these media, file size bloats quickly and so com-
pression schemes are often built into the formats. However, as well as simply
making files smaller, compression has side effects that need to be considered
when designing digital libraries.

For image data we describe the GIF, PNG, and JPEG formats. The first two
are suitable for representing artificially produced images such as text, computer-
generated artwork, and logos. JPEG is designed for continuous-tone images
such as photographic portraits and landscapes. Multimedia encompasses both
video and audio formats: we focus principally on the open MPEG standard,
which includes the MP3 scheme that is widely used for music representation.
We also mention Apple’s QuickTime and Microsoft’s AVI formats for multime-
dia, and WAV, AIFF, and AU for audio.

I N T R O D U C T I O N 133

We warned at the outset that this chapter gets down to details, the dirty
details (where the devil is). You will probably find the level uncomfortably low.
Why do you need to know all this? The answer is that when building digital
libraries you will be presented with documents in many different formats, yet
you will yearn for standardization. You have to understand how different for-
mats work in order to appreciate their strengths and limitations. Examples?
When converted from PDF to PostScript, documents lose interactive features
such as hyperlinks. Converting images from GIF to JPEG often reduces file size
but degrades picture quality irreversibly. Converting HTML to PostScript is easy
(your browser does it every time you print a Web page), but converting an arbi-
trary PostScript file to HTML is next to impossible if you want a completely
accurate visual replica.

Even if your project starts with paper documents, you still need to know
about online document formats. The optical character recognition process may
produce Microsoft Word documents, retaining much of the formatting in the
original and leaving illustrations and pictures in situ. But how easy is it to
extract the plain text for indexing purposes? To highlight search terms in the
text? To display individual pages? Perhaps another format is preferable?

4.1 Representing characters

Way back in 1963, at the dawn of interactive computing, the American National
Standards Institute (ANSI) began work on a character set that would standard-
ize text representation across a range of computing equipment and printers. At
the time, a variety of codes were in use by different computer manufacturers,
such as an extension of a binary-coded decimal punched card code to deal with
letters (EBCDIC, or Extended Binary Coded Decimal for Information Inter-
change), and the European Baudot code for teleprinters that accommodated
mixed-case text by switching between upper- and lowercase modes. In 1968
ANSI finally ratified the result, called ASCII: American Standard Code for
Information Interchange.

Until recently ASCII dominated text representation in computing. Table 4.1
shows the character set, with code values in decimal, octal, and hexadecimal.
Codes 65–90 (decimal) represent the uppercase letters of the Roman alphabet,
while codes 97–122 are lowercase letters. Codes 48–57 give the digits zero
through nine. Codes 0–32 and 127 are control characters that have no printed
form. Some of these govern physical aspects of the printer—for instance, BEL
rings the bell (now downgraded to a rude electronic beep), BS backspaces the
print head (now the cursor position). Others indicate parts of a communication
protocol: SOH starts the header, STX starts the transmission. Interspersed
between these blocks are sequences of punctuation and other nonletter symbols

134 F O U R | D O C U M E N T S

4 . 1 R E P R E S E N T I N G C H A R A C T E R S 135

Table 4.1 The ASCII character set.

Dec Oct Hex Char Dec Oct Hex Char

0 000 00 NUL
1 001 01 SOH
2 002 02 STX
3 003 03 ETX
4 004 04 EOT
5 005 05 ENQ
6 006 06 ACK
7 007 07 BEL
8 010 08 BS
9 011 09 HT

10 012 0A LF
11 013 0B VT
12 014 0C FF
13 015 0D CR
14 016 0E SO
15 017 0F SI
16 020 10 DLE
17 021 11 DC1
18 022 12 DC2
19 023 13 DC3
20 024 14 DC4
21 025 15 NAK
22 026 16 SYN
23 027 17 ETB
24 030 18 CAN
25 031 19 EM
26 032 1A SUB
27 033 1B ESC
28 034 1C FS
29 035 1D GS]
30 036 1E RS
31 037 1F US
32 040 20 SPAC
33 041 21 !
34 042 22 "

35 043 23 #
36 044 24 $
37 045 25 %
38 046 26 &
39 047 27 ‘
40 050 28 (
41 051 29)
42 052 2A *
43 053 2B +
44 054 2C ,
45 055 2D -
46 056 2E .
47 057 2F /
48 060 30 0
49 061 31 1
50 062 32 2
51 063 33 3
52 064 34 4
53 065 35 5
54 066 36 6
55 067 37 7
56 070 38 8
57 071 39 9
58 072 3A :
59 073 3B ;
60 074 3C <
61 075 3D =
62 076 3E >
63 077 3F ?
64 100 40 @
65 101 41 A
66 102 42 B
67 103 43 C
68 104 44 D
69 105 45 E

(continued on the following page)

(codes 33–47, 58–64, 91–96, 123–126). Each code is represented in seven bits,
which fits into a computer byte with one bit (the top bit) free. In the original
vision for ASCII, this was earmarked for a parity check.

ASCII was a great step forward. It helped computers evolve over the following
decades from scientific number-crunchers and fixed-format card-image data

136 F O U R | D O C U M E N T S

Table 4.1 The ASCII character set (continued).

Dec Oct Hex Char Dec Oct Hex Char

70 106 46 F
71 107 47 G
72 110 48 H
73 111 49 I
74 112 4A J
75 113 4B K
76 114 4C L
77 115 4D M
78 116 4E N
79 117 4F O
80 120 50 P
81 121 51 Q
82 122 52 R
83 123 53 S
84 124 54 T
85 125 55 U
86 126 56 V
87 127 57 W
88 130 58 X
89 131 59 Y
90 132 5A Z
91 133 5B [
92 134 5C \
93 135 5D]
94 136 5E ˆ
95 137 5F _
96 140 60 `
97 141 61 a
98 142 62 b

99 143 63 c
100 144 64 d
101 145 65 e
102 146 66 f
103 147 67 g
104 150 68 h
105 151 69 i
106 152 6A j
107 153 6B k
108 154 6C l
109 155 6D m
110 156 6E n
111 157 6F o
112 160 70 p
113 161 71 q
114 162 72 r
115 163 73 s
116 164 74 t
117 165 75 u
118 166 76 v
119 167 77 w
120 170 78 x
121 171 79 y
122 172 7A z
123 173 7B {
124 174 7C |
125 175 7D }
126 176 7E ~
127 177 7F DEL

processors to interactive information appliances that permeate all walks of life.
However, it has proved a great source of frustration to speakers of other lan-
guages. Many different extensions have been made to the basic character set,
using codes 128–255 to specify accented and non-Roman characters for particu-
lar languages. ISO 8859-1, from the International Standards Organization (the
international counterpart of the American standards organization, ANSI),
extends ASCII for Western European languages. For example, it represents é as
the single decimal value 233 rather than the clumsy ASCII sequence “e followed
by backspace followed by ´.” The latter is alien to the French way of thinking, for
é is really a single character, generated by a single keystroke on French key-
boards. For non-European languages such as Hebrew and Chinese, ASCII is
irrelevant. Here other schemes have arisen: for example, GB and Big-5 are com-
peting standards for Chinese, the former used in the People’s Republic of China
and the latter in Taiwan and Hong Kong.

As the Internet exploded into the World Wide Web and burst into all coun-
tries and all corners of our lives, the situation became untenable. The world
needed a new way of representing text.

Unicode

In 1988 Apple and Xerox began work on Unicode, a successor to ASCII that
aimed to represent all the characters used in all the world’s languages. As word
spread, a consortium of international and multinational companies, govern-
ment organizations, and other interested parties was formed in 1991. The result
was a new standard, ISO-10646, ratified by the International Standards Organi-
zation in 1993. In fact the standard melded the Unicode Consortium’s specifica-
tion with ISO’s own work in this area.

Unicode continues to evolve. The main goal of representing the scripts of lan-
guages in use around the world has been achieved. Current work is addressing
historic languages such as Egyptian hieroglyphics and Indo-European lan-
guages, and notations such as music. There is a steady stream of additions, clari-
fications, and amendments which eventually lead to new published versions of
the standard. Of course backwards compatibility with the existing standard is
taken for granted.

A standard is sterile unless it is adopted by vendors and users. Recent pro-
gramming languages—notably Java—have built-in Unicode support. Earlier
ones—C, Perl, Python, to name a few—have standard Unicode libraries. All
principal operating systems support Unicode, and application programs,
including Web browsers, have passed on the benefits to the end user. Unicode is
the default encoding for HTML and XML. People of the world, rejoice.

Unicode is universal: any document in an existing character set can be
mapped into Unicode. But it also satisfies a stronger requirement: the resulting

4 . 1 R E P R E S E N T I N G C H A R A C T E R S 137

Unicode file can be mapped back to the original character set without any loss of
information. This requirement is called round-trip compatibility with existing
coding schemes, and it is central to Unicode’s design. If a letter with an accent is
represented as a single character in some existing character set, then an equiva-
lent must also be placed in the Unicode set, even though there might be another
way to achieve the same visual effect. Because there is an existing character set
that includes é as a single character, it must be represented as a single Unicode
character—even if an identical glyph can be generated using a sequence along
the lines of “e followed by backspace followed by ´.” The idea of round-trip com-
patibility is an attractive way to facilitate integration with existing software and
was most likely motivated by the pressing need for a nascent standard to gain
wide acceptance. You can safely convert any document to Unicode, knowing
that it can always be converted back again if necessary to work with legacy soft-
ware. This is indeed a useful property. However, multiple representations for the
same character can cause complications, as we shall see.

The Unicode character set

The Unicode standard is massive. It comes in two parts (ISO 10646-1 and ISO
10646-2), specifying a total of 94,000 characters. The first part focuses on com-
monly used living languages and is called (for reasons to be explained shortly)
the Basic Multilingual Plane. It weighs in at 1,000 pages and contains 49,000
characters.

Table 4.2 breaks down the ISO 10646-1 code space into different scripts,
showing how many codes are allocated to each (unassigned codes are shown in
parentheses). Unicode’s scope is impressive: it covers Western and Middle East-
ern languages such as Latin, Greek, Cyrillic, Hebrew, and Arabic; the so-called
CJK (Chinese-Japanese-Korean) ideographs comprising Chinese, Japanese, and
the Korean Hangul characters; and other scripts such as (to name just a few)
Bengali, Thai, and Ethiopic. Also included are Braille, mathematical symbols,
and a host of other shapes.

Table 4.2 divides the Unicode code space into five zones: alphabetic scripts,
ideographic scripts, other characters, surrogates, and reserved codes. Falling
within the first zone are the broad areas of general scripts, symbols, and CJK
phonetics and symbols. The reserved blocks are intended to help Unicode’s
designers respond to unforeseen circumstances.

Unicode distinguishes characters by script, and those pertaining to a distinct
script are blocked together in contiguous numeric sequences: Greek, Cyrillic,
Hebrew, and so on. However, characters are not distinguished by language. For
example, the excerpt from the Unicode standard in Figure 4.1 shows the Basic
Latin (or standard ASCII) and Latin-1 Supplement (an ASCII extension) char-

138 F O U R | D O C U M E N T S

4 . 1 R E P R E S E N T I N G C H A R A C T E R S 139

Table 4.2 Unicode Part 1: The basic multilingual plane.

Number of
Zone Area Code Script codes

Alphabetic General scripts 0000 Basic Latin (US-ASCII) 128
0080 Latin-1 (ISO-8859-1) 128
0100 Latin Extended 336
0250 IPA Extensions 96
02B0 Spacing Modifier Letters 80
0300 Combining Diacritical Marks 112
0370 Greek 144
0400 Cyrillic 256

– (48)
0530 Armenian 96
0590 Hebrew 112
0600 Arabic 256
0700 Syriac 78

– (50)
0780 Thaana 50

– (334)
0900 ISCII Indic Scripts
0900 Devanagari 128
0980 Bengali 128
0A00 Gurmukhi 128
0A80 Gujarati 128
0B00 Oriya 128
0B80 Tamil 128
0C00 Telugu 128
0C80 Kannada 128
0D00 Malayalam 128
0D80 Sinhalese 128
0E00 Thai 128
0E80 Lao 128
0F00 Tibetan 192

– (64)
1000 Mongolian 160
10A0 Georgian 96
1100 Hangul Jamo 256

(continued on the following page)

140 F O U R | D O C U M E N T S

Table 4.2 Unicode Part 1: The basic multilingual plane (continued).

Number of
Zone Area Code Script codes

Alphabetic General scripts 1200 Ethiopic 384
(continued) – (32)

13A0 Cherokee 96
1400 Canadian Syllabics 640
1680 Ogham 32
16A0 Runic 96
1700 Burmese 90

– (38)
1780 Khmer 106

– (1558)
1E00 Latin Extended Additional 256
1F00 Greek Extended 256

Symbols 2000 General Punctuation 112
2070 Superscripts and Subscripts 48
20A0 Currency Symbols 48
20D0 Combining Marks for Symbols 48
2100 Letterlike Symbols 80
2150 Number Forms 64
2190 Arrows 112
2200 Mathematical Operators 256
2300 Miscellaneous Technical 256
2400 Control Pictures 64
2440 Optical Character Recognition 32
2460 Enclosed Alphanumerics 160
2500 Box Drawing 128
2580 Block Elements 32
25A0 Geometric Shapes 96
2600 Miscellaneous Symbols 256
2700 Dingbats 192

– (64)
2800 Braille Pattern Symbols 256

– (1536)

(continued on the following page)

4 . 1 R E P R E S E N T I N G C H A R A C T E R S 141

Table 4.2 Unicode Part 1: The basic multilingual plane (continued).

Number of
Zone Area Code Script codes

CJK phonetics 2F00 KangXi radicals 214
and symbols

– (42)
3000 CJK Symbols and Punctuation 64
3040 Hiragana 96
30A0 Katakana 96
3100 Bopomofo 48
3130 Hangul Compatibility Jamo 96
3190 Kanbun 16

– (96)
3200 Enclosed CJK Letters and Months 256
3300 CJK Compatibility 256

Ideographic 3400 CJK Unified Ideographs, Extension A 6656
4E00 CJK Unified Ideographs 20902

– (90)
Other A000 Yi 1225

– (1847)
AC00 Hangul Symbols 11172

– (92)
Surrogates D800 High Surrogates 1024

DC00 Low Surrogates 1024
Reserved Private use E000 6400

Compatibility F900 CJK Compatibility Ideographs 512
and specials

FB00 Alphabetic Presentation Forms 80
FB50 Arabic Presentation Forms-A 688

– (32)
FE20 Combining Half Marks 16
FE30 CJK Compatibility Forms 32
FE50 Small Form Variants 32
FE70 Arabic Presentation Forms-B 144
FF00 Halfwidth and Fullwidth Forms 240
FFF0 Specials 16

acters, which are used for most European languages. The capital A in French is
the same character as the one in English. Only the accented letters that are used
in European languages are included in the Latin-1 Supplement; the basic char-
acter forms are not redefined.

Punctuation is also shared among different scripts. The ASCII period (i.e.,
full stop) in Figure 4.1 is used in Greek and Cyrillic text too. However, periods in
languages such as Armenian, Arabic, Ethiopic, Chinese, and Korean are shaped
differently and have their own Unicode representations. The multifunction
ASCII hyphen is retained for the purpose of round-trip compatibility, but new
codes are defined under “general punctuation” (codes 2000 and up in Table 4.2)
to distinguish among the hyphen (-), en-dash (–), and em-dash (—). The
minus sign, which is not usually distinguished typographically from the en-
dash, has its own symbol as a “mathematical operator” (codes 2200 and up in
Table 4.2).

Unicode does distinguish letters from different scripts even though they may
look identical. For example, the Greek capital alpha looks just like the Roman
capital A, but receives its own code in the Greek block (codes 0370 and up in
Table 4.2). This allows you to downcase capital alpha to α, and capital A to a,
without worrying about exceptions.

The characters at the core of Unicode are called the universal character set,
and the standard is essentially a suite of lookup tables that specify which charac-
ter is displayed for a given numeric code. What are all these characters, and what
do they look like? Every one tells a story: its historical origin, how it changed

142 F O U R | D O C U M E N T S

000 NUL SOH STX ETX EOT ENQ ACK BEL BS HT LF VT FF CR SO SI

010 DLE DC1 DC2 DC3 DC4 NAK SYN ETB CAN EM SUB ESC FS GS RS US

020 SP ! " # $ % & ' () * + , - . /
030 0 1 2 3 4 5 6 7 8 9 : ; < = > ?
040 @ A B C D E F G H I J K L M N O
050 P Q R S T U V W X Y Z [\] ^ _
060 ` A b c d e f g h i j k l m n o
070 p Q r s T u v w x y z { | } ~ DEL

080 XXX XXX BPH NBH XXX NEL SSA ESA HTS HTJ VTS PLD PLU RI SS2 SS3

090 DCS PU1 PU2 STS CCH MW SPA EPA SOS XXX SCI CSI ST OSC PM APC

0a0 NB/SP ¡ ¢ £ ¥ _ § ¨ © ª « ¬ SHY ® ¯
0b0 ° ± _ _ ´ µ ¶ · ¸ _ º » _ _ _ ¿
0c0 À Á Â Ã Ä Å Æ Ç È É Ê Ë Ì Í Î Ï
0d0 _ Ñ Ò Ó Ô Õ Ö _ Ø Ù Ú Û Ü _ _ ß
0e0 à Á â ã ä å æ ç è é ê ë ì í î ï
0f0 _ Ñ ò ó ô õ ö ÷ ø ù ú û ü _ _ ÿ

Figure 4.1 Unicode excerpt: Basic Latin and Latin-1 Supplement (U+0000–U+00FF).

along the way, what languages it is used in, how it relates to other characters,
how it can be transliterated or transcribed. We cannot tell these stories here: to
hear them you will have to refer to other sources.

As an example of diversity, Figure 4.2a shows some of the Extended Latin
characters, while Figure 4.2b shows part of the Cyrillic section. As you can see,
some Cyrillic letters duplicate identical-looking Latin equivalents.

Composite and combining characters

In ordinary usage the word character refers to various things: a letter of an
alphabet, a particular mark on a page, a symbol in a certain language, and so on.
In Unicode the term refers to the abstract form of a letter, but still in a broad
sense so that it can encompass the fabulous diversity of the world’s writing sys-
tems. More precise terminology is employed to cover particular forms of use.

A glyph refers to a particular rendition of a character (or composite charac-
ter) on a page or screen. Different fonts create different glyphs. For example, the
character a in 12-point Helvetica is one glyph; in 12-point Times it is another.
Unicode does not distinguish between different glyphs. It treats characters as
abstract members of linguistic scripts, not as graphic entities.

4 . 1 R E P R E S E N T I N G C H A R A C T E R S 143

(b)

Figure 4.2 Unicode excerpts: (a) Latin Extended A (U+0100−U+017F); (b) Cyrillic
(U+0400−U+045F).

(a)

A code point is a Unicode value, specified by prefixing U+ to the numeric
value given in hexadecimal. LATIN CAPITAL LETTER G (as the Unicode
description goes) is U+0047. A code range gives a range of values: for example,
the characters corresponding to ASCII are located at U+0000–U+007F and are
called Basic Latin.

A code point does not necessarily represent an individual character. Some
code points correspond to more than one character. For example, the code
point U+FB01, which is called LATIN SMALL LIGATURE FI, represents the
sequence f followed by i, which in most printing is joined together into a single
symbol that is technically called a ligature, fi. Other code points specify part of a
character. For example, U+0308 is called COMBINING DIAERESIS, and—at
least in normal language—is always accompanied by another symbol to form a
single unit such as ü, ë, or ï.

The COMBINING DIAERESIS is an example of what Unicode calls a com-
bining character. To produce the single unit ü, the Latin small letter u (which is
U+0075) is directly followed by the code for the combining diaeresis (which is
U+0308) to form the sequence U+0075 U+0308. This is the handwriting
sequence: first draw the base letter, then place the accent. Combining characters
occupy no space of their own: they share the space of the character they com-
bine with. They also may alter the base character’s shape: when i is followed by
the same combining diaeresis the result looks like ï—the original dot in the base
letter is omitted. Drawing Unicode characters is not straightforward: it is neces-
sary to be able to place accents over, under, and even through arbitrary charac-
ters—which may already be accented—and still produce acceptable spacing and
appearance.

Because of the requirement to be round-trip compatible with existing char-
acter sets, Unicode also has single code points that correspond to precisely the
same units as character combinations—in fact, they are part of the Latin-1 sup-
plement shown in Figure 4.2a. This means that certain characters have more
than one representation. For example, the middle letter of naïve could be repre-
sented using the combining character approach by U+0069 U+0308, or as a sin-
gle, precomposed unit using the already prepared character U+00EF. Around
500 precomposed Latin letters in the Unicode standard are superfluous in that
they can be represented using combining character sequences.

Combining characters allow many character shapes to be represented within
a limited code range. They also help compensate for omissions: for example, the
Guaraní Latin small g with tilde can be expressed without embarking upon a
lengthy standardization process to add this previously overlooked character to
Unicode. Combining characters are an important mechanism in intricate writ-
ing systems such as Hangul, the Korean syllabic script. In Unicode, Hangul is
covered by 11,172 precomposed symbols (codes AC00 and up in Table 4.2), each

144 F O U R | D O C U M E N T S

of which represents a syllable. Syllables are made up of Jamo, which is the
Korean name for a single element of the Hangul script. Each Unicode Hangul
syllable has an alternative representation as a composition of Jamo, and these
are also represented in Unicode (codes 1100 and up in Table 4.2). The rules for
combining Jamo are complex, however—which is why the precomposed sym-
bols are included. But to type medieval Hangul, even more combinations are
needed, and these are not available in precomposed form.

The existence of composite and combining characters complicates the process-
ing of Unicode text. When searching for a particular word, alternate forms must
be considered. String comparison with regular expressions presents a knottier
challenge. Even sorting text into lexicographic order becomes nontrivial. Algo-
rithmically all these problems can be reduced to comparing two strings of text—
which is far easier if the text is represented in some kind of normalized form.

Unicode defines four normalized forms using two orthogonal notions:
canonical and compatibility equivalence. Canonical equivalence relates code
points to sequences of code points that produce the same character—as in the
case discussed earlier, where the combination U+0069 U+0308 and the single
precomposed character U+00EF both represent ï. Canonical composition is the
process of turning combining character sequences into their precomposed
counterparts; canonical decomposition is the inverse.

Compatibility equivalence relates ligatures to their constituents, such as the
ligature fi (U+FB01) and its components f (U+0066) and i (U+0069). Decom-
posing ligatures simplifies string comparison, but the new representation no
longer maintains a one-to-one character-by-character mapping with the origi-
nal encoding.

The four normalized forms defined by the Unicode standard are

■ canonical decomposition
■ canonical decomposition followed by canonical composition
■ compatibility decomposition
■ compatibility decomposition followed by canonical composition

Certain Unicode characters are officially deprecated, which means that
although present in the standard they are not supposed to be used. This is how
mistakes are dealt with. Once a character has been defined, it cannot be
removed from the standard (for that would sacrifice backward compatibility);
the solution is to deprecate it. For example, there are two different Unicode
characters that generate the symbol Å, Latin capital letter A with ring above
(U+00C5) and Angstrom sign (U+212B); the latter is officially deprecated.
Deprecated characters are avoided in all normalized forms.

Further complications, which we only mention in passing, are caused by
directionality of writing. Hebrew and Arabic are written right to left, but when

4 . 1 R E P R E S E N T I N G C H A R A C T E R S 145

numbers or foreign words appear they flow in the opposite direction; thus bidi-
rectional processing may be required within each horizontal line. The Mongo-
lian script can only be written in vertical rows. Another issue is the fact that
complex scripts, such as Arabic and Indic scripts, include a plethora of ligatures,
and contextual analysis is needed to select the correct glyph.

Because of the complexity of Unicode, particularly with regard to composite
characters, three implementation levels are defined:

■ Level 1 forms the base implementation, excluding combining characters
and the Korean Hangul Jamo characters.

■ Level 2 permits a fixed list of combining characters, adding, for example,
the capability to express Hebrew, Arabic, Bengali, Tamil, Thai, and Lao.

■ Level 3 is the full implementation.

Unicode character encodings

With future expansion in mind, the ISO standard formally specifies that Uni-
code characters are represented by 32 bits each. However, all characters so far
envisaged fit into the first 21 bits. In fact the Unicode consortium differs from
the ISO standard by limiting the range of values prescribed to the 21-bit range
U+000000–10FFFF. The discrepancy is of minor importance; we follow the
Unicode route.

So-called planes of 65,536 characters are defined; there are 32 of them in the
21-bit address space. All the examples discussed above lie in the Basic Multilin-
gual Plane, which represents the range U+0000–U+FFFF and contains virtually
all characters used in living languages. The Supplementary Multilingual Plane,
which ranges from U+10000–U+1FFFF, contains historic scripts, special alpha-
bets designed for use in mathematics, and musical symbols. Next comes the
Supplementary Ideographic Plane (U+20000–U+2FFFF), which contains
40,000-odd additional Chinese ideographs that were used in ancient times but
have fallen out of current use. The Supplementary Special-Purpose Plane
(U+E0000–U+EFFFF), or Plane 14, contains a set of tag characters for language
identification, to be used with special protocols.

Given the ISO 32-bit upper bound, the obvious encoding of Unicode uses 4-
byte values for each character. This scheme is known as UTF-32, where UTF
stands for “UCS Transformation Format” (a nested acronym: UCS is Unicode
Character Set)—so called because Unicode characters are “transformed” into
this encoding format. A complication arises from the different byte ordering
that computers use to store integers: big-endian (where the 4 bytes in each word
are ordered from most significant to least significant) versus little-endian (where
they are stored in the reverse order), and the standard includes a mechanism to
disambiguate the two.

146 F O U R | D O C U M E N T S

The Basic Multilingual Plane is a 16-bit representation, so a restricted version
of Unicode can use 2-byte characters. In fact a special escape mechanism called
surrogate characters (explained below) is used to extend the basic 2-byte repre-
sentation to accommodate the full 21 bits. This scheme is known as UTF-16. It
also is complicated by the endian question, which is resolved in the same way. For
almost all text the UTF-16 encoding requires half the space needed for UTF-32.

It is convenient to define a variant of Unicode that extends ASCII—which, as
we have seen, is a 7-bit representation where each character occupies an individ-
ual byte—in a straightforward way. UTF-8 is a variable-length encoding scheme
where the basic entity is a byte. ASCII characters are automatically 1-byte UTF-
8 codes; existing ASCII files are valid UTF-8. Being byte-oriented, this scheme
avoids the endian issue that complicates UTF-32 and UTF-16. We explain these
more fully in the following sections.

UTF-32
In Figure 4.3 the word Welcome in five different languages has been converted to
Unicode (Figure 4.3a) and encoded in the three different UTF methods (Figure
4.3b). UTF-32 maps the universal character set to 4-byte integers, and Unicode
is turned into UTF-32 by dropping the U+ prefix.

4 . 1 R E P R E S E N T I N G C H A R A C T E R S 147

UTF-32 UTF-16 UTF-8

Welcome 00000057000000650000006C00000063 … 00570065006C0063 … 57656C63 …

Haere mai 00000048000000610000006500000072 … 0048006100650072 … 48616572 …

Wilkommen 00000057000000690000006C0000006B … 00570069006C006B … 57696C6B …

Bienvenue 0000004200000069000000650000006E … 004200690065006E … 4269656E …

Akwäba 000000410000006B00000077000000E4 … 0041006B007700E4 … 416B77C3A4…

(b)

Figure 4.3 Encoding Welcome in (a) Unicode; (b) UTF-32, UTF-16, and UTF-8.

Unicode

Welcome (English) U+0057 U+0065 U+006C U+0063 …

Haere mai (Māori) U+0048 U+0061 U+0065 U+0072 …

Wilkommen (German) U+0057 U+0069 U+006C U+006B …

Bienvenue (French) U+0042 U+0069 U+0065 U+006E …

Akwäba (Fante from Ghana) U+0041 U+006B U+0077 U+00E4 …

(a)

Byte order is irrelevant when data is generated and handled internally in
memory; it only becomes an issue when serializing information for transfer to a
disk or transmission over a byte-oriented protocol. In the Unicode standard the
big-endian format is preferred, bytes being ordered from most significant to least
significant—just as they are when writing out the number in hexadecimal, left to
right. This is what is shown in Figure 4.3b. However, two variants are defined:
UTF-32BE and UTF-32LE for big-endian and little-endian, respectively.

A UTF-32 file can be either. Working within a single computer system, it does
not matter which ordering is used—the system will be internally consistent. If
necessary, however, UTF-32 encoding can include a byte-order mark to differen-
tiate the two cases. This character, from the Reserved zone in Table 4.2, is
defined as “zero-width no-break space.” Its byte-for-byte transpose is carefully
defined to be an invalid character. This means that software that does not expect
a byte-order mark will be fail-safe, since a correctly matched endian system dis-
plays the byte-order mark as a zero-width space, and a mismatched one imme-
diately detects an incompatibility through the presence of the invalid character.

In practice it is rare to encounter UTF-32 data because it makes inefficient
use of storage. If text is constrained to the basic multilingual plane (and it usu-
ally is), the top two bytes of every character are zero.

UTF-16
In UTF-16 characters within the Basic Multilingual Plane are stored as 2-byte
integers, as can easily be discerned in Figure 4.3b. The same byte-order mark as
above is used to distinguish the UTF-16BE and UTF-16LE variants.

To represent code points outside the Basic Multilingual Plane, specially
reserved values called surrogate characters are used. Two 16-bit values, both
from the Surrogates zone in Table 4.2, are used to specify a 21-bit value in the
range U+10000–U+10FFFF (a subset of the full 21-bit range, which goes up to
1FFFFF). Here are the details: the 21-bit number is divided into 11 and 10 bits,
respectively, and to each is added a predetermined offset to make them fall into
the appropriate region of the surrogate zone. This is a kind of “escape” mecha-
nism, where a special code is used to signify that the following value should be
treated differently. However, the surrogate approach is more robust than regular
escaping: it allows recovery from errors in a corrupted file because it does not
overload values from the nonescaped range, and thus the meaning cannot be
confused even if the first surrogate character is corrupted. Inevitably robustness
comes at a cost—fewer values can be encoded than with conventional escaping.

UTF-8
UTF-8 is a byte-based variable-length scheme that encodes the same 21-bit
character range as UTF-16 and UTF-32. Code lengths vary from one byte for
ASCII values through four bytes for values outside the Basic Multilingual Plane.

148 F O U R | D O C U M E N T S

If the top bit of a UTF-8 byte is 0, that byte stands alone as a Unicode character,
making the encoding backward compatible with 7-bit ASCII. Otherwise, when
the byte begins with a 1 bit, the leading 1 bits in it are counted, and their num-
ber signals the number of bytes in the code—11 for two bytes, 111 for three, and
1111 for four. The four possibilities are illustrated in Table 4.3. Subsequent bytes
in that character’s code set their two top bits to 10—so that they can be recog-
nized as continuation bytes even out of context—and use the remaining six bits
to encode the value.

Figure 4.3b shows the Welcome example in UTF-8. Of interest is the last line,
which is one byte longer than the others. This is because the encoding for ä falls
outside the ASCII range: Unicode U+00E4 is represented as the two bytes C3
A4, in accordance with the second entry of Table 4.3.

To eliminate ambiguity the Unicode standard states that UTF-8 must use the
shortest possible encoding. For example, writing UTF-8 F0 80 80 C7 encodes
U+0047 in a way that satisfies the rules, but it is invalid because 47 is a shorter
representation.

Hindi and related scripts

Unicode is advertised as a uniform way of representing all the characters used in
all the world’s languages. Unicode fonts exist and are used by some commercial
word processors and Web browsers. It is natural for people—particularly people
from Western linguistic backgrounds—to assume that all problems associated
with representing different languages on computers have been solved. Unfortu-
nately today’s Unicode-compliant applications fall far short of providing a satis-
factory solution for languages with intricate scripts.

We use Hindi and related Indic scripts as an example. These languages raise
subtle problems that are difficult for people of European background to appreci-
ate, and we can only give a glimpse of the complexities involved. As Table 4.2
shows, the Unicode space from 0900 to 0DFF is reserved for ten Indic scripts.
Although many hundreds of different languages are spoken in India, the principal
officially recognized ones are Hindi, Marathi, Sanskrit, Punjabi, Bengali, Gujarati,

4 . 1 R E P R E S E N T I N G C H A R A C T E R S 149

Table 4.3 Encoding the Unicode character set as UTF-8.

Unicode value 21-bit binary code UTF-8 code

U+00000000 – U+0000007F 00000000000000wwwwwww 0wwwwwww

U+00000080 – U+000007FF 0000000000wwwwwxxxxxx 110wwwww 10xxxxxx

U+00000800 – U+0000FFFF 00000wwwwxxxxxxyyyyyy 1110wwww 10xxxxxx 10yyyyyy

U+00010000 – U+001FFFFF wwwxxxxxxyyyyyyzzzzzz 11110www 10xxxxxx 10yyyyyy 10zzzzzz

Oriya, Assamese, Tamil, Telugu, Kannada, Malayalam, Urdu, Sindhi, and Kash-
miri. The first twelve of these are written in one of nine writing systems that have
evolved from the ancient Brahmi script. The remaining three, Urdu, Sindhi, and
Kashmiri, are primarily written in Persian Arabic scripts, but can be written in
Devanagari too (Sindhi is also written in the Gujarati script). The nine scripts are
Devanagari, Bengali, Gujarati, Oriya and Gurmukhi (northern or Aryan scripts),
and Tamil, Telugu, Kannada, Malayalam (southern or Dravidian ones). Figure 4.4
gives some characters in each of these. As you can see, the characters are rather
beautiful—and the scripts are quite different from one another. Unicode also
includes a script for Sinhalese, the official language of Sri Lanka.

Hindi, the official language of India, is written in Devanagari,3 which is used
for writing Marathi and Sanskrit too. (It is also the official script of Nepal.) The
Punjabi language is written in Gurmukhi. Assamese is written in a script that is
very similar to Bengali, but there is one additional glyph and another glyph is
different. In Unicode the two scripts are merged, with distinctive code points for
the two Assamese glyphs. Thus the Unicode scripts cover all 12 of the official
Indian languages that are not written in Persian Arabic. All these scripts derive
from Brahmi, and all are phonetically based. In fact the printing press did not
reach the Indian subcontinent until missionaries arrived from Europe. The lan-
guages had a long time to evolve before they were fixed in print, which con-
tributes to their diversity.

150 F O U R | D O C U M E N T S

Figure 4.4 Examples of characters in Indic scripts.

3. Pronounced Dayv’nagri, with the accent on the second a.

Since the 1970s various committees of the Indian Department of Official
Languages and Department of Electronics have worked on devising codes and
keyboards that cater to all official Indic scripts. A standard keyboard layout was
developed that provides a uniform way of entering them all. A common code
was defined so that any software that was developed could be used universally.
This is possible because, despite the very different scripts, the alphabets are pho-
netic and have a common Brahmi root that was used for the ancient Sanskrit.
The simultaneous availability of multiple Indic languages was intended to accel-
erate technological development and facilitate national integration in India.

The result was ISCII, the Indian Script Code for Information Interchange.
Announced in 1983 (and revised in 1988), it is an extension of the ASCII code set
that, like other extensions, places new characters in the upper region of the code
space. The code table caters for all the characters required in the Brahmi-based
Indic scripts. Figure 4.5a shows the ISCII code table for the Devanagari script;
code tables for the other scripts in Figure 4.4 are similar but contain differently
shaped characters (and some entries are missing because there is no equivalent
character in that script). The code table contains 56 characters, 10 digits (in the
last line of Figure 4.5a), and 18 accents and combining characters. There are also
three special escape codes, but we will not go into their meaning here.

The Unicode developers adopted ISCII lock, stock, and barrel—they had to,
because of their policy of round-trip compatibility with existing coding meth-
ods. They used different parts of the code space for the various scripts, which
means that (in contrast to ISCII) documents containing multiple scripts can
easily be represented. However, they also included some extra characters—
about 10 of them—which in the original ISCII design were supposed to be
formed from combinations of other keystrokes. Figure 4.5b shows the Unicode
code table for the Devanagari script.

Most of the extra characters give a shorthand for frequently used characters,
and they differ from one language to another. An example in Devanagari is the
character Om, a Hindu religious symbol:

(Unicode U+0950)

Although not part of the ISCII character set, this can be created from the keyboard
by typing the sequence of characters

(ISCII A8 A1 E9)

The third character (ISCII E9) is a special diacritic sign called the Nukta (which
phonetically represents nasalization of the preceding vowel). ISCII defines Nukta
as an operator used to derive some little-used Sanskrit characters that are not oth-
erwise available from the keyboard, such as Om. However, Unicode includes these

4 . 1 R E P R E S E N T I N G C H A R A C T E R S 151

152 F O U R | D O C U M E N T S

(c)

Figure 4.5 Devanagari script: (a) ISCII; (b) Unicode (U+0900−U+0970); (c) code table
for the Surekh font.

(a)

(b)

lesser-used characters as part of the character set (U+0950 and U+0958 through
U+095F).

Although the Unicode solution is designed to adequately represent all the
Indic scripts, it has not yet found widespread acceptance. A practical problem is
that the Indic scripts contain numerous conjuncts, which are clusters of two to
four consonants without any intervening vowels. Conjuncts are the same idea as
the ligatures discussed earlier, characters represented by a single glyph whose
shape differs from the shapes of the constituent consonants—just as the
sequence f followed by i is joined together into the single ligature fi in the font
used for this book. Indic scripts contain far more of these, and there is a greater
variation in shape. For example, the conjunct

is equivalent to the two-character combination

(Unicode U+0932 U+0943)

In this particular case, the conjunct happens to be defined as a separate code in
Unicode (U+090C)—just as the ligature fi has its own code (U+FB01). The
problem is that this is not always the case. In the ISCII design all conjuncts are
formed by placing a special character between the constituent consonants, in
accordance with the ISCII design goal of a uniform representation for input of
all Indic languages on a single keyboard. In Unicode some conjuncts are given
their own code—like the one above—but others are not.

Figure 4.5c shows the code table for a particular commercially available
Devanagari font, Surekh (a member of the ISFOC family of fonts). Although
there is much overlap, there is certainly not a one-to-one correspondence
between the Unicode and Surekh characters, as can be seen in Figures 4.5b and
c. Some conjuncts, represented by two to four Unicode codes, correspond to a
single glyph that does not have a separate Unicode representation but does have
a corresponding entry in the font. And in fact the converse is true: there are sin-
gle glyphs in the Unicode table that are produced using the font by generating
pairs of characters. For example, the Unicode symbol

(Unicode U+0912)

is drawn by specifying a sequence of three codes in the Surekh font.
We cannot give a more detailed explanation of why such choices have been

made—this is a controversial subject, and a full discussion would require a book
in itself. However, the fact is that the adoption of Unicode in India has been
delayed because some people feel that it represents an uncomfortable compro-
mise between the clear but spare design principles of ISCII and the practical
requirements of actual fonts. They prefer to represent their texts in the original
ISCII because they feel it is conceptually cleaner.

4 . 1 R E P R E S E N T I N G C H A R A C T E R S 153

The problem is compounded by the fact that today’s word processors and
Web browsers take a simplistic view of fonts. In reality combination rules are
required—and were foreseen by the designers of Unicode—that take a sequence
of Unicode characters and produce the corresponding single glyph from Figure
4.5c. We will learn in Section 4.3 how such rules can be embodied in “composite
fonts.” But ligatures in English, such as fi, have their own Unicode entry, which
makes things much easier. For example, the “insert-symbol” function of word
processors implements a one-to-one correspondence between Unicode codes
and the glyphs on the page.

The upshot is that languages such as Hindi are not properly supported by
current Unicode-compliant applications. A table of glyphs, one for each Uni-
code value, is insufficient to depict text in Hindi script. To make matters worse,
in practice some Hindi documents are represented using ISCII while others are
represented using raw font codes like that of Figure 4.5c, which are specific to
the particular font manufacturer. Different practices have grown up for differ-
ent scripts. For example, the majority of documents in the Kannada language on
the Web seem to be represented using ISCII codes, whereas for the Malayalam
language diverse font-specific codes are used. To read a new Malayalam newspa-
per in your Web browser often involves downloading a new font!

To accommodate such documents in a digital library that represents docu-
ments internally in Unicode, it is necessary to implement several mappings:

1. from ISCII to Unicode, so that ISCII documents can be incorporated
2. from various different font representations (such as ISFOC, used for the

Surekh font) to Unicode, so that documents in other formats can be
accommodated

3. from Unicode to various different font representations (such as ISFOC),
so that the documents can be displayed on computer systems with differ-
ent fonts

The first is a simple transliteration because Unicode was designed for round-
trip compatibility. However, both the other mappings involve translating
sequences of codes in one space into corresponding sequences in the other space
(although all sequences involved are very short). Figure 4.6 shows an example
page produced by such a scheme.

Using Unicode in a digital library

Unicode encoding may seem complex, but it is straightforward to use in digital
library software. Every string can be declared as an array of 16-bit integers and
used to hold the UTF-16 encoding of the characters. In Java this is exactly what
the built-in String type does. In C and C++ the data type short is a 16-bit integer,
so UTF-16 can be supported by declaring all strings to be unsigned short. Read-

154 F O U R | D O C U M E N T S

ability is improved by building a new type that encapsulates this. In C++ a new
class can be built that provides appropriate functionality. Alternatively a sup-
port library, such as the type wchar_t defined in the ANSI/ISO standard to rep-
resent “wide” characters, can be used.

Further work is necessary to treat surrogate characters properly. But usually
operation can safely be restricted to the Basic Multilingual Plane, which covers
all living languages—more than enough for most applications. A further practi-
cal restriction is to avoid combining characters and work with Unicode level 1—
which makes it far easier to implement string matching operations. For higher
Unicode levels you should seek library support for normalization and matching.

When writing Unicode data structures to disk, it is easy to convert the 16-bit
characters to UTF-8, reversing the process when reading. In most common situ-
ations this greatly reduces file size and also increases portability because the files
do not depend on endianness.

Care is necessary to display and print Unicode characters properly. Most Uni-
code-enabled applications incorporate an arsenal of fonts and use a lookup
table to map each Unicode character to a displayable character in a known font.
Complications include composite Unicode characters and the direction in
which the character sequence is displayed. By working through a modern Web
browser, digital libraries can avoid having to deal with these issues explicitly.

4.2 Representing documents

Unicode provides an all-encompassing form for representing characters, including
manipulation, searching, storage, and transmission. Now we turn our attention to
document representation. The lowest common denominator for documents on

4 . 2 R E P R E S E N T I N G D O C U M E N T S 155

Figure 4.6 Page produced by a digital library in Devanagari script.

computers has traditionally been plain, simple, raw ASCII text. Although there is
no formal standard for this, certain conventions have grown up.

Plain text

A text document comprises a sequence of character values interpreted in ordi-
nary reading order: left to right, top to bottom. There is no header to denote the
character set used. While 7-bit ASCII is the baseline, the 8-bit ISO ASCII exten-
sions are often used, particularly for non-English text. This works well when
text is processed by just one application program on a single computer, but
when transferring between different applications—perhaps through e-mail,
news, http, or FTP—the various programs involved may make different
assumptions. These alphabet mismatches often mean that character values in
the range 128–255 are displayed incorrectly.

Formatting within such a document is rudimentary. Explicit line breaks are
usually included. Paragraphs are separated by two consecutive line breaks, or
the first line is indented. Tabs are frequently used for indentation and align-
ment. A fixed-width font is assumed; tab stops usually occur at every eighth
character position. Common typing conventions are adopted to represent char-
acters such as dashes (two hyphens in a row). Headings are underlined manually
using rows of hyphens, or equal signs for double underlining. Emphasis is often
indicated by surrounding text with a single underscore (_like this_), or by flank-
ing words with asterisks (*like* *this*).

Different operating systems have adopted conflicting conventions for specify-
ing line breaks. Historically teletypes were modeled after typewriters. The line-
feed character (ASCII 10, LF in Table 4.1) moves the paper up one line but
retains the position of the print head. The carriage-return character (ASCII 13,
CR in Table 4.1) returns the print head to the left margin but does not move the
paper. A new line is constructed by issuing carriage return followed by line feed
(logically the reverse order could be used, but the carriage return line feed
sequence is conventional, and universally relied upon). Microsoft DOS (and
Windows) use this teletype-oriented interpretation. However, Unix and the
Apple Macintosh adopt a different convention: the ASCII line-feed character
moves to the next line and returns the print head to the left margin. This differ-
ence in interpretation can produce a strange-looking control character at the
end of every line.4 While the meaning of the message is not obscured, the effect
is rather distracting.

156 F O U R | D O C U M E N T S

4. ^M or “carriage return.” Observe that CR and M are in the same row of Table 4.1. Control
characters in the first column are often made visible by prefixing the corresponding charac-
ter in the second column with ^.

People who use the standard Internet file transfer protocol (FTP) sometimes
wonder why it has separate ASCII and binary modes. The difference is that in
ASCII mode, new lines are correctly translated when copying files between dif-
ferent systems. It would be wrong to apply this transformation to binary files,
however. Modern text-handling programs conceal the difference from users by
automatically detecting which new-line convention is being used and behaving
accordingly. Of course, this can lead to brittleness: if assumptions break down,
all line breaks are messed up and users become mystified.

In a digital library, plain text is a simple, straightforward, but impoverished
representation of documents. Metadata cannot be included explicitly (except,
possibly, as part of the file name). However, automatic processing is sometimes
used to extract title, author, date, and so on. Extraction methods rely on infor-
mal document structuring conventions. The more consistent the structure, the
easier this becomes. Conversely the simpler the extraction technique, the more
seriously things break down when formatting quirks are encountered. Unfortu-
nately you cannot normally expect complete consistency and accuracy in large
document collections.

Indexing

Rapid searching of the full text of large document collections for particular
words, sets or words, or sequences of words is a core function of digital libraries
that distinguishes them from physical libraries. The ability to search full text
adds great value to documents used for study or reference, although it is rarely
applicable to recreational reading, which normally takes place sequentially, in
one pass.

Before computers, full-text searching was confined to highly valued—often
sacred—works for which a concordance had already been prepared. For exam-
ple, some 300,000 word appearances are indexed in Cruden’s concordance of the
Bible, printed on 774 pages. They are arranged alphabetically, from Aaron to
Zuzims, and any particular word can be located quickly using a binary search.
Each probe into the index halves the number of potential locations for the tar-
get, and the correct page for an entry can be located by looking at no more than
10 pages—fewer if the searcher interpolates the position of an entry from the
position of its initial letter in the alphabet. A term can usually be located in a few
seconds, which is not bad considering that only elementary manual technology
is being employed. Once an entry has been located, it gives a list of references
that the searcher can follow up. Figure 4.7 shows some of Cruden’s concordance
entries for the word search.

In digital libraries searching is done by a computer rather than a person, but
essentially the same techniques are used. The difference is that things happen a

4 . 2 R E P R E S E N T I N G D O C U M E N T S 157

little faster. Usually it is possible to keep a list of terms in the computer’s main
memory, and this can be searched in a matter of microseconds. The computer’s
equivalent of the concordance entry may be too large to store in main memory,
in which case an access to secondary storage (usually disk) is required to obtain
the list of references. Then each of the references must be retrieved from the
disk, which typically takes a few milliseconds.

A full-text index to a document collection gives for each word in the collec-
tion the position of every occurrence of that word in the collection’s text. A
moment’s reflection shows that the size of the index is commensurate with the
size of the text, because an occurrence position is likely to occupy roughly the
same number of bytes as a word in the text. (Four-byte integers, which are con-
venient in practice, are able to specify word positions in a 4-billion-word cor-
pus. Conversely an average English word has five or six characters and so also
occupies a few bytes, the exact number depending on how it is stored and

158 F O U R | D O C U M E N T S

Figure 4.7 Entries for the word search in a
biblical concordance. Cruden’s Complete
Concordance to the Old and New Testaments by
A. Cruden, C. J. Orwom, A. D. Adams, and S. A.
Waters. 1941, Lutterworth Press.

whether it is compressed.) We have implicitly assumed a word-level index,
where occurrence positions give actual word locations in the collection. Space
will be saved if locations are recorded to within a unit such as a paragraph, chap-
ter, or document, yielding a coarser index—partly because pointers can be
smaller, but chiefly because if a particular word occurs several times in the same
unit, only one pointer is required for that unit.

A comprehensive index, capable of rapidly accessing all documents that satisfy
a particular query, is a large data structure. Size, as well as being a drawback in its
own right, also affects retrieval time, for the computer must read and interpret
appropriate parts of the index to locate the desired information. Fortunately
there are interesting data structures and algorithms that can be applied to solve
these problems. They are beyond the scope of this book, but references can be
found in the “Notes and sources” section at the end of the chapter (Section 4.7).

The basic function of a full-text index is to provide, given any particular
query term, a list of all the units that contain it, along with (for reasons to be
explained shortly) the number of times it occurs in each unit on the list. It’s sim-
plest to think of the “units” as being documents, although the granularity of the
index may be paragraphs or chapters instead—or even individual words, in
which case what is returned is a list of the word numbers corresponding to the
query term. And it’s simplest to think of the query term as a word, although if
stemming or case-folding is in effect, the term may correspond to several differ-
ent words. For example, with stemming the term computer may correspond to
the words computer, computers, computation, compute, and so on; and with case-
folding it may correspond to computer, Computer, COMPUTER, and even CoM-
pUtEr (an unusual enough word, but not completely unknown—for example, it
appears in this book!).

When one indexes a large text, it rapidly becomes clear that just a few com-
mon words—such as of, the, and and—account for a large number of the entries
in the index. People have argued that these words should be omitted, since they
take up so much space and are not likely to be needed in queries, and for this rea-
son they are often called stop words. However, some index compilers and users
have observed that it is better to leave stop words in. Although a few dozen stop
words may account for around 30 percent of the references that an index con-
tains, it is possible to represent them in a way that consumes relatively little space.

A query to a full-text retrieval system usually contains several words. How
they are interpreted depends on the type of query. Two common types, both
explained in Chapter 3 (Section 3.3), are Boolean queries and ranked queries. In
either case the process of responding to the query involves looking up, for each
term, the list of documents it appears in, and performing logical operations on
these lists. In the case of Boolean queries, the result is a list of documents that
satisfies the query, and this list (or the first part of it) is displayed to the user.

4 . 2 R E P R E S E N T I N G D O C U M E N T S 159

In the case of ranked queries, the final list of documents must be sorted accord-
ing to the ranking heuristic that is in place. As Section 3.3 explains, these heuristics
gauge the similarity of each document to the set of terms that constitute the query.
For each term they weigh the frequency with which it appears in the document
being considered (the more it is mentioned, the greater the similarity) against its
frequency in the document collection as a whole (common terms are less signifi-
cant). This is why the index stores the number of times each word appears in each
document. A great many documents—perhaps all documents in the collection—
may satisfy a particular ranked query (if the query contains the word the, all Eng-
lish documents would probably qualify). Retrieval systems take great pains to
work efficiently even on such queries; they use techniques that avoid the need to
sort the list fully in order to find the top few elements.

In effect the indexing process treats each document (or whatever the unit of
granularity is) as a “bag of words.” What matters is the words that appear in the
document and (for ranked queries) the frequency with which they appear. The
query is also treated as a bag of words. This representation provides the founda-
tion for full-text indexing. Whenever documents are presented in forms other
than word-delineated plain text, they must be reduced to this form so that the
corresponding bag of words can be determined.

Word segmentation

Before creating an index the text must first be divided into words. A word is a
sequence of alphanumeric characters surrounded by white space or punctua-
tion. Usually some large limit is placed on the length of words—perhaps 16
characters, or 256 characters. Another practical rule of thumb is to limit num-
bers to a far smaller size—perhaps four numeric characters, only indexing num-
bers less than 9,999. Without this restriction the size of the vocabulary might be
artificially inflated—for example, a long document with numbered paragraphs
could contain hundreds of thousands of different integers—which negatively
impacts certain technical aspects of the indexing procedure. Years, however, at
four digits, should be preserved as single words.

In some languages plain text presents special problems. Languages such as
Chinese and Japanese are written without using any spaces or other word delim-
iters (except for punctuation marks)—indeed, the Western notion of a word
boundary is literally alien. Nevertheless these languages do contain words. Most
Chinese words comprise several characters: two, three, or four. Five-character
words also exist, but they are rare. Many characters can stand alone as words in
themselves, while on other occasions the same character is the first or second
component of a two-character word, and on still others it participates as a com-
ponent of a three- or four-character word.

160 F O U R | D O C U M E N T S

This causes obvious problems in full-text indexing: to get a bag of words we
have to identify the words first. One possibility is to treat each character as an
individual word. However, this produces poor retrieval results. An extreme
analogy is an English-language retrieval system that, instead of finding all docu-
ments containing the words digital library, found all documents containing the
constituent letters a b d g i l r t y. Of course you receive all sought-after docu-
ments, but they are diluted with countless others. And ranking would be based
on letter frequencies, not word frequencies. The situation in Chinese is not so
bad, for individual characters are far more numerous, and more meaningful,
than individual letters in English. But they are less meaningful than words.

Readers unfamiliar with Chinese can gain an appreciation of the problem of
multiple interpretations from Figure 4.8a, which shows two alternative interpre-
tations of the same character sequence. The text is a joke that relies on the ambi-
guity of phrasing. Once upon a time, the story goes, a man set out on a long jour-
ney. But before he could return home the rainy season began, and he had to take
shelter at a friend’s house. As the rains continued he overstayed his welcome, and
his friend wrote him a note: the first line in Figure 4.8a. The intended interpreta-
tion is shown in the second line, which means “It is raining, the god would like
the guest to stay. Although the god wants you to stay, I do not!” On seeing the
note, the visitor added the punctuation shown in the third line, making three
sentences whose meaning is totally different—“The rainy day, the staying day.

4 . 2 R E P R E S E N T I N G D O C U M E N T S 161

Unsegmented Chinese sentence

I like New Zealand flowers

I like fresh broccoli

(b)

Figure 4.8 Alternative interpretations of two Chinese sentences: (a) ambiguity caused
by phrasing; (b) ambiguity caused by word boundaries.

Unpunctuated Chinese sentence

It is raining, the god would like the
guest to stay. Although the god
wants you to stay, I do not!

The rainy day, the staying day.
Would you like me to stay? Sure!

(a)

Would you like me to stay? Sure!” (Nevertheless, according to the story he did
take the hint, leaving the amended note as a joke.)

This example relies on ambiguity of phrasing, but the same kind of problem
can arise with word segmentation. Figure 4.8b shows a more prosaic example. For
the ordinary sentence on the first line, there are two different interpretations,
depending on the context: “I like New Zealand flowers” and “I like fresh broccoli.”

Written Chinese documents are unsegmented, and Chinese readers are
accustomed to inferring the corresponding sequence of words as they read.
Accordingly machine-readable versions are invariably stored in unsegmented
form. If they are to be incorporated into a digital library that offers full-text
retrieval, a segmentation scheme should be used to insert word boundaries at
appropriate positions when the text is indexed.

One way of segmenting text is to use a language dictionary. Boundaries are
inserted to maximize the number of the words in the text that are also present in
the dictionary. Of course there may be more than one valid segmentation, and
heuristics must be sought to resolve ambiguities.

Another segmentation method is based on the insight that text divided into
words is more compressible than text that lacks word boundaries. You can see
this with a simple experiment. Take a text file, compress it with any standard
compression utility (such as gzip), and measure the compression ratio. Then
remove all the spaces from the file, making it considerably smaller (about 17%
smaller, because in English approximately one letter in six is a space). When you
compress this smaller file the compression ratio is noticeably worse than for the
original file. Inserting word boundaries improves compressibility.

This fact can be used to divide text into words, based on a large corpus of
training data that has been segmented by hand. Between every pair of characters
lies a potential space. Segmentation can be achieved by training a text compres-
sion model on presegmented text and using a search algorithm to interpolate
spaces in a way that maximizes the overall compression of the text. The “Notes
and sources” section at the end of the chapter (Section 4.7) points to a fuller
explanation of the technique.

For non-Chinese readers, the success of the space-insertion method can be
illustrated by applying it to English text. Table 4.4 shows, at the top, some origi-
nal text, with spaces in the proper places. Below is the input to the segmentation
procedure. Underneath that is the output of a dictionary word-based segmenta-
tion scheme and of a character-based one that uses the compression method.
The training text was a substantial sample of English, although far smaller than
the corpus used to produce the dictionary for the word-based method.

Word-based segmentation fails badly when the words are not in the dictio-
nary. In this case neither crocidolite nor Micronite were, and they are segmented
incorrectly. In addition, inits is treated as a single word because it occurred that

162 F O U R | D O C U M E N T S

way in the text from which the dictionary was created, and in cases of ambiguity
the algorithm prefers longer words. The strength of the compression-based
method is that it performs well on unknown words. Although Micronite does
not occur in the training corpus, it is correctly segmented. This method makes
two errors, however. First, a space was not inserted into LoewsCorp because it
happens to require fewer bits to encode than Loews Corp. Second, an extra space
was added to crocidolite because that also reduced the number of bits required.

This brings to a close our discussion on plain text documents. We now move
on to richer document representations that cater to combined text and graphics.

4.3 Page description languages: PostScript and PDF

Page description languages allow typeset pages to be expressed in a way that is
independent of the particular output device being used. Early word-processing
programs and drawing packages incorporated code for output to particular
printers and could not be used with other devices. With the advent of page
description languages, programs can generate graphical documents in a device-
independent format which will print on any device equipped with a driver for
that language.

Most of the time digital libraries can treat documents in these languages by
processing them using standard “black boxes”: generate this report in a particu-
lar language, display it here, transfer it there, and print. However, to build
coherent collections out of the documents, you need internal knowledge of
these formats to understand what can and cannot be accomplished: whether the
text can be indexed, bookmarks inserted, images extracted, and so on. For this
reason we now describe some page description languages in detail.

4 . 3 P A G E D E S C R I P T I O N L A N G U A G E S : P O S T S C R I P T A N D P D F 163

Table 4.4 Segmenting words in English text.

Original text The unit of New York-based Loews Corp that makes Kent
cigarettes stopped using crocidolite in its Micronite
cigarette filters in 1956.

Without spaces TheunitofNewYork-basedLoewsCorpthatmakesKentcig
arettesstoppedusingcrocidoliteinitsMicronitecigarettef
iltersin1956.

Word-based segmentation The unit of New York-based Loews Corp that makes Kent
cigarettes stopped using c roc id o lite inits Micron it e
cigarette filters in 1956.

Character-based segmentation The unit of New York-based LoewsCorp that makes Kent
cigarettes stopped using croc idolite in its Micronite
cigarette filters in 1956.

PostScript

PostScript, the first commercially developed page description language, was
released in 1985, whereupon it was rapidly adopted by software companies and
printer manufacturers as a platform-independent way of describing printed
pages that could include both text and graphics. Soon it was being coupled with
software applications (notably, in the early days, PageMaker on the Apple Mac-
intosh) that ensure that “what you see” graphically on the computer’s raster dis-
play is “what you get” on the printed page.

PostScript files comprise a sequence of graphical drawing instructions,
including ones that draw particular letters from particular fonts. The instruc-
tions are like this: move to the point defined by these x and y coordinates and
then draw a straight line to here; using the following x and y coordinates as con-
trol points, draw a smooth curve around them with such-and-such a thickness;
display a character from this font at this position and in this point size; display
the following image data, scaled and rotated by this amount. Instructions are
included to specify such things as page size, clipping away all parts of a picture
that lie outside a given region, and when to move to the next page.

But PostScript is more than just a file format. It is a high-level programming
language that supports diverse data types and operations on them. Variables
and predefined operators allow the usual kinds of data manipulation. New
operations can be encapsulated as user-defined functions. Data can be stored in
files and retrieved. A PostScript document is more accurately referred to as a
PostScript program. It is printed or displayed by passing it to a PostScript inter-
preter, a full programming language interpreter.

Being a programming language, PostScript allows print-quality documents
that compose text and graphical components to be expressed in an exceptionally
versatile way. Ultimately, when interpreted, the abstract PostScript description
is converted into a matrix of dots or pixels through a process known as rasteriza-
tion or rendering. The dot structure is imperceptible to the eye—commonly
available printers have a resolution of 300 to 600 dpi, and publishing houses use
1,200 dpi and above (see Table 2.4 in Chapter 2). This very book is an example
of what can be described using the language.

Modern computers are sufficiently powerful that a PostScript description can
be quickly rasterized and displayed on the screen. This adds an important
dimension to online document management: computers without the original
software used to compose a document can still display the finished product
exactly how it was intended. Indeed, in the late 1980s one computer manufac-
turer took the idea to an extreme by developing an operating system (called
NeXT) in which the display was controlled entirely from PostScript, and all
applications generated their on-screen results in this form.

However, PostScript was not designed for screen displays. As we saw with
ASCII, limitations often arise when a standard is put to use in situations for

164 F O U R | D O C U M E N T S

which it was not designed. Just as ASCII is being superseded by Unicode, a
scheme called the Portable Document Format (PDF) has been devised as the
successor to PostScript (see subsection “Portable Document Format: PDF”) for
online documents.

PostScript graphics
PostScript is page based. Graphical marks are drawn one by one until an opera-
tor called showpage is encountered, whereupon the page is presented. When one
page is complete, the next is begun. Placement is like painting: if a new mark
covers a previously painted area, it completely obliterates the old paint. Marks
can be black and white, grayscale, or color. They are “clipped” to fit within a
given area (not necessarily the page boundary) before being placed on the page.
This process defines the imaging model used by PostScript.

Table 4.5 summarizes PostScript’s main graphical components. Various geo-
metric primitives are supplied. Circles and ellipses can be produced using the
arc primitive; general curves are drawn using splines, a type of well-defined
curved line whose shape is controlled precisely by a number of control points. A
path is a sequence of graphical primitives interspersed with geometric opera-
tions and stylistic attributes. Once a path has been defined, it is necessary to
specify how it is to be painted: for example, stroke for a line or fill for a solid
shape. The moveto operator moves the pen without actually drawing, so that
paths do not have to prescribe contiguous runs of paint. An operator called
closepath forms a closed shape by generating a line from the latest point back to
the last location moved to. The origin of coordinates is located at the bottom
left-hand corner of a page, and the unit of distance is set to be one printer’s
point, a typographical measure whose size is 1/72 inch.

In PostScript, text characters are just another graphical primitive and can be
rotated, translated, scaled, and colored just like any other object. However,

4 . 3 P A G E D E S C R I P T I O N L A N G U A G E S : P O S T S C R I P T A N D P D F 165

Table 4.5 Graphical components in PostScript.

Component Description

Graphical primitives Straight lines, arcs, general curves, sampled images, and text
Geometrical operations Scale, translate, and rotate
Line attributes Width, dashed, start and end caps, joining lines/corner mitre

style
Font attributes Font, typeface, size
Color Color currently in use
Paths Sequence of graphical primitives and attributes
Rendering How to render paths: grayscale, color, or outline
Clipping Restricts what is shown of the path

because of its importance, text comes in for some special treatment. The Post-
Script interpreter stores information about the current font: font type, typeface,
point size, and so on, and operators such as findfont and scalefont are provided
to manipulate these components.

There is also a special operator called image for sampled images.

The PostScript language
Files containing PostScript programs are represented in 7-bit ASCII, but this
does not restrict the fonts and characters that can be displayed on a page. A per-
centage symbol (%) indicates that the remainder of the line contains a com-
ment; however, comments marked with a double percent (%%) extend the lan-
guage by giving structured information that can be utilized by a PostScript
interpreter.

Figure 4.9b shows a simple PostScript program that, when executed, pro-
duces the result in Figure 4.9a, which contains the greeting Welcome in the five
languages we used earlier to illustrate Unicode. The first line, which is techni-
cally a comment but must be present in all PostScript programs, defines the file
to be of type PostScript. The next two lines set the font to be 14-point Helvetica,
and then the current path is moved to a position (10,10) points from the lower
left-hand corner of the page.

The five show lines display the Welcome text (plus a space). PostScript, unlike
many computer languages, uses a stack-based form of notation where com-
mands follow their arguments. The show commands “show” the text that pre-
cedes them; parentheses are used to group characters together into text strings.
In the fifth example, the text Akw is “shown” or painted on the page; then there
is a relative move (rmoveto) of the current position forward two printer’s points
(the coordinate specification (2, 0)); then the character \310 is painted (octal
310, which is in fact an umlaut in the Latin-1 extension of ASCII); the current
position is moved back six points; and the characters aba are “shown.” The
effect is to generate the composite character ä in the middle of the word. Finally
the showpage operator is issued, causing the graphics that have been painted on
the virtual page to be printed on a physical page.

The PostScript program in Figure 4.9b handles the composite character ä
inelegantly. It depends on the spacing embodied in the particular font chosen—
on the fact that moving forward two points, printing an umlaut, and moving
back six points will position the forthcoming a directly underneath. There are
better ways to accomplish this, using, for instance, ISOLatin1Encoding or com-
posite fonts, but they require syntax beyond the scope of this simple example.

Levels of PostScript
Standards and formats evolve. There is a tension between stability, an important
feature for any language, and currency, or the need to extend in response to the

166 F O U R | D O C U M E N T S

ever-changing face of computing technology. To help resolve the tension, levels
of PostScript are defined. The conformance level of a file is encoded in its first
line, as can been seen in Figure 4.9b (PS-Adobe-3.0 means Level 3 PostScript).
Care is taken to ensure that levels are backward compatible.

What we have described so far is basic Level 1 PostScript. Level 2 includes

■ improved virtual memory management
■ device-independent color
■ composite fonts
■ filters

4 . 3 P A G E D E S C R I P T I O N L A N G U A G E S : P O S T S C R I P T A N D P D F 167

Figure 4.9 (a) Result of executing a PostScript program; (b) the PostScript program;
(c) Encapsulated PostScript version; (d) PDF version; (e) network of objects in the PDF
version; (f) RTF specification of the same document. (continued on the following pages)

(a)

%!PS-Adobe-3.0
/Helvetica findfont
14 scalefont
setfont
10 10 moveto
(Welcome) show
(Haere mai) show
(Wilkommen) show
(Bienvenue) show
(Akw) show 2 0 rmoveto (\310) show -6 0 rmoveto (aba) show
showpage

(b)

%!PS-Adobe-3.0 EPSF-3.0
%%Creator: Dr David Bainbridge
%%Title: Welcome example
%%BoundingBox: 0 0 350 35
%%DocumentFonts: Helvetica
%%EndComments
/Helvetica findfont
14 scalefont
setfont
10 10 moveto
(Welcome) show
(Haere mai) show
(Wilkommen) show
(Bienvenue) show
(Akw) show 2 0 rmoveto (\310) show -6 0 rmoveto (aba) show
showpage

(c)

168 F O U R | D O C U M E N T S

%PDF-1.3
1 0 obj
<< /Type /Catalog

/Pages 2 0 R
>>
endobj

2 0 obj
<< /Type /Pages

/Kids [3 0 R]
/Count 1

>>
endobj

3 0 obj
<< /Type /Page

/Parent 2 0 R
/MediaBox [0 0 612 792]
/Contents 4 0 R
/Resources << /ProcSet 5 0 R

/Font << /F1 6 0 R >>
>>

>>
endobj

4 0 obj
<< /Length 118 >>
stream
BT
/F1 14 Tf
10 10 Td
(Welcome) Tj
(Haere mai) Tj
(Wilkommen) Tj
(Bienvenue) Tj
(Akw\344ba) Tj

ET
endstream
endobj

5 0 obj
[/PDF /Text]
endobj

6 0 obj
<< /Type /Font

/Subtype /Type1
/Name /F1
/BaseFont /Helvetica
/Encoding /WinAnsiEncoding

>>
endobj

xref
0 7
0000000000 65535 f
0000000009 00000 n
0000000062 00000 n
0000000126 00000 n
0000000311 00000 n
0000000480 00000 n
0000000511 00000 n

trailer
<< /Size 7

/Root 1 0 R
>>
startxref
631
%%EOF

(d)

Figure 4.9 (continued)

(e)

The virtual memory enhancements use whatever memory space is available
more efficiently, which is advantageous because PostScript printers sometimes
run out of memory when processing certain documents. Composite fonts,
which significantly help internationalization, are described below. Filters pro-
vide built-in support for compression, decompression, and other common ways
of encoding information.

Level 2 was announced in 1991, six years after PostScript’s original introduc-
tion. The additions were quite substantial, and it was a long time before it
became widely adopted. Level 3 (sometimes called PostScript 3) was introduced
in 1998. Its additions are minor by comparison, and include

■ more fonts, and provision for describing them more concisely
■ improved color control, and smoother shading
■ advanced processing methods that accelerate rendering

Document structuring conventions
While PostScript per se does not enforce an overall structure to a document,
applications can take advantage of a prescribed set of rules known as the docu-
ment structuring conventions (DSC). These divide documents into three sec-
tions: a prologue, document pages, and a trailer. The divisions are expressed as
PostScript “comments.” For example, %%BeginProlog and %%Trailer define
section boundaries. Other conventions are embedded in the document—such
as %%BoundingBox, discussed below. There are around 40 document structur-
ing commands in all.

Document structuring commands provide additional information about the
document, but do not affect how it is rendered. Since the commands are
couched as comments, applications that do not use the conventions are unaf-
fected. However, other applications can take advantage of the information.

Applications such as word processors that generate PostScript commonly use
the prologue to define procedures that are helpful in generating document
pages, and use the trailer to tidy up any global operations associated with the
document or to include information (such as a list of all fonts used) that is not

4 . 3 P A G E D E S C R I P T I O N L A N G U A G E S : P O S T S C R I P T A N D P D F 169

{\rtf1\ansi\deff0{\fonttbl{\f0\froman Times;}{\f1\fswiss Helvetica;}}
{\info{\title Welcome example}{\creatim\yr2001\mo8\dy10}{\nofpages1}
}\pard\plain\f1\fs28\uc0
Welcome
Haere mai
Wilkommen
Bienvenue
Akw\u228ba
\par}

(f)

Figure 4.9 (continued)

known until the end of the file. This convention enables pages to be expressed
more concisely and clearly.

Encapsulated PostScript
Encapsulated PostScript is a variant of PostScript designed for expressing docu-
ments of a single page or less. It is widely used to incorporate artwork created
using one software application, such as a drawing package, into a larger docu-
ment, such as a report being composed in a word processor. Encapsulated Post-
Script is built on top of the document structuring conventions.

Figure 4.9c shows the Welcome example expressed in Encapsulated Post-
Script. The first line is augmented to reflect this (the encapsulation convention
has levels as well; this is EPSF-3.0). The %%BoundingBox command that speci-
fies the drawing size is mandatory in Encapsulated PostScript. Calculated in
points from the origin (bottom left-hand corner), it defines the smallest rectan-
gle that entirely encloses the marks constituting the rendered picture. The rec-
tangle is specified by four numbers: the first pair give the coordinates of the
lower left corner, and the second pair define the upper right corner. Figure 4.9c
also shows document structuring commands for the creator of the document
(more commonly it gives the name and version number of the software applica-
tion that generated the file), a suitable title for it, and a list of fonts used (in this
case just Helvetica).

An Encapsulated PostScript file—which contains raw PostScript along with a
few special comments—can be embedded verbatim, header and all, into a con-
text that is also PostScript. For this to work properly, operators that affect the
global state of the rendering process must be avoided. These restrictions are
listed in the specification for Encapsulated PostScript, and in practice are not
unduly limiting.

Fonts

PostScript supports two broad categories of fonts: base and composite fonts.
Base fonts accommodate alphabets up to 256 characters. Composite fonts
extend the character set beyond this point and also permit several glyphs to be
combined into a single composite character—making them suitable for lan-
guages with large alphabets, such as Chinese, and with frequent character com-
binations, such as Korean.

In the Welcome example of Figure 4.9b, the findfont operator is used to set the
font to Helvetica. This searches PostScript’s font directory for the named font
(/Helvetica), returning a font dictionary that contains all the information neces-
sary to render characters in that font. Most PostScript products have a built-in
font directory with descriptions of 13 standard fonts from the Times, Helvetica,
Courier, and Symbol families. Helvetica is an example of a base font format.

170 F O U R | D O C U M E N T S

The execution of a show command such as (Welcome) show takes place in two
steps. For each character, its numeric value (0–255) is used to access an array
known as the encoding vector. This provides a name such as /W (or, for nonal-
phabetic characters, a name such as /hyphen). This name is then used to look up
a glyph description in a subsidiary dictionary. A name is one of the basic Post-
Script types: it is a label that binds itself to an object. The act of executing the
glyph object renders the required mark. The font dictionary is a top-level object
that binds these operations together.

In addition to the built-in font directory, PostScript lets you provide your
own graphical descriptions for the glyphs, which are then embedded in the
PostScript file. You can also change the encoding vector.

Base font formats
The original specification for PostScript included a means for defining typo-
graphical fonts. At the time there were no standard formats for describing char-
acter forms digitally. PostScript fonts, which were built into the LaserWriter
printer in 1985 and subsequently adopted in virtually all typesetting devices,
sparked a revolution in printing technology. However, to protect its investment
the company that introduced PostScript, Adobe, kept the font specification
secret. This spurred Apple to introduce a new font description format six years
later, which was subsequently adopted by the Windows operating system. Adobe
then published its format.

Level 3 PostScript incorporates both ways of defining fonts. The original
method is called Type 1; the rival scheme is TrueType. For example, Times
Roman, Helvetica, and Courier are Type 1 fonts, while Times New Roman,
Arial, and Courier New are the TrueType equivalents.

Technically the two font description schemes have much in common. Both
describe glyphs in terms of the straight lines and curves that make up the outline of
the character. This means that standard geometric transformations—translation,
scaling, rotation—can be applied to text as well as to graphic primitives. One dif-
ference between Type 1 and TrueType is the way in which curves are specified. Both
use spline curves, but the former uses a kind of cubic spline called a Bézier curve
whereas the latter uses a kind of quadratic spline called a B-spline. From a user per-
spective these differences are minimal—but they do create incompatibilities.

Both representations are resolution independent. Characters may be resized
by scaling the outlines up or down—although a particular implementation may
impose practical upper and lower limits. It is difficult to scale down to very small
sizes. When a glyph comprises only a few dots, inconsistencies arise in certain let-
ter features depending on where they are placed on the page, because even
though the glyphs are the same size and shape, they sit differently on the pixel
grid. For example, the width of letter stems may vary from one instance of a letter
to another; worse still, when scaled down key features may disappear altogether.

4 . 3 P A G E D E S C R I P T I O N L A N G U A G E S : P O S T S C R I P T A N D P D F 171

Both Type 1 and TrueType deal with this problem by putting additional infor-
mation called hints into fonts to make it possible to render small glyphs consis-
tently. However, the way that hints are specified is different in each case. Type 1
fonts give hints for vertical and horizontal features, overshoots, snapping stems to
the pixel grid, and so on, and in many cases there is a threshold pixel size at which
they are activated. TrueType hints define flexible instructions that can do much
more. They give the font producer fine control over what happens when charac-
ters are rendered under different conditions. But to use them to full advantage,
individual glyphs must be manually coded. This is such a daunting undertaking
that, in practice, many fonts omit this level of detail. Of course this does not usu-
ally affect printed text because even tiny fonts can be displayed accurately, without
hinting, on a 600-dpi device. Hinting is more important for screen displays.

Composite fonts
The essence of composite fonts, which became standard in Level 3 PostScript,
boils down to two key concepts. First, instead of mapping character values
through a single dictionary as base fonts do, there is now a hierarchy of dictio-
naries. At its root a composite font dictionary directs character mappings to
subsidiary dictionaries. These can either contain base fonts or further compos-
ite fonts (up to a depth limit of five).

Second, the show operator no longer decodes its argument one byte at a time.
Instead a font number and character selector pair are used. The font number
locates a font dictionary within the hierarchy, while the character selector uses
the encoding vector stored with that dictionary to select a glyph description
name to use when rendering the character. This latter step is analogous to the
way base fonts are used.

The arguments of show can be decoded in several ways. Options include 16
bits per font number and character selector pair, separated into one byte each
(note that this differs from a Unicode representation); or using an escape char-
acter to change the current font dictionary. The method used is determined by a
value in the root dictionary.

Compatibility with Unicode
Character-identifier keyed, or CID-keyed, fonts provide a newer format designed
for use with Unicode. They map multiple byte values to character codes in much
the same way that the encoding vector works in base fonts—except that the
mapping is not restricted to 256 entries. The CID-keyed font specification is
independent of PostScript and can be used in other environments. The data is
also external to the document file: font and encoding-vector resources are
accessed by reading external files into dictionaries.

OpenType is a new font description that goes beyond the provisions of CID-
keyed fonts. It encapsulates Type 1 and TrueType fonts into the same kind of

172 F O U R | D O C U M E N T S

wrapper, yielding a portable, scalable font platform that is backward compatible.
The basic approach of CID-keyed fonts is used to map numeric identifiers to
character codes. OpenType includes multilingual character sets with full Unicode
support, and extended character sets which support small caps, ligatures, and
fractions—all within the same font. It includes a way of automatically substitut-
ing a single glyph for a given sequence (e.g., the ligature fi can be substituted for
the sequence f followed by i) and vice versa. Substitution can be context sensitive.
For example, a swash letter, which is an ornamental letter—often a decorated
italic capital—used to open paragraphs, can be introduced automatically at the
beginning of words or lines.

Text extraction

It is useful to be able to extract plain text from PostScript files. To build a full-text
index for a digital library, the raw text needs to be available. An approximation to
the formatting information may be useful too—perhaps to display HTML ver-
sions of documents in a Web browser. For this, structural features such as para-
graph boundaries and font characteristics must be identified from PostScript.

Although PostScript allows complete flexibility in how documents are
described (for example, the characters do not even have to be in any particular
order), actual PostScript documents tend to be more constrained. However, the
text they contain is often fragmented and inextricably muddled up with other
character strings that do not appear in the output. Figure 4.10 shows an exam-
ple, along with the text extracted from it. Characters to be placed on the page
appear in the PostScript file as parenthesized strings. But font names, file names,
and other internal information are represented in the same way—examples can
be seen in the first few lines of the figure. Also the division of text into words is
not immediately apparent. Spaces are implied by the character positions rather
than being present explicitly. Text is written out in fragments, and each paren-
thetical string sometimes represents only part of a word. Deciding which frag-
ments to concatenate together is difficult. Although heuristics might be devised
to cover common cases, they are unlikely to lead to a robust solution that can
deal satisfactorily with the wide variety of files found in practice.

This is why text extraction based on scanning a PostScript document for
strings of text meets with limited success. It also fails to extract any formatting
information. Above all it does not address the fundamental issue that PostScript
is a programming language whose output, in principle, cannot be determined
merely by scanning the file—for example, in a PostScript document the raw text
could be (and often is) compressed, to be decompressed by the interpreter every
time the document is displayed. As it happens, this deep-rooted issue leads to a
solution that is far more robust than scanning for text, can account for format-
ting information, and decodes any programmed information.

4 . 3 P A G E D E S C R I P T I O N L A N G U A G E S : P O S T S C R I P T A N D P D F 173

By prepending a PostScript code fragment to a document and then running it
through a standard PostScript interpreter, the placement of text characters can
be intercepted, producing text in a file rather than pixels on a page. The central
trick is to redefine the PostScript show operator, which is responsible for placing
text on the page. Regardless of how a program is constructed, all printed text
passes through this operator (or a variant, as mentioned later). The new code
fragment redefines it to write its argument, a text string, to a file instead of ren-
dering it on the screen. Then when the document is executed, a text file is pro-
duced instead of the usual physical pages.

A simple text extraction program
The idea can be illustrated by a simple program. Prepending the incantation
/show { print } def, shown in Figure 4.11a, to the document of Figure 4.10 rede-
fines the show operator. The effect is to define the name show to read print
instead—and therefore print the characters to a file. The result appears at the
right of Figure 4.11a. One problem has been solved: winnowing the text des-
tined for a page from the remainder of the parenthesized text in the original file.

174 F O U R | D O C U M E N T S

Figure 4.10 A PostScript document and the text extracted from it.

4 . 3 P A G E D E S C R I P T I O N L A N G U A G E S : P O S T S C R I P T A N D P D F 175

/show { print } def Findingstructureinmultiplestreamsofdataisanimportant
problem.Considerthestreamsofdataflowingfromarobot'
ssensors,themonitorsinanintensivecareunit,orperiodic
measurementsofvariousindicatorsofthehealthoftheeco
nomy.Thereisclearlyutilityindetermininghowcurrentand
pastvaluesinthosestreamsarerelatedtofuturevalues

(a)

/show { print () print } def Finding structure in m ultiple streams of data is an imp
ortan t problem. Consider the streams of data flo wing
from a rob ot's sensors, the monitors in an in tensiv e
care unit, or p erio dic measuremen ts of v arious
indicators of the health of the econom y . There is
clearly utilit y in determining ho w curren t and past v
alues in those streams are related to future v alues

(b)

/X 0 def

/show {

 currentpoint pop

 X sub 5 gt { () print } if

 dup print

 systemdict /show get exec

 currentpoint pop /X exch def

} def

Finding structure in multiple streams of data is an
important problem. Consider the streams of data
flowing from a robot's sensors, the monitors in an
intensive care unit, or periodic measurements of
various indicators of the health of the economy. There
is clearly utility in determining how current and past
values in those streams are related to future values.

(c)

/X 0 def

/protoshow {

 currentpoint pop

 X sub 5 gt { () print } if

 dup print

 systemdict exch get exec

 currentpoint pop /X exch def

} def

/show { /show protoshow } def

/kshow { /kshow protoshow } def

/widthshow { /widthshow protoshow } def

/ashow { /ashow protoshow } def

/awidthshow { /awidthshow protoshow } def

(d)

Figure 4.11 Extracting text from PostScript: (a) printing all fragments rendered by
show; (b) putting spaces between every pair of fragments; (c) putting spaces between
fragments with a separation of at least five points; (d) catering for variants of the show
operator.

The problem of identifying whole words from fragments must still be
addressed, for the text in Figure 4.11a contains no spaces. Printing a space
between each fragment yields the text in Figure 4.11b. Spaces do appear between
each word, but they also appear within words, such as m ultiple and imp ortan t.

To put spaces in their proper places, it is necessary to consider where frag-
ments are placed on the page. Between adjacent characters, the print position
moves only a short distance from one fragment to the next, whereas if a space
intervenes the distance is larger. An appropriate threshold will depend on the
type size and should be chosen accordingly; however, a fixed value will be used
for illustration.

The program fragment in Figure 4.11c implements this modification. The
symbol X records the horizontal coordinate of the right-hand side of the previ-
ous fragment. The new show procedure obtains the current x coordinate using
the currentpoint operator (the pop discards the y coordinate) and subtracts the
previous coordinate held in X. If the difference exceeds a preset threshold—in
this case five points—a space is printed. Then the fragment itself is printed.

In order to record the new x coordinate, the fragment must actually be ren-
dered. Unfortunately Figures 4.11a and b have suppressed rendering by redefin-
ing the show operator. The line systemdict /show get exec retrieves the original
definition of show from the system dictionary and executes it with the original
string as argument. This renders the text and updates the current point, which is
recorded in X on the next line. Executing the original show operator provides a
foolproof way of updating coordinates exactly as they are when the text is ren-
dered. This new procedure produces the text at the right of Figure 4.11c, in
which all words are segmented correctly. Line breaks are detected by analyzing
vertical coordinates in the same way and comparing the difference with another
fixed threshold.

PostScript (to be precise, Level 1 PostScript) has four variants of the show
command—ashow, widthshow, awidthshow, and kshow—and they should all be
treated similarly. In Figure 4.11d a procedure is defined to do the work. It is
called with two arguments, the text string and the name of the appropriate show
variant. Just before it returns, the code for the appropriate command is located
in the system dictionary and executed.

Improving the output
Notwithstanding the use of fixed thresholds for word and line breaks, this
scheme is quite effective at extracting text from many PostScript documents.
However, several enhancements can be made to improve the quality of the out-
put. First, fixed thresholds fail when the text is printed in an unusually large or
small font. With large fonts, interfragment gaps are mistakenly identified as
interword gaps, and words break up. With small ones, interword gaps are mis-
taken for interfragment gaps, and words run together.

176 F O U R | D O C U M E N T S

To solve this problem the word-space threshold can be expressed as a fraction
of the average character width. This is calculated for the fragments on each side
of the break by dividing the rendered width of the fragment by the number of
characters in it. As a rule of thumb, the interword threshold should be about 30
percent greater than the average character width.

Second, line breaks in PostScript documents are designed for typeset text
with proportionally spaced fonts. The corresponding lines of plain text are
rarely all of the same length. Moreover, the best line wrapping often depends on
context—such as the width of the window that displays the text. Paragraph
breaks, on the other hand, have significance in terms of document content and
should be preserved.

Line and paragraph breaks can be distinguished in two ways. Usually para-
graphs are separated by more vertical space than lines are. In this case any
advance that exceeds the nominal line space can be treated as a paragraph break.
The nominal spacing can be taken as the most common nontrivial change in y
coordinate throughout the document.

Sometimes paragraphs are distinguished by horizontal indentation rather
than by vertical spacing. Treating indented lines as paragraph breaks sometimes
fails, however—for example, quotations and bulleted text are often indented
too. Additional heuristics are needed to detect these cases. For example, an
indented line may open a new paragraph if it starts with a capital letter; if its
right margin and the right margin of the following line are at about the same
place; and if the following line is not also indented. Although not infallible,
these rules work reasonably well in practice.

Third, more complex processing is needed to deal properly with different
fonts. For instance, ligatures, bullets, and printer’s quotes (“ ‘ ’ ” rather than ' ")
are non-ASCII values that can be recognized and mapped appropriately. Mathe-
matical formulas with complex sub-line spacing, Greek letters, and special
mathematical symbols are difficult to deal with satisfactorily. A simple dodge is
to flag unknown characters with a question mark because there is no truly satis-
factory plain-text representation for mathematics.

Fourth, when documents are justified to a fixed right margin, words are often
hyphenated. Output will be improved if this process is reversed. But simply
deleting hyphens from the end of lines inadvertently removes hyphens from
compound words that happen to straddle line breaks.

Finally, printed pages often appear in reverse order. This is for mechanical
convenience: when pages are placed face up on the output tray, the first one pro-
duced should be the last page of the document. PostScript’s document structur-
ing conventions include a way of specifying page ordering, but it is often not fol-
lowed in actual document files.

Of several possible heuristics for detecting page order, a robust one is to
extract numbers from the text adjacent to page breaks. These are usually page

4 . 3 P A G E D E S C R I P T I O N L A N G U A G E S : P O S T S C R I P T A N D P D F 177

numbers, and you can tell that a document is reversed because they decrease
rather than increase. Even if some numbers in the text are erroneously identified
as page numbers, the method is quite reliable if the final decision is based on the
overall majority.

Using PostScript in a digital library

Digital libraries are often built from PostScript source documents. PostScript’s
ability to display print-quality documents using a variety of fonts and graphics
on virtually any computer platform is a wonderful feature. Because the files are
7-bit ASCII, they can be distributed electronically using lowest-common-
denominator e-mail protocols. And although PostScript predates Unicode,
characters from different character sets can be freely mixed because documents
can contain many different fonts. Embedding fonts in documents makes them
faithfully reproducible even when sent to printers and computer systems that
lack the necessary fonts.

The fact that PostScript is a programming language, however, introduces
problems that are not normally associated with documents. A document is a
program. And programs crash for a variety of obscure reasons, leaving the user
with at best an incomplete document and no clear recovery options. Although
PostScript is supposed to be portable, in practice people often experience diffi-
culty with printing—particularly on different computer platforms. When a
document crashes it does not necessarily mean that the file is corrupt. Just as
subtle differences occur among compilers for high-level languages such as C++,
the behavior of PostScript interpreters can differ in unpredictable ways. Life was
simpler in the early days, when there was one level of Postscript and a small set
of different interpreters. Now with a proliferation of PostScript support, any
laxity in the code an application generates may not surface locally, but instead
cause unpredictable problems at a different time on a computer far away.

Trouble often surfaces as a stack overflow or stack underflow error. Overflow
means that the available memory has been exceeded on the particular machine
that is executing the document. Underflow occurs when an insufficient number
of elements are left on the stack to satisfy the operator currently being executed.
For example, if the stack contains a single value when the add operator is issued,
a stack underflow error occurs. Other complications can be triggered by con-
flicting definitions of what a “new-line” character means on a given operating
system—something we have already encountered with plain text files. Even
though PostScript classes both the carriage-return and line-feed characters (CR
and LF in Table 4.1) as white space (along with “tab” and “space,” HT and SPAC,
respectively), not all interpreters honor this.

PostScript versions of word-processor files are invariably far larger than the
native format, particularly when they include uncompressed sampled images.

178 F O U R | D O C U M E N T S

Level 1 does not explicitly provide compressed data formats. However, PostScript
is a programming language and so this ability can be programmed in. A docu-
ment can incorporate compressed data so long as it also includes a decompres-
sion routine that is called whenever the compressed data is handled. This keeps
image data compact, yet retains Level 1 compatibility. Drawbacks are that every
document duplicates the decompression program, and decompression is slow
because it is performed by an interpreted program rather than a precompiled
one. These are not usually serious. When the document is displayed online, only
the current page’s images need be decompressed, and when it is printed, decom-
pression is quick compared with the physical printing time. Note that digital
library repositories commonly include legacy documents in Level 1 PostScript.

The ideas behind PostScript make it attractive for digital libraries. However,
there are caveats. First, it was not designed for online display. Second, because
documents are programs, they do not necessarily produce the same result when
run on different interpreters. Third, if advantage is taken of additions and
upgrades, such as those embodied in comments, encapsulated PostScript, and
higher levels of PostScript, digital library users must upgrade their viewing soft-
ware accordingly—or more likely some will encounter mysterious errors when
viewing certain documents. Fourth, extracting text for indexing purposes is not
trivial, and the problem is compounded by international character sets and cre-
ative typography.

Portable Document Format: PDF

PDF, for Portable Document Format, is a page description language that arose
out of PostScript and addresses many of its shortcomings. It has precisely the
same imaging model. Page-based, it paints sequences of graphical primitives,
modified by transformations and clipping. It has the same graphical shapes—
lines, curves, text, and sampled images. Again text and images receive special
attention, as befits their leading role in documents. The concept of current path,
stroked or filled, also recurs. PDF is device independent, and expressed in ASCII.

There are two major differences. First, PDF is not a full-scale programming
language. In reality, as we have seen, this feature limits PostScript’s portability.
Gone are procedures, variables, and control structures. Features such as compres-
sion and encryption are built in—for there is no opportunity to program them.
Second, PDF includes new features for interactive display. The overall file struc-
ture is imposed rather than being embodied in document structuring conventions
as in PostScript. This provides random access to pages, hierarchically structured
content, and navigation within a document. Also, hyperlinks are supported.

There are many less significant differences. Operators are still postfix—that
is, they come after their arguments—but their names are shorter and more

4 . 3 P A G E D E S C R I P T I O N L A N G U A G E S : P O S T S C R I P T A N D P D F 179

cryptic, often only one letter such as S for stroke and f for fill. To avoid confu-
sion among the different conventions of different operating systems, the nature
and use of white space is carefully specified. PDF files include byte offsets to
other parts of the file and are always generated by software applications rather
than being written by hand as small PostScript programs occasionally are.

Inside a PDF file
Figure 4.9d is a PDF file that produces an exact replica of Figure 4.9a. The first
line encodes the type and version as a comment, in the same way that PostScript
does. Five lines near the end of the first column specify the text Welcome in sev-
eral languages. The glyph ä is generated as the character \344 in the Windows
extended 8-bit character set (selected by the line starting /Encoding in the sec-
ond column), and Tj is equivalent to PostScript’s show. Beyond these similari-
ties, the PDF syntax is far removed from its PostScript counterpart.

PDF files split into four sections: header, objects, cross-references, and trailer.
The header is the first line of Figure 4.9d. The object section follows and
accounts for most of the file. Here it comprises a sequence of six objects in the
form <num> <num> obj . . . endobj; these define a graph structure (explained
below). Then follows the cross-reference section, with numbers (eight lines of
them) that give the position of each object in the file as a byte offset from the
beginning. The first line says how many entries there are; subsequent ones pro-
vide the lookup information (we expand on this later). Finally comes the trailer,
which specifies the root of the graph structure, followed by the byte offset of the
beginning of the cross-reference section.

The object section in Figure 4.9d defines the graph structure in Figure 4.9e.
The root points to a Catalog object (number 1), which in turn points to a Pages
object, which points to (in this case) a single Page object. The Page object (num-
ber 3) contains a pointer back to its parent. Its definition in Figure 4.9d also
includes pointers to Contents, which in this case is a Stream object that produces
the actual text, and two Resources, one of which (Font, object 6) selects a partic-
ular font and size (14-point Helvetica), while the other (ProcSet, object 5) is an
array called the procedure set array that is used when the document is printed.

A rendered document is the result of traversing this network of objects. Only
one of the six objects in Figure 4.9d generates actual marks on the page (object
4, stream). Every object has a unique numeric identifier within the file (the first
of the <num> fields). Statements such as 5 0 R (occurring in object 3) define ref-
erences to other objects—object 5 in this case. The 0 that follows each object
number is its generation number. Applications that allow documents to be
updated incrementally alter this number when defining new versions of objects.

Object networks are hierarchical graph structures that reflect the nature of
documents. Of course they are generally far more complex than the simple

180 F O U R | D O C U M E N T S

example in Figure 4.9e. Most documents are composed of pages; many pages
have a header, the main text, and a footer; documents often include nested sec-
tions. The physical page structure and the logical section structure usually rep-
resent parallel hierarchical structures, and the object network is specifically
designed for describing such structures—indeed, any number of parallel struc-
tures can be built. These object networks are quite different from the linear
interpretation sequence of PostScript programs. They save space by eliminating
duplication (of headers and footers, for example). But most importantly they
support the development of online reading aids that navigate around the struc-
ture and display appropriate parts of it, as described in the next subsection.

The network’s root is specified in the trailer section. The cross-reference sec-
tion provides random access to all objects. Objects are numbered from zero
upward (some, such as object 0, may not be specified in the object section). The
cross-reference section includes one line for each, giving the byte offset of its
beginning, the generation number, and its status (n means it is in use, f means it
is free). Object 0 is always free and has a generation number of 65,536. Each line
in the cross-reference section is padded to exactly 20 bytes with leading zeros.

To render a PDF document you start at the very end. PDF files always end with
%%EOF—otherwise they are malformed and an error is issued. The preceding
startxref statement gives the byte offset of the cross-reference section, which
shows where each object begins. The trailer statement specifies the root node.

The example in Figure 4.9d contains various data types: number (integer or
real), string (array of unsigned 8-bit values), name, array, dictionary, and stream.
All but the last have their origin in PostScript. A dictionary is delimited by dou-
ble angle brackets, <<...>>—a notational convenience that was introduced in
PostScript Level 2. The stream type specifies a “raw” data section delimited by
stream . . . endstream. It includes a dictionary (delimited by angle brackets in
object 4 of Figure 4.9d) that contains associated elements. The preceding
/Length gives the length of the raw data, 118 bytes. Optional elements that per-
form processing operations on the stream may also be included—/Filter, for
example, specifies how to decode it.

PDF has types for Boolean, date, and specialized composite types such as rec-
tangle—an array of four numbers. There is a text type that contains 16-bit
unsigned values that can be used for UTF-16 text, although non-Unicode exten-
sions are also supported.

Features of PDF
The PDF object network supports a variety of different browsing features. Fig-
ure 4.12 shows a document—which is in fact the language reference manual—
displayed using the Acrobat PDF reader. The navigation panel on the left pre-
sents a hierarchical structure of section headings known as bookmarks, which

4 . 3 P A G E D E S C R I P T I O N L A N G U A G E S : P O S T S C R I P T A N D P D F 181

the user can expand and contract at will and use to bring up particular sections
of the document in the main panel. This simply corresponds to displaying dif-
ferent parts of the object network tree illustrated in Figure 4.9e, at different lev-
els of detail. Bookmarks are implemented using the PDF object type Outline.

Thumbnail pictures of each page can also be included in this panel. These
images can be embedded in the PDF file at the time it is created, by creating new
objects and linking them into the network appropriately. Some PDF readers are
capable of generating thumbnail images on the fly even if they are not explicitly
included in the PDF file. Hyperlinks can be placed in the main text so that you
can jump from one document to another. For each navigational feature, corre-
sponding objects must appear in the PDF network, such as the Outline objects
mentioned earlier that represent bookmarks.

PDF has a searchable image option that is particularly relevant to collections
derived from paper documents. Using it, invisible characters can be overlaid on
top of an image. Highlighting and searching operations utilize the hidden infor-
mation, but the visual appearance is that of the image. Using this option a PDF
document can comprise the original scanned page, backed up by text generated
by optical character recognition. Errors in the text do not mar the document’s
appearance at all. The overall result combines the accuracy of image display
with the flexibility of textual operations such as searching and highlighting. In

182 F O U R | D O C U M E N T S

Figure 4.12 Reading a bookmark-enabled PDF document with Acrobat.

terms of implementation, PDF files containing searchable images are typically
generated as an output option by OCR programs. They specify each entire page
as a single image, linked into the object network in such a way that it is displayed
as a background to the text of the page.

There are many other interactive features. PDF provides a means of annota-
tion that includes video and audio as well as text. Actions can be specified that
launch an application. Forms can be defined for gathering fielded information.
PDF has moved a long way from its origins in document printing, and its inter-
active capabilities rival those of HTML.

Compression is an integral part of the language and is more convenient to
use than the piecemeal development found in PostScript. It can be applied to
individual stream components and helps reduce overall storage requirements
and minimize download times—important factors for a digital library.

Linearized PDF
The regular PDF file structure makes it impossible to display the opening pages
of documents until the complete file has been received. Even with compression,
large documents can take a long time to arrive. Linearization is an extension that
allows parts of the document to be shown before downloading finishes. Lin-
earized PDF documents obey rules governing object order but include more
than one cross-reference section.

The integrity of the PDF format is maintained: any PDF viewer can display
linearized documents. However, applications can take advantage of the addi-
tional information to produce pages faster. The display order can be tailored to
the document—the first pages displayed are not necessarily the document’s
opening pages, and images can be deferred to later.

PDF and PostScript

PDF is a sophisticated document description language that was developed by
Adobe, the same company that developed PostScript, as a successor to it. PDF
addresses various serious deficiencies that had arisen with PostScript, princi-
pally lack of portability. While PostScript is really a programming language,
PDF is a format, and this bestows the advantage of increased robustness in ren-
dering. Also, PostScript has a reputation for verbosity that PDF has avoided
(PostScript now incorporates compression, but not all software uses it).

PDF incorporates additional features that support online display. Its design
draws on expertise that ranges from traditional printing right through to hyper-
text and structured document display. PDF is a complex format that presents
challenging programming problems. However, a wide selection of software
tools is readily available.

4 . 3 P A G E D E S C R I P T I O N L A N G U A G E S : P O S T S C R I P T A N D P D F 183

There are utilities that convert between PostScript and PDF. Because they
share the same imaging model, the documents’ printed forms are equivalent.
PDF is not a full programming language, however, so when converting Post-
Script to it, loops and other constructs must be explicitly unwound. In Post-
Script, PDF’s interactive features are lost.

Today PDF is the format of choice for presenting finished documents online.
But PostScript is pervasive. Any application that can print a document can save it
as a PostScript file, whereas standard desktop environments lack software to gen-
erate PDF. However, the world is changing: the Apple Macintosh computer now
displays all online graphics as PDF. (Recall the parallel, mentioned earlier, of a
1980s operating system that controlled the display entirely from PostScript.)

From a digital library perspective, collections frequently contain a mixture of
PostScript and PDF documents. The problems of extracting text for indexing
purposes are similar and can be solved in the same way. Some software viewers
can display both formats.

4.4 Word-processor documents

When word processors store documents, they store them in ways that are specif-
ically designed to allow the documents to be edited. There are numerous differ-
ent formats: we will take Microsoft Word—currently a leading product—as an
illustrative example. This has two different styles of document format: Rich Text
Format (RTF), a widely published specification dating from 1987, and a propri-
etary internal format that we call simply native Word. As an example of a com-
pletely different style of document description language, we end this section by
describing LaTeX, which is widely used in the scientific and mathematical com-
munity. LaTeX is very flexible and is capable of producing documents of excel-
lent quality; however, it has the reputation of being rather difficult to learn and
is unsuitable for casual use.

RTF is designed to allow word-processor documents to be transferred
between applications. Like PostScript and PDF, it uses ASCII text to describe
page-based documents that contain a mixture of formatted text and graphics.
Unlike them, it is specifically designed to support the editing features we have
come to expect in word processors. For example, when Word reads an RTF doc-
ument generated by WordPerfect or PowerPoint (or vice versa), the file must
contain enough information to allow the program to edit the text, change the
typesetting, and adjust the pictures and tables. This contrasts with PostScript,
where the typography of the document might as well be engraved on one of
those Chinese stone tablets. PDF, as we have seen, supports limited forms of
editing—adding annotations or page numbers, for example—but is not
designed to have anything like the flexibility of RTF.

184 F O U R | D O C U M E N T S

Many online documents are in native Word format. Because it is a binary for-
mat, it is far more compact than RTF—which translates to faster download and
display times. Native Word also supports a wider range of features and is tightly
coupled with Internet Explorer, Microsoft’s Web browser, so that a Web-based
digital library using Word documents can present a seamless interface. But there
are disadvantages. Non-Microsoft communities may be locked out of digital
libraries unless other formats are offered. Although documents can be converted
to forms such as HTML using scriptable utilities, Word’s proprietary nature
makes this a challenging task—and it is hard to keep up to date. Even Microsoft
products sometimes can’t read Word documents properly. Native Word is really a
family of formats rather than a single one and has nasty legacy problems.

Rich Text Format

Figure 4.9f recasts the Welcome example in minimal RTF form. It renders the
same text in the same font and size as the PostScript and PDF versions, although
it relies on defaults for such things as page margins, line spacing, and fore-
ground and background colors.

RTF uses the backslash (\) to denote the start of formatting commands.
Commands contain letters only, so when a number (positive or negative)
occurs, it is interpreted as a command parameter—thus \yr2001 invokes the \yr
command with the value 2001. The command name can also be delimited by a
single space, and any symbols that follow—even subsequent spaces—are part of
the parameter. For example, {\title Welcome example} is a \title command with
the parameter Welcome example.

Braces {...} group together logical units, which can themselves contain fur-
ther groups. This allows hierarchical structure and permits the effects of format-
ting instructions to be lexically scoped. An inheritance mechanism is used. For
example, if a formatting instruction is not explicitly specified at the current level
of the hierarchy, a value that is specified at a higher level will be used instead.

Line 1 of Figure 4.9f gives an RTF header and specifies the character encoding
(ANSI 7-bit ASCII), default font number (0), and a series of fonts that can be
used in the document’s body. The remaining lines represent the document’s
content, including some basic metadata. On line 3, in preparation for generat-
ing text, \pard sets the paragraph mode to its default, while \plain initializes the
font character properties. Next, \f1 makes entry 1 in the font table—which was
set to Helvetica in the header—the currently active font. This overrides the
default, set up in our example to be font entry 0 (Times Roman). Following this,
the command \fs28—whose units are measured in half points—sets the charac-
ter size to 14 points.

Text that appears in the body of an RTF file but is not a command parameter
is part of the document content and is rendered accordingly. Thus lines 4

4 . 4 W O R D - P R O C E S S O R D O C U M E N T S 185

through 8 produce the greeting in several languages. Characters outside the 7-
bit ASCII range are accessed using backslash commands. Unicode is specified by
\u: here we see it used to specify the decimal value 228, which is LATIN SMALL
LETTER A WITH DIAERESIS, the fourth letter of Akwäba.

This is a small example. Real documents have headers with more controlling
parameters, and the body is far larger. Even so, it is enough to illustrate that
RTF, unlike PostScript, is not intended to be laid out visually. Rather it is
designed to make it easy to write software tools that parse document files
quickly and efficiently.

RTF has evolved through many revisions—over the years its specification has
grown from 34 pages to over 240. Additions are backward compatible to avoid
disturbing existing files. In Figure 4.9f ’s opening line, the numeric parameter of
\rtf1 gives the version number, 1. The format has grown rapidly because, as well
as keeping up with developments such as Unicode in the print world, it must sup-
port an ever-expanding set of word-processor features, a trend that continues.

Basic types
Now we flesh out some of the details. While RTF’s basic syntax has not changed
since its inception, the command repertoire continues to grow. There are five
basic types of command: flag, toggle, value, destination, and symbol.

A flag command has no argument. (If present, arguments are ignored.) One
example is \box, which generates a border around the current paragraph;
another is \pard, which—as we have seen—sets the paragraph mode to its
default. A toggle command has two states. No argument (or any nonzero value)
turns it on; zero turns it off. For example, \b and \b0 switch boldface on and off,
respectively. A value command sets a variable to the value of the argument. The
\deff0 in Figure 4.9f is a value command that sets the default font to entry zero in
the font table.

A destination command has a text parameter. That text may be used else-
where, at a different destination (hence the command’s name)—or not at all.
For example, text given to the \footnote command appears at the bottom of the
page; the argument supplied to \author defines metadata which does not actu-
ally appear in the document. Destination commands must be grouped in braces
with their parameter—which might itself be a group. Both commands specified
in {\info{\title Welcome example}} are destination commands.

A symbol command represents a single character. For instance, \bullet gener-
ates the bullet symbol (•), and \{ and \} produce braces, escaping their special
grouping property in RTF.

Backward compatibility
An important symbol command that was built in from the beginning is *.
Placed in front of any destination command, it signals that if the command is

186 F O U R | D O C U M E N T S

unrecognized it should be ignored. The aim is to maintain backward compati-
bility with old RTF applications.

For instance, there was no Unicode when RTF was born. An old application
would choke on the Welcome example of Figure 4.9f because the \u command is
a recent addition. In fact it would ignore it, producing Akwba—not a good
approximation.

The * command provides a better solution. As well as \u, two further new
commands are added for Unicode support. Rather than generating Akwäba by
writing Akw\u228ba—which works correctly if Unicode support is present but
produces Akwba otherwise—one instead writes

{\upr{Akwaba}{*\ud{Akw\u228ba}}}

The actions performed by the two new commands \upr and \ud are very sim-
ple, but before revealing what they are, consider the effect of this command
sequence on an older RTF reader that does not know about them. Unknown
commands are ignored but their text arguments are printed, so when the reader
works its way through the two destination commands, the first generates the
text Akwaba while the second is ignored because it starts with *. This text is a
far more satisfactory approximation than Akwba. Now consider the action of a
current reader that knows how to process these directives. The first directive,
\upr, ignores its first argument and processes the second one. The second direc-
tive, \ud, just outputs its argument—it is really a null operator and is only pre-
sent to satisfy the constraint that * is followed by a destination command.

File structure
Figure 4.13 shows the structure of an RTF file. Braces enclose the entire descrip-
tion, which is divided into two parts: header followed by body. We have already
encountered some header components; there are many others. A commonly used
construct is table, which reserves space and initializes data—the font table, for
example. The table command takes a sequence of items—each a group in its own
right, or separated using a delimiter such as semicolon—and stores the informa-
tion away so that other parts of the document can access it. A variety of tech-
niques are deployed to retrieve the information. In a delimited list an increasing
sequence of numeric values is implied for storage, while other tables permit each
item to designate its numeric label, and still others support textual labels.

The first command in the header must be \rtf, which encodes the version
number followed by the character set used in the file. The default is ASCII, but
other encoding schemes can be used. Next, font data is initialized. There are two
parts: the default font number (optional) and the font table (mandatory). Both
appear in the Welcome example, although the font table has many more capabil-
ities, including the ability to embed fonts.

4 . 4 W O R D - P R O C E S S O R D O C U M E N T S 187

The remaining tables are optional. The file table is a mechanism for naming
related files and is only used when the document consists of subdocuments in
separate files. The color table comprises red, green, and blue value commands,
which can then be used to select foreground and background colors through
commands such as \cf1 and \cb2, respectively. The style sheet is also a form of
table. It corresponds to the notion of styles in word processing. Each item speci-
fies a collection of character, paragraph, and section formatting. Items can be
labeled; they may define a new style or augment an existing one. When specified
in the document body, the appropriate formatting instructions are brought to
the fore. List tables provide a mechanism for bulleted and enumerated lists
(which can be hierarchically nested). Revision tables provide a way of tracking
revisions of a document by multiple authors.

The document body contains three parts, shown in Figure 4.13: top-level
information, document formatting, and a sequence of sections (there must be at
least one). It begins with an optional information group that specifies docu-
ment-level metadata—in our example this was used to specify the title. There
are over 20 fields, among them author, organization, keywords, subject, version
number, creation time, revision time, last time printed, number of pages, and
word count.

188 F O U R | D O C U M E N T S

RTF

{ <header> <body> }

\rtf

<charset>

\deff

<file table>

<color table>

<style sheet>

<list tables>

<revision table>

<info>

<document format>

<section>

(optional)

(optional)

(optional)

(optional)

(optional)

(optional)

(optional)

(zero or more occurrences)

(one or more occurrences)

(optional)

(compulsory)

(compulsory)

Figure 4.13 Structure of an RTF file.

Next comes a sequence of formatting commands (also optional). Again there
are dozens of possible commands: they govern such things as the direction of
the text, how words are hyphenated, whether backups are made automatically,
and the default tab size (measured in twips, an interestingly named unit that
corresponds to one-twentieth of a point).

Finally, in the last part of the body the document text is specified. Even here the
actual text is surrounded by multiple layers of structure. First the document can be
split into a series of sections, each of which consists of paragraphs (at least one).
Sections here correspond to section breaks inserted by an author using, for instance,
Microsoft Word. Sections and paragraphs can both begin with formatting instruc-
tions. For sections, these control such things as the number and size of columns on
a page, page layout, page numbering, borders, and text flow and are followed by
commands that specify headers and footers. For paragraphs, they include tab set-
tings, revision marks, indenting, spacing, borders, shading, text wrapping, and so
forth. Eventually you get down to the actual text. Further formatting instructions
can be interspersed to change such things as the active font size.

Other features
So far we have described how RTF describes typographic text, based around the
structure of sections and paragraphs. There are many other features. Different
sampled image formats are supported, including open standards such as JPEG
and PNG (described in Section 4.5) and proprietary formats such as Microsoft’s
Windows Metafile and Macintosh’s PICT. The raw image data can be specified
in hexadecimal using plain text (the default) or as raw binary. In the latter case
care must be taken when transferring the file between operating systems (recall
the discussion of FTP’s new-line handling in Section 4.2).

Many word processors incorporate a built-in tool that draws lines, boxes,
arcs, splines, filled-in shapes, text, and other vector graphic primitives. To sup-
port this RTF contains over 100 commands to draw, color, fill, group, and trans-
form such shapes. These resemble the graphical shapes that can be described in
PostScript and PDF—not surprisingly, considering that all artwork will ulti-
mately be converted to one of these forms for printing or viewing.

Authors use annotations to add comments to a document. RTF can embed with-
in a paragraph a destination command with two parts: a comment and an identify-
ing label (typically used to name the person responsible for the annotation).

Field entities introduce dynamically calculated values, interactive features,
and other objects requiring interpretation. They are used to embed the current
date, current page, mathematical equations, and hyperlinks into a paragraph.
They bind a field instruction command together with its most recently calcu-
lated value—which provides backup should an application fail to recognize the
field. Accompanying parameters influence what information is displayed, and
how. Using fields, metadata such as title and author can be associated with a

4 . 4 W O R D - P R O C E S S O R D O C U M E N T S 189

document, and this information is stored in the RTF file in the form of an \info
command. RTF also supports an index of entries and a table of contents, which
are also implemented using the field mechanism.

In a word-processor document, bookmarks are a means of navigation. RTF
includes begin- and end-bookmark commands that mark segments of the text
along with text labels, accessible through the word-processing application.

Microsoft has a scheme called object linking and embedding (OLE) which
places information created by one application within another. For example, an
Excel document can be incorporated into a Word file and still function as a
spreadsheet. RTF calls such entities objects and provides commands that wrap
the data with basic information such as the object’s width and height and
whether it is linked or embedded.

Commands in the document format section control the overall formatting of
footnotes (which in RTF terminology includes endnotes). The \footnote com-
mand is then used within paragraphs to provide a footnote mark and the
accompanying text.

RTF tables are produced by commands that define cells, rows, and the table
itself. Formatting commands control each component’s dimensions and govern
how text items are displayed—pad all cells by 20 twips, set this cell’s width to 720
twips and center its text, and so on. However, there is a twist. While the other
entities described earlier are embedded within a paragraph, an RTF table is a
paragraph and cannot be embedded in one—this definition reflects the practice
visible in Word, where inserting a table always introduces a new paragraph.

Use in digital libraries
When building a digital library collection from RTF documents, the format’s
editable nature is of minor importance. Digital libraries generally deal with
completed documents—information that is ready to be shared with others.
What matters is how to index the text and display the document.

To extract rudimentary text from an RTF file, simply ignore the backslash
commands. The quality of the output improves if other factors, such as the
character set, are taken into account. Ultimately full-text extraction involves
parsing the file. RTF was designed to be easy to parse. Three golden rules are
emphasized in the specification:

■ Ignore control words that you don’t understand.
■ Always understand *.
■ Remember that binary data can occur when skipping over information.

RTF files can usually be viewed on Macintosh and Windows computers. For
other platforms or for speedier access, you might consider offering documents
in a different format. For example, software is available to convert an RTF docu-
ment to an approximate equivalent in HTML.

190 F O U R | D O C U M E N T S

Native Word formats

The native Microsoft Word format is proprietary and its details are shrouded in
mystery. Although Microsoft has published “as is” their internal technical man-
ual for the Word 97 version, the format continues to evolve. Primarily a binary
format, the abstract structures deployed reflect those of RTF. Documents include
summary information, font information, style sheets, sections, paragraphs,
headers, footers, bookmarks, annotations, footnotes, embedded pictures—the
list goes on. The native Word representation provides more functionality than
RTF and is therefore more intricate.

A serious complication is that documents can be written to disk in Fast Save
mode, which no longer preserves the order of the text. Instead new edits are
appended, and whatever program reads the file must reconstruct its current
state. If this feature has been used, the header marks the file type as “complex.”

Use in digital libraries
To extract text from Word documents for indexing, one solution is to first convert
them to RTF, whose format is better described. The Save As option in Microsoft
Word does this, and the process can be automated through scripting. (Visual Basic
is well suited to this task.) It may be more expeditious to deliver native Word than
RTF because it is more compact. However, non-Microsoft users will need a more
widely supported option.

Word has a Save As HTML option. While the result displays well in Microsoft’s
Internet Explorer browser, it is generally less pleasing in other browsers (although
it can be improved by performing certain postprocessing operations). Public
domain conversion software cannot fully implement the Fast Save format because
of lack of documentation and may generate all the text in the file rather than in the
final version. The solution is simple: switch this option off and resave all docu-
ments (using scripting).

LaTeX format

LaTeX—pronounced la-tech or lay-tech—takes a different approach to docu-
ment representation. Word processors present users with a “what you see is
what you get” interface that is dedicated specifically to hiding the gory details of
internal representation. In contrast, LaTeX documents are expressed in plain
ASCII text and contain typed formatting commands: they explicitly and inten-
tionally give the user direct access to all the details of internal representation.
Any text editor on any platform can be used to compose a LaTeX document. To
view the formatted document, or to generate hard copy, the LaTeX program
converts it to a page description language—generally PostScript, but PDF and
HTML are possible too.

4 . 4 W O R D - P R O C E S S O R D O C U M E N T S 191

LaTeX is versatile, flexible, and powerful and can generate documents of
exceptionally high typographical quality. The downside, however, is an esoteric
syntax that many people find unsettling and hard to learn. It is particularly good
for mathematical typesetting and has been adopted enthusiastically by members
of the academic scientific and technical community. It is a nonproprietary sys-
tem, and excellent implementations are freely available.

Figure 4.14 shows a simple example that we use for illustration. Commands in
the LaTeX source (Figure 4.14a) are prefixed by the backslash character, \. All
LaTeX documents have the same overall structure. They open with \document-
class, which specifies the document’s principal characteristics—whether an arti-
cle, report, book, and so forth—and gives options such as paper size, base font
size, whether single-sided or back-to-back. Then follows a preamble which gives

192 F O U R | D O C U M E N T S

\documentclass[a4paper,11pt]{article}
% This is a comment
\author{I. H. Witten and D. Bainbridge}
\title{Welcome example}
\date{10 August 2001}

\begin{document}

\maketitle
\section{Introduction}

% This is another comment.

Welcome, Haere mai, Wilkommen, Bienvenue, Akw\"aba

\section{Syntax}

LaTeX syntax is a little bit like RTF. It uses the \backslash
character for special formatting commands: what you
see as the end result is certainly \emph{not} what you type. One
important difference from RTF is that it is designed to be generated
by people, not automatically generated by computer. This means that
a written file can be more liberal with its use of white space
and this does not affect the overall prose.
If you really need extra spaces you need to do it \ \ like \ \ this.

Special symbols include: \{ \} \% _ \# \&.
Speech marks are done ``like this''.

A blank line is used to separate paragraphs. It supports all the
usual document structures:
\begin{itemize}
\item bullet point list
\item enumerated list
\item tables and figures
\item drawn graphics
\item \ldots
\end{itemize}

In particular Latex has a powerful maths mode capable of expressing
complex equations. A rudimentary example is:
\begin{displaymath}

x \geq \sum_{i=0}^{\infty}\frac{1}{i^2\pi}
\end{displaymath}

\end{document}

(a) (b)

Figure 4.14 (a) LaTeX source document; (b) printed result.

an opportunity to set up global features before the document content begins.
Here “packages” of code can be included. For example, \usepackage{epsfig} allows
Encapsulated PostScript files, generally containing artwork, to be included.

The document content lies between \begin{document} and \end{document}
commands. This \begin . . . \end structure is used to encapsulate many structural
items: tables, figures, lists, bibliography, abstract. The list is endless, because
LaTeX allows users to define their own commands. Furthermore, you can wrap
up useful features and publish them on standard Internet sites so that others can
download them and access them through \usepackage.

When writing a document most text is entered normally. Blank lines are used
to separate paragraphs. A few characters carry special meaning and must there-
fore be “escaped” by a preceding backslash whenever they occur in the text; Fig-
ure 4.14 contains examples. Structural commands include \section, which makes
an automatically numbered section heading (\section* omits the numbering, and
\subsection, \subsubsection, . . . are used for nested headings). Formatting com-
mands include \emph, which uses italics to emphasize text, and \", which super-
imposes an umlaut on the character that follows. There are hundreds more.

The last part of Figure 4.14a specifies a mathematical expression. The
\begin{displaymath} and \end{displaymath} commands switch to a mode that is
tuned to represent formulas, which enables new commands suited to this pur-
pose. LaTeX contains many shortcuts—for example, math mode can alterna-
tively be entered by using dollar signs as delimiters.

LaTeX and digital libraries
LaTeX is a prime source format for collections of mathematical and scientific doc-
uments. Of course these documents can be converted to PostScript or PDF form
and handled in this form instead—which allows them to be mixed with docu-
ments produced by other means. However, this lowest-common-denominator
approach loses structural and metadata information. In the case of LaTeX, such
information is signaled by commands for title, abstract, nested section headings,
and so on.

If, on the other hand, the source documents are obtained in LaTeX form and
parsed to extract such information, the digital library collection will be richer
and provide its users with more support. It is easy to parse LaTeX to identify
plain text, commands and their arguments, and the document’s block structure.

However, there are two problems. The first is that documents no longer
occupy a single file—they use external files such as the “packages” mentioned
earlier—and even the document content can be split over several files if desired.
In practice it can be surprisingly difficult to lay hands on the exact set of sup-
porting files that were intended to be used with a particular document. Experi-
ence with writing LaTeX documents is necessary to understand what files need
copying and, in the case of extra packages, where they might be installed.

4 . 4 W O R D - P R O C E S S O R D O C U M E N T S 193

The second problem is that LaTeX is highly customizable, and different
authors adapt standard commands and invent new ones as they see fit. This
makes it difficult to know in advance which commands to seek to extract stan-
dard metadata. However, new commands in LaTeX are composites of existing
ones, and one solution is to expand all commands to use only built-in LaTeX
features.

4.5 Representing images

An image displayed on the screen or printed to paper is formed by a regular
matrix of tightly packed dots, black-and-white or colored, called picture ele-
ments or pixels. Picture quality is determined by the number of pixels per linear
unit, usually expressed in dots per inch (dpi), and the number of bits used to
represent each pixel’s color—typically 1 bit per pixel for black-and-white, 8 bits
for grayscale, and anywhere from 8 to 32 bits for full color. Table 2.4 in Chapter
2 shows the typical resolution of an assortment of devices.

Represented in a computer file in the obvious way, images can occupy an
inordinate amount of space. When a standard 81⁄2 × 11 inch page is scanned with
1 bit per pixel at a resolution of 300 dpi, a file of just over 1 Mb is produced.
Using 8-bit grayscale yields a 9-Mb file; a 24-bit full-color image occupies 28
Mb. Higher spatial resolution greatly amplifies the problem: a 600-dpi scanner
will quadruple file size to over 100 Mb in the full-color case. Even a 100-Gb disk
can only hold 1,000 such images.

Images are not normally stored this way on disk. Usually they are com-
pressed, and an important component of an image file format is the particular
compression method used. Compression does not necessarily imply degrada-
tion in image quality. There are two broad classes: lossless and lossy. Lossless
compression ensures that the decompressed file is exactly the same—bit for
bit—as the original. For text compression this technique is always used because
even a minor change (such as adding a zero at the end of a sum of money) can
have a marked effect on the meaning. Lossy compression does not guarantee
that the decompressed file will be exactly the same as the original, but tries to
ensure that any errors are hard to discern. Its use is confined to applications
where small errors are permissible. Often they are completely imperceptible.

Both kinds of compression are used for images. Scanned images may contain
digitization noise, artifacts caused by the process of digitization itself. If a com-
pression scheme can eliminate these, it will achieve economy while simultane-
ously increasing image quality. Lossy techniques can be used to obtain remark-
ably compact representations, particularly for grayscale and photographic
images. Depending on the image content, each pixel can sometimes be com-

194 F O U R | D O C U M E N T S

pressed from its original representation (one to four bytes) to well under a single
bit, with a barely perceptible loss of quality. However, there are many situations
in which exact representation is deemed essential, and lossless compression must
be used. For example, some image data must be certified as an exact copy for
medical or legal reasons. Archival storage of historical documents needs to be
lossless because the requirements of future scholars cannot be anticipated.

A rudimentary approach to compressing images is to apply a standard utility
designed for general-purpose compression of computer files. This treats the file
as a one-dimensional sequence of bytes. Compression can be greatly improved
by acknowledging the two-dimensional image structure and exploiting spatial
characteristics of the data. For example, most images contain large areas whose
color and texture is constant or slowly varying, interrupted by regions of abrupt
change such as lines or edges. Sophisticated image compression algorithms
identify these regions and exploit them for compression.

There are countless image-compression formats, so we restrict attention to a
few that are in widespread use today in Web applications and digitization pro-
jects. We begin by describing the GIF and PNG formats for lossless images, and
then proceed to review JPEG, a comprehensive international standard for high-
performance lossy compression of photographic images. Next we discuss an
important technique called progressive refinement which allows an image to be
displayed rough-hewn before it has been received in full. GIF, PNG, and JPEG
all have progressive refinement modes.

Lossless image compression: GIF and PNG

Two lossless image compression formats are in widespread use today: the perva-
sive (but proprietary) Graphics Interchange Format or GIF (usually pro-
nounced jiff) and an open standard called Portable Network Graphics or PNG
(pronounced ping).

GIF: Graphics Interchange Format
Originally specified in 1987, GIF was for many years the most widely used loss-
less image compression format. It was intended as an exchange medium for
graphic images that could be displayed on a variety of graphics hardware plat-
forms and was adopted by CompuServe in order to minimize the time required
to download pictures over modem links.

GIF applies to images in which each pixel is represented by eight bits (or less).
The code for a pixel can either be a grayscale value in its own right or an index
into a table called a color map or color lookup table that represents a palette of
colors for the image. The color map, which is stored with the image, comprises
up to 256 different colors (corresponding to 8-bit pixel codes) and contains a

4 . 5 R E P R E S E N T I N G I M A G E S 195

full 24-bit color specification for each—eight bits for each of the three primary
colors, red, green, and blue. Thus color images are represented in terms of a
small palette whose values are chosen from the full range of possible colors. In a
subsequent modification to the original GIF specification, one of the 256 colors
is reserved as a “transparent” value which lets the background on which the
image appears show through.

The GIF format allows the color map to be tailored specifically for each indi-
vidual image and given along with it as a prefix to the image file. Alternatively a
group of images can share the same color map, or the map can be omitted
entirely. If present, the color map is uncompressed and occupies up to 768 bytes
(3 bytes for each of 256 possible colors).

The sequence of 8-bit pixel values that represent the image content is com-
pressed using a general-purpose scheme called LZW (for Lempel Ziv Welch, the
names of its inventors). It was designed for text compression, not images, and
exploits the fact that in text many short “phrases” (a few letters, or a few words,
long) tend to repeat. However, it does not use a fixed dictionary of phrases like
some compression methods. Instead it accumulates a list of phrases as they are
encountered in the text file being processed. This strategy of adapting to the par-
ticular input file makes it language independent and also means that it can be
sensibly applied to files other than text—images, for instance.

GIF files can contain either a single image or a sequence of images. A feature
is included to make it easy to skip through the sequence without having to
decompress each individual image.

In 1995 Unisys announced that royalties would be levied on programs imple-
menting GIF because of a long-standing patent they held on the LZW compres-
sion scheme that lies at its core. This caused widespread dismay because GIF was
at the time the primary means of storing images on the World Wide Web.
Unisys has since refined its position. Now the vendor of any software product
capable of generating GIF files must negotiate a license; users of the product are
then free to create all the files they like. As a result of the uncertainty instilled by
the original announcements, many developers remain wary of using GIF
images. Furthermore, the same patent issue also applies to other formats that
incorporate LZW compression, including TIFF, PDF, and PostScript (Level 2
and above).

PNG: Portable Network Graphics
Unisys’s surprise announcement catalyzed the development of a new lossless
image format, PNG, intended specifically for the public domain. At its core is a
general-purpose compression scheme called gzip. This is a public-domain open-
source compression utility, based on an earlier scheme called LZ77 (after the
same Lempel and Ziv cited previously). Gzip performs better than LZW, and
PNG usually achieves greater compression than GIF.

196 F O U R | D O C U M E N T S

A more important factor in compression, however, is the fact that PNG
works in a way that acknowledges the two-dimensional structure of the image,
rather than treating it simply as a one-dimensional sequence of bytes. It defines
a small number of “filters” that can be applied to the pixel values before com-
pression. The horizontal difference filter subtracts the previous pixel value from
the current one, so that pixel differences are encoded rather than pixel values.5

The vertical difference filter subtracts the value of its neighbor in the row above.
The average difference filter subtracts the average of the neighbors above and to
the left. A further filter performs a slightly more complex operation involving a
nonlinear function of the neighboring pixel values.

It is up to the encoder how it uses these filters—or indeed whether it uses
them at all. The PNG standard recommends that encoders optimize the filter for
each scan-line by trying all possibilities and using a heuristic criterion to select
the best, possibly choosing a different filter for each scan-line. Combining this
improvement with what is achieved by using gzip instead of LZW, PNG
improves compression by around 10 to 30 percent over GIF, depending on the
particular image being encoded.

PNG incorporates several other practical improvements. Pixels are not
restricted to 8-bit values: they can be drawn from a 256-color palette, but they
can alternatively include up to 16 bits of grayscale, or 48 bits of full-color infor-
mation. There are 256 possible transparency values, so a picture can fade gradu-
ally into the background. There is a gamma correction feature that helps com-
pensate for differences in how computer monitors interpret color values.

One restriction is that while GIF supports animated images, PNG does not—
that is left to a different standard, Multiple-image Network Graphics or MNG
(pronounced ming). Another caveat is that although all modern Web browsers
can display PNG images, ancient ones cannot.

Lossy image compression: JPEG

JPEG, named after the Joint Photographic Experts Group that designed it, is a
comprehensive standard intended for representing compressed continuous-tone
images. It is general purpose and underlies a gamut of image communication
services and image applications—desktop publishing, graphic arts, color facsim-
ile, newspaper wirephoto transmission, and medical imaging—as well as hard-
ware devices such as digital cameras. It is complex, and a great deal of care went
into its specification. It has become the standard technique for compressing still
images and is universally used for representing photographic images on the Web.

4 . 5 R E P R E S E N T I N G I M A G E S 197

5. In fact, the difference operation is applied to individual bytes rather than to pixel values.
Each pixel may be represented by more than one byte, in which case the difference is taken
between corresponding bytes. All PNG filters operate byte-wise.

JPEG’s compression algorithm works well enough to produce excellent image
quality at around 1 bit per pixel—the same as an uncompressed bilevel image.
This represents impressive compression: grayscale or color images are digitized
at anything from 8 to 32 bits per pixel. No lossless image compression scheme
could reduce continuous-tone pictures to anything like this level. At this rate
some loss is inevitable—you have to accept approximate rather than exact
reproduction. Consequently JPEG does not reconstruct the original image
exactly (although the standard incorporates an alternative coding method,
called JPEG-Lossless, that does). The compression method was selected from
among many candidates, based on an assessment of subjective picture quality.

JPEG is divided into a baseline system that offers a limited set of capabilities,
and a set of optional extended features. The baseline gives a plain, lossy, high-
compression image coding and decoding capability.

The JPEG compression method
Baseline JPEG operates on images in which each pixel is represented by 8 bits.
The algorithm encodes color image components independently and is suitable
for use with commonly used color spaces such as red, green, and blue (RGB)
and CMYK (cyan, magenta, yellow, and black). Higher-resolution options, with
more bits per pixel, are among the extended system features.

Figure 4.15 depicts the encoding and decoding processes. Images are first
divided into 8 × 8 pixel blocks. Each block is subjected to a signal-processing
technique known as the discrete cosine transform, which maps the 64 pixel values
into 64 numbers called spatial frequency coefficients. The transform is reversible:
these 64 coefficients characterize the input block exactly and can be used to
faithfully reproduce it. They represent image components at different spatial
frequencies.

Transforming one set of 64 numbers into another set of 64 numbers does not
seem to achieve much. However, the spatial frequency coefficients are far more
suitable for lossy quantization than the pixel values themselves. There are blocks
in which sample values vary slowly from point to point—indeed this is the case
for most parts of nearly all images, particularly ones of natural objects—and in
these the transformation concentrates most of the signal in the lower spatial fre-
quencies. For a typical 8 × 8 sample block from a typical source image, many of
the higher spatial frequencies have zero or negligible amplitude and need not be
encoded at all. Some pictures do have significant higher spatial frequencies—for
example, ones that contain regular patterns such as brick walls or tiled roofs—
but these are the exception rather for the rule, particularly for natural images.

To show what the discrete cosine transform coefficients mean, Figure 4.16
presents an image after each successive coefficient has been calculated. The orig-
inal 512 × 512 image has been divided into an 8 × 8 matrix of blocks, each block
having 64 × 64 pixels. JPEG actually uses blocks of 8 × 8 pixels, but we use larger

198 F O U R | D O C U M E N T S

ones to demonstrate the effect. The first version of the image is made from each
block’s zero-frequency coefficient. This represents the overall grayness of the
block, so at this stage each block is a uniform shade of gray. After inclusion of
the second coefficient for each block, horizontal cross-sections through the
blocks still have uniform shading, although vertical cross-sections do not. By
the time the 32nd coefficient is combined, the image is starting to look much
like the final version. However, it would require 64 × 64 = 4,096 coefficients per
block for full, error-free reconstruction of our example picture. The corre-
sponding figure for JPEG is 8 × 8 = 64 coefficients.

Following the discrete cosine transform, the nonzero coefficients are inde-
pendently rounded to discrete values by a uniform quantizer—this is the lossy
part. The quantizer step size—that is, the difference between successive levels—
is different for each coefficient. The encoder may specify with each picture the
quantization tables that are to be used for that picture—they could be derived
for each picture independently and included with it. Alternatively it may specify
that previously installed tables are to be used instead. The JPEG standard
includes an example set of quantization tables that are particularly appropriate
for natural scenery.

The zero-frequency coefficient is highly correlated from block to block
because it is basically the average intensity over the block. Hence it is differen-
tially encoded—in other words, it is represented by the difference between the

4 . 5 R E P R E S E N T I N G I M A G E S 199

Discrete
cosine

transform
Quantizer

Huffman
coder

Compressed
image

Table
specification

Table
specification

Original
image

Inverse
cosine

transform
DequantizerHuffman

decoder
Compressed

image

Table
specification

Table
specification

Reconstructed
image

8 × 8 blocks

Figure 4.15 Encoding and decoding processes in baseline JPEG.

20 coefficients 32 coefficients original (4,096 coefficients)

10 coefficients 12 coefficients 16 coefficients

4 coefficients 6 coefficients 8 coefficients

1 coefficient 2 coefficients 3 coefficients

Figure 4.16 Transform-coded images reconstructed from a few coefficients. University
of Southern California Image Processing Institute (USC-IPI) image database.

zero-frequency value of this block and the previous one. The other 63 coeffi-
cients are not differentially encoded. They are sorted from low to high frequency
using the zigzag sequence of Figure 4.17, in the order indicated by the arrow-
heads; then they are coded to reduce statistical redundancy.

The baseline system uses a standard scheme called Huffman coding to code
the coefficients. First, since many of the coefficients are zero, the number of zero
coefficients before the next nonzero one is specified—a kind of run-length
encoding. Then the nonzero coefficients are Huffman coded. Huffman coding
works by using a code table that gives each coefficient value a particular code.
An example code table is provided in the JPEG specification, but the encoder
can determine codes appropriate to the particular picture and embed them in
the compressed data stream.

JPEG picture quality
A key feature of JPEG is its ability to control the number of bits per pixel used to
represent an image. It accomplishes this by varying the amount of detail lost,
which has a corresponding effect on the overall quality of the reconstructed
image. Figure 4.18 shows three stages of lossy transmission from a JPEG-like
encoding scheme, at 0.1, 0.2, and 1.0 bit/pixel, respectively. The differences in
resolution are just discernible—despite the low-quality halftone reproduc-
tion—if you look closely, particularly around the straight edges in the pictures.
The JPEG standard describes a postprocessing operation that can be used to
suppress blocking artifacts and improve quality at low bit rates; it is not used in
these examples.

4 . 5 R E P R E S E N T I N G I M A G E S 201

Horizontal
frequency

Vertical
frequency

DC component

Highest-frequency
component

Figure 4.17 Zigzag encoding sequence.

Although JPEG is a complex format, well-engineered implementations can
keep pace with 64 Kbit/second communication channels. This makes it suitable
for interactive use. For example, compressed to 1 bit per pixel, a 720 × 576 pixel
image takes 6.5 seconds to transmit over a 64-Kbit/second line, a tolerable delay
for occasional image viewing.

As a general guide to the results attainable with a lossy compression method,
for color images of moderately complex scenes, various levels of picture quality
can be obtained at different compression factors:

■ 0.25–0.5 bit/pixel: moderate to good quality, sufficient for some applica-
tions

■ 0.5–0.75 bit/pixel: good to very good quality, sufficient for many applica-
tions

■ 0.75–1.5 bit/pixel: excellent quality, sufficient for most applications
■ 1.5–2 bits/pixel: usually indistinguishable from the original, sufficient for

the most demanding applications

JPEG extensions and additions
The JPEG standard defines many extensions to baseline JPEG. Although the
baseline system uses Huffman coding, the standard accommodates a different
option called arithmetic coding which yields slightly greater compression at the
expense of execution speed. The Huffman coding method is about twice as fast
as arithmetic coding, but—at least in software implementations—throughput is
dominated by other parts of the JPEG scheme, so the overall difference is not so
great in practice. Arithmetic coding gives about a 10 percent compression
advantage over Huffman coding for high-quality reconstructions of the rela-
tively noisy test images used to develop JPEG. For lower bit rates and cleaner
images, its benefit is even greater.

202 F O U R | D O C U M E N T S

(a) (b) (c)

Figure 4.18 Images reconstructed from different numbers of bits: (a) 0.1 bit/pixel;
(b) 0.2 bit/pixel; (c) 1.0 bit/pixel. USC-IPI image database.

Although the baseline system is lossy, JPEG also defines a lossless variant. In the
original JPEG definition, this was not a very effective compression scheme, and so
a separate JPEG-Lossless standard was developed that provides an excellent but
rather complex scheme for lossless compression of continuous-tone images.

There is a newer version of JPEG called JPEG-2000 whose main advance is to
use an improved basis for compression, called wavelets, that avoids the tendency
toward visible artifacts that can result from dividing an image into discrete
blocks, as illustrated in Figure 4.16. This yields a 20 percent improvement in
compression over the earlier scheme and also allows a smoother integration of
lossless compression. JPEG-2000 incorporates other new features. The user can
control how much resolution to download (so-called level of interest access),
and there is increased flexibility in specifying color information.

Progressive refinement

Pictures on a conventional TV or printer are drawn in raster order—left to right,
top to bottom, and across the screen or page. But when transmission is slow,
there are advantages to creating the image in a different way. For example, 10 per-
cent of the way through a raster transmission of an ordinary image format over
the Web, only the top tenth of the picture can be seen, and this is not usually very
informative. Users would generally prefer to see the whole picture at a tenth of
the final resolution instead. This technique is called progressive refinement.

Figure 4.19 shows a picture that builds up gradually to the full resolution and
contrasts it with ordinary raster transmission. The final picture is hardly distin-
guishable from the version created from only 10 percent of the information. Pro-
gressive refinement is also clearly advantageous in an interactive situation where
one has an opportunity to stop transmission if the wrong picture appears, or
when browsing casually through many pictures. Even with no such opportunity to
cancel transmission, it is much less frustrating to see an initial image that is pro-
gressively refined than it is to have it revealed, slowly and tantalizingly, line by line.

A crude but effective form of progressive display called interlacing is used in
television to reduce flicker by increasing the apparent rate at which successive
images appear. The picture formed from the odd-numbered scan-lines is trans-
mitted first, followed by the even-numbered scan-lines. An extension of this
technique is used by both GIF and PNG to give a form of progressive display.
When compressed, pictures can be stored in “interlaced order” instead of con-
ventional order, so that when the file is read and transmitted over a network, an
approximate version of the image is seen initially.

In GIF, data is interlaced by row and is stored in four “passes” over the image.
Every eighth row is stored first, starting with row 0. Next comes every eighth
row starting with row 4. Then every fourth row starting with row 2 is stored,

4 . 5 R E P R E S E N T I N G I M A G E S 203

After 5% After 10% After 100%

Raster
transmission

After 1% After 2%

After 5% After 10% After 100%

Progressive
transmission

After 1% After 2%

Figure 4.19 Progressive versus raster transmission. USC-IPI image database.

and finally every second row starting with row 1 fills in the missing lines. When
the picture is read from this file, one-eighth of it is present by the end of the first
pass, one-quarter by the end of the second, one-half by the end of the third, and
the full image by the end of the fourth. When the picture is transmitted and dis-
played, corresponding amounts can be viewed—although just because an image
is transmitted in an interlaced format does not mean the application at the
receiving end must display it progressively.

PNG supports a two-dimensional interlacing scheme based around the 8 × 8
template shown in Figure 4.20 which provides a superior form of progressive
display. The template is tiled over the whole image. The image is represented in
seven pieces, and in each one the values of the correspondingly numbered pixels
in Figure 4.20 are stored. The first piece, comprising pixels numbered 1 in the
figure, stores 1⁄64 of the information, the second (pixels numbered 2) 1⁄32, and so
on, until all information is complete by the end of the seventh piece (pixels
numbered 7). When the picture is transmitted, a reasonable approximation can
be drawn as soon as the first piece is received and improves with each new piece.
Naturally this scheme impacts compression efficiency, and file size is slightly
increased over the noninterlaced version.

One of the extended-feature options in the JPEG standard is a sophisticated
form of progressive refinement. The image is approximated by low-frequency
terms that are gradually refined to produce the final version. The process usually
ends when the image is the same as would have been transmitted in the normal
(lossy) case, but there is a further option of progressive lossless coding, which con-
tinues until the final picture is almost identical with the original—the only dis-
crepancies being due to the finite-precision arithmetic employed in the encoder

4 . 5 R E P R E S E N T I N G I M A G E S 205

1 6 4 6 2 6 4 6

7 7 7 7 7 7 7 7

5 6 5 6 5 6 5 6

7 7 7 7 7 7 7 7

3 6 4 6 3 6 4 6

7 7 7 7 7 7 7 7

5 6 5 6 5 6 5 6

7 7 7 7 7 7 7 7

Figure 4.20 8 × 8 tiled template used to generate a
PNG interlaced file.

and decoder. This final stage involves sending a spatial correction signal that gives
the difference between the final lossy image and the original one, pixel by pixel.

Recall that JPEG works by obtaining spatial frequency coefficients using the
discrete cosine transform and quantizing them. With progressive refinement,
instead of transmitting all coefficients for each block, in turn many passes are
made through the picture, and successively higher bands of coefficients are
transmitted at each pass. In early passes the low-frequency, or rough-detail,
information is sent, leaving for later the high-frequency, fine-detail informa-
tion. This is called the spectral selection method of progressive refinement. An
alternative, called successive approximation, is also specified in which the coeffi-
cients are first sent with reduced precision. Successive approximation yields
much better visual quality at low bit rates, but the number of progressive stages
is limited. Spectral selection allows more progressive stages and, since it is a sim-
ple extension of the sequential mode, is easier to implement. Successive approx-
imation—particularly, it turns out, the Huffman coding version—is more diffi-
cult to achieve.

4.6 Representing audio and video

Some digital library documents contain audio and video. These media consume
even more space than images—by several orders of magnitude—because they
represent the evolution of signals over time. Telephone-quality speech uses 8,000
8-bit samples per second, while CD-quality music needs 44,000 16-bit samples
per second. Video requires at least 24 frames per second for the eye not to per-
ceive flicker. Practical formats use compression to maximize the amount that can
stream through a network of given bandwidth or be stored in given disk space.

Documents are coded for transmission (or storage) and decoded upon recep-
tion (or retrieval). The coder/decoder (equivalently, the compressor/decom-
pressor) is generally called a codec. Codecs can be applied to audio or video
information individually or packaged together to provide audiovisual delivery.
Video coders achieve compression by exploiting spatial and temporal coher-
ence; audio coders likewise exploit acoustic and temporal redundancy. The
decoder reverses the compression process. High compression rates can be
achieved, but the process is lossy. Lossless methods could be used, but their gain
is slight in comparison.

Many codecs are asymmetric in that they take different times, or different
resources, for encoding and decoding. Often it is worth expending more effort
in coding if that achieves greater compression. For example, most video footage
is generated once but viewed many times, or broadcast once and viewed simul-
taneously at many different locations. In both cases high compression brings

206 F O U R | D O C U M E N T S

great benefits. For online operation, encoding (and, less frequently, decoding) is
often hardware assisted. Manufacturers produce a wide range of hardware
options for desktop computers—right through to video editing studios.

Some multimedia architectures allow encoders to be upgraded to take advan-
tage of new techniques, but remain backward compatible by ensuring that
unmodified decoders can still decompress the data they generate. The upgraded
system produces shorter files which can still be transported to other sites for
playback by existing decoder software.

The dominant international standard for audiovisual material is MPEG,
devised by the ISO Moving Picture Experts Group. We also discuss some popu-
lar proprietary formats: AVI, QuickTime, and RealSystem. The WAV, AIFF, and
AU formats are widely used for information that is solely audio.

Multimedia compression: MPEG

The original aim of MPEG, formulated in 1988, was to develop an open digital
format, comparable to the popular analog home video system VHS, that could
be read from storage devices such as CD-ROM. A format was devised that
enabled digital audio and video data to be combined with a target rate of 1.5
Mbit/second. The effort snowballed, attracting great interest from industry, and
its goals expanded. There are now several formats that constitute the MPEG
family. MPEG-1, MPEG-2, and MPEG-4 form the core; MPEG-3 has been
abandoned; MPEG-7 incorporates metadata; and MPEG-21 supports the life
cycle of multimedia information.

The original format, MPEG-1, was designed for color pictures with 352 × 240
pixel resolution shown at 30 frames a second, accompanied by audio of near CD
quality. Not only did this come within the 1.5 Mbit/second target, but it could be
decompressed in hardware with 512 Kbytes of memory (which corresponded to
cost-effective VLSI design in the early 1990s). The frame rate, picture resolution,
and audio sampling can be varied to give other bit rates, although these are less
common. Data can be uni-media, comprising just sound or just pictures. Audio
can be mono or stereo and has various options or “layers” designed for particular
purposes (speech and music of different qualities). Of these, the third layer, more
popularly called MP3, is widely used to represent digitized music on the Web.

MPEG-2 is designed for higher-quality video representation and forms the
basis of DVD video. It can be transported over error-prone networks and sup-
ports interlaced images (making it suitable for broadcast TV) and multichannel
audio. Decoders are backward compatible with MPEG-1 and can play back both
formats. However, MPEG-2 has not superseded MPEG-1 because the earlier
standard’s performance is superior at lower bit rates. Users choose whichever
version best suits their needs. The next standard, MPEG-3, was intended for

4 . 6 R E P R E S E N T I N G A U D I O A N D V I D E O 207

high-definition television (HDTV), but it transpired that the MPEG-2 structure
scaled well enough, and the new work was merged with the existing standard.

MPEG-4 is designed for low-bandwidth networks such as mobile communi-
cations and the World Wide Web. It is based on objects rather than signals and
includes synthetic objects such as computer-generated text, graphics, and
sound. It incorporates interactive capabilities, and the bit rate can be adjusted
dynamically to suit the transportation medium.

The naming convention for succeeding MPEG standards is bizarre.6 MPEG-7
allows the description of metadata for multimedia content that is conveyed by
MPEG-1, 2, and 4; we explain it in Chapter 5 (Section 5.5). MPEG-21 is
intended to provide a framework that integrates all elements of the multimedia
life cycle, from content creation and production through distribution to end
users with their specific needs. Its designers liaise with other standards bodies,
drawing upon existing standards where they exist and defining complementary
standards to bridge the gaps. In the context of digital libraries, MPEG-21
amounts to a form of interoperability for multimedia documents.

Inside MPEG
Before digging into the internal details of MPEG, we briefly review pertinent tele-
vision standards for color, sample rate, and picture resolution. MPEG-1 was influ-
enced by prior work on visual telephony, by the JPEG format for image data, and
by various audio techniques. It in turn has influenced proprietary formats, and
these commercial decisions have fed back into subsequent MPEG development.
Note that there are two different formats for analog television in widespread use
today: NTSC, originating in North America, and PAL, originating in Europe.

MPEG arose out of the same ISO working group as JPEG, but they quickly
separated. Although an independent standard, it does reuse many concepts and
idioms. Indeed there is a variant of JPEG called Motion JPEG or Moving JPEG,
often used for video editing, which extends this standard to support videos by
storing each frame in JPEG format—but this is quite different from MPEG.

Part of MPEG is based on a downsampled version of an international stan-
dard used in digital television and video equipment, CCIR 601, which is
designed to be compatible with popular analog formats. Table 4.6 summarizes
the principal analog television formats used around the world. In an NTSC
environment, for example, CCIR 601 delivers a 720 × 486 picture that is inter-
laced, sending 720 × 243 half-frames 60 times per second. Because analog NTSC
video reserves many lines for control information, CCIR 601’s effective display
area is the same even though it specifies fewer lines.

208 F O U R | D O C U M E N T S

6. The reason for skipping the intervening numbers is that “cybersquatters” registered the cor-
responding domain names in anticipation of being able to sell them when new versions of
the standard emerged.

CCIR 601 represents color using the YUV model, rather than the RGB (red-
green-blue) scheme commonly used by computers. This encodes brightness
(luminance) in the Y parameter, and color difference (chrominance) in the two
parameters U and V. It is preferred over RGB because the resolution for chro-
matic parameters can be reduced (and therefore expressed more compactly),
with imperceptible loss of viewing quality.

There is a mathematical mapping that converts one color representation to
the other. The three YUV components can be quantized into the same number
of bits (e.g., 8 bits, or 10 bits for higher color resolution). Alternatively the U
and V components can be downsampled—that is, transmitted every second, or
every fourth, sample in the horizontal direction, or every second sample in both
horizontal and vertical directions. To reconstruct the image, intermediate values
are interpolated.

In MPEG terminology, a picture comparable to analog television is obtained
by delivering, noninterlaced, a 352 × 240 pixel color image at 30 frames per sec-
ond (NTSC flavor) or 352 × 288 pixels at 25 frames per second (PAL flavor).
Taking into account rounding to the nearest multiple of 8 to simplify imple-
mentation (whether software or hardware), this configuration halves the resolu-
tion and sample rate of CCIR 601 and is known as the Standard Interchange
Format (SIF). Both settings conveniently yield the same data rate in pixels/sec-
ond (because 352 × 240 × 30 = 352 × 288 × 25 = 2,534,400).

Although PAL and NTSC videotapes are physically the same size, they require
different equipment for playback (of course, dual players exist). For MPEG, the
NTSC- and PAL-flavored SIF settings are purely for convenience—they do not
pose a problem for playback because the differences can be overcome dynami-
cally, in software. MPEG data that conforms to one of these variants most likely
reflects the capture equipment used.

We begin by describing MPEG-1. The general ideas carry over to MPEG-2
and MPEG-4, and we summarize the differences later.

4 . 6 R E P R E S E N T I N G A U D I O A N D V I D E O 209

Table 4.6 International television formats and their relationship with CCIR 601.

Format Abbreviation Transmission rate Origin CCIR 601 rate

National Television NTSC 525 lines at 60 Hz United States 720 × 486
System Committee (interlaced) (interlaced)
Phase Alternation Line PAL 625 lines at 50 Hz Europe 720 × 576

(interlaced) (interlaced)
Séquentiel Couleur Avec SECAM 625 lines at 50 Hz Europe 720 × 576
Mémoire (Sequential (interlaced) (interlaced)
Color with Memory)

MPEG video

Video—a sequence of pictures—is represented in MPEG as a progression of
graphical frames, processed into a bitstream. The frames may not be in the same
order as the sequence of pictures in the original video, however. There are three
types of frame.

An intra frame or I-frame provides a fixed point in the image sequence. It
exploits spatial but not temporal coherence. In rough outline it follows JPEG: a
discrete cosine transform is applied to 8 × 8 blocks, values are Huffman coded
using fixed tables specially designed for two-dimensional data, and the zero-
frequency coefficients are differentially encoded.

A predicted frame or P-frame is derived from the most recent I- or P-frame. It
encodes differences between frames and therefore exploits temporal as well as
spatial coherence. P-frames are compressed using motion predictors that work
with 16 × 16 blocks in the luminance (Y) channel and can exploit similarity in
data translated between one frame and the next.

A bidirectional frame or B-frame is based on a previous frame (most recent I
or P), a future frame (next closest I or P), or the average of the two. The data is
compressed along similar lines to the P-frame.

I-frames are an important feature of MPEG because they allow a form of ran-
dom access playback. Because they contain all the information necessary to
reconstruct that particular image, and subsequent frames (P or B) cannot refer-
ence a frame further back in time, a playback application can skip to an I-frame
and start playing from that point.

Figure 4.21a shows a cyclic pattern of 12 I, P, and B-frames that works well in
practice. The display can be restarted at the beginning of any cycle—every 0.4
second at a frame rate of 30 frames per second. However, for easy decompres-
sion, the frames are not encoded in numerical order. Frames 2 and 3, for
instance, rely on frames 1 and 4; consequently they are reordered as shown in
Figure 4.21b. Note that this makes the first I-frame cycle different from the next
one. The first cycle starts with an I-frame followed by a P-frame, but the second
one has two B-frames belonging to the previous cycle slotted between this I-P
pair. This second pattern of frame numbers repeats until the final cycle. B-
frames complicate life, but they also bring space savings and a degree of noise
reduction. Implementers of MPEG encoders can choose not to use them, but
compliant decoders must be able to handle them.

This last point illustrates a fundamental issue. While MPEG decoding is a well-
defined deterministic process, there is great scope for variation in encoders—par-
ticularly with regard to motion prediction. Implementing a good encoder is a
specialized skill that involves far more than the familiar speed verses compression
tradeoff. Deficiencies in design yield poor-quality video playback that no decoder,
however smart, can fix.

210 F O U R | D O C U M E N T S

MPEG audio

MPEG compresses audio using a lossy technique that can achieve near-perfect
CD-quality playback when reduced to 1⁄12 of the original size. It exploits a phe-
nomenon known as acoustic masking: the human auditory system cannot per-
ceive low-amplitude frequency components that are dominated by nearby high-
amplitude components. These masked frequencies can be dropped entirely or
encoded using fewer bits than normal.

MPEG incorporates three different schemes—known as layers—for com-
pression, all based on the acoustic masking principle. Higher layers are more
complex and take more resources (time and memory) to encode and decode.
Layer I is designed to be easy to implement and fast to process and has a target
rate of 192 Kbit/second per channel. Layers II and III are 128 and 64 Kbit/sec-
ond per channel, respectively.

All three layers support sample rates of 32 kHz, 44.1 kHz, and 48 kHz. The
encoding process first performs a discrete cosine transform and then divides the
frequency spectrum into 32 bands, which are analyzed to identify masked fre-
quencies. Next the coefficients are quantized and encoded. The first two layers
have equal frequency bands, while the third uses unequal ones. In addition, Lay-
ers II and III exploit temporal masking, and Layer III takes into account stereo
redundancy. Layers are designed so that decoders are backward compatible:
Layer II decoders can also handle Layer I data, and Layer III decoders handle all
layers. Decoders are easier to write than encoders.

The audio quality of MPEG has been evaluated in extensive perceptual tests.
Listeners are played three versions of several audio recordings: first the original,
and then the MPEG encoding and the original randomly transposed. They are
asked to score the second and third versions using a standard scale of impair-
ment that ranges from “very annoying” to “perfect.” At a rate of 128 Kbit/second

4 . 6 R E P R E S E N T I N G A U D I O A N D V I D E O 211

Encoded frame

order

1 4 2 3 7 5 6 10 8 9 13 11 12 16

…

Frame type I P B B P B B P B B I B B P …

(b)

Figure 4.21 (a) Frame sequence for MPEG; (b) reordering for sequential transmission.

Frame number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 …

Frame type I B B P B B P B B P B B I B B P B B …

12-unit cycle

(a)

per channel (6:1 compression), even experts cannot reliably distinguish MPEG
from the original recording. At 64 Kbit/second per channel, Layer II was judged
to lie between “annoying” and “slightly annoying.” The same rate with Layer III
scored significantly higher—“just noticeably different.” This result has lead to
the widely quoted claim that CD-quality audio encoded as MP3 (that is, MPEG
Layer III audio) achieves minimal perceptible degradation with only 8 percent
of the original file size.

As with video, the MPEG standard defines audio decoding fully, but leaves
encoding open-ended. Future encoders may well improve on these quality ratings.

Mixing media

To combine video and audio bitstreams, each one is broken into packets that are
multiplexed into a single stream. Packets are time-stamped to ensure correct
synchronization.

MPEG-1 can cope with a range of audio sampling rates and a range of image
frame sizes and rates. For instance, it is entirely possible to generate video with
dimensions 4,096 × 4,096 delivered at 60 Hz. However, special significance is
given to particular sets of parameter values that provide good tradeoffs between
decoder computational complexity, buffer size, and memory bandwidth while
still addressing a wide range of applications. One configuration is known as the
constrained parameter bitstream (CPB). The upper limit of each parameter is
shown in Table 4.7 (not all limits can be attained simultaneously). The maxi-
mum rate in pixels/second corresponds to the rate for the Standard Interchange
Format (SIF) mentioned earlier. In a typical configuration, video uses around
1.2 Mbit/second, and audio uses around 0.3 Mbit/second.

MPEG-2
MPEG-2 incorporates several improvements. Images can be interlaced; audio
can have multiple channels; data can be transported over an error-prone net-
work; and delivery is scalable. Also included are low-level implementation
enhancements that improve the overall compression factor (however, they
restrict picture dimensions to multiples of 16).

Interlaced images make MPEG-2 suitable for broadcast television, but the
extra complexity hinders compression. There are two audio extensions. One,
which is backward compatible with MPEG-1, provides five main channels and a
low-frequency enhancement channel; a typical application is surround sound.
The other is a state-of-the-art technique called advanced audio compression that
adds a raft of intricate encoding options but is not backward compatible.

MPEG-1 combines video and audio into a single bitstream. MPEG-2 refines
the notion of stream to work in error-prone environments using fixed-size

212 F O U R | D O C U M E N T S

packets, as well as in error-free ones with arbitrary sized packets. Data can be
prioritized by separating it into constituent bitstreams, which helps support
heterogeneous environments. For example, a high-definition television
(HDTV) signal can be decomposed into a 720 × 480 pixel baseline bitstream
and a 1,440 × 960 pixel bitstream that encodes the differences between the two
resolutions. This enables either a standard-resolution (CCIR 601) or a high-
definition television to display a suitable picture.

MPEG-2 defines many implementation options, and encoders and decoders
need not support all of them. Part of the standard specifies a real-time interface for
video on demand, but particular implementations may not include it. In subse-
quent MPEG developments this piecewise trend evolved into a toolbox approach,
where implementations are not expected to support all constituent parts.

MPEG-4
Whereas MPEG-2 is an extension of MPEG-1—for example, its decoder can
handle MPEG-1 data—MPEG-4 represents a radical departure. It embodies a
broader concept of multimedia document and is designed for use over the Web
and low-bandwidth networks such as mobile communications. To video and
audio it adds still images, synthetically generated graphics and sound, and text.
These primitive data types can be composed hierarchically into objects. Objects
supplant streams as the key structure, offering more expressive power than
before. For example, footage can be created that composes live video (its back-
ground masked off to save space) with a two- or three-dimensional computer-
generated backdrop and a synthesized music soundtrack.

MPEG-4 is a vast standard. It can deliver a quality of service that adapts to
available network bandwidth. It allows users to interact with the composed
scene. It also lets users implement strategies for identifying and managing intel-
lectual property.

4 . 6 R E P R E S E N T I N G A U D I O A N D V I D E O 213

Table 4.7 Upper limits for MPEG-1’s constrained parameter bitstream.

Parameter Limit

Pixels per line 704
Lines per frame 576
Pixels per frame 101,376
Frames per second 30
Pixels per second 2,534,400
Bit rate 1.86 Mbit/second
Buffer size 40 Kb

Other multimedia formats

Although it is an open standard, MPEG does embody some patented techniques
(as indeed does JPEG). The International Standards Organization resolves the
conflict by requiring all components used in its standards to be licensable on
“fair and equal terms.” The intention is to define standards that not only facili-
tate data interchange, but use techniques whose performance rivals state-of-the-
art proprietary systems. A side benefit is that companies are more likely to sup-
port the standards.

There are some multimedia formats that are fully proprietary. In the age of
universal access this seems to defy commercial sense because to play such mater-
ial you must possess a particular program. However, a particular playback appli-
cation for one proprietary format can incorporate modules to play rival formats
too. To include such modules a licensing agreement is required—and the more
popular the format, the more the company owning the technology can charge.

Video and audio
The Audio Video Interleave (AVI) format from Microsoft uses containers to
represent data, which nicely matches this modular approach. The file header
contains a code that determines which codec to use to process the data that fol-
lows. Codecs (there are over 20) range from a simple “device-independent
bitmap” that represents frames using RGB color values and performs no com-
pression whatsoever through to sophisticated approaches such as MPEG-4. A
proprietary codec for a format derived from QuickTime, mentioned later in this
subsection, is included—a popular choice in practice.

AVI files are device independent, and there are players for all major computer
platforms. Because of the many different codecs, however, a particular installa-
tion often lacks the necessary module, prompting a diagnostic message. If the
missing codec exists for that platform, installation is straightforward.

The long-established QuickTime format from Apple (also available for Win-
dows) comes with a full programming environment. Independent software ven-
dors can use this to parse multimedia files and develop graphical applications
that access the media interactively. Because its programming environment
extends well beyond basic audio and video manipulation, QuickTime is like an
operating system in its own right, providing platform independence between
Macintosh and Windows personal computers. A wide variety of codecs are sup-
ported. There is also a close relationship between MPEG-4 and QuickTime 5.

Application programs for multimedia were originally oriented for work on a
single computer. However, there is a high and growing demand for making mul-
timedia objects available over the Internet, where bandwidth is somewhat
restricted and very unpredictable. Real-time delivery of multimedia over net-
works is called streaming: the information arrives in a continual stream rather

214 F O U R | D O C U M E N T S

than being received in its entirety before presentation begins. A format called
RealSystems—also packaged individually as RealAudio and RealVideo—is
specifically designed to stream multimedia over the Internet. Available on all
major computers, it supports a wide variety of codecs, including MPEG, with an
emphasis on real-time delivery over networks.

Audio only
There are several formats designed exclusively for audio—for example, WAV
(Microsoft and IBM), AIFF (Apple), and AU (Sun Microsystems). These date
back to the early desktop computers, and although each one originated on a
particular computer, today they are platform independent. They use similar
representations, with a header to encode sample rate and quantization details,
followed by the data itself. The compression techniques are rudimentary—
reflecting the need in the early days for computational algorithms that could
handle the data at an appropriate rate—and their details are public knowledge.
Many audio players can load and save files in these different formats.

Commonly used compression techniques are Huffman encoding, compand-
ing, adaptive differential pulse code modulation, and linear predictive coding.
Huffman coding (mentioned in Section 4.5 with regard to JPEG) is lossless and
therefore achieves limited compression on inherently noisy signals. Companding
is a standard technique in telecommunications that uses logarithmic quantiza-
tion—the µ-law in the U.S. and the A-law in Europe—to obtain better percep-
tual quality for a given bit rate. Adaptive differential pulse code modulation pre-
dicts the value of the signal based on preceding samples and encodes the
difference using dynamically varying quantization steps. Speech data is unique
because it is always produced by a particular system—the human vocal tract—
that, while certainly not fixed, does not vary all that much from one individual
to another. The technique of linear predictive coding takes advantage of this
domain specificity to accomplish greater compression.

Using multimedia in a digital library

Audio, video, and multimedia digital libraries raise a wide range of interesting
and challenging issues. Here are a few: How is the collection to be searched or
browsed? How are users to access different parts of a document? What does it
mean to provide a summary of an audio document, or a video document, or a
multimedia document? Can summaries be produced accurately? How accurate
does the digitization process need to be?

One approach is to build the indexing and browsing structures around tex-
tual metadata, and deliver multimedia material—once it has been located—
through the Web browser. More ambitious is to combine signal processing algo-
rithms (image, audio, or both) with graphical displays to provide a richer

4 . 6 R E P R E S E N T I N G A U D I O A N D V I D E O 215

environment in which items can be located, played or displayed, and manipu-
lated more directly. For truly flexible access, it should be possible to search and
browse summaries of audio and video and to combine operations on different
media. Developing usable tools for these more ambitious features remains a
research problem. In the short term, practical digital library systems will likely
take advantage of whatever direct access methods are available, including the
use of textual metadata as an intermediary means of access, while in the longer
term they will come to grips with the true multimedia nature of the material
and also cater to the differing needs of individual users.

It is not easy to digitize physical signals, and considerable expertise and atten-
tion to detail is needed. Good results depend on suitable lighting conditions and
audio recording levels. Technical parameters include linear resolution, color
depth, frame rate, and audio sample rate. The output file format also affects how
much detail is preserved. When designing a multimedia collection, a critical issue
is whether lossy representations are acceptable. For some preservation purposes
no loss can be tolerated, even though this greatly increases storage requirements.

Lossless representations make editing operations easier—and safer. Although
there are tools that permit playback and editing of compressed formats, quality
inevitably suffers if the process involves lossy decompression followed by lossy
recompression. Repeated editing may even render the material unusable. Audio
editors commonly use formats such as WAV, AIFF, and AU, whose rudimentary
codecs suffer less from quality loss. Only when editing is complete is the data
converted to a highly compressed format such as MP3.

Two other issues arise: How widespread is the software that can replay the
material, and what are the bandwidth implications for delivery? Early multime-
dia applications involved individual computers with material stored locally on
disk. However, today’s users expect cross-platform support and network access.
Rather than imposing a particular fixed solution, users can select a desired for-
mat and the digital library can convert the material on the server. This lets users
access the material in the most convenient form, taking into account the band-
width available for downloading.

4.7 Notes and sources

The ASCII code is central to many pieces of hardware and software, and the
code table turns up everywhere in reference material, printed manuals and
online help pages, Web sites, and even this book! At its inception, few could have
predicted how widely it would spread. Of historical interest is the ANSI (Ameri-
can National Standards Institute, 1968) standard itself, a version of which was
published (prior to final ratification) in Communications of the ACM (Gorn,
Bemer, and Green, 1963).

216 F O U R | D O C U M E N T S

The principal aim of ASCII was to unify the coding of numeric and textual
information—the digits and the Roman alphabet—between different kinds of
computer equipment. However, decisions over other symbols have had a subtle
yet profound influence. Few keyboards in the 1960s possessed a backslash key,
yet so ingrained is its use today to convey special meanings—such as a directory
separator and to protect the meaning of certain characters in certain contexts—
that computing would be almost inconceivable without it. It is here that the
concept of escaping appeared for the first time.

The official title for Unicode is tongue-twisting and mind-boggling: The
International Standard ISO/IEC 10646-1, Information Technology—Universal
Multiple-Octet Coded Character Set (UCS)—Part 1: Architecture and Basic
Multilingual Plane. Part 1 covers the values U+000000–U+10FFFF; further val-
ues are covered by Part 2. We mentioned that the ISO standard and the Unicode
Consortium differ inconsequently over the size of the character space. Another
difference is that Unicode augments its definition with functional descriptions
to help programmers develop compatible software. For example, it defines an
algorithm for displaying bidirectional text (Unicode Consortium, 2000). The
consortium uses the Web site www.unicode.org to expedite the release of ver-
sions, revisions, and amendments to the standard, and information about Uni-
code version 3.0 through to version 3.2 is available there.

Technical details of searching and indexing are presented in Managing Giga-
bytes (Witten, Moffat, and Bell, 1999), which gives a comprehensive and detailed
technical account of how to index documents and make them rapidly accessible
through full-text queries. This and other relevant books on information retrieval
are mentioned in the “Notes and sources” section of Chapter 3 (Section 3.7). The
material on segmenting Chinese text is from Teahan et al. (2000), while Table 4.4,
giving English segmentation results, is due to Teahan (1997).

Different scholars transcribe the Fante word for welcome in different ways.
We have chosen the version with an umlaut above the second a to illustrate
interesting text representation issues. Other common renderings are akwāba
and akwaaba.

All file formats described in this chapter are well documented, except where
commercial interests prevail. There is a rich vein of online resources, as you
might expect from the area and the working habits of those in it, which are easy
to find using Internet classification directories. On both Google and Yahoo, file
formats are classed under Computer, then Data formats. Although slightly dated,
Kientzle’s (1995) Internet File Formats is an excellent compendium that brings
together a wide sweep of formats in one place. Its covers the same major topics as
this chapter, but in more detail, and describes other widely used formats not dis-
cussed here.

The definitive guides to PostScript and PDF are the reference manuals pro-
duced by Adobe (1999, 2000), the company responsible for these formats. They

4 . 7 N O T E S A N D S O U R C E S 217

practice what they preach, putting their manuals online (in PDF format) on their
Web site (www.adobe.com). A supplementary tutorial and cookbook (Adobe,
1985) gives worked examples in the PostScript language. Aladdin Enterprises’
ghostscript is a software PostScript interpreter that provides a useful means of
experimentation. Released under the GNU Public License, it is available for all
popular platforms (www.ghostscript.com). Our description of PostScript and
PDF mentions several graphics techniques, such as transformations, clipping,
and spline curves, that are explained in standard textbooks on computer graphics
(e.g., Foley et al., 1990). The technique for extracting plain text from PostScript
files is described by Nevill-Manning, Reed, and Witten (1998).

An initial description of Microsoft’s RTF format appears in Microsoft Systems
Journal (Andrews, 1987), and its continued expansion is documented through
the Microsoft Developers’ Network. Subscribers receive updates on CD-ROM,
while the same information is provided for general consumption at http://msdn.
microsoft.com. At one stage an internal technical document describing the native
Word format was published through this outlet, but that has since been discon-
tinued. LaTeX, which is based on the TeX system invented by Knuth (1986), is
described in many books, such as Lamport (1994). A useful online source is
Tobias Oetiker’s Not so short introduction to LaTeX2e at http://people.ee.ethz.
ch/~oetiker/lshort. Bountiful collections of packages can be found on Internet
sites such as the Comprehensive TeX Archive Network (www.ctan.org/).

For an introduction to the general area of multimedia systems (image, sound,
and video), we recommend Chapman and Chapman’s (2000) Digital Multime-
dia. This useful text also discusses HTML, XML, and cascading style sheets, top-
ics that appear in the next chapter. More specific to images, Murray and van
Ryper’s (1996) Encyclopedia of Graphics File Formats covers an extensive range—
not just the three representative formats described here. It also includes broad-
brush descriptions of PostScript, RTF, MPEG, QuickTime, and AVI, for all of
these qualify as graphics formats at some level. For a comprehensive explanation
of the JPEG standard, see Pennebaker and Mitchell (1993). The LZW compres-
sion scheme used for the GIF image format is due to Welch (1984), while the
earlier LZ77 that underlies gzip is the classic work of Ziv and Lempel (1977).

Video Demystified (Jack, 2001), written with an engineering bias, explains the
labyrinth of video and TV standards, with separate chapters on MPEG-1 and
MPEG-2. The International Telecommunication Union (ITU) is now responsi-
ble for both CCIR and CCITT standards, since these two bodies joined forces.
The definitive references for MPEG are the standards themselves: MPEG-1 is
ISO/IEC 11172; MPEG-2 is ISO/IEC 13818; and MPEG-4 is ISO/IEC 14496.
Microsoft’s Audio Video Interleave (AVI) format is subsumed by its fully fledged
Advanced Streaming Format (ASF) for streaming audio and video over the

218 F O U R | D O C U M E N T S

Internet. This is an integral part of its “media technologies”: a software develop-
ment kit and applications that also run on the Apple Macintosh.

Pohlman’s (2000) Principles of Digital Audio is a comprehensive resource for
audio that moves from introductory material, through hardware and formats
(including streaming), to signal processing techniques. For a text that is more
focused on formats and practical programming, see Kientzle’s (1997) A Pro-
grammer’s Guide to Sound.

Carnegie Mellon’s InforMedia digital video library project (www.informedia.
cs.cmu.edu), a substantial project that has run for many years, is an excellent and
mature example of a multimedia digital library.

4 . 7 N O T E S A N D S O U R C E S 219

221

Markup and
metadata
Elements of organization

If documents are the digital library’s basic building blocks, markup and metadata are its
basic elements of organization. Markup is used to specify the structure of indi-
vidual documents and control how they look when presented to the user. Meta-
data is used to expedite access to relevant parts of the collection through search-
ing and browsing. Part of the job of markup is to identify metadata.

Markup controls two complementary aspects of an electronic document:
structure and appearance. Structural markup makes certain aspects of the docu-
ment structure explicit: typically section divisions, headings, subsection struc-
ture, enumerated and bulleted lists, emphasized and quoted text, footnotes, tab-
ular material, and so on; these structural items can be considered metadata for
the document. Appearance is controlled by presentation or formatting markup
which dictates how the document appears typographically: page size, page
headers and footers, fonts, line spacing, how section headers look, where figures
appear, and so on. Structure and appearance are related by the design of the
document, that is, a catalog—often called a style sheet—of how each structural
item should be presented.

Documents are the digital library’s building blocks. It is time to step down

from our high-level discussion of digital libraries—what they are, how they

are organized, and what they look like—to nitty-gritty details of how to rep-

resent the documents they contain. To do a thorough job we will have to

descend even further and look at the representation of the characters that

make up textual documents and the fonts in which those characters are

portrayed. For audio, images and video we examine the interplay

between signal quantization, sampling rate and internal redundancy that

underlies multimedia representations.Documents are the digital library’s

building blocks. It is time to step down from our high-level discussion of dig5

222 F I V E | M A R K U P A N D M E T A D A T A

The traditional art of typography is nicely defined by Stanley Morison, the
doyen of 20th-century British typographers, as

the art of rightly disposing printed material in accordance with specific purpose; of
so arranging the letters, distributing the space and controlling the type as to aid to
the maximum the reader’s comprehension of the text.

There is a strong link between structure and presentation: both are intended to aid
the reader’s comprehension “to the maximum.” However, sometimes the author’s
requirements for certain elements of a document violate the usual distinction
between form and content, or physical and logical structure. For example, eye-
catching posters reflect the content in the structure to produce an attractive,
evocative, and informative whole. Sometimes the medium is a goodly part of the
message.

It can be difficult to divorce content from presentation—the message from
the medium. Particularly in these days of electronic publishing, authors become
fond of determining exactly how their work is presented on the page or screen.
To them, editors and collection-builders seem inordinately obsessed with uni-
formity, seeking a Procrustean mold into which all documents must fit. We see
the tension between the two points of view in this chapter in the development of
HTML and the emergence of style sheets and XML.

The term metadata has already been used frequently throughout this book. It
sounds impressive—we have heard it described, tongue firmly in cheek, as “cat-
aloging for men.” It was introduced in Chapter 1 using the catchphrase “data
about data.” This is glib but not very enlightening—in some sense, all data is
about data. Where does data end and metadata begin?

The notion of metadata is not absolute but relative. It is only really meaning-
ful in a context that makes clear what the data itself is. Metadata is generally
taken to be structured information about a particular information resource.
Information is “structured” if it can be meaningfully manipulated without
understanding its content. For example, given a collection of source documents,
bibliographic information about each document would be metadata for the col-
lection—the structure is made plain, in terms of which pieces of text represent
author names, which represent titles, and so on. But given a collection of biblio-
graphic information, metadata might comprise some information about each
bibliographic item, such as who compiled it and when.

Different kinds of metadata are designed for different purposes. Markup—
particularly structural markup—is metadata that is intended to assist users in
navigating around documents, as well as in comprehending the structure of the
information they contain. Formatting markup, on the other hand, is more likely
to be regarded as part of the document content than as metadata.

Another kind of metadata is information designed to assist in discovering rel-
evant documents by searching and browsing around information collections.

Names of authors, titles, key phrases, and so on come into this category. Often
called metadata for resource discovery, this is most important for our purposes,
because the value of information in digital libraries depends on how easily it can
be located. Another kind of metadata gives information about rights manage-
ment and access control—policies that define rights, restrictions, and the rules
that govern who can do what with digital resources. A final kind is metadata for
administration and preservation: all the information that might be necessary to
preserve the integrity and functionality of a digital resource over an extended
period of time.

There is an important distinction between explicit and extracted metadata.
Explicit metadata is determined by a person after careful examination and
analysis of the document. Creating a traditional library catalog entry (a MARC
record, which we discuss later in this section) is a job for a well-trained cata-
loger: it takes between one and two hours to generate a new entry. A large set of
bibliographic records is thus a substantial investment. For example, in 1997 the
Library of Congress cataloged nearly 300,000 bibliographic entries, at a total
cost of around 25 million dollars. The Online Computer Library Center
(OCLC), a central cataloging organization in the U.S., has about 34 million
MARC records—representing an investment of some 30,000 years of human
labor! It shares these records, so that member libraries can reuse the informa-
tion when they acquire a new book that has been cataloged elsewhere.

Extracted metadata is obtained automatically from the document’s contents.
This is usually hard to do reliably, and although extracted metadata is cheap, it is
often of questionable accuracy. Text mining, which may be defined as the
process of analyzing text to extract information that is useful for particular pur-
poses, is a hot research topic nowadays.

This chapter begins by looking at markup and then progresses to metadata.
We first describe HTML, the Hypertext Markup Language, which was designed
specifically to allow references, or hyperlinks, to other files—including picture
files, giving a natural way to embed illustrations in the body of an otherwise tex-
tual document. It quickly became augmented (some would say “contaminated”)
with a host of other facilities, many of which provide formatting rather than
structural markup.

Whatever its faults, HTML, being the foundation for the Web, is a phenomenal-
ly successful way of representing documents. It includes a basic facility for express-
ing associated metadata. However, when dealing with collections of documents,
different ways of expressing formatting and metadata in HTML tend to generate
inconsistencies—even though the documents may look the same. Although these
inconsistencies matter little to human readers, they are a bane for automatic pro-
cessing of document collections. The real advantage of structural markup is that it
encourages document structure to be expressed the same way, and achieves consis-
tency in appearance automatically, using machine-readable style sheets.

I N T R O D U C T I O N 223

XML is an extensible markup language that allows you to declare what syntac-
tic rules govern a particular group of files. More precisely, it is referred to as a
metalanguage—a language used to define other languages. XML provides a flex-
ible framework for describing document structure and metadata, making it ide-
ally suited to digital libraries. It has achieved widespread use in a short period of
time—reflecting a great demand for standard ways of incorporating metadata
into documents—and underpins many other standards. Among these are ways
of specifying style sheets that define how particular families of XML documents
should appear on the screen or printed page.

There are several widely used standards for representing bibliographic meta-
data. The machine-readable cataloging (MARC) standard is a rich and complex
format with hundreds of different fields and subfields. Developed by the library
community, it has formed the basis of library catalogs since the 1970s. The Dublin
Core is a more recent development, intended specifically for describing electronic
documents and widely used in digital library projects. It adopts a minimalist
approach, defining only 15 items for describing facets of documents. BibTeX and
Refer are formats for bibliographic metadata which, although not designed by
information science professionals, are widely used in technical fields, particularly
mathematics, physics, and computer science. There are many large databases, and
collections of databases, that include bibliographic information in these forms.

We also cover some metadata standards designed specifically for nontextual
material. TIFF is a widely used file structure that accommodates numerous dif-
ferent formats for images, and it includes a descriptive metadata facility. MPEG-7
is an emerging standard for describing multimedia documents.

Finally we examine some techniques for extracting metadata from document
text. These are advanced topics that do not necessarily impact the practical con-
struction of digital libraries, and readers who are keen to get ahead and build
their own digital libraries can safely skip them. However, this section describes
the methods underlying some of the facilities in the Greenstone digital library
software, which we will meet in the next chapter, and you should plan to return
to it later if you become curious about how they work.

5.1 Hypertext markup language: HTML

HTML, or the Hypertext Markup Language, is the underlying document format
of the World Wide Web, which makes it a baseline for interactive viewing. Like
all major document formats, it has undergone growing pains, and its history
reflects the anarchy that characterized the Web’s evolution. Since the conception
of HTML in 1989, its development has been driven by software vendors who
compete for the Web browser market by inventing new features to make their
product distinctive—the “browser wars.”

224 F I V E | M A R K U P A N D M E T A D A T A

Many new features play on people’s desires to exert more control over how their
documents appear. To take a simple example, who gets to control font attributes
such as typeface and size—writer or reader? (If you think this is a rather trivial
issue, imagine what it means for the visually disabled.) Allowing authors to dictate
details of how their documents appear conflicts sharply with the original vision
for HTML, which divorced document structure from presentation and left deci-
sions about rendering documents to the browser itself. It makes the pages less pre-
dictable because viewing platforms may differ in the support they provide. For
example, in HTML text can be marked up as “emphasized,” and while it is com-
mon practice to render such items in italics, there is no requirement to follow this
convention: boldface would convey the same intention.

Out of the maelstrom an HTML standard has emerged. Consolidated
through successive versions, the situation continues to develop. In this section
we describe the HTML language. The story is continued in the next section
when we present the background to XML.

Basic HTML

Modern markup languages use words enclosed in angle brackets as tags to
annotate text. For example, <title>A really exciting story</title> defines the title
of an HTML document. In HTML, tag names are case insensitive. For each tag
the language defines a “closing” version, which gives the tag name preceded by a
slash character (/). However, closing tags in certain situations can be omitted—a
practice that some decry as impure while others endorse as legitimate short-
hand. For example, <p> is used to mark up paragraphs, and subsequent <p>s
are assumed to automatically end the previous paragraph—no intervening
</p> is necessary. The shortcut is only possible because nesting a paragraph
within a paragraph—the only other plausible interpretation on encountering
the second <p>—is invalid in HTML.

Opening tags can include a list of qualifiers known as attributes. These have
the form name="value". For example, <img src="gsdl.gif " width="537"
height="17"> specifies an image with a given source file name (gsdl.gif) and
given dimensions (537 × 17 pixels).

Because the language uses characters such as <, >, and " as special markers, a
way is needed to display these characters literally. In HTML these characters are
represented as special forms called entities and given names like < for “less
than” (<) and > for “greater than” (>). This convention makes ampersand
(&) into a special character, which is displayed by & when it appears liter-
ally in documents. The semicolon needs no such treatment because its literal
use and its use as a terminator are syntactically distinct. The same kind of spe-
cial form is used for characters in extended fonts, such as è for è.

5 . 1 H Y P E RT E X T M A R K U P L A N G UA G E : H T M L 225

Figure 5.1 shows a sample page that illustrates several parts of HTML, along
with a snapshot of how it is rendered by a Web browser—it contains “typical”
HTML code that you find on the Web, rather than exemplary HTML. Docu-
ments are divided into a header and a body. The header gives global information:
the title of the document, the character encoding scheme, any metadata. The

226 F I V E | M A R K U P A N D M E T A D A T A

<html>
<head>
<title>Greenstone Digital Library Software</title>
<meta name="Creator" content="The New Zealand Digital Library project">
<meta http-equiv="Content-Type" content="text/html; charset="utf-8">

</head>

<!-- Set background to Maori motif -->
<body bgcolor="#ffffff" text="#000000" background="heke.gif">

<center>
<table width="537">
<tr><td><center></center>

<table>
<tr valign=top>
<td>

<h2>Kia papapounamu te moana</h2>
<p> kia hora te marino,

kia tere te karohirohi,

kia papapounamu te moana

<p> may peace and calmness surround you,

may you reside in the warmth of a summer's haze,

may the ocean of your travels be as smooth as the polished
greenstone.

</td>
<td>
<img src="gsdl.gif" width="140" height="77" border="0"
alt="Greenstone Digital Library Software" hspace=0>

</td>
</tr>
</table>

<p> Greenstone is a semi-precious stone that (like this software)
is sourced in New Zealand. In traditional Maori society it was the
most highly prized and sought after of all substances. It can absorb
and hold <i>wairua</i>, which is a spirit or life force ...

Some special symbols: < & " ä ā ; #

<p><center></center>
<p>New Zealand Digital Library Project

</table>
</center>

</body>
<html>

(a)

Figure 5.1 (a) Sample HTML code involving graphics, text, and some special symbols;
(b) snapshot rendered by a Web browser. (continued on following page)

<meta> tag is used in Figure 5.1a to acknowledge the New Zealand Digital
Library Project as the document’s creator. Creator imitates the Dublin Core ele-
ment (see Section 5.4) that is used to represent the name of the entity responsible
for generating a document, be it a person, organization, or software application;
however, there is no requirement in HTML to conform to such standards. Fol-
lowing the header is a comment and a command that sets the background to a
Polynesian motif.

This particular page is laid out as two tables. The first controls the main layout.
The second, nested within it, lays out the poem and the image of a greenstone
pendant. The tags <tr> and <td> are used to mark table rows and cells, respec-
tively. The list item near the end illustrates various special characters. Most
take the &...; form, but the last two (; and #) do not need to be escaped because
their normal meaning is syntactically unambiguous. To generate the letter a with a
line above (called a macron and used in the Māori language), the appropriate Uni-
code UTF-8 value is given in decimal (#257), demonstrating one way of specifying
non-ASCII characters. The example illustrates several other features, including
images specified by the tag, paragraphs beginning with <p>, italicized
words given by <i>, and a bulleted list introduced by (for “unordered list”),
along with a tag for each list item (just one in this case).

5 . 1 H Y P E RT E X T M A R K U P L A N G UA G E : H T M L 227

(b)

Figure 5.1 (continued)

Hyperlinks are an important feature of HTML. In the example the tag pair
<a> . . . near the end defines a link anchor. The document to link to—in
this case, another page on the Web—is specified as an attribute. Hyperlinks can
reference audio and video material and PDF documents—formats for these
were covered in Chapter 4—as well as many others. For instance, the Virtual
Reality Modeling Language, VRML, specifies a navigable virtual reality experi-
ence. Browsers display the anchor text—the text appearing between the start
and end hyperlink tag—differently to emphasize the presence of a hyperlink.
When clicked, the browser loads the new document.

HTML was originally encoded in ASCII for transmission over byte-oriented
protocols. However, with the advent of Unicode the default has been changed to
UTF-8, which, as we learned in Chapter 4 (Section 4.1), is backward compatible
with ASCII. Other encoding schemes are supported by setting the charset
attribute in a header element to the appropriate encoding name. In Figure 5.1a,
line 5 sets it explicitly to UTF-8. Since it is the default, the behavior would be the
same if the attribute were omitted.

HTML has many more features. For example, locally defined link anchors
permit navigation within a single document. Fonts, colors, and page back-
grounds can be specified explicitly. Forms can be created that collect data from
the user—such as text data, fielded data, and selections from lists of items.

A mechanism called frames allows an HTML document to be tiled into
smaller, independent segments, each an HTML page in its own right. A set of
frames, called a frameset, can be displayed simultaneously. This is often used to
add a navigation bar to every page of a Web site, along the top or down the side
of the browser pane. When a link in the navigation bar is clicked, a new page is
loaded into the main display frame, and the bar remains in place. Clicking on a
link in the main display frame also loads the new page into the main frame.

Frames were introduced by one vendor during the “browser wars” and soon
became supported by other browsers too. However, they have serious draw-
backs. For instance, now that a browser can display more than one HTML docu-
ment at a time, what happens when you create a bookmark? People often click
around a site to reach an interesting document, then bookmark it in the usual
way—only to find that the bookmark returns not to the intended page but to
the point where the site split into frames instead. This can be very frustrating.

Many of the effects for which frames are currently used—such as persistent
navigation bars—can also be accomplished by the newer and more principled
mechanism of style sheets, avoiding the problems of frames. We describe style
sheets in Section 5.3.

Using HTML in a digital library

As the lingua franca for the Web, HTML underpins virtually all digital library
interfaces. Moreover, digital library source documents are often presented in

228 F I V E | M A R K U P A N D M E T A D A T A

HTML form. This eliminates most of the difficulties with the plain text repre-
sentation introduced in Chapter 4 (Section 4.2)—for example, the HTML
header disambiguates the character set, while the
 and <p> tags disam-
biguate line and paragraph breaks.

To extract text from HTML documents for indexing purposes, the obvious
strategy of parsing them according to a well-defined grammar quickly runs into
difficulty. The permissive nature of Web browsers encourages authors to depart
from the defined standard. A better way to identify and remove tags is to write
them in the form of “regular expressions” (a scheme described in the next sec-
tion), and this generally achieves greater success for less effort. An alternative is
to use the very kind of application that caused the complication in the first
place: Web browsers. The plain text browser lynx provides a fast and reliable
method of extracting text from HTML documents—you give it a command-
line argument (dump) and a URL, and it dumps out the contents of that URL in
the form of plain text.

As the example in Figure 5.1 illustrates, HTML allows metadata to be speci-
fied explicitly using <meta> tags. However, the mechanism it provides is rather
limited. For one thing, you might hesitate before tampering with source docu-
ments by inserting new metadata (perhaps determined separately, perhaps
mined from the document content) in this way. When developing a digital
library you need to consider whether it is wise to add new information that can-
not be disentangled from that present in the source document, or whether it is
acceptable to serve up an altered version in place of the original.

5.2 Extensible markup language: XML

During the 1970s and 1980s a generalized system for structural markup was devel-
oped called the Standard Generalized Markup Language or SGML; it was ratified
as an ISO international standard in 1986. SGML is not a markup language but a
metalanguage for describing markup formats. It is popular among large organiza-
tions such as government offices and the military. However, it is rather intricate,
and it has proven difficult to develop flexible software tools for the fully blown
standard. This fact was the catalyst for the “extensible markup language,” XML.

XML is a simplified version of SGML designed specifically for interoperabil-
ity over the Web. Informally speaking it is a dialect of SGML, whereas HTML is
an example of a markup language that SGML can describe. It provides a flexible
way of characterizing document structure and metadata, making it well suited
to digital libraries. It has achieved widespread use in an astonishingly short
stretch of time.

XML has strict syntactic conventions that make it impossible for it to
describe ancient forms of HTML exactly. The differences expose parts of the

5 . 2 E X T E N S I B L E M A R K U P L A N G UA G E : X M L 229

early specifications that were loosely formed—ones that cause difficulty when
parsing and processing documents. However, with a little trickery—for exam-
ple, judicious placement of white space—it is possible to generate an XML spec-
ification of an extremely close approximation to HTML. Put another way, you
can take advantage of HTML’s sloppy specification to produce files that are valid
XML. Such files have twin virtues: they can be viewed in any Web browser, and
they can be parsed and processed by XML tools.

Development of markup and stylesheet languages

Web culture has advanced at an extraordinary pace, creating a melee of incre-
mental—and at times conflicting—additions and revisions to HTML, XML,
and related standards. Figure 5.2 summarizes the main developments by year.

Although it has been retrospectively fitted with XML descriptions, HTML
was created before XML was conceived and drew on the more general expressive
capabilities of SGML. It was also forged in the heat of the browser wars, in which
Web browsers sprouted a proliferation of innovative nonstandard features that
vendors thought would make their products more appealing. As a result
browsers became forgiving: they process files that flagrantly violate SGML syn-
tax. One example is tag scope overlap—writing <i>one two </i>three
to produce one two three—despite SGML’s requirement that tags be strictly
nested. During subsequent attempts at standardization, more tags were added
that control typeface and layout, features deliberately excluded from HTML’s
original design.

230 F I V E | M A R K U P A N D M E T A D A T A

Year Metalanguage
Specific language instance

(ratified standard)

1986

1992

1995

1997
1998

2000
2001

SGML

XML

HTML 1.0

HTML 2.0

HTML 3.2
HTML 4.0

XHTML 1.0
XHTML 1.1

and beyond Future revisions

Browser-driven expansion

Formatting progressively
managed by style sheets
(affected tags deprecated)

XSLXLink
XMLSchema

1999
...

...

Figure 5.2 The relationship between XML, SGML, and HTML.

The notion of style sheets was introduced to resolve the conflict between pre-
sentation and structure by moving formatting and layout specifications to a sep-
arate file. They purify the HTML markup to reflect, once again, nothing but
document structure. Different documents can share a uniform appearance by
adopting the same style sheet. Equally, different style sheets can be associated
with the same document. Style sheets specify a sequence—a cascade—of inher-
ited stylistic properties and are dubbed cascading style sheets.

Cascading style sheets were first specified in 1996, quickly followed by an
expanded backward-compatible version two years later. Style sheets can be
adapted to different media by including formatting commands that are grouped
together and associated with a given medium—screen, print, projector, hand-
held device, and so on. Guided by the user (or otherwise), applications that
process the document use the relevant set of style commands. A Web browser
might choose screen for online display but switch to print when rendering the
document in PostScript.

HTML version 4 promotes the use of style sheets. Moreover, it encourages
them by officially deprecating formatting tags and other elements that affect
presentation rather than structure. This is accomplished through three subcate-
gories to the standard. Strict HTML excludes all frameset commands and all
deprecated tags and elements listed in the standard. Layout is expressed only
through style sheets. Transitional HTML shuns framesets but allows deprecated
commands. Style sheets are the principal way of specifying layout, but depre-
cated commands may also be included to provide compatibility with older
browsers. Frameset HTML permits both frameset commands and deprecated
tags and elements. HTML 4 files declare their subcategory at the start of the
document. The format also adds improved support for multidirectional text
(not just left to right) and enhancements for improved access by people with
disabilities.

With the emergence of XML, an HTML subset called XHTML has been
defined that obeys the stricter syntactic rules imposed by the XML metalan-
guage. For instance, tags in XML are case sensitive, so XHTML tags and attrib-
utes are defined to be lowercase. Attributes within a tag must be enclosed in
quotes. Each opening tag must be balanced by a corresponding closing tag (or
be a single tag that combines opening and closing, with its own special syntax).

The power and flexibility of XML is further increased by related standards.
Three are given in Figure 5.2 (there are others). The “extensible stylesheet lan-
guage” XSL represents a more sophisticated approach than cascading style
sheets: it can also transform data. The “XML linking language” XLink provides
a more powerful method for connecting resources than HTML hyperlinks: it
has bidirectional links, can link more than two entities, and associates metadata
with links. Finally, XML Schema provides a rich mechanism for combining

5 . 2 E X T E N S I B L E M A R K U P L A N G UA G E : X M L 231

components and controlling the overall structure, attributes, and data types
used in a document. In this chapter we concentrate on the XML extensions that
yield presentation capabilities comparable to HTML. In Chapter 8 we discuss
advanced features of this family that take documents well beyond the bound-
aries of HTML.

From a technical standpoint it is easier to work with XHTML and its siblings
than HTML because they conform more strictly to a defined syntax and are
therefore easier to parse. In reality, however, digital libraries have to handle
legacy material gracefully. Today’s browsers do in fact cope remarkably well with
the wide range of HTML files: they take backward compatibility to impressive
levels. To help promote standardization a software utility called HTML Tidy
converts older formats. The process is largely automatic, but human interven-
tion may be required if files deviate radically from recognized norms.

The XML metalanguage

Figure 5.3 shows an example that encodes a formatted list of information about
United Nations agencies in XML. For each agency the file records its full name,
an optional abbreviation, and the URL of a photograph of its headquarters.
Included with the name is the address of the headquarters, stored as an attribute.

The file contains three broad sections, separated by comments in the form
<!-- . . . -->. Line 1 is a header: it uses the special notation <? . . . ?> to denote an
application-processing instruction. This syntax originates in SGML, which uses
it to embed information for specific application programs that process the doc-
ument. Here it is used to declare the version of XML, the character encoding
(UTF-8), and whether or not external files are used. Lines 5 to 19 dictate the
syntactic structure in which the remainder of the file is expressed, in the form of
a Document Type Definition (DTD). Lines 21 to 44 provide the content of the
document.

The style of the content section is reminiscent of HTML. The tag specifica-
tions have the same syntactic conventions, and many tags are identical—exam-
ples are <Head>, <Title>, and <Body>. However, in lines 27 to 40 the markup
forms structures that HTML cannot represent.

Being a metalanguage, XML gives document designers a great deal of freedom.
Here the designer has chosen to make the main document structure resemble
HTML, but there is no requirement to do so. Not only could one choose different
tag names, but different ways could be used to express the information. For
example, Figure 5.3 gives the headquarters address as the hq attribute of the
<Name> tag. Instead a new tag pair could have been defined to contain this
information. It could be forced to appear immediately following the <Name>
element, or left optional, or sited anywhere within the <Agency> element.

232 F I V E | M A R K U P A N D M E T A D A T A

Such structural decisions are recorded in the DTD (lines 5–19). DTD tags use
the special syntax <! . . . > and express keywords in block capitals. For example,
ELEMENT and ATTLIST are used to define tags and tag attributes. Our document
designer decided to capitalize the initial letter of all document tags and leave
attributes in lowercase. This improves the legibility of Figure 5.3 considerably.

Line 5 starts the DTD, and the square bracket syntax [. . .] indicates that the
DTD will appear in-line. (It must, for line 1 declared that the file stands alone.)
Alternatively the DTD can be placed in an external file, referred to by a URL—
and this is normally desirable in practice.

5 . 2 E X T E N S I B L E M A R K U P L A N G UA G E : X M L 233

1 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>
2 <!--
3 Document Type Definition (DTD) for Non-Government Organizations (NGOs)
4 -->
5 <!DOCTYPE NGODoc [
6 <!ELEMENT NGODoc (Head,Body)>
7 <!ELEMENT Head (Title)>
8 <!ELEMENT Body (#PCDATA|Agency)*>
9 <!ELEMENT Agency (Name,(Abbrev?|Photo*)+)>
10 <!ELEMENT Title (#PCDATA)>
11 <!ELEMENT Name (#PCDATA)>
12 <!ATTLIST Name
13 hq CDATA #IMPLIED>
14 <!ELEMENT Abbrev (#PCDATA)>
15 <!ELEMENT Photo EMPTY>
16 <!ATTLIST Photo
17 src CDATA #REQUIRED
18 desc CDATA "A photo">
19]>
20 <!-- Sample content conforming to DTD -->
21 <NGODoc>
22 <Head>
23 <Title>Agencies of the United Nations</Title>
24 </Head>
25 <Body>
26 <Agency>
27 <Name hq="Paris, France">United Nations Educational, Scientific
28 and Cultural Organization</Name>
29 <Abbrev>UNESCO</Abbrev>
30 <Photo src="photos/unesco_hq.jpg"
31 desc="Aerial photo of main UNESCO building"/>
32 </Agency>
33 <Agency>
34 <Name hq="Rome, Italy">Food and Agricultural Organization</Name>
35 <Abbrev>FAO</Abbrev>
36 <Photo src="photos/fao_hq.jpg"/>
37 </Agency>
38 <Agency>
39 <Name hq="Washington, USA">World Bank</Name>
40 <Photo src="photos/worldbank_hq.jpg"/>
41 </Agency>
42 <!-- and so on ... -->
43 </Body>
44 </NGODoc>

Figure 5.3 Sample XML document.

New elements are introduced in lines 6 to 11 by the keyword ELEMENT, fol-
lowed by the new tag name and a description of what the element may contain.
A leaf is an element that comprises plain text, with no markup. This is accom-
plished through parsed character data and declared as #PCDATA. Despite its
primitive nature, special characters may be included. For example, when the
<Title> tag defined on line 10 is used, any of the special markup characters may
appear in the title’s text. These are encoded in the familiar HTML way—<
& and so on. (This convention originated in SGML.)

Lines 6 to 9 describe nonleaf structures. These are defined in a form known as
a regular expression. Here a comma signifies an ordered sequence: line 6 declares
that the top-level element <NGODoc> contains a <Head> element followed by a
<Body> element. A vertical bar (|) represents a choice of one element from a
sequence of named elements, and an asterisk (*) indicates zero or more occur-
rences. Thus <Body> (line 8) is a mixture of parsed character data and <Agency>
elements where it is permissible for nothing at all to appear. A plus (+) means
one or more occurrences, and a question mark (?) signifies either nothing or just
one occurrence. Line 9 includes all four symbols, |, *, +, and ?: it declares that
<Agency> must include a name element, but that <Abbrev> is optional and there
can be zero or more occurrences of <Photo> (the example is contrived: there are
more concise ways of expressing the same thing). The inner pair of brackets to
the expression bind these last two tags together, adding the extra stipulation that
there must be one or more occurrences of these <Abbrev> and <Photo> options.

Attributes also give a set of possible values, but here there is no nesting. Lines
12 and 13 show an example. The attribute is signaled by the keyword ATTLIST,
followed by the element to which it applies (Name), the attribute’s name (hq),
its type (character data), and any appearance restrictions (this one is optional).
Lines 16 to 18 show another example, which introduces two attributes of the
element Photo. Line 17 states that the src attribute is required, while line 18 pro-
vides a default value (namely “A photo”) for the desc attribute.

In addition to < and & XML incorporates definitions for > '
and ". These are called entities, and new ones can be added in the DTD
using the syntax ENTITY name "value". For instance, although XML does not
have a definition for à as HTML does, one can be defined by <!ENTITY agrave
"à">, which relies on the Unicode standard for the numeric value. Entities
are not restricted to single characters, but can be used for any excerpt of text
(even if it is marked up). For example, <!ENTITY howto "How to Build a Digital
Library"> is a shorthand way of encoding the title of this book.

If several elements were to share exactly the same attributes, it would be
tedious (and error-prone) to repeat the attribute definitions in each element. In
XML this can be handled using a special type of entity known as a parameter
entity. To illustrate it, Figure 5.4 shows a modified and slightly restructured ver-
sion of the DTD in Figure 5.3 that defines two attributes ident and style under

234 F I V E | M A R K U P A N D M E T A D A T A

the name sharedattrib (lines 3–5), which is then used to bestow these attributes
on the <Title>, <Abbrev>, and <Name> elements (lines 11–14). Parameter enti-
ties are signaled using the percent symbol (%) and provide a form of shorthand
for use within a DTD.

Declaring the shared attribute style as NMTOKEN (line 4) restricts this
attribute’s characters to alphanumeric characters plus period (.), colon (:),
hyphen (-), and underscore (_), where the first character must be a letter. Its
twin ident is defined as ID (line 5), which is the same as NMTOKEN with the
additional constraint that no two such attributes in the document can have the
same value. ID therefore provides a mechanism for uniquely identifying its ele-
ments. The concept is already present in HTML for any attribute with the par-
ticular name id. In XML uniqueness can be bestowed on any attribute, whatever
its name—such as ident.

DTD syntax also supports enumerated types, although none are present in
the example. It is also permissible to have lists of tokens separated by white
space (NMTOKENS) and attributes that are references to ID attributes (IDREF).

Parsing XML

A document that conforms to XML syntax but does not supply a DTD is said to
be well formed. One that conforms to XML syntax and does supply a DTD is
said to be valid—providing the content does indeed abide by the syntactic con-
straints defined in the DTD. It is also possible to store a DTD externally, replac-
ing the bracketed section in lines 5 to 19 of Figure 5.3 by a URL. This allows
documents of the same structure to be shared within an organization or, if the
DTD is publicly available, between organizations.

XML allows you to define new languages. It is easy to develop parsers for
them. Moreover, because of the syntactic constraints imposed by XML, generic

5 . 2 E X T E N S I B L E M A R K U P L A N G UA G E : X M L 235

1 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>
2 <!DOCTYPE NGODoc [
3 <!ENTITY % sharedattrib
4 " style NMTOKEN #IMPLIED
5 ident ID #IMPLIED ">
6 <!ELEMENT NGODoc (Title,Body)>
7 <!ELEMENT Body (Name|Abbrev)+>
8 <!ELEMENT Title (#PCDATA)>
9 <!ELEMENT Name (#PCDATA)>
10 <!ELEMENT Abbrev (#PCDATA)>
11 <!ATTLIST Title %sharedattrib;>
12 <!ATTLIST Abbrev %sharedattrib;>
13 <!ATTLIST Name %sharedattrib;
14 HQ CDATA #IMPLIED>
15]>

Figure 5.4 Sample DTD using a parameterized entity.

parsers are available that are capable of parsing any XML file. If a DTD is present,
such parsers can also check that the file is valid. However, merely parsing a docu-
ment—even with respect to a DTD—is of limited utility. The result of a parser is
just a yes/no indication of whether the document conforms to the general rules
of XML or not (or the more specific DTD or not).

Far more useful would be a way of specifying what the generic parser should
do with the data it is processing. This is arranged by having the generic tool
build a parse tree and providing a programming interface—commonly called an
API or “application program interface”—that lets the user traverse the tree and
retrieve the data it contains.

The result of parsing any XML file is a root node whose descendants reflect
both text content and nested tags. At each tag’s node are stored the values of the
tag’s attributes. There is a cross-platform and cross-language API called the doc-
ument object model (DOM) which allows you to write programs that access and
modify the document’s content, structure, and style.

The XML language includes defaults, so that if a particular value is missing,
the standard describes what value it should take. For example, if no encoding is
mentioned in the XML header declaration line, UTF-8 is assumed.

Using XML in a digital library

XML is a powerful tool. It allows file formats within an organization, such as a
digital library, to be rationalized and shared. Alongside any material they pub-
lish, organizations can provide an explanation of the structures used in the form
of a DTD. Different organizations can develop comprehensive formats for shar-
ing information by formulating appropriate DTDs.

A notable example is the Text Encoding Initiative (TEI), founded in 1987,
which developed a set of DTDs for representing scholarly texts in the humani-
ties and social sciences. SGML was the implementation backbone, but the work
has since been reconciled with XML. These DTDs are widely used by universi-
ties, museums, and commercial organizations to represent museum and
archival information, classical and medieval works, dictionaries and lexicogra-
phies, religious tracts, legal documents, and many other forms of writing.

Examples are legion. The Oxford Text Archive is a nonprofit group that has
provided long-term storage and maintenance of electronic texts for scholars over
the last quarter-century. Perseus is a pioneering digital library project, dating from
1985, that focuses upon the ancient Greek world. Der Junge Goethe in Seiner Zeit
is a collection of early works—poems, essays, legal writings, and letters—by the
great German writer Johann von Goethe (1749–1832). The Japanese Text Initia-
tive is a collaborative project that makes available a steadily increasing set of
Japanese literature, accompanied by English, French, and German translations.

236 F I V E | M A R K U P A N D M E T A D A T A

Various related standards increase XML’s power and expand its applicability.
Used on its own, XML provides a syntax for expressing structural information,
or metadata. But recall that whether information is metadata or not is really a
matter of perspective. Combined with additional standards, XML goes much
further: it supports document restructuring, querying, information extraction,
and formatting. The next section expands on the formatting standards, which
equip XML with display capabilities comparable with HTML. In Chapter 8 we
return to XML and complete our discussion of its relatives.

5.3 Presenting marked-up documents

There are two kinds of style sheet that can be used to control the presentation of
marked-up documents. Cascading style sheets produce presentable documents
with minimal effort and work with both HTML and XML. The extensible
stylesheet language adds further power by allowing the document structure to be
altered dynamically—for example, a particular element type can be constrained
to appear at the top of the page, regardless of where it is actually defined—but
only works with XML (and versions of HTML that are XML compliant).

Cascading style sheets: CSS

Figure 5.5 shows what the document of Figure 5.3 looks like when displayed
using Mozilla, an XML-capable Web browser. The display is rudimentary. All
the text that appears between tag names is run together in one paragraph, in a
default font. Information stored as attributes does not appear anywhere.

5 . 3 P R E S E N T I N G M A R K E D - U P D O C U M E N T S 237

Figure 5.5 Sample XML document, viewed in a Web browser.

Basic CSS
Figure 5.6a gives a basic style sheet for the same example. It is included by
adding the line

<?xml-stylesheet href="un_basic.css" type="text/css"?>

just after the XML header declaration in Figure 5.3 (the text of Figure 5.6a
resides in a file called un_basic.css). Figure 5.6b shows the result. The docu-
ment’s background is now explicitly set to white; a different font and type size
are used to distinguish its title; and improved line formatting makes the individ-
ual records easier to read.

Style sheets specify a series of rules using selector-declaration pairs. Here is an
example:

NGODoc { background: white }

The selector, here NGODoc, relates the style to the document being viewed by
naming one or more tags. There can be several rules for a given tag name—Fig-
ure 5.6a includes two for NGODoc. The declaration that follows, enclosed in
braces, gives formatting commands that apply to the named tag or tags—in this
case setting the document background to white. Declarations consist of one or
more property-value pairs separated by semicolons, each with a colon to distin-
guish the property from the value.

Cascading style sheets provide an inheritance mechanism based upon the
hierarchical document model that underpins XML. If formatting for a tag is
specified in the style sheet, nested tags—tags that come beneath it in the docu-
ment tree—inherit that specification. This makes style sheets concise and per-
spicuous. It is easy to override inherited behavior: just supply further rules at
the appropriate level.

Although inheritance is the norm, some properties are explicitly defined to
be noninheriting. In simple terms, what happens can be informally character-
ized as “intuitive inheritance” because exceptions to the rule make things behave
more naturally. For example, if a background image is specified, it is tiled over
the entire page. However, if nested tags inherited the background, they would
break up the pattern by restarting the image at every hierarchical block and sub-
block. Thus the background-image property is not inherited. For completeness
you can override the default inheritance behavior by explicitly specifying certain
properties to be inheritable (and vice versa).

Returning to the example style sheet in Figure 5.6a, the first rule causes the
entire document to be formatted in a block. The same selector name is used for the
second rule—part of which has already been discussed. This rule augments this
tag’s formatting to include a white background and sets the block’s width to 7.5
inches. The third rule declares the Title font to be Times, 25 point, boldface. The
declarations in the fourth rule place the Agency record in a paragraph block with

238 F I V E | M A R K U P A N D M E T A D A T A

8-point spacing above and 3-point spacing below, typeset as 16-point Helvetica.
The inheritance mechanism ensures that nested tags also share this typeface.

In rule five, two tag names are specified as the selector, Head and Body, and
both are assigned top, left, and right margins of 6 points, 0.2 inch, and 5 mm,
respectively. Referring to the DTD that begins Figure 5.3, the Head specification

5 . 3 P R E S E N T I N G M A R K E D - U P D O C U M E N T S 239

/* Cascading Style Sheet for UN Example */

NGODoc { display: block }

NGODoc { background: white; width: 7.5in }

Title { font-family: times; /* Set font type to Times */
font-size: 25pt; /* Set font size to 25 point */
font-style: bold } /* and so on ... */

Agency { display: block;
margin-top: 8pt; margin-bottom: 3pt;
font-size: 16pt;
font-family: helvetica }

Head, Body { display: block;
margin-top: 6pt;
margin-left: 0.2in;
margin-right: 5mm }

Abbrev { display: inline; font-style: italic }

Abbrev:before { content: "(" }
Abbrev:after { content: ")" }

(a)

(b)

Figure 5.6 (a) Basic CSS style sheet for the United Nations Agencies example;
(b) viewing the result in an XML-enabled Web browser.

applies to the document’s Title, and the Body applies to the Agency node. Since
the two specifications are the same, this effect could have been achieved more
concisely by setting these properties in the NGODoc node, but this would not
have illustrated the comma selector syntax. Rule six adds italics to Abbrev, which
already inherits a 16-point Helvetica typeface from Agency.

The last two rules use a construct known as pseudo-elements. The tag name is
qualified by :before and :after, which cause stylistic operations to be performed
before and after the Abbrev tag is processed. In this case the effect is to place
parentheses around the abbreviation. Other pseudo-elements give access to the
first character and first line of a block. Pseudo-classes, a related construct, can
distinguish between links that have been visited and ones that have not, and sup-
port interactive response to events such as the cursor hovering over a location.

In general the ordering of rules in a style sheet is immaterial because every
rule that matches any selector is applied. However, it is possible for rules to be
contradictory—for example, the background color may be set to both red and
blue. The CSS specification includes an algorithm that resolves ambiguity based
upon ordering and precedence values.

The same separation of structural markup and formatting instructions in
HTML is achieved using a <link> tag in the document’s <head>, like this:

<link ref="stylesheet" type="text/css" href="example_style.css">

This is just like the processing-application instruction used to augment the
XML example with a style sheet. Also cascading style sheet instructions can be
embedded in an HTML document by enclosing them within <style
type="text/css"> . . . </style> tags.

Tables and lists
Style sheets are cascaded when several are applied to the same document. Figure
5.7a shows how the records in the United Nations Agencies example can be
embedded in a table and the document title formatted with a bullet point. The
result, viewed in a Web browser, appears in Figure 5.7b. Following the opening
comment, the special command @import directs the application processing the
style sheet to use the earlier style file (Figure 5.6a) to provide a base layer of for-
matting rules. These are augmented by the rules that follow the @import com-
mand. New properties take precedence: if they conflict with existing ones, the
existing ones are overridden. The style sheet in Figure 5.7a also demonstrates
some of the table and list features of CSS.

The first rule augments the formatting of the Title tag—Times font, 25 point,
boldface, as defined in Figure 5.6a—with new rules: the display type is set to list
item, a bullet point (disk) is chosen as the list item to display, and a left-hand margin
of 0.2 inch is used to indent the bullet slightly. These new rules create no conflict.

240 F I V E | M A R K U P A N D M E T A D A T A

5 . 3 P R E S E N T I N G M A R K E D - U P D O C U M E N T S 241

/* Table and List item Cascading Style Sheet for UN Example */

@import url("un_basic.css");

Title { display: list-item;
list-item: disk;
margin-left: 0.2in; }

Body { display: table;
table-layout: auto;
background: silver;
border: outset 5pt;
border-collapse: separate;
border-spacing: 10pt }

Agency { display: table-row; }

Name { display: table-cell;
padding: 4pt;
background: white;
border: inset 2pt;}

Abbrev { display: table-cell;
padding: 4pt;
background: white;
border: dotted black;
text-align: center;
vertical-align: middle; }

Photo { display: table-cell;
width: 60pt;
background: white;
vertical-align: middle }

Photo:before { content: "photo available"; }

(a)

(b)

Figure 5.7 (a) CSS style sheet illustrating tables and lists; (b) viewing the result in an
XML-enabled Web browser.

CSS allows you to choose the symbol used for bullet points, use enumeration rather
than bullets, and alter the style of enumeration (alphabetic, roman, etc.). A counter
mechanism allows such things as nested section numbering.

The other rules in Figure 5.7a present the document’s information in tabular
form. To do this the style file must map tag names to the display settings table,
table-row, and table-cell and supply appropriate stylistic parameters for each.
First the Body element is mapped to table, along with values for background
color and border style and size. The table layout mode is set to auto, which
causes the cell dimensions to be calculated automatically to make best use of
available space. (The alternative is to specify the layout to be fixed and give cell
width and height explicitly.) The value separate for border-collapse separates the
borders of the individual cells.

The next rule maps the Agency node to table-row, so that each agency’s infor-
mation is displayed in its own row. The following three rules define Name,
Abbrev, and Photo to be table cells and specify some properties intended to give
a pleasing result: the background is white, the border styles are inset, dotted, and
(by omission) plain, the Name and Abbrev cells are padded to leave space inside
the border, and the text in Abbrev is horizontally and vertically centered using
text-align: center and vertical-align: middle, respectively.

Although the Photo elements in the XML document do not explicitly provide
text information between tag pairs, they are defined as type table-cell, and so the
table will include empty cells of width 60 points. This has been done to illustrate
a further point: the pseudo-element before fills the empty cell with the text photo
available.

The end result in Figure 5.7b exhibits a small glitch: the photo available mes-
sage on the last line appears in the second column, not the third. This reflects
the structure of the XML document in Figure 5.3, which lacks an abbreviation
for the World Bank. This serves to remind us that CSS does not provide a gen-
eral mechanism for altering document structure, although some manipulation
is possible using pseudo-elements. In contrast, XSL is a more expressive lan-
guage that is explicitly designed to allow the document structure to be altered.

Figure 5.7a gives a mere taste of CSS’s table model. Tables can have headers,
footers, captions, or sections grouped by row or column, and they can all be
structured hierarchically into the final table. CSS, HTML, and XSL share the
same model for table formatting, and concepts map naturally between the three
representations. This general trend underlies the design of CSS and XSL; we
return to this point later when we move on to XSL.

Context-sensitive formatting
So far we have seen some of what cascading style sheets can do. But there’s
more—context-sensitive formatting. Using compound selectors, rules can

242 F I V E | M A R K U P A N D M E T A D A T A

detect when descendant or sibling tags match a particular pattern and produce
different effects. Rules can also trigger when attributes match particular pat-
terns, and this facility can be combined with compound selectors.

Figure 5.8a introduces some contrived formatting instructions into the run-
ning example to illustrate some of these points. Figure 5.8b shows the result.
Again through the @import command, the new style incorporates the format-
ting instructions of Figure 5.6a.

Using the pseudo-element before, the first rule tailors the content of a Photo
according to the value of the desc attribute—but only when the Photo is a child
of Agency. Omitting the > symbol would change the meaning to “descendant”

5 . 3 P R E S E N T I N G M A R K E D - U P D O C U M E N T S 243

/* Contextual Cascading Style Sheet instructions for UN Example */

@import url("un_basic.css");

Agency > Photo[desc]:before { content: "Available: " attr(desc) }

Body Photo[desc="A photo"] { display: none }

Agency + Agency { color: red;
background: #ffa080 }

Name[hq="Rome, Italy"] { background: rgb(%0,%50,%0);
color: rgb(255,160,80) }

Agency { font-size: 20pt; }

(a)

(b)

Figure 5.8 (a) CSS style sheet illustrating context-sensitive formatting; (b) viewing the
result in an XML-enabled Web browser.

rather than “child” and would trigger if the Photo node appeared anywhere
beneath an Agency node.

The second rule suppresses the Photo text if its desc attribute matches the
string A photo. If the first rule appeared without the second, the result would
show the text A photo for both the FAO and the World Bank records because the
document’s DTD supplies this text as the default value for desc.

The third rule demonstrates the + syntax that is used to specify sibling context.
When one Agency node follows another at the same level in the document tree,
this rule alters its background and foreground colors. In the XML document of
Figure 5.3, only the first Agency record in the document retains its default color-
ing. The rule also illustrates two different ways of specifying color: by name (red)
and by specifying red, green, and blue components in hexadecimal.

The next rule prints the full name of the FAO in the same color as the back-
ground,7 because its hq attribute in the Name tag matches Rome, Italy. It uses a
third form of color specification: the rgb() function, which gives color compo-
nents in decimal—and these in fact specify the same color as in the previous
hexadecimal assignment. This rule makes no sense in practice, but it explains
why (FAO) is placed far to the right in Figure 5.8b, because it is preceded by the
now-invisible name.

The last rule further illustrates inheritance by setting the font size for Agency
text to 20 points. This overrides the 16-point value set in the initial style sheet
and is inherited by descendant nodes.

Media-dependent formatting
A key feature of cascading style sheets is the ability to handle different media
such as screen, print, handheld devices, computer projectors, text-only display,
Braille, and audio. Figure 5.9 shows the idea. The @media command names the
media type or types and gives rules, scoped to that media, within braces. The
example first sets the Agency node globally to be a block with specified margins.
Then for screen and projection media, the font is set to 16-point Helvetica,
while for print it is 12-point Times.

An @import command can be augmented to restrict the media type it applies
to, for example:

@import url("un_audio.css") aural;

CSS continues to be developed. Like XHTML, the trend is to modularize the
specification so it is easier for a software implementer to clarify what support is
given.

244 F I V E | M A R K U P A N D M E T A D A T A

7. The example would be more realistic if different colors were used here, but in this book we
are restricted to black and white.

Extensible stylesheet language: XSL

Cascading style sheets were developed principally in support of HTML. A paral-
lel development is XSL, the extensible stylesheet language for XML. It performs
the same kind of services as CSS but expresses the style sheet in XML form. To
illustrate the similarities and differences, we work through XSL versions of the
above three examples—Figures 5.6, 5.7, and 5.8.

XSL transcends the functionality of CSS. It allows the style sheet designer to
transform documents quite radically. Parts can be duplicated, tables of contents
can be created automatically, lists can be sorted. A price is paid for this expres-
sive power—complexity.

CSS and XSL share a common heritage and are based on the same formatting
model. We have already mentioned that they embody the same framework for
tables (also in this case shared with HTML 4.0). Another commonality is the
notion of a rectangular block of content, padded all around by specified
amounts of white space and encased within four borders, which are themselves
enclosed by margins. In CSS this is called a box, in XSL an area.

The XSL specification is divided into three parts: formatting objects (FO),
XSL transformations (XSLT), and XPath (a way of selecting parts of a docu-
ment). Derived from the same model as CSS, formatting objects map closely to
the instructions we have already seen and use the same property names wher-
ever possible. XSL transformations manipulate the document tree, while XPath
selects parts to transform. We expand on these later in this section.

It is a potentially confusing fact that CSS can be combined with facilities such
as Web-page scripting and the document object model mentioned in Section
5.2 (under “Parsing XML”) to provide comparable functionality to XSL—this

5 . 3 P R E S E N T I N G M A R K E D - U P D O C U M E N T S 245

/* Different styles for different media */

Agency { display: block;
margin-top: 8pt;
margin-bottom: 3pt }

@media screen, projection
{
Agency { font-size: 16pt;

font-family: helvetica }
}

@media print
{
Agency { font-size: 12pt;

font-family: times }

}

Figure 5.9 Using CSS to specify different formatting styles for different media.

combination is sometimes dubbed dynamic HTML. Experts fiercely debate
which is the better approach! We think you should know about both, for the
wider context in which you work often dictates the path you must tread. There
is one key difference between the two approaches. Because XSL is designed to
work with XML, it cannot be used with all forms of HTML—because not all
forms are XML compliant. CSS, in comparison, operates in either setting:
HTML, for which it was designed, and XML, because there is no restriction in
the tag names that CSS can provide rules for.

We introduce the XSL formatting capabilities by working through the examples
used to illustrate CSS. However, Formatting Objects transcend CSS’s functionality
in several ways by extending the suite of formatting objects and formatting proper-
ties. For example, they include a model for pagination and layout that extends the
simple page-by-page structure of paper documents to provide an equivalent to the
“frames” that are used in Web pages. They also adopt a more internationally orient-
ed naming convention: padding-left becomes padding-start so the term makes
more sense when dealing with languages such as Arabic that are written right to
left. Similarly named attributes exist to control the space above, below, and at the
end of text, although XSL also includes the old names for backward compatibility.

Basic XSL
Figure 5.10 shows an XSL file for the initial version of the United Nations example
in Figure 5.6b. It is much longer that its CSS counterpart (Figure 5.6a) and uses
XML syntax. Take some comfort from the fact that, beyond the initial NGODoc
declaration, it includes many of the keywords we have seen in the earlier version.
For example, the font-size: 25pt specification that appeared in CSS’s rule for the
Title node now comes between nested tags whose inner and outer elements
include the attributes font-size="25pt" and match="Title", respectively. The CSS
style sheet in Figure 5.6a (called un_basic.css) was included by adding the line

<?xml-stylesheet href="un_basic.css" type="text/css"?>

just after the XML header declaration in Figure 5.3, and the XSL style sheet
(un_basic.xsl) is added with essentially the same line:

<?xml-stylesheet href="un_basic.xsl" type="text/xsl"?>

The result is a replica of Figure 5.6b, although both standards are complex and it
is not uncommon to encounter small discrepancies.

Figure 5.10 begins with the obligatory XML processing application statement,
followed by an <xsl:stylesheet> tag. As usual this is a top-level root element that
encloses all the other tags. Its attributes declare two namespaces: one for XSL
itself; the other for Formatting Objects (FO). Namespaces are an XML extension
that keep sets of tags designed for particular purposes separate—otherwise con-
fusion would occur if both XSL and FO happened to include a tag with the same

246 F I V E | M A R K U P A N D M E T A D A T A

name (such as block). The ambiguity is resolved by assigning special meaning to
any attribute qualified by xmlns. Thus Figure 5.10 sets up two namespaces called
xsl and fo, and thereafter <xsl:block> specifies the XSL block tag while <fo:block>
specifies the Formatting Objects tag.

Namespaces also bring semantic information into play. If an FO-aware appli-
cation encounters a namespace declaration whose value is http://www.w3c.org/

5 . 3 P R E S E N T I N G M A R K E D - U P D O C U M E N T S 247

<?xml version="1.0" encoding="utf-8"?>
<xsl:stylesheet
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:fo="http://www.w3.org/1999/XSL/Format"
version="1.0">

<xsl:output method="xml"/>

<xsl:template match="NGODoc">
<fo:root xmlns:fo="http://www.w3.org/1999/XSL/Format">
<fo:layout-master-set>
<fo:simple-page-master master-name="UN-page" page-width="7.5in">
<fo:region-body/>

</fo:simple-page-master>
</fo:layout-master-set>
<fo:page-sequence master-name="UN-page">
<fo:flow flow-name="xsl-region-body" background-color="white">

<xsl:apply-templates/>
</fo:flow>

</fo:page-sequence>
</fo:root>

</xsl:template>

<xsl:template match="Title">
<fo:block font-family="Times" font-size="25pt"

margin-left="0.2in" margin-right="5mm">
<xsl:apply-templates/>

</fo:block>
</xsl:template>

<xsl:template match="Agency">
<fo:block space-before="8pt" space-after="3pt" font-size="16pt"

font-family="Helvetica"
margin-left="0.2in" margin-right="5mm">

<xsl:apply-templates/>
</fo:block>

</xsl:template>

<xsl:template match="Head|Body">
<fo:block margin-left="0.2in" margin-right="5mm" space-before="6pt">

<xsl:apply-templates/>
</fo:block>

</xsl:template>

<xsl:template match="Abbrev">
<fo:inline font-style="italic">
(<xsl:value-of select="."/>)

</fo:inline>
</xsl:template>

</xsl:stylesheet>

Figure 5.10 XSL style sheet for the basic United Nations Agencies example.

1999/XSL/Format, it interprets subsequent tag names according to a published
specification. In the following discussion we focus on a subset of Formatting
Object tags typically used in document-related XML style sheets. The full speci-
fication is more comprehensive.

Returning to the example, the next tag sets the document’s output type. The
XSL style sheet is used to transform the XML source into another document.
Because our style sheet is designed to format the document using Formatting
Object tags, the output is set to xml. Other choices are html, in which case all the fo:
scoped tags in the XSL file would need to be replaced with HTML tags, and text.

Transformation involves matching the input document against the style sheet
and building a new document tree based on the result. First the document’s root
node is compared with the XSL file’s <xsl:template> nodes until one is found
whose match attribute corresponds to the node’s name. Then the body of the
XSL template tag is used to construct the tags in the output tree. If apply-
templates is encountered, matching continues recursively on that document
node’s children (or as we shall see later, on some other selected part of the docu-
ment), and further child nodes in the output tree are built as a result.

In the example the document’s root node matches <xsl:template
match=“NGODoc”>. This adds several fo tags to the output tree—tags that ini-
tialize the page layout of the final document. Eventually <xsl:apply-templates> is
encountered, which causes the document’s children <Head> and <Body> to be
processed by the XSL file. When the matching operation has run its course, the
document tree that it generates is rendered for viewing.

The fourth template rule specifies its match attribute as Head|Body to catch
Head or Body nodes. This specification achieves the same effect as the comma
syntax in CSS. However, as we shall see shortly, this new syntax is part of a more
powerful and general standard called XPath. The last template rule also intro-
duces brackets around the abbreviation. The

<xsl:value-of select="."/>

is again XPath syntax. The “.” is a way of selecting the current position, or
“here”—in this context it selects the text of the current node (Abbrev). This
usage is adapted from the use of a period (.) in a file name to specify the current
directory.

Tables and lists
Formatting Objects provide similar capabilities to those expressible in CSS:
margins, borders, padding, foreground and background color, blocks, in-line
text, tables with rows and cells, and so on. Many CSS declarations are simply
mapped into fo tag names and attributes with the same name.

Figure 5.11 shows an XSL style sheet for the version of the United Nations
Agencies example illustrated in Figure 5.7b, with records embedded in a table

248 F I V E | M A R K U P A N D M E T A D A T A

5 . 3 P R E S E N T I N G M A R K E D - U P D O C U M E N T S 249

<?xml version="1.0" encoding="utf-8"?>
<xsl:stylesheet

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:fo="http://www.w3.org/1999/XSL/Format"
version="1.0">

<xsl:import href="un_basic.xsl"/>

<xsl:template match="Title">
<fo:list-block>
<fo:list-item>
<fo:list-item-label end-indent="label-end()">
<fo:block font-family="ZapfDingbats" font-size="9pt">
●
</fo:block>

</fo:list-item-label>

<fo:list-item-body start-indent="body-start()">
<fo:block>
<xsl:apply-imports/>

</fo:block>
</fo:list-item-body>

</fo:list-item>
</fo:list-block>

</xsl:template>

<xsl:template match="Body">
<fo:table table-layout="auto" background-color="silver"
border-style="outset 5pt" border-collapse="separate"

Border-spacing="10pt">
<fo:table-body>
<xsl:apply-templates/>

</fo:table-body>
</fo:table>

</xsl:template>

<xsl:template match="Agency">
<fo:table-row space-before="8pt" space-after="3pt"

font-size="16pt" font-family="Helvetica"
margin-left="0.2in" margin-right="5mm">

<xsl:apply-templates/>
</fo:table-row>

</xsl:template>

<xsl:template match="Name">
<fo:table-cell padding="4pt" background-color="white"

border-style="inset 2pt" display-align="center">
<fo:block>
<xsl:apply-imports/>

</fo:block>
</fo:table-cell>

</xsl:template>

<xsl:template match="Abbrev">
<fo:table-cell padding="4pt" background-color="white"

border-style="dotted black" text-align="center"
display-align="center">

<fo:block>
<xsl:apply-imports/>

</fo:block>
</fo:table-cell>

</xsl:template>

Figure 5.11 XSL style sheet illustrating tables and lists. (continued on the following
page)

and the title formatted with a bullet point. Like the CSS version, the file inherits
from the basic XSL style sheet. This is done using the <xsl:import> tag, whose
href attribute supplies the appropriate URL.

The first template rule processes the <Title> node, which starts by wrapping
a list-block and list-item around the core information. Using a Unicode character
that lies beyond the normal ASCII range, it then inserts a list-item-label whose
content is a bullet point, before setting up the list-item-body with the content of
the Title tag.

Next, instead of using <apply-templates> to recursively process any nested
tags as was done in the first XSL example, this rule specifies <apply-imports>.
This looks in prior imported files (in the order that they were imported) for a
rule that also matches the current tag (Title) and applies that rule as well. The
result is to nest settings given in the Title rule of un_basic.xsl inside the current
formatting, and then fire the <apply-templates> statement that that rule speci-
fies. The overall effect provides an inheritance facility similar to that of CSS.

The remaining template rules have fo: tags for table, table row, and table cell
that correspond to the same entities in CSS and are “bound” to the same tag
names in the source document. Attributes within these tags provide similar
table formatting: an overall silver-colored table with white cells using a mixture
of border styles and padding.

Some complications in the example stem from the stricter requirements of
the Formatting Objects specification. First, tables must include a table body,
whereas the equivalent structure in CSS is optional. In the example the table
body element appears in the rule for Body, so this rule encodes both table and
table-body elements. This is not possible in the CSS example because these two
table structures are set by the display property, and this would therefore conflict
in the file. To avoid the conflict the source document would need two tag names:
one mapping to table and the other to table-body.

A second complication is that fo:blocks cannot be placed immediately within
fo:table-body and fo:table-row tags. This is why the two rules containing these
elements must resort to <xsl:apply-templates> in their recursive processing of

250 F I V E | M A R K U P A N D M E T A D A T A

<xsl:template match="Photo">
<fo:table-cell width="60pt" background-color="white"

display-align="center">
<fo:block>

Photo available <xsl:apply-imports/>
</fo:block>

</fo:table-cell>
</xsl:template>

</xsl:stylesheet>

Figure 5.11 (continued)

the document instead of <apply-imports> and duplicate the formatting attrib-
utes already present in the imported file.

Contextual matching
Figure 5.12 reworks as an XSL file the Figure 5.8 version of the United Nations
example, which illustrates context-based matching using contrived formatting
instructions.

The key to context-based matching in XSL is the XPath mechanism. In many
operating system interfaces, multiple files can be selected using wild card char-
acters—for example, project/*/file.html selects all files of this name within any
subdirectory of project. XPath generalizes this to select individual sections of a
document. This is done by mapping nodes in the document tree into a string
that defines their position in the hierarchy. These strings are expressed just as
file names are in a directory hierarchy, with node names separated by slashes.
For example, in our document NGODoc/Body/* returns all the Agency nodes.

5 . 3 P R E S E N T I N G M A R K E D - U P D O C U M E N T S 251

<?xml version="1.0" encoding="utf-8"?>
<xsl:stylesheet

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:fo="http://www.w3.org/1999/XSL/Format"
version="1.0">

<xsl:import href="un_basic.xsl"/>

<xsl:template match="Agency/Photo[@desc]">
Available: <xsl:value-of select="@desc"/>

</xsl:template>

<xsl:template match="Agency/Photo[@desc='A photo']">
</xsl:template>

<xsl:template match="Agency">
<fo:block space-before="8pt" space-after="3pt" font-size="20pt"

font-family="Helvetica"
margin-left="0.2in" margin-right="5mm">

<xsl:apply-templates select="." mode="Extra Color"/>
</fo:block>

</xsl:template>

<xsl:template match="Agency[position()>1]" mode="Extra Color">
<xsl:attribute name="background-color">#ffa080</xsl:attribute>
<xsl:attribute name="color">red</xsl:attribute>
<xsl:apply-templates/>

</xsl:template>

<xsl:template match="Name[@hq='Rome, Italy']">
<fo:inline color="rgb(255,160,80)">

<xsl:apply-templates/>
</fo:inline>

</xsl:template>

</xsl:stylesheet>

Figure 5.12 XSL style sheet illustrating context-sensitive formatting.

This idea is augmented to condition access on attributes stored at nodes. For
example, Name[@desc] matches a Name node only if it has a desc attribute
defined. Built-in predicates are supplied to check the position of a node in the
tree—for example, whether it is the first or last in a chain of siblings.

The first template rule in Figure 5.12 inserts into the document the text that
is stored as a Photo node’s desc attribute, prefixed by Available:. The second is
more selective and only matches if the Photo node’s desc attribute contains the
text A photo—which happens to coincide with its default given in the DTD. If it
does match, no text is displayed, and recursive template matching down that
part of the tree is abandoned.

The third rule, which works in conjunction with the fourth, demonstrates
XSL modes. When an Agency node is first encountered, rule 3 fires and sets up
the basic formatting for the block. When it comes to recursively applying the
template match, it selects itself with select=".", switches the mode to Extra Color,
and then rematches on Agency. This time only rule 4 can match (because of the
mode), which enforces the additional requirement that Agency must be at least
the second node in the file. If so, the rule uses <xsl:attribute> tags to augment
the closest enclosing tag (the main block for Agency) with attributes for fore-
ground and background colors.

Finally, the remaining rule sets the foreground color the same as the back-
ground color for any Name node whose hq attribute matches Rome, Italy.

Media-dependent formatting
XSL supports different output media—screen, printer, and so on—using the
media attribute of <xsl:output>, which we have already seen used to set the out-
put type to XML. For example, to restrict a style sheet setting to printers, add

<xsl:output output="xml" media="printer">.

Sorting
Our examples so far have shown XSL’s ability to transform the source docu-
ment, but the changes have been slight (such as putting brackets around the
content of an Abbrev tag) and could all have been achieved using CSS. Figure
5.13 shows an XSL style sheet that sorts the UN agencies alphabetically for dis-
play, something that CSS can’t do. It follows a similar pattern to the last two
examples, importing un_basic.xsl to provide some general formatting. It then
defines a rule for Body that performs the sorting, overriding the match that
would have occurred against Head|Body in the imported file.

First a block is created that maintains the same margins and spacing provided
by the basic style file. Then a recursive match is initiated on all Agency nodes
that are descendants of the Body node. In earlier examples matching has been
expressed by combining the opening and closing tags, as in <xsl:apply-
templates/>. This shorthand notation is convenient for straightforward matches.

252 F I V E | M A R K U P A N D M E T A D A T A

Here we split this element into its opening and closing parts and supply the crite-
ria for sorting through the tag xsl:sort, nested inside. To accomplish the desired
result, the example sets the data type to string and specifies a sort on child nodes
of Agency called Name.

This example really only scratches the surface of what you can do with XSL. It
can encode a vast array of transformations. Even within sorting there are many
more attributes that can control the ordering. There are many other language
constructs: variables, if statements, and for statements are just three. XSL con-
tains many elements of programming languages, making it impressively versa-
tile. It is finding use in places that even the designers did not envisage.

5.4 Bibliographic metadata

Anyone working with digital libraries needs to know about two different stan-
dard methods for representing document metadata: the machine-readable cata-
loging (MARC) format and the Dublin Core. They represent opposite ends of
the complexity spectrum. MARC is a comprehensive, well-developed, carefully
controlled scheme intended to be generated by professional catalogers for use in
libraries. Dublin Core is an intentionally minimalist standard intended to be
applied to a wide range of digital library materials by people who are not trained
in library cataloging. These two schemes are of interest not only for their practi-
cal value, but also to highlight diametrically opposed underlying philosophies.
The discussion in the next subsection follows on from Section 2.2 of Chapter 2,
and you might want to review that section before continuing. We also include
descriptions of two bibliographic metadata formats that are in common use
among document authors in scientific and technical fields, BibTeX and Refer.

5 . 4 B I B L I O G R A P H I C M E TA DATA 253

<?xml version="1.0" encoding="utf-8"?>
<xsl:stylesheet

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:fo="http://www.w3.org/1999/XSL/Format"
version="1.0">

<xsl:import href="un_basic.xsl"/>

<xsl:template match="Body">
<fo:block margin-left="0.2in" margin-right="5mm" space-before="6pt">
<xsl:apply-templates select="Agency">
<xsl:sort data-type="string" select="./Name"/>

</xsl:apply-templates>
</fo:block>

</xsl:template>

</xsl:stylesheet>

Figure 5.13 XSL style sheet that sorts UN agencies alphabetically.

MARC

The MARC standard was developed in the late 1960s at the Library of Congress
to promote the sharing of catalog entries among libraries. It is a comprehensive
and detailed standard whose use is carefully controlled and transmitted to bud-
ding librarians in library science courses. Most of us are well accustomed to see-
ing MARC records when consulting online catalogs in academic libraries.

Table 5.1 shows an entry that was obtained from the Library of Congress
online catalog. It gives the complete bibliographic record for the book The
Development of the English Traction Engine. The information includes the
author, type of material, information about the physical book itself, publisher,
some notes, and various identification numbers. We discussed these biblio-
graphic entities in Chapter 2 (Section 2.2). We also discussed the Library of
Congress Subject Headings. The Development of the English Traction Engine falls
under the subject heading Agricultural Machinery listed in Table 2.3, as well as
under the heading Traction-engines. Incidentally, bibliographic records such as
this provide an additional linking mechanism between different subject head-
ings: the fact that these two headings both describe a particular book creates a
bond between them that is not reflected in the Library of Congress Subject Head-
ings “red books” mentioned in Section 2.2. The record in Table 5.1 also includes
the subject classification according to the Dewey Decimal System.

Producing a MARC record for a particular publication is an onerous under-
taking that is governed by a detailed set of rules and guidelines called the Anglo-
American Cataloging Rules, familiarly referred to by librarians as AACR2R (the 2
stands for second edition, the final R for revised). These rules, inscribed in a for-
midable handbook, are divided into two parts: Part 1 applies mostly to the
description of documents; Part 2 to the description of works. Part 2, for example,

254 F I V E | M A R K U P A N D M E T A D A T A

Table 5.1 Library catalog record.

Type of Material Book (Print, Microform, Electronic, etc.)
Personal Name Clark, Ronald H. (Ronald Harry), 1903-
Main Title The development of the English traction engine.
Published/Created Norwich [Eng.] Goose [1960]
Description xxv, 390 p. illus., facsims. 29 cm.
Notes Errata slip inserted. Bibliography: p. 346-347.
Subjects Traction-engines. Agricultural machinery.
LC Classification TJ700 .C52
Dewey Class No. 621.14
National Bib. No. GB60-15328
Other System No. (OCoLC)3942065

treats Headings, Uniform titles, and References (i.e., entries starting with “See …”
that capture relationships between works). Under Headings there are sections on
how to write people’s names, geographic names, and corporate bodies. Appen-
dices describe rules for capitalization, abbreviations, and numerals.

The rules in AACR2R are highly detailed, almost persnickety. It is hard to con-
vey their flavor in a few words. Here is one example: how should you name a local
church? Rules under corporate bodies give the answer. The first choice of name is
that “of the person(s), object(s), place(s), or event(s) to which the local church . . .
is dedicated or after which it is named.” The second is “a name beginning with a
word or phrase descriptive of a type of local church.” The third is “a name begin-
ning with the name of the place in which the local church . . . is situated.” Now you
know. If rules like this interest you, there are thousands more in AACR2R.

Internally MARC records are stored as a collection of tagged fields in a fairly
complex format. Table 5.2 gives something close to the internal representation of
the catalog record presented earlier, while Table 5.3 lists some of the field codes

5 . 4 B I B L I O G R A P H I C M E TA DATA 255

Table 5.2 MARC fields in the record of Table 5.1.

001 8901720
005 19980421194037.0
008 780531s1960 enkah b 000 0 eng
035 (DLC) 61026816
906 |a 7 |b cbc |c oclcrpl |d u |e ncip |f 19 |g y-gencatlg
010 |a 61026816
015 |a GB60-15328
035 |a (OCoLC)3942065
040 |a DLC |c NcRS |d NcRS |d Uk |d DLC
050 |a TJ700 |b .C52
082 |a 621.14
100 |a Clark, Ronald H. |q (Ronald Harry), |d 1903-
245 |a The development of the English traction engine.
260 |a Norwich [Eng.] |b Goose |c [1960]
300 |a xxv, 390 p. |b illus., facsims. |c 29 cm.
500 |a Errata slip inserted.
504 |a Bibliography: p. 346-347.
650 |a Traction-engines.
650 |a Agricultural machinery.
985 |e OCLC REPLACEMENT
991 |b c-GenColl |h TJ700 |i .C52 |t Copy 1 |w OCLCREP

and their meaning. Many of the fields contain various identification codes. For
example, field 008 contains fixed-length data elements such as the source of the
cataloging for the item and the language in which the book is written. Many of the
variable-length fields contain subfields, which are labeled a, b, c, and so on, each
with their own distinct meaning (in the computer file they are separated by a spe-
cial subfield delimiter character). For example, field 100 is the personal name of
the author, with subfields indicating the standard form of the name, full fore-
names, and dates. Field 260 gives the imprint, with subfields indicating the place
of publication, publisher, and date. The information in the more legible represen-
tation of Table 5.1 is evident in the coded form of Table 5.2. Note that some fields
can occur more than once, such as the subject headings stored in field 650.

The MARC format covers more than just bibliographic records. It is also used
to represent authority records—that is, standardized forms that are part of the
librarian’s controlled vocabulary. One authority file is for personal names and
maps all versions of a person’s name (like those for Muammar Qaddafi in Table
2.1 of Chapter 2) into one standardized form. Another is for the Library of Con-
gress Subject Headings illustrated in Table 2.3.

256 F I V E | M A R K U P A N D M E T A D A T A

Table 5.3 Meaning of some MARC fields.

001 Control number uniquely identifying the record
005 Date and time that the record was last modified
008 Fixed fields
010 Library of Congress control number
015 National Bibliographic number
035 System control number
040 Cataloging source
050 Library of Congress classification
082 Dewey classification
100 Main entry—personal name
245 Title
260 Imprint: place of publication, publisher, date
300 Physical description
500 General note
504 Bibliography note
650 Subject entry
906 Tags in the 900 range are reserved for local use and are
985 used by vendors, systems, or individual libraries to
991 exchange additional data

Dublin Core

The Dublin Core is a set of metadata elements that are designed specifically for
nonspecialist use. It is intended for use when people describe electronic materi-
als, such as those they have created—which, being electronic materials, will
almost certainly not receive a full MARC catalog entry. The result of a collabora-
tive effort by a large group of people, it is named not for the capital of Ireland
but after Dublin, Ohio, where the first meeting was held in 1995. It received the
approval of ANSI, the American National Standards Organization, in 2001.

Compared with the MARC format, Dublin Core has a refreshing simplicity.
Table 5.4 summarizes the metadata elements it contains: just fifteen rather than
the several hundred used by MARC. As the name implies, these are intended to
form a “core” element set that may be augmented by additional elements for
local purposes. In addition, the existing elements can be refined through the use
of qualifiers. All elements can be repeated where this is appropriate.

Chapter 2 described how librarians struggled over the document versus work
distinction and then ended up adopting the term entity when defining the objec-
tives of bibliographic systems. The Dublin Core uses the general term resource—

5 . 4 B I B L I O G R A P H I C M E TA DATA 257

Table 5.4 Dublin Core metadata standard.

Metadata Definition

Title The name given to the resource by the creator or publisher
Creator The person or organization primarily responsible for the intellectual content of the

resource
Subject The topic of the resource
Description A textual description of the content of the resource
Publisher The entity responsible for making the resource available
Contributor A person or organization (other than the Creator) who is responsible for making signif-

icant contributions to the intellectual content of the resource
Date A date associated with the creation or availability of the resource
Type The nature or genre of the content of the resource
Format The physical or digital manifestation of the resource
Identifier An unambiguous reference that uniquely identifies the resource within a given con-

text
Source A reference to a second resource from which the present resource is derived
Language The language of the intellectual content of the resource
Relation A reference to a related resource, and the nature of its relationship
Coverage Spatial locations and temporal durations characteristic of the content of the resource
Rights Link to a copyright notice or rights management statement

which subsumes pictures, illustrations, movies, animations, simulations, even
virtual reality artifacts, as well as textual documents. Indeed, a resource has been
defined in Dublin Core documents as “anything that has identity.”

The Creator might be a photographer, an illustrator, or an author. The Subject
is typically expressed as a keyword or phrase that describes the topic or the con-
tent of the resource. The Description might be an abstract of a textual document,
or a textual account of a nontextual resource such as a picture or animation. The
Publisher is generally a publishing house, a university department, or a corpora-
tion. A Contributor could be an editor, a translator, or an illustrator. The Date is
the date of resource creation, not the date or dates covered by its contents. For
example, a history book will have an associated Coverage date range that defines
the historical time period it covers, as well as a publication Date. Alternatively (or
in addition), Coverage might be defined in terms of geographical locations that
pertain to the content of the resource. The Type might indicate a home page,
research report, working paper, poem, or any of the media types listed above.
The Format is used to identify software systems needed to run the resource.

The Dublin Core does not impose any kind of vocabulary control or author-
ity files: two different people might easily generate quite different descriptions
of the same resource. However, it is an evolving standard, and current work is
aimed at specifying recommended sets of values for certain elements, as a way of
encouraging uniformity. For example, the Library of Congress Subject Head-
ings are encouraged as one way of specifying the Subject, along with some other
classification standards such as the Library of Congress classification system
(which, as the “Subject classifications” subsection of Section 2.2 explained, dif-
fers from the Library of Congress Subject Headings) and the Dewey Decimal
classification. There are standard ways of encoding dates whose use is encour-
aged and ways of encoding languages too.

Also, certain Dublin Core fields can be refined, and efforts are underway to
standardize this. For example, the Date can be qualified as date created, date
valid, date available, date issued, or date modified; multiple specifications are
possible. The Description element can be couched as an abstract or a table of con-
tents. Standard refinements of the Relation field include is version of, is part of,
replaces, requires, references—along with the inverse relations.

BibTeX

Scientific and technical authors, particularly those using mathematical nota-
tion, often favor a widely used generalized document-processing system called
TeX (pronounced tech), or a customized version called LaTeX (la-tech), which
was described in Section 4.4. This freely available package contains a subsystem
called BibTeX (bib-tech) that manages bibliographic data and references within
documents.

258 F I V E | M A R K U P A N D M E T A D A T A

Figure 5.14 shows a record in BibTeX format. Records are grouped into files,
and files can be brought together to form a database. Each field can flow freely
over line boundaries—extra white space is ignored. Records begin with the @
symbol followed by a keyword naming the record type: article, book, and so
forth. The content follows in braces and starts with an alphanumeric string that
acts as a key for the record. Keys in a BibTeX database must be unique. Within a
record, individual fields take the form name=value, with a comma separating
entries. Names specify bibliographic entities such as author, publisher, address,
and year of publication. Each item type can be included only once, and values
are typically enclosed in double quotation marks or braces to protect spaces.
Certain standard abbreviations such as month names can be used, and users can
define their own abbreviations.

Two items in Figure 5.14 deserve explanation. First, the author field is used
for multiple authors, and names are separated by the word and rather than by
commas with a final and as in ordinary English prose. This is because the tools
that process BibTeX files incorporate bibliographic standards for presenting
names. The fact that McGregor’s name in the example uses a different conven-
tion is of no consequence: like the other names it will be presented correctly in
whatever style has been chosen for the document. Second, the title field contains
an extra pair of braces around the X. This is because titles are also presented in
whatever style has been chosen for the document—for example, only the first
word may be capitalized, or all content words may be capitalized—regardless of
how they appear in the bibliography file. Braces override this and preserve the
original capitalization, so that the proper noun X appears correctly capitalized
in the document.

Unlike other bibliographic standards, the set of attribute names is determined
by a style file named in the source document and used to formulate citations in
the text and format the references as footnotes or in a list of references. The style
file is couched in a full programming language and can support any vocabulary.
However, there is general consensus in the TeX community over what keywords
to use. Advantage can be taken of TeX’s programmability to generate XML syntax

5 . 4 B I B L I O G R A P H I C M E TA DATA 259

@article{Gettys90,
author = {Jim Gettys and Phil Karlton and McGregor, Scott},
title = {The {X} Window System, Version 11},
journal = "Software Practice and Experience",
volume = 20,
number = {S2},
month = nov,
year = 1990,
abstract = {A technical overview of the X11 functionality. This is an update

of the X10 TOG paper by Scheifler and Gettys.}

Figure 5.14 Bibliography item in BibTeX format.

instead; alternatively there are many stand-alone applications that simply parse
BibTeX source files.

Academic authors often create BibTeX bibliographic collections for publica-
tions in their area of expertise, accumulating references over the years into large
and authoritative repositories of metadata. Aided by software heuristics to iden-
tify duplicate entries, these constitute a useful resource for digital libraries in
scientific and technical areas.

Refer

The Refer format has many similarities to BibTeX. Originally designed by com-
puter scientists for use by mainly scientific and technical researchers, it was built
to complement a Unix document-formatting tool called Troff that is now nearly
obsolete. However, it has gained a new lease on life as the basis of the popular
bibliographic tool EndNote, which augments Microsoft Word with an interac-
tive tool for compiling and maintaining bibliographic databases and can export
databases in the Refer format.

Figure 5.15 shows the same bibliographic record as Figure 5.14, but couched
in Refer rather than BibTeX. It is formatted line by line, and records are sepa-
rated with a blank line. Each line starts with a key character, introduced by a
percent symbol, that signals the kind of information the line contains. The rest
of the line gives the data itself.

Refer has the fixed set of keywords listed in Table 5.5. Unlike BibTeX the
author field (%A) is repeated for multiple authors; the ordering reflects the doc-
ument’s authorship. Only one organizational author (%Q) may appear; ver-
sions of Refer vary in whether they permit multiple editors (%E). Dates (%D)
specify the year in full, but months can be abbreviated.

In BibTeX, the type of bibliographic record (an article, in our example) is
given at the beginning (@article). There is no provision for this in the original
Refer format—programs must infer how to format a reference from the fields it
contains. However, the EndNote version includes a new keyword (%0, or per-
cent zero) which appears as the first line of a record to make the type explicit—
%0 Journal Article in our example. In the original Refer, names are not

260 F I V E | M A R K U P A N D M E T A D A T A

%A Jim Gettys
%A Phil Karlton
%A Scott McGregor
%T The X Window System, Version 11
%J Software Practice and Experience
%V 20
%N S2
%D 1990
%X A technical overview of the X11 functionality. This is an update ...

Figure 5.15 Bibliography item in Refer format.

processed but are printed in exactly the form in which they are given, whereas
the EndNote version specifies that names should be written as surname, comma,
first names. It also includes new keywords for captions (%F), URL (%U), price
(%$), and copyright information (%*).

5.5 Metadata for images and multimedia

The idea of metadata is by no means confined to textual documents. In fact,
because it is much harder to search the content of image, audio, or multimedia
data than to search full text, flexible ways of specifying metadata become even
more important for locating these resources.

The image file formats described in Chapter 4 (Section 4.5) incorporate some
rather limited ways of specifying image-related metadata. For example, GIF and
PNG files include the height and width of the image (in pixels), and the bit depth
or number of bits per pixel (up to 8 for GIF, 48 for PNG). PNG specifies the
color representation (palletized, grayscale, or true color) and includes the ability

5 . 5 M E TA DATA F O R I M A G E S A N D M U LT I M E D I A 261

Table 5.5 The basic keywords used by the Refer bibliographic format.

Tag Description

%A Author
%B Book title (for an article that is part of a book)
%C Place (city) of publication
%D Date of publication
%E Editor (for an article that is part of a book)
%G Government ordering number (United States)
%I Publisher (issuer)
%J Journal name (for an article in a journal)
%K Keywords
%L Label
%N Number of journal issue
%O Other information (usually printed at the end of the reference)
%P Page number; a range of pages can be specified as m-n
%Q The name of the author, if the author is not a person
%R Technical report number
%S Series name
%T Title
%V Volume number of the journal or book
%X Annotation

to store text strings representing metadata. JPEG also specifies the horizontal
and vertical resolution. But these formats do not include provision for other
kinds of structured metadata, and when they are used in a digital library, image
metadata is usually put elsewhere.

We describe two widely differing metadata formats for images and multime-
dia. The Tagged Image File Format, or TIFF, is a practical scheme for associating
metadata with image files that has been in widespread use for well over a decade.
This is how images—including document images—are stored in today’s digital
libraries. MPEG-7 is a far more sophisticated and ambitious scheme for defin-
ing and storing metadata associated with any multimedia information. It is still
in the process of being standardized and is highly general and extensible. We
describe TIFF in specific detail and then go on to outline the facilities that
MPEG-7 provides.

Image metadata: TIFF

The Tagged Image File Format or TIFF is a public-domain file format for raster
images that incorporates extensive facilities for descriptive metadata. It is used to
describe image data that typically comes from scanners, frame-grabbers, paint
programs, and photo-retouching programs. It is a rich format that can take
advantage of the varying image requirements but is not tied to particular input
or output devices. It provides numerous options—for example, several different
compression schemes, and comprehensive information for color calibration. It is
designed so that private and special-purpose information can be included.

TIFF was originally specified in 1986 by Aldus (now owned by Adobe Sys-
tems) and Microsoft, and several revisions have appeared since then. TIFF is
under continual development, and backward compatibility is, of course, a high
priority. The large number of options and the fluidity of the standard does cre-
ate problems with TIFF readers that cannot process all options. While it is easy
to write a TIFF writer, it is difficult to write a fully compliant TIFF reader.

TIFF is a byte-oriented format, which (like Unicode) is designed for compati-
bility between big-endian and little-endian computers (although some imple-
mentations do not accommodate both). The first two bytes of a TIFF file deter-
mine endianness. A single TIFF file can include several images. Images are
characterized by sets of tags whose values define particular properties of the
image. Most tags contain integers, but some contain ASCII text—and provision
is made for tags containing floating-point and rational numbers.

Baseline TIFF caters to four different image types: bilevel, grayscale, palette-
color, and full-color images. There are a dozen or so mandatory tags that give
physical characteristics and features of images: their dimensions, compression,
various metrics associated with the color specification, and information about
where they are stored in the file.

262 F I V E | M A R K U P A N D M E T A D A T A

Table 5.6 shows some TIFF tags, of which all but the last group are mandatory.
The first tags specify the dimensions of the image in pixels, along with enough
information to allow them to be converted to physical units where possible. All
images are rectangular. The second group of tags gives color information. For
bilevel images, this is just whether they are standard black-on-white or reversed;
for grayscale it is the number of bits per pixel; for palette images, it is where the
color palette is specified. The third group specifies the compression method—
only extremely simple schemes are allowed in baseline TIFF. Finally, TIFF allows
an image to be broken into separate strips for efficient input/output buffering,
and the last group of mandatory tags specifies the location and size of each strip.

Additional features go far beyond the baseline illustrated by Table 5.6. Differ-
ent color spaces are supported. Compression types include the LZW scheme,
used in GIF,8 and JPEG. Users can define new TIFF tags and compression types
and can register their definitions so that others can share them. You can also reg-
ister private tag data centrally, thereby reserving new tag codes for private use.
More radical extensions of TIFF include GeoTIFF, which permits the addition of
geographic information associated with cartographic raster data and remote
sensing applications, such as projections and datum reference points. Many digi-
tal cameras produce TIFF files, and Kodak has a PhotoCD file format (called pcd)
based on TIFF with proprietary color space and compression methods.

Most digital library projects that work with images use the TIFF format to
store and archive the original captured images, even though they may convert
them to other formats for display. At the bottom of Table 5.6 are some optional
fields that are widely used in digital library work. The first two, the name of the
program that generated the image and the date and time when it was generated,
are usually filled in automatically by scanner programs and other image creation
software. Digital library projects often establish conventions for the use of the
other fields; for example, in a digitization project the Document name field
might contain the catalog ID of the original document. These fields are coded in
ASCII, but there is no reason why they should not contain data that is further
structured. For example, the Image description field might contain an XML
specification that itself includes several subfields.

Multimedia metadata: MPEG-7

We learned about the MPEG family of standards in Chapter 4 (Section 4.6).
MPEG-7, which is formally called the multimedia content description interface, is
intended to provide a set of tools to describe multimedia content. The idea is that

5 . 5 M E TA DATA F O R I M A G E S A N D M U LT I M E D I A 263

8. The inclusion of LZW means that TIFF raises the same licensing issues as were discussed for
GIF in Chapter 4 (Section 4.5).

you can search for audiovisual material that has associated MPEG-7 metadata.
The material can include still pictures, graphics, 3D models, audio, speech, video,
and any combination of these elements in a multimedia presentation. It can be
information that is stored, or streamed from an online real-time source. The stan-
dard is being put together by broadcasters, electronics manufacturers, content

264 F I V E | M A R K U P A N D M E T A D A T A

Table 5.6 TIFF tags.

Dimensions
Image width in pixels
Image length (as above)
Resolution unit none, inch, cm
X resolution pixels per resolution unit
Y resolution (as above)

Color
Photometric interpretation (black-on-white or white-on-black)
Bits per sample (1 for bilevel, 4 or 8 for grayscale)
Samples per pixel (RGB only) normally 3 for RGB images
Color map (palette-color only) specifies a color table for the image

Compression
Bilevel ■ uncompressed

■ packed into bytes as tightly as possible
■ CCITT compression (as used in fax machines)
■ byte-oriented run-length coding

Others ■ uncompressed
■ byte-oriented run-length coding

Location of the data
Rows per strip
Strip offsets
Strip byte counts

Optional fields
Software program that generated the image
Date and time when it was generated
Document name name of the document
Page name typically used for the page number
Artist creator
Image description free-form textual description

creators and managers, publishers, and telecommunication service providers
under the aegis of the International Standards Organization.

MPEG-7 has exceptionally wide scope. For example, it is envisaged that
metadata may be used to answer queries such as these:

■ Play a few notes on a keyboard and retrieve musical pieces with similar
melodies, rhythms, or emotions.

■ Draw a few lines on a screen and retrieve images containing similar graph-
ics, logos, or ideograms.

■ Define objects, including color or texture patches, and retrieve similar
examples.

■ Describe movements and relations between a set of given multimedia
objects and retrieve animations that exhibit them.

■ Describe actions and retrieve scenarios containing them.
■ Using an excerpt of Pavarotti’s voice, obtain a list of his records and video

clips and photographic material portraying him.

However, the way in which MPEG-7 metadata will be used to answer such
queries is beyond the scope of the standard.

MPEG-7 is a complex and extensible standard that is still under develop-
ment, and we can only sketch its structure here. At its core is an extensible
description language called DDL (“description definition language”), which
allows users to create their own metadata format. DDL uses XML syntax and is a
form of XML Schema, which we describe in Chapter 8. XML Schema alone is
not flexible enough to handle low-level audiovisual forms, so DDL was formu-
lated to address these needs.

The DDL links together descriptors, which bind a feature to a set of values,
and description schemas, which specify the types of descriptors that can be used
and the relationships between them or between other description schemas.
Descriptors represent low-level features, the fundamental qualities of audiovi-
sual content. They range from statistical models of signal amplitude to the fun-
damental frequency of a signal, from emotional content to parameters of an
explicit sound-effect model.

DDLs are able to express spatial, temporal, structural, cardinality, and data
type relationships between descriptors and description schemas. For example,
structural constraints specify the rules that a valid description should obey:
what children elements must be present for each node, or what attributes must
be associated with elements. Cardinality constraints specify the number of times
an element may occur. Data type constraints specify the type and the possible
values for data or descriptors within the description.

There are different descriptors for audio, visual, and multimedia data. The
audio description framework operates both in the temporal and spectral dimen-
sions, the former for sequences of sounds or sound samples and the latter for

5 . 5 M E TA DATA F O R I M A G E S A N D M U LT I M E D I A 265

frequency spectra that comprise different components. At the lowest level you
can represent such things as instantaneous waveform and power values, various
features of frequency spectra, fundamental frequency of quasi-periodic signals,
a measure of spectral flatness, and so on. There is a way of constructing a tem-
poral series of values from a set of individual samples, and a spectral vector of
values such as a sampled frequency spectrum. At a higher level, description tools
are envisaged for sound effects, instrumental timbre, spoken content, and
melodic descriptors to facilitate query-by-humming.

In the visual domain, basic features include color, texture, region-based and
contour-based shapes, and camera and object motion. Another basic feature is a
notion of localization in both time and space, and these dimensions can be com-
bined together into the form of a space-time trajectory. These basic features can
be built into structures such as a grid of pixels or a time series of video frames.

Multimedia features include low-level audiovisual attributes such as color,
texture, motion, and audio energy; high-level features of objects, events, and
abstract concepts; and information about compression and storage media.
Browsing and retrieval of audiovisual content can be facilitated by defining
summaries, partitions, and decompositions. Summaries, for example, allow an
audiovisual object to be navigated in either a hierarchical or a sequential fash-
ion. For hierarchical navigation, material is organized into successive levels that
describe it at different levels of detail, from coarse to fine. For sequential naviga-
tion, sequences can be created of images or video frames, possibly synchronized
with audio and text that compose a slide show or audiovisual synopsis.

MPEG-7 descriptions can be entered by hand or extracted automatically
from the signal. Some features (color, texture) can best be extracted automati-
cally, while for others (“this scene contains three shoes,” “that music was
recorded in 1995”) this is effectively impossible.

The application areas envisaged for MPEG-7 are many and varied and stretch
well beyond the ambit of what most people mean by digital libraries. They will
include education, journalism, tourist information, cultural services, entertain-
ment, geographical information systems, remote sensing, surveillance, biomed-
ical applications, shopping, architecture, real estate, interior design, film, video
and radio archives, and even dating services.

5.6 Extracting metadata

We now turn to the business of extracting metadata automatically from a docu-
ment’s contents. Automatic extraction of information from text—text mining,
as it is often called—is a hot research topic. The ready availability of huge
amounts of textual information on the Web has placed a high premium on

266 F I V E | M A R K U P A N D M E T A D A T A

automatic extraction techniques. In this area there is hardly any underlying the-
ory, and existing methods use heuristics that are complex, detailed, and difficult
to replicate and evaluate.

Plain text documents are designed for people. Readers extract information by
understanding their content. Indeed text comprehension skills—reading docu-
ments and then being able to answer questions about them—have always been a
central component of grade-school education. Over the past several decades,
computer techniques for text analysis have been developed that can achieve
impressive results in constrained domains. Nevertheless fully automatic com-
prehension of arbitrary documents is well beyond their reach and will likely
remain so for the foreseeable future.

Structured markup languages such as XML help make key aspects of docu-
ments accessible to computers and people alike. They encode certain kinds of
information explicitly in such a way that it can be extracted easily by parsing the
document structure. Of course, except for the simplest of documents, this infor-
mation falls far short of that conveyed by a complete and comprehensive under-
standing of the text.

Relatively few documents today contain explicitly encoded metadata. The
balance will shift as authors recognize the added value of metadata, standards
for its encoding become widespread, and improved interfaces reduce the
mechanical effort required to supply it. However, although their role may
diminish, schemes for extracting metadata from raw text will never be com-
pletely replaced by explicit provision of metadata.

Fortunately it is often unnecessary to understand a document in order to
extract useful metadata from it. In the following discussion we give several
examples that indicate the breadth of what can be done, although we do not
describe the techniques in full detail because they usually require considerable
tuning to the problem at hand. The first three sections, extracting document
metadata, generic entities, and bibliography entries, describe useful general
techniques. The last four sections, language identification, extracting acronyms
and key phrases, and generating phrase hierarchies, are facilities that are
included in the Greenstone software described in subsequent chapters. This
material pushes beyond the boundaries of what is conventionally meant by
“metadata”—our focus is on extracting information that is generally of use in
digital libraries rather than on any narrow interpretation of the term.

Extracting document metadata

Basic metadata about a document—its title, author, publisher, date of publication,
keywords, and abstract—is often present on the first page for all to see. Moreover, it
is frequently presented in a fairly uniform way: the title first, centered, followed by

5 . 6 E X T R A C T I N G M E TA DATA 267

some white space and then the authors’ names and affiliations, also centered, fol-
lowed by the publication date, keywords preceded by the word Keywords, and
abstract preceded by the word Abstract or Summary. Document families bear fam-
ily resemblances. Different type sizes or typefaces may be used for different ele-
ments of the title page.

Such structure is easy to spot for a well-defined and tightly controlled family
of documents. However, doing it in a general way is not so easy, and the appro-
priate heuristics depend very much on the situation. Practical document collec-
tions often contain exceptions that go unnoticed by human readers but con-
found extraction heuristics. For example, HTML provides a title tag that allows
authors to identify the title of their document explicitly for use by the browser,
but even this explicit mechanism is frequently ignored, misused, or abused in
actual Web documents.

There is little to be said in general about extracting document metadata auto-
matically because it depends too much on the format of the documents and the
uniformity of the collection. Some of the techniques used for generic entity extrac-
tion, described in the next subsection, may be applicable in particular situations.

Generic entity extraction

Some information is easy to extract from plain text documents because it is
expressed in a fixed syntax that is easy to recognize automatically. E-mail
addresses and Web URLs are good examples. Of course these are both products
of the Internet era in which computers commonly handle free text: they are
explicitly designed for automatic recognition and processing.

Other artificial entities are also readily recognized, although slightly less reli-
ably. Sums of money, times of day, and dates are good examples. There are well-
known variants—dates can be expressed in several different ways. These some-
times cause ambiguity—as with date formats such as 9/9/99, and time
specifications using the 12- versus 24-hour clock. Some differences are cultural—
for example, when sums of money are specified in decimal currency, the English-
speaking world reverses the common European usage of comma and period.

Names of people, places, and companies are an important kind of semistruc-
tured data, and it is often useful to identify them as metadata. Names can be recog-
nized partly by intrinsic and partly by extrinsic properties. They almost always
begin with capital letters. (But not quite always, as the class of archaic English sur-
names such as ffoulkes, the avant-garde poet e e cummings, and the contempo-
rary singer k d lang all testify. Also, this fact loses much of its practical value in lan-
guages such as German that capitalize all nouns.) Indeed the statistical patterns in
which letters appear differ between names and ordinary language, a trend that is
accentuated by globalization, with the increasing incidence of foreign names in

268 F I V E | M A R K U P A N D M E T A D A T A

Western documents. People’s names are commonly preceded by forenames and
may contain initials. There are numerous honorific prefixes such as Mr., Ms., Dr.,
and Prof. Names may also include baronial prefixes such as von, van, or de, and
other miscellaneous qualifiers such as Jr. or Sr.

Extrinsic properties constrain the contexts in which names occur in text. Peo-
ple’s names are often recognizable because they are introduced by phrases such
as “according to . . . ” or “ . . . said.” Similar stock phrases characterize company
names and place names. Indeed sometimes entity names can be distinguished
from people’s names only by the surrounding words. When a string such as Nor-
man occurs, context provides the only clue as to whether it is the place Norman,
Oklahoma, a person such as Don Norman, or the race of Normans. (Notice that
this last sentence itself uses context to make the referents clear.)

Subsequent references to an already mentioned entity provide a further
dimension of richness. Once a document has mentioned a person, place, or
company, subsequent references may be abbreviated. Here, for example, it
should be clear who cummings or lang is.

The task of identifying entities such as times, dates, sums of money, and dif-
ferent kinds of names in running text is called generic entity extraction. There are
many systems that use heuristics to detect these entities; some pointers are given
in “Notes and sources” (Section 5.7). One important distinction is between
methods that use preprogrammed heuristics, those that can accommodate dif-
ferent textual conventions using manually tagged training data, and ones that
can self-adapt using untagged data.

When heuristics are preprogrammed, human intelligence is used to refine the
extraction scheme manually to take account of the vagaries of natural language
usage. On the other hand, heuristic entity extraction systems are never finished,
and modifying such systems manually to take account of newly discovered
problems can be daunting—they quickly become practically unmanageable.

Some adaptive systems use training data in which the entities in question
have been tagged manually. These systems embody a predefined generic struc-
ture that can adapt to the kinds of textual patterns that are actually encountered.
Adaptation consists of adjusting parameters in accordance with pretagged train-
ing documents. This gives an easy way of catering to newly discovered variants:
add some appropriate examples, manually tagged, to the training data.

Tagging training data is a boring, laborious, and error-prone task—particu-
larly since large amounts are often needed for adequate training. Some current
research focuses on self-adaptive techniques. These are ones that, once primed,
can work autonomously through large volumes of untagged documents to
improve their performance. This approach promises good performance with a
minimum of manual effort. However, its inherent limitations are not yet known.

5 . 6 E X T R A C T I N G M E TA DATA 269

Bibliographic references

Most academic documents contain bibliographic references, and these constitute
an important kind of metadata—though now we are beginning to push the con-
ventional meaning of the term—that is extremely useful both for characterizing
the topic of the article and for linking it to related articles. Traditional citation
indexes identify the citations that a document makes and link them with the cited
works. A key advantage is navigation forward in time, through listing articles that
cite the current one, as well as backward through the list of cited articles. Scholars
find citation indexes useful for many purposes, including locating related litera-
ture, placing given articles in context, evaluating their scientific influence, and
analyzing general research trends to identify emerging areas.

It is not hard to automatically determine where the list of references occurs in
the plain text of a document with a reasonable degree of accuracy. Then each
reference is parsed individually to extract its title, author, year of publication,
page numbers, and so on, and the tag that is used to cite it in the body of the
document (e.g., [1]). The special structure of references makes this easier than
the general problem of generic entity extraction. When parsing a reference,
fields that have relatively little variation in syntax and position, given the result
of previous parsing, should be identified next. For example, the citation tag
always comes first, and its format is the same for all references. Once the more
regular features of a reference have been identified, the usual relative position of
not-yet-identified fields can be exploited to predict where desired fields occur (if
they are present at all). For example, author information almost always precedes
titles, and publisher almost always comes after. Databases of author’s names,
journal names, and so on can be used to help identify the fields of the reference.

The power of a citation index depends on the ability to identify the article
that is being referenced and recognize different references to the same article. To
do this references must be normalized and heuristics used to identify when they
refer to the same article.

Language identification

Two important pieces of metadata that can be readily and reliably derived from
a document’s content are the language in which it is written and the encoding
scheme used. This is a problem of text categorization, in which an incoming
document is assigned to some preexisting category. Because category bound-
aries are almost never clear-cut, it is necessary to be able to recognize when a
given document does not match any category, or when it falls between two cate-
gories. Also, to be useful it must be robust to spelling and grammatical errors in
text, and to character recognition errors in OCR’d documents.

270 F I V E | M A R K U P A N D M E T A D A T A

A standard technique for text categorization is to characterize each document
by a profile that consists of the “n-grams,” or sequences of n consecutive letters,
that appear in it. A training set containing several documents in each possible
category is assembled, where the category values are known for each training
document. A profile is obtained for each category by including the n-grams that
appear in all documents in that category. Then, given an unknown document,
the system calculates a distance measure between that document’s profile and
each of the category profiles and selects the category whose profile is closest—or
no category if none is sufficiently close.

It is sufficient for successful language identification to consider just the indi-
vidual words that make up the documents—the effects of word sequences can
be neglected. Documents are preprocessed by splitting the text into separate
word tokens consisting only of letters and apostrophes (the usage of digits and
punctuation is not especially language-dependent). The tokens are padded with
a sufficient number of spaces, and then all possible n-grams of length 1 to 5 are
generated for each word in the document. These n-grams are counted and
sorted into frequency order to yield the document profile.

In document profiles the most frequent 300 or so n-grams are highly corre-
lated with the language. The highest ranking ones are mostly unigrams consist-
ing of one character only, and simply reflect the distribution of the letters of the
alphabet in the document’s language. Starting around rank 300 or so, the fre-
quency profile begins to be more specific to the topic of the document.

A simple metric for comparing a document profile to a category profile is to
calculate, for each document n-gram, the difference between its positions in the
two profiles—how far “out of place” it is. Document n-grams that do not appear
in the category profile are given some maximum value. The total of these “out of
place” figures gives a measure of the overall difference. An unknown document
is assigned to the category to which its profile is closest.

A small experiment gives an indication of the accuracy of this method. About
3,500 articles in Internet newsgroups were obtained, written in eight different
languages—Dutch, English, French, German, Italian, Polish, Portuguese, and
Spanish. An independent training set contained a modest sample of each cate-
gory, ranging from 20K to 120K bytes in length. Only the most frequent 400 n-
grams in each category profile were used. The system misclassified only seven
articles, yielding an overall classification accuracy of 99.8 percent. This provides
an accurate way of assigning language metadata to documents.

Acronym extraction

Technical, commercial, and political documents make extensive use of acronyms. A
list of acronyms and their definitions can assist document presentation by allowing

5 . 6 E X T R A C T I N G M E TA DATA 271

users to click on an acronym to see its expansion and help check whether acronyms
are being used consistently in a document collection. Identifying acronyms, and
their definitions, in documents is a good example of a metadata extraction prob-
lem that can be tackled using heuristics.

The dictionary definition of acronym is

a word formed from the first (or first few) letters of a series of words, as radar, from
radio detecting and ranging.

Acronyms are often defined by preceding or following their first use with a tex-
tual explanation, as in this example. Finding all acronyms, along with their defin-
itions, in a particular technical document is a problem that can be tackled using
heuristics. The information desired—acronyms and their definitions—is rela-
tional, which distinguishes it from many other information extraction problems.

One heuristic way of identifying acronyms is to encode potential acronyms
with respect to the initial letters of neighboring words. With a well-chosen cod-
ing scheme, this should achieve a more efficient representation that can be
detected by measuring the compression achieved. The criterion is whether a
candidate acronym could be coded more efficiently using a special model than it
is using a regular text compression scheme. A phrase is declared to be an
acronym definition if the discrepancy between the number of bits required to
code it using a general-purpose compressor and code it using the acronym
model exceeds a certain threshold.

The first step is to identify candidates for acronyms—for example, by taking
all words that are expressed in uppercase only. The acronym definition may pre-
cede or follow the acronym itself and invariably occurs within a window of a
fixed number of preceding or following words—say 16 words.

Candidate acronyms are expressed in terms of the leading letters of the words
on either side. The technical details of the coding are not particularly interesting
and are omitted here. After compressing the acronym candidates with respect to
their context, all legal encodings for each acronym are compared and the one that
compresses best is selected. For comparison, the acronym is compressed using a
generic text model, taking the preceding context into account. The candidate is
declared to be an acronym if the ratio between the two compression figures
exceeds some predetermined threshold. Incidentally it is a curious fact that, using
a standard text model, longer acronyms tend to compress into fewer bits than do
shorter ones. The reason is connected to the fact that whereas short acronyms are
often spelled out, long ones tend to be pronounced as words. This affects the
choice of letters: longer acronyms more closely resemble “natural” words.

Needless to say acronym extraction is not entirely perfect. Figure 3.26a (Chap-
ter 3) showed an example of a browser based on it, and here IFIS for International
Food Information Service and International Food Information Services should have
been treated as a single acronym—not because the acronym is the same, for there

272 F I V E | M A R K U P A N D M E T A D A T A

are many acronyms that have several different interpretations, but because the
definitions are so similar. However, experiments on a sizable sample of technical
reports show that this kind of scheme performs well and provides a viable basis
for extracting acronyms and their definitions from plain text.

Key-phrase extraction

In the scientific and technical literature, keywords and key phrases are often
attached to documents to provide a brief synopsis of what they are about.
(Henceforth we use the term key phrase to subsume keywords, that is, one-word
key phrases.) Key phrases are a useful form of metadata because they condense
documents into a few pithy phrases that can be interpreted individually and
independently of one another. Their brevity and precision make them useful in
a variety of information-retrieval tasks: to describe the documents returned by a
query, as the basis for search indexes, as a means of browsing an information
collection, and as a document clustering technique. Key phrases can be used to
help users get a feel for the content of an information collection; provide sensi-
ble entry points into it; show ways in which queries can sensibly be extended;
support novel browsing techniques with appropriate linkage structures; facili-
tate document skimming by emphasizing important phrases visually. They also
provide a way of measuring similarity among documents.

The key phrases that accompany articles are chosen manually. In academia
authors assign key phrases to documents they have written. Professional index-
ers often choose phrases from a “controlled vocabulary” that is predefined for
the domain at hand—one example is the Library of Congress Subject Headings
introduced in Chapter 2 (Section 2.2). However, the great majority of docu-
ments come without key phrases, and assigning them manually is a laborious
process that requires careful study of the document and a thorough knowledge
of the subject matter.

Surprisingly, perhaps, key-phrase metadata can be obtained automatically
from documents with a considerable degree of success. There are two fundamen-
tally different approaches: key-phrase assignment and key-phrase extraction.
Both require for training purposes a set of documents to which key phrases have
already been attached manually. The training set needs to be far more extensive
and pertinent in the case of key-phrase assignment than it does for extraction.

In key-phrase assignment the training documents provide a predefined set of
key phrases from which all key phrases for new documents are chosen—a con-
trolled vocabulary. For each key phrase the training data defines a set of docu-
ments that are associated with it. For each key phrase standard machine-learning
techniques are used to create a “classifier” from all training documents, using
the ones associated with it as positive examples and the remainder as negative
examples. Given a new document, it is processed by each key phrase’s classifier.

5 . 6 E X T R A C T I N G M E TA DATA 273

Some classify it positively—in other words, it belongs to the set of documents
associated with that key phrase—while others classify it negatively—it does not.
Key phrases are assigned to the new document accordingly.

In the other kind of technique, key-phrase extraction, all the phrases that
occur in the document are listed, and information retrieval heuristics are used
to select those that seem to characterize it best. Most key phrases are noun
phrases, and syntactic techniques may be used to identify these and ensure that
the set of candidates contains only noun phrases. The heuristics used for selec-
tion range from simple ones, such as the position of the phrase’s first occurrence
in the document, to more complex ones, such as the occurrence frequency of
the phrase in the document versus its occurrence frequency in a corpus of other
documents in the subject area. The training set is used to tune the parameters
that balance these different factors.

With key-phrase assignment, the only key phrases that can be assigned are
ones that have already been used for training documents. This has the advantage
that all key phrases are well formed, but the disadvantage that novel topics can-
not be accommodated. The training set of documents must therefore be large
and comprehensive. In contrast, key-phrase extraction is open-ended: it selects
phrases from the document text itself. There is no particular problem with
novel topics, but malformed key phrases may be assigned. The training set does
not need to be large and comprehensive because it is only used to set parameters
for the algorithm.

Key-phrase assignment employs methods of machine learning, and it would
take us too far off track to describe them here. Its success depends critically on
the coverage of the training corpus and its appropriateness for the documents
under consideration. Given the right conditions, key-phrase assignment can be
quite accurate—considerably more so than key-phrase extraction. But it is
harder to do in a general way.

We will explain key-phrase extraction in a little more detail. Suppose a well-
tuned extraction algorithm is used to select half a dozen key phrases for a partic-
ular document, and these are compared with phrases selected manually by the
document’s author. Generally speaking one might expect one or two of the key
phrases to match exactly or almost exactly, one or two others to be plausible
phrases that the document author happened not to choose, and the remaining
two or three to be less satisfactory key phrases.

As an example, Table 5.7 shows the output of a particular extraction algorithm
for three research papers in computer science. For each paper the title is shown,
along with two sets of key phrases. One set gives the key phrases assigned by its
author, and the other gives key phrases assigned by an automatic procedure.
Phrases in common between the two sets are italicized. It is not hard to guess that
the key phrases on the left are the author’s, while those on the right are assigned
automatically. Although many of the automatically extracted key phrases are

274 F I V E | M A R K U P A N D M E T A D A T A

plausible, some are rather strange. Examples are gauge and smooth for the second
paper. Smooth is not even a noun phrase—clearly this particular extraction algo-
rithm did not use syntactic analysis to identify the candidate key phrases. The key
phrase garbage for the third paper is a complete giveaway—while that word may

5 . 6 E X T R A C T I N G M E TA DATA 275

Table 5.7 Titles and key phrases—author- and machine-assigned—for three papers.

Protocols for secure, atomic transaction execution in electronic commerce

Author-assigned Machine-assigned

anonymity atomicity
atomicity auction
auction customer
electronic commerce electronic commerce
privacy intruder
real-time merchant
security protocol
transaction security

third party
transaction

Neural multigrid for gauge theories and other disordered systems

Author-assigned Machine-assigned

disordered systems disordered
gauge fields gauge
multigrid gauge fields
neural multigrid interpolation kernels
neural networks length scale

multigrid
smooth

Proof nets, garbage, and computations

Author-assigned Machine-assigned

cut-elimination cut
linear logic cut elimination
proof nets garbage
sharing graphs proof net
typed lambda-calculus weakening

be used repeatedly in a computer science paper, and even displayed prominently
in the title, no author is likely to choose it as a keyword for their paper! Although
automatically extracted key-phrase metadata may not reflect exactly what the
author might have chosen, it is useful for many purposes.

There are three stages in the overall process used for key-phrase extraction.

■ Use a corpus of text to produce a set of frequencies with which candidate
phrases are likely to occur in documents.

■ Use training data—that is, a set of documents with key phrases already
assigned—to create a “model” for key-phrase identification.

■ Process an individual document to identify key phrases in it, using the
results of the previous two stages.

All three stages begin by choosing a set of phrases from each document that are
potential key phrases. The second and third stages then generate features for
each candidate phrase. Note that subphrases of candidate phrases are often can-
didates themselves. Thus the input is not “segmented” into key phrases: as can-
didate phrases are generated, all subphrases are tested to see if they also should
join the list of candidates.

The extraction process hinges on the features that are used to characterize
phrases and select key phrases from all the candidate phrases in the document.
Three features are particularly useful. The first is the position of the phrase’s first
occurrence in the document. Phrases that occur early on are more likely to be
key phrases—particularly if they occur in the title or abstract, or early in the
introduction. If these sections are identified in the document structure, they
could be weighted accordingly; otherwise a simple measure of distance from the
start of the document (as a proportion of document length) will do.

The second feature weighs two factors against each other: first, phrases used
frequently throughout a document are more likely to be key phrases; and second,
phrases that are common in a corpus of similar documents are less likely to be
key phrases for any particular document. The situation is similar to the ranked
queries discussed in Chapter 3 (Section 3.3). There we noted that ranking tech-
niques assign a numeric weight to each query term based on its frequency in the
document collection—common terms receive low weight—and also compensate
for the length of the document so that long ones are not automatically favored.
Exactly the same kind of metric can be used to assess key phrases. In order to cal-
culate this feature, a large corpus of cognate text must be available—but note that
it does not have to consist of documents with key phrases already assigned. For
example, if key phrases are being assigned to documents in a digital library col-
lection, then the raw text in that collection will suffice.

A third feature is helpful in situations where there is a large training set of doc-
uments with manually assigned key phrases. It records for each candidate phrase

276 F I V E | M A R K U P A N D M E T A D A T A

the number of documents in the training set for which it is already a key phrase.
Using this feature makes the assignment process somewhat conservative: phrases
that have been used before as key phrases are automatically more likely to be used
again. Tests have shown that while the first two features alone give good perfor-
mance (the examples in Table 5.7 were based on just two features), using the
third improves performance if a large and relevant training set happens to be
available.

In order to weigh these three features, a machine-learning technique is used
to create a model for key-phrase identification based on the training data. The
model is a simple statistical one that weighs the features described above in a
way that gives good performance on the training documents. It is a simple mat-
ter to apply the model to the candidate key phrases identified in a new docu-
ment to produce a measure of “keyphrase-ness” for each one, and choose the
most likely few as key phrases for the document.

Phrase hierarchies

Key phrases consist of a few well-chosen words that characterize the document
under consideration. It is also useful to extract a structure that contains all
phrases in the documents. In Chapter 3 (Section 3.5), we saw how a hierarchical
structure of phrases can support a useful style of browsing around a digital
library collection. As an example, Figure 3.23 shows an interactive interface to a
phrase hierarchy that has been extracted automatically from the full text of a
document collection. Although describing such a phrase hierarchy as “meta-
data” is stretching the term beyond its conventional usage, we will nevertheless
take this opportunity to say something about how such a structure can be
obtained from the full text of a document collection—a nontrivial task, particu-
larly for large collections.

Identifying phrases
Underlying the user interface is a hierarchy of phrases that appear in the docu-
ment collection. For present purposes a phrase is a sequence of words that
occurs more than once in the text—that is, we are talking about any phrases that
repeat. Thus all the phrases visible in Figures 3.23a and b—Desert locust, Desert
locust situation, Desert locust adults, and so on—occur more than once in the
document collection.

However, to include every such phrase would clutter the interface with trivial
phrases, so three further conditions are added. Phrases must begin and end with
a content word, must not contain phrase delimiters, and must be maximal length.

Many trivial phrases can be suppressed by imposing the condition that
phrases must begin and end with “content words.” Function words such as the,

5 . 6 E X T R A C T I N G M E TA DATA 277

of, and and occur frequently (in English) but have no intrinsic semantic value.
Without special treatment, the phrases that are extracted would include a myr-
iad of trivial expansions such as the locust and of locusts—which would displace
more useful terms by taking up space in the phrase list. For each language we
further expand phrases whose first or last word appears in a predefined list of
stop words. Figure 3.24a shows the consequences of not giving stop words spe-
cial treatment. The stop-word list should contain du, le, de, and par, and the
phrases du poisson, Le poisson, DE poisson, and poisson par would not appear in
the upper panel—they would be further expanded into longer phrases such as
commercialization de poisson.

If the text were treated as an undifferentiated stream of words, many of the
phrases extracted from it would cross syntactic boundaries. For example, the
last word of one sentence and the first word of the next are unlikely to form a
meaningful two-word phrase. For this reason phrases may not include delim-
iters. Delimiters are defined, broadly speaking, as any punctuation characters,
but the rule is tuned to account for common (and language-dependent) usage.
In English, for example, neither the apostrophe in don’t nor the hyphen in lan-
guage-dependent count as phrase boundaries.

Phrases are maximal-length sequences if they occur in more than one context,
where by context we mean the words that flank the phrase where it appears in
the text. Phrases that are not maximal length—ones that occur in a single
unique context, that is, ones that are flanked by the same two words wherever
they appear—are expanded to encompass that context.

The phrase extraction process
At the core of the phrase extraction process is a program that extracts the phrase
hierarchy from a sequence of input symbols. It must identify the set of phrases
that occur more than once, are maximal length, do not contain delimiters, and
begin and end with content words. This is a lengthy process and is performed as
part of the collection-building procedure.

The result is a data structure that supports the runtime browsing interface. In
addition to the text of the phrases, the interface needs to know the structure
defined by the subphrase relation and what documents each phrase occurs in.
For each word and phrase there is a list of phrases in which that word or phrase
occurs, and with each word or phrase is stored a list of the documents in which
it occurs.

The output of the phrase extraction process has an entry for every phrase that
has been identified. Each entry contains a unique phrase identifier, the sequence
of words that comprise the phrase, and the number of times it occurs in the
entire collection. It also includes the number of expansions of the phrase, a list
containing the identifier of each expansion, the number of documents in which
the phrase occurs, and a list of document numbers in which it appears.

278 F I V E | M A R K U P A N D M E T A D A T A

Building a phrase hierarchy
Although it sounds easy to identify repeated phrases and structure them into a
phrase hierarchy, it is surprisingly difficult to do so efficiently on large text collec-
tions. There are several different possible techniques, but each is fairly complex.

One widely used basis for text compression is to build a dictionary of phrases
that occur in the input and replace all phrases by references to dictionary
entries, forming each new phrase by adding a single terminal symbol to an exist-
ing dictionary entry. This generates a hierarchical dictionary: each entry (except
for the first few) points to another entry that is one character shorter. The hier-
archy of repetitions is a simple one—embedding can only occur on the left—
but unfortunately this is not a useful structure for phrase browsing.

Another idea is to form a rule for the most frequently occurring pair of words
or digram, substituting a new symbol for that digram in the input string, and
continue until no digram appears more than once. This algorithm is inefficient
because it makes multiple passes over the string, recalculating digram frequen-
cies from scratch every time a new rule is created. However, there is an efficient
algorithm that creates the same structure of rules in a time that increases in pro-
portion to the length of the input string. We will not describe this algorithm; it
is quite complex.

Another algorithm creates a hierarchical dictionary for a given string in a
greedy left-to-right fashion. It builds the hierarchy of phrases by forming a new
rule out of existing pairs of symbols, including nonterminal symbols. Rules that
become nonproductive—in that they do not yield a net space saving—are
deleted, and where they occur they are replaced by the symbols that comprise
the right-hand side of the deleted rules. This is how rules involving more than
two symbols are formed. This method also operates in time proportional to the
length of the input string.

The methods described above segment the input string into a nonoverlap-
ping sequence of constituent phrases, each of which may itself be divided into a
nonoverlapping sequence of subphrases. The emphasis on segmentation arises
out of the fact that they were devised in the context of text compression, where
an economical representation of the original string is the ultimate goal. In such
a context it is appropriate to restrict consideration to nonoverlapping phrases.
However, the restriction is unnecessary if the aim is to infer a useful phrase
structure.

The solution is to consider all potential phrases—including ones that over-
lap—rather than segmenting the input into phrases. Although it seems simple,
overlapping phrase extraction is computationally far harder than segmented
phrase extraction. A document collection containing several gigabytes of text
may have a vocabulary of several hundred thousand words, and exponentially
more phrases. Over an N-word vocabulary there are potentially N 2 two-word

5 . 6 E X T R A C T I N G M E TA DATA 279

phrases, N3 three-word phrases, and so on. In practice the growth is less
extreme—otherwise there would be no repeated phrases to browse! The algo-
rithms mentioned above achieve linear complexity by removing many potential
phrases from consideration.

Advanced algorithms for overlapping phrases use a data structure called a
suffix tree to address the complexity issue. Suffix trees can be built in time pro-
portional to the length of the input; however, they take a great deal of space.
More economical in space—but rather slower—is a different structure, roughly
equivalent in functionality, called a suffix array. Even here memory require-
ments constrain the size of document collections that can be processed because
the entire input must be stored along with the suffix and prefix arrays—which
are themselves large.

5.7 Notes and sources

Stanley Morison’s definition is from First Principles of Typography (Morison,
1954). It was Marshall McLuhan (1964) who coined the phrase “the medium is
the message” in his book Understanding Media: “In a culture like ours, long
accustomed to splitting and dividing all things as a means of control, it is some-
times a bit of a shock to be reminded that, in operational and practical fact, the
medium is the message.”

Lagoze and Payette (2000) give an interesting and enlightening discussion of
metadata. They point out that the term is meaningful only in a context that
makes clear what the data itself is, and they discuss the different kinds of meta-
data identified at the start of this chapter.

You will find in your local bookstore many books that teach how to use the
HTML markup language. The definitive reference source on the Web for HTML
matters is the World Wide Web Consortium (W3C) at www.w3c.org. You can
find the lynx text browser, which is a fast and reliable method of extracting text
from HTML documents, at http://lynx.browser.org. The most comprehensive
reference source for SGML is Goldfarb (1990), while Bryan (1988) gives a gen-
tler introduction. The Text Encoding Initiative is described by Sperberg-
McQueen and Burnard (1999).

There are many excellent accounts of XML and related standards. A compre-
hensive one is Harold’s (2001) The XML Bible, which uses many worked exam-
ples to convey the points and has strong coverage of XSL. The World Wide Web
Consortium is responsible not only for the development of HTML, but also for
other standards such as XML, CSS, XSL, the document object model DOM, and
formatting objects FO. They publish specifications for all these standards on
their Web site, cited above.

280 F I V E | M A R K U P A N D M E T A D A T A

The Oxford Text Archive at http://ota.ahds.ac.uk is a nonprofit group that has
provided long-term storage and maintenance of electronic texts for scholars since
1976. Perseus at www.perseus.tufts.edu is a pioneering digital library project, dat-
ing from 1985, that originally focused upon the ancient Greek world but now has
wider coverage (Crane, 1998). Der Junge Goethe in Seiner Zeit at www.jgoethe.
uni-muenchen.de is a collection of early works (poems, essays, legal writings and
letters) by the great German writer Johann von Goethe (1749–1832), best known
internationally for his poem Faust, which inspired Gounod’s opera of the same
name. The Japanese Text Initiative at http://etext.lib.virginia.edu/japanese is a col-
laborative project that makes available a steadily increasing set of Japanese litera-
ture, accompanied by English, French, and German translations.

Turning to bibliographic metadata, details of the MARC record structure are
presented in books on library automation—for example, Cooper (1996). The
AACR2R cataloging rules are published by the American Library Association
(Gorman and Winkler, 1988). Svenonius (2000) gives a readable account of
them, and she quoted the extract about naming a local church. The Dublin Core
metadata initiative is described by Weibel (1999), and the standard is available at
www.niso.org. Thiele (1998) gives a review of related topics, while current devel-
opments are documented on the official Dublin Core Web site http://purl.org/dc
run by the Online Computer Library Center (OCLC).

BibTeX, part of the TeX system invented by Knuth (1986), is covered by Lamport
(1994). A description of Refer is included in the Unix manual pages. The EndNote
bibliographic system, a commercial reference database and bibliographic software
program, can be obtained from ISI ResearchSoft at www.isiresearchsoft.com.

The TIFF specification is provided online by Adobe and can be found at
http://partners.adobe.com/asn/developer/technotes/prepress.html. A readable early
account of the MPEG-7 metadata standard for multimedia is given by Nack and
Lindsay (1999a, 1999b).

A series of Message Understanding Conferences (MUC) has been held at
irregular intervals: the last was MUC-7 in 1998. They provide an ongoing forum
for assessing the state of the art and practice in text analysis technology and
include formulations and extensive studies of the generic entity extraction task.
Many extraction systems are described in the conference proceedings. An
account of an excellent and widely used automatic citation indexing system
which embodies the techniques mentioned for extracting bibliographic refer-
ences is given by Giles, Bollacker, and Lawrence (1998).

The method described for language identification was developed and investi-
gated by Cavnar and Trenkle (1994) and implemented in a system called TextCat.
The acronym extraction algorithm was developed and evaluated by Stuart Yeates
(Yeates, Bainbridge, and Witten, 2000). Different systems for browsing using key
phrases are described by Gutwin et al. (1999) and Jones and Paynter (1999).

5 . 7 N O T E S A N D S O U R C E S 281

Dumais et al. (1998) describe state-of-the-art text classification techniques for
key-phrase assignment, while Frank et al. (1999) and Turney (2000) describe
key-phrase extraction. The standard text-compression technique that builds a
dictionary of phrases is due to Ziv and Lempel (1978). The earliest known
description of the repeated-digram-substitution algorithm—which has been
reinvented many times—is Wolff ’s (1975), while the more complex implementa-
tion that operates in linear time is due to Larsson and Moffat (1999). Finally, the
greedy algorithm that creates a hierarchical dictionary is described by Nevill-
Manning and Witten (1997). Nevill-Manning and Witten (2000) summarize var-
ious computationally efficient techniques for inferring phrase hierarchies from
large amounts of text.

282 F I V E | M A R K U P A N D M E T A D A T A

283

Construction
Building collections with Greenstone

We briefly met the Greenstone software in Chapter 1, and Section 1.4 reviewed its
features to help convey the breadth of requirements for digital library software.
Chapter 3 introduced different user interfaces, virtually all of which showed
actual Greenstone collections. In Chapter 4 we met different document formats,
all of which the software supports. Although all these things are supported by
Greenstone, up to this point we have tried to be quite general: with few excep-
tions our account of digital libraries has not been tied to any particular system.

Now, in this chapter and the next, we focus specifically on Greenstone: how
to use it and how it operates. We assume that you have installed it on your com-
puter, be it Windows or Unix; the procedure is introduced in the Appendix. This
is a very simple operation—particularly if you accept the standard default con-
figuration—and takes only a few minutes. The starting page of your Greenstone
installation, which we call the Greenstone home page, gives access to a small
demonstration collection that we call the Demo collection: it is a small subset of
the Humanity Development Library with which the book opened.

In any digital library there is an important distinction between the processes
involved in building collections and those involved in delivering the information
they contain to users. Computer scientists will recognize this as the classic com-
pile-time versus runtime distinction in conventional computer programming.
To serve users effectively, information structures usually have to be prepared in
advance. Whereas faster computers may alter the tradeoff by allowing more lati-

Documents are the digital library’s building blocks. It is time to step down

from our high-level discussion of digital libraries—what they are, how they

are organized, and what they look like—to nitty-gritty details of how to rep-

resent the documents they contain. To do a thorough job we will have to

descend even further and look at the representation of the characters that

make up textual documents and the fonts in which those characters are

portrayed. For audio, images and video we examine the interplay

between signal quantization, sampling rate and internal redundancy that

underlies multimedia representations.Documents are the digital library’s

building blocks. It is time to step down from our high-level discussion of dig6

284 S I X | C O N S T R U C T I O N

tude to postpone operations until runtime, the sheer size of digital library col-
lections makes it unrealistic ever to envisage a fully interpreted service, one
without any advance preparation at all. The most we can expect is a kind of
incremental operation wherein collections can be augmented without a full
recompilation or rebuilding.

We begin by describing Greenstone’s facilities and how it helps you organize
information and briefly review how to access the information in the Demo col-
lection. Then this chapter focuses on the building aspect: what is involved in
creating a collection. Chapter 7 describes what happens at runtime.

It’s easy to build simple collections with Greenstone. A subsystem called the
Collector leads you step by step through the necessary operations. No program-
ming is required, and it takes just a few minutes to build a plain but utilitarian
collection containing your own material. Section 6.2 leads you through the
process. We assume that you already have identified some information on your
computer (or on the Web) from which you will build your first collection—in
formats such as plain text, HTML, Microsoft Word, PDF, or standard e-mail files.

The Collector interface is specifically designed to conceal details of what hap-
pens behind the scenes. For more advanced work it is necessary to understand
just what building digital library collections entails, and in Section 6.3 we walk
through the operations involved in building a collection manually, rather than
automatically. Every real-life digital library project presents unique requirements
and problems. Expect the unexpected: exceptions are routine—or, to quote a
succinctly ominous warning posted at a Tasmanian blowhole, “freak waves are
common” (see Figure 6.1). To crest freak waves in a digital library without being
overwhelmed, you need to understand the system and how it works.

Figure 6.1 Sign at a Tasmanian blowhole.

Section 6.4 describes the building process in more detail. Before beginning
we learn about the directory structure in which digital library collections and
the Greenstone software are both stored. Documents are identified throughout
the system by object identifiers or OIDs, and we examine how these are assigned
and maintained. In order to promote extensibility, the work of format conver-
sion and metadata extraction is handled by software modules called plug-ins.
Finally we focus on the two key subprocesses of building: importing documents
into the system and constructing searching and browsing indexes.

Documents and metadata are stored internally in an XML-based file format
called the Greenstone Archive Format, described in Section 6.5. Each collec-
tion’s structure is defined by a file called the collection configuration file that gov-
erns how the collection is built and how it appears to users. Sections 6.6 and 6.7
tell you more about how to deal with the novel problems—the freak waves—
that most digital library applications pose. The chief mechanisms used to
extend the capabilities of Greenstone are the just-mentioned plug-ins, which
handle document and metadata formats; classifiers, which handle different
kinds of browsing structures; and format statements, which govern the content
and appearance of the Web pages that comprise the user interface. Finally Sec-
tion 6.8 introduces a more advanced graphical user interface that assists in
building collections—a possible successor to the Collector.

6.1 Why Greenstone?

Greenstone is a comprehensive system for constructing and presenting collec-
tions of thousands or millions of documents, including text, images, audio, and
video. A typical digital library contains many collections, individually orga-
nized—although they bear a strong family resemblance. Easily maintained, col-
lections can be augmented and rebuilt automatically.

Collections are designed to be easy to use. Web-based and CD-ROM versions
have interfaces that are identical. Greenstone can be installed on any Windows
or Linux computer; a standard installation program is used which includes pre-
compiled binaries. Collections can be used locally on the computer where the
software is installed; also, if this computer is connected to a network, remote
users can access them using an ordinary Web browser.

What it does

One of Greenstone’s noteworthy design features is that each collection can be
organized differently. Requirements vary from collection to collection in several
ways. One is the format (or formats) in which the source documents are sup-

6 . 1 W H Y G R E E N S T O N E ? 285

plied—whether plain text, HTML, PostScript, PDF, Word, e-mail, or some
other file type. Images may be associated with documents—for example, page
images of OCR’d documents or cover images of books. Video or audio versions
may be supplied too. A second dimension of variation is what metadata is avail-
able and how it is supplied—whether embedded in the document itself, perhaps
using metadata expressed as “fields” in Microsoft Word or <meta> tags in
HTML, or information coded into the file name and its enclosing directories, or
available separately as a spreadsheet or other data file, or in an explicitly
designed metadata format such as MARC. A third kind of variation is the direc-
tory structure in which the information is provided. A fourth is the structure of
the documents themselves: are they flat, divided sequentially into pages, or
organized hierarchically, with metadata (such as title) available at each level?
Further dimensions concern the services that are offered by the digital library:
searching (what indexes?—what hierarchical levels?—what metadata?), brows-
ing (what metadata?—what kind of browser?), and so on. Still others concern
presentation: what formats are target documents shown in?—the search results
page?—the various metadata browsers?—what is the default interface language?
Auxiliary services might also be required (such as user logging).

Many digital library systems take a Procrustean view: documents must be
supplied in such-and-such a format (or converted before entering the system),
certain metadata must be available (e.g., Dublin Core) and supplied in a stan-
dard way, and so on. In contrast, in Greenstone the structure of a collection is
defined by a collection configuration file. Creating a collection involves design as
well as gathering together the raw material, and the result of the design process
resides in this file.

On the front page of each collection is a statement of its purpose and cover-
age (as recommended in Section 2.1) and an explanation of how it is organized.
Most collections can be accessed by both searching and browsing: we encoun-
tered many examples in Chapter 3.

When searching, users can choose between indexes built from different parts
of the documents. Some collections have an index of entire documents, an index
of paragraphs, and an index of titles, each of which can be searched for particu-
lar words or phrases. Using these you can find all documents that contain a par-
ticular set of words (they might be scattered far and wide throughout the docu-
ment), or all paragraphs that contain the words (which must all appear in the
same paragraph), or all documents whose titles contain the words (which must
all appear in the document’s title). There may be other indexes, perhaps an
index of sections, or an index of section headings, or an index of figure captions.

Browsing involves lists that the user can examine: lists of authors, lists of titles,
lists of dates, hierarchical classification structures, and so on. Different collec-
tions incorporate different browsing facilities (such as those in Section 3.4).

286 S I X | C O N S T R U C T I O N

Organization
As Chapter 3 illustrates there are several ways to find information in Greenstone
collections. You can search for particular words that appear in the document
text and can often restrict the search to a particular section. You can generally
browse documents by title: click on the book icon to read the book. You can
sometimes browse documents by subject. Subjects are represented by book-
shelves: click on one to look at the books. Where appropriate, documents come
complete with a table of contents: you can click on a chapter or subsection to
open it, expand the full table of contents, or expand the entire document into
your browser window (useful for printing).

All index structures are created automatically from the documents and sup-
porting files: nothing is done manually. If new documents in the same format
become available, they can be merged into the collection automatically. Indeed,
for many collections this is done by processes that awake regularly, scout for new
material, and rebuild the indexes—all without manual intervention.

Document formats
Source documents come in a variety of formats and are converted into a standard
XML form for indexing using plug-ins. Standard plug-ins process plain text,
HTML, Word and PDF documents, and Usenet and e-mail messages—and new
ones can be written for different document types. To build browsing structures
from metadata, modules called classifiers are used to create browsers of various
kinds: scrollable lists, alphabetic selectors, dates, and arbitrary hierarchies. Pro-
grammers can write new classifiers that create novel browsing structures.

Multimedia and multilingual documents
Collections can contain text, pictures, audio, and video. Nontextual material is
either linked into the textual documents or accompanied by textual descriptions
(such as figure captions) to allow full-text searching and browsing.

Unicode is used throughout to represent document text and metadata. This
allows any language to be processed and displayed in a consistent manner. Col-
lections have been built containing Arabic, Chinese, English, French, Māori,
Russian, and Spanish. Multilingual collections embody automatic language
recognition, and the interface is available in all these languages (and more).

Distributing collections
Collections can be accessed over the Internet or published, in precisely the same
form, on a self-installing Windows CD-ROM. Compression is used to compact
the text and indexes. Collections can be distributed among several different
computers on a network (such as the Internet) using a CORBA-based protocol,
which also supports the construction of graphical query interfaces.

6 . 1 W H Y G R E E N S T O N E ? 287

The New Zealand Digital Library (www.nzdl.org) provides many examples,
including collections of historical documents, humanitarian and development
information, technical reports and bibliographies, literary works, and magazines.

Being open source, the software is readily extensible and benefits from the
inclusion of GNU-licensed modules for full-text retrieval, database manage-
ment, and text extraction from proprietary document formats.

How to use it

The searching and browsing facilities that are provided have already been
described in Chapter 3. We briefly review them here, focusing on the Demo col-
lection, a small subset of the Humanity Development Library supplied with the
Greenstone system. Other collections offer similar facilities; if you can use one,
you can use them all.

Exploring the interface
The easiest way to learn how to use the interface is to try it out. Click liberally:
all images that appear on the screen are clickable. If you hold the mouse station-
ary over an image, most browsers will soon pop up a “mouse-over” message that
tells you what will happen if you click. Experiment! Choose common words
such as the and and to search for—that should evoke some response, and noth-
ing will break. (Note: Greenstone indexes all words; there are no stop words.)

Each digital library system usually contains several separate collections—for
example, computer science technical reports, literary works, Internet FAQs, and
magazines. A home page for the digital library system allows you to consult any
publicly accessible collection; in addition each collection has its own About page
that gives information about it. To return to this page at any time, click on the
collection icon that appears at the top left of all searching and browsing pages.

Figure 6.2 shows a screen shot of the Demo collection. All icons are clickable.
Several appear at the top of almost every page; Table 6.1 defines what they mean.
The search . . . subjects . . . titles a-z . . . organization . . . how to navigation bar at
the top of the figure gives access to the searching and browsing facilities. The
leftmost button is for searching, and the others—four, in this collection—evoke
different browsing facilities. These differ from one collection to another.

Table 6.2 summarizes the different ways to find information in the Demo col-
lection, most of which have already been encountered in Chapter 3. You can
search for particular words that appear in the text from the Search page. (This is
just like the About page shown in Figure 6.2, except that it doesn’t show the
about this collection text.) The Search page can be reached from other pages by
pressing the Search button. You can access publications by subject by pressing
the Subjects button. This brings up a list of subjects, represented by bookshelves

288 S I X | C O N S T R U C T I O N

that can be further expanded by clicking on them. You can access publications
by title by pressing the Titles A-Z button. This brings up a list of books in alpha-
betic order. You can access publications by organization by pressing the Organi-
zation button, which brings up a list of organizations. You can access publica-
tions by “how to” listing by pressing the How To button, which brings up a list
of “how to” hints. All these buttons are visible in Figure 6.2.

6 . 1 W H Y G R E E N S T O N E ? 289

Figure 6.2 Using the Demo collection.

Table 6.1 What the icons at the top of each page mean.

Takes you to the About page

Takes you to the Digital Library’s home page

Provides help text

Allows you to set user interface and searching options

Table 6.2 What the icons on the search/browse bar mean.

Search for particular words

Access publications by subject

Access publications by title

Access publications by organization

Access publications by “how to” listing

You can tell when you have arrived at an individual book because there is a
photograph of its front cover. Figure 3.3 showed a particular book and
explained how you can click around the table of contents and read the various
sections. At the end of each section are arrows that take you on to the next one
or back to the previous one. In some collections the documents do not have a
hierarchical chapter/section structure; in these cases no table of contents is dis-
played when you get to an individual document—just the document text. In
other cases the document is split into pages, and you can read sequentially or
jump around from one page to another.

While browsing through the collection, you will encounter the icons shown
in Table 6.3.

Searching
Small details were omitted from the discussion of searching in Section 3.3.
Search terms in Greenstone contain only alphabetic characters and digits and
are separated by white space. If other characters such as punctuation appear,
they serve to separate terms just as though they were spaces—and then they are

290 S I X | C O N S T R U C T I O N

Table 6.3 Icons that you will encounter when browsing.

Click on a book icon to read the corresponding book

Click on a bookshelf icon to look at books on that subject

View this document

Open this folder and view contents

Click on this icon to close the book

Click on this icon to close the folder

Click on the arrow to go on to the next section ...

... or back to the previous section

Open this page in a new window

Expand the table of contents

Display all text

Highlight search terms

ignored. You can’t search for words that include punctuation (unless you couch
them as a phrase search). For example, the query

Agro-forestry in the Pacific Islands: Systems for

Sustainability (1993)

is treated the same as

Agro forestry in the Pacific Islands Systems for Sustainability

1993

Section 3.3 explained two different types of query, ranked and Boolean. The
Greenstone interface gives a simplified set of choices:

■ queries for all the words
■ queries for some of the words

The first is interpreted as a Boolean AND query, the second as a ranked one.
Users are encouraged to employ as many search terms as they like—a whole sen-
tence, even a whole paragraph. Phrase searching is included and is implemented
by a postretrieval scan as described in Section 3.3.

In most collections you can choose different indexes to search. For example,
there might be author and title indexes. Or there might be chapter and para-
graph indexes. In most collections the full matching document is returned
regardless of which index you search, although this need not be the case.

Preferences
More advanced control over the search operation can be obtained using the
Preferences page, shown in Figure 3.15. These facilities were discussed in Sec-
tion 3.3 and include control over case-folding and stemming, an advanced
query mode that allows users to specify Boolean operators, a large-query inter-
face, and a mode that displays search history.

The Preferences page also allows you to change other features of the interface
to suit your own requirements. Some collections comprise several subcollec-
tions that can be searched independently or together as one unit. If so, you can
select from the Preferences page which subcollections to include in your
searches.

Each collection has a default presentation language, but you can choose a dif-
ferent one if you like. You can also alter the encoding scheme used by Green-
stone for communicating with the browser—the software chooses sensible
defaults, but with some browsers better visual results are obtained by switching
to a different encoding scheme. All collections allow you to choose a textual
interface format rather than the standard one, which is useful for visually
impaired users who use large screen fonts or speech synthesizers.

6 . 1 W H Y G R E E N S T O N E ? 291

Depending on the collection, there may be other options that control the pre-
sentation. In some collections of Web pages, you can suppress the navigation
bar at the top of each document page, so that clicking on a search result lands
you at the Web page that matches, without any Greenstone header. Then to do
another search you would have to use the browser’s Back button. In these collec-
tions you can also suppress the system’s alert message that appears when you
click a link that leads out of the digital library collection and on to the Web
itself. In some Web collections you can control whether the links on the Search
Results page take you straight to the actual URL in question, rather than to the
digital library’s own copy of the page.

6.2 Using the Collector

Greenstone’s Collector subsystem is a facility that helps you create new collec-
tions, modify or add to existing ones, and delete collections. Like the rest of
Greenstone, it operates through a Web interface, whether you are working
locally on your own computer or remotely on someone else’s. The Collector
helps by guiding you through a sequence of pages that request the information
needed for your collection. The sequence is almost self-explanatory: this section
runs through it in detail. You can create collections on any computer that is run-
ning Greenstone, whether it is your own laptop or workstation or a remote
machine that you are interacting with over the Internet—provided you are an
authorized user, of course. In either case the entire interaction takes place using
a standard Web browser.

Having installed Greenstone on your computer using the procedure intro-
duced in the Appendix, you will be presented with the default Greenstone home
page. Access the Collector by clicking the appropriate link on this page.

In Greenstone the structure of each digital library collection is determined at
the time the collection is set up. Included in this structure are such things as the
format of the source documents, how they are to be displayed on the screen, the
source of metadata, what browsing facilities are provided, what search indexes
are available, and how the search results and target documents are displayed.
Once the collection has been constructed, it is easy to add new documents to
it—so long as they are in the same format as the existing ones and the same
metadata is provided in exactly the same way. Whenever you add new docu-
ments, you need to initiate a “rebuilding” process to recreate the searching and
browsing indexes.

The Collector’s main purpose is to enable you to build a new collection. It
also allows you to modify an existing one: you can add new material to it, alter
its structure, delete it, or write it onto a self-contained, self-installing CD-ROM.
Even when creating a brand-new collection, the simplest way to proceed is to

292 S I X | C O N S T R U C T I O N

copy the structure of an existing collection and replace its contents with new
material. Later you might want to adapt its structure as well. This is copy and
edit, a paradigm that underlies most practical computer work: you start with
what already exists and rework it into something new. We describe in this sec-
tion how to do the “copy” part, which is very easy indeed. The rest of the book
elaborates on the “edit” part, which is where you tailor the information collec-
tion to particular requirements, determined partly by its content and partly by
the way you want it to appear to the digital library’s user.

Whenever you use the Collector, you need to log in before proceeding. This
may seem superfluous when working on your own computer. However, the Col-
lector, like the rest of the Greenstone interface, operates through a Web browser.
Web browsers do not provide authentication—the browser does not know that
it is you, the computer’s local user, that is accessing the browser and not some-
one else at another site, and programs that the browser invokes cannot know
this either. People often use Greenstone’s collection-building facility to build
new collections on a remote computer; the fact that you can do so is a major
strength of the design.

Of course it is inappropriate to let arbitrary Internet users build collections
on your computer—for reasons of propriety if nothing else. For this reason
Greenstone embodies a security system that forces people who want to build
collections to log in first. In this way a central system can offer a service to
authorized users wishing to build information collections and make them avail-
able to others via that central server. For example, you can let your friends log
on to your Greenstone system and build their own collections on your com-
puter. You yourself will probably be building collections locally, but you still
have to log in because other people using Greenstone on your computer should
not be allowed to build collections indiscriminately.

You can create accounts for other people on your Greenstone system. When
the software is installed, an initial account is set up for a user called admin,
whose password is set during the installation procedure.

Creating a new collection

We will describe how to use the Collector to create a new information collection,
your own personal digital library. In our example the collection builder will cre-
ate a collection from some files that are stored on the disk locally, plus other files
on a remote Web site. In our example the raw material is HTML, although it is
just as easy to accommodate other file types too. We suppose that when remote
files are served up by the digital library system, the collection builder wants them
to be fetched from the remote site where the original resides, rather than showing
a locally cached copy. This will help to make it clear to end users that these files
belong elsewhere and are merely indexed by the digital library. It also leaves full

6 . 2 U S I N G T H E C O L L E C T O R 293

control of the information with the original site, where files can be edited or
deleted at any time. However, the remote files will have to be downloaded for
indexing purposes.

Figure 6.3a shows how the interaction starts. You first decide whether to
build a new collection or work with an existing one; in our case the user opts to
create a new collection. Then the user name is entered (the admin user is shown
in Figure 6.3a), along with the corresponding password.

Dialog structure
After logging in, the page in Figure 6.3b appears. This shows the sequence of
steps that are involved in collection building. They are

1. supplying collection information
2. specifying source data
3. configuring the collection
4. building the collection
5. viewing the collection

The first step is to give the collection’s name and associated information. The
second is to specify where the source data is to come from. The third is to adjust
the configuration options, a step that becomes more useful as you gain experi-
ence with Greenstone. The fourth step is where all the (computer’s) work is
done. During this building process the system makes all the indexes and gathers
together any other information that is required to make the collection operate.
The fifth step is to check out the collection that has been created.

These five steps are displayed as a sequence of gray buttons at the bottom of
the screen in Figure 6.3b and at the bottom of all other pages generated by the
Collector. This display helps you keep track of where you are in the process. The
button that should be clicked to continue the sequence is shown in green (Col-
lection Information in Figure 6.3b). The gray buttons (all the others, in Figure
6.3b) are inactive. The buttons change to yellow as you proceed through the
sequence, and you can return to an earlier step by clicking the corresponding
yellow button in the diagram. This display is modeled after the “wizards” that
are widely used in commercial software to guide end users through the steps
involved in installing new software.

Supplying the collection information
The next step in the sequence, supplying the collection information, is shown in
Figure 6.3c. When creating a new collection, you need to enter some informa-
tion about it:

■ title
■ contact e-mail address
■ brief description

294 S I X | C O N S T R U C T I O N

6 . 2 U S I N G T H E C O L L E C T O R 295

(a) (b)

(c) (d)

Figure 6.3 Using the Collector to build a new collection. (continued on following page)

296 S I X | C O N S T R U C T I O N

(e) (f)

(g)

Figure 6.3 (continued)

The collection title is a short phrase used throughout the digital library to iden-
tify the collection. Examples include the Food and Nutrition Library, World
Environmental Library, Humanity Development Library, and so on. The e-mail
address gives the first point of contact for any problems encountered with the
collection. If the Greenstone software detects a problem, a diagnostic report
may be sent to this address. Finally, the brief description sets out the principles
that govern what is included in the collection. It appears under the heading
About this collection on the first page when the collection is presented. Section
2.1 of Chapter 2, under “Ideology,” explained the importance of including this
kind of information with every digital library collection.

The user’s current position in the collection-building sequence is indicated
by an arrow that appears in the display at the bottom of each screen—in this
case, as Figure 6.3c shows, the collection information stage. The user proceeds
to the stage shown in Figure 6.3d by clicking the green Source Data button.

Specifying the source data
Figure 6.3d shows the point at which the user specifies the source text for the
collection. You can either create a completely new collection or “clone” an exist-
ing one—that is, base the structure of your new collection on one that exists
already.

If you clone a collection, you need to specify (on a pull-down menu) which
one you want to clone. Note that some collections use nonstandard input file
formats, while others use metadata specified in auxiliary files. If your new input
lacks this information, some browsing facilities may not work properly. For
example, if you clone the Demo collection (one of the collections provided in
the Greenstone distribution) you may find that the Subjects, Organization, and
How To buttons don’t work.

The alternative to cloning an existing collection is to create a completely new
one. A bland collection configuration file is provided that accepts a wide range of
different document types and generates a searchable index of the full text and an
alphabetic title browser. More information about the different document for-
mats that can be accommodated is given in the subsection “Document Formats.”

Boxes are provided to indicate where the source documents are located: up to
three separate input sources can be specified in Figure 6.3d. If you need more,
just click the More Sources button.

There are three kinds of specification:

■ a directory name on the Greenstone server system (beginning with file://)
■ an address beginning with http:// for files to be downloaded from the Web
■ an address beginning with ftp:// for files to be downloaded using FTP

You can specify sources of more than one type. If you use file:// or ftp:// to spec-
ify a file, that file will be downloaded. If you use http:// it depends on whether

6 . 2 U S I N G T H E C O L L E C T O R 297

the URL gives you a normal Web page in your browser or a list of files. If a page,
that page will be downloaded—and so will all pages it links to, and all pages they
link to, and so on—provided they reside on the same site, below the URL. If you
use file:// or ftp:// to specify a folder or directory, or give an http:// URL that
leads to a list of files, everything in the folder and all its subfolders will be
included in the collection.

In this case (Figure 6.3d) the new collection comprises documents taken
from a local file system as well as a remote Web site. The documents on the
remote site will be copied, or mirrored, to the local site during the building
process.

When you click the Configure Collection button to proceed to the next stage
of building, the Collector checks that all the sources of input you specified can
be reached. This might take a few seconds, or even a few minutes if you have
specified several sources. If one or more of the input sources you specified is
unavailable, you will be presented with a page like that in Figure 6.3e, where the
unavailable sources are marked (both of them in this case).

Sources might be unavailable because

■ the file, FTP site, or URL does not exist (or the name has been entered
incorrectly)

■ you need to dial up your Internet Service Provider (ISP) first
■ you are trying to access a URL from behind a firewall on your own com-

puter
■ the URL you are trying to access is behind a firewall on the remote com-

puter

The last case is potentially the most mysterious. It occurs if you normally have to
present a username and password to access the Internet. Sometimes it happens
that you can see the page from your Web browser if you enter the URL, but the
Collector claims that it is unavailable. The explanation is that the page in your
browser may be coming from a locally cached copy. Unfortunately, locally
cached copies are invisible to the Collector. In this case we recommend that you
first download the pages individually using your browser and save them locally.

Configuring the collection
Figure 6.3f shows the next stage. The construction and presentation of all collec-
tions are controlled by specifications in a special collection configuration file
(discussed later). Advanced users may use this page to alter the configuration
settings. Most, however, will proceed directly to the final stage. Indeed, in Figure
6.3d both the Configure Collection and Build Collection buttons are displayed
in green, signifying that step 3 can be bypassed completely.

In this case the user has made a small modification to the default configura-
tion file by including a file_is_url switch with the HTML plug-in. This flag

298 S I X | C O N S T R U C T I O N

causes URL metadata to be inserted into each document, based on the file-name
convention that is adopted by the mirroring package. The collection uses this
metadata to allow readers to refer to the original source material rather than a
local copy.

Building the collection
Figure 6.3g shows the building stage. Until now the responses to the dialog have
merely been recorded in a temporary file. The building stage is where the action
takes place.

During building, indexes for both browsing and searching are constructed
according to instructions in the collection configuration file. The building
process takes some time: minutes to hours, depending on the size of the collec-
tion and the speed of your computer. Some large collections take a day or more
to build.

When you reach this stage in the interaction, a status line at the bottom of the
Web page gives feedback on how the operation is progressing, updated every
five seconds. The message visible in Figure 6.3g indicates that when the snapshot
was taken, Title metadata was being extracted from an input file.

Warnings are written if input files or URLs are requested that do not exist, or
exist but there is no plug-in that can process them, or the plug-in cannot find an
associated file—such as an image file embedded in an HTML document. The
intention is that you will monitor progress by keeping this window open in your
browser. If any errors cause the process to terminate, they are recorded in this
status area.

You can cancel the building process at any time by clicking on the Stop Build-
ing button in Figure 6.3g. If you leave the Web page (and have not canceled the
building process), the building operation will continue, and the new collection
will be installed when the operation completes.

If you do experience problems with the Collector, or if you are working with
large collections or more advanced projects, you can build collections from the
command line. Section 6.3 gives a detailed walkthrough of how this is done.

Viewing the collection
When the collection is built and installed, the sequence of buttons visible at the
bottom of Figures 6.3b–f appears again at the bottom of Figure 6.3g, with the View
Collection button active. This takes you directly to the newly built collection.

To help monitor the creation of new collections, e-mail can be sent to the col-
lection’s contact address, and to the system administrator, whenever a collection
is created (or modified). This allows those responsible to check when changes
occur and to monitor what is happening on the system. The facility is disabled
by default but can be enabled by editing the main.cfg configuration file (see Sec-
tion 7.4).

6 . 2 U S I N G T H E C O L L E C T O R 299

Working with existing collections

When you enter the Collector, you have to specify whether you want to create an
entirely new collection or work with an existing one, adding data to it or delet-
ing it. Updating an existing collection with new material is an automatic process
rather than the tedious manual procedure that is usually involved when updat-
ing a richly linked Web site. Greenstone creates all searching and browsing
structures automatically from the documents themselves. Because no links are
inserted by hand, when new documents in the same format become available
they can be merged into the collection automatically.

Although our purpose in this section is to create a brand-new collection, we
take this opportunity to explain briefly what can be done with existing collec-
tions. First you select the collection from a list that is provided. Some collections
are “write protected” and cannot be altered: these don’t appear in the selection
list. With the selected collection, you can

■ add more material and rebuild the collection
■ edit the configuration file to modify the collection’s structure
■ delete the collection entirely
■ export the collection to a self-contained, self-installing CD-ROM

When adding new material, you are taken straight to the stage of the dialog
depicted in Figure 6.3d, where you can specify new files that will be added to the
collection. Make sure that you do not respecify files that are already present—
otherwise the collection will include duplicate copies. You specify directories
and files just as you do when building a new collection: files are identified by
their full path name, Web pages by their absolute Web address. If you add data
to a collection and for some reason the building process fails, the old version of
the collection remains unchanged.

The structure of a collection can be modified by editing its configuration file.
This option takes you straight to the stage of the dialog depicted in Figure 6.3f.
Simple changes can be made at this stage, such as adding new plug-ins (such as
the PDF and Word plug-ins mentioned in the next subsection) or adding an
option to a plug-in (earlier we added file_is_url to the HTML plug-in). More
radical alterations to the configuration file are best undertaken outside the Col-
lector interface, as described in Section 6.3.

If you specify that you want to delete a collection, you will be asked to con-
firm whether you really want to do so. Once deleted, Greenstone cannot bring
collections back!

Finally you can export the collection in a form that allows it to be written to a
self-contained, self-installing Greenstone CD-ROM for Windows. When you
export the collection, the dialog informs you of the directory name in which the

300 S I X | C O N S T R U C T I O N

result has been placed. The entire contents of the directory are then written to
CD-ROM using a standard CD-writing utility.

Document formats

When building collections Greenstone processes each source document by seek-
ing a plug-in that can deal with that particular format. Plug-ins are specified in
the collection configuration file. Greenstone generally uses the file name to
determine document format—for example, foo.txt is processed as a text file,
foo.html as HTML, and foo.doc as a Word file—because the plug-ins are written
to seek these particular file name patterns.

Here is a summary of the plug-ins that are available for widely used docu-
ment formats, including the file names that each one processes. Most plug-ins
allow you to specify various options. More detail about plug-ins and their
options, and further plug-ins for less commonly used formats, can be found in
Section 6.7.

TEXTPlug (*.txt, *.text)
TEXTPlug interprets a plain text file as a simple document. It adds Title meta-
data based on the first line of the file.

HTMLPlug (*.htm, *.html; also .shtml, .shm, .asp, .php, .cgi)
HTMLPlug processes HTML files. It extracts Title metadata based on the
HTML <title> tag; other metadata expressed using HTML’s metatag syntax can
be extracted too. It also parses and processes any links that the file contains.
Links to other files in the collection are trapped and replaced by references to
the corresponding documents within the digital library. Several options are
available with this plug-in, including the file_is_url switch mentioned earlier.

WORDPlug (*.doc)
WORDPlug imports Microsoft Word documents. There are many different
variants on the Word format—even Microsoft programs sometimes have con-
version problems. Greenstone uses independent programs to convert Word files
to HTML. For some older Word formats, the system resorts to a simple extrac-
tion algorithm that finds all text strings in the input file.

PDFPlug (*.pdf)
PDFPlug imports documents stored as PDF files, Adobe’s Portable Document
Format. Like WORDPlug, it uses an independent program to convert files to
HTML.

6 . 2 U S I N G T H E C O L L E C T O R 301

PSPlug (*.ps)
PSPlug imports documents stored as PostScript files. It works best if a standard
conversion program is already installed on your computer. These are available
on most Linux installations, but not on Windows. If no conversion program is
present, the system resorts to a simple text extraction algorithm.

EMAILPlug (*.email)
EMAILPlug imports files containing e-mail and deals with common formats
such as are used by the Netscape, Eudora, and Unix mail readers. Each source
document is examined to see if it contains an e-mail, or several e-mails joined
together in one file, and if so the contents are processed. The plug-in extracts
Subject, To, From, and Date metadata.

ZIPPlug (.gz, .z, .tgz, .taz, .bz, .zip, .tar)
ZIPPlug handles several compressed and/or archived input formats. It relies on
standard utility programs being present.

6.3 Building collections manually: A walkthrough

Now it is time to walk through the operations involved in building a Greenstone
collection from the command line, to help understand the process better. The
collection used as an example contains the Web home pages of people who have
worked on the New Zealand Digital Library project. As we go we will take the
opportunity to explain some general features and design principles, as well as
the specific steps involved in building a collection.

We have talked loosely about “building” a collection as the process of taking a
set of documents and metadata information and creating all the indexes and
data structures that support the searching, browsing, and viewing operations
that the collection offers. This process is broken down into four phases. First we
make a skeleton framework structure that will contain the collection. Then we
import the documents and metadata specifications from the form in which they
are provided to a Greenstone standard form. Next we build the required indexes
and data structures. Finally we install the collection so that it becomes opera-
tional. We refer to these operations as make, import, build, and install, respec-
tively. The terminology is potentially confusing: we use make because the Eng-
lish language does not have a specific verb for creating a skeleton or framework,
and—worse still—build is used in two different senses, one that encompasses
the whole process and another that refers to a particular subprocess. Provided
the distinction is kept in mind, it should be clear from the context whether build
refers to the general process of building-in-the-large or the specific one of build-
ing-in-the-small.

302 S I X | C O N S T R U C T I O N

If you can, follow along on your own computer. We use Windows terminol-
ogy. The process for Unix is virtually identical; the differences are mentioned in
Table 6.4. You may think that some operations are unnecessary, but their role
becomes clear later. Remember that our purpose is not to provide a streamlined
way of building collections—for that, use the Collector instead—but to explain
the collection-building procedure, a powerful and flexible process that provides
a basis for building all sorts of different collections with radically different struc-
tures. Table 6.4 summarizes the procedure, for reference.

Getting started

The first challenge when working from the command line under Windows is to
locate the command prompt, the place where you type commands. Look in the

6 . 3 B U I L D I N G C O L L E C T I O N S M A N U A L L Y : A W A L K T H R O U G H 303

Table 6.4 The collection-building process.

Step Function

1. cd "C:\Program Files\gsdl" Assumes that Greenstone is installed in
the default location.

2. setup.bat This makes Greenstone programs
available. On Unix, use source
setup.bash or source setup.csh
instead, depending on the shell you are
using.

3. perl –S mkcol.pl Create a skeleton framework of initial
–creator me@cs.waikato.ac.nz dlpeople files and directories. We called our

collection dlpeople.
4. Copy source files into Populate the collection with sample

C:\Program Files\gsdl\ documents. On Windows, select the
collect\dlpeople\import files and drag them. On Unix, use the

cp command.
5. Edit the file Customize the collection by editing the

C:\Program Files\gsdl\ collection-level metadata in the
collect\dlpeople\etc\collect.cfg configuration file. Altercollectionname,

collectionextra, and collectionicon.
6. perl –S import.pl dlpeople Convert the source documents and

metadata specifications to the Green-
stone standard form.

7. perl –S buildcol.pl dlpeople Build the indexes and data structures
that make the collection work.

8. Replace the contents of the collection’s index directory On Windows, select the files and drag
with that of the building directory them. On Unix, use the mv command.

Start menu, or under the Programs submenu, for an entry such as MS-DOS
Prompt, DOS Prompt, or Command Prompt. If you can’t find one, invoke the
Run entry and type cmd (or, on Windows 95/98 systems, command) in the dia-
log box. If all else fails, seek help from one who knows—perhaps your system
administrator.

Change into the directory in which Greenstone has been installed. Assuming
it was placed in its default location, you can move there by typing

cd "C:\Program Files\gsdl"

(We show the quotation marks because in some circumstances you need them to
protect the space in Program Files.) Next, at the prompt type

setup.bat

This batch file (which you can read if you like) tells the system where to look for
Greenstone programs and other parts of the digital library file structure by setting
the variable GSDLHOME to the Greenstone home directory.9 If later on you want to
return to this place, type

cd "%GSDLHOME%"

(again, the quotation marks are there to protect spaces in the file name). If you
close the DOS window and open another one, you must invoke setup.bat again.

Making a framework for the collection

Now you are in a position to make, import, build and install collections. The
first operation creates an empty framework structure for a collection and is
accomplished by the Perl program mkcol.pl—the name stands for “make a col-
lection.” Cryptic abbreviations are used because Greenstone runs on systems
right down to Windows 3.1, which imposes an eight-character limit on all file
and directory names.

First run the program by typing perl –S mkcol.pl. (If your environment is set
up to associate the Perl application with files ending in .pl, you can drop the perl
preamble and simply type mkcol.pl.) All Greenstone programs take at least one
argument—the name of the collection being operated on. Running them with-
out arguments causes a description of usage and a list of arguments to appear on
the screen.

304 S I X | C O N S T R U C T I O N

9. On Windows 95/98 systems running setup.bat may fail with an “Out of environment space”
error. If this happens, you should edit your system’s config.sys file (normally found at C:\con-
fig.sys) and add the line shell=C:\command.com /e:4096 /p (where C: is your system drive let-
ter) to expand the size of the environment table. You’ll need to reboot for this change to take
effect, and then repeat the steps above for Greenstone.

The usage statement explains that mkcol requires just one argument, the col-
lection name. It also shows an extensive list of options, which are arguments
that are preceded by a minus sign (−). One of these options, creator, must be
present—it is used to specify who built the collection. (The notion of a
“required option” may be a contradiction in terms but we use it all the same.)
This illustrates a general principle: sensible defaults are provided wherever pos-
sible, so that only a minimum of information needs to be specified explicitly—
in accordance with the maxim “Simple things should be simple; complex things
should be possible.” Every Perl program in Greenstone has many options, of
which virtually all have default values. The fact that you can always obtain a
usage summary by invoking the program without arguments provides up-to-
date documentation for an evolving system.

We now use mkcol.pl to create a framework of initial files and subdirectories
for our new collection. To assign the collection the name dlpeople, type

perl –S mkcol.pl –creator me@cs.waikato.ac.nz dlpeople

(If Perl is associated with the .pl file extension, use the corresponding short form
mkcol.pl –creator me@cs.waikato.ac.nz dlpeople). The creator’s e-mail address is
needed because any problems that arise with the collection are automatically
notified (although this facility is switched off by default). Please substitute your
address for the one shown.

To examine the new file structure, move to the newly created collection direc-
tory by typing

cd "%GSDLHOME%\collect\dlpeople"

(Again the quotation marks protect spaces in GSDLHOME.) List the contents of
this directory by typing dir. The mkcol.pl program has created seven subdirecto-
ries: archives, building, etc, images, import, index and perllib. We learn about
their roles shortly.

In the new collection’s etc directory, mkcol has placed a collection configura-
tion file called collect.cfg. Figure 6.4 shows the one created by the above mkcol
command. The e-mail address that was specified has been placed in the creator
and maintainer lines, and the collection name appears in one of the collection-
meta lines, which give metadata concerning the collection as a whole. The con-
figuration file includes a liberal selection of plug-ins.

Importing the documents

The next step is to populate the collection with documents. In our case, source
material for the new collection resides in a series of directories, one for each of
the people concerned. These directories contain a mixture of HTML files and
associated GIF or JPEG image files, along with the occasional PDF file. They also

6 . 3 B U I L D I N G C O L L E C T I O N S M A N U A L L Y : A W A L K T H R O U G H 305

contain subdirectories, each containing the same kind of mixture, and possibly
further subdirectories as well. The whole structure is messy and disorganized,
which is typical of the file structures that people present you with when building
digital libraries.

The file structure containing the source material should be placed in the new
collection’s import directory. Just drag the directory containing the source mate-
rial into the dlpeople collection’s import directory. It doesn’t matter if the direc-
tory represents a whole hierarchy, or if you put more than one source directory
into the import directory.

Because mkcol has included a wide selection of plug-ins in the configuration
file in Figure 6.4, the file structure you place in import can include many file
types: PDF documents (with extension .pdf), RTF documents (.rtf), Word docu-
ments (.doc), e-mail documents (.email) from Netscape, Eudora, or Unix e-mail
files, as well as plain text documents (.txt or .text) and HTML (.htm or .html)
files (along with associated images). They will all be included in the collection.

Now you are ready to perform the import process. This brings the documents
into the Greenstone system, standardizing their format, the way that metadata is
specified, and the file structure that contains the documents. In different collec-
tions source metadata is provided in different ways. Most plug-ins extract what-
ever metadata they can from the document files—for example, the HTML plug-
in extracts Title metadata and any metadata specified with HTML’s <meta>
syntax. The best way to learn about what the other plug-ins do is to try them
and see! It is also possible to provide metadata explicitly (see Section 6.7).

306 S I X | C O N S T R U C T I O N

creator me@cs.waikato.ac.nz
maintainer me@cs.waikato.ac.nz
public true

indexes document:text
collectionmeta .document:text "documents"
defaultindex document:text

plugin ZIPPlug
plugin GAPlug
plugin TEXTPlug
plugin HTMLPlug
plugin EMAILPlug
plugin PDFPlug
plugin RTFPlug
plugin WORDPlug
plugin ArcPlug
plugin RecPlug

classify AZList -metadata "Title"

collectionmeta collectionname "dlpeople"
collectionmeta iconcollection ""
collectionmeta collectionextra ""

Figure 6.4 Collection configuration file created by mkcol.pl.

Type perl –S import.pl at the prompt to get a list of options for the import
program. Then issue the basic command

perl –S import.pl dlpeople

Text scrolls past, reporting the progress of the import operation. Some warn-
ings may appear—for example, when there are files that no plug-in can
process. You can ignore warnings—in this case these files will simply be
ignored. The dlpeople file structure contains about 300 files in about 40 folders,
occupying a total of about 6 Mb. Importing it on an ordinary laptop takes a
minute or two—correspondingly longer on slower machines. You do not have
to be in any particular directory when the import command is issued because
the software works out where everything is from the Greenstone home direc-
tory and the collection’s name.

Building the indexes

The next step is to build the indexes and data structures that make the collection
work. This is building-in-the-small (as opposed to building-in-the-large, which
refers to the whole process of making, importing, building, and installing).
With a small nod toward the ambiguity of the term build, the relevant program
is called buildcol.pl.

But first let’s customize the new collection’s appearance by altering the collec-
tion-level metadata shown at the end of the configuration file in Figure 6.4. (You
can omit this step if you like.) Give the collection a less cryptic name by editing
the collectionname line to collectionmeta collectionname "The People of the NZDL
project". Web browsers receive this name as the title of the collection’s front
page. Add a description between the quotes of the collectionextra line—for
example, “This collection is made up of the home pages of some of the people
who have worked on the NZDL project.” (For real collections you should use a
more informative description.) This text appears under About this collection on
the collection’s home page. It should be entered as a single line in the editor,

6 . 3 B U I L D I N G C O L L E C T I O N S M A N U A L L Y : A W A L K T H R O U G H 307

Figure 6.5 Collection icon.

without pressing the Enter key, because each line of the configuration file is
treated as a new command.

Give the collection an icon. (In its absence, the collection’s name is used
instead.) Any picture viewable in a Web browser is suitable—Figure 6.5 shows
ours. Put the image’s location between the quotes in the iconcollection line. We
named the image icon.gif and placed it in the collection’s images directory, that
is, collect\dlpeople\images. For the icon to be correctly located through a Web
browser, we use the string _httpprefix_/collect/dlpeople/images/icon.gif as the
value of iconcollection. The word _httpprefix_ is a shorthand way of beginning
any URL that points within the Greenstone file area. Notice that forward slashes
are used for URLs, not the familiar Windows backslashes; this is standard in
Web-serving software.

Having edited the collection configuration file, save and close it.
Now “build” the collection. First type perl –S buildcol.pl at the command

prompt for a list of collection-building options (these options are explained
more fully in Section 6.4). Then, sticking to the defaults, type

perl –S buildcol.pl dlpeople

Again “progress report” text scrolls past, which under normal conditions can be
ignored. (Any serious problem will cause the program to be terminated imme-
diately with an error message.) The building process takes about a minute.

Installing the collection

Although it has been built, the collection is not yet “live”—users of your Green-
stone system cannot see it. Building takes place in a special area, and the result
must be moved to the proper place before the collection can be used. This is
because some collections take hours—or days—to build, and during that period
an existing version of the collection may continue to serve users. Building is
done in the building directory, whereas collections are served from their index
directory.

To make the collection operational, select the contents of the dlpeople collec-
tion’s building directory, and drag them into the index directory. If index already
contains some files, remove them first.

The newly built collection can now be invoked from the digital library home
page. If you are using the Local Library version of Greenstone (this is explained
in the installation instructions), you will have to restart the library program.
Otherwise you need only reload the home page (although caching may conceal
the change, in which case you should close the browser and restart it). To view
the new collection, click on its icon. The result is shown in Figure 6.6. If the col-
lection doesn’t appear on the Greenstone home page, the most common cause is
omitting to move the contents of the building directory into index.

308 S I X | C O N S T R U C T I O N

6.4 Importing and building

There are two main parts to the collection-building process that we walked
through earlier: importing (import.pl) and building in the narrow sense (build-
col.pl). The import process brings documents and metadata into the system in a
standardized XML form that is used internally, the Greenstone Archive Format.
Afterward the original material can safely be deleted because the collection can
be rebuilt from the archive files. The original material is placed in the collec-
tion’s import directory, and the import process transforms it to files in the
archives directory. To add new material to the collection, put it into import and
reexecute the import process. The new material will find its way into archives,
along with any files that are already there. To keep a collection in “source” form
so that it can be augmented and rebuilt later, do not delete the archives.

The build process (buildcol.pl) creates the indexes and data structures needed
to make the collection operational. The building process does not work incre-
mentally (although the import process does): indexes for the whole collection
are built all at once. If you add new material to archives as described earlier, you
then have to rebuild the collection from scratch by reissuing buildcol.pl. This

6 . 4 I M P O R T I N G A N D B U I L D I N G 309

Figure 6.6 About page for the dlpeople collection.

nonincremental operation is a less serious limitation than might appear at first
sight. Most collections can be rebuilt overnight—this suffices for collections
with up to a gigabyte or so of text (depending on the number of indexes). If nec-
essary, a two-part collection with a main and an auxiliary part can be used, with
new material added to the latter. Greenstone can be set up to search multiple
collections and present them as though they were a single collection.

The import and build processes have many similarities and take many of the
same options, described in Table 6.5. Remember that to see the options for any
Greenstone script, type its name at the command prompt.

Many of the options in Table 6.5 assist with debugging. Verbosity determines
how much information, if any, is produced during the process. The maxdocs
parameter selects just the first few documents for importing or building. This is
useful when debugging new collections and new plug-ins. The out specification
allows debugging information to be written to a file for later analysis. The debug
option allows you to see the output of each plug-in rather than having it written
to a file.

Files and directories

Before going any further you need to learn how to find your way around the
software. Figure 6.7 shows the structure of the Greenstone home directory,
including one collection—the newly built dlpeople.

We begin with the collect directory, which, as we have seen, contains the digi-
tal library collections in this Greenstone installation. Each collection has the
same structure: just one, dlpeople, is shown here. The dlpeople directory com-

310 S I X | C O N S T R U C T I O N

Table 6.5 Options for the import and build processes.

Option Argument Function

–verbosity Number 0–3 Control how much information about the process is printed to stan-
dard error; 0 gives a little, 3 gives lots.

–archivedir Directory name Specify the location of the archives—where import.pl puts them and
where buildcol.pl finds them (default archives).

–maxdocs Number Specify the maximum number of documents to be processed.
–collectdir Directory name Specify the collection’s location (default collect).
–out Filename Specify a file to which all output messages are written (defaults to

standard error—the screen).
–keepold – Do not remove the result of the previous import (archives directory) or

build (building directory).
–debug – Print plug-in output to standard output.

prises an import directory where the original source material is placed and an
archives directory where the import process’s result goes. The building directory
is used temporarily during building, whereupon its contents are moved manu-
ally into index. It is index that contains the bulk of the information that is served
to users—the import, archives, and building directories can be deleted after the
build is complete. The etc directory contains the collection’s configuration file
and, if necessary, other miscellaneous information associated with it. Finally
images holds specific images that are used in the collection—such as the collec-
tion icon in Figure 6.5—while perllib contains any Perl programs that are spe-
cific to the collection.

Having covered the collect directory, we turn to the remainder of Figure 6.7.
To the left of collect is the Greenstone program code. Bin contains the programs
that are used in the building process (broadly defined). There are subdirectories
for Windows and Unix (not shown), and a script subdirectory that holds the
Perl programs used for creating and building collections—for example,
mkcol.pl, import.pl, and buildcol.pl. For an account of how to use any Perl pro-
gram, type its name at the command prompt.

The perllib directory contains Perl modules that are used when building.
Plug-ins and classifiers are placed in the corresponding subdirectory. They are
discussed further in Section 6.7.

The cgi-bin directory contains the software that implements the Greenstone
runtime system, which is the subject of Chapter 7 (except that in the Local
Library version of Greenstone mentioned earlier, cgi-bin is absent, and the soft-
ware is placed in the top-level Greenstone directory instead). This software is
written in the C++ language. Src contains the source code. The main part com-
prises the “collection server” and the “receptionist”—these are explained in
Chapter 7—but there are also several auxiliary programs. Common software
that is used by both components is placed in lib.

6 . 4 I M P O R T I N G A N D B U I L D I N G 311

script colservr recpt mg

GSDLHOME

bin perllib cgi-bin src lib packages mappings collect etc images macros tmp docs

dlpeople

import archives building index etc images perllib

classify plugins

Figure 6.7 Structure of the Greenstone home directory.

Packages holds the source code for various external software packages, all dis-
tributed under the GNU Public License, that Greenstone uses. Their functions
vary widely, from MG, an indexing and compression program, to GDBM, a
standard database manager program; from Web mirroring programs to ones
that support standard library protocols; from encryption modules for password
protection to utilities that convert PDF and Microsoft Word documents to
HTML. Each package is stored in a directory of its own, with a readme file that
gives more information about it. The corresponding executable programs are
placed in the bin directory when Greenstone is compiled and installed. The
mappings directory holds Unicode translation tables.

Just as the etc subdirectories of collect holds the collection configuration files,
so the main Greenstone etc directory holds configuration files for the entire sys-
tem. It also includes initialization and error logs and the user authorization
database. The main images directory stores images used in the user interface,
among them the icons shown in Tables 6.1–6.3. The user interface is driven by
small code fragments called macros, and these are placed in the macros directory.
Tmp is used for storing temporary files. Also, some programs make tmp subdi-
rectories of individual collection directories for temporary files. Finally, docs
contains the documentation for the system.

Object identifiers

Every document has an associated object identifier or OID that is used to iden-
tify it within the system. This identifier is persistent: that is, it is intended as a
permanent name for the document. For example, suppose a user is reviewing a
list of search results and at precisely that time, unbeknownst to him or her, a
new version of the same collection is installed. When the user clicks one of the
documents, the correct document will still be displayed, despite the fact that all
the underlying data structures have changed, because it is identified internally
by its OID—and object identifiers remain the same when collections are rebuilt.

Assigning object identifiers to documents is one of the import process’s
major functions. The OID is assigned and stored as an attribute in the docu-
ment’s archive file. If the import process is reexecuted, documents receive the
same OID. To ensure this, OIDs are obtained by calculating a random number
based on the content of the document—called hashing. If the content changes,
the OID changes. If it does not, the OID remains the same. Identical copies of a
document will be assigned the same OID and will thereafter be treated by the
system as one. The same document can appear in two different collections: if it
does, searching both collections will return just one copy of the document.

OIDs are character strings starting with the letters HASH: for example,
HASH0109d3850a6de4440c4d1ca2. They are long enough that the chance of two

312 S I X | C O N S T R U C T I O N

documents receiving the same OID is vanishingly small, and this possibility is
ignored in the system.

By default the hashing method is used to assign OIDs. When a document is
imported, its OID is stored in the archive file that represents the document. But
the OID could be overridden by altering it in the file—perhaps to take advan-
tage of an existing identifier. Documents are not usually reimported when
adding new material to a collection, so if their OIDs have been overridden in the
archive file, they will stay that way.

Hashing the contents of documents is slow and can easily dominate the
import process. A simpler alternative is provided which instead numbers the
documents sequentially in the order in which they are imported (specified by
the OIDtype argument in Table 6.6 below). This makes importing faster, but the
hashing method should be used if you intend to add documents to the collec-
tion later. If you were to use sequential numbering and add documents without
reimporting, OID conflicts would arise; if you did reimport the existing docu-
ments, their OIDs would change.

Each document’s archive file occupies its own directory in the archives struc-
ture, along with any files associated with the document—such as image files
included in it. OIDs are used to name this directory. File-system limitations may
be encountered when storing large collections on primitive computers: the
length of file names may be limited; the number of files in a directory may be
limited; there may be a restriction on the maximum nesting depth of directo-
ries. (Early Windows systems impose an eight-character limit on file names and
cannot read CD-ROMs that have more than eight nested directories.)

For all these reasons OIDs are not used as file names directly. Instead they
serve to define an efficient directory hierarchy that respects these limitations.
The details are mundane. Briefly, the OID’s first eight characters are used as the
document’s directory: thus the above document would be stored in directory
HASH0109. If a second document’s OID begins with the same eight characters—
say HASH010942bbf9c1376e9489c29c—it is stored in a subdirectory named by the
next eight characters, in this case HASH0109/42bbf9c1. If the following eight char-
acters clash with a third document’s OID, the policy continues. This produces a
maximum of four nested directories—e.g., HASH0109/42bbf9c1/376e9489/c29c, if
the directory names end up being spelled out in full. Combined with the standard
prefix GSDLHOME/collect/collection-name/archives, this comes just inside an
eight-level maximum nesting depth.

Plug-ins

Most of the import process’s work is accomplished by plug-ins. These operate in
the order in which they occur in the collection’s configuration file. An input file

6 . 4 I M P O R T I N G A N D B U I L D I N G 313

is passed to each plug-in in turn until one is found that can process it—thus ear-
lier plug-ins take priority over later ones. A document’s file name is generally
used to determine its format—for example, foo.txt is processed as a text file,
foo.html as HTML, and foo.doc as a Word file—because the plug-ins are written
to detect these particular file name patterns. However, it is possible to write
plug-ins that examine a document’s content before deciding whether to process
it. If there is no plug-in that can process the file, a warning is printed and atten-
tion passes to the next file.

One plug-in can inherit the functionality of another. For example, WORD-
Plug inherits from HTMLPlug the ability to process HTML files and works by
converting Word documents to an intermediate HTML form.

The traversal of the subdirectory structure in the import directory is also
determined by plug-ins. We have explained that you begin by placing the whole
file structure containing the source material into import. A special plug-in called
RecPlug is provided that recurses through directory structures. This plug-in
only processes directories. It operates by creating a list of all the files they con-
tain (including subdirectories) and passing the name of each back through the
plug-in list. The effect is to expand all directories in the hierarchy. RecPlug is
normally included in all collection configuration files as the last member of the
plug-in list. The fact that subdirectories are traversed by a plug-in opens up the
possibility of having different schemes for working through the files. It also
means that metadata could be assigned to documents based on where they
occur in the import directory hierarchy.

Two other special plug-ins are included in every collection configuration file:
GAPlug and ArcPlug. GAPlug processes Greenstone Archive Format docu-
ments. These do not occur in the import files, but they certainly do occur in the
archives directory structure. The import and build phases use the same plug-in
list, so GAPlug must be included for use when building. ArcPlug is also used
during building only: it processes the list of document OIDs that were produced
during importing (the list is stored in the archives.inf file mentioned in the next
subsection).

The import process

The import process converts documents from their native format to the Green-
stone Archive Format. This format also includes all metadata that pertains to
the document. Reading any metadata files that are supplied with the collection,
decoding their format, and inserting the information into the appropriate
archive files are all part of the import process.

Figure 6.8 depicts the import process. Each oval represents a specific module
that resides in the perllib directory. There are many options: Table 6.5 shows

314 S I X | C O N S T R U C T I O N

those that are common to both import and build; Table 6.6 lists import-specific
ones.

The first step in Figure 6.8 is to parse the command line arguments to identify
which options are in effect. Next the collection configuration file is read. Some
parameters of the import process can be set either in the collection configura-
tion file or in the command line. Command-line settings are useful for debug-
ging purposes and take precedence in case of conflict. For example, the names of
the import and archives directories can be overridden using the importdir and
archivedir variables—either in the collection configuration file or on the com-
mand line.

Plug-ins are loaded in step 4. They can either be general ones or collection-
specific versions. Any general plug-in—say HTMLPlug—can be overridden by a
particular collection with nonstandard needs—like a private convention for
specifying metadata in an HTML file. General plug-ins are found in a standard
place in the top-level Greenstone directory: perllib/plugins. However, if there is a
directory called perllib/plugins in the collection’s own space—for example,

6 . 4 I M P O R T I N G A N D B U I L D I N G 315

If old archives are to
be purged

arcinfo

plugin

docsave

arcinfo

colcfg
2.Read collection

configuration file

1.Parse command-
line arguments

3.Set variables not
already set

plugin
4.Load all the

specified plug-ins

7.Define document
saving procedure

6.Read the archives
information file

5.Delete old
archives directory

8.Parse input docu-
ments

10. Write archives
information file

parsargv

9.Save documents
as XMLplugin

Figure 6.8 Steps in the import process.

dlpeople/perllib/plugins for the dlpeople collection—step 4 also checks there for
collection-specific plug-ins, which override general ones of the same name.

In step 5, the removeold option (Table 6.6) determines whether the result of
importing is added to or replaces any existing material in the archive. Step 6
reads the archives information file (archives.inf), which lists any documents that
are already present in the archives directory, in order to speed up subsequent
processing; steps 8 and 10 append new files to this list. Each document is stored
in the archives as the file doc.xml in a directory (or a series of nested directories)
that is calculated from its OID as explained earlier. The archives.inf file contains
one line for each document, giving its OID and the directory in which it is
stored. In the previous example, it would include the lines

HASH0109d3850a6de4440c4d1ca2 HASH0109

HASH010942bbf9c1376e9489c29c HASH0109/42bbf9c1

Step 7 creates an object that determines where and how documents are to be
saved. Their location is given by the variable archivedir (Table 6.5). The sortmeta
switch (Table 6.6) sorts documents according to a specified metadata tag, and
this determines the order in which they are presented as the result of a Boolean
search. It operates by sorting the contents of archives.inf.

The actual work is done in step 8. The plug-ins operate on each document
and generate corresponding archive files, along with any associated files (such as
images). Some plug-ins assign metadata to documents rather than processing
the document text itself; their effect is to include that information in the archive
file. At the end of the import process, each document appears in its own direc-
tory as an archive file that includes all the metadata that pertains to it. All files
associated with the document are included in the directory too.

Step 9 writes the archive documents using the object created in step 7. The
final step is to write the archives.inf file that lists the documents for use during
the build process.

316 S I X | C O N S T R U C T I O N

Table 6.6 Additional options for the import process.

Option Argument Function

–importdir Directory name Specify the location of material to be imported (default import).
–removeold None Remove the contents of the archives directory before importing.
–gzip None Zip up the archive documents produced by import.
–groupsize Number > 0 Specify the number of documents put into each archive file

(default 1).
–sortmeta Metadata tag name Sort the documents alphabetically by the named metadata tag.
–OIDtype hash or incremental Specify the method of creating OIDs for documents.

Two further functions in Table 6.6 deserve mention. The gzip option com-
presses the archive documents using gzip (which must be installed on your
machine). To ensure that compressed documents can be uncompressed at build
time, ZIPPlug should be included in the plug-in list. The groupsize option
groups several documents together into each archive file. Normally there is one
file for each document. In collections with many very small documents, pro-
cessing time can be dominated by file operations, and it is advantageous to
group documents together. The Greenstone Archive plug-in automatically rec-
ognizes grouped files and processes them correctly.

The build process

The build process (buildcol.pl) builds all the indexes and data structures needed
to make the collection work. It also compresses the text of the documents. The
full-text indexes that are required are specified by a line in the collection config-
uration file (see Section 6.6); most collections have multiple indexes. In addi-
tion to full-text indexes, other information about how the collection is to appear
on the Web is precalculated and incorporated into the collection—for example,
information about icons and titles and information produced by classifiers.

The process operates in several passes. Two passes are required to compress the
text, two for each index included in the collection, and a final pass to produce the
collection information database. Every document is read and processed during
each pass. This is the main reason for separating the import and build processes: it
means that the work of converting the text from its original encoding into UTF-8,
and calculating the OID, and processing the metadata, is only done once.

6 . 4 I M P O R T I N G A N D B U I L D I N G 317

mgbuilder

colcfg
2.Read collection

configuration file

1.Parse command-
line arguments

3.Set variables not
already set

5.Locate and load
collection builder

6.Build required
collection parts

If collection icons
required

4.Create collection
icons

parsargv

Figure 6.9 Steps in the build process.

The diagram in Figure 6.9 represents the execution of buildcol.pl, while Table
6.7 shows the options unique to building. Options shared by the import process
have already been discussed.

Step 4 (to the left) is the first one in Figure 6.9 that is not common to the
import process, and it is performed only if the create_images option has been
set. It invokes a function that creates an icon for the collection and registers it in
the configuration file (which must have write permission set). The image is cre-
ated by GIMP, the GNU Image Manipulation Program that runs on Linux, and
the GIMP Perl module must be installed and properly configured.10 The image
created looks like the greenstone demo icon at the top left of the screen in Figure
6.2, but with text appropriate for the new collection.

Step 5 checks for a collection-specific build procedure. Some collections are
built by a special nonstandard program, which is placed in the collection’s perl-
lib directory and named by the collection name with builder suffixed. The basic
build procedure is called mgbuilder, and collection-specific builders are derived
from it. In step 5 the builder, whether the general version or a collection-specific
one, is initialized with relevant parameters: how many documents are to be
included, whether or not the old version of the collection is to be retained, and
where the building and archive directories are located.

In step 6, the building step, the document text is compressed and indexed,
collection titles and icons are stored in a collection information database, and
data structures are constructed to support the classifiers that are specified in the
collection’s configuration file. All these operations are handled by the builder
program. The default one, mgbuilder, uses the Managing Gigabytes software
(mentioned in the “Notes and sources” sections of Chapters 3 and 4) for com-

318 S I X | C O N S T R U C T I O N

Table 6.7 Additional options for the build process.

Option Argument Function

–builddir Directory name Where the result of building is stored (default building)
–index Index name Which indexes to build (default: all indexes in the

collection configuration file)
–allclassifications None Include all classifications, even empty ones
–create_images None Create collection icons automatically
–mode all, compress_text,

infodb, or build_index Determine what components are built (default all)
–no_text None Don’t store compressed text

10. This external paint package also runs under Windows, so in principle it is possible to aug-
ment the Windows version of Greenstone with this service too.

pressing and indexing. The collection information database (described in more
detail in Section 7.2) stores all information pertaining to the collection—its
name, icons, document OIDs, associated files, and structures that define the
classifiers.

Generally all components of the collection are built together—compressed
text, indexes, and collection information database. However, for debugging pur-
poses the operation can be restricted to certain components using the mode
switch: the document text only (compress_text), the collection information
database (infodb), or the indexes specified in the collection configuration file
(build_index). Just one index can be built by specifying it on the command line.
For example, –index section:Title will build just an index of section titles. The
syntax for specifying indexes will be discussed in Section 6.6.

The building process normally suppresses classifiers that include no docu-
ments—for example, if no titles begin with the letter X, the X tab under the
Titles A-Z button will be suppressed. The allclassifications switch overrides this
behavior and does not suppress empty classifiers. Sometimes the user is shown
the original documents rather than the digital library’s local version—collec-
tions can be set up this way by including a specification in the configuration file.
Then there is no point in storing the compressed text, and the no_text option
can be used to suppress it, reducing the size of the built collection.

Once it has been built, to make a collection available over the Web you must
move the contents of the building directory into the index directory. As
explained earlier, collections are not built directly into index to ensure that any
existing version remains accessible during the building process.

6.5 Greenstone archive documents

Source documents are brought into the Greenstone system by converting them
to a format known as the Greenstone Archive Format. This divides documents
into sections and stores metadata at the document or section level. One design
requirement is to be able to represent any previously marked-up document that
uses HTML tags, even if the markup is sloppy. Another is that archive docu-
ments can be parsed very rapidly. The archive is an XML-compliant syntax that
contains explicit top-level markup for sectioning and metadata and can also
embed HTML-style markup that is not interpreted at the top level.

In XML, tags are enclosed in angle brackets for markup, just like HTML tags.
The archive format encodes documents that are already in HTML by escaping
any embedded left or right angle bracket (<, >), or quote (") characters within
the original text using the standard codes <, > and ".

6 . 5 G R E E N S T O N E A R C H I V E D O C U M E N T S 319

A <Section> tag signals the start of each document section, and the corre-
sponding closing tag marks the end of that section. Each section begins with a
metadata block that defines metadata pertinent to that section. There can be any
number of metadata specifications, each of which gives the metadata name and
its value. In addition to regular metadata, the file that contains the original doc-
ument can be specified as gsdlsourcefilename, and files that are associated with
the document, such as image files, can be specified as gsdlassocfile.

Figure 6.10a gives the XML Document Type Definition (DTD) for the Green-
stone Archive Format. Basically a document is split up into Sections, which can
be nested. Each Section has a Description that comprises zero or more Metadata
items, and a Content part (which may be null)—this is where the actual docu-
ment’s contents go. A name attribute and some textual data are associated with
each Metadata element (the name can be anything). In XML, PCDATA stands
for “parsed character data”: basically Unicode text in this case.

Figure 6.10b shows a simple document in this format, comprising a short
book with two associated images. The book has two sections called Preface and
First and only chapter, respectively; the latter has two subsections. Note that a
chapter is represented simply as a top-level section.

Document metadata

Metadata is descriptive information about author, title, date, keywords, and so
on, associated with a document. As Figure 6.10 shows, it is stored at the begin-
ning of the section along with the metadata name. One example is the line
<Metadata name="Title">Freshwater Resources in Arid Lands</Metadata> in
Figure 6.10b.

The Dublin Core standard described in Chapter 5 (Section 5.4) is used for
defining metadata types. However, in keeping with Greenstone’s permissive phi-
losophy, the metadata types are not restricted to those in Table 5.4. If there is no
type that aptly describes a particular kind of metadata, a new one can be freely
invented and used. For example, the Demo collection contains Magazine and
how to metadata.11 Magazines form a subclass of the alphabetic title browser,
and how to metadata has its own browsing tag in the access bar at the top of Fig-
ure 6.2 (we return to these in Section 6.7). Any subtags that appear in an archive
file other than gsdlsourcefilename or gsdlassocfile are treated as metadata. Allow-
ing metadata types to be freely invented has the downside that typographical
errors in attribute names are treated as novel metadata types. However, in
Greenstone metadata is normally assigned by some automatic process rather
than being entered manually, which reduces the chance of misspelling.

320 S I X | C O N S T R U C T I O N

11. Internally, how to metadata is called Howto—metadata types must not contain spaces.

6 . 5 G R E E N S T O N E A R C H I V E D O C U M E N T S 321

Figure 6.10 Greenstone Archive Format: (a) Document Type Definition (DTD); (b)
example document.

<!DOCTYPE GreenstoneArchive [
 <!ELEMENT Section (Description,Content,Section*)>
 <!ELEMENT Description (Metadata*)>
 <!ELEMENT Content (#PCDATA)>
 <!ELEMENT Metadata (#PCDATA)>
 <ATTLIST Metadata name CDATA #REQUIRED>
]>

(a)

<?xml version="1.0" ?>
<!DOCTYPE GreenstoneArchive SYSTEM
"http://greenstone.org/dtd/GreenstoneArchive/1.0/GreenstoneArchive.dtd">
<Section>
 <Description>
 <Metadata name="gsdlsourcefilename">ec158e.txt</Metadata>
 <Metadata name="Title">Freshwater Resources in Arid Lands</Metadata>
 <Metadata name="Identifier">HASH0158f56086efffe592636058</Metadata>
 <Metadata name="gsdlassocfile">cover.jpg:image/jpeg:</Metadata>
 <Metadata name="gsdlassocfile">p07a.png:image/png:</Metadata>
 </Description>
 <Section>
 <Description>
 <Metadata name="Title">Preface</Metadata>
 </Description>
 <Content>
 This is the text of the preface
 </Content>
 </Section>
 <Section>
 <Description>
 <Metadata name="Title">First and only chapter</Metadata>
 </Description>
 <Section>
 <Description>
 <Metadata name="Title">Part 1</Metadata>
 </Description>
 <Content>
 This is the first part of the first and only chapter
 </Content>
 </Section>
 <Section>
 <Description>
 <Metadata name="Title">Part 2</Metadata>
 </Description>
 <Content>
 This is the second part of the first and only chapter
 </Content>
 </Section>
 </Section>
</Section>

(b)

Inside the documents

The Greenstone Archive Format imposes a limited amount of structure within
each document. Documents can be split hierarchically into sections and subsec-
tions, and these may be nested to any depth.

In some collections documents are split into pages. These are simply treated as
sections. For example, a book might have first-level sections that correspond to
chapters, within each of which are defined a number of “sections” that actually
denote individual pages of the chapter. Just as chapter-level sections normally
have Title metadata, in page-level ones the Title is set to the page number. There is
no provision for defining parallel structures, such as a logical chapter/section/sub-
section hierarchy that coexists with a division into physical pages.

The document structure serves two purposes. First, it allows readers to
browse around inside documents once they have been found. When you open a
book, the table of contents shows the section hierarchy. Figure 3.3 (Chapter 3)
illustrates browsing within a book that has a hierarchical table of contents show-
ing chapters, sections, and subsections. In some collections documents are split
into pages instead. Figure 3.1 shows (at the top right) a page selector for such a
document. Chapters, sections, subsections, and pages are all “sections.”

The second use of document structure is for searchable indexes. There are
three levels of index: document, section, and paragraph, and most collections use
more than one. A document index relates to complete documents—you use it to
find all documents that contain a particular set of words. When a section index is
created, each portion of text that is indexed stretches from one Section tag to the
next—thus a chapter that immediately begins with a new section will produce
an empty document in the index (that document will never be visible to the
user). Sections and subsections are treated alike: the hierarchical document
structure is flattened for the purposes of creating searchable indexes. Paragraph-
level indexes treat each paragraph as a separate document and are used for more
focused searches.

The pull-down menu in Figure 6.2 shows the searchable indexes in the Demo
collection. Chapters and section titles are section-level indexes, while entire books
is a document-level one. Section titles is an index of document metadata rather
than document content. In fact indexes of any kind of metadata can be cre-
ated—the mechanism for doing this is described in the next section.

As explained earlier, each document has an object identifier or OID. Identi-
fiers are extended to individual sections of a document using integers separated
by periods. For example, if the OID of the document in Figure 6.9b were
HASHa723e7e164df07c833bfc4, the OID of the first of the two subsections of the
First and only chapter would be HASHa723e7e164df07c833bfc4.2.1—because
that chapter is the second in its enclosing Section, and the relevant subsection is
the first in its enclosing Section. Section-level OIDs are not stored explicitly, but

322 S I X | C O N S T R U C T I O N

are used internally within the system to represent individual document sections
that are returned as the result of a search. They do not necessarily coincide with
the logical numbering of chapters and sections—documents often include
unnumbered chapters, such as a preface—but are only for internal use.

6.6 Collection configuration file

The configuration file governs the structure of a collection. It allows you to cus-
tomize the look and feel of the collection and the way in which its documents
are processed and presented. When you run mkcol to make an initial skeleton
structure for a new collection, one of the things it does is create a default collec-
tion configuration file. The configuration file is called collect.cfg and resides in
the collection’s etc directory.

Each line of a collection configuration file specifies an attribute, value pair.
Attributes give pieces of information that affect how documents are processed
and how the collection will look. Table 6.8 shows the items that can be included
in a configuration file and what each is used for. In addition, all the command-
line options for importing and building (Tables 6.5, 6.6, and 6.7) may be speci-
fied in the configuration file—for example, a line reading no_text true will set
the no_text building option (Table 6.7).

6 . 6 C O L L E C T I O N C O N F I G U R A T I O N F I L E 323

Table 6.8 Items in the collection configuration file.

Item Function

creator E-mail address of the collection’s creator
maintainer E-mail address of the collection’s maintainer
public Whether collection is to be made public or not
indexes List of indexes to build
defaultindex The default index
subcollection Define a subcollection based on metadata
indexsubcollections Specify which subcollections to index
defaultsubcollection The default indexsubcollection
languages List of languages to build indexes in
defaultlanguage Default index language
collectionmeta Defines collection-level metadata
plugin Specify a plug-in to use at build time
format A format string
classify Specify a classifier to use at build time

Default configuration file

The configuration file created by mkcol is shown in Figure 6.4. It is a simple one
that includes a bare minimum of information. The first two lines both reflect
the creator value supplied to the mkcol.pl program; however, the person respon-
sible for maintaining the collection need not necessarily be its creator. The next
line indicates whether the collection, when built, will be available to the pub-
lic—that is, placed on the home page of your Greenstone installation. This is
useful when building test collections or collections for personal use.

The indexes line determines what full-text indexes are created at build time.
In Figure 6.4 there is just one: the document text, but most collections contain
more than one index. For example, the line

indexes section:text section:Title document:text

specifies the three indexes shown in the pull-down menu in Figure 6.2. In each
specification the part before the colon is the “level” of the index: it must be one
of paragraph, section, or document. The part after the colon gives the material to
be included in the index: either the word text or the name of a kind of metadata
that occurs in the collection. Thus section:text defines a section-level index com-
prising full text—given a query, the search engine seeks document sections that
match it. More than one type of data can be included in the same index by sepa-
rating the data types with commas. For example, to create a section-level index
of text plus Title and Date metadata, specify section:text,Title,Date.

The first and last items in the specification just cited both index the docu-
ment’s text. The difference is that the first seeks matching sections whereas the
last seeks matching documents. The search process returns the OID of the
matching unit, be it section or document; Greenstone normally presents the
whole document that contains the match (or makes it easy to get to the whole
document). The index section:Title contains metadata comprising all section
titles. The order of the three indexes in the specification under discussion deter-
mines the order in which they appear on the menu in Figure 6.2.

Returning to the configuration file in Figure 6.4, the “collection-level meta-
data” in the next line gives the name of that index as it appears in the search
menu. There should be one such line for each index: Figure 6.4 specifies just one
index. However, there are three indexes in Figure 6.2, and this is where the
words chapters, section titles, and entire books arise in the pull-down menu of
Figure 6.2. The following line specifies the default index. In Figure 6.2 it was
specified as section:text, which is named chapters.

The next group of lines specify which plug-ins to use when converting docu-
ments and metadata to the archive format and when building collections from
archive files.

324 S I X | C O N S T R U C T I O N

The classify line creates an alphabetic list of titles for browsing. Browsing
structures are constructed by modules called classifiers; Section 6.7 explains how
they work.

The last three lines give collection-level metadata. The collectionname is the
long form of the collection’s name, which is used as its “title” for the Web
browser—although in the simple configuration file in Figure 6.4 the short name
is used instead. The collectionicon gives the URL of the collection’s icon. The col-
lectionextra metadata gives the About this collection text.

Whenever text that goes on Web pages produced by Greenstone is specified in
the collection configuration file, it is couched in a particular language. To make
a collection appear correct in several different languages, you need to be able to
put in different versions of such things as collectionextra for different interface
languages. This is done by adding a language specification in square brackets—
for example,

collectionmeta collectionextra "collection description"

collectionmeta collectionextra [l=fr] "description in French"

collectionmeta collectionextra [l=mi] "description in Maori"

If the interface language is set to fr or mi, the appropriate version of the descrip-
tion will be displayed. For other languages the default version will appear.

Subcollections and supercollections

There are other features of collection configuration files that do not appear in
Figure 6.4. One is that you can define subcollections and build separate indexes
for each subcollection. For example, one collection contains a large subset of
documents called Food and Nutrition Bulletin. This collection has three
indexes, all at the section level: one for the whole collection, one for the Food
and Nutrition Bulletin subcollection, and the third for the remaining docu-
ments. Here are the relevant lines from the configuration file:

indexes section:text

subcollection fn "Title/^Food and Nutrition Bulletin/i"

subcollection other "!Title/^Food and Nutrition Bulletin/i"

indexsubcollections fn other fn,other

The second and third lines define subcollections called fn, which contains the
Food and Nutrition Bulletin, and other, which contains the remaining docu-
ments. The quoted text in these definitions identifies the subsets using Title
metadata: we seek titles that begin with Food and Nutrition Bulletin in the first
case and ones that do not in the second. To do this, a “regular expression” in the

6 . 6 C O L L E C T I O N C O N F I G U R A T I O N F I L E 325

Perl language is used. The caret (^) specifies that the Title must start with the
characters shown, the terminating i makes the comparison case insensitive, and
the exclamation point (!) that begins the second string represents negation. The
metadata name, in this case Title, can be any metadata type, or Filename, which
matches against the document’s original file name.

The fourth line, indexsubcollections, specifies three indexes: one for the fn
subcollection, one for the other subcollection, and the third for both subcollec-
tions (i.e., all the documents). Note that if two entries had been given on the
indexes line, the total number of indexes generated would have been six rather
than three because a version of each index is created for every subcollection.

If collections contain documents in different languages, separate indexes can
be built for each language. Language is a metadata item that Greenstone derives
automatically for each document using a built-in language identification mod-
ule (although you can override it by explicitly specifying this metadata). Its val-
ues are specified using two-letter codes—for example, en is English, zh is Chi-
nese, and mi is Māori. In fact these codes follow the international standard ISO
639. Since metadata values can be specified at the section level, parts of a docu-
ment can be in different languages.

Suppose the configuration file contained

indexes section:text section:Title document:text paragraph:text

languages en zh mi

Section text, section title, document text, and paragraph text indexes would be
created for English, Chinese, and Māori—12 indexes altogether. Adding a cou-
ple of subcollections multiplies the number of indexes again. Take care to guard
against index bloat!

Alternatively this index specification could be defined using the subcollection
facility rather than the languages facility. However, you cannot create subcollec-
tions of subcollections, so it would then be impossible to index each language in
the subcollections separately.

Cross-collection searching is a way of forming supercollections by searching sev-
eral collections at once. Search results are combined behind the scenes as though
you were searching a single unified collection. If a supercollection is defined from
a set of collections, any combination of the original collections can also be
searched—the Preferences page allows you to choose which ones are included.

Cross-collection searching is enabled by this line in the collection configura-
tion file:

supercollection col_1 col_2 …

The collections involved are called col_1, col_2, and so on. The same line should
appear in the configuration file of every collection that is involved.

326 S I X | C O N S T R U C T I O N

6.7 Getting the most out of your documents

Collections can be tailored to make the information they contain accessible in
different ways. Greenstone incorporates three mechanisms for doing this. Plug-
ins extract information from source documents and metadata specifications and
regularize the input in the form of archive files. Classifiers create browsing struc-
tures from metadata and place them in the collection information database so
that they can be used at runtime. And format statements dictate what informa-
tion will appear on the user’s screen and how it appears. This section describes
these mechanisms in turn.

Plug-ins

Plug-ins translate the source documents into a common form and extract meta-
data from them. For example, the HTML plug-in converts Web pages to the
archive format and extracts metadata that is explicit in the original document—
such as titles, signaled by the <title> tag. Plug-ins all derive from a basic plug-in
called BasPlug, which performs universally required operations such as creating
a new archive document to work with, assigning an object identifier (OID), and
handling the sections in a document. Plug-ins are written in the Perl language
and are stored in the perllib/plugins directory.

A utility program called pluginfo gives information about individual plug-
ins. To learn about the HTML plug-in, type pluginfo.pl HTMLPlug at the com-
mand prompt. (You need to invoke the setup script first, if you haven’t already,
and on Windows you need to type perl –S pluginfo.pl HTMLPlug if your envi-
ronment is not set up to process files ending in .pl appropriately.) Pluginfo dis-
plays information about the plug-in’s options on the screen.

With a working knowledge of the Perl language, you can write new plug-ins
that process document formats not handled by existing ones, format documents
in some special way, assign metadata specified in new formats, or even extract
new kinds of metadata from the document text. The best way to write a new plug-
in is to find an existing one that does something similar and modify it—the “copy
and edit” paradigm that underlies much of practical computer science.

Basic plug-in options
Several features are common to all plug-ins. All of them can handle different
character encodings for the source documents, such as ASCII, and different
variants of Unicode. They can all accept and reject files with different file name
patterns, such as names ending with .html for HTMLPlug. Finally there are sev-
eral extraction algorithms that derive metadata from the text of any document

6 . 7 G E T T I N G T H E M O S T O U T O F Y O U R D O C U M E N T S 327

and are implemented as plug-in options. All these features are implemented in
BasPlug, and all derived plug-ins inherit them.

Table 6.9 shows the basic options. The input_encoding option specifies the
kind of character encoding used for source documents. As well as ASCII and
Unicode, there are some 30 other possible values—use pluginfo.pl BasPlug for a
full list—including about 15 for particular languages such as Chinese, Cyrillic,
Greek, Hebrew; five ISO standards; and 10 different Windows standards. The
default value, auto, automatically determines the character encoding for each
document individually. This rarely fails, but if it does, the value of
default_encoding is used. Input_encoding defaults to auto, but it is sometimes
useful to set it explicitly. For example, if you know that all your documents are
plain ASCII, choosing ascii greatly increases the speed at which documents are
imported and built.

The value of process_exp dictates which files a plug-in processes and is used to
specify a certain file extension. Each plug-in has a default value. HTMLPlug’s
default is an expression that includes any file names with the extension .htm or
.html—use pluginfo to learn how it is expressed as a “regular expression.” In a
similar way block_exp specifies files that are not to be passed further down the
list of plug-ins. If a file reaches the end of the list without having been processed
by any plug-in, a warning message is generated. Block_exp is used to prevent
annoying error messages about files that might be present but don’t need pro-
cessing. HTMLPlug blocks files with such extensions as .gif, .png, and .jpg
because they do not contain any text or metadata but are embedded in docu-
ments when they are viewed.

328 S I X | C O N S T R U C T I O N

Table 6.9 Options applicable to all plug-ins.

Option Function

input_encoding Character encoding of the source documents.
default_encoding Used if input_encoding is auto and automatic encoding detection fails.
process_exp A Perl regular expression to match against file names.
block_exp Specify file names that are to be blocked from further processing.
first Extract the initial text as First metadata.
cover_image Associate a .jpg cover image with each document.
extract_language Identify each document’s language.
default_language This value is used if automatic language extraction fails.
extract_email Extract e-mail addresses.
extract_acronyms Extract acronym definitions.
markup_acronyms Add acronym information into document text.
extract_date Extract dates relating to the content of historical documents.

The remaining options to BasPlug identify certain features that occur within
documents and add them to the documents as metadata. A document’s opening
words are often used as a title substitute if Title metadata is unavailable, so the
First option extracts the first stretch of text and adds it as metadata. For exam-
ple, –first 50 adds to each document metadata called First50, which contains the
document’s opening 50 characters. A heuristic language-extraction program
can be used to identify the language in which each document is written: the
extract_language option invokes this and puts the result into the documents as
metadata. (If input_encoding is auto, this is done automatically as part of the
encoding detection.) E-mail addresses can be extracted automatically and added
to the document as emailAddress metadata. Similarly acronyms and their defini-
tions can be extracted and added as Acronym metadata. It is sometimes useful to
annotate all occurrences of acronyms with their definitions.12 A final option is
to extract dates (in years) relating to the content of historical documents and
add them as Coverage metadata.

Document processing plug-ins
The plug-ins are listed in Table 6.10 for reference: we have already encountered
many of them. The first three were mentioned earlier (Section 6.4, under “Plug-
ins”). RecPlug recurses through a directory structure. If the use_metadata_files
option is set and metadata files are present, RecPlug also reads XML metadata
files and assigns metadata to each document (described in the subsection
“Assigning metadata from a file”). ArcPlug processes files named in archives.inf,
which is used to communicate between the import and build processes. GAPlug
processes archive files generated by the import process. These three plug-ins are
normally included in every collection.

Many individual plug-ins were introduced at the end of Section 6.2. The
plug-ins BibTexPlug and ReferPlug for processing bibliography files were not
mentioned there. Neither was SplitPlug, which provides a general facility for
dividing input files into stretches that represent individual documents—for
example, it is used to split files containing many e-mails into individual mes-
sages. It should not be called directly, but may be inherited by plug-ins that need
to process files containing multiple documents.

Some plug-ins use external programs that parse specific proprietary for-
mats—for example, Word or PDF—into either plain text or HTML. A general
plug-in called ConvertToPlug invokes one or more conversion programs and
passes the result to either TEXTPlug or HTMLPlug. We describe this in more
detail shortly. Conversion under all circumstances is a difficult job, and in some

6 . 7 G E T T I N G T H E M O S T O U T O F Y O U R D O C U M E N T S 329

12. They are marked up in such a way that the definition appears as “mouse-over” text at each
occurrence of the acronym.

cases these external programs fail—in which case ConvertToPlug automatically
reverts to a simpler method.

Some plug-ins are written for specific collections that have an idiosyncratic
document format not found elsewhere. Examples include the e-text used in the

330 S I X | C O N S T R U C T I O N

Table 6.10 Standard plug-ins.

Plug-in Purpose File types Ignores files

General RecPlug Recurses through a directory structure — —
ArcPlug Processes files named in archives.inf — —
GAPlug Processes Greenstone archive files .xml —
TEXTPlug Plain text .txt, .text —
HTMLPlug

WordPlug .doc .gif, .jpeg, .jpg,
.png, .css, .rtf

PDFPlug .pdf .gif, .jpeg, .jpg,
.png, .css, .rtf

PSPlug PostScript documents .ps .eps
EMAILPlug —

BibTexPlug Bibliography files in BibTeX format .bib —
ReferPlug Bibliography files in refer format .bib —
SRCPlug Source code files .o, .obj, .a, .so, .dll

ImagePlug —

SplitPlug Splits a document file into parts. — —
ZIPPlug —

GBPlug Project Gutenberg e-text .txt.gz, .html, .htm —
TCCPlug —

PrePlug .html, .html.gz —HTML output from the PRESCRIPT
program.

Must begin with
tcc or cw

E-mail documents from Computists’
Weekly

Collection
Specific

.gzip, .bzip, .zip,

.tar, .gz, .bz, .tgz,

.taz

Uncompresses files (requires the
appropriate GNU tool to be available)

.jpeg, .jpg, .gif,

.png, .bmp,

.xbm, .tif, .tiff

Image files for creating a library of
images (restricted to Unix)

Makefile,
Readme, .c, .cc,
.cpp, .h, .hpp, .pl,
.pm, .sh

Must end in digits
or digits followed
by .Email

E-mail messages, recognizing author,
subject, date, etc.

PDF documents, extracting the first
line of text as a title

Microsoft Word documents,
extracting author and title

gif, .jpeg, .jpg,
.png, .css, .rtf

.htm, .html, .cgi,

.php, .asp, .shm,

.shtml

HTML, replacing hyperlinks
appropriately

Gutenberg collection, which includes manually entered title information, and
the e-mailed issues of the Computists’ Weekly electronic publication. Others per-
form special functions, such as splitting documents into pages for the Computer
Science Technical Reports collection (PrePlug). Collection-specific plug-ins can
be placed in the collection’s perllib/plugins directory and override general plug-
ins with the same name.

Many plug-ins have their own specific options that control what they do. Use
pluginfo to find out about these.

As an example, HTMLPlug has a plethora of options, listed in Table 6.11.
These illustrate details (the dirty details!) buried deep within the digital library
system. Some are provided to accelerate processing of very large document col-
lections. What should be done with HTML hyperlinks to other documents in
the collection—including internal links within a document? It seems appropri-
ate to trap them and replace them with a link to the same document within the
digital library—and this is what HTMLPlug does. However, the nolinks option
suppresses this. It speeds up importing, but any internal links will be broken.
The no_metadata option is also provided to speed up importing.

Other options concern metadata. In Chapter 5, we met HTML’s <meta> syntax
for defining metadata; such metadata can be extracted using the metadata_fields
option. To rename it in the archive file (perhaps to use Dublin Core names instead
of ad hoc ones in the HTML), use tag<newname> where tag is the HTML tag and
newname its new name. Hunt_creator_metadata finds as much metadata as possi-
ble about authorship and inserts it as Creator metadata in the archive file. For this
to work, Creator should be included using the metadata_fields option. The
description_tags option is described in the subsection “Tagging document files.”

6 . 7 G E T T I N G T H E M O S T O U T O F Y O U R D O C U M E N T S 331

Table 6.11 Plug-in–specific options for HTMLPlug.

Option Function

nolinks Do not trap links within the collection.
keep_head Do not strip out HTML headers.
no_metadata Do not seek any metadata.
metadata_fields Take a comma-separated list of metadata types to extract (default Title).
hunt_creator_metadata Extract creator metadata.
description_tags Interpret tagged document files.
file_is_url Treat file names in import as though they were URLs.
assoc_files Redefine the list of associated files (default.jpg, .jpeg, .gif, .png, .css)
rename_assoc_files Rename files associated with documents.
title_sub Perl substitution expression to modify titles.

Further options determine how files are handled. Source documents for
HTMLPlug are often brought in by a Web mirroring program which uses a spe-
cial URL-based scheme for file names, and the file_is_url option treats these file
names appropriately. Certain file types in an HTML collection are treated as
associated files, including .gif, .png, and .jpg files; assoc_files allows this default
list to be overridden. When discussing the OID scheme in Section 6.4, we
observed that some systems place restrictions on the maximum depth of direc-
tory hierarchies. Unfortunately an HTML collection may utilize its own nested
directory structure for images and other associated files, which can break the
limit. Rename_assoc_files renames associated files to make a suitably shallow
directory hierarchy.

Finally, there is an option that allows you to modify all titles according to a
specified regular expression. This is useful if many of the titles in your collection
include an extraneous character string. We mentioned in Section 6.6 a collec-
tion that contained many documents in the Food and Nutrition Bulletin whose
titles all began with that string. If left unmodified, these would all appear under
the letter F in an alphabetic title browser.

Plug-ins for proprietary formats
Proprietary formats pose a challenge to any digital library system. Even when
documentation about how they work is available, they may change without
notice and it is hard to keep abreast of changes. In Greenstone, open-source
GPL (Gnu Public License) conversion utilities are used that have been written
by people committed to the task.

Utilities to process Word and PDF formats are included in the packages direc-
tory. These convert documents to either HTML or text form. Then HTMLPlug
or TEXTPlug is used to further transform them to the archive format. Some-
times there is more than one converter for what is ostensibly the same format,
and they are tried successively on each document. For example, the preferred
Word converter wvWare does not cope with documents prior to Word 6, and a
different program, which just extracts whatever text strings it can, is used to
process the Word 5 format.

The conversion utilities are invoked by a general plug-in called ConvertTo-
Plug. Like BasPlug it is never called directly but forms a basis for other plug-ins.

Greenstone users may occasionally have to add new plug-ins that use external
converters to process a particular format. The process of extending ConvertTo-
Plug is as follows:

1. Put the new conversion utility in the packages directory and install it.
2. Alter the program gsConvert.pl (in bin/script) to use the new utility.
3. Write a plug-in that inherits from ConvertToPlug to catch the format and

pass it on.

332 S I X | C O N S T R U C T I O N

To see how this works, you need to understand how ConvertToPlug is struc-
tured. The process is rather intricate, and many readers may wish to skip the
remainder of this subsection. The “dynamic inheritance” facility in the Perl lan-
guage is used to inherit from either TEXTPlug or HTMLPlug, depending on the
format to which source documents are converted. Figure 6.11 shows the inheri-
tance path.

When it receives a document, ConvertToPlug calls gsConvert.pl to invoke the
appropriate conversion utility. Step 2 of the process involves adding a new clause
calling the utility to the if statement in the main function. Documents, when
converted, are returned to ConvertToPlug, which invokes the HTML or text
plug-in as appropriate. Any plug-in derived from ConvertToPlug has a
convert_to option that specifies which intermediate format is preferred, either
text or html. Text may be faster, but HTML usually looks better—and includes
pictures.

Assigning metadata from a file
It is often necessary to assign metadata to documents from a manually created
file. For example, information pertaining to a document collection might be
available in a standard form such as MARC records. In order to use it you have
to somehow get the metadata into each individual document’s archive file dur-
ing the import process. Once there, it can be freely used to define searchable
indexes and browsing structures.

The standard plug-in RecPlug also incorporates a way of assigning metadata
to documents from manually (or automatically) created XML files. We describe
this in some detail, so that you can create metadata files in the appropriate for-
mat. If the use_metadata_files option is specified, RecPlug uses an auxiliary
metadata file called metadata.xml. Figure 6.12a shows the XML Document Type

6 . 7 G E T T I N G T H E M O S T O U T O F Y O U R D O C U M E N T S 333

BasPlug

HTMLPlug TEXTPlug

ConvertToPlug

WordPlug

Figure 6.11 Plug-in inheritance hierarchy.

Definition (DTD) for the metadata file format, while Figure 6.12b shows an
example metadata.xml file.

The example file contains two metadata structures. In each one the filename
element describes files to which the metadata applies, in the form of a regular
expression. Thus <FileName>nugget.*</FileName> indicates that the first
metadata record applies to every file whose name starts with nugget.13 For these
files Title metadata is set to “Nugget Point, The Catlins.”

Metadata elements are processed in the order in which they appear. The sec-
ond structure sets Title metadata for the file named nugget-point-1.jpg to
“Nugget Point Lighthouse,” overriding the previous specification. It also adds a
Subject metadata field.

334 S I X | C O N S T R U C T I O N

Figure 6.12 XML format: (a) Document Type Definition (DTD); (b) example
metadata file.

<!DOCTYPE DirectoryMetadata [
 <!ELEMENT DirectoryMetadata (FileSet*)>
 <!ELEMENT FileSet (FileName+,Description)>
 <!ELEMENT FileName (#PCDATA)>
 <!ELEMENT Description (Metadata*)>
 <!ELEMENT Metadata (#PCDATA)>
 <ATTLIST Metadata name CDATA #REQUIRED>
 <ATTLIST Metadata mode (accumulate|override) "override">
]>

(a)

<?xml version="1.0" ?>
<!DOCTYPE DirectoryMetadata SYSTEM
"http://greenstone.org/dtd/DirectoryMetadata/1.0/DirectoryMetadata.dtd">
<DirectoryMetadata>
 <FileSet>
 <FileName>nugget.*</FileName>
 <Description>
 <Metadata name="Title">Nugget Point, The Catlins</Metadata>
 <Metadata name="Place" mode="accumulate">Nugget Point</Metadata>
 </Description>
 </FileSet>
 <FileSet>
 <FileName>nugget-point-1.jpg</FileName>
 <Description>
 <Metadata name="Title">Nugget Point Lighthouse</Metadata>
 <Metadata name="Subject">Lighthouse</Metadata>
 </Description>
 </FileSet>
</DirectoryMetadata>

(b)

13. Note that in Greenstone regular expressions are interpreted in the Perl language, which is
subtly different from some other conventions. For example, an asterisk (*) matches zero or
more occurrences of the previous character, while a period (.) matches any character—so
nugget.* matches any string with prefix nugget, whether or not it contains a period after the
prefix. To insist on a period you would need to escape it, and write nugget\..* instead.

Sometimes metadata is multivalued, and new values should accumulate
rather than overriding previous ones. The mode=accumulate attribute does this.
It is applied to Place metadata in Figure 6.12b, which will therefore be multival-
ued. To revert to a single metadata element, write <Metadata name=“Place”
mode=“override”>New Zealand</Metadata>. In fact you could omit this mode
specification because every element overrides unless otherwise specified. To
accumulate metadata for some field, mode=accumulate must be specified in
every occurrence.

When its use_metadata_files option is set, RecPlug checks each input direc-
tory for an XML file called metadata.xml and applies its contents to all the direc-
tory’s files and subdirectories.

The metadata.xml mechanism embodied in RecPlug is just one way of speci-
fying metadata for documents. It is easy to write different plug-ins that accept
metadata specifications in completely different formats.

Tagging document files
Source documents often need to be structured into sections and subsections,
and this information needs to be communicated to Greenstone so that it can
preserve the hierarchical structure. Also, metadata—typically the title—might
be associated with each section and subsection.

The simplest way of doing this is often just to edit the source files manually.
The HTML plug-in has a description_tags option that processes tags in the text
like this:

<!--

<Section>

<Description>

<Metadata name="Title"> Realizing human rights for

poor people: Strategies for achieving the

international development targets </Metadata>

</Description>

-->

(text of section goes here)

<!--

</Section>

-->

The <!-- … --> markers are used because they indicate comments in HTML; thus
these section tags will not affect document formatting. In the Description part other
kinds of metadata can be specified, but this is not done for the style of collection we

6 . 7 G E T T I N G T H E M O S T O U T O F Y O U R D O C U M E N T S 335

are describing here. Also, the tags can be nested, so the line marked text of section
goes here in the code just cited can itself include further subsections, such as

(text of first part of section goes here)

<!--

<Section>

<Description>

<Metadata name="Title"> The international

development targets </Metadata>

</Description>

-->

(text of subsection goes here)

<!--

</Section>

-->

(text of last part of section goes here)

This functionality is inherited by any plug-ins that use HTMLPlug. In partic-
ular, the Word plug-in converts its input to HTML form, and so exactly the
same way of specifying metadata can be used in Word (and RTF) files. (In order
to make this operate properly, Greenstone has to do some work behind the
scenes. When Word documents are converted to HTML, care is normally taken
to neutralize HTML’s special interpretation of stray angle brackets, < and >. But
Greenstone overrides this in the case of the previous specifications.) Note that
exactly the same format as shown here is used, even in Word files, including the
surrounding symbols <!-- and -->. Font and spacing is ignored.

Classifiers

Classifiers are programs that build a collection’s browsing indexes. We have seen
many examples in Chapter 3. The navigation bar near the top of the screen shots
shown in Chapter 3 always includes a Search button, and this is followed by but-
tons for any classifiers that have been defined. For example, Figure 3.1 shows the
titles A-Z and authors A-Z indexes in the Project Gutenberg collection; Figure 3.3
shows subjects, titles A-Z, organization, and how to indexes in the Humanity Devel-
opment Library; Figure 3.5 shows title, journal, and year indexes in the School
Journal collection; and Figure 3.6 shows series and dates indexes in the Historic
Māori Newspaper collection. All these browsing functions are called classifiers.

Like plug-ins, classifiers are specified by lines in the collection configuration
file. Each line starts with the keyword classify, followed by the name of the classifi-
er and any relevant options. The basic configuration file (Figure 6.4) discussed in

336 S I X | C O N S T R U C T I O N

Section 6.3 includes the line classify AZList –metadata “Title”, which makes an
alphabetic list of titles by taking all those with a Title metadata field, sorting them,
and splitting them into alphabetic ranges. An example is shown in Figure 6.13a.

Unlike plug-ins, which are used in the import phase of the collection-build-
ing process, classifiers are called in the building phase. They are invoked by
buildcol.pl to produce the information necessary to support browsing and store
it in the collection information database.

Examples of classifiers
A basic List classifier is illustrated in Figure 6.13b. It displays a sorted list of a
given metadata element without any alphabetic tabs. The example shows the
Demo collection’s how to metadata, which is produced by the line classify List
–metadata Howto in the configuration file.

The AZList in Figure 6.13a is a variant of List. The alphabetic ranges (five in
this case) are generated automatically by the classifier, and the number of alpha-
betic buckets is designed to place a sensible number of documents in each.
Figure 3.19b (Chapter 3) was generated by the same AZList specification but has

6 . 7 G E T T I N G T H E M O S T O U T O F Y O U R D O C U M E N T S 337

(e)

(c) (d)

(a) (b)

Figure 6.13 Classifiers: (a) AZList; (b) List;
(c) DateList; (d) Hierarchy; (e) collection-
specific.

20 buckets. Figure 3.19a shows a degenerate case that was generated by the same
specification but has so few documents that no alphabetic divisions are created
at all.

Another variant of List is DateList, illustrated in Figure 6.13c, which generates
a selection list of date ranges. Figure 3.21 (Chapter 3) shows another example.
Again the ranges (of years in this case) are generated automatically to place a
sensible number of items in each.

Other classifiers generate browsing structures that are hierarchical. These are
used for subject classifications and organizational hierarchies. Figure 6.13d
shows a snapshot of the subjects browser for the Demo collection. The bookshelf
with a bold title is the one currently being perused; above it you can see the sub-
ject classification to which it belongs. A more extensive example of the same
hierarchy appears in Figure 3.22 (Chapter 3).

These examples of hierarchical classifiers are based on Subject metadata. The
collection configuration file in this case contains the line classify Hierarchy –hfile
sub.txt –metadata Subject –sort Title, and the role of the hfile argument is to
specify a file in which the hierarchy is stored (in this case sub.txt, stored in the
collection’s etc directory). We describe the file format later.

Figure 6.13e shows a classifier that is very similar to AZList but contains an
additional tab for Magazines to the right of the alphabetic list which has been
clicked to reveal a bookshelf for each magazine. This is an example of an ad hoc
collection-specific classifier that is a variant of a standard one; we discuss it fur-
ther in the following subsection.

The structure of classifiers
The standard classifiers are listed in Table 6.12a. There are several types of list,
and a single Hierarchy classifier. All of them—including list classifiers, which are
not overtly hierarchical—generate a hierarchical structure that is used for brows-
ing. The hierarchy’s lowest levels (i.e., leaves) are usually documents, but in some
cases they are individual sections. They are represented internally as OIDs.

There are three possible types for the internal nodes of the hierarchy: Vlist,
Hlist, and Datelist. A Vlist is a list of items displayed vertically down the page,
such as the how to index in the Demo collection (Figure 6.13b). An Hlist is dis-
played horizontally. For example, the AZList display in Figure 6.13a is a two-
level hierarchy of internal nodes consisting of an Hlist (the A–Z selector) whose
children are Vlists—and their children, in turn, are documents. A Datelist (Fig-
ure 6.13c) is a special kind of Vlist that allows selection by year and month.

Table 6.12b shows the options that classifiers support. Just as you can use the
pluginfo.pl program to find out about any plug-in, a classinfo.pl program gives
information about the options provided by classifiers.

338 S I X | C O N S T R U C T I O N

The line used to specify classifiers in collection configuration files normally
contains a metadata argument that determines what metadata governs the classi-
fication. Any document for which this metadata is undefined will be silently omit-
ted from the classifier. (The document remains in the collection—it is still indexed
and can be found in a full-text search—but is invisible under that classifier.)

In the case of the list classifiers, documents are sorted by the metadata argu-
ment. If none is specified, all documents are included in the classifier, in the
order in which they are encountered during the building process. This provides
a list of all documents in the collection, with none omitted. The Hierarchy clas-
sifier has a separate sort parameter that defines the order in which documents at
the leaves are presented. If omitted, this defaults to the Title metadata value.

The navigation button that invokes a classifier is labeled by the classifier’s
metadata argument. Buttons are provided for each Dublin Core type and for
some other types of metadata. You can redefine the label for individual classi-
fiers using the buttonname argument.

Collection-specific classifiers are stored in the collection’s perllib/classify
directory. For example, the Humanity Development Library has a classifier
called HDLList, which is a minor variant of AZList. Shown in Figure 6.13e, it
includes an additional nonalphabetic classification for Magazines. This was pro-
duced by making a small change (two lines of Perl) to the code for the basic
AZList. The modification uses Magazine metadata (which says whether a docu-
ment is a magazine or not) to determine whether to place the document in its
alphabetic position or include it under the Magazines tab instead. This illus-

6 . 7 G E T T I N G T H E M O S T O U T O F Y O U R D O C U M E N T S 339

Table 6.12 (a) Greenstone classifiers; (b) their options.

Classifier Function

(a) List Alphabetic list of documents
SectionList List of sections in documents
AZList List of documents split into alphabetical ranges
AZSectionList Like AZList but includes every section of the document
DateList Similar to AZList but sorted by date
Hierarchy Hierarchical classification

(b) All classifiers metadata Include documents containing this metadata element
buttonname Name of button used to access this classifier (defaults to

value of metadata argument)
Hierarchy classifiers hfile Classification file

sort Metadata element used to sort documents within leaves
(default Title)

trates how to cope with the kind of minor ad hoc variant of a basic structure
that pervades practical digital library applications. Freak waves are common.

List classifiers
Table 6.12a shows several variants of the basic list classifier. Some collections,
such as newsletters, need a browsing list of sections because these represent
independent articles on different topics. A SectionList is a List whose leaves are
sections rather than documents: all document sections are included except the
top level. An AZList, as we have seen, generates a two-level hierarchy comprising
an HList whose children are VLists, whose children are documents. The HList is
an A–Z selector that sorts the documents and divides them into alphabetic
ranges. An AZSectionList is an AZList whose leaves are sections rather than doc-
uments. Finally, DateList is like AZList except that the top-level HList allows
selection by year and its children are DateLists rather than VLists. The metadata
argument defaults to Date.

The hierarchy classifier
All classifiers are hierarchical. However, list classifiers have a fixed number of
levels, whereas the hierarchy classifiers described in this section have an arbi-
trary number and are consequently more complex to specify.

The hierarchy is based on a particular kind of metadata—Subject, in the case
of Figure 6.13d. The metadata values could be anything, and further informa-
tion is required to translate each particular value into an appropriate position in
the hierarchy. This is accomplished by a file that defines the metadata hierarchy,
whose name is given by the hfile argument.

Each line of the metadata hierarchy file describes one classification and has
three parts:

■ Identifier, which matches the value of the metadata to the classification
■ Position-in-hierarchy marker in multi-part numeric form (e.g., 2, 2.12,

2.12.6)
■ Name of the classification (if this contains spaces, it should be quoted)

Figure 6.14 shows part of the sub.txt file used to create the subject hierarchy in Fig-
ure 6.13d. This example is slightly confusing because documents in this collection
specify the metadata type Hierarchy not as a text string, but as a value that is
already in hierarchical numeric form. The number representing the hierarchy
appears twice on each line of Figure 6.14. The first occurrence is the value of the
Hierarchy metadata type (which can be any text string); the second is the struc-
tured identifier used to determine the hierarchical position of that metadata value.
For example, in a collection of television items, the Hierarchy metadata values

340 S I X | C O N S T R U C T I O N

might be such things as tv, tv.news, tv.news.political, and tv.drama, while the corre-
sponding position identifiers would be such things as 1, 1.1, 1.1.1, and 1.2.

Ordering at internal nodes of the hierarchy is determined by the order in
which items are specified in the hierarchy file. The classifier’s sort option deter-
mines how documents at the leaves are ordered.

How classifiers work
Classifiers are Perl objects derived from a basic classifier called BasClas.pm.
When they are executed, the following steps occur.

1. The new method creates a classifier object.
2. The init method initializes the object with parameters such as metadata

type, button name, and sort criterion.
3. The classify method is invoked once for each document and stores infor-

mation about the document’s classification.
4. The get_classify_info method returns the locally stored classification

information, which the build process then writes to the collection infor-
mation database.

The classify method retrieves each document’s OID, the metadata value on
which the document is to be classified, and, where necessary, the metadata value
on which the documents are to be sorted. The get_classify_info method per-
forms all sorting and other classifier-specific manipulation. In the case of
AZList, for example, it splits the list into ranges.

The building process reads whatever classifiers are needed from the collection
configuration file and initializes each one. Classifications are created by a build-
ing module called classify.pm.

6 . 7 G E T T I N G T H E M O S T O U T O F Y O U R D O C U M E N T S 341

1 1 “General reference”
1.2 1.2 “Dictionaries, glossaries, language courses, terminology (all languages)”
2 2 “Sustainable Development, International cooperation, Projects; NGO, Organizations, Povert
2.1 2.1 “Development policy and theory, international cooperation, national planning, national pl
2.2 2.2 “Development, national planning, national plans”
2.3 2.3 “Project planning and evaluation (incl. project management and dissemination strategies)”
2.4 2.4 “Regional development and planning incl. regional profiles”
2.5 2.5 “Nongovernmental organizations (NGOs) in general, self- help organizations (their role in
2.6 2.6 “Organizations, institutions, United Nations (general, directories, yearbooks, annual rep
2.6.1 2.6.1 “United Nations”
2.6.2 2.6.2 “International organizations”
2.6.3 2.6.3 “Regional organizations”
2.6.5 2.6.5 “European Community - European Union”
2.7 2.7 “Sustainable Development, Development models and examples; Best practices (general)”
2.8 2.8 “Basic Human Needs”
2.9 2.9 “Hunger and Poverty Alleviation”

Figure 6.14 Part of the file sub.txt.

Format statements

The Web pages you see when you use Greenstone are not prestored but are gen-
erated on the fly as they are needed. Their content and appearance are con-
trolled using format statements. These belong in the collection configuration file
and are introduced by the keyword format, followed by the name of the element
to which the format applies. Format statements are interpreted at the time that
pages are displayed, and changes take effect as soon as the collection configura-
tion file is saved. For the Local Library version of Greenstone, this means that
you can see the changes when you restart Greenstone; for other versions they
appear immediately, without restarting. This makes experimenting with format
statements quick and easy.

Two different kinds of element are controlled by format statements. The first
are the items on the page that show documents or parts of documents; the sec-
ond are the lists produced by classifiers and searches. We deal with them in turn.
The details of format statements are messy: you should consider skipping this
section unless you have specific display requirements in a particular collection
you are working on.

Formatting documents
To review the effect of the first kind of format specifier, look again at the figures
in Chapter 3 that show the beginning of documents—for example, Figures 3.1,
3.3a, and 3.3b. Format statements control whether the title (Figure 3.1) or a
cover image (Figure 3.3) is displayed, and in the former case it can be different
metadata, formatted differently (such as Figure 3.6). The document in Figure
3.1 is page-structured, whereas the one in Figure 3.3 is hierarchical: format
statements determine whether the page selector or table of contents structure
appears or not. Beneath the title (Figure 3.1) or cover image (Figure 3.3) are
some buttons (Expand Text, Expand Contents, Detach, No Highlighting):
which ones appear is determined by a format statement. How the entire text of
the document is formatted is also controllable, as is the presence of little arrows
that appear at the end of the text to take you on to the next page or back to the
previous one.

Table 6.13 shows how these things are controlled. The first four items affect
the heading, before the text of the document starts. The DocumentImages state-
ment either displays a cover image at the top left (Figures 3.3a and b) or it does
not, in which case some text is displayed instead (Figure 3.1, where the text is
Alice’s Adventures in Wonderland, and Figure 3.6, where it is Vol. 1 No. 1 21
August 1978). The metadata chosen for display, along with its formatting, is
determined by the DocumentHeading statement. By default the table of contents
is shown for hierarchical documents (Figures 3.3a and b); otherwise the display
is paginated and includes a page selector (Figure 3.1). DocumentContents

342 S I X | C O N S T R U C T I O N

switches these off. The DocumentButtons option controls which buttons appear
on a document page. Here string is a list of button names (separated by |), and
possible values are Detach, Highlight, Expand Text, and Expand Contents. The
entire list must be quoted. Reordering the list reorders the buttons.

The remaining three items affect the body of the document, below the
header. DocumentText determines how (or whether!) the text is displayed. This
is done by defining a format string that is basically a fragment of HTML. The
default is to display the document’s text in a fixed-width single-column table,
but this can be changed. Indeed it is not necessarily the document text that is
shown: any metadata—or any combination of text and metadata—can appear
instead. In Figure 3.13b the header comprises just the first line, Newsnight New
Zealand Anti-nuclear Policy, and the remaining text is all determined by the Doc-
umentText format string. The next subsections describe how to express these
specifications, but for a simple display the document’s text is generated by the
specifier [Text]. DocumentArrowsBottom determines whether next- and previ-
ous-section arrows appear at the bottom of the document page.

By default Greenstone does not use frames. However, if DocumentUseHTML
is set, each document is displayed within a separate frame. This also causes a
slight change to the Preferences page, adding options that apply specifically to
collections of HTML documents. For example, one option is to go directly to
the original source document (anywhere on the Web) rather than to the digital

6 . 7 G E T T I N G T H E M O S T O U T O F Y O U R D O C U M E N T S 343

Table 6.13 The format options.

Option Function

format DocumentImages true/false Display cover image at the top left of the document page
(default false).

format DocumentHeading formatstring Defines the document header shown at the top left of the
document page (default [Title]).

format DocumentContents true/false Display table of contents (hierarchical documents) or page
selector (nonhierarchical ones), or not.

format DocumentButtons string Determines which buttons are displayed on a document
page (default Detach|Highlight).

format DocumentText formatstring Format of the document text: default
<center><table width=537>
<tr><td>[Text]</td></tr>
</table></center>

format DocumentArrowsBottom true/false Display next/previous section arrows at bottom of docu-
ment page (default true).

format DocumentUseHTML true/false If true, each document is displayed inside a separate
frame (default false).

library’s copy. This gives the interface a search-engine style—an index to a col-
lection of documents on the Web rather than private copies in a stand-alone
digital library.

Formatting lists
The second kind of format statement defines strings that determine the appear-
ance of lists produced by searches and classifiers. Format strings can apply at
different levels of the display structure. They can alter all lists of a certain type—
for example, all of the elements in the DateList generated by a date classifier. Or
they can alter all parts of a list—for example, all the entries in the list of search
results. Or they can alter specific parts of a certain list—for example, the hori-
zontal part of an AZList title classifier that shows the alphabetic selector, or the
vertical part that shows the titles themselves.

These format statements need to specify the list to which the format applies.
The list generated by a search is called Search. Classifiers are numbered by their
position in the collection configuration file—for example, the third classifier
specified in collect.cfg is called CL3. Thus the list of names is Search, CL1, CL2,
CL3, These names can be qualified by the part of the list to which the format-
ting is to apply—HList for horizontal list, like the A–Z selector in an AZList; VList
for vertical list, like the list of titles under an AZList; or DateList. For example:

format CL4VList ... applies to all VLists in classifier 4

format CL2HList ... applies to all HLists in classifier 2

format CL1DateList ... applies to all DateLists in classifier 1

format SearchVList ... applies to the search results list

format CL3 ... applies to all nodes in classifier 3

format VList ... applies to all VLists in all classifiers

General statements are overridden by more specific ones. If the first and last of
the above statements were both included, the first would override for classifier 4
the more general Vlist specification given by the last.

The final part of a format statement—which is omitted from the previous
examples and shown merely as an ellipsis (...)—is a string that controls the
information displayed and its layout. It comprises plain text and HTML tags.
Also, the value of any metadata item can be interpolated by putting the meta-
data name within square brackets. Some other items may appear in format
strings: the document text itself, an HTML link to the document, the internal
document number (useful for debugging), or an icon appropriate to the docu-
ment (for example, the little text icon in a Search results string). These items are

344 S I X | C O N S T R U C T I O N

summarized in Table 6.14. The syntax for format strings also includes a condi-
tional statement, which is illustrated later in this subsection.

Recall that all classifiers produce hierarchies. Each level of the hierarchy is
displayed in one of four ways. We have already encountered HList, VList, and
DateList. The final possibility is Invisible, which is how the very top levels are
displayed—because the name of the classifier is already shown separately on the
Greenstone navigation bar.

Examples of format strings
Figure 6.15 shows part of the configuration file for the Demo collection. This is
a good example because it has several classifiers that are richly formatted. Note
that statements in collection configuration files must not contain new-line char-
acters—in the figure, longer lines are broken up for readability.

Line 4 defines the Demo collection’s how to classifier. This is the fourth one in
the configuration file and is referred to as CL4. The corresponding format state-
ment is line 6 of Figure 6.15. The how to browser is generated by the List classi-
fier, and its structure is the plain list of titles in Figure 6.13b. The titles are linked
to the documents themselves: clicking a title brings up the relevant document.
The children of the hierarchy’s top level are displayed as a VList that lists the sec-
tions vertically. As dictated by the format statement in line 6, each element of

6 . 7 G E T T I N G T H E M O S T O U T O F Y O U R D O C U M E N T S 345

Table 6.14 Items appearing in format strings.

Item Function

[Text] The document’s text
[link] … [/link] HTML link to the document
[num] Internal document number
[icon] An icon
[metadata-name] The value of this metadata element for the document, e.g., [Title]

classify Hierarchy -hfile sub.txt -metadata Subject -sort Title
classify AZList -metadata Title
classify Hierarchy -hfile org.txt -metadata Organisation -sort Title
classify List -metadata Howto

format SearchVList "<td valign=top [link][icon][/link]</td><td>{If}
 {[parent(All':'):Title],[parent(All':'):Title]:}
 [link][Title][/link]</td>"
format CL4Vlist "
[link][Howto][/link]"
format DocumentImages true
format DocumentText "<h3>[Title]</h3>\\n\\n<p>[Text]"
format DocumentButtons "Expand Text|Expand contents|Detach|Highlight"

Figure 6.15 Excerpt from the Demo collection’s collect.cfg.

the list appears on a new line (“
”) and contains the Howto text, hyperlinked
to the document itself.

The first line defines the Demo collection’s Subject classification, referred to
as CL1 (the first in the configuration file), and the third the Organization classi-
fication, CL3. Both are generated by the Hierarchy classifier and therefore com-
prise a hierarchical structure of VLists.

The second line defines the remaining classification for the Demo collection,
Titles A-Z (CL2). Note that there are no format strings for CL1, CL2, or CL3.
There are built-in defaults for each classifier type. You need not define a format
string unless you want to override the default.

This accounts for the four classify lines in Figure 6.15. There are five format
statements. We have already discussed one, for CL4Vlist. The last three are for-
mat statements of the first type, documented in Table 6.13. Line 7 places the
cover image at the top left of each document page. Line 8 formats the actual
document text, preceded by the title of the relevant chapter or section. The
effect of these is illustrated in Figure 6.16a.

Line 5 of Figure 6.15 is a formidable specification that governs the query
result list returned by a search. Its parts are illustrated in Figure 6.16b. A simpli-
fied version of this format string is

<td valign=top>[link][icon][/link]</td>

<td>[link][Title][/link]</td>

Items on the query results list are designed to appear as a table row. This specifi-
cation gives a small icon followed by the value of the Title metadata. Both are
hyperlinked to the document itself.

In this collection documents are hierarchical: they contain sections, subsec-
tions, and so on. In fact, the second hyperlink anchor above evaluates to the title
of the section returned by the query. It would be better to augment it with the
title of the enclosing section, the enclosing chapter, and the book in which it
occurs. For this purpose there is a special pseudo-metadata item, parent, which
is not stored in documents but is implicit in any hierarchical document. It
returns either the parent document or, if used with the qualifier All, the list of
hierarchically enclosing parents, separated by a character string that can appear
after the All qualifier. Thus

<td valign=top>[link][icon][/link]</td>

<td>[parent(All': '):Title]: [link][Title][/link]</td>

has the effect of generating a list containing the book title, chapter title, and so
on that enclose the target section, separated by colons, with a further colon fol-
lowed by a hyperlink to the target section’s title.

Unfortunately, if the target is itself a book, there is no parent and so an empty
string will appear, followed by a colon. To circumvent this the conditional if and
or … else statements can be used in a format string:

346 S I X | C O N S T R U C T I O N

{If}{[metadata], action-if-non-null, action-if-null}

{Or}{action, else another-action, else another-action, etc}

Braces are used to signal that the statements should be interpreted and not
printed out as text. If tests whether the metadata is non-null. If so it takes the
first clause; otherwise the second (if it exists). Any metadata item can be used,

6 . 7 G E T T I N G T H E M O S T O U T O F Y O U R D O C U M E N T S 347

Figure 6.16 The effect of format statements on (a) the document itself; (b) the search
results.

(a)

(b)

including the pseudo-metadata parent. Or evaluates each action in turn until
one is found that is non-null. It sends that to the output and skips the remaining
actions.

Returning to line 5 of Figure 6.15, the full, unexpurgated, format string is

<td valign=top>[link][icon][/link]</td>

<td>{If}{[parent(All': '):Title],

[parent(All': '):Title]:}

[link][Title][/link]</td>

The parent specification is preceded by a conditional that checks whether the
result is empty and only generates the parent string when it is present. Inciden-
tally, parent can be qualified by Top instead of All, which gives the top-level doc-
ument name that encloses a section—in this case the book name. No separating
string is necessary with Top.

As a final example, Figure 6.13c shows the Dates classification of the Com-
putists’ Weekly collection. The classifier and format specifications are given
below (it happens to be the second classifier, CL2). The DateList classifier differs
from AZList in that, by default, it sorts by Date metadata, and the browsing hier-
archy’s leaves use DateList instead of Vlist—which causes the year and month to
be added to the left of the document.

classify DateList

format CL2DateList "<td>[link][icon][/link]</td>

<td>[Title]</td>

<td>[Date]</td>"

In this case the Title metadata for an issue gives its volume and number, while
Date gives its date. The result can be seen in Figure 6.13c.

The format-string mechanism is flexible, but rather tricky. The best way to
learn it is by experimenting and studying existing collection configuration files.

Linking to different document versions
Greenstone pages often include hyperlinks to the document text, so that when
the link is clicked, the HTML version of the document is displayed. This is
accomplished by the [link] . . . [/link] notation in format strings, as described
earlier. However, in some collections it is useful to be able to display other ver-
sions of the document. For example, in a collection of Microsoft Word files, the
Word version of documents could be displayed rather than (or as well as) the
HTML version derived from them.

The key to gaining access to different versions of a document is to embed
information about where they reside into the Greenstone Archive Format. This
information is represented as metadata. Recall that putting

[link][Title][/link]

348 S I X | C O N S T R U C T I O N

into a format string creates a link to the HTML version of the document, whose
anchor text is the document’s title. The Word and PDF plug-ins both generate
srclink metadata. If you put

[srclink][Title][/srclink]

into a format string, it makes a link to the original Word or PDF version of the doc-
ument. Again the anchor here is the document’s title—but it need not be. These
plug-ins also generate srcicon metadata, which displays the appropriate icon for
Word and PDF documents. Thus

[srclink][srcicon][/srclink]

creates a link labeled by the standard Word or PDF icon (whichever is appropri-
ate), rather than the document’s title.

6.8 Building collections graphically

We have now seen most of the major facilities of Greenstone for building and
customizing collections. Executing command-line scripts and editing configu-
ration files gives close control over the structure and appearance of collections.
It is always possible to customize further by digging into the program code itself
and modifying it to add new facilities—this is how it evolves to meet new
requirements. However, most users will not want to do this, nor should they
need to. Many will be satisfied with the Collector’s visual interface, which is eas-
ier to use for simple building tasks but only really lets you copy the structure of
existing collections.

It is instructive to learn about the internal operation of the system and how to
invoke and customize the various operations using command-line scripts and
configuration files. However, powerful systems do not have to be complex to
use, and more comprehensive capabilities could certainly be incorporated
within an easily accessible end-user interface. Figures 6.17 through 6.19 show an
interaction with a prototype successor to the Collector in which a user collates
pages from various Web sites, augments them with metadata, and then builds a
collection. Like the original Collector, it runs on the system that hosts Green-
stone. However, it is implemented in Java, which provides greater control over
user interaction than the HTML forms used so far.

In Figure 6.17 the user has started to develop a new collection using the File
menu (top left). A box has popped up requesting the collection’s title, the cre-
ator’s e-mail address, and a brief description of what it includes—exactly the
information that the Collector solicits when it starts (Figure 6.3c). As in Section
6.2, the collection being built is about women in history, based on primary
source documents.

6 . 8 B U I L D I N G C O L L E C T I O N S G R A P H I C A L L Y 349

Notice the Browse, Mirror, MetaEdit, and Options tabs under the address
box in the main window. These open up a user-interface panel for the corre-
sponding task. The initial task is Browse: from here you can browse around the
Web. Enter a URL in the address box and that page appears in the Browse panel.
For example, you may bring up a search engine and use it to hunt for relevant
documents and sites.

The Mirror facility is used to copy an interesting document, or Web site, to
the local computer for inclusion in the collection. In Figure 6.18 this tab has
been selected for the home page of the Great American Women project. A
Download button appears to the right of the address box, and the user has
clicked it. The Options panel (not shown) allows control over such things as the
mirroring depth. In our example the user has chosen to download the home
page and pages one link away that lie within the same Internet domain.

350 S I X | C O N S T R U C T I O N

Figure 6.17 Starting to build a collection.

It may be that not every page copied should be included in the digital library
collection. First, mirrored files are copied into an area labeled Private Workspace
(lower panel on the left). There documents or folders can be selected in an inter-
active tree display and brought into the collection area (upper panel on the left)
using the Collect button beneath the tree display area. A Remove button below
the collection area reverses the process. In Figure 6.18 this step has already been
performed, and all downloaded documents have been transferred to the collec-
tion area. The last line of the message area at the bottom of the screen reports
that 42 files have been moved into the collection.

The next step is to enrich the files by entering metadata, a process that the
original Collector does not allow. The MetaEdit panel is used for this. Figure
6.19 shows the screen partway through the process. The user has selected the file
anthony.htm from the collection area (upper left); chosen the Creator metadata
type from a pull-down menu of Dublin Core categories (lower right); and

6 . 8 B U I L D I N G C O L L E C T I O N S G R A P H I C A L L Y 351

Figure 6.18 Mirroring a site.

entered “Anthony, Susan Brownell” as its value. Several documents can be
selected at once and metadata assigned to them all in one step. Thumbnails of
the selected documents, and their metadata so far, are displayed in the top and
bottom halves of the horizontally split main panel.

When you are satisfied with the metadata, you can build the collection using
options listed in the Build menu. This offers facilities similar to those of the Col-
lector. When the process is complete, the About this Collection page appears in
the Browse panel. You can save your work at any stage using the File menu. You
can also continue browsing and adding metadata while documents are being
mirrored or the collection is being built.

Future versions of this tool will allow interactive control over the elements in
the collection configuration file itself—what indexes are to be included, what
plug-ins may be required, what classifiers to include and the metadata values
that they should work on, what collection-level metadata is needed (such as

352 S I X | C O N S T R U C T I O N

Figure 6.19 Adding new metadata.

icons for the collection and the default interface language). You will even be able
to control the format of the collection’s pages using a special-purpose interac-
tive page editor.

Why should building a digital library be difficult?

6.9 Notes and sources

The Greenstone Collector subsystem that gives ordinary people the power to
build high-quality digital library collections is described in a paper called
“Power to the people” by Witten, Bainbridge, and Boddie (2001).

6 . 9 N O T E S A N D S O U R C E S 353

355

Delivery
How Greenstone works

We explained in Chapter 6 the distinction between building digital library collec-
tions and delivering to users the information they contain. Building prepares
information structures in advance that expedite searching and browsing the
information collection. Delivering interacts with digital library users on the one
hand, and on the other it utilizes the information structures to find out the
information the users need. Building is a compile-time process; delivery is a
runtime one—it’s what users see when they use the digital library.

You need to understand the building process if you want to be able to create
new digital library collections. That is why we delved into it in such great and
laborious detail in the last chapter. Understanding how building works empow-
ers you to create effective collections very quickly.

The same is not true for the delivery process—you need not understand
Greenstone’s runtime system in order to build or use collections. However,
because the software is “open source”—that is, it is available to you in source
code form—you can augment and extend its capabilities, tailoring them to new
situations and new requirements. To do this you will have to learn about the
runtime system. If you’re not interested in technical details of how digital library
systems work—and, you may ask, why should you be?—skip this chapter.

Here we explain how the runtime system operates in sufficient detail that you
can begin to work with it yourself. We start by outlining its overall structure.

Documents are the digital library’s building blocks. It is time to step down

from our high-level discussion of digital libraries—what they are, how they

are organized, and what they look like—to nitty-gritty details of how to rep-

resent the documents they contain. To do a thorough job we will have to

descend even further and look at the representation of the characters that

make up textual documents and the fonts in which those characters are

portrayed. For audio, images and video we examine the interplay

between signal quantization, sampling rate and internal redundancy that

underlies multimedia representations.Documents are the digital library’s

building blocks. It is time to step down from our high-level discussion of dig7

356 S E V E N | D E L I V E R Y

Then we study two major components that are needed to understand its opera-
tion: the macro language, which is how all Web pages are expressed internally,
and the collection information database, which records information produced
during the building operation for use at runtime. Next we examine what is
involved when the system responds to user requests. Following that we describe
operational aspects of the digital library system—in particular, how it can be
configured for different situations.

7.1 Processes and protocols

Figure 7.1 shows three users, represented by computer terminals at the top of
the diagram, accessing three different collections at the bottom. Before going
online, these collections have undergone the processes described in Chapter 6.
This is depicted at the bottom. Source documents are imported into the Green-
stone archive language, then from these files are built various searchable indexes

Import

Database & indexes

Collection server

Receptionist Receptionist

Import

Database & indexes

.....

.....

Collection Collection

Collection server

Import

Database & indexes

Collection

Protocol

Figure 7.1 Overview of a general Greenstone system.

and a collection information database that includes structures to support
browsing. Then the collection is ready to go online and respond to requests
from users for information.

Processes

Two software processes are central to the design of the runtime system: recep-
tionists and collection servers. From a user’s point of view, a receptionist is the
point of contact with the digital library—although users need know nothing
about the software architecture in order to use the system. The receptionist
accepts user input, typically in the form of keyboard entry and mouse clicks
communicated via a Web browser, analyzes it, and dispatches a request to the
appropriate collection server (or servers). Collection servers interact with the
data structures that have been produced by the building process. They locate the
requested piece of information and return it to the receptionist for transmission
to the user’s Web browser and presentation to the user. Collection servers pro-
vide an abstract mechanism to handle the content of the collection, while recep-
tionists are responsible for the user interface.

Different users can share a receptionist—and if you access a Greenstone digi-
tal library Web site, you are likely sharing the receptionist with many other
users. Also, different collections can share a collection server—for example,
most Greenstone sites have only one server that handles all the collections they
offer. But each receptionist has the potential to communicate with several dif-
ferent collection servers, and each server can serve several different reception-
ists. The architecture is flexible.

The null protocol implementation

As Figure 7.1 illustrates, receptionists communicate with collection servers
through a defined protocol. The implementation of the protocol depends on
whether the digital library system is run on a distributed system with several
networked processors. The most common case, and the simplest, is when there
is one receptionist and one collection server and both run on the same com-
puter. This is what you get when you install Greenstone. In this case the two
processes are combined to form a single executable program. This reduces the
protocol to a simple matter of making function calls—although all communica-
tion between the two modules goes through this protocol interface. We call this
implementation the null protocol, and it forms the basis for the standard out-of-
the-box Greenstone system. Figure 7.2 illustrates how the receptionist, protocol,
and collection server are bound together as one entity, which is called the library
program. The aim of this chapter is to show how it works.

7 . 1 P R O C E S S E S A N D P R O T O C O L S 357

Usually a server is a persistent process that, once started, runs indefinitely,
responding to any requests that arise. Despite its name, however, the collection
server in the null protocol configuration is not a server in this sense. In fact,
every time any Web page is requested, the library program is started up,
responds to the request, and then exits. This is accomplished by the CGI mecha-
nism that is widely used by Web servers to communicate with application pro-
grams. We call the collection server a server because it is also designed to work in
the more general configuration of Figure 7.1.

This start-up, process, and exit cycle is not as slow as one might expect and
results in a perfectly usable service. However, it is clearly inefficient. There is a
scheme called Fast-CGI that provides a middle ground. Using it, the library pro-
gram, once executed, remains in memory and subsequent sets of arguments are
fed to it, thereby avoiding repeated initialization overheads. This provides
essentially the same behavior as a server. Using Fast-CGI is an option that you
can enable when compiling (or recompiling) the source code.

358 S E V E N | D E L I V E R Y

Import

Database & indexes

Collection Server

Receptionist

Import

Database & indexes

.....

Collection Collection

Protocol

Null Protocol Library

Figure 7.2 Greenstone system using the null protocol.

The CORBA protocol implementation

Exactly the same protocol is also implemented using the CORBA scheme.
CORBA uses a unified object-oriented paradigm to enable different processes,
running on different computer platforms and implemented in different pro-
gramming languages, to access the same set of distributed objects over the Inter-
net (or any other network). With it, scenarios like the one in Figure 7.1 can be
fully realized, with receptionists and collection servers running on different
computers.

Using the CORBA implementation of the Greenstone protocol, far more
sophisticated interfaces can be connected to exactly the same digital library col-
lections. As an example, Figure 7.3 shows an experimental graphical query
interface, based on Venn diagrams, which lets users manipulate Boolean queries
directly. Users type query terms, whereupon the system places them in the
workspace in the form of a circle, annotated by the number of matching docu-
ments. Users can move them around interactively and form logical combina-

7 . 1 P R O C E S S E S A N D P R O T O C O L S 359

Figure 7.3 Graphical query interface to a Greenstone collection.

tions—for example, in Figure 7.3 the user has constructed the query (Query OR
Boolean) AND (Graphical OR Searching OR Browsing) AND (NOT Ranking).

More interesting than the interface itself—at least from our present perspec-
tive—is how the software works behind the scenes. Written in Java, the interface
runs locally on the user’s own computer. Using the CORBA protocol, it accesses
a remote collection server, written in C++. It presents a radically different inter-
face—far beyond what is possible with the format statement mechanism in
Chapter 6—that harnesses the power of the digital library “back end” and the
documents it contains.

In most of this chapter we assume the null protocol. However, in Section 7.3,
after peeling back one layer of Greenstone by showing how user requests, repre-
sented as arguments, drive the standard receptionist, we describe two CORBA-
based examples and explain how the distributed version of the protocol is used
to support them.

7.2 Preliminaries

Before getting underway we describe two software components that are central
to the runtime system: the macro language, which creates all pages in the user
interface, and the collection information database, which communicates infor-
mation about collections—including the structure of classifiers—between the
building and delivery phases.

The macro language

All Web pages in the user interface are created on the fly: none are stored in
advance. They are generated using macros written in a simple language specially
designed for the job. The purpose is to make things easy (although admittedly it
makes it harder at first to understand what is going on). Macros are inline
scripts that perform textual replacement—one piece of text, the macro name, is
replaced by another, its content.

One reason macros are used is that the interface comes in many different lan-
guages. All the text fragments are couched as macro definitions. To add a new
language, you need only translate these macros—you don’t have to rework all
the Web pages. Every page displayed by the system is passed through a macro
interpreter that expands all the macros on the page. The interpreter checks a lan-
guage variable and uses the macro definitions pertaining to it. This loads the
page in the appropriate language.

Macros can have parameters. In this case the parameter is the language vari-
able: this causes the appropriate text fragment to be used for the macro’s expan-
sion. If there is no Arabic version for a particular macro, the macro interpreter

360 S E V E N | D E L I V E R Y

will automatically substitute the default version (English). This lets system
developers experiment with the interface without having to worry about trans-
lating every little bit of new text immediately. Defaulting to English is not
ideal—it reflects an Anglo-centric mind-set—but it seems better than display-
ing nothing. However, if “nothing” were preferred, it would be a simple matter
to alter the software to default to the empty language!

Macros are also used to deal with display variables. Whenever a Web page
contains information that is not known in advance—such as the number of
documents returned by a search, or the value of a particular metadata item, or
the content of a document page—a macro name is used in the page description.
Unlike language macros, these macros are dynamic: their content is not stored in
advance but is generated by the system in accordance with the value of the vari-
able in question.

Introducing macros
Macros contain the pieces of text and data used on the Web pages. For example,
Figure 7.4a shows the About This Collection page of a particular collection (the
Project Gutenberg collection). The layout of this page is encoded in the file
about.dm given in Figure 7.4b. (The suffix .dm indicates a macro file.) Macros
come in packages, each containing a series of macros used for a single purpose;
what Figure 7.4b shows is the about package. Headers, footers, and the back-
ground image are not mentioned in about.dm because they are located in the
Global macro package.

Macro names begin and end with an underscore, and their content is defined
using curly braces. The content can be plain text, HTML (including links to Java
applets and JavaScript), macro names, or any combination of these. Lines
beginning with the hash symbol (#) are comments.

Three macros are defined in Figure 7.4b: _pagetitle_, _content_, and
textabout. The pagetitle macro (we leave off the underscores) defines the title
of the page in the Web browser—how the page is identified in the browser’s his-
tory list, for example. Note that the about package is not specific to any particu-
lar collection, yet the collection’s name must appear as this page’s title. The
About page is unusual in this regard. Other page titles do not depend on the col-
lection—the Search page, for example, is always called “Search page.” To accom-
plish this, pagetitle is defined for the About page as a dynamic macro, collection-
name, whose content is generated by the system—it gives the name of the
collection from the collection configuration file.

The content macro is used for the page body. It is defined mostly in terms of
other macros, but some HTML appears—<center>, <p>, <h3>. First comes the
navigation bar—dynamically defined, because the browsing buttons depend on
what classifiers are present in the collection. The incantation query:queryform

7 . 2 P R E L I M I N A R I E S 361

362 S E V E N | D E L I V E R Y

package about

###
"about page" content
###

pagetitle {_collectionname_}

content {
<center>
navigationbar
</center>
query:queryform
<p>_iconblankbar_
<p>_textabout_
textsubcollections
<h3>_help:textsimplehelpheading_</h3>
help:simplehelp
}

textabout {
<h3>_textabcol_</h3>
Global:collectionextra
}

(b)

(a)

Figure 7.4 (a) About This Collection page; (b) part of the
macro file that generates it.

generates the query structure near the top of Figure 7.4a. Here queryform is the
macro name; the preceding word indicates that it comes from a macro package
defined elsewhere called query. There are several forms that queries can take
(described in Chapter 3): it depends on whether the user has specified in his or
her Preferences a large query box (Figure 3.16), a query with history (Figure
3.17), or a form query (Figure 3.18). The query macro package sorts these out.

Returning to Figure 7.4, iconblankbar is the thin line that follows the query
box in Figure 7.4a. Then comes textabout, which is defined at the bottom of Fig-
ure 7.4b as an HTML heading (<h3>) followed by the collectionextra text from
the Global macro package. Next comes text about subcollections (there are none
in the Gutenberg collection). Help text follows (not visible in Figure 7.4a).

The About text for a particular collection is not known in advance, but is
placed at runtime in a special dynamic macro named collectionextra in the
Global macro package. (Incidentally this same name was used to express the
About text when customizing the collection’s appearance in the walkthrough of
Chapter 6, Section 6.3.)

Language macros
There is no actual text in the macro file of Figure 7.4b—even the heading About
this collection, which is visible in Figure 7.4a, is encapsulated in another macro
textabcol mentioned near the bottom. The reason is that the text depends on the
interface language, which is determined by the user’s Preferences. A macro file
called english.dm contains this line,

textabcol {About this collection}

which defines the macro in question. However, for the Dutch language there is
another file, dutch.dm, with the line

textabcol [l=nl] {informatie over deze collectie}

The specification l=nl is a parameter in the macro language; parameters always
appear in square brackets. This macro definition is to be used when the lan-
guage variable (l) is Dutch (nl). An appropriately parameterized version of the
textabcol macro appears in every language file. Examples are

spanish.dm (l=es) Acerca de esta colección

russian.dm (l=ru) Немного о коллекции

arabic.dm (l=ar)

When a macro is to be expanded and no suitably parameterized version
exists, the default is to omit that parameter. For example, suppose chinese.dm

7 . 2 P R E L I M I N A R I E S 363

lacked the appropriate specification for textabcol with the l=zh parameter value.
Then the parameterless version, which expands to the English text cited earlier,
would automatically be substituted.

Examples of macros
Like classifiers and plug-ins, all macros are constructed from a predefined basis,
in this case the file base.dm. This file is read before any other macro file. When
macros are redefined, later definitions supersede earlier ones—and many of the
definitions in base.dm are designed to be overridden. For example, to define the
content of a page in the absence of any overriding macro, base.dm contains

content {<p><h2>Oops</h2>_textdefaultcontent_}

The page, which is never supposed to be seen, shows the heading “Oops” followed
by textdefaultcontent, which is defined, in English, to be “The requested page
could not be found. Please use your browser’s ‘back’ button or the home button to
return to the Greenstone Digital Library.” Just as about.dm in Figure 7.4b over-
rides this macro for the About page, so all other pages’ macro packages override
it—or are supposed to. If they do not, you will see the above Oops message.

The macros textdefaultcontent and content are both defined in the Global
package because they are required by all parts of the user interface. All the lan-
guage macros are in this package too. Package definitions may span more than
one file.

When macros from packages other than the one being defined are used, their
names must be prefixed by the package name. For example, this definition of
collectionextra occurs in english.dm:

collectionextra {This collection contains

about:numdocs documents. It was last built

about:builddate days ago.)

It is used as the default description of a collection in case nothing is specified in
the configuration file and is part of the Global package. However, because num-
docs and builddate are both in the about package, their names are preceded by
about.

Macros often contain conditionals. The basic form is _If_(x,y,z), where x is a
condition and y and z contain the text to use if it is true and false, respectively.
The condition can use standard comparison operators less than, greater than,
equals, and not equals.

For example, at the top left of each page is a collection icon—like the picture
of the little printing press and the text “Project Gutenberg” in Figure 7.4a—
which normally links to the collection’s About page. This macro from base.dm is
used to display the image:

364 S E V E N | D E L I V E R Y

imagecollection {

If("_iconcollection_" ne "",

,

imagecollectionv)

}

Here iconcollection resolves to the name of the file containing the collection icon if one
has been defined, and the empty string if not. The code can be paraphrased like this:

If there is a collection image, display it with a link to the About This Collection page
(referred to by httppageabout); otherwise use the alternative macro imagecollectionv.

The fallback substitutes the collection name in text form for the image.
As it happens, the collection icon in Figure 7.4a does not link to the About

This Collection page, because this is the About This Collection page. So the
imagecollection macro is overridden by a definition in about.dm. We have to
confess that Figure 7.4b does not tell the whole truth: header items have been
omitted for simplicity.

Page parameters
As we saw when we met language macros, macros can take a language parameter
l, specified in square brackets. We call this a page parameter because it affects
how every page in the interface is generated. There are two other page parame-
ters. One contains the name of the current collection (c). The second deter-
mines whether the macro will be expanded in graphical or text-only mode (v).
The interface has a switch (set on the Preferences page) that provides a text-only
version intended for visually impaired people who use large-font displays or
speech synthesizers for output. In this mode all images are suppressed from the
interface.

Immediately following the above imagecollection macro is a text-only version:

imagecollection[v=1]{_imagecollectionv_}

The argument v=1 ensures that this more specialized definition, which is the
same as the previous one but suppresses the collection image, is used when the
system is running in text-only mode. If it is unspecified, or if it is given the value
v=0 (which amounts to the same thing), the macro will be expanded in regular,
graphical mode.

If a parameter is missing from a macro when it is called, the parameter-free
version of the macro is used instead (if one exists). The question arises, what
precedence is given to the parameters when there is more than one? Figure 7.5
shows a series of macro definitions that use all three page parameters. For

7 . 2 P R E L I M I N A R I E S 365

example, the last line of Figure 7.5 will be used if all three values are specified.
But if only two are, say l=en and c=demo, which version should be used for
expansion—the second, which specifies l=en, or the fourth, which specifies
c=demo?

In fact this situation rarely arises. Figure 7.5 purports to be a fragment from
the query package that defines a header macro. It shows a specific exception for
the HDL collection which, if generated in French text-only mode, will be
headed HDL Page de recherche. Another special case is made for the Demo col-
lection. Otherwise the fragment is unremarkable. The text-only mode is special-
cased, and a specification for the page title is given in the English language—
presumably the macro files for other languages will contain corresponding
definitions. In fact, however, this is a made-up example: collection-specific pro-
cessing is avoided in generic macro packages, and language-specific text is con-
fined to the language macro files.

When conflicts do arise, macro precedence is defined as follows: the c (collec-
tion) parameter takes precedence over the v (graphical vs. text-only interface)
one, which takes precedence over the l (language) parameter. The definitions in
Figure 7.5 happen to fall in reverse preference order. The last is used if it is
applicable, otherwise the second last, otherwise the third last, and so on. (How-
ever, ordering is not used to govern precedence because different parts of a pack-
age may be in different macro files.) For example, if the parameter values were
c=hdl, v=1, and l=en, the v=1 version of the header macro would be used. It is
preferred over the l=en version because v has a higher precedence than l. The
specific version with all three arguments set would not be selected because the
parameter value for l is different.

Like many aspects of Greenstone, the order of macro precedence is not fixed
but can be changed. Every site has a configuration file called main.cfg, which is
discussed in Section 7.4. Macro precedence is governed by a statement in this
file that gives the preference order among the three parameters.

Personalizing using macros
Macros are powerful but seem mysterious at first. With a working knowledge of
HTML and some practice, they are a quick and easy way to customize your site.

366 S E V E N | D E L I V E R Y

package query
header [] {_querytitle_}
header [l=en] {Search page}
header [v=1] {_textquery_}
header [c=demo] {<table bgcolor=green>
 <tr><td>_querytitle_</td></tr>
 </table>}

header [l=fr,v=1,c=hdl] {HDL Page de recherche}

Figure 7.5 Illustration of macro precedence.

Macros are stored in the top-level macros directory. To change the overall look
and feel, you can edit the base and style packages. To change the query page, edit
query.dm.

Suppose you wanted to personalize the Greenstone home page. Figure 7.6
shows how it looks when you install the software; altering it is one of the first
things you will want to do. The relevant macro file is home.dm. Instead of edit-
ing that, we recommend creating a new file, say yourhome.dm, which defines the
home package in a different way.

Figure 7.7 shows a new home page along with the corresponding
yourhome.dm file. You can use it as a template for creating your own home page.
Each of the Click here links takes you to the appropriate page. Figure 7.7b defines
a macro called content. You can change the text inside the braces to make the
page look however you wish. You can include hyperlinks and use all the other
facilities that HTML provides. Note that the special characters {, }, \, and _ must
be escaped with a backslash to prevent them from being processed by the macro
language interpreter.

To make your new home page link in with other digital library pages, you
need to use appropriate macros. These appear in Figure 7.7b: httppagehome

7 . 2 P R E L I M I N A R I E S 367

Figure 7.6 Greenstone home page.

368 S E V E N | D E L I V E R Y

package home
content {

<h2>Your own Greenstone home page</h2>

<table>
<tr valign=top><td>Search page for the demo collection
</td>
 <td>Click here</td></tr>

<tr><td>"About" page for the demo collection</td>
 <td>Click here</td></tr>

<tr><td>Preferences page for the demo collection</td>
 <td>Click here</td></tr>

<tr><td>Home page</td>
 <td>Click here</td></tr>

<tr><td>Help page</td>
 <td>Click here</td></tr>

<tr><td>Administration page</td>
 <td>Click here</td></tr>

<tr><td>The Collector</td>
 <td>Click here</td></tr>

</table>

}

if you dislike the squirly green bar down the left-hand side of the
page, uncomment these lines:

header {
}

(b)

(a)

Figure 7.7 Personalizing the home page: (a) new version; (b) yourhome.dm file used to
create it.

takes you to the home page, httppagehelp to the help page, and so on. For some
macros you must include a collection name. For example, _httpquery_&c=demo
specifies the Search page for the Demo collection; for other collections, replace
demo by the collection name.

The content macro does not define any HTML header or footer. To change
these on the home page, you must define header and footer macros in
yourhome.dm. For example, the squirly green bar down the left-hand side of
Greenstone pages is defined in the header macro. Making this macro null will
remove it, as indicated at the end of Figure 7.7b.

Making macros work
The system reads in the macro files specified in the main configuration file
main.cfg (see Section 7.4). Name clashes are handled sensibly: the most recent
definition takes precedence. To make the system replace the normal home page
by that in Figure 7.7, first put yourhome.dm into the macros directory. Then edit
the main.cfg configuration file to replace home.dm with yourhome.dm in the list
of macro files that are loaded at start-up.

Macros, like format statements, are interpreted when pages are displayed, so
when you alter them the change appears instantly. For the Local Library version
you need to restart the system; with other versions changes appear as soon as
you reload the page. This makes it easy to experiment with macro definitions.

The collection information database

For each collection there is a database that holds information needed when
serving the collection to users. Passing mention was made of this several times
in Chapter 6. When describing the building process (Section 6.3), we learned
that this database stores all information pertaining to the collection—its name,
icons, document OIDs, associated files, and structures that define the classifiers
it contains. Now is the time to look at the details of how things are stored.

The collection information database is stored using GDBM, the GNU data-
base manager program (www.gnu.org). GDBM implements a flat record struc-
ture of key/data pairs, with operations that include storage, retrieval and dele-
tion of records by key, and an unordered traversal of all keys.

Figure 7.8 shows an excerpt from the collection information database that is
created when building the Gutenberg collection. (It resides in the collection’s
index/text directory under the collection name with extension .ldb or.bdb,
depending on whether the computer’s native format is little-endian or big-
endian.) The excerpt was produced using the Greenstone utility program
db2txt, which converts the binary database format into the textual form shown.
Figure 7.8 contains three records, separated by horizontal rules. The first is a

7 . 2 P R E L I M I N A R I E S 369

document entry; the other two are part of the hierarchy created by the AZList
classifier for titles in the collection. The first line of each record is its key.

The document record relates to the document shown in Figure 7.9 (The Golf
Course Mystery). It stores the book’s title, author, and any other metadata pro-
vided (or extracted) when the collection was built. It also records values for
internal use: where files associated with this document reside (archivedir) and
(at the end of the record) the document number used internally by the MG sys-
tem that is used for full-text retrieval (docnum). Note that this is different from

370 S E V E N | D E L I V E R Y

<doctype>doc
<hastxt>1
<Title>The Golf Course Mystery
<Creator>Steele
<archivedir>HASH51e5/98821ed6.dir
<thistype>Paged
<childtype>Paged
<contains>".1;".2;".3;".4;".5;".6;".7;".8;".9;".10;".11;".12; \

".13;".14;".15;".16;".17;".18;".19;".20;".21;".22; \
".23;".24;".25;".26;".27;".28;".29;".30;".31;".32; \
".33;".34;".35;".36;".37;".38;".39;".40;".41;".42; \
".43;".44;".45;".46;".47;".48;".49;".50;".51;".52; \
".53;".54;".55;".56;".57;".58;".59;".60;".61;".62; \
".63;".64;".65;".66;".67;".68;".69;".70;".71;".72; \
".73;".74;".75;".76;".77;".78;".79;".80;".81;".82; \
".83;".84;".85;".86;".87;".88;".89;".90;".91;".92; \
".93;".94;".95;".96;".97;".98;".99;".100;".101; \
".102;".103;".104

<docnum>162283
--
[CL1]
<doctype>classify
<hastxt>0
<childtype>HList
<Title>Title
<numleafdocs>1818
<thistype>Invisible
<contains>".1;".2;".3;".4;".5;".6;".7;".8;".9;".10;".11;".12; \

".13;".14;".15;".16;".17;".18;".19;".20;".21;".22; \
".23;".24

--
[CL1.11]
<doctype>classify
<hastxt>0
<childtype>VList
<Title>K
<numleafdocs>22
<contains>HASH78255bb10d6d5bf3947084;HASH5a36c85ebfb4d7e1056120; \

HASHcb6f357d99ff1df380aeb8;HASHfa3f78c1f57b35a354a908; \
HASH357fc236dd8d818ba6af1b;HASH0175e5199e2070e0a2e21670; \
HASHee1ecd06e6207a5533c3ab;HASH01a8447e42650115258f38ab; \
HASH014a624729d626537a24e403;HASH01f2d49d40e3bb7ea4196c08; \
HASHbaff553d55b7158b9cbfd4;HASHc6291d49cfadf0cc0257c6; \
HASHeb1f590550508a8d8fb3a9;HASHd231b27a93712882a4d3e4; \
HASH01b7b0bbe4329d32541cabf5;HASH012d721262a55518dbcab629; \
HASH0bb624976dd0effcf94d0c;HASH011ca220779aeaeb17e1ec9a; \
HASH017d084491f8d22a791e795d;HASH94166c1a8389842e0ef140; \
HASH01eb4615549775aee8e62494;HASH019b46470c94f68a5aa5edc5

Figure 7.8 GDBM database for the Gutenberg collection (excerpt).

the OID for the document because MG reallocates document numbers when
collections are rebuilt and hence these identifiers are not persistent. Also
recorded is the fact that the document contains some text (hastxt). The reason
for this is that some document sections begin at once with a subsection header.
These contain no text themselves—although they do contain subsections—and
for them the hastxt flag will be 0.

The contains field stores a list of elements, separated by semicolons, that
point to related records in the database. There is a document record for each
individual section and subsection of each document. In the document record
the contains field is used to point to the nested sections. Subsequent record keys
are formed by concatenating the current key with one of the child elements
(separated by a period) because this is how OIDs are formed for nested docu-
ments. These keys begin with a quotation mark (") because they are expressed
relative to the current key. Other database records use absolute keys.

The second record in Figure 7.8 is the top node for the classification hierarchy
of titles A–Z. In fact, it corresponds to the alphabetic selector list near the top of
Figure 7.10. Its children, accessed through the <contains> field, include CL1.1,
CL1.2, CL1.3, and so on, and correspond to the individual pages for the letters
A, B, C, and so on. There are only 24 children rather than the 26 letters of the
alphabet: the AZList classifier merged the Q–R and Y–Z entries because they
covered only a few titles. There is no text corresponding to this node (hastxt=0),
and it is a horizontal list (Hlist), which is why the alphabetic list appears hori-

7 . 2 P R E L I M I N A R I E S 371

Figure 7.9 The Golf Course Mystery.

zontally. A total of 1,818 documents (numleafdocs) are covered by this node. Its
type is set to Invisible. The reason for this is slightly obscure: in fact it is because
the heading for this node is not displayed—it corresponds to the Titles A–Z but-
ton in Figure 7.10.

The third record is part of the same classification hierarchy. It describes the
11th child, or node CL1.11, of the classifier described in the previous paragraph.
This corresponds to the letter K in the AZList classifier, which is shown as the
vertical list (Vlist) of titles in Figure 7.10. The children in its contains field are the
documents themselves: there are 22 of them (although only 18 are visible in Fig-
ure 7.10).

More complicated structures are possible. The contains field can include a
mixture of documents and further CL nodes. An example of this can be seen in
Figure 3.22b in Chapter 3: this shows a vertical list containing a single document
(Earth Summit Report) along with eight further CL nodes. Arbitrary structures of
horizontal and vertical lists (Hlists and Vlists) are supported by the runtime sys-
tem, although existing classifiers only put horizontal lists at the uppermost level.

7.3 Responding to user requests

We now describe how the runtime system responds to user requests, using the
About page in Figure 7.4a as an example. Unlike other screen shots in this book,

372 S E V E N | D E L I V E R Y

Figure 7.10 Browsing titles in the Gutenberg collection.

this one shows the URL at the top. As the URL indicates, the page is generated as
a result of running the CGI script library. This is the program mentioned in Sec-
tion 7.1 that comprises a receptionist and collection server connected by the
null protocol.

The arguments to library can also be seen in the URL. They are c=gberg, a=p,
and p=about and can be interpreted as follows:

For the Project Gutenberg collection (collection c=gberg), the action is to generate a
page (action a=p), and the page to generate is called “about” (page p=about).

Collection, action, and page are standard arguments used in URLs to communi-
cate with the library program. Incidentally we have already encountered the c
argument in the discussion in Section 7.2 of the macro language. The other two
values used as macro parameters, l for the language specification and v for text-
only mode, may also appear in URLs (although they need not because they have
standard defaults). There are many other possible arguments to the library pro-
gram that can be supplied using the CGI mechanism by embedding them
within a URL.

Figure 7.11 illustrates the main components of the runtime system. Both
receptionist and collection server comprise a number of separate modules that

7 . 3 R E S P O N D I N G T O U S E R R E Q U E S T S 373

InitializeInitialize

Initialize

CGI arguments Actions Format Macro Language

Receptionist

Protocol

Collection Server

Collection Collection

Filter

Search Search

Filter Source

Indexes Database Indexes Database

.....

Source

Figure 7.11 Greenstone runtime system.

we call objects. At the top, the receptionist first initializes its objects, then parses
the CGI arguments to decide which action to call. The action argument deter-
mines what the program is supposed to do and affects how the other arguments
are processed. In performing the action, the receptionist uses the protocol to
communicate with the collection server, which is responsible for accessing the
content of the collection. The result, aided by the format and macro language
components, is used to generate a Web page in response to the original request.

The macro language is used to ensure that the Web pages have a consistent
style. Interacting with the library generates the bare bones of Web pages; the
macros wrap them in flesh. During initialization, the Macro Language object in
Figure 7.11 reads the macro files, parses them, and stores the result in memory.
Any action can use the Macro Language object to expand a macro. It can even
create new macro definitions and override existing ones, adding a dynamic
dimension to macro use. Special dynamic macros are how the receptionist gets
results onto Web pages.

When the receptionist generates the page in Figure 7.4a, it uses the protocol
to retrieve the “About this collection” text from the collection server and stores
it as the special dynamic macro collectionextra. The content of the About page is
created by expanding the content macro in Figure 7.4b. This in turn expands
textabout, which itself accesses collectionextra, which had just been dynamically
defined by the receptionist. Voilà.

The receptionist’s remaining component is the Format object in Figure 7.11.
Chapter 6 described how format statements in the collection configuration file
affect the presentation of particular pieces of information. The Format object’s
main task is to parse and evaluate these statements. As we learned in Section 6.6,
these can include references to metadata in square brackets (e.g., [Title]), which
need to be retrieved from the collection server. The Format object and the
Macro Language object interact with each other, because format statements can
include macros that, when expanded, include metadata, which when expanded
include macros, and so on.

The collection server is shown in the lower part of Figure 7.11. It too under-
goes an initialization process, setting up Filter and Source objects to respond to
incoming protocol requests, and a Search object to assist in this task. Ultimately
these access the indexes and the collection information database, both formed
during collection building.

To encourage extensibility and flexibility, inheritance is used widely—partic-
ularly within Action, Filter, Source, and Search objects. For a simple digital
library dedicated to text-based collections, this means that you need to learn
slightly more to program the system. However, it also means that the MG and
GDBM subsystems could easily be replaced should the need arise. Furthermore,
the software architecture is rich enough to support full multimedia capabilities,

374 S E V E N | D E L I V E R Y

such as controlling the interface through speech input or submitting queries as
graphically drawn pictures.

Next we work through examples of a user interacting with the system and
describe what goes on behind the scenes. We assume that all objects are cor-
rectly initialized; initialization is a rather intricate procedure.

Performing a search

When a user submits a query by pressing Begin Search on the Search page, a new
action is invoked that ends up by generating a new Web page using the macro
language. Figure 7.12 shows the result of searching the Project Gutenberg collec-
tion for the name Darcy. Buried deep within the HTML of the original Search
page is the statement a=q. When the Search button is pressed, this statement is
activated and sets the new action to be a query action. Executing this sets up a
call through the protocol to the designated collection’s Filter object (c=gberg).

Filters are a central function of collection servers. Designed to fulfill the
requirements of both searching and browsing activities, they provide a way of
selecting a subset of information from a collection. There are two types of filter:
query filters and browse filters. Query filters are implemented using the MG full-
text search system, and browse filters are implemented using the GDBM data-
base scheme to access the collection information database—but the software

7 . 3 R E S P O N D I N G T O U S E R R E Q U E S T S 375

Figure 7.12 Searching the Gutenberg collection for Darcy.

uses the mechanism of virtual inheritance to ensure that other schemes can
equally well be used.

In this case the query action sets up a filter request by

■ setting the filter request to have the type Query Filter
■ storing the user’s search preferences—case-folding, stemming, and so

on—in the filter request
■ calling the filter() function using the null protocol

Calls to the protocol are synchronous. The receptionist is blocked until the filter
request has been processed by the collection server and any data generated has
been returned.

When a protocol call of type QueryFilter is made, the Filter object (in Figure
7.11) decodes the options and makes a call to the Search object, which uses MG
to do the actual search. The role of the Search object is to provide an abstract
program interface that supports searching, regardless of the underlying search
tool being used. The format used to return results also enforces abstraction,
requiring the Search object to translate the data generated by the search tool
into a standard form.

Once the search results have been returned to the receptionist, the action
proceeds by formatting the results for display, using the Format object and the
Macro Language. As Figure 7.12 shows, this involves generating the standard
header, footer, navigation bar, and background; repeating the main part of the
query page just beneath the navigation bar; and displaying a book icon, title,
and author for each matching entry. The format of this last part is governed by
the format SearchVList statement in the collection configuration file. Before Title
and Author metadata can be displayed, they must be retrieved from the collec-
tion server. This requires further calls to the protocol, this time using Browse-
Filter.

Retrieving a document

Following the previous query for Darcy, consider what happens when a docu-
ment is displayed. Figure 7.9 shows the result of clicking on the icon beside The
Golf Course Mystery in Figure 7.12.

The source text for the Gutenberg collection comprises one long file per
book. At build time these files are split into separate pages every 200 lines or so,
and relevant information for each page is stored in the indexes and collection
information database. The top of Figure 7.9 shows that this book contains 104
computer-generated pages, and below it is the beginning of page one: who
entered it, the title, the author, and the beginnings of a table of contents (this
table forms part of the Gutenberg source text and was not generated by Green-

376 S E V E N | D E L I V E R Y

stone). At the top left are buttons that control the document’s appearance. At
the top right is a navigation aid for reaching other pages in the book.

The action for retrieving documents is specified by setting a=d and takes sev-
eral additional arguments. Most important is the document to retrieve: this
document is specified through the d variable. In Figure 7.9 it is set to
d=HASH51e598821ed6cbbdf0942b.1 to retrieve the first page of the document
with the identifier HASH51e598821ed6cbbdf0942b, known in more friendly
terms as The Golf Course Mystery. There are further variables: whether query
term highlighting is on or off (hl) and which page within a book is displayed
(gt). These variables are used to support the activities offered by the buttons in
Figure 7.9; defaults are used if any variables are omitted.

The action follows a similar procedure to the query action: appraise the CGI
arguments, access the collection server using the protocol, and use the result to
generate a Web page. Options relating to the document are decoded from the
arguments and stored for further work. To retrieve the document from the col-
lection server, only the document identifier is needed to set up the protocol call
to get_document(). Once the text is returned, it is formatted. To achieve this the
code for the document action accesses the stored arguments and makes use of
the Format object and the Macro Language.

Browsing a hierarchical classifier

Figure 7.10 shows an example of browsing, where the user has chosen Titles A-Z
and accessed the hyperlink for the letter K. The action that supports this is also
the document action, given by the argument a=d as before. However, whereas
before a d variable was included, this time there is none. Instead the relevant
node of the classification hierarchy is specified by the variable cl. In our case this
represents titles grouped under the letter K. This list was formed at build time
and stored in the collection information database. The numbering scheme for
classifiers was described in Chapter 6 (Section 6.7, under “Formatting Lists”).
The top-level classifier node for titles in our example is CL1, and the page
sought is generated by setting cl=CL1.11, the bucket for K being the 11th in the
alphabetic list. This can be seen in the URL at the top of Figure 7.10.

To process a cl document request, the Filter object is used to retrieve the node
over the protocol. Depending on the data returned, further protocol calls are
made to obtain document metadata. In this case the titles of the books are
retrieved. However, if the node were an interior one whose children are them-
selves nodes, the titles of the child nodes would be retrieved. From a coding point
of view, this amounts to the same thing and is handled by the same mechanism.

Finally all the retrieved information is bound together using the macro lan-
guage to produce the Web page shown in Figure 7.10.

7 . 3 R E S P O N D I N G T O U S E R R E Q U E S T S 377

Generating the home page

As a final example, we look at generating the Greenstone home page. Figure 7.6
shows the home page of the default installation after some test collections have
been installed. Its URL, visible at the top of the screen, includes the arguments
a=p and p=home. Like the About This Collection page, this is generated by a
page action (a=p), but this time the page to produce is home (p=home). The
macro language therefore accesses the content of home.dm. There is no need to
use the c variable to specify a collection.

The purpose of the home page is to show what collections are available.
Clicking on each icon takes the user to the About This Collection page for that
collection. The menu of collections is dynamically generated every time the
page is loaded, based on those that are in the file system at that time. When a
new collection comes online, it automatically appears on the home page when
that page is reloaded (provided the collection is stipulated to be “public”).

To do this the receptionist again uses the protocol. As part of appraising the
arguments, the page action code is programmed to detect the special case when
p=home. Then the action uses the protocol call get_collection_list() to establish
the current set of online collections. For each of these it calls get_collectinfo() to
obtain information about it. This information includes whether the collection is
publicly available, when it was last built, how many documents it contains, the
URL for the collection’s icon (if any), and the collection’s full name. This infor-
mation is used to generate an appropriate entry for the collection on the home
page.

Using the protocol

Having now had a glimpse of how the interaction between receptionist and col-
lection server works, we can complete our description of the protocol. Table 7.1
lists the function calls to the protocol, with a summary for each entry.

Some of these have already been mentioned. Given an OID, get_document()
retrieves the corresponding document or document section from the collection
server. As we have just seen, get_collection_list() returns a list of collections,
while get_collectinfo() gives information about an individual collection.

Filter(), also mentioned earlier, supports searching and browsing. Given a
Filter type and option settings, it accesses the content of the named collections
to produce a result set that is filtered in accordance with the options. The
options also determine what data is returned: examples include query term fre-
quency and document metadata—we expand upon this later. Two protocol calls
are provided to allow a receptionist to interrogate a collection server to find out
what filters and options are supported and so dynamically configure itself to
take full advantage of the services offered by a particular server: get_filterinfo()

378 S E V E N | D E L I V E R Y

and get_filteroptions(). The former returns a list of all Filters for the named col-
lection; the latter returns a list of options for a particular Filter.

Of the protocol calls in Table 7.1 that have not already been mentioned,
has_collection() and ping() provide yes/no answers to questions about individ-
ual collections: “Does the collection exist on this server?” and “Is it running?”
respectively.

The purpose of get_protocol_name() is to support multiple protocols. Two
protocols were mentioned in Section 7.1: the null protocol and the CORBA
scheme that allows a set of collections to be distributed over a network. A third
is Z39.50, a standard communications protocol used by library systems interna-
tionally to give users and other libraries remote access to catalog records (see
Section 8.5). Get_protocol_name() returns a value that identifies which protocol
is being used and is called by protocol-sensitive parts of the runtime system to
decide which piece of code to execute.

Figure 7.13 shows the software interface to the filter mechanism. For example,
by setting the filter name to QueryFilter, specifying the collection name to be
oralhist, and storing the query string VE day in filterOptions, the Oral History col-
lection is searched for those words. (In fact, Figure 3.7 in Chapter 3 showed one
of the results for that query.) Defaults are used throughout to supply any unspec-
ified options. In this case stemming defaults to on and case-matching to off.

Information returned by filter() is stored in two variables: response and error.
The code fragment in Figure 7.13 would be followed by a check to determine
whether an error had occurred, and if not, the document identifiers returned in
response would be accessed. Depending on the desired output, further calls to
filter() might be made to retrieve additional document details and metadata.
Alternatively the document retrieval part of the protocol could be used to access

7 . 3 R E S P O N D I N G T O U S E R R E Q U E S T S 379

Table 7.1 List of protocol calls.

Protocol call Function

get_protocol_name() Returns the name of this protocol.
get_collection_list() Returns the list of collections that this protocol knows about.
get_collectinfo() Obtains general information about the named collection.
has_collection() Returns true if the protocol can communicate with the named collection.
ping() Returns true if a successful connection was made to the named collection.
filter() Supports searching and browsing by filtering the result set as specified.
get_filterinfo() Gets a list of all filters for the named collection.
get_filteroptions() Gets all options for a particular filter within the named collection.
get_document() Gets a document or section of a document.

the contents of individual documents. Control is provided over the document
type, format, and sections returned.

The protocol is stateless, or—to be more accurate—designed for a stateless
server. This simplifies the server code but complicates life for receptionists
because they must store the state of play if a continuous interactive session is to
be supported.

The following subsections present two examples that demonstrate use of the
Greenstone protocol. The first is a C++ receptionist similar to the null protocol
receptionist, augmented to access remote collections as well as local ones. The
second is an interactive client application written in Java for accessing biblio-
graphic records. Both use CORBA to communicate with remote Greenstone
collection servers.

Remote access through a C++ receptionist
Figure 7.14 shows a personal page of the Kids’ Digital Library (the home page
was depicted in Figure 3.2 of Chapter 3). It has a C++ receptionist that inte-
grates local and remote collections. The local collections are small and personal-
ized; the remote ones are larger and more bountiful.

The home page has been stylized by modifying the macro files. The set of
links in the center show the collections available to the pupil. On the left are
support services: a workspace for creative writing, a submission process for
completed stories and poems, a bulletin board where selected works are dis-

380 S E V E N | D E L I V E R Y

filter(in text_t collection,
 in FilterRequest request,
 out FilterResponse response,
 out ComError error);

name="oralhist"

filterName=QueryFilter
filterOptions[0]={"Term","VE day"}
filterOptions[1]={"QueryType","ranked"}
filterResultOptions=FROID|FRranking

value=noError

numDocs=54
docInfo[0].OID="hash0x0104d4783354872183f5c0bd"
docInfo[0].ranking=67
docInfo[1].OID="hash0x15b5807cbb077b860edc4f"
docInfo[1].ranking=54
...

Figure 7.13 Using the protocol to perform a search.

cussed and annotated, and training packages to help users learn about the work-
ing environment. The receptionist asks the user—Jamie, in this case—to log in
first. The class teacher has a special account from which collections can be
updated with new stories, usernames can be created for new pupils, and so
forth.

From this page a pupil can view the collections or access the support services
just mentioned. Poems and Short Stories are collections of finished works by the
pupils, vetted by the teacher. They can be searched by full text, author, and title,
or browsed by author and title. Pictures & Images, Audio Sounds, and Ideas are
collections pulled together from various sources to provide resources and ideas
for students; they too are searchable and browsable. Finally, the Personal Book-
marks collection, which is specific to each particular user, is formed by down-
loading every page mentioned in the user’s bookmark files. The collection is
fully indexed and browsable by title and subject folder.

The idea behind the Bookmarks collection is that pupils browse the Web
using a variety of strategies for finding information pertinent to their work,
bookmarking relevant pages. Upon activating “rebuild this collection” through
a hyperlink on the collection’s page, new Web pages are downloaded, any exist-
ing ones that have changed are updated, and the collection is rebuilt.

7 . 3 R E S P O N D I N G T O U S E R R E Q U E S T S 381

Figure 7.14 Kids’ Digital Library. Middlesex University,
London, England.

Figure 7.15 shows the structures underlying the Kids’ Digital Library envi-
ronment. Behind the scenes, collections are accessed from two servers: one
local, the other remote. Small collections that are rebuilt frequently, such as per-
sonal bookmarks, short stories, and the bulletin board, are served locally (in
London, as it happens). The larger collections—intended as a source of inspira-
tion—do not change so rapidly and are served remotely by a computer (in New
Zealand) that is dedicated to supporting digital library collections. In Figure
7.15 Jamie is accessing the remote Sounds and Ideas collections as a basis for
creative writing, and submitting his composition for the teacher’s perusal.

This integrated environment was easily constructed. Support for multiple
protocols is already built into Greenstone. Instead of creating a single object of
type Null Protocol, as C++ receptionists usually do, the Kids’ Digital Library
receptionist creates both a Null Protocol object for local collections and a
CORBA Protocol object connected to the New Zealand Digital Library server.
Both are stored in the protocol list, which is available to the rest of the recep-
tionist code.

By default, receptionists iterate through the list of protocols, seeking the right
object to respond to the CGI arguments that have been supplied, or (if appro-
priate) making calls to every protocol object in the list. In the standard C++
receptionist this list contains just one item, but in the Kids’ Digital Library
receptionist, it has two. To generate the home page in Figure 7.14, for example,
the receptionist first calls get_collection_list() for the null protocol, returning the
collections that are available locally, and then calls get_collection_list() for the
CORBA-based protocol, returning the publicly available collections on the New

382 S E V E N | D E L I V E R Y

Figure 7.15 Implementing the Kids’ Digital Library using the protocol.

Zealand Digital Library server. The information that is returned is then com-
bined into a suitable HTML page.

In Greenstone, client-side authentication is built into the receptionist’s
actions, while server-side authentication is supported using external mecha-
nisms. In Chapter 8 we encounter systems that take a different approach,
embedding authentication in the protocol itself.

Remote access through a Java receptionist
Figure 7.16 illustrates a Greenstone receptionist written in Java that implements
a client-side bibliographic search tool. The protocol is used to access a collection
server that contains citations on human-computer interaction; the receptionist
displays the search results graphically, based on year of publication and the
matching relevance score. The display is enhanced by color: each query term is
colored differently, and citations that include it are displayed in that color. For
documents that contain more than one query term, the box is divided into col-
ored strips (like the two boxes at the top right). The scroll bars let you zoom and
pan around the search set; clicking on a document box pops up a new window
that includes its full citation.

The implementation works like this. When the receptionist is started, it
establishes contact with the remote site named in its configuration file through

7 . 3 R E S P O N D I N G T O U S E R R E Q U E S T S 383

Figure 7.16 A bibliographic search tool.

CORBA-specific initialization code, whereupon a search window appears. (If
the remote server is not running or cannot be contacted, an error message is
produced and the application terminates.) When a user enters a query and
presses the Search button, a Filter object of type QueryFilter is created (like that
shown in Figure 7.13) and initialized to request a case-insensitive ranked query
with no stemming. This is dispatched through CORBA as a filter() call.

The response—which is synchronous, meaning that the client application is
blocked until the reply is received—returns either an error condition or the
information requested. Assuming no errors, the receptionist stores the informa-
tion in its own data structures. Given this data, it can assign colors to the search
terms, produce the graphical display of results, and respond to further user
interaction. When the user zooms or pans, the graph is redrawn from the stored
information. When one of the document boxes is clicked, a further protocol
request is made, this time using get_document() to obtain the full citation. The
data returned is displayed in a popup window.

Actions

Everything the null protocol receptionist does begins as a specification of an
“action” as one of the arguments of a Greenstone URL. We have already met three:
page actions, document actions, and query actions. Page actions generate HTML
Web pages in conjunction with the Macro object. Document actions retrieve doc-
uments or document sections. They also retrieve other information provided by
the collection server, such as parts of the classification hierarchy, or formatting
information. Query actions perform a search. Table 7.2 lists the actions that are
implemented.

All actions derive from a single base action using a programming mechanism
called virtual inheritance to aid extensibility.

Other actions are concerned with authentication. The authen action prompts
the user for a user name and password and checks whether they are valid. Subse-
quent authen actions in the same dialog will succeed automatically, except that
authentication expires and the user has to log in again if sufficient time elapses.
The users action supports the addition of new users and removal of existing
ones; it also allows a user’s permissions to be altered. The first step in executing a
users action is to issue an authen action to check that the current user has per-
mission to make the change.

The Collector subsystem is implemented using a collector action. Here also
the first step is to issue an authen action to check that the user has permission to
build collections.

The remaining actions perform miscellaneous tasks. Greenstone has an admin-
istrator facility (mentioned in the next section) that gives information about the

384 S E V E N | D E L I V E R Y

system; this is handled by the status action. Sometimes collections take a user
directly to a URL that is external to a collection, and this may, depending on a set-
ting on the Preferences page, generate an alert page first: this is handled by the
extlink action. Finally, ping checks to see whether a particular collection is online.

7.4 Operational aspects

Many aspects of a digital library site need to be set up individually for each
installation. Some, like the name of the directory where the software is kept and
the HTTP address of the system, define the whereabouts of the system—what
logical space it occupies. Others concern people and how they are treated: the e-
mail address of the system maintainer, whether logs of user activity are kept, and
whether Internet “cookies” are used to identify users. Still others control what
users can do with the system—such as whether the Collector subsystem is
enabled, which lets authorized users create new collections and modify existing
ones as described in Chapter 6 (Section 6.2).

Just as the structure of each individual collection is governed by a collection
configuration file, these global aspects of system operation are also determined
by configuration files. There are two. One, the site configuration file (gsdlsite.cfg,
found in the Greenstone cgi-bin directory), defines parameters that are particu-
lar to a given site, thereby tailoring the software to work at that site. The other,
the main configuration file (main.cfg, found in the top-level etc directory), sets
parameters for the receptionist and contains information common to the inter-

7 . 4 O P E R A T I O N A L A S P E C T S 385

Table 7.2 Action.

Actions Function

action Base class for virtual inheritance.
page Generate a Web page.
document Retrieve items from a collection server.
query Perform a search.
authen Authenticate the user.
users Add and delete users and their access permissions.
collector Generate the pages for the Collector.
status Generate the administration pages.
extlink Take a user to an external URL.
ping Check to see whether a collection is online.
tip Bring up a random tip for the user.

face of all collections served by the site. With it you can control such things as
the languages that the interface can use and what logs of user activity are kept.

Greenstone also has an administrator facility that gives information about the
entire system, including all collections it offers. It displays the installation’s con-
figuration files and allows them to be modified. It allows you to examine the user
logs that record usage and the error logs that record internal errors. It enables you
to authorize others to build collections and add new material to existing ones—
in other words, it is used to set up the Collector’s login accounts that we met at
the beginning of Section 6.2. All these facilities are accessed interactively from the
menu items. Of course they can only be accessed by a person who has been
authorized to act as system administrator: just as access to the Collector is
restricted to authorized users, so is access to the administrator facility.

This section describes the structure and content of the configuration files,
since they affect the operation of the system at delivery time.

Configuring the receptionist

Table 7.3 shows the items that can occur in the main configuration file. They
concern site maintenance and logging, language support, and default values for
page parameters and CGI arguments. In addition, another one—the first in
Table 7.3—determines which macros are loaded; this was mentioned at the end
of the description of the macro language in Section 7.2.

The best way to learn about the various configuration options possible is to
experiment with the main.cfg file itself. Note that if you are using the “local
library” version, you need to restart the server before any configuration changes
take effect.

Site maintenance
Each digital library installation has a person who is responsible for maintaining
it. The maintainer checks the log file, which records internal errors—such as
when a collection is inaccessible or a user sees the “Oops” text in the content
macro shown earlier. This person also receives mail relating to the operation of
the system—for example, when the Collector is used to build new collections or
delete old ones. The maintainer’s e-mail address is specified in the configuration
file (if it is null, mail events are disabled). The mail server can also be specified.
If it is null, the domain of the maintainer is used (e.g., if the maintainer is
me@example.com, the default is mail.example.com). If this does not resolve to a
valid mail server, automatic e-mail notification will not work.

Just as automatic e-mail notifications help a system maintainer to keep an
installation in good working order, the Collector subsystem automatically sends
notification of certain events to those in charge of particular collections, such as
someone adding information to the collection, or rebuilding it. These events are

386 S E V E N | D E L I V E R Y

recorded in a log file (see next subsection); in addition, an automatic e-mail
notification can be sent whenever an item is logged. Because this can become a
burden for active experimental systems, particularly during the debugging and
commissioning stages, it can be controlled by switches in the configuration file
that enable or disable automatic notification of events related to a particular col-
lection to its maintainer (EmailUserEvents). These are events that the main-
tainer of a multiuser digital library might want to monitor, and events for all
collections can be sent to the system maintainer (EmailEvents).

7 . 4 O P E R A T I O N A L A S P E C T S 387

Table 7.3 Configuration options for site maintenance and logging.

Option Value Purpose

macrofiles list of macro file names Specify macros loaded by the receptionist
maintainer e-mail address Specify e-mail address of the site maintainer to be

used for notification purposes
MailServer mail server name Specify outgoing mail server for this site
EmailUserEvents enabled or disabled Notify a collection’s maintainer of changes to that

collection
EmailEvents enabled or disabled Mail the system maintainer every time an event

occurs for any collection
collector enabled or disabled Specify whether to make the Collector available
status enabled or disabled Specify whether to make the Administrator pages

available
LogEvents Specify whether to log certain events

logcgiargs true or false Specify whether to log usage in usage.txt
usecookies true or false Specify whether to log information about users

(using cookies)
LogDateFormat Specify format for logging time stamps

Encoding Specify a possible character encoding for the
interface

Language Specify a possible language for the interface

pageparam l, c, or v Specify a default for a page parameter
macroprecedence list of l, c, and v Specify parameter precedence when expanding

macros
cgiarg Define defaults for a CGI argumentshortname, longname,

multiplechar, argdefault,
defaultstatus, and
savedarginfo

shortname, longname, and
default_encoding

shortname, longname, map,
and multibyte

LocalTime, UTCTime, or
Absolute

AllEvents, CollectorEvents,
or disabled

Various other components of the digital library system can be enabled or dis-
abled. Sites that aim to offer a comprehensive, polished service to others will
probably prefer not to enable the Collector subsystem because under no circum-
stances would end users be permitted to build collections on such sites. Similarly,
the administrative facility described earlier can be turned off.

Logging
Three kinds of log are maintained: an error log, an events log, and a usage log
(recorded in the files errors.txt, events.txt, and usage.txt in the etc subdirectory of
the file structure). The error log, which is permanently enabled, contains mes-
sages relating to initialization and operational errors: it is only really of interest
to people maintaining the software.

We have mentioned events: they are generated by the Collector when people
build, delete, or modify collections. They can be logged with messages such as
“sjboddie just successfully built a collection” in the events log file (controlled by
the LogEvents switch). The collection maintainer or system maintainer can be
automatically notified of logged events as described previously.

All user activity—every page that each user visits—can be recorded by the
Greenstone software, although no personal names are included in the logs. Each
user action is effectively defined by the set of CGI arguments that characterizes
that action, and these are what is logged. Disabled by default, logging is enabled
using the switches logcgiargs and usecookies in the main configuration file. Both
options are false by default: no logging is done unless they are set. It is the first
option that actually turns logging on and off. If the second is activated as well, a
unique identification code is assigned to each user, which enables individual
users’ interactions to be traced through the log file.

Each line in the user log records a page visited. Each entry contains a time
stamp, the address of the user’s computer, the name of the user’s Web browser,
the name of the library program being run, and the arguments transmitted to
that program by the CGI mechanism. The format used for the time stamp can
be altered with LogDateFormat—the local time in the format “Thu Dec 07 12:34
NZDT 2000,” the UTC time which is the same format but expressed as Green-
wich Mean Time, or as an integer representing the number of seconds since
00:00:00 01/01/1970 GMT.

Figure 7.17 shows an example log entry, split up into these components. This
entry, which occurred on 7 Dec 2000 from a site at massey.ac.nz, is displaying a
page (action a=p) which is the home page (page p=home) of the Māori newspa-
per collection (collection c=niupepa). Many of the other arguments have default
values—for example, the language is English (l=en) and the display is not text-
only (v=0). The user’s browser is Netscape (internally, Netscape is called
“Mozilla”). The last CGI argument, z, is an identification code or cookie gener-

388 S E V E N | D E L I V E R Y

ated by the user’s browser: it comprises the computer’s IP number followed by
the time stamp when the user first accessed the digital library.

When logging is enabled, every action by every user is logged—even the
pages generated to inspect the log files!

Language support
Two entries in the main configuration file control the way that languages are
handled by determining which encodings and languages can be chosen on the
Preferences page.

Encoding statements specify the different types of character encoding that
can be selected. The UTF-8 version of Unicode, which has standard ASCII as a
subset, is handled internally and should always be enabled. But there are many
other possible encodings. For example, the Big-5 encoding scheme is frequently
used for traditional Chinese text. The standard file main.cfg specifies many
encodings, most of which are commented out. To enable an encoding, remove
the comment character (#).

Each encoding statement in the main configuration file relates to a particular
coding method and defines four attributes. First comes the standard short label
for the encoding. This must always be specified. For the Big-5 encoding, for
example, it is big5. Second comes the “long” name of the encoding, the name
that will be displayed in the menu on the Preferences page. If it is absent, the
standard label is used instead. For the Big-5 encoding, the long name is given as
Chinese Traditional (Big5). Third is the name of a mapping file that converts the
encoding to and from Unicode; these are kept in the top-level mappings direc-
tory. This value is mandatory for everything except UTF-8. Fourth is a flag that
indicates that the character set requires more than one byte per character—
which, for example, Big-5 does.

The second kind of language-related configuration file entry specifies what
user interface languages can be selected. Language macros must be specified for

7 . 4 O P E R A T I O N A L A S P E C T S 389

/fast-cgi-bin/niupepalibrary Library program

its-www1.massey.ac.nz User’s computer

[Thu Dec 07 23:47:00 NZDT 2000] Time stamp
(a=p, b=0, bcp=, beu=, c=niupepa, cc=, ccp=0, ccs=0, cl=, cm=, cq2=, d=, e=,
er=, f=0, fc=1, gc=0, gg=text, gt=0, h=, h2=, hl=1, hp=, il=l, j=, j2=, k=1,
ky=, l=en, m=50, n=, n2=, o=20, p=home, pw=, q=, q2=, r=1, s=0, sp=frameset,
t=1, ua=, uan=, ug=, uma=listusers, umc=, umnpw1=, umnpw2=, umpw=, umug=,
umun=, umus=, un=, us=invalid, v=0, w=w, x=0, z=130.123.128.4-950647871)

Arguments

"Mozilla/4.08 [en] (Win95; I ;Nav)" User’s browser

Figure 7.17 Entry in the usage log.

each named language. Again many examples appear in the standard main con-
figuration file.

Each language statement relates to a particular language and specifies three
attributes. The first is a standard label for the language—in this case the ISO 639
two-letter language symbol—and must be specified, while the second is the
name used for the language in the Preferences menu, and defaults to the short
name if absent. Finally comes the preferred encoding for this language.

Page parameters
Page parameters are the three parameters in the macro files that affect the dis-
play of each page produced in the interface, introduced in Section 7.2. One (l)
determines the interface language, another (c) the current collection, and the
third (v) whether the interface is graphical or text-only.

It is sometimes useful to be able to change the default values for page para-
meters. For example, to change the default interface language to French, which
would be appropriate for an installation in France, the language parameter
should default to French rather than the built-in default, which is English. This
can be accomplished by a statement in the main configuration file:

pageparam l fr

This mechanism avoids the need to change the default settings given in the
source code and recompile it.

We already mentioned when discussing macros (Section 7.2) that the order
of macro precedence is not fixed but can be changed by a macroprecedence state-
ment in the main configuration file. The line

macroprecedence c,v,l

defines the ordering normally used, c (the collection) taking precedence over v
(graphical vs. text-only interface) taking precedence over l (the language).

CGI arguments
The receptionist program takes parameter values supplied in the form of CGI
arguments—page parameters are a special case. There are many different para-
meters—as the log entry in Figure 7.17 shows—and the software defines default
values for all of them. But sometimes it is useful to change the defaults. For
example, if the URL of the library program is given without any arguments,
which page should be displayed? To ensure that the default is to display the
home page, the action argument should default to generating a page (action
a=p), and the page to generate should default to the home page (page p=home).
This is accomplished by these two statements in the main configuration file:

cgiarg shortname=a argdefault=p

cgiarg shortname=p argdefault=home

390 S E V E N | D E L I V E R Y

The cgiarg configuration option takes up to six different values, of which short-
name and argdefault are two. These values correspond to different properties of
the CGI argument. The other four include a more meaningful description of the
action, in the form of its long name; whether it represents a single or multiple
character value; what happens when more than one default value is supplied
(since defaults can also be set in collection configuration files); and whether or
not the value is preserved at the end of this action.

Configuring the site

The site configuration file sets variables that are used by the library software and
Web server at runtime, and it resides in the same directory as the library pro-
gram. The install procedure creates a generic site configuration file based on
your installation choices. Table 7.4 describes the lines in this file. In addition, for
the system to work properly, access permissions for certain files must be set up
appropriately.

The first line in Table 7.4 simply points to the directory in which the software
is installed (on the default Windows installation, this is C:\Program Files\gsdl).
The second line gives the Web address of this directory: this ensures that Green-
stone URLs are directed to the correct place. You do not need this if the docu-
ment root on your Web server is set to the Greenstone home directory. The third
gives the Web address of the directory containing the images for the user inter-
face (C:\Program Files\gsdl\images in the default installation). In the standard
installation this is httpprefix/images. The fourth gives the Web address of the
Greenstone CGI program, called library. This is not required by most Web
servers (including Apache).

The final entry in Table 7.4 is only used by versions that are compiled with
the Fast-CGI option enabled. The standard binary distribution does not include
this option because not all Web servers are configured to support it; in this case
the maxrequests statement should be ignored. If available, Fast-CGI speeds up
the execution of CGI programs by keeping them in memory between invoca-

7 . 4 O P E R A T I O N A L A S P E C T S 391

Table 7.4 Lines in gsdlsite.cfg.

Line Function

gsdlhome A path to the Greenstone home directory
httpprefix The Web address of the Greenstone home directory
httpimage The Web address of the directory containing the images for the user interface
gwcgi The Web address of the library CGI script
maxrequests The number of requests Fast-CGI should process before it exits

tions rather than loading them from disk every time a Web page is requested.
However, the amount of memory used grows steadily while the program
remains in memory. Once a certain number of pages (maxrequests) have been
generated, the program quits, freeing all space, and on the next request for a
Web page it is reinitialized. If you use Fast-CGI, set this parameter to a large
value, such as 10,000 (unless you are debugging modifications to the library
program).

7.5 Notes and sources

The Greenstone software is written in C++ and makes extensive use of virtual
inheritance. To understand the details you will need at least a superficial knowl-
edge of this language and of the C++ Standard Template Library, which provides
a foundation for the runtime system. To learn more about this language, Deitel
and Deitel (2001) provide a comprehensive tutorial, while Stroustrup (2001) is
the definitive reference. The Standard Template Library (STL) C++ library is
from Silicon Graphics (www.sgi.com). For a full description you should consult
the official STL reference manual, available online at www.sgi.com, or one of the
many STL textbooks—for example, Josuttis (1999).

The Venn diagram interface for graphical Boolean queries is called Vquery
and is described by Jones, McInnes, and Staveley (1999). The Fast-CGI scheme
for running CGI scripts without them having to reinitialize each time is
described at www.fastcgi.com. Slama, Garbis, and Russell (1999) give a thorough
account of the CORBA protocol and its use.

Bainbridge et al. (2001) give more information about the Greenstone proto-
col. The Managing Gigabytes compression and indexing software is thoroughly
described by Witten, Moffat, and Bell (1999).

392 S E V E N | D E L I V E R Y

393

Interoperability
Standards and protocols

We complained at the beginning of Chapter 4 that it is difficult to write a book
about how to build digital libraries because the field is in flux and the ground
shifts under your feet as you work. It is even more difficult to provide a compre-
hensive software system to illustrate the ideas in the book and form a basis for
the reader’s own library because reliable software takes time to build and is
inevitably based on a design that was made some time ago. We have done our
best to show you how to build a digital library and provide a state-of-the-art
software system to use as a foundation for your own work. Now, however, it is
time to look around and see what news is breaking and what people will be
doing next.

We learned in Chapter 5 about the extensible markup language, XML, and
the family of open standards that have built up around it. XML is a flexible
framework for describing document structure and metadata. In fact, there are
other developments centered upon XML, which will probably also have far-
reaching effects on digital libraries of the future. We describe some of them in
this chapter. One concerns naming: how are we to name documents in this
brave new Web world, where so much changes so quickly? Another concerns
linking. The “hyperlink” has served us well as a central feature of the Web, but
plain hyperlinks are rather rudimentary—far more can be done. Historically
hypertext predates the Web, and researchers were busily pursuing the idea when
the Web burst onto the scene in 1993. It was like a supernova exploding in the

Documents are the digital library’s building blocks. It is time to step down

from our high-level discussion of digital libraries—what they are, how they

are organized, and what they look like—to nitty-gritty details of how to rep-

resent the documents they contain. To do a thorough job we will have to

descend even further and look at the representation of the characters that

make up textual documents and the fonts in which those characters are

portrayed. For audio, images and video we examine the interplay

between signal quantization, sampling rate and internal redundancy that

underlies multimedia representations.Documents are the digital library’s

building blocks. It is time to step down from our high-level discussion of dig8

394 E I G H T | I N T E R O P E R A B I L I T Y

sky nearby: the effect was so dramatic that other work in the area was outshone,
virtually obliterated. We were blinded! But the Web as we know it uses hyper-
links in a primitive way, and by now our eyes have accommodated to the point
where we can see what to do next. A final issue is data types. In essence the doc-
ument type description (DTD) describes a data type that represents a docu-
ment, but more general data needs richer facilities. Also, DTDs, although they
resemble it closely, are not written in proper XML, an inelegance that a later
development has rectified.

A digital library is a collection of “resources.” So are a database, a shopping
catalog, an atlas, an FTP site, and a list of e-mail addresses. There are countless
collections of resources, and people often need to describe them in terms of
what information they contain. A standard way of doing this has been devised
called the resource description framework, and it is being used to describe digital
library collections. Again it is based on the XML family.

Digital libraries contain electronic books. Although we have not yet men-
tioned them, schemes—and standards—for electronic books are emerging.
Some are proprietary, but there is an open standard, Open eBook, that is based
on the XML family. We meet it in this chapter. Open eBooks contain not just the
text, and pictures, and title page, and table of contents, and index, and colophon,
but also the reading order, and they can even include different “tours” through
the book.

The query is another important part of a digital library. Why should we have
to learn different ways of querying when we move from one digital library, or
Web search engine, to another? There are standard ways of expressing queries,
and we describe two of them. One, the common command language (CCL),
arose out of the library world, and variants have been in use for library catalog
searching for years. The other, XQuery, is part of the brave new world of XML
and provides an exceptionally powerful framework for issuing queries and hav-
ing the results composed into lists and even documents—documents that are
generated dynamically on demand by accessing the contents of a digital library
or any other information collection.

Interoperability is the name of the game for libraries. An important part of
traditional library culture is the ability to locate copies of information in other
libraries and receive them on loan—interlibrary loan. Libraries work together to
provide a truly universal international information service. The degree of coop-
eration is enormous, and laudable. What other large organizations cooperate in
this way?

For digital libraries to communicate with one another, standards are needed
for representing documents, metadata, and queries. We studied documents and
metadata in Chapters 4 and 5, and queries are what we have just been talking
about! The components are in place. What we need are protocols that put them
all together to achieve effective and widespread communication.

Different protocols have sprung from the two different cultures upon which
digital libraries are founded. We describe two principal ones: the Z39.50 proto-
col, developed by the library community and maintained by the Library of Con-
gress, and the Open Archives Initiative (OAI) protocol, developed by members
of various communities concerned with electronic documents. OAI draws upon
the experience learned in a research project at Cornell University called Dienst,
which we also summarize, along with Stanford University’s protocol SDLIP.

8.1 More markup

Chapter 5 introduced XML and discussed some extensions that allow XML doc-
uments to be presented in ways comparable to HTML: the stylesheet languages
CSS and XSL. However, as we intimated there, there are other extensions to
XML that provide more advanced data representation and manipulation facili-
ties. Because of XML’s importance for future digital libraries, we expand on
these developments here. But first we need to say something about naming
resources on the Internet and namespaces in XML.

Names

Most people are acquainted with URLs—indeed it is hard to talk to friends
about the Internet without mentioning them. The acronym stands for “uniform
resource locator,” where a “resource” is a piece of information, typically a Web
page. However, a URL is useless if the resource it identifies is unavailable—and
we know from bitter experience that this happens all the time. The problem is
that a “locator” is a kind of address, and things often move around on the Web
when sites are reorganized or information changes hands. People lose touch
when they change addresses frequently, and the same is true of information.

What is needed is a way of naming resources so that, wherever they are, they
can be found. Since the early 1990s people have debated how to identify
resources on the Internet in a way that is both independent of location and per-
sistent over time. But naming is a difficult business, and although technical peo-
ple prefer technical solutions, making a name “persistent” is really an institu-
tional matter rather than a technical one. For example, a “persistent URL” or
PURL is one that is backed up by an institutional commitment to availability
over an extended period of time.14

8 . 1 M O R E M A R K U P 395

14. For example, the Online Computer Library Center (OCLC) that runs the official Dublin
Core Web site is committed to persistent URLs registered through them.

The upshot of this debate has been a way of naming resources called a “uni-
versal resource name” or URN. Each URN includes within it a “naming author-
ity” that is able to resolve the URN and provide the named information (or the
address where it is currently stored).

Together URLs and URNs are types of URI, or “uniform resource identifier,”
and the term URL is now officially deprecated. In summary, there are three ways
of naming resources.

■ URI (uniform resource identifier): the generic set of all names or addresses
that are short strings referring to resources

■ URL (uniform resource locator): an informal term, no longer used in tech-
nical specifications, that is associated with popular URI schemes such as
http, ftp, and mailto

■ URN (uniform resource name): either a URL that has an institutional com-
mitment to persistence and availability (the PURL mentioned earlier), or a
particular scheme intended to serve as a persistent, location-independent
resource identifier

While URL is still widely used in practice, official standards increasingly use the
term URI to specify such entities. As we said earlier, naming is a difficult business.

Namespaces
Namespaces help you to avoid mixing up XML tags that are designed for differ-
ent purposes. We already encountered them in Chapter 5 (under “Basic XSL” in
Section 5.3). For example, the style sheets in Figures 5.10 through 5.13 began
with the lines

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:fo="http://www.w3.org/1999/XSL/Format"

The xmlns qualifier sets up a namespace, so this example creates two name-
spaces called xsl and fo (for XML stylesheet language and Formatting Object,
respectively). The same tag can occur in each namespace and yet retain distinct
meanings. For example, <xsl:block> specifies an XSL tag called block, while
<fo:block> specifies a Formatting Object tag of the same name. Namespaces can
be used in XML documents and DTDs, as well as in XSL style sheets.

Namespaces have further features, which are used in examples in this chapter.
First, namespace declarations (such as the previous two lines) can be embedded
in any node of the tree that represents the document, not just the root node as
they were in Figures 5.10 through 5.15. The fact that tags are nested ensures that
each namespace’s scope is well defined. Thus different blocks can make use of
different namespaces.

396 E I G H T | I N T E R O P E R A B I L I T Y

You can also define a global namespace by simply omitting the label that fol-
lows the colon, as in

xmlns="http://www.openarchives.org/"

Tags from this namespace do not need to be qualified with a prefix—in fact
there is no prefix name to use! The global namespace can be redefined at differ-
ent points in the document: unqualified tags use the current global namespace.
This encourages brevity.

Namespace prefixes are used to qualify tags. They can also be used to qualify
attributes. Within a single tag, different attributes may even use different name-
spaces: they can be freely mixed. For example,

<MyTag a:att="XXX" b:att="YYY">Some text</MyTag>

has one attribute from the a namespace and a second from the b namespace.

Links

XML files can define connections between resources using two supporting stan-
dards, XLink and XPointer. These provide a linking scheme that is far more pow-
erful than the unidirectional hyperlinks of HTML. Of course power does not
necessarily guarantee success. The Text Encoding Initiative mentioned at the end
of Section 5.2 (Chapter 5) incorporates a very rich linking ability—in fact XLink
is based on it—yet because of its complexity, it is not used as much as it might be.

We met the XPath mechanism in Chapter 5. It is a way of selecting parts of
documents, and we used it in conjunction with transformations in the XML
stylesheet language to manipulate parts of the document tree. XPointer is a
development of XPath that provides a finer degree of contol over the part or
parts of the document being selected. XLink is a general way of connecting
selected resources. Together XPointer and XLink provide a foundation for bidi-
rectional links, multiway links, and annotated links. For example, they might be
used to specify an algorithm for picking out a destination such as “the third sec-
tion heading in the Appendix.”

In this chapter we will continue to use the UN example that was introduced
in Chapter 5 to illustrate XML and style sheets (see Figures 5.3–5.13). Figure 8.1
augments it to demonstrate XLink usage. A new <Intro> element has been
added to include introductory text, which will require corresponding updates to
the DTD and any style sheets used to display the example. However, we do not
elaborate on these because they are not the focus of the example.

Within the introductory text is an <HrefLink> element that provides a link to
the United Nations Web site rather like the HTML anchor hyperlink . The tag name HrefLink is of no consequence; it is intended merely to

8 . 1 M O R E M A R K U P 397

convey the intention to anyone reading the source file (you!). What is important
is the declaration of the XLink namespace within the tag, and the attributes and
values that follow.

In Xlink every link has a type. In Figure 8.1 it has the value simple, which indi-
cates an ordinary link. There are five other possibilities: extended, which is
another main form of link, and arc, locator, resource, and title, which play sup-
porting roles. Extended links allow labeled directed graphs to be described, in
which nodes represent resources and directional links hold annotations. Simple
links provide a shorthand for the HTML link tags such as <a> and (or
any HTML tags that use href and src). You will appreciate the value of the short-
hand when we move on to the example in Figure 8.2.

The href attribute of the <HrefLink> tag in Figure 8.1 indicates the resource
that the link addresses—the destination of the link. Here it is the home page of
the UN, but the destination can combine a URI with an XPointer specification
to select a subset of a document. The actuate attribute determines when the des-
tination resource is accessed. Here it is set to onRequest, which means that access
occurs whenever the link is clicked. Another commonly used value is onLoad,
which means that the linked resource is accessed when the document containing
the link is loaded. The show attribute determines where the destination resource
will be displayed. Here it is set to replace, which means that the window used to
display the UN agencies will be updated to show the UN’s home page when the
link is clicked. Alternatively you can set show to open the destination resource in
a new window, or to embed it in the current page, at the current position.

398 E I G H T | I N T E R O P E R A B I L I T Y

<NGODoc>
<Head>
<Title>Agencies of the United Nations</Title>

</Head>
<Body>
<Intro>
The <HrefLink xmlns:xlink="http://www.w3.org/1999/xlink"
xlink:type="simple"
xlink:href="http://www.un.org/"
xlink:actuate="onRequest"
xlink:show="replace">United Nations</HrefLink>
consists of several agencies.
Their basic details are as follows:

</Intro>

<Agency>
<Name hq="Paris, France">United Nations Educational, Scientific

and Cultural Organization</Name>
<!-- ... -->

</Agency>

<!-- and so on -->

</NGODoc>

Figure 8.1 Adding an XLink to the UN example.

If a document includes several links, the XLink namespace could be specified
higher up the hierarchy—for example, at the root node. In many cases only the
href attribute differs from one link to another, and values for the other attributes
could be provided in a DTD. This would reduce the tag to

<HrefLink xlink:href="http://www.un.org/">

—just like HTML.
Figure 8.1 shows four XLink attributes. There are ten possibilities altogether.

They are listed in the leftmost column of Table 8.1, which also indicates (with ✓)
those that can be used for various settings of the type attribute.

To illustrate the attributes and types, we extend the example to include a mul-
tiway link connecting the text several agencies to a list of Web sites, one for each
agency. Here is what it will do. When the user clicks on the words several agen-
cies, a popup window will appear that displays an informative list of agency
names. When one of these is clicked, a new window displaying the appropriate
home page will be opened. This behavior can be achieved using extended links.
If only simple links were available, each agency’s link would have to be embed-
ded in the document, needlessly consuming screen space.

Figure 8.2 shows what must be done. Not surprisingly it is far more complex
than the previous example. Figure 8.2 also includes an internal link that uses an
XPointer to make an extra entry in the multiway link that takes the user to the
start of the agency information in the current document.

The link is created by the tag named <MultiwayLink>—the actual name is
immaterial and is chosen purely for readability. The link’s type is extended, and
its scope ends with the tag </MultiwayLink> near the end of the example. Con-
tained within it are elements of type resource, locator, and arc. There is only one

8 . 1 M O R E M A R K U P 399

Table 8.1 XLink attributes.

Type of link

simple extended locator arc resource title

href ✓ ✓

role ✓ ✓ ✓ ✓

arcrole ✓ ✓

Attribute title ✓ ✓ ✓ ✓ ✓

show ✓ ✓

actuate ✓ ✓

label ✓ ✓

from ✓

to ✓

resource here, <SingleSource>, and it represents the starting point of the multi-
way link. The content of this tag, “several agencies,” is the anchor text for the
link—what you click on in the document. The <SingleSource> element sets its
xlink:label to source; we explain this shortly.

The <SingleSource> element is followed by a series of locator elements called
<Destination>, one for each of the UN agencies (plus a further one that demon-

400 E I G H T | I N T E R O P E R A B I L I T Y

<NGODoc>
<Head>
<Title>Agencies of the United Nations</Title>

</Head>
<Body>

<Intro>
The United Nations consists of
<MultiwayLink xmlns:xlink="http://www.w3.org/1999/xlink"

xlink:type="extended" xlink:title="Un Agencies">
<SingleSource xlink:type="resource" xlink:label="source">
several agencies</SingleSource>

<Destination xlink:type="locator"
xlink:title="UNESCO Home Page"
xlink:label="unesco"
xlink:href="http://www.unesco.org/"/>

<Destination xlink:type="locator"
xlink:title= "FAO Home Page"
xlink:label="fao"
xlink:href="http://www.fao.org/"/>

<!-- ... -->
<Internal xlink:type="locator"

xlink:title= "Start of records"
xlink:label="details"
xlink:href="#xpointer(/NGODoc/Agency[position()==1])"/>

<ExternalConnection xlink:type="arc" xlink:from="source"
xlink:to="unesco" xlink:show="new"
xlink:title = "Educational, Scientific and Cultural"
xlink:actuate="onRequest"/>

<ExternalConnection xlink:type="arc" xlink:from="source"
xlink:to="fao" xlink:show="new"
xlink:title = "Food and Agriculture"
xlink:actuate="onRequest"/>

<!-- World Bank ... -->
<InternalConnection xlink:type="arc" xlink:from="source"

xlink:to="details" xlink:show="replace"
xlink:title = "Agency details"
xlink:actuate="onRequest"/>

</MultiwayLink>
Their basic details are as follows:

</Intro>

<Agency>
<Name hq="Paris, France">United Nations Educational, Scientific

and Cultural Organization</Name>
<!-- ... -->

</Agency>

<!-- and so on -->
</Body>
</NGODoc>

Figure 8.2 Adding extended XLinks to the UN example.

strates the use of an XPointer). These are used to specify external resources—in
our case the targets of the link—and they too make use of the xlink:label
attribute. Following them is a series of arc elements called <ExternalConnec-
tion>, each of which have from and to attributes that reference the labels given in
the resource and locator elements.

The structure defined by this multiway link is represented by the directed
graph shown in Figure 8.3. Nodes represent the one resource element <Single-
Source> and all the locator elements, of which several are called <Destination>
and one is called <Internal>. These nodes correspond to a document or part of a
document. The graph’s edges are formed by matching the from and to attributes
of arc elements with the label attributes used in the node definitions, and are
annotated with the title attributes of the arc definitions. The title information
that the locator elements provide is associated with the destination documents.
Being attributes, these titles cannot contain markup. However, there is a second
form of title (not shown in the example) that is specified using an element of
type title, and this construct can include markup. It can accompany elements of
type arc, locator, and extended and can be repeated several times within one ele-
ment.

Within the locator and arc segments of the extended link are two tags that
have not yet been discussed: <Internal> and <InternalConnection>. Again the
names are immaterial, but are there to aid comprehension. These constructs
demonstrate the use of XPointers. The first has an href attribute whose value is

#xpointer(/NGODoc/Agency[position()==1])

Unlike the hrefs that we have encountered so far, this is not a simple URI. It is an
XPointer that specifies a hierarchical position within the document called
NGODoc: namely, the first Agency node. XPointers are a superset of the XPaths
that we met in Chapter 5 and contain extra features such as the ability to specify
ranges that cross node boundaries.

8 . 1 M O R E M A R K U P 401

Single
Source

Destination
UNESCO

Destination
FAO

Internal start
of records

...

Educational, Scientific
and Cultural

Food and
Agriculture

Agency details

Figure 8.3 Directed graph for the XLink of Figure 8.2.

This particular XPointer is used to select an internal portion of the docu-
ment. However, it can also be paired up with a URI to link to part of an external
resource, as in

www.un.org/index.html#xpointer(html/body/table)

Recall that in HTML a hyperlink can be directed at a particular position in a
document by embedding an anchor name such as in the des-
tination document and using in the source document to
link to that point. The same effect can be achieved in XML by combining a URI
with an XPointer that names an ID attribute in the destination document. How-
ever, an XPointer can be more expressive than this: it can indicate a particular
internal position by specifying a location in the hierarchical structure that rep-
resents the target document. This allows a position to be specified in the desti-
nation document without actually having to edit explicit anchors into the desti-
nation document.

The role and arcrole attributes are not used in this example. Like title, they are
semantic attributes that help communicate the meaning of the link. Title gives
the description directly, but role and arcrole specify URIs that point to resources
containing the description.

This example gives a flavor of what is possible. Far more complex graphs than
that of Figure 8.3 can be built. The graph description can even be included in an
external file—a type of database describing, for example, the linking structure
for a network of pages.

Types

Document type definitions were originally introduced for use with the standard
generalized markup language SGML. XML has been applied to a wider set of
problems, and this has exposed limitations in the expressiveness of DTDs. For
instance, they can include only limited information about data types, and cer-
tain structures are convoluted and do not scale well. XML Schema was designed
to address these deficiencies.

In addition to describing what structure is allowed in an XML file, XML
Schema provides a rich array of basic types, including year, date, and URI, as
well as textual patterns and ways of subtyping and defining new types. Types can
be applied to the data that appears between tag pairs, or to the fields of attrib-
utes. Everything is expressed using the basic XML syntax. Note that DTDs do
not themselves adhere to XML syntax, but are expressed using an add-on nota-
tion. Strictly speaking they do not contain properly formed tags.

We introduced DTDs in Section 5.2 (Chapter 5) using the United Nations
example (Figures 5.3 and 5.4). Figure 8.4 reworks the example of Figure 5.3 to

402 E I G H T | I N T E R O P E R A B I L I T Y

give the same result using XML Schema. Like other members of the XML broth-
erhood, XML Schema is defined using namespaces to prevent any clash of tags
with other elements of a document.

The file in Figure 8.4 has the same structure as other standards built on the basic
XML foundation. The root node specifies the XML Schema namespace, enabling
applications to interpret subsequent nodes appropriately. Its children use annota-
tion, element, and complexType elements. The first is a mechanism for embedding
comments in the file in a more structured way than <!-- ... -->. The second defines
an XML element: it performs the same function as <!ELEMENT ...> in a DTD.
Structural information can be embedded inside the tag, as in the first occurrence of
the element tag. Alternatively the definition can be deferred using the type attribute
and the combined open/close tag syntax <…/> for empty elements, as in the sec-
ond occurrence of the element tag. In the latter case the complexType element that
provides the deferred definition need not follow the element node directly,
although it does in our example.

The definition of the NGODoc element sets up a sequence comprising Head
followed by Body. This construct forces elements to appear in the stated order.
The attributes minOccurs and maxOccurs restrict the number of times each ele-
ment may occur. In the Head element, both are set to 1. However, this is the
default value and may be dropped—as it is in the definition of Body. Other
numerical values can be used. For example, if minOccurs is 0 and maxOccurs is
unbounded, any number of occurrences are allowed.

Within the scope of the sequence tag, two complementary tags may appear:
choice and all. The last nesting group in Figure 8.4, which defines the Agency ele-
ment, contains an example. In the lower half of the definition, choice is used to
select an element from a list of potential candidates—in this case Abbrev and
Photo. In the choice tag, maxOccurs is set to unbounded. This means that not
only can Abbrev and Photo appear in any order, but any number of these ele-
ment types can occur in any order. The all tag (not illustrated) means that all of
the child elements must occur, but their order is immaterial. Constructs like
these are difficult to define using DTDs.

To allow a mixture of parsed character data and tags within the Body element
as the original DTD example did (Figure 5.4), Body’s definition sets the mixed
attribute to true.

An element’s attributes are defined using the xsd:attribute tag (equivalent to
<!ATTRIBUTE ...> in a DTD). There are three examples in Figure 8.4. Defining
attributes in XML Schema is decidedly self-referential because the construct
uses attributes itself to define the name and type of the attribute being defined.
However, it is fairly straightforward to deduce the meaning. For example,
including

<xsd:attribute name="hq" type="xsd:string"/>

8 . 1 M O R E M A R K U P 403

404 E I G H T | I N T E R O P E R A B I L I T Y

<?xml version="1.0"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:annotation>
<xsd:documentation xml:lang="en">
XML Schema example for United Nations record example

</xsd:documentation>
</xsd:annotation>

<xsd:element name="NGODoc">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="Head" type="HeadType" minOccurs="1" maxOccurs="1"/>
<!-- minOccurs & maxOccurs default to 1 so same effect if omitted -->
<xsd:element name="Body" type="BodyType"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>

<xsd:element name="Head" type="HeadType"/>
<xsd:complexType name="HeadType">
<xsd:sequence>
<xsd:element name="Title" type="xsd:string"/>

</xsd:sequence>
</xsd:complexType>

<xsd:element name="Body" type="BodyType"/>
<xsd:complexType name="BodyType" mixed="true">
<xsd:sequence maxOccurs="unbounded">
<xsd:element name="Agency" type="AgencyType" minOccurs="1"

maxOccurs="unbounded"/>
</xsd:sequence>

</xsd:complexType>

<xsd:element name="Agency" type="AgencyType"/>
<xsd:complexType name="AgencyType">
<xsd:sequence>
<xsd:element name="Name">
<xsd:complexType>
<xsd:simpleContent>
<xsd:extension base="xsd:string">
<xsd:attribute name="hq" type="xsd:string"/>

</xsd:extension>
</xsd:simpleContent>

</xsd:complexType>
</xsd:element>

<xsd:choice maxOccurs="unbounded">
<xsd:element name="Abbrev" type="xsd:string" minOccurs="0"/>

<xsd:element name="Photo" minOccurs="0" maxOccurs="unbounded">
<xsd:complexType>
<xsd:attribute name="src" type="xsd:string" use="required"/>
<xsd:attribute name="desc" type="xsd:string" use="optional"

default="A photo"/>
</xsd:complexType>

</xsd:element>

</xsd:choice>
</xsd:sequence>

</xsd:complexType>
</xsd:schema>

Figure 8.4 XML Schema for the UN Agency example.

inside an element definition defines an attribute hq for that element. Here for
the first time we encounter XML Schema’s ability to specify type information.
However, since this example matches an existing DTD, types are used in a sim-
plistic way: they are all defined to be string to maintain compatibility with the
character data (CDATA) used in the original DTD.

Attributes can be optional or required, and a default value can be supplied.
These are handled within the construct using attributes of the same name.

A complication occurs when an element, defined to be a particular type, also
has attributes. This occurs in the upper half of the Agency element definition
(the last major nested group), when the Name element is defined. Its basic type
is string, but it includes an hq attribute which is also defined to be string. The
syntax necessary to achieve this is convoluted and uses the new tag types simple-
Content and extension; nevertheless it is not hard to follow. Extension permits
the type of the element to be specified through the base attribute; then within
the scope of the extension tag the attribute is defined as before. Finally, because
XML Schema does not permit extension to be embedded directly in complexType
tags, it is necessary to wrap extension up in a simpleContent tag.

The XML Schema specification in Figure 8.4 is far longer than the DTD
equivalent in Figure 5.4. Of course the example is tutorial and could be abbrevi-
ated somewhat using such things as default values—but it would still be longer.
The benefit of XML Schema is that it provides greater control over the struc-
tures and values that constitute a valid document. And documents like the spec-
ification in Figure 8.4 are clearly intended to be created and displayed with a
structured editor rather than in raw text form. This transfers the emphasis from
readability to “parseability”: from ease of reading by a person to ease of manipu-
lation by a computer. There are generic tools that allow all members of the XML
family to be read, parsed, and edited.

XML Schema has extensive facilities for data typing. We have already encoun-
tered the type string, which was used in the first example to provide a counter-
part to CDATA. This is a built-in type. There are over 40 others, reflecting the
wide range of information handled by XML. The main categories are Boolean,
numeric, time, string, and binary. Binary data is encoded into printable plain
text to meet the XML character-set requirement. The numeric category includes
signed and unsigned numbers, integer and floating point numbers, finite and
infinite precision. Within the time category, dates, months, and years can all be
represented individually. There is also a built-in type for URIs (subsuming
URLs and URNs), and for XML notation such as entities (e.g., ") and
tokens. New types can be constructed that expand or restrict the set of permissi-
ble values.

To demonstrate the data-typing abilities, we extend the XML Schema exam-
ple to include the year in which each UN agency was founded, and we constrain

8 . 1 M O R E M A R K U P 405

406 E I G H T | I N T E R O P E R A B I L I T Y

<?xml version="1.0"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<!--- annotation, and definition for NGODoc, Head, Body and Title omitted -->

<xsd:element name="Agency" type="AgencyType"/>
<xsd:complexType name="AgencyType">
<xsd:sequence>
<xsd:element name="Name">
<xsd:complexType>
<xsd:simpleContent>
<xsd:extension base="xsd:string">
<xsd:attribute name="hqcity" type="CityType"/>
<xsd:attribute name="hqcountry" type="UNCountryType"/>

</xsd:extension>
</xsd:simpleContent>

</xsd:complexType>
</xsd:element>

<xsd:choice maxOccurs="unbounded">
<xsd:element name="Abbrev" type="xsd:string" minOccurs="0"/>
<xsd:element name="Founded" type="UNYear" minOccurs="0"/>

<xsd:element name="Photo" minOccurs="0" maxOccurs="unbounded">
<xsd:complexType>
<xsd:attribute name="src" type="xsd:anyURI" use="required"/>
<xsd:attribute name="desc" type="xsd:string" use="optional"

default="A photo"/>
</xsd:complexType>

</xsd:element>

</xsd:choice>
</xsd:sequence>

</xsd:complexType>

<xsd:simpleType name="UNYear">
<xsd:restriction base="xsd:gYear">
<xsd:minInclusive value="1850"/>

</xsd:restriction>
</xsd:simpleType>

<xsd:simpleType name="CityType">
<xsd:restriction base="xsd:string">
<xsd:minLength value="2"/>
<xsd:pattern value="\p{Lu}\p{L}*"/>

</xsd:restriction>
</xsd:simpleType>

<xsd:simpleType name="UNCountryType">
<xsd:restriction base="xsd:string">
<xsd:enumeration value="Afghanistan"/>
<xsd:enumeration value="Albania"/>
<xsd:enumeration value="Algeria"/>
<!-- and so on ... -->
<xsd:enumeration value="France"/>
<!-- and so on ... -->
<xsd:enumeration value="Italy"/>
<!-- and so on ... -->
<xsd:enumeration value="USA"/>

</xsd:restriction>
</xsd:simpleType>

</xsd:schema>

Figure 8.5 XML Schema that demonstrates data typing.

more tightly the value types that attributes can assume. The result is shown in
Figure 8.5. The simpleType construct is used to define new types. The first exam-
ple is UNYear, in the lower half of Figure 8.5. It is based on the built-in time
structure gYear and is restricted to values greater than the year 1850. (The
United Nations was founded in 1945, but some of the specialized agencies it
contains—such as the Universal Postal Union and the International Labor
Organization—predate it by a considerable margin.)

The second simpleType in Figure 8.5 is CityType, which is used as the type for
the hqcity attribute of the Agency element (near the top of the figure). This illus-
trates the use of patterns, which are couched in the form of regular expressions.
The type definition restricts the basic string type to contain an uppercase letter
(\p{Lu}) followed by a sequence of any letters (\p{L}*). Regular expressions fol-
low standard practice, with the usual special characters: ? (meaning an optional
character), + (meaning a sequence of one or more characters), * (a sequence of
zero or more characters), . (any character), [A-Z] (the uppercase letters), and so
on. The \p{...} in the example is an extension of the notation that expresses sets
of Unicode symbols: letters, numbers, punctuation, currency symbols, and so
on. We could have specified a capital letter as [A-Z], but \p{Lu} is more general.
The minLength tag in the type definition illustrates one way to specify bounds
on string length. This could equally have been accomplished within the regular
expression itself.

The last simpleType definition, UNCountryType, is an enumerated type. After
specifying the base type to be string, a series of enumeration tags are used to
restrict the permissible countries to a given set.

Another main form of type declaration is complexType, which is used to
define compound types that include other elements. We have already encoun-
tered this construct in the previous XML Schema example, although we did not
discuss it explicitly. It was used in Figure 8.4 to make NGODoc contain a Head
followed by a Body, to make Head contain a Title, to make Body contain an
unbounded sequence of Agencies, and to make each Agency a Name followed by
any number of Abbrevs and Photos.

Putting all this type information together, we see that Figure 8.5 adds these
restrictions to the UN schema:

■ The hq attribute has been replaced with hqcity and hqcountry. The former
must (unrealistically) contain just one word, starting with a capital letter
and having at least one other letter. The latter must be one of a list of desig-
nated countries.

■ There is now a <Founded> element, used to express years after 1850.
■ The src attribute for Photo must now be a legal URI.

8 . 1 M O R E M A R K U P 407

8.2 Resource description

The Resource Description Framework (RDF) is designed to facilitate the inter-
operability of metadata, particularly in the realm of the World Wide Web.
Because metadata covers too great a variety of information to specify exhaus-
tively and categorically, RDF follows the lead of XML: rather than providing a
set of possibilities, it supplies a means for describing a valid system. It is
expected that communities of users will assemble to establish RDF systems
suited to their collective needs. They will have to agree on a vocabulary, its
meaning, and the structures that can be formed from it. This is done by specify-
ing an RDF Schema, just as DTDs and XML Schemas are used to control XML
vocabulary and structure.

The Resource Description Framework is a way of modeling as a resource any-
thing that can be represented as a URI—a Web page, part of a document, a set of
pages, an FTP site, an e-mail address, and so on. These resources are described in
a machine-readable fashion through a framework for specifying metadata. The
framework is compositional: new resources can be built from existing ones.

Figure 8.6 uses RDF to give a graphical description of the very book you are
holding in your hands. The book is represented by its ISBN (International Stan-
dard Book Number) in URI syntax—yes, even ISBNs are a form of URI. The
top-level description comprises a title, two authors, and a publisher. The
authors in turn are characterized by a name and an e-mail address.

As the figure illustrates, an RDF can be represented as a directed graph. Previ-
ously we saw how this ubiquitous structure can be used to describe a powerful
form of hyperlinking. Here the aim is different and imposes different require-

408 E I G H T | I N T E R O P E R A B I L I T Y

isbn: 1-55860-790-0

How to Build a
Digital Library

Morgan
Kaufmann

.../~ihw .../~davidb

Ian
Witten

i.witten@cs.waikato.ac.nz

David
Bainbridge

d.bainbridge@cs.waikato.ac.nz

bdb:Title bdb:Publisher
bdb:Authors

rdf:Seq

rdf:type
rdf:_1 rdf:_2

bdb:Name bdb:Name

bdb:Email bdb:Email

Figure 8.6 Modeling this book graphically using RDF.

ments on the syntactic structures used to express RDF—although, as we will
shortly see, there is some similarity.

Mapping a picture into a character stream is a process of serialization, and for
RDF the language of choice is (again) XML. Figure 8.7 shows the description of
the example graph. This representation obscures some of the abstract aspects of
RDF and makes it seem like just another example of an XML language—partic-
ularly as we have recently seen so many of them! When considering RDF, you
should keep in mind that it is a sister format to XML, not a subsidiary. However,
this medium bestows practical benefits: software support for parsing and edit-
ing, transparent handling of international characters, and so on.

The basic construction in RDF, as indeed in English, is to connect a subject to
an object using a predicate. This is known as a statement. Subjects and objects
are nodes in the graph. The directed arc that joins them shows the connection; a
label on the arc identifies the predicate used. To take one example from Figure
8.6, How to Build a Digital Library (object) is the Title (predicate) of the resource
ISBN: 1-55860-790-0 (subject). The subject is a resource, represented in the dia-
gram as an oval node. An object may be either a resource or a string literal. In
our case it is a string, represented as a rectangular node.

We now match this up with the serialized form in Figure 8.7. It begins with
the by now familiar processing instruction, and a root node that declares some
namespaces. In this case there are two: one for RDF and another for “Book

8 . 2 R E S O U R C E D E S C R I P T I O N 409

<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:bdb="http://bookdatabase.org/schema/publications">

<rdf:Description about="urn:isbn:1-55860-790-0">
<bdb:Title>How to Build a Digital Library</bdb:Title>
<bdb:Authors>
<rdf:Seq>
<rdf:li>
<rdf:Description about="http://www.cs.waikato.ac.nz/~ihw">
<bdb:Name>Ian Witten</bdb:Name>
<bdb:Email>i.witten@cs.waikato.ac.nz</bdb:Email>

</rdf:Description>
</rdf:li>
<rdf:li rdf:resource="http://www.cs.waikato.ac.nz/~davidb"/>

</rdf:Seq>
</bdb:Authors>
<bdb:Publisher>Morgan Kaufmann</bdb:Publisher>

</rdf:Description>

<rdf:Description about="http://www.cs.waikato.ac.nz/~davidb">
<bdb:Name>David Bainbridge</bdb:Name>
<bdb:Email>d.bainbridge@cs.waikato.ac.nz</bdb:Email>

</rdf:Description>

</rdf:RDF>

Figure 8.7 XML serialization of the example RDF model.

Database,” denoted by the prefix bdb. This represents a hypothetical organiza-
tion that has developed an XML schema for representing metadata about books
in terms of titles, authors, names, e-mail addresses, and publishers.

The first child of the root node is an rdf:Description element that includes an
about attribute to specify the resource as a URI that gives the ISBN. The
bdb:Title tag that follows sets the predicate, and its content represents the string
literal object which forms the title itself. Two other predicates connected to the
ISBN resource are Authors and Publisher. The latter, like Title, declares a string
literal object (the string “Morgan Kaufmann”); the former, however, is more
complex. Thus we see how the top level of the tree in Figure 8.6 is constructed.

Not only is bdb:Authors the first object encountered in our explanation that is
itself a resource, it is also an example of an anonymous resource—an intermedi-
ary node that has no specific resource name but is itself the subject of further
qualifying statements. The counterpart in the graphical version of the model in
Figure 8.6 is the node at the end of the Authors predicate, which is nameless.

The anonymous resource also demonstrates a new structure called a con-
tainer, used to group resources together. RDF has three types of container: bag,
sequence, and alternative. A bag is an unordered list of resources or string liter-
als; a sequence is an ordered list; and an alternative represents the selection of
just one item from the list. Each item in a container is denoted by an rdf:li tag.
The example uses rdf:Seq to represent a sequence of authors because the order is
significant. The container type is represented by the rdf:type predicate, and its
contents are numbered rdf:_1, rdf:_2. These are implicitly inferred from the
XML description (Figure 8.7) but shown explicitly in the pictorial version (Fig-
ure 8.6).

There are two list items in the example, one for each author, and both happen
to be compound resources. They are introduced by the RDF list item tag rdf:li,
and for illustrative purposes they are specified in different ways. The first is
embedded in-line by starting a new rdf:Description tag. The second receives a
more compact rdf:li tag that defers the resource’s definition through the
rdf:resource attribute. The missing detail is filled in when a resource description
is encountered whose rdf:about attribute matches the named list item. This
occurs in the lower third of the example.

RDF is a rich framework whose design draws upon structured documents,
entity relationships, object orientation, and knowledge representation. We can-
not illustrate all aspects here: the example is only intended to give an impression
of what is possible.

Collection-level metadata

Just as document-level metadata is structured information about an individual
document, so collection-level metadata is structured information about the

410 E I G H T | I N T E R O P E R A B I L I T Y

entire content of a collection, treated as a single entity. This might include its
coverage, the number of documents contained, access conditions, and so on.
Collection-level metadata is an important category of resource in any digital
library system. For example, it allows users to start their information gathering
process one step earlier by interrogating a set of collections to determine which
ones best suit their needs. For this to work across different digital library sys-
tems, standard terms and meaning are required. This is exactly what RDF is for.

One example of collection-level metadata is provided by the Research Sup-
port Libraries Programme (RSLP) Collection Description project. This uses a
model that represents Collections, Locations, and Agents as RDF resources. There
are three types of agent—Collector, Owner, and Administrator—reflecting the
roles that people or organizations play in providing and maintaining a collec-
tion. The bulk of the detail is contained in the collection resource, which may in
turn reference further resources, such as a location and a collector.

Figure 8.8 shows an abridged version of a description for the Morrison Col-
lection of Chinese Books housed at the School of Oriental and African Studies
Library in London, England. Four existing namespaces provide relevant ele-
ments and attributes: RDF (naturally), unqualified Dublin Core, qualified
Dublin Core, and vCard, which is a namespace devised by the Internet Mail
Consortium to represent fax numbers, phone numbers, and so on for electronic
business cards. A further namespace for RSLP covers attributes and elements
not defined elsewhere (prefix cld:).

The example contains four top-level resource descriptions: Collection, Collec-
tor, Owner, and Location (marked with XML comments). There is no adminis-
trator resource in this example. Most of the information supplied in the collec-
tion resource description is through Dublin Core. In particular the <dc:subject>
element shown uses the anonymous resource mechanism mentioned earlier to
embed another resource, which is a Library of Congress Subject Heading
(LCSH), expressed using qualified Dublin Core.

About halfway down the collection resource description, the Dublin Core
<dc:type> element is used to give the collection’s type. The RSLP collection
description defines an enumerated list of possible types, starting with broad
classifications such as Catalog and Index, which become more specific with
items such as Library, Museum, and Archive, and even more specific with items
such as Text, Image, and Sound. A collection can be given more than one of these
types by separating the terms by a period (.), as can be seen in the figure.

Elements <dcq:hasPart>, <dcq:isPartOf>, and <cld:hasDescription> are
examples of external relationships. These identify or name other resources that
have a bearing on the collection being described. There are seven external rela-
tionships in all. The ones appearing here are used to name subcollections (has-
Part), the larger library this collection fits into (isPartOf), and where a descrip-
tion of the collection appears (hasDescription).

8 . 2 R E S O U R C E D E S C R I P T I O N 411

<?xml version="1.0"?>
<rdf:RDF

xmlns:rdf ="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:dc ="http://purl.org/dc/elements/1.1/"
xmlns:dcq ="http://purl.org/dc/qualifiers/1.0/"
xmlns:vcard="http://www.imc.org/vcard/3.0/"
xmlns:cld ="http://www.ukoln.ac.uk/metadata/rslp/1.0/">

<!-- Collection resource -->
<rdf:Description about="urn:x-rslpcd:967715792-47835">
<dc:title>Morrison Collection of Chinese Books</dc:title>
<dc:description>
This collection comprises the Chinese books accumulated by Dr.

Robert Morrison (1782 - 1834), the first Protestant missionary to
China, during his sixteen years residence in Guangzhou and Macao
between 1807 and 1823. Ten thousand Chinese-style thread-bound
volumes cover a broad spectrum of subjects from early and mid-Qing
China.

</dc:description>

<dc:subject>
<rdf:Description>
<dcq:scheme>LCSH</dcq:scheme>
<rdf:value>Missionaries -- China</rdf:value>

</rdf:Description>
</dc:subject>
<!-- additional subject entries for "Rare Books – China – Bibliography --

Catalogs" and "Chinese Imprints -- Catalogs" -->

<cld:agentName>Morrison, Robert, 1782-1834.</cld:agentName>
<!-- additional entries for cld:agent, dcq:place, dcq:time, cld:strength,

dc:language, and dc:format -->

<dc:type>Collection.Library.Special</dc:type>
<cld:accumulationDateRange>1807-1823</cld:accumulationDateRange>
<cld:contentsDateRange>1650-1825</cld:contentsDateRange>

<dcq:hasPart>
Literature collection within Morrison Collection of Chinese Books

</dcq:hasPart>
<!-- additional entries for dcq:hasPart, dcq:isPartOf, cld:hasDescription,

cld:accrualStatus, cld:accessControl, cld:note -->

<dc:creator resource="urn:x-rslpcd:967715792-32366"/>
<cld:owner resource="urn:x-rslpcd:967715792-62789"/>
<cld:hasLocation resource="urn:x-rslpcd:967715792-16277"/>

</rdf:Description>

<!-- Collector resource -->
<rdf:Description about="urn:x-rslpcd:967715792-32366">
<vcard:fn>Morrison, Robert, 1782-1834.</vcard:fn>

</rdf:Description>

<!-- Owner resource -->
<rdf:Description about="urn:x-rslpcd:967715792-62789">
<vcard:org>School of Oriental and African Studies Library</vcard:org>
<vcard:voice>+44 207 898 4163</vcard:voice>
<vcard:fax>+44 207 898 4159</vcard:fax>
<vcard:email>libenquiry@soas.ac.uk</vcard:email>

</rdf:Description>

<!-- Location resource -->
<rdf:Description about="urn:x-rslpcd:967715792-16277">
<dc:title>School of Oriental and African Studies Library</dc:title>
<!-- additional entries for cld:address, cld:postcode, cld:country,

cld:accessConditions, cld:seeAlso -->
<cld:isLocationOf resource="urn:x-rslpcd:967715792-47835"/>

</rdf:Description>
</rdf:RDF>

Figure 8.8 RSLP description of the Morrison collection of Chinese books.

The lower part of the collection resource description contains references to
the collector, owner, and location resources through dc:creator, cld:owner, and
cld:hasLocation, respectively. The first two are examples of agents and make use
of vcard: elements to supply the necessary information. A location can be elec-
tronic or physical, and most of its elements are defined by RSLP namespace ele-
ments.

8.3 Document exchange

The computer and publishing industries have come up with the concept of elec-
tronic books (eBooks) as an analog of paper books. Electronic books can be
bought and sold, lent and read. Here we concentrate on the reading part, and let
others worry about the publishers’ business model.

Electronic books combine a rich mixture of text and graphics with hyper-
linked navigation structures and a page-turning metaphor. Figure 8.9 shows one
of the many eBook software applications—known simply as readers—being

8 . 3 D O C U M E N T E X C H A N G E 413

(a) (b)

Figure 8.9 Reading an eBook of Shakespeare’s Macbeth.

used to peruse a version of Shakespeare’s play Macbeth. Some readers run on
desktop PCs and run within their own window (which can be expanded to the
full screen if desired). Others run on special electronic book hardware, or on
handheld computers, and take over the whole screen.

The figure shows two snapshots. The first is the eBook’s title page, which pro-
vides access to the table of contents and links to the start, end, and most recently
read page (useful since electronic pages are not so easily dog-eared as paper
ones). In many cases the title page also points to global resources such as the
user’s personal library, help documentation for the software application
(expressed as an eBook, of course), and electronic bookstores. The second snap-
shot shows the start of Act I, Scene I, where the witches begin “When shall we
three meet again. . . . ” This particular reader displays one page at a time, but
some readers show a two-page spread that reflects more strongly the book
metaphor.15

Like HTML and PDF, eBook pages can contain text, graphics, and hyperlinks.
It is also common to find facilities for active reading: annotation, highlighting,
and bookmarking. The interaction adopts minimalist principles: self-explana-
tory keys move from one page to another (page-up/page-down or arrow keys).
Clicking on a word typically brings up its dictionary entry. In the figure, you can
click the little triangular shapes at the top of each page to transport yourself to
bookmarked spots or to close the book and return to the reader’s home page.

It would be nice to be able to share eBooks. Unfortunately commercial appli-
cations adopt proprietary formats, limiting portability. A standard called Open
eBook is intended to become more catholic. It demonstrates how XML and its
brethren can facilitate the exchange of information—one basic requirement of
interoperability.

Open eBook

The Open eBook Forum is an association of hardware and software companies,
publishers, authors, users, and related organizations whose goal is to establish
common specifications for electronic book systems that will benefit content cre-
ators, manufacturers of readers, and—most importantly—consumers. The
forum intends to catalyze the adoption of electronic books and increase aware-
ness and acceptance of the emerging electronic publishing industry. The Open
eBook standard is expressed in XML and makes use of namespaces, document
type definitions, cascading style sheets, a subset of HTML 4.0/XHTML 1.0, the

414 E I G H T | I N T E R O P E R A B I L I T Y

15. In the Māori language of indigenous New Zealanders, the word for book is pukapuka. The
puka is a plant whose large leaf is pale underneath, and the word represents two leaves side by
side—an open book.

Dublin Core, Unicode, and a set of core MIME types that all compliant readers
must support.

Each publication takes the form of a package file, normally given the file
name extension .opf. It is expressed in XML and has six distinct parts:

■ a unique identity for the publication
■ metadata about it
■ a manifest that lists all supporting files that comprise its content
■ a spine that determines a linear reading order for the supporting files
■ tours that permit different traversal patterns through the material
■ a guide of structural components, such as the title page and table of con-

tents

An Open eBook package must be expressed in either UTF-8 or UTF-16 and
conform to the standard’s document type definition. Figure 8.10 shows a hypo-
thetical package that describes an eBook version of the book you are reading.
We have deliberately set the encoding to UTF-8 (even though this is XML’s
default value) to emphasize the stricter encoding requirements of the Open
eBook standard. The second line specifies the external DTD for the standard.

The six structural components are apparent in the XML file. The first is an
attribute of the package tag, while the remainder are child elements of package
whose names reflect their role. Tours and guide are optional; the rest are mandatory.

The metadata element must include a Dublin Core subelement, declared
with the appropriate namespace. The standard also insists that the namespace
oebpackage is included, for future compatibility. Within the Dublin Core ele-
ment, Title and at least one Identifier are mandatory, the latter being used to
connect the content of its element to the unique-identifier attribute in <pack-
age> using the same identifier—in this case nzdl.org:howto_edition1.

A selection of other Dublin Core elements are used to describe the book.
Open eBook augments the Creator tags with optional attributes, role and file-as.
The first attribute (which also applies to the Contributor metadata type) is used
to provide more detail about the element by specifying a MARC “relator” code.
There are more than 180 of these, including annotator (ann), editor (edt), illus-
trator (ill), musician (mus), translator (trl), and wood-engraver (wde). The sec-
ond attribute is used to specify names in a normative form suitable for machine
processing. Additional metadata that does not fit the Dublin Core model can be
provided using x-metadata, which adopts the HTML convention of specifying
metadata using <meta>. The example defines Software metadata whose value is
a URL that points to the digital library software system used in this book.

The manifest element is used to list all the files that make up the book’s con-
tent. In our example there is one HTML file per chapter. These files embed
images for the various figures, and these must also be listed in the manifest.

8 . 3 D O C U M E N T E X C H A N G E 415

<?xml version="1.0" encoding="utf-8" ?>
<!DOCTYPE package PUBLIC "+//ISBN 0-9673008-1-9//DTD OEB 1.0.1 Package//EN"

"http://openebook.org/dtds/oeb-1.0.1/oebpkg1.dtd">
<package unique-identifier="nzdl.org:howto_edition1">
<!-- Open eBook version of this text book -->
<metadata>
<dc-metadata xmlns:dc="http://purl.org/dc/elements/1.0/"

xmlns:oebpackage="http://openebook.org/namespaces/oeb-package/1.0/">
<dc:Identifier id="nzdl.org:howto_edition1" scheme="ISBN">
1-55860-790-0

</dc:Identifier>
<dc:Title>How to build a digital library</dc:Title>
<dc:Creator role="aut" file-as="Witten, Ian H.">Ian H. Witten</dc:Creator>
<dc:Creator role="aut" file-as="Bainbridge, David">David Bainbridge</dc:Creator>
<dc:Rights>Copyright © 2002 Morgan Kaufmann Publishers, Inc ...</dc:Rights>
<!-- ... -->
<dc:Language>en</dc:Language>

</dc-metadata>
<x-metadata>
<!-- Additional, non-Dublin Core metadata -->
<meta name="Software" content="www.greenstone.org" />
<!-- ... -->

</x-metadata>
</metadata>

<manifest>
<!-- Chapters -->
<item id="frontpage" href="cover.html" media-type="text/x-oeb1-document" />
<item id="foreword" href="frontmatter.html" media-type="text/x-oeb1-document" />
<item id="orientation" href="chapter1.html" media-type="text/x-oeb1-document" />
<!-- and so through the chapters ... -->
<!-- Figures -->
<item id="f1_1_png" href="figs/1_1.png" media-type="image/png" />
<item id="f1_1" href="figs/1_1.svg" media-type="image/svg+xml"

fallback="f1_1_png" />
<!-- and so on through all the supporting figures in all the chapters ... -->

<item id="toki" href="toki.jpg" media-type="image/jpeg" />
<item id="toc" href="toc.html" media-type="text/x-oeb1-document" />
<item id="glossary" href="glos.html" media-type="text/x-oeb1-document" />
<!-- ... bibliography, index etc. -->

</manifest>

<spine>
<itemref idref="frontpage" />
<itemref idref="foreword" />
<itemref idref="orientation" />
<!-- ... -->

</spine>

<tours>
<tour id="softwaretour" title="Using Greenstone">
<site title="Introduction" href="chapter1.html#greenstone" />
<site title="Building collections" href="chapter6.html" />
<site title="Serving collections" href="chapter7.html" />

</tour>
<tour> <!-- Selected sections relating to the role of metadata ... --> </tour>

</tours>

<guide>
<reference type="preface" title="Preface" href="frontmatter.html" />
<reference type="toc" title="Table of Contents" href="toc.html" />
<reference type="glossary" title="Glossary" href="glos.html" />
<!-- ... bibliography, title-page, index etc. -->

</guide>

</package>

Figure 8.10 Sample Open eBook package.

There are files for the title page, the table of contents, and so on. The idea is to
declare an item for each file whose attributes define an identification label, a file
name, and a MIME type.

The core MIME types in Open eBook are HTML 4.0, CSS, JPEG, and PNG.
All have been introduced in previous chapters. HTML allows book content to be
marked up, CSS takes care of formatting requirements, JPEG covers natural
images, and PNG covers synthetic images. There is a caveat, however: the
HTML and CSS specifications that are allowed in Open eBook publications are
subsets of these standards and are represented with their own MIME types
(text/x-oeb1-document and text/x-oeb1-css—the names are prefixed with x
because they are as yet unregistered types). EBooks do not have the full general-
ity of Web pages: the restrictions simplify rendering and encourage wider access.
For each HTML tag the standard sets out conditions of use and restrictions. For
example, the http-equiv attribute is omitted from <meta> because it serves no
purpose, and alt attributes are compulsory in graphical elements such as .

The manifest section of Figure 8.10 has examples of all core MIME types.
Publications can draw on other types provided there is a fallback. In other
words, any non-core material must be backed up with a fallback attribute giving
the label of another item that can be used in its place should the reader fail to
process it. Chains of fallbacks are allowed, but they must end in one of the core
types.

For example, scalable vector graphics (SVG) is an XML-based language for
describing two-dimensional graphics, comparable in many ways to PostScript.
It allows high-quality artwork to be included in Web pages without resorting to
raster images such as PNG. However, not all Web browsers support it. In Figure
8.10 the artwork for the first figure in the first chapter (<item id=f1_1 ... />) is
given in this format. If the reader cannot display this, the fallback attribute
directs it to the PNG version.

Following the manifest comes the spine element. This defines the logical
order of the book using itemref tags whose idref attribute identifies items from
the manifest. These items must be HTML—that is, their MIME type must be
text/x-oeb1-document.

Figure 8.11 shows the file named by the third itemref—namely, orientation.
Its header resembles the package header but names the external DTD for the
modified version of HTML. Embedded in the document’s head is a style element
that encloses raw cascading stylesheet commands to format chapter headings,
section headings, and the main text, as well as to set up margins and spacing
between blocks. In the document’s body appear div elements whose class attrib-
utes ensure that the appropriate formatting is applied.

Empty elements are one of the few real differences between XML and HTML.
For example,
 in HTML is written
 in XML. This sometimes causes

8 . 3 D O C U M E N T E X C H A N G E 417

problems when XML documents are processed by HTML applications. An
informal convention has arisen to place a white space before the trailing slash, as
in
, which usually allows applications from either world to parse the file
correctly according to their interpretation of the rules. The Open eBook stan-
dard enforces the convention, and Figures 8.10 and 8.11 conform to this.

The tours element, if present, provides one or more alternative paths through
the eBook. Each tour subelement defines one such route, including its title as an
attribute and an embedded sequence of site elements as the route. Each site ele-
ment specifies a resource using the href attribute. The first tour in Figure 8.10 is
called Using Greenstone and comprises the introductory description of Green-
stone in Chapter 1, followed by Chapters 6 and 7.

In the time-honored tradition of URLs, href attributes can target specific
parts of a file by appending a hash character followed by an identifier. The
Greenstone tour uses this to take the reader directly to chapter1.html#greenstone,
which assumes that an identifier of the same name has been embedded at the
beginning of the relevant section. Open eBook (versions 1.0 and 1.0.1) does not

418 E I G H T | I N T E R O P E R A B I L I T Y

<?xml version="1.0" encoding="utf-8" ?>
<!DOCTYPE html PUBLIC "+//ISBN 0-9673008-1-9//DTD OEB 1.0.1 Document//EN"

"http://openebook.org/dtds/oeb-1.0.1/oebdoc1.dtd">
<html>
<head>
<title>How To Build a Digital Library: Orientation</title>
<style>
<!--
body { margin: 0.7in }
div { display: block; margin-bottom: 4pt }
p { text-align: justify; }
.chapter { font-family: helvetica; font-size: 17pt; font-weight: bold }
.section { font-family: helvetica; font-size: 10pt; font-style: italic }
.para { font-family: times; font-size: 10pt; margin-left: 1.75in }

-->
</style>
</head>
<body>
<div class="chapter">Orientation: The world of digital libraries</div>

<div class="section">Example One: Supporting human development</div>

<div class="para">
<p> Kataayi is a grassroots cooperative organization based in the village

of Kakunyu in rural Uganda. In recent years its enterprising members
have built ferro-cement rainwater catchment tanks, utilized renewable
energy technologies such as solar, wind, and biogas, and established a
local industry making clay roofing tiles </p>
...

</div>

<!-- and so on ... -->

</body>
</html>

Figure 8.11 Inside an Open eBook.

use XLink and Xpointer because they were insufficiently developed at the time
of formulation.

The guide element, if present, identifies structural components commonly
found in books: table of contents, list of illustrations, list of tables, copyright
page, colophon, and so forth. The standard defines 17 types of component, each
identified by a particular word or mnemonic. Components are defined by refer-
ence elements that name their type and provide a title and an href to the
resource. Three examples appear in Figure 8.10.

8.4 Query languages

So far this chapter has described document structure and data control. The final
element needed for interoperability in a distributed environment is an agreed
way of specifying queries. As anyone who works with library computer systems
or different Web portals knows, there are many different query languages in use
today. We have discussed some examples in Chapter 3 (Section 3.3) and recapit-
ulated the query syntax used in Greenstone in Chapter 6 (Section 6.1). As in
many practical systems, this particular query mechanism owes much to the
underlying information retrieval software used—in this case the MG search
engine. To free users from having to learn different languages, and to promote
interoperability, standards for querying are needed. We look at two: the com-
mon command language (CCL) and XML Query.

Common command language

The Common Command Language for Online Interactive Information
Retrieval is an ANSI standard (labeled Z39.58) that defines an information
retrieval cycle independent of the software used, although it inevitably makes
some assumptions about what functionality is supported. A member of the Z39
family of library standards, it adopts an underlying state-based model. We will
only describe the process of issuing a particular query, although the Z39.58
standard contains much more.

The Common Command Language contains commands that cover starting
an interactive query session; choosing databases to query; finding documents
using searches that can include field names, Boolean operators, word proximity,
and wild character matching; displaying the result of a query by moving forward
and backward through the items found and sorting or printing them; reviewing
the queries entered so far; and when all is done, stopping the session. Each query
issued is named, and combinations of them can be saved under a new name.
Session parameters can be seen and set to different values; aliases to composite
commands can be defined; and resources can be deleted. Finally, there is a help

8 . 4 Q U E R Y L A N G U A G E S 419

facility; an explanation of the services and databases available; and an ordered
scan of terms in an index and how they relate to other terms.

The 19 italicized words above are CCL’s fundamental commands. Table 8.2
lists the exact keywords along with their official three-letter abbreviations.
Commands can be further abbreviated so long as they are unambiguous: FOR-
WARD can be reduced to FORW or FO, but not to F since that could equally
well represent FIND. Most keywords take additional arguments, although
defaults are widely used.

Figure 8.12 shows a sample retrieval session. Before it begins the user must
connect to a server that supports appropriate databases—we use the National
Library of New Zealand’s publicly available Z39.50 server (modified slightly for
illustrative purposes). The CCL prompts have been added, and the results refor-
matted slightly for legibility. Keywords and operators are shown in block capi-
tals, although the language is in fact case insensitive. User-specified arguments
such as query terms are shown in mixed case, and system-specific parameters,
such as representations for author and title fields, are shown in italics.

The first two commands (START and CHOOSE) pave the way for queries on
databases named newspapers and journals, and evoke some feedback informing
the user that default values are being used. The first query searches for docu-
ments by the author Sam Hunt (a contemporary New Zealand poet) and finds
one match. The next command displays a brief summary of the record.16 Both
AU and SHORT are system-specific parameters and may not be supported by
different CCL implementations—although there is wide agreement in practice
on the terms used.

The second query reuses the first (which is represented by S1), adding a
Boolean condition. Its result set comprises documents authored by Sam Hunt,
or whose abstract contains the phrase “Sam Hunt.” It returns six documents,

420 E I G H T | I N T E R O P E R A B I L I T Y

Table 8.2 Common Command Language keywords, with abbreviations.

Keyword Abbreviation Keyword Abbreviation Keyword Abbreviation

BACK BAK FIND FIN SAVE SAV
CHOOSE CHO FORWARD FOR SCAN SCA
DEFINE DEF HELP HEL SEE SEE
DELETE DEL PRINT PRI SET SET
DISPLAY DIS RELATE REL SORT SOR
EXPLAIN EXP REVIEW REV START STA

STOP STO

16. The format used in this example to display documents is the Simple Unstructured Text
Record Syntax (SUTRS).

which are sorted by title. The first two are viewed using a DISPLAY command
with a numeric range. The SORT command need not have named the result set
S2 because it is the default at this point.

We will see in Section 8.5 that the same notion of a query session and the
same types of services also underpin the Z39.50 standard for interoperability of
online information repositories.

Full implementations of the complete CCL language are rare. However, the
query part—the commands that begin with FIND—is more widespread. Online
catalog systems often support such queries through an advanced query mode.
The initial keyword is often omitted because it is redundant.

Figure 8.13 continues the CCL example, broadening the scope to classical
poets. You might think that Query 1 searches the collection for documents by
Keats or Wordsworth, but this requires parentheses as shown in Query 2. Query
1 in fact locates documents written by Keats, or documents whose entry in the
default index contains Wordsworth. The default index need not be AU. Query 3
makes use of ? to represent a variable number of characters—for instance farm?
matches farm, farmers, and farming. The user is trying to locate documents by

8 . 4 Q U E R Y L A N G U A G E S 421

CCL 1> START
Session parameters at default settings.

CCL 2> CHOOSE newspapers journals
CCL 3> FIND AU Sam Hunt

Sent searchRequest.
Received SearchResponse.
Search was a success.
Number of hits: 1, setno S1

CCL 4> DISPLAY SHORT
Source-type: J - Journal.
author: Hunt, Sam.
title: Poetry: Some of the Plateau Songs (for Tom turning eleven).
publicationDate: Apr 1988.
Descriptor: POETRY.
abstract:

CCL 5> FIND AB Sam Hunt OR S1
Sent searchRequest.
Received SearchResponse.
Search was a success.
Number of hits: 6, setno S2

CCL 6> SORT S2 TI
CCL 7> DISPLAY SHORT 1-2

Source-type: J - Journal.
author: Yuzwalk, Donna.
title: Home movies.
publicationDate: Aug 1988.
Descriptor: TELEVISION REVIEWS.
abstract: Reviews ’Catching the tide: Sam Hunt’s Cook Strait’.

Source-type: N - Newspaper.
title: Minstrel makes trip alone.
publicationDate: 21 Dec 1988.
Descriptor: OBITUARIES; ANIMALS; POETRY.
abstract: A notice on the dog belonging to poet Sam Hunt.

CCL 8> STOP

Figure 8.12 Using the Common Command Language.

Shakespeare that are described (DE) as a sonnet or sonnets and do not mention
the phrase compare thee in the default field. Because CCL is case insensitive,
proper names need not be entered with an initial capital letter.

Query 4 applies numeric constraints to locate Shakespearian tragedies pub-
lished (PD) between 1600 and 1605 inclusive (“GE” means ≥, while “LT” means
<). Queries 5 and 6 use single-character matching (the # character) to match
both Robert and the more colloquial Robbie when seeking the Scottish poet
Robert Burns. The last three queries demonstrate word proximity calculations
using the W and N operators. With W, word order is important, and the term to
the left must occur immediately before the one on the right. If a number is pro-
vided, as with W2, this limits how many words can intervene. N is similar except
that word order is immaterial. Consequently Query 5 matches My luve is like a
red red rose, while Query 6 does not.

Characters (or words) that have special meaning in CCL need to be enclosed
in quotation marks if they are used in queries. Query 7 demonstrates this by
locating documents whose author field matches W in immediate proximity to
Shakespeare. Finally, ?, like W, can take a numeric value: this provides an upper
bound to the number of matching characters. The last example seeks docu-
ments whose author (AU) or abstract (AB) field matches the words Sam and
Hunt in either order, and whose title contains words such as external, internal,
and eternal.

As these examples demonstrate, querying is a complex business and uses fea-
tures that not all information retrieval software supports. Systems that conform to
the official CCL standard must respond meaningfully to any valid command, but
the reply might say “feature not supported.” There is no minimal set of required
features, and implementors are free to add extra commands as they see fit.

XML Query

XML Query (abbreviated to XQuery) is also designed for information retrieval
without being tied to any specific implementation, but it takes a strikingly dif-
ferent approach, founded upon the extensible markup perspective. With the
rider that all documents must be in XML, queries can be used to construct new

422 E I G H T | I N T E R O P E R A B I L I T Y

CCL 1> FIND AU Keats OR Wordsworth
CCL 2> FIND AU (Keats OR Wordsworth)
CCL 3> FIND DE sonnet? AND AU shakespeare NOT compare thee
CCL 4> FIN PD (GE 1600 AND LT 1606) AND AU shakespeare AND DE tragedy
CCL 5> FI AU rob### burns AND TI rose N2 red
CCL 6> FI AU rob### burns AND TI rose W2 red
CCL 7> FIND AU "W" W Shakespeare
CCL 8> FIND AU, AB Sam N Hunt AND PD 1946- AND TI ?2ternal

Figure 8.13 Various FIND commands.

documents, and no distinction is made between retrieval of documents and
parts of documents.

XQuery is considerably more complex than CCL, involving its own func-
tional programming language, and builds on XPath and XML Schema. The
underlying data model (also shared by XPath) represents arbitrary sequences of
documents, or parts of documents, as forests—lists of tree structures. The lan-
guage consists of

■ path expressions
■ element constructors
■ For-Let-Where-Return expressions
■ quantified expressions
■ operators and functions
■ conditional expressions
■ data types

The first two items are particular to XML; the third borrows heavily from the
database query language SQL; and the last four are standard components of
functional languages.

We demonstrate these parts through a series of examples based upon the
resource outlined in Figure 8.14. Figure 8.14a represents the overall structure.
The root node is <Library>, and its children represent publication categories
(akin to the database names used in the CCL example). Within each category
are the publications themselves, expressed as an XInclude statement that uses
the href attribute to provide a URL for a particular publication. XInclude is a
supplementary XML standard that acts just like the include statements of pro-
gramming languages. It is self-explanatory. Triggered by the inclusion of its
namespace, an XInclude-aware processing application interprets the include
tags as textual substitution of the named resources.

Figure 8.14a embeds individual publications in an overall document type
hierarchy. Figure 8.14b shows the first document, which reuses the Book Data-
base schema from Section 8.2; the remaining publications follow the same pat-
tern. In the example, a publication starts with a Document node, which includes
Metadata and Text sections. Metadata includes Title, Author, and Description
items, and the text is further marked up with Poem, Chapter, and other suitable
elements. We could equally well have used the Open eBook standard, but this
would unnecessarily complicate the XQuery illustrations.

Figure 8.15 shows XQuery statements that perform the same search as do the
two examples of Figure 8.12: find documents with author Sam Hunt, and find
documents authored by Sam Hunt, or whose abstract contains the phrase “Sam
Hunt.” The language’s functional nature is very much in evidence, with key-
words appearing in block capitals. It also has a scripting feel, variables being

8 . 4 Q U E R Y L A N G U A G E S 423

prefixed with $ and comments beginning with #. Both queries have the same
structure: FOR . . . WHERE . . . RETURN, a subset of the For-Let-Where-Return
or FLWR (“flower”) expression. The first query uses three XPath expressions to
select subtrees in the XML library structure. They are easily recognizable
because they include slashes (/): the first is in the FOR line, the next in WHERE,
and the last in RETURN. The result of executing the query is this: for every Doc-
ument node in the Library (represented by library.xml), locate every grandchild
Author (descending through Metadata) and check whether it contains the
phrase “Sam Hunt”; if so, return its Title element.

SOME . . . IN . . . SATISFIES . . . is an example of a qualified expression;
another form of qualified expression starts with EVERY. Our query finishes by
calling the built-in function contains(). The language also allows new functions

424 E I G H T | I N T E R O P E R A B I L I T Y

<Library xmlns:xi="http://www.w3.org/1999/XML/xinclude">
<Books>
<xi:include href="bottle_creek.xml"/>
<xi:include href="running_scared.xml"/>
<!-- and so on ... -->

</Books>

<Journals>
<!-- ... -->

</Journals>
<Newspapers>
<!-- ... -->

</Newspapers>

<!-- ... -->
</Library>

(a)

<Document xmlns="http://bookdatabase.org/schema/publications">
<Metadata>
<Title>Bottle Creek</Title>
<Author>Sam Hunt</Author>
<Description>Poetry Collection</Description>
<!-- ... -->

</Metadata>
<Text>
<Poem Title="...">
<!-- Stanzas for first poem ... -->

</Poem>
<Poem Title="...">
<!-- Stanzas for second poem ... -->

</Poem>
<!-- and so on ... -->

</Text>
</Document>

(b)

Figure 8.14 XML library of publications: (a) main XML file (library.xml);
(b) supporting file (bottle_creek.xml).

to be defined. Types are the same as the ones that XML Schema uses, augmented
with operations for type casting (although none are present in the example).

Figure 8.16 shows two XQuery statements that show how elements can be
constructed. The first example builds an XML document with the root Library-
Summary that contains a DocumentSummary element which summarizes each
document by recording its title and the number of authors. To do this, program-
ming constructs are embedded into XML tags using braces {…}. These in turn
can specify XML tags, and so on. A LET statement is used on the second line to
gather all the Author nodes, which is later passed as an argument to the built-in
function count(). This returns the number of items (authors) represented by the
variable.

The second example builds an XML document that contains the poems that
Sam Hunt published between 1980 and 1985. It uses a full FLWR statement,
retrieving all documents $d with publication date $p that match the conditions
expressed in the WHERE clause. The information that is extracted is packaged
in Document, Metadata, and Text tags. Note the alternative method used to
select the author. Instead of the protracted qualified clause WHERE SOME . . .
contains(…) used in the Figure 8.15 example, the same effect is accomplished by
the more concise XPath expression $d/Metadata/[Author="Sam Hunt"]. This is
because we seek an exact match with the content of Author, not a substring
match. FLWR expressions can be nested inside other expressions, including
other FLWR expressions, although none of our examples requires this.

XQuery commands are considerably more lengthy than their CCL counter-
parts and require a more detailed knowledge of programming. A specialized envi-
ronment might be set up for a particular community, so that members can achieve
the results they need using simplified function calls defined in XQuery itself. For
this to work, the various XML databases involved need to agree on the structures
they use. That, of course, is what RDF, XML Schema, and DTDs are for.

8 . 4 Q U E R Y L A N G U A G E S 425

#--
Comparable with FIND AU Sam Hunt
#--
FOR $d IN document("library.xml")/Library/*/Document
WHERE SOME $a IN $d/Metadata/Author SATISFIES
contains($a,"Sam Hunt")

RETURN $d/Metadata/Title

#--
Comparable with FIND AU Sam Hunt AND AB Sam Hunt
#--
FOR $d IN document("library.xml")/Library/*/Document
WHERE SOME $a IN $d/Metadata/(Author|Abstract) SATISFIES
contains($a,"Sam Hunt")

RETURN $d/Metadata/Title

Figure 8.15 XQuery commands.

8.5 Protocols

As digital libraries pervade the workplace, the collective needs of users mush-
room. The standard modus operandi of Web usage is to reach a new document
by clicking on a button or hyperlink—and this is the classical form for a digital
library too. How can we step outside this model in a flexible way that does not
involve a heavy commitment to a particular alternative? The answer is to pro-
vide fine-grained interaction with the content of a digital library through a
defined protocol that others can use. The interaction can be implemented using
various different transport layers: sockets, which are typically supported by low-
level Internet operations; HTTP, a more structured Web-based approach;

426 E I G H T | I N T E R O P E R A B I L I T Y

#--
Produce summary of all <Document> containing the <Title>
and number of authors
#--
<LibrarySummary>
{
FOR $d IN document("library.xml")/Library/*/Document
LET $a := $d/Metadata/Author
RETURN
<DocumentSummary>
{ $d/Metadata/Title }
<AuthorCount> { count($a) }
</AuthorCount>

</DocumentSummary>
}
</LibrarySummary>

#--
Produce a new <Document> whose content represents poems
by Sam Hunt published between 1980 and 1985
#--
<Document>
<Metadata>
<Title>Poems: 1980-1985</Title>
<Author>Sam Hunt</Author>
<!-- ... -->

</Metadata>
{
FOR $d IN document("library.xml")/Library/*/Document
LET $p := $d/Metadata/Published
WHERE $d/Metadata/[Author="Sam Hunt"]
AND ($p >= 1980) AND ($p<=1985)

RETURN
<Text>
{
$d/Text/Poem

}
</Text>
SORTBY(Poem/Title)

}
</Document>

Figure 8.16 XQuery commands that demonstrate element construction.

CORBA, a high-level architecture that supports a distributed object-oriented
paradigm; and SOAP, which is based on XML.

Two prominent protocols used in digital libraries are the Z39.50 protocol and
the Open Archives Initiative (OAI) protocol. These are separated historically by
a decade and a half, culturally by the communities in which they arose, and ide-
ologically by the approach taken. We also describe two other protocols devel-
oped by well-established digital library research groups—Cornell’s Dienst pro-
ject and Stanford’s InfoBus project. Together these schemes represent a diverse
range of philosophies and embody important ideas for future digital library
protocols.

Z39.50 has been developed by standards committees whose members come
from widely disparate backgrounds and have very different agendas. It supports
a rich set of commands but is large and complex to implement. The other proto-
cols, by comparison, are simpler and more focused on particular requirements.
However, they all share the same aim of communicating with digital document
repositories, and common elements and themes recur.

Z39.50

The Z39.50 standard defines a wide-ranging protocol for information retrieval
between a client and a database server. Its origins stretch back to 1984, and pro-
gressive versions of the specification were ratified by standards committees in
1988, 1992, and 1995—a fourth (initiated in 2001) is nearing completion. It is
administered by the Library of Congress.

Z39.50 is an example of an application layer of the Open System Interconnec-
tion (OSI) Reference Model, a comprehensive standard for networked com-
puter environments. Message formats are specified using Abstract Syntax Nota-
tion One (ASN.1) and serialized for transmission over the OSI transport layer
using Basic Encoding Rules (BER). The Transmission Control Protocol (TCP) is
typically used for the actual information communication.

Accessing and retrieving heterogeneous data through a protocol in a way that
promotes interoperability is a challenging problem. To address the broad spec-
trum of different domains where it might be used—such as bibliographic data,
museum collection information, and geospatial metadata—Z39.50 includes a
set of classes, called registries, that provide each domain with an agreed-upon
structure and attributes. Registries cover query syntax, attribute fields, content
retrieval formats, and diagnostic messages. For example, content retrieval for-
mats include Simple Unstructured Text Record Syntax (SUTRS) and the various
MARC formats.

The Z39.50 protocol is divided into 11 logical sections (called facilities) that
each provide a broad set of services. We cannot do justice to the myriad details

8 . 5 P R O T O C O L S 427

here, but instead convey some idea of the functionality supported. Table 8.3
gives a high-level summary of each category.

The protocol is predominantly client-driven; that is to say, a client initiates a
request and the server responds. Only in a few places does the server demand
information from the client—for example, the Access Control Facility might
require the client to authenticate itself before a particular operation can be per-
formed. Any server that implements the protocol must retain information
about the client’s state and apportion resources so it can respond sensibly to
clients using the Initialization Facility, which sets resource limits. Mandatory
search capabilities include fielded Boolean queries, which yield result sets that
can be further processed by the Sort and Browse Facilities or canceled by the
Result-set-delete Facility. Results themselves are returned through the Retrieval
Facility. At any stage the response to a request might be an error diagnostic. This
style of interaction is reflected in the common command language (CCL) query
session shown in Figure 8.12.

Establishing which of the many Z39.50 options, registries, and domain-specific
attributes are supported by a particular server is accomplished through the
Explain Facility. The Extended Services Facility is a mechanism to access server
functionality that persists beyond the duration of a given client-server session—
for example, periodic search schedules and updating the database. The client-
server session can be canceled immediately by either side through the Termination
Facility.

428 E I G H T | I N T E R O P E R A B I L I T Y

Table 8.3 Facilities provided by Z39.50.

Z39.50 Facility Client-side description

Initialization Establish connection with server and set/request resource limits.
Search Initiate search using a registered query syntax, generating a result set server-

side.
Retrieval Retrieve a set of records from a specified result set: a large record may be seg-

mented and transmitted piecemeal.
Result-set-delete Request deletion of server-side result set or sets.
Access Control Server initiated authentication check.

Request status reports of committed server resources and dictate if server is
allowed to contact client when agreed limits are reached.

Sort Specify how a result set should be sorted.
Browse Access ordered lists such as title and subject metadata.
Explain Interrogate server to discover supported services, registries, and so on.
Extended Services Access services that continue beyond the life of this client-server exchange,

such as persistent queries and database update.
Termination Abruptly end client-server session: initiated by either client or server.

Accounting &
Resource Control

A particular Z39.50 system need not implement all parts of the protocol.
Indeed the protocol is so complex that full implementation is a daunting under-
taking and may in any case be inappropriate for a particular digital library site.
For this reason the standard specifies a minimal implementation, which com-
prises the Initialize Facility, the Search Facility, the Present Service (part of the
Retrieval Facility), and Type 1 Queries (part of the registry).

Using this baseline implementation, a typical client-server exchange works as
follows. First the client uses the Initialization Facility to establish contact with
the server and negotiate values for certain resource limits. This puts the client in
a position to transmit a Type 1 query using the Search Facility. The number of
matching documents is returned, and the client then interacts with the Present
Service to access the contents of desired documents.

Supporting the Z39.50 protocol

Support for Z39.50 in Greenstone is provided through YAZ, an open-source
software library that can be used by both Z39.50 clients and servers. Using
Greenstone’s model of receptionists communicating with collection servers, a
Z39.50 client is formed by inheriting a new receptionist from its base class and
using YAZ as a back end to communicate with an existing Z39.50 server at the
other end. Similarly Z39.50 serving capabilities are added to Greenstone by
developing a new server that uses YAZ as a front end to accept requests from
Z39.50 clients and translate them into requests that use the Greenstone proto-
col. The Greenstone response is then converted, through YAZ, into Z39.50
terms and returned to the client.

Figure 8.17 shows a snapshot of the Z39.50 client in use. It displays the result
of searching the Library of Congress’s publicly available catalog of bibliographic
records for titles that include the word Waikato (a geographical region of New
Zealand). The search is performed by the Library of Congress’s computer, not
the Greenstone site. The interaction style follows the standard Greenstone inter-
face. After selecting the field to search—from the choices any fields, title, and
author—and whether some or all of the words must be included, a search is ini-
tiated by pressing the Begin Search button. This loads a new page (shown) that
repeats the query settings at the top and includes matching entries below. Click-
ing on the book icon beside a matching entry produces a new page giving the
full catalog entry.

As with all Greenstone collections, further search options are available on the
Preferences page, accessed by clicking on the Preferences button located in the
top right-hand corner. Here the user can specify, among other things, whether
matching is to be case sensitive or not, and whether Boolean operations are
allowed.

8 . 5 P R O T O C O L S 429

Due to the complexity of the Z39.50 bibliography registry, Title metadata
covers various different fields. However, for brevity, this system shows only one
of these fields for each matching entry. Thus the display may not include the
words in the query. For example, the second entry in Figure 8.17, Be ye separate,
does not specifically mention Waikato. However, the term does appear in the
full citation, as will be revealed by clicking on the book icon.

The Open Archives Initiative

The Open Archives Initiative (OAI) was motivated by the electronic print com-
munity, which has a strong desire to increase the availability of scholarly reposi-
tories and enhance access to them. Part of the initiative has been to devise a pro-
tocol for the efficient dissemination of content. It is intentionally broad and
independent of content, making it useful to a wide range of areas, not just schol-
arly information.

The protocol supports interaction between a data provider and a service
provider—a renaming of the client-server model which emphasizes that interac-
tion is driven by the client and that the client alone has the onus of deciding what
services are offered to users. Data providers, in contrast, are in the business of
managing repositories. They do not have to perform text searching based on sup-

430 E I G H T | I N T E R O P E R A B I L I T Y

Figure 8.17 Interface to the Library of Congress using Z39.50.

plied query terms; they must merely export on demand data records in a stan-
dardized form, unencumbered by any consideration of how the information will
be used. If text searching is to be supported, it must be performed by the service
provider, not the data provider. Of course a site may choose to be both a service
provider and a data provider. It may also manage more than one repository.

The OAI protocol is “open” in the sense that its definition is freely available
and its use encouraged. The term archive should not be taken to imply only the
compilation of digital material for historical purposes—although this is cer-
tainly one use.

A key technical goal of the protocol is to make it easy to implement using
readily available software tools and support. The protocol provides a frame-
work, borne over HTTP, in which requests are encoded in URLs and executed
using CGI scripts in the normal way. Results are returned as XML records. Fig-
ure 8.18 shows the basic form of interaction using an example that requests a
record pertaining to a particular document identifier and expressed using
Dublin Core metadata. First the arguments are encoded into a URL (characters
such as : and / must be specially coded) and dispatched over HTTP. The
response is an XML document, which draws heavily on XML namespaces and
schemas.

Recall from our earlier discussions that namespaces are a way of ensuring
that markup tags intended for a particular purpose do not conflict with other
tag sets, and XML Schema is a way of extending the idea of predefined tag sets
and document structure with typed content. For example, responseDate in OAI
is defined to be the complete date, including hours, minutes, and seconds, using
the schema type xsd:timeInstant.

The top-level element in the example record is GetRecord. Through its attrib-
utes this sets up a suitable namespace using a URL in the Open Archives Web
site and specifies the defining XML Schema stored at the same site. Nested
deeper in the GetRecord structure is a metadata element. This uses the Dublin
Core namespace and a schema specifically for this metadata standard that is
defined at the Open Archives site.

Within the metadata element is the main content—expressed, as requested,
using Dublin Core metadata—for the digital item that matches document iden-
tifier oai:nzdl:hdl/018cf2f4256b4c8827e747b8. The book is titled Farming Snails
and was written for the Food and Agriculture Organization of the United
Nations. Further information supplies a brief description of its content, gives
the year of publication, declares that it is principally text, and states its format as
HTML. This record is rich in metadata, but the protocol does not insist on this.

The protocol supports six services through the verb argument, and Table 8.4
summarizes them. Identify and ListSets are services that are typically called early
on in a client’s interchange with a server to establish a broad picture of the
repository. ListIdentifiers is a way of receiving all the document identifiers or a

8 . 5 P R O T O C O L S 431

group that matches a stipulated set name. ListMetadataFormats can be applied
to the repository as a whole or to a particular document within it to establish
which metadata formats are supported. Dublin Core is mandatory, but other
formats such as MARC, which has the capacity to export a greater volume of
metadata per record, may also be supported. We have already seen GetRecord in
action in the example just given—ListRecords is similar except that more than
one record can be returned, and group selection is possible with the same set-
naming technique used by ListIdentifiers.

These are the general facilities supported by the protocol. Greater flexibility
can be achieved using the input arguments and the set and resumption mecha-

432 E I G H T | I N T E R O P E R A B I L I T Y

Request Arguments:
verb=GetRecord
identifier=oai:nzdl:hdl/018cf2f4256b4c8827e747b8
metadataPrefix=oai_dc

Encoded URL:
http://www.nzdl.org/cgi-bin/oai/request?verb=GetRecord

&identifier=oai%3Anzdl%3Ahdl%2F018cf2f4256b4c8827e747b8
&metadataPrefix=oai_dc

Response :
<?xml version="1.0" encoding="UTF-8"?>
<GetRecord

xmlns="http://www.openarchives.org/OAI/1.0/OAI_GetRecord"
xmlns:xsi="http://www.w3.org/2000/10/XMLSchema-instance"
xsi:schemaLocation="http://www.openarchives.org/OAI/1.0/OAI_GetRecord

http://www.openarchives.org/OAI/1.0/OAI_GetRecord.xsd">
<responseDate>2001-06-16T13:15:42+00:00</responseDate>
<requestURL>http://www.nzdl.org/cgi-bin/oai/request?verb=GetRecord

&identifier=oai%3Anzdl%3Ahdl%2F018cf2f4256b4c8827e747b8
&metadataPrefix=oai_dc</requestURL>

<record>
<header>
<identifier>oai:nzdl:hdl/018cf2f4256b4c8827e747b8</identifier>
<datestamp>1986-01-01</datestamp>
</header>
<metadata>
<dc xmlns="http://purl.org/dc/elements/1.1/"

xmlns:xsi="http://www.w3.org/2000/10/XMLSchema-instance"
xsi:schemaLocation="http://purl.org/dc/elements/1.1/

http://www.openarchives.org/OAI/dc.xsd">
<title>Farming Snails</title>
<description>Learning about snails; Building a pen; Food

and shelter plants</description>
<creator>Food and Agriculture Organization of the United Nations</creator>
<type>Text</type>
<format>text/html</format>
<date>1986-01-01</date>
<identifier>
http://www.nzdl.org/cgi-bin/library?&a=d&cl=search&d=HASH018cf2f4256b4c8827e747b8
</identifier>

</dc>
</metadata>
</record>
</GetRecord>

Figure 8.18 OAI GetRecord request and XML response.

nisms. First, repository items can be categorized into sets—multiple hierarchies,
where an item can be in more than one hierarchy or in none at all. Each node in
the hierarchy has a set name, such as beekeeping, and a descriptive name, such as
Beekeeping and honey extraction. Its hierarchical position is specified by concate-
nating set names separated by colons—like husbandry:beekeeping. ListSets
returns this information for the complete repository, marked up as XML.

Now instead of retrieving all the document identifiers, a service provider can
restrict the information returned by ListIdentifiers to a particular set. (The same
applies to ListRecords.) Because records in the repository are date-stamped, the
information returned can be restricted to a particular range of dates using from
and until arguments. Even so, the list of data returned may still be excessively
long. If so, a data provider might transmit part of the data and include a resump-
tion token in the record. This mechanism enables the service provider to contact
the data provider again and request the next installment (which might include
another resumption token).

The OAI protocol makes use of the HTTP status code mechanism to indicate
the success or failure of a request. Status code 400, in this context, indicates a
syntactic error in the request, such as an invalid input argument. Other forms of
failure, such as a repository item being unavailable in the requested metadata
format, produce null data in the XML record that is returned.

Supporting the OAI protocol

For a given digital library site to become an OAI data provider, software needs to
be written that can respond to CGI requests and access the database system that
stores the documents. Many programming languages have library support for
implementing CGI scripts—Perl, Python, Java, and C++, among others—
although the database itself will probably dictate the most suitable choice. None

8 . 5 P R O T O C O L S 433

Table 8.4 Open Archive Initiative protocol requests.

OAI protocol request Description

Identify Returns both fixed-format and domain-specific descriptions
ListSets Returns the repository’s classification hierarchy
ListIdentifiers Returns a list of document identifiers
ListMetadataFormats Returns the metadata formats supported by the repository in

general or for a specific document
GetRecord Returns the repository item specified by the document identifier

in the requested format
ListRecords Returns a list of repository items in the requested format

of this should present much difficulty to an experienced programmer, who can
quickly make the metadata in the digital library available to others using OAI.

Becoming a service provider is more challenging, although much depends on
how much value is added to the data that is handled. Minimum requirements
are safely encoding URLs, parsing the returned XML, and detecting error condi-
tions. None of this is difficult. The challenges begin when services are extended
beyond those provided by the basic OAI protocol—for instance, text searching.
Of course managing such services is akin to building your own digital library
using a suitable software tool—say Greenstone! Some format conversion may be
required for both metadata and documents—this is precisely the role of plug-
ins in Greenstone.

As an example we now describe the construction of a Greenstone digital
library collection based on OAI exported data. There are two steps: obtaining the
raw material from a data provider, and configuring a suitable collection. The first
step is accomplished using the Greenstone script getoai.pl, which takes as argu-
ments a base URL for an OAI site and a local collection name. The result is to
place the exported data in the collection’s import directory. OAI record identifiers
encode hierarchical structure, and getoai.pl maps these into subdirectories of
import. The script uses a Web mirroring package to handle access to the OAI site.
If the Dublin Core section of an OAI record includes an identifier element whose
content is a URL, and getoai.pl has the retrieve document option switched on, a
follow-up call is made to the mirroring package to download that object too.

The second step is accomplished by augmenting the collection configuration
file with the line

plugin OAIPlugin

which incorporates a plug-in designed to process files like that shown in Figure
8.18. Written in Perl like any plug-in, it uses a regular expression to locate the
metadata element and turn each element into a metadata item in Greenstone. If
a file named identifier can be located in the import area, this relationship is rep-
resented in Greenstone as an associated document.

With the issuing of the appropriate import.pl and buildcol.pl commands, the
end result of these two stages is a searchable, browsable Greenstone collection
based on the exported content. Further configuration of indexes and classifiers
is possible depending on the metadata available.

8.6 Research protocols

We now introduce two long-standing digital library protocols from the research
community that are designed to promote interoperability. The trouble with
interoperability, though, is that the purpose is defeated if several groups pro-

434 E I G H T | I N T E R O P E R A B I L I T Y

mote different interoperability schemes. We well remember a digital library
conference in which so many people wanted to talk about interoperability that
parallel sessions were set up in separate rooms. The irony seemed to be lost on
most participants.

Dienst

Dienst, at Cornell University in the U.S., is one of the longest-running digital
library projects in the research community: its origins stretch back to 1992. It
has three facets: a conceptual architecture for distributed digital libraries, an
open protocol for service communication, and a software system that imple-
ments the protocol.

The protocol supports search and retrieval of documents, browsing docu-
ments, adding new documents, and registering users. Each of these is an inde-
pendent service, borne over HTTP. A digital library collection involves a combi-
nation of these services. There are six categories of service: repository services
store digital documents and associated metadata; index services accept queries
and return lists of document identifiers; query mediator services dispatch queries
to the relevant index servers; info services return information about the state of a
server; collection services provide information on how a set of services interact;
and registry services store user information.

The repository service, a bidirectional link to a collection’s content (or part of it),
lies at the heart of the system. Figure 8.19 shows this service being used to export a
set of images in TIFF format taken from the second chapter of the book identified
by the handle dli.cornell/725081,17 bound into one file using the tar format. Within
the service area (Repository in our example), a particular action is specified using
the argument verb. Here Disseminate is specified, because we wish to retrieve some
document content. Earlier, in the description of the OAI protocol, we encountered

8 . 6 R E S E A R C H P R O T O C O L S 435

17. A handle is a form of URN.

www.ncstrl.org/Dienst/Repository/1.2/Disseminate/dli.cornell/725081/book/tiff?chapter=2&binder=tar

domain name protocol service version action fixed arguments optional arguments

document handle view

content type

Figure 8.19 Using the Dienst protocol.

a similar use of a CGI argument named verb (at the top of Figure 8.18). In fact the
OAI designers drew on lessons learned from this protocol.

In Figure 8.19 the desired book’s handle contains two parts separated by a
slash character: a naming authority and an identifying string. The naming
authority is used whenever the content of a repository is updated—whenever
books are added or deleted. The details of the authentication mechanism are left
to the service: for example, a simple policy would be to restrict access to a fixed
set of the identifiers—called IP numbers—that are used on the Internet to iden-
tify individual computers.

HTTP messages are used to respond to service requests: they can take a vari-
ety of forms. In the example the returned message has MIME type
application/tar. However, requests for information, such as lists of verbs and
other options, are today more often encoded as XML.

Given that Dienst was a source of inspiration for the OAI protocol, it is not
surprising to learn that several Dienst-based digital library sites are also OAI
data providers and are switching to the new protocol.

Simple digital library interoperability protocol

Interoperation among distributed objects has been a central plank of Stanford
University’s digital library project, the Infobus. Many Infobus objects are in fact
proxies to established information sources and services. The original CORBA-
based Digital Library Interoperation Protocol (DLIOP) has since been super-
seded by the Simple Digital Library Interoperability Protocol (SDLIP), designed
in collaboration with other U.S. research projects.

SDLIP places emphasis on a design that is scalable, permitting the develop-
ment of digital library applications that run on handheld devices such as Palm
Pilots, as well as workstation- and mainframe-based systems. There are two
transport options, one based on CORBA, the other on HTTP, and applications
can mix them freely.

The protocol supports both state-keeping and stateless exchanges on the
server side, and both synchronous and asynchronous interactions between
client and server. However, servers need not implement all these options. It is up
to a client to establish, using the protocol, what functionality is supported.

There are four parts (called interfaces) to the protocol: searching, accessing
results, metadata, and delivery. The search interface initiates a search. In a syn-
chronous, stateless exchange, the client waits until all results are returned, but in
a synchronous, state-keeping exchange, only some of the results need be
returned as part of the search—the rest can be accessed through the result access
interface. A server that supports asynchronous searches must by nature also be
state-keeping. When the results of an asynchronous query become available, the
server uses the delivery interface to notify the client. Finally the source metadata

436 E I G H T | I N T E R O P E R A B I L I T Y

interface provides a mechanism for clients to discover the functional capabilities
of a server (including its version number), the collections stored there, and the
metadata fields present in a particular collection.

Figure 8.20 shows the interface description language for getPropertyInfo(),
part of the source metadata interface, along with some sample returned data. If
subcolName is empty, property information about the default subcollection is
returned, encoded as XML in the output variable propInfo. Otherwise a prior call
to getSubcollectionInfo() must be made to establish the subcollection names. The
property information returned in this example states that Dublin Core metadata
for Creator is available, as is the author field in the Library of Congress’s MARC
attribute model (called USMARC). Both can be searched and retrieved.

Translating between protocols

The Stanford research group provides a Java-based software development kit to
support SDLIP. To demonstrate the ease of protocol conversion, this was used to
develop a translator that maps the SDLIP protocol calls pertaining to stateless
synchronous interaction to Greenstone protocol calls. The translator runs as a
server in its own right. As Figure 8.21 shows, it acts as an intermediary, accept-
ing SDLIP requests transmitted either through CORBA or HTTP and passing
them on to Greenstone’s CORBA-based protocol. The translator server imple-
ments the intersection of the Greenstone protocol and SDLIP’s search and source
metadata interfaces.

The search interface maps to Greenstone’s Filter and Document operations,
while source metadata maps to various Greenstone calls (grouped as general in the
figure). The remaining interfaces and services, such as the result access interface
and delivery interface, are set up for trivial default behavior because they have
no counterpart in a direct mapping to a synchronous stateless service.

8 . 6 R E S E A R C H P R O T O C O L S 437

Interface getPropertyInfo(String subcolName, out XMLObject propInfo);

Returned
data

<propList>
 <dc:creator>
 <searchable/>
 <retrievable/>
 </dc:creator>
 <usmarc:245>
 <searchable/>
 <retrievable/>
 </usmarc:245>
</propList>

Figure 8.20 Using SDLIP to obtain property information.

Figure 8.22 shows the result of running a command-line SDLIP client pro-
vided by the Stanford research group. At the top we see diagnostic output from
the SDLIP client; at the bottom is the diagnostic output from the SDLIP-to-
Greenstone translator. We assume the existence of a Greenstone server (output
not shown) whose location is specified when the translator server is started.

When the client program is run, it first connects to the SDLIP server specified
on the command line (the translator in our case) and then calls the search inter-
face with the remaining command-line arguments stored as the query. The
translator server accepts these arguments and sets up a Filter call to emulate the
call to SDLIP search. If the property list supplied by the SDLIP call specifies doc-
ument text, a second call to Greenstone is made, this time using the Document
part of the protocol, to access the necessary information. The data obtained
from these calls is then collated and returned encoded as XML.

The translator example is intended for demonstration purposes only. A more
sophisticated—and ultimately more desirable—approach is to enhance the
translator with state-keeping capabilities. Just because the Greenstone server
does not keep state does not mean that state-based SDLIP interactions cannot
be supported. For instance, when query results are returned from the CORBA
call to Greenstone, the translator server can store the result locally and assign it a
result set identifier. It can use this to support subsequent calls to the result access
interface—including query refinement. Other details that would need attention
to make the demonstration practically useful include mapping more carefully
the SDLIP-supported query syntax, which makes use of various standards, to
the Greenstone query syntax.

Discussion

We have summarized the main features of four digital library protocols: Z39.50,
Open Archives Initiative (OAI), Dienst, and SDLIP, along with the Greenstone
protocol described in Chapter 7. All support browsing and document retrieval,

438 E I G H T | I N T E R O P E R A B I L I T Y

Greenstone serverTranslator serverSDLIP client

Filter
Search interface

Document

General

Source metadata
interface

Result access
interface

Delivery interface Default service

Default service

CORBA/HTTP CORBA

Figure 8.21 Mapping SDLIP calls to the Greenstone protocol.

and all but OAI support searching. Text searching is relatively well under-
stood—all support ranked and Boolean queries, with a rich array of options:
fielded search, stemming, case matching, and so forth. The main divergence is
in the query syntax used. Z39.50 and SDLIP are notable in their use of existing
standards.

The role of browsing in a digital library is less clear-cut, and support varies.
Browsing is usually closely associated with metadata. OAI, with its focus on
metadata, and Greenstone appear to be more general than the others, both pro-
viding hierarchical browsing and exporting.

Document retrieval is well supported throughout. Different protocols assume
different models of document structure and different ways of enumerating docu-

8 . 6 R E S E A R C H P R O T O C O L S 439

Client:

weka% java SimpleClient http://kiwi.cs.waikato.ac.nz:8282 "music style"
DOCUMENT: 1
 http://purl.org/metadata/dublin_core#Title
 = "Computer Graphic Aided Music Composition"
DOCUMENT: 2
 http://purl.org/metadata/dublin_core#Title
 = "Schenker s Theory of Tonal Music -- Its Explication ..."
DOCUMENT: 3
 http://purl.org/metadata/dublin_core#Title
 = "Andre Tchaikovsky Meets the Computer: A Concert ..."

Server:

kiwi% java SdlipToGsdl http://www.nzdl.org hcibib 8282
GreenstoneCorba Init on www.nzdl.org OK
hcibib OK
hcibib is public? ... yes
Starting DASL/HTTP server transport on port: 8282

[SDLIP/DASL Server Transport] request from: weka.cs.waikato.ac.nz
Query is:
<a:basicsearch xmlns:a="DAV:">
 <a:select>
 <a:allprop/>
 </a:select>
 <a:where>
 <a:contains>music style</a:contains>
 </a:where>
 <a:limit>
 <a:nresults>10</a:nresults>
 </a:limit>
</a:basicsearch>

Query string = music style
Title: Computer Graphic Aided Music Composition
Title: Schenker s Theory of Tonal Music -- Its Explication ...
Title: Andre Tchaikovsky Meets the Computer: A Concert ...

Figure 8.22 Using the SDLIP-to-Greenstone translator.

ment formats and types. Dienst, with its ability to export logical structure in a
variety of MIME types, seems to provide the richest functionality.

While not a core requirement, all protocols provide a way of determining
which options the server supports and (with the exception of OAI) what ser-
vices it offers. This enables clients to be written that configure themselves
dynamically in response to different situations.

Other important elements are version control and authentication, and here
the protocols differ. Version control is handled externally in Z39.50 by ratified
standards. SDLIP, Dienst, and OAI build it into the protocol—a more ambitious
aim, and one that places the onus on clients to resolve version conflicts. The
Greenstone protocol provides no explicit version control. Because it is closely
associated with the software architecture, this is not as limiting as it might at
first seem. The application program interface gives latitude for backward-com-
patible extensions, and the filtering mechanism—the main part of the protocol
that is likely to change—has been designed to be extensible. This is backed up by
the Greenstone’s Filter mechanism, which includes calls to list the filter types
supported and the options they take.

Although a framework for authentication is part of Dienst, it is left up to the
service provider to implement. In Z39.50, authentication is rigorously defined
by an Access Control Facility, in stark contrast to SDLIP, Greenstone, and OAI,
which have none. Of course these protocols do not rule out authentication—a
security check can always be imposed using the transport layer when a client
connects to a server.

8.7 Notes and sources

The World Wide Web Consortium’s Web site (www.w3.org) is the definitive
source for explanations of XML and its supporting specifications. The formula-
tion of XML Schema started in the XML Developers’ e-mail list, and prelimi-
nary forms were called XSchema and the Document Definition Markup Lan-
guage (DDML) before being cast in the form described here.

RDF is also managed by the World Wide Web Consortium, and an even more
ambitous project, called the Semantic Web, builds on its ideas to increase the
opportunities for machine comprehension of Web documents. There is an intro-
duction to RDF in D-Lib Magazine (Miller, 1998), and an article in Scientific
American introduces the Semantic Web (Berners-Lee, Hendler, and Lassila, 2001).

The RSLP Collection Description project at the Research Support Libraries
Programme based at the University of Bath, U.K., was motivated by a need to
consistently describe all projects funded through their research program. How-
ever, what resulted is of far wider application. A detailed description of the pro-
ject, along with an unabridged version of the Morrison Collection RDF example,

440 E I G H T | I N T E R O P E R A B I L I T Y

appears in D-Lib Magazine (Miller, 2000). This is a special issue on collection-
level metadata and contains other relevant papers. For additional information
about RSLP projects, consult the Web site www.rslp.ac.uk.

Open eBook Forum publishes its work at www.openebook.org. They strongly
advocate the idea of making online publications available to people with print
disabilites. Version 2.0 of the standard is under development.

XML Query is required to be both human-readable and machine-readable.
The examples given in this chapter are shown in the human-readable form. By
machine-readable the specification means that the language should be valid
XML, and clearly the programming language used in the examples is not valid
XML. XQueryX is an equivalent version of the language that uses pure XML
syntax, thus fulfilling the machine-readable requirement. However, it is verbose
to write by hand and more convoluted to read—hence the XQuery form.

The home page for Z39.50 is located at the Library of Congress Web site at
www.loc.gov/z3950/agency. There is an active group of online developers and
implementers known as ZIG (for Z39.50 Implementers’ Group). They maintain
a ListServ for e-mail discussion and hold regular meetings.

Further information on the Open Archives Initiative can be found in an article
by Lagoze and Van de Sompel (2001), and on the Web site www.openarchives.org.
For the Dienst protocol see Lagoze and Fielding (1998); for SDLIP see Paepcke
et al. (1999).

8 . 7 N O T E S A N D S O U R C E S 441

443

Visions
Future, past, and present

Whither digital libraries? Where are we headed, where have we come from, and what
should we be doing now? This chapter looks at the past, present, and future—
but not in that order.

We began this book with a whirlwind tour of the history of 25 centuries of
physical libraries. A whirlwind tour of prognostications for the first 25 centuries
of digital libraries, starting today, would be an excellent way to end. But technol-
ogy predictions are futile. We cannot even foresee the next 25 years: in fact, given
the rate of change in the field, 25 months seems sufficiently ambitious! Neverthe-
less we will present some visions of the digital library—images of today as well as
visions of tomorrow. Digital libraries have certain obvious practical advantages
over physical ones and seem to offer the promise of far greater universality. While
all this is true, we believe that their real power lies elsewhere. In our own vision
the digital library is like an all-encompassing information medium that will
envelop us as we work—like air. Just as oxygen unobtrusively powers our body
and brain, so digital libraries will unobtrusively empower our mind.

Having glimpsed the vision, we turn to a troubling but vital issue that threat-
ens to jeopardize the whole enterprise: preserving the past. This is something that
we have not mentioned so far. The mission of a library is twofold: to collect, orga-
nize, and provide access to information, and to pass it down to succeeding gener-
ations as a record of culture. In short, the librarian’s twin duties are access and

Documents are the digital library’s building blocks. It is time to step down

from our high-level discussion of digital libraries—what they are, how they

are organized, and what they look like—to nitty-gritty details of how to rep-

resent the documents they contain. To do a thorough job we will have to

descend even further and look at the representation of the characters that

make up textual documents and the fonts in which those characters are

portrayed. For audio, images and video we examine the interplay

between signal quantization, sampling rate and internal redundancy that

underlies multimedia representations.Documents are the digital library’s

building blocks. It is time to step down from our high-level discussion of dig9

444 N I N E | V I S I O N S

preservation: providing access to the world’s literature for today’s readers and
preserving it for future generations. Libraries are containers for putting things in
and getting them out again—at different points in the space-time continuum.

This book has talked a lot about access, but not at all about the problem of
preservation. In truth there is not a lot we can say—except to recognize the
problem, acknowledge its devastatingly serious nature, and point out that
although it is caused by technology, it will not be solved by technology. Preser-
vation is a social issue, not a technical one. In the history of libraries, a great deal
has been destroyed forever. But some has been preserved. It is sobering to realize
that if the ancients had possessed our technology, we would probably have even
less record of the past.

What are the challenges for digital libraries? We focus on one: generalized
documents. Today’s collections are mostly text. They include pictures, of course,
even audio and video—but these objects are subservient to text, in particular
textual metadata. Of course some research projects do focus on, say, video
libraries, but they neglect text and documents in other media. The real challenge
is to create collections of digital documents in diverse media types, where each
type is treated as a first-class citizen. One example we can point to is digital
libraries of music, which allow you to search melodies directly, by humming or
singing, and combine this with textual queries on lyrics or metadata. But
designing searching and browsing strategies specifically for different media, and
integrating them into a unified concept of “generalized documents,” are key
problems for current research.

Generalized documents raise some intriguing questions and possibilities.
What is “literature” if documents are generalized? Can information collections
be language-independent? Can digital libraries be used by people from oral cul-
tures? Why not! Does this have implications for developing countries? You bet!
And what about our own society, where text and sustained, coherent argument
are increasingly being hijacked by imagery and sound bites?

Library traditions have long been influenced by the belief that libraries
should serve democracy. As part of their mission to serve as resource centers for
citizens, public libraries maintain collections of records, policy statements, gov-
ernment documents, and so on. The U.S. Library of Congress is the oldest cul-
tural institution in the nation’s capital and serves as a symbol of American
democracy and faith in the power of learning. Indeed the library gained support
during World War II by publicly defending American culture against the threat
of totalitarianism in Europe.

We believe that future digital libraries will find a new role to play in helping
to reduce the social inequity that haunts today’s world, both within our own
countries and between nations.

9.1 Libraries of the future

Digital libraries have the potential to be far more flexible than conventional
ones. Of course they are portable: they will be with you whenever you want
them to be: in the home, in the plane, at the beach, in a Ugandan village, on the
street when you want to play your friends that new song. They will be large, giv-
ing access to your personal book collection, your town’s public library, your uni-
versity library. Not only this, but they will ultimately be seamlessly integrated
with national and international sources of information—interlibrary loan at
your fingertips. Like H. G. Wells’s vision of a permanent world encyclopedia
mentioned in Chapter 1, they will give access to the world’s recorded knowl-
edge. But they will certainly not be static. In 1931, shortly before Wells penned
his vision, Ranganathan, an influential librarian and educator who is considered
the father of library science in India, wrote as one of his “five laws of library sci-
ence” that a library is a growing organism. The ultimate digital library will con-
tinually be revised and extended by original thinkers around the world.

But wait, there’s more. Flexibility will extend well beyond matters of physical
convenience. Future digital libraries will surround you with information in
ways that we can yet only dimly perceive. When Karl Marx wrote Das Kapital, he
worked in the reading room of the British Museum library. Not only will future
revolutionaries use their laptop instead of Marx’s pen and paper, they will work
“inside” their digital libraries in a stronger and more visceral sense.

Today’s visions

Figure 9.1 shows the reading room of the New York Public Library, which itself
is depicted in Figure 1.3 (Chapter 1). This is a magnificent place: spacious and
airy with bright yet soft lighting, comfortable furniture, warm tones of wood,
leather, and books; the hushed sounds of people thinking and working. You can
become absorbed in what you are reading, living in your own world shared
between your head and the book you are holding, or your gaze can wander
around the immense spaces above you, the massive windows, the huge chande-
liers, the painted ceiling. But the space is impersonal, as any large physical
library has to be. One size fits all. No matter how divergent your intellectual
pursuits, you work in the same place as your neighbor. The most you might
expect by way of personalization is an assigned carrel where you can leave your
books and materials undisturbed until tomorrow. Is this the vision we seek for
digital libraries?

Figure 9.2 shows an example digital library, one that forms part of the British
National Library. It is just as impersonal as Figure 9.1, if not more so. You stand

9 . 1 L I B R A R I E S O F T H E F U T U R E 445

at the threshold and are confronted with row upon row of identical worksta-
tions. This space lacks the architectural beauty of the reading room in Figure
9.1—it looks utilitarian rather than spacious. We all know from bitter experi-
ence that the technology it contains, no matter how spiffy today, will appear old
and jaded in just a few months. But perhaps the most striking thing about the
vision is the staged nature of this publicity photograph: one man in an empty
room, clearly posed as though at work. Every other workstation in the room
shows the same screen—not only that, but beside each one, on a typing stand, is
the same piece of paper. This Orwellian setting does not seem like a nice place to
work. Is it the vision we seek?

A more engaging picture of a present-day digital library is Figure 9.3, which
shows the computer room at the Kataayi cooperative in Uganda with which this
book opened. From a Western perspective the image is decidedly low-tech. The
computers are ancient, the furniture is shabby, the walls are bare, the setting is
plain and utilitarian. But it looks as though it works. Here we see real people
interacting with information in a real environment, rather than a publicity
machine’s conception of some kind of spine-chilling ideal. This picture serves as

446 N I N E | V I S I O N S

Figure 9.1 New York Public Library reading room.

9 . 1 L I B R A R I E S O F T H E F U T U R E 447

Figure 9.2 Digital library in the British National Library. “The Virtue of Virtual
Libraries” by Matt Jones. The Independent, 16 July 2001. London, England.

Figure 9.3 A peek inside the digital library at the Kataayi cooperative in Uganda.

a salutary reminder that libraries are about connecting people with the informa-
tion they need. Kataayi’s library may not be flashy, but it works.

Tomorrow’s visions

So much for the present: what about the future? By way of—literally!—comic
relief, Figure 9.4 shows a sci-fi artist’s image of a digital library taken from a
Marvel comic, the living computers of Xandar (dated 1979). On this planet they
have stored the still-functioning brains of the population for more than 10,000
millennia, giving—as our guide explains—a complete record of all their history,
all their science, all their knowledge. Is this the long-term prognosis that we

448 N I N E | V I S I O N S

Figure 9.4 Xandar’s digital library. Vol. 1, #25, 1979.
FANTASTIC FOURTM © 2002 Marvel Characters, Inc.
Used with permission.

sought at the outset? (Note that our 25 centuries of libraries represent a mere
eye-blink in Xandarian history.)

Here is a vision that emphasizes preservation over access. Xandarians can put
the brains in, but can they get the knowledge out? It certainly appears from the
illustration that their computer scientists have some work to do on the user
interface. But the problem runs deeper. In storing living brains, what is lacking
(or may be lacking—it’s hard to tell from the picture!) is librarianship—the
selection, organization, and maintenance in the definition of digital libraries in
Chapter 1, the wisdom that librarians put into the library by making value judg-
ments about what information is to be included and how it should be orga-
nized. Figure 9.4 is reminiscent of a historical archive of the Web. There is no
organization, no quality control: a mere repository. This is not a library.

Our own vision of the digital library of the future is that it will be a personal-
ized, comfortable space to work in. Think of it as more like a kitchen than a
library—a kitchen for knowledge preparation. If you like cooking, you will have
arranged your kitchen to suit what you do: utensils ready to hand, pots by the
stove, spices for the kind of dishes you like to cook, and placed just where you
need them. Left-handed?—change your kitchen around. Short?—adjust the
work surfaces. Like wine?—keep a glass handy. Stir-frys?—here’s the wok.

Figure 9.5 shows another workspace that illustrates the vision we are trying to
convey. This carpenter’s workshop, although perhaps a little stiff and idealized, is
all set out as a comfortable, productive workplace. Hand tools are arranged in
convenient clusters, bench tools such as vise and drill press are conveniently
located, nails and screws are boxed and labeled, a well-positioned lamp illumi-
nates the current job. This man knows where everything is, and the physical
arrangement almost exudes productivity. Imagine how much better you could
work here than in the messy corner, littered with assorted junk and half-finished
projects, that most of us have in our garage. Imagine how this carpenter would
feel if he had to carry all his tools into the New York Public Library reading room
in Figure 9.1; unpack them, sort them, and arrange them before he began work;
and pack them up again before lunch to leave the space clear for someone else.

Just so with the digital library. Inside the computer it will be your library,
arranged the way you like it, personalized for the kind of things you do. Exter-
nally it may look like Figure 9.1 (just bring your laptop and plug it in), Figure
9.2 (hopefully a little more welcoming and ergonomic, with concealed comput-
ers, flat-panel screens, and wrist rests), or even Figure 9.3 (though with more
powerful equipment). Inside it will not only give access to the world’s recorded
knowledge as Wells’s vision did, but it will feel like Figure 9.5, arranged just for
you and the kind of things you do.

You will need to invest in this personalization, just as our carpenter invested
time and money establishing his workplace. And there are pitfalls aplenty, for

9 . 1 L I B R A R I E S O F T H E F U T U R E 449

with the potential for flexibility comes the potential for confusion. A physical
environment makes the possibilities that it opens up for interaction—its “affor-
dances”—openly manifest. There is no user manual for Figure 9.5: you can step
into this environment and see immediately how it works. It will be harder to
make the intellectual environment your digital library provides so accessible
and transparent.

But we’re dreaming of the future: these problems will be solved. The comput-
ers, so prominent in Figure 9.2, will disappear. There will still be an interface—
perhaps a screen, though it may disappear into the wall or into your spectacles;
perhaps a keyboard, though it may disappear into finger sensors or a micro-
phone; perhaps a mouse, though it may be a wand or a wave of the hand. But
you will conceptualize this interface as a library rather than a computer: the
computer will become invisible just as the countless electric motors in your

450 N I N E | V I S I O N S

Figure 9.5 Carpenter’s workshop. Working in Wood by
E. Scott. Putnam, 1980.

house have become invisible, disappearing into hair dryers, fans, electric razors,
kitchen appliances, CD players, and VCRs. Tomorrow’s digital library will feel
less like a computer, more like a kitchen or workshop.

As well as being personalized, your digital library will be dynamic. And not
only in the sense that the information it contains will be bang up to date. The
library will work alongside you, tracking your activity, unobtrusively rearrang-
ing itself to put what you might need in the context of what you are doing just
there where you can see and read it. When you leave off for the day, it will con-
tinue to work for you, locating pertinent information, classifying and categoriz-
ing it, working through the implications, researching on your behalf, so that
tomorrow when you recommence you will start well ahead of where you left off
today.

Working inside the digital library

We said in Chapter 1 that digital libraries are libraries without walls, although
they do need boundaries; we argued that the very notion of a collection implies
a boundary. Paradoxically, perhaps, in the future we will work inside the digital
library in a new sense of “in”-ness that we can barely glimpse today. The library
will be an environment that surrounds you in an intellectual, not a physical,
sense. But virtual reality means that intellectual experiences can easily be trans-
lated into physical ones. More or less immersive (you can choose), the library
will be an environment that reacts and responds to what you are doing, making
the right kind of information available to you as and when you need it, and in an
appropriate form. It will surround your head.

Lest you feel you are being carried away by empty rhetoric, a system called
Phrasier, conceived and constructed by Steve Jones of the University of Waikato,
gives a glimpse of what we mean. Phrasier is an environment for reading and
writing within a digital library. Figure 9.6 shows us at work writing this chapter.
We are working in a digital library, and associated with every document in it are
a handful of key phrases, perhaps assigned manually, perhaps extracted auto-
matically from the text as described in Section 5.6 (Chapter 5). It is these that
are used to connect the chapter being written with the documents in the library.

As Figure 9.6 shows, certain parts of the chapter’s text are highlighted in
boldface. These are phrases that appear as key phrases of other documents in the
library. If a subject-matter thesaurus were available, phrases in it would be high-
lighted too, wherever they appeared in the chapter. The user can control the
amount of highlighting and the tone of the non-highlighted text using the slider
at the top of the page. Studies are underway to determine whether people can
skim text faster, yet still gain some comprehension of it, if the text fades away
into the background and only the key phrases are clearly visible.

9 . 1 L I B R A R I E S O F T H E F U T U R E 451

Mouse buttons can be used to focus on a phrase of interest that appears in the
chapter and to examine the documents in the library for which it is a key phrase.
A popup window contains titles of documents for which this is a key phrase. In
this case the key phrase is music retrieval, and the list contains just one item.
That document has been selected and is shown just beneath the item, in a sec-
ond popup window.

In Figure 9.7 we have brought up another window (in the background) in
which to examine related literature. We have focused on a particular area of the
chapter—the three paragraphs in the middle—by highlighting it with the
mouse (the highlighting is only faintly visible in the picture). In the background
window there appears, on the left, a list of the key phrases that appear in that
region (there are three), along with their frequency and the number of docu-
ments for which they are a key phrase. The system has used this set of key
phrases as a query into the digital library and has retrieved a list of documents

452 N I N E | V I S I O N S

Figure 9.6 Reading a document in a digital library.

that relate to all of them, sorted into relevance order using the same kind of
ranking heuristic that is used during full-text search. If the selected part of the
chapter is the focus of interest, this list shows the relevant literature in the
library. It appears in the right-hand panel; clicking on a document brings it up
in a separate window.

As authors we often want to focus on a conceptual subtopic of the chapter’s
subject matter rather than on a spatial region like a particular paragraph or sec-
tion. In Figure 9.8 the phrases in the background window’s list are key phrases
in the digital library that are mentioned anywhere in the chapter’s text, not just
in a particular subarea as before. Some are highlighted because we have selected
them manually by clicking on them. This selection effectively defines a subtopic,
or group of subtopics, that has been chosen as being of special interest. As
before, a list of related documents appears in the right-hand window; but now it
is the manually chosen key phrases that are used to select and rank them. This
provides a reading list, ranked by relevance, for the conceptual subtopic that has
been defined. Again, of course, the full text of each document is just a click away.

We have chosen to illustrate the Phrasier interface by describing how we
might have written this chapter. As we type new material into the document
window in Figures 9.6, 9.7, and 9.8, everything we have just described happens

9 . 1 L I B R A R I E S O F T H E F U T U R E 453

Figure 9.7 Focusing on part of the document and finding pertinent literature.

interactively. The new chapter is not only born digital, it is born in a library,
fully contextualized and linked to the existing literature at birth.

Exactly the same system supports reading. You can load an article into the
document window and read it “in” the library. The article could be taken from
the library or downloaded from elsewhere. The entire contents of the library are
available with no effort, in context, at your fingertips, on the fly, as you read and
write. This is a library that works along with you.

9.2 Preserving the past

Libraries link the past and the future, and preservation has always been a key
function. Whatever form the cultural record is in, libraries ensure that it is pre-

454 N I N E | V I S I O N S

Figure 9.8 Focusing on part of the document’s subject matter.

served and made available for later use. We learned in Chapter 1 of the tragic
loss of the historic Alexandrian Library, willfully laid to waste during the decline
of the Roman Empire. Acts of God—fires, floods, earthquakes—and acts of
man—wars, revolutions—have damaged the holdings of many libraries,
destroying forever much of the recorded history of human civilization. We gaze
in awe at the stone steles of Xi’an (Figure 1.4) and the Book of Kells (Figure 1.8)
not just because of their intrinsic beauty, but also because they have survived
one or two millennia and have witnessed unimaginable strife and conflict.

The problem of preservation

The trouble with technological progress is that it seems to come at the expense
of preservation. In Wolfenbüttel, Germany, Duke August’s collection of 31,000
volumes of medieval literature with pale parchment bindings is still there for
any visitor to see—in fact you can see them yourself in Figure 9.9—and, barring
catastrophe, our descendants in years to come will be able to share this experi-
ence too. Xi’an’s stone steles, older technology, have lasted longer. It is a tragic
fact that your grandchildren and ours, while they can still visit Wolfenbüttel and

9 . 2 P R E S E R V I N G T H E P A S T 455

Figure 9.9 Medieval literature in the library at Wolfenbüttel. Herzog August Bibliothek
Wolfenbüttel: Globenkabinett.

Xi’an, will not be able to see our own parents’ and grandparents’ literature—
despite the fact that it is far more recent.

Why? The reason is paper technology. Until the middle of the 19th century,
nearly all paper used for written or printed material was made from cotton or
linen rags. This paper lasts for several hundred years without decomposing.
Since then, however, ordinary paper has been made from wood pulp treated
with acidic chemicals. The residual acid slowly decomposes the paper, causing it
to become brittle and crumbly. The rate of decomposition depends on paper’s
original quality and the conditions under which it has been stored. Light, heat,
and humidity all accelerate decomposition. After a period of only a few decades,
books made with acid-based paper decompose to the point where they can
crumble into pieces, even when handled carefully. If this technological
“advance” had been made in medieval times, the Duke’s collection would have
disintegrated centuries ago.

The problem continues. Library organizations advise publishers to use acid-
free paper when printing new books that are likely to have enduring value.
However, fewer than 20 percent of hardcover books—and even fewer paper-
backs—are printed on acid-free paper. Deacidification processes have been
developed that help prolong the life of books printed on acid paper, but they are
expensive and time-consuming.

Nor is paper the only—or even the principal—problem. Other parts of our
heritage have been irretrievably lost. Until 1951 the only type of film that was
available for movie production contained nitrate, which caused it to decay
quickly, even in controlled environments. Today half of the 21,000 feature-
length films made in the U.S. before 1951 no longer exist. Those that have not
been lost or destroyed have decomposed beyond repair. Similarly, analog audio
recordings on wax cylinders or magnetic tapes need to be preserved by transfer-
ring them onto digital formats such as CD-ROM. While CD-ROMs are not nec-
essarily long-lasting—certainly not compared with the acid-free paper used in
the old days—at least a process of regular copying can be established to preserve
digital material without loss.

A tale of preservation in the digital era

Despite its very short history, computer technology has an unbelievably bad
record when it comes to preservation. There are many examples. A 1990 U.S.
government report cited several cases of significant digital records that had
already been lost or were in serious danger of being lost. For example, the 1960
U.S. census narrowly escaped oblivion, for it was originally stored on tape that
became obsolete faster than expected. We will describe in more detail a different
case of near-loss, notable for its irony.

456 N I N E | V I S I O N S

The year 1986 was the 900th anniversary of the Domesday Book, a document
commissioned by William the Conqueror to provide a record of the land he had
conquered 20 years before in 1066. The original book, handwritten on parch-
ment by (probably) a single monk, still exists and is kept at the U.K.’s Public
Record Office in Kew, near London. The book sets out a record of all the lands
in the kingdom, and who held them. Of course, few subjects saw the results of
this labor—most couldn’t read.

The Domesday Project was a national information-gathering exercise con-
ceived and coordinated by the BBC in London to commemorate the event.
Schools around the U.K. were asked to survey their areas to produce a database
of text and pictures that recorded how Britain looked to the British in 1986. This
was combined with central statistical, written, and visual information. The idea
was to capitalize on the wide base of microcomputers in British schools to cap-
ture and present this information in a uniform way.

This was a major project: over a million people took part in one way or
another. The information was recorded on two interactive videodisks that were
issued in 1986, and controlling software was produced for the BBC microcom-
puter in the BCPL language, an ancestor of C. The videodisk player was con-
nected on a SCSI bus (very new at the time) and was made to look to the con-
trolling computer like a very large read-only disk. A special version of the BBC
microdisk filing system was used to organize the data.

Most of the people who contributed to the database never saw the result of
their labors—even though they could read. The system was obsolete virtually
from the moment it was released. Apparently it would take over seven years to
look at everything on the disks—but you would have had to work fast, for long
before that time had elapsed the system had vanished, almost without trace. The
only place you might see it now is in a museum. The Science Museum in Lon-
don has one, and there is rumored to be another at the Ontario Science Center
in Toronto (although it was never intended as a permanent display).

In 1996, on the project’s tenth anniversary, a plea went out for information
on any installations that were still available for public or research access. It
would be easier to go and see the original Domesday Book, then 910 years old.18

The digital dark ages

“Let us be absolutely clear from the outset,” warns an article entitled “A Digital
Dark Ages?,” “no one understands how to archive digital documents.” In stark,
uncompromising language, it develops several points.

9 . 2 P R E S E R V I N G T H E P A S T 457

18. Although few scholars are allowed to see the original, a handsome facsimile is on display in
the lobby of the Public Record Office.

First, with regard to preservation technology:

■ Enormous amounts of digital information are already lost forever.
■ Information technologies become obsolete very quickly.
■ Document and media formats continue to proliferate.
■ Technology standards will not solve fundamental issues in the preserva-

tion of digital information.

Second, with regard to the availability of material:

■ Libraries will shortly see a demographic bulge of electronic material as the
baby boom generation of authors and academics contribute material gath-
ered during their careers.

■ Much material will never make it into library collections for preservation
because of increasingly restrictive intellectual property and licensing
regimes.

■ Archiving and preservation functions in a digital environment will increas-
ingly become privatized as information continues to be commodified.

Third, with regard to the traditional library functions of archiving and
preservation:

■ Financial resources available to libraries and archives continue to decrease.
■ Libraries and archives will be required to continue their existing archival and

preservation practices as the current paper publishing boom continues.

This paints a gloomy picture. And it is not just one person’s view. In 1996 the
U.S. Commission on Preservation and Access issued the final report of a Task
Force on the Archiving of Digital Information. An impressive group of 21
experts had spent a year studying the problem. The conclusion was alarming—
there is, at present, no way to guarantee the preservation of digital information.
The first line of defense against loss of valuable digital information rests with the
creators, providers, and owners of that information. It’s every man for himself.

This conclusion is borne out by today’s best practice. From the U.K., a recent
(2001) report by the British National Library records that

At present, our preferred preservation medium is high-quality microform. Although
we are researching and developing digital preservation strategies with other institu-
tions it is difficult to predict when the preservation community will have sufficient
confidence in digital preservation techniques for us to acquire the “born digital” as
the preferred medium for preservation.

One of the practical problems with preservation is that issues arise at differ-
ent time scales. Many organizations are faced with crisis: an urgent short-term
need to save documents that are in imminent danger of becoming lost, docu-
ments that are already difficult to access. Fortunately the vast bulk of informa-

458 N I N E | V I S I O N S

tion is not usually in immediate danger, but for the medium term something
must be done now to prevent them from being vulnerable to imminent loss in
the near future. In the long term, strategies must be developed that do not
require continual emergency operations to be mounted on an ad hoc basis—
strategies that are robust to unexpected technical and, particularly, social
changes. For once lost, material is gone forever.

Preservation strategies

Digital documents are vulnerable to loss because the media on which they are
stored decays and becomes obsolete. They become inaccessible when the soft-
ware needed to interpret them, or the hardware on which the software runs,
becomes obsolete and is lost. A luminary in the field declared ironically that
“digital information lasts forever—or five years, whichever comes first.”

The situation is paradoxical. Digital formats have many advantages over ana-
log ones, advantages that seem to promote preservation. They include

■ ease of creation and copying
■ independence of physical media
■ constant improvement in hardware and software

The problem is that these apparent advantages actually make digital preserva-
tion even harder, as a little thought shows. Ease of creation causes information
glut. Ease of copying means that it is not clear which is the original—so every
“copy” seems dispensable. Independence of media means that it seems hardly
worth expending effort on saving the physical artifact, even if that were possible.
Constant improvement in hardware and software promotes obsolescence—cyn-
ics say this is what drives the computer industry.

“May all your problems be technical ones” is a blessing that nerds, among
others, bestow upon one another. Computer people recognize that the technical
stuff is the easy bit. It’s the human part that causes problems. The human inter-
face is by far the largest and most complex part of virtually all of today’s software
systems. Administrative problems consume time and beget frustration. Political
processes such as standardization require negotiation, compromise, bargaining.
It is the technical problems that have solutions which yield to honest intellectual
work.

But preservation is not a technical problem, unfortunately. There are four
basically different preservation strategies:

1. paper
2. museums
3. emulation
4. migration

9 . 2 P R E S E R V I N G T H E P A S T 459

The first two involve printing the material out on paper (or microfilm), and pre-
serving the technology in museums, respectively. These are not usually taken
seriously as long-term preservation strategies, although we have already
encountered both. Printing is what the British National Library actually does
today, while visiting a museum of technology is what you have to do if you want
to see the Domesday Project.

The remaining methods highlight the distinction between preserving the
physical stream of bits that constitutes each document, and preserving the logi-
cal means by which these bits are interpreted as a document. These two mecha-
nisms are independent. Although retaining the integrity of the physical bit-
stream is what initially springs to mind when thinking about preservation, the
second problem is the more taxing.

Emulation involves keeping the documents in exactly the same form as they
are and emulating the functionality of the original, obsolete system on future,
unknown systems, so that a digital document’s original software can be run in
the future despite being obsolete. To preserve the physical bitstream will involve
regular copying to new media, the application of error detection to determine
whether degradation is occurring, and error-correcting codes to ensure that
new generations are faithful copies of the original. To preserve the logical inter-
pretation requires emulating old interpreters on new hardware—either by
incorporating backward compatibility into software, or compiling special “his-
toric” versions of the software that emulate its functions. For example, current
incarnations of Microsoft Word can read (most) old Word documents, even
though the formats are quite different: this is backward compatibility. Although
neither Microsoft nor Word may be around in fifty years, it should be possible
to emulate the crucial parts of Word’s functionality on then-current hardware
and so read and display old documents.

This example highlights one of the problems. As we learned in Chapter 4, the
Word format is proprietary. Without inside knowledge you cannot write soft-
ware even today that reliably reads every Word file. An important feature of any
format used for preserving documents is that it is open: the details are made
publicly available. And as well as being open in principle, it must be open in
practice: documented well enough for others to understand and build their own
interpreters. PostScript and PDF are good examples.

Migration involves translating the document from the old format, designed
for now-near-obsolete software, to one that is accepted by new software. This
involves not just copying the physical bitstream to new media, but translating it
at the same time into a new logical format. The difficulty of this operation
depends on the details of the software upgrade, but it will normally be very easy.
For example, you might go through all your old Microsoft Word files, reading
them into Word and writing them out in the latest version of the format. Word

460 N I N E | V I S I O N S

provides this functionality of course—no one would upgrade to new versions if
they were unable to read at least the last generation file format—and, for the
same reason, virtually all serious software will always provide this facility.

Emulation or migration? There are arguments on both sides. Migration may
be cheaper, for no special emulation software needs to be written. Conversion
software is almost always available if it is invoked in a timely manner. But pro-
ponents of emulation point to the fact that conversion is a kind of translation,
and translation often loses features of the data. If each translator in the chain
were reversible, the original document could be reconstituted. But this is not
necessarily the case—at best subtleties such as format, font, footnotes, cross-ref-
erences, citations, headings, and color might be sacrificed; at worst entire seg-
ments such as graphics or sound might be omitted, or the whole document
could be meaningless garbage. Would a modern version of the tale of Beowulf
have the same literary impact if it had been translated through a series of inter-
mediate languages rather than from the earliest surviving text in ancient Anglo-
Saxon?

These copying operations are actually inexpensive, particularly for a digital
library. It is not as though the documents have to be copied by hand, as the
Alexandrian scribes did with the Athenian manuscripts, or individually deacidi-
fied, as conservationists are doing with yesterday’s books. Once the procedure
has been established, you can start a batch job that runs through all the docu-
ments and converts them. For a large collection the expense, amortized on a
per-document basis, will be negligible. There will be ancillary costs of course.
Newly converted documents must be sampled and checked manually against
the originals to ensure that the procedure is operating properly. Safeguards must
be put in place against unexpected problems. You will need to satisfy yourself
that the new collection is complete and correct before finally destroying the old
versions. You may need to change the digital library system to use the new for-
mat. But, again measured per document, the cost is minimal.

The danger is that you might miss a generation. When you come across that
Word file from long ago, current versions may fail to read it. When you
encounter that dusty old magnetic tape, the drive might be unable to read it for
physical reasons, or you might not be able to find a suitable drive. All it takes is
one broken link to lose the documents forever. Through fire and flood, pesti-
lence and famine, war and revolution, the procedure must go on forever. For-
ever is a long time. The problem is administrative, institutional, and political,
not technical.

And it is all very well to say that copying is inexpensive per document, but it
is not so overall, and it is a continual operational expense rather than a capital
cost. When it comes to copying from one media to another, and converting
from one format to another, who will pay?

9 . 2 P R E S E R V I N G T H E P A S T 461

Today we are witnessing a great upsurge in nationally funded digital library
projects, industriously putting content on the Web. Libraries, museums, and
archives proudly declare that they are creating a national identity and putting it
out on the Web for people to experience: a showcase of cultural memory. And
cultural memory is indeed an integral and vital part of healthy modern societies
which benefits people by contributing to their enjoyment and inspiration, pro-
moting their sense of identity through shared values, and enriching their life-
long learning potential. But what about sustainability? Underlying most of these
projects is the tacit assumption, at least by the administrators and politicians
who promote them, that once material is “on the Web” it will be there forever.
Nothing could be further from the truth.

9.3 Generalized documents: A challenge for the present

The digital library technologies covered in this book are largely concerned with
text documents. It is true that Chapter 3 described collections containing audio
recordings, photographic material, videos, and music, and in Chapter 4 we
learned how video and audio documents are represented. It is also true that the
Greenstone software described in Chapters 6 and 7 can deal with multimedia
collections. Nevertheless text remains the principal means of searching and
browsing collections, even when they contain documents in other media. Multi-
media documents can be present in the collection and displayed in the digital
library user interface, but they are linked to textual documents—even if these
contain just captions—and it is the textual material that is browsed and
searched. If content is king, text is prince—and documents in other media are
serfs.

For example, in Chapter 3 we saw a collection of page images of Māori news-
papers (Figure 3.6). Although the target documents are images, they are
accessed by searching text obtained from the images using OCR, and browsed
using textual metadata such as newspaper title and date. We saw a collection of
rubbings of Tang poetry (Figure 3.10); again it is not the images themselves that
are searched, but text extracted from them, typed into the computer—although
in this case this text stays in the background and is unseen by the library user.
We saw a collection of oral history, including audiotapes and old photographs
(Figure 3.7), but it is textual summaries that are searched, not the audio and
photographic material itself.

Digital libraries of music

This book has mentioned just one case in which information in a nontextual
medium is searched directly: the music collection in Chapter 3 (Figure 3.8).

462 N I N E | V I S I O N S

Although this was not described in full, in Figure 3.8 the user is searching for a
tune by humming, whistling, or singing a snatch of it (although without words),
or entering it on a music or computer keyboard. The system is capable of inter-
preting audio input as a sequence of musical notes and searching for that
sequence in a database of melodies.

The first stage in the process is to transcribe the acoustic query into symbolic
musical notes. The background window in Figure 3.8 shows, on the left, the
query in symbolic form. This has been produced by the computer from audio
input captured by a special Web browser plug-in when the user sang into a
microphone. The frequency profile of the input is analyzed by standard pitch
tracking software, and the notes are segmented based on the amplitude profile
to generate the musical representation shown. In fact the notes are a perfect
transcription of the opening bars of Auld Lang Syne, rendered in a nice tenor
voice. Buttons underneath allow the user to replay his vocal input (What you
sang, visible in Figure 3.8) and play a computer synthesis of the transcription it
has made (What I heard, not visible).

The next step involves searching through a database of melodies, measuring
the similarity of the input to each one. In this case the database contains 10,000
folk tunes from around the world. The technical details of the matching opera-
tion are beyond our scope here: suffice it to say that an approximate string-
matching algorithm based on dynamic programming is used to determine the
degree of similarity of each melody to the input. Error-tolerant matching is
essential for several reasons:

■ The input is noisy: pitch tracking can fail and people often sing badly; people
do not remember tunes exactly.

■ Most melodies have different versions—in particular, rhythmic variations.
■ The database may contain errors.

The effect of this step is to identify melodies in the database that match the
query approximately, and sort them by degree of match. The result is shown in
the Query results list in the lower half of the background window in Figure 3.8.
In this case the correct tune, Auld Lang Syne, is the best match.

Text searches can be combined with melody matching to yield a more com-
prehensive search technique. Figure 9.10 shows the query page for a collection
of MIDI (Musical Instrument Digital Interface) tunes, in which a textual search
for the word beatles is being combined with a sung melody that resembles the
first few notes of the tune Yesterday. The music displayed in the figure is the
computer’s rendition of the user’s singing—note incidentally that the rhythm of
the notes is disturbed because the output module, which resynthesizes the
music-editor notation into an image for display, has assumed, incorrectly in this
case, that the tune starts at the beginning of a bar. This misinterpretation does
not affect the result of melody matching.

9 . 3 G E N E R A L I Z E D D O C U M E N T S : A C H A L L E N G E F O R T H E P R E S E N T 463

Text matching is governed by options specified on the Preferences page—in
this case matching is case insensitive with stemming disabled. Likewise music
matching is also governed by options. In this case it is restricted to the start of
each tune (ignoring leading rests), takes account of the interval between notes
(rather than using simply the up-down-same “contour,” which is more appro-
priate for poor singers), and ignores note duration. From the Query Results
page, part of which is shown in Figure 9.10, items in the collection can be
viewed in various forms, symbolized using icons to the left: the MIDI file recon-
structed in the form of sheet music, audio playback of the MIDI file, and an
HTML page showing the text that accompanies the song.

464 N I N E | V I S I O N S

Figure 9.10 Combined music and text search.

Music information retrieval is a fascinating area which involves many novel
techniques. For example, it is useful to extract musical motifs—short sequences
of notes that are repeated throughout a given tune. Motifs in music are analo-
gous to key phrases in text, and the same techniques mentioned in Chapter 5
(Section 5.6) can be used to identify candidates. Coming up with an algorithm
to identify just those motifs that are musically interesting is a challenging
research problem. However, extracted motifs are useful even if they are diluted
by many uninteresting ones. For example, searching can be accelerated by pro-
ducing an index of motifs in advance, like the full-text indexes used for text.
Motifs could form the basis of a musical browser, serve as brief surrogates for
tunes, and even underpin musicological studies. Other fascinating problems are
presented by polyphonic matching—most music comes in parallel streams of
information played by different instruments but strongly coordinated in time—
and rhythmic matching—as any dancer will confirm, music is characterized by
different rhythmic patterns.

Another interesting area is the acquisition of music for digital libraries. We
mentioned in Chapter 3 that copious quantities of files in MIDI notation can be
found on the Web. We had no trouble in locating and downloading several hun-
dred thousand of these to provide a basis for research on theme extraction.
From these we selected 100,000 different files. Of course this collection still con-
tains many duplicates. For example, there were 25 different arrangements of J. S.
Bach’s Jesu, Joy of Man’s Desiring, and 27 versions of the Beatles’ Yesterday. There
is a tremendous variation in quality, ranging from puerile to excellent. One of
the advantages of audio information is that it is very easy to scan, given a suit-
able interface. You can click quickly down the list of search results in Figures 3.8
and 9.10, listening to the beginning of each song, perhaps for half a second or
less. Because the information on the screen stays the same, the visual context
remains undisturbed—whereas when scanning text results it changes con-
stantly, causing a far higher level of perceptual stress.

We also made passing mention of acquiring music using optical music recog-
nition or OMR, the musical analog of OCR. Figure 9.11 shows an OMR system
being applied to an excerpt of printed music to generate a symbolic form from
which the score has been constructed for display. Although the notes are the
same, they can now be manipulated in musical terms because the music is now
represented in the computer symbolically rather than pictorially. Reconstruct-

9 . 3 G E N E R A L I Z E D D O C U M E N T S : A C H A L L E N G E F O R T H E P R E S E N T 465

Figure 9.11 Application of an optical music recognition system.

ing the image is just one example. The tune can also be played back, have its key
altered, be searched for musical motifs, and so on.

Other media

To promote nontextual documents into first-class citizens, searching and
browsing strategies must be devised specifically for different media. The music-
searching capabilities described in the last section are just one example.

Images
Visual material can be rapidly browsed using thumbnails—miniature pictures,
typically presented in a gallery on the screen. With a suitable interface users can
page or scroll through these very quickly, looking for something in particular.

The simple device of cycling automatically through representative images is a
powerful way of capturing the reader’s attention and conveying a feeling for
what an information collection contains. For example, Figure 9.12 shows the
home page of the Humanity Development Library mentioned in Chapter 1. Just

466 N I N E | V I S I O N S

Figure 9.12 Home page of the Humanity Development
Library.

as libraries display new acquisitions or special collections in the foyer to pique
the reader’s interest, this page highlights a particular book that changes every
few seconds. The book can be opened by clicking on the image. This simple dis-
play is extraordinarily compelling. And just as libraries may display a special
book in a glass case, open at a different page each day, a “gallery” screen could
show an ever-changing mosaic of images from pages of the books, informative
images that, when clicked, open the book to that page.

When it comes to automatically searching images rather than manually
browsing through them, things become more difficult. Ideally one would like to
be able to say, “Find me all images that show elephants,” or “flashy cars,” or
“lovers on a tropical island.” These simple questions require sophisticated image
understanding that is not possible in the present state of the art. However, it is
possible to answer questions such as “images that contain a large gray area,” or
“images with mostly sky at the top.”

For example, there are many systems that can show images similar to a given
example. Simple techniques such as matching the histogram of colors of an
image’s pixels against the histograms for other images often work surprisingly
well, considering that the color histogram discards all shape and proximity
information. Textures (a tiled roof or a field of corn) can be matched by com-
puting what is known as the optical flow of an image. Shapes can be extracted
and matched—simple ones such as lines and circles, or complex ones such as
frogs and horses. Research on image retrieval has produced a host of techniques
that are useful for digital libraries.

Videos
A video is just a sequence of pictures, and the same techniques apply. One of the
key problems in video processing is cut detection—locating techniques where
the shot, or scene, changes. There are several types of cut. Sharp cuts are easily
detected because virtually all pixels change abruptly and at the same time. Dis-
solves change from one scene to another over a period of a second or so. Wipes
reveal the new picture from the top down, or the bottom up, or diagonally, or
from the center out—there are many possibilities. Sometimes it is hard to dis-
tinguish cuts from camera or object motion, or pinpoint individual cuts in a
rapidly changing sequence. Yet automatic methods for cut detection are well
developed and work well.

Cuts determine the different scenes in a movie. Movies can be browsed and
manipulated using a succession of thumbnails representing the initial image in
each scene—or perhaps a “typical” image extracted from each scene. And the
techniques mentioned here for picture retrieval can be applied to these repre-
sentative images.

9 . 3 G E N E R A L I Z E D D O C U M E N T S : A C H A L L E N G E F O R T H E P R E S E N T 467

Objects
Many libraries contain realia, or real artifacts. School libraries may include vari-
ous kinds of rock for the study of geology; cultural libraries may possess objects
such as the toki shown in Figure 1.10. Museums are institutions that house
nothing but realia—objects of artistic, historic, or scientific interest, typically
conserved and displayed for the edification and enjoyment of the public. While
museums and libraries are ordinarily considered to be rather different kinds of
institution, we can expect a convergence between them in the digital world.

Computer graphics techniques allow three-dimensional objects to be cap-
tured in the form of a data set that can be viewed under various lighting condi-
tions and rotated or otherwise transformed interactively. Technology has been
developed over the years to allow extremely realistic images to be rendered,
including light and shade, surface characteristics, translucence, and specular
and diffuse reflection. Realistic representations can be made even of objects that
artists find challenging, such as liquids, glass, fire, plants, hair, clothing, and skin
tones. As the movie industry has demonstrated, these objects can be animated
realistically too.

In libraries and museums, artifacts are indexed and located on the basis of
metadata rather than intrinsic characteristics such as shape and color. However,
there are applications that need objects to be retrieved on the basis of physical
similarity, whether three-dimensional size or shape or surface characteristics.
Electronic commerce will probably spur rapid progress in this area because
shoppers like to see what they are buying and need to be able to browse through
similar items.

Books are a special case of artifacts that can be modeled as physical objects—
a case that is of particular interest to libraries! Figure 9.13 shows an image from
a system in which the book’s pages can be turned by touching their edges and
sliding your finger across the display screen—the page comes with you, reveal-
ing as it goes the page underneath, and as it passes the halfway point, the flip
side of the page being turned comes into view. This provides a very effective
feeling of working with a physical book.

Other document types
Many other useful document types can be distinguished. Here are some exam-
ples, each of which could form the basis of significant digital library collections.

Teaching material often involves multimedia elements: textbooks, diagrams
and pictures, slide presentations, online presentations, educational videos, realia
such as the rocks mentioned earlier, and audiovisual recordings of lectures.

Generations of scientists have recorded the results of their work in laboratory
notebooks. These have proved invaluable for resolving patent issues, because a
properly maintained inventor’s laboratory notebook is often the first evidence

468 N I N E | V I S I O N S

of the conception of an idea. They have also been central in investigations of
fraud. For example, in a long, bitter, and extremely complex investigation of sci-
entific misconduct during the 1980s and 1990s that came to be known as the
“Baltimore affair,” the U.S. Secret Service analyzed laboratory notebooks to try
to determine whether pages had been falsely backdated and new ones inserted
to cover up weaknesses in the data.

Scientific and engineering data form another category of information that
must be archived, searched, and browsed. This includes the results of scientific
experiments, engineering design data such as the results of simulations, and
social science data in the form of survey results and analysis. The information is
heterogeneous and expressed in many different forms: spreadsheets, databases,
engineering drawings, files from computer-assisted design and manufacturing
systems, and so on.

Generalized documents in Greenstone

We defined a digital library in Chapter 1 as a “focused collection of digital
objects, including text, video, and audio.” A key challenge is to integrate objects
of all kinds of media into digital libraries in such a way that each becomes a first-
class citizen. In this book textual documents have been paramount; other media
types are included in a secondary way as associated files. To meet the new chal-
lenge, we need to devise ways of searching and indexing documents in all media,
techniques for automatically providing some form of document summary,

9 . 3 G E N E R A L I Z E D D O C U M E N T S : A C H A L L E N G E F O R T H E P R E S E N T 469

Figure 9.13 Modeling a book as a physical object. By
Permission of the British Library.

methods of classifying content, and imaginative ways of browsing through doc-
ument collections. These new techniques should not appear as a clutch of inde-
pendent facilities, but should rather work together, as a family, within a uniform
user interface.

Although the Greenstone digital library system does not incorporate search-
ing and browsing techniques for nontextual media, its architecture is flexible
enough to permit such modules to be added. We mentioned in Chapter 7 (Sec-
tion 7.3) that to encourage extensibility and flexibility, the runtime system uses
inheritance widely—in particular, it is used within the Filter and Source objects
that respond to incoming protocol requests, and the Search object which assists
in this task by encapsulating the search engine being used. This means that dif-
ferent search engines can be deployed by replacing or augmenting the MG sys-
tem that is used to perform text searching. Indeed, in the music retrieval work
described earlier, a different search engine is used, called MR for “melody
retrieval,” which implements an approximate string-matching algorithm for
music.

In Greenstone, collections of documents are browsed by textual metadata, or
by date, or through hierarchies such as subject classifications. Although textual
metadata is normally presented alphabetically, often with an alphabetic A–Z
selector, different schemes must be incorporated for ideographic languages such
as Chinese—two of these, for stroke ordering and Pinyin, were described in
Chapter 3 (Figure 3.20). All browsing is done through classifier modules.

Generalized documents will need different browsers, but these fit within the
existing architecture. If a browser can be presented in terms of arbitrary struc-
tures of horizontal and vertical lists (mentioned in Chapter 7, at the end of Sec-
tion 7.2), it can be handled by existing mechanisms, and only a new classifier
need be written. This is normally a lightweight job involving a page or two of
Perl code (Section 6.7)—plus the media-dependent part, which could be arbi-
trarily complex. It may also be necessary to add new facilities, appropriate to the
media type, to the format mechanism (also described in Section 6.7).

The standard Greenstone interface is constrained to use only the facilities
provided by standard Web browsers. Java applets can be used for more general
presentation of document and browsing structures. We have already seen an
example in the hierarchical phrase browsers described in Chapter 3 (Figures
3.23–3.25), which use an applet to present scrolling lists of phrases. For even
more general interfaces (an example is shown in Figure 7.3), the CORBA imple-
mentation of the Greenstone protocol can be used. This allows any system to
access a remote collection server and present a radically different interface—far
beyond what is possible with the format statement mechanism—that harnesses
the power of the digital library “back end” and the documents it contains.

470 N I N E | V I S I O N S

A final task—or rather, the initial one—is to import multimedia documents
into the collection. All documents are brought into Greenstone using plug-ins,
and new plug-ins will be needed for different media types.

Ultimately, generalized documents may challenge the very notion of the docu-
ment as the basic unit within a digital library. Why does everything have to hinge
on discrete documents? Greenstone, along with other digital library systems,
views its input as a collection of documents, documents that have their own
internal structure in terms of sections and subsections. This view may be artifi-
cial and culture-dependent, stemming from traditional limitations involved in
handling physical information objects.

If the input really is a long stream of text, perhaps it should be treated that
way. Search engines could find those stretches that are most relevant to queries,
without any regard for artificial document and section boundaries. Extending
this vision to generalized documents may provide a uniform way of looking at
digital collections that transcends current thinking.

Digital libraries for oral cultures

Libraries are about literature. Our dictionary defines literature as “the writings
of a society, in prose or verse,” and goes on to add, “Broadly speaking, literature
includes all types of fiction and nonfiction writing intended for publication.”
This seems to be firmly dependent upon writing. But the earliest cultural tradi-
tion in New Zealand, for example, is that of the Māori, whose literature con-
sisted of history, tales, poems, and myths handed down by oral tradition. It was
only when missionaries arrived from Europe that these were written down and
became “literature” by the dictionary definition. We have much to learn from
early cultures. One trend in modern writing, for example—particularly Aus-
tralian and North American—is to draw on the oral storytelling traditions of
aboriginal cultures.

The ultimate aim of generalized documents is to give nontextual material
first-class status in a digital library—if you like, first-class status in “the litera-
ture.” This has important cultural ramifications. It should be possible to create
digital library collections intended for use by people in oral cultures, who may
be illiterate or semi-literate, or by people who, though they can read and write
their own language, cannot speak or read the language of the digital library.

Imagine having access to collections that spring out of the rich cultures of
China or Arabia, created by people who grew up in these cultures, without
having to learn a new language. More practically—since you, dear reader, are
culturally privileged and can probably access this kind of information in trans-
lation—imagine giving someone in the highlands of Peru, fluent and literate in
her native language of Quechua, first-hand access to the information in human-

9 . 3 G E N E R A L I Z E D D O C U M E N T S : A C H A L L E N G E F O R T H E P R E S E N T 471

itarian collections such as the Humanity Development Library (currently
available only in English and French) or the Biblioteca Virtual de Desastres (a
collection of information dealing with disasters and emergencies, currently
mainly in Spanish).

If you find it difficult to imagine how serious practical information could
possibly be conveyed in purely iconic form, look at Figure 9.14, which shows
how to splint a broken forearm. It is taken from a 120-page manual on first aid
that contains not a single written word. Literate as you undoubtedly are, in an
emergency you might even prefer these pictures—which in the book are vividly
colored, adding further clarity—to a textual account of how to deal with a
medial radius fracture. Another striking example is the “user manual” for Mex-
ico City’s underground transport system: a brilliant iconic design, with no
words whatever, that gives clear instructions for how to use the metro. A third
example, and a historical precedent, are the so-called Beggar’s Bibles (Biblia
pauperum) which were designed in the Middle Ages for the religious instruction
of illiterate believers. They used numerous illustrations to explain passages from

472 N I N E | V I S I O N S

Figure 9.14 First aid in pictures: how to splint a broken arm. First Aid in Pictures by M.
B. DeLong, J. G. Brady, L. D. Bourgeois, and L. J. Niemiec. Barbara A. Bear, Illustrator.
Edward L. Meador, Editor. Vade Mecum Press, 1988.

the Bible and have been called prototypes of our present-day comics. Produced
before Gutenberg, each printed page was carved in a woodblock. You can see
them today at Wolfenbüttel.

These three examples are static images. Imagine what you could do with
motion, sound, video, interaction, 3D objects, simulations, and virtual reality.

The apparently paradoxical notion of libraries for the illiterate has its resolu-
tion in the notion of generalized documents. The challenge is to design digital
libraries in a way that they are usable by people from oral cultures—not so dif-
ferent from designing searching and browsing mechanisms for nontextual
material. In fact it is even possible to imagine such people creating their own
digital library collections. The LINCOS project, for example, equips villages in
developing countries in Central and South America with information technol-
ogy, housed in ordinary transportation containers. These units form a kind of
“school,” typically attended by children and elderly people—the economically
active segment of the population does not enjoy the luxury of leisure time for
continuing education. In them, people—including the semi-literate—enjoy
learning to use computers for creative and artistic activities: drawing, capturing
photographs, making movies. Suitably equipped, the modern microcomputer
transcends text.

With the advent of low-cost consumer technology for image and movie cap-
ture, a quiet revolution is taking place in our homes. Now anyone can keep a
photograph album on a home computer, or shoot video and use sophisticated
editing techniques to produce a professional-quality movie, or make a CD-
ROM of one’s own music (or that of others). Ever since the advent of broadcast
television, our text-dominated society has gradually become attuned to the
more visceral medium of moving images. We book lovers may deplore the
decline of the printed word, laud the sustained argument carefully built up over
pages, and praise the power of the written word to conjure up far more imagina-
tive and vivid imagery than any TV can. We may lament the decrease in atten-
tion span, the reduction of arguments to sound bites. We may wish that our
children spent more time reading books, less time playing video games. But we
must live in the world too, and the world is changing.

Perhaps digital libraries for people from oral cultures will find a place in our
own society too and help reduce the various “digital divides” that cleave our
world—the “social divide” between the information-rich and the information-
poor in our own nations, the “democratic divide” between those who do and do
not use the panoply of digital resources to engage, mobilize, and participate in
public life, as well as the “global divide” that reflects the huge disparity in access
to information between people in industrialized and developing societies.

Is this too much to hope?

9 . 3 G E N E R A L I Z E D D O C U M E N T S : A C H A L L E N G E F O R T H E P R E S E N T 473

9.4 Notes and sources

S. R. Ranganathan, the father of library science in India, began his classic book
The Five Laws of Library Science (1931) with this quotation from Manu, an
ancient Hindu philosopher and lawmaker: “To carry knowledge to the doors of
those that lack it . . . even to give away the whole earth cannot equal that form of
service.” What an inspirational sentiment for budding digital librarians with a
social conscience!

We have quoted one of Ranganathan’s laws of library science. You might be
interested in the others too:

1. Books are for use.
2. Every reader his book.
3. Every book his reader.
4. Save the reader’s time.
5. The library is a growing organism.

We have to thank Rob Akscyn for the vision of digital libraries as kitchens for
knowledge preparation; it has greatly influenced our thinking. And we are
grateful to Steve Jones (Jones, 1999; Jones and Paynter, 1999; Jones and Staveley,
1999) for the Phrasier system depicted in Figures 9.6 to 9.8: it was he who had
the original vision to which we so enthusiastically subscribe (and he who actu-
ally made the figures).

The changing world of preservation is a matter of serious concern for democ-
ratic societies. As George Orwell said in Nineteen Eighty-Four (published in
1949), “Who controls the past controls the future. Who controls the present
controls the past.” It was Jeff Rothenberg (1997) who quipped that “digital
information lasts forever—or five years, whichever comes first.” He has pub-
lished an interesting Scientific American article about preservation called
“Ensuring the longevity of digital documents” (Rothenberg, 1995) which pro-
motes emulation as the only workable solution, and a more extended report
that develops the same theme (Rothenberg, 1999).

The poem Beowulf survives in the British Museum manuscript Cotton Vitel-
lius A.xv, probably written about 1000 A.D.; most scholars accept that it took its
present form somewhere between 680 and 800 A.D. It opens with these words:

An eloquent translation by Crossley-Holland (1968) begins:

Listen! The fame of Danish kings
in days gone by, the daring feats
worked by those heroes are well known to us.

474 N I N E | V I S I O N S

Just thirty years later Seamus Heaney (1999) gave a fresh rendering:

So. The Spear-Danes in days gone by
and the kings who ruled them had courage and greatness.
We have heard of those princes’ heroic campaigns.

It is hard to imagine that such stirring words would ever have resulted from a
sequence of paraphrasings of earlier interpretations.

The government report that cited cases of digital records that had been, or
were about to be, lost—including the 1960 census results—was published by the
U.S. Congress (1990). More studies of preservation and access can be found at
the Web site of the U.S. Council on Library and Information Resources,
www.clir.org. A report on the Domesday project appears at www.atsf.co.uk/
dottext/domesday.html, written in 1996 by Andy Finney. The British National
Library’s report that documents their microfilm-based preservation strategy is
entitled “New strategic directions” (British National Library, 2001). The omi-
nous article on the digital dark ages is by Kuny (1998). Lynch (1999) has pub-
lished an interesting analysis of the issues that arise when managing digital
objects over time, in particular the need to track authenticity as part of an
object’s provenance, maintain its integrity and ensure the integrity of links to
that object from other objects (or from metadata), and reformat the object
without impacting its integrity.

The Baltimore affair is described by Kevles (1998) in a book entitled The Bal-
timore Case: A Trial of Politics, Science, and Character.

We gratefully acknowledge Dieter Fellner for sharing his visions for general-
ized documents, in particular ones that transcend the notion of document as a
basic unit, and Maria Trujillo for helping us focus on digital libraries for oral
cultures. Some search systems already treat text as a semi-infinite string (Salmi-
nen and Tompa, 1994; Clarke, Cormack, and Burkowski, 1995), and methods of
finding arbitrary stretches of text that most closely match queries, independent
of document boundaries, have been developed by de Kretser and Moffat (1999).

The image in Figure 9.13 comes from a British National Library project called
Turning the Pages (www.bl.uk/collections/treasures/digitisation.html). This par-
ticular book is an extract from the Lindisfarne Gospels. The system is a two-
dimensional rather than a three-dimensional simulation, created using Macro-
media Director. Several intermediate images have been taken for each page
turn—so the image in Figure 9.13, for example, is a stored image, not computed
from a physical model of the book. This involves a lot of images—indeed the
system consumes 304 Mb for only 20 pages (it includes zoomed-in versions of
each page and accompanying audio). And it has some shortcomings—for
example, the top of the page being turned is missing in the figure. But it gives an
interesting preview of how books might be simulated as physical objects in the
future.

9 . 4 N O T E S A N D S O U R C E S 475

The wonderful book from which Figure 9.14 is reproduced is First Aid in Pic-
tures (DeLong et al., 1987). The mission of LINCOS, which stands for “little intel-
ligent communities,” is to help disadvantaged communities from developing
countries to use a series of services and applications—telemedicine, the Internet,
electronic communication, videoconferencing, electronic trade, and educational
applications. You can find out more about this project at www.lincos.net. Finally
digital divides and their ramifications are thoroughly discussed in a thought-
provoking book by Norris (2001).

476 N I N E | V I S I O N S

477

Installing and
operating
Greenstone

Greenstone is a suite of software for building and distributing digital library col-
lections. It provides a new way of organizing information and publishing it on the
Internet or on CD-ROM. Greenstone is produced by the New Zealand Digital
Library Project at the University of Waikato. It is free, open-source software,
issued under the terms of the GNU General Public License. You can download it,
along with documentation, from www.greenstone.org. Although this URL is host-
ed in New Zealand, your download may be automatically redirected elsewhere—
normally to http://sourceforge.net in the U.S.—to expedite network access. We
want to ensure that the software works well for you: please report any problems on
the feedback form at www.greenstone.org or by e-mailing to greenstone@cs.
waikato.ac.nz.

In cooperation with UNESCO and the Humanity Libraries Project, Green-
stone is issued on a CD-ROM that includes documentation in English, French,
and Spanish. If you do not have Internet access, you can obtain a copy of the
CD-ROM, for a nominal charge that covers the cost of shipping and handling,
by writing to Greenstone, Department of Computer Science, University of
Waikato, Hamilton, New Zealand. However, you are encouraged to download

Documents are the digital library’s building blocks. It is time to step down

from our high-level discussion of digital libraries—what they are, how they

are organized, and what they look like—to nitty-gritty details of how to rep-

resent the documents they contain. To do a thorough job we will have to

descend even further and look at the representation of the characters that

make up textual documents and the fonts in which those characters are

portrayed. For audio, images and video we examine the interplay

between signal quantization, sampling rate and internal redundancy that

underlies multimedia representations.Documents are the digital library’s

building blocks. It is time to step down from our high-level discussion of dig

A P P E N D I X

478 A P P E N D I X

the software if you possibly can rather than purchasing the CD-ROM; this puts
you in touch with current developments and gives you the latest version of the
software. Everything on the CD-ROM is freely available on the Internet from
www.greenstone.org.

Greenstone runs on different platforms and in different configurations, as
summarized in Figure A.1. There are many issues that affect (or might affect)
the installation procedure. Before beginning the installation procedure, you
should consider these questions:

■ Are you using Windows or Unix?
■ If Windows, are you using 3.1/3.11 or a more recent version? Although you

can view collections under 3.1/3.11 and serve other computers on the net-
work, you cannot build new collections. The full Greenstone software runs
on Windows 95/98/Me and NT/2000/XP.

■ If Unix, are you using Linux or another version of Unix? For Linux a
binary version of the complete system is provided that is easy to install. For
other types of Unix, you will have to install the source code and compile it.

■ If Windows NT/2000 or Unix, can you log in as the system “administra-
tor” or “root”? This may be required to configure a Web server.

■ Do you want the source code? If you are using Windows or Linux, you can
just install binaries. But you may want the source code as well—it’s all in
the Greenstone distribution.

■ Do you want to build new digital library collections? If so, you need Perl,
which is freely available for both Windows and Unix.

95/98/Me

Unix

May need “root”
login to install

Full version
available

Full version
available

Full version
available

Source code tested,
binaries available

Source code
tested Untested

Linux Sun Solari s or
Macintosh OS/X

Other

Windows or Unix?

Windows

Binaries available
for all versions

Serves collections
but no building

Full version
available

Full version
available

3.x NT/2000/XP

Only “Administrators”
can install software

Figure A.1 The different options for Windows and Unix versions of Greenstone.

■ Is your computer already running a Web server? The Windows version of
Greenstone comes with a built-in Web server. However, if you are already
running a Web server, you may want to stay with it. For Unix, you have to
run a separate Web server.

■ Do you know how to reconfigure your Web server? If you don’t use the
Greenstone Web server, you will have to reconfigure your existing one
slightly to recognize the Greenstone software.

Versions of Greenstone are available for both Windows and Unix, as binaries
and in source code form. The user interface uses a Web browser: Netscape Naviga-
tor and Internet Explorer (version 4.0 or greater in both cases) are both suitable.
In case you’re not connected to the Internet and don’t already have a Web browser,
a Windows version of Netscape is provided on the Greenstone CD-ROM.

To download Greenstone go to www.greenstone.org, where you will find full
installation instructions and comprehensive documentation, as well as all ver-
sions of the code.

I N S T A L L I N G A N D O P E R A T I N G G R E E N S T O N E 479

 1
Appendix B Greenstone source code

This appendix describes the source code of the Greenstone runtime system
and is a continuation of Chapter 7 at a more detailed level. The code is
written in C++ and uses virtual inheritance throughout. To understand it you
need at least a superficial knowledge of this language—the “Notes and
sources” section of Chapter 7 (Section 7.5) suggests places to begin. The
software makes extensive use of the Standard Template Library (STL), a
widely used C++ library that is the result of many years of design and
development. Like all programming libraries, it takes some time to learn.

The source code for the runtime system resides in the Greenstone directory
src. It occupies two subdirectories, recpt for the receptionist’s code and
colservr for the collection server’s (named to fit within the eight-character file
name limit imposed by older Windows systems). The receptionist comprises
15,000 lines of code (ignoring blank lines). The collection server comprises
only 5,000 lines (75% of which are taken up by header files). It is more
compact because content retrieval is accomplished through two precompiled
programs, the MG full-text retrieval system that holds the text and search
indexes, and the GDBM database manager that holds the collection
information database.

The remaining subdirectories include stand-alone utilities, mostly in support
of the building process. They are listed in Table B.1. Another Greenstone
directory, lib, includes low-level objects that are used by both receptionist and
collection server. This code is described in Section B.1.

Table B.1 Stand-alone programs included in Greenstone.
Program Description

setpasswd/ Password support for Windows
getpw/ Password support for Unix
txt2db/ Convert an XML-like ASCII text format to GNU’s database

format
db2txt/ Convert the GNU database format to an XML-like ASCII text

format
phind/ Hierarchical phrase browsing tool

hashfile/ Compute unique document ID based on content of file
mgpp/ Rewritten and updated version of Managing Gigabytes package in

C++
w32server/ Local Library server for Windows

checkis/ Specific support for installing Greenstone under Windows

The objects defined in lib are low-level ones, built on top of STL, which
pervade the entire source code. First we describe text_t, an object used to
represent Unicode text, in some detail. Then we summarize the purpose of
each library file.

A.1 Foundations

Digital libraries work with multiple languages, both for the content of a
collection and its user interface. To support this, Unicode is used throughout

 2
the system.

TEXT_T OBJECT

The underlying object that realizes a Unicode string in Greenstone is text_t.
This uses 2 bytes to store each character in Unicode UTF-16 format, as
recommended in Chapter 4 (Section 4.1). Operation is restricted to the basic
multilingual plane: no surrogate characters are used.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

typedef vector<unsigned short> usvector;

class text_t {
protected:
usvector text;
unsigned short encoding; // 0 = unicode, 1 = other

public:
// constructors
text_t ();
text_t (int i);
text_t (char *s); // assumed to be a normal c string

void setencoding (unsigned short theencoding);
unsigned short getencoding ();

// STL container support
iterator begin ();
iterator end ();

void erase(iterator pos);
void push_back(unsigned short c);
void pop_back();

void reserve (size_type n);

bool empty () const {return text.empty();}
size_type size() const {return text.size();}

// added functionality
void clear ();
void append (const text_t &t);

// support for integers
void appendint (int i);
void setint (int i);
int getint () const;

// support for arrays of chars
void appendcarr (char *s, size_type len);
void setcarr (char *s, size_type len);

};

Figure B.1 The text_t API (abridged).

Figure B.1 shows the main features of the text_t application program interface
(API). It uses the C++ built-in type short, a 2-byte integer. Central to the
text_t object is a dynamic array of unsigned shorts built using the STL
declaration vector<unsigned short> and given the abbreviated name usvector.

The constructor functions (lines 10–12) allow these objects to be initialized in
three ways: with no parameters, which creates an empty Unicode string; with
an integer parameter, which creates a Unicode text version of the numeric
value; and with a char* parameter, which interprets the argument as a null-
terminated C++ string and creates a Unicode version of it.

The body of the API (lines 17–28) maintains an STL vector-style container:
begin(), end(), push_back(), empty(), and so forth. Support is provided for
clearing and appending strings, as well as for converting between integer
values and Unicode text strings.

1
2
3

class text_t {
// ...
public:

 3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

text_t &operator=(const text_t &x);
text_t &operator+= (const text_t &t);
reference operator[](size_type n);

text_t &operator=(int i);
text_t &operator+= (int i);^ \\
text_t &operator= (char *s);
text_t &operator+= (char *s);

friend inline bool operator!=(const text_t& x, const text_t& y);
friend inline bool operator==(const text_t& x, const text_t& y);
friend inline bool operator< (const text_t& x, const text_t& y);
friend inline bool operator> (const text_t& x, const text_t& y);
friend inline bool operator>=(const text_t& x, const text_t& y);
friend inline bool operator<=(const text_t& x, const text_t& y);
// ...

};

Figure B.2 Overloaded operators to text_t.

There are many overloaded operators that do not appear in Figure B.1. Figure
B.2 gives a flavor of what is supported. Line 4 assigns one text_t object to
another, and line 5 overloads the += operator to provide a natural way to
append text_t objects. Line 6 gives access to a Unicode character (represented
as a short) using array subscripting []. Assign and append operators are also
provided for integers and C++ strings. Lines 13 to 18 define Boolean
operators for comparing two text_t objects: equals, does not equal, precedes
alphabetically, and so on.

Member functions that take const arguments instead of non-const ones are
also defined (but omitted here). Such repetition is routine in C++ objects,
making the API fatter but no bigger conceptually. In reality many of these
functions are implemented as single in-line statements.

LIBRARY CODE

Several functions and objects are used throughout the runtime system. In
order to convey what they do at a suitable level of detail, we briefly outline
the contents of each header file (they are found in the Greenstone lib
directory). Implementation details are mostly contained within a header file’s
.cpp counterpart. Where efficiency is of concern, functions and member
functions are declared inline.

cfgread.h Contains functions that read and write configuration files. For
example, read_cfg_line() takes as arguments the input stream to use and the
text_tarray (shorthand for vector<text_t>) to fill out with the data that is read.

display.h A complex object used by the receptionist for setting, storing, and
expanding macros, plus supporting types (see Section B.3 for more
information).

fileutil.h Operating system–independent functions for several file utilities.
For example, filename_cat() takes text_t arguments and concatenates them
together using the appropriate directory separator for the current operating
system, returning the result.

gsdlconf.h System-specific functions that answer questions such as, Does the
operating system being used for compilation need to access strings.h as well
as string.h? Are all the appropriate values for file locking correctly defined?

gsdltimes.h Functions for date and times. For example, time2text() converts
time expressed as the number of seconds that have elapsed since 1 January

 4
1970 into the form YYYY/MM/DD hh:mm:ss, which it returns as type
text_t.

gsdltools.h Miscellaneous support for the runtime system: determines
whether little-endian or big-endian; checks whether Perl is available; executes
a system command (with a few bells and whistles); and escapes special macro
characters in a text_t string.

gsdlunicode.h A series of inherited objects that support processing Unicode
text_t strings through I/O streams, such as Unicode to UTF-8 conversion and
the removal of zero-width spaces. Support for map files is also provided
through the mapconvert object, with mappings loaded from the mappings
directory.

text_t.h The Unicode text object described at the beginning of Section B.1,
plus two classes for converting streams: inconvertclass and outconvertclass.
These are the base classes used in gsdlunicode.h.

PROTOCOL API

Before going on to sketch the structure of the receptionist and collection
server, we look at how the null protocol has been implemented. Figure B.3
shows its API. Comments and certain low-level details have been omitted.

class nullproto : public recptproto {
public:

virtual text t get protocol name ();

virtual void get collection list (text tarray &collist,
comerror t &err, ostream &logout);

virtual void has collection (const text t &collection,
bool &hascollection,
comerror t &err, ostream &logout);

virtual void ping (const text t &collection,
bool &wassuccess,
comerror_t &err, ostream &logout);

virtual void get collectinfo (const text t &collection,
ColInfoResponse t &collectinfo,
comerror t &err, ostream &logout);

virtual void get filterinfo (const text_t &collection,
InfoFiltersResponse t &response,
comerror t &err, ostream &logout);

virtual void get filteroptions (const text t &collection,
const InfoFilterOptionsRequest t &request,
InfoFilterOptionsResponse_t &response,
comerror t &err, ostream &logout);

virtual void filter (const text t &collection,
FilterRequest t &request,
FilterResponse t &response,
comerror t &err, ostream &logout);

virtual void get document (const text t &collection,
const DocumentRequest t &request,
DocumentResponse t &response,
comerror_t &err, ostream &logout);

};

Figure B.3 Null protocol API (abridged).

This protocol inherits from the base class recptproto, and it is this class that is
used throughout the remainder of the source code. Virtual inheritance means
that more than one type of protocol—including ones not yet conceived—can
be added later without affecting the rest of the system. Here we specify the

 5
actual variety of protocol we wish to use—in this case the null protocol.

The protocol calls are summarized in Table 7.1 and have already been
discussed. With the exception of get_protocol_name(), which takes no
parameters and returns the protocol name as a Unicode-compliant text string,
all functions include an error parameter and an output stream as the last two
arguments. The error parameter records any errors that occur during the
execution of the protocol call. The output stream is for logging. The functions
have type void—they do not explicitly return information as their final
statement, but instead return data through designated parameters such as those
just mentioned. In some programming languages such routines would be
defined as procedures rather than functions, but C++ makes no syntactic
distinction.

Most functions take the collection name as an argument. Three of the member
functions, get_filteroptions(), filter(), and get_document(), take input in a
Request parameter and return the result in a Response parameter.

A.2 Collection server

Now we systematically work through all the objects in the conceptual
framework of Figure 7.11. We start at the bottom—which is the foundation of
the system—with Search, Source, and Filter, and proceed up through the
protocol layer and on to the receptionist’s components: Actions, Format, and
Macro Language. Finally we discuss initialization, since this is easier to
understand once the role of the various objects is known.

To promote extensibility, most of the classes central to the conceptual
framework are expressed using virtual inheritance. With this mechanism
inherited objects can be passed around as their base class, but when a member
function is called, it is the version defined in the inherited object that is
invoked. By ensuring that the source code uses the base class throughout,
except at the point of object construction, different implementations—using,
perhaps, radically different underlying technology—can be slotted into place
easily.

For example, suppose a base class called BaseCalc provides basic arithmetic:
add, subtract, multiply, and divide. If all its functions are declared virtual, and
arguments and return types are declared as strings, inherited versions of the
object can be implemented easily. One, called FixedPrecisionCalc, might use
C library functions to convert between strings and integers, implementing the
calculations using the standard arithmetic operators +, –, *, and /. Another,
say InfinitePrecisionCalc, might access the string arguments one character at
a time, implementing arithmetic operations that have (in principle) infinite
precision. Provided the main program uses BaseCalc throughout, the system
can be switched between fixed and infinite precision by editing just one line:
the point where the Calculator object is constructed.

SEARCH OBJECT

Figure B.4 shows the base class API for the Search object in Figure 7.11. It
defines two virtual member functions: search() and docTargetDocument(). As
signified by the =0 that follows the argument declaration, these are pure
functions—meaning that a class that inherits from this object must implement

 6
both functions (otherwise the compiler will complain).

class searchclass {
public:
searchclass ();
virtual ~searchclass ();
// the index directory must be set before any searching
// is done
virtual void setcollectdir (const text t &thecollectdir);
// the search results are returned in queryresults
// search returns 'true' if it was able to do a search
virtual bool search(const queryparamclass &queryparams,

queryresultsclass &queryresults)=0;
// the document text for 'docnum' is placed in 'output'
// docTargetDocument returns 'true' if it was able to
// try to get a document
// collection is needed to see if an index from the
// collection is loaded. If no index has been loaded
// defaultindex is needed to load one
virtual bool docTargetDocument(const text t &defaultindex,

const text t &defaultsubcollection,
const text t &defaultlanguage,
const text t &collection,
int docnum,
text t &output)=0;

protected:
querycache *cache;
text t collectdir; // the collection directory

};

Figure B.4 Search base class API.

The class also includes two protected data fields: collectdir and cache. A
Search object is instantiated for a particular collection, and collectdir is used
to store where on the file system that collection (more importantly, its index
subdirectory) resides. The cache field retains the result of a query, in case the
same query (with the same settings) is used again.

While identical queries may seem unlikely, in fact they occur on a regular
basis, for the following reason. The protocol is stateless. To generate a
Results page like Figure 7.12 but for matches 11 to 20 of the same query, the
search is invoked again, this time specifying that documents 11 to 20 are
returned. Caching makes this efficient, because the results are lifted straight
from the cache.

Both these data fields are applicable to every inherited object that implements
a searching mechanism. This is why they appear in the base class and are
declared within a protected section so that inherited classes can access them
directly.

Interfacing with MG

The Managing Gigabytes (MG) system is used to index and retrieve
documents, and its source code is placed in the packages directory. MG is
normally used interactively by typing commands at the command line. One
way to incorporate it into the digital library system would be to issue such
commands using the C library system() call. A more efficient approach,
however, is to tap directly into the MG code using function calls. To
accomplish this requires a deeper understanding of the MG implementation,
but the complexity is hidden behind a new API that becomes the point of
contact for the object mgsearchclass. This is the role of colserver/mgq.c,
whose API is shown in Figure B.5.

enum result kinds {
result docs, // Return the documents found in last search
result docnums, // Return document id numbers and weights

 7
result termfreqs, // Return terms and frequencies
result terms // Return matching query terms

};
int mgq ask(char *line);
int mgq results(enum result kinds kind, int skip, int howmany,

int (*sender)(char *, int, int, float, void *),
void *ptr);

int mgq numdocs(void);
int mgq numterms(void);

int mgq equivterms
(unsigned char *wordstem,
int (*sender)(char *, int, int, float, void *),
void *ptr);

int mgq docsretrieved (int *total retrieved, int *is_approx);

int mgq getmaxstemlen ();

void mgq stemword (unsigned char *word);

Figure B.5 API for direct access to MG (abridged).

Parameters are supplied to MG using mgq_ask(), which is used to invoke a
query and takes text options in the same format as the command line. For
example, to turn off case-folding:

mgq_ask(".set casefold off");

Results are accessed through mgq_results, which takes a pointer to a function
as its fourth parameter. This provides a flexible way of converting the
information returned in MG data structures into those needed by
mgsearchclass. Calls such as mgq_numdocs(), mgq_numterms(), and
mgq_docsretrieved() also return information, but in a more tightly prescribed
way. The last two calls in Figure B.5 control stemming.

SOURCE OBJECT

class sourceclass {
public:
sourceclass ();
virtual ~sourceclass ();

// configure should be called once for each configuration line
virtual void configure

(const text t &key,
const text_tarray &cfgline);

// init should be called after all the configuration is done but
// before any other methods are called
virtual bool init (ostream &logout);

// translate OID translates OIDs using ".pr", ."fc" etc.
virtual bool translate_OID (const text_t &OIDin, text_t &OIDout,

comerror t &err, ostream &logout);

// get metadata fills out the metadata if possible, if it is not
// responsible for the given OID then it returns false.
virtual bool get_metadata

(const text t &requestParams,
const text t &refParams,
bool getParents,
const text tset &fields,
const text_t &OID,
MetadataInfo tmap &metadata,
comerror t &err, ostream &logout);

virtual bool get document (const text t &OID, text t &doc,
comerror t &err, ostream &logout);

};

Figure B.6 Source base class API.

The role of Source in Figure 7.11 is to access document metadata and
document text, and its base class API is shown in Figure B.6. There is a
member function for each task: get_metadata() and get_document(),
respectively. Both are declared virtual, so the version provided by a particular

 8
implementation of the base class is called at runtime.

class mggdbmsourceclass : public sourceclass {
protected:
// Omitted, data fields that store:
// collection specific file information
// index substructure
// information about parent
// pointers to gdbm and mgsearch objects

public:
mggdbmsourceclass ();
virtual ~mggdbmsourceclass ();

void set gdbmptr (gdbmclass *thegdbmptr);
void set mgsearchptr (searchclass *themgsearchptr);

void configure (const text t &key, const text tarray &cfgline);
bool init (ostream &logout);
bool translate OID (const text t &OIDin, text t &OIDout,

comerror t &err, ostream &logout);
bool get metadata (const text t &requestParams,

const text t &refParams,
bool getParents, const text tset &fields,
const text t &OID, MetadataInfo tmap &metadata,
comerror_t &err, ostream &logout);

bool get document (const text t &OID, text t &doc,
comerror t &err, ostream &logout);

};

Figure B.7 API for MG- and GDBM-based version of sourceclass (abridged).

One inherited version of this object uses GDBM to implement get_metadata()
and MG to implement get_document(). This gives an implementation of
sourceclass called mggdbmsourceclass: Figure B.7 shows its API. The two
member functions set_gdbmptr() and set_mgsearchptr() store pointers to their
respective objects, so that the implementations of get_metadata() and
get_document() can access the appropriate tools to complete the job.

Other member functions specified in Figure B.6 are configure(), init(), and
translate_OID(). The first two relate to the initialization process described in
Section B.4. Translate_OID() handles the syntax for expressing document
identifiers. In Chapter 6 (Section 6.4) we learned that OIDs can be extended
to individual sections of a document hierarchy by appending section numbers
separated by periods. The document identifier syntax also supports various
forms of relative access: the first child of the current section of a document is
denoted by appending .fc, its last child by appending .lc, its parent by
appending .pr, and its next and previous siblings by appending .ns and .ps,
respectively. These variants are handled by translate_OID(), which uses
parameters OIDin and OIDout to hold the source and result of the conversion.
It takes two further parameters, err and logout, which communicate any error
that may arise during translation and determine where to send logging
information. The parameters are closely aligned with the protocol, as we saw
when the protocol implementation was described near the end of Section B.1.

FILTER OBJECT

class filterclass {
protected:
text t gsdlhome;
text t collection;
text t collectdir;

FilterOption tmap filterOptions;

public:
filterclass ();
virtual ~filterclass ();

 9
virtual void configure

(const text_t &key,
const text tarray &cfgline);

virtual bool init (ostream &logout);

// returns the name of this filter
virtual text t get filter name ();

// returns the current filter options
virtual void get_filteroptions

(InfoFilterOptionsResponse t &response,
comerror t &err, ostream &logout);

virtual void filter (const FilterRequest t &request,
FilterResponse t &response,
comerror t &err, ostream &logout);

};

Figure B.8 API for the Filter base class.

The base class API for the Filter object in Figure 7.11 is shown in Figure B.8.
It begins with the protected data fields gsdlhome, collection, and collectdir.
These commonly occur in classes that need to access collection-specific files,
and are used as follows:

• gsdlhome contains the Greenstone home directory
• collection is the name of the collection’s directory
• collectdir is the full path name of the collection’s directory

The third is needed because a collection does not necessarily reside within the
Greenstone directory area. Other classes include these three data fields—for
example, mggdbsourceclass.

The member functions configure() and init() (first seen in sourceclass, Figure
B.7) are used by the initialization process. The filterclass object is closely
aligned with the protocol; in particular the functions get_filteroptions() and
filter() match those in Figure B.3 one for one.

struct FilterOption_t {
void clear (); \ void check_defaultValue ();
FilterOption t () {clear();}

text t name;

enum type t {booleant=0, integert=1, enumeratedt=2, stringt=3};
type t type;

enum repeatable t {onePerQuery=0, onePerTerm=1, nPerTerm=2};
repeatable_t repeatable;

text t defaultValue;
text tarray validValues;

};

struct OptionValue t {
void clear ();

text t name;
text t value;

};

Figure B.9 How a filter option is stored.

Central to the filter options are the two classes shown in Figure B.9. Stored
inside FilterOption_t is the name of the option, its type, and whether or not it
is repeatable. The interpretation of validValues depends on the option type.
For a Boolean type the first value is false and the second true. For an integer
type the first value is the minimum number, the second the maximum. For an
enumerated type all values are listed. For a string type the value is ignored. In
simpler situations OptionValue_t is used, which records as a text_t the name
of the option and its value.

 10
The request and response objects passed as parameters to filterclass are
constructed from these two classes, using associative arrays to store a set of
options such as those required for InfoFilterOptionsResponse_t.

Inherited Filter objects

Base class
filterclass

MG-based Query
mgqueryfilterclass

Browse
browsefilterclass

Query
queryfilterclass

GDBM through gdbmclassMG through mgsearchclass

Filter

Figure B.10 Inheritance hierarchy for Filter.

Filters use the levels of inheritance shown in Figure B.10. A distinction is
made between Query and Browse filters; then for the former there is a
specific implementation based on MG. To operate correctly,
mgqueryfilterclass needs to access MG through mgsearchclass and GDBM
through gdbmclass. Browsefilterclass only needs access to GDBM. Pointers
to these objects are stored as protected data fields within the respective
classes.

COLLECTION SERVER CODE

The best way to convey what the collection server does at a suitable level of
detail is to outline the contents of the header files in the collection server
directory (src/colservr). The file name generally denotes the object that it
defines.

browsefilter.h Inherited from filterclass, this object provides access to
GDBM.

collectserver.h This object binds Filters and Sources for one collection
together to form the Collection object depicted in Figure 7.11.

colservrconfig.h This defines functions for reading the collection-specific
files etc/collect.cfg and index/build.cfg. The former is the collection’s
configuration file. The latter is a file generated by the building process that
records the time it was last built, an index map list, how many documents
were indexed, and how large they are in bytes (uncompressed).

filter.h This is the base class Filter object filterclass described earlier.

maptools.h This defines a class called stringmap that provides a mapping
that remembers the original order of a text_t map but is fast to look up. Used

 11
in mggdbmsourceclass and queryfilterclass.

mggdbmsource.h Inherited from sourceclass, this object provides access to
MG and GDBM.

mgppqueryfilter.h Inherited from queryfilterclass, this object provides an
implementation of QueryFilter based upon MG++, an improved version of
MG written in C++. Greenstone continues to use MG by default, because
MG++ is still under development.

mgppsearch.h Inherited from searchclass, this object provides an
implementation of Search using MG++. Like mgppqueryfilter, it is not used
by default.

mgq.h This is a function-level interface to the MG package. Principal
functions are mg_ask() and mg_results().

mgqueryfilter.h Inherited from queryfilterclass, this object provides an
implementation of QueryFilter based upon MG.

mgsearch.h Inherited from searchclass, this object provides an
implementation of Search using MG.

phrasequeryfilter.h Inherited from mgqueryclass, this object provides a
phrase-based query class. It is not used in the default installation. Instead
mgqueryfilterclass provides this capability through functional support from
phrasesearch.h.

phrasesearch.h This defines functions that implement phrase searching as a
postprocessing operation.

querycache.h This is used by searchclass and its inherited classes to cache
the results of a query, in order to make the generation of further search results
pages more efficient.

queryfilter.h Inherited from the Filter base class filterclass, this object
establishes a base class for Query Filter objects.

queryinfo.h This provides support for searching: data structures and objects
to hold query parameters, document results, and term frequencies.

search.h This provides the base class Search object searchclass.

source.h This provides the base class Source object sourceclass.

A.3 Receptionist

The final layer of the conceptual model is the receptionist. Once it has parsed
the CGI arguments, its main activity is to execute an Action, supported by the
Format and Macro Language objects described in the following subsections.
Although depicted as objects in the conceptual framework, Format and Macro
Language are not objects in the C++ sense. In reality Format is a collection of
data structures with a set of functions that operate on them, and the Macro
Language object is built around displayclass, defined in lib/display.h, with
stream conversion support from lib/gsdlunicode.h.

 12
ACTIONS

The actions supported by Greenstone were discussed in Chapter 7 (Section
7.3) and summarized in Table 7.2. The CGI arguments needed by an action
are formally declared in its constructor function using cgiarginfo (defined in
recpt/cgiargs.h). Figure B.11 shows an excerpt from the pageaction
constructor function, which defines the size and properties of the CGI
arguments a and p.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

giarginfo arg ainfo;
rg ainfo.shortname = "a";
rg ainfo.longname = "action";
rg ainfo.multiplechar = true;
rg ainfo.argdefault = "p";
rg ainfo.defaultstatus = cgiarginfo::weak;
rg ainfo.savedarginfo = cgiarginfo::must;
rgsinfo.addarginfo (NULL, arg ainfo);

rg ainfo.shortname = "p";
rg ainfo.longname = "page";
rg ainfo.multiplechar = true;
rg ainfo.argdefault = "home";
rg ainfo.defaultstatus = cgiarginfo::weak;
rg ainfo.savedarginfo = cgiarginfo::must;
rgsinfo.addarginfo (NULL, arg ainfo);

Figure B.11 Using the cgiargsinfoclass from pageaction.cpp.

CGI arguments have six different values, described earlier under
“Configuring the receptionist” (Section 7.4), which must be specified by the
constructor function: short name (lines 2 and 10); long name (lines 3 and 11);
whether it represents a single or multiple character value (lines 4 and 12); a
default value (lines 5 and 13); what happens when more than one default
value is supplied (lines 6 and 14); and whether or not the value is preserved at
the end of this action (lines 7 and 15) .

Because details of actions and their arguments are built into the code, Web
pages that describe them can be generated automatically. The status action
(Table 7.2) produces this information. It can be viewed by entering the URL
for the Greenstone Administration page, discussed in Appendix A (Section
A.3).

The actions are constructed in main(), the top-level function for the library
executable, whose definition is given in recpt/librarymain.cpp. This is also
where the receptionist object (defined in recpt/receptionist.cpp) is
constructed. Responsibility for all the actions is passed to the receptionist,
which processes them by maintaining, as a data field, an associative array of
the Action base class, indexed by action name.

class action {
protected:
cgiargsinfoclass argsinfo;
text t gsdlhome;

public:
action ();
virtual ~action ();

virtual void configure (const text_t &key,
const text tarray &cfgline);

virtual bool init (ostream &logout);

virtual text t get action name ();
cgiargsinfoclass getargsinfo ();

virtual bool check cgiargs (cgiargsinfoclass &argsinfo,
cgiargsclass &args,
ostream &logout);

virtual bool check external cgiargs (cgiargsinfoclass &argsinfo,
cgiargsclass &args,
outconvertclass &outconvert,

 13
const text t &saveconf,
ostream &logout);

virtual void get cgihead info (cgiargsclass &args,
recptprotolistclass *protos,
response t &response,
text t &response data,
ostream &logout);

virtual bool uses display (cgiargsclass &args);

virtual void define internal macros (displayclass &disp,
cgiargsclass &args,
recptprotolistclass *protos,
ostream &logout);

virtual void define external macros (displayclass &disp,
cgiargsclass &args,
recptprotolistclass *protos,
ostream &logout);

virtual bool do action (cgiargsclass &args,
recptprotolistclass *protos,
browsermapclass *browsers,
displayclass &disp,
outconvertclass &outconvert,
ostream &textout,
ostream &logout);

};
Figure B.12 Action base class API.

Figure B.12 shows the API for the Action base class. When executing an
action, receptionist calls several functions, starting with check_cgiargs().
Most help to check, set up, and define values and macros; while do_action()
actually generates the output page. If a particular member function does not
define a particular inherited object, it falls through to the base class definition
which implements appropriate default behavior.

Explanations of the member functions are as follows.

get_action_name() Returns the CGI a argument value that specifies this
action. The name should be short, because of restrictions that browsers place
on the length of URLs.

check_cgiargs() Is called before get_cgihead_info(), define_external_
macros(), and do_action(). If an error is found, a message is written to logout.
If it is serious the function returns false and no page content is produced.

check_external_cgiargs() Is called after check_cgiargs() for all actions. It is
intended for use only to override some other normal behavior—for example,
producing a login page when the requested page needs authentication.

get_cgihead_info() Sets the CGI header information. If response is set to
location, then response_data contains the redirect address. If response is set
to content, then response_data contains the content type.

uses_display() Returns true if the displayclass is needed to output the page
content (the default).

define_internal_macros() Defines all macros that are related to pages
generated by this action.

define_external_macros() Defines all macros that might be used by other
actions to produce pages.

do_action() Generates the output page, normally streamed through the macro
language object display and the output conversion object textout. It returns
false if there was an error that prevented the action from producing any
output.

 14
At the beginning of the class definition, argsinfo is the protected data field
(used in the code excerpt shown in Figure B.11) that stores the CGI argument
information specified in an inherited Action constructor function. The other
data field, gsdlhome, records the Greenstone home directory for convenient
access. The object also includes configure() and init() for initialization
purposes.

FORMATTING

Although formatting is represented as a single entity in Figure 7.11, it really
involves a collection of data structures and functions. They are gathered
together under the header file recpt/formattools.h. The core data structures are
shown in Figure B.13.

enum command t {comIf, comOr, comMeta, comText, comLink, comEndLink,
comNum, comIcon, comDoc,
comHighlight, comEndHighlight};

enum pcommand t {pNone, pImmediate, pTop, pAll};
enum dcommand t {dMeta, dText};
enum mcommand t {mNone, mCgiSafe};

struct metadata t {
void clear();
metadata t () {clear();}

text t metaname;
mcommand t metacommand;
pcommand t parentcommand;
text t parentoptions;

};

// The decision component of an {If}{decision,true-text,false-text}
// formatstring. The decision can be based on metadata or on text;
// normally that text would be a macro like
// cgiargmode .

struct decision t {
void clear();
decision t () {clear();}

dcommand t command;
metadata t meta;
text t text;

};

struct format t {
void clear();
format t () {clear();}

command t command;
decision t decision;
text t text;
metadata t meta;
format t *nextptr;
format t *ifptr;
format t *elseptr;
format t *orptr;

};

Figure B.13 Core data structures in Format.

The implementation is best explained through an example. When the format
statement

format CL1Vlist
"[link][Title]{If}{[Creator], by Creator]}[/link]}"

is read from a collection configuration file, it is parsed by functions in
formattools.cpp, and the interconnected data structure shown in Figure B.14
is built. When the format statement needs to be evaluated by an action, the
data structure is traversed. The route taken at comIf and comOr nodes
depends on the metadata that is returned by a call to the protocol.

 15
decision_tformat_t

command:

text:

meta:

nextptr:

ifptr:

elseptr:

orptr:

comMeta

link

decision:

format_t

command:

text:

meta:

nextptr:

ifptr:

elseptr:

orptr:

comMeta

Title

decision:

format_t

command:

text:

meta:

nextptr:

ifptr:

elseptr:

orptr:

comIf

decision:

command:

text:

meta:

format_t

command:

text:

meta:

nextptr:

ifptr:

elseptr:

orptr:

comText

 by

decision:

format_t

command:

text:

meta:

nextptr:

ifptr:

elseptr:

orptr:

comMeta

decision:

dMeta

Creator

format_t

command:

text:

meta:

nextptr:

ifptr:

elseptr:

orptr:

comMeta

/link

decision:

Creator

Figure B.14 Data structures built for sample format statement.

One complication is that when metadata is retrieved, it might include further
macros and format syntax. This is handled by switching back and forth
between parsing and evaluating, as needed.

MACRO LANGUAGE

The Macro Language entity in Figure 7.11, like Format, does not map to a
single C++ class. In this case there is a core class, but the implementation of
the macro language calls upon supporting functions and classes.

package

["query"]:

["Global"]:

["status"]:

macros

["content"]:

["queryform"]:

["footer"]:

["header"]:

 ...

 ...

["about"]:

macros

["homeicon"]:

["footer"]:

["header"]:

 ...

parameters

["l=fr"]:

["l=en"]:

 ...

mvalue

filename:

 ...

 ...

 ...

 ...

 ...

 ...

 ...

 ...

value:

french.dm

Page de recherche

mvalue

filename:

value:

english.dm

Search page

["l=zh"]: ...

Figure B.15 Data structures representing the default macros.

Again the implementation is best explained using an example. Figure B.15
shows the core data structure built when reading the macro files specified in
etc/main.cfg. Essentially it is an associative array of associative arrays of
associative arrays. The top layer (shown on the left) indexes the package that
the macro is from, and the second layer indexes the macro name. The final

 16
layer indexes any parameters that were specified, storing each one as the
type mvalue which records, along with the macro value, the file from which it
came. For example, the text defined for _header_[l=en] in Figure 7.5 can be
seen stored in the lower of the two mvalue records in Figure B.15.

class displayclass
{
public:
displayclass ();
~displayclass ();

int isdefaultmacro (text t package, const text t ¯oname);
int setdefaultmacro (text t package, const text t ¯oname,

text t params, const text_t ¯ovalue);
int loaddefaultmacros (text t thisfilename);

void openpage (const text t &thispageparams,
const text t &thisprecedence);

void setpageparams (text t thispageparams,
text t thisprecedence);

int setmacro (const text t ¯oname,
text t package,
const text t ¯ovalue);

void expandstring (const text t &inputtext, text t &outputtext);
void expandstring (text t package, const text_t &inputtext,

text t &outputtext, int recursiondepth = 0);

void setconvertclass (outconvertclass *theoutc) {outc = theoutc;}
outconvertclass *getconvertclass () {return outc;}
ostream *setlogout (ostream *thelogout);

};
Figure B.16 Displayclass API (abridged).

The central object that supports the macro language is displayclass, defined in
lib/display.h. Its public member functions are shown in Figure B.16. The
class reads the specified macro files using loaddefaultmacros(), storing in a
protected section of the class (not shown) the type of data structure shown in
Figure B.15. Macros may also be set by the runtime system using setmacro().
For example, when generating the home page as described in Section 7.3,
pageaction uses this function to set a macro called homeextra to the
dynamically generated table of available collections. Dynamic macros are
supported by a set of associative arrays similar to those used to represent
macro files (it is not identical, because dynamic macros do not require the
parameter layer). Macros read from the file are referred to as default macros.
Local macros specified through setmacro() are referred to as current macros
and are cleared from memory once the page has been generated.

When a page is to be produced, openpage() is first called to communicate the
current settings of the page parameters (l=en and so on). Next, text and
macros are streamed through the class—typically from within an
actionclass—using code along the following lines:

cout << text_t2ascii << display << "_amacro_"
<< "_anothermacro_";

The result is that macros are expanded according to the page parameter
settings. If required, these settings can be changed part way through an action
by using setpageparams(). The remaining public member functions provide
lower-level support.

RECEPTIONIST CODE

The principal objects in the receptionist have now been described. Next we
detail the supporting classes, which reside in the receptionist directory

 17
(src/recpt). Except where efficiency is paramount—in which case
definitions are in-line—implementation details are contained within a header
file’s .cpp counterpart.

It is helpful to know how files are named. Supporting files often include the
word tool as part of the file name, as in OIDtools.h and formattools.h. Other
files include the prefix z3950 and provide remote access to online databases
and catalogs that make their content publicly available using the Z39.50
protocol. Another large group of supporting files includes the word
browserclass. These files are related through a virtual inheritance hierarchy.
As a group they support an abstract notion of browsing: serial page
generation of compartmentalized document content or metadata. Browsing
activities include perusing documents ordered alphabetically by title or
chronologically by date; progressing through the titles returned by a query 10
entries at a time; and accessing individual pages of a book using the “go to
page” mechanism (seen near the top right of Figure 7.9). Each browsing
activity inherits from browserclass, the base class:

• datelistbrowserclass provides support for chronological lists
• hlistbrowserclass provides support for horizontal lists
• htmlbrowserclass provides support for pages of HTML
• invbrowserclass provides support for invisible lists
• pagedbrowserclass provides go to page support
• vlistbrowserclass provides support for vertical lists

Actions access browserclass objects through browsetools.h.

Here are the classes that support the principal objects in the receptionist.

OIDtools.h Functions that evaluate document identifiers using the protocol.

action.h Base class for the Actions entity depicted in Figure 7.11.

authenaction.h Inherited action for handling authentication of a user.

browserclass.h Base class for abstract browsing activities.

browsetools.h Functions to access the browserclass hierarchy. Functionality
includes expanding and contracting contents, generating a table of contents,
and generating control widgets such as the “go to page” mechanism.

cgiargs.h Defines cgiarginfo used in Figure B.11 and other data structure
support for CGI arguments.

cgiutils.h Functions for handling CGI arguments using the data structures
defined in cgiargs.h.

cgiwrapper.h Functions that do everything necessary to output a page using
the CGI protocol. Access is through the function

void cgiwrapper (receptionist &recpt, text_t collection);

which is the only function declared in the header file. Everything else in the
.cpp counterpart is lexically scoped to be local to the file (using the C++
keyword static). If the function is being run for a particular collection, then
collection should be set; otherwise it should be the empty string. The code
includes support for Fast-CGI.

 18
collectoraction.h Inherited action that facilitates end user collection-
building through the Collector. The page generated comes from collect.dm
and is controlled by the CGI argument p=page.

comtypes.h Core types for the protocol.

converter.h Object support for stream converters.

datelistbrowserclass.h Object inherited from browserclass that provides
browsing support for chronological lists such as that seen in Figure 3.21
(Chapter 3).

documentaction.h Inherited action used to retrieve a document or part of a
classification hierarchy.

extlinkaction.h Inherited action that controls whether or not a user goes
straight to an external link or passes through a warning page alerting the user
to the fact that he or she is about to move outside the digital library system.

formattools.h Functions for parsing and evaluating collection configuration
format statements.

historydb.h Data structures and functions for managing a database of
previous queries so a user can issue a new query that includes previous query
terms.

hlistbrowserclass.h Object inherited from browserclass that provides
browsing support for horizontal lists.

htmlbrowserclass.h Object inherited from browserclass that provides
browsing support for HTML pages.

htmlgen.h Functions to highlight query terms in a text_t string.

htmlutils.h Functions that convert a text_t string into the equivalent HTML.
The symbols ", &, <, and > are converted into ", &, <, and
>, respectively.

infodbclass.h Defines two classes: gdbmclass and infodbclass. The former
provides an API to GDBM; the latter is the object class used to store a record
entry read in from a GDBM database and is essentially an associative array of
integer-indexed arrays of text_t strings.

invbrowserclass.h Object inherited from browserclass that provides
browsing support for lists not intended for display (invisible).

nullproto.h Object inherited from recptproto that realizes the null protocol,
implemented through function calls from the receptionist to the collection
server.

pageaction.h Inherited action that, in conjunction with the macro file named
in p=page, generates a Web page.

pagedbrowserclass.h Object inherited from browserclass that provides
browsing support for the “go to page” mechanism.

pingaction.h Inherited action that checks to see whether a particular

 19
collection is responding.

queryaction.h Inherited action that takes the stipulated query, settings, and
preferences and performs a search, generating as a result the subset of o=num
matching documents starting at position r=num.

querytools.h Functions that support querying.

receptionist.h Top-level object for the receptionist, which maintains a record
of CGI argument information, instantiations of each inherited action,
instantiations of each inherited browser, the core macro language object
displayclass, and all possible converters.

recptconfig.h Functions for reading the site and main configuration files.

recptproto.h Base class for the protocol.

statusaction.h Inherited action that generates, in conjunction with status.dm,
the various Administration pages.

tipaction.h Inherited action that produces, in conjunction with tip.dm, a Web
page containing a tip taken at random from a list of tips stored in tip.dm.

userdb.h Data structures and functions for maintaining a GDBM database of
users: their password, groups, and so on.

usersaction.h An administrator action inherited from the base class that
supports adding and deleting users as well as modifying the groups they are
in.

vlistbrowserclass.h Object inherited from browserclass that provides
browsing support for vertical lists, the mainstay of classifiers. For example,
the children of the node for titles beginning with the letter N are stipulated to
be a VList.

z3950cfg.h Data structure support for the Z39.50 protocol. Used by
z3950proto.cpp, which defines the main protocol class (inherited from the
base class recptproto) and configuration file parser zparse.y (written using
YACC).

z3950proto.h Object inherited from recptproto that realizes the Z39.50
protocol so that the Greenstone receptionist can access remote library sites
running Z39.50 servers.

z3950server.h Further support for the Z39.50 protocol.

A.4 Initialization

Initializing the software is a complex operation that processes configuration
files and assigns default values to data fields. In addition to inheritance and
constructor functions, core objects define init() and configure() functions to
help standardize the task. Even so, the order of execution can be difficult to
follow. This section describes what happens.

Several configuration files are used for different purposes, but all follow the
same syntax. Unless a line starts with the hash symbol (#) or consists entirely

 20
of white space, the first word defines a keyword, and the remaining words
represent a particular setting for that keyword.

The lines from configuration files are passed, one at a time, to configure() as
two arguments: the keyword and an array of the remaining words. Based on
the keyword, a particular version of configure() decides whether the
information is of interest, and if so stores it. For example, collectserver
(which maps to the Collection object in Figure 7.11) processes the format
statements in a collection’s configuration file. When the keyword format is
passed to configure(), an if statement is triggered that stores in the object a
copy of the function’s second argument.

After processing the keyword and before the function terminates, the
configure() of some objects pass the data to configure() functions in other
objects. The Receptionist object calls configure() for Actions, Protocols, and
Browsers. The NullProtocol object calls configure() for each Collection
object; Collection calls Filters and Sources.

In C++, data fields are normally initialized by the object’s constructor
function. However, some initialization depends on values read from
configuration files, so a second round of initialization is needed. This is the
purpose of the init() member functions, and in some cases it leads to further
calls to configure().

============
Main program
============
Statically construct Receptionist
Statically construct NullProtocol
Establish the value for 'gsdlhome' by reading gsdlsite.cfg
Foreach directory in GSDLHOME/collect that isn't "modelcol":
Add directory name (now treated as collection name) to NullProtocol:
Dynamically construct Collection
Dynamically construct Gdbm class
Dynamically construct the Null Filter
Dynamically construct the Browse Filter
Dynamically construct MgSearch
Dynamically construct the QueryFilter
Dynamically construct the MgGdbmSource
Configure Collection with 'collection'
Passing 'collection' value on to Filters and Sources:

Configure Receptionist with 'collectinfo':
Passing 'collectinfo' value on to Actions, Protocols, and Browsers:

Add NullProtocol to Receptionist
Add in UTF-8 converter
Add in GB converter
Add in Arabic converter

Foreach Action:
Statically construct Action
Add Action to Receptionist

Foreach Browsers:
Statically construct Browser
Add Browser to Receptionist

Call function cgiwrapper:
=================
Configure objects
=================
Configure Receptionist with 'collection'
Passing 'collection' value on to Actions, Protocols, and Browsers:
NullProtocol not interested in 'collection'

Configure Receptionist with 'httpimg'
Passing 'httpimg' value on to Actions, Protocols, and Browsers:
NullProtocol passing 'httpimg' on to Collection
Passing 'httpimg' value on to Filters and Sources:

Configure Receptionist with 'gwcgi'
Passing 'gwcgi' value on to Actions, Protocols, and Browsers:
NullProtocol passing 'gwcgi' on to Collection
Passing 'gwcgi' value on to Filters and Sources:

Reading in site configuration file gsdlsite.cfg
Configure Recptionist with 'gsdlhome'
Passing 'gsdlhome' value on to Actions, Protocols, and Browsers:
NullProtocol passing 'gsdlhome' on to Collection
Passing 'gsdlhome' value on to Filters and Sources:

Configure Recptionist with ...
... and so on for all entries in gsdlsite.cfg

Reading in main configuration file main.cfg
Confiugre Recptionist with ...
... and so on for all entries in main.cfg

====================

 21
Initialising objects
====================
Initialise the Receptionist
Configure Receptionist with 'collectdir'
Passing 'collectdir' value on to Actions, Protocols, and Browsers:
NullProtocol not interested in 'collectdir'

Read in Macro files
Foreach Actions
Initialise Action

Foreach Protocol
Initialise Protocol

When Protocol==NullProtocol:
Foreach Collection
Reading Collection's build.cfg
Reading Collection's collect.cfg
Configure Collection with 'creator'
Passing 'creator' value on to Filters and Sources:

Configure Collection with 'maintainer'
Passing 'maintainer' value on to Filters and Sources:

... and so on for all entries in collect.cfg

Foreach Browsers
Initialise Browser

=============
Generate page
=============
Parse CGI arguments
Execute designated Action to produce page
End.

Figure B.17 Initializing Greenstone using the null protocol.

Figure B.17 shows diagnostic statements generated by a version of the
software augmented to describe the initialization process. The program starts
in the main() function in recpt/librarymain.cpp. It constructs a Receptionist
object and a NullProtocol object, then scans gsdlsite.cfg (located in the same
directory as the library executable) for gsdlhome and stores its value in a
variable. For each online collection—established by reading the
subdirectories of the top-level collect directory—it uses the NullProtocol
object to construct a Collection object that includes within it Filters, Search,
and Source, plus a few hard-wired calls to configure().

Next main() adds the NullProtocol object to the Receptionist, which keeps a
base class array of protocols in a protected data field and then sets up several
converters. Main() constructs all Actions and Browsers used in the executable
and adds them to the Receptionist. The function concludes by calling
cgiwrapper() in cgiwrapper.cpp, which itself involves substantial object
initialization.

There are three sections to cgiwrapper(): configuration, initialization, and
page generation. First some hard-wired calls to configure() are made. Then
gsdlsite.cfg is read and configure() is called for each line. The same is done
for etc/main.cfg.

The second phase of cgiwrapper() makes calls to init(). The Receptionist
makes only one call to its init() function, but the act of invoking this calls
init() functions in the various objects stored within it. First a hard-wired call
to configure() is made to set collectdir, and then the macro files are read. For
each action its init() function is called. The same occurs for each protocol
stored in the receptionist, but in the system being described, only one protocol
is stored—the NullProtocol. Calling init() for this object causes further
configuration: for each collection in the NullProtocol, its collection-specific
build.cfg and collect.cfg are read and processed, with a call to configure() for
each line.

The final phase of cgiwrapper() is to parse the CGI arguments and then call
the appropriate action. Both these calls are made with the support of the
Receptionist object.

 22

The reason for the separation of the configuration, initialization, and page
generation code is that the system is optimized to be run as a server (using
Fast-CGI, or the CORBA protocol, or the Windows Local Library). In this
mode of operation, the configuration and initialization code is executed once,
and then the program remains in memory and generates many Web pages in
response to requests from clients, without requiring reinitialization.

481

Glossary

AACR2R Anglo-American Cataloging Rules (second edition, revised), published by
the American Library Association

ASCII American Standard Code for Information Exchange, a 1968 standard 7-bit
code for representing the Roman alphabet plus numerals and special symbols

BibTeX Scheme for managing bibliographic data and references within documents
in the TeX format

Boolean query Query to an information retrieval system that may contain AND, OR, NOT

Browsing Accessing a collection by scanning an organized list of metadata values asso-
ciated with the documents (such as author, title, date, and keywords)

buildcol.pl Greenstone program used to build collections

Building Process of creating the indexing and browsing structures that are used to
access a collection

C++ Programming language in which the majority of the Greenstone software is
written

Case-folding Making uppercase and lowercase words look the same, for searching pur-
poses

CCL Common Command Language, a format used for expressing bibliographic
queries

CD-ROM Compact disk read-only memory, a 650 Mb disk that uses the same technol-
ogy as audio CDs

CGI Common Gateway Interface, a scheme that allows users to activate pro-
grams on the host computer by clicking on Web pages

cgi-bin Directory in which CGI scripts are stored

CGI script Code associated with a button, menu, or link on a Web page that specifies
what the host computer is to do when clicked

Classifier Greenstone code module that examines document metadata to form an
index for browsing

Collection Set of documents that are brought together under a uniform searching and
browsing interface

File that specifies how a collection is to be imported and built, what indexes
and language interfaces are to be provided, and so on

GDBM database that holds information needed when serving the collection
to users

Collection server Program responsible for providing access to a collection when it is being
used

Collector Greenstone subsystem that leads you interactively through the operations
necessary to create a digital library collection

Configuration file See Collection configuration file, Main configuration file, Site configuration
file

CORBA Common Object Request Broker Architecture, a protocol used to commu-
nicate between processes on different computers over the Internet

CSS Cascading Style Sheets, a way of controlling the presentation of HTML and
XML documents

db2txt Greenstone tool for viewing a GDBM database as plain text

DDL Description Definition Language, a form of XSchema used in MPEG-7 to
allow users to create their own metadata format

DDML Document Definition Markup Language, a preliminary form of XML
Schema

Demo collection A subset of the Humanities Development Library, distributed with the
Greenstone software and used for illustration in this book

Collection
information
database

Collection
configuration file

482 G L O S S A R Y

Dienst Digital library protocol developed in a long-running research project at
Cornell University

Digital library Collection of digital objects (text, audio, video), along with methods for
access and retrieval, and for selection, organization, and maintenance

Document Basic unit from which digital library collections are constructed, which may
include text, graphics, sound, and video

DTD Document Type Definition, a specification used in XML (and also SGML)
to express the structure of a particular set of documents

Dublin Core An intentionally minimalist standard for describing metadata, designed to
be applied to resources on the Web

DVD Digital versatile disk, a disk format that can hold from 5 to 20 Gb of data

Dynamic HTML Combination of HTML with CSS, Web-page scripting, and the document
object model that provides functionality comparable to XSL

EBCDIC Extended Binary Coded Decimal for Information Interchange, an alterna-
tive code to ASCII

Variant of PostScript designed for expressing graphics of a single page or
less that are to be included in other documents

FAO United Nations Food and Agricultural Organization

Fast-CGI Facility that allows CGI scripts to remain continuously active so that they
do not have to be restarted from scratch every time they are invoked

Filter program That part of a Greenstone collection server that implements querying and
browsing operations

FO Formatting Objects, the component of the XML specification that deals
with the actual formatting

Format string A string that specifies how documents and other listings are to be displayed
in Greenstone

FTP File transfer protocol

GB-encoding Standard way of encoding the Chinese language

GDBM GNU DataBase Manager, a program used within the Greenstone software to
store metadata for each document

GIF Graphics Image Format, a widely used compression scheme for lossless
images

Encapsulated
PostScript

G L O S S A R Y 483

GIMP GNU Image-Manipulation Program, used (on Unix) to create icons in
Greenstone

GNU Public License Software license that permits users to copy and distribute computer pro-
grams freely, and to modify them so long as all modifications are made pub-
licly available

Greenstone The name of the digital library software used as an example in the book
(www.greenstone.org)

GSDL Abbreviation for Greenstone Digital Library

%GSDLHOME% Operating system variable that represents the top-level directory in which
all Greenstone programs and collections are stored ($GSDLHOME on Unix
systems)

hashfile Greenstone program used at import or build time to generate the OID of
each document

HDL Humanity Development Library, a collection of humanitarian information
for developing countries

HTML HyperText Markup Language, the language in which Web documents are
written

HTML Tidy Software utility that converts older HTML formats to XHTML

HTTP Hypertext transfer protocol

Hyperlink Link to another document or to another place in this document

Importing Process of bringing collections of documents into the Greenstone system

import.pl Greenstone program used to import documents

Index Information structure that is used for searching or browsing a collection

InstallShield Windows program, used by Greenstone CD-ROMs, that allows a system to
be installed from a CD-ROM

ISBN International Standard Book Number

ISCII Indian Script Code for Information Interchange, an ASCII extension that
incorporates Brahmi-based Indic scripts

JPEG Standard for (mainly) lossy image compression, named after the Joint Pho-
tographic Experts Group

JPEG-2000 Later version of the JPEG image compression standard

484 G L O S S A R Y

LCSH Library of Congress Subject Headings, a controlled vocabulary for assigning
subject descriptors

LZW Lempel-Ziv-Welch compression scheme, patented by Unisys, used in GIF,
TIFF, PDF, and PostScript Level 2 and above

Macro language Language that allows the specification of textual replacements, used to gen-
erate all pages in the Greenstone user interface

File that contains specifications common to all collections served by this site

MARC Machine-readable cataloging format, a metadata scheme designed in the
late 1960s for use by professional library catalogers

Metadata Structured information, such as author, title, date, keywords, and so on,
that is associated with a document (or document collection)

MG Managing Gigabytes, a program used by the Greenstone system for full-text
indexing, that incorporates compression techniques (Witten, Moffat, and
Bell, 1999)

mgbuild MG program for building a compressed full-text index

mgquery MG program for querying a compressed full-text index

MIDI Musical Instrument Digital Interface, a representation of music used by
music synthesizers

MIME Multipurpose Internet Mail Extensions, a standard for including different
types of file—text, images, audio, video, or application-specific data—in e-
mail messages

Mirror The process of copying a Web site, or part of a Web site, to another location
and making it available there

mkcol.pl Greenstone program that creates and initializes the directory structure for a
new collection

MPEG Standard for representing multimedia material, named after the Motion
Picture Experts Group

Research project in the Computer Science Department at the University of
Waikato, New Zealand, that created the Greenstone software (www.nzdl.org)

OAI Open Archives Initiative, the name of a protocol designed for the efficient
dissemination of digital library content

New Zealand
Digital Library
Project

Main
configuration file

G L O S S A R Y 485

OCR Optical Character Recognition, the process of producing a digital represen-
tation of the textual content of a document image

OID Object Identifier, a unique identification code associated with a document
or other digital object

OMR Optical Music Recognition, the musical analog of OCR

Open eBook An open standard for electronic books

PDF Portable Document Format, a page description language designed for inter-
active use as a successor to PostScript

Perl Programming language used for many of the text-processing operations
that occur during the Greenstone building process

Phrasier An environment for reading and writing within a digital library

Ping Message sent to a system to determine whether it is running or not

Plug-in Code module for handling documents of different formats, used during the
importing and building processes

PNG Portable Network Graphics, an open standard for lossless images

PostScript The first page description language

Protocol Set of conventions according to which two systems communicate (for
example, a Greenstone receptionist and collection server)

PURL Persistent URL, a particular style of URN

Ranked query Natural-language query to an information retrieval system, for which the
documents that match the query are sorted in order of relevance

RDF Resource Description Framework, a scheme designed to facilitate the inter-
operability of metadata

Receptionist Program that organizes the Greenstone user interface

Refer Scheme for managing bibliographic data and references within documents

A particular application of RDF by the Research Support Libraries Program
based at the University of Bath, U.K.

RTF Rich Text Format, a standard format for interchange of text documents

SDLIP Simple Digital Library Interoperability Protocol, developed by Stanford
University

RLSP collection
description

486 G L O S S A R Y

Searching Accessing a collection through a full-text search of its contents (or parts of
contents, such as section titles)

Server See Collection server and Web server

Script used to set up your environment to recognize the Greenstone soft-
ware

SGML Standard Generalized Markup Language, a metalanguage for describing
markup formats that was standardized in 1986 and forms a precursor to
XML

File that contains specifications used to configure the Greenstone software
for the site on which it is installed

SQL Structured Query Language, an industry-standard database-query lan-
guage

Stemming Stripping endings off a term to make it more general

STL Standard Template Library, a widely available library of C++ code devel-
oped by Silicon Graphics

SVG XML-based language for describing two-dimensional graphics

TEI Text Encoding Initiative, a project founded in 1987 that developed SGML
DTDs for representing scholarly texts in the humanities and social sciences

TIFF Tagged Image File Format, a public-domain file format for raster images
that incorporates facilities for descriptive metadata

txt2db Greenstone program used at build time to create the GDBM database

UCS Unicode Character Set, the set of characters supported by Unicode

UNESCO United Nations Educational, Scientific and Cultural Organization

Unicode Standard scheme for representing the character sets used in the world’s lan-
guages

UNU United Nations University; also used to refer to a Greenstone collection cre-
ated for that organization

URI Universal Resource Identifier, a generic name for URLs and URNs

URL Universal Resource Locator, a standard way of addressing objects on the
Web (but this term is supposed to be superseded by URI)

URN Universal Resource Name, a way of naming resources instead of specifying
their locations

Site configuration
file

setup.bat,
setup.sh, setup.csh

G L O S S A R Y 487

UTF UCS Transformation Format, a scheme for representing Unicode characters
with three variants: UTF-32, UTF-16, and UTF-8

VRML Virtual Reality Modeling Language, used for presenting virtual reality expe-
riences on the Web

Web server Standard program that computers use to make information accessible over
the World Wide Web

Word Microsoft Word, a widely used word processing program

XHTML Modern version of HTML that incorporates the stricter syntactic rules of
XML

XLink XML linking language that provides a more powerful method for connect-
ing resources than HTML hyperlinks

XML Extensible Markup Language, a metalanguage for describing markup for-
mats for structured documents and data on the Web

XML Schema Way of specifying the structure of a particular set of documents that pro-
vides more expressive facilities for structures and data types than DTDs

XPath Component of the XML specification that allows the selection of parts of a
document

XPointer Development of XPath that provides a finer degree of control over the parts
of the document being selected

XQuery Format used for expressing queries in the style of XML

XQueryX Version of the XQuery language that is expressed in valid XML and is
intended to be read by machines rather than by people

XSchema Preliminary form of XML Schema

XSL Extensible Stylesheet Language, a way of controlling the presentation of
XML documents (and XML-compliant HTML ones) that is more expressive
than CSS

XSLT XSL Transformations, a component of the XML specification that allows
you to manipulate parts of the document tree

YAZ Open-source software library that implements the Z39.50 protocol

Z39.50 International standard communications protocol developed for use by
library catalog systems

488 G L O S S A R Y

489

References

ABBYY Software (2000) FineReader User’s Guide. ABBYY Software, 123015 Moscow,
P.O. 72, Russia.

Adobe Systems Incorporated (1985) PostScript Language Tutorial and Cookbook. Addi-
son Wesley, Boston, MA.

Adobe Systems Incorporated (1999) PostScript Language Reference, third edition. Addi-
son Wesley, Boston, MA.

Adobe Systems Incorporated (2000) PDF Reference, second edition (version 1.3). Addi-
son Wesley, Boston, MA.

Akscyn, R. M., and Witten, I. H. (1998) “Report on First Summit on International
Cooperation on Digital Libraries.” http://ks.com/idla-wp-oct98.

American National Standards Institute (1968) American Standard Code for Information
Interchange (ASCII), Standard No. X3.4–1968; updated as X3.4–1986.

Andrews, N. (1987) “Rich text format standard makes transferring text easier.” Microsoft
Systems Journal, Vol. 2, No. 1, pp. 63–67; March.

Apperley, M., Cunningham, S. J., Keegan, T., and Witten I. H. (2001) “Niupepa: A his-
torical newspaper collection.” Communications of the ACM, Vol. 44, No. 5, pp.
86–87; May.

Apperley, M., Keegan, T., Cunningham, S. J., and Witten, I. H. (in press) “Delivering the
Maori language newspapers on the Internet.” In Maori Language Newspapers,
edited by J. McRae. Auckland University Press, New Zealand.

Arms, W. Y. (2000) Digital Libraries. MIT Press, Cambridge, MA.

Arunachalam, S. (1998) “How the Internet is failing the developing world.” Presented at
Science Communication in the Next Millennium, Egypt; June. Available at
www.abc.net.au/science/slab/infopoverty/story.htm.

Atkinson, R. (1986) “Selection for preservation: A materialistic approach.” Library
Resources and Technical Services 30, pp. 344–348; October/December.

Baeza-Yates, R., and Ribeiro-Neto, B. (1999) Modern Information Retrieval. ACM Press,
New York.

Bainbridge, D. (2000) “The role of music information retrieval in the New Zealand Digi-
tal Library project.” Proc International Symposium on Music Information Retrieval;
Plymouth, UK (3 pages).

Bainbridge, D., Buchanan, G., McPherson, J., Jones, S., Mahoui, A., and Witten, I. H.
(2001) “Greenstone: A platform for distributed digital library applications.” Proc
European Conference on Digital Libraries, Darmstadt, Germany, pp. 137–148; Sep-
tember.

Bainbridge, D., and Cunningham, S. J. (1998) “Making oral history accessible over the
World Wide Web.” History and Computing, Vol. 10, No. 1/3, pp. 73–81.

Bainbridge, D., Nevill-Manning, C., Witten, I. H., Smith, L. A. and McNab, R. J. (1999)
“Towards a digital library of popular music.” Proc ACM Digital Libraries, Berkeley,
CA, pp. 161–169.

Berners-Lee, T., Hendler, J., and Lassila, O. (2001) “The Semantic Web.” Scientific Amer-
ican, Vol. 284, No. 5, pp. 34–43; May.

Borgman, C. L. (2000) From Gutenberg to the Global Information Infrastructure: Access to
Information in the Networked World. MIT Press, Cambridge, MA.

Bowker, R. R. (1883) “The work of the nineteenth-century librarian for the librarian of
the twentieth.” Library Journal, Vol. 8, pp. 247–250; September–October.

Brassil, J. T., Low, S., Maxemchuk, N. F., and O’Gorman, L. (1994) “Electronic marking
and identification techniques to discourage document copying.” Proc Infocom,
Toronto, Canada, pp. 1278–1287; June.

British National Library (2001) New Strategic Directions. British National Library, London.

Bryan, M. (1988) SGML: An Author’s Guide to the Standard Generalized Markup Lan-
guage. Addison Wesley, Boston, MA.

Bush, V. (1947) “As we may think.” The Atlantic Monthly, Vol. 176, No. 1, pp. 101–108.

Cavnar, W. B., and Trenkle, J. M. (1994) “N-Gram-based text categorization.” Proc Sym-
posium on Document Analysis and Information Retrieval, Las Vegas, NV, pp.
161–175; April.

Chang, S. J., and Rice, R. E. (1993) “Browsing: A multidimensional framework.” Annual
Review of Information Science and Technology, Vol. 28, pp. 231–276.

Chapman, N., and Chapman, J. (2000) Digital Multimedia. Wiley, New York.

Chen, S. S. (1998) Digital Libraries: The Life Cycle of Information. BE (Better Earth) Pub-
lisher, Columbia, MO.

490 R E F E R E N C E S

Clarke, C. L. A., Cormack, G.V., and Burkowski, F. J. (1995) “An algebra for structured
text search and a framework for its implementation.” Computer Journal, Vol. 38,
No. 1, pp. 43–56.

Clinton, W., and Gore, A., Jr. (1993) Technology for America’s Economic Growth: A New
Direction to Build Economic Strength. Executive Office of the President, Washing-
ton, DC; February.

Committee on Intellectual Property Rights, Computer Science and Telecommunica-
tions Board (2000) The Digital Dilemma: Intellectual Property in the Information
Age. National Academy Press, Washington, DC.

Cooper, M. D. (1996) Design of Library Automation Systems. Wiley, New York.

Cox, I., Miller, M., and Bloom, J. (2001) Digital Watermarking. Morgan Kaufmann, San
Francisco.

Crane, G. (1998) “The Perseus project and beyond: How building a digital library chal-
lenges the humanities and technology.” D-Lib Magazine, Vol. 4, No. 1; January.

Crawford, W., and Gorman, M. (1995) Future Libraries: Dreams, Madness, and Reality.
American Library Association, Chicago.

Crossley-Holland, K. (Trans.) (1968) Beowulf. Folio Society, London.

Cutter, C. A. (1876) Rules for a Printed Dictionary Catalog. U.S. Bureau of Education
special report on public libraries, Part II, U.S. Government Printing Office, Wash-
ington, DC.

Dartois, M., Maeda, A., Sakaguchi, T., Fujita, T., Sugimoto, S., and Tabata, K. (1997) “A
multilingual electronic text collection of folk tales for casual users using off-the-
shelf browsers.” D-Lib Magazine, Vol. 3, No. 10; October.

Davidson, C. (1993) “The man who made computers personal.” New Scientist, No. 1978,
pp. 32–35; June.

de Kretser, O., and Moffat, A. (1999) “Effective document presentation with a locality-
based similarity heuristic,” Proc ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval, pp. 113–120. ACM Press, New York; August.

de Stefano, P. (2000) “Selection for digital conversion.” In Moving Theory into Practice:
Digital Imaging for Libraries and Archives, edited by A. R. Kenney and O. Y. Rieger.
pp. 11–23. Research Libraries Group, Mountain View, CA.

Deitel, H. M., and Deitel, P. J. (2001) C++ How to program. Prentice Hall, Upper Saddle
River, NJ.

DeLong, M. B., Brady, J. G., Bourgeois, L. D., and Niemiec, L. J. (1987) First Aid in Pic-
tures. Vade Mecum Press, Sterling, VA.

Dumais, S. T., Platt, J., Heckerman, D., and Sahami, M. (1998) “Inductive learning algo-
rithms and representations for text categorization.” Proc ACM Conf on Informa-
tion and Knowledge Management, pp. 148–155.

Duncker, E. (2000) “Cross-cultural use of colours and metaphors in information systems.”
Proc Workshop on Cultural Issues in HCI, University of Luton, UK; December.

R E F E R E N C E S 491

Foley, J. D., van Dam, A., Feiner, S. K., and Hughes, J. F. (1990) Computer Graphics: Prin-
ciples and Practice in C. Addison Wesley, Boston, MA.

Frakes, W. B. (1992) “Stemming algorithms.” In Frakes and Baeza-Yates (1992), Chapter
8, pp. 131–160.

Frakes, W. B., and Baeza-Yates, R. (Eds.) (1992) Information Retrieval: Data Structures
and Algorithms. Prentice Hall, Englewood Cliffs, NJ.

Frank, E., Paynter, G. W., Witten, I. H., Gutwin, C., and Nevill-Manning, C. (1999)
“Domain-specific keyphrase extraction.” Proc International Joint Conference on
Artificial Intelligence, Stockholm, Sweden, pp. 668–673. Morgan Kaufmann, San
Francisco, CA; July/August.

Gaines, B. R. (1993) “An agenda for digital journals: The socio-technical infrastructure
of knowledge dissemination.” Journal of Organizational Computing, Vol. 3, No. 2,
pp. 135–193.

Gapen, D. K. (1993) “The virtual library: Knowledge, society, and the librarian.” In The
Virtual Library: Visions and Realities, edited by L. M. Saunders, pp. 1–14. Informa-
tion Today, Medford, NJ.

Giles, C. L., Bollacker, K. D., and Lawrence, S. (1998) “CiteSeer: An automatic citation
indexing system.” Proc ACM Digital Libraries, Pittsburgh, PA, pp. 89–98; June.

Ginsparg, P. (1996) “Winners and losers in the global research village.” Presented at
UNESCO Conference on Electronic Publishing in Science, Paris; February. Avail-
able at http://xxx.lanl.gov/blurb/pg96unesco.html.

Goldfarb, C. F. (1990) The SGML Handbook. Oxford University Press, New York.

Goodman, H. J. A. (1987) “The ‘world brain/world encyclopaedia’ concept: Its histori-
cal roots and the contributions of H. J. A. Goodman to the ongoing evolution and
implementation of the concept.” In Proc 50th Annual Meeting of the American
Society for Information Science, pages 91–98, Medford, NJ.

Gore, D. (Ed.) (1976a) Farewell to Alexandria: Solutions to Space, Growth, and Perfor-
mance Problems of Libraries. Greenwood Press, Westport, CT.

Gore, D. (1976b) Farewell to Alexandria: The Theory of the No-growth, High-performance
Library. Greenwood Press, Westport, CT, pages 164–180.

Gorman, M., and Winkler, P. W. (Eds.) (1988) Anglo-American Cataloguing Rules, sec-
ond edition. American Library Association, Chicago.

Gorn, S., Bemer, R. W., and Green, J. (1963) “American standard code for information
interchange.” Communications of the ACM, Vol. 6, No. 8, pp. 422–426; August.

Gutwin, C., Paynter, G. W., Witten, I. H., Nevill-Manning, C., and Frank, E. (1999)
“Improving browsing in digital libraries with keyphrase indexes.” Decision Sup-
port Systems, Vol. 27, No. 1/2, pp. 81–104; November.

Harold, E. R. (2001) XML Bible, Gold edition. IDG Books, Boston, MA.

Heaney, S. (Trans.) (1999) Beowulf. Faber and Faber, London.

492 R E F E R E N C E S

Hyman, R. J. (1972) Access to Library Collections: An Inquiry into the Validity of the Direct
Shelf Approach, with Special Reference to Browsing. Scarecrow Press, Metuchen, NJ.

International Telecommunication Union (1998) Universal Access to Basic Communica-
tion and Information Services. World telecommunication development report,
International Telecommunication Union, Geneva, Switzerland.

International Telecommunication Union (1999) Mobile Cellular. World telecommuni-
cation development report, International Telecommunication Union, Geneva,
Switzerland.

Jack, K. (2001) Video Demystified, third edition. LLH Technology, Eagle Rock, VA.

Jones, S. (1999) “Phrasier: An interactive system for linking and browsing within docu-
ment collections using keyphrases.” Proc IFIP Conference on Human-Computer
Interaction, Edinburgh, Scotland, pp. 483–490; August/September.

Jones, S., McInnes, S., and Staveley, M. S. (1999) “A graphical user interface for Boolean
query specification.” International J Digital Libraries, Vol. 2, No. 2/3, pp. 207–223.

Jones, S.. and Paynter, G. (1999) “Topic-based browsing within a digital library using
keyphrases.” Proc ACM Digital Libraries, Berkeley, CA, pp. 114–121; August.

Jones, S.. and Staveley, M. (1999) “Phrasier: A system for interactive document retrieval
using keyphrases.” Proc ACM SIGIR Conference on Research and Development in
Information Retrieval, Berkeley, California, pp. 160–167; August.

Josuttis, N. M. (1999) The C++ Standard Library: A Tutorial and Handbook. Addison-
Wesley, Reading, MA.

Kahle, B. (1997) “Preserving the Internet.” Scientific American, Vol. 276, No. 3, pp.
82–83; March.

Katzenbeisser, S., and Petitcolas, F. A. P. (Eds.) (1999) Information Hiding Techniques for
Steganography and Digital Watermarking. Artech House Books, Boston, MA.

Keegan, T., Apperley, M., Cunningham, S. J., and Witten, I. H. (2001) “The Niupepa
collection: Opening the blinds on a window to the past.” Proc ICHIM Conference,
Milan, Italy, pp. 347–356; September.

Kevles, D. J. (1998) The Baltimore Case: A Trial of Politics, Science, and Character. Nor-
ton, New York.

Kientzle, T. (1995) Internet File Formats: Your Complete Resource for Sending, Receiving,
and Using Internet Files. Coriolis Group, Scottsdale, AZ.

Kientzle, T. (1997) A Programmer’s Guide to Sound. Addison Wesley, Boston, MA.

Knuth, D. E. (1986) The TeXbook. Addison Wesley, Boston, MA.

Korfhage, R. R. (1997) Information Storage and Retrieval. Wiley, New York.

Kruse, R. (1994) “Human skin book.” Web posting to Rare Books and Special Collections
Forum, 14 February 1994.

Kuny, T. (1998) “A digital dark ages? Challenges in the preservation of electronic infor-
mation.” International Preservation News, No. 17; May.

R E F E R E N C E S 493

Lagoze, C., and Fielding, D. (1998) “Defining collections in distributed digital libraries.”
D-Lib Magazine, Vol. 4, No. 11; November.

Lagoze, C., and Payette, S. (2000) “Metadata: Principles, practices and challenges.” In
Moving Theory into Practice: Digital Imaging for Libraries and Archives, edited by
A. R. Kenney and O. Y. Rieger, pp. 84–100. Research Libraries Group, Mountain
View, CA.

Lagoze, C., and Van de Sompel, H. (2001) “The Open Archives Initiative: Building a low-
barrier interoperability framework.” Proc Joint Conference on Digital Libraries,
Roanoke, VA, pp. 54–62; June.

Lamport, L. (1994) LaTeX: A Document Preparation System User’s Guide and Reference
Manual. Addison Wesley, Boston, MA.

Larsson, N. J., and Moffat, A. (1999) “Offline dictionary-based compression.” Proc Data
Compression Conference, pp. 296–305. IEEE Press, Los Alamitos, CA; March.

Lennon, M. D., Pierce, D., Tarry, B., and Willett, P. (1981) “An evaluation of some con-
flation algorithms for information retrieval.” Journal of Information Science, Vol.
3, pp. 177–183.

Lesk, M. (1997) Practical Digital Libraries: Books, Bytes, and Bucks. Morgan Kaufmann,
San Francisco.

Library of Congress (1998) Library of Congress Subject Headings, 21st edition. Library of
Congress Cataloging Policy and Support Office, Washington, DC.

Licklider, J. C. R. (1960) “Man-computer symbiosis.” IRE Trans Human Factors in Elec-
tronics, Vol. HFE-1, pp. 4–11.

Lovins, J. B. (1968) “Development of a stemming algorithm.” Mechanical Translation
and Computation, Vol. 11, No. 1–2, pp. 22–31.

Lynch, C. (1999) “Canonicalization: A fundamental tool to facilitate preservation and
management of digital information.” D-Lib Magazine, Vol. 5, No. 9; September.

Mankelow, T. (1999) “The New Zealand School Journal: A digital library for teachers
and students.” Department of Computer Science, University of Waikato; October.

Mann, T. (1993) Library Research Models. Oxford University Press, New York.

Mason, J., Mitchell, S., Mooney, M., Reasoner, L., and Rodriguez, C. (2000) “INFOMINE:
Promising directions in virtual library development.” First Monday, Vol. 5, No. 6;
June.

McCallum, A. K., Nigam, K., Rennie, J., and Seymore, K. (2000) “Automating the con-
struction of Internet portals with machine learning.” Information Retrieval, Vol. 3,
No. 2, pp. 127–163; July.

McLuhan, M. (1964) Understanding Media: The Extensions of Man. McGraw-Hill, New
York; reprinted in 1994 by MIT Press, Cambridge, MA.

McNab, R. J., Smith, L. A., Witten, I. H., Henderson, C. L., and Cunningham, S. J.
(1996) “Towards the digital music library: Tune retrieval from acoustic input.”
Proc ACM Digital Libraries, Bethesda, MD, pp. 11–18; March.

494 R E F E R E N C E S

Miller, E. (1998) “An introduction to the resource description framework.” D-Lib Maga-
zine, Vol. 4, No. 5; May.

Miller, P. (Ed.) (2000) D-Lib Magazine Special Issue on Collection-Level Description,
Vol. 6, No. 9; September.

Morison, S. (1954) First Principles of Typography. Cambridge University Press, Cam-
bridge, England.

Murray, J. D., and van Ryper, W. (1996) Encyclopedia of Graphics File Formats, second
edition. O’Reilly and Associates, Sebastopol, CA.

Nack, F., and Lindsay, A. (1999a) “Everything you wanted to know about MPEG-7: Part I.”
IEEE Multimedia, Vol. 6, No. 3, pp. 65–77; July–September.

Nack, F., and Lindsay, A. (1999b) “Everything you wanted to know about MPEG-7: Part
II.” IEEE Multimedia, Vol. 6, No. 4, pp. 64–73; October–December.

Nevill-Manning, C. G., Reed, T., and Witten, I. H. (1998) “Extracting text from Post-
Script.” Software—Practice and Experience, Vol. 28, No. 5, pp. 481–491; April.

Nevill-Manning, C. G., and Witten, I. H. (1997) “Identifying hierarchical structure in
sequences: A linear-time algorithm.” J. Artificial Intelligence Research, Vol. 7, pp.
67–82.

Nevill-Manning, C. G., and Witten, I. H. (2000) “Online and offline heuristics for infer-
ring hierarchies of repetitions in sequences.” Proceedings of the IEEE, Vol. 88, No.
11, pp. 1745–1755; November.

Norris, P. (2001) Digital Divide? Civic Engagement, Information Poverty and the Internet
Worldwide. Cambridge University Press, New York.

Orwell, G. (1949) 1984. Martin Secker and Warburg, London.

Paepcke, A., Baldonado, M., Chang, C.-C. K., Cousins, S., and Garcia-Molina, H. (1999)
“Using distributed objects to build the Stanford Digital Library Infobus.” IEEE
Computer, Vol. 32, No. 2, pp. 80–87; February.

Paynter, G. W., Witten, I. H., Cunningham, S. J., and Buchanan, G. (2000) “Scalable
browsing for large collections: A case study.” Proc ACM Digital Libraries, San
Antonio, TX, pp. 215–223; June.

Pennebaker, W. B., and Mitchell, J. L. (1993) JPEG: Still Image Data Compression Stan-
dard. Van Nostrand Reinhold, New York.

Pohlmann, K. C. (2000) Principles of Digital Audio, fourth edition. McGraw-Hill, New
York.

Porter, M. F. (1980) “An algorithm for suffix stripping.” Program, Vol. 13, No. 3, pp.
130–137; July.

Price-Wilkin, J. (2000) “Access to digital image collections: System building and image
processing.” In Moving Theory into Practice: Digital Imaging for Libraries and
Archives, edited by A. R. Kenney and O. Y. Rieger, pp. 101–118. Research Libraries
Group, Mountain View, CA.

R E F E R E N C E S 495

Ranganathan, S. R. (1931) The Five Laws of Library Science. Madras Library Association,
Madras.

Rothenberg, J. (1995) “Ensuring the longevity of digital documents.” Scientific Ameri-
can, Vol. 272, No. 1, pp. 42–47; January.

Rothenberg, J. (1997) “Digital information lasts forever—or five years, whichever comes
first.” Rand Corporation Video V-079.

Rothenberg, J. (1999) “Avoiding technological quicksand: Finding a viable technical
foundation for digital preservation.” Technical Report Pub 77, Council on Library
and Information Resources, Washington, DC; January.

Salminen, A., and Tompa, F. W. (1994) “PAT Expressions: An algebra for text search.”
Acta Linguistica Hungarica, Vol. 41, No. 1-4, pp. 277–306.

Salton, G. (1989) Automatic Text Processing: The Transformation, Analysis, and Retrieval
of Information by Computer. Prentice Hall, Englewood Cliffs, NJ.

Salton, G., and McGill, M. J. (1983) Introduction to Modern Information Retrieval.
McGraw-Hill, New York.

Samuelson, P. (1998) “Encoding the law into digital libraries.” Communications of the
ACM, Vol. 41, No. 4, pp. 13–18; April.

Samuelson, P., and Davis, R. (2000) “The digital dilemma: A perspective on intellectual
property in the information age.” Presented at the Telecommunications Policy
Research Conference, Alexandria, VA; September.

Sanders, L. M. (Ed.) (1999) The Evolving Virtual Library II: Practical and Philosophical
Perspectives. Information Today, Medford, NJ.

Santayana, G. (1932) The Life of Reason in the Phases of Human Progress. Scribner’s, New
York.

Slama, D., Garbis, J., and Russell, P. (1999) Enterprise CORBA. Prentice Hall, Upper Sad-
dle River, NJ.

Sperberg-McQueen, C. M., and Burnard, L. (Editors) (1999) Guidelines for Electronic
Text Encoding and Interchange. Text Encoding Initiative, Chicago and Oxford.

Stroustrup, B. (2001) The C++ Programming Language. Addison-Wesley, Reading, MA.

Sun Microsystems (2000) The Digital Library Toolkit. Sun Microsystems, Palo Alto, CA.
Available at www.sun.com/edu.

Svenonius, E. (2000) The Intellectual Foundation of Information Organization. MIT
Press, Cambridge, MA.

Teahan, W. J. (1997) “Modelling English text.” Ph.D. thesis, Department of Computer
Science, University of Waikato, New Zealand.

Teahan, W. J., Wen, Y. Y., McNab, R., and Witten, I. H. (2000) “A compression-based
algorithm for Chinese word segmentation.” Computational Linguistics, Vol. 26,
No. 3, pp. 375–393; September.

496 R E F E R E N C E S

Thiele, H. (1998) “The Dublin Core and Warwick Framework: A review of the litera-
ture, March 1995–September 1997.” D-Lib Magazine, Vol. 4, No. 1; January.

Thompson, J. (1997) A History of the Principles of Librarianship. Clive Bingley, London.

Turney, P. D. (2000) “Learning algorithms for keyphrase extraction.” Information
Retrieval, Vol. 2, No. 4, pp. 303–336.

Unicode Consortium (2000) The Unicode Standard, Version 3.0. Addison Wesley, Read-
ing, MA.

United Nations (1997) Universal Access to Basic Communication and Information Ser-
vices. UN Administrative Committee on Coordination, New York.

United Nations (1999) Human Development Report. UN Development Programme,
New York.

U.S. Congress (1990) Taking a Byte Out of History: The Archival Preservation of Federal
Computer Records. House Committee on Government Operations Report 101-
987, Washington, DC.

van Rijsbergen, C. J. (1979) Information Retrieval, second edition. Butterworths, Lon-
don.

Weibel, S. (1999) “The state of the Dublin Core metadata initiative.” D-Lib Magazine,
Vol. 5, No. 4; April.

Welch, T. A. (1984) “A technique for high-performance data compression.” IEEE Com-
puter, Vol. 17, No. 6, pp. 8–20; June.

Wells, H. G. (1938) World Brain. Doubleday, New York.

White, J. (Ed.) (1999) Intellectual Property in the Age of Universal Access. ACM Press,
New York.

Witten, I. H., Bainbridge, D., and Boddie, S. (2001) “Power to the people: end-user
building of digital library collections.” Proc Joint Conference on Digital Libraries,
Roanoke, VA, pp. 94–103; June.

Witten, I. H., Loots, M., Trujillo, M. F., and Bainbridge, D. (2001) “The promise of digi-
tal libraries in developing countries.” Communications of the ACM, Vol. 55, No. 5,
pp. 82–85; May.

Witten, I. H., McNab, R. J., Boddie, S. J., and Bainbridge, D. (2000) “Greenstone: A
comprehensive open-source digital library software system.” Proc ACM Digital
Libraries, San Antonio, TX, pp. 113–121; June.

Witten, I. H., McNab, R., Jones, S., Cunningham, S. J., Bainbridge, D., and Apperley, M.
(1999) “Managing complexity in a distributed digital library.” IEEE Computer,
Vol. 32, No. 2, pp. 74–79; February.

Witten, I. H., Moffat, A., and Bell, T. C. (1999) Managing Gigabytes: Compressing and
Indexing Documents and Images, second edition. Morgan Kaufmann, San Fran-
cisco, CA.

R E F E R E N C E S 497

Wolff, J. G. (1975) “An algorithm for the segmentation of an artificial language ana-
logue.” British J Psychology, Vol. 66, pp. 79–90.

World Bank (1998/99) World Development Report: Knowledge for Development. World
Bank, Washington, DC.

World Bank (2000) World Development Indicators 2000. World Bank, Washington, DC.

Wright, E. V. (1939) Gadsby. Wetzel, Los Angeles; reprinted by Kassel Books, Los Angeles.

Wu, J. (Ed.) (1999) New Library Buildings of the World. Shanghai Public Library, Shang-
hai, China.

Yeates, S., Bainbridge, D., and Witten, I. H. (2000) “Using compression to identify
acronyms in text.” Proc Data Compression Conference, p. 582. IEEE Press, Los
Alamitos, CA.

Ziv, J., and Lempel, A. (1977) “A universal algorithm for sequential data compression.”
IEEE Trans Information Theory, Vol. IT-23, No. 3, pp. 337–343; May.

Ziv, J., and Lempel, A. (1978) “Compression of individual sequences via variable-rate cod-
ing.” IEEE Trans Information Theory, Vol. IT-24, No. 5, pp. 530–536; September.

498 R E F E R E N C E S

499

Index

Abstract Syntax Notation One
(ASN.1), 427

access
controlling, 57
between digital libraries,

57–58
distributed libraries, 58
mass-storage device, 56
mode combining, 56–58
modes, 55–58
physical library, 56
restricted, 57
Web, 56

acid-free paper, 456
acquire objective, 48
acquisition stage, 63
Acrobat PDF reader, 181–182

bookmarks, 181–182
defined, 181
illustrated, 182
See also PDF (Portable

Document Format)
acronym extraction, 271–273

with heuristics, 272
problems, 272–273
software, 129
See also metadata extraction

acronyms, 125–126, 129
candidate, 272
expansion, 272

identifying, 272
use of, 271

actions, 384–385
collector, 384
defined, 384
extlink, 385
list of, 385
ping, 385
status, 385
See also Greenstone runtime

system
adaptive differential pulse code

modulation, 215
advanced audio compression, 212
Advanced Streaming Format

(ASF), 218–219
AIFF format, 215
Akscyn, Rob, 474
Alexandrian library, 10–11
Alexandrian principle, 14
alphabetical lists, browsing,

113–114
American National Standards

Institute (ANSI), 134, 216
American Standard Code for

Information Interchange. See
ASCII

AND Boolean operator, 101, 102
Anglo-American Cataloging Rules

(AACR2R), 254, 255

Arabic collections, 95–96
archives.inf file, 316
ArcPlug, 314, 330
arithmetic coding, 202
artifacts, 468
ASCII, 84, 132, 134–137, 216

7-bit, 178
character set, 135–136
control characters, 134
defined, 134
frustrations, 136–137
principle aim, 217

AU format, 215
audio, 89–91

benefits, 91
MPEG, 211–212
proprietary formats, 215
representing, 206–216
searching, 91
See also multimedia; music;

video
authority control, 51
authorship, 50–51

authority control, 51
in digital world, 50
problem, 50–51
See also bibliographic entities

AVI (Audio Video Interleave)
format, 214

AZList classifier, 337, 339, 371
AZSectionList classifier, 339, 340

base fonts, 171–172
defined, 170
TrueType, 171–172
Type 1, 171–172
See also fonts

Basic Encoding Rules (BER), 427
Basic Multilingual Plane, 138,

139–141, 147
BasPlug, 327, 329
bibliographic entities, 48–55

authors, 50–51
documents, 48–49
editions, 49–50
subject classifications, 54–55
subjects, 52–54
titles, 51–52
works, 49

bibliographic metadata, 253–261
BibTeX, 258–260
Dublin Core, 257–258
MARC, 254–256
overview, 253
Refer, 260–261
See also metadata

bibliographic organization,
46–55, 74
acquire objective, 48
choice objective, 47
collocation objective, 47
finding objective, 47
identify objective, 48
locate objective, 47
navigate objective, 48
objectives, 47–48, 74
select objective, 48

bibliographic references, 270
bibliographies, 20
bibliography display, 97
Bibliothèque Nationale de France,

14, 15
BibTeX, 258–260

attribute names, 259
bibliographic item example,

259
collections, 260
database keys, 259
defined, 258
name presentation, 259
Refer vs., 260
See also bibliographic

metadata

BibTextPlug, 329, 330
bidirectional frame (B-frame),

210
big-endian, 146
Book of Kells, 18
books

abstract content of, 17
beautiful, 18–19
bindings, 18–20
Book of Kells, 18
changing nature of, 17–20
concept of, 20
electronic (eBooks), 413–414
as objects, 468, 469

Boolean queries, 100, 159
AND operator, 101, 102
indexing, 159
with ranked queries, 103–104
searches, 101
Venn diagram interface, 392
See also queries; searching

browse filters, 375
browsing, 112–117

alphabetical lists, 113–114
by date, 116, 117
chapter-by-chapter, 84
classification hierarchy, 118
defined, 26, 112
with extracted metadata,

124–126
flexible, 27
hierarchical, 27
hierarchical classifiers, 377
interfaces for metadata, 79
key-phrase, 122–124, 129
metadata and, 113
notes and sources, 128–129
phrase, 119–124
Pinyin, 114, 115
with plain text documents, 83
role in digital library, 439
stroke-based, 114, 115

build process, 303, 317–319
additional options, 318
allclassifications switch, 319
classifier invocation, 337
classifier suppression, 319
defined, 317
mgbuilder, 318
mode switch, 319
passes, 318
steps, 318–319
See also Greenstone Digital

Library Software

buildcol.pl, 309, 317
building collections, 43–44,

283–353
graphically, 349–353
with Greenstone, 283–353
metadata source, 44
process, 303
questions for, 43–44
scale, 44
See also collections;

Greenstone collections
Bush, Vannevar, 15–16, 36

C++
receptionists, 380–383
Standard Template Library,

392
canonical equivalence, 145
cascading style sheets (CSS),

237–245
ambiguity-resolution

algorithm, 240
basic, 238–240
context-sensitive formatting,

242–244
defined, 231
document structure

manipulation and, 242
illustrated example, 239
inheritance mechanism, 238
instructions, 240
media-dependent formatting,

244–245
pseudo-elements, 240
selector-declaration pairs, 238
tables and lists, 240–242
See also style sheets

case-folding, 104–106
defined, 105
in form search, 110
highlighting search terms and,

106
languages and, 106
See also queries

CCIR 601, 208–209
CCL. See common command

language
CGI arguments, 390–391
character-identifier keyed (CID-

keyed) fonts, 172–173
characters

ASCII, 135–136
combining, 144–145
defined, 143

500 I N D E X

glyphs, 143
Indic scripts, 150
representing, 134–155
surrogate, 147, 148
Unicode, 138–143

checking stage, 66–67
Chinese

collections, 94–95
full-text indexing and, 161
ordering word lists in,

114–116
Pinyin-browsing, 114, 115
stroke-based browsing, 114,

115
choice objective, 47
citation index, 270
Clara OCR, 75
classification

code, 54–55
Dewey Decimal, 116
hierarchical structures,

116–118
Humanity Development

Library, 117–118
Library of Congress, 116

classifiers, 336–341
AZList, 337, 339, 371
AZSectionList, 339, 340
in collection configuration

file, 336–337
DateList, 338, 339, 340, 348
defined, 327
examples of, 337–338
functioning of, 341
HDLList, 339
hierarchical, 338, 377
Hierarchy, 338, 339, 340–341,

346
illustrated, 337
invocation of, 337
list, 339, 340
List, 337, 345
SectionList, 339, 340
specification, 336
structure of, 338–340
See also Greenstone Digital

Library Software
classify.pm, 341
cleanup stage, 63
code point, 144
code range, 144
codecs, 206–207

asymmetric, 206
defined, 206

collect.cfg, 323, 345
collection configuration files, 286,

323–326
in building phase, 337
classifiers in, 336–337
classify line, 325
default, 324–325
defined, 285, 323
Demo collection, 345
editing, 308
format statements, 342
illustrated, 306
indexes line, 324
indexsubcollections line, 326
items in, 323
lines, 323
provided, 297
subcollections, 325–326
supercollections, 325–326
See also Greenstone Digital

Library Software
collection information database,

369–372
defined, 369
example, 370
storage, 369
See also Greenstone

collections
collection servers

defined, 357
filters, 375–376
functioning, 357
initialization process, 374
See also Greenstone runtime

system
collection-level metadata,

410–413
defined, 410–411
importance, 411
See also metadata

collections, 7
accessing, 26
BibTeX, 260
building, 43–44, 283–353
defined, 25
digital, 7–8
directives, 41
distributed, 28
documents, 25
dynamic updating of, 28
exclusions, 41
interfaces, 25
Kids’ Digital Library, 382
multi-gigabyte, 27

multilingual, 100
music, 93
notes and sources, 126–127
objectives, 41
presentation of, 26
principles, 7, 41, 43
publishing on CD-ROM, 28
purpose, 7, 41
See also specific collections

collections (Greenstone)
browsing, 470
building, 299
building, graphically, 349–353
building directory, 308
building process, 303
CD-ROM publications, 28
cgi-bin directory, 311
cloning, 297
collect directory, 310, 311
configuring, 298–299
creating, 293–299
default presentation language,

291
deleting, 300
design, 286
distributing, 287–288
docs directory, 312
document formats, 301–302
etc directory, 311
existing, working with,

300–301
exporting, 300–301
framework, making, 304–305
graphical query interface, 359
icons, 307–308
images directory, 312
import directory, 306, 311,

314
indexes, 286
indexes, building, 307–308
information, supplying,

294–297
installing, 308–309
invoking, 308
macros directory, 312, 367
manually building, 302–309
media, 27
menu, 378
naming, 305
organization, 285–286, 287
packages directory, 312
perllib directory, 311
populating, 305–307
rebuilding, 310

I N D E X 501

source data specification,
297–298

specification types, 297
structure determination, 292
structure modification, 300
tmp directory, 312
updating, 300
viewing, 299
See also Greenstone Digital

Library Software
Collector, 292–302

Build Collection button, 298
collection building, 299
collection configuration,

298–299
collection viewing, 299
Configure Collection button,

298
defined, 284, 292
dialog structure, 294
information, entering,

294–297
interface, 284
logging in and, 293
notes and sources, 353
notification, 386
operation through Web

browser, 293
purpose, 292–293
source data specification,

297–298
Stop Building button, 299
unavailable sources and, 298
use illustrations, 295–296
View Collection button, 299
See also Greenstone Digital

Library Software
Collector successor, 349–353

adding new metadata, 352
Build menu, 352
defined, 349
future versions, 352–353
MetaEdit panel, 351
Mirror facility, 350
mirroring sites, 351
starting collection build, 350
tabs, 350

collocation objective, 47
color map, 195–196
combining characters, 144–145

benefits, 144–145
character shapes and, 144
complication of, 145
defined, 144

See also Unicode
command line

debugging and, 315
working from, 303–304

common command language
(CCL), 111–112, 394, 419–422
CHOOSE command, 420
commands, 419–420
defined, 419
FIND command, 421, 422
implementations of, 421
keywords, 420
quotation marks in, 422
START command, 420
systems conforming to, 422
using, 421
See also query languages

compatibility equivalence, 145
composite fonts, 172

concepts, 172
defined, 170
See also fonts

compression
formats, 195
GIF format, 195–196
image, 194–203
JPEG format, 197–203
lossless, 194, 195–197
lossy, 194, 197–203
multimedia, 207–209
PNG format, 196–197
rudimentary approach, 195
techniques, 28

containers, 410
context-sensitive formatting,

242–244
defined, 242–243
illustrated, 243
result, 243
rules, 243–244
See also cascading style sheets

(CSS)
contextual matching, 251–252

illustrated, 251
key, 251
template rules, 252
See also XSL

controlled vocabulary, 91
ConvertToPlug, 329, 330, 332–333

defined, 330
document retrieval, 333
extending, 332
plug-ins derived from, 333
See also plug-ins

coordinate matching, 103
copyright, 29–31, 39

considering, 31
from ethical point of view, 31
law, 30
protection time, 29
sources and notes, 38
Web and, 32

CORBA protocol
implementation, 359–360
defined, 359
example illustration, 359
remote collection server, 360
See also Greenstone runtime

system
CORBA Protocol object, 382
cross-collection searching, 326
cultural sensitivity, 34–35
Cutter, Charles Ammi, 74

data
browsing by, 116, 117
defined, 7
metadata, 8, 17, 20, 40, 78–79,

96–99
source specification, 297–298
typing, 405–407
See also metadata

DateList classifier, 338, 339, 340,
348

dates
browsing by, 116, 117
identification, 125

db2txt, 369
DDL (description definition

language), 265
debugging, 315
delivery, 355–392
Demo collection, 128, 288, 320

collect.cfg, 345
finding information in, 288
illustrated, 289

developing countries
digital libraries in, 20–24
disaster relief, 21–22
disseminating humanitarian

information, 21
locally produced information,

22–23
preserving indigenous culture,

22
technological infrastructure,

23–24
Dewey Decimal classification, 116

502 I N D E X

Dienst protocol, 427, 435–436,
441
defined, 435
document retrieval, 439–440
naming authority, 436
repository service, 435
support, 435
use illustration, 435
version control, 440
See also research protocols

digital collections, 7–8
Digital Dark Ages, 457–459
“digital divides,” 473
digital libraries

advantages, 42, 443
age of, xxii
boundaries, 7
challenges, 444
as collection of resources, 394
cultural sensitivity, 34–35
defined, 6
in developing countries,

20–24
disaster relief, 21–22
distributed, 58
future, 445–454
HTML in, 228–229
Human Development Library,

2
ideology, 41–42
illustrated, 447
Kids’ Digital Library, 80
LaTeX and, 193–194
libraries vs., xxii, 5–8
look and feel, 80
multimedia use in, 215–216
music, 462–466
nationally funded projects,

462
native Word formats use in,

191
for oral cultures, 471–473
parameters, 39
physics archival, 2–3, 25, 35
PostScript in, 178–179
Procrustean view, 286
protocols, 426–440
prototypes, 69
reading in, 452–454
research protocols, 434–440
RTF use in, 190
School Journal, 80
scope of, 5
structure and organization, 24

threshold, 10
TIFF format in, 263
Unicode in, 154–155
working inside, 451–454
World Wide Web vs., 8
XML in, 236–237
Zia Pueblo, 3–4, 36

Digital Library Interoperation
Protocol (DLIOP), 436

digital watermarking, 57, 74
The Digital Library Toolkit, 74
digitization noise, 194
digitizing documents, 30–31,

58–73
cost, 68
decision, 40, 58
example project, 70–73
notes and sources, 73–76
OCR, 58, 61–67
outsourcing, 68
project planning, 68–69
quality control, 69
scanning, 58, 59–61
stages, 58
See also documents

discrete cosine transform,
198–199

distributed collections, 28
distributed library systems, 58
Document Definition Markup

Language (DDML), 440
document exchange, 413–419
document files, tagging, 335–336
document formats, 131
document object model (DOM),

236
document processing plug-ins,

329–332
document structuring

conventions (DSC), 169–170,
177

Document Type Definitions
(DTDs), 232–235, 394,
402–405
construct definition with, 403
in external file, 233
leaf, 234
parsed character data, 234
sample, with parameterized

entity, 235
for scholarly texts, 236
style attribute, 235
syntax, 235
tags, 233

XML syntax and, 402
See also XML

documents, 48–49, 131–219
access, 25–26
as building blocks, 131
classifying/organizing, 47
computer-generated

summaries of, 32
defined, 25, 41, 48, 77
differing from each other, 40
digitizing, 30–31, 58–73
formatting, 342–344
as fundamental unit, 25
generalized, 444, 462–473
Greenstone archive, 319–323
hierarchically structured, 48,

81–83
identifiers, 41–42
importing, 305–307
including principles, 40
languages, 27
marked-up, presenting,

237–253
metadata, 320
metadata extraction, 267–268
modifying, 32
multilingual, 287
multimedia, 287, 462
notes and sources, 216–219
OIDs, 312–313
plain, unstructured text,

83–86
PostScript, 176–178
presenting, 81–96
reading, in digital libraries,

452–454
retrieval, 376–377
sections, 335
subsections, 335
word-processor, 184–194
works vs., 41, 49
XML, 233
See also bibliographic entities;

collections
Domesday Project, 457
double-page spreads, 73
Dublin Core, 257–258, 320

defined, 253
as evolving standard, 258
fields, 258
MARC vs., 257
qualified, 411
resource, 257–258
standard, 257

I N D E X 503

unqualified, 411
See also bibliographic

metadata
dynamic HTML, 246
dynamic macros, 361, 374

editions, 49–50
defined, 49
electronic document, 49–50

electronic books (eBooks),
413–414
characteristics, 413–414
pages, 414

EMAILPlug, 302, 330
emulation preservation strategy,

460, 461
Encapsulated PostScript, 170
encoding statements, 389–390
encoding vector, 171
Encyclopedia of Graphics File

Formats, 218
error log, 388
events log, 388
examples

exploring popular music, 4–5
preserving traditional culture,

3–4
pushing frontiers of science,

2–3
supporting human

development, 1–2
explicit metadata, 223

defined, 223
documents containing, 267
See also metadata

extensible markup language. See
XML

extensible stylesheet language. See
XSL

extracted metadata
browsing with, 124–126
defined, 223
See also metadata

extracted text, 87, 88–89

facilities, 427–429
file transfer protocol (FTP), 157
Filter object, 374, 375, 376, 377
filters, 375–376

browse, 375
defined, 375
query, 375–376
See also collection servers

finding objective, 47

FineReader, 75
The Five Laws of Library Science,

474
fonts

base, 170, 171–172
CID-keyed, 172–173
composite, 170, 172
PostScript, 170–173
TrueType, 171–172
Type 1, 171–172

foreign languages, 93–96
Arabic collection, 95–96
Chinese collections, 94–95
French interface, 93–94
Portuguese interface, 93–94

“forest of steles,” 9
form search interface, 110–111

advanced, 111
case-folding/stemming and,

110
sorting options, 111
See also query interfaces

Format object, 374, 376
format statements, 342–349

in collection configuration
file, 342

defined, 327, 342
effect on document, 347
effect on search results, 347
elements controlled by, 342
format options, 343
format strings, 345–348
formatting documents,

342–344
formatting lists, 344–345
linking to different document

versions, 348–349
See also Greenstone Digital

Library Software
format strings, 345–348

defined, 344
examples, 345–348
items appearing in, 345
mechanism flexibility, 348
syntax, 345

formatting
context-sensitive, 242–244
documents, 342–344
lists, 344–345
markup, 221, 222
media-dependent, 244–245,

252
Formatting Objects (FO), 245,

246, 248

frames
defined, 228
Greenstone and, 343
See also HTML

frameset HTML, 228, 231
frameworks, creating, 304–305
French interface, 93–94
frontiers of science example, 2–3
full-text searching, 26, 157

defined, 26
index, 158, 159
See also searching

future digital libraries, 445–454
dynamic nature of, 451
interfaces, 450–451
personalized, 449
visions, 448–451
See also digital libraries

gambling sites, 34
GAPlug, 314, 330
GBPlug, 330
generalized documents, 444,

462–474
browsers, 470
in Greenstone, 469–471
images, 466–467
laboratory notebooks,

468–469
music, 462–466
objects, 468
oral cultures and, 471–473
scientific and engineering

data, 469
teaching material, 468
ultimate goal of, 471
videos, 467
See also documents

generic entity extraction, 268–269
defined, 269
self-adaptive techniques, 269
training systems, 269

GIF format, 133, 195–196
color map, 195–196
conversion to JPEG format,

134
defined, 195
files, 196
LZW scheme, 196
See also lossless compression

Ginsparg, Paul, 35
glyphs, 143
GNU database manager (GDBM),

369

504 I N D E X

GOCR, 75
GPL (Gnu Public License)

conversion utilities, 332
graphics

PostScript, 165–166
scalable vector (SVG), 417

Greenstone Archive Format,
319–323
defined, 285, 319
document metadata, 320
documents structure, 322
illustrated, 321
index levels, 322
XML DTD for, 320

Greenstone collections
browsing, 470
build process, 303
building, 299
building, graphically, 349–353
building directory, 308
CD-ROM publications, 28
cgi-bin directory, 311
cloning, 297
collect directory, 311
configuring, 298
creating, 293–299
default presentation language,

291
deleting, 300
design, 286
distributing, 287–288
docs directory, 312
document formats, 301–302
etc directory, 311
existing, working with,

300–301
exporting, 300–301
framework, making, 304–305
graphical query interface, 359
horizontal/vertical list

support, 372
icons, 307–308
images directory, 312
import directory, 306, 311,

314
indexes, 286
indexes, building, 307–308
information, supplying,

294–297
installing, 308–309
invoking, 308
macros directory, 312, 367
manually building, 302–309
media, 27

menu, 378
naming, 305
organization, 285–286, 287
packages directory, 312
perllib directory, 311
populating, 305–307
rebuilding, 310
source data specification,

297–298
specification types, 297
structure, modifying, 300
structure determination, 292
tmp directory, 312
updating, 300
viewing, 299

Greenstone Digital Library
Software, xxii–xxiii, 24–28
access structure creation, 27
accounts, 293
administrative function, 28
administrator facility, 386
archives.inf file, 316
browser access, 26
browsing facilities, 27
browsing icons, 290
buildcol.pl, 309, 317
building collections with,

283–353
CD-ROM, 478, 479
classifiers, 336–341
collection configuration files,

285, 286, 323–326
Collector, 284, 292–302
Collector successor, 349–353
compression techniques, 28
default home page, 292
defined, 285
deployment, xxiii, 24–25
distributed collections, 28
document formats, 287
document languages, 27
downloading, 477–478
dynamic updates, 28
emblem, 25
features list, 26–28
files and directories, 310–312
format statements, 342–349
frames and, 343
functions, 285–288
generalized documents in,

469–471
GPL (Gnu Public License)

conversion utilities, 332
hierarchical browsing, 27

home directory structure, 311
home page, 367, 368
icons, 289
import.pl, 307
import process, 306–307,

314–317
installing, 477–479
interface, 288–290
metadata use, 27
mkcol.pl, 304–305
multi-gigabyte collections, 27
multimedia and multilingual

documents, 287
object identifiers (OIDs), 285,

312–313
obtaining, xxii
operating, 477–479
platforms, 26, 478
plug-ins, 27, 285, 301–302,

313–314, 327–336
Preferences page, 291–292
query choices, 291
search/browse bar icons, 289
searching, 26, 290–291
Unix version options, 478
user authentication, 28
user interface languages, 27
user logging, 28
using, 288–292
versions, 478–479
Windows version options, 478
See also Greenstone

collections
Greenstone protocol, 378–384

with C++ receptionist,
380–383

functional calls, 378–379
with Java receptionist,

383–384
Kids’ Digital Library

implementation, 382
mapping SDLIP calls to, 438
stateless, 380
using, for searches, 380

Greenstone runtime system,
355–392
actions, 384–385
browsing hierarchical

classifier, 377
collection information

database, 369–372
collection servers, 357
components, 373

I N D E X 505

CORBA protocol
implementation, 359–360

document retrieval, 376–377
home page generation, 378
illustrated, 373
macros, 360–369
null protocol implementation,

357–358
objects, 373–374
operational aspects, 385–392
overview illustration, 356
processes, 357
protocol calls, 379
receptionists, 357
responding to user requests,

372–385
search, 375–376
See also Greenstone Digital

Library Software
gsdlsite.cfg, 385, 391
Gutenberg collection

browsing titles in, 372
collection information

database, 369–370
searching, 375
source test, 376

gzip, 196

harmful material, 34
HDLList classifier, 339
hierarchical browsing, 27
hierarchical classification

structures, 116–118
browsing, 118
defined, 116
scaling, 122

hierarchical classifiers, 338
browsing, 377
uses, 338

hierarchical dictionary, 279
hierarchically structured

documents, 81–83
Hierarchy classifier, 338, 339,

340–341, 346
Hindi

defined, 150
scripts, 149–154
Unicode-compliant

applications and, 154
HLists, 338, 340

in list formatting, 344
runtime system support, 372
See also VLists

home page, 367
default, 292
generating, 378
Humanity Development

Library, 466
personalizing, 368
purpose, 378
See also Greenstone Digital

Library Software;
Greenstone runtime
system

HTML, 70, 223, 224–229
basic, 225–228
conversion to PostScript, 134
data extraction, 229
defined, 224
in digital libraries, 228–229
for document representation,

223
document title, 225
dynamic, 246
encoding, 228
entities, 225
features, 228
frames, 228
frameset, 228, 231
hyperlinks, 228
notes and sources, 280
sample code, 226
strict, 231
tags, 225
Tidy, 232
transitional, 231
XHTML, 231

HTMLPlug, 301, 327, 331–332
default, 328
defined, 330
description_tags option,

335–336
file blocking, 328
options, 331–332
plug-in specific options for,

331
See also plug-ins

Huffman coding, 201, 202
human development example,

1–2
humanitarian information,

disseminating, 21
Humanity Development Library,

2, 24, 35, 81–83, 126–127
classification scheme, 117–118
defined, 83
home page, 466

material selection, 83
OCR operation, 83
sections/subsections, 81
Village-Level Brickmaking, 81,

82
Hyde, Thomas, 46, 47
hyperlinks, 393

anchors, 228
directing, 402
Greenstone pages, 348–349

Hypertext Markup Language. See
HTML

identifiers, 41–42
identify objective, 48
illegal material, 34
image compression, 194–203

formats, 195
lossless, 194, 195–197
lossy, 194, 197–203
rudimentary approach, 195
See also compression

ImagePlug, 330
images

automatically searching, 467
digitization noise, 194
as generalized documents,

466–467
metadata for, 261–263
page, 86–89
photographic, 89–91
progressive refinement,

203–206
representing, 194–206
space requirements, 194
thumbnails, 466
See also multimedia

import.pl, 307
import process, 306–307, 314–317

additional options, 316
defined, 314
illustrated, 315
steps, 315–316
See also Greenstone Digital

Library Software
indexes, 157–160

Boolean queries, 159
browsing, 292
building, 307–308
citation, 270
comprehensive, 159
full-text, 158, 159
Greenstone Archive Format

levels, 322

506 I N D E X

Greenstone collection, 286
process, 160
ranked queries, 160
searching, 292
size, 158
word segmentation and,

160–163
word-level, 159

Indic scripts, 149–154
indigenous culture, preserving,

22, 35
InfoBus, 427
INFOMINE, 45–46, 74
information

defined, 7
explosion, 11–13
humanitarian, disseminating,

21
iconic form, 472–473
in library catalogs, 17
locally produced, 22–23
locating, 47
“non-standard,” 78
portals, 44
unorganized, 31

interactive OCR, 62–67
acquisition, 63
benefits, 62–63
checking, 66–67
cleanup, 63
FineReader, 75
page analysis, 63–65
recognition, 65–66
saving, 67
steps, 63
See also optical character

recognition
interfaces, 77–129

browsing, 79, 112–119
French, 93–94
languages, 27
phrase browsing, 119–122
Portuguese, 93–94
query, 108–112
reactive, 57
search history, 79
searching, 79
special-purpose, 57

interlacing, 203–205
defined, 203
two-dimensional, 205

internationalization, 132
Internet archiving project, 38
Internet File Formats, 217

interoperability, 393–441
intra frame (I-frame), 210
ISCII

code table, 151
defined, 151
Hindi document

representation, 154
Unicode adoption, 151

Japanese Text Initiative, 281
JPEG format, 133, 197–203

arithmetic coding, 202
compression algorithm, 198
compression method,

198–201
decoding process, 199
defined, 197
discrete cosine transform,

198–199
encoding process, 199
extensions and additions,

202–203
GIF format conversion to, 134
horizontal/vertical resolution,

262
Huffman coding, 201, 202
for interactive use, 202
JPEG-2000, 203
JPEG-Lossless, 198, 203
picture quality, 201–202
progressive refinement,

205–206
spatial frequency coefficients,

198
transform-coded images, 200
zero-frequency coefficient,

199
zigzag encoding sequence, 201
See also compression

Kataayi Cooperative, 1–2, 35, 446,
447

Katerega-Ndawulu, Emmanuel,
35

Kay, Alan, 99, 128
key phrases, 122–124, 129

benefits, 273
browsing interfaces based on,

123
characteristics, 273
choosing, 273
defined, 122, 273
hierarchies, 277–280
identification, 277

in key-phrase assignment, 274
in key-phrase extraction, 274
metadata, 123
number of, 124
See also phrase browsing

key-phrase assignment, 273–274
accuracy, 274
defined, 273
key phrases, 274
machine learning, 274

key-phrase extraction, 273–277
automatic, 273
key phrases in, 274
output, 275
process, 276
set of frequencies, 276
stages, 276
training data, 276
weighing process, 276, 277
See also metadata extraction

keywords, extracting, 32
Kids’ Digital Library, 80, 126

collections, 382
implementing with

Greenstone protocol, 382
page illustration, 381
receptionist, 382
structures, 382

knowledge, 7

laboratory notebooks, 468–469
language

dictionaries, 65
macros, 363–364
statements, 389–390
support, 389–390

language identification, 126,
270–271
with heuristic language-

extraction program, 329
n-grams and, 271
word sequences and, 271

LaTeX, 191–194
benefits, 192
defined, 184, 191
digital libraries and, 193–194
document expression, 191
problems, 193–194
results, 192
shortcuts, 193
source document, 192
user command definition, 193
See also word-processor

documents

I N D E X 507

librarians
changing face of, 8–20
functions, 7, 17
in metadata creation, 40
progressive, 10
support of, 7
wisdom and, 7

libraries
Alexandrian, 10
are for all, 36
Bibliothèque Nationale de

France, 14, 15
classification schemes, 54–55
defined, 5–6
digital libraries and, xxii, 5–8
evolution, 9–10
first, 10–11
Humanity Development

Library, 2, 24, 35, 81–83
information-seeking in, 17
Library of Congress, 12
mission, 443
public, 10
as repositories of knowledge, 8
researchers and, 6
Trinity College, 11–13
virtual, 16, 44–46, 73–74
visions, 445–448
Web as, 6
See also digital libraries

library catalogs, 16–17
defined, 17
information in, 17

library conversion, 42–43
decision, 42
principles, 43
prioritizing material and,

42–43
Library of Congress, 12

classification, 116
interface with Z39.50, 430
MARC attribute model, 437
Subject Headings (LCSH), 53,

54, 74, 411
library program

arguments to, 373
defined, 357, 391
startup, 358
URL of, 390
Web address, 391

Licklider, J.C.R., 16, 36
ligature, 144
LINCOS project, 473, 476
linear predictive coding, 215

linearized PDF, 183
links, 397–402

annotated, 397
bidirectional, 397
creation, 399
extended, 398
as HTML tag shortcut, 398
multiway, 397, 401
types, 399

List classifier, 337, 345
lists

collections, returning, 378
CSS, 240–242
formatting, 344–345
XSL, 248–251

literature, 471
little-endian, 146
localization, 266
locate objective, 47
logging, 388–389

configuration options, 387
enabling, 388
log types, 388

logs
error, 388
events, 388
types of, 388
usage, 388–389

Loots, Michael, 35
lossless coding, 205
lossless compression, 195–197

defined, 194
editing operations and, 216
GIF format, 195–196
PNG format, 196–197
uses, 194–195
See also compression

lossy compression, 197–203
defined, 194
errors, 194
JPEG, 197–203
See also compression

lynx browser, 229
LZW compression scheme, 196,

263

machine learning techniques, 73
machine-readable cataloging

(MARC), 253, 254–256
attribute model, 437
defined, 224, 253
Dublin Core vs., 257
uses, 256
See also MARC records

Macro Language object, 374, 376
macros, 360–369

conditionals, 364
content, 361–363, 364, 369
definition, 363
directory, 312, 367
dynamic, 361, 374
examples of, 364–365
header, 366, 369
imagecollection, 365
interpretation, 369
language, 363–364
making, functional, 369
names, 361
names in page description,

361
page parameters, 365–366
pagetitle, 361
parameter-free version of, 365
parameters, 360
personalizing with, 366–369
precedence, 366
storage, 367
textabout, 363
textdefaultcontent, 364
use of, 360, 361

main configuration file, 385
experimenting with, 386
items, 387

Managing Gigabytes, 127–128, 217
Managing Gigabytes

compression/indexing
software, 392

Mâori
language sounds, 75
literature, 471
toki, 25, 37

Mâori newspapers
collection, 89
illustrations, 88
project, 70–73
publication, 89

mappings directory, 389
MARC records, 223

field meanings, 256
fields, 255
illustrated, 254
producing, 254
storage, 255
uses, 254
See also machine-readable

cataloging (MARC)
markup

defined, 221

508 I N D E X

formatting, 221, 222
structural, 222, 223

material
harmful/illegal, 34
intellectual content of, 43
prioritizing, 42–43
sources, 40–46

media-dependent formatting
CSS, 244–245
XSL, 252

melody matching, 463
Message Understanding

Conferences (MUC), 281
metadata, 40, 78

access control, 223
accumulating, 335
administration and

preservation, 223
aspects, 97
assigning, from files, 333–335
bibliographic, 97, 253–261
browsing and, 113
browsing interfaces, 79
collection-level, 410–413
creating, 40
defined, 8, 17, 20, 96, 221, 222
descriptions, 99
document, 320
element processing order, 334
examples, 98
explicit, 223, 267
extracted, 124–126, 223
functional, 97
Greenstone and, 27
historical, 97
for images, 261–263
intellectual, 97–98
key-phrase, 123
library, 98
for multimedia, 261–262,

263–266
multivalued, 335
notes and sources, 127,

280–282
presenting, 96–99
relational, 97
as relative concept, 222
for resource discovery, 223
rights management, 223
searching interfaces, 79
source, 44
standards, 98–99, 224
structured elements, 96
technical, 97

metadata extraction, 266–280
acronym, 271–273
bibliographic references, 270
document, 267–268
generic entity, 268–269
key-phrase, 273–277
language identification,

270–271
notes and sources, 281–282
phrase hierarchies, 277–280

metadata.xml file, 333–334, 335
metalanguages

defined, 224
XML, 232–235

mgbuilder, 318
microfiche

Mâori newspaper, 89
page handling, 67, 68

Microsoft Word, 70
format, 133
proprietary nature, 191
Save As HTML option, 191
See also native Word format

MIDI (musical instrument digital
interface), 93, 464

migration preservation strategy,
460–461

mirroring, 56
mkcol.pl, 304–305, 324
Morison, Stanley, 222, 280
morphological reduction, 105
motif extraction, 465
MPEG-1, 207, 212
MPEG-2, 207, 212–213
MPEG-3, 207–208
MPEG-4, 207, 208, 213
MPEG-7, 207, 208, 224

application areas, 266
DDL, 265
defined, 207, 208, 224
descriptions, 265–266
localization, 266
metadata, 264
multimedia features, 266
scope, 265

MPEG-21, 207, 208
MPEG format, 133, 207–213

advanced audio compression,
212

audio, 211–212
B-frame, 210
CCIR 601 and, 208–209
defined, 207
development, 208

frame sequence, 211
I-frame, 210
inside, 208–209
layers, 211
mixing media, 212–213
parameter bitstream limits,

213
P-frame, 210
sample rates, 211
video, 210–211

multilingual collections, 100
multilingual documents, 287
multimedia

in digital libraries, 215–216
documents, 287, 462
metadata for, 261–262,

263–266
notes and sources, 218
software for replaying, 216

multimedia content description
interface. See MPEG-7

multimedia formats, 206–216
AVI, 214–215
MPEG, 207–213
overview, 206–207
QuickTime, 214
RealSystems, 215

multiway links, 401
music

acquisition, 465
collection keys, 93
digital libraries of, 462–466
information retrieval, 465
MIDI, 93
motifs, extracting, 465
optical recognition system,

465
presentation, 92–93
queries, 463

MYSQL, 70

namespaces, 246, 247, 396–397
defined, 396
features, 396
global, 397
prefixes, 397
RSLP, 411, 413
XLink, 398, 399
XML Schema definition with,

403
naming, 395–396

need for, 395
with URN, 396

I N D E X 509

native Word format, 191
characteristics, 185
defined, 184
in digital libraries, 191
Fast Save mode, 191
proprietary nature, 185, 191
See also word-processor

documents
navigate objective, 48
New Zealand Digital Library

Project, 24, 37, 70, 126, 477
New Zealand School Journal, 127
null protocol implementation,

357–358
defined, 357
illustrated, 358
See also Greenstone runtime

system
Null Protocol object, 382

object identifiers (OIDs), 285,
312–313
assigning, 312
characteristics, 312–313
defined, 312
as directory hierarchy, 313
persistence, 312

object linking and embedding
(OLE), 190

objects
artifacts, 468
books as, 468, 469
CORBA Protocol, 382
defined, 373–374
digital, 7
Filter, 374, 375, 376, 377
Format, 374, 376
as generalized documents, 468
initialization, 375
integration in digital libraries,

469
Macro Language, 374, 376
Null Protocol, 382
Source, 374
three-dimensional, 468

Omnipage, 72–73
Online Computer Library Center

(OCLC), 223, 281
Open Archives Initiative (OAI)

protocol, 395, 430–434, 441
data providers, 433
defined, 430
GetRecord request, 431, 432

HTTP status code
mechanism, 433

Identify request, 431, 433
interaction support, 430
ListIdentifiers request,

431–432, 433
ListMetadataFormats request,

432, 433
ListRecords request, 432, 433
ListSets request, 431, 433
metadata element, 431
as open protocol, 431
record identifiers, 434
requests, 433
supporting, 433–434
technical goal, 431
version control, 440
See also protocols

Open eBook, 414–419
CSS specification, 417
defined, 394
file-as attribute, 415
Forum, 414, 441
guide element, 419
HTML specification, 417
inside, 418
manifest section, 417
MIME types, 417
package file, 415
package sample, 416
parts, 415
role attribute, 415
tours element, 418

Open System Interconnection
(OSI) Reference Model, 427

optical character recognition
(OCR), 61–67
accuracy, 62
acquisition, 63
automatic, 61
characterization, 61
checking, 66–67
Clara OCR, 75
cleanup, 63
defined, 58
error rates, 62, 70
GOCR, 75
grayscale image brightness, 61
illustrated, 59
image resolution

requirements, 61
interactive, 62–67
manual typing vs., 62
need for, 58

Omnipage, 72–73
output formats, 70
output quality, 61–62
outsourcing, 69
page analysis, 63–65
questions/answers newsgroup,

75
recognition, 65–66
saving, 67
shops, 69–70

optical music recognition (OMR),
465–466
application, 465
playback, 466
program, 93

oral cultures, digital libraries for,
471–473

Oral History collection, 90, 127
ordering

alphabetical lists, 113–114
lists of words in Chinese,

114–116
radicals, 116
stroke-based, 114, 116

organization
bibliographic, 46–55
digital libraries, 24
Greenstone collection,

285–286, 287
this book, xxiii–xxiv

Oxford Text Archive, 281

page analysis stage, 63–65
data types and, 64
defined, 63
tables and, 65
template layout pattern and,

64–65
See also interactive OCR

page description languages, 133,
163–184
benefits, 163
defined, 163
PDF, 179–184
PostScript, 163–179

page handling, 67–68
books, 67
deskewing and, 68
microfiche, 67, 68
microfilm, 67, 68
See also digitizing documents;

scanning
page images, 86–88

disadvantages, 87

510 I N D E X

extracted text and, 88–89
illustrated, 88
reasons for showing, 87
School Journal magazine,

87–88
See also presentation

page parameters, 365–366, 390
PDF (Portable Document

Format), 133, 179–184
Acrobat reader, 181–182
annotation, 183
compression, 183
data types, 181
defined, 179
device independence, 179
document rendering, 181
features, 181–183
file sections, 180
files, 180–181
hyperlink support, 179, 182
interactive display features,

179
interactive features, 182–183
linearized, 183
notes and sources, 217–218
object section, 180
online display features, 183
PostScript conversion, 184
PostScript vs., 179
programming problems, 183
searchable image option,

182–183
use of, 184
white space and, 180
See also page description

languages
PDFPlug, 301, 330
photographic images, 89–91
Photoshop, 70
phrase browsing, 119–124

computer processing for, 122
expanding, 121
hierarchy, 121
increasing number of, 121
interface, 119–122
interface illustrations, 120,

122
key phrases, 122–124
notes and sources, 128–129
See also browsing

phrase hierarchies, 277–280
algorithms, 279–280
building, 279–280
extracting, 278

hierarchical dictionary, 279
phrase identification and,

277–278
segmentation, 279
See also metadata extraction

phrase searching, 106–108
defined, 106
postretrieval scan, 107
with punctuation and white

space, 107
from user’s point of view, 106
word-level index, 107
See also searching

phrases
defined, 277
delimiters, 277, 278
extraction process, 278
identifying, 277–278
as maximal-length sequences,

278
overlapping, 280
potential, considering, 279
suppressing, 277

Phrasier, 451, 453
physics archival digital libraries,

2–3, 25, 35
PICT, 189
Pinyin browsing, 114, 115
plain text, 83–86, 156–157
pluginfo utility, 327
plug-ins, 27, 313–314, 327–336

ArcPlug, 314, 330
BasPlug, 327, 329
BibTextPlug, 329, 330
collection-specific, 330, 331
ConvertToPlug, 329, 330, 332
defined, 285, 327
document-processing,

329–332
EMAILPlug, 302, 330
extraction algorithms,

327–328
functionality inheritance, 314
GAPlug, 314, 330
GBPlug, 330
HTMLPlug, 301, 327, 328,

330, 331–332
ImagePlug, 330
information on, 327
inheritance hierarchy, 333
loading, 315
operation order, 313–314
options, 327–329
PDFPlug, 301, 330

PrePlug, 330
for proprietary formats,

332–333
PSPlug, 302, 330
RecPlug, 314, 330, 333–334
ReferPlug, 329, 330
SplitPlug, 329, 330
SRCPlug, 330
TCCPlug, 330
TEXTPlug, 301, 330
WORDPlug, 301, 330
writing, 327
ZIPPlug, 302, 330
See also Greenstone Digital

Library Software
PNG format, 133, 196–197

bit depth, 261
defined, 196
gzip, 196
two-dimensional interlacing

support, 205
See also lossless compression

popular music example, 4–5
Portuguese interface, 93–94
postretrieval scan, 107
PostScript, 133, 164–179

code fragments, prepending,
174

compression and, 179
conformance level, 167
defined, 164
in digital libraries, 178–179
document structuring

conventions (DSC),
169–170, 177

Encapsulated, 170
as file format, 164
graphical components, 165
graphical drawing

instructions, 164
graphics, 165–166
HTML conversion to, 134
image operator, 166
interpreter, 166
language, 164, 166
Level 1, 167–169
Level 2, 169
Level 3, 169
levels, 166–169
line breaks, 177
notes and sources, 217–218
output, improving, 176–178
page order, 177–178
paragraph breaks, 177

I N D E X 511

PDF conversion, 134, 184
PDF vs., 179
printed pages, 177
problems, 178
program execution results,

167
screen displays and, 164–165
show operator, 174, 176
showpage operation, 165
spaces, 173
stack overflow/stack

underflow errors, 178
text characters, 165
text extraction, 173–178
viewing software and, 179
word-processor file versions,

178
word-space threshold, 177
See also page description

languages
PostScript fonts, 170–173

base, 170, 171–172
categories, 170
compatibility with Unicode,

172–173
composite, 170, 172
processing, 177
TrueType, 171–172
Type 1, 171–172

predicted frame (P-frame), 210
PrePlug, 330
presentation, 221

audio, 89–91
document, 81–96
foreign languages, 93–96
hierarchically structured

documents, 81–83
marked-up documents,

237–253
metadata, 96–99
music, 92–93
page images, 86–88
page images and extracted

text, 88–89
photographic images, 89–91
plain text documents, 83–86
video, 91–92

preservation, 444, 454–462
acid-free paper and, 456
difficulty, 459
digital advantages promoting,

459
in digital era, 456–457
emphasis, 449

emulation strategy, 460, 461
migration strategy, 460–461
problem, 455–456
strategies, 459–462
strategy types, 459–460
technology, 458
traditional culture example,

3–4
Principles of Digital Audio, 219
progressive refinement, 203–206

defined, 203
illustrated, 204
interlacing, 203–205
JPEG format, 205–206
lossless coding, 205
spectral selection, 206
successive approximation, 206
See also images

Project Gutenberg, 85–86
defined, 85
effort, 85–86
uses, 86
volunteers, 85

protocols, 426–440
CORBA, 359–360
Dienst, 427, 435–436
DLIOP, 436
Greenstone, 378–384
InfoBus, 427
null, 357–358
OAI, 430–434
research, 434–440
robot exclusion, 32
SDLIP, 436–437
translating between, 437–440
Z39.50, 427–430

PSPlug, 302, 330
punctuation

phrase searching and, 107
Unicode, 142

queries
Boolean, 100, 159
case-folding and, 104–106
changing search options

between, 109
example, 99–100
full-text retrieval system, 159
Greenstone choices, 291
with history, 110
large, 109
modifying, 109
music, 463
previous, 112

ranked, 100, 101, 102–103,
159, 160

responses, 100
short, 109
specification language, 111
stemming and, 104–106
types of, 100–104
See also searching

query filters, 375–376
query interfaces, 108–112

form search, 110, 111
with history, 110
large-query search, 109

query languages, 419–426
common command language

(CCL), 419–422
XQuery, 422–426

QuickTime format, 214

Ranganathan, S.S., 474
ranked queries, 100, 102–103, 159

benefits of, 103
with Boolean, 103–104
coordinate matching, 103
defined, 101
indexing, 160
numeric weight, 103
phrases and, 108
searches, 101
similarity measures, 103
See also queries

RDF Schema, 408
reading documents, 452–454
RealSystems format, 215
receptionists, 373–374

C++, 380–383
CGI arguments, 390–391
configuring, 386–392
defined, 357
Format object, 374
Java, 383–384
Kids’ Digital Library, 382
language support, 389–390
logging, 388–389
Macro Language object, 374
page generation, 374
page parameters, 390
protocol default, 382
site maintenance, 386–388
See also Greenstone runtime

system
recognition

character-set variations, 65

512 I N D E X

defined, 65
language dictionaries and, 65
training and, 65
See also interactive OCR

RecPlug, 314, 330
defined, 330
for manually assigning

metadata, 333
metadata.xml file, 333–334,

335
use_metadata_files option,

335
“the big red books,” 53
Refer, 260–261

bibliographic item
illustration, 260

BibTeX vs., 260
defined, 260
keywords, 260, 261
See also bibliographic

metadata
references, 270
ReferPlug, 329, 330
registries, 427
representation

audio and video, 206–217
characters, 134–155
documents, 155–163
images, 194–206

research protocols, 434–440
Dienst, 435–436
DLIOP, 436
SDLIP, 436–437
See also protocols

Research Support Libraries
Programme (RSLP), 411–413,
440–441
connection description, 411
defined, 411
description example, 412
namespace, 411, 413

resolutions
image, 61
scanning, 60, 61, 72

Resource Description Framework
(RDF), 408–413
construction, 409
containers, 410
defined, 408
management, 440
modeling graphically with,

408
XML and, 409

Rich Text Format (RTF), 133
*ud command, 187
*upr command, 187
annotations, 189
backslash character, 185
backward compatibility,

186–187
basic types, 186
begin-/end-bookmark

commands, 190
braces, 185
characteristics, 184
color table, 188
defined, 184
destination command, 186
in digital libraries, 190
document body, 188–189
evolution, 186
field entities, 189
file structure, 187–189
file table, 188
file viewing, 190
flag command, 186
formatting commands, 189
headers, 185, 187
notes and sources, 218
objects, 190
revision tables, 188
style sheet, 188
symbol command, 186
tables, 190
toggle command, 186
See also word-processor

documents
robot exclusion protocol, 32
round-trip compatibility, 138, 144

Sahel Point Doc collection, 127
saving stage (interactive OCR), 67
scalable vector graphics (SVG),

417
scanning, 59–61

decisions, 59
defined, 58
devices, 60
faxes, 60
illustrated, 59
library use and, 60
page handling, 67–68
quality, 60–61, 72
quality control, 69
resolutions, 60, 61, 72
test pages, 61

See also digitizing documents;
optical character
recognition (OCR)

scharfes (ß) character, 75
School Journal digital library, 80
School Journal magazine, 87–88
scientific/engineering data, 469
search engines, 31–32

defined, 33
links and, 33

search history
interfaces, 79
user use of, 109

searching, 99–112
audio, 91
cross-collection, 326
defined, 26
example, 99–100
fielded, 26
full-text, 26, 157
Greenstone, 290–291
high precision, 101
high recall, 101
interfaces for metadata, 79
in multilingual collections,

100
music, 463
notes and sources, 127–128
phrase, 106–108
returns, 100
text, 439
units, 99
Web, 101

SectionList classifier, 339, 340
select objective, 48
Simple Digital Library

Interoperability Protocol
(SDLIP), 436–437, 441
calls to Greenstone protocol,

438
command-line client, 438
defined, 436
delivery interface, 436–437
interfaces, 436–437
for property information, 437
query syntax, 439
returned data, 437
SDLIP-to-Greenstone

translator, 439
search interface, 436
support, 436
version control, 440
See also research protocols

I N D E X 513

Simple Text Record Syntax
(SUTRS), 427

site configuration file, 385,
391–392
defined, 391
lines, 391

site maintenance configuration,
387

Smith, Lloyd, 35–36
sorting, 252–253
Source object, 374
spatial frequency coefficients, 198
spectral selection, 206
SplitPlug, 329, 330
SRCPlug, 330
Standard Generalized Markup

Language (SGML), 229, 230
Standard Template Library (STL),

392
steganography, 74
stemming, 104–106

defined, 105
in form search, 110
highlighting search terms and,

106
language dependence, 105
See also queries

stop words, 159
streaming, 214
strict HTML, 231
stroke-based browsing, 114, 115
structural markup, 222–223

advantage, 223
defined, 222
See also markup

style sheets
cascading, 231, 237–245
defined, 221
development of, 231
ordering of rules in, 240
XSL, 247, 248, 249–250

subcollections, 325–326
subject classifications, 54–55

code, 54
currently used, 55
digital libraries and, 55
purpose, 54–55

subjects, 52–54
associative relationship, 53
in digital documents, 52–53
equivalence relationship, 53
hierarchical relationship, 53
objective assignment, 52
scientific vs. literary, 53

See also bibliographic entities
successive approximation, 206
suffix arrays, 280
suffix trees, 280
supercollections, 325–326
surrogate characters, 147, 148

tables
CSS, 240–242
in interactive OCR, 65
page analysis stage and, 65
RTF, 188, 190
XSL, 248–251

Tagged Image File Format (TIFF),
262–263
baseline, 262–263
as byte-oriented format, 262
compression types, 263
defined, 262
in digital library use, 263
files, 262, 263
readers, 262
tags, 263, 264
writers, 262

TCCPlug, 330
teaching material, 468
technological infrastructure,

23–24
text

ASCII, 84
categorization, 271
comprehension skills, 267
extracted, 87, 88–89
matching, 463–464
mining. See metadata

extraction
plain, 83–86, 156–157
Project Gutenberg, 85
searching, 439

Text Encoding Initiative (TEI),
236, 397

text extraction, 173–178
based on scanning for strings,

173
illustrated, 174
results, 175
simple program, 174–176
See also PostScript

TextCat, 281
TEXTPlug, 301, 330
thumbnails, 466
TIFF. See Tagged Image File

Format

titles, 51–52
in digital collections, 51–52
variations, 52
See also bibliographic entities

training, OCR and, 65
transitional HTML, 231
Transmission Control Protocol

(TCP), 427
Trinity College Library, 11–13
Turning the Pages project, 475
TWAIN, 75–76
types, 402–407

binary, 405
Boolean, 405
built-in, 405
declaration forms, 407
introduction of, 402
numeric, 405
string, 405
time, 405
XML Schema and, 402–405

UNESCO, 26, 34
Unicode, 132, 137–143, 217

Basic Multilingual Plane, 138,
139–141, 147

built-in support, 137
canonical equivalence, 145
character display, 155
character set, 137, 138–143
code point, 144
code range, 144
code space zones, 138
combining characters,

144–145
compatibility equivalence, 145
conjuncts, 153
data structures, writing to

disk, 155
deprecated characters, 145
in digital libraries, 154–155
evolution, 137
excerpts, 142, 143
Hindi and, 149–154
implementation levels, 146
normalized forms, 145
PostScript fonts compatibility,

172–173
punctuation, 142
round-trip compatibility, 138,

144
surrogate characters, 147, 148
universal character set, 142

514 I N D E X

Unicode character encodings,
146–149
overview, 146–147
UTF-8, 147, 148–149
UTF-16, 147, 148
UTF-32, 146, 147–148

Unix, 26, 478
unstructured text documents,

83–86
URIs (uniform resource

identifiers), 396, 402
URLs (uniform resource locators)

arguments, 373
defined, 396
of library program, 390

URNs (universal resource names),
396

usage log, 388–389
users

authentication of, 28
logging, 28
requests, 372–385

UTF-8, 147, 148–149
defined, 147
encoding example, 147
shortest possible encoding,

149
Unicode character set as, 149
See also Unicode character

encodings
UTF-16, 147, 148

defined, 147
encoding example, 147
strings as unsigned short, 154
surrogate characters, 147, 148
See also Unicode character

encodings
UTF-32, 146, 147–148

defined, 146
encoding example, 147
variants, 148
See also Unicode character

encodings

vCard, 411
video

cut detection, 467
dissolves, 467
as generalized documents, 467
MPEG, 210–211
presentation, 91–92
representation, 206–216
wipes, 467

Video Demystified, 218
Village-Level Brickmaking, 81, 82
virtual inheritance, 384
virtual libraries, 44–46, 73–74

challenges, 44–45
defined, 16, 44, 73
INFOMINE, 45–46, 74
purpose, 45
Web crawling and, 45

VLists, 340, 344, 345, 346
defined, 338
runtime system support, 372
specification, 344
See also HLists

WAV format, 215
Web access, 56
Web browsers, 26

Collector operation through,
293

lynx, 229
XML documents viewed in,

237
Web crawling, 45
Web pages

categorizing/classifying, 45
style consistency, 374

Web site, this book, xxix
Wells, H.G, 15, 36
Windows

as Greenstone platform, 26,
478

Metafile, 189
wisdom, 7
word segmentation, 160–163

failure, 162–163
with language dictionary, 162
space-insertion method, 162,

163
with text compression model,

162, 163
word-level index, 107, 108
WORDPlug, 301, 330
word-processor documents,

184–194
LaTeX, 191–194
native Word, 184, 191
RTF, 184, 185–190

works, 49
defined, 41, 49
digital representations of, 41
documents vs., 41, 49
identity, 49
See also bibliographic entities

World Wide Web
collecting from, 31–34
copyright issues, 32
digital libraries vs., 8
as library, 6
robot exclusion protocol, 32
search engines, 31–32
as unorganized information,

31

XHTML, 231, 232
XInclude, 423
XLink, 231, 397

adding, 398
attributes, 399
directed graph, 401
extended, adding, 400
link types, 398
namespace, 398, 399

XML, 229–237, 393
attributes, 235
combined with other

standards, 237
databases, 425
defaults, 236
defined, 224, 229
in digital libraries, 236–237
document sample, 233
documents viewed in Web

browser, 237
DTDs, 232–235, 236, 320,

402–405
header declaration line, 236
library of publications, 424
metalanguage, 232–235
namespaces, 246
notes and sources, 280
parsing, 235–236
power and flexibility, 231
RDF format and, 409
serialization of RDF model,

409
SGML and HTML

relationship, 230
syntax, 229, 402
tags, 319

XML Schema, 402, 431, 440
data typing example, 406
data typing facilities, 405–407
defined, 402
defined with namespaces, 403
defining attributes in, 403
type specification ability, 405
for UN Agency example, 404

I N D E X 515

XPath, 248, 251, 397, 424
XPointers, 397

defined, 401
URI combined with, 402
using, 402

XQuery, 422–426
commands, 425
commands demonstrating

element construction, 426
complexity, 423
data model, 423
defined, 394, 422
elements, 423
statements, 423, 425
XQueryX, 441
See also query languages

XSL, 245–253
basic, 246–248
block tag, 247
contextual matching, 251–252
defined, 237, 245
Formatting Objects (FO), 245,

246, 248

heritage, 245
media-dependent formatting,

252
parts, 245
sorting, 252–253
specification, 245
tables and lists, 248–251
template rules, 250
template tag, 248
transformations (XSLT), 245

XSL style sheets, 247–250
basic example, 247
with context-sensitive

formatting, 251
sorting alphabetically, 253
with tables and lists, 249–250

Z39.50 protocol, 427–430, 441
Access Control Facility, 440
administration, 427
bibliographic registry, 430
clients, 429

defined, 395, 427
Explain Facility, 428
Extended Services Facility, 428
facilities, 427–428
Initialization Facility, 429
Library of Congress interface

with, 430
query syntax, 439
registries, 427
Retrieval Facility, 428
Search Facility, 429
serving capabilities, 429
supporting, 429–430
Termination Facility, 428
version control, 440
See also protocols

Zia Pueblo digital library, 3–4
Greenstone and, 24–25
sources and notes, 35–36

ZIPPlug, 302, 330

516 I N D E X

517

About the authors

Ian H. Witten www.cs.waikato.ac.nz/~ihw

Ian H. Witten is a professor of computer science at the University of Waikato in
New Zealand. He directs the New Zealand Digital Library Project. His research
interests include information retrieval, machine learning, text compression, and
programming by demonstration. He received an M.A. in mathematics from
Cambridge University, England; an M.Sc. in computer science from the Univer-
sity of Calgary, Canada; and a Ph.D. in electrical engineering from Essex Univer-
sity, England. He is a fellow of the ACM and of the Royal Society of New
Zealand. He has published widely on digital libraries, machine learning, text
compression, hypertext, speech synthesis and signal processing, and computer
typography. He has written several books, the latest being Managing Gigabytes
(1999) and Data Mining (2000), both from Morgan Kaufmann.

David Bainbridge www.cs.waikato.ac.nz/~davidb

David Bainbridge is a senior lecturer in computer science at the University of
Waikato, New Zealand. He holds a Ph.D. in computer science from the Univer-
sity of Canterbury, New Zealand, where he studied the problem of optical music
recognition as a Commonwealth Scholar. Since moving to Waikato in 1996, he

has continued to broaden his interest in digital media, while retaining a particu-
lar emphasis on music. An active member of the New Zealand Digital Library
Project, he manages the group’s digital music library project and has collabo-
rated with several United Nations agencies, the BBC, and various public
libraries. He has published in the areas of image processing, music information
retrieval, digital libraries, data compression, and text mining. David has also
worked as a research engineer for Thorn EMI in the area of photorealistic imag-
ing and graduated from the University of Edinburgh in 1991 as the class medal-
ist in computer science.

518 A B O U T T H E A U T H O R S

	Cover
	Chapter 1 Orientation
	The world of digital libraries
	Example One: Supporting human development
	Example Two: Pushing on the frontiers of science
	Example Three: Preserving a traditional culture
	Example Four: Exploring popular music
	The scope of digital libraries

	Libraries and digital libraries
	The changing face of libraries
	In the beginning
	The information explosion
	The Alexandrian principle
	Early technodreams
	The library catalog
	The changing nature of books

	Digital libraries in developing countries
	Disseminating humanitarian information
	Disaster relief
	Preserving indigenous culture
	Locally produced information
	The technological infrastructure

	The Greenstone software
	The pen is mighty: Wield it wisely
	Copyright
	Collecting from the Web
	Illegal and harmful material
	Cultural sensitivity

	Notes and sources

	Chapter 2 Preliminaries
	Sources of material
	Ideology
	Converting an existing library
	Building a new collection
	Virtual libraries

	Bibliographic organization
	Objectives of a bibliographic system
	Bibliographic entities

	Modes of access
	Digitizing documents
	Scanning
	Optical character recognition
	Interactive OCR
	Page handling
	Planning an image digitization project
	Inside an OCR shop
	An example project

	Notes and sources

	Chapter 3 Presentation
	Presenting documents
	Hierarchically structured documents
	Plain, unstructured text documents
	Page images
	Page images and extracted text
	Audio and photographic images
	Video
	Music
	Foreign languages

	Presenting metadata
	Searching
	Types of query
	Case-folding and stemming
	Phrase searching
	Different query interfaces

	Browsing
	Browsing alphabetical lists
	Ordering lists of words in Chinese
	Browsing by date
	Hierarchical classification structures

	Phrase browsing
	A phrase browsing interface
	Key phrases

	Browsing using extracted metadata
	Acronyms
	Language identification

	Notes and sources
	Collections
	Metadata
	Searching
	Browsing

	Chapter 4 Documents
	Representing characters
	Unicode
	The Unicode character set
	Composite and combining characters
	Unicode character encodings
	Hindi and related scripts
	Using Unicode in a digital library

	Representing documents
	Plain text
	Indexing
	Word segmentation

	Page description languages: PostScript and PDF
	PostScript
	Fonts
	Text extraction
	Using PostScript in a digital library
	Portable Document Format: PDF
	PDF and PostScript

	Word-processor documents
	Rich Text Format
	Native Word formats
	LaTeX format

	Representing images
	Lossless image compression: GIF and PNG
	Lossy image compression: JPEG
	Progressive refinement

	Representing audio and video
	Multimedia compression: MPEG
	MPEG video
	MPEG audio
	Mixing media
	Other multimedia formats
	Using multimedia in a digital library

	Notes and sources

	Chapter 5 Markup and metadata
	Hypertext markup language: HTML
	Basic HTML
	Using HTML in a digital library

	Extensible markup language: XML
	Development of markup and stylesheet languages
	The XML metalanguage
	Parsing XML
	Using XML in a digital library

	Presenting marked-up documents
	Cascading style sheets: CSS
	Extensible stylesheet language: XSL

	Bibliographic metadata
	MARC
	Dublin Core
	BibTeX
	Refer

	Metadata for images and multimedia
	Image metadata: TIFF
	Multimedia metadata: MPEG-7

	Extracting metadata
	Extracting document metadata
	Generic entity extraction
	Bibliographic references
	Language identification
	Acronym extraction
	Key-phrase extraction
	Phrase hierarchies

	Notes and sources

	Chapter 6 Construction
	Why Greenstone?
	What it does
	How to use it

	Using the Collector
	Creating a new collection
	Working with existing collections
	Document formats

	Building collections manually: A walkthrough
	Getting started
	Making a framework for the collection
	Importing the documents
	Building the indexes
	Installing the collection

	Importing and building
	Files and directories
	Object identifiers
	Plug-ins
	The import process
	The build process

	Greenstone archive documents
	Document metadata
	Inside the documents

	Collection configuration file
	Default configuration file
	Subcollections and supercollections

	Getting the most out of your documents
	Plug-ins
	Classifiers
	Format statements

	Building collections graphically
	Notes and sources

	Chapter 7 Delivery
	Processes and protocols
	Processes
	The null protocol implementation
	The CORBA protocol implementation

	Preliminaries
	The macro language
	The collection information database

	Responding to user requests
	Performing a search
	Retrieving a document
	Browsing a hierarchical classifier
	Generating the home page
	Using the protocol
	Actions

	Operational aspects
	Configuring the receptionist
	Configuring the site

	Notes and sources

	Chapter 8 Interoperability
	More markup
	Names
	Links
	Types

	Resource description
	Collection-level metadata

	Document exchange
	Open eBook

	Query languages
	Common command language
	XML Query

	Protocols
	Z39.50
	Supporting the Z39.50 protocol
	The Open Archives Initiative
	Supporting the OAI protocol

	Research protocols
	Dienst
	Simple digital library interoperability protocol
	Translating between protocols
	Discussion

	Notes and sources

	Chapter 9 Visions
	Libraries of the future
	Today's visions
	Tomorrow's visions
	Working inside the digital library

	Preserving the past
	The problem of preservation
	A tale of preservation in the digital era
	The digital dark ages
	Preservation strategies

	Generalized documents: A challenge for the present
	Digital libraries of music
	Other media
	Generalized documents in Greenstone
	Digital libraries for oral cultures

	Notes and sources

	Appendix A: Installing and operating Greenstone
	Appendix B: Greenstone source code
	Foundations
	Collection server
	Receptionist
	Initialization

	Glossary
	References
	Index
	About the authors

