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Series Preface 

For some time now, the study of cognitive development has been far and 
away the most active discipline within developmental psychology. Al­
though there would be much disagreement as to the exact proportion of 
papers published in developmental journals that could be considered cog­
nitive, 50% seems like a conservative estimate. Hence, a series of schol­
arly books devoted to work in cognitive development is especially appro­
priate at this time. 

The Springer Series in Cognitive Development contains two basic types 
of books, namely, edited collections of original chapters by several au­
thors, and original volumes written by one author or a small group of 
authors. The flagship for the Springer Series is a serial publication of the 
"advances" types, carrying the subtitle Progress in Cognitive Develop­
ment Research. Each volume in the Progress sequence is strongly the­
matic, in that it is limited to some well-defined domain of cognitive-devel­
opmental research (e.g., logical and mathematical development, 
development oflearning). All Progress volumes will be edited collections. 
Editors of such collections, upon consultation with the Series Editor, may 
elect to have their books published either as contributions to the Progress 
sequence or as separate volumes. All books written by one author or a 
small group of authors are being published as separate volumes within the 
series. 

A fairly broad definition of cognitive development is being used in the 
selection of books for this series. The classic topics of concept develop­
ment, children's thinking and reasoning, the development of learning, 
language development, and memory development will, of course, be in­
cluded. So, however, will newer areas such as social-cognitive develop­
ment, educational applications, formal modeling, and philosophical impli­
cations of cognitive-developmental theory. Although it is anticipated that 
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most books in the series will be empirical in orientation, theoretical and 
philosophical works are also welcome. With books of the latter sort, 
heterogeneity of theoretical perspective is encouraged, and no attempt 
will be made to foster some specific theoretical perspective at the expense 
of others (e.g., Piagetian versus behavioral or behavioral versus informa­
tion processing). 

C. J. Brainerd 



Preface 

The focus of this volume in the Springer Series in Cognitive Development 
is methodology, especially as it concerns the development and testing of 
formal theories. The choice of this topic reflects an increasing concern for 
the development of sophisticated methodological tools that yield more 
perceptive insights into children's behavior, a theme that was evident in 
an earlier volume in this series (Learning in Children) and that, in our 
judgment, required more specific attention. 

The need for more powerful methods of developing and testing theories 
is not new, of course. Experimental research on cognitive development 
has proliferated over the past 30 years, partly because of an infusion of 
concepts and paradigms from learning theories in the 1950s, from Piaget's 
work in the 1960s, and from the perspective of information processing in 
the 1970s. Theories and methods of research have become more sophisti­
cated with each step in this progression. One problem that consistently 
emerges, however, is the tendency to formulate theories in terms that 
preclude unambiguous predictions about performance. Similarly, meth­
ods of analysis often have been insufficient for providing the kinds of 
precise, quantitative, and theoretically meaningful measurements neces­
sary for identifying process variables on diverse tasks. Difficulties in mak­
ing clear-cut predictions and sensitive measurements have resulted in 
extended, and often unproductive, controversies. One outcome of these 
continuing controversies is the growing realization that the complexity 
and relative inaccessibility of cognitive processes require greater preci­
sion in the formulation and testing of theories. As a consequence, there 
has been a notable increase in the use of formal models in cognitive 
developmental research over the past several years. Computer simula­
tions, mathematical models, and advanced statistical methods are now 
being used to investigate a wide range of developmental phenomena. 
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Research involving formal models is far from the modal approach in 
cognitive developmental research, however. One reason for the common 
failure to use more sophisticated methods and theories is that many ap­
proaches to formal modeling are closely linked in the literature to specific 
issues or processes. Authors typically do not have the opportunity to 
discuss issues and details that are pertinent to applying the methods more 
broadly. Thus most developmental researchers do not realize how gener­
ally appropriate these approaches are for diverse phenomena. A second 
reason is that many of these newer techniques are quite complex, and 
rarely are the details necessary for implementation available in journal 
articles. 

Our goal in publishing this volume is to communicate the insights and 
methodological details researchers need to adopt or develop techniques 
that may be useful for advancing their own investigations. The chapters in 
this volume are based on presentations at a conference on the use of 
formal methods in developmental psychology that was held at the U niver­
sity of Alberta in May, 1985. The conference served as a forum for propo­
nents of different methodological approaches. Participants took the op­
portunity to explain the assumptions and procedures associated with their 
particular methods, to illustrate the use of the methods, to highlight par­
ticular strengths and shortcomings, and to exchange information about 
recent developments. In the resulting chapters, most authors chose to 
describe their methods in the context of specific investigations, and in 
each case careful attention is given to the reasons for selecting a particular 
method and for implementing or adapting it in useful ways. This approach 
allows readers to gain an appreciation of the complex and sensitive man­
ner in which relations between theoretical concepts and empirical out­
comes must be explored in the course of developing and testing a theory. 

Taken as a whole, the volume represents a sampling of current methods 
and, perhaps more importantly, the issues that must be addressed in 
developing more sophisticated methods for theory construction and vali­
dation. Readers interested in a particular method, such as the use of 
computer simulation, are encouraged to peruse the pertinent chapters to 
gain a broad perspective on the issues, constraints, and procedures asso­
ciated with that method. Brief descriptions are provided below to assist 
readers in the selection of chapters. 

The volume is divided into two sections. Included in the first section is 
a wide range of mathematical and statistical approaches. Charles Brainerd 
uses several examples to illustrate the generality and pervasiveness of 
measurement problems in developmental research, and he illustrates how 
some of these problems can be addressed in certain types of investigation. 
The broad issues that are raised provide a context for the contributions of 
the other authors in the volume. Johannes Kingma describes the use of 
mathematical models in general, and he also provides a very detailed 
illustration of how Markov models can be used to understand differences 
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in memory processes among groups of children that vary in age and 
learning ability. Alex Cherry Wilkinson and Beth Haines use a variety of 
mathematical techniques, including Markov modeling, to study three dif­
ferent types of transitions in knowledge acquisition: changes that result 
from repeated testing; changes that occur as components of a skill are 
acquired; and changes that reflect the process of assembling familiar com­
ponents into a workable strategy. The chapter is very useful for illustrat­
ing how various methods can be combined and how precision in measure­
ment often requires greater specialization of method. 

Several chapters represent relatively novel applications of statistical 
methods. Colleen Surber illustrates the use of functional measurement 
techniques in the study of reversible operations. In the process, she 
shows how certain methods of developing and testing theories, many of 
which arise from the literature on judgment and decision making, enable 
her to examine an expanded concept of reversibility and to identify sev­
eral possible sources of developmental change in children's thinking. Ro­
bert Sternberg shows how a variety of multivariate methods can be used 
systematically to examine implicit theories and belief systems, a new 
topic of research that is gaining considerable attention. Hoben Thomas 
provides an elegant illustration of how exploratory data analyses and 
careful analyses of probabilities can yield revealing insights about possi­
ble sources of individual differences in achievement. In the final chapter 
of this section, Kevin Miller provides a thoughtful discussion of issues 
associated with geometric methods of analyzing and representing data. 
He also illustrates how nonmetric multidimensional scaling and non­
hierarchical clustering can be used productively in developmental re­
search. 

The chapters in the second section all pertain to the use of computer 
simulation. Michael Rabinowitz, Malcolm Grant, and Louis Dingley pro­
vide a broad overview of the concepts and issues that are associated with 
the use of computer simulation in the development of psychological theo­
ries, and they also review a number of studies in which simulations have 
been used to understand children's performance. Mark Ashcraft de­
scribes a specific simulation of mental arithmetic and, more generally, 
how simulation became a useful tool for him in his effort to integrate 
concepts and test ideas about the organization and development of cogni­
tive processes. Martin Banks argues that computational theories, imple­
mented in computer simulations, provide a more promising way of under­
standing perceptual development than existing approaches. Finally, 
Donald Heth and Edward Cornell show how Monte Carlo simulations can 
be used to test hypotheses about spatial search behavior in children, and 
they provide a set of simulation tools that can be used in a variety of 
contexts by researchers. 

The conference and subsequent preparation of this volume were made 
possible by support from the Natural Sciences and Engineering Research 
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Council of Canada and by the Department of Psychology, the Centre for 
Research in Child Development, the Conference Fund Committee, and 
the Office of the Vice-President of Research at the University of Alberta. 
We are grateful for the stimulating comments provided by the conference 
discussants (Terry Caelli and Frederick Morrison) and by the many indi­
viduals who attended the conference and contributed significantly to the 
discourse. We are also thankful for the expert assistance of Cindy Scott, 
Lorri Broda, Frances Russell, and Cecile Cochrane in preparing the con­
ference and this volume. 

Jeffrey Bisanz 
Charles J. Brainerd 

Robert Kail 
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1. Structural Measurement Theory and 
Cognitive Development 

Charles J. Brainerd 

The overriding function of scientific theories is to reduce uncertainty 
about the world we live in by explaining how things work. A basic di­
lemma in psychological theories, probably the most basic dilemma of all, 
is that we do not possess what is sometimes called fundamental measure­
ment control over the constructs that we use to explain behavior. On one 
hand, we regularly resort to notions such as short-term memory capacity, 
retrieval from long-term memory, attitudes, hypotheses, rule knowledge, 
preference, attention, motivation, intelligence, and the like when formu­
lating explanations. On the other hand, these notions are not amenable to 
physical measurement operations such as weighing and counting. They lie 
somewhere in the uncharted region between true physical reality and 
metaphysical speCUlation. Consequently, we are not certain of how to go 
about quantifying them through experimentation. Here, a familiar cate­
chism is that the most that can defensibly be assumed is that data are 
related to psychological constructs by unknown but order-preserving 
transformations. This is the familiar mono tonicity constraint on the mea­
surement of psychological constructs. To take a hoary instance, while we 
can presumably say that a person with a Stanford-Binet IQ of 150 is at 
least as intelligent as a person with a Stanford-Binet IQ of 100, we cannot 
say much more than this. And we certainly cannot say that the first person 
is half again as intelligent as the second. 

The monotonicity constraint would be less a cause for concern if we 
were content with qualitative theories, that is, if we did not seek to quan­
tify such variables and were content instead with nominal-scale measure­
ments. However, theories in all areas of psychology, especially the most 
refined theories, routinely make quantitative statements about their ex­
planatory constructs. To test these theories, it is necessary to evaluate 
such statements, but the means of doing so under monotonicity restric­
tions are usually obscure. 

The problem is conveniently encapsulated by an illustration that Krantz 
and Tversky (1971) gave some years ago. Hull once proposed that an 
organism's reaction potential (or response strength) was a mUltiplicative 



2 Charles J. Brainerd 

function of three variables, namely, drive, habit strength, and incentive. 
That is, 

R =DHK, (1) 

where R, D, H, and K are numerical scales denoting reaction potential, 
drive, habit strength, and incentive, respectively. Shortly thereafter, 
Spence argued that reaction potential was a multiplicative function of the 
sum of habit strength and incentive, on the one hand, and drive, on the 
other. That is, 

R = D(H + K). (2) 

Both models assume that response strength is a simple algebraic func­
tion of three psychological variables. But how do we secure a differential 
test of the two models? Under the mono tonicity constraint, we can pre­
sumably obtain ordinal-scale measurements of the pertinent variables by 
using, for example, running speed to a goal box for response strength, 
amount of prior deprivation for drive, amount of prior training for habit 
strength, and amount of reward in the goal box for incentive. But because 
only the subjects' ordering along each of the four dimensions is invariant 
under such measurements, how do these data help us to choose between a 
model in which drive is distributed over the sum of habit strength and 
incentive and a model in which response strength is a simple product of 
drive, habit strength, and incentive? If we had ratio-scale measurements 
of all the variables, then naturally it would be a trivial matter to decide 
whether the value calculated from the right side of Equation 1 or the value 
calculated from the right side of Equation 2 was nearer to the observed 
value of response strength. We do not have such measurements, how­
ever. (See Chapter 4, this volume, by Surber for a discussion of related 
problems in research on human judgment.) 

One reason that measurement theories have evolved in psychology is to 
show us how to decide between different quantitative statements about 
psychological variables. Some say, not without justification, that mea­
surement theories are merely quasitheological devices that allow us to 
avoid the bitter fact that we ought not to be using metaphysical ideas in 
our theories. I shall let this possibility pass, however. 

In this chapter, there are two features of most measurement theories 
that I wish to focus on. First, the monotonicity constraint is taken as a 
given-that is, most measurement theories operate with ordinal-scale 
measurements and do not usually deliver ratio-scale information about 
constructs. Second, they are local theories. They do not attempt to solve 
the monotonicity problem in general terms for all areas of psychological 
theory. Instead, they solve particular manifestations of the problem in 
well-defined areas of experimentation. Broadly speaking, then, measure­
ment theories have sought to discover how much mileage can be gotten 
from particular classes of theories having only ordinal information about 
subjects' status on psychological constructs. 
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These points can be illustrated by two familiar, contemporary measure­
ment frameworks, conjoint-measurement theory (Krantz, Luce, Suppes, 
& Tversky, 1971; Krantz & Tversky, 1971) and functional-measurement 
theory (e.g., Anderson, 1970, 1974; Anderson & Cuneo, 1978). (See 
Chapter 4 by Surber and Chapter 3 by Wilkinson and Haines, this volume, 
for additional discussions of functional-measurement theory.) The Hull­
Spence example is an instance of a large class of theories in which some 
psychological variable is expressed as a simple algebraic function of a 
small number of additional psychological variables, which conjoint-mea­
surement theorists have termed polynomial composition rules. Another 
particularly rich source of examples is provided by classical theories of 
attitude change, where subjects' current attitudinal status is expressed as 
some polynomial function of constructs such as balance, congruence, 
valence, and so forth. In both conjoint-measurement theory and func­
tional-measurement theory, it is often possible to decide between differ­
ent polynomial formulations of the relationship between variables with 
data that deliver at most ordinal information. A central feature of both 
frameworks turns out to be the interpretation of interaction terms in the 
analysis of variance. One framework, Anderson's functional-measure­
ment theory, has been far more productive of experimentation than the 
other, owing primarily to the fact that its statistical machinery has been 
more completely developed and, in particular, its connections to analysis 
of variance have been carefully spelled out. With functional-measurement 
techniques, certain contrasting polynomial composition rules can be dis­
tinguished by merely conducting factorial experiments and examining 
plots of various interactions. (See Chapter 4, this volume, by Surber for 
illustrations. ) 

In the study of cognitive development, the realization that measure­
ment theory is critical to research has come very late. Even today, this 
point is neither widely understood nor commonly acknowledged in the 
literature. The most likely, though by no means complete, explanation is 
that the field has historically been dominated by theoretical traditions that 
were purely qualitative, with the Piagetian tradition being the prototype. 
Piaget coupled a lack of serious quantitative theorizing with an active 
antipathy to such work. He believed that theories that incorporated pre­
cise numerical statements about the relationship between children's un­
derstanding of various concepts and developmental changes in certain 
process variables (e.g., attention to relevant dimensions, knowledge of 
pertinent rules, capacity of working memory) were somehow inconsistent 
with the proposition that cognitive development is a stagelike process. 
This is not to say that Piaget's writings abjured formal modeling of any 
sort. They did not. However, his use of modeling technologies such as 
group theory and propositional logic (e.g., Piaget, 1949) was normally 
metaphorical and invariably opaque. 

Because cognitive development theory has traditionally been qualita­
tive, the need for measurement frameworks has been less clear than in 
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other areas of psychology. Lately, however, two trends have made this 
need more apparent. First, there is a growing awareness that some classi­
cal questions about cognitive development, questions originally brought 
to prominence by qualitative theories, are implicitly quantitative in the 
sense that different answers turn on assumptions about quantitative rela­
tionships between psychological variables. Three well-known examples 
(the stage-learning hypothesis, sequences in concept development, and 
the relative contributions of age changes in storage and retrieval to mem­
ory development) are discussed below. Second, there is, for the first time, 
a vigorous literature concerned with quantitative theories of cognitive 
development, particularly in concept and memory development. Illustra­
tions of such theories are also discussed below. 

The general purposes of this chapter are to argue for the importance of 
measurement-theoretical considerations in the study of cognitive devel­
opment and for an evolving perspective on measurement that relies on the 
theory of maximum likelihood. The chapter consists of three main sec­
tions. In the first section, I review some important research questions 
that, although ostensibly qualitative, seem to require careful attention to 
measurement issues. Next, I discuss four goals for measurement theories 
of cognitive development that follow from the material in the first section. 
In the final section, some illustrations of quantitative theories of concept 
and memory development are presented. It is suggested some progress 
has been made toward a general measurement system for cognitive devel­
opment and, more explicitly, that the objectives set forth in the second 
section have sometimes been met. Curiously, this progress has occurred 
more or less without any realization that a general measurement frame­
work, one that is adapted to the specialized demands of cognitive devel­
opment theory, is being created. 

Three Examples 

In the literature on concept and memory development, some long-stand­
ing questions are rooted in failures to give due consideration to measure­
ment issues, specifically to response scaling issues that arise from the 
monotonicity constraint on measurement. In the standard scenario, sev­
eral studies concerned with a predicted (qualitative) relationship among 
certain variables are reported, but upon reflection it turns out that the 
predictions being tested are informative only if it can be assumed that the 
response scales (output transformations) that map different theoretical 
variables with their empirical measures are identical. Since monotonicity 
is normally the strongest assumption that can be made about response 
scales, the question then arises, What do the data actually tell us about 
the predicted relationships? I give three instances of this situation, exam­
ples that have been chosen with a view toward their familiarity rather than 
their profundity. 
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Example 1: The Stage-Learning Hypothesis 

Experiments on the relationship between children's concept learning and 
their levels of cognitive development provide a textbook illustration of the 
response scaling problem. Piagetian theory anticipates that children's 
ability to learn concepts such as conservation, perspective taking, classifi­
cation, and the like will "vary very significantly as a function of the initial 
cognitive levels of the children" (Piaget, 1970, p. 715). Most studies con­
cerned with this prediction have used level of posttraining performance to 
measure the theoretical variable "concept learning" and have used level 
of pretraining performance on tests of the to-be-trained concept to mea­
sure the theoretical variable "level of cognitive development," all of 
which seems natural enough at first glance. The featured results in these 
studies have been dependencies between the two types of measures; the 
conditional probability of being at a higher posttest level given that the 
child occupied a higher pretest level is greater than the unconditional 
probability of occupying a higher posttest level. Clearly, however, such 
dependencies bear upon the predicted relationship only in the unlikely 
(and unproven) event that the response scales for the two measures are 
identical. 

In the usual design of an experiment of this sort, first children are given 
a battery of pretests for some Piagetian concept such as conservation. 
This is followed by a training session in which the target concept is taught, 
with the most common types of instruction being observational learning, 
rule instruction, attentional training, and simple corrective feedback. 
Training is followed immediately and/or a few days later and/or a few 
weeks later by another battery of tests for the trained concept and some­
times for other related concepts. With such designs, there are four psy­
chological variables of interest for which ordinal-scale information is 
available. First, there are the children's pretraining levels of cognitive 
development (variable D). Second, there is the power of the training 
procedure to produce concept learning (variable P). Third, there is the 
amount of learning produced by a given amount of training (variable L). 
Fourth, there is the children's posttraining knowledge of the target con­
cept (variable K). Variables D, K, L, and P are all distinct theoretical 
concepts that cannot necessarily be defined in terms of each other; hence, 
it is important to include them all in the formulation for completeness. For 
example, one cannot simply define Las K - D because learning might be 
something very different from the difference between children's pre train­
ing stage and their posttraining knowledge of the target concept. Simi­
larly, the power of the training manipUlation must be considered because 
the relationship between learning and pretraining stage may depend criti­
cally on the effectiveness of training. 

To begin, learning is related to the effectiveness or power of the training 
method. That is, more effective procedures should tend to produce more 
learning. For example, a small number of trials with a given method ought 
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to produce less learning than a larger number of trials. In short, we as­
sume that 

L =!I (P) (3) 

holds, where!1 is any monotonic function that maps scale values of P with 
scale values of L. Essentially, the familiar Piagetian claim that children's 
concept learning depends on their stage of cognitive development implies 
that this expression is an incomplete representation of the relationship 
between learning and the power of the training method. Specifically, the 
learning function/t should accelerate or decelerate, depending on devel­
opmental status, which is to say that L depends on D as well as on P. 

Therefore, learning must be expressed as some joint function 

L =!2 (D, P) (4) 

of development and power, where fz is another monotonic function that 
maps scale values of L with scale values of D and P. This latter function 
would usually be called a composition rule in conjoint-measurement the­
ory or an integration rule in functional-measurement theory. Bear in mind 
that, except for the monotonicity assumption, nothing whatsoever is 
known about !2. 

Now, consider some numerical examples from a mythical conservation 
training experiment. The experiment is a 3 x 3 design in which three 
levels of development (D) have been factorially crossed with three levels 
of training power (P). The examples appear in Table 1.1, and each is 
based on a different assumption about 12 that satisfies Equation 4. The 
composition rule is additive in one case (L = D + P), mUltiplicative in the 
second case (L = DP), and a power function in the third case (L = PD). To 
generate these examples, the scale values for D were set at 2, 3, and 4, 
and the scale values for P were set at 5, 7, and 9. 

The crucial question that Table 1.1 answers is whether the claim that 
concept learning depends on developmental stage leads to some unique 
result for D x P factorial designs that must be true for all monotonic 
composition rules. To begin, note that scale values of L vary both down 
the rows and across the columns when the composition rule is additive. 
But if learning depends only on the effectiveness of training and not on 
development (i.e., Equation 3, not Equation 4, is correct), then L should 
only vary across rows. When scale values of L are inspected for the other 
two composition rules, the same pattern is observed. This suggests a 
basic research strategy for discriminating Equations 3 and 4: Conduct D 
x P factorial experiments and test for D main effects, concluding that 
Equation 4 is or is not correct accordingly as such effects are or are not 
observed. 

A difficulty arises, however, in implementing this strategy, namely, the 
question of how to measure learning. Learning-like developmental 
level, training power, and posttraining knowledge-is a theoretical con-
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TABLE 1.1. Some numerical examples from a hypothetical 
conservation learning experiment. 

Rule and Power of training method 
developmental 

level PI = 5 P2 = 7 p) = 9 

j;: L=D+P 
DI = 2 L=7 L=9 L = 11 
D2 = 3 L=8 L = 10 L = 12 
D) = 4 L=9 L=l1 L = 13 

h: L = DP 
DI = 2 L=lO L = 14 L = 18 
D2 = 3 L = 15 L = 21 L = 27 
D) = 4 L = 20 L = 28 L = 36 

j;: L = pD 
DI = 2 L = 25 L = 49 L = 81 
D2 = 3 L = 125 L = 343 L = 729 
D) = 4 L = 625 L = 2401 L = 6561 

struct that is subject to the monotonicity restriction. Experiments of this 
type provide two measures of learning. First, there are pretest to posttest 
improvements in concept-test scores. In other words, pretest scores on 
the concept tests are subtracted from posttest scores, and the residual is 
regarded as being monotonically related to amount of learning. Different 
scores, however, are subject to well-known reliability problems. The 
other, more attractive candidate for the learning measure is the rate at 
which concept-test performance improves during training. 

With the aid of these distinctions and examples, it is now easy to see 
why the prediction usually tested in concept-learning studies with chil­
dren does not actually bear upon the issue of whether developmental 
stage constrains learning. The essence of this prediction is that learning 
depends jointly on the power of the training method and on the develop­
mental stage, not merely on the former. A simple factorial design evi­
dently is required to test this possibility. But the prediction that has 
actually been evaluated in research is that posttraining performance de­
pends on pretraining performance, which merely says that scale values of 
K are some monotonic function of scale values of D. Note (1) that L does 
not enter into this prediction in any direct way, although K is presumably 
some joint function of Land D, (2) that the prediction does not provide 
any clear basis for discriminating Equations 3 and 4, and (3) that, indeed, 
as long as the concept tests are reliable, the prediction would be consis­
tent with either expression. 

Example 2: Concept Sequence Research 

Sequentiality, the study of the order in which things develop, has always 
been a prominent concern in developmental sciences, but its appearance 
in the concept development literature dates to the revival of Piagetian 
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theory two decades ago. The theory leads to two familiar predictions 
about sequences in concept development. First, children should invari­
ably acquire some concepts, those that belong to earlier stages, before 
they acquire certain other concepts, those that belong to later stages. 
Second, concepts that belong to the same stage should not be ac­
quired in any particular order. Predictions of this ilk are also centerpieces 
of most other theories that are closely connected to Piaget's work, 
with Kohlberg's theory of moral development being a well-known in­
stance. 

Although Piaget's stages provided the initial impetus, a second, instruc­
tional motivation for sequence research soon emerged. Curriculum se­
quencing, the order in which new concepts and skills are introduced in the 
classroom, is a key issue in the design of any curriculum, but especially in 
preschool and elementary school curricula. Here, a common assumption 
has been that if two (or more) concepts develop in some fixed order, then 
teachers should introduce them in that same order in the classroom. Since 
many of the concepts associated with Piagetian stages are also taught as 
part of elementary school curricula (e.g., number, classification, seria­
tion, proportionality), some of the earliest studies in the literature focused 
on such concepts. At the time, it was widely believed that this research 
simultaneously afforded tests of theoretical hypotheses and generated 
data that were useful in instruction. 

The bulk of the early literature was concerned with concrete and formal 
operational concepts, and the subjects were usually elementary school­
ers. The designs of these studies were simple. Typically, a single test of 
each target concept was administered to a sample of children drawn from 
an age range during which, according to theory or extant data, the con­
cepts developed. An overall performance measure based on the average 
probability of a correct response was then used to score the data of each 
test. As a rule, performance on given tests either was scored pass-fail or 
was stratified into a small number of levels deemed analogous to stages. 
The empirical evidence of sequentiality consisted of statistically reliable 
differences in the pass-fail rates for different tests (if the tests were scored 
pass-fail) or statistically reliable differences in stage classifications. In 
other words, concept A was said to develop before concept B if the pass 
rates or the stage classifications were higher for test A. 

Most of these studies produced what, in the minds of investigators of 
that era, appeared to be quite striking evidence of sequentiality. Some 
early reviewers went so far as to conclude that sequentiality was far more 
pronounced than even stage theories would expect. However, an ambigu­
ity materialized with respect to specific sequences that, for one reason or 
another, were sufficiently interesting to prompt multiple studies. Minor 
procedural variations (e.g., introducing visual illusions, requiring children 
to explain their answers) were found to perturb the order of test difficulty 
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rather badly. Hooper and his associates seem to have been the first re­
viewers to focus attention on this fact in connection with the frequently 
studied ordering of quantity, weight, and volume conservation (Hooper, 
Goldman, Storck, & Burke, 1971). They pointed out that while some data 
on this sequence were in precise agreement with theoretical predictions, 
other studies, using the same basic tests with slight modifications, had 
produced quite different patterns of test difficulty. 

Some illustrations of theoretically important sequences that produced 
literatures with inconsistent patterns of test difficulty are compensation 
versus conservation, class inclusion versus conservation, identity versus 
equivalence, ordinal number versus cardinal number, and transitivity ver­
sus conservation. Perhaps the longest tradition of inconsistent findings is 
for the developmental ordering of transitivity and conservation. 
Smedslund (1959, 1963) originally reported that children conserve before 
they make transitive inferences, a result that agreed with theoretical pre­
dictions (Piaget & Szeminska, 1941) and that was subsequently replicated 
by others (e.g., McManis, 1969). At the same time, however, Lovell and 
Ogilvie (1961) reported that children conserve and make transitive infer­
ences at about the same age. Several other investigators have found that 
children make transitive inferences before they conserve (e.g., Brainerd, 
1973, 1974; Hooper, Toniolo, & Sipple, 1978). There is even one experi­
ment by Keller and Hunter (1973) in which some comparisons showed 
that conservation is understood before transitivity, other comparisons 
showed that transitivity is understood before conservation, and still other 
comparisons showed that conservation and transitivity are simultaneous 
achievements. 

Conflicting data of this sort eventually led to a realization that chil­
dren's performance on a concept test is not merely a measure of their 
grasp of the target concept. There is now general agreement that three 
types of variables need to be taken into account: (1) children's knowledge 
of the concept being measured; (2) the possibility that both children who 
have the concept and children who do not have the concept often make 
correct responses by relying on nonconceptual factors (calledJalse-posi­
tive errors in the literature); and (3) the possibility that both children who 
have the concept and children who do not have the concept often make 
errors by relying on nonconceptual factors (calledJalse-negative errors). 
The distinction between these variables merely acknowledges the intui­
tively obvious fact that there are always three paths to a correct response 
on a concept-test item: A child may possess the target concept and man­
age to avoid various sources of false-positive and false-negative error, the 
child may possess the target concept but make a correct response by 
relying on some source of false-positive error, and the child may not 
possess the target concept but may make a correct response by relying on 
some source of false-positive error. It is the proportion of responses in the 
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first category that most investigators would regard as the true measure of 
conceptual knowledge. 

The literature contains numerous illustrations of potential types of 
false-positive and false-negative errors proposed for class inclusion, con­
servation, transitive inference, probability judgment, and other familiar 
concepts. However, the dimensions of the underlying problem are clear 
enough without a recitation of further examples. On the one hand, several 
procedural manipulations (some of which apply to several tasks and 
others of which are specific to given tasks) are known to inflate or deflate 
performance on concept tests. Moreover, the presence or absence of 
these manipulations dramatically affects the developmental ordering of 
tests of different concepts. On the other hand, the fact that there are three 
paths to any correct response means that we do not know whether the 
effects of such manipulations are on the false-positive error rate, the false­
negative error rate, or both. That is, a manipulation that inflates perfor­
mance may do so by expanding the pool of false-positive error sources or 
by shrinking the pool of false-negative error sources or by doing both. 
Conversely, a manipulation that deflates performance may do so by pro­
ducing the opposite effects. 

Owing to these ambiguities, inferences about the developmental order­
ing of concepts that are based on the relative difficulty of tests are pro­
foundly suspect. To make such inferences, correct responses must be 
factored into those that are based on the concept and those that derive 
from possible sources of false-positive error. As in Example I, these 
requirements are beyond our current capabilities because we lack appro­
priate measurement frameworks. The problem here is more difficult than 
in Example I because the relevant theoretical variables are harder to 
disentangle. We saw with concept learning that there were four such 
variables (developmental stage, training efficiency, amount of learning, 
and posttraining conceptual knowledge) and that four empirical measures 
were available that could reasonably be supposed to be monotonic func­
tions of the respective variables. But in concept sequence studies, the 
picture is more muddied. Only two statements can be made with some 
confidence about measurement ofthe relevant variables. First, the proba­
bility of a correct response on a concept test is some monotonic function 
of conceptual knowledge, the false-positive error rate, and the false-nega­
tive error rate. Second, when two versions of a concept test that produce 
different levels of performance are administered, the conceptual knowl­
edge variable is presumably not affected because the subjects are the 
same in both cases. But it is not clear whether the false-positive variable, 
the false-negative variable, or both are affected. Unlike Example 1, there­
fore, measurements that are uniquely related to all the theoretical vari­
ables do not seem to be available, which makes the task of a measurement 
theory more difficult. 
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Example 3: Contributions of Storage and Retrieval Factors to 
Memory Development 

In the study of memory development, an interesting set of questions turns 
on whether the developmental improvements observed on most memory 
tasks are due to age changes in the ability to get information into memory 
and/or age changes in the ability to get information out again. The general 
issue of whether the development of storage processes or the develop­
ment of retrieval processes is more important to age changes in particular 
paradigms has often been raised (e.g., Emmerich & Ackerman, 1978). 
The question is also implicit in theoretical controversies associated with 
certain paradigms. For example, the current disagreement over capacity 
versus efficiency explanations of age changes in short-term memory span 
(e.g., Dempster, 1985) can be interpreted as a disagreement about the 
relative importance of storage development (capacity) versus retrieval 
development (efficiency). Similarly, the controversy over automatic ver­
sus strategic theories of the development of organization in semantic 
memory (e.g., Bjorklund, 1985) can be interpreted as a dispute over the 
relative importance of storage development (automatic organizational 
processes) and retrieval development (strategic organizational pro­
cesses). One need not, of course, agree with these interpretations of 
either controversy. They are merely illustrations. 

This same issue crops up in the study of age x treatment interactions on 
memory tasks. Normally, a task-difficulty manipulation that enhances or 
inhibits performance in some standard paradigm (e.g., free recall, paired­
associate learning) has the same qualitative effect at all age levels-that 
is, crossover age x treatment interactions are rather uncommon in mem­
ory development. However, a given manipulation's effects are often 
greater or less in adults than in children, which is to say that divergent and 
convergent age x treatment interactions are common. Prominent in­
stances of manipulations that show either divergent or convergent devel­
opmental interactions include serial position in serial learning (divergent), 
list organization in recall (divergent), cuing in categorized recall (conver­
gent), imposed elaboration in paired-associate learning (convergent), and 
concreteness in recall (divergent). One goal of any theory of memory 
development is to explain such interactions, and existing explanations 
vary in the emphasis placed on the development of mechanisms for repro­
ducing traces on test trials. 

In the literature, the standard device for weighing the relative influence 
of storage and retrieval factors in memory development has been to con­
duct experiments that incorporate manipulations designed to reduce the 
effects of one class of factors on certain aspects of the data. But because 
these manipulations are not informed by measurement-theoretic consider­
ations, particularly the monotonicity problem, they actually confound the 
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issue more than clarify it. I illustrate this claim with a brief discussion of 
two familiar procedures for separating storage and retrieval development, 
the study-test technique and the recognition-recall technique. 

The assumption that underlies the study-test technique seems sensible 
enough: On most list-learning tasks, subjects are administered a series of 
trials in which study cycles alternate with test cycles. By study cycles or 
study trials, I mean opportunities that subjects are given to study the 
individual list items. By test cycles or test trials, I mean opportunities that 
subjects are given to remember items after having studied them. Since 
subjects see the material only on study trials, it is assumed that storage 
difficulty is more important on study trials than on test trials. Or, con­
versely, because subjects must reproduce the material on test trials but do 
not see it, it is assumed that retrieval difficulty is more important on test 
trials than on study trials. Now, suppose some manipUlation is known to 
interact with age and that it can be independently varied on study and test 
trials in what is basically anA (type of trial: study vs. test) x B (treatment) 
x C (age) factorial design. Picture cues versus word cues in paired-associ­
ate learning are a simple example: The effect of this manipulation is 
known to increase with age, and the type of cue can be independently 
varied on the study and test trials of each cycle. 

The logic of the procedure says that because storage difficulty and 
retrieval difficulty are of differential significance on study and test trials, 
certain patterns of results can be interpreted as showing, first, that a 
manipulation's effects are primarily localized within storage or within 
retrieval and, second, that the age x treatment interaction is therefore a 
consequence of either storage development or retrieval development. For 
instance, suppose that the picture-word manipulation produced a main 
effect and the usual diverging age x treatment interaction. But suppose 
that there was also an age x treatment x type of test interaction such that 
age divergence in the picture-word effect is greater for study trials than 
test trials. This would probably be interpreted as a demonstration that 
the interaction of age with picture-word cuing is localized mainly within 
storage development. As another example, suppose that the results 
were the same, except that the age x treatment x type of test interac­
tion did not occur. This would probably lead to the conclusion that the 
age x cuing interaction is localized within both storage and retrieval 
development. 

Another procedure for separating storage development and retrieval 
development in list learning is the recognition-recall technique. This 
method relies on the (presumably) differential contributions of storage 
and retrieval difficulty to different tests of the same material. The underly­
ing logic is that if age x treatment interactions vary across testing proce­
dures to which storage difficulty and retrieval difficulty differ in impor­
tance, this is informative with respect to the contributions of storage and 
retrieval development to such interactions. This method could, in princi-
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pIe, be used with many testing procedures. However, it has almost always 
been used with recognition versus recall. This variation has been chosen 
because memory theorists normally regard recognition as being more 
under the control of storage factors than recall is (e.g., Estes & DaPolito, 
1967). Some theorists (e.g., Greeno, James, DaPolito, & Polson, 1978) 
have viewed recognition as a pure storage paradigm, although others 
maintain that such a strong assumption is inconsistent with findings such 
as recognition failure (e.g., Flexer & Tulving, 1978). In any event, there 
seems to be widespread consensus that storage difficulty contributes 
more to recognition performance than to recall performance. 

As with the first procedure, the logic of this method is that factorial 
experiments of the form A (recognition vs. recall) x B (treatment) x c 
(age) provide evidence about the relative contributions of storage devel­
opment and retrieval development. If we continue the picture-word illus­
tration, the type of cue could be manipulated over recognition tests versus 
recall tests rather than over study trials versus test trials. As before, 
certain patterns of main effects and interactions would be interpreted as 
localizing the usual interaction between age and cuing within either stor­
age or retrieval development. For example, suppose that the usual main 
effects for A, B, and C were observed, plus an A x B x C interaction such 
that the effects of the picture-word manipulation were always greater for 
older children, but this discrepancy was more pronounced with recogni­
tion tests than recall tests. The interpretation here would be that the cuing 
effect is storage based and the usual age x treatment interaction is primar­
ily a consequence of storage development. In contrast, suppose that the 
pattern of results were the same, except the picture-word manipulation 
always had larger effects for recall than for recognition, and this differ­
ence was greater with older children than with younger children. Now the 
interpretation would be that the cuing effect is retrieval-based and that the 
age x treatment interaction is due to retrieval factors. 

In the earlier example of research on the stage-learning hypothesis, I 
used numerical illustrations to highlight interpretative difficulties. Here, I 
resort to similar illustrations to demonstrate why, under monotonicity 
restrictions, paradigms such as the study-test technique and the recogni­
tion-recall technique do not provide unambiguous information about the 
comparative roles of storage and retrieval processes in memory develop­
ment. First, a minimum of three theoretical variables must be considered, 
namely, memory strength, storage difficulty, and retrieval difficulty. Let 
M, S, and R be the scales that denote these respective variables. 

On memory tasks, global memory strength is some joint function of 
global storage difficulty and global retrieval difficulty. The exact manner 
in which scale values of the last two variables combine to produce scale 
values of the first variable specifies a composition rule. As usual, this 
composition rule is unknown. Also about all we can claim is that it is 
monotonic-that is, larger values of S correspond to equal or larger val-



14 Charles J. Brainerd 

ues of M when R is invariant, and larger values of R correspond to equal 
or larger values of M when S is invariant. 

Let P be the probability of a correct response on some memory task. 
Under the monotonicity assumption, P is some order-preserving function 
of internal memory strength, which is to say 

P = fr(M) , (5) 

where fr is the function in question. However, we also know that memory 
strength is some monotonic function of storage and retrieval difficulty. 
This allows us to eliminate the concept of memory strength and express 
performance directly in terms of the storage and retrieval scales. The 
general form is 

P = fr[fc(S, R)], (6) 

wherefc is the composition rule that maps values on the memory-strength 
scale with values on the storage and retrieval scales and J,. is still the 
output transformation for memory strength. Under the monotonicity as­
sumption,fc andfr may be any order-preserving transformations whatso­
ever. 

To localize the effects of a manipulation within storage or retrieval, the 
methods that we have considered assume that storage difficulty and re­
trieval difficulty vary in their contributions to different aspects of the data 
(study trials vs. test trials or recognition tests vs. recall tests) and that this 
somehow implies that comparisons of these different aspects of the data 
provide differential evidence on storage and retrieval. However, the nu­
merical examples show that even if the theoretical assumptions of both 
methods are sound, this implication does not follow under monotonicity 
constraints. We have already considered a prototype A x B x C experi­
ment for each method. Recall that the first factor in the design is always 
the methodological variable (study trials vs. test trials or recognition tests 
vs. recall tests), the second factor is always a substantive treatment 
known to interact with age (e.g., picture cues vs. word cues), and the 
third factor is always age. It is clear from the illustrations that each 
method's ability to deliver storage-retrieval explanations of age x treat­
ment interactions depends on the validity of using results for the first two 
factors in the design to make inferences about the respective contribu­
tions of storage difficulty and retrieval difficulty. To simplify the numeri­
cal examples, therefore, I confine attention to the first two factors. 

The initial series of examples is for the study-test procedure. Recall that 
the key assumption is that storage difficulty contributes more to study 
trials than to test trials or, equivalently, that retrieval difficulty contrib­
utes more to test trials than to study trials. We now reconsider the earlier 
experiments in which picture cues versus word cues are manipulated 
factorially over study and test trials. The first step is to insert some scale 
values for the Sand R variables in this experiment (see Table 1.2). For the 
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TABLE 1.2 Some numerical examples from a hypothetical study-test 
experiment. 

Condition and scale values 

AIBI: S = 4 A2Bt : S = 16 A IB2 : S = 6 A2B2 : S = 16 
and R = 4 and R = 6 and R = 8 and R = 10 

fc: M = S + Rand 8 22 14 26 
1,: P = M 

fc: M = S + Rand 2.08 3.09 2.64 3.26 
1,: P = In M 

fc: M = In S + Rand 5.39 8.77 9.79 12.77 
1,: P = M 

Ie: M = In S + Rand 1.69 2.17 2.28 2.55 
j,: P = In M 

Note: ArBr = word/word, AzBr = picture/word, ArBz = word/picture, and A2Bz = picture/picture. 

four cells of the A x B matrix, suppose that the scale values are S = 4 and 
R = 4 for AIBI (word cues on study and test trials), S = 16 and R = 6 for 
A2BI (picture cues on study trials and word cues on test trials), S = 6 and 
R = 8 for AIB2 (word cues on study trials and picture cues on test trials), 
and S = 16 and R = 10 for A2B2 (picture cues on both study and test 
trials). These four sets of values satisfy the method's assumption that 
storage difficulty is more important on study trials than on test trials. 
When the cuing variable is manipulated over study trials, the increase in S 
values is greater than the increase in R values, with the average scale 
differences between conditions having different study cues but the same 
test cues being 11 for Sand 2 for R. When the cuing variable is manipu­
lated over test trials, the increase in R values is greater than the increase 
in S values, with the average scale differences between conditions having 
different study cues but the same test cues being 11 for Sand 2 for R. 
When the cuing variable is manipulated on test trials, the increase in R 
values is greater than the increase in S values, with the average scale 
differences between conditions having different test cues but the same 
study cues being 4 for Rand 1 for S. Also, according to the four pairs of 
scale values, the cuing effect is more a consequence of storage than of 
retrieval: The average difference in scale values between conditions is 
7.67 for Sand 3.33 for R. Under the logic of the study-test method, we 
should find that the cuing variable has larger effects on study trials than on 
test trials because study trials depend more on storage difficulty than on 
retrieval difficulty and so does cuing. 

Table 1.2 shows, however, that the results of an actual factorial experi­
ment will depend more on the nature of the composition rule than on the 
validity of the assumptions about storage and retrieval. As we have al­
ready seen, a very large class of functions is consistent with the constraint 
that the function mapping values of memory strength with values of stor­
age and retrieval difficulty must be order-preserving. Two such functions 
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have been used in the examples that appear in Table 1.2, namely, an 
additive rule (M = S + R) and a log-additive rule (M = In S + R). These 
two functions have been combined, for purposes of illustration, with an 
additive output transformation (P = M) and a logarithmic output transfor­
mation (P = In M). 

In Table 1.2, the composition rules and output transformations have 
been crossed with four pairs of scale values. In general, we see that the 
patterns of between-conditions results for the performance measure P 
mirror the relationships in the underlying scale values for storage and 
retrieval only when the compositive rule is additive. In the first two rows 
of Table 1.1, where the composition rule is always additive and the output 
transformation is either additive or logarithmic, the data are in the same 
direction as the scale values. In the first row, the average difference in P 
values is greater for comparisons where the cues are different on study 
trials but the same on test trials (!J.P = 13) than for comparisons where the 
cues are the same on study trials but different on test trials (!J.P = 5). In 
the second row, the difference in P values is in the same direction, with 
M = .82 for the former comparisons and M = .73 for the latter compari­
sons. In short, cuing affects study and test trials, and there is an interac­
tion such that the study-trial effect is larger. Given that storage difficulty 
is more important on study trials than on test trials (an assumption that is 
confirmed by the scale values), the conclusion would be that the cuing 
effect is more a matter of storage difficulty than of retrieval difficulty, 
which also happens to be the correct inference in this case. But if we now 
consider the last two rows in Table 1.2, the between-conditions pattern is 
reversed. In row 3, the average difference in P values is smaller for 
comparisons where the cues are different on study trials but the same on 
test trials (M = 3.18) than for comparisons where the cues are the same 
on study trials but different on test trials (!J.P = 4.20). In the fourth row, 
the P difference is .38 for the first type of comparison and .49 for the 
second type of comparison. Thus, there are again two main effects and an 
interaction, but this time the cuing effect for study trials is smaller than 
that for test trials. This result would presumably be interpreted as show­
ing that retrieval difficulty is more responsible for the effect than storage 
difficulty is, an inference that is wrong. 

The second series of examples is for the recognition-recall procedure. 
With this method, the key assumption is that storage difficulty contributes 
more to recognition performance than to recall performance. We return to 
the hypothetical experiment in which picture cues versus word cues are 
factorially combined with recognition tests and recall tests. Suppose that 
the scale values for storage and retrieval for the four cells of the experi­
ment are S = 4 and R = 8 for AIBI (word cues on both tests), S = 16 and R 
= 14 for A2BI (picture cues on recognition tests and word cues on recall 
tests), S = 12 and R = 14 for AIE2 (word cues on recognition tests and 
picture cues on recall tests), and S = 28 and R = 18 for A2B2 (picture cues 
on both tests). These scale values are consistent with the assumption that 
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storage difficulty is more important on recognition tests than on recall 
tests. The average R scale value is greater on recall tests than on recogni­
tion tests. The scale values, like those for the study-test illustration, are 
also consistent with the conclusion that storage difficulty contributes 
more to the cuing effect than retrieval difficulty does: The manipulation 
produces larger average differences in S scale values than in R scale 
values. 

The numbers in Table 1.3 illustrate that relationships between scale 
values for different conditions mayor may not be reflected in results for a 
factorial experiment. We saw in Table 1.2 that variations in the composi­
tion rule produce variations in apparent support for theoretical conclu­
sions, even though scale values are invariant. In Table 1.3, both the 
composition rule and the output transformation can have this effect. The 
two composition rules and output functions are the same as before. Only 
the scale values are different. 

The first row of Table 1.3, where both functions are linear, produces 
data consistent with the underlying state of affairs. There is a main effect 
for type of test (such that recognition is easier than recall), there is a main 
effect for cue (such that pictures are easier than words), and there is an 
interaction such that the cuing effect is greater on recognition tests than 
on recall tests. This pattern would, naturally, be interpreted as establish­
ing that cuing depends more on storage factors than on retrieval factors. 
But each of the remaining three rows produces the opposite interaction 
(i.e., cuing effects are greater on recall trials than on recognition trials), 
even though the scale values are consistent with theoretical hypotheses. 
Relative to row 1, the composition rule is invariant and the output func­
tion changes in row 2, the composition rule changes and the output func­
tion is invariant in row 3, and both functions change in row 4. 

To conclude, both methods discussed in this section make some other­
wise sensible assumptions about the relative influences of storage diffi­
culty and retrieval difficulty on different aspects of list-learning data. 

TABLE 1.3. Some numerical examples from a hypothetical recognition-recall 
experiment. 

Condition and scale values 

A IB I :S=4 A2B I : S = 16 A IB2 : S = 12 A2B2: S = 28 
and R = 8 and R = 14 and R = 14 and R = 18 

!c: M = S + Rand 12 30 26 46 
j,: P = M 

!c: M = S + Rand 2.49 3.40 3.26 3.83 
j,: P = In M 

Ie: M = In S + Rand 9.39 16.77 16.49 21.33 
j,: P = M 

!c: M = In S + Rand 2.24 2.82 2.80 3.06 
j,: P = In M 

Note: AIBI = word cues on both tests, A2BI = picture cues on recognition tests and word cues on recall 
tests, AIB2 = word cues on recognition tests and picture cues on recall tests, and A2B2 = picture cues on 
both tests. 
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However, elementary measurement considerations, especially the empiri­
cal consequences of monotonicity restrictions, indicate that these as­
sumptions do not lead to unambiguous conclusions about the memory loci 
of either treatment effects or developmental interactions. 

Some Objectives 

The principal aim of these examples was to illustrate that our historical 
tendency to ignore even the most basic measurement distinctions in cog­
nitive development research is perilous. In addition, however, these ex­
amples adumbrate some goals or motivations that we should bear in mind 
when attempting to develop measurement systems for cognitive develop­
ment research. In this section, I discuss four objectives that can be drawn 
from the examples, namely, the need to factor relevant theoretical vari­
ables, the need to obtain ratio-scale measurements of these variables, the 
need to validate particular formulations of theoretical variables, and the 
need to test psychological interpretations of theoretical variables. 

It is worth mentioning, before we proceed, that these objectives have 
not been casually or arbitrarily chosen from recondite questions of con­
cern only to measurement theorists. On the contrary, the issues of how to 
disentangle theoretical variables from each other, how to obtain ratio­
scale measurements of such variables, how to assess the validity of differ­
ent formulations of such variables, and how to pit different conceptualiza­
tions of theoretical variables against each other are, by consensus, 
fundamental to theory construction in psychology. In treatises on mea­
surement, these questions often serve as textbook instances of founda­
tional crises in psychology (e.g., Krantz & Tversky, 1971). Frankly, one 
motivation for the preceding examples is that they implicate these ques­
tions. 

Factoring Variables 

In Example 1 (concept learning), there were four theoretical processes of 
interest: stage, power of the training regimen, amount of learning, and 
posttraining conceptual knowledge. For each process, an empirical mea­
sure was available in the design of traditional concept-learning experi­
ments that could be assumed to be uniquely and monotonically related to 
that process. That is, there was a manipulable variable for each process 
such that changes in its observed values could be assumed to be a conse­
quence of changes in the target process, and not of changes in the other 
three. This general situation, where experimental variables exist that pre­
sumably are unique monotonic funtions of process variables, is the stan­
dard one that frameworks such as conjoint-measurement theory and func­
tional-measurement theory are designed to handle. Unfortunately, this is 
not a very common circumstance in cognitive development research. In-
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stead, a persistent difficulty is that our experimental variables are com­
plex functions of multiple process variables. 

The endemic nature of this problem is apparent from Examples 2 and 3. 
In Example 2 (concept sequence research), there were three theoretical 
processes of interest: children's concept knowledge, the false-positive 
error rate of a concept test, and the false-negative error rate of a concept 
test. There are two classes of experimental variables in the relevant stud­
ies. First, there are the concept tests, performance on which is assumed 
to be monotonically related to all three processes. Second, there are 
various task-difficulty treatments such as requiring children to give ex­
temporaneous explanations, presenting test items nonverbally, imposing 
visual illusions, and so forth. As long as all levels of such a treatment are 
administered to the same subjects, its effects are assumed to be monotoni­
cally related to the two error rates but not to concept knowledge. Review­
ers of this literature have concluded that no conceivable task-difficulty 
manipUlation can, in principle, be said to be uniquely controlled by one of 
the two error rates (Brainerd, 1977). As we saw, therefore, the changes in 
a child's concept-test performance observed as a consequence of impos­
ing a given manipUlation may occur because it changes the false-positive 
error rate or changes the false-negative error rate or changes both. This 
would be a less serious problem if such manipUlations normally left the 
order of difficulty of tests of different concepts invariant. We know, how­
ever, that they perturb these orderings. The result is a vast literature on 
developmental ordering that, it now seems, is a sea of ambiguity. 

In Example 3, the two theoretical variables of interest were storage 
difficulty and retrieval difficulty. Here, the picture was analogous to that 
for concept sequence research. On one hand, there are different types of 
memory variables and performance measures, such as study trials versus 
test trials and recognition tests versus recall tests. In the present state of 
our theoretical knowledge, storage and retrieval ostensibly contribute at 
different rates to these variables and tests. On the other hand, storage and 
retrieval both appear to be involved in all variables and tests. 

Two overriding goals of memory development research have been to 
decide whether the effects of particular treatments are more a conse­
quence of storage processes or of retrieval processes and to use this 
information to tease apart developmental interactions in these effects. As 
with concept sequence studies, we do not seem to possess memory mea­
sures that can legitimately be assumed to be unique monotonic functions 
of either category of processes. The situation is nominally better than 
with concept sequences because there is reason to suppose that certain 
measures are more directly controlled by storage than by retrieval and 
that certain other measures are more directly controlled by retrieval than 
by storage. Under monotonicity constraints, however, this advantage is 
not sufficient to avoid contradictory conclusions from experimentation. 
Therefore, the consequences-namely, an ambiguous literature on the 
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relative contributions of storage development and retrieval development 
to age x treatment interactions-are the same as in concept sequence 
research. 

Evidently, procedures are required for obtaining measurements that are 
uniquely controlled by cognitive development processes. Because there 
seem to be important areas of research where this cannot be done merely 
by introducing empirical variables into experimental designs, attempts to 
factor processes mathematically appear to be the most promising strat­
egy. In other words, frameworks that allow one to obtain independent 
measurements of theoretical processes from data in which these pro­
cesses are partly or completely confounded would be especially useful in 
cognitive development work. 

Ratio-Scale Measurement 

Assuming that appropriate factoring technologies can be devised, it would 
be desirable if the independent measurements of theoretical processes 
were something more than monotonically related to these processes. Al­
though systems such as conjoint-measurement theory and information 
integration theory have revealed a surprising amount of inferential power 
in monotonic information, they have also shown that there are clear limi­
tations. One can, it is true, draw precise conclusions about the algebraic 
relationships between process variables with such information, but it is 
not usually possible to make statements about the relative magnitudes of 
different process variables' effects on performance. 

As a rule, inferences of the latter sort have been of greatest concern to 
students of cognitive development. In the concept-learning example, for 
instance, the stage-learning hypothesis does not specify what amount of 
learning is determined exclusively by developmental stage, nor does it 
propose a particular algebraic relationship between the power of the train­
ing method and developmental stage. Instead, effectiveness of training is 
presumed to depend on stage; or, more simply, stage is said to make a 
larger contribution to learning than training does. Likewise, in the con­
cept sequence example, we need to know the relative magnitudes of the 
contributions of conceptual knowledge, false-positive error, and false­
negative error across many versions of a concept test before we can 
conclude that there is a robust sequence in knowledge of different con­
cepts. Again, information about how different versions are ordered with 
respect to the three variables would not be adequate for our purposes. 
Finally, in the storage-retrieval example, assigning memory loci to treat­
ment effects and the subsequent use of such interpretations to explain 
developmental interactions also require information about relative magni­
tude. In fact, with both the study-test procedure and the recognition­
recall procedure, it is possible to have information about the ordering of 
storage difficulty and retrieval difficulty in distinct features of the data and 
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still be unable to make unambiguous statements about the loci of treat­
ment effects. Something more powerful than monotonic information is 
agam necessary. 

In short, another very useful feature of measurement systems for cogni­
tive development would be to deliver estimates of theoretical processes 
that permit statements about relative magnitude. If such measurements 
were on at least a common interval scale, such statements would ulti­
mately be possible. But in specific applications to data, it would be neces­
sary to confront the bothersome technical problem of finding the zero 
point for all the relevant scales. Applications would, therefore, be much 
smoother if independent measures of processes could be made on a com­
mon ratio scale (see also Chechile & Richman, 1982). 

Validity 

If it is possible to obtain independent estimates of theoretical processes 
on common ratio scales, the next question is whether our characterization 
of these processes as controlling performance on particular tasks is actu­
ally correct. In the three examples, the process descriptions simply were 
assumed correct. Explicitly, it was assumed that the four variables of 
stage, training power, learning, and posttraining conceptual knowledge 
provided an accurate characterization of concept-learning experiments. 
Three processes (conceptual knowledge, false-positive error, and false­
negative error) were assumed to account for concept-test performance, 
and performance on memory tests was said to be adequately represented 
by two classes of processes, storage factors and retrieval factors. 

But how do we know that these characterizations are even remotely 
accurate? More particularly, two questions, one about parsimony and one 
about completeness, can normally be posed: How do we know that all the 
processes specified are actually involved? In the concept-learning illustra­
tion, for example, perhaps developmental stages do not exist and con­
cept-test performance on both pretests and posttests merely reflects dif­
ferent levels of the same knowledge scale (cf. Brainerd, 1978). If so, we 
can reduce the set of process variables that must be measured to training 
power, learning, and conceptual knowledge. Similarly, perhaps separate 
storage and retrieval processes do not exist and, instead, what we usually 
call storage factors and retrieval factors are indistinguishable components 
of a common memory-strength variable. Concerning completeness, how 
do we know that processes other than those specified are not also in­
volved? In the storage-retrieval illustration, for example, perhaps encod­
ing and decoding processes operate independently of whatever processes 
fix traces in storage and whatever processes find them on test trials. If so, 
the number of processes for which independent measurements must be 
sought is 4 rather than 2. 

In general, then, we would like to know whether our sets of theoretical 
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variables are either too rich or too impoverished for the data spaces. 
Conceptually, this is a question about goodness of fit, and consequently it 
suggests that goodness-of-fit machinery would be a useful component of 
measurement theories for cognitive development. 

Interpretation of Theoretical Variables 

Assuming that the first three objectives can be met, we are still left with 
the problem of making psychological interpretations of theoretical con­
structs such as developmental stage, concept learning, false-positive er­
ror, storage, and retrieval. Saying that certain processes are critical to 
certain types of data and confirming such statements with goodness-of-fit 
tests do not necessarily tell us anything about the nature of these pro­
cesses. Normally, there are a number of competing psychological inter­
pretations of any process. This is perhaps most apparent in Example 3. 
The current memory literature contains many physical metaphors for 
retrieval that stand as competing interpretations of how traces are located 
on performance tests. The metaphors include such things as conveyer 
belts, decision trees, junk boxes, and tuning forks. Similarly, concept 
learning in Example 1 can be interpreted as discrete shifts in the use of 
selected rules (e.g., Brainerd, 1979) or as the gradual accretion of skills 
such as attention (e.g., Gelman, 1969). In the same example, between­
subject differences in conceptual knowledge can be viewed as all-or-none 
differences in rule state or quantitative differences in component skills. 
(See Chapter 3, this volume, by Wilkinson and Haines for a related dis­
cussion.) 

Clearly it is important to gain leverage on contrasting interpretations of 
process variables. Differences between such interpretations can often be 
embodied in experimental manipulations of some sort. For example, if 
concept learning is more a matter of changes in rule usage than a matter of 
attentional shifts, rule instruction should affect concept learning more 
than attentional instruction, other things being equal. In other words, 
these manipulations should affect the power of the training procedure in 
predictable ways, though not necessarily some of the other processes. So 
we would like to be able to compare the relative effects of training meth­
ods that are inspired by different theories of concept learning on the 
training power variable. More generally, we would like to be able to 
compare the relative effects of manipUlations that embody different inter­
pretations of a given process variable on that particular variable indepen­
dently of the other variables being measured. 

Three Models 

I now summarize a concept-learning model, a concept sequence model, 
and a storage-retrieval model from the recent literature. In each case, the 
synopsis shows how it is possible both to address the specific problems 
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raised in the first section of this chapter and to satisfy some of the general 
objectives discussed in the preceding section with a single model. 

Two-Stage Model of Concept Learning 

Experiments of the type discussed in Example 1 have been principally 
concerned with the learning of Piagetian concepts such as conservation, 
class inclusion, proportionality, perspective taking, subjective morality, 
and so forth, especially conservation. A feature of overriding significance 
is that children's performance on tests of these concepts appears to be 
strongly rule-governed: Children's responses tend to be highly consistent 
rather than haphazard, a fact that serves as the basis for nonverbal rule 
assessment methodologies (e.g., Siegler & Vago, 1978). When asked to 
justify their responses, moreover, children normally state simple rules 
that are strongly correlated with these responses. In short, the evidence 
seems overwhelming that children retrieve simple rules on concept tests, 
although the specific rules and the manner of their application may be in 
doubt. (On this point, see also Chapter 3, this volume, by Wilkinson and 
Haines.) 

Although we may not know the precise rules guiding a child's perfor­
mance .. on any given occasion, it is possible to make an exhaustive, ab­
stract characterization of such rules in terms of the probabilities with 
which correct responses occur. We can say that any rule that a child 
might conceivably use on any concept test must fall into one and only one 
of the following sets: 

W = set of wrong rules, each of which produces errors on items of target 
test with probability 1 

V = set of valid rules, each of which produces correct responses on 
items of target test with probability 1 

P = set of partially valid rules, each of which produces correct re­
sponses on items of target test with some average probability 0 < P 
< 1 

Because every conceivable rule must be a member of exactly one of the 
sets, this classification system can be used with any concept test whatso­
ever without regard to the nature of the rules that are actually retrieved. 

I have noted elsewhere that the normative data on many Piagetian tests 
follow a pattern that can be explained by a simple rule-sampling interpre­
tation of children's concept learning (Brainerd, 1979, 1982). This theory 
can, in turn, be implemented as a Markov model. The normative pattern 
to which I refer is one in which performance on tests of concepts such as 
conservation, class inclusion, and the like seems to show a stereotyped, 
three-step sequence. During an early age range, which usually corre­
sponds to the preschool and early elementary school years with Piagetian 
concepts, children make errors more or less across the board. During an 
intermediate age range, which usually corresponds to the early-middle 
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elementary school years, children sometimes make correct responses. 
During a final age range, which usually corresponds to the late elementary 
school and adolescent years, errors rarely occur. The rule-sampling the­
ory being considered makes two primary assumptions: (1) Children in the 
early, intermediate, and final age ranges use predominately W, P, and V 
rules, respectively, and (2) the improvements in test performance that 
occur as a function of training consist of surrendering current rules and 
sampling new rules with a view toward securing rules that always produce 
correct responses. At the start of a learning experiment, a child may be in 
state W (using a wrong rule), state P (using a partially correct rule), or 
state V (using a valid rule) with respect to the items on the test. Children 
in such experiments normally are administered an extensive pretest bat­
tery, and only children who make at least some errors are retained for 
training. In terms of rule-state classification, the children in a concept­
learning experiment are always in either state Wor state P. For children 
who start in state W, test performance can be improved by sampling 
either rules from P or rules from V. For children who start in state P, 
however, performance can improve only if V rules are sampled. 

The notions that children occupy discrete rule states and that concept 
learning consists of moving from more error-prone states to less error­
prone states imply a particular three-state Markov model. The mathemati­
cal aspects of the model have been described elsewhere (Brainerd, 1979, 
1982; Wilkinson and Haines, Chapter 3, this volume) and need not con­
cern us here. The main feature of interest is that the model provides 
different parameters which measure the difficulty of learning in the sense 
of abandoning wrong rules and the difficulty of learning in the sense of 
abandoning partially valid rules. The specific learning parameters of inter­
est are 

a = on any trial, the probability that children who occupy state Wescape 
that state by sampling either a P rule or a V rule 

b = on any trial, where a child escapes state W, the probability that a V 
rule is sampled 

d = on any trial where a child occupies state P and makes an error on a 
test item, the probability that the child escapes state P by sampling a 
V rule 

It is now possible to conduct simple tests of the stage-learning hypothe­
sis by noting that children who currently occupy more error-prone states 
(W in the model) should be at lower stages of cognitive development, on 
the average, than children who occupy less error-prone states (P in the 
model). Consequently, one would expect that children who occupy state 
W should have more difficulty learning than children who occupy state P, 
a prediction that can be tested by comparing observed values of a to 
observed values of d. Procedures are available for estimating these pa­
rameters via the method of maximum likelihood (Brainerd, 1979, 1982; 
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Kingma, Chapter 2, this volume; Wilkinson and Haines, Chapter 3, this 
volume). Contrary to the stage-learning hypothesis, the difficulty oflearn­
ing for children who occupy state W is not generally greater than for 
children who occupy state P. In a series of experiments on conservation 
and classification (Brainerd, 1982), either the estimated values of a and d 
did not differ, or a was larger than d. Another surprising result from the 
standpoint of the stage-learning hypothesis is that the majority of children 
who start in state W learn by moving directly from W to V without ever 
entering P; the estimates of the parameter b ranged consistently from 0.6 
to 0.7. (Wilkinson and Haines report some similar data in Chapter 3.) 

In addition to delivering direct tests of the stage-learning hypothesis, 
the parameters of the rule-sampling model satisfy the four objectives 
mentioned in the preceding section. First, they manage to factor the perti­
nent process variables by providing separate estimates of the difficulty of 
concept learning for children who occupy less advanced and more ad­
vanced states at the start of an experiment. To test the stage-learning 
hypothesis, about all that is necessary is to conduct a learning experi­
ment, estimate the parameters a and d, and determine whether they differ 
reliably. Second, concerning ratio-scale measurement, because the three­
state Markov model gives a complete expression of concept-test perfor­
mance in terms of its parameters, the process variables that serve as 
interpretations of these parameters are measured on a common ratio scale 
(cf. Brainerd, 1982). In other words, variables such as the difficulty of 
learning a P rule and the difficulty of learning a V rule are measured on a 
common ratio scale. When the parameters have been estimated, there­
fore, statements such as "learning in state W was twice as difficult as in 
state P" and the like can be made. 

Third, the validity of the rule-sampling theory's interpretation of con­
cept learning can be tested. An extensive battery of goodness-of-fit tests 
is available that allows one to assess whether three-state Markov pro­
cesses give statistically tolerable accounts of learning data (Brainerd, 
Howe, & Desrochers, 1982; Brainerd, Howe, & Kingma, 1982). If the 
theory is correct in describing learning as progress through three, discrete 
states, then the correspondence between the model and fine-grain statis­
tics of learning data should be virtually exact, a result that has usually 
been obtained (Brainerd, 1979, 1982). Fourth, the model also permits 
advances in our theoretical understanding of children's concept learning. 
As we have seen, parameters are in hand that measure the difficulty of 
learning in different rule states, and learning has been tentatively inter­
preted as a rule-sampling process. However, other interpretations are 
possible, some of which were mentioned earlier. It is quite feasible to pit 
such interpretations against each other by manipulating treatments that 
embody these ideas in experiments and determining how the learning 
parameters of different states react. An illustrative research program has 
been reported by Wilkinson (1982b; Chapter 3, this volume). In his experi-
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ments, Wilkinson has contrasted the simple rule-sampling view described 
here with another interpretation in which concept learning involves both 
sampling rules and assembling them into more complex solution proce­
dures. 

A Model of Measurement Error in Mental Arithmetic 

In Example 2, the underlying dilemma of concept sequence research is 
that it is not possible to distinguish conceptual knowledge from false­
positive and false-negative reasoning errors. When children perform bet­
ter on tests of one concept than on tests of another concept, therefore, it 
is not possible to tell whether this is due to a developmental sequence in 
knowledge of the concepts or to differences in the intrinsic error rates for 
the two types of tests. Apparently a model is needed that provides sepa­
rate estimates of the probability that children have the target concept, that 
they will make false-positive errors, and that they will make false-nega­
tive errors. As yet, a satisfactory framework that encompasses the full 
range of traditional concept sequence studies has not been developed. 
However, progress has been made lately in connection with sequences in 
basic number concepts (Brainerd 1983b; Wilkinson, 1982a, 1982b; Wilkin­
son & Haines, Chapter 3, this volume). Here, I describe a procedure that 
permits the detection of sequences in two such concepts (addition and 
subtraction) independently of the inherent error rates of the relevant 
tests. 

When children are administered arithmetic word problems, a common 
finding is that addition problems are solved before subtraction problems 
of equivalent logical complexity. For example, items of the form "5 + 3 = 

?" and "7 + 2 = ?" are normally solved before the logically equivalent 
items" 5 - 3 = ?" and "7 - 2 = ?". Cognitively, performance on such 
simple problems might break down in two general ways, namely, process­
ing failure and short-term memory failure. Concerning processing, chil­
dren might not have addition and/or subtraction operations available in 
their long-term knowledge stores. Concerning short-term memory, chil­
dren might not be able to encode some of the relevant information in a 
word problem, or they might not be able to store the information long 
enough to execute the necessary processing operations. If children are 
constrained to give a response on every item, they presumably guess or 
select a numeral on the basis of irrelevant contextual factors whenever 
processing or short-term memory fails. 

In this situation, we wish to determine whether the usual sequence in 
addition and subtraction performance is due to a sequence in the process­
ing operations or to noise factors, such as guessing and short-term mem­
ory. An elementary model is available that is defined over a modified 
mental arithmethic paradigm in which addition and subtraction items are 
occasionally followed by short-term memory probes for the problem in-



1. Structural Measurement Theory and Cognitive Development 27 

formation. Consider an addition item of the form "m + n = ?" that is 
followed by a recall probe requiring the child to restate the problem. Let 
p(AM), p(AM), p(AM), and p(AM) be, respectively, the probability that 
both the addition and probe responses are correct, the probability that the 
addition response is wrong and the probe response is correct, the proba­
bility that the addition response is correct and the probe response is 
wrong, and the probability that both responses are wrong. Also, let P A be 
the probability that the child possesses the necessary addition operations, 
SA the probability that the child correctly encodes that problem informa­
tion into short-term memory and retains it until processing is completed, 
and g the probability that the child guesses the correct number on addition 
items when processing or short-term memory fails and on probe items 
when short-term memory fails. The first four probabilities, all of which 
correspond to observable data events, can now be expressed in terms of 
the latter three probabilities, all of which are theoretical constructions. 

First, correct responses might occur on both the addition and probe 
items in three general ways: (1) Short-term memory and processing might 
both function correctly (with probability P A SA); (2) short-term memory 
might function correctly (with probability SA), which produces a correct 
response on the probes, but processing might fail on the addition item and 
be accompanied by a correct guess [with probability (1 - PA)gA]; and (3) 
short-term memory might fail, and the subject might guess correctly on 
both items [with probability (1 - SA)gH Hence, p(AM) can be expressed 
as 

p(AM) = PASA + (1 - PA)SAgA + (1 - SA)g~. (7) 

Second, an error might occur on the addition item and be accompanied 
by a correct probe response in the following ways: (1) Short-term memory 
might function correctly (with probability SA), which produces a correct 
probe response, but processing might fail and be accompanied by an 
incorrect guess on the addition item [with probability (1 - P A)(1 - gA)]; 
and (2) short-term memory might fail and be accompanied by correct and 
incorrect guesses on the probe and addition items, respectively [with 
probability (1 - SA)gA(1 - gA)]. The expression for p (AM) , then, is 

p(AM) = (1 - PA)SA (1 - gA) + (1 - SA)gA (1 - gA). (8) 

Third, a correct addition response might be followed by an incorrect 
probe response in just one way, namely, short-term memory fails (with 
probability (1 - SA) and the child guesses correctly on the addition item 
and incorrectly on the probe [with probability (1 - gA)gA]. This gives the 
following expression for p(AM): 

(9) 

Last, an error might occur on both items injust one way, namely, short­
term memory fails (with probability 1 - SA) and the child guesses incor-
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rectly on both items [with probability (1 - gA)2]. The expression for 
p(AM), then, is 

(10) 

Turning to subtraction, let p(SM), p(SM), p(SM), and p(SM) be, respec­
tively, the probability of a correct subtraction response followed by a 
correct probe response, the probability of an incorrect subtraction re­
sponse followed by a correct probe response, the probability of a correct 
subtraction response followed by an incorrect probe response, and the 
probability of errors on both the subtraction and probe items. Obviously, 
these probabilities, like those for addition problems, can be expressed in 
terms of the theoretical events of processing failure, short-term memory 
failure, and guessing. Let Ps, Ss, and gs be the probabilities of these 
respective events for subtraction items followed by a probe for the prob­
lem information. The parallel equations for subtraction are 

p(SM) = PsSs + (1 - Ps)Ssgs + (1 - Ss)g~, (11) 

p(SM) = (1 - Ps)Ss (1 - gs) + (1 - Ss)gs (1 - gs), (12) 

p(5M) = (1 - Ss)gs (1 - gs), (13) 

p(SM) = (1 - 5s) (1 - gs)2. (14) 

The method of maximum likelihood can be used to estimate the three 
parameters for addition in experiments where addition problems are fol­
lowed by short-term memory probes (Brainerd, 1983b, appendix). The 
same procedures can be used to estimate the three parameters for sub­
traction in experiments where subtraction problems are followed by 
short-term memory probes. To decide whether there is a developmental 
sequence in children's knowledge of addition and subtraction, it is only 
necessary to conduct studies in which both types of probed arithmetic 
problems are administered, estimate the three parameters separately for 
addition and subtraction, and then determine whether performance differ­
ences are due to differences in the processing parameter P or to differ­
ences in the two noise parameters Sand g. I have previously reported 
four experiments of this sort (Brainerd, 1983b). In the first two experi­
ments, probed addition items (experiment 1) or probed subtraction items 
(experiment 2) were administered to mixed samples of preschool and 
kindergarten children. In experiment 1, the average values of the three 
parameters were P A = .68, SA = .40, and gA = .14. In experiment 2, the 
average values of the three parameters were Ps = .46, Ss = .40 and gs = 
.13. It appeared, therefore, that sequence in addition versus subtraction 
knowledge was independent of noise factors. Similar findings were ob­
tained in two follow-up studies. In experiment 3, probed addition items 
were administered to both preschool and kindergarten children and first­
grade children. In experiment 4, probed subtraction items were adminis-
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tered to children from the same grades. The average values of the three 
parameters in the addition experiment were P A = .67 (younger children) 
and PA = .72 (older children), SA = .40 (younger children) and SA = .60 
(older children), and gA = .18 (younger children) and gA = .30 (older 
children). The corresponding values in the subtraction experiment were 
Ps = .44 (younger children) and Ps = .56 (older children), Ss = .41 
(younger children) and Ss = .64 (older children), and gs = .08 (younger 
children) and gs = .26 (older children). In these latter experiments, the 
processing parameter differed reliably at both age levels, although the 
difference for the younger children (.23) was somewhat greater than the 
difference for the older children (.16). 

These data illustrate that by using fairly simple stochastic models one 
can measure children's underlying knowledge of target concepts indepen­
dently of potential sources of measurement error. Further illustrations 
can be found in Wilkinson's (1982a, 1982b, Chapter 3 in this volume) 
models of partial knowledge. All these models are confined to elementary 
numerical reasoning paradigms, where the major sources of false-positive 
and false-negative errors are rather obvious. Nevertheless, concept se­
quence data from these models represent a considerable advance over the 
types of studies discussed in Example 2. Moreover, there is reason to 
suppose that the basic strategy of segregating performance into parame­
ters that measure conceptual knowledge and parameters that measure 
error sources can be extended to more complex tasks where these error 
sources are not self-evident. 

Models such as these also provide leverage on the four measurement 
objectives. First, in Equations 7 to 10 and in Equations 11 to 14, the 
present model slices up performance on mental arithmetic items in such a 
way that conceptual knowledge and measurement error can be assessed 
independently of each other. Second, because performance on probed 
arithmetic items is completely expressed in terms of the probabilities of 
events such as processing failure, short-term memory failure, and guess­
ing, the latter events are being measured on a single ratio scale. This, in 
turn, allows for relative-magnitude statements about the respective prob­
abilities of these events. Third, because the parameters are estimated via 
the method of maximum likelihood, familiar likelihood ratio tests of good­
ness of fit can be used to assess the model's validity. Mathematically, the 
expressions in Equations 7 to 10 (as well as those in Equations 11 to 14) 
constrain the four observable probabilities in specific ways. One con­
straint is easy to see by manipUlating Equations 8 and 9. p(AM) must 
always be larger than p(AM). If these constraints are violated, the model 
is invalid. 

Fourth, the theoretical interpretations of the three parameters­
namely, that P measures processing accuracy, S measures short-term 
memory accuracy, and g measures guessing accuracy-can all be tested 
by studying the effects of manipulations that should, under the stated 
interpretations, selectively affect certain parameters. For example, sup-
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pose that identical probed arithmetic items involving the same numbers 
were administered, except that some were addition items (for example, 
5 + 3 = ?) and some were subtraction items (for example,S - 3 = ?). 
Because the problems are identical except for the processing operation 
required, one would expect, if the interpretations of the parameters are 
sound, that only P should be affected by such a manipulation. Clearly, 
from the data reported above, such a result has already been obtained. In 
contrast, suppose that identical probed addition (or subtraction) items are 
administered except that some problems are stated in more difficult lan­
guage than others. (For example, stating a problem in ordinal terminology 
is usually easier for children to comprehend than stating it in cardinal 
terminology.) Since the language in which a problem is posed is a pure 
encoding manipulation, one would anticipate, under the model's interpre­
tations, that the processing parameter would not be affected but the short­
term memory parameter would be. Data consistent with this expectation 
have been reported (Brainerd, 1983b). 

Two-Stage Model of Storage-Retrieval Development 

We saw in Example 3 that a number of theoretical questions about mem­
ory development turn out to be questions about changes in the ability to 
get information into memory versus changes in the ability to get informa­
tion out again. In some instances, these questions are focused on a spe­
cific memory paradigm (e.g., free recall). In other cases, the questions 
are in the nature of general theoretical controversies, such as current 
disagreements over capacity versus efficiency explanations of short-term 
memory development and automatic versus strategic explanations of or­
ganizational development. As in concept sequence research, the fact that 
independent measurements of storage and retrieval development are not 
made has contributed to confusing and inconsistent literatures on such 
questions. 

During the past few years, an especially rich and varied array of models 
has been implemented to deal with this problem. These models make it 
possible to study the comparative rates of storage and retrieval develop­
ment, plus the development of other theoretical variables, quite indepen­
dently of each other. Different models are defined over different families 
of memory tasks, which allows for truly convergent research on storage­
retrieval development. For example, Chechile and his associates (Che­
chile & Meyer, 1976; Chechile & Richman, 1982; Chechile, Richman, 
Topinka, & Ehrensbeck, 1981) have proposed a model whose parameters 
provide independent estimates of storage and retrieval development in 
short-term memory. The model is defined over a modified version of the 
familiar Brown-Peterson distractor task in which recognition tests are 
intermingled with the normal recall tests (see Chechile & Meyer, 1976). 
However, Wilkinson and his associates (Wilkinson, DeMarinis, & Riley, 
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1983; Wilkinson & Koestler, 1983, 1984) have developed a model whose 
parameters provide independent estimates of storage and retrieval devel­
opment in long-term memory. This model, naturally, is defined over dif­
ferent tasks than Chechile's model, namely, Buschke-type repeated recall 
procedures. A separate review of these models, together with other tech­
niques for measuring storage-retrieval development, is available 
(Brainerd, 1985). 

Of extant techniques, three-state Markov models of storage-retrieval 
development have been by far the most commonly employed procedures. 
They have been used to study the respective contributions of storage and 
retrieval development in such varied contexts as memory deficits in the 
aged (Howe & Hunter, in press), age changes in semantic organization 
(Howe, Brainerd, & Kingma, 1985) age changes in the effects of response 
knowledge on associative memory (Bisanz, Voss, & Vesonder, 1978), 
memory deficits in learning-disabled children (Brainerd, Howe, & 
Kingma, in press, a; Howe, Brainerd, & Kingma, in press), age changes 
in the effects of concreteness on associative memory (Brainerd & Howe, 
1982), age changes in the rate of forgetting from long-term memory 
(Brainerd, Kingma, & Howe, in press b), and age changes in recall 
(Brainerd, Howe, Kingma, & Brainerd, 1974). These models, which are 
extensively discussed in Chapter 2, this volume, by Kingma, have the 
advantage, relative to other models, of being applicable to a broad range 
of memory paradigms. In particular, they can be used with any of the 
standard list learning paradigms as long as the response measure is some 
sort of recall (e.g., cued recall, free recall, paired-associate learning, se­
rial learning). A pedagogically instructive point is that the underlying 
mathematical model is the same as the three-state model of concept learn­
ing considered earlier in this chapter and in Chapter 3, this volume, by 
Wilkinson and Haines. 

The logic behind the model is fairly straightforward. When children 
memorize a supraspan list under standard recall conditions, the protocols 
of individual items show a stereotyped pattern of errors and successes: 
An initial series of one or more trials on which only errors occur is 
followed by a series of trials on which recall is sometimes successful and 
sometimes unsuccessful, and this is followed by a final series of trials 
(criterion run) on which recall is always successful. (The complete pattern 
is observed only when performance is driven to a stringent criterion.) 
Conceptually, this pattern is interpreted as follows. Because the guessing 
probability is effectively zero on recall tasks, it is assumed that a correct 
recall is not possible until a permanent trace of an item has been deposited 
in long-term memory. Because permanent storage does not mean that 
retrieval will be infallible on test trials, some further learning may be 
necessary before a retrieval algorithm is acquired. The states of the model 
are then defined as follows. First, there is an unstored state U in which 
only errors are observed because a trace has not yet been fixed in long-
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term memory. Second, there is a stored state S in which a trace has been 
deposited but a retrieval algorithm is not yet available. During state S, the 
probability of successful recall is some value 0 < P < 1. Third, there is a 
retrievable state R in which a retrieval algorithm is available for the trace. 

As I mentioned, these assumptions imply the same three-state model as 
the one discussed in connection with concept learning. Not surprisingly, 
the same parameters are used to measure storage and retrieval develop­
ment on recall tasks. In particular, parameters a, b, and d are redefined as 
follows: 

a = on any trial, the probability that an item escapes initial state U by 
having a trace stored in long-term memory 

b = on any trial where a trace is stored, the probability that a retrieval 
algorithm is already available for the trace, so the item can proceed 
immediately to state R without entering state S 

d = on any trial where an item is already in state S (i.e., a trace was stored 
on some earlier trial but a retrieval algorithm was not yet available) and 
an unsuccessful recall occurs, the probability that a retrieval algorithm 
is learned and the item enters state R 

Another parameter concerned with retrieval is added to these models: 

c = on any trial where an item is already in state S and a successful recall 
occurs, the probability that a retrieval algorithm is learned and the item 
enters state R 

In specific research applications, then, one merely estimates parame­
ters such as these from recall protocols and evaluates the respective 
contributions of storage and retrieval development to the data. Such ex­
periments evidently satisfy the first objective of measurement theories of 
cognitive development because they factor the effects of the pertinent 
theoretical processes on the target data: If storage development contrib­
utes more to a certain age effect than retrieval development does, the a 
parameter ought to show more age change than the other parameters do; 
but the reverse should be true if retrieval development contributes more 
to the effect. The most vigorous applications of this factoring strategy 
have been to age x treatment interactions-that is, to manipulations 
whose effects on list learning tend to increase or decrease with age (e.g., 
category cuing, concreteness, degree of list organization, elaboration). In 
most instances, such interactions appear to be either mainly storage ef­
fects or mainly retrieval effects. For example, Howe and I found that the 
divergent age x treatment interaction in the effects of concreteness was 
primarily the result of storage development during the early childhood 
years but primarily the result of retrieval development later on (Brainerd 
& Howe, 1982). Other investigators have reported age x treatment inter­
actions in the effects of factors such as learning disability (Brainerd, 
Howe, and Kingma, in press, b) and cuing that are consistently due to 
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retrieval development (Howe et al., in press). Finally, age x treatment 
interactions in certain variables can be chiefly storage-based with some 
tasks and chiefly retrieval-based with other tasks. The familiar divergent 
interaction for degree of list organization, for instance, has been found to 
be due to retrieval development on free-recall tasks (Howe, et aI., 1985) 
and to storage development on paired-associate tasks (Brainerd et aI., in 
press, b). 

Three-state models of storage-retrieval development also meet the sec­
ond measurement objective by providing ratio-scale measurements of 
storage and retrieval development. The reason is the same as for the 
concept-learning and concept sequence models, namely, the model gives 
a complete specification of performance on the target task (recall para­
digms) in terms of its parameters. Hence, conclusions about the relative 
impact of storage and retrieval development on age changes in memory 
performance have become routine features of experiments in which these 
models, and other storage-retrieval models, have been used (for a review, 
see Brainerd, 1985). 

Concerning the third measurement objective, well-developed proce­
dures exist for estimating the model's parameters via the method of maxi­
mum likelihood by using either data from criterion experiments or data 
from fixed-trials experiments (Brainerd, in press). As for the concept­
learning and concept sequence models, therefore, a likelihood ratio tech­
nology is also available for assessing the model's fit to data, which is to 
say that the validity of its assumptions about list-learning data are subject 
to precise tests. In most developmental studies conducted so far, the 
model's predictions about fine-grain features of data have agreed closely 
with observation (for a review, see Brainerd, 1983a). 

The final measurement objective, that of interpreting theoretical vari­
ables, is especially well met by this model. If escape from the initial, pure 
error state is synonymous with depositing a permanent trace, then manip­
ulations that affect the difficulty of getting information into memory 
should affect parameters such as a without affecting parameters such as 
b, c, and d. If escape from the intermediate, mixed error-success state is 
synonymous with learning how to retrieve a trace, then manipulations 
that affect the difficulty of getting information out of memory should 
affect parameters such as b, c, and d without affecting parameters such as 
a. There is a reasonably extensive literature with both adults and children 
that tends to agree with the predictions. Insofar as storage is concerned, 
visual discriminability of list items appears to be a pure storage-difficulty 
treatment: Items that are harder to differentiate visually but are otherwise 
(e.g., orally or conceptually) quite distinctive should make it more diffi­
cult to encode a unique trace of each item but should not make it more 
difficult to find traces once they are stored. In line with this prediction, 
Humphreys and Greeno (1970) found that visually confusable consonant 
trigrams decreased the value of parameter a but left the values of parame-
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ters h, c, and d invariant. Turning to retrieval, we see that category cuing 
would seem to be a pure retrieval-difficulty manipulation: Since cuing the 
category to which a word belongs cannot help one retrieve a trace that has 
not yet been stored, this manipulation should affect retrieval difficulty 
without affecting storage difficulty. Howe et al. (1985) have reported sup­
portive results. 

Concluding Remarks 

We have traditionally paid very little attention to measurement issues, in 
particular the monotonicity problem, in research on memory and cogni­
tive development. An inevitable consequence has been the accumulation 
of a large research literature in which there are fundamental disagree­
ments about the reality of certain findings and their theoretical interpret­
ability. The bodies of literature concerned with stage-learning effects in 
children's concept learning, the sequence of acquisition of various con­
cepts, and the relative contributions of storage and retrieval processes to 
memory development are all prominent illustrations. 

Recent research, however, provides some grounds for believing that 
this situation may be changing. Mathematical models developed by a 
number of investigators allow researchers to deal with some important 
measurement issues. Examples include models that factor the relative 
contributions of different theoretical variables to performance data, 
models whose parameters deliver ratio-scale measurements of interesting 
theoretical processes, models that permit validity tests of their assump­
tions, and models that allow one to pit different theoretical interpretations 
of psychological processes against each other in experimentation. Models 
that accomplish some of or all these objectives are now available for 
concept learning, concept sequentiality, and storage-retrieval develop­
ment. The data base on the latter model is particularly extensive. 

In short, we have progressed in a few short years from a state in which 
fundamental measurement distinctions were almost entirely ignored to a 
state in which some fairly powerful techniques for implementing some of 
these distinctions in specific research contexts have been reported. Logi­
cally, the next step is to formulate general measurement frameworks that 
focus on uniquely developmental measurement problems. It remains to be 
seen, of course, whether this step will be taken. 
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2. The New Two-Stage Model of Learning: 
A Tool for Analyzing the Loci of Memory 

Differences in Intellectually Impaired Children 

Johannes Kingma 

In modern cognitive theories, memorizing has been conceptualized as a 
process of storing information and remembering as a process of retrieving 
information. These memory processes have commonly been studied in 
standard list-learning paradigm tasks such as free recall, paired-associate 
learning, cued recall, serial learning, and recognition memory. When sev­
eral seconds of distracting activity are inserted between consecutive 
study and test trials, these tasks can be considered to be long-term mem­
ory tasks (Brainerd, in press). Since the early 1950s, the simple mathe­
matical concept of finite Markov chains has been used to account for the 
data of adults in these long-term memory tasks (Estes, 1962; Feller, 1950; 
Kemeny & Snell, 1960). Many fruitful hypotheses about the mechanisms 
of memory in adults have been generated by using these finite Markov 
chains (Greeno, 1970, 1974; Greeno, James, DaPolito, & Polson, 1978; 
Levine & Burke, 1972; Norman, 1972). 

Before the early 1980s, however, developmental psychologists were 
rather disinterested in mathematical modeling techniques (Brainerd, 
1982b). In contrast, mathematical psychologists provided some classic 
studies with children (e.g., Atkinson & Crothers, 1964; Spiker, 1970; 
Suppes & Ginsburg, 1962), but these studies were mostly ignored by 
developmental psychologists. It seems that the zeitgeist is changing, be­
cause serious mathematical modeling is becoming more important in de­
velopmental psychology (Bisanz, Vesonder, & Voss, 1978; Brainerd, 
1979, 1982a; Heth & Cornell, 1983; Wilkinson & Koestler, 1983, 1984). 

Finite Markov models are so fruitful for analysis of list-learning data in 
developmental studies because age-level effects can be tested and ex­
plained in a refined way. For example, complex learning can be repre­
sented as a collection of elementary processes (storage, retrieval, etc.), 
and the roles of these processes in a learning task can be distinguished 
(see Greeno, 1974). 

Markov models are also very useful for analyzing the loci of memory 
differences in normal achieving children and learning-disabled children. 
For example, some aspects of retrieval learning have been found to be 
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responsible for the poorer performance of learning-disabled children on 
these tasks (Brainerd, Kingma, & Howe, in press, b; Howe, Brainerd, & 
Kingma, in press, b). However, as far as we know, information about the 
loci of memory differences between atypical subjects (e.g., learning-dis­
abled and educable mentally retarded children) is scarce in the literature. 

My principal goal is to illustrate how Markov models can be used to 
study the development of memory processes in atypical children. In the 
following section I describe the use of mathematical models in general, 
and Markov models in particular, in the analysis of data from list-learning 
tasks. Then I review some existing research on memory processes in 
intellectually impaired children and describe an experiment in which Mar­
kov models are used to clarify the loci of memory difficulties in learning­
disabled children and mentally retarded children. Assumptions and ana­
lytic procedures are described in some detail to illustrate the process by 
which mathematical models can be used, applied, and evaluated. 

Mathematical Models 

General Characteristics 

According to Torgeson (1958), "The principle objective of science, other 
than the description of empirical phenomena, is to establish, through laws 
and theories, general principles by means of which the empirical phenom­
ena can be explained, or accounted for." Mathematical models serve as 
mediators between theory and empirical data. A mathematical model is a 
translation of some theoretical (verbal) constructs into mathematical ex­
pressions, and it is connected to the data by means of measurement. 
Measurement is usually defined as the assignment of numbers to the 
quantities of properties of objects in accordance with certain rules 
(Bohrnstedt, 1982; Torgeson, 1958). Such quantification is necessary for 
determining whether a mathematical model hence the translated theoreti­
cal constructs fit the data (Stevens, 1951). In contrast to verbal models, 
mathematical models have the advantage that relations between the ele­
ments in their expressions are well defined. A discussion about the rela­
tionship between mathematical model and theory lies outside the scope of 
this chapter (for a discussion, see Blalock, 1982; Bohrnstedt, 1982; Ka­
plan, 1973; Nagel, 1961). In the next section, I describe some issues and 
procedures that pertain to the use of mathematical models generally, 
including how a model is "tied" to the data and how it is tested. 

TYING THE MODEL TO THE DATA 

Suppose a model builder wants to explain a person's behavior in a list­
learning task. According to a particular verbal theory, learning can be 
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explained in terms of two long-term memory processes, storage and re­
trieval. A specific model must be described in which some elements (stor­
age and retrieval) are related, manifesting the structure of the model. In 
mathematical models, these relations are described in mathematical ex­
pressions. If a model describes changes in the state of the subject, it is 
often profitable to express this in the language of probability theory. The 
mathematical expressions of the model contain different parameters for 
estimating the probability of the occurrence of some process in the learn­
ing task. They specify the process underlying the joint distribution of a set 
of observable variables. 

The process of building and testing models is illustrated in Figure 2.1. 
The first step is to formulate the relation into mathematical expressions. 
When one is starting to build a new model, it is sometimes convenient to 
make simple and complex versions, or exemplars (see Brainerd, Howe, 
and Kingma, 1982). This approach has the advantage that the two models 
may be tested against each other to determine which is more satisfactory. 
Of course, a model is sometimes presented only in the less complex form. 
In such a case, Figure 2.1 may be read as a path for one model in which 
the necessity test (see below) is deleted. 

As an example, Brainerd, Howe, and Kingma (1982a) used two models 
for explaining the processes of storage and retrieval in a list-learning task. 
The simple version was a one-stage Markov model, and the complex 
version was a two-stage Markov model. The mathematical expressions of 
these models contain 6 and 11 parameters, respectively, for estimating the 
probability of some process (storage and retrieval) in a list-learning task. 

The first two steps in model building are formulating the relationships 
between the theoretical psychological processes and putting these rela­
tionships into mathematical expressions (see Figure 2.1). Next, a proof is 
performed to analyze whether the mathematical model is identifiable. The 
logic-of-identifiability proof runs as follows. A model contains a number 
of parameters that measure theoretical processes. The outcome space 
contains a number of observable variables as measured in the experiment. 
In the identifiability proof, the theoretical parameters (unknowns) are 
algebraically expressed in terms of the observable variables (knowns). 
The model is called identifiable when it is shown that each of the theoreti­
cal parameters can be independently expressed in observable variables. If 
the model is identifiable, then we are able to estimate the parameters 
because the system of expressions with knowns and unknowns is solv­
able. If a model is nonidentifiable, then we are unable to estimate the 
parameters because the system cannot be solved. Unless some alterations 
are made, a nonidentifiable model is not suitable for estimating the param­
eters from the data of a particular experiment for which it was designed. 

FIGURE 2.1. A schematic representation of the way in which a model may be tied I> 
to the data. 
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To check whether a model is identifiable, a general counting rule is easy 
to apply (Duncan, 1975). Count the number of theoretical parameters T. 
Then count the number of observable variables O. A necessary condition 
for identification is that 0 2:: T. This counting rule is, of course, only a rule 
of thumb. Necessary and sufficient conditions for identifiability are ob­
tained when identification proof, such as the one proposed by Greeno 
(1967, 1968; Greeno & Steiner, 1964), shows that unique estimators can 
be delivered for each of the parameters. A variety of techniques are 
available for testing identifiability, including ordinary algebra proofs 
(Brainerd, Howe, & Desrochers, 1982), proofs using matrix algorithms 
(Greeno, Millward, and Merryman, 1971) and computer search programs 
(Polson & Huizinga, 1974). 

When the number of observable variables in the data is smaller than the 
number of theoretical parameters, that is, 0 < T, the model is nonidenti­
flable (Brainerd, Howe, & Desrochers 1982; Restle & Greeno, 1970; 
Wilkinson, 1982) and the model is improper for the proposed experiment. 
Conceptually, such a model requires more degrees of freedom than exist 
in the data. There are basically three methods of dealing with a nonidenti­
fiable model (Brainerd, Howe, & Kingma, 1982). One procedure is to 
simplify the model. However, such a strategy is often not desirable, espe­
cially when the model contains a very small number (for example, 2 or 3) 
of theoretically important parameters (see Brainerd, 1985). Simplifying 
such a model may reduce the explanatory power of the model. When the 
model contains a larger number (for example, 10) of theoretical parame­
ters, the simplification rule may be a reasonable way to make the model 
identifiable. 

A second approach to making a nonidentifiable model identifiable is to 
introduce testable restrictions on some parameters. A nonidentifiable pa­
rameter may be given a certain value between 0 and 1, or some parame­
ters may be equated. In general, a testable identifying restriction is a 
constraint on the freedom of the parameters to vary. The model becomes 
identifiable when the introduction of one or more constraints delivers a 
unique expression for each theoretical parameter in terms of identifiable 
parameters (Brainerd, Howe, & Kingma, 1982). Suppose a model con­
tains 10 parameters: a', b' , a, b, c, d, e, g, h, and r. Suppose further that 
nine parameters can be shown to be identifiable. One may equate, for 
example, g = h, or c = 0 to make the model identifiable. These testable 
restrictions should make sense theoretically. Several of these restrictions 
can be evaluated statistically by using likelihood-ratio tests developed by 
Greeno (1968). One also may try to investigate different sets of con­
straints empirically. The advantage of using testable restrictions is that 
the model becomes identifiable. A disadvantage is that the model may 
become too specific because one constraint may not be acceptable for all 
the conditions of a given experiment, especially if the experiment con­
tains a large number of conditions with treatments that have powerful 
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effects on the parameters of the given model (Brainerd, Howe, & 
Kingma, 1982). In addition, comparisons cannot be made between experi­
ments with the same conditions but using different identifying restric­
tions. Different patterns of parameter values observed in the experiment 
could be attributed simply to these restrictions rather than to actual dis­
crepancies in the findings. (For some examples, see Brainerd, Howe, & 
Kingma, 1982.) 

A third way of changing a non identifiable model to an identifiable one is 
by increasing the complexity of the data so that all parameters can be 
estimated (for examples, see Brainerd, Howe, & Kingma, 1982; Chechile 
& Meyer, 1976; Chechile & Richman, 1982). That is, the design of the 
experiment may be altered by increasing the number of observable vari­
ables to obtain enough degrees of freedom for the model's parameters. 
For example, the structure of the standard list-learning tasks to which 
Markov models apply is normally S]T]S2T2S3T3 ... ,where Si denotes 
the ith study trial and Ti denotes the ith test trial. Study and test trials 
alternate until either some performance criterion is met or some fixed 
number of study-test cycles is administered. Greeno (1968, 1974) used a 
nine-parameter Markov model for list-learning tasks. Only seven parame­
ters were identifiable for experiments with the standard SIT]S2T2 struc­
ture. Some restrictions had to be made to obtain an identifiable model. 
However, a small change in the structure of the experiment will deliver 
sufficient degrees of freedom in the new data space. For example, 
Brainerd, Howe, and Kingma (1982) showed that an II-parameter Mar­
kov model was identifiable for the new data space. When the structure of 
the proposed experiment and consequently, the data space, can be altered 
so that the model becomes identifiable, then this method is preferred to 
that of using identifiable constraints. With the former method, the param­
eters from different conditions of an experiment may be compared, 
whereas such comparisons may become impossible when different con­
straints have been used for those conditions. 

Following the identifiability proof, the researcher may now actually 
perform the experiment and tie the model to the obtained data. The math­
ematical expressions of the model contain different parameters for esti­
mating the probability of the occurrence of some process in the learning 
task. However, it is not enough for the mathematical model to describe a 
psychological process. It must do so with sufficient completeness to tie it 
to the data (Wickens, 1982). Goodness-of-fit tests are used to assess 
whether the model fits the data, that is, whether good agreement is ob­
tained between theoretical distributions using the estimated parameters 
and some data distributions (e.g., the learning curve, errors before first 
success). Such tests of learning models have usually involved two phases 
(Brainerd, Howe, Kingma, 1982a; Greeno, 1968): Necessity tests are fol­
lowed by sufficiency tests (see Figure 2.1). 

Necessity tests are concerned with whether simpler models give a sta-
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tistically acceptable account for the data. Much of the usefulness of a 
model lies in the fact that it is as simple as possible and as complex as 
necessary (Blalock, 1969, 1982). The necessity test provides information 
about which model is favorable from the principle of parsimony. The logic 
behind the necessity test runs as follows. The likelihood function (con­
taining the mathematical expressions with the theoretical parameters) is 
computed for each model. Then the likelihood ratio is computed, which 
has a X2 distribution with the number of degrees of freedom equal to the 
difference between the number of parameters of the two models (Greeno, 
1968, 1970). If we let LI denote the likelihood of some set of data under 
one model and L2 denote the likelihood of the same set of data under the 
more complex model, then the following likelihood ratio is used for the 
necessity test: 

£1 
X2 (n) = -2 log--;-

L2 
(1) 

where LI and £2 are the estimates for LI and L 2, respectively, and n 
indicates the degrees of freedom. When X2 exceeds the critical value at a 
certain alpha level, the more complex model is more satisfactory. If the 
value is below the critical value, the simpler model is chosen. For exam­
ple, Brainerd, Howe, and Kingma (1982) showed that an identifiable two­
stage Markov model with 11 parameters provided a more satisfactory 
account for free-recall data than an identifiable one-stage model with 6 
parameters. 

Subsequently, sufficiency tests are performed for the model that passes 
the necessity test (see Figure 2.1). Sufficiency tests are used to determine 
whether the model fits the data. First, because mathematical expressions 
of the model represent the probabilities of various aspects of the data as 
functions of the parameters of the model, parameters can be estimated 
from the data. These estimates provide measurements of some aspects of 
learning (e.g., the probability that on the first trial an item has been stored 
in long-term memory). After the numerical estimates are obtained, the 
second step is to perform tests of the differences between observed data 
distributions and distributions predicted by the estimated parameters. Ex­
amples of the observed data distributions include such variables as errors 
before first success, the learning curve, total errors, and trial number of 
the last error. Predicted distributions are obtained from formulas contain­
ing the parameters (see Brainerd, Howe, & Kingma, 1982, equations 47a-
52b). Both necessity and sufficiency tests must be performed for all the 
conditions of the experiment. A nonparametric test, such as the Kolmo­
gorov-Smirnov test, may be used for testing the differences between the 
two distributions for each condition of the experiment. 

When the sufficiency tests fail for a condition [i.e., the difference be-
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tween the two distributions (observed and predicted) is significant], we 
conclude that the model does not tie to the data of that particular condi­
tion. The fault may lie in the theory or in the parameter values (Restle, 
1971). The solution may be either to reformulate the model or to build new 
identifiable constraints. In the latt~r case, the different conditions cannot 
be compared when different constraints are used. Fortunately, Markov 
models of free-recall list learning generally fit the data (Greeno et al., 
1978; Howe, 1982). 

The evidence from both necessity tests and sufficiency tests has been 
quite consistent (Brainerd, 1985). In necessity tests, the two-stage Mar­
kov model is almost always more satisfactory than the one-stage model in 
applications to recall data, regardless of whether the subjects are children 
or university undergraduates. Brainerd (1985) mentioned only two excep­
tions in which a one-stage Markov model was adequate to account for 
recall data: relearning of paired-associate lists that had been memorized 
to a stringent acquisition criterion one week earlier (Brainerd, Desro­
chers, & Howe, 1981), and memorization by undergraduates of short 
paired-associate lists comprised of very easy words (Humphreys & 
Yuille, 1973). The results of sufficiency tests have been similarly positive. 
In most experiments, the predicted distributions of two-stage Markov 
models closely approximate the observed data distributions (Brainerd, 
1985). Despite these very positive results, the necessity and sufficiency 
tests must always be performed to ensure that the model ties with the data 
of the experiment. Parameter estimation and the goodness of fit are tech­
nical prerequisites for interpretation of the data. 

Hypothesis testing (see Figure 2.1) is performed for all conditions of the 
experiment that pass the sufficiency tests. Between- and within-condition 
comparisons are both of interest. The general aim of the between-condi­
tion tests is to localize treatment effects within particular parameters (see 
Brainerd, Howe, & Kingma, 1982; Greeno et al., 1971; Humphreys & 
Greeno, 1970), whereas within-condition tests are used to determine 
whether obtained parameter values differ (Brainerd, Howe, & Desro­
chers, 1980; Brainerd et al., 1981). Both types of tests concern likelihood 
ratio tests for which X2 distributions are known (see Brainerd, Howe, & 
Kingma, 1982). 

Between-condition tests are performed in three steps: experimentwise 
tests, conditionwise tests, and parameterwise tests. The first question that 
must be answered is whether there are global statistical grounds for sup­
posing that the parameter values differ between conditions. A likelihood 
ratio statistic has been developed (Brainerd, 1982a, equation 53) for the 
experimentwise test that resembles the omnibus F test in the analysis of 
variance. When there are some overall differences (i.e., the null hypothe­
sis fails), a conditionwise test is used, which is conceptually similar to the 
well-known t statistic. If La denotes the likelihood of the set of data of 
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condition a and Lb denotes the likelihood of condition b, then the follow­
ing likelihood ratio statistic is used for the conditionwise test (see 
Brainerd et aI., 1982, equation 54): 

2 Lab 
X(n) = - 2 log --::;-;;-, 

LaLb 
(2) 

where La and Lb are the estimated likelihoods of the data for, respec­
tively, conditions a and b, Lab is the estimated likelihood ofthe data when 
the protocols for conditions a and b are pooled, and n is the degrees of 
freedom. This procedure is repeated for all possible combinations of the 
conditions of the experiment. Repeated testing of this sort may inflate 
alpha levels. To reduce this problem, a small numerical alpha value may 
be used. 

When some pair of conditions differs significantly, the parameterwise 
test is performed to identify the parameters to which these differences 
may be attributed. A likelihood ratio statistic has also been developed 
for the parameterwise test (see Brainerd, Howe, & Kingma, 1982, equa­
tion 55). 

The majority of hypothesis testing concerns testing between condi­
tions. However, within-condition tests are often of interest. Two types 
are distinguished: exact numerical hypotheses and inexact hypotheses. 
The former refer to any prediction which specifies that one of the parame­
ters shall take a particular value, whereas inexact numerical hypotheses 
concern predictions that specify that a particular algebraic relationship 
will be obtained between two or more parameters. Likelihood ratio statis­
tics have been developed for evaluating these two types of hypotheses 
(see Brainerd, Howe, & Kingma, 1982, equation 56). Following these 
tests, the results are interpreted in terms of the theory underlying the 
model. 

To summarize, after a model has been shown to be identifiable, neces­
sity and sufficiency tests are used to determine whether the model ties to 
the data. If the model fits the data, between- and within-condition tests 
are performed. Next, the difference between statistical inference and 
model testing is described. 

MODEL TESTING AND CONVENTIONAL STATISTICAL TESTING 

Mathematical models enable the researcher to separate different process 
variables, such as storage and retrieval. One may argue, however, that 
mathematical models are not needed because such research questions can 
be investigated with an adequate experimental design and conventional 
statistical tests. That is, separating different process variables is seen as a 
problem in experimental design rather than a problem in measurement 
theory (see Brainerd, 1985). 

Although the methodology of an experiment may appear to be correct, 
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interpretation of the results may be wrong when conventional statistical 
testing, e.g., analysis of variance, is used (Brainerd, 1985). For example, 
in a free-recall experiment, performance on the test trials is the dependent 
variable (the total number of errors and trial of last error). 

However, this performance is the result of both storage and retrieval; 
that is, storage and retrieval are interwoven in only one dependent vari­
able in free-recall experiments. Owing to limitations of the structural 
linear model, which is the basis of the analysis of variance, the effects of 
experimental manipulations on either storage or retrieval cannot be com­
puted separately, because a compound dependent variable has been used 
(Krantz & Tversky, 1971; Brainerd, 1985). This problem cannot be solved 
with multivariate techniques, because it seems impossible to create two 
different types of dependent variables that only measure either storage or 
retrieval. The difficulty with the conventional approach is that statistical 
models describe what the data look like, but not how they came about 
(Wickens, 1982). In contrast, mathematical models can be used to sepa­
rate the process variables by incorporating fine grained assumptions about 
underlying measurement (Brainerd, 1985). 

Of course, the goodness-of-fit tests of mathematical models also are 
pure statistical tests. They are derived from the fact that the algebraic 
assumptions that comprise a model normally constrain the data of perfor­
mance in certain respects; the data must have specific statistical proper­
ties if the assumptions are correct. A goodness-of-fit test is simply a 
mechanical procedure. When the data do not pass such tests, a model­
based theory is rejected. However, testing the parameters with the be­
tween- and within-condition tests provides information about each of the 
processes. Thus, the quantities on which the mathematical model is de­
pendent reflect characteristics of the behavior under study. The process­
oriented nature of these mathematical models make them useful both for 
data analyses and for testing the processes themselves. 

Markov Models 

LEARNING AS DISCRETE EVENTS 

Learning has been viewed historically either as a gradual change or as a 
discrete change. Gradual change was assumed in early versions of associ­
ation theory (Boring, 1950), in which strength of associative connection 
between ideas was assumed to increase each time the concepts were 
experienced together. Pavlov (1927) assumed gradual learning in condi­
tioning of reflexes. Gradualist ideas were popular for a variety of concep­
tual and philosophical reasons (Greeno, 1974). Although some psycholo­
gists viewed learning as a discrete change in the 1920s (Kohler, 1927; 
Lashley, 1928), not until the 1950s did the mathematical tools exist for 
studying learning as a discrete process. For example, Feller (1950) intro-
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duced the probability theory for discrete sample spaces, while Kemeny 
and Snell (1960) and Kemeny, Snell, and Thompson (1957) introduced 
finite mathematics for social scientists (see Estes, 1962). From the early 
1950s, Markov models were used by psychologists to study learning as 
discrete events (Greeno et al., 1978). 

Models of learning may be deterministic or stochastic. A deterministic 
model predicts the effect of any change in the model with certainty. In 
practice, however, there is usually an element of uncertainty in any pre­
diction of human behavior. This uncertainty can be accommodated be­
cause the equations of a model may include random variables. Such a 
model is stochastic, i.e., its mathematical entities are known as stochastic 
processes. A stochastic process is one that develops in time according to 
probabilistic laws (Bartholomew, 1973). Therefore, its future behavior 
cannot be predicted with certainty; the most that can be done is to attach 
probabilities to the various possible future states of this process. The 
mathematical two-stage learning model is such a stochastic Markov 
model (see Brainerd, Howe, & Kingma, 1982). Learning can be consid­
ered a "construct," an indication that a new state has been reached. In an 
all-or-none learning model, two states are distinguished, namely, a 
learned and an unlearned state. In a two-stage model a partially learned 
state is placed between these two. The number of states can be increased 
so that long-term memory processes involved in the learning process may 
be described in terms of state changes. 

In the study of memory, a Markov chain is a model of changes in the 
subject's cognitive states of knowledge and the way in which these knowl­
edge states change. However, these postulated cognitive states cannot be 
observed directly in, for example, a list-learning task. The only thing that 
can be observed is the subject's response pattern for each item from the 
list. The Markov process is considered a model of the subject's internal 
states, and the responses are the functions of these states. In other words, 
there is a mapping function between the space of unobservable cognitive 
states and the observable response space. 

CHARACTERISTICS OF MARKOV MODELS 

Markov models, as presented in this chapter, have three main characteris­
tics: The states are countable, no backward transitions are allowed, and 
the future of the process depends only on the current state. The denumer­
able, or finite-state, Markov process is characterized by a set of countable 
states. The state of the process is specified by one of a discrete set of 
alternatives, that is, by a member of a set of states. The set of states in the 
model is called its state space. Changes, such as learning, are represented 
by the transitions from one state to another. Defining an appropriate state 
space is crucial for building a suitable model, and it involves a balance 
between complexity and simplicity. That is, the state space has to be 
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sufficiently large to allow interesting properties to appear, but not so 
complex that it becomes unworkable (see Wickens, 1982). 

The second characteristic mostly appeared in list-learning task studies; 
that is, the transitions between the different states are usually defined in ~ 
way that no backward transitions occur. When, for example, an item has 
been learned or "escaped," no backward transition to the unlearned state 
is possible, that is, it cannot become unlearned again. 

The third feature of the Markov model concerns the Markov property 
(Breiman, 1969) about the relationship between the process in the current 
and future states. Specifically, the state of the processes at trial n + 1 
depends only on the state at trial n. States of the process on trials prior to 
trial n are not relevant to the probability of entering a state on trial n + 
1; that is, all information about the past is embodied in the current state on 
trial n. How the process enters a particular state is not important. In other 
words, the past may determine where the subject is now, but the subject's 
current state determines future activity (Wickens, 1982). 

In the simplest case, learning involves a single transition between two 
states. In such an all-or-none model, the subject's state of knowledge 
about an item to be learned is either that it is unknown or it has been 
learned. These two states are represented in Figure 2.2. In free-recall 
experiments, the words from a list are presented for study and followed 
by a distractor task (e.g., counting backward) to prevent rehearsal. Subse­
quently, the subject is asked to remember the learned words on the test 
trial. This sequence of study trial, distractor task, and test trial can be 
repeated until the subject has reached a criterion such as all items recalled 
correctly on two consecutive trials. The items are usually unknown at the 
beginning of the experiment. At this point each item is in state U. Accord­
ing to the all-or-none hypothesis there is a fixed probability c that an item 
is learned at each presentation. If an item is learned, it has "escaped" 
state U. If the item "remains" in U, no learning occurs. When an items 
"enters" (is learned) state L, the probability of a correct response always 
is 1.0. 

These one-stage (one type of transition) Markov models are rarely ade­
quate for representing free-recall data (Brainerd et aI., 1981; Humphreys 

(1- c) 1 

c 

FIGURE 2.2. One-stage model. 
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& Yuille, 1973), but may be satisfactory for recognition data (Brainerd, 
1983; Greeno et al., 1978; Kintsch & Morris, 1965). The two-stage model 
is more successful for free-recall data. 

REPRESENTATION OF THE MARKOV CHAIN 

A denumerable, or finite-state, Markov process is typically represented as 
a branching tree or as a transition matrix (see Kemeny & Snell, 1960; 
Levine & Burke, 1972; Wickens, 1982). For instance, a tree diagram for 
the transition probabilities in an all-or-none model of the previous section 
is depicted in Figure 2.3. It can be seen from Figure 2.3 that anyone 
branch (continuous route) of this tree represents the sequence of joint 
events necessary to reach a particular state on a particular trial by a 
particular route. On the first trial, the probability of escaping the un­
learned state VI and entering state L2 is c, whereas the probability of 
staying in the unlearned state is 1 - c at VI. On the second trial the 
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FIGURE 2.3. One-stage model represented as a tree diagram, where tl, t2, 
t3, . . . ,tn represent the trial numbers, Ln is the learned state at trial tn, and Un is 
the unlearned state at trial tn. 
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probability of staying in state L2 is 1 since L2 is an absorbing state, 
whereas the probability of escape from VI on the second trial is c for 
entering the learned state L3 and that for staying in the unlearned state V 2 

is 1 - c. 
The above procedure, depicted in Figure 2.3, can be carried out for any 

experiment that takes place in phases or trials. The only requirements are 
a finite number of possible outcomes and probabilities for any particular 
outcome at the jth phase given the knowledge of the outcome for the first 
j - 1 stage must be known (Kemeny & Snell, 1960). 

The probability of a particular route in Figure 2.3 is simply the product 
of the transition probabilities joining the states in that branch, whereas the 
probability of being in a particular state on a particular trial is the sum of 
all the different branch probabilities that lead to that state on that trial. 
For example, in Figure 2.3 there are four paths, each representing a 
different way of reaching a learned state L5 on or before the fourth trial t4' 
The probability of reaching L5 on the fourth trial t4 is P(L5), and that of 
reaching L5 on the fourth trial t4 is P(L5) 

P(L5) = tl + t2 + t3 + t4 
= C + c(1 - c) + c(1 - C)2 + c(1 - C)3 

= c4 + 4c3 - 6c2 + 4c 
= 1 - (1 - C)4, 

where tn is the probability of reaching the learned state Ln+1 on trial n. 
More generally, the probability of reaching the learned state on some trial 
n IS 

whereas the probability of staying in the unlearned state on some trial n is 

Although the probabilities of reaching a particular state at a particular 
trial can be determined from Figure 2.3, they can also be expressed as 
conditional probabilities. Since the probabilities are independent of the 
steps prior to the immediately preceding one (the Markov property), the 
probability of reaching the learned state at, for example, the third trial is 

P(L4) = P(L4IL3)P(L3IL2)P(L2IVI) + P(L4IL3)P(L3IV2)P(V2IVI) 
+ P(L4IV3)P(V3IV2)P(V2IVI) 
= (1 . 1 . c) + [1 . c . (1 - c)] + [c . (1 - C)2] 
= 1 - (1 - C)3. 

With the help of such a tree it is easy to derive the probabilities of 
reaching some state on a certain trial. However, when the number of trials 
is very large, such a tree becomes rather complex. Therefore, the transi-
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tions are usually collapsed into matrix form. Because there is only one­
trial dependency in the Markov process, the most general form of such a 
matrix is the representation of the transition probabilities on a single trial 
n to trial n + 1. For instance, the transition matrix for the all-or-none 
model represented in Figure 2.3 is 

c 

In this matrix, the probability of a transition from Un to Ln+l is c, and 
the probability that the process remains in the unlearned state on trial n + 1 
is 1 - c, and so on. 

It is important to keep in mind that with this transition matrix only the 
transition probabilities are depicted which are conditional on some trial n. 
The probabilities of being in each of the states on trial n must still be 
computed. Suppose the row vector [P(Ln+I ), P(Un+I )], represents the 
probabilities of either being in the learned state on trial n+ 1 or staying at 
the unlearned state. Those probabilities are computed by multiplying the 
row vector for trial n and the transition matrix as follows: 

Thus, the probability of being in a particular state on a particular trial can 
be computed easily with the transition matrix. By substituting a certain 
number for n it can be shown that, with the help of a transition matrix, the 
same results are obtained as with the branching tree. 

Although the probabilities of the transitions can be represented for the 
individual items of a free-recall list, most theorists use probabilities for 
the list as a whole for all subjects in a condition. This simplification is 
often needed to reduce complexity. 

Researchers are often interested in the probability of some transition on 
the first trial; for example, a high probability of entering the learned state 
on trial 1 would indicate early learning or ease of storage, depending on 
the definition of the parameters of the model. The probabilities of the 
transitions on the first trial are represented in the starting vector, or initial 
vector. Mter the first study trial, learning of an item is assumed to be 
governed by the matrix of transition probabilities (Greeno et aI., 1978). A 
response vector is used to represent states on which correct responses 
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occur. The starting vector and the corresponding transition matrix for the 
all-or-none model and the response vector are 

WI = P[L I , Utl = [e', (1 - e')], 

M)= Ln r-oI 
Un~' 

By using a starting vector, a new parameter e' has been introduced for 
estimating difficulty of learning on the first trial. Response vector CI 

represents only the state on which correct responses occur. This vector 
has not been used for computing the probabilities of being in a certain 
state. 

In sum, the transition matrix represents the probabilities of a change 
from a particular state to another one on a particular trial. It is used for 
computing the probability of being in a certain state, which can also be 
represented by a branching tree. However, when the model is complex, 
the transition matrix is used for computing the probabilities. Introducing a 
starting vector provides information about learning on the first trial, 
which is often used when the overall probabilities of all the items of a list 
as a whole are the focus of interest. 

THE NEW TWO-STAGE MODEL 

In the preceding section the all-or-none one-stage model was used to 
illustrate the terminology of the Markov models. However, acquisition 
data from list-learning tasks are normally in close agreement with the 
prediction of a two-stage Markov process (see Brainerd, in press; Greeno, 
1974). These models assume that learning consists of an initial state U in 
which only errors are possible, an intermediate state P in which errors 
occur with some average probability 0 < q < 1, and a fully learned (final 
absorbing) state L in which only successes are possible. Such models 
have given a good account in animal studies of avoidance conditioning 
(Theios, 1963) and escape conditioning (Theios, 1965). Analogous findings 
with human adults have been reported for free recall (Kintsch & Morris, 
1965), cued recall (Humphreys & Greeno, 1970), eyelid conditioning 
(Bower & Theios, 1964), and discrimination reversal (Bower & Theios, 
1964). Recent applications of the two-stage model in children include, for 
example, cued recall (Bisanz, Vesonder, & Voss, 1978), free recall 
(Brainerd, 1983), children's learning of logical concepts (Brainerd, 
1982b), infants' learning of spatial concepts (Heth & Cornell, 1983), free 
recall in disabled children (Brainerd, Kingma, and Howe, in press, c; 
Howe et al., in press, b). 
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Since the initial appearance of these two-stage models in the psycholog­
ical literature (Theios, 1961), their statistical machinery has undergone 
gradual development. In the course of this development most of the tech­
nical obstacles that one encounters in applying any model to data have 
been overcome. For instance, the sampling distributions of several learn­
ing statistics have been derived, a maximum likelihood procedure now 
exists for estimating the parameters of these models, and tests have been 
developed for within- and between-parameter values (see Brainerd, 
Howe, & Kingma, 1982). 

However, a key problem remains, namely, that these models are not 
identifiable. For example, Greeno (1968; Greeno et aI., 1971) demon­
strated that a 9-parameter two-stage Markov model had only 7 identifiable 
parameters. Brainerd, Howe, and Desrochers (1982) showed that an unre­
stricted lO-parameter model has only 8 identifiable parameters. In other 
words, these models involve more degrees offreedom than the data space 
onto which they are mapped. To solve these problems, identifiable re­
strictions were introduced. 

As discussed previously, using these identifiable restrictions may lead 
to difficulties for comparing the results of different conditions in one 
experiment, as well as for making comparisons between different types of 
experiments. In the new two-stage model, this obstacle has been removed 
by altering the data space. Brainerd, Howe, and Kingma (1982) proved 
that a completely identifiable version of the two-stage model can be de­
vised for list-learning experiments in which children are required to meet 
a stringent acquisition criterion (e.g., two or three consecutive errorless 
test cycles). The major change was a slight adjustment of the outcome 
space over which the model is defined. The normal outcome space of 
criterion list-learning experiments is SlT1S2T2 ••• , whereas the modi­
fied outcome space is SlT1T2S2T3 S3T4 . .. etc. The only alteration is the 
insertion of an extra test trial between the first and second study trial; in 
the remaining part of this chain, study and test trials alternate in the usual 
way. 

The new model assumes that list learning consists of three discrete 
states: an initial state U (unlearned state) before a trace has been stored in 
which only errors can occur; an intermediate "partially learned" state P 
in which both errors (substate PE) and success (substate Pc) can occur; 
and a terminal "well-learned" or absorbing state L in which only suc­
cesses can occur (see Figure 2.4). 

In this two-stage model, as in the one-stage model, no backward transi­
tions are allowed. This model contains 11 parameters that reflect a theory 
of paired-associate memorizing which is based on an account developed 
originally by Greeno and his associates (e.g., Greeno, 1970, 1974; Greeno 
et aI., 1971; Humphreys & Greeno, 1970). Because the terminal state L 
can be reached from U directly or via the partial state (either PE or Pd, 
two stages of learning can be distinguished. When a distracting activity is 
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FIGURE 2.4. The new two-stage model with the transition probabilities between 
the four different states after the second study trial. 

performed between each study trial and the following test trial, perfor­
mance on the test trial cannot be based on retrieval from short-term 
memory; instead, an item can be successfully recalled only after a trace of 
that item has been established in long-term memory. Therefore, the diffi­
culty of the first stage oflearning (escape from the unlearned state U) has 
been identified with the difficulty of storing a trace in long-term memory. 
However, because storing a trace does not guarantee that the subject will 
be able to retrieve it reliably on test trials, the difficulty of the second 
stage oflearning (escape from an intermediate partial-success state, either 
Pc or PE) has been identified with the difficulty oflearning how to retrieve. 

When the hypotheses about storage and retrieval are combined with the 
states depicted in Figure 2.4, the parameters associated with each ofthese 
states become measures of theoretically important processes: parameters 
a' and a measure the difficulty of storing a permanent trace; parameters 
hi, h, c, and d are measures of the difficulty of learning a retrieval algo­
rithm; parameters e, g, h, and r measure the difficulty of retrieving a trace 
between the time of storage and the acquisition of a retrieval algorithm; 
parameter f is a measure for forgetting a previous stored trace between 
test trials TJ and T2• Definitions for each of the individual parameters are 
shown in Table 2.1. 
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TABLE 2.1. Theoretical interpretations of the 11 parameters in the 
two-stage model. 

Parameter 

Storage 
a' 
a 

I-f 

Retrieval learning 
b' 

b 

c 

d 

Retrieval perfor­
mance: 

1 - r 

1 - e 

g 

h 

Interpretation 

Probability of storing a trace on the first study trial. 
Probability of storing a trace on any study trial after the first 

trial. 
Probability of retaining a previously stored trace between the 

first and second test trials. 

Probability of acquiring a retrieval algorithm for an item on the 
first study trial, given that the item was also stored on the 
same trial. No further retrieval learning is needed. 

Probability of acquiring a retrieval algorithm for an item on 
any study trial after the first study trial, given that the item 
was also stored on the same trial. No further retrieval learn­
ing is needed. 

Probability of learning a retrieval algorithm after a success in 
state P. 

Probability of learning a retrieval algorithm after an error in 
state P. 

Probability of a success or heuristic retrieval for items entering 
state P on the first study trial. 

Probability of a success or heuristic retrieval for items entering 
state P after the first study trial. 

Probability that, for any two consecutive trials in state P, 
unsuccessful heuristic retrieval (error) is followed by a 
successful heuristic retrieval (success). 

For two consecutive trials in state P the probability that a 
success is followed by a success (or successful heuristic 
retrieval is followed by successful heuristic retrieval). 

The transitions can now be described in terms of the parameters that 
may occur on the first test trial in free-recall learning in the altered data 
space S]T]T2S2T3S3T4' ... Before the first study trial, all items are in the 
initial unlearned state U. As a consequence of learning on the first study 
trial S], some items are learned; that is, they "escape" the unlearned state 
on study trial T] with a probability a'. Others from the list are still un­
learned with a probability 1 - a'. For items that are learned, a distinction 
can be made between those that are directly "fully" learned, state L, with 
a probability b', and those that are partially learned, state Pc or PE, with a 
probability 1 - b'. Furthermore, when an item is partially learned, either 
an incorrect response can be given (state PE) with a probability r or a 
correct response occurs (state Pc) with a probability 1 - r. On the first 
test trial, items can be in four distinct states: state U (with probability 1 -
a'), state L (with a probability a'b'), state PE [with a probability a'(l -
b')r], and state Pc [with probability a(1 - b')(1 - r)]. 

Between the first and second test trials T] and T2, no learning would 
have occurred. If an item is either unlearned (state U) or fully learned 
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(state L), it remains there. An item in either state Pc or PE can remain 
there with probability (1 - j)h or (1 - j)(1 - g), respectively. However, 
on this second test trial, the subject's partial knowledge of an item may 
diminish and fall back to the unlearned state for that item. That is, an item 
may drop from either state Pc and PE to state V (the only possible back­
ward transition in this model is on T2) with a probability f. The possibility 
also exists that the subject gives a correct response on an item on test trial 
2, whereas on the first test trial that item was in state PE, with a probabil­
ity (1 - j)g. The reverse can also be found; that is, on the first trial the 
item is in the state Pc (subject recalled it correctly), and on the second test 
trial the subject cannot recall that item (state PE) with a probability 
(1 - f)(1 - h). The transitions and their associated probabilities are 
summarized in Table 2.2. 

On the second study trial, if an item is unlearned, state V, it may be 
learned with a probability a, or it may still be unlearned and staying in 
state V with a probability 1 - a. These newly learned items may be either 
fully learned (state L) or partially learned (state Pc or PE) with probabili­
ties, respectively, (1 - b)(1 - e) and (1 - b)e. If an item is in state Pc, the 
subject may recall that item correctly, and it will still be in state Pc with a 
probability (1 - c)h; and an incorrect recall (state PE) may occur with a 
probability (1 - c)(1 - h), or such an item may be fully learned (state L) 
with a probability c. If an item is in state PE, the subject may be still 
unable to recall it (this item remains in state PE) with a probability 
(1 - d)(1 - g), or the subject will recall it correctly (but still not fully 
learned, i.e., the item goes in state Pc) with a probability (1 - d)g, or the 
item will be fully learned (state L) with a probability d. The transitions and 
their associated probabilities are summarized in Table 2.3. 

The probabilities that appear in Table 2.3 are in fact the probabilities 
that occupy the transition matrix of a new two-stage model of learning. 

TABLE 2.2. Probabilities of transitions 
between the first study trial and the first 
test trial and between the first and second 
test trials. 

Transition 

Study trial 1 -'> test trial 1 
U -'> U 
U -'> Pc 
U -'> PE 

U-'>L 
Test trial 1 --? test trial 2 

Pc--? Pc 
PE -,> PE 

Pc -'> U 
PE -,> U 
Pc -'> PE 

PE --? Pc 

Probability 

1 - a' 
(/'(1 - b') (I - r) 

a'(1 - b')r 
a'b' 

(1 - f)h 
(1 - f) (1 - g) 

f 
f 
(1 - f) (1 - h) 
(1 - f)g 
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TABLE 2.3. Transition probabilities on the 
second study trial. 

Transition 

Study trial 2 ...... test trial 3 
U ...... U 
U ...... PE 

U ...... Pc 
U ...... L 
PE ...... PE 

PE ...... Pc 
PE ...... L 
Pc ...... PE 

Pc ...... Pc 
Pc ...... L 

Probability 

1 - a 
a(1 - b)e 
a(1 - b) (1 - e) 

ab 
(1 - d) (1 - g) 
(1 - d)g 
d 
(1 - c) (1 - h) 
(1 - c)h 
c 

Mter the first study trial, an item may be in any of the four states. On the 
third and following study trials, the interstate transition probabilities as 
described for study trial S2 are assumed to apply. Although the probability 
that an item has not yet entered the learned state L becomes increasingly 
small as the number of study trials increases, the transition probability of 
that item from a certain state to the learned state L on some study trial is 
always identical to that described in Table 2.3. 

With the transition probabilities from Tables 2.2 and 2.3, the identifiable 
two-stage model can be derived from the revised outcome space (see 
Brainerd, 1984; Brainerd, Howe, & Kingma, 1982): 

W, = [L(l)L(2) = a' b', L(l)PE(2) = 0, L(1)Pc(2) = 0, L(1)U(2) 

L(n) 

= 0, PE(1)L(2) = 0, PE(1)PE(2) = a'(l - b')r(1 - f) (1 - g), 
PE(l)pc(2) = a'(1 - b')r(l - f)g, PE(1)U(2) = 
a'(1 - b)r f, Pc(l)L(2) = 0, P c(1)PE(2) 
= a'(l - b') (1 - r) (l - f) (l - h), Pc(l)pc(2) = 
a'(1 - b') (1 - r) (1 - f)h, Pc(l)U(2) 
= a'(l - b') (1 - r)f, U(1)L(2) = 0, U(1)PE(2) = 0, U(1)Pc(2) 
= 0, U(1)U(2) = 1 - a']; 

L(n + 1) PEen + 1) PcCn + 1) U(n -+- 1) 

1 0 0 0 

c.=[ M - PEen) d (1 - d)(1 - g) (1 - d)g 0 ,-
(1 - c)(1 - h) (1 - c)h 

, 
PcCn) c 0 
U(n) ab a(1 - b)e a(1 - b)(1 - e) 1 - a 

When we consider the first term of the starting vector L(1)L(2), the 
probability of reaching the learned state on TJ is a' h'. On the second test 
trial the probability is I for staying in L (since no backward transition is 
allowed from state L); the product of both probabilities is therefore a' b' 
for staying in the learned state on both test trials T, and T2 • The only 
backward transition allowed is from the partial state to the unlearned state 
Von the test trial T2 [e.g., the probability PEO)U(2) = a'(l - b)rfrepre-

(3) 
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sents the backward transition from the partial state on test trial TI to the 
unlearned state on the second test trial T2]. In fact, the transition probabil­
ities that occur in the starting vector are the products of the probabilities 
in Table 2.2 for test trials TI and T2. Thus, the starting vector gives the 
probabilities of being in various pairs of states on the first two test trials. 

The zero probabilities in this starting vector correspond to transitions 
that cannot occur according to the assumptions of the model. And 
PE(l)L(2) has a zero probability, because between test trial TI and T2 
no learning event has taken place; consequently, the protocol cannot 
escape between these two test trials. 

The matrix MI gives the probabilities of the various possible intertrial 
transitions after test trial T2 on the following study trials. The zero proba­
bilities refer once again to impossible transitions according to the assump­
tions of the model. The probability of a transition from U(n) to L(n + 1) is 
abo The probability that the process remains in the unlearned state U(n + 
1) is 1 - a. The probabilities in the transition matrix are the same between 
trial n + 1 and trial n + 2, and so on. Therefore, the descriptions of the 
probabilities on study trial 2 (S2) (see Table 2.3) already deliver the proba­
bilities of this transition matrix. 

The model described in Equation 3 contains the theoretical parameters. 
Brainerd, Howe, and Kingma, (1982) have proved that this model is iden­
tifiable in its outcome space. Because there is a set of functions that maps 
each parameter onto the parameter space of Equation 3, the observable 
process has 11 identifiable parameters. Also the set of functions delivers 
unique estimators of the parameters of Equation 3. 

The parameter estimation procedure for the two-stage model involves, 
first, the construction of an observable-state Markov model. Only the 
outcome space is presented here (see Brainerd, Howe, & Kingma, 1982a, 
for the identifiability proof), because it provides the link to observable 
features of the data from free-recall experiments. The observable model 
for the new two-stage learning model has the following states for experi­
ments with the structure SITIT2S2T3S3T4 . .. : 

Q = state on all Ti after the last error in protocols with one or more 
errors and the state on all Ti in protocols with no errors 

R = state on all Ti where the response is an error and at least one success 
has occurred on some earlier Ti 

S = state on all Ti where the response is correct and at least one error 
occurs on some later Ti 

EI = event of an error on TI 
E2 = event of an error on T2 if an error also occurred on trial TI 
E3 = event of an error on T3 if an error occurred on both TI and T2 

Ei = event of an error on trial Ti if errors also occurred on trials TI to Ti - I 
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The starting vector, the transition matrix, and the response vector for 
the observable model are 

W2 = [Q(1)Q(2) , Q(1)R(2), Q(1)S(2), Q(1)E) , Q(1)E2 , ''', Q(1)El2), R(1)Q(2), 
R(1)R(2), R(1)S(2), R(1)E)(2), R(1)E2(2), "', R(1)Ei(2), S(1)Q(2), 
S(1)R(1), S(1)S(2), S(1)E)(2), S(1)Ez(2), "', S(1)Ei(2), E)(1)Q(2), 
E)(1)R(2), E)(1)S(2), E)(1)E)(2), "', E i(1)El2)] 

= [7T), 0, 0, 0, 0, "',0,0,0,0,0,0, "',0,0, 7T2,7T3, 0, 0, "', 
0, 7T4, 0, 7T5, 1 - 7T) - 7T2 - 7T3 - 7T4 - 7T5, "',0], 

Q(n + 1) R(n + 1) S(n + 1) EJ(n + 1) ... Ej+I(n + 1) 

Q(n) 0 0 0 0 
R(n) u (1 - u)v (1 - u)(1 - v) 0 0 
S(n) 0 z 1 - z 0 0 
E2(n) £XI 0 f31 1 - £XI - f31 0 

M2 = , 
..................................................................................... 

Eln) £Xi 0 f3i = 1 - £Xi 0 0 

1 
0 
1 
0 

C2 = 

0 

The index variable i is defined as the length ofthe longest initial error run. 
For instance, if the latest occurrence of the first correct response in the 
protocols is T9, then i = 9; but if the latest occurrence of the first correct 
response is T25 , then i = 25. 

The starting vector W2 represents the observed probabilities of the 
various state pairings for test trials T) and T2• The zero probabilities refer 
to transitions that are logically impossible on the basis of the definitions of 
the observable states. The transition matrix gives the observed probabili­
ties of all inter- and intrastate transitions for n = 2, 3, 4, .... As with 
the starting vector, the zero entries in M2 refer to impossible state combi­
nations. 

The second step of the parameter estimation procedure involves the 
construction of a likelihood function. The observable model contains five 
identifiable parameters in the starting vector [7T), 7T2, 7T3, 7T4, 7T5] and six 
parameters in the transition matrix [u, v, Z, (Xi, .$d. Mter the identifiability 
proof (see Brainerd, Howe, & Kingma, 1982) the likelihood function for 
the observable process can be derived from the maximum likelihood of all 
parameters (see, e.g., Hays & Winkler, 1970) 

L = (7T)YN(QIQ2) X (7T2)N(S IR2) X (7T3)N(SIS2) X (7T4)N(E1Q2) X (7T5)N(E1S2) 

X (1 - 7T) - 7T2 - 7T3 - 7T4 - 7T5) N(E1E2) 

X (u)N(R nQn+l)(1 - u)N(RnRn+l) + N(RnSn+l) 

X (v)N(RnRn+1) (1 - v)N(RnSn+1) (z)N(SnRn+l) (1 - z)N(SnSn+l) 

j 

x n [((Xi)N(EnQn+l) (.$DN(EnSn+l) (1 - (Xi - .$DN(EnEn+1)] • 

i=2 

(5) 

(4) 
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The variables inside the parentheses are the parameters of the observ­
able model. The exponents are empirical numbers obtained from the pro­
tocols of some experiment. For example, N(Sn, Rn+d is simply the total 
number of times that protocols were observed to be in observable state S 
on trial n and in observable state R on trial n + 1. As mentioned earlier, 
the overall frequency of each type of transition is computed across all 
items of a list for the whole condition in order to compute the parameters 
for an experimental condition as a whole. The subscript i = n is an integer 
which is always greater than or equal to 2, because between the second 
and third test trials T3 and T4 the first transitions as described in the 
transition matrix can be observed. The letter j is the maximum length of 
the initial error run. 

The third step in the parameter estimation procedure involves the ex­
pression of the probabilities of observable features of the data in terms of 
theoretical parameters of the new two-stage model (see Tables 2.2 and 
2.3). When these expressions are substituted in the likelihood function of 
the observable model equation 5, the parameters of the theoretical two­
stage model can be estimated. The definitions that are substituted are 
shown in Appendix 2A. The substitution delivers the following likelihood 
function: 

L = [a' b' + (a'(1 - b')(1 - r)(1 - f)hc)/(1 - (1 - c)h)]N[Q(J)Q(2)] 
x [a'(1 - b)(1 - r)(f + (1 - f)(1 - h»]N[S(J)R(2)] 

x [(a'(1 - b')(l - r)(1 - f)h(l - c)(1 - h»/(l - (1 - c)h)]N[S(1)S(2)] 

x [(a'(l - b')r(1 - f)gc)/(l - (1 - C)h]N[E(1)Q(2)] 

x[(a'(1 - b')r(1 - f)g(1 - c)(1 - h»/(1 - (1 - C)h)]N[E(J)S(2)] 

x [1 - a' + a'(l - b')r(f +(1 - f)(1 - g»]N[E(1)E(2)] 

x [d + ((1 - d)cg)/(1 - (1 - c)h)]N[RnQn+l] 

X [((1 - g)(1 - (1 - c)h»/((1 - g)(1 - (1 - c) h) 

+ (1 - c)(1 - h)g)]N[RnRn+d 

X [1 - ((1 - g)(1 - (1 - c)h»/((1 - g)(1 - (1 - c) h) 

+ (1 - c)(1 - h)g)]N[RnSn+l] 

X [1 - d - ((1 - d)cg)/(1 - (1 - c)h]N[(RnRn+1)] + N[(RnSn+1)] 

X [1 - (1 - c)h]N[SnRn+Il 

j 

x [(1 - c)h]N[SnSn+d I1 {[ailN[EnQn+Il 
i=n=2 

where ai and f3i are described in Appendix 2A. 

(6) 

This maximum likelihood function has 11 unknown theoretical parame-
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ters, and the exponents are the known total numbers of the transitions in 
the protocols of an experimental condition. To maximize the likelihood 
function for these 11 parameters, the logarithm of this function has been 
used. Because the logarithm of a positive argument is a monotonically 
increasing function of that argument, maximizing the likelihood function 
is equivalent to maximizing the logarithm of the likelihood function. To 
maximize the function with respect to each of the individual parameters, 
the technique of partial differentiation is often employed (see, e.g., Hays 
& Winkler, 1970). However, the maximum likelihood function of the two­
stage model is too complex to find a miximum for each individual parame­
ter by means of partial differentiation. Because no analytic solutions for 
the first partial derivatives can be obtained for the 11 parameters, numeri­
cal methods must be used in parameter estimation. The logic is as follows. 
The logarithm of the likelihood function in Equation 6 has to be pro­
grammed, and data counts of the total number of each type of transition of 
a condition are read as the input for this programmed function. The mini­
mum of the likelihood equation 6 is found via computer search by using 
some standard optimization algorithm. (Because the function concerns 
probabilities, the minimum and the maximum of the likelihood function 
are equal.) Another important aspect of the minimization is that the mini­
mum of the likelihood function is found for some values of the 11 theoreti­
cal parameters. These values are in fact the maximum likelihood esti­
mates for those data. The calculated value of the function itself, L, serves 
as the basis for the necessity and sufficiency tests (see Brainerd, Howe, & 
Kingma, 1982). 

Various types of numerical methods have been described and evaluated 
(Avriel, 1976; Brainerd, Howe, & Desrochers, 1982; Foulds, 1981; Po­
well, 1970). Two methods, the simplex algorithm and the quasi-Newton 
algorithm, are widely available in optimization programs. The simplex 
algorithm tends to be slow, especially when the number of parameters is 
greater than 8 (Avriel, 1976). 

To summarize, a way of building the new two-stage model has been 
presented. One starts by defining the theoretical parameters (see Figure 
2.5) and then constructing a theoretical model. Subsequently, the observ­
able model is built. After this, the identifiability proof is performed. Be­
cause this model is identifiable, the likelihood function of the observable 
model is formulated. Next, the theoretical parameters are substituted for 
the parameters of the observable model in this likelihood function, and 
the logarithm of this function is programmed. Finally, this function is 
minimized for the transition counts of experiments, which provides both 
the minimum of the function and the maximum likelihood estimates of the 
parameters. Because this model is identifiable, one can take the logarithm 
of the likelihood function of Equation 6. However, before parameters 
obtained after the minimization of the function can be interpreted, the 
necessity test must be performed. A less complex, one-stage model is 
described in the next section that can be used for this test. 
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I Start I 
1 

Define theoretical parameters 

1 
Building a theoretical model 
in a starting vector and a 
transition matrix 

1 
Construction of an observable 
model in a starting vector 
and a transition matrix 

1 
Identifiability proof 

! 
Formulate the likelihood 
function for the observable 
model 

1 
Replace the observable 
parameters by the theoretical 
parameters 

1 
Take the logarithm of this 
function and program this 
function 

1 
Minimization of this function 
for the data counts of an 
experiment 

l 
Minimum of the function found 
and the maximum likelihood 
estimates of the parameters 

FIGURE 2.5. Steps for minimizing the likelihood function. 
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NECESSITY AND SUFFICIENCY TESTS 

Because the two-stage model assumes that learning involves exactly two 
stages, the necessity test determines whether a model with only one stage 
will do as good ajob of accounting for the data as one with two stages. If 
so, then the two-stage model would fail on grounds of parsimony. 

The one-stage model described here is quite similar to the general one­
stage model (e.g., Greeno, 1968), except that the outcome space has been 
altered. This model assumes that learning consists of an initial unlearned 
state U in which both errors (substate UE) and successes (substate Ud 
occur, followed by a terminal learned state L in which only successes 
occur. When the likelihood function of Equation 6 is called £2, the likeli­
hood function for the one-stage model is called £,. The steps for deriving 
the likelihood function are identical to those depicted in Figure 2.5. Be­
cause this model is also identifiable in the altered outcome space, only the 
likelihood function of the observable model is presented here. For the 
derivation see Brainerd, Howe, and Kingma (1982). The likelihood func­
tion for the one-stage model (in which the theoretical parameters are 
substituted) is 

L = [m + (1 - m)(1 - n)pc' /(1 - (1 - c')p ]N[Q(1)Q(2)] 

x [(1 - m)ns(c'(1 - (1 - c')p))]N[R(1)Q(2)] 

X [(1 - m)n(1 - S)]N[R(1)R(2)] 

x [(1 - m)ns(1 - c')(1 - p )/(1 - (1 - c')p ]N[R(l)S(2)] 

X [(1 - m)(1 - n)(1 - p)]N[S(1)R(2)] 

x [(1 - m)(1 - n)p(1 - c')(1 - p )/(1 - (1 - c')p ]N[S(l)S(2)] 

X [d' + (1 - d')sc' /(1 - (1 - c')p )]N[RnQn+l] 

X [1 - d' - (1 - d')sc' /(1 - (1 - c')p )[N[RnRn+tl + N[RnSn+1] 

X [(1 - s)(1 - (1 - c')p)/«(1 - s)(1 - (1 - c')p) 

+ (1 - c')(1 - p)s)]N[RnRn+l] 

X [1 - (1 - s)(1 - (1 - c')p)/«(1 - s)(1 - (1 - c')p) 

+ (1 - c')(1 - p)s)]N[RnSn+tl 

X [1 - (1 - c')p ]N[SnRn+tl [(1 - c')p ]N[SnSn+tl] (7) 

where n ;::: 2 and the exponents of six task terms are summed across all 
values of n. The variables inside the parenthese are the six theoretical 
parameters of the one-stage model (c', d', m, n, p, s). The exponents, as 
in Equation 6, are observed states in the data. 

Three observable states can be distinguished in this one-stage model, 
namely, Q, R, and S. The Q and S states have the same definitions as in 
the two-stage model. However, R has been defined as the state on any 
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error trial; in other words, the E and R states of the two-stage model are 
combined in state R of the one-stage model. Each exponent in Equation 7 
refers to the total numbers of times that the process was observed to be in 
the indicated states on the consecutive trials for the experimental condi­
tion as a whole. Differentiating the logarithm of Equation 7 does not 
produce simple algebraic expressions for the minima of the partial deriva­
tives of the six parameters. Therefore the logarithm of Equation 7 has to 
be programmed, and the counts of the transitions of some experimental 
condition serve as the input. 

Subsequently, both the minimum value of Lz and the parameters are 
estimated for that condition by numerical methods, as with the likelihood 
function for the two-stage model. Following this, the necessity test is 
performed. The statistic from Equation 1 is 

X2(5) = -21n LI/Lz, 
where LI is the calculated likelihood of the data under the one-stage 
model and Lz is the calculated likelihood of the data under the two-stage 
model. The null hypothesis tested by this statistic is that the two likeli­
hoods are not reliably different versus the alternative hypothesis that Lz is 
larger. The two-stage model passes the necessity test in those instances 
where this null hypothesis is rejected for some critical value of (5), XZ(5), 
such as p = .05. 

If the null hypothesis is rejected, the sufficiency tests are performed. It 
is common practice in two-stage analysis to study three types of statistics, 
namely, those concerned with the first stage of learning, those concerned 
with the second stage of learning, and those concerned with the learning 
process as a whole. The motivation for this procedure is that the model 
should predict the results for the individual stages as well as for the 
overall course of learning. Several goodness-of-fit measures have been 
developed for the identifiable model, including (1) sampling distributions 
for one first-stage statistic (errors before first success; see Brainerd, 
Howe, & Kingma, 1982, equations 47a and 47b), (2) two second-stage 
statistics (length of R runs and length of S runs, see Brainerd et aI., 1982a, 
equations 48 and 49), and (3) three overall statistics (the learning curve, 
total errors, and trial number of the last error; see Brainerd, Howe, & 
Kingma, 1982, equations 50a, 50b, 51a, 51b, 52a, and 52b). When it is 
shown that the model fits the data, tests of hypotheses can be performed. 

In sum, the likelihood functions of both the two-stage model and the 
one-stage model, as presented here, Equations 6 and 7, respectively, must 
be programmed. Such a program reads the input as data transition counts 
of some experimental condition. To find the minimum of the logarithm of 
these likelihood functions, an optimization program is used that is avail­
able in the majority of the mathematical libraries on most mainframe 
computers. When parameter values and the minimum function values are 
obtained for these likelihood functions, the necessity test is performed. If 
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a model passes the necessity test, then sufficiency tests can be performed 
very easily by substituting the parameter values in the equations of the 
sufficiency tests provided in Brainerd et aI. (1982a). 

The likelihood function of the two-stage model is also the basis for 
hypothesis testing. For example, the appropriate statistic for the experi­
mentwise testing is 

X2[k(11)-11] = -2 In [L2IL21 x ... x Lzd . (8) 

In the denominator, each term is the likelihood of the data for one of the k 
treatment combinations, as already estimated by the likelihood function 
of Equation 6. In the numerator, the value L; is found by pooling the 
protocols (transition counts) for all k conditions and then estimating the 
likelihood of the pooled data used in Equation 6. Also for the other hy­
pothesis testing, the likelihood function of Equation 6 is used. 

This new two-stage model can be used immediately. The investment in 
time will be small because only two functions have to be programmed and 
the identifiability proofs have already been performed (see Brainerd, 
Howe, & Kingma, 1982). In the next section, these models are illustrated 
in a free-recall experiment with intellectually impaired children. 

Storage and Retrieval Processes in Intellectually 
Impaired Children 

In this study the performance of free-recall tasks is investigated in learn­
ing-disabled children and educable mentally retarded children. An exact 
definition of learning disability is still being debated (Bryan & Bryan, 
1980; Mercer, Forgogne, & Wolking, 1976). However, it is generally ac­
cepted that these children show a marked discrepancy between intellec­
tual ability and scholastic performance (e.g., Hallahan & Kauffman, 
1976). Learning-disabled children have IQs in the normal range, but per­
form below their intellectual ability in one or more academic subjects, 
mostly reading or arithmetic. 

Most research on children with specific learning disabilities has cen­
tered on tasks that are rather closely related to the disability, such as 
grapheme encoding in reading-disabled children or syntactical anomalies 
in language-impaired children (Brainerd et aI., in press, a). However, 
there has been a growing interest in the loci of memory differences in 
learning-disabled children and normal achieving children. Learning-dis­
abled children with normal IQs perform more poorly on long-term mem­
ory tasks (Ceci, Ringstrom, & Lea, 1981; Ceci, Lea, & Ringstrom, 1980; 
Howe et aI., in press, b; Wong, Wong, & Foth, 1977), but the basis of this 
performance in terms of the storage and retrieval concepts is still unclear. 

A number of theories concern long-term memory deficits in learning­
disabled children. Most of these theories employ a deficit hypothesis (for 
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an overview, see Manis & Morrison, 1985). The most prominent cases in 
point are the structural deficit hypothesis, the strategy deficit hypothesis, 
the perceptual deficit hypothesis, and the short-term memory deficit hy­
pothesis. According to the structural deficit hypothesis, neurological de­
fects account for the poor performance on list-learning tasks in learning­
disabled children (Beaumont & Rugg, 1978; Newell & Rugel, 1981; 
Swanson & Mullen, 1983; Witelson, 1977). However, a key weakness of 
the structural deficit position is its imprecision with respect to the specific 
long-term memory processes in learning-disabled children (Brainerd et 
al., in press, a). For instance, it is unclear whether this position would 
anticipate that learning-disabled children will primarily have problems 
with encoding, storage, retaining previously stored traces, or retrieving 
previously stored traces. Therefore, the implications of the structural 
deficit hypothesis for standard process variables of memory theories are 
rather ambiguous. 

According to the strategy deficit hypothesis, learning-disabled children 
use inefficient mnemonic strategies on long-term memory tasks, espe­
cially organizational strategies (Dallago & Moely, 1980; Freston & Drew, 
1974; Parker, Freston, & Drew, 1975; Wong et aI., 1977). However, the 
weakness of the strategy deficity hypothesis position is that performance 
on long-term memory tasks is assumed to depend on the spontaneous use 
of mnemonic strategies. Although the evidence favors this assumption 
with adults, the evidence with children does not. Apparently, children 
often do not use strategies on these list-learning tasks spontaneously (Pre­
ssley, Heisel, McCormick, & Nakamura, 1982). Furthermore, neither the 
amount of subjective organization nor the amount of category clustering 
correlates with accuracy of recall before adolescence (Moely, 1977). 

According to the perceptual deficit hypothesis position, perceptual dis­
orders lie at the root of learning impairment (for a review see Bender, 
1957; Cruickshank, 1972; Morrison & Manis, 1982; Vellutino, 1979). Top­
ics that have been investigated under this umbrella include perceptual 
capacity, duration of initial information registration, and perceptual pro­
cessing speed. Concerning the former two aspects, recent research failed 
to uncover deficits in learning-disabled children in either the capacity or 
the duration of initial information registration (Arnett & DiLollo, 1979; 
McIntyre, Murray Cronin, & Blackwell, 1978; Morrison, Giordani, & 
Nagy, 1977). However, Morrison et at. (1977) found that reading disabil­
ity involves some problems in the processing of information in stages 
following initial perception. Research has also failed to find major differ­
ences in speed of perceptual processing between learning-disabled and 
normal achieving children (Arnett & DiLollo, 1979; Katz & Wicklund, 
1972; Stanley, 1975). In addition, visual memory in learning-disabled chil­
dren is not necessarily deficient (Vellutino, Smith, Steger, & Kaman, 
1975; Vellutino, Steger, & Kandel, 1972). The perceptual deficit hypothe­
sis, although on the surface appealing, is unsatisfactory because system-
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atic research has failed repeatedly to find differences between normal 
achieving and learning-disabled children in basic perceptual processes 
(Morrison & Manis, 1982). 

More recently, it has been suggested that short-term deficits in learning­
disabled children underlie many of their difficulties on general cognitive 
and long-term memory tasks. For example, it has been hypothesized that 
the lower recency effect in immediate free recall is due to some short-term 
memory deficit (Morrison & Manis, 1982). Unfortunately, this suggestion 
has little empirical support because differences in the effect between 
learning-disabled and normal achieving children are not reliable (Bauer, 
1979). In contrast, differences in primacy effects tend to be stable and 
well replicated (Bauer, 1977, 1979). 

Despite a failure to find consistent evidence for the different types of 
deficit hypotheses, there is considerable evidence that learning-disabled 
children have difficulty in the basic process of storing and retrieving infor­
mation (e.g., Vellutino, 1979). Unfortunately, this research on long-term 
memory deficits has relied on purely qualitative considerations in separat­
ing storage processes from retrieval processes. The conjoint measure­
ment of these two processes makes it impossible to break up the two basic 
processes by the conventional statistical methods used in these experi­
ments. 

In contrast, Brainerd et al. (in 'press, a) and Howe et al. (in press, b) 
employed the new two-stage model for analyzing the loci of memory 
differences in normal achieving and learning-disabled children. The most 
important finding was that while differences between learning-disabled 
and normal achieving children remained age-invariant in free recall at 
storage, differences in retrieval increased with age. Thus, the new 
two-stage model may be a valuable instrument for analyzing the loci 
of memory differences in normal achieving and learning-disabled 
children. 

Educable mentally retarded children have IQs between 50 and 80 (Ellis, 
1979) and generally perform worse on list-learning tasks than either learn­
ing-disabled or normal achieving children of the same chronological age 
(Evans & Bilsky, 1979). Some researchers argue that this poor perfor­
mance on list-learning tasks may be attributed to a deficiency in the use of 
rehearsal strategies rather than to a long-term memory deficit per se. In 
fact, inducing the use of such rehearsal strategies experimentally has 
typically resulted in marked facilitation of recall performance in retarded 
persons (Ashcraft & Kellas, 1974; Belmont & Butterfield, 1971; Kellas, 
Ashcraft, & Johnson, 1973; Moely, Olson, Halwes, & Flavell, 1969). 
However, even this finding alone need not imply that poorer recall perfor­
mance of educable mentally retarded children in standard free-recall tasks 
might be due to rehearsal strategy per se (Ashcraft & Kellas, 1974; 
Flavell, 1970). 

There is some evidence that the learning impairment for educable men­
tally retarded children may be attributed to long-term memory processes. 
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Educable mentally retarded and normally achieving children do not differ 
significantly on any portion of the serial position curve in a free-recall 
task; only normal achieving children produced a significant primacy effect 
(Spitz, Winters, Johnson, & Carroll, 1975). Although educable mentally 
retarded children have lower performance on free-recall tasks than either 
normal achieving or learning-disabled children, the loci of these memory 
differences is not well understood. Using the stages-of-Iearning analysis, 
Brainerd, Howe, and Kingma (in press, a) and Howe et al. (in press) 
showed that the memory differences between normal achieving and learn­
ing-disabled children could be localized in retrieval processes. However, 
these intellectually impaired groups have rarely been compared. The pur­
pose of the present research was both to pinpoint the loci of memory 
differences between learning-disabled and educable mentally retarded 
children and to assess with the new stages-of-Iearning model whether 
these differences varied across two age levels. 

An important stimulus variable in free recall is the picture-word manip­
ulation. Such a manipulation permits comparisons of recall involving the 
same semantic concepts presented in different visual formats (printed 
words versus line drawings). Such comparisons may be of value in assess­
ing whether certain storage-retrieval deficits are a function of printed 
words. In some studies with learning-disabled children, material has been 
presented in a pictorial format (e.g., Dallago & Moely, 1980) and in a 
word format (e.g., McFarland & Rhodes, 1976). However, few long-term 
memory studies exist in which pictures and words were directly com­
pared. Evidence from these and other studies indirectly suggests that the 
learning-disabled child's memory deficit may be the result of a failure to 
interconnect verbal and visual codes when storing and retrieving visually 
presented information (e.g., Ceci, 1982; Ceci et at., 1980; Perfetti, Finger, 
& Hogaboom, 1978; Swanson, 1984; Vellutino, Steger, Desoto, & Philips, 
1955). In addition, Howe et al. (in press, b) found that although learning­
disabled and normal achieving children benefited from the presentation in 
pictorial format, normal achieving children were consistently better than 
the learning-disabled children at storing and learning to retrieve both 
pictures and words. 

The performance of mentally retarded subjects has also been shown to 
improve on list-learning tasks in which pictures are used. Evans (1970) 
found that combined visual and auditory conditions led to better recall 
than did either modality alone. However, recall did not differ for the 
visual and auditory conditions. Similarly, Geruoy and Winters (1970) 
found that bimodal presentation, in which each picture was labeled by the 
experimenter, resulted in a better recall than did auditory presentation. 
However, in these studies, learning-disabled and mentally retarded chil­
dren were not compared. The new two-stage model was used to analyze 
the loci of memory differences between learning-disabled and educable 
mentally retarded children in terms of storage and retrieval effects by 
using picture-word manipulation in a free-recall task. 
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Method 

SUBJECTS 

The sample consisted of two age levels, 8- and 11-year-olds. The 8-year­
olds were 60 (45 males and 15 females) learning-disabled children (mean 
age = 8 years, 4 months; SD = 6 months) and 60 (40 males and 20 females) 
educable mentally retarded children (mean age = 8 years, 6 months, SD = 

6 months). The ll-year-olds were 60 (46 males and 14 females) learning­
disabled children (mean age = 11 years, 5 months, SD = 4 months) and 60 
(41 males and 19 females) educable mentally retarded children (mean 
age = 11 years, 4 months, SD = 5 months). 

All learning-disabled children had measured IQs from 97 to 106, and the 
educable mentally retarded children had IQs from 60 to 75. Learning­
disabled children had been classified by their schools as being at least one 
year behind their classmates in either reading or arithmetic, but not both. 

MATERIALS AND PROCEDURE 

Lists were composed of either concrete nouns or line drawings of the 
objects denoted by these nouns. All items were drawn from the Paivio, 
Yuille, and Madigan (1968) norms and were highly familiar (A or AA on 
the Thorndike-Lorge count). Each list was composed of 16 items. 

Half of the children in each age and ability level were randomly as­
signed to the picture list, and the remaining half were assigned to the word 
list. Lists were learned by using an alternating sequence of study-distrac­
tor-test cycles. In each study phase, items were presented individually in 
random order at a 5-s rate. To avoid any potential differences owing to 
naming or reading ability, the experimenter pronounced the name of each 

TABLE 2.4. Necessity tests for the learning­
disabled and educable mentally retarded 
children data. 

Statistic 
Experiment 

and condition -21n LJ -2 In Lz XZ(5) 

Learning-disabled children 
8-year-olds 

Pictures 4521.27 4197.72 323.55 
Words 5240.53 4784.41 456.12 

ll-year-olds 
Pictures 2992.02 2839.41 152.61 
Words 3725.82 3515.01 210.81 

Educable mentally retarded children 
8-year-olds 

Pictures 4895.66 4526.54 369.12 
Words 6100.01 5698.55 432.46 

ll-year-olds 
Pictures 4104.46 3930.34 174.12 
Words 4903.84 4618.61 285.23 
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item at the time of visual presentation. After all items had been presented, 
the child circled pairs of letters for 30 s to eliminate short-term memory 
effects. Following this, the child was instructed to recall aloud as many of 
the items as he or she could remember. A test trial ended when 30 shad 
elapsed without an item being recalled. This sequence of study phase 
followed by distractor task followed by test phase continued until the 
child reached an acquisition criterion of two consecutive errorless recall 
trials. The one exception to this routine occurred on the initial sequence. 
Here, in accordance with a methodological requirement of the two-stage 
model, instead of following the first study-distractor-test sequence with 
another study opportunity, the subject was immediately presented with 
the distractor task followed by a test trial. 

Results and Discussion 

PRELIMINARY ANALYSIS 

First, the minima of maximum likelihood functions were computed for 
both one- and two-stage models for all conditions. Estimates of L\ (one­
stage model) and Lz (two-stage model) and the test statistic of Equation 1 
appear by treatment condition in Table 2.4. For all treatment conditions, 
the two-stage model passes the necessity test. (Because logarithms are 
used, estimates of Lz are subtracted from the estimates of L\.) 

Next, sufficiency tests were performed for the two-stage model for all 
treatment conditions in order to analyze whether the model fitted all these 
data sets. The observed-predicted comparisons for four learning statistics 
(errors before first success, length of S runs, length of R runs, and the 
learning curve) for the 8-year-old learning-disabled children are presented 
in Table 2.5. (The sufficiency data for the other treatments were quite 

TABLE 2.5. Illustrative sufficiency tests for the learning-disabled 
8-year-old children data. 

Age level k 
and 

statistic 0 2 3 4 5 6 7 8 9 10 11 12 

E 
Observed .30 .24 .19 .12 .07 .03 .02 .01 .01 .01 
Predicted .29 .25 .20 .14 .09 .04 .01 .00 .00 .00 

LR 
Observed .53 .10 .04 .02 .01 
Predicted .47 .18 .09 .03 .00 

LS 
Observed .33 .18 .08 .06 .03 
Predicted .29 .25 .08 .06 .01 

P(Xk=o) 
Observed .24 .50 .60 .71 .75 .80 .84 .86 .91 .95 .96 .97 
Predicted .20 .48 .62 .71 .74 .80 .85 .87 .91 .95 .96 .98 

13 

.99 

.99 

Note: The number of errors before first success is E, LR is the length of error runs after first success, LS is the length 
of success runs before last error, and Xk is the learning curve. 
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TABLE 2.6. Estimates of the parameters by age and ability level. 
Retrieval learning Poststorage retrieval 

performance 
Trace storage Pre- Post-

Ability, age and retention storage storage Early Late 
level, and list 

condition a' a I-f b' b c d I - e I - r g 

Learning-disabled children 
8-year-olds 

Pictures .51 .47 l.00 .28 .00 .28 .31 .77 .82 .48 
Words .38 .44 l.00 .17 .01 .17 .36 .68 .89 .50 

Il-year-olds 
Pictures .50 .67 l.00 .33 .31 .36 .37 .67 .85 .59 
Words .40 .48 l.00 .17 .21 .24 .33 .43 .91 .54 

Educable mentally retarded children 
8-year-olds 

Pictures .36 .45 l.00 .34 .00 .15 .35 .74 .90 .47 
Words .26 .44 l.00 .31 .00 .00 .34 .60 .86 .46 

Il-year-olds 
Pictures .44 .55 l.00 .16 .17 .26 .37 .49 .86 .64 
Words .34 .44 l.00 .20 .Il .17 .36 .54 .81 .49 

comparable.) No significant differences were observed between the ob­
served and the predicted values by using the Kolmogorov-Smirnoff test. 
Therefore, the two-stage model was used for analyzing all the treatment 
conditions. 

Subsequently, the experimentwise test was conducted to determine 
whether parameter values differed between conditions for the experiment 
as a whole (see Equation 8). At x2(77) = 874.21, p < .001 was found for 
the test, indicating significant differences. The remaining steps in this 
sequence involved conditionwise tests to determine which pairs of condi­
tions differed as well as parameterwise tests to determine which of the 
parameters differed between conditions. Three mains sets of comparisons 
were made, each of which involved four conditionwise pairings: 8- versus 
ll-year-olds, pictures versus words, and learning-disabled versus educa­
ble mentally retarded children. (See Table 2.6.) 

PICTURE-WORD EFFECTS 

The four conditionwise tests revealed significant picture-word differences 
for all four groups of children. Parameterwise tests were performed to 
determine the locus of parameter differences for those pairs of conditions 
which differed statistically (see Brainerd, Howe, & Kingma, 1982, equa­
tion 55). Each of these tests is distributed as )(2(1). As noted previously, 
four types of memory processes are measured with the new two-stage 
model, namely, storage difficulty (parameters a' and a), retention diffi­
culty (parameter f), retrieval learning difficulty (parameters b' ,b, c, and 
d), and accuracy of retrieval (parameters e, g, h, and r). Statistically 

h 

.73 

.67 

.69 

.78 

.40 

.32 

.71 

.66 
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reliable differences are reported separately for learning-disabled and edu­
cable mentally retarded children. 

Learning-Disabled Children 

Parameterwise tests revealed that a' and a taken together were reliably 
larger for pictures than for words for both 8- and ll-year-olds. The magni­
tude of the average numerical difference at storage was statistically 
greater for the older children (.15) than for the younger children (.07). In 
other words, pictures were easier to store than words, and the magnitude 
of this effect increased with age. However, despite the greater ease with 
which pictures were stored, pictures and words were retained equally 
once they had been stored (see parameter 1 - f). 

With respect to retrieval learning, the prestorage retrieval parameter h' 
was reliably larger for pictures than for words at both ages. However, 
prestorage retrieval learning (parameter h) occurred only for ll-year-olds 
and was larger for pictures than for words. Poststorage retrieval learning 
following a success (parameter c) was also found easier for pictures than 
for words for the younger and older children. Finally, poststorage re­
trieval performance was found for the 8-year-olds to be larger for the 
pictures (parameters 1 - e and h), but these children had a better perfor­
mance on words on the first study trial (parameter 1 - r). The ll-year­
olds also found pictures easier than words (parameter 1 - e), but they 
showed a better performance on words on two other parameters (1 - r 
and h). 

Educable Mentally Retarded Children 

Picture-word differences at storage resembled those found for the learn­
ing-disabled children. Both 8- and ll-year-old children found pictures 
easier to store than words (as measured by a' and a). Here also, the 
picture superiority effect at storage increased with age. As before, the 
retention parameter 1 - f did not vary between pictures and words. 

Unlike with the 8-year-old learning-disabled children, the picture ad­
vantage was not maintained in the prestorage retrieval learning in the 
young educable mentally retarded children. For the ll-year-olds the pre­
storage retrieval learning was more reliable for pictures than words on the 
study trials following the first one (as measured by parameter h), whereas 
the learning-disabled children at this age level also showed a picture su­
periority on both prestorage parameters h' and h. Concerning the post­
storage retrieval learning, following a success, the picture superiority was 
shown for parameter c for both age levels, which resembles the pattern 
found with the learning-disabled children. Although pictures had an effect 
on more retrieval parameters in the ll-year-old children (parameters h' 
and h) than in the 8-year-old children, the effect on the retrieval parame­
ters in the older educable mentally retarded children was less (only one 
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parameter b was affected) than in the learning-disabled children at the 
same age level. 

With respect to the poststorage retrieval performance, 8-year-old edu­
cable mentally retarded children found pictures easier than words (as 
measured by 1 - e, 1 - r, and h). However, the ll-year-old children 
showed a better retrieval performance on three of the four parameters 
(1 - r, g, and h). 

To summarize, pictures facilitated both storage and retrieval at both 
ability levels. The probability of a heuristic retrieval (after the first study) 
was greater for pictures than for words. The picture effect showed an 
increase in the ll-year-olds of both ability levels on the storage side on 
the first study trial (parameter a') as well as on the following study trial 
(parameter a). Striking differences in picture-word effects were observed 
on the retrieval side for prestorage retrieval on both the first and following 
trials. Thus, the use of pictures involves a greater effect than words in the 
older children than in the younger children of both ability levels. Overall, 
the pictures were superior on the poststorage retrieval learning for both 
ability groups and age levels. The probability of heuristic retrieval was 
only greater for pictures than for words in the ll-year-old educable men­
tally retarded children. However, a word superiority effect (in terms of 
algorithm retrieval was observed for the ll-year-old learning-disabled 
children. Overall, then, differences in ability were primarily reflected in 
older children's heuristic and algorithmic retrieval skills. 

Age Effects 

The 8- and ll-year-olds differed significantly on the conditionwise test for 
each of the ability levels, x2(11) values were greater than 35.64, p < .001. 
The results of the parameterwise test are discussed separately for the 
learning-disabled and the educable mentally retarded children. 

Learning-Disabled Children. Pronounced age differences were found at 
storage; specifically pictures (as measured by a) were easier for older 
children. No differences in trace retention were found (1 - f). 

Age-level differences for retrieval learning were rather variable. The 
ll-year-olds had a reliably larger prestorage retrieval performance for 
both pictures and words (as measured by b) than the 8-year-old learning­
disabled children. Older children were also better than the younger chil­
dren at poststorage retrieval of pictures (as measured by c). For retrieval 
performance, age differences tended to interact with materials. Older 
children were better than younger children at the retrieval performance 
for words (as measured by 1 - e, 1 - r, and h). In contrast, younger 
children were better than older children at the retrieval performance for 
pictures on the first state P test trial ( as measured by 1 - e) and subse­
quent state P test trials that preceded a success (as measured by h). 
However, older children performed better than younger children for pic-
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tures on those later state P trials that were preceded by an error (as 
measured by g). 

Educable Mentally Retarded Children. In contrast to the situation with 
learning-disabled children, for the educable mentally retarded there were 
more age differences during storage. Both pictures and words (as mea­
sured by a' and a, respectively) were easier for older children than youn­
ger children at storage. Trace retention still did not vary between age 
levels. Age differences at retrieval were also observed for the educable 
mentally retarded children, but these effects were larger and more vari­
able than those reported for the learning-disabled children. Younger chil­
dren were better than older children in retrieval at the first test trial (as 
measured by b'), whereas the reverse was observed for the second and 
following test trials (as measured by b). In addition, older children were 
better than younger children at poststorage retrieval learning for both 
pictures and words (as measured by c). Age differences on the post­
storage retrieval performance were rather mixed. Younger children were 
better than the older children at early heuristic retrieval for pictures (as 
measured by 1 - e). In contrast, the poststorage retrieval parameters g 

and h were more reliable for older children than for younger children 
when pictures were used. 

Overall, major developmental advances were most predominant for the 
learning-disabled children at storage after the first study trial, prestorage 
retrieval learning, and early poststorage retrieval performance. Develop­
mental differences in memorization skills for the educable mentally re­
tarded children were more pronounced for both storage parameters and 
the prestorage retrieval parameters. The development of heuristic re­
trieval was rather mixed, whereas pronounced developmental effects 
were found for algorithmic retrieval for both pictures and words. 

Ability Effects 

Four conditionwise tests revealed differences between learning-disabled 
and educable mentally retarded childen. The following numerical results 
were obtained: All x2(11) values were greater than 37.64, p, < .001. Be­
cause ability effects varied with age, reliable parameter differences are 
reported separately for 8- and 11-year-old children. 

Eight- Year-Old Children. Concerning the trace storage, learning-disabled 
children were better than educable mentally retarded children at storing 
both pictures and words (as measured by a') with average storage differ­
ences being significantly greater for words than for pictures. Although 
storage differed as a function of ability level, no differences were found 
for trace retention (1 - f). 

On the retrieval learning side, only minor differences were found. Edu­
cable mentally retarded children were better than learning-disabled chil­
dren at retrieving words (as measured by b'), and learning-disabled chil-
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dren were better than educable mentally retarded children at poststorage 
retrieval for words (as measured by c). Note that no reliable ability differ­
ences were observed for pictures. Ability differences at retrieval were 
also reflected in the retrieval performance parameters. The difference was 
located on one parameter h: The learning-disabled children were better 
than the educable mentally retarded children for both pictures and words 
on the second and following test trials in state P which were preceded by a 
success. 

Eleven- Year-Old Children. Ability differences found for the younger chil­
dren at the trace storage side were almost diminished in the older chil­
dren. The only reliable difference was observed for pictures on parameter 
a: The learning-disabled children were better than the educable mentally 
retarded children at storing a trace on the second and following study 
trials. In contrast, major ability differences were found on the retrieval 
side. Specifically, learning-disabled children were better than educable 
mentally retarded children at learning to retrieve both pictures (as mea­
sured by b' , b, and c) and words (as measured by b). These differences 
were also reflected in the early poststorage retrieval performance. Learn­
ing-disabled children were reliably better at retrieval performance in the 
first test trial in state P (as measured by 1 - e) for pictures, whereas 
learning-disabled children were better on subsequent state P trials (as 
measured by h for words). 

Turning to the parameter invariance, two types are distinguished, quan­
titative and qualitative. Quantitative invariances refer to situations in 
which the numerical values of the parameters remain stable across condi­
tions, whereas qualitative invariances are those in which relationships 
between parameter values remain stable across conditions. Concerning 
quantitative invariance, it has already been noted that the numerical value 
of the parameter 1 - f did not vary reliably across conditions. Thus, 
despite differences in trace storage as a function of material and ability (in 
the younger children) no differences were observed to retain a trace once 
it was stored in long-term memory. 

Concerning qualitative invariance, Table 2.6 shows that g < h (except 
for the 8-year-old educable mentally retarded children). This outcome 
implies that for all learning-disabled children and the older educable men­
tally retarded children, retrieval performance was superior if the preced­
ing recall attempt was successful. This result has been interpreted as a 
priming effect in heuristic retrieval (see, e.g., Brainerd et aI., 1981). 

Summary and Conclusions 

In this chapter, some features of mathematical modeling have been dis­
cussed. The issue of tying a model to the data was illustrated with the new 
two-stage Markov model. A sequence of proofs and a battery of tests are 
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needed before the parameter estimates may be interpreted. First, it must 
be proved that the model is identifiable in its data space. When the model 
passes the identifiability proof, the necessity test is performed to deter­
mine whether a simpler model will do a better job. A number of suffi­
ciency tests have to be performed for models that pass the necessity test. 
The sufficiency tests tells us whether the model fits the data. When the 
sufficiency tests show that the predictions of the model are in very close 
agreement with the data, the between-condition and conditionwise tests 
are used to locate the conditions with reliable parameter differences. 
Parameterwise tests are used for analyzing whether differences between 
parameters are reliable. 

Although these modeling procedures resemble conventional statistical 
testing, a mathematical model can do a better job than the conventional 
statistical methods, because conventional methods fail to separate the 
relative contributions of storage and retrieval processes as reflected in the 
performance on a free-recall task. In contrast, mathematical models en­
able us to separate these two processes. 

Subsequently, characteristics of Markov models were discussed. It was 
emphasized that a Markov chain is a model of changes in the subject's 
cognitive state of knowledge, that elements of the state space correspond 
to the subject's state of knowledge about a task, and that the transition 
mechanism shows how these knowledge states change. For a simple Mar­
kov model, a branching tree can be used to represent the transitions, 
whereas in a more complex model a transition matrix of the transitions 
between the states on trials nand n + 1 is more suitable. 

I then described the new two-stage learning model and an alternative 
one-stage learning model. The way of linking the theoretical model to the 
data was illustrated with a free-recall experiment in which stimulus pre­
sentation (picture versus words) was manipulated in learning-disabled and 
educable mentally retarded children. Pictures facilitated learning for both 
types of children. Ability effects on the parameter estimates were evident. 
For younger learning-disabled and educable mentally retarded children 
(8-year-olds), pictures were more easily stored than words. Differences 
were found for retrieval as well as for retrieval performance. Pictorial 
superiority at the storage side diminished in the older (11-year-old) educa­
ble mentally retarded children, but memory differences were found in 
retrieval. 

The two-stage Markov models can be used successfully for analyzing 
the loci of memory differences in intellectually impaired children. How­
ever, it can be argued that this model has some limitations for atypical 
subjects because of the underlying assumption that the child has to reach 
a criterion of two consecutive correct test trials. When a list consists of 
more difficult words, intellectually impaired children may be unable to 
meet this criterion. As a consequence, the two-stage model as presented 
in this chapter cannot be used. However, Brainerd (1985) has shown that 
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for fixed trial experiments, two-stage Markov models can be constructed 
that are nested in the present model (that is, the same parameters are 
employed). Thus, a family of different two-stage models exists that are 
applicable for different experimental situations. 

Two-stage Markov models, although quite successfully applied in list­
learning tasks, are rarely used for analyzing the development of concepts 
(Brainerd, 1982a). Because the acquisition of concepts resembles learning 
in free-recall and paired-associate tasks, it may be worthwhile to employ 
these models for conceptual development. 
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Appendix 2A 

The definitions that are substituted for the observable parameters in 
Equation 5 (for the derivation see Brainerd et aI., 1982a) are 

1T1 = a' b' + a' [1 - b'(1 - r)(1 - /)ch]/[1 - (1 - c)h] , (9) 

1T2 = a'(1 - b')(1 - r)[f + (1 - /)(1 - h)] , (10) 

1T3 = [a'(1 - b')(1 - r)(1 - /)(1 - c)(1 - h)h]/[1 - (1 - c)h] , (11) 

1T4 = [a'(1 - b')r(1 - /)cg]/[1 - (1 - c)h] , (12) 

1T5 = [a'(1 - b')r(1 - /)(1 - c)(1 - h)g]/[1 - (1 - c)h] , (13) 

u = d + (1 - d)gc/[1 - (1 - c)h] , (14) 

v = (1 - g)[1 - (1 - c)h]/{(1 - g)[1 - (1 - c)h] 
+ (1 - c)(1 - h)g} , (15) 

z = 1 - (1 - c)h , (16) 

(Xi = {(1 - a)i-l [1 - a' + a'(1 - b')rf] {ab + a(1 - b)(1 - e)C/[1 
;-2 

- (1 - c)h]) + (a(1 - b)e[1 - a' + a'(1 - b')rf] { L 
k~O 

(1 - a)k[(1 - d)(1 - g)]i-2-k + a'(1 - b')r(1 - /)(1 - g)[(1 - d)(1 
- g)]i-l} {d + (1 - d)cg/[1 - (1 - c)h]) -:- {(1 - aY- 1 [1 - a' 
+ a'(1 - b')rf] + a(1 - b)e[1 - a' + a'(1 - b)rf] 

i-2 

X L (1 - a)k[(1 - d)(1 - g)]i-3-k 
k~O 

+ a'(1 - b')r(1 - f (1 - g)[(1 - d)(1 - g)]i-l)} (17) 

and 
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f3i = {(1 - aY- 1 [1 - a' + a'(l - b')rf] {a(1 - b)(1 - e)(1 - c) 
X (1 - h)/[l - (1 - c)h] + {a(1 - b)e[l - a'(1 - b')rf] 

i-2 
X 2: (1 - a)k[(1 - d)(1 - g)i-2-k] 

k=O 

+ a'(1 - b')r(1 - n(1 - g)[(1 - d)(1 - g)]i-I} {(1 - d)(1 - c) 
x (1 - h)g/[l - (1 - c)h])} -:- {(l - ay-l(1 - a' + a'(1 - b')r! 
+ (a(1 - b)e[l - a' + a'(1 - b')!r] 

i-2 

x (2: (1 - a)k[(1 - d)(1 - g)]i-2-k) + a'(1 - b')r(1 - n(1 - g) 
k=O 
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X [(1 - d)(1 - g)]i-I)} . (18) 



3. Learning a Cognitive Skill and 
Its Components 

Alex Cherry Wilkinson and Beth A. Haines 

Learning a Cognitive Skill and Its Components 

In this chapter, we analyze transitions during cognitive growth. Our ap­
proach contrasts with traditional methods of studying children's cogni­
tion, which typically identify stages or sequences of development but are 
vague or altogether silent about processes of transition. We present de­
tailed analyses of three kinds of transitions that occur as children acquire 
a cognitive skill. For each of the three kinds of transition, we propose a 
mathematical model. 

Views of Children's Cognition 

We begin with a brief summary of some classical and contemporary views 
of cognitive development and with a sketch of our own perspective. 

States and Transitions in Cognitive Development 

In research on cognitive development, biological growth is a venerable, 
popular, and powerful metaphor (Carmichael, 1970; Piaget, 1970, 1971). It 
uses a sequence of stages to describe the child's progress in reasoning, 
thinking, or remembering. Thus, the major way to analyze development 
according to a biological view is to break it down into discrete steps. 

Another view, which is more recent but increasingly popular, comes 
from artificial intelligence. This view derives from expert systems that 
contrast the mature knowledge of an expert and the tenuous knowledge of 
a novice (Chase & Simon, 1973; Chi, Glaser, & Rees, 1982). Here, in a 
sense, there are two stages. The goal is to understand development by 
specifying clearly where it starts and where it ends. 

Still another view, which is also recent and is becoming more visible in 
the field of cognitive development, derives from mathematical models of 
judgment. It is the perspective of information integration theory. (For 
reviews, see Anderson, 1980; Surber, 1984 and Chapter 4, this volume.) 
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As applied to children's cognition, it contrasts two or more mathematical 
equations that formalize alternative processes by which a child might use 
information to reach a decision or make a judgment. A typical finding 
from studies using this view is that different equations fit children's deci­
sions or judgments at different ages (e.g., Wilkening, 1981). Thus, infor­
mation integration, like the other two views, aims to understand develop­
ment by identifying discrete states of cognition that characterize children 
of different ages. 

Finally, a fourth view of cognitive development comes from the com­
ponential theory of intelligence (Sternberg, 1977; Sternberg & Powell, 
1983). Like information integration theory, the componential theory of 
intelligence provides different equations that characterize different men­
tal processes. The focus here, however, is not on judgments or decisions 
but on reasoning and problem solving. A typical finding from mathemati­
cal models of componential intelligence, like models of information inte­
gration, is that different equations characterize children of different ages 
(e.g., Ashcraft, 1982; Sternberg & Nigro, 1980). 

To be sure, biological metaphors, expert systems, information integra­
tion theory, and componential theories of intelligence differ in many im­
portant ways. We have neglected their differences to cast a spotlight on a 
feature they all share. The common feature is that they all analyze chil­
dren's cognition by isolating fixed points in development. Only indirectly 
or by inference do they study the actual process of development. To their 
credit, these views tell us much that is valuable about points on the path 
of a child's developmental journey. In short, they tell us much about 
where the child travels. They tell us less, however, about the method of 
travel. 

In this chapter, we describe models of studying cognitive development 
that take the opposite approach. We limit any discussion of stages, states, 
or points that might demarcate the course of development. Instead, we 
concentrate our efforts on mathematical models that analyze processes of 
developmental transition. 

Cognitive Skills and Their Components 

Our models analyze several properties of developmental transition. Be­
fore we explain these properties, however, we must define the domain to 
which our models apply. Briefly, the domain of our models is children's 
procedural knowledge (knowing how), not their factual or semantic 
knowledge (knowing that). Within this domain, we study developmental 
transitions that occur as children explore strategies for assembling the 
components of a multifaceted cognitive skill. We define our key concepts 
as follows. 

Cog~itive skills are complex mental capabilities that one can learn to 
proficiency. Reaching proficiency will require long, repetitive experience 
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to make the complex skill highly reliable. Knowing how to play chess well 
is an example of a cognitive skill. Other examples are knowing how to 
count with dexterity or how to search intelligently for elusive memories. 

Components are constituent elements of a cognitive skill. A given com­
ponent need not be limited to a single skill. For example, one handy 
component is knowing how to match manual gestures one to one with 
vocal recitation of the items in a memorized list. This component is part of 
the cognitive skill of counting, in which one points at objects individually 
while reciting numbers from memory. The same component could also 
help a child to learn how to read letters, because the child could use it to 
point at printed, alphabetized letters while reciting the alphabet song. 

Strategies are ways of assembling components to accomplish an imme­
diate purpose. If it is used many times and found to be effective, a strat­
egy may become a routine that changes little and succeeds often. When it 
becomes routine, a strategy joins with other routines that use similar 
components, and together the routinized strategies form a cognitive skill. 
Before becoming a skill, these strategies may change often, and their 
success is erratic. 

Our goal is to analyze how children learn a cognitive skill, including its 
individual components and strategies for assembling them to solve prob­
lems. We make no attempt to identify a universal sequence of stages in 
the development of the skill, or even a typical or modal sequence. In­
stead, we observe the transitional period between children's initial awk­
wardness in exercising the skill and their eventual proficiency. While 
observing this transitional period, we analyze the children's efforts in 
three ways. 

1. Stability of knowledge. To begin, we analyze the stability of a child's 
knowledge of a task over repeated occasions of testing. Quantifying the 
stability of knowledge casts light, we shall argue, on the psychological 
architecture of a developing skill. 

2. Learning individual components. Next, we examine ways in which a 
child's knowledge changes while the child is practicing and learning a 
cognitive skill. Here we concentrate on alternative ways of describing 
how children acquire the individual components of the skill. 

3. Strategies for assembling components. Finally, we analyze children's 
strategies for assembling components into workable methods of solving 
problems. This analysis looks at how children take isolated compo­
nents they already know and seek ways to make them work together 
effectively. 

Thus, we have models that analyze, first, whether children's knowledge 
of a cognitive skill is stable, second, how children learn to use individual 
components that make up the skill, and, third, how children assemble the 
components into strategies. In each of these three cases, our models 
quantify transitions that occur during development. 
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Method 

The source of data for testing all our models was a single study in which 
preschool children tried to solve problems of constructing towers with 
wooden blocks. The study had the standard design of a training study, 
with a pretest, a training period, and a posttest. Haines (1983) thoroughly 
analyzed the results of the training. In this report, we concentrate on 
other findings, minimizing any discussion of training methods or their 
effecti veness. 

Apparatus 

We used a metal rod 40 cm tall that stood on a wooden base. Wooden 
blocks, each with a hole drilled heightwise through it, could be placed on 
the rod. The blocks were identical in width (10 cm), depth (5 cm), and 
color (unfinished oak); they varied, however, in height. The heights and 
their code letters were 12.5 cm, A; 10 cm, B; 7.5 cm, C; 5 cm, D; and 2.5 
cm, E. Sizes Band D were used in testing; sizes A, C, and E appeared 
only in training and control activities. 

Procedure 

The children were shown the materials and told how to place blocks on 
the rod. The experimenter explained that the child would earn one poker 
chip for each block placed on the rod and that the child could later use the 
chips to buy a toy. The experimenter dumped the blocks from a box, 
letting them fall haphazardly on the floor. Then the experimenter asked 
the child to build a tower by stacking blocks on the rod, using as many 
blocks as possible. 

The child had a pretest, training or a control activity, and a posttest, all 
in a single session lasting about 20 min. The pretest and posttest were 
identical in every respect. They contained three problems. The mostly 
short problem had 16 short (D) blocks and 8 tall (B) ones, the mostly tall 
problem had 16 tall (B) blocks and 8 short (B) ones, and the equally 
balanced problem had 12 each of short (D) and tall (B) blocks. The order 
of problems was counterbalanced. Between the pretest and posttest, a 
child had one of the following activities. 

SHORT-SIZE TRAINING 

In this activity, the children were told that they would playa game and 
that it would help them earn many chips. The experimenter showed the 
child a pair of blocks and asked which block the child should use to get 
many blocks on the rod. The pairs of blocks were AB, BC, CD, and DE. 
The experimenter showed the pairs in random order. After making a 
choice, the child got feedback either affirming that the shorter size was 
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right or saying that the child should have picked the shorter size. Notice 
that in the training pairs we used, the testing sizes Band D were correct as 
often as they were wrong (Bryant & Trabasso, 1971). Training continued 
until the child made eight consecutive correct choices. 

SAME-SIZE TRAINING 

For this activity, the children were told that they would playa game and 
that it would help them earn many chips. The experimenter put one or two 
C blocks on the rod, telling the children that this was the good size and 
that they wanted blocks matching this size. Notice that this size is exactly 
halfway between the Band D sizes used in testing. The child then drew a 
block from a covered box that contained one A, one E, and two C blocks. 
Mter getting a block, the child was to give it to the experimenter if it was 
the good size and put it aside if it was different. Verbal feedback empha­
sized that "we want that one, it's the same" or that "we don't want that 
one, it's different." Training continued until the child made eight consec­
utive correct choices. 

CONTROL CONDITION 

In this activity, a child chose whether to play with puppets or with cars. 
After choosing, the child engaged in free play, interacting with the experi­
menter and using A, C, and E blocks and the chosen puppets or cars. The 
free play lasted 4 to 5 min, which was the typical duration of the training 
conditions. 

Subjects 

Ninety-nine children, aged 37 to 78 months, participated in the study. Six 
of them were randomly eliminated to form three groups that were per­
fectly matched on pretest performance. The three groups each had 31 
children, of whom 12 children got no problem correct on the pretest, 8 got 
one correct, 6 got two correct, and 5 got three correct. The criterion of 
correct performance was at least six short blocks on the rod. The three 
groups were differentiated only by the activity they got between pretest 
and posttest, with each group getting one of the activities described 
above. 

Stability of Knowledge 

Our first analysis measured the stability of the children's knowledge of the 
block-stacking task. The analysis derived from Wilkinson's (1982b, 1984) 
theory of partial knowledge and used a mathematical model of double 
assessment. Previous data applying the theory and model to the block­
stacking task appeared in Wilkinson (1982a). With ample detail given in 



3. Learning a Cognitive Skill and Its Components 91 

these earlier papers, we limit the discussion here to the most essential 
information. 

Theory of Partial Knowledge 

The theory of partial knowledge applies to children (or older persons) who 
are neither novices nor experts. Given a set of problems that test some 
cognitive skill, children with partial knowledge would perform some of 
the problems correctly and others erroneously. For a preview and sum­
mary of the theory, see Table 3.1. 

The theory makes a critical distinction between restricted knowledge 
and variable knowledge. With restricted partial knowledge, a child would 
perform certain problems erroneously on every occasion and other prob­
lems correctly on every occasion. In this respect, restricted knowledge is 
stable across different occasions of its use. With variable partial knowl­
edge, a child would get a reasonably constant percentage of the problems 
correct across occasions, but the problems done correctly one time might 
be done erroneously another time. Thus, variable knowledge is unstable. 

The theory assumes that restricted and variable knowledge differ in 
stability because they have different cognitive structures. Restricted 
knowledge derives from a unitary algorithm. This type of cognitive struc­
ture is an invariant procedure or method that one uses in the same way 
with the same result on different occasions. Variable knowledge, in con­
trast, derives from cognitive structures that have a fragmented quality. 

More precisely, variable knowledge may have two kinds of cognitive 
structure. One kind of structure is a collection of methods from which one 
samples a single method, taking a different method on different occasions. 
This cognitive structure is a set of unitary substitutes. The elements of 
this set are substitutes because they are interchangeable; they are unitary 
because each of them is algorithmic. Alternatively, the cognitive structure 
for variable knowledge may be separate modular components that the 
child must assemble into a workable method. This cognitive structure 
produces variable knowledge because the process of assembly is success­
ful on some occasions but not on others. 

To see the difference between the two kinds of cognitive structure for 
variable knowledge, consider what a child might know about counting. 
According to Siegler and Robinson (1982), children learn to count by 

TABLE 3.1. Summary of the theory of partial 
knowledge. 

Type of 
knowledge 

Restricted 
Variable 
Variable 

Cognitive structure 

Unitary algorithm 
Unitary substitutes 
Modular components 

Process of 
learning 

Amendment 
Sampling 
Self-correction 
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progressing through a sequence of increasingly sophisticated algorithms 
for generating numbers in the proper order. Suppose that at a transitional 
point, a child vacillates between using two algorithms, one that can gener­
ate numbers in the teens and another that cannot. This child has two 
interchangeable algorithms that form a set of unitary substitutes. Alterna­
tively, according to Gelman and Gallistel (1978), the child may know 
several principles of counting, such as the principles that each item 
counted must get exactly one numerical tag and that the tags must have an 
invariant order. Suppose that a child sometimes applies both these princi­
ples and at other times applies only one or the other. Then the principles 
are modular components that the child mayor may not assemble prop­
erly. (See Wilkinson, 1984, for a study that compared these two views of 
children's cognitive structure for counting.) 

The theory of partial knowledge pairs each type of cognitive structure 
with a unique process of learning. For the unitary algorithms of restricted 
knowledge, the process oflearning is amendment. This process revises or 
replaces a faulty algorithm. For unitary substitutes, the process of learn­
ing is sampling, a process of trying different methods, getting feedback, 
discarding faulty methods, and possibly adding new ones, until only effec­
tive methods remain. Finally, for modular components, the process of 
learning is self-correction. Here, children know the right components and 
in this sense know what to do. The children find it difficult, however, to 
assemble the components smoothly and make them work together reli­
ably. Through self-correction, children monitor and adaptively improve 
their own attempts to assemble the components. 

Studies using the block-stacking task (Haines, 1983; Wilkinson, 1982a) 
have shown that young children aged 3 to 6 years have partial knowledge 
of the cognitive skill that the task requires. The extant data suggest 
strongly that the children's partial knowledge is variable rather than re­
stricted. Finally, the data also suggest that the underlying cognitive struc­
ture is a set of two modular components and that children use self-correc­
tion while they try to assemble the components into a reliable skill. We 
have much more to say later about the two components and about self­
correction. Before doing so, however, we turn to measuring the stability 
of children's knowledge of the block-stacking task. 

Model of Double Assessment 

We studied the children's stability with a model of double assessment that 
analyzed transitions between the pretest and posttest. Here, a transition 
is one of the sequences CC, CE, EC, or EE, where, for example, the 
notation CC means correct performance on a particular problem of block 
stacking in both the pretest and the posttest. We applied a series of 
models to the observed frequencies of these transitions, adopting in the 
end a single, parsimonious model. 
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TABLE 3.2. Descriptions of parameters in the model of double assessment. 
Parameter 

aU) 
{3CE 

{3EC 

Description 

Level of initial ability for children in group i. 
Regression from C to E. Estimate of measurement error or forgetting or 

both. 
Regression from E to C. Estimate of measurement error or learning or 

both. 
Degree to which data conform to predictions of restricted knowledge 

(w = 0) or variable knowledge (w = 1). 

Note: All parameters are probabilities. 
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Wilkinson (1982b, 1984) explains the series of models and the proce­
dure for selecting a parsimonious one. Other recommended sources of 
advice on statistical and computational methods are Mood, Graybill, and 
Boes (1974) on estimation by maximum likelihood; Bishop, Fienberg, and 
Holland (1975) on models for contingency data; and Bazaraa and Shetty 
(1979) on algorithms for parameter estimation. These are important meth­
odological topics that, unfortunately, we cannot cover in the space avail­
able here. 

Conceptually, the value of the model of double assessment is best 
explained by describing its parameters. Table 3.2 gives these descriptions. 
The model estimates level of ability for separate groups of children with 
parameters aU). In addition, it uses parameters /3CE and /3EC to fit a linear 
regression function. This function accounts for changes in correctness 
between pretest and posttest that stem from learning, foregetting, or mea­
surement errors. The last and most important parameter in the model, w, 
measures the extent to which the data exhibit the stability typical of 
restricted knowledge (w near 0) or the instability typical of variable 
knowledge (w near 1). 

Empirically, the values of these parameters may differ across problems 
or across groups of children. However, a parsimonious model would 
constrain the parameters to be constant across problems and children. 
The goal of our analysis was to find a parsimonious model by constraining 
parameters to be constant without sacrificing goodness of fit. 

Data 

Data for the analysis came from classifying a child's response as correct 
(C) or erroneous (E) on a particular problem of blockstacking. Our crite­
rion for crediting a response as correct was a stack containing six or more 
short blocks. We expressed transitions from the pretest to the posttest as 
the response patterns CC, CE, EC, or EE. Separately, we classified chil­
dren according to the number of C's they produced in the first session. 
This classification yielded four levels of initial ability corresponding to 
values of 0 to 3 for the number of initial C's. At this point, we had a 
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contingency table with two dimensions: response pattern and level of 
ability. 

To extend the table, we added a third dimension. In fact, we added it in 
two different ways. First, following Wilkinson (1982b, 1984), we classified 
data according to problem type, producing separate tallies for the mostly 
short, mostly tall, and equally balanced sets of blocks. Second, we classi­
fied data according to training condition, separating the tallies for short­
size training, same-size training, and the control condition. Thus, we 
analyzed the data twice, as two contingency tables, each with three di­
mensions. (Of course, we could have generated a four-dimensional table, 
but the density of data in this very large table was too meager to justify 
analyzing the table statistically. Bishop et al., 1975, pp. 401-433, give 
recommendations for analyzing large, sparse contingency tables.) 

Results 

In the analysis with problem type as the third dimension, one parameter 
exhibited a significant interaction. The parameter for level of initial ability 
(a) varied over problem types, X2(2) = 14.75, p < .01, indicating that the 
children showed more ability on the mostly short problem than on the 
mostly tall and equally balanced problems. Thus, the mostly short prob­
lem, in which correct blocks were abundant, was easier. See Table 3.3 for 
the numerical values of these parameters. 

The other parameters had the following values, which were constant 
across problem type and level of ability: {3CE = .12, {3EC = .33, and w = 
.92. The values of {3CE and {3EC differed significantly, X2(1) = 31.76, p < 
.001, indicating that some learning occurred between sessions because the 
children were more likely to switch from error to correct than the reverse. 
Finally, the high value of w replicated Wilkinson's (1982a) finding that 
children's performance of block-stacking problems is highly unstable. 
This finding implies that the underlying partial knowledge is predomi­
nantly variable, not restricted. 

In the analysis with training condition as the third dimension, the values 

TABLE 3.3. Interaction between ability and 
problem. 

Problem 

Mostly short 
Equally balanced 
Mostly tall 

a(O) 

.00 

.00 

.00 

Ability parameter 

a(1) 

.41 

.17 

.12 

a(2) 

.75 

.47 

.38 

a(3) 

1.00 
1.00 
1.00 

Note: 0'(0) must always be 0, and 0'(3) must always be 1. Only ,,(I) 
and 0'(2) were free to vary. 
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TABLE 3.4. Interaction between parameters 
and condition. 

Parameter 

Condition /3cE /3EC w 

Short-size training .09 .56 1.00 
Same-size training .19 .24 .70 
Control-no training .08 .21 .83 
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of a were constant across conditions. They were 0, .24, .48, and 1 for 
children who got 0 to 3 C's, respectively, in the initial session. Training 
interacted, however, with the values of /3CE, /3EC, and w, X2(6) = 19.76, p < 
.01, as shown in Table 3.4. The main finding here is that the difference 
between /3CE and /3EC was the greatest in the condition of short-size train­
ing, indicating that the children learned best in this condition. The value 
of w varied somewhat over conditions. Interestingly, it increased as the 
difference between /3CE and /3EC increased, perhaps because w was, in 
part, correlated with learning. 

Although w was not constant, it was high in all the training conditions. 
The high values are evidence that the children's partial knowledge was 
mainly variable. This finding of mainly variable knowledge is the most 
important one. The other findings, which concerned problem difficulty 
and the effects of training, were results that we could have shown by 
other, simpler methods. The unique value of the double assessment model 
is its measurement of w, which shows the relative amounts of variable and 
restricted knowledge. As a diagnostic tool, the model enabled us to tell 
which of the two hypothesized kinds of partial knowledge was closer to 
the reality of the data. 

Learning to Use Individual Components 

Once we showed that the children's partial knowledge was mainly vari­
able, our next goal was to identify the underlying cognitive structure. 
Recall from our earlier discussion of cognitive structures that the theory 
of partial knowledge offers two possibilities. One possibility is that the 
child samples from a collection of unitary substitutes; the other is that the 
child assembles modular components. In this section, we explicate these 
possibilities and test them with two Markov models. Importantly, the 
models are both special cases of a single general Markov model of learn­
ing. We show that a learning model for modular components was better 
than a learning model for unitary substitutes. The data for these analyses 
were sequences of correct and erroneous blocks that a child selected 
within a single problem. 
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Theory of Cognitive Structure 

One type of cognitive structure for variable knowledge is a collection of 
unitary substitutes, each of the substitutable elements in the collection 
being a fixed algorithm. Given this cognitive structure, a child would 
sample from the collection, get feedback, discard algorithms found faulty, 
and perhaps add new algorithms that the child believes to be better than 
the discarded ones. We borrowed a Markov model from Brainerd (1979, 
1982) to formalize this possibility. 

An important assumption of the learning model for unitary substitutes 
is that the child knows several algorithms, rules, or methods for solving a 
block-stacking problem. Some of these methods always produce an erro­
neous result, others always produce a correct one, and the rest are incon­
sistent. An inconsistent method is correct on some problems and errone­
ous on others. For example, in our block-stacking problems, preferring to 
select the most numerous blocks would be an inconsistent method. It 
would be correct (fortuitously) on the mostly short problem, indetermi­
nate on the equally balanced problem, and wrong on the mostly tall prob­
lem. 

Another important assumption of the learning model for unitary substi­
tutes is that learning is progressive. After abandoning a method found to 
be erroneous or inconsistent, a child never reverts to using it later. In 
essence, a child may learn to solve block-stacking problems in any of the 
following ways. 

1. Always correct. The child starts by sampling a correct method from the 
collection and uses it exclusively. 

2. From inconsistent to correct. The child starts by sampling an inconsis­
tent method from the collection. After producing an error, the child 
discards the inconsistent method with some probability, samples a new 
inconsistent or correct method, and never revives the discarded 
method. After sampling a correct method, the child uses it exclusively. 

3. From erroneous to inconsistent to correct. The child starts by sampling 
an erroneous method from the collection. With some probability, the 
child discards the erroneous method, samples an erroneous or incon­
sistent method, and never revives the discarded method. After sam­
pling an inconsistent method, the child never reverts to an erroneous 
method and with some probability discards the inconsistent method in 
favor of a correct one. After sampling a correct method, the child uses 
it exclusively. 

4. From erroneous to correct. The child starts by sampling an erroneous 
method from the collection. With some probability, the child discards 
the method, samples a new erroneous or correct method, and never 
revives the discarded method. After sampling a correct method, the 
child uses it exclusively. 
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Our second type of cognitive structure for variable knowledge is a set of 
modular components that the child must assemble into a workable strat­
egy for solving a block-stacking problem. Wilkinson (1982a) gave evi­
dence that favored this type of cognitive structure. He argued for two 
components. One component, called INDICATE, sets a criterion for se­
lecting blocks. If used correctly, INDICATE would set a criterion of 
shortness; if used in error, it would set a criterion such as tallness, near­
ness, or perhaps summed smallness of height, width, and depth. The 
other component, called REPEAT, is a loop for performing several itera­
tions of a single action. In block-stacking, REPEAT governs iterative 
selection of blocks matching the criterion that the INDICATE component 
has set. 

To test this cognitive structure, we generated a learning model for 
modular components. The model assumed that a child may learn to solve 
block-stacking problems in any of the following ways. 

1. Correct strategy. The child starts with a strategy that uses both compo­
nents properly. Having started a problem with this strategy, the child 
retains it throughout the problem. 

2. Switching strategy. The child starts with a strategy that invokes INDI­
CATE anew for every block, using a mixture of correct and erroneous 
criteria. With some probability, the child discovers the correct crite­
rion, begins using the REPEAT component, and thereby moves to the 
correct strategy. Having adopted the correct strategy, the child retains 
it until the end of the current problem. 

3. Repeat-errors strategy. The child starts with a strategy that sets an 
erroneous criterion with INDICATE and uses REPEAT to make con­
sistent but erroneous selections. With some probability, the child no­
tices that the criterion is wrong, self-correctively invokes INDICATE 
anew to set the right criterion, and thereby moves to the correct strat­
egy. Having adopted the correct strategy, the child retains it until the 
end of the current problem. 

These descriptions of the two kinds of cognitive structure emphasize 
that there are alternative paths oflearning. We assume no fixed sequence 
of states or stages through which every child must go. Instead, both 
models assume that children may take any of several paths. We turn next 
to expressing the models mathematically and testing them with out data. 

Markov Models of Learning 

We formulated a general model and from it derived two constrained 
models that we tested against our data. One constrained model was for 
unitary substitutes; the other, for modular components. The following 
explication of the model covers the general model first and then the two 
constrained models. 
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Despite differences in notation and terminology, the general model was 
equivalent to the classical, two-state Markov model of learning (for re­
views, see Brainerd, Howe, & Desrochers, 1982; Greeno, 1974; and 
Kingma, Chapter 2, this volume). The model assumed that on a given 
problem of block stacking, the child is in one of these states: (1) U, an 
unlearned state in which the child uses an erroneous method and there­
fore selects tall blocks consistently; (2) S, a partially learned state in 
which the child uses an inconsistent method and happens to select a short 
block; (3) T, a partially learned state in which the child uses an inconsis­
tent method and happens to select a tall block; or (4) L, a fully learned 
state in which the child uses a correct method and therefore selects short 
blocks consistently. 

The child can move among these states, but must do so progressively. 
Having left the unlearned state U, the child could go to the partially 
learned state S or T or to the fully learned state L. Having left either of the 
partially learned states S or T, the child could go to the other partially 
learned state or to the fully learned state L, but could not retreat to the 
unlearned state U during the current block-stacking problem. Finally, 
having reached the fully learned state L, the child must stay there for the 
remainder of the current problem. 

The model has a starting vector that gives the probabilities of a child 
starting in each of the states. It also has a response vector that gives the 
probability of a child selecting a correct block when the child is in a given 
state. Finally, it has a transition matrix that gives the probability of the 
child moving from one state to another. The starting vector, transition 
matrix, and response vector of the general model are: 

Pr[L(1), S(1), T(1), U(1)] = [p, (1 - p)(1 - q)k, (1 - p)(1 - q)(1 - k), 
(1 - p)q] 

L(i + 1) SCi + 1) T(i + 1) U(i + 1) Pre correct) 

L(i) 0 0 0 1 
Sci) a (1 - a)g (1 - a)(1 - g) 0 1 
T(i) b (1 - b)(1 - h) (1 - b)h 0 0 
U(i) c (1 - c)(1 - d)m (1 - c)(1 - d)(1 - m) (1 - c)d 0 

The model has 10 parameters, as summarized in Table 3.5. (For additional 
explanation of this model, see Chapter 2, this volume, by Kingma.) 

To derive a learning model for unitary substitutes, we applied the con­
straints k = m and a = O. Under these constraints, the model has eight 
free parameters and is identical to Brainerd's (1979, 1982) model of the 
process by which children learn rules for Piagetian concepts. We applied 
these constraints to make the model more parsimonious and to allow 
direct comparison between our data and Brainerd's. 
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TABLE 3.5. Descriptions of parameters in the general Markov model of 
learning. 

Parameter 

p 
q 
k 

a 
b 
c 
g 
h 
d 

m 

Description 

Probability of starting in L 
Probability of starting in V, conditional on not having started in L 
Probability of starting in S, conditional on not having started in V 

or L 
Probability of moving to L from S 
Probability of moving to L from T 
Probability of moving to L from V 
Probability of staying in S 
Probability of staying in T 
Probability of staying in V, conditional on not moving from 

UtoL 
Probability of moving to S from V, conditional on not staying in 

V and not moving to L 

99 

The constraint k = m concerns the probabilities of entering the partially 
learned states Sand T, either from the unlearned state U or at the outset 
of a problem. The other constraint, a = 0, is more important theoretically. 
It specifies that when children use an inconsistent method, they may go 
directly to the learned state L from state T but may not do so from state S. 
In effect, the constrained model specifies that children learn correct meth­
ods only after making errors. The formal expression of the learning model 
for unitary substitutes is 

Pr[L(1), S(1), T(1), U(1)] = [p, (1 - p)(1 - q)k, (1 - p)(1 - q)(1 - k), 
(1 - p)q] 

LCi + 1) SCi + 1) T(i + 1) U(i + 1) Pr( correct) 

L(i) 1 0 0 0 1 

Sci) 0 g (1 - g) 0 1 
T(i) b (1 - b)(1 - h) (1 - b)h 0 0 
UCi) c (1 - c)(1 - d)k (1 - c)(1 - d)(1 - k) (1 - c)d 0 

With this model, we can restate the child's possible paths of learning, 
expressing them formally as the following sequences of states. 

1. Always correct. The child starts in state L with probability p and stays 
there. 

2. From inconsistent to correct. The child starts in state S or T with 
probabilities governed by parameters p, q, and k. The child moves back 
and forth between Sand T for one or more selections, with probabilities 
governed by parameters b, g, and h. The child advances to L only from 
T, with probability b. Once in L, the child stays there. 
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3. From erroneous to inconsistent to correct. The child starts in state U 
with probability (1 - p) q. For one or more selections, the child stays 
there. The child advances to S or T, with probabilities governed by 
parameters c, d, and k. Otherwise, the child moves back and forth 
between Sand T for one or more selections, with probabilities gov­
erned by parameters b, g, and h. Only from T can the child advance to 
L, with probability b. Once in L, the child stays there. 

4. From erroneous to correct. The child starts in state U with probability 
(1 - p)q. For one or more selections, the child stays there. The child 
advances to L with probability c and stays there. 

To derive a learning model for modular components, we applied the 
constraints d = m = 1. These constraints reduced the number of free 
parameters to eight and produced the following Markov model: 

Pr[L(1), S(1), T(1), V(1)] = [p, (1 - p)(1 - q)k, (1 - p)(1 - q)(1 - k), 
(1 - p)q] 

L(i + 1) S(i + 1) T(i + 1) V(i + 1) Pr(correct) 

L(i) 0 0 0 1 
S(i) a (1 - a)g (1 - a)(1 - g) 0 1 
T(i) b (1 - b)(1 - h) (1 - b)h 0 0 
V(i) c 0 0 1 - c 0 

The constraints in this model specify that children never go from the 
unlearned state V to the partially learned states Sand T. Although this 
restriction may seem puzzling, it made good sense when we interpreted 
the states as strategies and used the model to specify formally the paths of 
learning that children might take. We defined the following correspon­
dence between states and strategies: The learned state L is the correct 
strategy, the partially learned states Sand T are the switching strategy, 
and the unlearned state V is the repeat-errors strategy. Given this corre­
spondence, the model specifies that children's use of strategies could take 
them along the following paths on a given problem of block stacking. 

1. Always correct. With probability p, the child uses the correct strategy 
throughout the problem. Here the child starts with and retains both of 
the essential components, INDICATE and REPEAT. 

2. From switching to correct. With probability (1-p)(1-q), the child 
starts with the switching strategy, initially selecting a short block with 
probability k and a tall block with probability 1 - k. After the initial 
selection, probabilities a and b govern moves from the switching strat­
egy to the correct strategy, while probabilities g and h govern changes 
in size of block within the switching strategy. The path of learning is 
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that the child begins with occasionally correct use of INDICATE, de­
pending on the value of k. Then the child may improve in using INDI­
CATE, depending on the values of g and h, and may learn to use 
REPEAT, depending on the values of a and b. 

3. From repeat errors to correct. With probability (1 - p)q, the child 
starts with the repeat-errors strategy. The child selects tall blocks when 
using this strategy. After each selection, the child retains the repeat­
errors strategy with probability I - c and moves to the correct strategy 
with probability c. Here the child's path is to start with REPEAT and 
then, depending on the value of c, learn to use INDICATE. 

Data 

To test the models of learning, we analyzed children's selections of indi­
vidual blocks. Within a single block-stacking problem, we classified each 
block placed on the rod as correct (c) or erroneous (e). (Notice that we 
used lowercase c and e for performance on individual blocks, whereas we 
previously used uppercase C and E for performance on a whole problem.) 
Next we classified each problem according to the sequence of the first 
four blocks the child selected. Examples are the sequences cccc, ccce, 
and the like. We used sequences of this length because four blocks of any 
size would always fit on the rod. With four selections, there are 16 possi­
ble sequences. 

In a preliminary analysis, we tallied frequencies in a one-dimensional 
table of the 16 sequences, collapsing over children, problems, testing 
sessions, and training conditions. This analysis was tractable because the 
table of data was small, but it might have masked effects of the collapsed 
factors. Therefore, in a follow-up analysis, we collapsed only over chil­
dren and problems, tallying frequencies in a table with three dimensions 
(16 sequences x 2 testing sessions x 3 training conditions). The frequen­
cies in these two tables were the data to which we fitted our Markov 
models. 

Results 

We concentrate on the results for the smaller, one-dimensional table. The 
learning model for unitary substitutes fit this table well, x2(7) = 6.24, and 
so did the learning model for modular components, X2(7) = 6.47. Having 
found equally good fits with the two eight-parameter models, we then 
tested more constrained versions of each model. 

We simplified the learning model for unitary substitutes to six free 
parameters by applying the constraints k = g = I-h. These constraints 
specify that when children used an inconsistent method, their probability 
of selecting a short block was the same under all the following conditions: 
on the first selection, after selecting a short block, and after selecting a tall 
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block. Brainerd (1979) used equivalent constraints in a successful effort to 
model children's learning of the concept of conservation. Our data, how­
ever, rejected this six-parameter model, X2(9) = 30.36, p < .01. Admit­
tedly, it is possible that if we had used some other constraints, we might 
have been able to fit the data. We did not, therefore, reject all simplified 
versions of the learning model for unitary substitutes; we only concluded 
that our data rejected Brainerd's (1979) simplification, 

In contrast, we were able to fit the data well with a simplified version of 
the learning model for modular components that had only five free param­
eters, X2(10) = 7.10. The constraints we applied to simplify this model 
were a = b = 0 and k = .5. The meaning of the double constraint a = b = 

o is that the children did not move from the switching strategy to the 
correct strategy. The meaning of the constraint k = .5 is that when chil­
dren used the switching strategy, their first selection was equally likely to 
be a short or tall block. 

We also found two interesting results for the unconstrained parameters 
in the simplified version of the learning model for modular components. 
First, our estimate of c was .08, and we rejected the hypothesis c = 0, 
X2(1) = 7.68, p < .01. This result shows that the children occasionally 
moved from the repeat-errors strategy to the correct strategy while select­
ing blocks. Such moves are evidence of self-correction. Second, esti­
mated values were g = .44 and h = .30, and we rejected the hypothesis g 
= h, X2(l) = 12.63, p < .01. Notice, however, that neither g nor h was 
greater than .5, the value for random switching. This result means that 
when using the switching strategy, the children tended not to stay with the 
size of their previous selection. They were more likely to stay with the 
short size, however, than with the tall size. The children's restraint in 
switching away from short blocks is mild evidence of self-corrective 
learning. 

In a follow-up analysis that looked for other possible effects, we used 
the larger three-dimensional table of data (16 sequences x 2 testing ses­
sions x 3 training conditions) and fit the simplified version of the learning 
model for modular components. The model gave a good fit to these data, 
with two new findings. First, parameters p and q from the starting vector 
interacted with testing session and training condition. Thus, the probabil­
ity of starting a problem with a particular strategy in the first session 
differed from the probability of starting a problem with that same strategy 
in the second session. The main difference was that the probability of 
starting a problem with the correct strategy increased more after short­
size training than after same-size training or the control condition. Sec­
ond, parameters c, g, and h from the transition matrix were constant 
across all the data. Thus, the probabilities for self-corrective learning 
within a problem remained the same over testing sessions and training 
conditions. 

To summarize the major findings, our investigation of the learning 
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models showed that the one for modular components gave a more parsi­
monious fit to the data than did the one for unitary substitutes. Further­
more, the estimated parameters in the learning model for modular compo­
nents gave evidence of self-correction, a finding consistent with the 
theory of partial knowledge. 

Strategies for Assembling Components 

The evidence from our learning models implied that children's cognitive 
structure for the block-stacking task is a set of modular components. An 
important limitation of this evidence, however, is that it looked at chil­
dren's strategies for selecting blocks within one block-stacking problem. 
It did not investigate whether children tended to keep the same strategy 
from one problem to the next. In this section, we develop a new model to 
diagnose whether and how children changed strategies across problems. 
The new model gave us insight into the processes by which children 
explored ways of assembling the components into strategies. It also pro­
vided a new diagnostic tool that has some advantages over methods used 
in other studies of children's strategies. 

Theory of Using Strategies 

We have already described three strategies for solving block-stacking 
problems, the correct, switching, and repeat-errors strategies. Table 3.6 
summarizes how these strategies use the components INDICATE and 
REPEAT. The correct strategy uses both components properly. The 
switching strategy uses the INDICATE component anew for each block, 
sometimes properly and sometimes not. Last, the repeat-errors strategy 
uses REPEAT properly but with an erroneous criterion resulting from 
improper use of INDICATE. However, while using the repeat-errors 
strategy, the child may self-correctively discover that the criterion is 
wrong and invoke INDICATE anew, this time using it properly. 

From the theory of partial knowledge, we derived an account of the 
ways in which children use these strategies. The main idea is that children 
know the components but exhibit variable partial knowledge because they 
fail to assemble the components properly and reliably. Success in assem­
bling the components on one occasion is no guarantee of successful as-

TABLE 3.6. How strategies make use of components. 

Strategy Use of components 

Correct INDICATE used correctly. REPEAT use correctly. 
Switching INDICATE used often, sometimes correctly, sometimes not. 

REPEAT not used. 
Repeat errors INDICATE used in error, but self-correction may occur. 

REPEAT used correctly. 
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sembly on the next occasion. Consequently, a strategy that a child uses 
on one problem need not be the same as the child's strategy on the next 
problem. Assembling the components in different ways is the underlying 
cause of strategic inconsistency. To test this account of children's strate­
gies, we developed a model that analyzed transitions among strategies 
from one problem to the next. 

Diagnostic Model of Strategies 

OVERVIEW 

To test this theory, we used a model that gave us a new and powerful tool 
for diagnosing children's strategies. Because of its novelty, the model 
requires some explanation. The essence of the model is that it generated 
predictions for our data in three steps. 

First, the diagnostic model of strategies took advantage of our earlier 
results from the learning model for modular components. The learning 
model allowed us to look at a child's sequence of selections on a given 
block-stacking problem and, from this datum alone, identify the child's 
probable strategies. For example, given the sequence eecc, there are two 
possibilities, according to the final, simplified version of our learning 
model. Either the child started with the repeat-errors strategy and moved 
to the correct strategy after two errors, or the child used the switching 
strategy. The diagnostic model of strategies gave us mathematical expres­
sions for all such possibilities. Thus, the first step in applying the diagnos­
tic model was to generate mathematical probabilities that a child was 
using any ofthe three strategies, given only a sequence of four blocks that 
the child had selected. In short, it took observable data and generated 
probabilities for unobservable strategies. 

Second, the diagnostic model estimated the probabilities of keeping or 
changing strategies between block-stacking problems. To take this step, 
the model applied a transition matrix that gave the probability of starting a 
problem with any strategy, given the strategy with which the child had 
ended the previous problem. 

Third, the diagnostic model took advantage, once again, of results from 
the learning model. Using the learning model, we generated the probabil­
ity that a child would produce any sequence of four blocks, given the 
strategy with which the child started to work on the problem. Thus, the 
final step was to take the probability of an unobservable strategy and 
predict the probability of an observable sequence. 

In summary, the diagnostic model took as input the empirical probabili­
ties of observable sequences on a problem and computed the probabilities 
of observable sequences on the next problem. Mediating the computation 
were unobservable strategies and equally unobservable changes in strat-
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egy. The main advantage of the diagnostic model was that it precisely 
estimated the probabilities of changes in strategy. It enabled us to study 
children's use of strategies without requiring us to know with certainty 
the strategy that any individual child was using on a particular problem. 

This method of diagnosing strategies has some advantages, we think, 
over other methods currently in use in developmental psychology. One 
such method is Siegler's (1976, 1981) procedure of rule assessment. 
Siegler's method assumes that a child uses a single strategy (he calls it a 
rule) consistently over a series of problems. Based on the pattern of a 
child's behavior over the series, the method classifies the child as having 
used one of several predefined strategies (or rules). The main disadvan­
tage of the method, in our view, is that it assumes no change in strategy 
but offers no test of the assumption. Another method is Brainerd's (1979, 
1982) Markov model of rule sampling, which is formally equivalent to our 
earlier learning model for unitary substitutes. Brainerd's method esti­
mates the probabilities of changes in types of rules or classes of strategies 
that groups of children use. A disadvantage of the method is that it applies 
only to broad classes of strategies and, consequently, does not identify 
any specific strategy. 

Our diagnostic method avoided the disadvantages of these other meth­
ods. We measured changes in strategy, rather than assuming consistency 
by default, as Siegler did. We also identified three particular strategies 
that the children used, thus gaining specificity over Brainerd's method. 

MODEL 

To develop the mathematics of our diagnostic model of strategies, con­
sider the sequence eecc, for example. The simplified version of our learn­
ing model for modular components states that this sequence occurs with 
probability 

Pr(eecc) = (1 - p)qc(1 - c) + .5(1 - p)(1 - q)gh(1 - h). 

On the right side of this expression, the term (1-p)qc(1-c) is for se­
quences that come from beginning with the repeat-errors strategy and 
moving to the correct strategy after two errors. The term .5(1-p)(1-
q)gh(1-h) is for sequences that come from the switching strategy. After 
simplifying algebraically, it follows that with probability 

qcO - c) / [qc(1 - c) + .50 - q)gh(1 - h)] 

an observed case of the sequence eecc represents a child who has moved 
to the correct strategy, and with probability 

.50 - q)ghO - h) / [qc(1 - c) + .50 - q)ghO - h)] 

it represents a child who has been using the switching strategy. 
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We generated similar expressions for each of the 16 sequences. The 
result was a 16 x 3 matrix X that mapped observable sequences to unob­
servable strategies. Essentially, the X matrix served the same function in 
our diagnostic model as a starting vector would serve in a classical Mar­
kov model. It gave the probabilities that a child was using the correct, 
repeat-errors, or switching strategy, given the sequence of the first four 
blocks the child had produced on the problem. Note that matrix X identi­
fied the probable strategy a child was using after having selected four 
blocks. To keep the diagnostic model mathematically tractable, we as­
sumed that the child's probable strategy after selecting four blocks would 
be a good indicator of the child's probable strategy at the completion of a 
block-stacking problem. 

To save space in displaying X, we use the following notational abbrevi­
ations: 

A = p B = .5(1 - p)(1 - q)g3 
C = (1 - p)qc D = .5(1 - p)(1 - q)g2(1 - h) 
E = (1 - p)q(1 - c)c F = .5(1 - p)(1 - q)gh(1 - h) 
G = (1 - p)q(1 - c)Zc H = .5(1 - p)(1 - q)h2(1 - h) 
I = .5(1 - p)(1 - q)h3 J = (1 - p)q(1 - C)3. 

With these abbreviations, the formal definition of X is 

Repeat 
Correct Switching errors 

ecce AI(A + B) BI(A + B) 0 
ecce 0 1 0 
ccec 0 1 0 
ccee 0 1 0 
cecc 0 1 0 
cece 0 1 0 
ceec 0 1 0 
ceee 0 1 0 
ecce C/(C + D) D/(C + D) 0 
ecce 0 1 0 
ecec 0 1 0 

ecee 0 1 0 

eecc EI(E + F) FI(E + F) 0 
eece 0 1 0 
eeec G/(G + H) HI(G + H) 0 
eeee 0 II(I + J) JI(I + J). 
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With matrix X as our clue to the child's strategy at the end of a prob­
lem, we needed another matrix to specify the probabilities of the child 
keeping that strategy or adopting a new one for the next problem. For this 
purpose, we used a 3 x 3 matrix Y that gave the probabilities of keeping 
or changing strategies. Matrix Y is a transition matrix in the terminology 
of Markov models. Here is its formal definition: 

Strategy i + 1 

Strategy i Correct Switching Repeat errors 

Correct (1 - u)r 

Switching v (1 - v)(1 - s) 

Repeat errors 
[ (l " v)s 

(1 - w)t (1 - w)(1 - t) 

(1 - u)(l - r)] 

w 

See Table 3.7 for definitions of the transition parameters in Y. 
Using X and Y as starting and transition matrices, we completed the 

diagnostic model with a 3 x 16 matrix Z that is analogous to a response 
vector in a classical Markov model. Matrix Z mapped the child's unob­
servable strategy at the outset of a problem onto the probabilities of the 16 
observable sequences. These probabilities followed from our learning 
model for modular components. 

For example, consider the sequences a child could produce, given that 
the child started a problem with the repeat-errors strategy. The only 
possible sequences and their respective probabilities are 

Pr(eccc) = c, 
Pr(eecc) = c(1 - c), 

Pr(eeec) = c(1 - c)2, 
Pr(eeee) = (1 - C)3. 

TABLE 3.7. Descriptions of transition parameters for diagnostic model of 
strategies. 
Parameter 

r 

s 

u 
v 
w 

Description 

Probability of moving to the switching strategy, conditional on not stay­
ing with the correct strategy 

Probability of moving to the correct strategy, conditional on not staying 
with the switching strategy 

Probability of moving to the correct strategy, conditional on not staying 
with the repeat-errors strategy 

Probability of staying with the correct strategy 
Probability of staying with the switching strategy 
Probability of staying with the repeat-errors strategy 
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Notice that these are conditional probabilities and that they sum to 1. The 
formal expression of all such probabilities defined matrix Z (which we 
show transposed to fit the page): 

Correct Switching Repeat errors 

ecce 1 .5g3 0 
ecce 0 .5g2(1 - g) 0 
ccec 0 .5g(1 - g)(1 - h) 0 
ccee 0 .5g(1 - g)h 0 
cecc 0 .5g(1 - g)(1 - h) 0 
cece 0 .5(1 - g)2(1 - h) 0 
ceec 0 .5(1 - g)h(1 - h) 0 
ceee 0 .5(1 - g)h2 0 
ecce 0 .5g2(1 - h) c 
ecce 0 .5g(1 - g)(1 - h) 0 
ecec 0 .5(1 - g)(1 - h)2 0 
ecee 0 .5(1 - g)h(1 - h) 0 
eecc 0 .5gh(1 - h) c(1 - c) 
eece 0 .5(1 - g)h(1 - h) 0 
eeec 0 .5h2(1 - h) cO - C)2 
eeee 0 .5h3 (1 - c)3 

The matrix product XYZ generated a 16 x 16 matrix of predicted 
transitions from an observed sequence on one problem to the observed 
sequence on the next problem. To fit these predictions to our data, we 
used standard methods of maximum likelihood. These methods gave us 
estimates of the parameters in matrices X, Y, and Z that yielded the best­
fitting predictions for our empirical 16 x 16 matrix. In addition, we im­
posed constraints on the parameters to test various hypotheses. 

Data 

To test the diagnostic model of strategies, we formed a 16 x 16 table. The 
rows in the table were the 16 possible sequences of four blocks; the 
columns were the same 16 sequences. In the body of the table, we tallied 
the frequencies with which children moved from the row sequence on one 
problem to the column sequence on the next problem. For example, the 
entry corresponding to row eecc and column ecce contained the fre­
quency with which children produced eecc on one problem and ecce on 
the next. To keep the table from being too sparse, we collapsed over 
children, problems, pre- and posttest, and training conditions. However, 
to minimize training effects, we omitted data for the move from the last 
problem in the pretest to the initial problem in the posttest. This move 
was the one most likely to be affected by the training condition. 
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Results 

A summary ofthe results appears in Table 3.8. Embedded in these results 
are several tests of hypotheses. Mathematically, all the hypotheses con­
cerned values of parameters in matrix Y which defined transitions among 
unobservable strategies. Conceptually, each of the hypotheses assumed 
that the transitions were, in some respect, random. Our purpose in testing 
these hypotheses was to determine whether changes in the children's 
strategies were systematic or random. 

First, we tested the hypothesis r = s = t = .5. Acceptance of this 
hypothesis would imply that when children abandoned a strategy, they 
were equally likely to move to either of the two remaining strategies. We 
could not reject this hypothesis, X2(3) = 5.53. 

Next, we tested the hypothesis u = v = w. Acceptance of this hypothe­
sis would imply that the children were equally likely to keep any of the 
three strategies. We rejected this hypothesis, X2(2) = 13.65, p < .01. 
Following up on this result, we could not reject the hypothesis u = w, 
x2(1) = .45, or the hypothesis v = .33, x2(1) = 1.94. We did, however, 
reject the hypothesis u = w = .33, x2(2) = 128.32, p < .001. From these 
results we drew three conclusions about the children's use of strategies. 

First, the children often changed strategies between problems. Even 
the correct strategy was sometimes discarded. One interpretation of this 
finding is that whatever children knew or learned within a problem, they 
sometimes abandoned or forgot between problems. 

Second, the children favored strategies containing the REPEAT com­
ponent. The value .33 for v shows that the children had no better than a 
random tendency to retain the switching strategy, which lacks the RE­
PEAT component. In contrast, the value .71 for u and w shows that the 
children tended to stay with the correct and repeat-errors strategies, both 
of which contain the REPEAT component. 

TABLE 3.8. Fitted values of transition 
parameters. 

Strategy i + 1 

Repeat 
Strategy i Correct Switching errors 

Initial unconstrained fit 

Correct .69 .17 .14 
Switching .36 .44 .20 
Repeat errors .17 .09 .74 

Final constrained fit 

Correct .71 .14 .14 
Switching .33 .33 .33 
Repeat errors .14 .14 .71 
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Finally, except for retention of the correct and repeat-errors strategies, 
the children's use of strategies was effectively random. Following the 
switching strategy, the children were equally likely to use any of the three 
strategies. Furthermore, if the children abandoned the correct or repeat­
errors strategy, they were equally likely to adopt either of the two remain­
ing strategies. 

The reasons for this randomness may be partly methodological. The 
sparseness of data in our large contingency table reduced the power of our 
analysis to detect significant effects. In addition, our diagnostic model 
assumed that the child's strategy after selecting the fourth block on a 
problem was the same as the child's strategy at the end of the problem. 
Although the first four blocks are a good diagnostic of the child's strategy, 
they are surely imperfect. We might have done better, had we used a 
matrix that mapped transitions from the last four blocks on one problem 
to the first four blocks on the next problem. Then, however, the X matrix 
for our diagnostic model would have been very complex. Thus, some 
randomness in the data may have been a price we paid for keeping the 
model tractable. 

The data were not entirely random, however, and there were theoreti­
cal reasons to expect a mixture of systematic effects and randomness. 
According to the theory of partial knowledge, the children knew the com­
ponents needed to solve block-stacking problems, but had trouble as­
sembling the components into a correct and consistent strategy. Cor­
rect knowledge of the components, coupled with imperfect assembly, 
would cause the children's strategies to be right on occasion but incon­
sistent. 

To see why such behavior fits the results from our diagnostic model, 
consider the example of a child who used the correct strategy on a given 
problem. The child must have used both components, INDICATE and 
REPEAT, correctly. However, on the next problem, according to the 
results from the diagnostic model, the child could use any of the three 
strategies. (1) With probability .71, the child would again adopt the cor­
rect strategy and use both components correctly. (2) With probability .14, 
the child would apply the switching strategy, which uses INDICATE 
alone, sometimes correctly and sometimes not. (3) With probability .14, 
the child would apply the repeat-errors strategy, which always uses RE­
PEAT correctly and occasionally corrects an initial misuse of INDI­
CATE. 

As this example shows, the estimated probabilities in the diagnostic 
model supported our assertion that the children knew the individual com­
ponents for block stacking, but needed to learn how to assemble them into 
an effective strategy. The children's inconsistency in assembling compo­
nents was the reason for their sporadic correctness and the basis of their 
shifts in strategy. 
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Conclusions: States and Transitions Reconsidered 

At the outset, we asserted that our research concentrated on analyzing 
transitions during development, not on identifying states or stages in a 
developmental sequence. A good way to summarize and evaluate our 
research is to review this assertion in light of our findings. 

There were three kinds of transitions in our analyses, each with its own 
mathematical model. First, the model of double assessment used transi­
tions between pretest and posttest to study the stability of children's 
knowledge. Second, the Markov models of learning used transitions from 
block to block within a single problem to study how children learn compo­
nents. Finally, our diagnostic model of strategies used transitions be­
tween problems to study how children assemble components into strate­
gies. Concentrating on these three kinds of transitions enabled us to 
analyze in unusual detail how the children's behavior changed over time. 

In effect, by studying transitions we observed the fine points of cogni­
tive development as it unfolded. None of our models, however, specified 
a traditional developmental sequence, in which children pass through an 
ordered series of fixed states or stages. The closest we came to specifying 
a developmental sequence was in the Markov model of learning. The 
states in the general Markov model might be viewed as developmental 
states. Nonetheless, the model failed, on two counts, to qualify as a 
traditional developmental sequence. First, the model explicitly assumed 
that a child could pass through the states in any of several possible orders. 
Second, we eventually interpreted the states to be labile strategies. Thus, 
even in the model that best fit the traditional mold, the sequence of states 
was more variable than in a fixed developmental sequence, and the states 
themselves were fluid. 

One might argue that, because we did not identify stages of growth and 
because we observed children's progress in a 30-minute study, our re­
search was about learning, not about development. Indeed, we got one of 
our models, the Markov model of learning, from mathematical learning 
theory. The issues we examined with our models of transition, however, 
were issues central to developmental theory. 

There are three such issues. First, the model of transitions between 
pretest and posttest used w to measure the stability of children's emerging 
knowledge. In this way, we quantified the assumption made by Piaget 
(1970, 1971) and others that children's knowledge is unstable during de­
velopmental transitions. Second, by fitting models to transitions within 
individual problems, we found evidence that the children detected and 
corrected their own errors as they worked on block-stacking problems. 
This self-corrective behavior, which we quantified with parameters c, g, 
and h in the componential model of learning, was solid evidence of self­
regulation. Brown, DeLoache, and their colleagues (Brown & DeLoache, 
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1978; Brown, Bransford, Ferrara, & Campione, 1983; DeLoache & 
Brown, 1984; DeLoache, Brown, & Sugarman, 1985) have argued that 
self-regulation is important in children's cognitive growth. Finally, the 
model of transitions between problems provided a new way to quantify 
how children investigate alternative strategies. Arguing both sides of the 
question, other developmentalists have claimed that children are consis­
tent (e.g., Siegler, 1976, 1981) or flexible (e.g., Flavell, 1980; Klahr, 1985; 
Shatz, 1976, 1983) in using strategies. Rarely have developmentalists been 
able to substantiate their claims by measuring children's probability of 
keeping or switching strategies; Brainerd (1979, 1982) is the exception. 

Thus, the major contribution of the methods discussed in this chapter is 
to quantify concepts that many psychologists have proposed qualitatively 
in analyses of cognitive development. Quantifying the concepts makes 
them testable. 

While arguing that our methods are a substantive advance, we recog­
nize that they have limitations. One restriction is that they work only for 
certain tasks. The Markov models of learning and the diagnostic model of 
strategies require a task in which the child produces a sequence of dis­
crete actions, such as selecting individual blocks. Furthermore, the 
actions must be scorable as individually correct or erroneous. The model 
of double assessment requires a task in which a child's performance on a 
whole problem can be scored as correct or erroneous, and the problem 
must allow repeated testing. Important areas of development, such as 
children's acquisition of language, may lack tasks that fit these require­
ments. Another limitation of our methods is that they look at fine details 
of children's behavior, and in doing so they risk missing the forest for the 
trees. Advances in mathematical models, here and elsewhere, are a two­
edged sword. Better models offer more detailed analyses of increasingly 
specific phenomena. But the benefit of precision comes at the cost of 
specialization. 
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4. Formal Representation of Qualitative and 
Quantitative Reversible Operations 

Colleen F. Surber 

In this chapter I present an approach using contemporary mathematical 
models of human judgment to explore the issue of whether the relations 
among a set of variables are conceptualized reversibly. Specifically, are 
the judgments of each of a set of variables based on a single, fully revers­
ible set of mental operations?l This topic is important to psychologists for 
three reasons. Piaget (1947/1960) proposed that reversible mental opera­
tions distinguish true intelligence from intuition and perception. If the 
transition to reversible thought is an important developmental event, then 
there is a need for precise representations of knowledge that is reversible. 
It is equally important to describe states of irreversible and partially re­
versible knowledge in order to describe the transition from irreversible to 
reversible thought. 

Second, the study of reversibility is important because of the proposal 
that reversible mental operations or structures are the basis of social 
inferences and that predictions of an event and attributions of its causes 
should be based on the same cognitive operations or structure (Kelley, 
1972, 1973). Kelley's idea is very similar to Piaget's proposal that revers­
ible thought underlies true intelligence. Third, collectingjudgments of one 
variable given other related variables is a commonly used way of assess­
ing a person's concept of the relations among the variables (Birnbaum, 
1976; Brehmer, 1974; Brehmer & Slovic, 1980; Slovic & Lichtenstein, 
1971). If judgment methods are to be useful for this purpose, it is impor­
tant to know the extent to which the results depend on what variable of a 
set is judged. Examining reversibility by having the subject judge two or 
more variables gives a more complete picture of the underlying concept in 
that it uses the principle of converging operations to assess the concept. 

An obvious way to determine whether a person possesses a reversible 
structure for a set of variables A, B, and C is to ask the person to make 
three types of judgments: (1) judge variable A given information about 
variables Band C, (2) judge variable B given information about variables 
A and C, and (3) judge variable C given information about variables A and 
B. If the person conceptualizes variables A, B, and C as part of the same 
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reversible structure, then judgments of the three variables ought to show 
some sort of correspondence. Although we can all probably agree with 
this assertion, when we ask exactly what type of correspondence is neces­
sary to conclude that a person has a reversible structure, the issue be­
comes less clear. 

In the exposition below, first, I present the general approach and a 
theoretical perspective on human judgment. Second, I summarize pre­
vious research on whether social judgments are based on reversible men­
tal operations or structures, as hypothesized by Kelley. By using judg­
ments of ability, effort, and performance, my research (as well as that of 
others) provides evidence that although there is development in the re­
versible operation that Piaget termed compensation, even the judgments 
of college-age subjects cannot be characterized as based on a fully revers­
ible structure. Third, I present findings from judgments of nonsocial vari­
ables that are similar to the results for social judgments. Finally, I con­
sider the implications of the results for the appropriate theoretical 
representation of the mental operations and cognitive states of judgment. 
Specifically, what is the nature of the mental operations of judgment that 
are represented by mathematical models? How can we construct a theory 
that predicts when judgments will show reversibility and when they will 
not? 

A Theoretical Perspective on Human Judgment 

Figure 4.1 presents the functional-measurement approach to the judgment 
process (Anderson, 1979; Birnbaum, 1982; Birnbaum, Parducci, & Gif­
ford, 1971). The objective stimuli presented to the subject are represented 
at the left ofthe diagram. These stimuli are evaluated subjectively, result­
ing in implicit values or scale values, denoted Si' The psychophysical 
function H relates the objective stimuli to their subjective, psychological 
values. 

The subjective values of the stimuli are then combined according to 
some set of assumptions to form an integrated impression, denoted "'ii' 
The manner in which the subjective values are combined is called the 
information integration function and is represented by the symbol I in 
Figure 4.1. The information integration process is usually represented by 
an equation in terms of the scale values and other parameters such as 
weights. The final step in the judgment process is to translate the impres­
sion "'ii to a response Rii on the judgment scale. This final transformation 
is called the judgment function by Birnbaum et al. (1971) or the psycho­
motor law by Anderson (1980) and is denoted by J in the figure. And J is 
assumed to be at least a strictly monotonic function of the values of "'ii' 
although some researchers explicitly or implicitly assume it to be linear. 
The observable response Rii is thus the result of the composition of the 
functions H, I, and J. 
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FIGURE 4.1. Outline of judgment (after Birnbaum, 1974b). Subscripts i andj at left 
represent the stimuli that are presented, Si and Sj represent the subjective values 
of the stimuli, tPij represents the integrated impression based on the stimuli, and Rij 
represents the subject's response on the rating scale. 

Several aspects of the functional-measurement approach make it partic­
ularly useful for developmental research. First, it provides a powerful tool 
for formally expressing and testing theories of how people combine infor­
mation. This is an advantage because many developmental experiments 
are concerned with changes in information integration (see Surber, 1985a, 
for a review of applications of the functional-measurement approach to a 
variety of social concepts). Second, the approach allows description of 
both gradual, quantitative developmental changes (as change in parame­
ter values in the equations representing information integration) and qual­
itative developmental changes (as changes in the form of the equation 
representing the information integration process). Third, as I have dis­
cussed in detail elsewhere (Surber, 1984c), individual strategies for com­
bining information can be assessed, although a relatively large number of 
observations are needed on each subject. Fourth, the three global pro­
cessing stages outlined in Figure 4.1 force the researcher to consider the 
possible loci of developmental change: the psychophysical function, the 
integration function, or the judgment function. As is shown below, age 
differences in rating scale responses do not necessarily imply age differ­
ences in information integration, although many researchers attempt to 
draw such conclusions. 

Given the analysis of judgment processes in Figure 4.1, what consti­
tutes evidence of a reversible mental structure or operations? Theoreti­
cally, the judgment function J in Figure 4.1 does not represent the per­
son's underlying concept of the relations among a set of variables. Rather, 
J represents how the person translates the underlying impression or con­
cept into a response and is influenced by variables such as the distribution 
of stimuli (Birnbaum, 1974a; Mellers & Birnbaum, 1983) and instructions 
(Birnbaum & Viet, 1974). According to this view, evidence of a reversible 
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mental structure for a set of variables should be found in the integrated 
impressions but not necessarily in the final responses. Therefore, the 
integration functions I for judgments of a set of variables are what should 
be reversible. 

Algebraic versus Statistical Reversibility 

The integration functions for a set of variables can constitute a reversible 
structure in two different ways. Suppose that judgments of variable A can 
be represented as an additive function of the scale values of variables B 
and C, RA = JA(B + C), where RA is the observed judgment of A, JA is a 
monotonic function representing the judgment function, and Band C 
represent the scale values of variables Band C. A fully reversible mental 
structure for variables A, B, and C could require that judgments of vari­
able B be a monotonic transformation of the difference between A and C, 
RB = JB(A - C), and analogously for variable C. In other words, the 
integration functions for judgments of a set of variables should be based 
on a single equation solved for the variable to be judged. Henceforth, I 
call this algebraic reversibility. 

A second possible criterion for reversibility states that the integration 
functions for judgments of a set of variables should be based on the same 
set of subjective statistical relationships among the variables. This ap­
proach assumes that humans are "intuitive statisticians" (Peterson & 
Beach, 1967). In this view of reversibility the integration functions for the 
judged variables are all subjective multiple regression equations derived 
from a single set of subjective correlations. The weight of each variable is 
then the standardized regression weight (Birnbaum, 1976). For example, 
if judgments of A could be represented by the equation 

R = J [(rAB - rACrBdSB (rAC - rABrBdSc] 
A A 2 + 2 ' 

1 - rBC 1 - rBC 

then judgments of B should agree with the equation 

R = J [(rAB - rACrBdSA (rBC - rABrAdSc] 
B B 2 + 2 ' 

1 - rAC 1 - rAC 

where the r's represent the subjective correlations between the sub­
scripted variables and the S's are the scale values of the subscripted 
variables. This criterion is termed statistical reversibility. 

Inverse Compensation 

These two criteria for reversibility, algebraic and statistical, lead to differ­
ent predictions about the results of an experiment in which a person is 
asked to judge each of a set of interrelated variables. Assume that when a 
person is asked to judge variable A, givenB and C, the person judges A to 
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increase as either B or C increases. The algebraic criterion of reversibility 
predicts that judgments of B should increase as A increases but decrease 
as C increases. For example, if A = B + C, then B = A - C, and if A = 
B·C, then B = AIC. Thus, the result that is termed compensation or 
inverse compensation in the developmental literature is predicted by us­
ing the criterion of algebraic reversibility. The higher variable C, the 
lower variable B, with A constant. Mathematically sophisticated readers 
will recognize compensation as the partial derivative of B with respect to 
C or vice versa (cf. Norman & Schemmer, 1977). In the social attribution 
literature, this same effect is called the discounting principle (Kelley, 
1972, 1973). 

In contrast, the statistical model for reversibility allows, but does not 
clearly predict, inverse compensation. Whether inverse compensation oc­
curs will depend on the subjective correlations between the variables. For 
our example above, the statistical model can predict either that (1) vari­
able B will be judged to be directly related to variable C, holding A 
constant, or (2) variable B will be judged to be inversely related to variable 
C, holding A constant. If all the subjective correlations are assumed to be 
positive, the former result is obtained if rBC > r ABr AC, whereas the latter 
occurs if rBC < r ABr AC 

Piaget (1947/1960) was clearly considering algebraic reversibility, not 
statistical reversibility, when he wrote about reversible operations. Alge­
braic reversibility embodies the basic principles that we think of as in­
volved in functional relations in science, such as the ideal gas law (pres­
sure times volume equals number of moles times temperature times 
constant), Newton's laws, and simple geometric equations (area of a rec­
tangle equals height times width and volume of a cylinder equals cross­
sectional area times height). Piaget used such deterministic functional 
systems to explore the development of the reversible operation of com­
pensation. The major focus of this chapter is algebraic reversibility, not 
statistical reversibility. However, statistical reversibility may occur in 
social jUdgments (Surber, 1984b) or in situations in which relations among 
variables are probabilistic. Statistical reversibility may also represent a 
part of the developmental transition to algebraic reversibility. Thus, the 
reader should keep the statistical model in mind as an alternative. 

Correspondence of Interaction Patterns 

A second type of reversibility predicted by the algebraic criterion is 
termed correspondence o/interaction patterns (Surber & Gzesh, 1982).2 
As an example, assume that a person's integration rule for judging A is a 
mUltiplicative function of variables Band C. For the moment we ignore 
any potential distortions introduced by the judgment function J. The per­
son's judgments of A should show a significant B by C interaction that 
should be concentrated in the linear x linear, or bilinear, component. 
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When judgments of A are graphed with the marginal means of one given 
variable (B or C) on the abscissa and a separate curve for each level of the 
other given variable, the curves should form a linear fan, which, if extrap­
olated, would intersect in a common point (Anderson, 1974). If the judg­
ments of B (given A and C) are based on the same reversible structure 
or operations, then judgments of B should also show an A x C inter­
action concentrated in the bilinear component and should plot as a linear 
fan. A set of ideal responses based on the mUltiplying model for judg­
ments of ability, effort, and performance is shown in Figure 4.2. For 
an additive integration function, correspondence of interaction patterns 
predicts that all three types of judgments should show no interaction 
in analysis of variance and should graph as a set of parallel lines. Cor­
respondence of interactions obviously requires more precise quantita­
tive knowledge of the relations among the variables than does inverse 
compensation. 

An important feature of using judgments to test for reversible opera·· 
tions is that reversibility can be assessed regardless of whether the indi­
vidual makes judgments that are "correct" or accurate according to some 
external criterion. According to Acredolo (1981), Piaget's view of the 
reversible operation of compensation does not entail quantitative accu­
racy in making judgments. Proportional concepts, described by Piaget 
(194111965, pp. 17-24) as involved in the development of conservation, 
also do not entail quantitative accuracy in making judgments. In using 
functional measurement, proportional concepts are revealed by the way 
variables are combined (represented by the integration function) rather 
than by whether the judgments are accurate or agree with some external 
criterion. For example, use of proportional concepts would be shown if 
judgments of variable A could be represented as a multiplicative combina­
tion of the subjective values of variables Band C, and judgments of B 
could be represented as a ratio of the subjective values of variable C to 
variable A. The judgments of A and B could be numerically inaccurate. 
This characteristic of the functional-measurement approach allows us to 
explore reversibility for social concepts and other tasks where there is no 
standard for correctness. 

The Judgment Function and Reversibility 

If reversible structures are represented by the integration function, then 
testing the hypothesis that a person conceptualizes a set of variables 
reversibly requires methods of separating the integration function from 
the judgment function. Failure to include the possibility that the judgment 
function can change with the variable being judged is equivalent to requir­
ing the judgments to be in exact numerical agreement. For example, 
imagine that judgments of variable A, given information about variables B 
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and C, were plotted in a three-dimensional space with B on the x axis, C 
on the y axis, and judged A on the z axis. Then imagine judged B, given 
that A and C were plotted in the same three-dimensional space. The view 
that the judgment function cannot vary requires that all the points fall on 
the same surface in the three-dimensional space. This view of a reversible 
structure would be contradicted if the data for the three types of judg­
ments fit separate but similarly shaped surfaces in the space. It seems 
implausible that we would want to say that such a data set is based on 
irreversible mental operations because the results are merely off by a 
constant. Thus, allowance must be made for at least linear transforma­
tions introduced by the judgment function and possibly other sorts of 
distortions. 

Inverse compensation is a prediction of algebraic reversibility that can 
be tested without concern for the form of the judgment function J, be­
cause J is assumed to preserve rank order (monotonicity) and lack of 
inverse compensation drastically alters the rank orders of the responses. 
If two individuals or age groups differ in their use of inverse compensa­
tion, the differences can be attributed confidently to differences in either 
the integration function or the psychophysical function (or in both), rather 
than to the judgment function. This fact allows the development of in­
verse compensation to be studied without concern for age shifts or indi­
vidual differences in the judgment function. To assess correspondence of 
interaction patterns, however, it is necessary either to make assumptions 
about the judgment function and use those assumptions to make infer­
ences about the integration function or to use some methods of separating 
the integration function from the judgment function. 

Judgment Function Assumed Linear 

A common strategy has been to assume that the judgment function is 
linear (see Surber, 1984c, for a review). Under this assumption, the inte­
gration function can be directly inferred from the pattern of the judg­
ments. For example, a parallel set of curves and a nonsignificant interac­
tion implies an additive integration function (Butzin & Anderson, 1973), a 
diverging linear fan and a significant bilinear interaction (with a nonsig­
nificant residual component) implies a mUltiplicative integration function 
(Kun, Parsons, & Ruble, 1974), and a plot showing a "slanted barrel" 
shape with a significant (but not bilinear) interaction implies a relative 
ratio integration function, for example, A == BI(B + C) (Anderson & 
Butzin, 1978). The assumption that the judgment function is linear allows 
a test of the correspondence of interactions by examining the judgments 
of two or more variables. For example, if judgments of A, given Band C, 
show a bilinear pattern interpretable as a multiplicative integration func­
tion, do judgments of B, given A and C, show a bilinear interaction pattern 
consistent with a ratio integration function? 
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Judgment Function Not Necessarily Linear 

Interpreting the results of any experiment involving judgments becomes 
considerably more complex if the judgment function J is not assumed to 
be linear, but only monotonic (Anderson, 1977; Birnbaum, 1974a; Bo­
gartz, 1976; Bogartz & Wackwitz, 1970; see also Brainerd, Chapter 1, this 
volume). Presented in Figure 4.3 are three hypothetical data patterns, all 
derived from the additive integration function shown in the center panel. 
A negatively accelerated judgment function (in this case, a logarithmic 
transformation) was applied to produce the results in the left-hand panel 
and a positively accelerated judgment function (exponential in the exam­
ple) was applied in order to produce the results in the right-hand panel. 
The rank orders in the three panels are identical, and the lines connecting 
the panels show the transformations of the ordinate that map one data set 
onto another. 

Comparison of Figure 4.2 with Figure 4.3 should clarify some of the 
implications of the preceding example for testing correspondence of inter­
actions. Suppose that the panels of Figure 4.3 were the results of an 
experiment in which the subjects judged three different interrelated vari­
ables. Under the assumption that the judgment function is linear, the 
investigator would conclude that the judgments do not show correspon­
dence of interactions and would reject the hypothesis that the judgments 
derive from a fully reversible cognitive structure or set of operations. 
However, if the investigator were more cautious and assumed the judg­
ment function to be only monotonic, then the hypothesis that the judg­
ments are based on a fully reversible cognitive structure would be re­
tained. Thus, we see that the conclusions about correspondence of inter­
actions drawn from a set of data depend on the assumption made about 
the judgment function. 

Methods for Separating the Judgment 
and Integration Functions 

Fortunately, there are methods for separating the judgment function from 
the integration function, although these methods are difficult to apply in 
developmental research and consequently have been used infrequently. 
There are two approaches: two-operation experiments and the scale con­
vergence criterion. Both approaches are based on the idea that by obtain­
ing a richer network of data the number of interpretations that are com­
that are compatible with the complete pattern will be reduced. 

Two-Operation Experiments 

There are two types of two-operation experiments, those in which sub­
jects are instructed to judge the aggregation (or total) of two stimuli, each 
composed of components, and those in which subjects are instructed to 
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make ajudgment based on a comparison of two stimuli, each composed of 
components. Although both methods provide some additional evidence, 
collection of comparative judgments has much greater leverage for sepa­
rating the integration and judgment functions. 

AGGREGATION ApPROACH 

An example of an aggregation experiment is found in Anderson and Cu­
neo (1978, experiment 6). In this experiment, children were asked to judge 
the combined area of two rectangles at a time (e.g., "How much is there 
to eat in both rectangles?"). Children were shown combinations of rec­
tangles generated by a 4(7 x 7, 7 x 11, 11 x 7, and 11 x 11 cm) x 2(6 x 5 
and 10 x 8 cm) factorial design. Anderson and Cuneo hypothesized that 
combined area should be judged according to an additive combination rule 
R/2 = J(t/JI + t/J2), where R12 is the response to the two rectangles, J is any 
monotonic function, and t/JI and t/Jz represent the impressions of the area of 
each rectangle. Anderson and Cuneo's goal was to decompose t/JI and t/J2 
to discover how width and height are combined in forming an impression 
of the area of a single rectangle. 

One approach to decomposing the total area judgments is to test the fit 
of the additive model for judgments of total area by using the significance 
test of the interaction in an analysis of variance. If the rectangle 1 x 
rectangle 2 interaction is nonsignificant (given reasonable statistical 
power), then the additive model can be retained, and the judgment func­
tion for total area is assumed to be approximately linear. Note that this 
just moves the assumption that the judgment function is linear from the 
task of judging single rectangles to the task of judging pairs of rectangles. 

Aggregation judgments can also be decomposed by assuming that J is 
only monotonic. In this case the judgments are monotonically trans­
formed to fit the additive model by using a procedure such as 
MONANOV A (Kruskal & Carmone, 1969). MONANOV A is a computer 
program that removes interactions and generates scale values for the 
stimuli from which the rank-order characteristics ofthe data can be repro­
duced. The scale values from MONANOVA can be used to test between 
additive and nonadditive integration processes for the components in an 
aggregation experiment. This approach does not require the assumption 
that the judgment function is linear, but it assumes the validity of the 
additive model for the aggregation judgments. A discussion of problems in 
monotonic transformations of response scales is found in Busemeyer 
(1980). 

An important drawback of aggregation models is that the rank-order 
characteristics of the aggregation ratings cannot discriminate between 
additive and multiplicative integration of the components because aggre­
gation ratings will be ordinally consistent with the additive model in both 
cases. Table 4.1 shows a hypothetical set of results for an aggregation 
experiment involving rectangles. The upper panel shows the predicted 
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TABLE 4.1. Judged total area for pairs of rectangles. 
Multiplicative combination 

First rectangle 

7 x 7 7 x 11 11 x 7 11x11 

7 x 7 1 2 2 5 

Second rectangle 
7 x 11 2 3 3 6 

11 x 7 2 3 3 6 
11x11 5 6 6 9 

Additive combination 

First rectangle 

7 x 7 7 x 11 11 x 7 11x11 

7 x 7 1 3 3 5 

Second rectangle 
7 x 11 3 5 5 7 

11 x 7 3 5 5 7 
11x11 5 7 7 9 

Note: The scale values assigned to 7 and 11 were I and 3, respectively. The scale 
values for each rectangle were combined either multiplicatively (top) or additively 
(bottom) followed by summing the values to produce the predicted aggregated impres­
sion. The aggregation values were then linearly transformed to fit a l-to-9·scale. (The 
linear transformation is analogous to the judgment function J in that it transforms 
implicit impressions to fit the designated range of rating scale responses.) 

results when the dimensions of each rectangle are combined multiplica­
tively, whereas the bottom panel shows the predicted results when the 
dimensions are combined additively. Although the rank orderings in the 
table differ slightly, both tables meet the tests for additivity of the under­
lying dimensions (Krantz & Tversky, 1971). 

COMPARISON OR "SCALE-FREE" ApPROACH 

In spite of the fact that developmental researchers frequently ask children 
to make choices between stimuli (Piaget, 1947/1960; Siegler, 1976, 1981), 
there has been very little use of comparison designs in developmental 
research as a method for separating integration and judgment functions. 
In Birnbaum's (1974a, 1978, 1982) scale-free method, the subject is asked 
to judge the difference between two stimuli, each of which is composed of 
two attributes. The judged difference is hypothesized to follow the sub­
tractive model R12 = J(o/I - 0/2), where R12 is the judged difference be­
tween stimulus compound 1 and 2, J is a monotonic function, and 0/1 and 
0/2 are the impressions of the two stimulus compounds. For example, in 
judgments of area children could be presented with pairs of rectangles and 
asked, "Who would have more to eat, the person with cookie 1 or the 
person with cookie 2?" Following an initial decision, the child can then be 
asked to make a quantitative rating of how much more. The difference 
ratings can be used to test the integration process for height and width for 
each rectangle. 

Ifthe integration function is additive, then when the difference between 
stimuli that differ on only one dimension is judged, the judgment should 
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depend only on the varying dimension. For example, for judgments of the 
area of rectangles 

R = J[(hi + w) - (hi + Wk)] 
= J(Wj - Wk). 

In contrast, for the multiplicative integration function, the judgment of the 
difference between stimuli should depend on both dimensions: 

R = J[(hiw) - (hiwk)] 
= J[hi(wj - Wk)]. 

These predictions are shown in Table 4.2, which is analogous to Table 
4.1, and presents a hypothetical set of results for an experiment using 
Birnbaum's scale-free test. The difference data based on the multiplica­
tive combination show ordinal violations of the joint independence axiom 
required for additivity (Krantz & Tversky, 1971), whereas the data in 
Table 4.1 based on the additive model do not. If the height and width of 
rectangles are combined additively, then the difference judgment data 
should satisfy joint independence for all pairs of factors. Since the differ­
ence task is a 2 x 2 x 2 x 2 design (height of rectangle 1 x width of 
rectangle 1 x height of rectangle 2 x width of rectangle 2), we can denote 
each data point as a quadruple (hi, WI, h2' W2). Joint independence of HI 
and H2 from WI and W2 requires that if 

(7,7,7, 11) ;::: (11, 7, 11, 11), 

then 

(7, 11, 7, 7) ;::: (11, 11, 11, 7). 

TABLE 4.2. Judged differences in area for pairs of rectangles. 
Multiplicative combination 

First rectangle 

7 x 7 7 x 11 11 x 7 11x11 

7 x 7 5 6b 6 9 

Second rectangle 
7 x 11 4. 5 5 8 

11 x 7 4 5 5 8b 

11 x 11 I 2 2. 5 

Additive combination 

First rectangle 

7 x 7 7 x 11 11 x 7 11x11 

7 x 7 5 7b 7 9 

Second rectangle 
7x11 3. 5 5 7 

11 x 7 3 5 5 7b 
11x11 1 3 3. 5 

Note: The scale values assigned to 7 and 11 were I and 3, respectively. The scale 
values for each rectangle were combined either multiplicatively (top) or additively 
(bottom) followed by subtracting the value for rectangle 2 from the value for rectangle 
I. The difference values were then linearly transformed to fit a 1-to-9 scale, with I 
indicating rectangle 2 larger than rectangle I. Subscripted values provide a test of 
joint independence. 
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These comparisons are marked with the subscripts a and b, respectively, 
in Table 4.2. When height and width are combined multiplicatively (top 
portion of Table 4.2), joint independence is violated (4 is greater than 2, 
but 6 is not greater than 8). Thus, the scale-free method provides an 
ordinal test of the additive model without assuming a linear judgment 
function. The ordinal violation of additivity makes the scale-free method 
quite powerful. 

Assumptions in Two-Operation Experiments 

One assumption that has already been mentioned is that the aggregation 
or comparison follows a particular hypothesized model (for the examples 
above, either an additive or a subtractive model). This assumption can be 
tested ordinally, however, so that a linear judgment function need not be 
assumed. A second assumption is that the information integration process 
of primary interest (for example, the combination of height and width to 
estimate area, or the combination of ability and effort to estimate perfor­
mance) is not disturbed by embedding it in the aggregation or comparison 
task. This assumption is obviously open to question in developmental 
research. When presented with complex cognitive tasks, children may 
ignore some of the information (Anderson & Butzin, 1978) or may change 
to a strategy that is more completely mastered (Shatz, 1978). Thus, the 
results of a two-operation experiment may contradict those of a one­
operation information integration experiment and not provide an answer 
to the original research question. 

When subjects do change strategies in making judgments in a two­
operation task, it seems likely that they would either center on one dimen­
sion of both stimuli across all trials or cancel a stimulus dimension that 
has equal value across the two stimuli of a trial. For example, subjects 
might judge the total area of two rectangles by attending only to height 
(centration). If this were the case, the additive model would fit the total 
area judgments, but the derived t/J values would show an effect of only 
height. Thus centration should be obvious in the data. 

The strategy of canceling a dimension that has equal value for a stimu­
lus pair seems most likely to occur in comparison judgments. For exam­
ple, given a 7 x 11 and a 7 x 7 cm stimulus, the subject may judge the 
difference in area by canceling the equal-valued dimension and relying 
only on the dimension for which the values differ. Which dimension dif­
fers will vary between stimulus pairs. For the difference judgment task, 
this strategy will produce data that agree with the subtractive model. The 
t/J values derived will show an additive pattern, however. Under these 
conditions, the investigator could be led to the erroneous conclusion that 
an additive integration function holds. Ifthe judgments in a one-operation 
task show significant interactions but the impression values derived from 
difference judgments support the additive model, then the investigator 
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should be cautious about concluding that the two dimensions are com­
bined additively. Thus, difference judgments provide the most leverage 
when they support a nonadditive integration process also found in a one­
operation experiment. 

Scale Convergence Criterion 

Integration and judgment functions sometimes can be separated by using 
more than one type of judgment task and assuming that the scale values 
for the stimuli are independent of the judgment task. The rationale behind 
the scale convergence criterion is that measured psychological values 
should have at least some generality across tasks if they are to have 
predictive power and theoretical utility (Birnbaum, 1982). In contrast, 
Marks (1982) prefers to assume that psychological values vary with the 
experimental procedure, for example, magnitude estimation versus cate­
gory rating. 

The scale convergence criterion is illustrated by an experiment by Birn­
baum and Viet (1974), in which adults judged both the differences and 
ratios of weights lifted simultaneously in the left and right hands. The 
authors initially hypothesized that the two types of judgments would be 
based on subtractive and ratio integration processes, respectively, with 
linear judgment functions. Analyses of variance showed the expected 
results: Instructions to judge differences resulted in a parallel set of 
curves; instructions to judge ratios resulted in a bilinear fan of curves. 

In practice, the scale convergence criterion requires that scale values 
derived from the fit of the integration functions to the two sets of judg­
ments be linearly related, allowing the scale values to be unique to a linear 
transformation. In Birnbaum and Viet's experiment, however, scale val­
ues from the subtractive and ratio models showed a nonlinear relation­
ship. Scale values were linearly related when the data from the ratio 
judgment task were monotonically transformed to fit the subtractive 
model. Theoretically, the monotonic transformation of the ratio judg­
ments corrects for a nonlinear judgment function. Birnbaum and Viet 
concluded that rather than using two different integration operations 
when instructed to judge ratios and differences, subjects used the same 
integration process and scale values but different judgment functions. 
Thus, the assumption of scale convergence provides a criterion for distin­
guishing between the information integration process and the judgment 
function. 

Scale convergence is tested by plotting the scale values for a set of 
stimuli derived from one judgment task against the scale values derived 
from a second judgment task. One way to obtain estimates of the scale 
values is by fitting a hypothesized integration function to the data, by 
using any of a variety of iterative "brute force" algorithms, such as 
STEPIT (Chandler, 1969). For the additive and multiplying integration 
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models, it is a convenient fact that the marginal means are a linear func­
tion of the scale values if the judgment function is assumed to be linear. 
For a ratio model, the inverses of the marginal means of the denominator 
variable can be used. In principle, the scale convergence criterion seems 
important for assessing reversible operations. Algebraic reversibility re­
quires not only that the integration functions should derive from the same 
equation, but also that the scale values should correspond across judg­
ment tasks. 

Are Social Judgments Reversible? 

Correspondence of Interaction Patterns 

Functional-measurement methods were first used with judgments of so­
cial concepts to test for reversibility in judging a set of interrelated vari­
ables (Anderson & Butzin, 1974; Graesser & Anderson, 1974). These 
studies were conducted with college students and led to the conclusion 
that "cognitive algebra is not a simple mirror of mathematical algebra" 
(Anderson & Butzin, 1974, p. 598). Anderson and Butzin (1974) tested 
three hypotheses: (1) Judged performance equals the product of motiva­
tion and ability, (2) judged motivation equals the ratio of performance and 
ability, and (3) judged ability equals the ratio of performance and motiva­
tion (Heider, 1958). Judgments of performance for two different tasks 
(athletic and academic performance) showed a significant bilinear interac­
tion as predicted by the multiplying model, but judgments of ability for 
one type of performance showed no significant interaction. For the other 
type of performance there was a small but not bilinear interaction. The 
results for judgments of motivation were similar. Under the assumption 
that the judgment function is linear, Anderson and Butzin's data allow us 
to reject the hypothesis that the three types of judgments are based on 
integration functions derived from a single equation. Anderson and But­
zin's data showed inverse compensation, however, in that motivation and 
ability were judged to be inversely related. As we will see, inverse com­
pensation is not a universal finding. 

A second experiment testing reversibility was conducted by Graesser 
and Anderson (1974) who hypothesized that gift size would be judged to 
be the product of a donor's generosity and income and analogously that 
generosity would be judged by using the subjective ratio of gift size and 
income and income would be judged by the subjective ratio of gift size and 
generosity. The results were quite similar to those of Anderson and But­
zin (1974). Judgments of gift size showed a large bilinear interaction of 
income and generosity, but judgments of generosity and income showed 
departures from bilinearity. If the judgment function is assumed to be 
linear, Graesser and Anderson's (1974) data also contradict the hypothe-
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sis that a fully reversible structure or reversible operations underlie social 
predictions and inferences. As in the Anderson and Butzin (1974) study, 
Graesser and Anderson's data also showed inverse compensation. Gener­
osity and income were judged to be inversely related at constant levels of 
gift size. If the assumption of response scale linearity is questioned, how­
ever, the hypothesis that judgments reflect a fully reversible system can­
not be rejected. The data of both studies are ordinally consistent with 
additive and subtractive models, and so some method of separating the 
integration and judgment functions should be employed. 

I conducted two studies with college students to separate the integra­
tion and judgment functions and provide a better test of the hypothesis 
that judgments of performance, ability, and effort were based on a revers­
ible operational system (Surber, 1978). In the first experiment I used 
seven values for each variable, thereby providing a better assessment of 
scale convergence. In the second experiment, subjects judged the differ­
ences in performance, ability, and effort between pairs of hypothetical 
individuals, so that the scale-free test could be applied. The results were 
disappointing but also informative. In the first experiment I found inverse 
compensation for judgments of ability and effort, but my data did not 
replicate Anderson and Butzin's finding of a bilinear interaction of ability 
and effort in judgments of performance. Since then I have replicated my 
own findings (Surber, 1981a, 1981b, 1985c), and data collected in India 
appear quite similar to mine (Singh, Gupta, & Dalal, 1979). For judgments 
of ability and effort the data also showed unexpected interactions, but 
they did not agree with the performance judgment pattern. Assessments 
of scale convergence for the three variables both before and after rescal­
ing to additivity were again inconclusive. Seven scale values may be 
adequate, but where the interactions are not dramatic there is little effect 
of rescaling to additivity on scale convergence. In Birnbaum and Viet's 
(1974) study, the judgments of ratios of lifted weights were dramatically 
nonparallel, so that rescaling to additivity noticeably changed the scale 
values. My data were also ordinally consistent with additive and subtrac­
tive models, and because the scale convergence test did not provide the 
leverage to separate the integration and judgment functions, the experi­
ment did not allow rejection of the reversibility hypothesis. 

My second experiment was designed around Birnbaum's scale-free test 
and also failed to separate the integration and judgment functions. In the 
scale-free test judgments of the differences between pairs of stimuli (e.g., 
how much better will person 1 perform than person 2?) are assumed to 
follow a subtractive integration function. Metric properties of my data 
were inconsistent with the subtractive model (there were large interac­
tions for judgments of differences in performance, ability, and effort). 
Rescaling the means to additivity by using MONANOVA showed that 
there were some ordinal violations of the subtractive model, invalidating 
the scale-free test. 
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The real problems with my scale-free experiment were not immediately 
evident, however. It appeared that a fair proportion of the subjects were 
using a cancellation strategy when stimuli had one component in com­
mon. A second problem was that a number of the subjects seemed to be 
confusing the ends of the response scale in judging the differences in 
ability and effort. For example, when asked to judge who has higher 
ability, someone with an examination score of 150 who studied 20 h or 
someone with an exam score of 150 who studied 5 h, a fair proportion of 
subjects rated the one who studied 20 h as higher in ability. I assumed that 
these responses were a confusion of the ends of the response scale owing 
to inattentiveness. I discarded subjects who made a large number ofthese 
"errors" for failing to follow instructions. For those with only a few of 
these errors, I reversed their responses. Based on more recent findings 
(Surber, 1984b), I now believe these subjects were failing to show inverse 
compensation. Thus, the difference judgment task, in this case, may have 
induced a fundamentally different strategy for combining the information 
for a number of subjects. This makes use of the difference judgments to 
separate the integration and judgment function impossible in this case. 

I again tested the hypothesis that judgments of ability, effort, and per­
formance are based on a single reversible operational system, but for a 
physical task (lifting weights) and with a wide age range of subjects (6-
year-oIds to college students) (Surber, 1980). In addition, to apply the 
scale-free test, I included six trials of difference judgments. A disadvan­
tage of this study was that each subject judged only one variable. The 
college students' judgments of performance showed the bilinear pattern 
predicted by the multiplying integration model, replicating Anderson and 
Butzin (1974). The scale-free test in this experiment supported the inter­
pretation of the bilinear interaction in performance judgments as due to 
the integration function. The interactions in the judgments of ability and 
effort did not show the bilinear form, so once again social judgments 
failed to show a fully reversible pattern. 

In another study (Surber, 1981b), I manipulated the difficulty of the task 
on which performance was to be judged, and I collected judgments of 
performance, ability, and effort from college students. The performance 
judgments showed three different patterns. For the task described as 
difficult, judged performance showed an approximately bilinear and di­
verging interaction of ability and effort, as predicted by a mUltiplying 
model. For the easy task, judged performance showed a converging inter­
action of ability and effort, and for the moderate-difficulty task the pattern 
was approximately parallel. The key question is whether the patterns of 
judgment of ability and effort agreed with the pattern of performance 
judgments for each type of task. They did not. For all three tasks, judg­
ments of ability and effort showed a pattern similar to that predicted by 
the ratio model (ability = performance/effort, and effort = performance/ 
ability). As in previous work with college students (Anderson & Butzin, 
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1974; Kun, 1977; Surber, 1978, 1980), these judgments showed inverse 
compensation. 

An important issue is whether task difficulty influenced the information 
integration process or the judgment function for judgments of perfor­
mance. If change in the judgment function cannot be excluded, then it is 
possible to assume that judgments of ability, effort, and performance are 
based on fully reversible operations. Because this experiment used only 
four stimulus values for each variable, I did not assess scale convergence, 
nor did I attempt the scale-free method. Instead I administered a ques­
tionnaire assessing subjects' beliefs about how ability and effort are re­
lated to performance for each of the three tasks: easy, moderate, and 
difficult. The questions asked the subjects to report the degree to which a 
given level of performance was determined by either one of the two 
factors (e.g., to get a low score on the difficult examination, either a low 
IQ or low study effort is alone sufficient) or by both variables in combina­
tion (e.g., to get a high score on the difficult examination, both a high IQ 
and a high study effort are necessary). Questionnaire ratings varied with 
task difficulty in the expected way. For the difficult task, subjects be­
lieved that high performance required both high ability and high effort, but 
that low performance would occur in the presence of either low ability or 
low effort. For the easy task, high performance was seen as possible 
based on either high ability or high effort, whereas low performance re­
quired both low ability and low effort. 

These results constrain the possible interpretations of the different pat­
terns of judgment of performance. One might assume that the belief re­
sponses are based on the subject's reflection on his or her pattern of 
judgments, not on a reflection on how one combines the information. This 
viewpoint questions the concept of a reversible cognitive structure as a 
set of assumptions about the relations among the variables that can be 
used to make judgments of any of the variables, as proposed by Kelley 
(1972, 1973). Reported assumptions, in this interpretation, are unrelated 
to the way subjects actually combine information, and so there would be 
no reason to predict coherence across judged dimensions. An alternative 
is to view the belief questionaire as a different way of assessing some 
aspects of the integration function. In this case, the belief questionnaire 
could then be taken as evidence that the information integration process 
(and not just the judgment function) for judgments of performance varies 
with the difficulty of the task on which performance is judged. To answer 
the reversibility question, however, we are still left with the issue of 
whether variation in the judgment function could have disguised the inte­
gration function for the judgments of ability and effort. Thus the hypothe­
sis that judgments of ability, effort, and performance are based on an 
algebraically reversible structure can maintain its viability if it is assumed 
that there are different nonlinear judgment functions for the three task 
difficulty levels for judgments of ability and effort. 
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SUMMARY 

I have reviewed five studies testing the hypothesis that social judgments 
are based on a fully reversible cognitive structure or set of operations. 
None produced solid evidence supporting the hypothesis. However, the 
hypothesis that the judgments are not a linear function of the subjective 
impressions produced by combinations of information prevents a firm 
rejection of the reversibility hypothesis. 

Inverse Compensation 

In the studies described so far, college students typically showed inverse 
compensation in judging social variables. One exception was in my disser­
tation study (Surber, 1978) in which college students judged the differ­
ences in ability and effort between pairs of hypothetical individuals. 
Based on the developmental literature on the development of compensa­
tion (Brainerd, 1976; Larsen & Flavell, 1970), we would expect to see 
rather dramatic developmental change in inverse compensation in social 
judgments. Since I have recently reviewed these findings in detail (Sur­
ber, 1984a), I recapitulate them here only briefly. 

Kun (1977, study 1) gave children in first, third, and fifth grades combi­
nations of information about the performance (1, 4, or 7 puzzles done) and 
effort (barely tried at all, tried a little, tried very hard) of hypothetical 
individuals solving puzzles. Subjects were asked to judge how "good at 
puzzles" each story character was. Kun found no significant main effect 
of effort and no interaction of age group and effort. I replicated these 
results in a study in which children in kindergarten, third and fifth grades, 
and college students judged the strength of hypothetical weight lifters, 
given the size of weight lifted (very very light, kind of light, kind of heavy, 
or very very heavy) and the effort expended (did not try at all, tried a little 
bit, tried pretty hard, and tried very very hard). There was no main ef­
fect of effort and no age by effort interaction when the college sample 
was excluded. Examination of the data showed that some children 
judged ability to be directly related to effort (a pattern Kun called 
the halo schema) and others judged ability to be inversely related to 
effort. 

Formal criteria were developed to separate the children into groups 
based on the slope of their judgments of ability as a function of effort. For 
each of the elementary school age groups, some of the children showed 
inverse compensation whereas others judged ability to increase as effort 
increased. Analyses of judgments of the differences in ability showed the 
same two response strategies. Thus, the lack of a main effect of effort on 
the children's ability judgments was not due to neglect of the effort infor­
mation. Almost all the children made use of the effort information, but 
they used it in two different ways. A second finding was that age was not 
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related to the proportion of children showing inverse compensation. 
Reanalyses of the data of Kun's (1977) study 1 showed the same type of 
individual differences in inverse compensation, with little age change. 
Based on these two studies it appears that there is only a small age trend 
in use of inverse compensation to judge ability during the elementary 
school years, but there are individual differences. This conclusion is also 
supported by Karabenick and Heller (1976). 

There are between-study differences in use of inverse compensation, 
however. Approximately 60 percent of the elementary school children in 
Karabenick and Heller's study used inverse compensation, whereas 49 
percent did in my study and 38 percent did in Kun's study. Note that 
Karabenick and Heller's procedure made the lowest memory demands of 
any of the studies, because they held performance constant over the 
whole experiment (all characters succeeded). Kun's study and my study 
were similar with the exception that I presented line drawings represent­
ing the values ofthe component stimuli as memory aids on each trial. Kun 
also presented line drawings, but the drawings did not represent the val­
ues of the stimulus components. This post hoc ordering of the three 
studies in terms of their memory demands suggests that the information­
processing demands of the task may interfere with use of the "mature" 
strategy of inverse compensation, as suggested by Shatz (1978) and An­
derson (1980). 

Further evidence that information-processing load influences use of 
inverse compensation is provided by an experiment with college students 
(Surber, 1984a). In this experiment, subjects judged the ability of hypo­
thetical students described in terms of study effort and performance infor­
mation that varied in reliability. Effort was described as based on one of 
three different-size samples of the student's studying (1 day, 1 week, or 1 
month), and performance was described as based on one of three different 
tests (a lO-item quiz, a midterm, or a comprehensive final examination). 
Suprisingly, there was no main effect of effort in the total sample, but 
approximately half the sample judged ability to increase as the given level 
of effort increased, whereas the other half of the sample judged ability to 
be inversely related to effort. The addition of reliability information can 
be assumed to have raised the overall processing load of the task, because 
each trial now required integration of four pieces of information rather 
than just two. The increase in processing load may have decreased use of 
inverse compensation. 

Similar conclusions about inverse compensation emerge from the litera­
ture on judgments of effort except that subjects at all ages are more likely 
to use inverse compensation in judging effort than in judging ability. In 
summary, there is little evidence of age change in use of inverse compen­
sation during the elementary school years, and more complex judgment 
tasks yield a lower proportion of use of inverse compensation. 
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Are Nonsocial Judgments Reversible? 

I began by studying reversible operations in social judgments to determine 
whether concepts of the physical and social worlds develop synchro­
nously (Surber, 1985b). However, there are a number of problems inher­
ent in studying social judgments, some of which are avoided by studying 
nonsocial concepts. First, in the course of everyday experience individ­
uals may have acquired different ways of jUdging concepts such as perfor­
mance, ability, and effort. That is, something about the social ecology 
may lead to inconsistent judgments across the variables. It is less likely 
that an individual will have had inconsistent experiences with physical 
variables than with social variables. 

Second, stimuli presented may induce the subject to modify her or his 
mental representation of the relations among a set of variables, especially 
if stimuli were presented that seemed impossible (Kun & Weiner, 1973). 
For example, for a person of high ability to attain a very low grade on an 
easy test might seem impossible at any level of effort and might lead the 
subject to modify his or her assumptions about relations among the vari­
ables. With nonsocial concepts it should be easier to determine what 
stimuli are consistent with a set of assumed relations among variables. 
Third, if hypothetical events are used, the experimenter can control the 
amount and type of experience the subject receives about the variables. 
For social events, the experimenter has no control of the subject's experi­
ence. For these reasons we turn to an examination of judgment tasks 
involving nonsocial variables. 

Correspondence of Interaction Patterns 

Wilkening (1981) collected judgments of time, velocity, and distance trav­
eled in an experiment with 5-year-olds, lO-year-olds, and college stu­
dents. Wilkening concluded that judgments of distance were a multiplica­
tive combination of time and velocity for all three age groups, that time 
was judged as a subjective ratio of distance and velocity by the lO-year­
olds and college subjects, but that the lO-year-olds' and college students' 
judgments of velocity were based on a subtractive combination, veloc­
ity = distance - time. Thus, for lO-year-olds and college students, Wilken­
ing's data showed correspondence of interaction patterns across two 
judged variables, distance and time, but not across all three. Wilkening's 
conclusions depend on the assumption that the judgment function is 
linear. 

In another study, judgments of weight and distance from the fulcrum on 
a two-arm balance scale were examined (Surber & Gzesh, 1984). Subjects 
from five age groups (5-year-old preschoolers, second graders, fifth grad­
ers, eighth graders, and college students) made three types of judgments 
about balancing the scale: (1) Judge the distance of a constant weight on 
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the left arm, given the number of weights on the right and their distance 
from the fulcrum; (2) judge the distance of a variable number of weights 
on the right, given the distance of the constant weight on the left and the 
number of weights on the right; and (3) judge the number of weights to be 
placed on the right, given their distance from the fulcrum and the distance 
of the constant weight on the left. The correct models for solving all three 
versions of the task can be derived from the equation cDL = WRDR, where 
c is the constant weight on the left, DL is the distance of the constant 
weight from the fulcrum, WR is the weight on the right, and DR is the 
distance from the fulcrum on the right. The results for the college-age 
subjects were consistent with the mUltiplying model for judged distance 
on the left, were consistent with the ratio model for judgments of distance 
on the right, but were not consistent with the ratio model for judgments of 
weight on the right. Thus, the results are analogous to those of Wilkening 
(1981). College-age subjects showed correspondence of interaction pat­
terns across two of three variables. The conclusions of this study also 
depend on assuming a linear judgment function. (The children did not 
show inverse compensation, and so correspondence of interactions can­
not be considered for their data.) 

The previous studies of nonsocial reversibility all involved mUltiplica­
tive and ratio combination of information (torque = weight x distance, 
and distance = velocity x time). Anderson and Butzin (1974) hypothe­
sized that a SUbjective ratio operation was difficult, if not impossible, and 
that the difficulty of SUbjective ratios accounted for the lack of complete 
reversibility in their data. Given Anderson and Butzin's hypothesis, it is 
important to study relations among variables that are not multiplicative. 
For these reasons, I have also conducted a series of studies with college­
age subjects of reversibility for judgments of hypothetical events. Using 
hypothetical events allows the investigator to determine the nature of the 
relations among the hypothetical variables involved, so that different 
ways of combining the variables can be trained, followed by testing for 
reversibility. 

In my first study using hypothetical events (Surber, 1982), I taught 
subjects either a diverging pattern for predicting the amount of a hypo­
thetical chemical Z produced from combinations of hypothetical chemi­
cals A and B or a converging bilinear pattern. The trained patterns corre­
spond to an approximate conjunctive rule for combining A and B and an 
approximate disjunctive rule, respectively (Oden, 1977). The amounts of 
A and B were described verbally, and the subjects predicted the amount of 
Z by marking a line with endpoints labeled extremely high and extremely 
low. Mter a series of training trials in which Z was predicted with feed­
back, subjects then predicted Z without feedback, given different verbal 
levels of A and B, and inferred the amount of A needed to produce a given 
amount of Z when combined with a specified amount of B. The predic­
tions of Z are presented in Figure 4.4. The solid lines show the untrained 
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FIGURE 4.4. Mean judgments of the generalization trials of experiment 1 (points 
connected by solid lines). The left-hand panel shows the mean judged amount of Z 
for groups trained in the diverging bilinear condition, and the right-hand panel 
shows the mean judged Z for groups trained in the converging bilinear pattern. 
The abscissa is spaced according to the marginal mean A values. Points connected 
by dashed lines are the no-feedback means. 

values of A and B, and the dashed lines show the trained values. As can be 
seen, the training successfully produced two different judgment patterns. 

The judgments of A are shown in Figure 4.5, with the diverging condi­
tion in the top two panels and the converging condition in the bottom two 
panels. There were two separate designs for judgments of A. In one 
condition, shown in the left-hand panels of Figure 4.5, Z values of me­
dium or less were combined with B values of medium or greater. In the 
right-hand panels of Figure 4.5, Z values of medium or greater were 
combined with B values of medium or less. As can be seen in Figure 4.5, 
the pattern of A predictions depended not on the training condition, but 
on the distribution of trials presented for judgments of A. When the Z 
values were less than the B values, a diverging bilinear pattern was ob­
tained (left-hand panels), but where the Z values were greater than the B 
values (right-hand panels), a converging pattern was obtained. 

These data were somewhat puzzling to me. One hypothesis is that the 
distribution of stimuli altered the judgment function in ways that might be 
expected based on range-frequency theory (Birnbaum, 1974a; Mellers, 
1982; Mellers & Birnbaum, 1982,1983; Parducci, 1974). According to 
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FIGURE 4.5. Mean judgments of the amount of A in experiment 1. The top two 
panels (A and B) are the diverging bilinear training groups, and the bottom panels 
(C and D) are the converging bilinear training groups. The left-hand panels (A and 
C) are the groups that answered trials in which Z :S B, and the right-hand panels 
(B and D) are the groups that answered trials in which Z 2': B. The abscissa is 
spaced according to the marginal mean Z value, and each curve in a panel is a 
different level of B. 

range-frequency theory, the judgment function is positively accelerated 
when the distribution of impressions is positively skewed and negatively 
accelerated when the distribution is negatively skewed. For an additive 
combination of cues, a positively accelerated judgment function produces 
a diverging interaction when it is plotted as in Figure 4.5, whereas a 
negatively accelerated judgment function produces a converging interac­
tion. Thus, one explanation of the data is to propose that (1) training 
influenced the judgment function, but not the information integration 
function for predicting Z, and the integration function is additive for both 
groups; (2) the information integration function for inferences of A is 
subtractive (A = Z - B) for both training conditions, but the skewed 
distribution of A impressions altered the judgment function so that the 
responses were not parallel in either stimulus condition. This explanation 
saves the hypothesis that the judgments of Z and A are based on revers­
ible operations. 
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To test this explanation, I conducted a second experiment, using the 
same two training conditions, a diverging bilinear and a converging bili­
near pattern. The design for the judgments of A was not skewed this time; 
instead it was a 7 x 7 factorial of Z and B values. If the skewed designs of 
the first experiment produced the interactions of Band Z, they should be 
eliminated (or at least altered) by the uniform factorial design. In addition, 
I administered a questionnaire, analogous to that used in my 1981 study of 
judgments of performance, asking subjects to report their beliefs about 
how A and B combine to produce Z. 

The results for the judgments of Z replicated those shown in Figure 4.4. 
The results for the judgments of A are shown in Figures 4.6 and 4.7. The 
two training conditions showed patterns of judgments of A that were quite 
similar, as shown statistically by the non significance of the training condi­
tion x Z x B interaction in spite of high power. In addition, if the data 
from the first experiment in Figure 4.5 are superimposed on the data of 
Figures 4.6 and 4.7, the results can be seen to be very close. The skewed 
stimulus designs in the first experiment do not appear to be the source of 
the interactions that do not agree with the trained patterns. 
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FIGURE 4.6. Mean judgments of the amount of A III experiment 2 for the diverging 
bilinear training group. The abscissa is spaced according to the marginal mean Z 
value, and each curve represents a different level of B. 
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FIGURE 4.7. Mean judgments of the amount of A in experiment 2 for the converg­
ing bilinear training group. The abscissa is spaced according to the marginal mean 
Z value, and each curve represents a different level of B. 

o. 

The questionnaire ratings, however, supported the hypothesis that the 
training influenced the way subjects believed A and B combined to pro­
duce Z. Subjects in the converging training condition reported high belief 
in the statement that low Z required both low A and low B, whereas 
subjects in the diverging condition expressed high belief in the statement 
that high Z required both high A and high B. Thus, to explain the data as 
resulting from a reversible structure with the response patterns distorted 
by the judgment function, one has to discount both the questionnaire 
results and the failure of the change in the stimulus distribution to influ­
ence the response pattern. The hypothesis that humans base judgments 
on a fully reversible mental structure begins to lose credibility. 

A remaining explanation of the hypothetical chemical experiments that 
preserves the reversibility hypothesis is that some of the stimulus combi­
nations for judgments of A may have seemed impossible to the SUbjects, 
inducing them to change their representations of the way A and B com­
bine to produce Z. In a recent experiment, I included a condition in which 
the subjects learned an additive or parallel response pattern for predicting 
Z, given A and B. For the bilinear patterns there are a priori rationales for 



142 Colleen F. Surber 

expecting the subjects to view some combinations of Z and B as impos­
sible. But for an additive combination of A and B there is really no a priori 
reason to hypothesize that the subjects would view any combinations of Z 
and B values as impossible. The judgments of A in this experiment 
showed a pattern almost identical to that in Figures 4.6 and 4.7. 

The overall conclusion from my hypothetical chemical experiments is 
that judgments are not based on a fully reversible set of operations or 
structure. Once again, the judgment function for judgments of either vari­
able Z or variable A may be nonlinear. However, to save the reversibility 
hypothesis, it is necessary to assume that (1) the training influenced the 
judgment function but not the integration function, (2) the integration 
function for predictions of Z was additive for all three training conditions, 
(3) the subjects based their answers to the questionnaire on their judg­
ments and not on how they combined the information, (4) the integration 
function for inferences of A was subtractive regardless of training condi­
tion, and (5) the judgment function for inferences of A is nonlinear and 
independent of training condition and stimulus distribution. Accepting 
this set of postulates saves the reversibility hypothesis, but at the cost of 
concluding that complete reversibility may occur only for additive combi­
nations of information. 

An exception to the conclusion that judgments are not based on a 
completely reversible structure can be found in a study of judgments in 
the balance scale task (Surber & Gzesh, 1984). We found that a few of 
the college students reported explicitly using the correct mUltiplying and 
ratio equations to find their answers. The judgments of those subjects who 
used calculations were, not surprisingly, fully reversible. In a second 
experiment (Haines, Surber, Walden, & Gzesh, 1985), we confirmed that 
fully reversible response patterns are produced by subjects who are capa­
ble of the appropriate calculations and who are urged to calculate. How­
ever, when the task was presented such that calculation was impossible, 
results similar to those reported by Surber and Gzesh (1984) were ob­
tained: The college students' judgments showed the diverging bilinear 
pattern for only two of the three types of judgments. 

Inverse Compensation 

Three of the experiments on nonsocial concepts above provide informa­
tion on developmental change in inverse compensation. Wilkening (1981) 
found that even 5-year-olds judged time to be inversely related to veloc­
ity, but that 5-year-olds did not judge velocity to be inversely related to 
time. Ten-year-olds and adults showed inverse compensation in judging 
both variables. Surber and Gzesh (1984) found an increase with age in use 
of inverse compensation in the balance scale task, with college students 
showing almost 100 percent inverse compensation. Surprisingly, only 
about half of the eighth-graders showed inverse compensation, and they 
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did so inconsistently across the two types of judgments for which it was 
required. Inconsistency in use of inverse compensation across judged 
dimensions is similar to the inconsistency in using inverse compensation 
found in judgments of ability and effort. 

Haines et al. (1985) found that, after training subjects to make judg­
ments that show the bilinear pattern of the mUltiplying model, there was 
considerably higher use of inverse compensation for both eighth-graders 
and fifth-graders than in the study by Surber and Gzesh (1984). The train­
ing in the Haines et al. study did not directly involve inverse compensa­
tion. It is possible that the subjects abstracted the inverse relationship 
between weight and distance on one arm of the balance when the position 
of the constant weight on the other arm was fixed. For example, in train­
ing the subject would discover that the constant weight should be placed a 
certain distance from the fulcrum for two different stimulus combinations: 
a weight larger than the constant weight placed closer to the fulcrum, or a 
weight smaller than the constant weight placed farther from the fulcrum. 
From such trials, the subject can abstract the inverse relation between 
weight and distance on one arm of the balance. 

Data on developmental change in inverse compensation for nonsocial 
judgments are found also in the extensive literature on "anticipation of 
levels" tasks used by researchers exploring the development of conserva­
tion. The general conclusion in this literature is that inverse compensation 
is poorly developed in children 4 years or younger but is relatively well 
developed in children about 7 years or older (Larsen & Flavell, 1970). 

Representations of the Mental Operations of Judgment 

At this point the reader may feel that studying the reversible operation of 
correspondence of interaction patterns is not only fruitless (because of the 
problems introduced by the judgment function) but also somewhat pur­
poseless. Developmental research has been predominantly concerned 
with the reversible operation of inverse compensation, which can be stud­
ied without regard for possible nonlinearity on the judgment function. 
However, I think correspondence of interactions is an important type of 
reversibility for several reasons. First, testing correspondence of interac­
tions allows us to test the central hypothesis in attribution theory, that 
how one assumes causes combine to produce an event will determine how 
one will make inferences of the causes (Kelley, 1972, 1973). To distin­
guish the effects on inferences of different causal schemata, the interac­
tion pattern must be considered. If the interaction pattern is not consid­
ered, the schemata are indistinguishable. 

Second, Piaget proposed that the development of proportionality con­
cepts begins with logical multiplication (or factorial combination of two 
variables) and additive compensation (or compensation "in the sense of 
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an additive difference," Inhelder & Piaget, 1958, p. 218). Development 
then proceeds through an understanding of qualitative proportionality in 
which it is understood that "an increase in one variable gives the same 
result as a decrease in the other" (p. 219), to an understanding of metric 
proportions and mUltiplicative compensation. This description of the de­
velopment of proportionality concepts implies that correspondence of 
interaction patterns would occur for an additive combination of variables 
but not for a mUltiplicative combination, because multiplicative combina­
tion requires extensive quantification and metric proportions. It seems 
clear that a test of the proposed developmental sequence requires a 
method for distinguishing what Inhelder and Piaget (1958) call additive 
and multiplicative compensation. These two types of compensation might 
be taken to correspond to subtractive and ratio information integration 
functions, respectively. As has been shown here, distinguishing these two 
models of information integration is not simple, but is a central part of 
testing for correspondence of interaction patterns or quantitative revers­
ibility. 

Third, I think testing correspondence of interaction patterns has forced 
me to seriously consider just what underlying representations or opera­
tions are involved in human judgment. The findings of the experiments 
reviewed above require a theory to predict the different aspects of revers­
ibility and lack of reversibility found in inconsistent use of inverse com­
pensation across dimensions and use of inverse compensation but failure 
of the interaction patterns to correspond. In addition, it is necessary that 
the theory distinguish between mental operations that are explicit mathe­
matical calculations and the mental operations of subjective judgment, 
which do not involve explicit calculation. Models of judgment have been 
called paramorphic models because many types of mental operations 
could produce results agreeing with a given model (Hoffman, 1960). Sev­
eral possible representations are considered below: a list of triadic (for 
systems of three variables) associations among the variables, a spatial 
representation, a set of conditional functions, and a production system in 
J. Anderson's (1982, 1983) Act* model. 

Associative Model 

According to the associative representation, a person's knowledge about 
the relations among a set of variables is encoded as a list. For three 
variables A, B, and C, the person would have in long-term memory a list 
of triadic associations of A, B, and C. For example, the person might have 
stored A = low, B = low, C = low; A = medium, B = high, C = low; and 
A = medium, B = low, C = high; and so on. The process of making a 
judgment would then consist of using the values of the given variables to 
retrieve the associated value of the variable to bejudged. The psychophy­
sical function (H in Figure 4.1) then represents the transformation of the 
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given stimulus values to match the form in which the values of the vari­
ables are stored. The integration function (l in Figure 4.1) is instantiated 
in the list of associations; it is not really a function at all. The judgment 
function (J in Figure 4.1) represents the way the person transforms the 
retrieved value of a variable to something that corresponds to the re­
sponse scale. 

What does the associative model predict about reversibility? If it is 
assumed that the list of associations can be accessed with equal facility 
from any pair of variable values (A and B, A and C, or B and C), then the 
associative model predicts algebraic reversibility, both inverse compensa­
tion and correspondence of interaction patterns. Under the associative 
model, lack of reversibility would be expected if the person had stored 
separate lists of associations among the variables for each variable to be 
judged, or if the person were unable to retrieve a value for a variable when 
given the values of the other variables. In the associative model there are 
also difficulties if the person is given more stimulus values than she or he 
has stored. For example, suppose the person has stored information 
about how low, medium, and high values of Band C are associated with 
A, but is asked to judge A given values of Band C such as very very low, 
very low, low, medium, high, very high, and very very high. The associa­
tive model by itself has no mechanism for extrapolating and interpolating 
beyond the stored values. Thus, if the person encounters stimulus values 
that do not fit those in memory, some other method of generating a judg­
ment must be used, and there would be no a priori reason to expect 
reversibility. 

Spatial Representation 

A second possibility is that a person organizes knowledge about the rela­
tions among the variables as a surface in n-space (where n is the number 
or variables). If the person acquired the knowledge as a list of associa­
tions, then a surface would be fit to the points and filled in by interpola­
tion. When asked to make ajudgment about a variable, the person locates 
the positions of the given variables on their axes and projects the resulting 
point onto the surface. The value of the variable to be judged is then 
obtained by projecting the point on the surface onto the judged variable's 
axis. In this model, the psychophysical function corresponds to the pro­
cess of finding the value on the axis of a given variable that corresponds to 
the given stimulus value. The integration function corresponds to the 
surface itself and essentially represents the person's assumptions, based 
on limited knowledge, about how the variables in the set are related. 
The judgment function corresponds to the process of transforming the 
value from the axis of that variable into a response. 

The spatial model predicts algebraic reversibility, as long as the stimu­
lus values can be transformed to the axes in a region where the surface 
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exists. It is possible, however, that a person could have regions over 
which the surface if undefined. That is, the surface may have "holes" in it 
or may be undefined above or below extreme values of the variables. For 
stimulus values that fall above or below the defined region of a surface, it 
seems natural for the person to extrapolate the same shape in that direc­
tion, however, and algebraic reversibility would then be expected. A 
surface would be expected to have holes in it only if the knowledge on 
which the surface was based were very incomplete. 

A variation on this representation allows the surface to have a thickness 
that varies with the sUbjective uncertainty about the relations among the 
variables; the more uncertainty, the thicker the surface. Within the 
bounds of the thickness, one might also imagine the surface as varying in 
density (analogous to a probability density function) such that variable 
values in the denser regions are viewed as more likely than those in less 
dense regions. 

A Set of Conditional Functions 

Another possibility is that when initially acquiring knowledge about the 
relations among the variables, a person structures this knowledge in the 
form of conditional functions that represent the relation between two of 
the variables by holding one of the variables constant at a particular 
value. 3 For example, a person might have a set of 10 functions giving the 
relation between variable B and variable A, each associated with a differ­
ent value of variable C. For a more concrete example, imagine that a 
person's judgments of variable A agree with the additive model A = B + 
C. This could be mentally represented as a set of linear functions condi­
tional on the value of C. When called on to judge variable A, the person 
retrieves the function that is stored under the given value of C and, using 
the given value of B, finds the appropriate A value. For the additive case, 
the variable C changes the intercept of the function that is retrieved. A 
different function is retrieved for each C value. The functions themselves 
might be represented spatially as lines in a 2-space, or they might be 
represented with imagery. 

In the conditional-function model, the psychophysical function for vari­
able B represents the process of finding a value of B to use in a retrieved 
function that corresponds to the given B stimulus value. For Variable C, 
the psychophysical function represents the transformation of the stimulus 
value to match the form in which the values of variable C are stored. The 
integration function consists of the stored set of conditional functions, 
and the judgment function represents the process of translating the value 
of A into a response. 

The conditional-function model does not make clear predictions about 
reversibility. For example, suppose a person judges A by using a set of 
linear functions in terms of B, conditional on C. When the person is asked 
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to judge C, there is no given value of C to use as a cue to retrieve a 
function. Alternatively, when the person is asked to judge B, the given C 
value will allow retrieval of a function, but the retrieved function must be 
solved for variable B. If the functions are represented spatially or with 
imagery, however, they could be used to find the value of either of the two 
variables with equal facility. Algebraic reversibility would then be shown 
for judgments of two of the variables but not the third (in the example, 
judgments of variables A and B would show algebraic reversibility, but 
not judgments of variable C). Algebraic reversibility for three variables 
would be predicted if a person had stored two sets of conditional func­
tions that embody the same relations-for example, a set of functions for 
A in terms of B conditional on C and a set of functions for B in terms of C 
conditional on A. Thus, the conditional-function model predicts that re­
versibility depends on the manner in which the information is stored. 
More experience with a set of variables would be likely to establish alter­
native storage forms for the conditional functions and would therefore 
increase the probability of reversibility. 

Act* 

Another possible approach to representing mental operations of judgment 
is to use the production systems of J. Anderson's (1982, 1983) Active 
Control of Thought, or ACT*, theory.4 The Act* model is intended to be a 
general theory of cognition and is based on a number of principles. First, 
the mind consists of three memories: working memory (containing infor­
mation immediately available for use or currently activated), declarative 
memory (long-term memory, represented as a tangled hierarchy of cogni­
tive units), and production memory (containing condition-action or if-then 
pairs for operating on the information in working memory). Second, 
thought is goal-directed, with goals held in working memory. The produc­
tion that is applied in a given cognitive act depends in part on the degree 
of match between the condition and the goal in working memory. 

Third, all knowledge is initially encoded declaratively and is used by 
general interpretive procedures. With practice, people show a gradual 
improvement in skill performance. Anderson postulates that skill acquisi­
tion goes through three stages: declarative, knowledge compilation, and 
tuning. Fourth, ACT* includes several mechanisms for learning that take 
the learner through the three stages: (I) Productions are strengthened by 
successful use and become more likely to be selected in the future, (2) 
productions are modified and new productions are acquired through prin­
ciples of generalization and discrimination, and (3) new task-specific pro­
ductions are acquired through practice via the processes of proceduraliza­
tion (acquisition of a specific production to replace use of a general 
production) and composition (the process of combining two or more pro­
ductions into a single production). 
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Smith (1984) applied the Act* model to phenomena in social inference 
and included some discussion of reversibility in social judgments. Smith 
primarily considered inference tasks involving only two variables and did 
not speculate on the type of reversibility we have called correspondence 
of interaction patterns. For two variables, Smith posits that inference 
rules are bidirectional only if they are encoded declaratively rather than 
procedurally. This assertion is based on the hypothesis in Act* that a 
declaratively encoded concept can be retrieved from either the premise or 
the conclusion through spreading activation. Procedures, however, are 
applied only if the condition segment of the condition-action pair is suffi­
ciently well matched by the contents of working memory. The action 
segment cannot be used to retrieve a procedure. Thus, social inferences 
should be bidirectional when judgments are made in the interpretive stage 
but not necessarily once the judgments are proceduralized. Smith pointed 
out that use of an inference rule in one direction more than in the reverse 
direction will result in the development of a procedure for making the 
judgment in one direction but not the other. 

Smith also attempted to explain how an information integration func­
tion could be represented in Act*. He proposed that a declarative infer­
ence rule of the following form might represent information integration: 
"(object) has properties (PI)(P2), ••• and (PI)(P2), ••• are relevant to 
(characteristic) of (object) = = (object) has (characteristic) with level 
average (Ph P2, ••• )" (Smith, 1984, p. 408). The parentheses denote 
variables that can be instantiated with values depending on the particular 
task content, and = = separates the premise and conclusion of a bicondi­
tional, declaratively encoded inference rule. Smith points out that if the 
information integration rules of social judgment are represented as above, 
they would not be usable bidirectionally because it is not possible to 
retrieve the properties (PI, P2, etc.) from the level of the characteristic 
that is the conclusion. 

Smith's attempt to assimilate the information integration approach to 
Act* is laudable and important, but it is incomplete. For example, he has 
not specified how the characteristics (PI, P2, etc.) are translated to values 
that can be averaged (i.e., the psychophysical function is unspecified) or 
how the characteristics are weighted. Also, as Smith acknowledges, there 
are other possible ways of applying Act* to the problem of how people 
make judgments. An alternative is to express the possible information 
integration functions as productions, with information about the context 
of the task used to choose which production (information integration 
function) to apply and the combination of information in a given trial used 
to fill the local variables in the selected production. There might be a 
general-purpose production for determining scale values from character­
istics by positioning the characteristic on a continuum between the possi­
ble extremes of the characteristic indicated by the instructions or past 
experience, and there might be a general-purpose production for position-
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ing the integrated psychological impressions (t/Jij) on the response scale, 
perhaps embodying principles such as those of range-frequency theory. 

In principle, Act* is an interesting model for representing the acquisi­
tion of reversible operations. For example, it should be possible to specify 
productions for the four different aspects of the development of propor­
tionality hypothesized by Inhelder and Piaget (1958): additive compensa­
tion, qualitative proportionality, multiplicative compensation, and quanti­
tative proportionality. Furthermore, the learning mechanisms in Act* 
should allow specification of how these aspects of reversibility develop 
and what types of experiences will promote or inhibit the development of 
reversibility. For example, the compensatory relation between two vari­
ables should be abstracted in Act* by the generalization process that finds 
similarities between productions and creates a new production. The pro­
cess of knowledge compilation (via proceduralization and composition) 
could result in the higher-level organization of operations postulated by 
Piaget to constitute the INRC group. 

Conclusions 

In this chapter I have reviewed the literature applying the functional­
measurement approach to the study of the development of reversible 
operations. In addition to the general advantages of the functional-mea­
surement approach in developmental research mentioned at the outset, 
two par~icular contributions of the approach are evident. First, use of the 
functional-measurement approach has made it possible to reach beyond 
the kind of reversibility that Piaget called compensation to the type of 
reversibility called correspondence o/interactions, or what Piaget termed 
multiplicative compensation or qualitative proportionality. This makes it 
possible to test Piaget's proposed developmental sequence for propor­
tional reasoning. Second, it is clear that testing correspondence of inter­
action patterns requires methods for separating the integration function 
and judgment function. Most developmental research using rating scale 
responses has ignored the possibility of developmental change in the way 
rating scales are used, the process represented by the judgment function. 
Although the experimental attempts to separate the integration and judg­
ment function were not completely successful, they demonstrate methods 
that could be used in other developmental research addressing the general 
issue of developmental change in information integration. Appropriate 
use of the functional-measurement approach (or, indeed, any type of 
rating scale responses) in developmental research requires consideration 
of the possibility that there is developmental change in any of the three 
global processing steps in Figure 4.1. Making clear these three possible 
loci of developmental change is a contribution of the approach in itself. 
The functional-measurement approach, because it addresses the question 
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of how information from several sources is combined, is well tailored for 
many developmental research topics, from moral judgment to cue use in 
conservation, and could be used profitably in many other settings. 
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Notes 

1. Mental structure and mental operations are not distinguished in most 
of this paper. It is possible that the same behavior Gudgments of a set 
of variables that are reversible in ways defined below) could result 
from either retrieval of values (a mental representation) or operations 
on the subjective values of stimuli. 

2. The statistical model of reversibility can be expanded to include inter-
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action terms. However, its equations become quite complex, and I 
have not yet worked out the details of the model's predictions for the 
interactions across judged variables. 

3. This possibility was suggested to me by Jerome Busemeyer. 
4. Application of the Act* model was suggested to me by John R. 

Surber. 



5. Implicit Theories: An Alternative to 
Modeling Cognition and Its Development 

Robert J. Sternberg 

Theories of cognition can be classified as being of two kinds: explicit and 
implicit. Explicit theories of cognition are constructions of psychologists 
or other scientists that are based, or at least tested, on data collected from 
people performing tasks presumed to measure cognitive functioning. For 
example, a battery of cognitive tests might be administered to a large 
group of people and the data from these tests analyzed to isolate the 
proposed sources of cognitive functioning in test performance. Implicit 
theories of cognition are constructions of people (psychologists or layper­
sons) that reside in the minds of these individuals. Such theories need to 
be discovered rather than invented because they already exist, in some 
form, in people's heads. The goal in research on implicit theories is to find 
out the form and content of people's informal theories of cognition. Thus, 
one attempts to reconstruct already existing theories rather than to con­
struct new theories. The data of interest are people's communications 
regarding their notions about the nature of cognition or its aspects. For 
example, a survey of questions regarding the nature of cognition might be 
administered to a large group of people and the data from this survey 
analyzed in order to reconstruct people's belief systems. 

Most modeling of cognitive structure and processing is based on ex­
plicit theories of cognition. In most domains and research situations, such 
modeling via explicit theoretical analysis makes perfect sense: One tests 
an explicit theory of cognitive functioning on data collected from people 
performing various cognitive tests. Sometimes, however, modeling based 
upon implicit theoretical analysis may be called for. Because of the unfa­
miliarity of many investigators with implicit theoretical techniques, stu­
dents of cognition may miss the opportunity to collect valuable data in 
cases where explicit theoretical analysis is inappropriate, impossible, or 
in need of supplementation by implicit theoretical analysis. 

The goal of this chapter is to acquaint readers with the nature of implicit 
theoretical modeling of human cognition and its development. The chap­
ter is divided into four major parts. In the first, I discuss the nature and 
uses of implicit theoretical modeling in the study of human cognition. In 
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the second, I discuss methodologies for performing implicit theoretical 
analysis. In the third part, I provide illustrations of the use of implicit 
theoretical analysis, primarily from my own research but also from the 
research of others. In the fourth part, I draw some conclusions about the 
use of implicit theoretical analysis in the study of human cognition. 

The Nature of and Need for Implicit Theoretical 
Modeling of Human Cognition and Its Development 

Implicit theoretical analysis is a method for understanding people's con­
ceptions of their cognitive structures and processes. Under what kinds of 
circumstances might one seek such understanding? 

Understanding Behavior Motivated by Implicit Theories 

Implicit theories of cognition drive the way in which people perceive and 
evaluate both their own cognition and that of others. To understand better 
the judgments people make about their own and others' cognition, it is 
useful to learn about their implicit theories. For example, parents' implicit 
theories of their childrens' language development will determine at what 
ages they will be willing to make various corrections in their children's 
speech. More generally, parents' implicit theories of children's cognitive 
development will determine at what ages they believe their children are 
ready to perform various cognitive tasks. In sum, knowledge about im­
plicit theories is important because it is so heavily used by people in 
making judgments in their everyday lives. 

Defining the Scope of an as yet Poorly Understood Phenomenon 

Certain kinds of methodology can be particularly useful at different stages 
of research into various phenomena. For example, rigorous mathematical 
modeling of stimulus variance requires that one have an a priori model of 
task performance and hence tends to be useful in the middle or later 
stages of research. In contrast, exploratory factor analysis and protocol 
analysis can be useful for gleaning an idea of just how individuals ap­
proach a task that is poorly understood. Because of its exploratory na­
ture, implicit theoretical analysis probably has some of its greatest uses 
during the early stages of research into a given phenomenon. 

Because implicit theories of scientific investigators ultimately give rise 
to their explicit theories, it is useful to find out what these implicit theories 
are, perhaps even before the explicit theories have been proposed. Im­
plicit theories essentially provide a framework, or a lay of the land, that 
can be useful in defining the general scope of a new phenomenon to be 
investigated. Sometimes, the phenomenon is not itself newly discovered, 
but there is a need for a new approach to an old phenomenon. Again, 
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understanding implicit theories can suggest what aspects of the phenome­
non have been more or less attended to in previous investigations. Fi­
nally, studying implicit theories can be useful when an investigator sus­
pects that existing explicit theories are wrong or misleading. If an 
investigation of implicit theories reveals little correspondence with the 
explicit theories, the implicit theories may be wrong. The possibility also 
has to be taken into account, however, that the explicit theories are wrong 
and in need of correction or supplementation. For example, it will be 
argued later that implicit theories of intelligence suggest the need for 
expansion of some of our explicit theories of the construct. 

Understanding Developmental and Cross-Cultural Differences 

Many, if not most, psychological investigators have a tendency to extrap­
olate the validity of their results beyond the popUlation from which their 
sample(s) can reasonably be construed as having been drawn. Consider, 
for example, the field of intelligence. Investigators were drawing univer­
sal conclusions about the nature of intelligence before they had ever 
systematically investigated the intelligence of people in other cultures. 
They continue to do so to this day, using tasks on single or multiple 
homogeneous populations and drawing conclusions about others as well 
(see, e.g., chapters in Eysenck, 1982). 

Similarly, investigators make unwarranted extrapolations about devel­
opmental phenomena. For many years, the standard operating procedure 
in the study of intelligence across the adult life span was to administer 
various kinds of standard psychometric tests and to draw conclusions 
about the growth versus decline of levels of intelligence with age. More 
recently, investigators have come to realize the importance of defining 
exactly what intelligence is at various ages. For example, we do not 
measure the intelligence of infants or even young children in the early 
school years in the same way that we measure the intelligence of adults. 
Analogously, it may be necessary to measure the intelligence of older 
adults in ways that are different from those we use to measure the intelli­
gence of younger adults. For example, tests such as the Scholastic Apti­
tude Test and the Graduate Record Examination require fairly extensive 
knowledge of algebraic and geometric concepts in their mathematical 
sections. Such knowledge mayor may not be fairly common among high 
school and college students, but it is not likely to be common knowledge 
among older adults, many of whom will not have used algebraic formulas 
and geometric principles for as much as half a century or more. 

The point, quite simply, is that we cannot blindly assume that intelli­
gence or any other aspect of mental functioning is necessarily the same 
across populations, especially if the construct is, at least in part, a social 
construction. Analysis of implicit theories can provide a useful means for 
suggesting similarities and differences in psychological constructs across 
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populations. Berry (1984), for example, has provided a masterful review 
of implicit theories of intelligence across various cultural groups. The 
review shows the sometimes astonishing range of conceptions harbored 
by people in various cultures with regard to the nature of intelligence. 
Parents in some cultures may literally bring their children up in ways that 
are opposed to the ways of parents of other cultures, with both sets of 
parents being convinced that they are bringing up their children to be 
intelligent. The work of Heath (1983) demonstrates that this phenomenon 
is not limited to different cultures around the world, but applies as well to 
different subcultures within the United States. 

The idea that intelligence may vary across cultural or subcultural 
groups is not nearly as exotic as it sounds. Consider, for example, the 
respective roles of memory and reasoning in intelligence. In today's mid­
dle-class world, children are brought up to be reasoning individuals, and 
mere memorization of facts is scoffed at. Few middle-class parents wish 
to bring up their children to be "automatons" who merely recite facts. 
Yet, throughout most of our history and throughout most of the world, a 
good memory has been, and is still considered to be, a major part of 
intelligence (Laboratory of Comparative Human Cognition, 1982). Many 
schools, even today, place far more emphasis on the products of memory 
skills than on the products of reasoning skills. Often the child with a good 
memory is identified as being intelligent and thus will be at an advantage 
throughout his or her scholastic career. 

Fry (1984) has done a fascinating study of conceptions of children's 
intelligence held by teachers at different levels of schooling. She found 
that teachers of primary school children tend to emphasize social skills in 
their definitions of intelligence, teachers of secondary school students 
tend to emphasize verbal skills, and teachers of college students tend to 
emphasize abstract reasoning and symbol-manipulation skills. These dif­
ferent notions about the nature of intelligence are bound to have an effect 
on the kinds of children that the teachers label as intelligent (Heath, 1983). 
As a result, children with varying patterns of abilities are likely to be at a 
relative advantage or disadvantage at different points in schooling. 

There are at least three ways in which to approach data such as Berry's 
and Fry's. One is to conclude that intelligence truly is universal and that 
many people throughout the world have misconceptions about intelli­
gence. From this point of view, it is the layperson who needs an educa­
tion. A second approach is to conclude that intelligence is particularistic 
with respect to popUlations differing in attributes such as age or culture. 
From this point of view, it is the majority of psychologists who need 
education. The psychologists are making assumptions of uniformity that 
simply do not apply across populations. A third possible conclusion is 
that intelligence has both universal and particularistic attributes and that 
each of these attributes must be understood both separately and in inter­
action. In other words, there may be a common core to intelligence across 
cultures and across the life span. 
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Berg and Sternberg (1985a) have taken this latter position. They assert 
that the ability to cope with novelty in the environment is a source of 
continuity in the nature of intelligence throughout the life span, whether 
or not it is adequately measured by existing tests. Conceivably, this abil­
ity may be common across cultures as well, because members of any 
culture need to cope with novelty to develop cognitively and even to 
survive. One could make an evolutionary argument that species are se­
lected for reproduction in part because of their ability to cope with nov­
elty and that this ability is thus essential to the intelligence of survival of a 
species (Jerison, 1982). Berg and Sternberg have found that implicit theo­
ries of intelligence differ across the life span: Intelligence is not viewed as 
being exactly the same thing at every possible age level. These two lines 
of research need not be viewed as mutually contradictory if one views 
intelligence as having both universal and particularistic aspects. Berg and 
Sternberg take such a point of view, adopting Sternberg's (1985a) triar­
chic theory of human intelligence as a basis. In this theory, intelligence is 
viewed as having both a universal (componential) and a particularistic 
(contextual) aspect. 

To conclude, investigation of mental constructs such as intelligence can 
provide a useful supplement to explicit theoretical investigation. It would 
be foolish to suggest, of course, that implicit theoretical investigations 
should replace explicit theoretical ones. Implicit theoretical investigations 
cannot substitute for explicit theoretical ones. Rather, they provide com­
plementary information that can provide a useful perspective on the 
results of explicit theoretical investigations. The nature of this comple­
mentation is illustrated throughout this chapter. 

Methodology of Implicit Theoretical Analysis 

Before some examples are given of how implicit theoretical analysis can 
be useful in studying various aspects of cognition and its development, it 
is helpful to provide some basic guidelines as to the forms that implicit 
theoretically motivated research can take. Although the exact methodol­
ogy needs to be tailored to the specific constructs and popUlation under 
investigation, there are some commonalities in the ways such investiga­
tions proceed. Those commonalities are outlined in this section. 

Defining the Domain of Inquiry: Behavioral Listings 

The first step in implicit theoretical analysis is almost always the collec­
tion of listings of behaviors or traits that characterize people's concep­
tions of the domain of inquiry. For example, if one wishes to investigate 
implicit theories of wisdom, one would start by asking people in a speci­
fied population to list behaviors or traits that characterize wise individ­
uals. If one wishes to study implicit theories of creativity, similarly, one 
would begin by asking people to list behaviors or traits characteristic of 
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creative individuals. It is important to specify in advance exactly what 
population or populations are the targets for obtaining such listings and 
hence the population or populations to which findings will be generalized. 

Typically, individuals provide listings that have some degree of over­
lap, but not full overlap. Some of the listed traits or behaviors are idiosyn­
cratic to particular individuals; others are common to practically all the 
individuals. Hence, it is necessary to analyze the content of the behav­
iorallistings, quantifying the number of individuals who list each behavior 
or trait. Such quantification will require merging behaviors or traits that 
are the same but are worded differently by different individuals. For 
example, thinks rapidly and thinks quickly presumably refer to the same 
characteristic, even though the words are slightly different. In some 
cases, the conceptual equivalence of different semantic units is less obvi­
ous. For example, acts impulsively and acts too quickly probably refer to 
the same basic concepts, even though the words are somewhat different. 
In merging lists across individuals, errors in the direction of keeping listed 
attributes separate are better than bringing the attributes together if it is 
uncertain whether two attributes do indeed correspond. Later the attrib­
utes can be merged after further statistical analysis, if such a merger is 
warranted. 

The end product of these listings is a long list of behaviors accompanied 
by a frequency of response for each. At this point, we typically eliminate 
from the master list of traits or behaviors any attributes that have not been 
listed by at least two individuals, thereby weeding out totally idiosyn­
cratic attributes. Almost inevitably, a substantial proportion of behavior 
listings will be idiosyncratic. 

Determining the Structure of People's Implicit Theories: 
Latent-Structure Analysis 

Behavioral listings are useful for limiting the scope of cognitive phenom­
ena, but they are not useful for revealing the organization of these phe­
nomena. Further data collection and analysis are needed to determine the 
implicit theories of the organization of cognitive phenomena. 

In the next phase of research, new subjects are presented with the 
edited list of behaviors from the first phase of research. They are asked to 
rate or sort these behaviors or traits in a way that is appropriate for the 
investigator's goals. One possibility is to have individuals sort the behav­
iors into as many or as few piles as they wish, putting together attributes 
that seem psychologically related. Another procedure, which may be 
used instead of or in conjunction with the first, is to have individuals rate 
the listed behaviors. Typically, we asked subjects to rate how character­
istic each behavior or trait is in the repertoire of an exceptionally __ 
person, where the blank is filled in with the appropriate term, such as 
intelligent, wise, or creative. Alternatively, we might ask subjects to rate 
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how impo-rtant each behavior or trait is in defining the construct under 
investigation. It is important to determine the reliabilities of these and all 
other measures, in order to adequately assess the meaning of various data 
sets and statistics derived from them. 

Ratings of degree of characteristic and ratings of importance yield over­
lapping but distinct information. An attribute can be highly characteristic 
of a certain kind of individual, but not necessarily important in defining 
the psychological construct under investigation. For example, intelligent 
people characteristically eat food, but eating is probably not very impor­
tant to defining the psychological construct of intelligence. Similarly, at­
tributes can be important for defining given classes of people, but not very 
characteristic. For example, some people might view the ability to solve 
complex logical problems as important to defining the concept of intelli­
gence, but even very intelligent people do not characteristically solve 
such problems on a routine basis in their everyday lives. 

Characteristic and importance ratings also have different scale proper­
ties. Consider, for example, the behavior continually solves problems 
incorrectly. Such a behavior would probably be rated as extremely un­
characteristic of a highly intelligent person, but it would not be meaning­
ful to refer to this behavior as unimportant in defining the concept of 
intelligence. In general, a negative pole for characteristic ratings is con­
ceptualized easily: People who are notably unintelligent or unwise, or 
whatever the characteristic, do not exhibit certain traits or behaviors, and 
hence the traits or behaviors are referred to as uncharacteristic of the 
individuals. But such traits and behaviors do not fit well into a scheme for 
importance ratings. Importance ratings do not carry with them the polari­
ties that characteristicness ratings have. Including behaviors or traits that 
correspond to the pole opposite to that of interest (such as unintelligent or 
unwise) works for characteristicness ratings but not for importance rat­
ings. Unintelligent behaviors are uncharacteristic of intelligent people, 
but they may be important for defining the concept of intelligence. 

Sometimes, one will wish to investigate the characteristicness or impor­
tance of traits or behaviors not for the positive end of a continuum (for 
example, intelligence), but for the negative end of the continuum (for 
example, unintelligence or stupidity). Ratings for marked forms of the 
construct under investigation can be solicited in the same way as ratings 
for the unmarked form. Similarly, one may wish to examine an "average 
prototype" rather than an ideal one. In other words, one might be inter­
ested in the traits or behaviors of the typically intelligent or the typically 
wise person, rather than the extremely intelligent or wise one. Again, 
ratings can be collected in the same way. Indeed, if one wishes to examine 
what distinguishes the highly intelligent person from the typically intelli­
gent one, one may wish to collect ratings for both ideal and average 
prototypes and then use difference scores as a basis for further analysis. 
In using such difference scores, it is the difference between the excep-
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tional and average person, rather than the absolute characteristics of the 
exceptional or average person, that becomes the object of analysis. 

Ratings of characteristicness and importance differ in one critical re­
spect from sortings of behaviors. In ratings, one must tell the subjects 
what to rate the attributes for, say, intelligence or wisdom. In sorting 
tasks, one typically does not tell the individual on what basis to sort. 
Thus, the sorting task is less structured than the ratings task. Which is 
appropriate will depend on the particular purposes of the investigator. For 
example, if one wished to discover the latent dimensions in people's 
conceptions of intelligence, it would be quite appropriate to have subjects 
rate various behaviors or traits with regard to their characteristicness or 
importance for intelligence. But if one wished to determine whether peo­
ple distinguished between traits or behaviors that characterize intelligent 
versus wise individuals, one might simply ask subjects to sort behaviors 
and then determine whether the latent structure (see below) of the sort­
ings distinguishes between the two constructs. An alternative to the sort­
ing procedure would be to have subjects rate the behaviors for their 
characteristicness or importance for intelligent individuals and for wise 
individuals and then to use the difference scores as a basis for further data 
analysis. 

Mter the ratings or sortings are collected, the data are subjected to a 
variety of techniques for latent-structure analysis, such as principal-com­
ponent analysis, common-factor analysis, metric or nonmetric multidi­
mensional scaling, or hierarchical or nonhierarchical clustering. The 
choice of technique depends on the type of data collected, the investiga­
tor's hunches about the structure ofthe data, and the constraints built into 
the data themselves. For example, principal-component analysis will 
probably be preferred to common-factor analysis if the correlation matrix 
to be analyzed is singular, and metric multidimensional scaling will proba­
bly be preferred to nonmetric multidimensional scaling if the data are not 
highly constrained. Sometimes, more than one of these techniques is used 
to analyze the data in several ways. 

It is not possible to give here a detailed accounting of how each method 
may be applied to rating or sorting data. (See Chapter 7, this volume, by 
Miller.) For information on component and factor analysis, the reader is 
referred to Gorsuch (1983). For information on multidimensional scaling, 
see Kruskal and Wish (1978). For information on cluster analysis, the 
reader is referred to Hartigan (1975). 

The outcomes of these methods are series of either dimensions (in the 
case of factor analysis and scaling analysis) or clusters (in the case of 
cluster analysis). The structures are named by the investigator on the 
basis of the variables having salient loadings on them. Of course, the 
names are only as good as the analyst's intuitions in selecting them. For 
example, factors showing salient loadings for traits or behaviors measur­
ing verbal skills might be labeled verbal ability. Usually, the strengths as 
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well as the interpretations of the factors, dimensions, or clusters are of 
interest. For example, in principal-component solutions, factors are ex­
tracted in order of strength, and priority of extraction indicates a compo­
nent that is likely to more salient in people's implicit theories. 

Prototypical Analysis 

For People's Evaluations of Themselves 

A motivating idea in many implicit theoretical analyses is that underlying 
people's implicit theories are one or more prototypes representing their 
normative standards, whether for the ideal or the typical. These uvrma­
tive standards can be used as a basis for scoring people's ratings about 
themselves. 

Implicit theories, like explicit theories, can serve as bases for the con­
struction of scales to measure various kinds of ability patterns. When 
implicit theories are used, a first set of subjects rates the ideal individual 
on a given dimension, for example, intelligence. A second set of individ­
uals rate themselves for each of the traits or behaviors relevant to measur­
ing this dimension. Thus, two sets of ratings are obtained, one for the 
ideal and the other for the actual subjects in the study, which can then be 
compared. 

There are at least two standard ways of making this comparison. The 
first involves calculating a correlation coefficient between the real and 
ideal response patterns. In this case, resemblance to the prototype is a 
function of similarity of a given individuals' response pattern to the proto­
typical response pattern, without regard to possible differences in the use 
of the two scales. The correlation coefficient, of course, is insensitive to 
absolute magnitudes of scale values. The advantage ofthis insensitivity is 
that if the scale was used differently for the two sets of subjects (real and 
ideal), this difference will not be reflected in the correlation. The disad­
vantage of the correlation coefficient is that one may actually wish to take 
scale differences into account. For example, one might argue that even if 
two response patterns are identical, one would not wish to give a perfect 
score to an individual who shows the same response pattern as the 
"ideal" subject but whose responses are low on the scale in absolute 
magnitudes. 

The second method of scoring involves computation of a measure of 
badness of fit between the real and ideal response patterns. For example, 
one can compute the root-mean-square deviation (RMSD) between the 
real and ideal response patterns. This index is computed by taking the 
square root of the mean of the squared deviations between real and ideal 
response patterns. This measure, unlike the correlation measure, is on the 
same scale as the original data, and it is sensitive to the values of numbers 
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on the scale. For example, even if two response patterns are identical, the 
RMSD will be high if there are large absolute discrepancies between the 
two sets of values. 

It is also possible, of course, simply to compute sums of ratings of the 
trait or behavioral checklists while taking into account the direction in 
which each item should be scored. For example, in measuring intelli­
gence, one would add scale values for "intelligent behaviors" but sub­
tract scale values for "unintelligent behaviors." This method of scoring 
yields a simple sum, much as in traditional test scoring. Nevertheless, this 
method of scoring may be less satisfactory for tests based on implicit 
theories than for those based upon explicit theories or for an atheoretical 
test. First, the summing of item values fails to make use of the theoretical 
notion of resemblance to the prototype underlying the data (Neisser, 
1979). Second, the method is more susceptible to "faking good", wherein 
the perfect score will be identical to the most socially desirable one. Thus, 
a subject who rates herself or himself highest on the positive traits and 
behaviors and lowest on the negative traits and behaviors will receive the 
best possible score. This will not necessarily be the case in the prototype 
method of scoring, however, because the ideal is not necessarily at the 
top of the scale on all positive traits or behaviors or at the bottom of the 
scale on all negative traits or behaviors. If this direct method of scoring is 
used, it is perhaps best used in conjunction with one or both types of 
prototype scoring. 

Prototypical analysis of individuals' questionnaire scores is probably 
best used in conjunction with scores from standard psychometric or cog­
nitive measures. The standard measures differ in several key respects 
from the implicit theoretical ones and provide an important complement 
to the implicit theoretical measures, just as the implicit theoretical mea­
sures provide an important complement to the more standard measures. 
First, standard measures are typically maximum-performance ones, 
whereas the new kinds of measures are usually typical-performance ones. 
Second, the standard measures require one to perform certain tasks that 
directly measure cognitive skills, whereas the new measures require one 
to describe one's performance on such tasks. Third, the new measures are 
obviously more susceptible to various kinds of faking than the old mea­
sures, which is an especially important reason for using the old measures 
in conjunction with the new ones. Fourth, the new measures are less 
susceptible to test anxiety and other forms of blocking in the taking of the 
examinations and can be more responsive to cultural and age differences. 
Indeed, it is possible to form different prototypes for subjects of different 
ages and cultural groups and to score a gi ven protocol for just one of these 
prototypes. On this notion, the response pattern of, say, a highly intelli­
gent individual from an African country need not ideally look the same as 
the response pattern of an intelligent individual from North America. This 
accounting for prototypes is much more difficult to do with standard kinds 
of test batteries. 
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It is useful, if both implicit and explicit kinds of tests are used, to 
correlate scores between the two kinds of measures as well as within 
multiple measures of the same kind. In this way, it is possible to discern 
the extent to which scores for the two types of measures reflect various 
constructs as opposed to methods of measurement. For example, one 
would probably have more confidence in a result if implicit and explicit 
measures of a given construct showed higher correlations than implicit 
measures of different constructs or explicit measures of different con­
structs. 

For People's Evaluations of Others 

Prototypical analysis can be used not only to understand people's evalua­
tions ofthemselves, but also to understand people's evaluations of others. 
Typically, we have constructed profiles of hypothetical individuals who 
are described to exhibit certain traits or behaviors that were previously 
listed as more or less characteristic of ideally intelligent individuals. (At­
tributes other than intelligence can be, and have been, used.) The hypo­
thetical individuals are described in ways that result in considerable vari­
ance in their intelligence or other characteristics, as would be predicted 
from the characteristicness ratings obtained in earlier phases of research. 
For example, one individual might be described in a way that would 
render her quite intelligent according to the characteristicness ratings 
from the implicit theories, whereas another individual might be described 
in a way that would render him quite unintelligent. We then have subjects 
rate each of the hypothetical individuals on the attribute under consider­
ation, for example, intelligence. 

There are at least two questions of primary interest in this procedure. 
The first concerns the correlation between the observed ratings for each 
of the hypothetical individuals and the predicted ratings, based on the 
characteristicness ratings obtained in the earlier phases of research. To 
obtain predicted ratings for the attribute, one takes these characteristic­
ness ratings from the earlier phases of research and then finds a mean for 
the behavior of each hypothetical individual (or, alternatively, a sum, if 
one prefers a summative to an averaging model). The correlations be­
tween the predicted and the observed ratings gives one a sense of the 
extent to which people use their implicit theories in evaluating others. 

A second datum of interest concerns the beta weights (standardized 
regression coefficients) for predicting observed ratings from factor or 
scale scores obtained from the earlier phases of research. Suppose, for 
example, one performed a factor analysis for the ideal-subject rating. One 
can then obtain approximate factor coefficients by weighing each salient 
trait or behavior 1 and each nonsalient trait or behavior O. One can com­
pute factor scores for each hypothetical individual on each of the obtained 
factors by taking the mean value for each hypothetical individual on these 
coefficients (see Gorsuch, 1983). Thus, one uses the approximation coeffi-
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cients to obtain a score for each given individual on constructs such as 
verbal ability, problem-solving ability, and so on, by relating the behav­
iors describing the individuals to the behaviors factor analyzed earlier. 
One can then predict the overall observed rating from the factor scores for 
the hypothetical individuals and determine the extent to which subjects 
weigh each factor in evaluating each hypothetical individual on the con­
struct under investigation. 

All these procedures may become more clear through illustration by 
concrete examples. In the next section, such concrete examples are pro­
vided from three sets of studies we have done that use implicit theoretical 
analysis. 

Review of Studies Implying Implicit 
Theoretical Analysis 

My collaborators and I have performed three sets of studies that make 
fairly heavy use of implicit theoretical analysis. The first was on implicit 
theories of intelligence, academic intelligence, and everyday intelligence 
in laypersons (novices) and experts (Sternberg, Conway, Ketron, & 
Bernstein, 1981). The second set of studies was done on implicit theories 
of intelligence across the adult life span (Berg & Sternberg, 1985b). The 
third set of studies was on implicit theories of intelligence, wisdom, and 
creativity in adults who were either laypersons or experts in various fields 
of endeavor (Sternberg, 1985b). Each set of studies is described in turn. 
The studies are numbered consecutively throughout the chapter for ease 
of reference. 

Implicit Theories of Intelligence, Academic Intelligence, and 
Everyday Intelligence 

STUDY 1 

We sought to compile a master list of intelligent and unintelligent behav­
iors and to ascertain various characteristics of these behaviors and their 
relations to the people who supplied them. 

The experiment involved 180 subjects, including 61 people studying in a 
college library, 63 waiting for trains in a railroad station during morning 
and afternoon rush hours, and 62 people entering a local supermarket. 
Students predominated among the library sample, commuters among the 
railroad sample, and homemakers among the supermarket sample. People 
were approached by one of four experimenters in each locale and were 
asked to give 5 minutes of their time to the experiment. Those who agreed 
received a blank page on which to list behaviors characteristic of intelli­
gence, academic intelligence, everyday intelligence, or unintelligence. 
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People were also asked to rate themselves on intelligence, academic intel­
ligence, and everyday intelligence. Each individual listed behaviors char­
acteristic of just one of the four investigated attributes. 

The behaviors listed by the subjects were compiled into a master list of 
250 behaviors, of which 170 were for the various kinds of intelligence and 
80 were for unintelligence. We simply listed frequencies for the various 
behaviors and correlated these frequencies for each group. Intelligence 
and academic intelligence were significantly correlated for the library 
group, but not for either the railroad group or the supermarket group. In 
contrast, intelligence and everyday intelligence were significantly correl­
ated for the railroad and the supermarket groups, but not for the library 
group. In other words, subjects in the library viewed intelligence as closer 
to academic intelligence, whereas the other subjects saw intelligence as 
closer to everyday intelligence. This analysis permits examination of the 
relations among intelligence, academic intelligence, and everyday intelli­
gence for stimulus variance. The self-ratings enable one to perform the 
same examination for subject variance within each group. In the library 
group, the correlation between self-rated intelligence and academic intel­
ligence was .80, compared to the correlation of .42 between intelligence 
and everyday intelligence. Thus, intelligence was perceived as much 
closer to academic than to everyday intelligence. In contrast, the compa­
rable correlations for the railroad group were .73 and .74, respectively. In 
other words, the commuters viewed their academic intelligence and their 
everyday intelligence as equally related to their intelligence. The super­
market group came out in between: Their comparable correlations were 
.83 and .65, respectively. The correlations between academic and every­
day intelligence reflected the same pattern: .28 for the library group, .60 
for the railroad group, and .41 for the supermarket group. Thus, the 
library group saw these two entities as most distinct, and the railroad 
group saw them as least distinct. 

STUDY 2 

Two principal groups of subjects were tested. The first group comprised 
120 persons who responded to newspaper advertisements. Because the 
results of the first study suggested that students' conceptions of intelli­
gence can differ substantially from nonstudents' conceptions, and be­
cause our primary interest was in the general population, students were 
excluded from participation. The second group comprised 140 experts in 
the field of intelligence who responded to our questionnaire. All experts 
were psychologists with doctoral degrees doing research on intelligence in 
major university and research centers around the country. They answered 
a questionnaire sent by mail. The return rate on the questionnaire was 48 
percent. Materials consisted of a list of 250 behaviors compiled from 
Study 1. A page on which laypersons could rate themselves by using a 
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percentile scale on intelligence, academic intelligence, and everyday in­
telligence was also included. Laypersons received the Henmon-Nelson 
Test of Mental Abilities. 

Four different questionnaires were prepared. All four questionnaires 
were distributed to laypersons; only the first two questionnaires were 
distributed to experts. No individual received more than one question­
naire. All items required ratings on a scale of 1 (low) to 9 (high). 

One group of subjects provided ratings of how important each of the 
170 behaviors associated with intelligence (as opposed to unintelligence) 
was in defining their conception of an ideally (1) intelligent person, (2) 
academically intelligent person, and (3) everyday intelligent person. The 
ideal was described as the best possible in a given dimension, but no 
further information was given. Subjects in a second group were asked to 
rate how characteristic each of 250 behaviors was of an ideally (1) intelli­
gent person, (2) academically intelligent person, and (3) everyday intelli­
gent person. Subjects in a third group were asked to rate how characteris­
tic each of 250 behaviors was of their ideal concept of (1) intelligence, (2) 
academic intelligence, and (3) everyday intelligence. Note that in subjects 
in the second group rated an ideal person, whereas subjects in the third 
group rated an ideal conception. In group 4, subjects rated how character­
istic each of 250 behaviors was of (1) themselves and (2) the adult whom 
they knew best. The order in which ratings for intelligence, academic 
intelligence, and everyday intelligence were made was counterbalanced 
across subjects. 

Several major points of interest emerged from the data. First, experts 
view intelligence as very closely related behaviorally to both academic 
and everyday intelligence. The correlations between patterns of ratings 
were .90 between intelligence and academic intelligence and .90 between 
intelligence and everyday intelligence for the experts' importance ratings. 
The comparable correlations for their characteristicness ratings (group 2) 
were .83 and .84, respectively. Laypersons view academic and everyday 
intelligence as less closely related to intelligence, especially in terms of 
the importance of the behaviors to defining ideal persons. The correla­
tions between their importance ratings for intelligence, on one hand, and 
academic and everyday intelligence, on the other, were .81 and .76. The 
comparable correlations for the characteristicness ratings (group 2) were 
.75 and .86, respectively. Experts see academic and everyday intelligence 
as less closely related than they see intelligence as related to each of 
academic and everyday intelligence, but again the laypersons see an even 
weaker relationship. The correlations between ratings for academic and 
everyday intelligence were .67 (importance) and .46 (characteristicness) 
for the experts and .36 (importance) and .45 (characteristicness) for the 
laypersons. Clearly, both experts and laypersons distinguish between be­
haviors associated with academic intelligence and behaviors associated 
with everyday intelligence. 
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Second, ratings of importance (group 1) and of characteristicness 
(group 2) showed generally similar trends and were, in fact, highly correl­
ated. These correlations were typically in the .90s for the experts and in 
the. 70s to .80s for the laypersons. 

Third, ratings of experts and laypersons for comparable kinds of intelli­
gence are quite highly correlated, with all but one of the six correlations 
ranging in the .80s. In each case (importance and characteristicness rat­
ings), the correlation is highest for academic intelligence and lowest for 
everyday intelligence. In view of the small range in the correlations, one 
can probably conclude that experts and laypersons have similar, but not 
identical, perceptions of the nature of intelligence. 

The data from the second group were subjected to principal-component 
analysis, followed by varimax rotation of the factorial axes. Because of 
the unwieldiness of the original set of 170 intelligent behaviors as input to 
the final analysis, preliminary factor analyses were done to reduce the 
original set to a more tractable set of 98 behaviors. 

Three interpretable factors emerged from the analysis of ratings of the 
ideally intelligent person as supplied by the laypersons. The factors were 
labeled practical problem-solving ability, verbal ability, and social com­
petence, and they accounted for 29, 10, and 7 percent of the variance in 
the data, respectively. The first factor includes behaviors such as reasons 
logically and well, identifies connections among ideas, and sees all as­
pects of a problem. The second factor includes behaviors such as speaks 
clearly and articulately, is verbally fluent, and converses well. The third 
factor includes behaviors such as accepts others for what they are, admits 
mistakes, and displays interest in the world at large. 

Factor analyses were also conducted on the ratings of academic intelli­
gence and everyday intelligence. For academic intelligence, three inter­
pretable factors emerged, verbal ability, problem-solving ability, and so­
cial competence, accounting for 20, 8, and 7 percent of the variance in the 
data, respectively. For everyday intelligence, four interpretable factors 
emerged, practical problem-solving ability, social competence, charac­
ter, and interest in learning and culture, accounting for 26, 10, 8, and 6 
percent of the variance in the data, respectively. 

Several points are worth noting. First, the factors for the three kinds of 
intelligence are highly overlapping. Second, problem-solving ability and 
social competence cross-cut all three kinds of intelligence. Third, the 
cognitive factors that constitute people's belief system for intelligence 
seem closely to resemble the two principal factors in Cattell and Horn's 
theory of fluid and crystallized intelligence (Cattell, 1971; Horn, 1968). 
Fluid intelligence emphasizes reasoning and problem-solving skills, 
whereas crystalized intelligence emphasizes verbal-comprehension skills. 

Comparable factor analyses were conducted for the experts. Three 
interpretable factors emerged in the experts' ratings of characteristicness 
of behaviors, verbal intelligence, problem-solving ability, and practical 
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intelligence. These factors accounted for 23, 19, and 9 percent of the 
variance in the data, respectively. The first factor included behaviors such 
as displays a good vocabulary, reads with high comprehension, and dis­
plays curiosity. The second factor included behaviors such as able to 
apply knowledge to problems at hand, makes good decisions, and poses 
problems in an optimal way. The third factor included behaviors such as 
sizes up situations well, determines how to achieve goals, and displays 
awareness to world around him or her. Comparable factor analyses were 
conducted for academic and everyday intelligence. For academic intelli­
gence, three factors accounting for 26, 12, and 9 percent of the variance in 
the data, respectively, were labeled problem-solving ability, verbal abil­
ity, and motivation. For everyday intelligence, three factors accounting 
for 26, 13, and 6 percent of the variance in the data, respectively, were 
labeled practical problem-solving ability, practical adaptive behavior, 
and social competence. 

Four main points emerged from these analyses. First, as was the case 
for laypersons, problem-solving ability is perceived as playing a major 
role in all three kinds of intelligence. Second, practical intelligence some­
times emerged in the factors for intelligence and everyday intelligence. 
Third, a motivation factor emerged in the analysis of data for ratings 
regarding academic intelligence. Finally, the first two cognitive factors in 
the experts' conceptions of intelligence, like those in the laypersons' 
conceptions, seemed to correspond closely to fluid and crystallized abili­
ties, whereas the third factor again seemed to represent some kind of 
practical or social adaptation. 

Laypersons' mean self-ratings on the percentile scale were 74 for intel­
ligence, 71 for academic intelligence, and 74 for everyday intelligence. 
The mean ratings of others on the percentile scale were 76, 74, and 74 for 
intelligence, academic intelligence, and everyday intelligence, respec­
tively. For the self, the intercorrelations of the three ratings were .60 for 
intelligence and academic intelligence, .62 for intelligence and everyday 
intelligence, and .54 for academic and everyday intelligence. Correlations 
for the ratings of the other were lower: .25, .48, and .39, respectively. 
Correlations of these self-ratings with Renmon-Nelson IQ were .23 for 
intelligence, .36 for academic intelligence, and .30 for everyday intelli­
gence. 

We also computed a prototypicality measure by correlating each lay­
person's pattern of self-ratings with the pattern of ideal-subject ratings of 
characteristicness of behaviors from the data set described earlier. The 
mean prototypicality index (i.e., mean correlation between self-described 
actual and ideal behaviors) was .40 for intelligence, .31 for academic 
intelligence, and .41 for everyday intelligence. Correlations of the proto­
typicality measure with IQ were .52 for the intelligence measure, .56 for 
the academic intelligence measure, and .45 for the everyday intelligence 
measure. Thus, the prototypicality measure actually serves as a relatively 
good predictor of IQ, especially for academic intelligence. 
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STUDY 3 

In this study, we sought to ascertain the extent to which people actually 
use behaviors associated with intelligence and unintelligence in their eval­
uations of other people's intelligence, particularly when they are pre­
sented with written behavioral descriptions of the others. 

A questionnaire was sent to 168 persons selected at random from a local 
telephone book. Of these persons, 65 responded in time for their data to 
be used in the study. 

The principal experimental material was a 90-item questionnaire. Each 
item consisted of a verbal description of behaviors characterizing some 
particular person. People were told that they would "find a brief descrip­
tion of different people, listing various characteristics they had. Assume 
that the list for each person is made of characteristics that teachers have 
supplied to describe that person as accurately as possible." The subject's 
task was to "read the characteristics for each person and then to rate each 
person on how intelligent" the subject considered the person to be. Rat­
ings were made on a scale from 1 to 9, where 1 was labeled not at all 
intelligent, 5 was labeled average intelligent, and 9 was labeled extremely 
intelligent. Half of the items on the questionnaire presented unquantified 
behavioral descriptions (e.g., "She converses well"), and half presented 
a mixture of quantified (e.g., "She often converses well") and unquanti­
fied descriptions. Moreover, half of the descriptions were paired with 
male names and half with female names: A given description was paired 
half the time with a name of each sex. 

An example of a problem from this study was: 

Susan: 
She keeps an open mind. 
She is knowledgeable about a particular field of knowledge. 
She converses well. 
She shows a lack of independence. 
She is on time for appointments. 

All subjects received the same questionnaire items, except that half of 
the subjects received quantified items presented before unquantified ones, 
and the other half received the reverse ordering, and different names were 
paired with different descriptions so that those that were male for half the 
subjects were female for the other half, and vice versa. 

The mean rating of intelligence over the 45 unquantified descriptions 
was 5.09; the mean rating over the 45 quantified descriptions was 4.49. 
The difference between ratings was significant, indicating the quantifica­
tion generally lowered ratings of intelligence. The correlation between the 
un quantified statements and their paired quantified versions was .87, indi­
cating that although quantification lowered ratings, it changed their pat­
tern only slightly. It made no difference in means whether a given descrip­
tion was paired with a male or a female name. The means for the male and 
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female names were practically indistinguishable (within .01 on the rating 
scale), and the correlation between identical descriptions paired for male 
versus female names was .99 in the unquantified condition and .98 in the 
quantified condition. 

Two basic kinds of modeling were done for the unquantified descrip­
tions. In the first, we took means and sums of characteristicness ratings 
from experts from Study 2 and computed means on the basis of those 
behaviors listed in each description given in the present experiment. The 
correlation between ratings of intelligence and the mean characteristic­
ness rating for each fictitious person was .96; the correlation between 
ratings of intelligence and the summed characteristicness ratings for each 
fictitious person was .97. Comparable correlations were obtained if lay­
persons' rather than experts' prototypes were used. Hence, the prototype 
ratings from the earlier experiment provided excellent predictions of the 
ratings in the present experiment. 

In the second kind of modeling, multiple regression was used to predict 
the overall rating of the intelligence of the fictitious person from counts of 
numbers of behaviors in each of the factors of intelligence (and the behav­
iors characterizing un intelligence) found in each description. The multiple 
correlation between the ratings of the intelligence of the fictitious person, 
on one hand, and the aspects of perceived intelligence and unintelligence, 
on the other, was .97. Regression weights were .32 for practical problem­
solving ability, .33 for verbal ability, .19 for social competence, and -.48 
for unintelligence. All weights were significant and in the predicted direc­
tions. The same kinds of analysis were performed on the data for quanti­
fied descriptions, with very similar results. Thus, we can conclude that 
people use their implicit theories of intelligence in evaluating the intelli­
gence of others as well as themselves. As in the self-ratings, people seem 
to weigh cognitive factors more heavily than noncognitive ones and to 
take into account negative as well as positive information. 

Implicit Theories of Intelligence across the Adult Life Span 

The studies described above concerned different conceptions of intelli­
gence held by experts and nonexperts. In a second set of studies, Berg 
and Sternberg (1985b) investigated the development of implicit theories of 
intelligence over the life span. 

STUDY 4 

The main purpose of Study 4 was to compile a master list of behaviors 
associated with intelligence. In this study, 152 subjects ranging in age 
from 20 to 83 years were asked to list as many behaviors as they could 
that characterize an exceptionally intelligent individual and an exception­
ally unintelligent individual of 30, 50, or 70 years of age. The subjects 
themselves were divided into three age groups: a young group (mean 
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age = 29.8, range of 20 to 39), a middle-aged group (mean age = 49.4, 
range of 40 to 59), and an older group (mean age = 68, range of 60 to 83). 
Subjects received a questionnaire by mail or else were contacted by tele­
phone. 

The master list consisted of 130 intelligent and 120 unintelligent behav­
iors. Correlations were computed between the frequencies of each of the 
130 intelligent behaviors for each age prototype. The correlations be­
tween the frequencies of listed behaviors for the different aged prototypes 
range from .35 to .56. The correlations suggested that the frequency with 
which the items were listed was most similar between the exceptionally 
intelligent 50-year-old prototype and the exceptionally intelligent 70-year­
old prototype and was least similar between the exceptionally intelligent 
30-year-old prototype and the exceptionally intelligent 70-year-old proto­
type. Thus, the closer the ages of the prototypes, the more similar the 
frequencies of listed behaviors. 

STUDY 5 

In this study, we sought to reduce the number of behaviors to a more 
manageable set and to determine, in preliminary fashion, the characteris­
tics underlying peoples' implicit theories of exceptionally intelligent indi­
viduals at 30, 50, and 70 years of age. 

Materials for the experiment consisted of a subset of the 250 behaviors 
compiled from experiment 1. Because of the large number of unintelligent 
behaviors gathered in experiment 1, and because our primary interest was 
in intelligent behaviors, a panel ofthree raters (ages 28, 55, and 70) judged 
how important each behavior was in defining unintelligent individuals in 
general. Behaviors that received a mean and median rating of 5 or over 
(on a scale of 1 to 9) were retained. 

Twenty-two volunteers comprising each of three age groups (24 to 36, 
39 to 58, and 60 to 84) served as paid participants. All individuals were 
selected from the membership list of a large church. These individuals 
were asked to complete six different questionnaires. All involved ratings 
on a rating scale of 1 (low) to 9 (high). Questionnaire 1 dealt with ratings of 
the importance of behaviors in defining an exceptionally intelligent 30-
year-old individual. Questionnaire 2 required the same ratings for an ex­
ceptionally unintelligent 30-year-old individual. Questionnaires 3 and 4 
required ratings for an exceptionally intelligent and unintelligent 50-year­
old, respectively. Similarly, questionnaires 5 and 6 dealt with ratings for 
an exceptionally intelligent and unintelligent 70-year-old, respectively. 
Questionnaires 1, 3, and 5 contained the same list of intelligent behaviors, 
and questionnaires 2, 4, and 6 contained the same list of unintelligent 
behaviors. The order in which behaviors were presented in each question­
naire was randomized, and the order of questionnaires was counterbal­
anced across subjects. 

We did a factor analysis on the data for a subset of 55 intelligent behav-
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iors that received the highest mean importance ratings on at least one 
questionnaire. This method of compilation was chosen so that certain 
behaviors deemed important for one age-specific intelligent prototype 
would be included in the analysis, even though they may not have been 
deemed important at the other age levels. 

The inputs to the various data analyses were three sets of correlation 
coefficients. One set involved the intercorrelations of the 55 variables for 
questionnaire 1. The second set involved the intercorrelations of the 55 
variables for questionnaire 3. The last set involved the intercorrelations of 
the 55 variables for questionnaire 5. Principal-component factor analysis 
was done with varimax rotation of the axes. 

Factor labels for the exceptionally intelligent 30-year-old prototype 
were verbal facility, novelty in problem solving, practical problem solv­
ing, social competence, and problem-solving ability. Factor labels for the 
exceptionally intelligent 50-year-old prototype were social competence, 
novelty in problem solving, intellectual investment, verbal facility, and 
knowledge store. Factors for the ratings of the exceptionally intelligent 
70-year-old prototype were labeled general intellectual activity, knowl­
edge and novelty in problem solving, everyday confidence, and verbal 
ability. 

Comparisons between the factors were made by correlating factor 
scores on the varimax-rotated factors computed for each subject sepa­
rately for the three questionnaires. Several points are worth noting about 
these factor-score intercorrelations. 

First, those factors that had been given similar interpretations were 
significantly correlated. For example, factor 4 (social competence) from 
questionnaire 1, characterizing the 30-year-old prototype, was signifi­
cantly related to factor 1 (social competence) from questionnaire 3, char­
acterizing the 50-year-old prototype (r = .54). 

Second, although factors similar in interpretation were significantly 
correlated, there were often interesting differences in the behaviors load­
ing on the factors. If one were to characterize the general nature of this 
difference, it would be in terms of the greater importance of real-world 
adaptive behavior in the behaviors loading on the factors for the older as 
opposed to the younger individuals. 

Third, the intercorrelations demonstrate the similarities in the types of 
abilities underlying people's conceptions of intelligent individuals of vari­
ous ages. The importance or rank of the various abilities, though, seems 
to differ from one age to the next, given that importances are reflected in 
the order in which the factors are listed. The sixth study was useful in 
pinning down these differences in importance. Thus, somewhat different 
sets of abilities are more or less salient in determining people's concep­
tions of intelligent individuals, depending on the age represented by the 
exceptionally intelligent prototype. 
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STUDY 6 

The specific goals of this study were (1) to determine what factors are 
most capable of distinguishing individuals of average and exceptional 
intelligence at 30, 50, and 70 years of age; (2) to compare the characteris­
tics deemed most apt for discriminating between individuals of excep­
tional intelligence and individuals with average intelligence at 30, 50, and 
70 years of age; (3) to compare these characteristics to those discovered in 
Study 5 via different rating procedures; and (4) to determine whether 
implicit theories of intelligence across the adult life span are influenced by 
other beliefs about properties of intelligence, such as its heritability. 

Sixty-nine volunteers from three age groups served as paid partici~ 
pants. All individuals were selected from the membership lists of two 
large churches. The youngest group had a mean age of 34.8 with a range of 
26 to 40. The middle-age group had a mean age of 48.6 with a range of 41 
to 59. The oldest group had a mean age of 67.6 with a range of 61 to 85. 

Materials for the study consisted of the intelligent behaviors from Study 
5 that received the largest mean importance ratings on questionnaire 1, 3, 
or 5 and the unintelligent behaviors, also from Study 5, that received the 
largest mean importance ratings on questionnaire 2, 4, or 6. The result 
was 55 intelligent behaviors and 14 unintelligent behaviors. This method 
and rationale for selecting these behaviors were the same as for 
Study 5. 

Individuals were asked to complete three different rating question­
naires and one open-ended questionnaire. All items on the rating ques­
tionnaires involved ratings on a scale from 1 (low) to 9 (high). Question­
naire 1 dealt with ratings of the likelihood of 30-year-old individuals of 
exceptional and of average intelligence being engaged in the behaviors. 
Questionnaire 2 was comparable for 50-year-old individuals, and ques­
tionnaire 3 was comparable for 70-year-old individuals. All questionnaires 
contained the same intelligent and unintelligent behaviors. 

Materials for the open-ended questionnaire consisted of questions de­
signed to address the following issues: the constancy or malleability of 
intelligence across the adult life span, hereditary versus environmental 
influences on intelligence, the appropriateness of typical measures of in­
telligence for assessing the intellectual capabilities of older adults, the 
modifiability of intelligence through education, the multidirectionality of 
intelligence, explicit definitions of intelligence, depictions of the most 
intelligent and unintelligent individuals that subjects knew, and familiarity 
with average and exceptionally intelligent individuals at each of the three 
ages. 

The order in which the behaviors were presented in each questionnaire 
was randomized, and the order of questionnaires was counterbalanced 
across subjects. The open-ended questionnaire was always given after the 
subjects had finished the rating questionnaires. 
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The main variable of interest in the factor analysis was the difference 
between ratings of the likelihood that individuals of exceptional and aver­
age intelligence would be engaged in a given behavior (i.e., likelihood for 
exceptional intelligence minus likelihood for average intelligence). These 
difference variables were calculated separately by the age of the proto­
type rated. Each difference variable reflects the degree to which a particu­
lar behavior can discriminate between individuals with average intelli­
gence and individuals of exceptional intelligence at any particular age 
level. 

The inputs to the various data analyses were the sets of correlation 
coefficients for the difference scores generated from questionnaires 1, 2, 
and 3. Principal-component factor analysis was done with a varimax rota­
tion of factorial axes. 

Three interpretable factors emerged, novelty in problem solving, crys­
tallized intelligence, and everyday competence, from the differences be­
tween ratings of the prototypes of exceptional intelligence and of average 
intelligence at 30 years of age, accounting for 26, 17, and 16 percent of the 
variance in the data, respectively. Examples of high-loading behaviors for 
each of these three factors were has an active mind, displays curiosity, 
challenges what is presented to him or her in the media, and is able to 
learn and reason with new kinds of concepts for novelty in problem solv­
ing; sample behaviors were are experienced in their field, is well educated 
in career choice, and displays the knowledge to speak intelligently for 
crystallized intelligence. Sample behaviors were displays good common 
sense, adjusts to life situations, and acts responsibly for everyday compe­
tence. These three factors are quite similar to the five factors obtained 
from the analysis in study 5 of the ratings of the importance of behaviors 
in defining an exceptionally intelligent 30-year-old prototype. In both 
analyses, the first two factors to emerge were factors dealing with crystal­
lized intelligence and novelty in problem solving. 

Three interpretable factors also emerged from the differences between 
ratings of the prototype of exceptional intelligence and of average intelli­
gence at 50 years of age, novelty in problem solving, everyday compe­
tence, and social competence, accounting for 26, 21, and 14 percent of the 
variance in the data, respectively. The behaviors characterizing the social 
competence factor differed from those characterizing everyday compe­
tence factor in being more interpersonally oriented. These three factors 
are quite similar to the factors obtained in study 5 for the 50-year-old 
prototype. 

Finally, three interpretable factors emerged from the differences be­
tween the ratings of the prototype of exceptional intelligence and of aver­
age intelligence at 70 years of age, composite fluid and crystallized intelli­
gence, everyday competence, and cognitive investment, accounting for 
28, 18, and 11 percent of the variance in the data, respectively. Cognitive 
investment, a factor different from most of those described before, in-
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eludes behaviors such as displays curiosity, appreciates young and old 
individuals, and is interested in one'sfamily and home life. These factors 
are very similar to the four factors that emerged in study 5. 

Comparisons between the factors obtained in this study were made by 
computing factor scores on the varimax rotated factors obtained for each 
ofthe 67 subjects, separately for each ofthe three questionnaires. Several 
findings were worthy of note. First, those factors that had been given 
similar interpretations were substantially correlated. Second, although 
factors similar in interpretation were substantially correlated, there were 
often slight differences in the behaviors loading on the factors, with higher 
age levels stressing more the everyday aspects of adaptation. Third, the 
intercorrelations demonstrated that there are similarities in the types of 
characteristics that are capable of distinguishing individuals of average 
and exceptional intelligence at different ages. 

We also examined the relationships between the age ofthe subjects and 
the factor structures underlying the age-specific prototypes. The results of 
these factor analyses were quite similar to those described above. In 
general, older individuals view everyday competence as more important 
in characterizing the difference between individuals of average and excep­
tional intelligence than do younger individuals. Moreover, middle-aged 
and older individuals tend to combine crystallized intelligence with prob­
lem-solving abilities for most age-specific prototypes. Thus, the distinc­
tion between fluid and crystallized abilities seems less important to the 
older individuals than to the younger ones. 

The open-ended questionnaire revealed some interesting results. Indi­
viduals who believe that the level of one's intelligence remains constant 
over the life span of an adult believed crystallized intelligence to be a 
more important discriminator between prototypes of average and excep­
tional intelligence at 30 years of age than do individuals who believe that 
the level of one's intelligence changes over the adult life span. Also, 
subjects who think that one's intelligence cannot decrease over the life 
span view everyday competence and cognitive investment to be more 
important in characterizing the difference between prototypes of average 
and exceptional intelligence than do the subjects who think that one's 
intelligence can decrease over the adult life span. In short, the more 
importance one places on everyday intellectual abilities in one's concep­
tion of intelligence, the more likely one is to hold a view of stability in 
intellectual development during adulthood. Yet another interesting find­
ing was that subjects who believed that intelligence and unintelligence 
remain constant over the adult life span were more likely to hold a hered­
ity-based view of intelligence. Finally, subjects who felt individuals can 
become more intelligent over time were more likely to hold an environ­
mentally determined view of intelligence and to believe that intellectual 
abilities can be improved through practice and training. 

To conclude, implicit theories of intelligence change over the life span, 
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with greater emphasis on everyday abilities both for older subjects and for 
prototypes of older individuals. 

Intelligence, Wisdom, and Creativity 

Can the implicit-theory approach be extended to study wisdom and crea­
tivity as well as intelligence? The final set of studies addresses this ques­
tion. 

STUDY 7 

In Study 7, a brief questionnaire was filled out by 25, 26, 20, and 26 
professors in the fields of art, business, philosophy, and physics, respec­
tively, at a variety of U.S. universities (representing a return rate of 17 
percent on questionnaires sent out). The questionnaire was also given to 
17 nonstudent adults who answered a newspaper advertisement. The 
questionnaire asked respondents to spend a few minutes listing whatever 
behaviors they could think of that were characteristic of an ideally intelli­
gent, wise, or creative person in their respective fields of endeavor (or, in 
the care of laypersons, in general). Those behaviors listed at least twice 
served as a basis for the subsequent investigations. The total numbers of 
behaviors obtained were 119 for art, 131 for business, 107 for philosophy, 
138 for physics, and 156 for laypersons. 

STUDY 8 

Method 

Two hundred professors in art, business, philosophy, and physics were 
asked to rate the characteristicness of each of the behaviors obtained in 
Study 7 from the corresponding population with respect to their concep­
tion of an ideally intelligent, wise, and creative individual in their occupa­
tion. Laypersons (nonstudent adults) also provided these ratings, but for a 
hypothetical ideal individual withoQt regard to occupation. Ratings were 
on a scale of 1 (low) to 9 (high), with a rating of 1 meaning behavior 
extremely uncharacteristic and a rating of 9 meaning behavior extremely 
characteristic. Of course, not all 200 solicitees in each field responded. 
There were 65 respondents for the art questionnaire, 70 for the business 
questionnaire, 65 for the philosophy questionnaire, 85 for the physics 
questionnaire, and 30 for the laypersons' questionnaire. Each participant 
provided all three ratings (of intelligence, wisdom, and creativity), but 
with the order of the three ratings counterbalanced across subjects. 

Means 

Mean ratings for all three psychological constructs from all three occupa­
tions ranged from 5.8 to 7.1, with a median of 6.4. Ratings were quite 
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similar in value across constructs and fields. Reliabilities of the ratings 
were high, ranging from .88 to .97 with a median of .92. 

Correlations 

Correlations between pairs of ratings of attributes for the various groups 
of subjects revealed some interesting patterns. First, correlations be­
tween intelligence and wisdom (across groups of subjects) ranged from 
.42 to .78 with a median of .68. Correlations between intelligence and 
creativity ranged from .29 to .64 with a median of .55. Correlations be­
tween wisdom and creativity ranged from - .24 to .48 with a median of 
.27. Clearly, the rank ordering of the three possible relations between 
constructs is that intelligence and wisdom are most closely related, intelli­
gence and creativity next most closely related, and wisdom and creativity 
least related. The only departure from this pattern was for philosophers, 
for whom intelligence and creativity were more highly related (a correla­
tion of .56 versus one of .42) than were intelligence and wisdom. 

Second, all correlations were positive and statistically significant ex­
cept for the correlation between wisdom and creativity for the business 
professors, which was significantly negative. In other words, business 
professors saw greater amounts of wisdom as associated with lesser 
amounts of creativity. 

Third, there were some interesting differences among magnitudes of 
correlations across groups. Members of all groups saw intelligence and 
wisdom as fairly highly related. But for professors in art and physics, as 
well as for laypersons, the relations were very substantial (r = .6 to .8). 
For business professors, the relation was a bit weaker (r = .5), and for 
professors of philosophy, the relation was still weaker (r = .4). Also, the 
art, philosophy, and physics professors all saw intelligence and creativity 
as highly related (r > .5), but the business professors and laypersons saw 
them as only weakly to moderately related (r = .3). The relation between 
creativity and wisdom reached moderate levels for the art professors (r = 
.5) and philosophy professors (r = .4), but was low for the other groups 
and, as mentioned earlier, actually negative for the business group. 

Summary 

Although the various groups do not differ substantially in the absolute 
magnitudes of their ratings, they do differ in the perceived relations be­
tween constructs rated. In general, intelligence and wisdom are seen as 
closest and wisdom and creativity as furthest from each other, but there 
are differences in magnitudes of relations across fields. 

These correlations tell us something about the interrelations of con­
structs, but not about the constructs themselves. The next study was 
designed to provide information about the internal structure of each con­
struct. 
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STUDY 9 

Method 

Forty undergraduates were asked to sort three sets of 40 behaviors into as 
many or as few piles as they wished on the basis of which behaviors are 
"likely to be found together" in a person. These behaviors were from the 
listings for intelligence, wisdom, and creativity, respectively, from Study 
8. Only the top 40 behaviors (in terms of laypersons' characteristicness 
ratings from Study 8) were used in each sorting task. Order of sortings for 
behaviors from the intelligence, wisdom, and creativity lists was counter­
balanced. Subjects were not told in advance what the behaviors had in 
common (i. e., intelligence, wisdom, or creativity). 

Nonmetric multidimensional scaling (ALSCAL) was used to analyze 
the ratings. Stress, or badness of fit, was calculated via stress formula 1, 
and the primary method was used for resolving ties. All scalings were 
principal-axis solutions. Hence, each dimension accounted for the maxi­
mum possible variance, controlling for earlier dimensions, with dimen­
sions extracted in order of strength. 

Intelligence 

The solution for intelligence accounted for 82 percent of the data in three 
dimensions, with a stress of .15. Because the scaling was a principal-axis 
solution, it tended to yield bipolar dimensions in which positive and nega­
tive polarities lent themselves to separate but related interpretations. 

The first dimension yielded two interpretations: practical problem-solv­
ing ability for the positive polarity (e.g., tends to see attainable goals and 
accomplish them; has the ability to change directions and use another 
procedure; able to apply knowledge to particular problems) and verbal 
ability for the negative polarity (e.g., can converse on almost any topic; 
has demonstrated a good vocabulary; has a good command of language). 

The second dimension also lent itself to two interpretations. The posi­
tive polarity of this dimension was labeled intellectual balance and inte­
gration (e.g., has the ability to recognize similarities and differences; 
listens to all sides of an issue; is able to grasp abstract ideas and focus his 
or her attention on those ideas), and the negative polarity was labeled 
goal orientation and attainment (e.g., tends to obtain and use information 
for specific purposes; possesses ability for high achievement; is motivated 
by goals). 

The third dimension yielded two interpretations. The positive polarity 
was contextual intelligence (e.g., learns and remembers and gains infor­
mation from past mistakes or successes; has the ability to understand and 
interpret her or his environment; knows what is going on in the world), 
and fluid thought was the negative polarity (e.g., has a thorough grasp of 
mathematics and/or good spatial ability; has a high IQ level; thinks 
quickly). 
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Wisdom 

The scaling for wisdom accounted for 87 percent of the variance in three 
dimensions, with a stress of .14. The first dimension yielded two interpre­
tations, reasoning ability for the positive polarity (e.g., has the unique 
ability to look at a problem or situation and solve it; has good problem­
solving ability; has a logical mind) and sagacity for the negative polarity 
(e.g., considers advice; understands people through dealing with a vari­
ety of people; feels he or she can always learn from other people; is 
fair). 

The second dimension also yielded two interpretations, learning from 
ideas and environment for the positive polarity (e.g., attaches importance 
to ideas; is perceptive; learns from other people's mistakes) andjudgment 
for the negative polarity (e.g., acts within own physical and intellectual 
limitations; is sensible; has good judgment at all times; and thinks before 
acting or making decisions). 

The third dimension yielded two interpretations, expeditious use of 
information for the positive polarity (e.g., is experienced; seeks out infor­
mation, especially details; learns and remembers and gains information 
from past mistakes or successes) and perspicacity for the negative polar­
ity (e.g., can offer solutions that are on the side of right and truth; is able 
to see through things-read between the lines; has the ability to under­
stand and interpret her or his environment). 

Creativity 

The scaling for creativity accounted for 93 percent of the variance in the 
data in four dimensions, with a stress of .08. The first dimension yielded 
two interpretations, nonentrenchment for the positive polarity (e.g., 
makes up rules as she or he goes along; has a free spirit; is unorthodox), 
and integration and intellectuality for the negative polarity (e.g., makes 
connections and distinctions between ideas and things; has the ability to 
recognize similarities and differences; is able to put old information, theo­
ries, etc., together in a new way). 

The second dimension was also interpreted in terms of two polarities: 
aesthetic taste and imagination for the positive polarity (e.g., has an 
appreciation of art, music, etc.; can write, draw, compose music; has 
good taste) and decisional skill and flexibility for the negative polarity 
(e.g., follows his or her gut feelings in making decisions after weighing the 
pros and cons; has the ability to change directions and use another proce­
dure). 

The third dimension was interpreted in terms of perspicacity for its 
positive polarity (e.g., questions societal norms, truisms, assumptions; is 
willing to take a stand) and drive for accomplishment and recognition for 
its negative polarity (e.g., is motivated by goals; likes to be complimented 
on her or his work; is energetic). 

The fourth and weakest dimension was interpreted in terms of inquisi-
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tiveness (positive polarity) and intuition (negative polarity). The dimen­
sion was weak and did not have many salient weights on either polarity. 

Summary 

Excellent fits to the nonmetric multidimensional scaling model were ob­
tained for intelligence, wisdom, and creativity. Thus, one can have a 
reasonably high degree of confidence in the interpretation of the data, 
especially because the dimensions do, in fact, seem to capture people's 
intuitions about the respective natures of the three psychological con­
structs. Moreover, the substantive dimensions are consistent with the 
earlier correlational data (from Study 8), indicating that of the implicit 
theories for the three possible pairs of attributes, the greatest similarity is 
between the implicit theories for intelligence and wisdom, whereas the 
least similarity is between the implicit theories for wisdom and creativity. 
Finally, the results for intelligence largely replicate those of Sternberg et 
al. (1981), who used a different methodology (factor analysis), a different 
set of subjects, and a different (but related) set of behaviors to study 
people's conceptions of intelligence. Thus, at least for the one psychologi­
cal construct that has been subject to implicit theoretical analysis before, 
the present results appear to be robust. 

STUDY 10 

Method 

In an attempt to relate implicit to explicit theories, 30 adults were admin­
istered four psychometric tests: the Cattell and Cattell Test of g, the 
Group Embedded-Figures Test, the George Washington Social Intelli­
gence Test, and the Chapin Social Insight Test. These tests have been 
widely used in psychometric investigations of cognitive and social intelli­
gence and have been shown to have reasonable construct validity. Paper­
and-pencil creativity tests were not employed because of the common 
view (e.g., Amabile, 1983; Cronbach, 1984; Feldman, 1980; Simonton, 
1984) that such tests capture, at best, only the most trivial aspects of 
creativity. In addition, subjects were asked to fill out all three of the 
questionnaires from Study 8-those for intelligence, wisdom, and creativ­
ity-as they pertained to themselves (rather than as they pertained to an 
ideal individual, as in Study 8). The same subjects filled out all three 
questionnaires in counterbalanced order. Only those questionnaire items 
were retained that had received principal-component loadings of .50 or 
greater in Study 8. Subjects used a scale of 1 to 9, where 1 indicated a 
behavior that was extremely uncharacteristic of the individual and 9 indi­
cated a behavior that was extremely characteristic. Subjects were given 
as long as they needed to complete the questionnaires. 
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Convergent-Discriminant Validation 

Questionnaires were scored by correlating each subject's response pat­
tern on each questionnaire he or she completed (intelligence, wisdom, or 
creativity) with the "prototype" questionnaire obtained from the layper­
sons in Study 8. The prototype contained the set of ratings for the hypo­
thetical ideal individual, with respect to intelligence, wisdom, or creativ­
ity. Thus, the correlation measured the degree of resemblance between 
the actual individual in this experiment and the hypothetical ideal individ­
ual emerging from Study 8. A higher correlation thus indicated greater 
correspondence to the hypothetical ideal, whereas a lower correlation 
indicated lesser correspondence to the ideal. A negative correlation 
would indicate an inverse relationship. 

The strongest correlations were obtained for intelligence. A correlation 
of .48 was obtained with the Cattell and Cattell Test of g, which is a 
nonverbal intelligence test. This result replicates the correlation with the 
verbal Henmon-Nelson Mental Ability Test obtained by Sternberg et al. 
(1981), which was just as high (.52). The intelligence prototype correlation 
thus measures characteristics that overlap with those measured by intelli­
gence tests, although the prototype measures social competence aspects 
of intelligence that are not measured by traditional psychometric intelli­
gence tests (Sternberg, 1985a). Significant correlations were also obtained 
with the embedded-figures test (.54), which is a measure offield indepen­
dence that tends to correlate with spatial ability and with the Chapin 
Social Insight Test (.43), a measure of social intelligence and competence. 
Meaningful correlations were obtained for the wisdom prototype scores 
and the George Washington Social Intelligence Test (.38) and the Chapin 
Social Insight Test (.46), both of which measure those aspects of intelli­
gence that would seem most akin to wisdom. Finally, no significant corre­
lations were obtained for creativity; but, then, there were no creativity 
tests included in the battery. 

Summary 

The multidimensional scaling results of the previous experiment showed 
the high "internal validity" of the implicit theories described in the exper­
imental results. To be of psychological interest, however, implicit theo­
ries should also have external validity (i.e., relations to other theories), 
and measures based on implicit theories should have external validity as 
well (i.e., relations to measures based on other theories). The results of 
the present experiment show that the proposed implicit theories and the 
measures based on them do indeed have external as well as internal 
validity. Prototype scores derived from the implicit theories were shown 
to have sensible correlations with measures based on external theories, 
with the correlations falling into a pattern suggesting both convergent and 
discriminant validity for the proposed measures. Thus, implicit theories 
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of intelligence, wisdom, and creativity do not occur in a vacuum and are 
not isolated from explicit theories. Rather, implicit theories appear to be 
quite compatible with explicit theories, at least in the present results. 

STUDY 11 

Method 

In an attempt to determine whether people use their implicit theories in 
evaluating others, 40 nonstudent adults were presented with 54 simulated 
letters of recommendation. Two typical letters would be: 

Gerald: 
He possesses ability for high achievement. 
He has the ability to grasp complex situations. 
He has good problem-solving ability. 
He attaches importance to well-presented ideas. 

Doris: 
She is motivated by goals. 
She questions societal norms, truisms, and assumptions. 
She thinks quickly. 
She is not materialistic. 
She is totally absorbed in study. 

Descriptions were generated so as to vary predicted levels of intelli­
gence, wisdom, and creativity. Each description was four, five, or six 
sentences long and was paired equally often with names of males and with 
names of females. A given subject saw a given description only once­
either with a male name or with a female name. The subject's task was to 
rate the intelligence, wisdom, and creativity of each of the described 
individuals. Each rating occurred approximately equally often in each 
ordinal position across subjects. Ratings were made on a 9-point scale, 
where 1 indicated that the individual to be rated was not at all intelligent, 
wise, or creative and 9 indicated that the individual was extremely intelli­
gent, wise, or creative. 

It was possible to obtain predicted ratings of intelligence, wisdom, and 
creativity by summing the ratings of laypersons from Study 8 on each 
attribute for each subject and then dividing by the number of attributes 
given for the hypothetical individual. Averages rather than sums of rat­
ings were used because the number of behaviors was not the same for 
each of the descriptions. 

Suppose, for example, that five behaviors were given for Susan. The 
predicted intelligence rating would be the mean of the characteristicness 
ratings for intelligence in Study 8 (plus a constant). The predicted wisdom 
rating would be the mean of the Study 8 ratings for wisdom (plus a con­
stant). The predicted creativity rating would be the mean of the Study 8 
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ratings for creativity (plus a constant). Thus, the more closely the descrip­
tion of the hypothetical individual resembles the ideal (of Study 8) on each 
of the three attributes of intelligence, wisdom, and creativity, the higher 
should be the rating that hypothetical individual receives in the present 
experiment. 

Means 

Mean ratings of hypothetical individuals were 5.8 for intelligence, 5.3 
for wisdom, and 5.0 for creativity. The ratings were highly reliable, with 
split-half reliabilities of .84 for intelligence, .85 for wisdom, and .93 for 
creativity. 

Intercorrelations of Ratings 

Intercorrelations of ratings were .94 between intelligence and wisdom, .69 
between intelligence and creativity, and .62 between wisdom and creativ­
ity. Thus, the rank order of correlations was the same as that in past 
experiments, although in this experiment intelligence and wisdom were 
almost indistinguishable. Use of male versus female names had no effect. 

Simple Correlations between Predicted and Observed Ratings 

The correlations between predicted and observed ratings generally 
showed the expected fit of the model to the data. In each case, the correla­
tion between the predicted and observed values of a given attribute was 
substantial: .89 for intelligence, .96 for wisdom, and .89 for creativity. 
Moreover, the correlation between predicted and observed values for a 
given attribute was always higher than the correlation of predicted with 
observed values across attributes (e.g., predicted values for creativity 
with observed values for wisdom). Thus, people seem not only to have 
implicit theories of intelligence, wisdom, and creativity, but also to use 
these implicit theories in predictable and discriminating ways to judge 
others. 

Multiple Regressions of Observed on Predicted Ratings 

How well could the observed ratings for each attribute be predicted if all 
three predicted ratings (intelligence, wisdom, and creativity) were al­
lowed to enter into each regression equation? Multiple regressions were 
used to answer this question. The squared multiple correlations between 
observed ratings for intelligence, wisdom, and creativity, on one hand, 
and the predicted values, on the other, were .85, .92, and .87, respec­
tively. In other words, the observed ratings could be predicted very well 
from the combined predictions. In each regression, the highest standard­
ized regression coefficient was for the attribute being predicted. Thus, for 
example, in predicting the wisdom rating, the highest weight was for the 
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predicted wisdom rating, rather than for the predicted intelligence rating 
or the predicted creativity rating. 

Summary 

People not only have implicit theories, but also use their implicit theories 
in predictable ways. It is possible to predict their evaluations of others on 
the basis of knowledge about their implicit theories. Despite the seeming 
omnipresence of standardized tests in our society, most evaluations of 
people's abilities are still done informally-through informal conversa­
tions, interviews, letters of recommendation, second-hand comments, 
and the like. Psychometric tests tell us nothing about how these informal 
evaluations are made. But the results of implicit theoretical evalua­
tions do. It is possible to predict a person's evaluation of the intel­
ligence, wisdom, or creativity of another by knowing the evaluator's 
implicit theory and the information available about the person to be 
evaluated. 

Overview 

Previous research has given us some sense of the nature of intelligence, 
wisdom, and creativity, but different methods, instruments, subjects, and 
experimenters have made comparisons across these three constructs diffi­
cult. The research described here has made it possible more directly to 
compare the natures of the three constructs, at least as they are perceived 
by four groups of people. Consider each of the three constructs in turn 
and what we have learned about it. 

INTELLIGENCE: LAYPERSONS 

People's conceptions of intelligence overlap with, but go beyond, the 
skills measured by conventional intelligence tests. Thus, the problem 
solving (fluid ability) and verbal comprehension (crystallized ability) skills 
measured by intelligence tests appear most prominently in the dimensions 
of the derived implicit theory of intelligence. The intelligent individual is 
perceived to solve problems well, reason clearly, think logically, use a 
good vocabulary, and draw upon a large store of information-just the 
kinds of things conventional intelligence tests measure. But also embed­
ded within people's conceptions of intelligence are one's ability to bal­
ance information, to be goal-oriented and to aim for achievement of one's 
goals, and to show one's intelligence in worldly, as opposed to strictly 
academic, contexts. People, in general, thus seem to be more concerned 
with the practical and worldly side of intelligence than are the creators of 
intelligence tests. 
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INTELLIGENCE: SPECIALISTS 

Whereas professors of art emphasize knowledge and the ability to use that 
knowledge in weighing alternative possibilities and in seeing analogies, 
business professors emphasize the ability to think logically, to focus on 
essential aspects of a problem, and both to follow others' arguments 
easily and to see where these arguments lead. The emphasis on assess­
ment of argumentation in the business professors' implicit theories is far 
weaker in art professors' implicit theories. Philosophy professors empha­
size critical and logical abilities very heavily, especially the ability to 
follow complex arguments, to find subtle mistakes in these arguments, 
and to generate counterexamples to invalid arguments. The philosophers' 
view very clearly emphasizes those aspects of logic and rationality that 
are essential in analyzing and creating philosophical arguments. Physi­
cists, in contrast, place more emphasis on precise mathematical thinking, 
the ability to relate physical phenomena to the concepts of physics and to 
grasp quickly the laws of nature. 

WISDOM: LAYPERSONS 

The wise individual is perceived to have much the same analytical reason­
ing ability that is found in the intelligent individual. But the wise person 
has a certain sagacity that is not necessarily found in the intelligent per­
son: she or he listens to others, knows how to weigh advice, and can deal 
with different kinds of people. In seeking as much information as possible 
for decision making, the wise individual reads between the lines as well as 
uses the obvious information. The wise individual is especially able to 
make clear, sensible, and fair judgments and in doing so takes both a long­
and a short-term view of the consequences of the judgments made. The 
wise individual is perceived to profit from the experience of others and to 
learn from others' mistakes, as well as from his or her own. This individ­
ual is not afraid to change his or her mind as experience dictates, and 
the solutions that are offered to complex problems tend to be the right 
ones. 

WISDOM: SPECIALISTS 

Implicit theories of wisdom show considerable overlap across fields of 
specialization. Nevertheless, there are some differences in implicit theo­
ries. Art professors emphasize insight, knowing how to balance logic and 
instinct, knowing how to transform creativity into concepts, and sensitiv­
ity. These aspects of wisdom would seem quite relevant in the mature 
appreciation and evaluation of art. Business professors emphasize matu­
rity of judgment, understanding of the limitations of one's own actions 
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and recommendations, knowing what one does and does not know, pos­
session of a long-term perspective on things, knowing when not to act as 
well as when to act, acceptance of reality, good decision making, the 
ability to distinguish substance from style, and appreciation of the ideolo­
gies of others. These aspects of wisdom would seem particularly relevant 
in making and evaluating business decisions. 

Philosophy professors emphasize balanced judgment, nonautomatic ac­
ceptance ofthe "accepted" wisdom, concentration on fundamental ques­
tions, resistance to fads, looking for fundamental principles or intuitions 
behind a viewpoint, concern with large purposes, openness to ideas, abil­
ity to use facts correctly, avoidance of jargon, possession of a sense of 
where future progress is possible, unwillingness to become obsessed with 
a single theory, attention to both scope and detail, and a sense of justice. 
All these talents would seem relevant to the construction and evaluation 
of philosophical arguments. Finally, physicists emphasize appreciation of 
the various factors that contribute to a situation, familiarity with previous 
work and techniques in the field, knowing if solving a problem is likely to 
produce important results, awareness of the important problems in the 
field, knowledge of the human and political elements of scientific work, 
contemplation, and recognition of aspects of physical phenomena that 
underlie the concepts of physics. These skills would seem to be helpful in 
attaining a deep understanding of the nature of physics and of its place 
both in science and in the world. 

CREATIVITY: LAYPERSONS 

Conceptions of creativity overlap with those of intelligence, but there is 
much less emphasis in implicit theories of creativity on analytical abili­
ties, whether they be directed toward abstract problems or verbal mate­
rials. For example, the very first dimension shows a greater emphasis on 
nonentrenchment, the ability and willingness to go beyond ordinary limi­
tations of self and environment and to think and act in unconventional and 
even dreamlike ways (Sternberg, 1981). The creative individual has a 
certain freedom of spirit and unwillingness to be bound by the unwritten 
canons of society, characteristics not necessarily found in the highly intel­
ligent individual. Implicit theories of creativity encompass a dimension of 
aesthetic taste and imagination that is absent in implicit theories of intelli­
gence and encompass aspects of inquisitiveness and intuitiveness that do 
not seem to enter into the implicit theories of intelligence. Implicit theo­
ries of creativity go far beyond conventional psychometric creativity 
tests. A person's ability to think of unusual uses of a brick, or to form a 
picture based on a geometric outline, scarcely does justice to the kind of 
freedom of spirit and intellect captured in people's implicit theories of 
creativity. 



5. Implicit Theories 189 

CREA TIVITY: SPECIALISTS 

Implicit theories of creativity in the specialized fields were highly overlap­
ping across fields and with the implicit theories of laypersons; neverthe­
less, there were some differences worthy of note. Professors of art placed 
heavy emphasis on imagination and originality as well as on an abundant 
willingness to tryout new ideas. The creative artist is a risk taker and 
persists in following through on the consequences of risks. Such a person 
thinks metaphorically and prefers forms of communication other than 
strictly verbal ones. Business professors also emphasize the ability to 
come up with new ideas and to explore these ideas, especially as they 
relate to novel business services and products. The creative individual 
escapes traps of conventional thinking and can imagine a possible state 
that is quite different from what exists. Philosophy professors emphasize 
the ability to toy imaginatively with notions and combinations of ideas 
and to create classifications and systematizations of knowledge that differ 
from the conventional ones. Creative individuals never automatically ac­
cept the "accepted," and when they have novel hunches, these hunches 
often payoff. The creative person is particularly well able to generate 
insights regarding connections between seemingly unrelated issues and to 
form useful analogies and explanations. The physics professors share 
many ofthese same ideas about the creative individual, but show a partic­
ular concern with inventiveness, the ability to find order in chaos, and the 
ability to question basic principles. The physicists emphasize creative 
aspects of problem solving, such as the ability to approximate solutions, 
the ability to find shortcuts in problem solving, and the ability to go 
beyond standard methods of problem solving. Finally, the physicist looks 
in a creative person for the ability to make discoveries by looking for 
reasons why things happen as they do. Such discoveries may result from 
the perception of physical and other patterns that most others simply 
overlook. 

In conclusion, people have implicit theories of intelligence, wisdom, 
and creativity, and they use these theories both in conceptualizing the 
constructs and in evaluating themselves and others. To understand these 
conceptions and their use and to attain some appreciation of the psycho­
logical constructs themselves, it is useful to study people's implicit theo­
ries of the nature of their minds. 

Conclusions 

The purpose of this chapter has been to argue that implicit theories pro­
vide a valuable means for studying cognition and its development. Devel­
opment, of course, can be of many kinds. Our own studies have focused 
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on differences in implicit theories that characterize nonexpert and expert 
groups. We have also examined development across the life span via 
implicit theories, in terms of both how people's implicit theories change 
as they grow older and how implicit theories about people change with 
increasing age of the subjects rated. 

This last kind of research would seem particularly important in studying 
hypothetical constructs whose nature may change with age, where the 
nature of the change is not readily ascertained. In the literature on intelli­
gence, for example, it has often been assumed that what changes over age 
is the factor structures or scores, or the process structure or scores, of a 
fixed set of tasks. Thus, the set of tasks is held constant over ages, and the 
structure of performance is allowed to vary. This procedure may be inap­
propriate, however. Certainly, no one would believe it should apply at the 
earlier end of the age distribution (e.g., for the tasks given 2- and 12-year­
olds), and perhaps it should not apply at the later end of the age distribu­
tion either (e.g., for the tasks given 20- and 80-year-olds). 

Our cross-sectional data on implicit theories of intelligence suggest 
that, at least from an implicit theoretical standpoint, intelligence is not 
quite the same thing at various age levels. People stress progressively 
more the everyday aspects of intelligence with increasing age both of 
raters and ratees. This change in stress is consonant, perhaps, with the 
changing life requirements of individuals of different ages. The academic 
aspects of intelligence are quite important during the early years, and the 
stress on school achievement both in its own right and as a criterion 
against which to evaluate intelligence tests shows just how important 
school achievement is to children and to society in judging these children. 
Intelligence test scores predict school achievement quite respectably. At 
the same time, school achievement is not important for older adults or for 
society's judgments of these adults. What matters later is life achieve­
ment, which is not predicted very well by scores on intelligence tests 
(Wagner & Sternberg, 1985). 

Obviously, implicit theories do not provide the final word on what is 
intelligent (or wise or creative or whatever) at any given age. They pro­
vide just one source of information. Indeed, they should complement, not 
replace, explicit theories. But they do seem useful in suggesting where 
explicit theoretical conceptualizations of a phenomenon may simply be 
too narrow, or too broad, or simply off base. 

Although the focus of this chapter has been on intelligence, the implicit 
theoretical approach applies to other constructs as well, such as wisdom 
and creativity. Presumably the approach can be applied to any cognitive 
construct at all, although it would seem to have its greatest use for con­
structs whose formulation is fuzzy and in need of converging operations 
for clarification. 

To conclude, the study of implicit theories can provide a valuable sup­
plement to the armamentarium of cognitive and cognitive-developmental 
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psychologists who seek an understanding of cognition and its develop­
ment. Implicit theoretical modeling is underexplored at present, but I 
would like to believe that data such as those reviewed in this chapter 
show that there is much to be gained from more intensive study of peo­
ple's implicit theories of cognition and its development. 
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6. Modeling X-Linked Mediated 
Development: Development of Sex 

Differences in the Service of a Simple Model 

Hoben Thomas 

It might be appropriate to define a formal model's usefulness by the 
following criteria. First, it must be simple and plausible. Although plausi­
bility is often in the mind of the beholder, certainly simplicity is another 
matter. Complicated models are often quickly forgotten or ignored. Sec­
ond, it must be testable and falsifiable. Any useful model must be able to 
be tested and rejected with data; the more readily testable a model is, the 
better. Third, it must generate new and unique predictions which set it 
apart from rival models. 

A model is presented which appears to satisfy these criteria. The devel­
opment of the model was motivated by certain persistent, orderly, yet 
often unexpected and usually unexplained findings in the psychological 
literature concerned with sex differences in development. 

There are striking sex differences at both ends of the ability continuum. 
Lehrke (1978) provided extensive documentation that at the bottom ofthe 
IQ scale the number of mentally retarded males far exceeds the number of 
females. At the other extreme are differences in mathematical giftedness. 
In the United States talent searches such as the Johns Hopkins studies of 
mathematically precocious youth (Benbow & Stanley, 1980, 1983) show 
large sex differences. The Scholastic Aptitude Test (SAT) mathematics 
scores for gifted boys are higher and more variable than for girls (Benbow 
& Stanley, 1980, 1983). This finding is not unique to the United States. 
Less well known are the large-scale Australian and New Zealand studies 
which show the same orderly sex differences (O'Halloran, Over, & 
Edwards, 1982). 

Other sex differences may not seem as dramatic, but are often just as 
orderly and persistent. For example, except for standardized IQ and 
achievement testing, perhaps the most frequently used psychological 
tests are cognitive style measures, particularly the rod-and-frame task 
(RFT) and the embedded-figures test (EFT) pioneered by the late Herman 
Witkin and his associates (Witkin, Lewis, Hertzman, Machover, 
Meissner, & Wapner, 1954; Witkin & Goodenough, 1981). Literally hun­
dreds of cognitive style studies have been completed worldwide. So ex-
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tensive is the literature that the Educational Testing Service has published 
several bibliographies (e.g., Cox & Gall, 1981). What is intriguing about 
this literature is that sex differences, which in most of the literature al­
most always refer to average differences, are typically small. If the be­
tween-sex differences are statistically different, they tend to favor 
males-and if they are not statistically different, they still tend to favor 
males (e.g., van Leeuwen, 1978). The picture is clear for the RFT data 
where sex differences favor males usually from childhood on. The EFT 
data are less clear-cut; significant differences may not emerge until adult­
hood (Witkin & Goodenough, 1981). Adding more intrigue is the finding 
that significant sex differences are found typically only in agricultural 
cultures, not in hunting or food-gathering cultures (Witkin & Berry, 1975). 

The sex differences literature of current research focus tends to be 
defined by those content domains where (1) large differences are noticed 
and cannot be avoided or "overlooked," such as the Benbow and Stanley 
data (1980, 1983), or (2) where the magnitudes of the differences, while 
small, tend to persist and thus get noticed in literature reviews. My suspi­
cion, however, is that there are very few tasks where one hypothesis or 
another regarding sex differences (in some distributional parameter) is not 
likely to be tenable. In the older literature where summary statistics and 
data tended to be published, one does not have to look far before finding 
many variables, physical as well as psychological, that reveal persistent 
age-related sex differences in both sample standard deviations and sample 
mean (Thomas, 1980). The consistency of the empirical facts does not, 
however, imply consistency of causes. But a useful parsimonious theory 
would be one that linked between-sex differences reported in different 
areas. 

What is proposed is basically a very simple model that accounts for a 
large body of sometimes seemingly disparate empirical facts. It also pro­
vides clearly falsifiable predictions, thus avoiding what Box (1976) calls 
"mathematistry"-theory for theory's sake with no empirical tentacles. 
Indeed, some of the predictions are so trivially simple that the theory can 
be falsified both rationally (thinking about it tells you it is wrong) and 
empirically. 

The theory is unabashedly biological in its driving mechanism: A puta­
tive sex-linked, i.e., X-linked gene is viewed, in its recessive form, as 
facilitating certain task performances. This notion, when captured in a 
simple formal model, immediately implies certain data relationships. 

The idea that sex differences can be explained by X-linked genetic 
factors is hardly a popular position, and in the last decade or so it has 
received a lot of bad press (e.g., Boles, 1980). Some of the reasons for its 
unpopularity are, to my mind, clearly emotionally or politically moti­
vated. One of the more polite comments recently received came from a 
colleague who observed, "I like the model, but I do not like the idea." 
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The scientific reasons for the unpopularity of the X-linked hypothesis 
are easy to state. Very few recent studies have reported support for the 
hypothesis. Unfortunately, however, almost all this literature is irrepara­
bly flawed. With rare exception, the hypothesis thought to have been 
tested was not the hypothesis actually tested. Said differently, tests of the 
X-linked hypothesis have not been conceptualized properly. 

Traditionally, the psychological approach for evaluating the X-linked 
hypothesis has been through the study of familial correlations, e.g., 
brother-sister correlations on some test. Under a simple genetic model 
(e.g., Thomas, 1983) there are indeed familial patterns of X-linked corre­
lations that would be expected, and investigators looking for such pat­
terns in Pearson test score correlations have not typically found them. 
But the distributional structure that underpins the genetic correlations is 
assumed to be a four-point distribution in the plane! Figure 6.1 illustrates 
the assumed structure. That is, all pairwise data (brother-sister test 
scores, for example) must be assumed to take on one of four pairs of 
values! Of course, real data are not of this form: Test score distributions 
are continuous, and individual test scores are measured imperfectly. Thus 
the genetic theory needs to be embedded in some theory of real test 
scores where observations are subject to error as well as other influences. 
When this is achieved and an appropriate model is constructed that re­
flects reality more satisfactorily, the Pearson correlations, computed on 
real data, do not estimate the genetic X-linked correlations at all (Thomas, 
1983). Only if one assumes that measurement error is negligible (i.e., the 
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FIGURE 6.1. To expect r among test score pairs to estimate the genetic X-linked 
correlation requires a test score distribution of this form (for example, x = a 
sister's score may take on one of two values and similarly for y = her brother's 
score). All observations must therefore take on one offour coordinate pairs of test 
scores, as the figure shows. The assumption, of course, is absurd; z is the proba­
bility axis. 
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score distributions are "almost" four point masses) will the Pearson r 
estimate the genetic correlation. Thus, such reviews as Boles (1980) sim­
ply miss the point: It has been assumed for too long that Pearson test 
score r's estimate genetic correlation coefficients. In general they do not. 

It is curious that within the last several decades of on-again, off-again 
interest in X-linked influences attention has focused on bivariate data 
structures, i.e., where correlation dominates. Yet even a very simple 
genetic model that considers measurement error leads to a very compli­
cated structure where conventional bivariate normality collapses. Why 
not explore the implications of X-linked influences in a univariate setting 
first? It is almost always easier to deal with one random variable than with 
a pair. Furthermore, the first sign of sex differences usually shows up 
when the sample means are examined. 

Before the simple theory is developed, there is some interesting history 
to recite that may make the model more intellectually attractive. Few 
persons seem to be aware just how many human characteristics, many 
physical, are mediated by X-linked genes, recessive and dominant. In 
Figure 6.2 are graphed data from McKusick (1983). The middle curve 
shows for the years tabulated the number of "proven" traits with an X­
linked basis. The top curve graphs the combined "proven" and "sus­
pected" traits. A conservative estimate is that roughly three traits per 
year have been discovered within the last 25 years or so, so that anywhere 
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FIGURE 6.2. The number of "proved" (P) and "proved plus suspected" (P + S) 
X-linked traits recorded by McKusick (1983) for the years specified. The number 
of behavioral traits psychologists would agree are X-linked is denoted by ? and is 
likely to be constant at zero over the same period. 
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from 115 to 250 traits have been recognized as having an X-linked basis. 
Although I have no data, the bottom line graphs the number of behavioral 
traits I suspect psychologists might have agreed have an X-linked basis: 
The line is constant at zero. This figure proves nothing, but it does raise 
some interesting questions. Why should there be no evidence for X-linked 
mediated behavioral traits? Several answers are possible. My answer is 
that we have failed to conceptualize the problem properly and that our 
investigative strategy has been fundamentally wrong. 

A brief overview of what follows may be useful. In the theory section, 
the simple model is developed. Its empirical consequences are stated in 
the following section in the form of five easily performed tests. Because 
these tests require rather weak model assumptions, failure of the model to 
survive the tests will surely falsify it. These two sections represent the 
heart of the chapter. 

To approach the problem of parameter estimation, the model must be 
strengthened (and thus made more vulnerable to falsification). Strength­
ening of distributional assumptions is considered in the section on the 
distribution of W. Then parameter estimation and model fitting are illus­
trated with an analysis of the published Witkin et al. (1954) RFT data. A 
number of issues are considered in the general discussion, the last sec­
tion, including a call for a more broadened perspective as to how data are 
to be viewed. 

The Theory 

Assume the simplest model: There exists an X-linked gene with two al­
leles, where a is recessive and A is dominant. Focus on the recessive gene 
which is assumed to facilitate (not jeopardize) performance on some task. 
All hemizygous a males and homozygous aa females would demonstrate 
facilitated performance on certain tasks. The remaining A males and Aa 
and AA females would show no X-linked facilitation. Let the population 
frequency of a be q, with 0 < q < 1. Assuming random mating and 
independent assortment, the population proportion of individuals with X­
linked facilitation would be q for males and q2 for females. A very elemen­
tary but critical fact that forces all the model constraints is that q2 < q for 
all q. 

Because there are obvious improvements in virtually all task perfor­
mances over age, define a growth parameter 1Ti, 0 < 1Ti ::5 1, where i 
indexes age. If age j is younger than age k, then 1Tj < 1Tk, so that at age j, 
1Tjq males and 1Tjq2 females will display task facilitation. The 1Ti have a 
clear frequency interpretation and represent the proportion of persons 
with gene-facilitated potential (that is, a or aa) that display task-facilitated 
performance. Note that under this model individuals do not improve grad­
ually; either they display facilitated performance, or they do not. In-
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creases in the population mean, for example, reflect increasing numbers 
of individuals with task-facilitated performance. 

To summarize, define a pair of discrete random variables, Bmi for males 
and Bft for females, with functions gmi and gft, respectively, where 

!1T'iq if 0 = U 

gmi(O) = 1 - 1T'iQ if 0 = t ~ u 
o otherwise, 

(1) 

where 0 < 1T'iQ < 1. The function gft is identical to gmi except that Q2 re­
places Q. The outcomes 0 are numerically defined dependent variable 
measurements. For instance, in tasks where small scores represent supe­
rior performance, as in the RFT, u would be "almost vertical" and t 
"tilted," when we refer to the subject's angular positioning of the rod 
inside the tilted frame (vertical is perfect performance). Note that Bmi and 
Bft are not, in general, familiar Bernoulli variables because the outcomes 
are not typically defined on 0 and 1. 

At this point all individuals display one of two values, U or t; this is 
hardly reality, but B does model the X-linked influence. Let other sources 
of influence including measurement error be summarized in a random 
variable N that might be regarded as a composite of several sources of 
influence. It is possible to index N so that the influence of N depends on 
development. Here it is assumed that N is fixed in its parameters at all 
ages. Let N be independent of B (actually, for much of what follows, B 
and N need only be assumed to be uncorrelated). Define W, the random 
variable on which observations are made. For males 

(2) 

and for females 

(3) 

for each individual at age i. No assumptions have been made about N 
except that it has moments E(N) = JL and var (N) = (J"2> o. 

Model Properties with Empirical Implications 

Even with very light machinery it may seem surprising how many varied 
constraints are imposed on the model that have implications for data. I 
regard these constraints as "stethoscopic tests" in the sense that one may 
easily check data sets to see whether the hypothesis of X-linked facili­
tated performance seems appropriate. If the tests are positive, then it may 
be worthwhile to look more deeply by using heavier machinery. 
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Means 

Some of what follows is described in Thomas (1982). The expectations of 
Equations 2 and 3 are 

E(W m;) = Vq1Tj + (1 - q1T;)t + J.L 

and (4) 

It follows that 

E(Wfi - WmJ = (t - v)(q - q2)1Tj > 0 if v < t 
and (5) 

if u > t. 

Thus, at all ages the mean differences should be consistently ordered. If 
small scores are better scores (u < t), average female scores should al­
ways be larger than average male scores, independent of other model 
parameters. The obvious data implication is that the sample means should 
be consistently ordered for males and females at all ages. Ifthis feature of 
data fails to hold, the model is falsified. Although the ordering of means is 
forced by Equation 4, the magnitude of the differences is another matter 
and depends on parameters q and 1Tj. The difference q - q2 is largest at 
q = l. Since the growth parameter 1Tj increases with age, the mean differ­
ences between the sexes should increase with age. Of these two ordinal 
predictions, clearly the consistency of the sample mean differences, al­
lowing for sampling error, is the critical one. 

Test 1: Mean differences should always favor males. 

Variances 

Consider next the variances of Equations 2 and 3: 

var (W ma = q1Tj(1 - q'1Ta(V - t)2 + (J'2 = cr;"j 
var (Wfi) = q21Tj(1 - q21Tj)(V - t)2 + (J'2 = a},. (6) 

In most discussions, sex differences mean mean differences. Nobody 
seems to know just what to do with variance differences except to ignore 
them. This model clearly implies order properties on the variances. From 
Equations 6 it follows easily that 

var (Wfi) < var (W m;) iff q(1 + q) <! iff 
1Tj 

< -1Tj + [1Tj(1Tj + 4)]112 
q 21Tj' (7) 
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If 1Ti = 1 for the moment, then Equation 7 becomes 

5112 - 1 
var (Wjl) < var (Wmi) iff q < 2 = .618, 

Thus ~i > (J'~ if q is less than the famous number (5 112 - 1)/2, and (J';;'i < 
a7z if q is greater than (5 112 - 1)12. The obvious data implication is to check 
the sample variances (for the behavior under scrutiny) at maturity. The 
variances should be ordered in a consistent way that depends on q. 

Although q is never known precisely, one generally knows intuitively 
whether q must be large or small for the model to make sense. Consider 
the RFT task, for example, and specifically the data of Witkin et al. (1954, 
pp. 137-138) reproduced in Table 6.1. The variable is absolute angular 
error, in degrees, with a perfect vertical rod setting defined as zero. Thus 
small scores are better scores, and the sample means, as Table 6.1 re­
veals, for both within-sex and between-sex comparisons are nicely or­
dered, except for the 17-year-old females and the adult data. But how 
should one expect the variances to be ordered? There are large numbers 
of male field-independent subjects (i.e., those who do well on the task)­
it is not a rare trait-and similarly there are large numbers of females who 
perform well on the task. Thus, for the model to be plausible, q, the 
proportion of males with X-linked facilitation, must be relatively large; 
clearly q cannot be small, such as .08, its approximate value for col­
orblindness in the United States (Post, 1962). Hence from Equation 7 the 
best guess is that the variance of females should exceed the variance of 
males. The data in Table 6.1 are consistent with this expectation, a finding 
consistent with most other RFT data and from the water-level task as well 
(Thomas & Jamison, 1975). 

Now suppose 1Ti < 1 in Equation 7. Since q(1 + q) is in the interval (0,2) 
while lI1Ti is in the interval [1, (0), the variance offemales will exceed the 
variance of males for all 0 < q < 1 when 1Ti :s ! and, of course, for q small 
enough the variance of males will exceed the variance of females at all 
ages. It is interesting, in Table 6.1, that for the 8-year-old children the 
sample variances (from the grouped data) are exactly the same for both 
sexes. Perhaps among children younger than 8 years, the variance for 
boys exceeds the variance for girls. 

As another example, consider the sex differences on the Scholastic 
Aptitude Test mathematics section (SAT-M) among precocious youth 
(e.g., Benbow & Stanley, 1980). The variance for the boys is, unlike the 
RFT data, much larger than the variance for the girls in every talent 
search. Under this model, this result is expected. After all, the talent 
search youth are already scoring in the top 5 percent or so of an achieve­
ment test before they are eligible to take the SAT-M, so they are a very 
bright group. And being able to score, without formal training, at levels 
often exceeding that of the typical college student must be a rare ability. 
Consequently for the theory to be sensible, q must be small, quite small. 
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Other empirical facts suggest it may well be less than .07 (Thomas, 1985). 
The variances are similarly ordered in other mathematical talent searches 
(e.g., O'Halloran et al., 1982). 

Test 2: The variances should be consistently ordered, at least in matu­
rity. For rare traits the male variance should exceed the female variance; 
for common traits the reverse should hold. 

Effect Size 

A commonly used meta-analytical statistic is effect size, an estimate of 
which is simply the difference between two sample means scaled by a 
pooled estimate of the presumably common population standard devia-

- - 2· 2 
tion. Let Xf, Xm, and Sf and Sm be the sample means and unbiased sample 
variances for females and males, respectively. Then define the estimated 
effect size ES as 

ES = (Xr - X",)/[S} + S;,,)/2]1/2, (8) 

which is essentially the estimate Hyde (1981) used to compare the sexes 
on a variety of cognitive tasks. Hyde emphasized that the effect sizes 
Were small, perhaps thinking small differences were not significant in any 
sense, empirical or conceptual. 

It is of interest to consider just how large the (approximate) expected 
"-

effect size is, that is, E(ES) under the model of Equations 2 and 3. By 
using an almost identical argument from Thomas (1982), effect size is 
largest when (j2 is zero, 1Ti = 1, and q = .366, which implies that E(ES) :::; 

"" .57. Thus, under the model the (absolute value of) E(ES) is in the interval 
(0, .57]. Of course, this value is the maximum value to be expected. Gene 
frequencies departing from .366 will cause ES to become smaller, and the 
larger (j2 is, the smaller must be ES. Consequently, ES would be expected 
to be small under the model; in fact, large effect sizes would falsify the 
model! 

Similarly, if one considers the expected value of the two-sample t test, 
under the proposed model (cf. Thomas, 1982) where t is not t-distributed 
regardless of the distribution of N, the conventional table-valued t critical 
value will fail to achieve "significance" at the two-tailed .05 level unless 
there are about 26 females and 26 males. In general, much larger sample 
sizes are needed to achieve significance. 

Test 3: Effect sizes should be quite small, and mean differences should 
be insignificant except in large samples; but mean differences should con­
sistently favor males. 

In an extensive review of the cross-cultural literature on EFT and RFT 
data, van Leeuwen (1978) found data precisely in accord with the expec-
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tation of small, often insignificant differences that nonetheless favored 
males. 

Correlations 

While the main thrust so far has been on unidimensional structures, con­
sider individuals providing two measurements, j and k, that denote two 
tasks assessed at possibly different ages. Think ofj as denoting a particu­
lar task and age combination, if desired, and similarly for k. Ignore for the 
moment which sex is of concern, and let Wj = Bj + Nj denote the model 
for j; and similarly define Wk for task k. Consider the correlation between 
Wj and Wb corr (Wjl Wk) = Pjk. Assume the correlation between Bj and Nk 
and the correlation between Bk and Nj are zero, consistent with the earlier 
development. Then 

(9) 

where P'jk = cov(Bjl Bk)/(var Wj var Wk)ll2 and P'jk = cov (Nj , Nk)/(var Wj 
var Wk)lIZ. Both P'jk and p"jk are assumed to be nonnegative, a weak 
assumption for most psychological variables. Let m and f denote, as 
before, males and females, respectively. If var (W rn;) < var (Wfi) for both 
i = j and i = k, then p"mJk > p"Ok. 

Under the most general conditions there is no simple ordering of Prnjk 
and PJjk. However, note that p'jk approaches zero while P'jk approaches 
corr(Njl N k) as var(N) and var(Nk) both become large. Furthermore, p'jk 
is likely to be much smaller than P'jk because cov(Bj , Bk) will be small. 
This is because by letting p = corr(Bj , Bk) the covariance of Brnj and Brnk is 

q1Tj(1 - 1Tjq)(Uj - tj)Z]l/Z[q1Tk(1 - 1Tkq)(Vk - tk)Z]l/Z. 

This covariance has maximum value .25p[(vj - t)Z(Uk- tkZ)]lIZ and will 
almost certainly, in reality, be much smaller than this maximum value 
depending, of course, on 1T and q. Thus, since a substantial proportion of 
test score variability surely will be represented in Ni and thus in cov(Njl 
N k), because B represents only X-linked influences, the contribution of 
P'jk to pjk in Equation 9 is likely to be negligible. If so, 

If var (W rni) < var (Wfi) for i = j ,k, then Prnjk > PJjk 
If var (W rnJ > var (Wfi) for i = j ,k, then Prnjk < PJjk. 

(10) 

The male RFT and EFT sample variances are typically smaller than the 
female RFT and EFT sample variances of (cf. Witkin et al., 1954, p. 93), 
and the male between-task correlations are larger than the female be­
tween-task correlations. Witkin et al. (1954, p. 85) reported correlations 
between EFT and RFT ranging from .43 to .76 for men and .03 to .26 for 
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women. These ranges are strikingly disjoint. Thus, the empirical facts are 
in agreement with the theoretical prediction from Equation 10. 

Recall from Equation 7 that the ordering of the variances of W is depen­
dent on the gene frequency q and thus Equation 10 is also dependent on 
the gene frequency. 

Also observe that the above development has implications for predict­
ing sex differences in task reliability coefficients as well. Simply regardj 
and k as two measurements of the same task. For instance, it might be 
expected that the male RFT reliability should exceed the female RFT 
reliability for which there is evidence (Witkin et aI., 1954, p. 73). 

To summarize this development: 
Test 4: Between-task sample correlation coefficients for males should 

exceed the correlation coefficients for females on tasks where superior 
performance is not rare. 

Distributions 

These ordinal tests are nonparametric in the sense that no assumption has 
been made about the distribution of W, and the tests must be viewed as 
exploratory, not confirmatory. The tests are all of the "if, ... then" 
variety. For example, if the model holds, then the male average perfor­
mance will exceed the female average performance. Obviously, the con­
verse does not hold. But because the tests are largely independent of one 
another, a positive confirmation of all the tests would signal a very strong 
suggestion. 

In general, to make further headway and to provide definitive estimates 
of the model parameters, additional assumptions need to be made regard­
ing the distribution of N, so that the distribution of W may be specified. 
However, there is an additional test which, perhaps surprisingly, follows 
without any assumptions whatever regarding the distribution of N if N 
and B are independent. 

Test 5: Because the distribution of W can never be normal, sample data 
should always reject normality. 

Of course, in practice real data may appear normal, so the sample size 
might need to be large. There are, however, some quite powerful tests of 
normality (Filliben, 1975). 

That W cannot be normal follows from a classical characterization theo­
rem of the normal distribution. Let W be the additive composition of two 
independent random variables. Then W is normal if and only if each 
(nondegenerate) component is normal (Cramer, 1946, p. 212). Thus, the 
fact that W cannot be normal follows immediately, given that B is not 
normal. Given the pervasive application of the normal model in our think­
ing, this result may seem unsettling. 
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Distribution of W 

Consider the distribution of the sum of two random variables 

W= B + N. (11) 

It is instructive to derive this distribution intuitively; a formal argument 
can be essentially identical. Let B, independent of N, have the simple 
two-outcome distribution 

B = 0 = v with probability p 
B = 1 = t with probability 1 - p . 

And assume N is a familiar standard normal variable, E(N) = 0, var(N) = 

1. If B = 0, then W = 0 + N and the distribution of W is clear: It is a 
standard normal variable. Alternatively, let B = 1; then W = 1 + Nand W 
is again normal, but with mean 1. Now since B is a random variable, it will 
put part of the probability distribution around 0 and the other part around 
1; and the proportions of the probability distribution around 0 and 1 will 
be given by p and 1 - p, respectively. To provide an empirical example, 
sample four observations from a table of standard normal numbers (devi­
ates). Add 1 to each of the four sampled values. Sample another 16 obser­
vations; to these add nothing. Consider the combined sample of 20 obser­
vations. They have been sampled from a two-component normal mixture 
distribution, the components are centered at 0 and 1, and the weights of 
these components are! and !. The density is given by 

g(w) = 0.8ft(w) + O. 2f2(W), 

where!l is a standard normal density and!2 is a normal density with mean 
and variance 1. Figure 6.3(a) illustrates this distribution; it may look 
normal, but it is, in fact, quite far from normal. 

Thus, in general, the distribution of W in Equations 2, 3, and 11 if N is 
normal will be a two-component normal mixture distribution with compo­
nent means centered at v + E(N) and t + E (N) with common component 
variance (J'2 and with weights p and 1 - p, where p = 1Tiq and p = 1Tiq2, for 
males and females, respectively. (In a formal argument the conditional 
distribution of W given B = 1, for example, would be considered.) The 
means and variances of W have already been given in Equations 4 and 6, 
respectively. Note that (1) Equation 11 can generate a broad class of 
mixture distributions, and N does not need to be normal; (2) B could be 
defined to have several outcomes, so a multiple-allele model can be easily 
handled; (3) if B, as in Figure 6.1, is bidimensional and if N is bivariate 
normal, then the model easily generates a bivariate normal mixture distri­
butions in the plane (Thomas, 1983). In general, however, W can be 
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FIGURE 6.3. Two-component normal mixture distributions with component means 
at 0 and 1 and common component variance. (A) Left and right components 
weights are .8 and .2, respectively; component variance is 1. (B) Same as (A) but 
variance is ! (C) Weights are!, variance is ~. (D) Folded density of (A). Normal 
mixtures will always be unimodal unless the component means are separated by 
more than two-component standard deviations, and then for some weights the 
distribution may be bimodal. 

intractable unless N has certain desirable features, which is the case if N 
is assumed normal. A normal N makes a reasonable distribution in many 
settings. 

Parameter Estimation and Model Fitting 

The most interesting parameters of the model are 1Ti and q because of the 
clear frequency interpretation of each and because there are clear order 
constraints imposed on them, for example, 1Tj < 1Tk ifj is younger than k. 
Once estimates of these parameters are obtained, along with estimates of 
v, t, and 0- [E(N) is assumed to be zero], the data may be fitted to the 
hypothesized mixture model by using conventional X2 tests. 

To illustrate the general approach to parameter estimation, the Witkin 
et al. (1954) RFT data in Table 6.1 are used. These data are not optimal for 
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the purpose desired; there are far too few subjects at each age, and the 
data are grouped. However, the data are public, there are several age 
groups spanning a satisfactory age range, and the data analyses reveal 
certain important difficulties. 

The goal in this effort is not to test and likely reject the strong model 
proposed. Rather, the purpose is to illustrate a general research strategy 
that I would like to encourage and that I believe might move us closer to 
understanding certain empirical facts regarding the development of sex 
differences which have never been explained or understood. 

Recall in the RFT data that the subject's goal is to position the rod to a 
vertical setting defined as 0° error, when the frame is tilted to several 
different positions. The grouped data in Table 6.1 are based on the aver­
age of eight absolute error settings. 

Under the model, each subject's RFT error score is sampled from a 
density g;(w) defined by 

(12) 

where fl and 12 are normal densities with (component) means v and t, 
respectively, and (component) variance cr2. For males Pi = 1Tiq, and for 
females Pi = 1Tiq2. However, Equation 12 is not quite suitable. Recall that 
the scores for each subject were absolute values, not signed errors. This 
fact is important because if X is normal, then the absolute value of X is a 
folded normal (i.e., where the negative mass is "folded" into the positive 
mass). This fact makes life more difficult because g;(w) in Equation 12 for 
the RFT data is afolded two-component normal mixture andfl andf2 are 
folded normal components (cf., Leone, Nelson, & Nottingham, 1961). An 
example of a folded two-component normal mixture is shown in Figure 
6.3(D). Thus, all estimation assumed gi(W) was a folded two-component 
normal mixture distribution. 

Estimation in mixture settings almost always requires an iterative ap­
proach because the derivatives of the likelihood equations cannot be 
solved in closed form. However, the EM algorithm (Aitkin & Wilson, 
1980; Everitt & Hand, 1981) works well in these applications and is very 
easily programmed. In addition, several normal mixture algorithms are 
available (e.g., Macdonald, 1980; Wolfe, 1970) although these programs 
were not used here (for the folded mixture problem). Maximum likelihood 
estimation was achieved by using the EM algorithm with solution crite­
rion minimizing minus the log likelihood, when several different starting 
values (guesses) were entered. The EM algorithm can be slow, but often 
only 6 to 10 iterations are necessary to converge, i.e., to approach the 
same solution values if there is convergence at all! 

The approach used was the approach one might typically employ given 
the availability of normal mixture routines: Estimate parameters v, t, cr, 
and 1Tiq or 1Tiq2 separately for each data set. With this approach 1Ti and q, 

within each age group, are not identifiable (i.e., there are many combina-
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tions of 1Ti and q that produce the same 1Tiq). If, however, the estimates 
are properly constrained (for example, 7i';q2 < iiA), then estimates of q 
and 1Ti are possible from iiA2j(fT;q) = q and from fii = ;(;q;q: Note that the 
parameters were estimated without constraint (except that U" > 0 and 
0< fGq, 1f';q2 < 1), so it could well happen that ~2 > 7ijq while the theory 
requires 1Tjq2 < 1Tjq. Thus in some ways the test of the theory is a demand­
ing one: With no constraints and small data sets, Murphy's law certainly 
should be expected to hold! 

This estimation strategy is not the favored one. A more efficient and 
powerful approach would be to simultaneously estimate all the parame­
ters from the entire data set, in which case 1Ti and q are identifiable, with 
the solution constraints so that for example, 1fij < fik for j younger than k. 
However, because there are no such general-purpose routines available, 
few other researchers are likely to approach the problem in this way. So 
this more desirable approach was not used here. 

The results of the analysis are shown in the lower portion of Table 6.1. 
The top portion simply reproduces the grouped frequency data of Witkin 
et al. (1954). Since the analyses required individual scores, the midpoints 
of the grouped frequency intervals defined each individual's score. The 
sample sizes and ordinary sample means and standard deviations are 
given. Below these are the parameter estimates for ages 8 to 15 years. 

The routine did not converge properly for the 17-year-old and adult 
groups, and thus no estimates are given for these groups. Convergence 
failure for these ages was not unexpected: There are, with these grouped 
data, very few frequency intervals, and many scores were identical. 
Among the 17-year-old males, for example, only three different scores are 
represented. For the younger age groups, particularly the 8- and 10-year­
old groups, convergence was excellent and very fast. Thus, these are the 
results to be trusted. For the 13- and 15-year-old groups, convergence was 
slow and less stable; the solutions are more problematic. For the 13-year­
old females, convergence was not possible with the one extreme observa­
tion, but a replicable solution was achieved when this observation was 
deleted. The solution given is based on 28 girls. 

Collectively, the parameter estimates appear to be quite orderly. In all 
cases 1i;q2 < -;;q, and within each sex these estimates monotonically 
increase with age, as required. If the ratios Ti;q2jf(';q for ages 8 through 15 
years are formed, they are, respectively, .66, .64, .95, and .96; these may 
be taken, under the model, as independent estimates of q. Stability here is 
about what one should expect, given these data. Hill (1963) has shown 
that for the two-component normal mixture case, depending on the size of 
(I - v)kr, from 1600 to 6400 observations would be needed to reduce the 
variance of the mixing parameters to .1, and this result is for the case 
when all other parameters are known! 

These estimates of q are interesting because an estimate of of .9 
(Thomas, 1982) was obtained for Oltman's (1968) RFT data, a college 
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sample. [For extensive water-level data, the estimate of q is about i, given 
entirely different estimation procedures (Thomas & Jamison, 1981).] If 
the mean or median of these four estimates is taken as the representative 
value q = .80, then for 8-year-olds fr is = .28, and for 10-year-olds fr = .66 
(by averaging the values obtained for both sexes). For ages 13 anq 15, 
however, estimates of 1Ti exceed 1, suggesting either a model failure or 
estimation difficulties. 

For the remaining estimates, & seems quite stable; the estimates of t 
and v are less so, particularly i, and there appears the suggestion that t 
and v become smaller with age. Either model failure or estimator variabil­
ity could be the cause. 

A critical concern is to provide estimates of the variability of the param­
eter estimates; asymptotic estimates are achievable, with considerable 
programming effort (cf. Everitt & Hand, 1981), but typically are not pro­
vided in mixture decomposition programs. There may be a very simple 
alternative: the bootstrap (Efron, 1982). This procedure is designed to 
provide standard errors in difficult analytical settings. Computationally, 
the bootstrap is trivially simple: Define a vector of the test statistics for 
which a standard error is desired. Sample with replacement from the 
vector k times, where k is usually 50 to 200 or so. Compute the mean of 
each bootstrap sample, obtaining k means; compute the standard devia­
tion among these k means, and call this number the bootstrap standard 
error. The bootstrap assumes that the observations are identically distrib­
uted, an assumption not obviously satisfied here. If the assumption is 
plausible, under the model the bootstrap estimated standard errors of &, f, 
and 0 are, with k = 50 and bootstrap sample size 8, respectively, .12, .96, 
and 1.65. These numbers are to be viewed suspiciously. To recommend it, 
the bootstrap procedure would require systematic exploration with Monte 
Carlo methods. But the approach does appear attractive. 

Table 6.1 also provides ordinary X2 goodness-of-fit tests under the nor­
mal model and under the assumed folded mixture model. Most of the data 
sets reject normality or have marginal fits; the fit under the folded mixture 
model appears satisfactory in most cases. 

Overall, given the small sample sizes and convergence problems caused 
largely because the data were grouped, the results seem encouraging. 

General Discussion 

Combining the results of a more rigorous mixture decomposition analysis 
of Oltman's (1968) college student RFT data, where the model made a 
respectable showing (Thomas, 1982), with the results of the preceding 
analysis suggests that further research may be quite worthwhile. A num­
ber of content domains might be explored, including measures of cogni-
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tive style, certain specialized ability measures, and, as will be noted mo­
mentarily, conventional IQ test scores. 

Although the methodology discussed here applies to continuously dis­
tributed random variables, fairly straightforward maximum likelihood es­
timation may be employed (Thomas & Jamison, 1981), for certain tasks, 
such as the water-level task, where at some ages the data are sufficiently 
discrete that the responses may be defined as counts. In these analyses 
data from seven water-level studies provided positive support for the 
hypothesis that performance on the water-level task may be under X­
linked control. At least there is no other explanation to account for the 
data. Incidentally, the present model reduces to the count data Bernoulli 
case when N becomes a degenerate variable, that is, var (N) = 0, in which 
case the observations may be arbitrarily defined to be distributed on 0 and 
1 and without loss of model generality. 

One should harbor no illusions about the outcome to be expected when 
the model is subjected, through mixture decomposition analyses, to the 
power of a large data set. It will most likely be hammered down. That is 
the vulnerability of a strong model. If desired, the model could certainly 
be weakened in perhaps obvious ways, e.g., by allowing different parame­
ters to vary between sex and over age. 

It is interesting, however, what a simple model can achieve. It has 
provided an explanation (Thomas, 1985) for all the high mathematical 
aptitude sex differences facts reported in the Johns Hopkins talent search 
data (Benbow & Stanley, 1980, 1983). The empirical SAT-M facts are that 
(1) the boys' means and variances have always been larger than the girls' 
means and variances; (2) greater numbers of eligible boys have been 
selected on the achievement pretests; and (3) the ratio of the proportion of 
boys to girls with SAT-M scores above a fixed score c increases as c 
increases. When time c = 700, the ratio is about 13: 1. 

Alternate explanations have been offered for some of these facts. It 
may be true, e.g., that boys are more likely to enter talent search competi­
tion than girls and that girls are less likely to receive encouragement to 
study mathematics. Such theories are almost always very vague, how­
ever, and have no clear implications for data. Why, for example, should 
the variances be ordered as they have been in each search? The model 
proposed does provide a coherent, compact explanation. 

There are several relevant empirical facts of theoretical interest when 
IQ scores are considered. Among the mentally retarded there are greater 
numbers of males represented than females (e.g., Lehrke, 1978). Also, as 
is generally well known, there are more retardates than would be ex­
pected by assuming a normal distribution (Jensen, 1980). Zigler, Balla, 
and Hodapp (1984) have proposed that two different clusters of factors 
can lead to low IQs, thereby accounting for the slight bulge in numbers of 
extremely retarded persons. In the language used here, Zigler et al. are 
proposing that IQ is a mixture distribution. 



6. Modeling X-Linked Mediated Development 211 

At the other end of the IQ scale there are similar facts: There are more 
exceptional individuals than a normal model would permit, and there is 
other evidence that the proportion of male high scorers exceeds the pro­
portion of females (Terman, 1925). In addition, when the entire IQ spec­
trum is considered, males remain slightly more variable than females 
(Jensen, 1980), although even in large samples there are no mean differ­
ences between the sexes. These facts are quite consistent with the general 
ideas proposed and could be modeled easily. Of course, a simple one-gene 
two-allele X-linked model cannot account for discrepancies from the nor­
mal density at both ends of the distribution, but a three-allele model might 
easily do so. Consequently, IQ would be conceptualized as a three-com­
ponent normal mixture with two very small components, one at each end 
of the continuum, and one large component, in the middle. In effect, an X­
linked structure of rare recessive genes mediating inferior and superior 
performance would be superimposed on a model of polygene intelligence. 
In a large sample the components and their parameters should be easy to 
estimate. 

An important feature of the theory is that it forces a change in perspec­
tive as to how we view and interpret data. To illustrate, consider 100 girls 
and 100 boys with measurements on a trait of interest. The sample statis­
tics are as follows: boys, i = 1.66 and s = 1.11; girls, i = 1.44 and s = 
1.12. The data do not appear very exciting. A conventional t test with .198 
degrees offreedom (df) yields an unimpressive t = 1.24; the effect size of 
.198 is also unimpressive. Suppose, however, that an additional fact were 
mentioned, that 66 boys and 44 girls possessed the target trait and the 
remaining subjects did not. Because the ratio of boys to girls with the trait 
is 1.5, that might command attention. 

Of course, one cannot, in general, retrieve frequency data from sample 
means. But our conventional mind set is to visualize two identical normal 
densities with the same shape (constant variance) shifted by .22, the mean 
difference. In the proposed model that mind set is wrong. Here the com­
ponent means, t and v, are identically positioned for both sexes; thus the 
densities are not shifted. But the densities are different in shape; i.e., the 
sizes of the components are different. The spirit of the mean difference in 
this model is much more a difference of proportion or rate. 

Our training and experience are so steeped within an additive-effects 
perspective that our view of the world may often be characterized by 
what G. E. P. Box (1976) calls "cookbookery": It is the tendency to force 
everything into the same familiar mold. By doing so we may fail to recog­
nize what may be important about the data. A careful exploratory data 
analytical perspective may be the only cure. 

Incidentally, the "sample values" reported above are simply from 
Equations 4 and 6 with 7Ti = (j = v = 1, t = 0, and q = !, while the 
frequencies are simply 100q and 1 00q2. 

All models are wrong models. The issue therefore is not whether the 
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present model is wrong, but where it is importantly and fundamentally 
wrong and in most urgent need of repair. Two features seem particularly 
suspect. First, the usefulness of a decomposition analysis is critically 
dependent on how carefully one selects the distribution N. Even when the 
exact mixture model is known to be true, estimation can be difficult unless 
the component means are well separated and the sample size is moder­
ately large. Thus one might expect that although the issue of "robust­
ness" in decomposition analysis has not been studied, probably certain 
small departures from the assumed model may make important differ­
ences in solutions. Under the proposed model, EFT data should yield a 
two-component mixture distribution. But to regard N as normal would 
not be sensible because the EFT data which are latency (time) scores are 
known to have a long tailed distribution. A mixture of log-normal compo­
nents might be a plausible distribution for N. 

A second possibly major problem concerns the genetic model. This 
model ignores dosage compensation mechanisms, i.e., the Lyon effect 
(Lyon, 1972) which is now fairly well accepted by geneticists. This hy­
pothesis states that for females, in the case of X-linked genes, one of the 
two alleles in each cell in each genotype is deactivated, possibly in a 
random manner. The implication of this hypothesis for model construc­
tion is that the pairs Aa and AA would not have the same value as under 
the current model. If AA had value t and aa had value v, then Aa would 
have some intermediate value between t and v; if there is an equal proba­
bility of A or a being deactivated, the value for Aa would be in the middle, 
say, It - v1/2. Under such a model there are interesting consequences for 
theory. For one, if Aa has a midpoint value, then the mean difference 
between males and females vanish. The variances are still ordered, but 
the picture is more complicated. However, it is unclear whether this 
effect holds for all X-linked genes, whether or not the deactivation proba­
bilities are equal, and thus whether Aa should have a midpoint value. Of 
course, apart from dosage compensation considerations, other alleles or 
other genes may be involved. Such models can become quite compli­
cated. There seems, at the moment, little reason to consider more compli­
cated models. 

Although the model is conceptually neutral regarding the content do­
main to which it could be applied, it was stimulated by persistent sex 
differences on certain tasks, such as the RFT, which seemed largely 
independent of cultural or learning experiences. Perhaps because the 
model is so readily evaluated in data, the concern has been expressed that 
one might be inclined to feverishly sift through data in the hopes of find­
ing, by chance, support for the model. Although this was never the intent, 
there is little to fear: Remember the model is a strong model, which means 
that it can be falsified. Even in its weaker version, where the distribution 
of W is left unspecified, it makes a unique set of predictions, possibly 
matched by no other model. After all, what other model predicts, for 
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example, that sex differences between the means should be persistent and 
small? Furthermore there are predictions concerning how data should be 
structured not only at some fixed age but also over age. For example, the 
mean differences must increase in magnitude, and the variance for males 
at some point in early development must be larger than the variance for 
females, another consequence of Equation 7 (cf. Thomas, 1982). 

Of course, such predictions are model predictions, and the variability of 
real data must be considered. Thus the issue oftesting statistical hypothe­
ses under the model arises. Clearly conventional normal theory-based 
small-sample procedures would be inappropriate because not only does 
normality fail but also the model is not an additive model, as the above 
illustration made clear. However, virtually all conventional test proce­
dures are essentially distribution-free in large samples. Although the issue 
of what sample size sample is large is a difficult one and would need to be 
studied, the guess would be that for most applications sample sizes of 
about 50 for each sex would allow for most conventional two-group com­
parisons to be made without leading to gross statistical decision errors. 

Finally, if the theory appeals to your scientific sense, fine. Even if it 
does not appeal to you scientifically, it will certainly appeal to your aes­
thetic sense because at its core is a golden number. Recall that the ordinal 
tests hinged on the gene frequency q and that these inequalities turned on 
the critical number (5 112 - 1)/2, the golden ratio. This number is histori­
cally very famous and ranks right up there with 1T or e. The number turns 
up in many aesthetically pleasing physical and biological settings, and it 
has lovely mathematical properties as well (Huntley, 1970). Is it possible 
there may be some deeper meaning to its appearance here? 
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7. Geometric Methods in Developmental 
Research 

Kevin F. Miller 

One need not look far to find spatial analogies applied to phenomena that 
are not inherently spatial. Terms with a spatial flavor, such as "close 
friends," "deep problems," "knowing one's way around," or "one need 
not look far" are used with neither literal referents nor ambiguity. This 
ready metaphorical use of spatial relations led Lakoff and Johnson (1980, 
p. 17) to assert that "most of our fundamental concepts are organized in 
terms of one or more spatialization metaphors." The pervasive nature of 
spatial analogies makes the geometric techniques described in this chap­
ter both powerful and dangerous. Procedures for turning behavioral data 
into maps, clusters, and tree structures tap into our tacit knowledge about 
the meaning of distances and directions in space. Where the implicit 
assumptions we bring to interpreting geometric representations hold, 
these techniques provide powerful methods for reducing otherwise over­
whelming sets of data into coherent structures. Where these assumptions 
are violated, the potential for misleading or trivial results is, if anything, 
greater than with more familiar statistical procedures. 

In this chapter I describe several geometric approaches to capturing the 
structure of children's knowledge and behavior. Such procedures are 
fundamentally descriptive, having as their goal the reduction of data on 
the proximities between psychological objects to a more accessible for­
mat. The terms "proximities" and "psychological objects" are both used 
quite generally. Psychological objects can include stimuli, subjects, or 
tasks. Proximities can include all measures of similarity or distance that 
show the relations between these objects. Measures of proximity between 
objects can be as varied as judgments of similarity between pairs of stim­
uli, frequencies of confusions between stimuli, or measures of the similar­
ity in performance of different children across situations. Geometric 
models use such proximity data to represent psychological objects as 
points in space (so that distances and directions between points corre­
spond to relations among the objects) or members of clusters (so that all 
members of a cluster share common features distinguishing them from 
nonmembers). Techniques for providing geometric models of psychologi-



7. Geometric Methods in Developmental Research 217 

cal data have proliferated in the last 20 years. I do not attempt to provide a 
detailed map of the entire field of geometric modeling, because thorough 
reviews are available elsewhere (Carroll & Arabie, 1980; Davison, 1983; 
Shepard, 1974, 1980). Instead I discuss two basic approaches to geometric 
modeling that are particularly applicable to developmental issues. The 
first approach, nonmetric multidimensional scaling (MDS), produces a 
continuous spatial representation of the relations among psychological 
objects. The second approach, nonhierarchical clustering, describes simi­
larity as the result of (possibly) overlapping sets of features. Within each 
general approach, models have been developed to account for individual 
or developmental differences, and these individual differences ap­
proaches are particularly applicable to developmental research. 

The chapter is divided into two main sections, one dealing with general 
issues in geometric representation and the other with applications of spe­
cific procedures to developmental research. Discussion of general issues 
in geometric modeling begins with consideration of Galton's (1881) "di­
rect" spatial description of visual representations of numbers. Limita­
tions of this approach are described and used to motivate consideration of 
the assumptions behind current geometric procedures and the conse­
quences of failing to meet these assumptions. Strategies for collecting 
data suitable for geometric representation are also considered in this sec­
tion. 

Specific techniques and their developmental applications are consid­
ered in the second section. The general nonmetric MDS approach devised 
by Shepard (1962a, 1962b) and extended by Kruskal (1964a, 1964b) is 
described with reference to a specific example demonstrating the ability 
of this technique to recapture a known data structure from only the order 
of distances among points. Developmental applications of MDS in the 
areas of semantic development, spatial representation, and number devel­
opment are then described. 

The general non metric MDS method has no direct way of comparing 
different configurations, which limits its ability to describe developmental 
change. This limitation can be overcome to some extent by statistical 
procedures for comparing two configurations, but the weighted or individ­
ual-differences MDS procedures of the INDSCAL model (Carroll & 
Chang, 1970) provide a more general method for describing developmen­
tal changes. These procedures assume that individuals differ in terms of 
the weight or emphasis they place on the dimensions of a common repre­
sentational space. INDSCAL is a powerful model for representing 
change. Illustrative applications are discussed in which INDSCAL was 
used to describe aspects of semantic development, face perception, and 
the cognitive consequences of expertise. 

Spatial models ofMDS are often usefully complemented with clustering 
techniques that describe similarity in terms of discrete sets of shared 
features. Clustering methods vary according to whether they require that 
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clusters be nested (hierarchical clustering) or whether overlapping clus­
ters are permitted (nonhierarchical or additive clustering). Although most 
developmental applications have involved the computationally simpler 
hierarchical clustering methods, more general nonhierarchical clustering 
methods are now available based on the ADCLUS model of Shepard and 
Arabie (1979) and its individual-differences generalization, the INDCLUS 
model of Arabie & Carroll (1980). Developmental applications of the 
INDCLUS model in number development are considered and contrasted 
with the results of hierarchical analyses. Given the prevalence of develop­
mental models that rely on analyses of distinctive features (e.g., Gibson, 
1969), nonhierarchical clustering methods are a particularly important 
tool for describing developmental changes. 

By revealing structure not previously hypothesized by the researcher, 
geometric procedures can provide an important alternative to the "20 
questions" hypothesis-testing model criticized by Newell (1973), in which 
studies either confirm or disconfirm a preexisting hypothesis.] Methods 
such as MDS and clustering can have a decentering effect on developmen­
tal research, by revealing unexpected structure and complexity in chil­
dren's knowledge and behavior. In this chapter applications are described 
in spatial processing, face representation, and number development 
where geometric techniques have contributed to changing perceptions of 
the nature of development. These results are encouraging, but geo­
metric procedures have yet to be widely applied to developmental 
problems. 

General Issues in Geometric Techniques 

Galton's Approach to Representation 

The notion that spatial representations can capture important relations 
within domains of knowledge is an old and powerful idea. One intriguing 
early use of a spatial representation to describe psychological phenomena 
is Galton's (1881) description of visual representations for numbers. 
Galton collected a series of drawings from adults who reported experienc­
ing striking visual images of numbers, some of which are reproduced in 
Figure 7.1. Galton's procedure differs in several critical ways from the 
modern procedures described below. He treated these spatial images 
quite literally, viewing them as direct reports of his subjects' experience. 
Furthermore, although his technique produced spatial representations, it 
is not readily quantified; there is no apparent way to aggregate or compare 
the drawings shown in Figure 7.1. These drawings do represent a number 
of reasonable features of numerical structure. Reference points such as 12 
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and 20 are usually marked, but Galton's figures are most striking for the 
diversity of images they display. Furthermore, these images contain a 
great deal of presumably superfluous information, such as the unex­
plained meanderings of W.S. 's report. 

The difficulty of describing Galton's results brings into focus some of 
the requirements that geometric methods must meet to be of general use 
in analyzing psychological data. Galton assumed that there was a direct 
relation between location of numbers in his drawings and subjects' im­
ages. Current applications of geometric methods use distance and direc­
tion to model meaningful relations among objects, but do not assume that 
the correspondence between locations of objects in a reconstructed space 

. and their psychological representations is more than metaphorical (see 
Shepard, 1975; Shepard & Chipman, 1970). Rather, if relations among 
stimuli correspond to relations among their representations, then a geo­
metric model may be useful in describing the structure of a domain with­
out presumption that the underlying psychological processes are in any 
sense "spatial." 

Another limitation of Galton's method is the demands made on sub­
jects. He reported that only about 1 in 30 of his male subjects and 1 in 15 
of his female subjects experienced these visual images of numbers. To be 
generally useful, a geometric model must be applicable to the kinds of 
proximity data psychologists are likely to gather, such as similarity judg­
ments, correlations, confusions, or the results of sorting. 

A problem Galton avoided by assuming his subjects could directly de­
scribe their representations of numbers was the need to describe the 
axiomatic basis for his technique. If geometric models for knowledge 
are to take advantage of our tacit knowledge about space, it is impor­
tant that the data being described at least roughly conform to these 
assumptions. 

The procedures described below have . largely overcome these limita­
tions of Galton's study. They are applicable to a wide range of phenomena 
beyond those with obvious spatial organization. They can be applied 
to a wide variety of measures of similarity that need have no more 
than an ordinal relation to the true similarity between objects. Finally, 
much of the axiomatic basis for these procedures has been stated 
explicitly. 

Spatial Models as Representations for Psychological Processes 

In order for geometric models to usefully depict psychological processes, 
the data they describe must conform to our implicit assumptions concern­
ing spatial relations. For example, since the time of the French Revolu­
tion it has been a common practice to describe politicians and political 
parties as falling along a continuum from Left to Right. Weisberg (1974) 
has shown that it is often possible to recapture such a structure (or a 
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circular one in which "radicals" on both ends of the spectrum are united 
in their opposition to centrist parties) from proximity measures of the 
frequency with which two politicians or parties cast the same votes. What 
does it mean to say that some politician or party can be placed at some 
particular point along this continuum? If such a representation is to be 
coherent, these political positions (and the data on which they are based) 
must conform to the three metric axioms of positivity, symmetry, and the 
triangle inequality (Beals, Krantz, & Tversky, 1968). 

The first axiom, positivity, holds that objects must be maximally similar 
to themselves. Expressed in terms of distances d rather than similarities, 
the positivity axiom requires that for all objects i distinct from j 

dij> dii == 0, (1) 

where dij is the distance between i and dii is the distance between i and 
itself. Positivity is a trivial requirement in this case, because politicians 
have yet to determine a way to vote differently from themselves. As 
Tversky (1977) has pointed out, however, there is at least one interpreta­
tion of the positivity axiom that is not generally true. If confusion is taken 
as a measure of proximity, it is not the case that ease of identifying two 
identical stimuli as the same is constant across all stimuli, and circum­
stances exist in which an object is more likely to be identified as another 
object than as itself. 

The second axiom requires that there must be only one distance be­
tween two objects. Proximities must be symmetric, or 

(2) 

In terms of similarities, symmetry holds that object i must resemble object 
j roughly as much as j resembles i. The distance between two politicians 
moving from left to right along a political spectrum must be identical to 
the distance between them moving in the other direction. 

Although positivity is often a trivial requirement, in many instances 
similarity data violate the requirement of symmetry. Rosch (1975) re­
ported that subjects show systematic asymmetries in completing sen­
tences of the form __ is virtually __ such that prototypical stimuli 
are more likely to be in the second position than in the first. For example, 
subjects were more likely to assert that 11 is virtually 10 than the reverse. 
Because most of the procedures described in this chapter assume that 
proximity relations are symmetric, highly asymmetric data are not repre­
sented well by these geometric procedures. 2 

The third metric axiom, the triangle inequality, concerns the additivity 
of proximity relations. The triangle inequality requires that distances be­
tween two objects be no larger than the sum of the distances between each 
and a common third entity. This requires that 

(3) 
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with dij = dih + dhj only for the case where the entity h falls between i andj 
on the shortest path between i and j. In terms of similarity, the triangle 
inequality implies that if two objects i andj are very similar, then some h 
similar to i cannot be very dissimilar to j. For the political example, the 
triangle inequality implies that a politician similar to one of two politicians 
whose voting patterns were highly similar to each other would have a 
voting pattern at least moderately similar to the other of the pair. 

As with symmetry, real data may well not conform to the triangle 
inequality. Tversky and Gati (1982) showed violations of the triangle in­
equality for judgments of objects that vary along separable dimensions, 
such as schematic houseplants differing in the form of pot and shape of 
leaves. More generally, Shoben (1976, 1983) has argued that similarity 
relations between subordinate and superordinate members of a categori­
cal hierarchy show systematic violations of this condition. Specifically, 
Shoben (1976) found that even atypical exemplars of a category were 
judged to be highly similar to the category name. Although robin and 
goose are judged to be quite different, both are judged to be highly similar 
to bird. It is not possible for them to be simultaneously close to bird and 
far from each other. Shoben' s practical solution to this problem was to 
construct two MDS representations of the same data. In addition to a 
standard MDS solution in which all relations are equally weighted, he 
reanalyzed his results after weighting the relations between superordinate 
and subordinate members to ensure that these relations were accurately 
reconstructed. The second solution, but not the first, provided a good 
prediction of reaction time for determining whether two animals belong to 
the same category. 

Shoben's approach is an ingenious method for adapting geometric pro­
cedures to describe data that do not conform to the underlying model. It 
should also suffice to warn potential users of geometric techniques that 
these spatial models are not the most appropriate models for all proximity 
matrices. Particularly in cases where proximity measures are highly 
asymmetric, users should be aware of the assumptions underlying these 
procedures and consider whether their data are appropriately represented 
by particular geometric models. Where, however, data are at least ap­
proximately consistent with the metric axioms, MDS and clustering pro­
cedures are often successful at revealing structure in an otherwise bewil­
dering array of data. 

Issues of Data Collection 

Perhaps the thorniest issue facing developmental applications of geomet­
ric methods is the problem of finding appropriate tasks to use for collect­
ing data. Although profile similarity measures can be derived from com­
paring subjects' performances across tasks (Carroll & Kruskal, 1978; 
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Shepard, 1972), most applications of geometric techniques involve data 
collected from some form of similarity judgment task. Choice of a task for 
collecting proximity data involves consideration of two factors: the diffi­
culty that the judgment task may pose children and the number of judg­
ments that must be made to gather a representative set of data. Three 
widely used procedures are mentioned briefly: pairwise comparison, 
ranking, and triadic comparison. 

PAIRWISE COMPARISON 

Perhaps the most straightforward and efficient method of collecting data 
on the proximities among a set of psychological objects is simply to solicit 
judgments of the proximity among the pairs of items. This is the most 
efficient of the three procedures, with the fewest judgments required to 
obtain a full proximity matrix for a given set of stimuli. If we assume that 
order of presentation does not affect judgment, there are (N - 1)* N/2 
unique pairs for N objects. This procedure has been used with apparent 
success with children as young as 5 years in tasks involving judging dis­
tance (Newcombe & Liben, 1982) or similarity of colors (Cirrin & Hurtig, 
1981). 

RANK ORDERING 

Despite the apparent success of procedures involving the direct rating of 
similarity among pairs of objects, researchers have attempted to come up 
with simpler judgment tasks for young children. One procedure that re­
mains relatively efficient (it doubles the number of judgments that must be 
made compared with pairwise comparison) while appearing to simplify 
the child's judgment task is ranking relations among stimuli. Subjects are 
presented with a target stimulus and then asked to rank all remaining 
stimuli for similarity to the target. This task might seem particularly ap­
propriate for young children, but it runs the risk that subjects may shift 
targets. Having judged that the item most similar to a is b, they may then 
seek the item most similar to b rather than to a, resulting in a chain as 
subjects in effect work their way around the stimulus space. In a study 
comparing ranking with direct estimation of physical distances between 
pairs of objects, Newcombe and Liben (1982) found that children were 
more likely to chain their responses when ranking than when directly 
judging distances between pairs of points. Thus despite the apparent sim­
plicity of the ranking task, questions exist concerning its appropriateness 
for use with young children. 

TRIADIC DESIGNS 

A final attempt to simplify the child's judgment task uses triads rather 
than pairs of stimuli. This procedure asks subjects to pick the most similar 



224 Kevin F. Miller 

and least similar pairs from triads of stimuli, rather than to directly rate 
similarity among pairs. 

Triadic procedures can simplify the child's judgment task, but this sim­
plification comes at the expense of greatly increasing the number of stimu­
lus combinations, from N*(N - 1)12 to N*(N - 1)*(N - 2)/6, for N 
stimuli. More manageable sets of stimuli can be created by selecting bal­
anced subsets from this cumbersome set, such that each pair of numbers 
appears equally often.3 Triadic judgment tasks have been successfully 
used with children as young as 5 years in a study of visual memory for 
block figures (Arabie, Kosslyn, & Nelson, 1975) and in a study of number 
development (Miller & Gelman, 1983) that is discussed in more detail 
below. 

Issues of data collection and the axiomatic basis for a model are subsid­
iary to the question of whether an approach yields new insights into the 
characteristics of children and the nature of developmental processes. 
Although geometric methods have not been widely applied to develop­
mental issues, applications to date have yielded new results in several 
important areas. In the remainder of this chapter issues are described in 
the application of geometric models to developmental research. Two 
complementary approaches, MDS and clustering, are considered. Em­
phasis is placed on individual-differences generalizations of basic scaling 
and clustering models, for these individual-differences methods are par­
ticularly relevant to describing devlopmental change. 

Applications of Geometric Techniques 

Multidimensional Scaling Models 

A SIMPLE ApPLICATION: REAL DISTANCES IN A 

FANTASTIC SPACE 

Because MDS procedures produce maplike representations of stimuli, an 
example is given in terms of the ability of MDS procedures to reproduce a 
known spatial configuration from ordinal information about the distances 
among points. The ability to recapture metric structure from ordinal infor­
mation is an attractive feature of many geometric techniques, because it 
means that one need only assume an ordinal measurement scale for the 
data analyzed by most MDS procedures. This nonmetric feature is partic­
ularly attractive for developmental research, where it may be particularly 
problematic to assume the subjects at differing ages use the same subjec­
tive scale in making similarity judgments (e.g., Surber, Chapter 4, this 
volume). 
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The actual calculation of a solution is an iterative procedure. Nonme­
tric MDS algorithms attempt to construct spatial representations in which 
the order of distances corresponds to the order of proximity relations in 
the data. Starting from some initial configuration, MDS procedures re­
peatedly modify the configuration to improve the fit between the order of 
the proximity measures and the distances between the corresponding 
points in the representation. Kruskal (1964a, 1964b) developed a badness­
of-fit measure, termed stress, to describe the extent to which the ordinal 
relations among proximity measures are violated in the solution. The 
specific measures of stress used vary across different MDS algorithms 
and the programs that fit them (see Kruskal & Carroll, 1969), but all work 
in an iterative fashion to alter the representation to decrease the stress 
between the proximity data and reconstructed distances. When further 
changes in the configuration of points will not result in appreciable de­
creases in stress, the final value of stress is a measure of how well the 
original data are described by the reconstructed configuration. High val­
ues of stress can be due to errors in the data as well as to systematic 
violations of the assumptions, such as the metric axioms, that underlie the 
geometric model. 

One critical implication of the iterative strategy used in MDS programs 
is the possibility of running into' 'local minima," situations where further 
changes in the configuration of points will not lead to lower stress, al" 
though alternate configurations exist that would yield a better fit between 
model and data. Kruskal and Wish (1978) described this problem, using 
the analogy of a blindfolded parachutist trying to make her way down a 
hill. She might, like MDS procedures, follow a strategy of moving in the 
direction of steepest descent until she reached a position where all direc­
tions led upward. This would be a position oflocal minimum height (lower 
than all nearby points), but it might not be the global minimum (the bot­
tom of the hill). 

The likelihood of becoming entrapped in this problem of local minima is 
reduced for both program and parachutist if they repeat the procedure, 
starting from several different starting configurations (or landing positions 
for the parachutist). Most MDS programs contain procedures for obtain­
ing a series of solutions starting from different initial configurations. Typi­
cally the same final configuration results from all starting configurations, 
but replicating the analysis from different initial configurations is the best 
safeguard against entrapment in a configuration with merely locally mini­
mum stress (Arabie, 1977). 

To illustrate the process by which MDS procedures reconstruct loca­
tions of points by using only the orders of proximities, I have taken a 
series of 16 points from Fonstad's (1981, pp. 52-53) atlas representing 
Tolkien's (1977) fictional Middle Earth. The lower section of Table 7.1 
shows map distances between a series of points taken from this map. The 
upper section of Table 7.1 shows the ranks of the distances, which were 
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used as data by the KYST-2A nonmetric MDS procedure (Kruskal, 
Young, & Seery, 1977) for purposes of reconstructing this known spatial 
configuration. 

The program began with an initial, randomly constructed configuration 
of points, with a relatively high value of stress (Kruskal's stress formula 
one 1 equals .426 in two dimensions).4 The program rearranges the config­
uration of points along the steepest gradient to reduce stress. The four 
panels of Figure 7.2 show the progressive adjustments in the configuration 
of points. In each panel, a lowercase letter indicates the position of the 
first of two iterations, while an uppercase letter indicates the position of 
the same point at the second iteration. Where the location of the point was 
identical across the two iterations, only the uppercase letter is shown. 

The top left panel shows the relatively small rearrangements between 
the initial configuration (lowercase letters) and the first iteration (upper­
case letters), which yield a reduction in stress from .426 to .396. The top 
right panel compares the configuration after iteration 1 with iteration 10, 
at which point stress has been lowered to .061. To make sure that the 
program converged to an absolute minimum value of stress, a strict stop­
ping criterion was specified. The program would continue attempting to 
improve the configuration until (1) 100 iterations were computed, (2) an 
extremely small value of stress was obtained (.0001), or (3) there was no 
improvement in stress between iterations (ratio of stress across iterations 
= .9999). An additional 39 iterations were required to reach this stress 
value. The lower left panel of Figure 7.2 shows the change between itera­
tion 10 and the final configuration (iteration 49), which has a stress of 
.0001. 

The lower right panel of Figure 7.2 compares the final reconstructed 
solution (lowercase letters) with actual locations (uppercase letters).5 Fig­
ure 7.2 provides a graphic illustration of how well ordinal information 
about proximities constrains the reconstruction of a metric space. 

Corresponding to changes in the configuration of points charted in Fig­
ure 7.2 are changes in the function relating the input data with their 
corresponding distances in the reconstructed configuration. Figure 7.3 
shows the Shepard diagram plots, which illustrate the monotonic regres­
sion that lies at the heart of nonmetric MDS procedures. These diagrams 
relate input proximities data (ranked distances in Middle Earth) on the X 
axis to two values on the Y axis. Distances among the points in the 
reconstructed configuration are plotted as D's. Figure 7.3 shows the suc­
cess with which reconstructed distances fit the monotonicity requirement 
(that no point be lower than any on its left) at various points in the 
analysis. Dashes show the best-fitting monotonic function relating input 
data to reconstructed distances. Stress is a function of the vertical dis­
tances between the reconstructed distances and this monotonic function 
(divided by a scale factor), and thus stress measures the extent to which 
the reconstructed distances violate a general monotonic relation with the 
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input data. The four panels of Figure 7.3 clearly show the program's 
progress in decreasing stress. In the upper left panel (the random configu­
ration of iteration 0 with stress = .426), there is the expected random 
relation between input data and output distances. The upper right panel 
shows the slight improvement after iteration 1 (stress = .396). The rela­
tion between input data and output distances is much clearer after 10 
iterations (lower left panel, with stress = .0610), while the almost perfect 
monotonic fit between the data and reconstructed distances is shown by 
the presence of only one D, close to the curve, in the stress function for 
the final configuration (lower right panel of Figure 7.3). 

Careful consideration of the Shepard diagram reveals a number of prob­
lems with the data. Jagged step functions with lengthy horizontal seg­
ments (as in the upper panels of Figure 7.3) result from equating a large 
number of distances in the reconstructed space that corresponded to dis­
tinct entries in the data. The shape of the Shepard diagram can also 
suggest the possibility of stronger forms of regression (such as linear 
regression) which can be specified as alternatives to monotonic regression 
in several MDS programs. Making stronger assumptions about the rela­
tions between data and distances can often permit one to describe a data 
structure that does not emerge from the weaker assumptions of mono­
tonic regression. (See Arabie & Soli, 1982, for a thorough discussion of 
this issue.) 

ISSUES OF DIMENSIONALITY AND STATISTICAL SIGNIFICANCE 

In this example, it was known a priori that the data could be accounted for 
in two dimensions. This is often not the case, and the problem is compli­
cated by the fact that unless data are perfectly fit in a given dimensional­
ity, more dimensions will lead to lower values of stress. Tests to evaluate 
whether one MDS configuration (say, in a higher dimension) is an im­
provement over another have been developed (Hubert & Golledge, 1981; 
Schonemann & Carroll, 1970), along with tests for the significance of 
specific levels of stress (Klahr, 1969; Levine, 1978; Spence & Ogilvie, 
1973). The number of stimuli also imposes an upper limit on the number of 
dimensions that are meaningful. In an excellent practical guide to MDS 
methods, Kruskal and Wish (1978) suggested that the number of objects 

<J FIGURE 7.2. MDS reconstruction of Middle Earth locations using the KYST2A 
program. Letters correspond to those locations designated in Table 7.1. The top 
left panel compares locations in an initial random configuration (lowercase letters) 
with locations of the corresponding points after iteration 1 (uppercase letters). 
The top right panel compares positions after iteration 1 (now in lowercase) with 
positions after iteration 10 (uppercase). The lower left panel compares positions 
after iteration 10 (lowercase) with positions after iteration 49 (uppercase). The 
program converged after 49 iterations. The lower right panel compares the final 
reconstructed configuration (lowercase) with the actual locations (uppercase). 
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being scaled should always exceed 4 times the number of dimensions used 
in representing those objects. Finally, attaining low-dimension solutions 
where feasible should be a goal in itself, because MDS procedures lose 
much of their accessibility when the number of dimensions employed 
exceeds what can be readily displayed or visualized. 

Once a solution in a given dimensionality is obtained, interpretation 
can involve finding relations that correspond to coordinates of dimen­
sions (which can be measured through regression techniques, e.g., 
Kruskal & Wish, 1978) or interpreting groups of neighboring points. 
As is described in several examples, distances in the reSUlting configura­
tion can themselves be used to predict results from other psychological 
tasks. 

Applications of U nweighted Multidimensional Scaling 

Developmental research using the basic MDS model described above has 
typically involved finding separate representations to describe judgments 
of subjects at different ages. These solutions can then be used to generate 
hypotheses concerning the developmental changes that could transform 
one structure to another. Three applications are described, in semantic 
development, spatial representation, and number development. 

RELATIONS BETWEEN SEMANTIC AND PHYSICAL SPACES 

A novel application of MDS procedures that used real maps as a point of 
comparison is a study by Magana, Magana, and Ferreira-Pinto (1982). 
Arguing that spatial layouts of educational environments ought to con­
form to the cognitive representations of learners, Magana et al. compared 
MDS analyses of children's judgments of similarity between animals to 
maps of the actual locations of these animals in various zoos. Figure 7.4 
represents both children's judgments of similarity among animals (top 
part) and the locations of these same animals in the Los Angeles zoo 
(bottom part). Although some aspects of zoo placement are in agreement 
with children's representations, such as the proximity between lion and 
tiger in both structures, others differ greatly, such as the dispersal of the 
primates (gorilla, monkey, and chimpanzee) throughout the zoo. 

Although the Magana et al. study used actual spatial locations as refer­
ents, these were compared with a space generated from semantic rather 
than spatial judgments. It is thus an example of the applicability of MDS 
procedures to developmental issues beyond the representation of spatial 
information. Two other applications of MDS procedures show how these 
techniques can reveal the existence of complexity in children's represen­
tations of familiar domains. 
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• Chimpanzee 

Stress .134 

II 

Stress .096 

II 

FIGURE 7.4. MDS (KYST) representation of children's judgments of relations 
among animals (upper panel) compared with MDS representation of the physical 
layout of the Los Angeles Zoo (lower panel) (adapted from Magana, Magana, & 
Ferreira-Pinto, 1982). Those items that clustered in a hierarchical clustering anal­
ysis are enclosed by closed curves. 
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OBJECT PERCEPTION AND GEOMETRY 

Piaget and Inhelder (1967) asserted that there is a development sequence 
in children's understanding of spatial relations corresponding to succes­
sive mastery of the geometric transformations of topological, projective, 
and Euclidean geometries. Supporting this theory, Laurendeau and 
Pinard (1970) reported that children's errors on a visual-haptic matching 
task were more likely than expected to involve changes of Euclidean than 
topological features. Rieser and Edwards (1979) used MDS procedures to 
reanalyze Laurendeau and Pinard's data, using frequency of confusion as 
an index of similarity. Figure 7.5 shows the solution obtained for the 4-
year-old subjects, with closed curves demarcating topologically equiva­
lent figures. Clearly features other than topological transformations con­
tribute to young children's judgments. The curved C figures in the top 
right, for example, were more likely to be confused with the unbroken 
"doughnut" shape than with the other solid figures to which the C's are 
topologically equivalent. The globally circular figures were quite likely to 
be confused with each other, despite the fact that the presence of varying 
numbers of holes made them topologically distinct. Rieser and Edwards 
went on to collect direct similarity judgments from children and adults on 
a set of figures chosen to represent a variety of geometric transformations 

• II • 

-

FIGURE 7.5. MDS representation from Rieser and Edward's analysis of Lauren­
de au and Pinard's (1970) data on confusion errors by 4-year-olds on a cross-modal 
matching task. Figures that are topologically equivalent are indicated by closed 
curves. (Taken from Rieser & Edwards, 1979.) 
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of an original parallelogram. With these new stimuli as well, they found 
that children's judgments were determined by Euclidean factors such as 
curvature or number of sides. To the extent that topological features 
emerged, they were present in the judgments of adults rather than chil­
dren-just the opposite of the predicted developmental pattern. Chil­
dren's representations of the shapes of objects are certainly more com­
plex than a simple dichotomy between topological and nontopological 
transformations would imply, but this very complexity points up the util­
ity of MDS procedures for representing the structure of semantically rich 
domains. 

NUMBER DEVELOPMENT 

Research on the development of number concepts has 'focused on chil­
dren's understanding of a very small set of numerical relations. After 
Piaget's (1965) demonstration of young children's failure to realize that 
one-to-one correspondence between the members of sets always implies 
numerical equality, a vast body of research has accumulated on children's 
understanding of the features that define number (see Brainerd, 1979; 
Gelman & Gallistel, 1978). Perhaps because of this focus on the develop­
ment of the basic number concept, there has been little research on how 
children's conceptions of number develop beyond the point at which they 
conserve numerosity. Further development might consist merely of learn­
ing new applications for this number concept, with these new uses for 
numbers distinguished from children's conceptions of what numbers are. 

Alternatively, learning new uses for numbers might also affect the ways 
in which children represent numbers. Research with adults by Shepard, 
Kilpatric, and Cunningham (1975) implies that the latter alternative is 
more likely. Shepard et al. found that adults use a variety of mUltiplicative 
and other relations to make judgments of similarities between numbers. 
Once children know what numbers are, how do children develop and 
elaborate an understanding of what numerical features are salient charac­
teristics of numbers? 

To explore this question, Miller and Gelman (1983) collected develop­
mental data on perceived similarity of numbers from adults and from 
children aged 5, 8, and 12 years. Because we were concerned about the 
ability of 5-year-olds to meaningfully use a rating scale with such an 
abstract concept, we abandoned the task of judging similarities among 
pairs of numbers used by Shepard et al. in favor of a triadic judgment 
approach. Sets of balanced incomplete triads were developed, so that 
children saw each pair of numbers equally often and were asked to pick 
from triads of numbers the most similar and least similar pairs. The result­
ing choices were then summed to produce a proximity matrix by incre­
menting an index of similarity for each pair picked as most similar and 
decrementing this index for each pair picked as least similar. 
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Separate MDS analyses were conducted for each age group, and they 
are presented in Figure 7.6. Both the 5- and 8-year-old subjects produced 
essentially one-dimensional configurations reflecting numerical magni­
tude. The kind of bending into a horseshoe configuration seen in these two 
solutions is frequently found when a basically one-dimensional configura­
tion is mapped in two dimensions (Shepard, 1974). Some 5-year-olds were 
unsure whether 0 or 1 was the smallest number, and the small disruption 
in its spatial location is consistent with this consideration. In general, the 
solutions for both 5- and 8-year olds were quite similar in indicating judg­
ments of similarity between numbers based on differences in magnitude. 

Solutions for 12-year-old and adult subjects were quite different from 
those for younger children. For both groups, the dimension of basic mag­
nitude (represented by a dashed axis) has been supplemented by a divi­
sion into odd and even numbers as children begin to represent multiplica­
tive relations as well as those based solely on magnitude. 

These findings suggest that substantial development occurs in chil­
dren's conceptions of numbers beyond the point at which they can con­
serve number in an adultlike manner. These changes were mapped in a 
series of static representations of children's performance at different 
ages. What is lacking in the techniques described thus far, however, is 
any systematic method for comparing performance across individuals or 
groups of subjects. 

Weighted or Individual-Differences Scaling 

CONCORDANCE STATISTICS 

Calculating a rank-order correlation such as Tb between sets of responses 
or matrices provides a convenient index of relation. Significance testing of 
the resulting statistic may be problematic, because often entries within the 
matrices were not independently sampled. Hubert (1978, 1979; Schultz & 
Hubert, 1976) has developed procedures for determining a conservative 
approximation of the probability of achieving a given concordance be­
tween two matrices. This is based on comparing the likelihood of a given 
level of concordance over random permutations of the rows and columns 
of the matrices being compared. These procedures can be used to deter­
mine significance levels for a variety of concordance statistics, including 
the Pearson product-moment correlation. One way to compare the simi­
larity of matrices of judgments or scaling configurations is to use Hubert's 
procedure to determine the significance level of some concordance statis­
tic. Table 7.2 shows the concordance between the number similarity judg­
ments of different groups of subjects. As one would expect from the MDS 
analyses, significant correlations were found between judgments of 5-,8-, 
and 12-year-olds and of 12-year-olds with adults. These results suggest 
that there is an adult pattern of number representation different from that 
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FIGURE 7.6. MDS representation of children's number-similarity judgments in the 
Miller and Gelman (1983) study. Top left panel shows 5-year-olds' results. Top 
right panel shows results from 8-year-olds. Bottom left panel shows 12-year-olds' 
solution. Adult solution is shown in bottom right panel. Those items that clustered 
in a nonhierarchical clustering analysis are enclosed in closed curves as follows: 
a, small numbers (0,1,2); b, large numbers (6, 7, 8, 9); c, middle numbers (2,3,4, 
5,6); d, small numbers excluding 2 (0,1,3,4); e, moderately large numbers (4,5, 
6, 7); f, powers of 2 (2, 4, 8); g, odd numbers excluding 1 (3, 5, 7, 9). 
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TABLE 7.2. Concordance between number-similarity judgments. 

Kindergarten 
Third grade 
Sixth grade 
Adults 

Kindergarten Third grade Sixth grade Adults 

.987** 

.776* 

.435 
.814* 
.465 .776* 

Note: The concordance statistic is identical to the Pearson product-moment correla­
tion coefficient. Statistical significance was assessed by using Hubert's (1979) general­
ized concordance procedures. 
• p < .05 . 
•• p < .025. 

of young children, with 12-year-olds demonstrating a combination of the 
two patterns. 

INDSCAL AS A DEVELOPMENTAL MODEL 

Concordance statistics for matrices of proximity judgments provide an 
important tool for evaluating developmental changes in representations, 
but it would be useful to be able to represent developmental changes 
directly in MDS procedures. The individual-differences model INDSCAL 
developed by Carroll and Chang (1970) provides a means of doing so. This 
mathematical model entails a psychological assumption about how indi­
vidual differences affect representation of stimulus domains, namely that 
individuals differ by differentially emphasizing common stimulus dimen­
sions.6 The INDSCAL model is a weighted Euclidean model, because it 
stretches or contracts distances in an ordinary Euclidean space according 
to the comparative salience that a subject (or group of subjects) places 
upon that dimension. Mathematically, the familiar Euclidean distance 
model relates distance d to the absolute value of the differences in the 
K=dimensional coordinates of two points (iJ), such that 

K 

dij = L (Xik - Xjk)2. 
k=t 

(4) 

INDSCAL weights these distances by mUltiplying distances along a di­
mension by each subject's (m) emphasis upon that particular dimension 
Wmk: 

K 

dij = L Wmk(Xik - Xjk)2 • 
k=\ 

(5) 

An important distinction between the INDSCAL model and most other 
MDS models is that because subject (or other "individual") variation 
occurs by weighting dimensions, INDSCAL solutions are invariant up to 
a reflection or permutation of the axes but are specifically not preserved 
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across an arbitrary rotation. Although dimensions are developed with 
respect to subject variation, Carroll and Wish (1974) and Shepard (1980) 
assert that INDSCAL dimensions generally correspond to important 
stimulus features. That is, dimensions along which subjects or groups of 
subjects vary typically correspond to meaningful stimulus dimensions. 

Algorithms for fitting the INDSCAL model, most notably SINDSCAL 
(Pruzansky, 1975), or options in MDS procedures such as the ALSCAL 
(Takane, Young, & de Leeuw, 1977) or MULTISCALE (Ramsay, 1977, 
1978) programs, provide the user with two spatial representations. One 
display represents the location of stimulus points in a common psycholog­
ical space (with coordinates given for each object i and dimension k by the 
Xik'S in Equation 5), while the subjects (or other sources of data) are 
represented as points in a separate space having the same dimensionality 
as the stimulus space (with coordinates given for each subject m and 
dimension k by the weights Wmk in Equation 5). Subjects whose data are 
well explained by an INDSCAL analysis will be located a relatively long 
distance from the origin, and the extent to which a subject emphasizes a 
particular dimension will be reflected by the subject's coordinate on that 
dimension. 

Two methodological issues arise with INDSCAL that do not occur with 
other MDS techniques. In contrast with nonmetric MDS programs such 
as KYST-2A, most programs for fitting the INDSCAL model assume a 
metric rather than merely monotonic relation between data and recovered 
distances (an exception is ALSCAL, which optionally provides mono­
tonic regression for the individual-differences model). Thus transforma­
tions of the data can sometimes affect the resulting configuration (see 
Arabie & Soli, 1982, for an example). The second issue concerns whether 
proximity judgments are assumed to be comparable across subjects. Typi­
cally (and presumably in most developmental applications), data are as­
sumed to be conditional on each matrix; that is, judgments by one subject 
or a group of subjects are not assumed to be directly comparable to those 
of others. Under this assumption of matrix conditionality, each subject's 
data matrix is normalized so that each subject contributes an equal 
amount of variance to the resulting solution. Working with simulated 
data, MacCallum (1977) has argued that the assumption of matrix condi­
tionality may interfere with the recovery of data structure, although how 
representative his data set is of those that would be obtained empirically 
is unclear. In any case, there are substantive grounds for arguing that 
matrix conditionality is the appropriate assumption for most developmen­
tal applications, because it avoids the danger that one extreme subject or 
age group will dominate the entire solution. 

As a developmental model, INDSCAL posits that development is asso­
ciated with changes in the salience of dimensions in representational 
spaces (including the case where zero weight indicates the irrelevance of a 
dimension). Cases where developmental change is orderly should pro-
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duce subject spaces showing correspondingly orderly transformations 
from the weights of one set of subjects to another. Although significant 
assumptions are made concerning the representation of individual differ­
ences, INDSCAL can provide a powerful tool for describing developmen­
tal change, as the following examples demonstrate. 

INDSCAL ANALYSIS OF NUMBER JUDGMENTS 

A reanalysis of the Miller and Gelman data on developmental changes in 
number representation provides a comparison between the information 
gained from weighted (INDSCAL) versus unweighted MDS (as presented 
in Figure 7.6). These data were reanalyzed with the SINDSCAL program, 
and a two-dimensional solution is presented in Figure 7.7. The resulting 
two dimensions are immediately interpretable as magnitude (on the X 
axis) and odd versus even numbers on the Yaxis. These two dimensions 
of magnitude and odd/even were previously used to interpret the individ­
ual solutions from the KYST-2A analyses of the individual matrices, but 
they are unambiguously present in the INDSCAL analysis. 

Turning to the subject space presented in the lower panel of Figure 7.7, 
one sees a pattern predictable from the individual KYST-2A solutions. 
Only the positive quadrant of the two-dimensional plane is plotted, be­
cause SINDSCAL weights are expected (but not required) to be nonnega­
tive. Total distances from the origin are of approximately equal length, 
indicating that all age groups were comparably well fit by the model (the 
values of Pearson's r between normalized scores and the scalar product of 
dimensions by age group ranged from r = .870 for adults to r = .899 for 5-
year-olds). The 5- and 8-year-old subjects showed a similar weighting of 
dimensions, which essentially involves a zero weight on the odd/even 
dimension, coupled with a substantial weight on the magnitude dimen­
sion. The INDSCAL model provides a convenient way of summarizing 
the relations between the individual data matrices, while showing the 
increase in salience of multiplicative relations that occurs with develop­
ment. Over time, an initial reliance of young children upon magnitude 
information alone (shown by essentially zero coordinates on the odd/even 
dimension coupled with large projections on the magnitude dimension) is 
supplemented by consideration of additional numerical relations in judg­
ing similarity of numbers. 

Other developmental research using the INDSCAL model has shown 
substantial developmental shifts in the dimensions children use to judge 
similarity of animal names (Howard & Howard, 1977) and to represent 
faces (Pedelty, Levine, and Shevell, 1985). The Pedelty et al. study is 
particularly interesting, because it leads to a modification of the account 
for age-related changes in face perception described by Carey (1982; Dia­
mond and Carey, 1977). Carey and Diamond (1977) proposed that it is not 
until children are about 10 years old that they use configurational informa-
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FIGURE 7.7. Weighted MDS analysis of children's number-similarity judgments. 
Top panel shows stimulus space, with closed contours enclosing items that clus­
tered in nonhierarchical clustering. Lower panel shows subject or weights space, 
which indicates the salience of each dimension for a particular age group. (Data 
from Miller & Gelman, 1983.) 

tion rather than isolated features to recognize unfamiliar faces. In a devel­
opmental study of similarity judgments of faces presented in either up­
right or inverted orientation, Pedelty et al. found that although face 
similarity judgments of subjects from 7 years through adulthood could be 
described in terms of a common set of dimensions (corresponding to hair 
color, facial width, and nose-lip distance), younger children tended to 
disregard some one of these dimensions in making judgments. Pedelty et 
al. argue that the development of face perception is described best in 
terms of a change in the quantity of information that can be perceived, 
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rather than as a change in the kind of information (piecemeal versus 
configurational) to which children are responding. The conclusion that the 
development of face processing involves an increased ability to simulta­
neously consider a number of different features parallels results for the 
development of number judgments, although the apparent lack of prece­
dence among the specific dimensions that young children emphasized is 
an interesting aspect of the Pedelty et al. study. 

REPRESENTATION AND SKILL: NUMBER AND THE ABACUS 

The INDSCAL model has been used to describe developmental changes 
in number development, semantic representation, and face processing in 
terms of increases in the number of dimensions to which children simulta­
neously attend. The INDSCAL model can also be applied to the descrip­
tion of representational differences associated with varying levels of ex­
pertise. 

It has frequently been asserted (Chase & Simon, 1973; Chi, Glaser, & 
Rees, 1982) that one consequence of expertise is a more functional repre­
sentation of the domain in question. Studies of skilled memory in areas as 
diverse as circuit diagrams (Egan & Schwartz, 1979) and chess (Chase & 
Simon, 1973) show that experts organize their recall along functional 
lines, responding to those features that are most salient for the particular 
domain. 

The assertion that experts' knowledge is more functional than that of 
novices becomes ambiguous when one considers the relation among dif­
ferent but related skills. Where those relations that are functional for 
some skill contrast with relations that are meaningful in a broader con­
text, how does the expert's representation differ from the novice's? Two 
quite different predictions are possible, and neither is a new idea. 

EXTENSION OF EXPERTISE 

The first view was most eloquently described by Bryan & Harter (1899). 
Discussing the process of acquiring skills such as telegraphy, Bryan and 
Harter (1899, p. 348) wrote, "In the measure that he has mastered the 
occupation, it has mastered him. Body and soul from head to foot, he 
has-or one may say he is-the array of habits which constitutes profi­
ciency in that sort. " According to this view, a mastered skill should color 
one's perception of all domains it touches upon. A skilled pianist, for 
example, should view music through the filter of those features relevant to 
piano playing. 

CIRCUMSCRIPTION OF EXPERTISE 

A second view holds that mastering a skill may make it possible to move 
beyond the constraints of those features uniquely relevant to the skill. If 
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the knowledge of experts were truly functional, they might have inte­
grated knowledge only relevant to their domain of specific skill with other 
knowledge, transcending the limitations of their skill. In his study of 
blindfold chess, Binet (1966/1893) asserted that developing expert knowl­
edge of chess involves moving beyond the limitations of the spatial as­
pects of chess. Describing the chess expert's skill, Binet (1966/1893, p. 
149) wrote: 

He remembers not that he moved his king to a certain square, but that, at a given 
moment, he had a particular plan of attack and defense which required the move­
ment of his king. The move itself is only the conclusion of an act of thinking; that 
act must first be recaptured; the recall of its manifest result-the particular 
move-follows from it. 

According to this view, the musical representation of the expert pianist 
might deemphasize those features unique to piano playing, emphasizing 
musical features of more general applicability. 

Miller, Stigler, Houang, and Lee (1986) used the INDSCAL model to 
describe the effects on number representation of expertise at a culture­
specific numerical skill, mental abacus calculation. Prior research has 
documented the impressive computational skills developed by adults and 
children who receive extended practice in abacus calculation (Hatano, 
Miyake, & Binks, 1977; Hatano & Osawa, 1983; Stigler, 1984). Perhaps 
the most intriguing aspect of this skill is the development of "mental 
abacus calculation," in which subjects calculate with reference to an 
image of the abacus. Prior to describing data supporting these claims, a 
brief review of how the abacus works may be in order. 

Figure 7.8 shows how a variety of numbers are represented on the 
Japanese abacus used throughout Asia. Beads "count" as they are 
pushed toward the center (horizontal) bar by the thumb (lower beads) or 
forefinger (upper bead). The upper bead represents 5, while the lower 
beads represent 1 each. The value represented by a column is the sum of 
the top bead (0 to 5) and the lower bead (0 to 4). Within a column, the 
abacus is a modulo 5 number system, while remaining a base-IO system 
between columns. 

The structure of the abacus is reflected in subjects' performance in a 
number of ways. Stigler (1984) reported that for abacus-trained children 
the number of steps involved in an abacus calculation was associated with 
reaction time for mental calculation among subjects who received abacus 
training, that these children could distinguish true intermediate states 
from foils, and that they made abacus-specific errors. Data on error pat­
terns are particularly convincing in indicating that the abacus makes sali­
ent different features of numbers than does the ordinary system of numer­
als. Stigler found that abacus calculators (but not U.S. college students) 
were prone to make errors in which the answer was off by 5 in some 
column from the correct sum, as though they had mistaken the location of 
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the 5 bead. As the second row of Figure 7.8 demonstrates, the abacus 
represents numbers that differ by 5 in a similar way, increasing the likeli­
hood that two numbers differing by ± 5 might be confused in the course of 
calculation. 

The different view on the relations between representation and exper­
tise make opposite predictions on how experts will judge those features 
unique to the abacus. On the Bryan and Harter view, one would expect 
that abacus experts will in effect "see the abacus in every number." Thus 
the ±5 relation that emerges in their performance should also be evident 
in their judgments of similarity among numbers. According to the view 
suggested by Binet, one would expect just the opposite. The experts 
should deemphasize abacus-specific features, or "see the number in 
every abacus." 

To evaluate the impact of abacus skill on children's representation of 
number, we collected similarity judgments for abacus and numeral pairs 
from three groups of subjects varying in degree of familiarity with the 
abacus. We collected data in Taiwan from expert abacus subjects (who 
regularly attended an after-school program in abacus calculation and had 
received high rankings in a national abacus test) and from novices (who 
had some exposure to abacus calculation as part of their school curricu­
lum but had not taken part in after-school programs) and in the United 
States from children who had no experience with using the abacus as a 
tool for calculation. Parallel forms using abacus versus numeral represen­
tation were developed, presenting pairs of stimuli from the set 0 to 20. 
Each subject saw only one type of stimulus, making judgments of the 
similarity of 105 pairs of numbers presented either as numerals of abacus 
forms. 

A SINDSCAL analysis of the aggregated similarity judgments indicated 
that three dimensions provided a reasonable balance of interpretability 
and variance accounted for. These dimensions correspond to magnitude 
(dimension 1), even versus odd (dimension 2), and a modulo 5 dimension 
(dimension 3). Figure 7.9 presents the planes produced by combining each 
pair of dimensions in this stimulus space. 

Two of the dimensions, magnitude and even/odd, resemble those found 
in Miller and Gelman (1983). The third dimension, marked 0 mod 5 to 4 
mod 5, deserves some elaboration. Looking at the top right panel of 
Figure 7.9, showing the magnitude dimension crossed with the mod 5 
dimension, one can count from 0 to 4 by moving consistently downward 
before jumping back down to the bottom of the panel for 5. This process is 
repeated for 6 to 9, with a drop to 10, although it is not as well supported 
for the sequences 11 to 15 and 16 to 20. The third dimension provides 
support for the view that the modulo 5 feature of abacus representations 
of numbers finds it way into subjects' similarity judgments. Consideration 
of subject spaces is necessary to determine the role that these various 
dimensions play in judgments by subjects in the different groups. Figure 
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Weights Space: Abacus and Numeral Representation 
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FIGURE 7.10. Subject or weight 
spaces from the abacus-numeral 
similarity judgments shown in 
Figure 7.9. Weights spaces show 
how much emphasis each group 
of subjects placed on the corre­
sponding dimensions from the 
stimulus space shown in Figure 
7.9. The top left panel plots sub­
ject weights on the Magnitude di­
mension (dimension 1 on the X­
axis) with those on the 
Even/Odd dimension (dimension 
2 on the Y-axis). The middle 
panel pairs the Magnitude dimen­
sion weights (X-axis) with those 
on the Modulo 5 dimension (di-
mension 3) on the Y-axis. The 
bottom left panel pairs weights 
on the Odd/Even dimension (X­
axis) with those on the Modulo 5 

L.. _________________ Odd hen dimension (Y-axis). 
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7.10 shows the subject spaces for the dimensions represented III Fig­
ure 7.9. 

Considering, first, the top left panel of Figure 7.10, one sees that nov­
ices and people in the United States judging the abacus placed very little 
salience on the odd/even dimension. The novice and U.S. subjects dif­
fered in their weighting of the magnitude dimension. Given the modulo 5 
nature of the abacus, it does not represent magnitude particularly clearly 
(as the U.S. results show). Novices "enriched" their judgments of the 
abacus with magnitude information, while experts in both conditions and 
novices judging numerals emphasized the odd/even dimension. 

In the top right panel of subject weights, the mod 5 dimension is empha­
sized most heavily by the U.S. subjects and novices judging the abacus 
figures and least heavily weighted by the U.S. subjects judging numerals. 
This is consistent with its interpretation as an abacus feature. Finally, the 
third panel contrasts a clear abacus feature (mod 5) with a feature not 
represented on the abacus feature (odd/even). As one would expect, the 
U.S. subjects and novices judging the abacus showed similar patterns of 
dimension weights, with comparatively high weights on the mod 5 dimen­
sion and low weights on the odd/even dimension. Experts in both condi­
tions and novices judging numerals showed a greater emphasis on the 
odd/even dimension than on the mod 5 dimension. United States subjects 
judging numerals placed greater weight on the odd/even dimension as 
well, but their position closer to the origin indicates that these two dimen­
sions accounted for relatively little of the variance in their judgments. 

The pattern of similarity shown in the weights space of the SINDSCAL 
analysis is supported by analysis of the original similarity judgments. 
Using Hubert's (1979) technique for assessing the significance of concor­
dance between two matrices, one can see in Table 7.3 that only for the 
experts was there a significant correlation within expertise level between 
judgments of numbers presented in the two forms. The U.S. subject's 

TABLE 7.3. Concordance between number-similarity judgments. 

American Novice Expert 

Abacus Number Abacus Number Abacus Number 

American 
Abacus 
Number .138 

Novice 
Abacus .432* .517* 
Number .060 .299 .127 

Expert 
Abacus .163 .601* .429* .419* 
Number -.034 .360* .124 .521* .641* 

Note: The concordance statistic is identical to the Pearson product-moment correlation coefficient. 
Statistical significance was assessed by using Hubert's (1979) generalized concordance procedures. 
* p < .05. 
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abacus judgments, based on abacus features alone, were significantly re­
lated only to the novice's abacus judgments. A somewhat surprising find­
ing was that U.S. numeral judgments showed higher concordances with 
the abacus rather than the numeral judgments of the Taiwan groups. This 
may relate to the relative emphasis by U.S. subjects on the magnitude 
dimension in judging numerals, because magnitude was more heavily 
weighted by the novices and experts when judging the abacus than when 
judging numerals. This finding in turn may be best explained with refer­
ence to other research (particularly Stigler, Lee, Lucker, and Stevenson, 
1982) indicating a generally greater mathematical sophistication on the 
part of children in Taiwan. 

Results of this study suggest that expertise at abacus calculation is 
associated with greater consistency in jUdging numerical relations across 
changes in mode of presentation. What is of particular interest is how this 
occurs. Abacus experts are more likely to view nonabacus features such 
as odd/even as being salient to jUdging number similarity even when they 
are presented with abacus stimuli. In this case, mastering a skill is associ­
ated not with a universally greater emphasis on the features important to 
that skill, but rather with a declining emphasis on those dimensions 
unique to the skill. 

As the above examples illustrate, the INDSCAL model provides a 
useful method of simultaneously representing the structure of a stimulus 
domain and changes in the ways in which subjects represent it. Although 
more general models of individual differences exist (reviewed in Carroll & 
Arabie, 1980) that permit subjects to differ by using different dimensions, 
rather than through subjective weighting of common dimensions, the 
INDSCAL model has been quite successful in representing developmen­
tal changes in the representation of complex domains. 

Clustering Models of Development 

GENERAL ISSUES: CLUSTERING AND OVERLAP 

Several of the studies described thus far have supplemented MDS analy­
ses with various cluster analyses of the data, a practice recommended by 
Shepard (1974). It may seem peculiar that a model describing similarity as 
a continuous function in space could coexist with a representation based 
on the idea that a set of discrete clusters or distinctive features account 
for similarity. Empirically, however, it has frequently proved useful to 
perform both analyses. One can see these alternate procedures as differ­
ent "views" of the same set of data. 

The vast majority of cluster analyses in developmental research have 
employed some variation of hierarchical clustering (Hartigan, 1967; Jar­
dine, Jardine, & Sibson, 1967; Johnson, 1967). This adherence to hierar­
chical models is probably a matter of availability and familiarity rather 
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than the result of substantive considerations. Hierarchical clustering algo­
rithms generate a hierarchy of nested clusters, such that there can be no 
overlap within any level of the category. The methods used (e.g., John­
son, 1967) involve an iterative process of finding the highest similarity 
level among items in a proximity matrix and clumping them into one new 
entity. Having produced a new clustered entity, one needs a measure of 
distance between it arid all remaining stimuli. Two different non metric 
techniques are generated according to whether one chooses to use the 
largest (complete-link or diameter method) or smallest (single-link or con­
nectedness method) distance between any cluster member and each stim­
ulus not in the cluster. In addition to satisfying the metric axioms de­
scribed above, both measures also satisfy the ultrametric inequality that 

(6) 

but the choice of metric typically has consequences for the kind of clus­
ters one finds. Choosing the single-link method tends to result in chaining 
of clusters, long series in which one item is added to one of a small 
number of clusters at each level. Perhaps because of this, studies using 
hierarchical clustering have tended to use the complete-link method. 

A serious concern about the use of hierarchical clustering relates to the 
applicability of the basic assumption of nonoverlap between clusters 
within levels of the hierarchy. It is not hard to generate stimuli that cluster 
in obviously nonhierarchical ways. Imagine trying to cluster data on simi­
larity among four family members designated mother, father,sister, and 
brother. If one used a generational principle to cluster mother + father 
with sister + brother, the nonoverlapping principle of hierarchical cluster­
ing would preclude representing any increased similarity based on sex 
(father + brother, sister + mother). Even where there are substantive 
reasons to expect hierarchies to obtain [such as in Keil's (1979) model of 
constraints on predicability], the fact that hierarchical clustering forces 
such a result limits the utility of this procedure. 

ADCLUS MODEL 

An alternative model for describing nonhierarchical clusters was devel­
oped by Shepard and Arabie (1979) and termed the ADCLUS model. The 
ADCLUS model asserts that membership in a particular cluster adds a 
constant weight to the predicted similarities of all pairs of stimuli within 
that cluster. Given some stimuli i andj and a set of R clusters, the similar­
ity between them sij should be predictable from 

R 

Sij = 2: WrPirPjr , 
r~l 

(7) 

where Wr is the weight of cluster rand Pir and Pjr are 0 or 1, respectively, 
according to whether i and j are members of cluster r. Summing the 
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weights associated with each cluster containing both objects should yield 
the total similarity between them. 

Although the model is straightforward, fitting it requires identifying 
potential candidates for clusters from an enormous set. The ADCLUS 
model limits consideration to those sets of clusters whose members show 
a rise in similarity (measured by the lowest similarity measure among the 
pairs of items) when compared to any larger cluster containing this partic­
ular cluster. 

A relatively efficient program for fitting the ADCLUS model, termed 
MAPCLUS, was developed by Arabie and Carroll (1980). The MAP­
CLUS procedure begins with continually varying values for the cluster 
membership variables Pir and Pjr in Equation 7 (in effect, an object can be 
partially in a cluster). MAPCLUS then uses a mathematical programming 
approach to optimize two constraints, increasing variance accounted for 
by cluster weights and turning the cluster membership variables into ° 
and 1. 

WEIGHTED OR INDIVIDUAL-DIFFERENCES CLUSTERING 

Carroll and Arabie (1983) extended the ADCLUS model to include indi­
vidual differences, expressed as SUbjective variation in the weights of a 
set of constant clusters. This model treats clusters in a manner analogous 
to the treatment of dimensions in INDSCAL. Clusters are constrained to 
be common across subjects, but the weights placed on them are free to 
vary over subjects. The individual-differences clustering model and the 
algorithm developed to fit it are both termed INDCLUS. 

In practice, MAPCLUS often produces cluster solutions that reflect 
more subtle aspects of data structure than those that result from hierarchi­
cal clustering. As an example, Figure 7.11 shows a hierarchical clustering 
of the Miller and Gelman (1983) number similarity data (based on an 
aggregate matrix summed across all ages), by the complete-link method. 
The clusters are drawn as contour plots on the SINDSCAL solution for 
these same data. Each closed curve represents one level of agglomera­
tion, so those points joined inside many curves represent higher levels of 
judged similarity. 

The hierarchical clustering groups small, medium, and large numbers. 
The first cluster formed is 0,2, but otherwise the clusters consist of series 
of numbers that grow gradually by adding their neighbors. In contrast, the 
closed curves on Figure 7.7 present an INDCL US solution for these same 
data. Although the clusters of small, middle, and large numbers are found 
in both analyses, the hierarchical clustering algorithm is unable to "break 
into" these clusters to find the multiplicative and odd/even clusters (2,4,8, 
3,5,7,9) found in the INDCLUS solution. 

INDCL US was also used in analyzing the effects of abacus expertise on 
number similarity judgments. The abacus figures in Figure 7.8 show mem-
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Number Similarity Judgments 

Odd 

Small 

Even 

FIGURE 7.11. Hierarchical clustering solution for number-similarity judgments 
embedded in solution for data from Miller and Gelman (1983). Items enclosed 
inside many ovals are those that were most highly related. Comparison with 
Figure 7.7 shows advantages of nonhierarchical clustering in showing a variety of 
overlapping relations. 

bers of the resulting clusters. In general, they can be clearly classified as 
numeral or physical abacus properties on the basis of inspection alone. 
The even numbers, for example, share no common feature in their repre­
sentation on the abacus. The physical abacus properties such as "5 bead 
up," "5 bead down," and "0 or llower bead up" are clearly evident in 
the abacus figures. 

One cluster, the 5 multiples, that does share a common abacus repre­
sentation is classified as a numeral property. This was done based on 
consideration of the weighting of different clusters by the various groups 
of subjects, which are shown in Figure 7.12. Abacus-related features are 
shown by dashed lines, and solid lines indicate the numeral clusters. 
Comparing weights on this cluster across the two modes of presentation 
shows there was an overall decrease in weight for the 5-multiples cluster 
for numerals compared with abacus stimuli (as though it were an abacus 
rather than a numeral feature). For the novices, however, this cluster 
received a substantially higher rating in the numeral than in the abacus 
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CLUSTER WEIGHTS 

FIVE MULTIPLES 

EVEN 

LARGE 
SMALL 
5-BEAD DOWN 
5-BEAD UP 

LOWER 0 or I 

FIVE MULTIPLES 
EVEN 

LARGE 
5-BEAD DOWN 
5-BEAD UP 
SMALL 

LOWER 0 or I 

USA NOVICE EXPERT 

----- PHYSICAL ABACUS CHARACTERISTICS 

-- NUMBER PROPERTIES 

FIGURE 7.12. Results of an INDCLUS analysis of abacus and numeral similarity 
judgments. The INDCLUS algorithm determines separate weights for individual 
subjects (or groups) of a common set of overlapping clusters. Results for abacus 
judgments are shown in the top panel, and numeral judgments are shown in the 
bottom panel. Features of the physical abacus are shown by dashed lines; other 
number features are connected with solid lines. 

condition (suggesting that it was primarily a numeral feature for these 
subjects). The experts' judgments are uninformative in this regard, be­
cause in both conditions this cluster received the highest weight. 

There is an apparent contradiction between the interpretation of the 5-
multiples cluster as a numeral feature and the prior assertion that the mod 
5 dimension of the INDSCAL solution reflected the structure of the aba­
cus. The apparent contradiction nicely illustrates the difference between a 
(continuous) dimension and a (discrete) cluster. All stimuli are repre-
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sented along the mod 5 dimension, although the cluster of 5 multiples is a 
relation limited to a set of numbers that share a mUltiplicative relation in 
addition to their mod 5 relation. As this example shows, consideration of 
the weight of dimensions and clusters among different subject groups 
helps enormously in interpreting the significance of the stimulus relations 
that emerge from individual-differences scaling and clustering analyses. 

The INDCLUS results correspond to those obtained with SINDSCAL 
in documenting an overall decline in the importance of physical abacus 
properties with the acquisition of expertise. This is particularly clear in 
the top panel of Figure 7.12, which shows the consistent decline in weight 
for abacus features across expertise groups, while there is an overall 
increase in the weights of numeral-related clusters. Ironically, those sub­
jects who have spent the most time mastering the details of the abacus are 
those who seem least affected by its structure. Results of these analyses 
suggest that it is meaningful to maintain a distinction between the features 
that are meaningful in using a system such as the abacus and those that 
are meaningful in reflecting on it. 

Given the importance of identifying distinctive features of stimuli and 
situations in developmental psychology, researchers should be familiar 
with nonhierarchical clustering techniques. These procedures are based 
on a geometric model different from the MDS procedures discussed previ­
ously, and their use can sometimes provide a different but complementary 
perspective on the structure in a set of data. 

General Issues in Developmental Applications of 
Geometric Methods 

The geometric techniques described in this chapter provide powerful de­
scriptive tools that can permit the reduction of daunting matrices of data 
to reveal the organization of complex skills, domains of knowledge, or 
social structures. MDS procedures have been used to describe the struc­
ture of representation in a number of complex domains, documenting 
changes with development and skill in the processing of stimuli as diverse 
as faces, numbers, and geometric figures. Results of these studies could 
provide the basis for more complex models of developmental change. 
With few exceptions, however, results of studies using MDS and cluster­
ing procedures have not been incorporated into detailed developmental 
models. The ultimate utility of the kinds of geometric methods considered 
in this chapter may hinge upon (1) further development of procedures for 
evaluating competing representations (2) further development of individ­
ual-differences models and further applications of the general INDSCALI 
INDCLUS approach to describing development, and (3) description of 
more specific connections between psychological processes and the 
results of MDS and clustering analyses. 
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HYBRID MODELS AND EVALUATION OF ALTERNATE MODELS 

In addition to the basic models described above, new geometic methods 
continue to proliferate. A theoretically derived model that is neither a 
multidimensional scaling nor a clustering model is Sattah and Tversky's 
(1977) additive-trees model for the representation of similarity in semantic 
domains. Based on Tversky's (1977) model of similarity, the additive­
trees procedure produces a family of different hierarchies, each of which 
roots to the tree at a different point. Additive trees have N external nodes 
representing the N stimuli, and the distance between two objects is mea­
sured by the length of the paths connecting them. 

Pruzansky, Tversky, and Carroll (1982) have explored the utility oftwo 
different geometric models (two-dimensional Euclidean distance models 
such as those used in MDS and Tversky's additive-tree model) to develop 
a description of properties that might render one or the other model more 
suitable in a particular domain. In applying the models to real data, Pru­
zansky et al. note a tendency for tree structures to provide a better fit to 
similarity judgments in conceptual categories skewed toward typical in­
stances. An example might be judgments of similarity among the stimuli 
judged to be the most frequent or familiar instances of categories such as 
vehicles or tools. Pruzansky et al. found that judgments of similarity 
among a variety of perceptual domains or factorial stimulus designs were 
better fit by the MDS model. Beyond the specific models tested in the 
Pruzansky et al. study, the study is noteworthy for its attempt to develop 
procedures for diagnosing the appropriateness of different geometric 
models for a given set of data. 

INDIVIDUAL-DIFFERENCES PROCEDURES AS 

MODELS FOR DEVELOPMENT 

The models of individual differences embodied in the INDSCAL and 
INDCLUS approaches contain interesting assumptions about the nature 
of development. In particular, both models assume that development can 
be described as changes in emphasis within a common developmental 
space. This assumption has proved useful in a number of specific applica­
tions, yet major issues in applying this technique to developmental data 
remain unexplored. In particular, the extent to which it will be meaningful 
to consider both developmental and individual differences simultaneously 
within a model such as INDCLUS or INDSCAL is not clear. 

RELATING GEOMETRIC METHODS TO PSYCHOLOGICAL THEORIES 

Researchers have begun to move beyond considering the results of MDS 
analyses as static representations of knowledge to considering the cogni­
tive processes that might have led to these relations. An important exam­
ple connecting processing to a geometric representation of knowledge is 
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the model of analogical reasoning developed by Rummelhart and Abra­
hamson (1973). In their model, solving a four-part analogy (cat is to lion as 
dog is to __ ) can be represented as a process of searching along vec­
tors in a semantic space to find that answer which completes a parallelo­
gram mapping one relation (cat is to dog) onto the other (cat is to lion). 
Similar geometric representations of knowledge (and, more specifically, 
animal names) have been used to predict processing in a speeded categori­
zation task (Rips, Shoben, & Smith, 1973) and series completion prob­
lems (Sternberg & Gardner, 1982). Within developmental research, the 
work by Bisanz and Voss (1982) stands as an example of using MDS 
procedures as the basis for measuring parameters of processing models. 
Bisanz and Voss were able to use changes in the perceived macrostruc­
ture of stories (Kintsch & van Dijk, 1978) coded from INDSCAL analyses 
of similarity judgments of the protagonists of stories to predict the proba­
bility of recalling particular story propositions. 

The degree to which researchers are successful in getting more work 
out of geometric models, in the sense of using them as the basis for 
theories of psychological process, may be the test of the ultimate utility of 
geometric models to developmental psychologists. Geometric models 
provide an important technique for describing the organization of com­
plex sets of data, reducing them to accessible geometric displays. As 
such, they provide a foundation for moving beyond these displays to more 
sophisticated models of psychological processes. 
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Notes 

1. Recent developments in constrained MDS (Bentler & Weeks, 1978; 
Borg & Lingoes, 1980; Carroll, Pruzansky, & Kruskal, 1980) provide 
methods for using known or hypothesized relations to partially con­
straining the obtained solution. 

2. The additive-tree procedure of Sattath and Tversky (1977) is an excep­
tion to this general statement, because it explicitly represents asymme­
try in proximity relations. An inferential test for the symmetry of a 
matrix has been described by Hubert and Baker (1979). 

3. The combinatorial problem of producing balanced incomplete subsets 
is known as Kirkman's schoolgirls problem, and techniques have been 
developed to produce such balanced subsets for some numbers of stim­
uli (Ball, 1914; Burton & Nerlove, 1976; Levelt, van de Geer, & Plomp, 
1966). More general procedures for producing incomplete sets of stim­
uli are described by Spence (1982). 

4. Kruskal's stress formula 1 measures the magnitude of violations of the 
ordinal constraint that recovered distances must increase monotoni­
cally with increases in the input data, relative to the sum of squares of 
all distances. On a Shepard diagram, such as those shown in Figure 7.3, 
stress formula 1 relates the length of vertical segments connecting each 
D and the dash directly above or below it to the distance between D and 
the X axis. 

5. Because the goodness of fit of a nonmetric MDS solution is not affected 
by rotations or changes in scale, the reallocations were constructed by 
submitting the actual distances in Table 7.1 to the KYST-2A program 
by using linear rather than monotonic regression. Through this proce­
dure, the map of Middle Earth used in this example was rotated ap­
proximately 135° in a clockwise direction and rescaled to conform to 
the MDS reconstruction. 

6. The "individual" of the INDSCAL technique is a generic individual, 
referring to separate sources of data. In particular these individuals 
may often meaningfully be groups of individuals who share particular 
characteristics (such as age, interests, or skill levels). 



8. Computer Simulation, Cognition, and 
Development: An Introduction 
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In 1950, British mathematician A. M. Turing wrote a paper in which he 
addressed the question, Can machines think? For Turing, the question 
was important but ambiguous. To minimize the ambiguity, he proposed an 
operational definition that came to be called Turing's test. Turing began 
by considering a situation in which an interrogator poses a series of ques­
tions to a man and a woman. Using only the verbal content of their 
replies, the interrogator tries to decide who is the man and who is the 
woman. Either the man or the woman may be designated as the target 
person whose task is to formulate replies that will cause the interrogator 
to make an incorrect decision. The nontarget or anchor person must try to 
answer in such a way as to facilitate the interrogator's task. What percent­
age of the time would an interrogator in this kind of game correctly distin­
guish the man's replies from the woman's? And, of more interest to 
Turing, would this percentage be different if the behavior of the target 
person were simulated by an intelligent computer? 

The task of programming a computer to simulate the behavior of a man 
trying to imitate a stereotypic woman would be daunting, to say the least. 
To our knowledge there have been no serious attempts to implement a 
literal version of Turing's imitation game, although the principle of indis­
tinguishability implied by the game has continued to play an important 
role in the development and evaluation of simulation models (Lehman, 
1977). In addition, Abelson (1968) has offered some interesting sugges­
tions about how an "extended Turing test" might be of considerable 
methodological value. 

It is clear that Turing's own reasons for proposing the imitation game 
were more dialectical than methodological. His purpose lay in refuting 
various philosophical and religious objections to the notion of a thinking 
machine. These objections need not concern us; our interests in this 
chapter lie in the implications of the game for the implementation and 
validation of computer simulation models of cognition and development. 
The chapter comprises five sections. In the first section, we provide some 
background on two cognitive architectures, production systems and 
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schema systems, that have been most influential in the cognitive and 
developmental literature. In the second section, we explore some of the 
diversity of opinion concerning the most appropriate unit of analysis and 
methods of evaluation. In the third section, four sets of issues implicated 
in the earlier sections are examined. In the fourth section, we discuss 
computer simulations of cognitive development. In the final section, an 
overview of the earlier sections is presented. 

Cognitive Architectures 

Langley (1983) has used the term cognitive architecture to refer to those 
aspects of the human information processing system that remain constant 
"across subjects, across task domains, and over time" (p. 289). Thus, an 
architecture represents a framework of assumptions within which specific 
theories and models can be developed. In this section we examine two 
cognitive architectures: production systems and schema systems. 

Production System Architecture 

Newell and Simon's (1972) introduction of production systems had a ma­
jor impact on the subsequent development of psychological simulations. 
A production is a rule stated as a condition-action or if-then pair. A set of 
such productions in long-term memory comprises a production system. 
When the data pattern specified in the condition portion of a production 
matches a data pattern in working memory, the action portion of the 
production is triggered. The following is an English translation of a simple 
LISP production system function. The function operates on a set of let­
ters in working memory. If the elements in working memory satisfy the 
conditions of any of the first three productions, the appropriate produc­
tion fires. As a result, the contents of working memory are altered, and 
the entire production system begins again. 

Define P-SYSTEM [working memory] 
Production 1 

If there are more than five elements in working memory, then apply 
P-SYSTEM to the first five elements. 

Production 2 
If the letter c occurs more than once in working memory, then delete 
all c's from working memory and apply P-SYSTEM to the result. 

Production 3 
If the letter d is present in working memory, then insert the letter a 
at the front of working memory and apply P-SYSTEM to the result. 

Production 4 
If none of the productions has been triggered, then return the current 
contents of working memory and stop. 
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In the first production, the length of working memory is examined to 
see whether it exceeds 5. If it does, the function P-SYSTEM is applied 
recursively to the first five items in working memory. This production 
effectively limits the size of working memory to five items. The second 
production determines whether the letter c occurs more than once in 
working memory. If it does, all instances of the letter c are deleted from 
working memory and the function P-SYSTEM is applied recursively to 
the result. The third production determines whether the letter d is present 
in working memory. If it is, the letter a is inserted at the beginning of 
working memory and P-SYSTEM is applied recursively to the result. 
Note that adding an item to the beginning of working memory may, in 
conjunction with the first production, cause an item to be lost from the 
end. Finally, if none of the first three productions is applicable, the last 
production simply returns the contents of working memory. When ap­
plied to working memory in which the letters a, b, c, c, d, and e are 
present, the function P-SYSTEM causes working memory to undergo the 
following transformations: (a b c c d e), (a b c c d), (a b d), (a a b d), (a a a b 
d), (a a a a b d), and (a a a a b). 

This function illustrates several important features of production sys­
tems. Production systems affect, and are affected by, the contents of 
working memory. Each time a production system is applied, the first 
production with a true condition portion is triggered. The action portion 
of this production alters the contents of working memory and calls the 
production system again. Evaluation of the productions begins again with 
the first production and continues until no production in the system is 
triggered. Note that in P-SYSTEM the productions are listed in order of 
priority, thus, avoiding the situation where conflicting productions can be 
simultaneously triggered. Methods of conflict resolution that do not de­
pend on a simple ordering are sometimes used and have been discussed in 
detail by Anderson (1983). 

According to Newell (1973), production systems can be viewed as a 
type of control structure in that they contain all the organization neces­
sary for effective information processing. There is no need for a separate 
executive function calling isolated subroutines or a distinction between 
control and computation processes. There is, however, a need to specify 
how production systems are acquired and modified. Although they reside 
in long-term memory, production systems can presumably be brought into 
working memory and operated on either by other systems or by produc­
tions within themselves. Some models involving self-modifying produc­
tion systems are described later in this chapter. 

Production system models have been created to operate in a variety of 
problem domains. For example, the work of Newell and Simon (1963, 
1972) involved a series of computer programs they called the general 
problem solver (GPS). In part, this work fell within the domain of artificial 
intelligence since the goal was to program a computer to solve problems 
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In an efficient manner. The work, however, was guided by, and contrib­
lIted to, extensive psychological theorizing. Much of the effort involved 
writing production systems that simulated the problem solving of human 
mbjects. The problems were frequently drawn from the areas of mathe­
matics and logic and involved establishing the identity of two given sym­
bolic expressions. GPS programs were goal-oriented in that they tried to 
solve problems by breaking them down into smaller and smaller prob­
lems, applying operators at each step to reduce the differences between 
the present state and what was needed. This approach is often referred to 
1S means-ends analysis. 

One of the most extensive applications of a production system architec­
ture can be found in the ACT models developed by Anderson (1976). One 
1spect of ACT* (Anderson, 1983), the most recent version of the ACT 
models, involves pattern-matching productions, represented as nodes in 
h.ierarchically organized systems called dataflow networks. Each produc­
tion in the network is activated when the productions beneath it, which 
test for simpler subpatterns, are activated. In this way, patterns of in­
::reasing complexity are recognized. For example, recognition of the word 
ACT depends on recognition of the letter T, which in turn depends on 
recognition of a horizontal and vertical line intersecting in a particular 
way. 

A notable feature of Anderson's model is the notion that each produc­
tion has a level of activation that determines the relative frequency at 
which it carries out tests on its condition portion. The level of activation 
Jf a production increases each time it is triggered, and it depends on the 
lctivation of productions both above and below it in the data flow net­
work. 

Schema System Architecture 

The term schema was used by Bartlett (1932) in connection with his 
::lassic research on subjects' memory for stories. Subjects, in recounting a 
story they had read, showed evidence of systematic distortions in the 
jirection of greater consistency with their cultural stereotypes or sche­
mata. More recent research has produced a considerable body of evi­
jence consistent with predictions from schema theories (Anderson, 
1980). 

Anderson (1980) defined schemata as "large, complex units of knowl­
edge that organize much of what we know about general categories 
Df objects, classes of events, and types of people" (p. 128). This defi­
nition may be made clearer by a consideration of some of the func­
tions and characteristics most often attributed to schemata. Our discus­
sion in this section draws heavily on the work of Rumelhart and Ortony 
(1977). 
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SCHEMATA HAVE VARIABLES 

Schemata are general in form, but when they are applied to specific situa­
tions, their variables become bound to particular values. For example, a 
birthday party schema may have, as variables, celebrant, host, guests, 
and food. When one encounters a room of noisy children, seated around a 
table eating cake while a haggard-looking adult looks on, the birthday 
party schema may well be invoked. Each variable. in a schema has associ­
ated with it a distribution of values that it can assume. These distribu­
tions, derived from and updated with experience, act as constraints in the 
application of the schema. In the present example, the adult would likely 
be assumed to be the host; the child at the head ofthe table, the celebrant; 
and the other children, the guests. Cake is a typical value for the food 
variable in this schema; thus, the presence of cake makes the application 
of the schema more likely. If instead of cake, the observed food were 
spinach, an alternative schema such as family dinner might be invoked. 

SCHEMATA CAN INCORPORATE OTHER SCHEMATA 

Schemata exist within a hierarchical framework. At the bottom of the 
framework are atomic schemata, or primitives, that involve sensory-mo­
tor processes. These primitives are the subschemata of more encompass­
ing, "dominating" schemata. For example, the birthday party schema 
might have a host schema and a gift-giving schema beneath it in the 
hierarchy and a social function schema above it. 

SCHEMATA GUIDE INFERENCES 

Once a schema has been applied to a particular event or situation, ele­
ments of the situation that have not actually been observed may be in­
ferred. Having applied a birthday party schema, for example, we may 
infer that games will be played and party favors distributed. Had the 
family dinner schema been applied, a very different set of inferences 
would likely be drawn. 

SCHEMATA AFFECT MEMORY PROCESSES 

According to Rumelhart and Ortony (1977), fragments of instantiated 
schemata rather than raw input data are stored in memory. When these 
fragments are retrieved later, additional schemata may be involved in 
their interpretation. Thus, the original comprehension of an event and its 
later retrieval from memory may both involve comparable schematic pro­
cessing. In each case, a schema is used to organize, interpret, and draw 
inferences concerning incomplete and possibly ambiguous information. 
Considerable research evidence supporting a schema interpretation of 
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memory processes has accumulated over the past decade (Taylor & 
Crocker, 1981). 

SCHEMATA CAN BE MODIFIED BY EXPERIENCE 

Schemata may become either more specific or more general as the result 
of experience. Specialization may occur if a schema variable is found 
repeatedly to take the same value. In this case, the variable may be 
replaced by a constant, making the schema apply more quickly but to a 
narrower range of situations. Conversely, generalization may occur when 
a schema is found to apply to a wide variety of situations in all but one 
respect. The discrepant aspect may become a variable in anew, more 
general schema. 

Both production system and schema system architectures appear suffi­
ciently comprehensive to be useful frameworks for cognitive and develop­
mental models. Of the two architectures, production systems have usu­
ally been more clearly articulated and more easily translated into efficient 
computer programs. We agree with Anderson (1980), however, that the 
two systems are better viewed as complementary rather than competing 
formulations. In Anderson's view, "production systems are models for 
skills while schemas are patterns for recognizing recurring sets of fea­
tures" (p. 254). We turn now to some general methodological consider­
ations in the construction and evaluation of computer simulation models. 

Methodology 

In proposing the imitation game, Turing (1950) evidently intended that the 
computer should be programmed to simulate the behavior of the target 
person. It is unclear from his description, however, whether Turing meant 
some particular target person or someone who typified a general class of 
persons. The important question of unit of analysis arises in connection 
with simulation efforts and theory development in general. The answer to 
the question influences the nature of the processes incorporated in the 
theory or model as well as the type of evaluation strategy pursued. 

Unit of Analysis 

GROUP MODELS 

Psychological theorists usually emphasize explaining the behavior of the 
average case rather than the behavior of any single individual. The situa­
tion today is not very different from what it was over 50 years ago when 
Lewin (1931) lamented the prevalence of "Aristotelian modes of 
thought." According to Aristotle, lawfulness was a property of classes of 
events but not of individual cases. Today, few psychologists would wish 
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to deny the lawfulness of individual behavior. The variability of individual 
cases is attributed not to the inherent randomness of the underlying pro­
cesses, but to the operation of variables that the theorist either cannot or 
is unwilling to incorporate in the theory. By ignoring the influence of 
extraneous variables, the goal of a parsimonious theory can be achieved 
more easily. 

When psychologists focus on aggregate data, differences between sub­
jects contribute to error variance. The researcher assumes that the pro­
cess of interest is sufficiently powerful and general to account for an 
amount of variance several times the size of the error term. For example, 
Feigenbaum (1963), referring to a model of verbal learning processes, 
asserted that "there are certain elementary information processes which 
an individual must perform if he is to discriminate, memorize and associ­
ate verbal items, and that these information processes participate in all 
the cognitive activity of all individuals" (p. 299). 

SINGLE-SUBJECT MODELS 

A less common approach in psychology involves a focus on the behavior 
of one or a very few individuals, disregarding or postponing consideration 
of individual differences. The research programs of Newell and Simon 
(1963, 1972) and Baylor, Gascon, LeMoyne, & Pothier (1973) illustrate 
this approach. These researchers wrote programs to match the behavior 
protocols of specific individuals. On the subject of individual differences, 
Newell and Simon (1963) wrote: 

Given enough information about an individual, a program could be written that 
would describe the symbolic behavior of that individual. Each individual would be 
described by a different program, and those aspects of human problem solving 
that are not idiosyncratic would emerge as the common structure and content of 
the programs of many individuals (p. 284). 

In their later description of the GPS research program, Newell and 
Simon (1972) expanded on this theme by pointing to a number of dimen­
sions along which human problem solvers can vary (e.g., in the way they 
initially characterize a problem, in the priorities they assign to various 
problem-solving strategies). In general, the degree of similarity among 
human problem solvers was considerable, a fact that Newell and Simon 
attributed to the strong constraints of the task environment. 

In the research by Baylor et al. (1973), individual differences were tied 
to differences in developmental stages. Once a program for an individual 
had been formulated and found to reproduce that subject's behavior, it 
was compared with the program formulated for another subject at a differ­
ent developmental stage. Differences between the programs were as­
sumed to reflect the nature of what had developed. 
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SINGLE-SUBJECT MODELS WITH INDIVIDUAL-DIFFERENCE 

PARAMETERS 

Relatively rare in psychology are detailed process models of individual 
behavior that include adjustable individual-difference parameters. This 
approach is illustrated in a recent model of choice behavior in the game of 
Nim. Grant, Rabinowitz, and Dingley (1985) investigated the interaction 
between search and knowledge by studying and simulating the way peo­
ple learn to play Nim. Nim is a two-person game in which players alter­
nate in drawing one or more counters from anyone of several groups of 
counters. In the version of Nim employed, the game began with five piles 
containing 5, 4, 3, 2, and 1 counter, respectively. The player who re­
moved the last counter lost the game. In this game, a position is a winner 
if at least one of the positions that can be reached from it is a loser. 
Conversely, a position is a loser if all the positions that can be reached 
from it are winners. Thus, a player can categorize a position by searching 
the game tree below the position. Simple positions (e.g., only one pile of 
counters remaining}, which occur late in the game, can be categorized 
readily, providing the basis for categorization of more complex positions 
farther up the tree. 

In the computer model of Nim playing behavior, a recursive search 
process is used to simulate the subject's logical analysis of game posi­
tions. The number of positions assessed in a single search, including those 
assessed more than once by recursion, is limited by a parameter called 
searchdepth. When the capacity for logical analysis has been exhausted 
(Le., when the number of positions assessed exceeds the value of search­
depth), the search terminates and the position currently under evaluation 
remains uncategorized. 

When an individual plays several games of Nim, positions may be 
categorized as winners or losers, as the result of not only logical analysis 
but also experience. Positions that the person faces during a winning 
game are more likely to be categorized as winners, and those encountered 
in losing games are more likely to be categorized as losers. The categori­
zation process is reversed for positions encountered by the opponent. In 
the model, it is assumed that the assessment of a position can be repre­
sented as a point on a continuous scale of confidence, with the negative 
extreme reflecting certainty that the position is a winner and the positive 
extreme reflecting certainty that it is a loser. A position moves down the 
confidence scale by a fixed amount each time it is faced by the player in a 
winning game and by the opponent in a game the player loses. A position 
moves up the scale by the same amount each time it is faced by the player 
in a losing game and by the opponent in a game the player wins. When a 
position reaches a critical distance from the middle point of the scale, the 
position is categorized as either a winner or loser. The critical distance at 
which categorization occurs is represented by a second parameter in the 
model called the confidence criterion. An important aspect of the model is 
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that during logical search, positions categorized by experince are treated 
in the same way as positions categorized on the basis of logical search. 
Thus, the interaction of the parameters and their relative weights influ­
ence the course of the simulation. 

In the evaluation of the Nim playing model, a parameter estimation 
procedure (see Rabinowitz, Grant, & Dingley, 1984, for a descrip­
tion of the computer program) was used to find the two parameter values 
for each subject that yielded the maximum similarity between the perfor­
mance of the model and the behavior of the subject. Two aspects of each 
subject's protocol were used in the estimation procedure: the partic­
ular moves made throughout the entire set of games played and the num­
ber of games won. Despite the complexity of the behavior being sim­
ulated and the small number of parameters in the model, a high level of 
congruence was achieved between the output of the model and the be­
havior of approximately 90 percent of the subjects tested in three ex­
periments. 

Lewin (1931) believed, and we agree, that detailed process models of 
individual behavior are long overdue in psychology. We see the technique 
of computer simulation as a major aid in developing models that focus on 
the individual and, at the same time, specify important dimensions of 
variation from one individual to the next. 

Evaluation 

A notable feature of Turing's imitation game is the way in which the odds 
are weighted heavily against the computer. Both the interrogator and the 
anchor person are obligated by the rules of the game to do everything they 
can to make the simulation fail. The output of a successful simulation 
must be literally indistinguishable from the empirical data. This is cer­
tainly an ambitious goal, but one that Turing believed would be within the 
grasp of the scientific community by the end of the century. 

The optimistic view held by many researchers during the 1960s was that 
computer simulation techniques would inject a new standard of rigor into 
hypothesis testing and theory development. This view needs to be under­
stood in the context of the methodological thinking of the time. During the 
1960s psychology was coming under increasing criticism for what many 
believed was an overreliance on statistical tests of significance (e.g., Ba­
kan, 1962). Meehl (1967) echoed this same concern and went further to 
draw attention to the contrasting approaches to theory testing in psychol­
ogy and physics. Meehl noted that theories in the physical sciences typi­
cally made point predictions that were increasingly likely to be falsified as 
experiemental sophistication and precision improve. In contrast, psycho­
logical theories are usually associated with imprecise predictions (e.g., 
population means will be unequal) that are more likely to be confirmed 
with improvements in experimental techniques (see Meehl, 1978, for a 
more recent discussion of similar issues). 
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One solution to the problem raised by Meehl is to encourage the devel­
opment of psychological theories that make point predictions. (For a 
different solution, see Serlin and Lapsley, 1985.) Computer simulations 
can be and have been, useful in this type of theory construction. There is, 
however, in some applications of both computer simulations and mathe­
matical models, a reversal of the usual role of significance testing. A 
goodness-of-fit test is used to evaluate the difference between predicted 
and observed results, and lack of statistical significance is taken as cor­
roboration of the model from which the prediction was derived. The 
theoretical prediction becomes, in effect, the null hypothesis. 

Not all researchers have been comfortable with this approach to model 
evaluation. For example, Gregg and Simon (1967) objected to the proce­
dure because small samples and noisy data, as compared to large samples 
and clean data, are more likely to result in the acceptance of the theory. 
How is it that Gregg and Simon could object to those characteristics of the 
hypothesis-testing situation that Meehl admired most in the physical sci­
ences? The answer lies in the emphasis psychologists have traditionally 
placed on positive, theory-supporting results. The overrepresentation of 
such results in our journals is well known and has been a concern to 
several authors (e.g., Rosenthal, 1979). When the theoretical hypothesis 
is the null hypothesis, the system, in effect, rewards sloppy, imprecise 
methods. The concern is real. Lehman (1977), in reviewing the validation 
techniques used in computer simulation research, concluded that "much 
of the treatment of results appears unsophisticated and almost cursory; 
often it seems that validation, although recognized as important, is treated 
in a highly subjective or informal fashion" (p. 233). 

What Meehl (1967) advocated was not simply the development of theo­
ries that make point predictions, but also a fundamental change in the 
current ethos such that the goal of research becomes one of falsifying, 
rather than confirming, the theory or model under consideration (cf. Pop­
per, 1959). It is unfortunate that Meehl's recommendation has had rela­
tively little influence in psychology so far. 

GROUP MODELS 

When computer models of the behavior of the average person are formu­
lated, the approach to evaluation may differ little from that taken by 
traditional theorists evaluating verbal theories. Predictions are derived 
from the theory or model about average behavior in various experimental 
conditions. If those predictions are confirmed by empirical data, confi­
dence in the model increases. Simon and Feigenbaum (1964) took this 
approach in evaluating their model of verbal learning behavior. The per­
formance of the model was examined under varying conditions of inter­
and intralist similarity by using nonsense syllables that varied in familiar­
ity and meaningfulness. The results of the simulation were used to predict 
group performance differences in actual experiments. 
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SINGLE-SUBJECT MODELS 

In cases in which computer models of the behavior of specific individuals 
have been formulated (e.g., Hayes-Roth & Hayes-Roth, 1979; Newell & 
Simon, 1963), the approach to evaluation, as noted by Lehman (1977), has 
often been sUbjective. For example, Newell and Simon (1963) reported a 
comparison between the solution to a logic problem generated by the GPS 
program and the verbal protocol generated by a human subject who had 
been encouraged to think aloud while attempting to solve the same prob­
lem. The authors noted some encouraging similarities between the com­
puter and human approaches to the problem. They also noted various 
discrepancies. For example, at one point while working on the problem, 
the human subject appeared to realize that an earlier step had been ill 
advised and proceeded to back up and alter that step. Nothing in the GPS 
output corresponded to this result. Although this kind of evaluation may 
be adequate and even necessary in the very preliminary stages of model 
development, it is clearly not a substitute for an objective assessment of a 
model under conditions where it can demonstrably fail. 

There appears to be no reason why a rigorous approach to evaluation 
cannot be applied to models of individual behavior. We make two sugges­
tions. First, once a model of an individual's behavior has been developed, 
predictions should be derived and tested concerning that person's behav­
ior on later occasions when working at the same or related tasks (Kail & 
Bisanz, 1982). Second, the behavior of one or more other people should 
be studied in the same task to determine what, if any, modifications are 
necessary to generalize the model across individuals. 

SINGLE-SUBJECT MODELS WITH INDIVIDUAL-DIFFERENCE 

PARAMETERS 

As we have suggested, the most promising research direction, in our 
view, involves the development of process models of individual behavior 
that include individual-difference parameters. The existence of parame­
ter-fitting programs now makes possible the estimation of optimal param­
eter sets for each subject tested. The resulting models have two major 
advantages: (1) Those aspects of a model believed to be general can be 
distinguished from those specific to a particular individual, and (2) point 
predictions can be generated at the individual level, while both point and 
distribution predictions can be generated at the group level. 

There are constraints on the inclusion of individual-difference parame­
ters in any model: the number of free parameters in relation to the size of 
the data base, the replicability of parameter values across relevant tasks, 
and the generality of parameter values across a broader theoretical do­
main that subsumes the parameter-based model. The first constraint is 
that the number of such parameters is small relative to the number of 
possible behavior outcomes. Consider a model that predicts the probabil-
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ity of each of n behavior oucomes. Because the probabilities must sum to 
1, a model with n - 1 free parameters would fit the data perfectly. Such a 
model, however, would have little or no value. Wickens (1982) suggested 
that successive comparisons be drawn between pairs of models that differ 
in their restrictiveness. In these comparisons, if the more restricted model 
(i.e., the one with fewer free parameters) fits the data as well as the more 
general one, the more general model is rejected. 

The second constraint involves parameter reliability. If the model and 
its parameter values are viewed as more than a descriptive summary of a 
single data set, then consistency must be demonstrated in the parameter 
values that characterize a person's behavior over time and across related 
task domains. For similar reasons, Sternberg (1963) recommended that 
invariance of parameter values across experiments be one of the criteria 
used to evaluate models. The third constraint involves parameter validity. 
If the model is part of a more general theory, then relationships between 
parameter values and behavior on tasks not directly related to the model 
may be specified. To the extent that the parameters fail to meet this 
constraint, the model must be modfied. 

Issues 

In the prior section we described several major conceptual contributions 
to computer simulation and the central role of validation in the history of 
computer simulation. Concurrent with conceptual and methodological de­
velopment there arose a large number of related issues. Computer scien­
tists, linguists, philosophers, and psychologists have disputed these is­
sues. The variance in opinions seems to be almost as great within as 
between disciplines (e.g., Pylyshyn, 1978a and related commentary). The 
range of issues extends from philosophical (e.g., can machines think?) to 
technical (e.g., choice of a programming language). The following discus­
sion is limited to issues (or pseudo-issues) that appear to be relevant to the 
psychologist interested in modeling cognitive development. Four broad 
categories of issues are addressed: why simulate?, technical issues, con­
ceptual issues, and development. 

Why Simulate? 

To simulate or not to simulate is a question that has been discussed 
broadly in the literature: Feigenbaum (1963) anticipated many of the argu­
ments that appeared later; Naylor, Balintfy, Burdick, and Chu (1966), in a 
book devoted largely to computer simulations of economic models, enu­
merated 15 reasons for simulating, many of which are as relevant to 
psychology as to economics; and in a thoughtful review of the question, 
Neches (1982) related issues to particular simulations. There are three 
self-evident reasons for not attempting a simulation of a psychological 
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model: No new consequences will be discovered, the model can be ex­
pressed mathematically (which is succinct, formally elegant, and unam­
biguous as compared to a computer program), and the theoretical assump­
tions are sufficiently imprecise to make a simulation impossible. A fourth 
reason for choosing not to simulate involves temporal cost. It can take 
considerable time to formulate precise hypotheses and then implement 
them in a computer program. If this time were spent in other activities, 
such as preparing manuscripts, the researcher's productivity might be 
enhanced. Johnson-Laird (1981) argued, however, that "the single most 
important virtue of programming should come not from the finished pro­
gram itself, or what it does, but rather from the business of developing it" 
(p. 186). Although we and other authors (e.g., Naylor et aI., 1966) concur 
that the programmer may benefit by writing a computer simulation (e.g., 
by checking the internal consistency of the assumptions), this benefit 
lacks external validity. 

It seems to us that computer simulations must be subjected to the same 
external criteria as other attempts to model psychological processes. 
These criteria involve assessing both the heuristic impact and the validity 
of the model. Because psychological simulations are often of interest to 
computer scientists, as well as psychologists, it is reasonable to evaluate 
the two criteria across both disciplines. Thus, there are two important 
reasons to write a computer simulation: The algorithms and/or concepts 
introduced are important enough to stimulate interest in the scientific 
community, and the model provides an adequate description of the empir­
ical phenomenon of interest. 

Technical Issues 

Three technical issues and related problems are discussed here: choice of 
problem, program implementation, and program communication. Some 
technical problems associated with program validation were discussed 
earlier. 

CHOICE OF PROBLEM 

Considering the diversity in both scope and topic of actual computer 
simulations, most problems seem to be amenable to computer modeling. 
The programmer's interests and abilities are the major determinant of 
problem choice. As can be seen in the section on simulations of cognitive 
development, most programmers attempt to consider relevant data and 
theoretical ideas in constructing their models. In general, more attention 
is paid to empirical data in model construction than in model evaluation. 

To highlight the flexibility of computer simulation as a formal method, 
the differences between nomothetic and idiographic approaches to study­
ing behavior are considered. Windelband (1904) equated the nomothetic 
approach with seeking general laws and the idiographic approach with a 
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search for structural patterns. Psychologists generally associate nomo­
thetic with abstraction and generalization and idiographic with individual 
behavior. Kearsley (1976) argues that the two terms confuse a number of 
orthogonal issues: the number of individuals (one or many), explanatory 
level (structural or functional), and temporal focus (state or dynamic 
properties). He argues further, and we concur, that computer simulations 
can be developed for any of the eight possible orthogonal combinations. 
However, we believe that the most promising applications of computer 
simulations will be in the construction of single-subject models, particu­
larly those that include individual-difference parameters. 

PROGRAM IMPLEMENTATION 

When one chooses to implement a model, a computer language must be 
selected, one needs to have skill with this language, and a "cognitive 
architecture" has to be either borrowed or developed. None of these is 
trivial. Judging by our experiences, becoming fluent in the LISP language 
is more difficult than in the BASIC language. Although programming in 
LISP eventually becomes easy and aesthetically pleasing, many will be 
unwilling to expend the initial effort. Furthermore, if one chooses to 
implement a program in a high-level symbolic language, one must have 
access to appropriate software and hardware. The hardware-software 
problem abated somewhat in 1984 with the availability of useful LISP and 
PROLOG interpreters that run on microprocessors. 

A primary consideration in choosing a computer language for most 
psychological simulations is the range of symbol manipulation functions 
built into the language. Because LISP has a variety of symbol manipula­
tion functions and can treat functions as objects, it is preferred by many 
researchers in both artificial intelligence and cognitive psychology (Si­
mon, 1979; Winston & Horn, 1981). The functions-as-objects feature 
makes it possible for programs written in LISP to be self-modifying. 
According to Neches (1982), IPL, SNOBOL, and LISP are historically 
the computer languages of greatest importance in psychological simula­
tions. The key concepts of list processing, pattern matching, and function 
notation were introduced in these languages. Neches (1982) suggests that 
contemporary preference for LISP occurred because the language is easy 
to use. The recent agreement to adopt Common LISP (Steele, 1984) as the 
standard LISP dialect will eventually ensure that programs written in 
Common LISP will run on a variety of different computers. Since the 
Japanese chose PROLOG, rather than LISP, as the symbolic language to 
be implemented on their fifth-generation computers, it is likely that an 
increasing number of investigators will use the PROLOG language in their 
psychological simulations. However, in the near future, we expect the 
majority of psychological simulations to be written in LISP. We recom­
mend that investigators learn LISP as their first symbolic language. 
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In addition to using general symbolic languages for psychological simu­
lations, several investigators have developed specialized languages for 
this purpose. Neches (1982) briefly describes three specialized languages 
designed to simulate cognitive processes (Newell, 1973, PSG production 
system; Norman & Rumelhart, 1975, MEMOD interpreter for the lan­
guage SOL; and Anderson, 1976, ACT model). These specialized lan­
guages are large systems that occupy a substantial amount of computer 
memory and constitute complex cognitive architectures (assumptions 
about a variety of psychological processes are embodied in the programs). 
The investigator must decide whether to adapt one of these specialized 
languages (i.e., large systems) or to write the program in a general sym­
bolic language such as LISP. Neches (1982, pp. 86-87) outlines four 
factors that lead researchers to abandon large systems: 

(1) The systems become slow and expensive to run. . . . (2) The problems of 
developing and debugging grow as the system increases in complexity .... (3) 
Demand from others for chances to use the system are generally low. Many 
researchers, even if they have the facilities to bring up the program at their own 
site, are hesitant to do so due to the theoretical unwillingness to buy an entire set 
of assumptions, and to the pragmatic fear of poor maintenance. (4) At the same 
time, the demands of the few who are interested in adopting the system can 
become burdensome. One hesitates to commit the resources required for docu­
menting and extending a system in order to make it useable outside the labora­
tory. 

Neches acknowledges that the trend favors small simulations written in 
LISP. However, Neches points out that "there are some benefits to the 
whole-system approach in terms of generality and understanding of unex­
pected interrelations between components of the information processing 
system" (p. 87). Neches recommends a compromise approach in which a 
modifiable cognitive architecture written in LISP is available. The advan­
tages of such an approach are that the programmer can specify the archi­
tecture consistent with her or his theoretical preference by setting param­
eter values, modify the program by adding or deleting LISP functions, 
enjoy the advantages of whole-systems architecture, and not have to 
invent or reinvent a "cognitive architecture" every time a new problem is 
investigated. The PRISM program (Langley, 1983; Neches, 1982) is writ­
ten in LISP and features a fairly complete, modifiable architecture. Al­
though we hesitate to recommend that programmers adopt PRISM, or 
some alternative, because of the computer overhead involved, there is a 
great need to improve communication about program theories. Without a 
semiuniversal adaptation of a modifiable cognitive architecture, commun­
ication about program theories will sometimes appear unfathomable to 
the uninitiated and will be difficult for individuals using different systems. 

Since the publication of Kuhn's (1962) account of the development of 
science, there has been a great deal of discussion in the literature about 
the influence of paradigms on the work of scientists (see Gholson & 
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Barker, 1985, for a recent review). It is not difficult to construct parallel 
arguments about the influence of the computer language chosen on the 
psychological model produced. Programs that can be easily implemented 
in one language may be difficult or impossible to produce in another. 
Languages differ in the data types that can be used, algorithms that can be 
written, self-modifiability of algorithms, and the psychological assump­
tions that either can be or already are implemented. A programmer may 
choose a particular language for implementation because it is suitable, it is 
familiar, or it is the best language available. One can only estimate the 
relative influence of the language chosen on the product produced. Con­
sider the programs written by Klahr and Siegler (1978) and Sage and 
Langley (1983) as an illustration ofthe difficulty of assessing the influence 
ofthe language chosen on the simulation. Both pairs of investigators have 
produced interesting models of the balance-scale problem by using pro­
duction systems. Klahr and Siegler wrote their simulation in PSG, while 
Sage and Langley used PRISM. PSG, unlike PRISM, does not include 
self-modifying algorithms. Injustifying their four stage models, Klahr and 
Siegler argued that adequate state descriptions were a prerequisite to 
understanding developmental transitions. However, Sage and Langley 
emphasized that the self-modifying discrimination algorithm used in their 
simulation passed through two of the four stages and terminated in a third 
stage described by Klahr and Siegler. It is left for the reader to assess the 
influence of the language of implementation on the particular aspect of the 
balance-scale problem that each pair of investigators chose to focus on. 

PROGRAM COMMUNICATION 

Programmers who wish to communicate about their program theories 
need to do so at two levels. First, sufficient information must be presented 
that the program can be recreated at other sites. Second, the psychologi­
cal principles incorporated in the program theory must be explained with 
sufficient clarity that they can be SUbjected to empirical scrutiny. Even a 
casual survey of the simulation literature reveals that a large percentage 
of authors fail on both criteria. Neches (1982) notes the related problem of 
"determining whether the program performs as it does for the reasons 
claimed by the author" (p. 78). There are at least three ways in which 
archival access to programs can be improved: creation of a document 
center from which programs can be obtained, inclusion of the programs in 
the published papers, and inclusion of the portions of the programs con­
taining innovative programming techniques and central theoretical imple­
mentations in the published papers. In all cases, the author should include 
extensive annotations in the program. Only careful editing can ameliorate 
problems associated with vague program descriptions of verbal theories 
or distorted descriptions of mechanisms that account for program perfor­
mance. 
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Conceptual Issues 

In this section, four conceptual issues are discussed that are relevant to 
the production and evaluation of computer simulations of cognitive pro­
cesses. Investigators, whether they are interested in producing or evaluat­
ing simulations of cognitive development or some other facet of cognition, 
must make choices that relate to these issues. Specific implications of 
these issues for cognitive development are considered in later sections. 

RATIONALISM VERSUS EMPIRICISM 

Pylyshyn (1978a) argued that the differences between artificial intelli­
gence and cognitive simulation were stylistic rather than substantive. 
Many of his critics (e.g., Hayes, 1978) appropriately noted that the crite­
ria for success are quite different in these enterprises, that it is easier to 
write artificial intelligence than cognitive simulation programs, and that a 
priori it is rather unlikely that an artificial intelligence program will suc­
cessfully simulate cognitive performance. To better appreciate the posi­
tion advocated by Pylyshyn and others (see Miller, 1978), consider Py­
lyshyn's (1978b, p. 124) definition of cognitive science: 

Essentially, cognitive science seeks to understand, not to match anything (not 
withstanding the ubiquity of the "variance accounted for" criterion, a method­
ological throwback from the positivist era). It does this by searching for general 
principles and showing how these, in combination with particular knowledge, 
particular goals and tasks, and particular mechanisms, are able to account sepa­
rately for different aspects of a phenomenon. Errors and imperfections are not the 
primary phenomena to be accounted for; rather, it is the competence to deal with 
the task. 

Thus, according to Pylyshyn, cognitive science becomes a rational 
rather than an empirical science; it does not attempt to predict (match) 
empirical phenomena, but attempts to generate general principles that can 
accomplish the tasks of interest. The outcome to be explained is compe­
tence rather than performance. The paradigm for understanding is nonpo­
sitivistic and is presumably based on evaluations of whether a computer 
model is sufficient to account for the phenomenon of interest. Evaluation 
depends more on rational judgment than on the match between empiri­
cally derived data and predictions of the model. 

Miller (1978) analyzed the rationalist-empiricist controversy in cogni­
tive science. He argued that the protagonists have different criteria of 
scientific progress. The rationalists believe it is difficult to create adequate 
cognitive theories but simple to demonstrate their' 'validity. " Thus, ratio­
nalists think progress will occur through theory development. Their prem­
ises are (1) that we know a great deal about our minds without needing to 
gather cognitive facts and (2) that we need to describe the mechanisms 
that can accomplish these cognitive facts. However, empiricists believe it 
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is easy to construct psychologically plausible theories, but it is difficult to 
demonstrate that the theories mirror reality. Thus, empiricists think pro­
gress will occur through theory demonstration. Their premises are (1) that 
some hypotheses are empirically viable while others are either false or 
vacuous and (2) that evaluation of hypotheses does not depend on individ­
ual judgment but is in the public domain of science. 

Both rationalist and empiricist perspectives should be considered by 
those interested in simulating behavior. We share the empiricist's belief 
that empirical viability should be the criterion for cognitive science and 
the study of cognitive development. The rationalist's frustration with non­
mechanistic, static models is also understandable. Even most models of 
cognitive development are state descriptions that fail to provide mecha­
nisms to account for transitions from one state (or stage) to another. 
These types of nonmechanistic models cannot be translated to computer 
programs capable of simulating cognitive growth. The rationalist's desire 
to create models capable of performing cognitive tasks, particularly tasks 
which involve "cognitive change," should be, and perhaps is, shared by 
all. A reasonable goal is to create "sufficient" simulations that model 
behavior. Cognitive scientists of all persuasions will need to collaborate if 
we are going to achieve this goal (see Mandler, 1984). 

STOCHASTIC VERSUS DETERMINISTIC MODELS 

Cotton (1982) offered an interesting analysis of the issues related to pref­
erences for stochastic or deterministic models. He suggested that empiri­
cists are probabilists offering a variety of justifications for the stochastic 
assumptions in their models. Their arguments range from assertions that 
the best predictions of behavior that one can offer are probabilistic to 
assertions that the invocation of stochastic processes is both a conven­
ience and an expression of ignorance. In contrast, Cotton argues that 
rationalists are determinists. Our own experience with computer model­
ing suggests that their philosophical determinism is tainted with method­
ological necessity. At present, it is difficult, perhaps impossible, to de­
velop sufficient models that simulate successive changes in an 
individual's behavior if the "central psychological processes" in the 
model are assumed to be stochastic. The problem is that the relationship 
of the model's behavior to the actual subject's behavior would also be a 
stochastic process, the complexity of which would depend on the location 
of the stochastic mismatch between the model and actual subject in the 
logical chain developed in the model. For example, we considered adding 
a stochastic parameter to our Nim model, described earlier in the chapter. 
The parameter would have represented the probability of overlooking a 
position in a chain of logical search. Overlooking a position sometimes 
would lead the subject to arrive at an erroneous conclusion from his or her 
chain of logical search. However, even if the subject did make these sorts 
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of errors stochastically, adding a stochastic parameter to the model would 
not help account for the data because the sequence of errors generated by 
the program would be independent of the sequence of errors generated by 
the subject. 

We concur with Cotton's (1982) advocacy of methodological determi­
nism. He wrote, "By this, I mean that our preference should be to state 
and test very specific deterministic models because of the possibility of 
describing individual persons' moment-by-moment behavior with such 
models" (p. 68). At this point, one might ask how deterministic models 
can handle both between- and within-subjects variability? Four solutions 
have been implemented: (1) Deterministic assumptions can sometimes 
generate stochastic models; (2) to the extent that the behavior of the 
subject or model is data driven, variability is associated with the stimulus 
sequence presented; (3) pseudorandom generators can be associated with 
responses or the output of the model without altering the deterministic 
structure of the program; and (4) parameters can be incorporated in the 
model to simulate individual differences. Cotton (1982) provided an exam­
ple of deterministic assumptions generating a stochastic model. Our work 
on Nim illustrates the last three solutions. Because moves were stochasti­
cally generated by a computer opponent, each subject experienced a 
unique sequence of games. To the extent that subjects' responses were 
influenced by the positions presented by the computer opponent, be­
tween- and within-subjects variability occurred in the data. The subjects' 
moves predicted by the computer simulation (a different program from 
that used as the computer opponent) were influenced by the positions that 
the subjects experienced. Furthermore, the simulation generated a set of 
predicted moves that contained from 1 to 15 moves. Ifthe subject made 
one of these moves, the prediction was considered to be correct. In this 
manner, a pseudorandom generator was associated with the subjects' 
responses. Finally, two parameters were included in the model. Best­
fitting parameter values were obtained for each subject. The Nim model 
demonstrates that both between- and within-subjects variability can be 
accounted for by deterministic models. Because it appears that determi­
nistic process models are needed to generate point predictions that simu­
late successive changes in an individual's behavior, investigators should 
be encouraged to find additional ways to account for between- and within­
subjects variability from deterministic assumptions. 

Is A COMPUTER SIMULATION CONCEPTUALLY DIFFERENT FROM 

THE VERBAL THEORY THAT Is IMPLEMENTED? 

Johnson-Laird (1981) recommended that we distinguish between the pro­
gram and the theory that is modeled. There are a number of reasons for 
maintaining this distinction (Neches, 1982): Simplifying or psychologi­
cally implausible assumptions might be invoked to facilitate program im-
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plementation, the program might function with only a restricted set of 
problems, parameters might be surreptitiously introduced by manipulat­
ing either data or procedures, and data or procedures might be eliminated 
to ensure that the program functions. Note each of these reasons reflects 
the programmer's inability to adequately represent theoretical concep­
tions. 

This problem is, in principle, not different from that experienced by a 
theorist using another medium of expression (e.g., mathematics). Two 
cases merit consideration. First, ifthe programmer's goal is to translate a 
vague verbal theory to a testable program and the program is not verified 
because it really was not a good translation, then a second translation can 
be attempted. Because the program, not the unspecified theory, is tested, 
for all practical purposes the program is the theory. In this case, rejecting 
the program theory is tantamount to rejecting the verbal theory. With the 
important exception of the theorist, the verbal theory is superfluous. Sec­
ond, the programmer might explicate a testable verbal theory and wish to 
explore how the variables in the theory interact. In this case, it might be 
possible to empirically evaluate the basic assumptions in the verbal the­
ory, but impossible to test the interactive assumptions without the aid of a 
computer model. Rejection of a poorly translated computer model would, 
in this instance, not result in the rejection of the verbal theory, but would 
result in the rejection of the program theory. 

THE COMPUTER METAPHOR 

We argued earlier that computer simulation is one of the modeling tech­
niques available to the theorist and that program theories should be evalu­
ated in the same way as other attempts to model psychological processes. 
Other investigators have argued that computer simulation is more than a 
modeling technique, that it is also a metaphor for human cognition (see 
Kolers & Smythe, 1984). In our opinion, the introduction of the computa­
tional metaphor produced some unfortunate consequences. The distinc­
tion between many of the hypothetical constructs used in simulations and 
the program theories that evolved has become blurred to the extent that 
some critics assert that it is impossible to model, for example, creativity 
(Brown, 1982), human growth (Neisser, 1976), or symbolic capabilities 
(Kolers & Smythe, 1984). Thus, program theories become confused with 
and lost in a maze of argillments about hypothetical constructs. 

At present we are not sufficiently knowledgeable about the functioning 
of the human brain to evaluate most of the aspects of the computer meta­
phor, so we should concentrate on evaluating the adequacy of the theories 
generated from computer simulation. Furthermore, program theories may 
continue to be useful even when we become capable of falsifying the 
hypothetical constructs contained in the theories. Mandler (1985) pro­
vided an example that illustrates the unproductivity of most current argu-
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ments about the computer metaphor. He used consciousness in the exam­
ple, but creativity, human growth, or symbolic capabilities would have 
served as well. He considered two questions. Can computers be con­
scious? Can computers be pregnant? Because computers neither have the 
necessary equipment nor engage in the prerequisite activities, pregnancy 
is impossible. At present we do not know about the equipment or activi­
ties necessary to be conscious. Therefore, questions about computer con­
sciousness are empty. To reiterate, investigators should concentrate on 
constructing and evaluating computer simulations as they would other 
types of models. Metaphors should be left to the poets. 

Development 

Two broad related questions have been addressed. Should cognitive sci­
entists simulate development? How adequately have computer programs 
simulated development? Not surprisingly, opinions vary widely on both 
questions. Pylyshyn (1978b) argues that ontogenetic evidence gathered 
from children is of only incidental interest in cognitive science. Neisser 
(1976) suggests not only that cognitive scientists should be interested in 
development, but also that one of the main deficiencies of cognitive sci­
ence is a failure to simulate development. Brown (1982) argues that com­
puter simulations are interesting, but seriously limited, models of human 
growth. Chi and Rees (1983) are optimistic. They suggest that for the time 
being either production (e.g., Anderson, 1983) or schema (e.g., Rumelhart 
& Norman, 1978) models, currently the two preferred types of cognitive 
architectures, are "perfectly adequate to simulate development" (p. 94). 
Finally, Klahr (1982) claims that information processing models are the 
only theoretical formalisms that presently model the centrality of the 
child's own activity in development. 

The diversity of opinions reflects disagreements about the goals of cog­
nitive science and the meaning of development. However, these problems 
are overshadowed by psychologists' vague conception of what cognitive 
development really is about. If one defines development as age-correlated 
changes in physical growth and behavior, then one needs to consider 
development in a broad conceptual framework involving biological and 
psychological variables (for example, Hebb, 1966). None ofthe investiga­
tors discussed in this section treats development or cognitive develop­
ment in this broad framework, although both Brown (1982) and Neisser 
(1976) claim computer programs do not adequately represent the child's 
environment. For example, Neisser (1976, p. 144) wrote, "The develop­
ment of human intelligence occurs in a real environment with coherent 
properties of its own .... As long as programs do not represent this 
environment systematically, in at least some of its complexity, they can­
not represent cognitive growth either." This criticism is almost certainly 
correct, but it is difficult to abstract the environment in a computer pro-
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gram if you cannot specify the class of relevant environmental variables. 
Thus, the criticism appears to be a valid assessment of current ignorance, 
rather than a particular shortcoming of computer simulation. 

ACCOMMODATION AND CONVENTIONALISM 

Our collective conception about what development is really about has 
been influenced, or perhaps determined, by Piaget's concepts of assimila­
tion and accommodation. Brown (1982, p. 101) offered representative 
definitions of these two concepts: "Assimilation is the function by which 
the events of the world are incorporated into preexisting knowledge struc­
tures while accommodation is the process by which the existing knowl­
edge structures are modified in accordance with novel events." 

The most common objection to computer simulations of developmental 
tasks is that the simulations do not accommodate (e.g., Brown, 1982; 
Neisser, 1976). How is this complaint to be interpreted? Since Samuel's 
(1963) pioneering work on the game of checkers, it is clear that computer 
programs can learn from experience by modifying parameters in mathe­
matical functions. Furthermore, Brown (1982) was aware that programs 
can learn through acquisition by modifying and extending the data base. 
However, based on Brown's definitions, these types of modifications con­
stitute assimilation, not accommodation. Evidently, computer simula­
tions must be capable of modifying the procedures used in order to dem­
onstrate accommodation. Programs including heuristics that modify 
procedures are referred to as self-modifying. Waterman (1975) developed 
such a program, and there have been a number of attempts to use self­
modifying heuristics to model children's language acquisition (Anderson, 
1983; Langley, 1982) and acquisition of arithmetic skills (Resnick & 
Neches, 1984). Whether critics such as Brown and Neisser will or should 
consider these self-modifying programs as "accommodating" is problem­
atic. 

The idea that a scientist's task is to discover the meaning of a concept, 
usually a commonly used word, is referred to as conventionalism. The 
accommodation question suggests that "conventional" thinking has infil­
trated developmental psychology. A group of psychologists is attempting 
to discover, define, or find evidence relating to accommodation. In this 
light, it is easy to appreciate Klahr's position. He wrote (1982, p. 80): 

The capacity for adaptive self-modification is essential to developmental theory, 
but until recently, there have been no well-specified ideas about how this self­
modification takes place. For 40 years now, we have had assimilation and accom­
modation, the mysterious and shadowy forces of equilibration, the "Batman and 
Robin" of developmental processes. What are they? How do they operate? Why 
is it that after all this time, we know no more about them than when they first 
sprang upon the scene? What we need is a way to get beyond vague verbal 
statements of the nature of the developmental process. Perhaps the most impor-
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tant merit of production systems is that they provide a basis for modeling self­
modification. 

Klahr argues further that production systems currently are the only 
models that provide such a basis. Although it may be possible to write 
self-modifying schema models (discussed below), we agree with his evalu­
ation that self-modifying production systems are a promising tool for 
developmental theorists. 

REALISM 

Besides the conventionalism endemic to the controversy surrounding ac­
commodation, the arguments reflect a philosophical realism that is dis­
turbing. Both computer simulators (e.g., Wallace, 1982) and their critics 
(e.g., Brown, 1982) sometimes treat programs as objects of interest rather 
than as attempts to model cognition. The computational metaphor seems 
to be either the only or the most relevant issue. Although it is an impres­
sive intellectual achievement to produce a self-modifying program, it is 
quite a different thing to demonstrate that the model predicts the behavior 
of one child, several children, or the average performance of several 
children. Writing computer algorithms and writing computer simulations 
of cognitive behavior are both useful enterprises that should be encour­
aged, not confused. In this light, consider Brown's (1982) complaint that 
machines can not capture "meaning" and "intentionality." It is difficult 
to believe that Brown would have voiced such a complaint when criticiz­
ing a verbal theory or a stochastic mathematical model. Computer simula­
tions should be evaluated in terms of how accurately they model behav­
ior. Attempts to simulate the acquisition of meaning and the ability to plan 
are challenging issues of current interest to cognitive scientists. 

MECHANISMS OF LEARNING AND TRANSITION 

Given contemporary developmental interest in accommodation and that 
much is to be learned about self-modifying programs, it is surprising that 
Chi and Rees (1983) consider that either the Anderson (1983) production 
model or the Rumelhart and Norman (1978) schema model currently is 
adequate to simulate development. Rumelhart and Norman (1978) offered 
only a vague set of mechanisms for self-modifying schemas, and the four 
learning-transition mechanisms implemented by Anderson (1983)-pro­
ceduralization, composition, generalization, and specialization-in his 
production system would not seem to be the stuff that constitutes accom­
modation. Although these four mechanisms do produce new procedures, 
the resulting procedures are closely tied to either declarative knowledge 
or other procedures and probably would not be considered adequate rep­
resentations of altered knowledge structures by accommodation theo­
rists. For example, the composition mechanism combines two or more 
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procedures that usually occur serially into a single new procedure. If 
antecedent a led to the firing of procedure A that produced consequence b 
which, in turn, led to the firing of procedure B that produced consequence 
c, then the composition mechanism would create procedure AB such that 
antecedent a would cause procedure AB to fire, producing consequence c. 

Chi and Rees are not particularly concerned about self-modifying 
models because they conceive of cognitive development as a learning 
process involving the gradual acquisition and structuring of knowledge. 
Chi's (1978) finding that children who played chess were better at recall­
ing chess positions, but poorer at recalling digits, than non-chess-playing 
adults was an important catalyst in formulating a knowledge-based con­
ception of development. Chi and Rees (1983, pp. 97-98) summarize: 

stages and decalage are really manifestations of a few underlying assump­
tions ... : (1) only a small amount of new knowledge can be learned at anyone 
time; (2) this new knowledge must be interpreted by and stored in existing 
knowledge structures; (3) new structures, when they are needed, are created from 
old ones; and (4) knowledge tends to be specific to the context in which it was 
learned. 

It is possible to write computer programs, consistent with Chi and 
Rees' assumptions, that do not employ self-modifying heuristics. Con­
sider the simulations written by Langley (1979, Kepler's third law of 
planetary motion) and Lenat (1977, number theory). Even though self­
modifying heuristics were not used, these simulations defined new con­
cepts and subsequently used them in making new discoveries, suggesting 
that self-modifying programs may not be needed to simulate develop­
ment. Whether computer simulations can be produced that accurately 
model cognitive development, but do not include self-modifying heuris­
tics, remains to be determined. However, this possibility complements 
the Chi and Rees knowledge-based conception of development and pro­
vides an alternative to self-modifying heuristics for those interested in 
simulating developmental transitions. 

Over the past 15 years most researchers interested in cognitive devel­
opment have ignored learning-transition mechanisms and have concen­
trated on describing the rules, strategies, and structures available to chil­
dren at different ages (see Chapter 3 by Wilkinson and Haines, this 
volume). A similar trend seems to characterize research in adult cognition 
(Langley & Simon, 1981). Dissatisfaction with traditional learning theo­
ries, a developing interest in basic cognitive structures, and an increasing 
recognition of Piaget's work all fostered the disinterest in learning-transi­
tion mechanisms (also see Siegler, 1983). As can be seen in the above 
discussion, a revival of interest in learning-transition is apparent, particu­
larly among those researchers familiar with the computer simulation liter­
ature. Ifthe goal of cognitive science is to describe "mind" and the ability 
to learn is a central (or the central) feature of both cognition, in general, 
and development, in particular, then the study of cognitive development 
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is central to cognitive science. Suppose we accept Pylyshyn's (1978b) 
conceptual framework and grant that expert performance is of primary 
interest to cognitive science. Even then, his assertion that developmental 
research is of only incidental interest is unacceptable if expertise is modifi­
able by experience (i.e., it does not reach a ceiling), and the learning 
transition mechanisms do not vary across development. If, as Chi and 
Rees (1983) argue, the cognitive structures of children are less elaborated 
than those of adults and the learning-transition mechanisms are invariant 
across development, then developmental research should be central to 
cognition. This follows because, in principle, it should be easier to both 
simulate cognitive structures and measure the products of transition in 
children than in adults. The awareness of issues in cognitive development 
shown by many cognitive scientists over the last 5 years probably reflects 
their recognition of the importance of developmental research in the con­
struction and evaluation of computer models of learning-transition mech­
anisms. Likely their awareness will grow, and attempts to simulate devel­
opmental processes will become more frequent. 

Simulation Models of Cognitive Development 

Although relatively few computer simulations appear in the cognitive­
development literature, interest in computer simulation as a formal 
method in developmental psychology appears to be growing. The number 
of published papers has doubled since 1980 (see Table 8.1). In this section, 
simulations of cognitive development are examined in relation to issues 
introduced earlier in the chapter. For reference purposes and to facilitate 
our discussion, models are classified in Table 8.1 according to the type of 
cognitive architecture, the task domain, the type of developmental model, 
and the type of methodology used to guide the creation and evaluation of 
the models. 

Static and Dynamic Models of Development 

Simon (1962) made two suggestions that influenced the type of informa­
tion processing models constructed to simulate cognitive development. 
The first suggestion was to develop state theories that specified the knowl­
edge structures and procedures needed to account for task performance at 
different stages of cognitive development. These state theories then could 
be implemented as process models (computer simulations) that would 
behave as children at the different stages. The second suggestion was that 
efforts be made to discover the learning-transition processes that would 
transform the model from one state to the next. 

Klahr and Wallace (1970a, 1970b; state models) wrote the pioneering 
simulations of cognitive development. They used task-specific routines, 
which consisted of collections of hierarchically ordered, goal-directed 
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TABLE 8.1. Classification of developmental simulation models. 
Production system architectures 

Type of 
Authors Domain model Methodology 

Anderson (1983) Language acquisition Transition Idealized 
Baylor and Gascon (1974) Seriation State Individual 
Baylor, Gascon, Le- Seriation State Individual 

Moyne, and Pothier 
(1973) 

Baylor and LeMoyne Seriation State Individual 
(1975) 

Klahr (l973a) Quantification State Idealized 
Klahr (l973b) Quantification State Idealized 
Klahr and Siegler (1978) Balance scale State Idealized 
Klahr and Wallace (1972) Quantification State Idealized 
Klahr and Wallace (1973) Quantification State Idealized 
Klahr and Wallace (1976) Quantification State Idealized 
Langley (1982) Language acquisition Transition Idealized 
Resnick and Neches Addition Transition Idealized 

(1984) 
Sage and Langley (1983) Balance scale Transition Idealized 
Young and O'Shea (1981) Subtraction State Group 

Schema Architectures 

Type of 
Authors Domain model Methodology 

Greeno, Riley, and Arithmetic word State Idealized 
Gelman (1984) problems 

Hill (1983) Language acquisition Transition Idealized 
Kintsch and Greeno Arithmetic word State Idealized 

(1985) problems 
Riley, Greeno, and Heller Arithmetic word State Idealized 

(1983)a problems 

Task-specific Architectures 

Ashcraft (Chap. 9, this Addition State Group 
volume) 

Brown and Burton (1978) Subtraction errors State Group 
Brown and VanLehn Subtraction errors State Group 

(1980) 
Burton (1981) Subtraction errors State Group 
Klahr and Wallace Series completion State Idealized 

(1970a) 
Klahr and Wallace Classification State Idealized 

(1970b) 
VanLehn (1983) Subtraction errors State Group 

a This model is composed of both production system and schema components. 
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processes, to simulate series completion (1970a) and classification 
(1970b). Following the introduction of production systems, Klahr and 
Wallace (1972, 1973, 1976; state models) employed this architecture in 
their simulations of quantification skills. Klahr and Wallace placed con­
straints on the developmental sequencing of their state models. In model­
ing the older child, changes were made to the knowledge structures of 
models representing the younger child. These changes were consistent 
with hypothesized transition mechanisms, even though these mechanisms 
were not implemented in the model. Their sequencing strategy appears to 
have influenced the formulation of state models that followed (e.g., Bay­
lor & Gascon, 1974; Baylor et at., 1973; Baylor & LeMoyne, 1975; Klahr 
& Siegler, 1978; Riley, Greeno, & Heller, 1983; Young & O'Shea, 1981). 

In Table 8.1 there are only five developmental simulations in which 
transition mechanisms were employed. The earliest of these papers was 
published in 1982 (Langley, 1982). The introduction of self-modifying 
procedures (Waterman, 1975), in part, made it possible to include transi­
tion mechanisms in developmental models. However, transitions can also 
be modeled by changing knowledge structures. Although Simon (1962) 
may be correct in arguing for the priority of state models of development, 
it appears to us that theorists must use transition mechanisms to account 
for "assimilation" and "accommodation" (i.e., development). We en­
courage authors to include transition mechanisms in their developmental 
simulations. 

Type of Problem 

Cognitive developmental simulations have been written to model chil­
drens' performance on logical, arithmetic, and language acquisition tasks. 
Most of these simulations are attempts to represent performance at a 
particular stage of development. However, models that simulate develop­
mental transistions are beginning to appear. A brief description and dis­
cussion of simulations representing each of these tasks are provided 
below. 

LOGICAL TASKS 

Inspection of Table 8.1 reveals that most of the simulations written before 
1980 were designed to explain performance on logical tasks. The work of 
Klahr (1973a, 1973b) and Klahr and Wallace (1970a, 1970b, 1972, 1973, 
1976) contributed substantially to the development of models in this area. 
In their 1976 book, Klahr and Wallace provided detailed descriptions of 
production systems and how they were changed to generate a variety of 
states. Their book should be a useful source for investigators interested in 
related undertakings. A review of the work of Klahr and Wallace and its 
contribution to our understanding of cognitive development can be found 
in Siegler (1983). 
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Diagnosis is essential to developmental theory construction (see 
Flavell, 1977). It is our opinion that in the short run, the major empirical 
contribution to cognitive development, associated with computer simula­
tions, will be in the diagnosis of cognitive structures. The work of Baylor 
and his colleagues (Baylor & Gascon, 1974; Baylor et aI., 1973; Baylor & 
LeMoyne, 1975) illustrates this point. They developed five state models to 
diagnose the cognitive structures children use in weight seriation. The 
models did not learn (i.e., transition mechanisms which would permit the 
model to generate successive states were not included). Each state was 
represented as a production system. Developmental changes were as­
sumed to involve the successive acquisition of three or more seriation 
strategies. Stage 1 was associated with rules that allow a child to compare 
only two blocks at a time. Children at this stage seriate three or more 
blocks in a haphazard manner. Stage 2 was associated with rules that 
enable a child to seriate a subseries of three or four blocks. Stage 3 was 
associated with three different rule systems (states in the model), each of 
which permits a child to operate on a series of any length. The five states 
were developed to emulate the protocols obtained from five children. 
One of the state models was able to account for the behavior of a child on 
three different seriation problems: weight, hidden length (the child was 
allowed to see only two objects at a time), and length (all objects were 
visible). 

Sage and Langley (1983) implemented a self-modifying production sys­
tem to model childrens' rule acquisition on the balance-scale task. In 
doing so, they demonstrated that such programs can provide a mechanism 
for constructing nonstatic developmental theories. A computer simulation 
was used to determined whether a model that employed a discrimination 
learning mechanism would emulate children's development on this task. 
The model began by making random predictions about when a scale 
would balance or which side would go down. The discrimination process 
was invoked when the model made an incorrect prediction. By comparing 
the situation when a rule was applied incorrectly to the last correct appli­
cation, anew, more specific production was created. The model progres­
sively generated productions that were similar to the first three rules 
described by Siegler (1976) and the state production systems of these 
rules formulated by Klahr and Siegler (1978). However, the model was 
unable to generate the final rule, the torque rule, because the knowledge 
structures used did not include the necessary arithmetic. 

ARITHMETIC TASKS 

Young and O'Shea (1981) wrote production system models of subtraction. 
The correct subtraction production system was devised by using the de­
composition technique for borrowing, one of two methods taught to chil-
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dren in Britain (Williams, 1971). The incorrect subtraction production 
systems were derived from inspection of errors produced by lO-year-olds 
on a corpus of 1500 subtraction problems (Bennett, 1976). To model the 
errors, Young and O'Shea added rules appropriate to other arithmetic 
tasks or omitted rules from the correct procedure. About two-thirds of the 
errors generated by each of 51 children were matched by the model. By 
isolating the missing or inaccurate knowledge that causes particular sub­
traction errors, Young and O'Shea provided an additional demonstration 
of the diagnostic capabilities of computer simulations. It should be possi­
ble to implement this model, as well as related models generated by 
Brown and his colleagues (Brown & Burton, 1978; Brown & VanLehn, 
1980; Burton, 1981; and VanLehn, 1983), in teaching programs that first 
diagnose each child's missing or inaccurate subtraction rules and then 
train the child to use the correct rules. We encourage the authors to 
generalize their approaches to other arithmetic tasks. 

Resnick and Neches (1984) developed two self-modifying production 
system models to simulate the developmental change from a SUM to a 
MIN addition strategy. The SUM strategy involves counting separate sets 
of objects to represent each addend, combining the sets, and then count­
ing the total set. Children usually abandon this strategy spontaneously 
before their seventh birthday. They replace it with a counting-on proce­
dure that involves counting the smaller addend onto the larger. This is 
called the MIN procedure because only the lesser of the two addends 
needs to be recounted (for example, 5 + 2 yields 5, 6, 7). Each of the 
Resnick and Neches models began by using the SUM procedure and, 
without any external input, changed to using the MIN procedure. The 
transformation of SUM to MIN was accomplished by three self-modifying 
heuristics used in conjunction with knowledge about numbers described 
by Gelman and Gallistel (1978). This work provides a second example of 
how self-modifying production systems can be used to model transitions 
in cognitive development. 

The application of computer simulations to another class of arithmetic 
tasks deserves to be noted. Greeno and his colleagues (Greeno, Riley, & 
Gelman, 1984; Kintsch & Greeno, 1985; Riley et al., 1983) developed 
schema-architecture state models of children solving word arithmetic 
problems. Of particular interest is the Kintsch and Greeno (1985) simula­
tion. The general principles from a theory of text processing (van Dijk & 
Kintsch, 1983) were incorporated in the Kintsch and Greeno (1985) 
model. This enabled the model to interpret word problems and generate 
plans for solving these problems. The formulation of computer simula­
tions that incorporate a theory of text processing in conjunction with task­
specific knowledge should enable researchers to explore the relationship 
between comprehension of task instructions and problem-solving ability 
in children's performance. 
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LANGUAGE ACQUISITION 

Langley used the PRISM architecture to create a self-modifying simula­
tion (AMBER) that models the learning of speech generation strategies. 
AMBER begins with the ability to make one-word utterances and adds 
rules for ordering goals and producing longer strings of grammatical mor­
phemes. Langley's main goal was to model the learning of content and 
function words and the order in which grammatical morphemes are mas­
tered. AMBER learns to generate sentences by beginning with three per­
formance rules: a rule for establishing subgoals, a rule for saying words, 
and a rule for noting when goals are satisfied. AMBER's initial self­
modifications result from failures to produce content words. The failures 
can occur either before or after a particular word is correctly produced. A 
designation process is applied if one of these errors of omission occurs. 
The designation processes attempt to avoid errors of omission in the 
future by building new productions. Once AMBER begins to produce 
content words correctly, it can learn rules for producing morphemes. If 
the system incorrectly produces a morpheme that does not occur in adult 
speech, it makes an error of commission. Following these errors, the 
second self-modifying process, discrimination learning, creates more spe­
cific productions with additional conditions. AMBER learned six classes 
of morphemes in the following order: plural, present progressive, articles, 
past tense, third person plural, and uncontractible auxiliary. 

Another process model of language acquisition was reported by Hill 
(1983) and Hill and Arbib (1984). These authors presented a schema 
model of the acquisition of language by a 2-year-old child. This model 
incorporated the following assumptions: The child has schemata for and 
talks about relations, the child has schemata for and employs word order, 
the child employs concatenating and deletion rules, the child forms 
classes of concepts and classes. of words, and the classifying processes 
cause successive reorganization of the information stored. The model is a 
repetition-and-response model. It takes, as input, adult speech and a con­
text and produces either a repetition of the adult sentence or a response to 
it. The model begins with a rudimentary notion of a sentence (i.e., two­
word utterances containing a relation) and learns to generate utterances 
with a maximum of six words. The model has four dynamic data struc­
tures that grow as it acquires language: the lexicon; the grammar, to 
which the model adds templates for expressing the concepts salient to the 
child; conceptual knowledge of the world; and specific information about 
the present context that is necessary to choose between a set of alterna­
tive responses to questions asked. The model can learn information about 
new words, concepts, and templates for expressing relations. The model 
generates a flat template structure of syntax rather than the hierarchical 
structure generated by production system models (e.g., Anderson, 1983). 
Hill argues that this flat structure, although typical of the speech of 2-
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year-old children, is inadequate to model the hierarchical structure of 
adult language. An interesting feature of Hill's model is that it is the only 
transition model appearing in Table 8.1 that does not employ self-modify­
ing procedures to learn. 

Cognitive Architectures, Program Implementation, 
and Communication 

The developmental simulation literature is representative of the cognitive 
simulation literature in choice of architecture, programming language, 
and communication. As can be seen in Table 8.1, authors of developmen­
tal simulations have used a variety of cognitive architectures. Most of 
these simulations were implemented in high-level symbolic languages, but 
even the BASIC language has been used effectively (see Ashcraft, Chap­
ter 9, this volume). These simulations demonstrate that the choice of 
cognitive architecture and language of implementation usually reflects the 
availability of hardware and software, the problem of interest, and the 
author's programming skill and theoretical preference. Unfortunately, the 
failure to communicate adequately is characteristic of the reports of de­
velopmental simulations. With few exceptions, the authors fail to provide 
a detailed description of their models and how they were implemented. 
Even the computer language used is often not mentioned. The communi­
cations gap creates a major obstacle to validating the models and assess­
ing their generality. 

Methodology, Rationalism, and Empiricism 

In Table 8.1, simulations are categorized by methodology according to 
whether they were written to characterize the performance of an individ­
ual subject, as distinguished from a group of subjects, or an idealized 
subject. The type of methodology used is closely related to the method of 
evaluation. In the reports that presented simulations of idealized subjects, 
minimal attention was paid either to relating the models directly to the 
behavior of children or to conducting statistical tests. There is a danger in 
such an approach because in the absence of empirical tests, simulation 
models may reflect only theoretical fantasies. The quantification model of 
Klahr and Wallace (1976) seems to be a case in point. They assumed a 
developmental sequence in which class inclusion is followed by conserva­
tion which, in turn, is followed by transitivity. There is, however, consid­
erable evidence that transitivity is the first, not the last, of these skills 
acquired (e.g., Brainerd, 1973; 1978; Bryant & Trabasso, 1971; Riley & 
Trabasso, 1974). For a different view of this model see Siegler (1983). 

The authors who presented simulation models of individual subjects 
and groups of subjects formally evaluated their models by using empirical 
data. The method of evaluation varied as a function of the type of COffi-
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puter model. Baylor and his colleagues (Baylor & Gascon, 1974; Baylor et 
aI., 1973; Baylor & LeMoyne, 1975) implemented the two validation strat­
egies we suggested in the methodology section for computer models writ­
ten for individual subjects. Without changing the basic productions, two 
of the models were modified to fit an additional child (generalization 
across individuals), and one model was able to account for the behavior of 
a child on three different seriation problems (generalization across tasks). 
The authors reported nearly perfect agreement between the traces of the 
appropriate simulation and the series of moves made by each of the five 
children studied. 

The production system models of subtraction formulated by Young and 
O'Shea (1981) were fitted to error data generated by each of 51 children. 
Error-generating productions were treated as parameters in the model, 
and an individual subject's errors were fitted to the different versions of 
the model so as to optimize the match between the model and data. With 
this procedure, the model matched about two-thirds of the errors gener­
ated by the children. Brown and VanLehn (1980) constructed a different 
kind of simulation to account for children's subtraction errors. This model 
was devised after an inspection of protocols obtained from a large number 
of children. The model generated 32 types of subtraction errors as well as 
correct performance. The authors reported that 21 of the types of errors 
appeared in children's performance, 1 type of error was absurd, and the 
remaining 10 types of errors had not yet been identified in children's 
performance. Ashcraft's (Chapter 9, this volume) chronometric model of 
addition is another example of a formally evaluated simulation of a group 
of subjects. Response times generated by a model based on a spreading­
activation search of long-term memory were compared to those generated 
by children. 

Conclusions 

The computer has become an important tool in cognitive science. How­
ever, a number of theoretical, methodological, and technical issues need 
to be addressed if computer simulation is to become an important formal 
method in psychology, in general, and developmental psychology, in par­
ticular. 

Computer Simulation: Rationalist's Toy or Empiricist's Tool? 

The hybrid nature of the computer simulation literature is apparent in this 
review. Most researchers attempt to empirically justify the processes 
used in their simulations, but rarely attempt to match the output of their 
model to behavior. Statistical tests, and other standard validation proce­
dures, are rarely used. Even the word empirical sometimes refers not to 
the behavior of people but rather to the testing of a computer program: 
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Does the program run as intended? Does the program embody procedures 
sufficient to accomplish some goal? What effects result from changing 
designated procedures? Although the distinction between artificial intelli­
gence research (in which the goal is to develop programs that are both 
efficient and sufficient) and computer simulation of psychological pro­
cesses (in which the goal is to develop programs that account for behav­
ior) seems clear in principle, it has often been blurred in practice. We 
believe that Pylyshyn's (1978a) assertion that the differences between 
artificial intelligence and cognitive simulation are stylistic rather than sub­
stantive is an accurate characterization of the two disciplines at present, 
but a poor prescription for their future development. 

Over the past 25 years, investigators in both psychology and artificial 
intelligence have spent enormous amounts of energy writing programs 
that are sufficient to solve problems. Some of these programs constitute 
viable psychological theories, but most do not. The concepts generated in 
this work, however, have influenced the thinking of many cognitive psy­
chologists. It is clear from our review that considerable progress has been 
made in developing heuristics that will eventually be useful to empirically 
minded psychologists. Furthermore, the steady development of complex 
cognitive architectures is a laudable feat. We remain optimistic that the 
mainly rational enterprise described in this chapter will bear empirical 
fruit. 

Single-Subject Models 

Theoretical accounts of individual behavior are not common in cognitive 
psychology. A major reason is that traditional experimental and statistical 
methods are not easily applied when the unit of analysis is one person. We 
believe that computer models, particularly those that include individual­
difference parameters, can be used to make major contributions to our 
understanding of individual behavior. Unfortunately, only a few investi­
gators have exploited this technology. For example, Baylor and his col­
leagues (Baylor & Gascon, 1974; Baylor et al., 1973; Baylor & LeMoyne, 
1975) are the only investigators who wrote computer simulations to model 
the behavior of individual children (see Table 8.1). Even though the evalu­
ation of single-subject simulations requires some departures from tradi­
tion, both in the statistics employed and in the value attached to discon­
firming evidence, we encourage researchers to use computers to model 
individual behavior. 

Communications Revisited 

In putting together this review, we have been continually frustrated by the 
difficulty of determining what particular simulation models do and how 
they do it. Very often, models are described in vague generalities that 
provide little more than a general impression, prone to misinterpretation. 
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It is ironic that computer models, once heralded for their potential contri­
bution to theoretical clarity and precision, should be described in terms 
likely to engender only confusion. There are many problems, although 
some, such as the lack of standardized languages and compatible hard­
ware, are in the process of being solved. However, the intrinsic complex­
ity of the models being developed will likely continue to challenge the 
communication talents of the most articulate among us, as well as the 
comprehension abilities of the most gifted. We reiterate that an archival 
system for programs and community adoption of a flexible cognitive ar­
chitecture will reduce the communication gap. 

Cognitive Development 

Computer simulations have been used rarely to model cognitive develop­
ment. Some reasons for this neglect also characterize other areas of psy­
chology: the difficulty of acquiring programming skills, the lack of widely 
accepted techniques for empirically validating computer models, the diffi­
culty of communicating the important features of the models, and the 
extensive time and effort demanded of those who wish to use simulation 
techniques. In addition, and perhaps most important, heuristics that could 
be applied to modeling developmental transitions have become available 
only recently. Despite these difficulties, progress has been made. As in 
the computer simulation field in general, most of the progress is associ­
ated with devising heuristics that can be applied to developmental model­
ing. However, several investigators (e.g., Baylor et al., 1973; Young & 
O'Shea, 1981) have used production systems to diagnose cognitive struc­
tures. Their success should encourage others to try. The advent of self­
modifying heuristics is particularly important to developmental theorists. 
These heuristics provide a mechanism for creating non static program 
theories of developmental changes (e.g., Sage & Langley, 1983). In time 
we will know if these powerful tools can be used to create viable theories 
of developmental transitions. 
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9. Chlldren's Knowledge 
of Simple Arithmetic: 

A Developmental Model and Simulation 

Mark H. Ashcraft 

This chapter is about children's mental arithmetic, the knowledge that is 
acquired across the school years, the early representation of that knowl­
edge in memory, and the evolution of the mental representation and pro­
cesses across childhood. The largest portion of the chapter is devoted to a 
model of children's knowledge and performance in a simple addition task. 
I propose that knowledge in the domain of arithmetic is, in principle, 
similar to other long-term memory knowledge, both in its representational 
format and in the processes used to access the knowledge. The computer 
simulation based on the model successfully predicts the major empirical 
effects found in the literature and generates new predictions about the 
nature of memory retrieval across the developmental span. 

For the sake of clarity, I do not segregate the brief review of the litera­
ture from my description of the model. Instead, I describe the empirical 
work in a nearly chronological order, weaving into this review the essen­
tial elements that form the model and the simulation. By "recapitulating 
ontogeny" in this fashion, I hope to portray the structure and functioning 
of the model in such a way that its evolution from an early set of specula­
tions to the current, articulated simulation is clear, reasonable, and com­
pelling. The literature review is highly selective and limited, for the most 
part, to my own work; more inclusive reviews (see Ashcraft, 1982; Re­
snick & Ford, 1981) are available elsewhere. I divide this review into five 
sections: early studies on the problem size effect, the network representa­
tion and spreading activation hypotheses, developmental effects in de­
clarative and procedural knowledge, a formal presentation of the simula­
tion model of mental arithmetic development, and a brief discussion of 
more general issues related to the computer simulation approach. 

Prior to the review, it seems appropriate to describe the purpose of 
generating this model and simulation. The model is not a comprehensive 
theory of human information processing or its development; I have con­
sidered only numerical and arithmetic knowledge. Nor is it a model of 
problem solving in the classical sense of that term. The model is pertinent 
to the arithmetic knowledge used in arithmetic word problems, but not to 
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the language or problem-solving domains involved (see Kintsch & 
Greeno, 1985, for instance). Instead, the model is a theory of the ll~velop­
ment of simple arithmetic performance. My goal has been to characterize 
the knowledge that children possess at various stages of their formal 
education in arithmetic and to explore the processes they use to access 
that knowledge. The simulation is a particular instantiation of the model. 
It implements the important hypotheses of the model in the formalism of a 
computer program, and it provides a means of assessing those hypotheses 
and, by extension, the adequacy of the model. 

The tradition into which this work falls is the information processing 
tradition of cognitive psychology as applied to child development. My 
own research has relied very heavily on the chronometric approach to 
mental processing (e.g., Posner, 1978). Not surprisingly, then, the predic­
tions of greatest interest in the simulation model involve latency differ­
ences among conditions and across ages. Furthermore, the model con­
cerns the underlying mental representation of numerical knowledge, in 
the tradition of semantic long-term memory models (e.g., Anderson & 
Bower, 1973; Collins & Quillian, 1972; Schank & Abelson, 1977). Finally, 
both the model and the simulation are developmental. Knowledge struc­
tures and processes available at different ages are described, and of 
course predictions for different ages are generated. The central develop­
mental process in the model and simulation is a reasonable and familiar 
psychological construct, learning. 

To close this introduction, my goal is to develop a model of children's 
arithmetic knowledge, tracking from first grade through the college level 
the several mental processes used to access and apply this knowledge. 
The simulation model is designed to solve addition problems in a develop­
mentally correct fashion, predicting various reaction time, strategy, and 
error effects. An equally important goal in developing the simulation is to 
generate quantitative predictions that can be tested empirically. At a gen­
eral level, the model is a verbal statement of process and structure, a 
framework for understanding children's mental arithmetic development. 
The computer simulation is a functioning instantiation of the model that 
predicts not only results reported in the literature but also patterns of 
performance not yet tested. 

Early Studies on the Effect of Problem Size 

I begin with an anecdote, not merely because it illustrates the occasion­
ally positive role of happenstance in research, but also because it reveals 
several important pretheoretical assumptions that characterized my 
thinking at the beginning of this project. I stumbled upon the area of 
mental arithmetic research by accident, while grading final examinations. 
As I computed the grades, I noticed how easily I could subtract the 
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number missed from a total of 50 on one examination, compared to the 
difficulty of subtracting the number missed from 75 possible on the other 
examination. Quite suddenly, I realized the importance of this casual 
observation-I was performing a purely mental task with the mundane 
facts of subtraction and "discovered" the obvious fact that some prob­
lems were more difficult and required more time than others. I had stum­
bled on a phenomenon at the heart of cognitive psychology-mental pro­
cessing of symbols, coordinated sequencing of retrieval and rule 
application, and a rich system of facts and procedures represented in 
memory. Within a matter of weeks, this insight was translated into a 
reaction time (RT) experiment on simple addition (Ashcraft & Battaglia, 
1977, 1978). 

At the time of this incident (December, 1976), I was working on issues 
of semantic distance, typicality, and their effects on the structure of se­
mantic representation and the processes of retrieval (e.g., Ashcraft, 1976, 
1978). As I began to think through the same issues for mental arithmetic, I 
hypothesized initially that simple arithmetic facts must serve an analo­
gous function to the conceptual entries or nodes in semantic memory, the 
basic information stored in the system from which more complex relation­
ships are derived. Because it was quite natural to think of semantic 
knowledge as represented in a network structure (e.g., Collins & Loftus, 
1975), I hypothesized the same kind of representation in mental arith­
metic. Evidence at the time pointed to the importance of semantic dis­
tance or relatedness as the basic metric of semantic memory (e.g., Glass, 
Holyoak, & O'Dell, 1974; Kintsch, 1974), so I assumed there must be 
some analogous metric in the mental representation of arithmetic as well. 
Finally, the fundamental mechanism by which semantic knowledge was 
accessed was claimed to be a process of spreading activation, where 
activation from separate sources may intersect during a search, allowing 
retrieval of the information stored at that intersection (e.g., Anderson & 
Bower, 1973; Collins & Quillian, 1972; Norman & Rumelhart, 1975). So, 
at the outset, three related theoretical assumptions dominated my specu­
lations about mental arithmetic: first, the simple arithmetic facts are 
stored in a memory network; second, this network is dimensioned in 
some fashion analogous to the semantic distance or relatedness effect; 
third, the process of spreading activation is the basic mechanism of mem­
ory retrieval from the network. 

In the first studies on mental addition (Ashcraft & Battaglia, 1978), we 
speculated about long-term memory storage of the simple addition facts. 
This speculation was based largely on one empirical effect observed in 
that first research, the increase in RT as a problem increases in size (see 
Figure 9.1). The fundamental result is termed the problem-size effect, a 
robust effect in every study of arithmetic processing. In most important 
respects, I speculated, this effect is entirely analogous to the semantic 
distance effect: Mental distance between concepts is represented in the 
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FIGURE 9.1. Idealized problem-size effect for the basic addition facts for adults. 

memory structure, and this distance determines retrieval speed through 
the structure. The effect can be likened to the word frequency or typical­
ity effects, in which more frequent or typical items can be judged more 
rapidly in a variety of situations (e.g., Ashcraft, 1978; Rosch, 1975; Wha­
ley, 1978). Yet in a way, the effect is counterintuitive. Why should adults 
require longer for the problem 7 + 6 than they do for the problem 4 + 3? 
Would not years of experience with simple addition facts have yielded a 
leveling effect, such that they are all of equal difficulty? 

As a point of minor historical interest, the empirical result we reported 
for the problem-size effect involved a specific regression analysis predic­
tor variable termed correct sum squared. Because a scatter plot of the 
data yielded a nonlinear relationship between problem sum and RT, an 
exponential version of the sum was computed and found to be a superior 
predictor. The dominant model of addition performance at that time, the 
Groen and Parkman (1972) counting model, predicted a strictly linear 
problem-size effect. Thus, our exponential factor disconfirmed a major 
prediction of this counting model. We argued that the exponential effect 
implicated retrieval as the primary mental process used by adults. Thus, 
"correct sum squared may be interpreted as an index of search time 
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here. . Such an interpretation suggests that RT performance on these 
problems reflects retrieval of stored information, with retrieval time in­
creasing as a function of the magnitude of the problem. Aside from the 
retrieval time interpretation ofthe correct sum squared, no special signifi­
cance of the squared term, as oposed to some other power greater than 
1.0, is intended" (Ashcraft & Battaglia, 1978, p. 532). Critics have rou­
tinely ignored the notion that the sum squared was an index of something, 
search time as a function of problem difficulty, and instead have tried to 
relate the squaring directly to some mental mechanism. One reviewer, for 
example, demanded to know how a subject could possibly be thought to 
find the answer to a problem by first having to compute the square of that 
answer. 

Such concerns miss the point. In the left panel of Figure 9.2, adults' 
RTs are plotted for the simple addition problems 0 + 0 up through 9 + 9, 
the "basic addition facts." Points that are circled are tie problems, such 
as 2 + 2; points with flanking dashes are "0 addend" problems, such as 5 
+ O. Above the graph is the empirical regression equation for these data 
(Ashcraft & Stazyk, 1981, experiment 1): RT is composed of both an 
intercept, attributed to encoding, decision, and response execution times 
(see Ashcraft, 1982, for a discussion of the additive-factors logic in the 
model), and a weighted contribution of the correct sum squared. The 
curved function in the left portion of the figure is the plotted regression 
equation. 

In the right panel of Figure 9.2 is a scatter plot of corresponding data, 
generated by the computer simulation. At the heart of the model, and the 
simulation, is the notion of problem difficulty. As we became more con­
vinced that problem difficulty was the basic metric embedded in the mem­
ory structure, we abandoned the sum-squared predictor in favor of a 
normative set of difficulty ratings. Adults rated each problem's difficulty 
on a scale from 1 to 9, and these ratings were transformed to what I will 
call strength values. Depicted in the right panel of Figure 9.2 is the set of 
predicted data points when these strength values are used as the index of 
retrieval time in the simulation. Plotted through the simulated points is the 
same empirical function that appears on the left. By inspection alone, 
predicting performance based on strength values of the individual prob­
lems appears reasonable, providing a close fit to the bulk of the data. The 
most systematic lack of fit obtains with the 0 addend problems, flanked by 
dashes. I return to this deviation from the predicted values later, because 
it is an important indicator of rule-based performance. 

The prediction of the problem-size effect by means of strength values is 
the first important feature of the model and the computer simulation. 
Each basic addition problem is assumed to be stored in a memory repre­
sentation that, for purposes of illustration, may be thought of as a printed 
addition table. Digits 0 through 9 are both the column headings and the 
row headings in this table and are the memory nodes where the spreading-
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activation search originates. These nodes are referred to as parent nodes. 
Each of the 100 intersection nodes in this 10 x 10 table represents the 
answer to a problem. These are termed family members, where each 
parent node has connecting pathways down the column or across the row 
to 10 such family members. Each of these 100 nodes has a particular 
strength value associated with it; at present, assume these strength values 
to be the adult ratings just described. During processing, a stimulus such 
as 4 + 3 is presented to the simulation. Mter encoding, the search phase 
of processing begins. Parent nodes 4 and 3 are activated by the encoded 
representation ofthe problem, and they begin to spread activation to their 
respective family members. The amount of activation accumulating at any 
family member is a direct function of its strength value and the frequency 
with which the node is a target of the activation spread. Thus, the inter­
section node of 7, a family member of both parent nodes 4 and 3, is 
activated twice, once from each parent. 

A second feature of the spreading-activation process bears mention as 
well. Because we often test arithmetic performance with the true/false 
verification task, in which an answer is supplied along with the problem, it 
is convenient to refer to those nodes within the network that match the 
answer stated in a stimulus. Thus, when we test 4 + 3 = 7 as a stimulus, 
the set of intersection nodes representing 7 is of interest. These nodes are 
referred to as C nodes, because in general the simulation processes prob­
lems of the form A + B = C (or A x B = C). Presenting an answer to a 
subject supplies an extra source of information that is functional during 
search (see Campbell, 1985; Campbell & Graham, 1985). Thus, the simu­
lation also activates C nodes when an answer is presented in the stimulus. 
This amount of activation is less than that passed by a problem's addends, 
however. That is, in the true/false task, addends 4 and 3 are more impor­
tant, or informative, than the possibly incorrect answer (for example, 4 + 
3 = 8; see Campbell & Graham, 1985, for evidence that retrieval is more 
addend-driven than answer-driven). In the simulation, this activation 
amount is arbitrarily set at one-half of that passed by the parent nodes. 

Despite the advantage given to the answer nodes, the simulation still 
predicts the true/false verification task to be slower than the somewhat 
simpler production task in which subjects merely generate the answer to a 
stimulus problem. The reason is fairly straightforward. Neither subjects 
nor the computer simulation needs to pass through a yes/no decision stage 
in the production task, so the absence of decision time renders production 
trials faster overall (Ashcraft, 1982). Our data (Ashcraft, Fierman, & 
Bartolotta, 1984) indicate just this sort of main effect for production ver­
sus verification tasks, with the only exception being first graders' laten­
cies (but cf. Campbell, 1985). 

To recap, the problem-size effect-an increase in RT as problems grow 
larger-is the fundamental effect in this area of research, and it is the 
target of different theoretical mechanisms across models of arithmetic 
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performance. It is well predicted by rated difficulty measures and in the 
present model is taken as evidence for an underlying difference in 
strength or accessibility among the stored arithmetic facts. The usual 
strength-speed assumption is incorporated in the model, that nodes of 
greater strength are more rapidly accessed during search (e.g., Anderson, 
1983). 

Network Representation and Spreading-Activation 
Hypotheses 

At this point, we were convinced that adults' performance was not ex­
plainable in terms of simple counting models (Groen & Parkman, 1972). 
The nonlinear RT effect had been replicated in two more studies (Ashcraft 
& Battaglia, 1978, experiment 2; Ashcraft & Stazyk, 1981, experiment O. 
Furthermore, we had tested adults with somewhat larger addition prob­
lems, such as 15 + 12 = 27 versus 28. We found that the size of the 
problem in the Is column (the 5 + 2) was an important contributor to 
overall RT. This suggests, of course, that even complex arithmetic perfor­
mance still requires reference to a memory representation of the basic 
addition facts (Ashcraft & Stazyk, 1981, experiment 2). 

We advanced the specific hypothesis that adults store simple addition 
problems in a network representation and retrieve them by means of a 
spreading-activation search. At this point, evidence of a very similar na­
ture came to our attention. Winkelman and Schmidt (1974) presented 
simple addition or mUltiplication problems with answers correct under the 
other operation, and they observed a significant slowing of RT. In other 
words, adults were slowed when they received problems such as 5 + 3 = 

15 or 7 x 4 = 11. Winkelman and Schmidt speculated that associations 
among problems in memory were responsible for this confusion effect. 
The presence of associations among problems or, stated more generally, 
interconnections among memory nodes is a hallmark assumption of net­
work models. 

Our own study of the confusion effect (Stazyk, 1980; also Stazyk, 
Ashcraft, & Hamann, 1982) was limited to multiplication problems, to 
avoid a possible weakness in the Winkelman and Schmidt report (simply 
that subjects might easily misperceive the operator sign, + or x, on 
confusion problems, yielding spurious RT effects). We first replicated the 
problem-size effect for mUltiplication problems, and we demonstrated the 
incompleteness of previous regression analyses of such data (e.g., 
Parkman, 1972). We extended the generality of a hypothesized decision­
stage mechanism by finding a similar effect to that obtained in addition: 
The more incorrect an answer, the more quickly subjects can reject it (see 
the "split" curves in Figure 9.0. For now, however, the most important 
effect was the confusion effect. We presented simple multiplication prob-
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lems with two kinds offalse answers, multiples and nonmultiples. Thus, a 
problem such as 7 x 4 appeared not only with its correct answer 28 but 
also with an incorrect answer that was a multiple of one of the problem's 
digits, say 24, and with an answer that was merely incorrect, say 25. The 
effect of such confusion answers was quite pronounced; small problems 
showed a significant slowing of about 75 ms, large problems showed up to 
a 300-ms slowing (see figure 1 in Stazyk et al., 1982). The effect was still 
sizable when subjects had 600 ms of advance exposure to the problem 
before the answer to be verified was presented. 

Until this point, our evidence for the hypothesis of interrelatedness in 
the memory network had been extremely indirect; we had shown the 
inadequacy of counting approaches, had shown how the components of 
larger problems played a role in verification, and had obtained the basic 
problem-size effect in multiplication as well as addition. Yet, anyone of 
several theoretical mechanisms could predict those patterns. As Stazyk et 
al. noted, however, only a memory representation with explicit connec­
tions or pathways between related problems seemed adequate to account 
for the obtained confusion effects. Thus, the explicit notion was proposed 
that simple arithmetic facts are stored in an interconnected network rep­
resentation in memory (Ashcraft, 1982). Each fact was assumed to be a 
distinct node in the network, with access to individual nodes provided by 
the process of spreading activation. This scheme was advanced as the 
basis for Stazyk et al. 's confusion effect with the mUltiplication operation 
as well as the cross-operation effect obtained by Winkelman and Schmidt. 
When a stimulus is presented, related concepts in memory are activated 
by the encoded representation of the stimulus. Such activation, if strong 
enough, may affect processing in exactly the same fashion as is found in 
the semantic literature, i.e., facilitating responses to positives but slowing 
responses to negatives (e.g., Kintsch, 1974). Thus, a stimulus such as 4 x 
8 = 24, when presented to the simulation, generates a confusion effect. 
The C node 24 receives considerable activation, because it is a family 
member of both 4 and 8 and because C nodes themselves are activated. 
The accumulated activation at that node is nearly as high as the activation 
at the correct C node 32. During the decision stage, the discrimination 
between these two nodes is slow, because their activation levels are so 
close. 

Note that no extraordinary processes or assumptions need to be made 
for a network model to explain the confusion effect. The effect is a normal 
by-product of the usual spreading-activation search: Related nodes be­
come primed and then match a stated but false answer, generating inter­
ference. An early critical test of the simulation model, then, was the 
following: With only the basic spreading-activation mechanism as out­
lined above, would the simulation predict the empirically observed confu­
sion effect on multiples? The answer to this question was a straightfor-
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FIGURE 9.3. Predictions for confusion versus nonconfusion RTs based on the 
simulation. 

ward yes, as illustrated in Figure 9.3. Recall from the description above 
that each parent node spreads activation down the connecting pathways 
to its family members. In the proposed structure, an answer node such 
as 24 is therefore a family member of several parents, specifically 3, 4, 6, 
and 8. A problem such as 8 x 4, consequently, not only primes the 
correct intersection node 32 but also primes the C nodes 24 along both the 
parent node vectors (literally, in a printed table, the 8s row and the 4s 
column). When the distractor answer is then presented, its corresponding 
nodes in the structure have received some nontrivial amount of activa­
tion. This degree of priming yields a competitionlike effect during the 
decision stage, slowing the process because of a related but incorrect 
node. 

Let me reiterate an important point here: No special process was added 
to the simulation to generate this effect. It is generated by the normal 
spreading-activation search that operates on all trials. The situation is 
largely analogous to semantic priming. Priming of related semantic nodes 
is generally beneficial, supporting retrieval and context effects, but is 
occasionally responsible for interference. Similarly, priming of related 
nodes in arithmetic occasionally exerts a deleterious effect, when distrac­
tor answers in the verification task have been activated during search. 
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[Incidentally, largely the same kind of effect is observed in a purely pro­
duction task; i.e., subjects' occasional errors in producing answers to 
problems such as 8 x 4 and 3 x 5 are usually multiples, or sometimes 
answers under another arithmetic operation, say, 24 or 8, respectively. 
See Campbell and Graham (1985) and Miller, Perlmutter, and Keating 
(1984).] 

In sum, by 1982 not only had we advanced the basic notion of a network 
representation of arithmetic fact knowledge, but also in the Stazyk et aI. 
confusion effect paper we had confirmed a critical prediction of that ap­
proach. The simple facts of addition and multiplication seemed to be 
stored in a network representation, accessible by means of a spreading­
activation search. Adults' performance was well predicted by a measure 
of problem difficulty, interpreted as a search distance effect in the net­
work. These effects and hypotheses were described in two papers that 
year (Ashcraft, 1982; Stazyk et aI., 1982) and were successfully demon­
strated in a simulation model the following year (Ashcraft, 1983). Since 
the early 1970s, the research area had shifted from a theoretical commit­
ment to counting models to a consideration of fact retrieval as the basic 
process in adults' mental arithmetic. 

Developmental Effects in Declarative and 
Procedural Knowledge 

We viewed developmental investigations of mental arithmetic as particu­
larly important from the very outset of the project, if for no other reason 
than the obvious educational and practical importance of arithmetic. By 
1982, four separate developmental studies either had been conducted 
(Ashcraft & Fierman, 1982; Fierman, 1980, reported in Ashcraft et aI., 
1984; Hamann, 1981, reported in Hamann & Ashcraft, 1985) or were in 
progress (see Ashcraft et aI., 1984, experiment 2). 

A fundamental aim was to correct what we viewed as an imbalance in 
the empirical literature. That is, there had been extensive investigations 
into early number knowledge, such as the Gelman and Gallistel (1978) 
work on counting (also Ginsburg, 1977), and several studies of simple 
addition performance from first through third grades (e.g., Svenson, 1975; 
see Ashcraft, 1982, for a review). In contrast, there were no studies, to 
our knowledge, that involved children older than about the third grade. 
There was a theoretical lapse as well: In essence, theory in the area had 
not progressed beyond the simple counting model approaches. Our re­
search with adults showed the inadequacy of counting as an explanation 
of adult performance and implied, of course, that children must shift at 
some point from the early counting processes to more mature retrieval 
processes. 

Our first developmental study indicated that this shift is noticeable as 
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early as the third grade and is largely accomplished by the end of fourth 
grade (Ashcraft & Fierman, 1982). Children in later grades were subse­
quently found to be faster overall, of course, (e.g., Fierman, 1980; Ha­
mann & Ashcraft, 1985), but their data still demonstrated the same basic 
processes that we had identified for adults. We obtained evidence of 
counting-based performance at the first-grade level, relatively slow re­
trieval at the third- and fourth-grade levels, and a continued speeding of 
retrieval processes beyond that (Hamann, 1981). 

Two important developmental issues emerged from these studies: first, 
the issue of the growth of strength values in the proposed network repre­
sentations and, second, the issue of nonretrieval processing. These issues 
correspond directly to two categories of knowledge in the model I pro­
posed-declarative knowledge in the network representation and proce­
dural knowledge of "how to do arithmetic" (Ashcraft, 1982). Both cate­
gories are present in the simulation model. The first is quite explicit in the 
network strength values and the predictions of performance as discussed 
above. The second, procedural knowledge, is represented in only an ab­
breviated fashion in the simulation. Predictions from the simulation for 
certain classes of experimental conditions, for instance, young children 
working on large problems, show an interplay of the two knowledge 
sources and suggest a particular temporal relationship between the two. I 
describe the simulation and its incorporation of these two knowledge 
sources in some detail, because this involves the developmental heart of 
the model. I then discuss briefly the other procedural knowledge assumed 
by the model but not present in the simulation. 

Declarative Knowledge and Associative Strength 

When we deal with the development of the declarative knowledge store, 
the network representation of arithmetic facts, we confront a basic ques­
tion of learning and acquisition. At what point can a child be said to have 
stored an arithmetic fact in memory at some useful level of strength? The 
earlier arithmetic literature suggested that first graders follow a "counting 
on" strategy when they add, incrementing the larger number in a problem 
by Is in a 4-5, 6, 7 fashion for the problem 4 + 3 (Groen & Parkman, 
1972; Svenson, 1975). This mental counting approach is an entirely recon­
structive process; that is, children need only have the counting string 
stored in memory, along with procedures for keeping track of the incre­
menting process. The major exception to this strategy, even as early as 
first grade, involves performance with tie problems such as 2 + 2 or 6 + 6. 
Even first graders show no problem-size effect on tie problems, demon­
strating an essentially flat RT profile. The strong suggestion here was that 
ties have been "memorized" and therefore need only some constant 
amount of time for their retrieval (Groen & Parkman, 1972). No compel­
ling reason was offered to suggest why first graders were able to memo-
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rize tie problems but needed an entirely different and reconstructive 
method for nontie problems. 

If ties were already memorized by the end of first grade, then it seemed 
quite natural to suppose that other simple addition problems might also be 
memorized that early .. One attempt we made to evaluate this possibility 
(Ashcraft et aI., 1984) involved a specific examination of mental counting 
speed. We reasoned that children's mental counting speed should corre­
spond to their speed of adding simple numbers, if they were performing 
addition by a reconstructive counting process. Alternately, if children's 
addition involves a significant component of retrieval, then their rates of 
counting and adding should differ. Our results revealed no difference for 
first graders: Their mental counting rate was about 1000 ms per incre­
ment, not appreciably different from their rate of addition under the hy­
potheses of Groen & Parkman's (1972) min model (for minimum addend, 
the smaller number being added). In contrast, the second graders' count­
ing rate was considerably slower than their rate of addition. Furthermore, 
not only had their counting processes become faster, but also their perfor­
mance to the "count by 5s" condition revealed a strong influence of 
memorized information: They could count by 5s on the normal 5s se­
quence much more rapidly than off the usual sequence. l The mismatch 
between rates of counting and addition and the involvement of memoriza­
tion in the second graders' counting suggested strongly that retrieval from 
memory was an important component of early addition performance (see 
Ashcraft et aI., 1984; Siegler & Shrager, 1984). 

A second attempt to assess the role of memory retrieval among first 
graders was even more definitive. Hamann and Ashcraft (1985; also Ha­
mann, 1981) showed first graders a set of simple addition problems in the 
standard RT task and then showed the problems again in a postexperi­
mental interview. First graders, as well as fourth graders, revealed a 
particularly interesting pattern of spoken responses to the interview prob­
lems. To a problem such as 4 + 3, they often responded that they had 
counted out the answer; but to a problem such as 14 + 13, they re­
sponded, "Well, 4 + 3 == 7, and then ... " In other words, even at the 
first-grade level there was evidence of memory retrieval when the prob­
lem was more than minimally taxing. 

I wish to discuss one more body of evidence concerning early memory 
retrieval. Siegler and Shrager (1984) described the incidence of different 
problem-solving strategies among a sample of kindergarten children. 
Based on the results of a "speeded guess" procedure, they estimated the 
degree to which very simple addition problems were already represented 
in memory for these children. For problems no larger than 5 + 5, associa­
tive strengths between pairs of addends and their correct sums were 
appreciable, especially for N + 1 and tie problems. Siegler and Shrager 
proceeded to integrate these strength values into an elegant simulation of 
children's early strategy choice under simple addition. Based on the 
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strengths, the Siegler and Shrager model makes successful predictions 
concerning children's performance on addition problems; higher levels of 
strength generally predict retrieval performance and lower error percent­
ages, whereas lower levels of strength generally predict unsuccessful re­
trieval, which is then followed by some overt strategy such as counting 
aloud or counting on fingers. A central notion in the model is the assump­
tion that retrieval is the most basic strategy of all, that it predates other 
strategies such as counting developmentally, and that it precedes them 
during arithmetic processing. 

For our purposes, the source of the Siegler and Shrager strength values 
is critical. These authors presented compelling evidence about the growth 
of these strength values. In brief, three sources of association strengths 
were identified: the influence of the child's own experience with counting 
and sums, the positive and negative effects of counting string associa­
tions, and the frequency with which parents present problems to their 
children. 

In my simulation, I have taken the Siegler and Shrager strength values 
for correct associations as the memory strength values for a hypothetical 
child of kindergarten age. 2 These values are then modified across develop­
ment according to a simple rule, which for ease of presentation is de­
scribed in two parts. The first part of this rule is that during each simu­
lated year, nodes are strengthened in an incremental fashion. That is, 
each strength value in the network is increased according to the formula 
~S = g(100 - s). Each simulated year sees an increment in memory 
strength ~S equal to a fixed proportion g of the difference between asymp­
tote and current strength. The fixed proportion g is the growth rate, 
estimated from Fierman's (1980) first-grade and college data to be .20~ 

This equation is, of course, no more than a restatement of the incremental 
learning theory (e.g., Estes, 1964). 

The second part of the rule seems less intuitively obvious but is sup­
ported by data (Hamann, 1983; see also Hamann & Ashcraft, in press). 
Each increment in strength value is weighted according to the problem's 
frequency of presentation, with more frequent problems receiving a 
higher weight. In other words, the full equation for strength values is 
~sij = gfij 000 - sij), where fij is a frequency weight that varies for each 
problem, expressed as a proportion ofthe maximum observed frequency. 
This weighting involves a larger increment in strength for small problems 
but then a diminishing increment in strength as the problems get larger. 
Hamann's data in support of this part of the rule are remarkably straight­
forward. She tabulated the frequency of presentation of the 100 addition 
facts in a sample of 12 texts, 3 each for kindergarten through third grade. 
She found an overwhelming tendency to present smaller problems more 
frequently, such that the larger problems never achieve the frequency of 
smaller problems. The frequency distribution across addend sizes, with 
all 4 years combined (see Figure 9.4), shows a low point 050 presenta-
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FIGURE 9.4. Frequency of presentation of basic addition facts by first and second 
number, accumulated across grades K to 3 (after Hamann, 1983). 

tions) for problems with Os as addends, a peak (350 presentations) for an 
addend of 3, and a dwindling (225 presentations) for an addend of 9. 

The consequence of this developmental rule in the simulation is a mem­
ory representation with great diversity in the individual nodes' strength 
values. In general, strength values are a weighted function of age and 
problem size, that is, of the growth rate g and frequencies of presentation 
fu. One indication of the adequacy of this developmental growth function 
is presented in Figure 9.5, a scatter plot of rated difficulty values, based 
on adult norms, versus the values generated in the simulation. To simu­
late growth from kindergarten to college (grade 13), the strength value 
equation was applied repeatedly to the initial kindergarten strength value 
matrix, one repetition per simulated year. The correlation between the 
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normative and forecasted measures is .901. Figure 9.6 shows the process­
ing consequences of this developmental growth function, observed RTs to 
small and large problems (one- and two-digit sums, respectively) on the 
left (from Hamann & Ashcraft, 1985) and simulated RTs to the same 
problems on the right. Although the growth function here is only an 
approximation, it does model a great deal of the developmental change 
that occurs across these ages. 3 Table 9.1 presents the relevant correla­
tions among empirical RTs, forecasted strength values, and empirical 
predictors. 

Procedural Knowledge and N onretrieval Processing 

Although both our research and the important paper by Siegler and Shra­
ger indicate a greater reliance on memory retrieval than had previously 
been proposed, it is nonetheless certain that much of a young child's 
performance is due to processes other than fact retrieval. Indeed, clear 
instances of processing have been documented in which retrieval is not 
involved. In general, I refer to this class of solution methods as proce­
dures and their representation in memory as procedural knowledge. I 
have suggested that, in addition to the stored facts, children acquire a 
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variety of rules, algorithms, heuristics, and other strategies for doing 
arithmetic (Ashcraft, 1982). These procedures often provide a completely 
separate method of obtaining the answer to a simple arithmetic problem 
(e.g., counting on). I have argued further that, on any trial, overall RT will 
be a function of the faster of the two kinds of performance. That is, if a 
problem is represented with sufficiently high strength, it will be retrieved 

TABLE 9.1. Correlations between RT and 
various predictors. 
Grade 

1 
4 
7 

10 
College 

Min 

.774 

.379 

.413 

.468 

.326 

Wheeler 

.804 

.610 

.674 

.688 

.523 

Forecasted strength 

-.747 
-.557 
-.528 
-.540 
-.616 

Note: College data are from Ashcraft et al. (1984), and other 
data are from Hamann and Ashcraft (1985). The Min predictor 
is the smaller of two numbers being added (Groen & Parkman, 
1972). The Wheeler predictor is a measure of difficulty based 
on mastery during acquisition (Wheeler, 1939; see Hamann & 
Ashcraft, 1985, in press). The forecasted strength variable is 
the measure of accessibility or strength as generated by the 
simulation. 
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successfully from the network representation. If a problem's strength is 
too low or if it is not represented at all, then a procedural solution will 
prevail. I have hypothesized that procedural solutions will be slower than 
retrieval for any arbitrarily selected addition fact (Ashcraft, 1982; but cf. 
Baroody, 1983, 1984). Siegler and Shrager's (1984) results seem to con­
firm this assumption rather directly. Mean retrieval time in their data was 
4s, whereas mean latency under the counting strategies ranged from 7 to 
13s. 

The procedural knowledge component I proposed (Ashcraft, 1982) con­
tains a variety of methods for reconstructing an answer. Nonetheless, I 
have included only one major reconstructive procedure in the simulation, 
the counting-on procedure. This procedure is by far the most documented 
of all strategies for doing addition, and it is the one for which definite 
temporal parameters are known. In the simulation, there is a call to the 
search process for all trials (and for all ages). If the initial spread of 
activation through the network does not activate any node above thresh­
old, then the search procedure is terminated and procedural knowledge 
governs the processing. Then the simulation attempts to solve the prob­
lem by using its knowledge of counting principles, and it predicts consid­
erably longer latencies owing to the slowness of young children's mental 
counting processes. In the simulation, counting solutions are the norm for 
problems larger than 1 + 1 at the first-grade level; 0 addend problems and 
ties up to 3 + 3 are performed by retrieval. The proportion of trials 
completed via counting decreases steadily, until only one problem is 
solved by counting at the simulated fourth-grade level (8 + 9 = 17). This 
developmental progression from counting to retrieval, hypothesized and 
documented in earlier studies (e.g., Ashcraft & Fierman, 1982), is pro­
duced by the simulation according to a simple principle-strength of the 
problem node in memory. When a problem has insufficient strength to 
achieve threshold, its solution requires procedural knowledge. As the 
problem node grows in strength, it exceeds threshold during search and is 
consequently accessible to the search and retrieval process. 

A detail or two about the involvement of procedural knowledge are in 
order. As currently implemented, the simulation does not add aborted 
search time to the latency estimate for counting. Instead, the simulation 
predicts parallel operation of the declarative and procedural components, 
simultaneous retrieval attempt and counting-on. This is a minor but defi­
nite difference between my approach and that of Siegler and Shrager. 
They interpret their data as suggesting a sequential operation of aborted 
search and then counting. It is not clear that existing data are precise 
enough to discriminate between the sequential and parallel processing 
alternatives. 

The simulation is incomplete in its declarative and procedural knowl­
edge components in at least one other sense. The adult model predicts 
performance to either addition or multiplication problems; these are 
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merely two interrelated bodies of knowledge in the networks. We have 
only recently collected developmental data on multiplication (Koshmider, 
1986; but cf. Campbell & Graham, 1985), and so we have little basis for 
specifying initial strength values for multiplication facts. Furthermore, we 
have no clear idea at all as to the kinds of procedural strategies children 
might use for multiplication. An inference from our counting studies 
(Ashcraft et aI., 1984) is that multiplication is not performed via a count­
ing strategy among adults, because the counting rates were much too slow 
in comparison to adult multiplication rates. It remains to be seen whether 
counting is a viable explanation for multiplication at elementary school 
levels. At present in the simulation, the procedural route simply fails 
when a mUltiplication problem is presented. 

Let me consider one loose thread here concerning procedural knowl­
edge. I have argued that both addition and multiplication problems that 
contain a zero are "special cases" (Ashcraft, 1983). The most compelling 
evidence for this conclusion was presented by Stazyk et al. (1982), where 
zero problems were among the slowest and most error-prone of all the 
basic multiplication facts (but this slowess may be limited to the verifica­
tion task; see Miller et aI., 1984). One of our adult subjects even persisted 
through the session in believing that problems such as 7 x 0 = 0 were 
incorrect. We suggested that these problems are generally learned by a 
taught rule, such as "anything times zero is zero," rather than by the 
extensive practice devoted to other problems. As a consequence, these 
entries in the network are rather weak (Stazyk et aI., 1982). In the simula­
tion, I have included zero problems in the networks and have used the 
generally high association values for these problems as if they were com­
parable to values for other problems. Through this scheme, predicted 
performance to these problems is too fast (Figure 9.2). Hamann's (1983) 
analysis of textbooks confirms our suspicion: Zero problems are the low­
est in frequency of presentation. They are rated high in accessibility (low 
in difficulty), undoubtedly because of the accessibility of the taught rule, 
but they are performed via procedural knowledge rather than network 
retrieval. Treating the zero problems the same as all other problems in the 
simulation yields a substantial inaccuracy in prediction for these prob­
lems. In combination with Hamann's frequency data, this confirms the 
need for procedural knowledge in performance and indirectly supports 
the learning strength hypothesis in the model. 

In summary, the model contains two distinct sources of arithmetic 
knowledge-a declarative structure that represents known facts in a net­
work of interrelated nodes and a procedural knowledge component that 
contains various rules and other reconstructive procedures. A relatively 
straightforward developmental increase in the strength of declarative 
knowledge is implemented in the simulation, along the lines suggested by 
incremental learning models, with the important qualification that a 
child's lesser experience with larger problems yields an overall advantage 
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for small versus large problems. A failed attempt at retrieval results in 
reliance on procedural knowledge for a reconstructive solution to the 
problem, with consequent increases in latency. In practice, such recon­
structive solutions based on simple counting drop out completely after the 
fourth grade in runs of the simulation. At younger ages, however, count­
ing is a prominent feature of predicted performance. This involvement of 
counting exaggerates the slope of the problem-size effect, both in the 
simulation and in the obtained data, because counting is a slower process 
than retrieval. 

Simulation Model of Mental Arithmetic Development 

Having presented various aspects of the model and simulation in piece­
meal fashion, I now describe the model and simulation more formally, 
highlighting the critical assumptions and the consequences of those as­
sumptions. In general, I include specific details about the simulation pro­
gram only where ambiguity might otherwise result. Appendix 9A contains 
a pseudocode summary of the search and decision stage processes and the 
developmental rule for forecasting strength values. A flowchart summary 
of the processing activity is presented at the close of this section. 

The model and the computer simulation rest on three critical and inter­
related assumptions. First, the basic facts of addition and multiplication (0 
+ 0 and 0 x 0 through 9 + 9 and 9 x 9) are stored in long-term memory as 
a network of interconnected nodes. Access to the network is gained by 
means of parent nodes, digits 0 through 9, linked by directed pathways to 
nodes that represent answers; for convenience, the set of nodes linked to 
a parent is referred to as that parent's family members, e.g., the 4 + 
family or the + 3 family. Each directed pathway from a parent to a family 
member has a particular strength value sij associated with it, where i is the 
index for the first addend or parent and j for the second. Access or 
retrieval time for any node is a function of the strength value for the 
corresponding pathways (strength of pathways is the same concept as 
strength of nodes). For purposes of illustration, this network structure is 
isomorphic with a printed table of addition or multiplication facts, where 
each intersection of row i and columnj contains two values, the correct 
answer and the strength value for the pathway leading to that answer. The 
important qualification here is that a square printed table implies an equi­
distant node structure, whereas the present structure is "distorted" from 
true square by the strength or distance values Sij. 

Second, it is assumed that the basic facts of addition and multiplication 
are acquired and consequently stored in this memory representation as a 
function of frequency and practice. In the model, strength values reflect 
this acquisition process. Strength for any problem node is a function of 
experience or practice with that problem, broadly defined. In other 
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words, any relevant experience with a basic fact is assumed to influence 
the strength of that fact in memory. This assumption includes not only 
those factors identified by Siegler and Shrager (1984), but also specifically 
such categories of experience as classroom practice, individual problem 
solution, whether formal or informal, and a "bootstrapping" effect on 
memory strength from reconstructed answers for unknown (or low-acces­
sibility) problems. The overall effect of this practice-the learning curve 
for arithmetic-is simulated by the joint influence of two parameters: g, 
the constant yearly growth rate, and!ii, the relative frequencies of pres en­
tation for the addition problems 0 + 0 through 9 + 9 (as noted, the 
multiplication network is implemented for adults, but not developmen­
tally). Each year sees an increment in strength values for each problem, 
modeled by an incremental learning theory equation4 and governed by the 
parameter g. This increment in strength is never as great for larger prob­
lems as it is for smaller problems, however, based on the textbook survey 
data mentioned above. This differential frequency is represented as a 
matrix of relative frequency values fu. 

Part of the importance of the strength value construct is that it provides 
a more adequate explanation of the ties effect. That is, tie problems have 
often been classified as special cases, largely because their problem-size 
effect does not match the results for other problems. The relatively flat 
RT pattern to these problems, however, is generated by the same simula­
tion mechanism that generates RTs for all problems, spreading-activation 
search through nodes of varying strength. In other words, ties are not 
"exceptions" to the problem-size effect when that effect is indexed by 
strength values. 

The third critical assumption is that the normal process of retrieval is 
one of spreading-activation search. That is, a problem's answer is as­
sumed to be retrieved from the network by first activating the problem's 
addends (parents A and B). This activation spreads to related nodes, i.e., 
family members, in the network and eventually culminates in retrieval of 
a stored answer. In the simulation, activation is propagated from the 
parent nodes to their respective family members: In situations where a 
stimulus problem is presented with an answer for true/false verification, 
the stated answer C also triggers a spread of activation. The critical point 
here is that the spread of activation from A and B parent nodes, and the C 
nodes, sums during this process, yielding a set of activated nodes at the 
several intersections that will compete for selection as the correct answer 
to the problem. The most highly activated node in this set continues to 
propagate activation,S according to the principle that the amount of acti­
vation passed through the network is a negative function of distance; that 
is, less activation is spread to more distant nodes (Collins & Loftus, 1975; 
see proximity in Appendix 9A). At the end of the search, the simulation 
identifies the most highly activated node in the entire network as the 
correct answer, in a Pandemoniumlike fashion (Selfridge, 1959; see also 
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Rumelhart & McClelland, 1982), and computes the simulated RT based 
on this node's level of activation (see Appendix 9A, search step 7). This 
retrieved answer is then passed along for further processing (e.g., deci­
sion in a verification task). 

Embodied in this third assumption about spreading activation is the 
notion of threshold of activation. As mentioned above, a node must ex­
ceed threshold during search for it to be accessed, that is, to be identified 
as a candidate answer to the presented stimulus problem. Threshold is 
defined in the same percentage metric as strength values. To be concrete, 
the maximum possible strength value is 100, so the accessibility threshold 
is also 100. In practice, this means that a node may achieve threshold if it 
was the target of activation from any two sources, parent nodes or C 
nodes. For example, the adult strength value for 2 + 3 = 5 is 82. This C 
node 5 will be activated to its strength value by each parent node and so 
will achieve an activation level of 164 (then further modified by the activa­
tion spread from C nodes on a verification trial). Conversely, any trial that 
does not yield a node at or above threshold results in nonretrieval pro­
cessing; quite literally, the information stored at the node is not accessible 
during search, so some other method must be applied to arrive at the 
answer. As it is currently programmed, nonretrieval processing is an 
application of the counting-on process for addition; no analogous process 
for multiplication is yet implemented. Counting, if this method is called, 
proceeds at an age-appropriate rate (see Ashcraft et al., 1984), but is 
invariably slower than successful retrieval would have been. More com­
plex forms of procedural knowledge, both informal and formal (e.g., esti­
mation strategies, rules for carrying in complex addition or mUltiplica­
tion), represent an important avenue for further development of the 
simulation model. 

Let me describe one final bit of machinery, the decision stage, because 
it is important to understand its operation for certain tests of the simula­
tion. To begin, the decision stage is called only when a true/false decision 
is required. During simulation runs of the production task (for example, 
4 + 3 = ?), the decision stage does not operate. When a decision is 
required, however, the search stage is completed as described above. At 
the conclusion of search, two values are passed to the decision stage for 
evaluation. One is the activation level ACTx of the most activated node, 
the node identified by the simulation to be the correct answer. The second 
value is the activation level of the answer stated in the problem, or more 
precisely the activation level ACTe of the most highly activated C node, 
where the set of C nodes is the set that matches the answer C stated in the 
stimulus. Of course, when the problem presented to the simulation is true, 
these two activation values are identical, and it is exactly this match that 
causes the simulation to decide the problem is true. When a false problem 
is presented, such as 4 + 3 = 8 (or 4 x 8 = 24), then two distinct values 
are transmitted to the decision stage, the activation value for the stated 
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answer 8, ACTe , and the activation value ACTx ' Under these conditions 
of mismatching activation values, the simulation attempts to discriminate 
between the two values. As is generally the case for symbolic compari­
sons (e.g., Banks, 1977), time for discrimination here is a negative func­
tion of the distance or difference between the two values. Thus, the 
attempt to distinguish same and different during the decision stage adds 
merely a constant decision time to true trials but a differential amount of 
time to false trials, depending on the degree of mismatch between stated 
and retrieved answers' levels of activation.6 

This discrimination process is the basis for the prediction of a confusion 
effect in the simulation. The slowing ofRT to problems such as 4 x 8 = 24 
is due to the interrelatedness of nodes within multiplication, and slowing 
of performance to problems such as 3 x 5 = 8 is due to the interrelated­
ness between addition and multiplication operations. In both cases, suffi­
cient activation at the distractor C nodes has accumulated during search 
to slow the discrimination process. For several reasons, however, it is not 
clear whether the label confusion effect should be applied to the slowing 
of RT to addition problems such as 4 + 3 = 8. In the past, this slowness 
has been attributed to the operation of a decision-stage mechanism (e.g., 
Ashcraft & Stazyk, 1981), which functions on the basis of the difference, 
or split, between the retrieved answer and the stated answer (see Figure 
9.1 and Appendix 9A). Interestingly, the same general predictions are 
made by the simulation with this split-driven discrimination process 
turned off. That is, this split effect is also predicted based on activation 
and then competition among neighboring nodes (see Ashcraft, 1983, for 
instance). 

The situation is somewhat more indeterminate under the multiplication 
operation, however; a purely network-based confusion for these predic­
tions is insufficient. If only the network confusion effect is operative, then 
the simulation incorrectly predicts rapid rejection of false problems such 
as 4 x 5 = 23. The reason for this incorrect prediction is quite straightfor­
ward: 23 is not in the basic (i.e., single-digit) multiplication table, so no C 
node 23 exists to accumulate activation. Empirically, however, such an­
swers do slow the verification process, though possibly not to the same 
degree as legal entries in the table (e.g., Duffy & Fisher, 1980; Stazyk et 
aI., 1982). A computational change in the simulation would resolve this 
difficulty immediately: Computing RT as the longer of the two decision 
processes would in effect merge the network-competition and the dis­
tance-based discrimination processes, modeling the fragmentary data that 
exist on this topic. I have resisted such a change since it lacks theoretical 
motivation and solid empirical backing (but see Campbell & Graham, 
1985, for a careful analysis of errors made in a production task). 

Figure 9.7 presents an overview of the simulation model, in the form of 
a flowchart summarizing the two solution methods, network retrieval and 
procedural solution. Consider network retrieval first. For any problem 
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A + B = C, both addends and the answer are encoded and then passed to 
the search stage. Search consists of the spreading-activation mechanism 
described above. In situations where a prime P precedes the stimulus 
problem, the parent node and C node spread of activation is triggered by 
the prime and is then followed by encoding of the problem. At the conclu­
sion of the search stage, the set of nodes activated above threshold is 
examined, and the most highly activated of these is selected as the correct 
answer to the problem. If no node has achieved threshold, then the search 
route fails. Assuming the most highly activated node is indeed above 
threshold, processing shifts to the decision stage. Decision consists ofthe 
comparison of two values, the activation level ofthe retrieved node ACTx 

and the activation level of the node corresponding to the stated answer C 
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in the problem, ACTe • If these two activation values are the same, the 
simulation concludes that the problem A + B = C is correct. The RT in 
this situation is a constant, composed of encoding, decision, and response 
time, plus a variable search time that varies as a function ofthe activation 
level (see Appendix 9A). If the two activation values differ, then the 
overall RT contains an additional component, the decision-stage time 
necessary to discriminate between ACTx and ACTe• As stated, this dis­
crimination time is a negative function of the difference between the two 
magnitudes (e.g., Banks, 1977). 

Now let us consider the alternate processing route, procedural solution. 
Although this route is called on every trial, it is considerably slower than 
the retrieval route, because counting is a slower process (Ashcraft et aI., 
1984). Thus the overall RT is governed by procedural solution only when 
the search route fails, that is, when no node achieves threshold. When 
this circumstance holds, as is often the case for simulations of young 
children's performance, then the procedure that is applied is a simple 
counting-on process (e.g., Groen & Parkman, 1972), in which the larger of 
A and B is incremented by Is. At the end of counting, the simulation 
advances X as the correct answer to the problem A + B and shifts to a 
decision mechanism. During decision, the obtained answer X is compared 
to the stated answer C. The predictions for decision time here are similar 
to those for the activation-based decision mechanism, that is, a constant 
time when the two values match and a variable time when they mismatch, 
where time is a negative function of the difference between the two mag­
nitudes. The predicted RT under a procedural solution is a constant for 
encoding, decision, and response times, plus an amount of time due to the 
counting mechanism, counting rate r times the number of increments 
counted on (counting rates from Ashcraft et aI., 1984). Again, when X and 
C differ, then the time for the discrimination is also a component of RT. 

The major new predictions generated by the simulation have to do with 
automatic versus conscious retrieval processes within simple arithmetic, 
using the priming paradigm developed by Posner (1978; see also Posner & 
Snyder, 1975). In particular, the simulation permits primes P to be pre­
sented for variable durations and demonstrates the effects on latency 
when primes of differing relationships to the target problems are pre­
sented. For instance, activation of the network by a relevant prime (for 
example, 5 as a prime for 5 + 3 = 8) facilitates subsequent processing, 
because a set of nodes relevant to the upcoming search (the 5 + family) 
has been activated. Conversely, activation from an irrelevant or "mis­
leading" prime (for example, 8 as a prime for 3 x 4 = 8) can inhibit 
processing (for example, Figure 9.3). The predicted amounts of facilita­
tion depend critically on two variables, time duration between prime and 
target and network strength values. The latencies that are predicted show 
effects of problem size and simulated age (see Ashcraft, 1985a, for de­
tails). There are little data on the development of automaticity, regardless 
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of area (but see Simpson & Lorsbach, 1983), so there are literally no such 
data on the development of automatic retrieval in arithmetic. Because we 
are just now beginning to collect such data, at present there is no basis for 
evaluating the accuracy of the simulation's predictions. 

Issues in Simulation Modeling 

Because simulation models are not the norm in developmental work, it 
seems appropriate in a book like this to discuss some advantages and 
disadvantages of this approach. I do not present a formal consideration of 
these topics, because excellent sources of such discussions are available 
elsewhere (e.g., Kieras, 1984). Instead, I summarize several benefits and 
drawbacks of a computer simulation approach, discuss some difficulties 
related to model evaluation, and propose a more modest role for simula­
tions than is often claimed, the simulation as a demonstration of a theory. 

A major advantage of computer simulation involves the issue of con­
creteness. As Kieras (1984) put it, "Constructing a rigorously specified 
computer program is an excellent way to convert a set of vague ideas into 
a more specific and precise theory" (p. 2). However clear the notions of 
network storage and spreading activation were to me, these hypotheses 
were not sufficiently specified in the verbal statement of the model 
(Ashcraft, 1982). Computer simulation, however, provides a formalism in 
which theoretical constructs must be completely specified. The endeavor 
forces the theorist to be quite explicit about every process and mecha­
nism. This precision is often quite lacking in verbal theories (see Ashcraft, 
1985b; Baroody, 1985). 

A simulation is very heuristic to the theorist, in the sometimes embar­
rassing sense that it illuminates gaps in current knowledge or the theo­
rist's own conceptualization. For instance, I claim in my theory that 
multiplication is acquired and performed in an entirely analogous fashion 
to addition. I am not compelled, in this verbal statement, to specify when 
multiplication facts begin to acquire strength in memory, what those 
strengths might be, or how they might grow across the developmental 
span. In a verbal theory, these questions might go unnoticed. They con­
front me directly in a simulation, however; unless they are addressed 
adequately, the simulation simply will not run. The simulation theorist is 
therefore painfully aware of the lapses in available data and the elements 
in the simulation which reflect those lapses. A salutary effect, however, is 
that further empirical work can be targeted more usefully once the lapses 
are revealed. 

A third advantage involves the complexity of the behavior being mod­
eled. Computer simulation permits the modeling of highly complex sys­
tems and processes and is often considerably more ambitious than tradi­
tional mathematical modeling techniques (see, for instance, Schank & 
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Riesbeck, 1981). With the present model, I attempted to predict latencies 
on simple arithmetic problems in production and verification tasks for 
subjects in grades 1 through college. These predictions are a function of 
particular theoretical assumptions about storage format, retrieval pro­
cesses, and acquisition history. As the empirical results flowed in, it 
became clear that a formal model of the various hypothesized compo­
nents would be substantially more complex than is customarily handled 
with traditional mathematical modeling techniques. Short of reducing the 
scope of the modeling effort, simulation seemed the only formalism in 
which such complexity could be embedded conveniently. 

Notice further that the dependent measure studied in this empirical 
literature is most often reaction time, and theoretical predictions about 
the nature of processing generally translate to empirical predictions of the 
duration of different mental events. Only computer simulation seemed to 
have the potential for modeling the hypothesized behavior of a process 
model, for specifying the underlying knowledge representation, and for 
predicting RT patterns dependent on those hypothesized processes and 
structures. This level of complexity matches a second argument that 
Kieras (1984) made in favor of constructing a simulation: "To account for 
empirical data. . . . The fact that such accounting can be done at a very 
fine level of detail is important because the level of detail possible with 
modern on-line data collection methods is simply not exploited by con­
ventional verbal or mathematical models, whereas simulation models are 
intrinsically committed to a very high level of detail" (p. 3). 

A final strength, in my opinion, is the clarity with which a simulation 
can make predictions and the flexibility it permits in testing components 
of an overall process. In a simulation, the causes of the predicted effects 
can be stated exactly; there are no "emergent" properties in a simulation, 
by definition (in the sense proposed by Hempel & Oppenheim, 1953), 
although unexpected outcomes may abound, as in the present case with 
split effects. This is not to say that the causes will necessarily be simple, 
merely that the causes are known, in principle, by virtue of having been 
programmed and that their actions can be interpreted precisely. Further­
more, the exactly specified relationships may then be used to generate 
new predictions, testable both empirically and within the simulation itself. 
Thus, in the current simulation, the root cause for the interaction between 
age and problem size is precisely the effect of experience on strength 
values in the network. We might test the strength value to the problem­
size hypothesis on a set of arithmetic problems known to be of minimal 
strength, first exploring the behavior of the simulation and then evaluating 
the hypothesis empirically. Contrast such statements and predictions with 
those of a verbal theory, which often makes only qualitative predictions 
based on vaguely defined processes. Finally, the simulation permits a 
novel way of evaluating components in the model. We can simply turn the 
component off and observe the resulting behavior of the simulation. This 
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approach was used, for example, to contrast retrieval and counting mech­
anisms, and it revealed substantially incorrect predictions for the prob­
lem-size effect beyond the third grade when the retrieval component was 
omitted. 

Whereas computer simulation is an appropriate and useful formalism 
for many situations, the approach is not without its limitations. First, the 
approach can be expensive, in terms of both equipment costs and the 
theorist's time (although the present simulation is implemented on an 
ordinary microcomputer, cutting both kinds of costs at once). Second, the 
flexibility of the method is such that a simulation is never "finished," in 
the sense that additional components and modifications are always possi­
ble. This has implications, of course, for evaluating the adequacy of a 
simulation model. To aggravate the situation, few sources of practical or 
theoretical advice exist to guide the theorist; because simulations vary so 
widely in topic, scope, and intent, however, it is doubtful that anyone set 
of guidelines for writing a simulation model could be proposed. The most 
serious drawback involves the issue of evaluating the simulation as a 
psychological model. Indeed, the greatest strengths of the simulation ap­
proach-versatility and power-are often the primary sources of this 
concern. Given the ambitious scope of many simulation models, a distinct 
worry is that computational power may be seductive, leading a theorist to 
ever-more complex solutions rather than ever-more parsimonious models 
and theories (see especially Loftus, 1985). I illustrate how difficult it can 
be to evaluate simulations and then comment on the status of simulation 
models as psychological theories. 

A major concern in mathematical models, of course, is the number of 
parameters that must be assigned values and how those assignments or 
estimates are made. This problem is, if anything, a thornier issue in simu­
lation work. A simulation invariably contains decisions about many pa­
rameters or weights, probably more than typical mathematical models 
given the generally larger scope of simulations. It can be surprisingly 
difficult both to gauge the gradations of psychological importance of all 
these parameters and weights and to anticipate their joint effects under 
different circumstances. It can be equally difficult to maintain the distinc­
tion between true parameters and mere computational values, particularly 
as the simulation grows larger. This creates a serious problem if we wish 
to test the simulation against standard criteria of goodness of fit and 
parsimony. I would not consider my simulation to be "disconfirmed" if 
the growth rate g were eventually found to be .30 instead of .20. Yet the 
estimate of .20 is critically involved in the latency predictions, which are 
taken seriously as evidence in evaluating the simulation. 

I have adopted two guidelines in an attempt to deal with this issue 
(although I do not claim they are necessarily unique to my own work, 
general to other simulation efforts, or completely adequate to solve the 
problem). To minimize the number of "free" parameters in the simula-



330 Mark H. Ashcraft 

tion, I have (1) relied extensively on parameter values from empirical 
studies and (2) adopted an internal metric within the simulation, a single 
parameter in a sense, that in turn is responsible for many other computa­
tional values. To illustrate 0), strength values in my simulation are from 
empirical rating studies or published association strength data, and count­
ing rates are also obtained from published studies. Because a goal of the 
simulation is realistic prediction of RT effects, it makes no sense to omit 
such empirical values out of a sense of theoretical purity. This approach is 
in contrast to a view that such values in a model should derive from more 
basic principles or processes. As applied to the current simulation, this 
view would dictate, for example, that counting rates themselves be de­
rived from a more basic "primitive," say a central "rate of information 
processing." My choice here is related to a particular role for simulations, 
described below. To illustrate (2), the internal metric I have adopted 
throughout the simulation is based on the quantification of strength or 
accessibility. Stated simply, strength is quantified as a percentage, and 
the various processes that operate on or use the strength values are ex­
pressed as a function of this percentage metric (e.g., threshold, the pro­
portional frequencies iij" the amount of activation, the decreasing gradi­
ent of activation as a function of proximity, etc.). At a minimum, deriving 
such parameters from a common "ancestor" makes it simpler to identify 
values that do not derive from that scheme (e.g., the decision-stage 
weights for discrimination time). 

I turn now to the role of simulation theories, because this issue has 
implications for the kinds of evaluations that are appropriate. It is often 
claimed that the simulation itself is the testable, concrete statement of a 
theory, that the theory and the simulation are equivalent. This claim 
seems mistaken to me, or at least overstated, for several reasons. A 
theory is generally a statement of a set of principles, sometimes formu­
lated mathematically, that is open for inspection and testing by impartial 
investigators. Few, if any, computer simulations meet the criteria of 
openness and testability, except to their own creators. Tests of the simu­
lation by others, as in all hypothesis testing, involve deductions from the 
theory's principles to a set of testable hypotheses. Furthermore, equating 
the theory with the simulation is taken seriously at the level of theoretical 
constructs and basic assumptions, but is never taken seriously at the level 
of programming statements. Any simulation (and simulation language) 
includes programming "overhead" and devices that are necessary com­
putationally but irrelevant psychologically. As before, we rely on the 
verbal statement of the theory to tell the difference between psychologi­
cally important and computationally necessary propositions. It is the task 
of the theorist here both to discern the difference and to maintain a level 
of scientific integrity sufficient to guard against computationally conven­
ient but psychologically implausible mechanisms. 

Another manifestation of the same issue is somewhat more subtle. Few 
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simulations embody all the mechanisms, principles, or processes hypoth­
esized by a theory. Instead, certain important or central parts of the 
theory are implemented, and the simulation is an instantiation of only this 
subset of the theory. An unfortunate consequence is that, whereas suc­
cessful predictions from the simulation can be taken as support for the 
theory, unsuccessful predictions can reflect an inaccurate theory, an in­
adequate translation to program code, or an irrelevant test because a 
component is not yet fully implemented. There is often no firm basis to 
distinguish between the first two alternatives, given the subset relation­
ship of the simulation to the theory. And the third alternative can render 
the simulation nearly impervious to disconfirmation. 

In the face of this uncertainty, I argue for a more limited role for 
simulation models than the traditional claim that "the simulation is the 
theory. " In my view, simulations have a vital role as illustrations or 
demonstrations. That is, a simulation can illustrate the plausibility of 
theoretical constructs or principles and can demonstrate how a set of 
assumptions will (or will not) successfully model some aspect of behavior. 
An anonymous reviewer once commented that a counting model could 
predict the basic set of arithmetic effects more parsimoniously than a 
network model and could also predict an effect I had advanced as a 
definitive test of network approaches. My simulations of various counting 
models told me that, although they are certainly more parsimonious, they 
are in fact not able to predict the basic results reported in the literature 
(especially the problem-size effect across different ages; see Ashcraft & 
Stazyk, 1981; Ashcraft et al., 1984). Simulation of a network representa­
tion not only predicted these basic effects but also generated more differ­
entiated predictions of the definitive network test, predictions that were 
supported by the data (especially the confusion effect; see Stazyk et al., 
1982, for a thorough discussion of the alternative models' predictions). 
My simulation, I believe, has demonstrated the plausibility of a theory 
based on the assumptions of network storage and spreading activation. 
For reasons discussed above, this demonstration is more powerful than 
claims that could be made about a verbal theory which has not been 
implemented in a simulation. 

Conclusion 

Returning to the substantive issues, I wish to conclude on a theoretical 
note that unifies this model of arithmetic performance with the larger 
literature on cognitive processing. The theoretical point concerns automa­
ticity of mental processes and the necessary condition for automatic pro­
cessing to occur. A study reported by Shiffrin and Schneider (1977) serves 
nicely for this point. A group of subjects given consistent mapping be­
tween stimuli and responses developed automatic detection processes 
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across 2400 trials; when the mapping was reversed, a subsequent set of 
2400 trials had still not overcome the initial, massive dose of practice. In 
short, automaticity develops with consistent, massive, repetitive prac­
tice. In my simulation, automatic retrieval characterizes all network re­
trieval processing, based on strength values that indicate accessibility. 
Thus the same underlying force, practice or learning, is implicated both in 
the strength values of nodes in the simulation and in theoretical accounts 
of automaticity. Whereas in most discussions of automaticity, perfor­
mance is categorized into a dichotomy of automatic versus conscious, 
from the empirical work clearly automaticity develops continuously, even 
incrementally, as a function of practice. Significantly, memory strength in 
the simulation develops continuously, also as a function of practice. 
Thus, routine retrieval from long-term memory networks is automatic to 
the extent that practice has strengthened the memory nodes. Automatic 
retrieval in the model is inseparable from the impact of practice or learn­
ing on strength values. In the present framework, then, development is 
learning. 
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Appendix 9A: Pseudocode Description of 
Development, Search, and Decision 

Development 

1. Input the Siegler and Shrager (1984) "association values" multiplied by 
.33 to standardize strength to the age range kindergarten through col­
lege. 

2. Input number of years Y to be forecasted (Y will correspond to grade). 
3. Iterate Y times through rule 4. 
4. Add t::.sij to current strength, where 

100 - (i + j) 
t::.sij = gfi/IOO - sij) and fij = 100 
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Search 

For a network with elements nij and a stimulus problem Ai + Bj = Ck: 

1. Activate nodes ni' (parent A) to strength sij. 
2. Activate nodes n.j (parent B) to strength sij, and sum with previous 

activation, if any. 
3. Activate nodes Ck" and sum with previous activation, if any. 
4. Select highest valued ACT ij to be X, with address (i, j) (see footnote 5). 
5. Spread activation from Xij to all ni' and n) such that activation at any 

node nij = proximity (ACT x) + previous activation, where ACT Xu is 
the activation level of Xij and proximity is a weight score of .9, .8, .7, 
etc., for nodes 1, 2, 3, etc., horizontal or vertical steps away from the 
intersection (steps computed on vaues of i andj). 

6. Select node with highest activation as X, the correct answer, with 
activation ACTx' 

7. Simulated RT = 1000 - ACTx' Note: The activation score ACTc for the 
answer stated in the problem (C) is also saved for further processing. 

Decision 

For the problem A + B = C, with X as the retrieved answer: 

1. Compute the difference D = ACTx - ACTc ' 

2. Transform to proportional difference PD = (ACTx-D)/ACTx' 
3. Simulated RT for the discrimination is a decision weight w, times PD, 

with w estimated at 300 (from Ashcraft & Stazyk, 1981; Stazyk et al., 
1982). 

Note: Under counting solutions, substitute the stated and counted an­
swers for ACTc and ACTx" respectively. This is also the split decision 
mechanism, described in the text. 

Notes 

1. Our first graders could do some rudimentary counting by 5s on the 
usual 5-10-15 string, but they were unable to count off the string by 5s 
at all. Their counting by smaller unit sizes was extremely slow, and 
their counting by Is yielded a rate of 1000 ms per increment. 

2. The Siegler and Shrager values must be rescaled before being used as 
percentage-based accessibility or strength values. That is, their values 
are probabilities derived from tests of kindergarten children, e.g., a 
probability of .86 for responding 2 to the problem 1 + 1. To use these in 
a model that spans first-grade through college levels, I have multiplied 
all the correct response probabilities by the constant .33, this constant 
based on the 3 : 1 ratio of first graders' to adults' fastest RTs (Fierman, 
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1980). If this adjustment were not made, the .86 would indicate a 
strength value of 86 out of a possible 100, a clearly unreasonable 
strength for a kindergartener when adult strengths are measured on the 
same scale. Problems that were not tested by Siegler and Shrager, i.e., 
those with addends larger than 5, were arbitrarily assigned a strength of 
1 (out of 100) in the kindergarten matrix of strength values. 

3. An alternate developmental scheme would not merely increment the 
strength values for each simulated year, but would vary the rate of 
information processing across ages. That is, the overall speeding ofRT 
across developmental levels is due to increased strength values at 
present, but could be simulated by assuming that older children also 
have a faster rate of search and retrieval from memory (and faster 
encoding, decision, and response times as well). I have elected the 
incremental strengthening approach because it requires fewer assump­
tions and because no clear-cut source of data is available to estimate 
the slower rates of information processing for younger ages. 

4. In most learning theory accounts (e.g., Estes, 1964), the incremental 
model was held to be true only in the aggregate, i.e., that individual 
subjects' performance supports an all-or-none conditioning conclusion, 
but that averaged together this performance resembles the negatively 
accelerated function predicted by incremental models. Although the 
present simulation indeed makes predictions for an aggregate or typical 
case, I do not subscribe to an underlying all-or-none interpretation for 
strength values for individual subjects. I assume that node strength is a 
continuous variable, receiving genuine increments as a function of ex­
perience and learning. 

5. Why should not all nodes that have received activation, all family 
members and C nodes alike, propagate a spread of activation to their 
neighbors, instead of the current scheme of all C nodes but only the 
highest node of intersection from the family members? The two rea­
sons entail economy of program execution and net effect on process­
ing. Because the first parent activates an entry in each "column" of the 
table and the second parent an entry in each "row," each of the 1 00 
nodes in the network is a "grandchild" of each parent (i.e., parent 
activates 10 "children," each child activates 10 "grandchildren," and 
similarly for the other parent). An initial version of the simulation did 
propagate activation from each family member (i.e., to each grand­
child). This scheme required excessive amounts of execution time for 
the program, because each of the 200 nodes (100 in addition, 100 in 
multiplication) was being updated once as a grandchild of parent A and 
once as a grandchild of parent B (and then often as a neighbor of the C 
nodes as well). This massive activation spread, furthermore, had no 
functional effect on later processing; the entire network was boosted 
with this exhaustive spread, but the relative levels of activation for any 
pair of nodes were not appreciably different from those found with the 
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simpler scheme now used. The present scheme should therefore be 
viewed as a functionally equivalent shortcut for the full spread of acti­
vation. 

6. I have not included any error-generating processes in the simulation, 
preferring instead to focus on latency predictions. Nonetheless, the 
simulation does address an important source of errors, at least indi­
rectly. Campbell and Graham (1985) have shown that the majority of 
errors in mUltiplication problems can be accounted for by associative 
or network relatedness, for example, 24 as a highly probable error to 4 
x 8 = ? Whereas the simulation does not generally make such errors, 
an examination of the network after search does reveal substantial 
activation of the nodes that occur most frequently as errors. Under 
unusual circumstances, however, the simulation does occasionally re­
trieve an incorrect answer and proceeds to make an incorrect decision. 
For the most part, these circumstances involve target nodes only mar­
ginally above threshold, at ages lower than third grade, where a neigh­
boring node, for instance a tie, overpowers the target because of the 
neighbor's appreciably greater strength value. See Siegler and Shrager 
(1984) for a careful analysis of situations where an incorrect value can 
temporarily exceed the strength of correct values and the self-correct­
ing influence of further experience. 



10. Mechanisms of Visual Development: An 
Example of Computational Models 

Martin S. Banks 

For centuries, philosophers and scientists have been fascinated by the 
development of visual perception. Doubtless, this continued interest 
stems in large part from the fact that we are highly visual creatures. We 
use our eyes to acquire information about innumerable aspects of our 
surroundings. For example, vision informs us of the presence, location, 
and identity of objects and of the rules governing the interactions of one 
object and another. Vision steers interactions with our surroundings by 
guiding reaching, locomotion, and posture. It also provides important 
information about the social environment. Thus, any description of early 
human development must include a description about how infants and 
children use their eyes to gather information about their surroundings. I 
argue in this chapter that the study of visual development is important for 
an additional reason: The growth of visual perception provides a unique 
opportunity to examine mechanisms that underlie developmental transi­
tions from one level of performance to another. 

A chapter on visual development could be out of place in a book, like 
this one, that emphasizes cognitive development. Hoping to avoid this, I 
have chosen material that does not require expertise in visual science and 
should be of general interest to developmentalists. The chapter consists of 
four parts. The first is a highly abridged and selective summary of the 
current understanding of visual development. We have learned a great 
deal about the status of various visual capabilities at different ages. Un­
fortunately, we have not learned nearly so much about the mechanisms 
that underlie transitions from one age to the next. In the second part I 
describe an approach that might be useful for examining developmental 
mechanisms. This computational approach is similar to the one advocated 
by David Marr (1982). In the third part I provide background material 
necessary for the reader to understand the computational models pre­
sented later. Finally, in the fourth part I describe an intriguing develop­
mental problem and present computational models of how the problem 
might be solved. The problem is how the visual system deduces the char­
acteristics of its early optical and neural processing in order to compen-
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sate for distortions caused by these factors. Solutions to the problem 
involve interaction with the environment, recalibration to compensate for 
physical growth, and other factors of interest to any developmentalist. 

A Brief Review of Our Understanding of 
Visual Development 

Truly remarkable progress has been made in the last 15 years in describing 
the development of a large number of visual capabilities (Banks & Salapa­
tek, 1983; Gibson & Spelke, 1983). There is now an excellent data base on 
the development of pattern vision (Banks & Dannemiller, 1986), color 
vision (Teller & Bornstein, 1986), depth perception (Yonas & Owsley, 
1986), and eye movement control (Aslin, 1986). Clearly the field is matur­
ing rapidly in many ways. I think, however, that not much progress has 
been made in another domain: We do not have very adequate theories of 
the means by which visual capabilities change from one age to another. In 
other words, our understanding of the mechanisms of development is 
patchy at best. 

To make clear why I think this is the case, I discuss three popular 
theories of perceptual development. I have chosen these theories not 
because they are poor exemplars of perceptual developmental theories, 
but rather because they are good exemplars and as such illustrate my 
claim that the field has not formulated adequate theories of developmental 
mechanisms. Two of the theories, the differentiation theory of Gibson 
(1969) and the integration theory of Cohen (Cohen, DeLoache, & Strauss, 
1979), are stated in terms of psychological mechanisms. Another, the two 
visual systems theory of Bronson (1974), is stated in terms of psychologi­
cal and neurophysiological mechanisms. All three theories have served 
useful functions. They are consistent with large amounts of data. They 
have also guided empirical research and aided its interpretation. I empha­
size, however, what these theories have not done: They have failed to 
delineate in clear terms the mechanisms by which visual capabilities 
change from one age to another. 

According to Gibson's differentiation theory, the developing child 
learns to make finer distinctions among visual stimuli by learning to ex­
tract the distinctive features of those stimuli. Distinctive features are 
properties that distinguish an object from other objects despite changes in 
irrelevant variables such as distance, orientation, slant, and context. Gib­
son's theory has allowed the synthesis of a number of empirical findings, 
but it is unsatisfying in many ways. For instance, the set of distinctive 
features for a given class of stimuli is not specified. If they are simply 
those properties that allow one to categorize stimuli correctly, the theory 
is tautological. Gibson also did not specify how the distinctive features 
are extracted from everyday visual inputs, and because some of the fea-
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tures (symmetry, for example) are fairly high-order, extraction might be 
quite difficult indeed. Most important for this chapter, however, are the 
developmental aspects of the theory, and they, too, are vague. Gibson 
stated that the child learns the distinctive features for various objects 
through multiple exposures to the objects. But how? In particular, what is 
the source of candidate features? How are candidate distinctive features 
extracted by the naive child who has little idea of what to look for? By 
what mechanism are useful features reinforced and useless ones dis­
carded? Gibson stated that the selection of distinctive features depends 
on reduction of uncertainty rather than on external reinforcement, but 
this tack simply sidesteps the key issue. How does the child know when 
she or he has hit upon a feature that allows useful generalizations and 
distinctions among stimuli? These are important developmental questions 
that are not addressed in any clear fashion. 

Gibson argued that the visual environment is rich and provides ample 
information to uncover useful distinctive features. This statement is un­
doubtedly true. Unfortunately, this argument has been used to suggest 
that the problem of explaining how the child learns to extract such fea­
tures is trivial. In fact, it is not trivial at all. Perhaps the clearest evidence 
to that effect (other than the absence of clear hypotheses in the presenta­
tion of differentiation theory) comes from research on artificial intelli­
gence showing, for example, that simple learning machines based on asso­
ciative networks could not, and presumably cannot, learn to categorize 
anything but the simplest stimuli (Minsky, 1961). More successful ma­
chines have quite sophisticated structures built in. Thus, the explanation 
of how differentiation occurs through repeated exposure to visual stimuli 
will assuredly be quite difficult. 

Another influential theory of early perceptual development is Cohen's 
integration theory (Cohen et aI., 1979). According to this view, infants 
become more and more able, as they grow older, to perceive parts of an 
object as a unified whole. There is quite a bit of empirical evidence consis­
tent with this viewpoint, but the theory is vague in some important re­
spects. The definition of what constitutes a part and what constitutes a 
whole is not made explicit, but rather is left to intuition. More impor­
tantly, the theory is vague about the developmental mechanisms that 
move infants from perceiving parts to perceiving wholes. For instance, 
Cohen does not state how the infant comes to appreciate that certain parts 
belong together (such as the cheek and mouth of a face) whereas other 
parts do not (such as the cheek of a face and some background feature). Is 
experience with everyday stimuli required, or does appreciation unfold 
according to a genetic maturational program? If experience is required, 
what structures have to be built in for the infant to learn to make this 
distinction? What kinds of experience are needed? 

Another influential theory is Bronson's (1974) two visual systems the­
ory. Bronson noted an interesting and important correlation between 
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changes in visual behavior from birth to 3 months and changes in the 
relative maturity of cortical and subcortical mechanisms. Once again, this 
theory has served a very useful function. It has directed attention to the 
neurophysiological literature and led to a synthesis of several empirical 
findings involving eye movement control and pattern vision capabilities. 
It also provides a fairly clear developmental mechanism: maturation of 
the visual cortex. In an important sense, though, the theory does not 
explain how these visual capabilities develop. It is fine to note that the 
visual cortex is important to pattern vision and that it appears to develop 
rapidly at a time when pattern vision capabilities are improving. But this 
hypothesis alone does not explain how pattern vision develops because 
the link between the neural structures involved and the ability to discrimi­
nate, recognize, and identify patterns has not been specified. How does 
the visual cortex provide the capability to discriminate and categorize 
patterns properly despite changes in size, orientation, and other mostly 
irrelevant variables? How does experience with particular classes of ob­
jects enhance this capability? In other words, noting a correlation be­
tween a perceptual capability and a neurophysiological structure does not 
explain how the capability works. It only tells us what particular pieces of 
neural machinery are involved. Thus, Bronson's theory does not tell us 
how pattern vision and eye movement control develop. It only points to 
changes in the nervous system that are probably involved in the develop­
ment of those skills. 

Again, I should emphasize that these three theories were singled out 
not because they are poor theories but rather because they are among the 
best and most influential in the field of perceptual development. As such, 
they illustrate the status of the field's understanding of mechanisms of 
development. Put simply, our models of developmental mechanisms are 
disappointingly vague. This observation is rather embarrassing because 
the aspect of perceptual developmental psychology that should set it apart 
from the rest of perceptual psychology is the explanation of how develop­
ment occurs, and such an explanation is precisely what is lacking. 

A Computational Approach to Studying Mechanisms 
of Perceptual Development 

How, then, should we go about developing more explicit theories of de­
velopmental mechanisms? There is not a single right answer to such a 
question, but I argue for an approach that might be extremely useful. 
Indeed, the approach has already been applied successfully in another 
field. The approach is computational and is based on the one David Marr 
and others have described for the study of mature vision (Barrow & 
Tenenbaum, 1979; Marr, 1982). 

There are two important facets to Marr's approach. First, one has to 
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recognize that vision (and its development) is complicated and subtle, and 
consequently the scientific investigation of vision requires work in at least 
three levels of analysis. To illustrate what one should try to accomplish at 
each level, I borrow an analogy from Marr (1982). The question raised in 
the analogy is, How does an electronic hand calculator work? One could 
not understand the calculator by studying its light-emitting diodes and 
integrated circuits alone. One would also have to understand addition, 
subtraction, multiplication, and division; that is, one would have to un­
derstand what the calculator is designed to do. Only then would the 
structure and behavior of the calculator's components make sense. The 
study of arithmetic would, in Marr's terminology, involve the computa­
tional theory of hand calculators. This is the highest level of investigation 
at which one attempts to answer fairly abstract questions concerning the 
mechanisms under study. What task must be performed by the mecha­
nism under investigation? What physical laws or constraints are in­
volved? What computations need to be performed? Marr argues that work 
at this level is sorely needed in the study of mature vision, and I think the 
same applies to the study of perceptual development. Consequently, the 
models described in the fourth section of this chapter are computational 
theories. 

The next level is that of algorithm and representation. In studying the 
hand calculator, we would find that it represents numbers internally in 
binary and that computations are performed in binary arithmetic. Thus, 
the following sorts of questions are considered at the level of algorithm 
and representation: How is the computational theory implemented? In 
what form is the information represented? How is the information trans­
formed during processing? 

The final and lowest level in Marr's scheme is that of hardware. In 
studying the hand calculator at this level, we would find that electric 
current rather than mechanical force is used, that transitors rather than 
vacuum tubes are basic components, and so on. Thus, questions like the 
following are asked at this level: How is the task performed by the device 
implemented physically, or physiologically? That is, what does the circuit 
diagram look like? What kinds of chips are used? 

Separating the task of understanding vision into these distinct levels 
allows us to see more clearly the implications of particular findings. For 
example, finding that simple cells in the visual cortex respond to edges 
and bars (Hubel & Wiesel, 1962, 1968) may help us understand the hard­
ware and perhaps even the algorithms and representations of visual pro­
cessing, but it does not help us understand vision at the level of computa­
tional theory. 

The second facet of Marr's scheme is perhaps more controversial. He 
argues that the proper approach to studying vision is to quantify one's 
models with the goal of implementing the models in some explicit form. 
Marr argues, in fact, that if researchers really understand the mechanisms 
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under study, then they should be able to write a computer program or 
design a machine that actually performs the task done by the visual mech­
anism. 

I should emphasize here some critical differences between this view 
and the view of more traditional quantitative modeling. Let me character­
ize the traditional modeling approach in developmental psychology first. 
Several researchers have modeled age-related changes in particular cogni­
tive skills (see Chapter 9 by Ashcraft and Chapter 8 by Rabinowitz, Grant, 
& Dingley, this volume). They have developed computer programs that 
attempt to fit a set of data acquired in specific experimental situations. In 
a prototypical case, the data might be the percentage of correct perfor­
mance in a number of cognitive tasks. Those data would, of course, be 
collected at more than one age. The simulation program would contain 
equations with several variables representing particular psychological 
mechanisms. A successful outcome would be a satisfactory fit between 
the simulation's behavior and the observed data. These sorts of quantita­
tive models can be criticized on several grounds. For one thing, they often 
contain several parameters that are allowed to vary in order to maximize 
the correspondence between predicted and observed behavior. In such 
cases, a successful outcome is almost guaranteed, at least for a particular 
set of data. For another thing, the programs are frequently designed to 
simulate behavior in only certain experimental situations. Thus, they may 
not inform us about how the simulated perceptual or cognitive processes 
operate in general. 

The computer implementation approach advocated by Marr is dissimi­
lar from the traditional modeling approach in several ways. Most impor­
tant, the implementations do not attempt simply to generate data (per­
centage of correct responses, for example) to fit observed data. Rather, 
they are designed to accept input information, much as humans do, and 
then to make perceptual decisions or categorizations, much as humans 
do. For example, the input to Grimson's (1981) implementation of Marr 
and Poggio's (1979) theory of stereopsis is two-dimensional intensity dis­
tributions, viewed from two vantage points. The output is a description of 
the three-dimensional layout of the scene that produced the intensity 
distributions. 

The computational approach advocated by Marr and more traditional 
modeling approaches also differ in their generalizability. To use Grimson 
as an example again, his implementation is intended to work for a wide 
variety of visual scenes, viewed from two vantage points. In contrast, 
many quantitative models of developmental processes are intended only 
to generate behavior for particular experimental situations. 

Keeping in mind these differences between the computational approach 
and more traditional approaches, I argue that the computational approach 
is attractive for the study of visual development for three reasons. (The 
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intended contrast here is between the computational approach and the 
less quantitative approaches commonplace in developmental psychology. 
In other words, this section does not contrast the computational approach 
and the traditional quantitative modeling approaches discussed above.) 

(1) If you intend to program a computer to actually do what the mecha­
nism of interest is supposed to do, the following things happen. This task 
forces you to be explicit about the relevant aspects of the environment. It 
forces you to be explicit about what computations have to be performed 
on those environmental aspects to encode the information the mechanism 
requires. It also forces you to be explicit about how the information is to 
be represented and transformed during processing and how it is to be 
compared to other information to make a decision or categorization. Fail­
ures to be explicit are far too common among perceptual developmental 
theories. One wonders if Gibson (1969) would have underestimated the 
difficulty of extracting invariant information in everyday settings if she 
had tried to implement her differentiation theory. Attempts to implement 
developmental theories should minimize the likelihood of such over­
sights. 

(2) When the implementation does not perform properly, you know 
immediately that something is wrong with the model. This, too, could 
serve us well because most of our theories, as they are currently stated, 
are too vague to disprove. It is essential, of course, that the implementa­
tion be sufficiently constrained by environmental restrictions and by em­
pirical observations. Otherwise, it would be too difficult to isolate errone­
ous assumptions. When an implementation is reasonably constrained and 
does not perform properly, you should be able to pinpoint the sources of 
difficulties. Perhaps you have been too vague about the aspects of the 
environment that are involved. Or perhaps you have not incorporated 
enough sources of environmental information to allow the program to 
arrive at unambiguous solutions. Or perhaps the representations of envi­
ronmental information used are not rich enough or do not capitalize suffi­
ciently on invariant properties. 

(3) If the program works properly, you may be able to make nonobvious 
predictions and then collect more data to see whether the predictions are 
accurate. This sort of evidence can be used to argue persuasively that the 
model is on the right track. I 

The computational approach to the study of vision has been quite suc­
cessful in recent years. It has yielded important insights into stereopsis 
(Longuet-Higgins, 1982; Mayhew, 1982), the perception of motion (Ul­
lman, 1979), the perception of depth from optic flow (Clocksin, 1980; 
Prazdny, 1980), the perception ofbiomechanical motion (Hoffman & Flin­
chbaugh, 1982; Webb & Aggarwal, 1982), the extraction of shape from 
shading (Horn, 1979), and so on. 

This, then, is the main thesis of this chapter: A computational approach 
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may be very fruitful to the investigation of perceptual development, just 
as it has been fruitful to the investigation of mature vision. In particular, 
such an approach might allow us to make headway on the difficult prob­
lem that has eluded us: the description of mechanisms of perceptual de­
velopment. 

By this point the reader might question my sanity. After all, most 
of the capabilities developmental psychologists study simply do not 
lend themselves to the kind of quantitative rigor this computational 
approach demands. Consequently, the approach may be attractive 
in principle but unfeasible in practice. A lack of enthusiasm for quanti­
tative approaches may be appropriate for many areas of developmental 
research, but I do not think it is necessarily appropriate for the study of 
visual development. 

First, the properties ofthe environment that are important to vision and 
visual development may be easier to describe and quantify than those 
important to other domains of development. We know, for example, that 
sharp, vertically oriented contours are important for stereopsis and that 
horizontal retinal disparities between such contours are the primary cue 
to depth. These properties can be measured quantitatively. The important 
environmental properties for the development of particular cognitive and 
social skills are not nearly so clear. 

Second, many characteristics of visual mechanisms that might be im­
portant to one's model can be measured quantitatively. For example, we 
can obtain quantitative, replicable estimates of how visual acuity, optical 
quality, receptor distributions, and other properties of the eye and central 
visual system change with age. Knowledge of such properties is crucial to 
successful modeling; as mentioned above, any model, quantitative or 
otherwise, requires empirical observations to constrain its parameters 
and allow strong hypothesis testing. Because so many important aspects 
of visual processing can be measured reliably, vision is probably better 
suited for quantitative modeling than is cognition, language, or social 
behavior. 

Third, we have fairly clear ideas of what various visual capabilities are 
for; without such clarity, it is very difficult to model performance for 
everyday settings. We know, for example, that stereopsis is for perceiv­
ing three-dimensionality. We know that eye movements are used to keep 
the fovea on a moving target or to move the fovea to a different target 
when desired. This knowledge offunctions aids modeling because it spec­
ifies the proper domain for the implementation. For example, an imple­
mentation of stereopsis should be able to describe three-dimensional 
layout for a variety of scenes. It should not be able to recognize and 
identify objects in those scenes. For these three reasons, visual develop­
ment may be an excellent research area in which to use the computational 
approach. 
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I now illustrate how this approach can be used by giving concrete exam­
ples of computational models I have developed for one aspect for visual 
development. At this time, the models are not completely refined, but 
they are mature enough to serve as illustrations. Before I present the 
models, however, it is useful to define some basic issues in perceptual 
development and to provide background material for the particular devel­
opmental problem addressed by the models. 

There are, of course, many challenging problems in perceptual develop­
ment. One classic problem is the explanation of how infants acquire the 
ability to recognize and identify objects in everyday settings. Well before 
they enter school, children can recognize and identify objects reliably 
despite dreadfully complicating factors such as changes in an object's 
position, orientation, slant, distance, and context. (Indeed, even 4- to 6-
month-old infants can recognize some familiar objects, such as their 
mothers, in a variety of situations; Fagan, 1976; Fagan & Shepherd, 
1979.) Because changes in position, orientation, slant, distance, and con­
text are mostly irrelevant to an object's identity, the visual system must 
use recognition and identification schemes that are not misled by such 
changes. The question for perceptual developmentalists is, How do in­
fants acquire this ability? This is, of course, a very difficult question 
because we do not even have a good idea of how object recognition and 
identification occur in adults. But let us consider the developmental ques­
tion anyway. 

One might argue that the requisite skills are simply built in so that 
infants can recognize and identify objects properly right from the start. 
This view is almost certainly wrong. As Gibson (1969) and others have 
documented, considerable experience with a class of stimuli is often 
needed in order to recognize and identify them properly. 

Alternatively, one might adopt a less extreme position. Gibson (1969), 
for example, argued that the ability to categorize particular objects was 
not built in. Rather, the infant comes into the world with structures that 
allow him or her to detect the invariant properties that uniquely identify 
particular objects. Once the child is exposed to an object enough times, 
the invariant properties are detected and the object is identified properly. 
This hypothesis may be correct but, as it is currently stated, is not very 
interesting. The fundamental elements of the hypothesis are unspecified. 
What are the built-in structures? What are the invariant properties? How 
are they detected? 

Despite these problems, perceptual developmentalists agree that visual 
experience is important to the acquisition of object recognition and identi-
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fication. Indeed, I bolster this position later in the chapter by presenting 
evidence that some basic visual mechanisms are controlled by visual 
experience. So at least some aspects of the ability to recognize and iden­
tify objects are acquired through experience. 

We are quite far from understanding in detail how the ability to recog­
nize and identify objects is acquired, and so it is probably useful to split 
the problem up for the time being. One can do this by considering the 
processes underlying object recognition and identification in terms of spe­
cific invariances. Slant invariance, for example, refers to the ability to 
recognize an object when it is viewed at different slants. Distance invari­
ance refers to the ability to recognize an object when it is viewed at 
different distances, and I focus on this skill for the remainder of the 
chapter. 

The computational models presented here concern one aspect of how 
the distance invariance property of object recognition is acquired. How­
ever, before distance invariance and the models are discussed, it is neces­
sary to provide some more background material. Specifically, I must 
describe linear systems analysis and contrast sensitivity functions. Read­
ers familiar with these topics may skip ahead to page 353. 

My discussion of linear systems analysis and contrast sensitivity func­
tions is brief and conceptual. Corn sweet (1970), Gaskill (1978), and 
Georgeson (1979) provide more comprehensive and rigorous treatments. 
Linear systems analysis is based on Fourier's theorem, which implies that 
any two-dimensional, time-invariant visual stimulus can be exactly de­
scribed by combining a set of more basic stimuli. These basic stimuli are 
sine wave gratings, examples of which are shown in Figure 10.1. A sine 
wave grating is a pattern of light and dark stripes whose intensity varies 
sinusoidally with position. These gratings are specified by four parame­
ters: (1) spatial frequency, the number of pattern repetitions (or cycles) 
per degree of visual angle; (2) orientation, the grating's tilt to the left or 
right of vertical; (3) contrast, which is related to the difference between 
maximum and minimum intensities of the grating [contrast is equal to 
(Imax - [min)I(Imax + [min)] and (4) phase, the grating's position with respect 
to some reference position. Startling as it sounds, even a complex, two­
dimensional visual stimulus, such as a face, can be described exactly by 
the combination of a set of sine wave gratings of various frequencies, 
orientations, contrasts, and phases. 

Linear systems analysis uses Fourier's theorem to predict a system's 
response to arbitrary two-dimensional stimuli. Because any stimulus can 
be represented by the addition of various gratings, the response or output 
of a linear system can be determined by the addition of the responses to 
the constituent gratings of the input stimulus. Consider a simple optical 
system: a camera. The camera's response or output for various spatial 
frequencies is its modulation transfer function (MTF), the proportion of 
input contrast that is transmitted onto the film as a function of spatial 
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FIGURE 10.1. Six sine wave gratings differing in spatial frequency and contrast. 
From left to right, the gratings increase in spatial frequency. From bottom to top, 
they increase in contrast. If the figure is held at arm's length, the gratings have 
spatial frequencies of 2.5, 5, and 16 c/deg. 

frequency. The relationship between input and output for the camera is 
described by the equations 

Ao(u, u) = A;(u, u)·Ah(u, u) 

PoCu, u) = P;(u, u) + Ph(u, u). 

(1) 

(2) 

These equations are derived by Fourier transformation. Thus, the argu­
ment of each variable is spatial frequency. Equation 1 relates the ampli­
tudes or contrasts of the input and output sine wave grating components; 
Ah(u, u) is the lens' modulation transfer function in two dimensions (u and 
u). And A;(u,u) is the amplitude spectrum of the input stimulus; an ampli­
tude spectrum is the contrasts of the constituent sine wave gratings at 
different spatial frequencies. Thus, multiplication ofthe input's sine wave 
components A;(u,u) by the appropriate weighting factor Ah(u,u) yields the 
amplitude spectrum of the output. Inverse Fourier transformation (the 
operation involved in Fourier synthesis) can then be used to convert the 
output spectrum Ao(u, u) into spatial coordinates to predict the appearance 
of the image on the film. Equation 2 relates the phases of the input and 
output spatial frequency components. Most optical systems and visual 
systems do not change the phase of a stimulus or its components during 
processing. Therefore, the phase transfer function of a system Ph(u,u) is 
generally zero, which implies that the output and input phases are identi­
cal. For this reason, I disregard phase transfer functions and their effects 
henceforth. 
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Figure to.2 illustrates how linear systems analysis is used to predict the 
output of an optical system to a particular input: a square wave grating. 
Suppose that the MTF of the system is a simple low-pass filter. In other 
words, the lens transmits spatial frequencies lower than 3 cycles/degree 
(c/deg) perfectly and does not transmit higher spatial frequencies at all. In 
that case, Equation 1 implies that the amplitude spectrum of the output 
contains all the spatial frequencies of the original square wave except 
those above 3 c/deg (see upper right graph in Figure 10.2). One can then 
use the inverse Fourier transformation to calculate the predicted output 
(lower right graph in Figure 10.2). A lens that transmits only low spatial 
frequencies would thus produce a noticeably degraded version of the 
original square wave. 

Now let us turn to vision. Linear systems analysis has been used to 
good effect in the investigation of visual performance (e.g., Cornsweet, 
1970; Ratliff, 1965). The contrast sensitivity function (CSF) is used in­
stead of the MTF to represent the visual system's ability to detect and 
transmit information as a function of spatial frequency. The CSF is deter­
mined by measuring an observer's contrast sensitivity to sine wave grat­
ings of various spatial frequencies. This measurement is made by present­
ing gratings of a number of different spatial frequencies, one at a time, and 
determining the least contrast necessary to detect the grating at each of 
those frequencies. The CSF of an adult with good vision is shown in the 
lower portion of Figure 10.3. Contrast sensitivity, the reciprocal of the 
minimum contrast required for detection, is plotted as a function of spatial 
frequency. Note that sensitivity is greatest for intermediate spatial fre­
quencies (2 to 6 c/deg) and lower for low and high frequencies. A grating, 
varying in spatial frequency and contrast, is displayed in the upper por­
tion of the figure, to illustrate what the CSF represents. The grating in­
creases in spatial frequency from left to right and increases in contrast 
from top to bottom. The physical contrast of the grating is constant along 
any horizontal line in the photograph, but its perceived contrast is not. 
Clearly, perceived contrast is greater at intermediate frequencies than at 
low and high frequencies. Note the correspondence between the visibility 
of the grating at different frequencies in the upper part of Figure 10.3 and 
the CSF in the lower part. 

The CSF's of young infants have been measured by three research 
groups. Atkinson, Braddick, and colleagues have used behavioral and 
evoked-potential techniques to measure CSFs in infants from a few days 
to 6 months of age (Atkinson, Braddick, & Moar, 1977; Harris, Atkinson, 
& Braddick, 1976). Banks and Salapatek (1978) used a behavioral tech­
nique to measure CSFs in 1- to 3-month-olds. Pirchio and colleagues 
measured these functions in 2- to 10-month-olds by using evoked poten­
tials (Pirchio, Spinelli, Fiorentini, & Maffei, 1978). These data agree re­
markably well in light of the differences in technique and stimuli. The 
agreement suggests that age-related shifts in these functions are fairly 
robust. 
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SNELLEN NOTATION 

20 10 5 2 5 
MINUTES OF ARC 

FIGURE lO.3. A sine wave grating and a typical adult CSF. The upper part of the 
figure displays a sine wave grating in which spatial frequency increases from left 
to right and contrast increases from top to bottom. The lower part of the figure 
shows a typical adult CSF. Contrast sensitivity, the reciprocal of contrast at 
threshold, is plotted as a function of spatial frequency. Scales relating spatial 
frequency to Snellen equivalents and stripe width in minutes of arc are shown for 
comparison. If the figure is viewed from a distance of 70 cm, the scales at the 
bottom indicate the actual frequency values of the grating in the upper part of the 
figure. 
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Figure 10.4 shows the group average data of Banks and Salapatek 
(1978). Comparing these functions to the adults' in Figure 10.3 reveals 
striking differences. Infants' CSFs are clearly shifted to lower spatial 
frequencies. Indeed, the highest detectable frequency, the acuity cutoff, 
is a factor of 10 to 20 below that for adults. Likewise, infants' CSFs 
exhibit a large sensitivity deficit relative to adults. These deficits may 
reflect motivational differences between infants and adults, but the simi­
larity of behavioral and evoked-potential results suggests that motivation 
is not the primary cause.2 This research suggests a distinct lack of clarity 
in the infant's visual world: The young infant's visual system is able to 
detect only fairly large, high-contrast patterns in the environment. This 
ability improves gradually until at least 6 months of age, when infants are 
about a factor of 2 less sensitive than adults (Pirchio et aI., 1978; Harris et 
aI., 1976). 

The height and shape of the CSF at any age reflect the operation of 
several basic visual mechanisms. Consider, for example, the steady loss 
in adults' contrast sensitivity that accompanies increases in spatial fre­
quency. Measurements of the optical quality of the mature eye reveal that 
less than 100 percent of the contrast of a stimulus is transmitted to the 
retina. This percentage depends heavily on the spatial frequency of the 
stimulus. For example, the retinal image contrast of a 5-c/deg grating is 
about 70 percent of the stimulus contrast under normal viewing condi­
tions, whereas the retinal contrast of a 20-c/deg grating is merely 15 per-
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FIGURE lOA. The average CSFs for 1-, 2-, and 3-month-olds as reported by Banks 
and Salapatek. The average contrast sensitivity for each age group is plotted as a 
function of spatial frequency. (From Banks & Salapatek, 1978.) 
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cent of the stimulus contrast (Campbell & Green, 1965; Campbell & Gu­
bisch, 1966). In other words, the contrast of very fine pattern information 
is reduced much more by the eye's optics than is the contrast of coarser 
pattern information. This optical effect accounts for most of the high­
frequency loss in adults' contrast sensitivity illustrated in Figure 10.3. 
Additional losses occur because of the spatial summating properties of 
early neural processing (Campbell & Green, 1965). 

The visual system's differential sensitivity to spatial frequency poses a 
problem: How is constant perception of an object at various distances 
achieved? That a problem of this sort exists can be illustrated by consider­
ing a simple object viewed at two distances. Consider an object, a bright 
filled square on a dark background, viewed at 1 m. Its amplitUde spectrum 
at this distance is shown in Figure 1O.5(a); notice that several spatial 
frequencies are present at various amplitudes. Figure 1O.5(b) displays the 
amplitudes of those frequency components once they are processed by 
the optics of a hypothetical eye; notice that the contrast of the object, 
higher spatial frequencies in particular, has been attenuated by the optics. 
Now we move the object to a distance of 4m. The amplitude spectrum of 
Figure 1O.5(c) results. The same spatial frequencies are present but are 
simply shifted to values 4 times higher than when they are viewed at 1m. 

10 10 

8 A 

6 
ILl 
0 4 
::> 
I- 2 
...J 
(l. 0 
~ 0 2 4 6 8 10 2 4 6 
<t 

ILl 10 

> B 
I- 8 
<t 
...J 6 
ILl 

6 

a:: 

o OL-...l---L--I-........ -'--'--'---'--"--........ 

o 2 4 6 8 10 0 2 4 6 8 10 

SPATIAL FREQUENCY (c/deg) 

FIGURE 10.5. The amplitude spectra of a bright filled square on a dark back­
ground. (a) The spectrum of the square viewed at 1 m; (b) the spectrum of the 
square viewed at 1 m once it is filtered by the optics of a hypothetical eye; (c) the 
spectrum of the square viewed at 4 m; (d) the spectrum of the square viewed at 4 
m once it is filtered by the optics of the eye. 
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Figure IO.5(d) shows the amplitudes of those frequency components once 
they are processed by the eye's optics. The relative amplitudes in the 
retinal image are quite different from those at a l-m viewing distance. If 
the visual system could not compensate for the differences in relative 
retinal image contrasts at the two distances, it should be quite difficult to 
determine whether an object is the same when it is viewed at different 
distances. Fortunately, the mature visual system does compensate in a 
useful way. 

Before describing how the visual system performs this compensation, I 
should point out that the problem of recognizing objects at various dis­
tances is a general one. It arises, for example, in satellite photography. 
Pictures of objects on the earth are significantly degraded by the defocus­
ing effects of the camera's optics and the earth's atmosphere. These 
effects can be minimized, however, by "deblurring" the photograph 
through computer-enhanced imaging techniques. The deblurring is ac­
complished in the following way. First, the defocusing effects of the cam­
era's optics and the earth's atmosphere are represented as a blur function. 
This function simply describes how much the contrasts of various spatial 
frequencies are attenuated by the defocusing agents. Then the Fourier 
transform of the original photograph is computed, and the amplitudes of 
the resulting spatial frequency components are multiplied by the inverse 
of the blur function. 3 The result is a much improved image that represents 
the objective structure of objects on the earth more veridically than the 
original did. An example is shown in Figure 10.6. The left half of the 
figure shows the original blurred photograph. The amplitude spectrum of 
this photograph is computed and multiplied by the inverse of the blur 
function. Fourier synthesis is then used to reconstruct the photograph in 
such a way that the attentuated high spatial frequencies are amplified 
relative to the unattenuated low spatial frequencies. The result is illus-

FIGURE 10.6. Demonstration of deblurring by using Fourier technique. On the left 
is the blurred original. On the right is the deblurred version produced by compen­
sating for the attenuation of the original blurring. (Adapted from Gennery, 1973.) 
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ttated in the right half of the figure. The enhanced photograph is a much 
more veridical representation of the original object. 

The mature visual system appears to perform a similar form of contrast 
compensation in order to "deblur" stimuli. This compensation has been 
demonstrated in several experiments on adults' processing of pattern in­
formation under suprathreshold conditions (e.g., Blakemore, Muncey, & 
Ridley, 1973; Georgeson & Sullivan, 1975; Kulikowski, 1976; Watanabe, 
Mori, Nagata, & Hiwatashi, 1968). Georgeson and Sullivan (1975) asked 
adults to adjust the contrast of a sine wave grating of one spatial fre­
quency (the "comparison" grating) until it appeared to match the contrast 
of a sine wave grating of a different frequency (the "standard" grating). In 
their main experiment, the standard was a grating of 5 c/deg, a value near 
the peak of the adult eSF. The results are illustrated in the right panel of 
Figure 10.7. When the contrast of the standard was low (that is, when the 
grating was near threshold), adults set the contrast of the comparison 
gratings to higher values. Those values were predictable from the eSF. 
For example, when asked to match apparent contrasts, adults set the 
contrast of a 20-c/deg comparison grating to a value 8 times higher than 
the contrast of the 5-c/deg standard. This ratio was equal to the ratio of 
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FIGURE 10.7. Adult CSF and contrast-matching data from Georgeson and Sullivan 
(1975). (a) CSF. (b) Contrast-matching data. The procedure by which these data 
were obtained is described in the text. The reciprocal of the contrasts of the 
standard and comparison gratings is plotted as a function of spatial frequency. 
The large symbols represent the reciprocals of the contrasts of the 5-c/deg stan­
dard. The small symbols represent the reciprocals of the contrasts of the compari­
son gratings when they matched the standard in apparent contrast. (From 
Stephens & Banks, 1985.) 
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contrast thresholds for 5 and 20 c/deg. The most interesting result in this 
experiment occurred when the contrast of the standard was set to a value 
well above threshold. Adults in this situation adjusted the contrast of the 
comparison to the same physical value as the contrast of the standard. 
This result is surprising because, as mentioned above, two gratings of 
equal contrast but different spatial frequencies will produce different reti­
nal image contrasts. In other words, when the adults set 5- and 20-c/deg 
gratings to equal physical contrasts, they were accepting as equal in ap­
parent contrast two gratings whose retinal image contrasts differed sub­
stantially. This implies that the mature visual system compensates at 
suprathreshold contrasts for the defocusing effects of the eye's optics. 

Georgeson and Sullivan called this phenomenon contrast constancy 
and noted an important perceptual consequence. As an object moves 
away from an observer, its spatial frequency content shifts to progres­
sively higher values. For medium- and high-contrast (suprathreshold) ob­
jects, apparent contrast would not change. Thus, contrast constancy con­
fers a useful property on the perception of real objects: As long as the 
contrast that defines an object and its features is above threshold, appar­
ent contrast remains invariant across a wide range of distances. 

How is contrast constancy achieved? Georgeson and Sullivan pointed 
out that the central visual system must in some way undo the optical 
attenuation that occurs in the formation of the retinal image and the neural 
attenuation caused by peripheral neural summation. They proposed a 
simple model based on mUltiple spatial-frequency channels with narrow 
tuning. These channels are mechanisms that respond to a narrow range of 
spatial frequencies only. There is considerable psychophysical and physi­
ological evidence for their existence (e.g., Braddick, Campbell, & Atkin­
son, 1978). According to Georgeson and Sullivan's model, high-frequency 
channels have steeper contrast-response functions than medium-fre­
quency channels. In other words, as the contrast of a target is raised, the 
activity of high-frequency channels increases more rapidly than the activ­
ity of medium-frequency channels. Consider how this model could be 
used to explain apparent contrast matches between a medium- and a high­
frequency grating at low and high contrasts. At near-threshold contrasts, 
apparent contrast matches would reflect differences in the contrast 
thresholds of the two gratings; observers would require more contrast in 
the high-frequency grating before they could appear equal in contrast 
because high-frequency channels have higher contrast thresholds than 
medium-frequency channels. As one raised the contrast of the targets, 
however, apparent contrast matches would become veridical because the 
activity of high-frequency channels increases more rapidly than that of 
medium-frequency channels. Experimental evidence suggests that this 
differential response to contrast is mediated by the visual cortex (George­
son & Sullivan, 1975; Hess, Bradley, & Piotrowski, 1983). 

Banks, Stephens, & Hartmann (1985) demonstrated that 12-week-olds, 
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but not 6-week-olds, possess multiple spatial-frequency channels with 
narrow tuning. In the first of their two experiments they used a masking 
paradigm. The detectability of sine wave gratings of different spatial fre­
quencies was measured in the presence and the absence of a narrowband 
visual noise masker. The 12-week-olds exhibited adultlike, spatial-fre­
quency-dependentmasking. In other words, the presence of the noise 
masker decreased the detectability of sine wave gratings whose spatial­
frequency content was similar to that of the masker, whereas the presence 
of the masker did not affect the detectability of gratings whose frequency 
content was dissimilar from that of the masker. The masking effects ob­
served in the 6-week-olds were not spatial-frequency-dependent. In other 
words, the younger infants did not provide evidence for mUltiple spatial­
frequency channels. In the second experiment, Banks et al. used a com­
posite grating paradigm. The results were entirely consistent with those of 
experiment 1. The performance of the 12-week-olds, but not of the 6-
week-olds, was consistent with the presence of narrowband spatial-fre­
quency channels. 

Stephens and Banks (1985) noted that if Georgeson and Sullivan's hy­
pothesis is correct, contrast constancy should not be observed at 6 weeks 
of age but might be observed at 12 weeks of age. To test this possibility, 
Stephens and Banks used a visual preference procedure to measure an 
analog to apparent contrast matches in 6- and 12-week-olds. Two sine 
wave gratings, differing in spatial frequency by a factor of 3, were pre­
sented side by side. They referred to the lower-frequency grating as F and 
to the higher-frequency grating as 3F. From previous experiments they 
knew that the contrast threshold for 3F was about 4 times greater than 
that for F. For a given experimental session, the contrast of 3F was fixed 
at either a near-threshold level or one of two suprathreshold levels. Then 
the contrast of F was varied in order to estimate the contrast at which 
preference for the two gratings was equal. Stephens and Banks assumed 
that the equal-preference point corresponded to an apparent contrast 
match. The equal-preference points for 6-week-olds were always predict­
able from their contrast thresholds. That is, the younger infants required 4 
times more contrast in 3F than in F, at all three contrast levels of 3F, in 
order to distribute their looking time equally to the two stimuli. Some of 
the I 2-week-olds , equal-preference points were also predictable from 
their contrast thresholds. For near-threshold stimuli, they required 4 
times more contrast in 3F than in F for equal preference. However, the 
equal-preference points were not predictable from contrast thresholds at 
suprathreshold contrasts. Indeed, equal preference occurred when the 
two stimuli had the same physical contrast. If one accepts the assumption 
that the equal-preference point in infants is analogous to an apparent 
contrast match in adults (Stephens & Banks, 1985, evaluate the validity of 
this assumption in some detail), these data imply that contrast constancy 
is present at 12, but not 6, weeks of age. The presence of contrast con-
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stancy at this age suggests that the perceived contrast of objects and their 
features should remain reasonably constant across a range of viewing 
distances. 

Computational Models of How Contrast 
Constancy Develops 

Before presenting the computational models that I have developed re­
cently, let me review the major points concerning the phenomenon of 
contrast constancy and its development. 

(1) Under suprathreshold conditions, the apparent contrasts of gratings 
of different spatial frequencies are the same when the physical contrasts 
of the gratings are the same. This behavior implies that the perceived 
contrasts of suprathreshold features in an object should be invariant when 
the object is viewed at different distances. Assuredly, such in variance 
aids the recognition and identification of objects in various spatial loca­
tions. 

(2) The optics of the eye attenuate high spatial frequencies more than 
low ones. Consequently, contrast constancy can be achieved only if the 
contrast of high-frequency targets is amplified later in the visual system 
relative to the contrast of low-frequency targets. 

(3) Stephens and Banks (1985) demonstrated behavior in 12-week-olds, 
but not 6-week-olds, that is analogous to veridical contrast matching. 
Thus, contrast constancy may develop quite early in life. 

Now consider the question of how the visual system must amplify high 
frequencies relative to low ones in order to achieve contrast constancy. 
To aid the discussion, I refer to attenuation of high frequencies caused by 
the eye's optics and by peripheral neural summation as the blur function. 
This function simply represents the loss of contrast as a function of spatial 
frequency. I refer to the postretinal amplification of high frequencies rela­
tive to low ones as the gain function. This function represents the relative 
enhancement of perceived contrast as a function of spatial frequency. 
(Recall that the mechanism of postretinal amplification is the increased 
slope of the contrast-response functions. Therefore, amplification occurs 
at suprathreshold contrasts only. The gain function describes this amplifi­
cation at contrasts reasonably well above threshold.) Note that veridical 
contrast matching implies that the gain function is the inverse of the blur 
function; any other form would lead to under- or overcompensation for 
attenuation owing to the blur function. 

The developmental question of interest is, How does the gain function 
come to be the appropriate one? Four models of how this might be 
achieved are listed in Table 10.1. There are two general classes of models 
that, for want of better terms, I have called genetic and experiential 
models. These terms are, of course, too simple because all four models 
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TABLE 10.1. Models of the Development of Contrast Constancy 
Genetic Models 

Model I: Pre specified gain function is inverse of blur function. 
Experiential Models 

Model 2: Distribution of environmental information is known. Blur function is deduced 
by comparing distribution of output information to distribution of environmental 
information. 

Model 2A: One type of environmental feature is known. Blur function is deduced by 
comparing output distribution for that feature to known input distribution. 

Model 3: Distribution of environmental information is not known nor is a particular 
environmental feature. Blur function is deduced by comparing output distribution for 
an object undergoing a smooth change in distance. 

require both genetic and environmental influences. I use the terms simply 
to convey the nature and relative importance of environmental factors for 
each. 

In the genetic model the gain function is assumed to be pre specified 
genetically. Visual experience is required to sustain visual function, but is 
not crucial to setting how much high frequencies are amplified relative to 
low ones. According to this viewpoint, contrast constancy develops once 
mUltiple spatial-frequency channels emerge. 

There are two arguments against this sort of model. First, the genetic 
model has difficulty explaining how contrast constancy emerges at 12 
weeks of age. The infant's blur function is presumably quite different 
from the adult's. This age difference is illustrated by the differences be­
tween infant and adult CSFs. Twelve-week-olds are most sensitive to 0.5 
c/deg and quite insensitive to spatial frequencies from 3 to 4 c/deg (Atkin­
son et aI., 1977; Banks & Salapatek, 1978). The peak of the adult CSF, 
however, is at 3 to 4 c/deg, with sensitivity falling to the acuity cutoff at 40 
to 50 c/deg. Changes in the optics of the eye probably cause differences in 
high-frequency sensitivity between infants and adults, but there are no 
definitive data yet. Additional neural differences are implied by the strik­
ing immaturity of the infant's retina (Abramo v et aI., 1982; Hendrickson 
& Youdelis, 1984). Whatever the cause, the blur functions of the mature 
and immature eyes are assuredly dissimilar. Consequently, the gain func­
tions in 12-week infants and in adults would have to be rather different to 
achieve veridical contrast matching at both ages. The genetic code could 
conceivably carry information to reset the gain function at various ages. 
To accomplish this resetting, however, the code and the resulting matura­
tional plan would have to be rather complex. This requirement for com­
plexity makes the genetic model somewhat unattractive. 

Additional, and perhaps more persuasive, evidence against a simple 
genetic model comes from studies of contrast matching in adults with 
amblyopia. Amblyopia is a condition of reduced visual acuity in one eye 
that is generally caused by anisometropia (different refractive errors in 
the two eyes) or by strabismus (crossed eyes). Hess and Bradley (1980) 
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FIGURE 10.8. Contrast-matching data from one amblyopic observer in the Hess 
and Bradley (1980) report. The CSFs for the amblyopic and nonamblyopic eyes 
are shown in the inset to the right. The large graph plots the contrast of the grating 
presented to the nonamblyopic eye, when it appeared to match the contrast of the 
grating presented to the amblyopic eye, on the vertical axis. The contrast of the 
grating presented to the amblyopic eye is plotted on the horizontal axis. The solid 
line indicates where the data would lie if matches occurred at equal physical 
contrasts. The half-filled symbols represent the matches at threshold. The open 
symbols represent the matches at suprathreshold contrasts. (From Hess & Brad­
ley, 1980.) 

measured the CSFs and contrast matching of amblyopic adults. Their 
results are illustrated in Figure 10.8. The CSFs of the observers' ambly­
opic and normal eyes were rather dissimilar. The amblyopic eye exhibited 
reduced contrast sensitivity to high spatial frequencies. Bradley and Hess 
asked their observers to match a high-frequency grating presented to the 
normal eye with a grating of the same spatial frequency presented to the 
amblyopic eye. When the grating presented to the normal eye was near 
threshold, the observers required more contrast in the target presented to 
the amblyopic eye. When the grating presented to the normal eye was 
suprathreshold, however, observers reported identical apparent contrasts 
when the two gratings were, in fact, equal in contrast. Clearly these 
amblyopic observers were using different gain functions for the two eyes 
to compensate for the poorer contrast sensitivity of the amblyopic eye. 
Genetic models would have difficulty explaining these data because the 
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genetic code would have to carry information about not only how the blur 
function changes with age in normal children, but also how it changes 
between eyes in amblyopic children and adults. This seems quite implau­
sible and leads one to suspect that visual experience is involved funda­
mentally in the acquisition of the proper gain function. 

Before describing the three experiential models in Table 10.1, let me 
characterize clearly what they have to explain. Allow me, for the mo­
ment, to use a homunculus (see Figure 10.9) to represent the information 
gathering and decision making that must be performed in the central 
visual system. The homunculus is used only to clarify the discussion. In 
using him, I am not making a theoretical claim that the information gather­
ing and decision making are performed by a high-level mechanism. 

The homunculus' job is to adjust the parameters of the gain function to 
render it the inverse of the blur function. In the experiential models, the 
blur function is assumed to be unknown initially, so the homunculus 
needs information that will allow him to measure it. How should he pro­
ceed? The difficulty in answering this question is illustrated by the equa­
tion 

O(u,V) = I(u,v) . B(u,v), (3) 

where O(u,v) represents the output of the peripheral visual system as a 
function of spatial frequency in two dimensions, I(u,v) represents the 
input to the visual system as a function of frequency, and B(u,v) repre­
sents the blur function, that is, how much the contrast of various spatial 
frequencies is reduced during peripheral processing. The experiential 

Input Blur Function ~utut 
I i(x),I(w) I c>1 h(x),H(W) ~C:I ===~> lftJ 

Gain Function 

FIGURE 10.9. A schematic of the feedback mechanism that is presumably involved 
in adjusting the contrast compensation (or gain) function. The input to the visual 
system is represented by the box on the left. The blurring caused by optical 
imperfections and peripheral neural summation is represented by the next box. 
The output of the blur process is depicted by the image on the TV screen. The 
evaluation of that output is represented by the homunculus who adjusts the pa­
rameters of the gain function to compensate for attenuation due to the blur func­
tion. 
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models assume that the homunculus has direct access to O(u,v) only, so 
he has to solve one equation with two unknowns. This is, of course, 
impossible unless some additional constraints can be brought to bear. The 
three experiential models postulate different constraints. 

Model 2 assumes that the input l(u, v) is known in a statistical sense, so 
the' equation reduces to 

O(u,V) 
B(u,v) = l(u,v) , . (4) 

where O(u,v) and l(u, v) are known. Model 2 does not assume that every 
input presented to the visual system is known; such an assumption would 
be absurd because the purpose of visual perception itself is to determine 
what specific inputs are. Instead, it is assumed that the average distribu­
tion of spatial frequency information in the environment is known. For 
instance, the homunculus might assume that the average contrast of 20 c/ 
deg information in the environment is 50 percent of the average contrast 
at 5 c/deg. We can rewrite Equation 4 to express this model more clearly: 

B(u,v) = OaCu,v)/la(u,v) (5) 

where laCu, v) represents the expected average input amplitudes as a func­
tion of spatial frequency and OaCu, v) represents the output amplitudes the 
homunculus observes on the TV screen. The blur function is deduced by 
comparing the expected average input distribution to the observed aver­
age output distribution. The homunculus can deduce the correct blur 
function in this manner, but only if the actual input information corre­
sponds on average with his expectations. Is this plausible? If the distribu­
tion of spatial-frequency information in the environment were simple (that 
is, could be described by a few parameters), the model could be imple­
mented readily. Unfortunately, the distribution is not simple. Switkes, 
Mayer, and Sloan (1978) have shown that the distribution of amplitudes as 
a function of spatial frequency varies from one sort of environment to 
another. Urban environments, for example, appear to have relatively 
greater amplitudes at high spatial frequencies and at vertical and horizon­
tal orientations than rural environments do. Thus, model 2 requires in 
practice a detailed expectation of the average distribution of amplitudes 
across spatial frequencies in the environment, and this expected distribu­
tion would have to vary depending on the kind of environment. The 
combined requirements for detail and flexibility seem unfeasible and de­
crease the attractiveness of this model. 

Another version of model 2 is more plausible, however. This model, 
which I call model 2A, assumes that the homunculus knows the spatial­
frequency distribution of a particular feature in the environment and can 
identify that feature unambiguously for the range of blur functions he has 
to deal with. Equation 5 applies for this model, but now the expected 
input is a particular feature rather than some time average for all inputs. 
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The known feature would have to contain a broad range of spatial fre­
quencies in order to provide information at all the spatial frequencies the 
homunculus needs to do his job. An example illustrates how this model 
works. Suppose that the known feature is a sharp light-dark transition (an 
edge). In the interest of simplicity, I just consider the edge in one dimen­
sion. The one-dimensional Fourier transform of an edge of amplitude k is 

k 
J(v) = -. , 

1TJV 
(6) 

where j is the square root of -1 and v is spatial frequency. From Equation 
3, we have 

which implies that 

O(v) = B(v)·J(v) 

k 
O(v) = B(v)· -. 

1TJV 

jv 
B(v) = O(v) . 1T • k . 

(7) 

(8) 

(9) 

Because 1T andj are constants and O(v) can be measured, the homunculus 
could determine B(v) to within a scale factor 11k. In other words, he could 
deduce in principle the blur function by simply monitoring the output due 
to a known feature. This model seems feasible. Perhaps the greatest un­
certainty is whether the homunculus could reliably identify a particular 
feature in the environment from the ouput information provided. For 
example, without knowing the blur function, the homunculus might be 
unable to discriminate a diffuse edge, such as a shadow, from a sharp 
edge. If he mistakenly chose the diffuse edge as the known feature, he 
would err in his computation of the blur function and adjust the gain 
function inappropriately. 4 Whether reliable identification of a particular 
feature is possible could be asked by using a computer implementation of 
model 2A. The fact that a computer implementation is possible enhances 
the utility of these computational models; the performance of the imple­
mentation would be an extremely useful index of the model's feasibility. 
If the implementation could not successfully identify a particular feature 
embedded in everyday settings, the model should not be pursued further. 
If it could identify the feature reliably for a reasonably broad range of blur 
functions, we would know that the model can work in principle. 

Model 3 represents a different tack altogether. It assumes that the 
homunculus deduces the blur function by noting how the output changes 
as an object undergoes a smooth transition in distance. Figure 10.10 illus­
trates how the model works. Consider a particular input stimulus i(x,y) 
and its amplitude spectrum J(u,v). When the stimulus is viewed at 1 m, its 
amplitude spectrum is the solid line in Figure 10.10. When the stimulus is 
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viewed at 2 m, all the spatial-frequency components are shifted upward in 
frequency by a factor of 2. This shifted amplitude spectrum is illustrated 
by the dashed line in the figure. The homunculus could deduce the blur 
function if he could determine that the stimuli at 1 and 2 m were actually 
produced by the same object and that the change in distance was a factor 
of 2. The equations on page 366 show how. In deriving the equations, I 
assumed that the visual system processes images by using separate spa­
tial-frequency-selective mechanisms (an assumption for which there is 
overwhelming psychophysical and physiological evidence). The mecha­
nisms are roughly one octave wide (that is, they respond to a twofold 
range of spatial frequencies). The outputs of the various mechanisms are 
represented by W(u,v), X(u,v), Y(u,v), and so forth. The W mechanism 
responds to a one-octave band centered at a spatial frequency of VI. The 
X mechanism also responds to a one-octave band, but the center of the 
band is V2, a spatial frequency 2 times higher than VI. The center of the Y 
mechanism's band is V4, which is 4 times higher than VI, and so on. The 
outputs of the three mechanisms are shown in Table 10.2 for the object 
presented at two distances dl and d2• The second distance in this example 
is twice the first, but the algorithm will work for other distances, too. 
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FIGURE 10.10. The amplitude spectra of an object when it is viewed at two 
different distances. The solid line represents the amplitude spectrum when the 
viewing distance is 1 m, and the broken line represents the spectrum when the 
viewing distance is 2 m. Notice that all the sine wave components simply shift 
upward in spatial frequency by a factor of 2. 
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TABLE 10.2. Model 3 
Distance 1 Distance 2 

Once the homunculus determines the distance ratio, he can deduce the 
blur function by comparing one mechanism's output at one distance to 
another's output at the second distance. In the example, he should com­
pare W's output at d1 to X's at d2 and X's ouput at d1 to Y's at d2• The 
following equations illustrate how he estimates the blur function by mak­
ing these comparisons: 

But we know that 

Therefore, 

W(UJ, d1) 

X(U2, d2) 

X(U2, d1) 

Y(U4, d2) 

H(Ul) . I(Ul, d1) 

H(U2) . I(u2, d2) 

H(U2) . I(u2, d1) 
H(U4) . I(u4, d2) . 

I(Ul, d1) = I(u2, d1) = 1 
I(u2, d2) I(u4, d2) . 

W(UJ, d1) 

X(U2, d2) 
and 

X(U2, d1) 

Y(U4, d2) . 

(10) 

(11) 

(12) 

(13) 

These ratios are the relative loss of contrast from one band of spatial 
frequencies to the next. This information is all the homunculus needs to 
adjust the gain function appropriately. 

This model is more attractive than models 2 and 2A because it does not 
require too much knowledge about the input stimulus. However, the ho­
munculus does need to know when and where to apply the algorithm, and 
this decision may not be easy. I propose the following strategy. The 
homunculus monitors the output of the TV screen for a particular type of 
event: a smooth, symmetric change in the angular subtense of a closed 
figure (note that he does not actually have to compute the change in 
distance, only the change in angular subtense). He applies the algorithm 
of Equations 10 and 11 to only those events because they are generally 
caused by an object moving smoothly in distance and not tilting or slant­
ing toward or away from the eye as it does so. If he could reliably identify 
such cases, the algorithm could be used to compute the blur function and 
thereby adjust the gain function. When he identifies a proper event, the 
change in distance could be determined by the ratio of angular subtenses 
at the two distances. 
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The next step in the development of these computational theories will 
be computer implementation using visual scenes as input. The successes 
or failures of the implementations should indicate which models are worth 
pursuing. Finally, the computational theories should be tested empirically 
in restricted rearing experiments. For example, model 3 would predict 
that a kitten raised in a situation that did not allow the viewing of objects 
undergoing smooth transitions in distance would not exhibit contrast con­
stancy. 

Summary 

I have argued here that the field of perceptual development has been 
primarily concerned with describing perceptual capabilities at various 
ages. Missing are clear explications of developmental mechanisms. In 
other words, we do not have adequate theories of the means by which 
perceptual capabilities improve over time. I have argued that a rigorous 
computational approach might yield important insights. In particular, 
computational theories would help us characterize rigorously (1) what the 
young child learning to perceive has to do, (2) the sorts of information 
available to accomplish this task, (3) how the information is used, and (4) 
the problems imposed by physical growth. To illustrate the computational 
approach, I described how the mature visual system compensates for 
distortions caused by optical blur and peripheral neural summation, and I 
asked how the visual system might attain the information it needs to 
adjust the compensation mechanisms appropriately. I proposed three 
computational models of the developmental mechanisms, but only two 
seemed feasible. These models are quite different from those proposed by 
Gibson, Cohen, and Bronson. Of course, the scope of the computational 
models proposed here is more restricted. In addition, the computational 
models are designed to address the problem at issue at the level of compu­
tational theory and, therefore, do not specify the precise mechanisms or 
neural structures involved. Specification at those levels of analysis should 
await refinement of an appropriate computational theory. Another differ­
ence is the degree of explicitness. Gibson's and Cohen's theories, for 
example, are frustratingly vague and, consequently, are exceedingly diffi­
cult to test scientifically. It is not clear how one could implement either of 
the theories physically, and it is also not clear how to test them empiri­
cally. In contrast, the computational theories presented here are reasona­
bly explicit and testable. Both models could be implemented as computer 
programs, and the performance of such implementations would tell us 
how feasible they are. Furthermore, it should be possible to test the 
computational models experimentally. 

How useful might this quantitative, computational approach be to other 
areas of developmental psychology? For reasons stated earlier, it is fruit-
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ful, in any scientific domain, to quantify one's models as much as possi­
ble. Unfortunately, quantification entails two clear risks. First, in quanti­
fying variables, one might oversimplify or distort the phenomena of 
interest. Second, in developing a quantitative model, one might have to 
make several untested assumptions. As more and more assumptions enter 
the model, its successes and failures become less and less informative. 
Thus, the utility of the computational approach depends critically both on 
whether the perceptual, cognitive, or social constructs under study can be 
quantified without losing their essence and on whether enough constraints 
can be brought to bear to restrict the number of untested assumptions. 
Cognitive and social constructs are generally more complex, or difficult to 
define, than perceptual constructs, and clear-cut environmental and em­
pirical constraints are more difficult to come by. I am, consequently, less 
optimistic about the promise of the computational approach for the study 
of cognitive and social development. As I said above, the study of visual 
development may be unusually well suited for the approach and conse­
quently may provide a unique opportunity for the study of development in 
action. 
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Notes 

1. Recently, I stumbled on an excellent example. I have written a com­
puter implementation of equations developed by Longuet-Higgins and 
Prazdny (1980). These equations concern the use of optic flow in the 
retinal image to judge the three-dimensional layout of the environment 
and to judge one's motion through the environment. I discovered that 
the computer program generally could not determine the direction of 
self-motion unless the scene provided multiple-depth planes. This 
seemed odd at the time. I learned later, however, that human observers 
also have difficulty jUdging the direction of self-motion toward a single 
flat surface in the frontoparallel plane (Johnston, White, & Cumming, 
1973; Regan & Beverley, 1982). Humans can judge the direction of 
motion accurately only when different depth planes are present (War­
ren, 1976). 

2. The reasoning behind this argument is the following. The steady state, 
visually evoked potential seems to be unaffected by motivation to view 
a target (Regan, 1972). Thus, when behavioral and evoked-potential 
measurements agree, both measurements probably index visual mecha­
msms per se. 

3. When the amplitude of the blur function is zero or nearly zero, multi­
plying by the inverse is impossible. Furthermore, the amplitude of the 
input is sometimes zero or nearly zero in a particular spatial-frequency 
band. In those cases, multiplying by the inverse of the gain function is 
inappropriate because it leads to amplification of noisy data. In either 
case, the best strategy is simply to set the output amplitudes at the 
affected spatial frequencies to zero. 

4. Although this sort of detail is beyond the scope of this chapter, I should 
at least point out that different adjustment strategies could be used. For 
example, proportional adjustment, in which each adjustment is some 
proportion less than 1, minimizes undesirable oscillations. 



11. Monte Carlo Simulation as a Method of 
Identifying Properties of Behavioral 

Organization 

C. Donald Heth and Edward H. Cornell 

Models provide a framework for understanding a psychological process, 
often by identifying components of that process. Models permit cogent 
and precise communication of theoretical concepts and often serve as 
analytical descriptions of behavioral observations. 

Here we describe one class of psychological models that we have found 
especially useful for the analysis of children's behavior. We develop a 
modeling technique that facilitates three functions of a model: under­
standing, communication, and description. We apply this technique to a 
phenomenon of cognitive development, the growth of the ability to orga­
nize efficient search for resources. Our intention is to provide a set of 
modeling modules or tools that can be extended to other situations by 
other investigators. Although the models are framed in a particular com­
puter language, we develop these modules in a very general manner, so 
that they are comprehensible independent of a computer language. 

Orienting Attitudes 

Psychological models have been built in many media and with many 
techniques, ranging from mathematical formalisms such as Hull's system 
of behavior (Hull, 1952) to physical constructions of mechanical, chemi­
cal, or electrical parts, such as the conditioning machine of Baernstein 
and Hull (1931). In essence, however, a model is meant to exhibit an 
explicit action or computation that represents some psychological phe­
nomenon. According to this broad characterization, then, psychological 
models are devices that simulate the action of the psychological system. It 
is this sense of models as simulations that has guided the work we report 
here. 

Simulation is a multidisciplinary topic that has evolved primarily in 
response to practical concerns about the behavior of complex systems 
(see, e.g., Bratley, Fox, & Schrage, 1983). A paradigmatic simulation 
situation, for example, is the queue at a bank wicket. The manager of the 
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bank, faced with the problem of reducing customer complaints of long 
lines, might be interested in the effect of reassigning responsibilities 
among the tellers of the bank. Rather than implementing a costly experi­
ment in staffing, the manager may simulate the behavior of customers and 
tellers by a computer program that produces changes in the values of the 
program's variables analogous to the changes that occur on the floor of 
the bank. Policy decisions can then be made on the basis of the outcome 
of the program. 

Clearly, the manager must address some important issues if the simula­
tion is to be useful. The components of the physical system being simu­
lated must be clearly identified and their interrelationships adequately 
specified. The computer program (which specifies a series of state 
changes in the machine) must mimic these components and relationships 
in all important respects. And the outcome of the simulation program 
must be properly interpreted. Although many subtle issues arise in such 
cases, computer simulation has proved to be a highly effective tool in the 
practical and theoretical understanding of large systems. 

However, in psychological inquiry, simulation techniques are generally 
used at a different stage of research than commonly seen in systems 
theory research. Psychologists are rarely in the position of the bank man­
ager, who understands the general configuration of the system. Instead, 
psychological theorists are more often in a position analogous to an out­
side examiner trying to understand how the bank works and what the 
responsibilities of the tellers are. 

It seems reasonable that simulation could help such a naive observer 
understand the workings of the system in the following way. Repeated 
simulations of the bank situation could be performed with different as­
sumptions of teller and customer relations. The observer would conclude 
that he or she had a good description ofthe bank's structure when a given 
simulation matched the bank's operation well. In a similar way, simula­
tion of psychological systems has been used to develop approximate de­
scriptions of many cognitive phenomena (see Chapter 8, this volume). 

In this chapter, we outline such a procedure. We describe a data-driven 
methodology in which models of children's behavior can be tested against 
empirical outcomes. This method will put a strong premium on the con­
struction and testing of simulation models. Consequently, we develop a 
set of simulation tools that can be easily adapted to different theoretical 
statements. Although we develop these tools in the context of a specific 
application, we believe that this approach can be used in a variety of 
contexts. 

Before describing this approach in detail, it is worthwhile to examine 
several methodological orientations that have shaped it. Consider the 
outside observer using simulation to understand the operation of the 
bank. One issue is the possible stochasticity of the system. Clearly cus­
tomers and tellers behave in ways that are not completely predictable; 
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this variability must be represented in some way by the simulation. A 
second issue is the selection of criteria to use for a "match" between 
simulation and system-a problem often referred to as validation of the 
model. Finally, the observer must consider whether the goal is to describe 
banks in general or one in particular. That is, the simulation will be 
characterized by certain parameters in the computer program that pro­
duces it. At issue is whether these parameters are meant to describe 
aggregate or specific cases. Our approach is likewise characterized by 
these issues. 

A Monte Carlo Technique 

Our specific application involves a choice task. We start with the assump­
tion that organized or strategic behavior would not produce a random 
series of choices. Sequences of activities are structured for the purpose of 
adapting to environmental contingencies that are themselves structured 
by physical and biological laws. The challenge for any theorist, then, is to 
identify the regularities produced by such systematic processes. 

Many theories and models, including those that rely on simulation, 
represent the regularities of a system in terms of deterministic statements 
about the underlying processes (see Cotton, 1982). Rabinowitz, Grant, 
and Dingley (Chapter 8, this volume), for example, advocate such an 
approach. However, in some situations a probabilistic expression in a 
simulation model may be more appropriate. For example, a particular 
component of a simulation may be of little intrinsic interest and hence 
might be modeled by a general statement of probability. Alternatively, the 
theorist may wish to avoid a commitment to any particular assumption 
about some part of the process or system. Finally, probabilistic expres­
sions can serve a useful methodological function. When simulation of 
psychological processes is used, as a form of hypothesis testing, then a 
probabilistic or Monte Carlo technique can serve as a useful null hypothe­
sis. A Monte Carlo simulation represents a provisional statement about 
the psychological process under study. In a way, it is an expression of 
uncertainty about the process or system. 

To the extent that the empirical indices of the system differ from the 
Monte Carlo simulation, we can recognize that our theoretical explana­
tion requires more elaboration. 

Elaboration can take the form of introducing successive refinements to 
the Monte Carlo model. For example, consider behavior in a two-choice 
probability learning procedure. A preliminary model of behavior in such a 
procedure might assume that choices are made randomly. If the results 
produced by simulations of this model are compared to the behavior of a 
child in an actual study, there may very well be a large difference between 
the simulation and the child's protocol. The model of choice could be 
elaborated by the addition of a short-term memory to the simulation 
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model. Choices in the elaborated model would now be ajoint function of 
the random process and the memorial process. A developmental theorist 
would then test to determine whether the elaborated model provided a 
more valid model relative to the purely random model. 

Model Validation 

The type of hypothesis testing that we suggest above relies heavily on 
measures of goodness of fit between the results of a simulation and empir­
ical data. Simulation models must be testable, in the sense that their 
respective abilities to match the data are distinguishable. 

In a highly deterministic model containing no stochastic components, 
goodness-of-fit measures may limit the type of analysis that can be accom­
plished. A X2 statistic, for example, could be computed by using the 
outcome of the simulation as the expected term and a given empirical 
datum as the observed. However, this index would require multiple ob­
servations. For reasons discussed in the next section, we find this restric­
tion too severe. 

The Monte Carlo simulation techniques, however, have the advantage 
of producing outcomes that are themselves random variables. Conse­
quently, a model can be simulated many times to produce a distribution of 
outcomes. A given empirical outcome, even that from a single observa­
tion of a subject, can be compared to this distribution. The comparison 
provides a measure of the likelihood of the datum under the assumptions 
of the model. 

Later in this chapter we discuss a formal treatment of this likelihood. 
For now, we only indicate how it can serve as a rough index of the validity 
of a model. Briefly, given a model of a behavioral process, we can esti­
mate the probability that the record of choices exhibited by a child would 
fall into a distribution produced by the outcomes of many runs of our 
Monte Carlo, or random, method of producing choices. If the likelihood 
of the child's performance was low, we could reject that particular ex­
pression of the model. Depending on this decision, we could introduce 
successive refinements, the addition of memories or strategic algorithms, 
for example, to the Monte Carlo system. As the system output begins to 
approximate closely the behavioral record, we can consider whether such 
mnemonic or strategic algorithms might characterize the system of direct­
ing choice. 

In many respects, this approach to simulation is characteristic of many 
attempts to model psychological phenomena. For example, using the vo­
cabulary of information theory, we could say that before a simulation is 
attempted, we have maximum uncertainty concerning the outcome. 
"Good" models help us to remove the uncertainty, in the same way that 
"good" simulations transform the random output of a Monte Carlo pro­
cess to structured sequences. We have used Monte Carlo simulation in 
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this way to provide a method for assessing how much organization char­
acterizes behavior, for example, identifying the spatial patterns of search 
by children of different ages (Cornell & Heth, 1983, in press). 

Case Description Modeling 

The approach that we illustrate here is case-descriptive (Starbuck, 1971), 
in that we apply these techniques to the modeling of individual response 
histories. We can therefore identify, for each child, whether a cognitive 
process or strategy is required to model that child's behavior. The pur­
pose of this approach is to build a normative description of a general class 
(e.g., characteristic strategies of an age group) from idiographic decisions 
about the members of the class. We feel that this approach provides some 
additional information to the usual technique of modeling the class as an 
aggregation. 

For example, individual descriptions can sometimes produce different 
functional relationships from those of aggregate descriptions. Bakan 
(1967) has distinguished those descriptions that characterize the general 
class from those that describe the aggregation. As he noted, individual 
case descriptions can refine the boundaries of a particular class. Hence, 
case descriptions can be collated to provide information about the relative 
presence of strategies in different age groups or ecologies. This is done by 
enumerating the subjects who manifest identifiable strategies. The coap­
pearance of strategies that can be identified separately by the simulation 
can also be determined, illustrating the confluence of abilities that may 
characterize the development of problem-solving skills both within and 
between children (Cornell & Heth, 1983). 

Case-descriptive procedures also allow for the isolation of unique strat­
egies used by particular individuals. For example, when searching for 
objects she has seen hidden, a girl may discover that it is useful to recapit­
ulate the serial order of hidings rather than check sites that are close to 
one another. Once isolated, the strategy can lead to training procedures to 
boost the performance of other children who have not yet discovered it. 
Siegler's (1976) identification of encoding strategies for the balance-scale 
problem exemplifies this approach. 

Finally, at the level of case description, a variety of analytical proce­
dures can be used to validate a strategy that has been isolated by the 
model. A simple technique is to interrogate the particular child as to the 
solution she or he has created. The interpretation of the answers to such 
an interrogation, however, is a complicated matter (Nisbett & Wilson, 
1977). Another method is to design a new problem or place the child in a 
different ecology where use of the strategy would have unambiguous 
results. Training procedures that affect the use of the strategy also serve 
as converging operations to identify a strategy isolated by the model. 
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An Illustrative Application 

Our general orientation to modeling has evolved in response to the com­
plexity of data produced when toddlers search for hidden objects, as in an 
Easter egg hunt (Cornell & Heth, 1983; Heth & Cornell, 1985). Searching 
and gathering techniques are revealing indices of early cognitive develop­
ment. In particular, efficient search indicates inferential, planning, and 
mnemonic abilities of preschool and early primary school children (for 
reviews, see Wellman, 1985). Young children typically enjoy looking for 
hidden treats, and tasks can easily be arranged to match the natural con­
tingencies experienced by many species that must find resources. One 
treasure hunt we devised required that the child select 20 of 100 possible 
hiding sites (envelopes) that were spread in various configurations along 
the perimeter of a large playroom (Heth & Cornell, 1985). The choice of 
sites was particularly challenging because the child had to anticipate re­
call of 20 caches and had to distribute the treasure to avoid plundering by 
another youthful pirate. Of particular interest to us as students of compar­
ative development is whether and how the series of choices made by both 
children was organized to address contingencies of hoarding and preda­
tion. 

In our initial studies of how children search, we were struck by the 
variety of analyses that a series of choices afforded. Our first tendency 
was to examine gross performance measures related to efficiency. We 
calculated summaries of the number of items found per search, repetitious 
visits to previously checked sites, and visits to sites that had never con­
tained a target object (intrusive searches). Not surprisingly, older children 
were generally superior to younger children when these variables served 
as dependent measures in analyses of aggregate data. 

N ext we attempted to relate these results to specific rules or strategies 
used by the children within different age groups. For example, older 
children might avoid repetitious searches because they employ mnemonic 
strategies that allow them to identify sites grouped around landmarks. 
Younger children might be using movement algorithms that only reduce 
backtracking when sites are distributed in regular arrays. These possibili­
ties required that we be able to identify organization within each child's 
search path. 

Our solution was to employ a simulation technique that would generate 
stochastic information about various null hypotheses. The presence of 
nonrandom responses was tested for separate dependent measures, repre­
senting processes of discriminating hiding sites, memories of searches, 
and minimalization of distance traveled (Cornell & Heth, 1983, in press). 
Here, we use a search problem that approximates one faced by many 
foraging organisms and extend this approach to isolate rules or strategies. 

Consider an individual who must allocate search effort over a large and 
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heterogeneous spatial arena. The individual could be a child hunting Eas­
ter eggs, an aboriginal Australian looking for wood, or a bumblebee gath­
ering nectar. If search effort is costly in terms of energy or time expended, 
then the individual should concentrate activities in regions of high payoff 
and minimize return visits to places already exploited. The structure of 
the spatial array will determine to a large extent how these requirements 
can be satisfied. There have been formal descriptions of different types of 
spatial configurations, ranging from highly regular tesselations (Pyke, 
1978) to heterogeneous, "patchy" environments (Charnov, 1976). For 
example, a field of clover may have a very even distribution of blossoms 
used by bumblebees, while a leopard might find its prey clustered around 
water holes. Formal treatments of these situations have used the mathe­
matical tools of systems theory and microeconomics to examine the opti­
mal solutions for a forager (Kamil & Sargent, 1981). 

Unfortunately, these treatments often concentrate on the molar effi­
ciency of the organism and only indirectly address the processes (either 
psychological or physiological) that may generate efficient exploitation 
(but see Orians, 1981). Ollason (1983) has suggested an alternate ap­
proach, in which the behavior of the forager is determined by molecular 
mechanisms such as memories for previous movements and the reinforce­
ment effects of found resources. 

Our approach is similar to Ollason' s; accordingly, for the present appli­
cation we devised a search problem similar to the ecology he has de­
scribed. In this problem, many similar target objects are distributed ran­
domly throughout a region and are gathered when the searcher visits an 
obvious target site. Once its contents are gathered, a target location is 
empty; however, there are no obvious cues that the site has been ex­
hausted, and the site remains a possible candidate for later visits. As in 
most environments, the search region is demarcated by boundaries, some 
prohibiting travel. Delimiting the search region allows us to work with 
well-defined sets of locations. 

In our procedure, the set consisted of 50 sites, each consisting of 
an inverted opaque cup. They were placed in a large (13.7 x 8.5 m) 
empty room according to the following procedure. A grid was imposed on 
a scale drawing of the room. A grid square represented 0.36 m2 of the 
room. The grid provided Cartesian coordinates that were used to gener­
ate a random configuration of the hiding sites. The cups were then 
placed in corresponding positions in the room, and a penny was placed 
under each cup. The task was presented to a 7-year-old girl who was 
asked to gather the pennies under each cup. The cardinal number of 
each choice was announced after she had replaced a chosen cup to its 
original position. The gathering session was videotaped, and the se­
quence of choices transcribed in accord with the spatial coordinates 
of each cup. 
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A General Technique for Simulation of Performance 

Our first objective was to develop a set of computer algorithms that would 
produce a sequence of choices like that exhibited by the child in this 
search situation. That is, we begin simulation in a rather unconstrained 
manner, in that our initial goal is to model the performance of the child 
rather than a putative cognitive architecture. Our hope is that the types of 
decisions necessary to model behavior adequately will elucidate the psy­
chological processes involved and provide hypotheses for empirical vali­
dation. 

Simulation methods include a number of tools for the analysis of deter­
ministic phenomena (Bratley et al., 1983), including specialized simula­
tion languages, computer hardware, and analytical techniques. For our 
purposes we wanted to develop a set of simulation modules that could be 
added or subtracted to a simulation model to reflect different assumptions 
concerning the complexity of the behavior being modeled. That is, a 
particular series of choices may exhibit a complicated pattern, reflecting 
sequential dependencies between choices. We would like to factor this 
complexity into several simulation constructs to isolate possible psycho­
logical sources. 

Our solution is a kit of modules that implement a stream-based pro­
gram. Streams are programming constructs that can be used to produce a 
computable item (e.g., an integer) whenever the stream is activated 
(Charniak, Riesbeck, & McDermott, 1981). In a sense, a stream can be 
viewed as an indefinite list of items; whenever the rest of the stream­
processing program needs a new item, the object is computed from the 
contents of the stream. The principal component of a stream is a genera­
tor that constructs the items of the stream according to specified steps 
(usually written in the language in which the stream is implemented). The 
fate of the items produced by the generator is determined by the other 
constructs of the program, which can be viewed as stream transformers. 
That is, these constructs alter the products of a stream in various ways, 
by applying functions to them, by screening them according to certain 
rules, or by combining them with other streams. 

We start with a generator module that is essentially an algorithm for 
computing random numbers. The result is a stream of choice activity, 
which is subsequently transformed by additional transformer modules. 

These additional modules alter the sequence of random numbers in 
various ways. Some modules may exclude certain numbers from the se­
quence. For example, we might stipulate that hiding locations on the 
periphery of the search region not be chosen. A module that excludes 
certain numbers on the basis of some test is generically referred to as a 
filter. Another type of module applies some function to the numbers of the 
generator. For example, certain functions map a uniform distribution 
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from the random number generator into a normal or other type of distribu­
tion (Pritsker & Pegden, 1979). This type of module is known as a map 
and is used to mimic the outcome of processes that may be involved in 
systematic response algorithms, such as when a forager exhausts a circu­
lar array of sites by moving to the right after completing each additional 
search. Odette (1984) describes how filters and maps can be used in a wide 
variety of computational situations. 

For our purpose, we also include three additional stream transformers 
that increase the power of the simulation kit. In contrast to filters and 
maps, which take only a single stream as an input, these transformers 
combine or merge two streams. One, which we designate as an accumula­
tor, alters a stream on the basis of the last item produced by the accumula­
tor. For example, in our situation, an accumulator could be used to pro­
duce a choice that is based on the previous choice. With this transformer, 
the last choice is an additional stream. Another transformer, which we 
designate as a sieve, works by filtering a stream on the basis of another 
stream. This additional stream could be considered a parameter to the test 
used by the filter part. Actually, the parameter could be a simple integer, a 
list, or another stream. We allow the possibility that the parameter to this 
filter can be modified by the sieve and "fed back" for the next occasion. 
For example, the immediately preceding three choices made in our forag­
ing task could be kept as a list and used by the sieve to filter out choices 
that repeat one of these three. As a new choice is made, the list is updated 
and fed back to the sieve for the next item in the stream. The size of the 
list used by the sieve therefore reflects the size of a short-term memory. 
The last construct, which we term a combiner, merges a parameter with 
the stream. The parameter can be a list or another stream. For example, 
during searching for previously cached resources, only a subset of possi­
ble hiding places may have been used, such as a group of hiding places 
next to a window of the room. Choices generated by the random stream 
could be mapped onto the list of remembered locations to determine the 
child's overall performance. If the random stream generated the number 
6, for example, the combiner would produce the "6" member of the list of 
remembered places. 

Our simulation model, then, is a specific composition of a generator and 
a set of filters, maps, accumulators, sieves, and combiners. The combina­
tion produces a stream of numbers corresponding to simulated choices. 
The numbers correspond to the constraints and transformations imposed 
by modules of the model. We can then evaluate the correspondence be­
tween the stream from the simulation model and the stream of choices 
made by a child in our foraging study. 

Several caveats are noted here. First, we emphasize again that we begin 
by simulating the child's performance rather than the processes underly­
ing it. We do not necessarily assert that a child uses a generate-and-test 
decision process in which choices are randomly produced and then fil-
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tered or mapped. Rather, the modular decomposition is a convenient way 
to isolate components that may be sufficient to produce data like those 
produced by the child. Second, we use the different modules to explore 
the extent of the putative organization in the data. The number of items in 
short-term memory, for example, is limited in human cognition. We 
would be especially interested, then, to see whether the performance of 
the simulation model overpredicts performance when we use a large 
"memory" component in the stream. Finally, our approach places strong 
emphasis on an aspect of modeling methodology known as validation, the 
correspondence of the model to its real-world analog. In our present case, 
we require an assessment of when the inclusion of a module increases the 
match between simulation and observation. However, once a model pro­
duces patterns of output that have good validity, additional questions can 
be explored. In operations analysis, simulation models are used to ex­
plore questions of optimization. For example, when a refinery operation 
has been simulated and the simulation is properly validated, the refinery 
management can examine whether a change in operation will increase 
efficiency (see Pritsker & Pegden, 1979). In a similar manner, if our model 
indicates a module as having especially strong leverage in the determina­
tion of performance, it may lead to the development of procedures to 
improve particular cognitive skills. 

Data and Analysis 

Figure 11.1 shows the search path of the 7-year-old girl in our treasure 
hunt. With 50 choices she gathered 45 pennies and made 5 repetitious 
searches. She traveled an average distance of 1.88 m between choices. 

Appendix 11A contains our simulation of the sequence of choices. The 
simulation is written in Logo; however, the general techniques can be 
implemented in a variety of programming languages (e.g., LISP, 
FORTH). Here, we demonstrate their use by applying modules to the 
simulation of the performance of our child in the search task. 

STEP 1 

We construct a stream of choices with no sequential dependencies. This 
step illustrates the application of the stream modules and introduces some 
simple notational devices to summarize these modules. 

We begin with a composition of modules that generates random num­
bers uniformly distributed over some interval and builds a stream of 
search choices from this random generator. A variety of computational 
techniques are suitable for the generation of random integers (Bratley et 
aI., 1983; Heth, 1984); for simplicity, we employ here the function used by 
our particular implementation of Logo, which computes a pseudorandom 
number between 0 and 1 less than the number supplied as a parameter to 
the function. This function is then used in a generator; we denote the 
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FIGURE 11.1. The search path produced by Shannon, a 7-year-old girl, on her first 
attempt at the gathering problem. Open circles represent cups that were checked; 
filled circles were not visited. 

generator by a symbol that suggests its recurrent properties, and we label 
it G1• Under it, we give the Logo function that defines it. 

The generator G1 produces a stream of random integers uniformly dis­
tributed over a range determined by a constant. In this example the con­
stant is 50, which restricts the set of integers to the range 0 to 49. We then 
use this generator to select choices from a set of 50 possible hiding places. 
We accomplish the selection by transforming the stream of integers into 
the set of actual hiding places, represented as ordered pairs of X and Y 
coordinates in our treasure hunt. Two additional modules, illustrated in 
Figure 11.2, are required. One is another generator, G2, which simply 
produces the same list of 50 hiding places each time it is called. The other 
is combiner CI, which combines the stream of random integers with the 
pool of hiding places produced by G2• Combiners are given their own 
symbols to emphasize how they merge two streams. In the case of C I, this 
merger selects one hiding place from the list, determined by the random 
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number. For example, if the number is 5, then the sixth element of the list 
is selected. The result is a new stream, consisting of hiding places that are 
selected with replacement from the list. Although the selection of hiding 
places could be done in another way (for example, by having the initial 
generator randomly compute hiding places), we adopt this composition of 
modules both to demonstrate the action of a generator and a combiner and 
to allow for possible modifications in the set selected from. 

To recapituate, we now have a stream of ordered pairs [for example, 
(146) (51) (1110) ... ] that are selected randomly from any place in the 
hiding place list. The stream corresponds to a Monte Carlo selection of 
choices and could be used as a first approximation to the child's behavior. 
For example, if we simulate 50 searches with this construction, we might 
find several repetitions. In fact, in over 100 such simulations of a 50-
search session, we obtained a mean of 18.2 repetitions, with a 5th percen­
tile of 15. The mean distance traveled between successive choices was 
5.74 m, with a 5th percentile of 4.84 m. A representative search path 
produced by the model is given in Figure 11.3. Recall that the girl of our 

to C1 :stream1 :stream2 
repeat (sar :stream2) [make stream1 (sdr :stream1)] 
(sar :stream1) 
end 

to G1 :k 
(list random :k (generator 'G1 (list :k))) 
end 

to G2 :hidinglist 
(list first :hidinglist (generator 'G2 

(list (if emptyp bf :hidinglist 
[:sitelist] {Note global parameter.} 

[bf :hidinglist] )) )) 
end 

FIGURE 11.2. The model instance of step 1. Modules G] and G2 are generators; C] 
is a combiner. The Logo code for each is presented below the diagram. Sitelist is a 
global parameter that contains the coordinates of all sites located in the room. 
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FIGURE 11.3. A representative search path resulting from the model of step 1, 
including modules to produce random choices of sites. Open circles represent 
cups that were checked; filled circles were not visited. 

treasure hunt made 5 repetItIOns and traveled only 1.88 m between 
searches. Relative to the distribution produced by the 100 simulations of 
the step 1 model, this level of performance would be very unlikely. There­
fore, we conclude that the step 1 model is inadequate and must be modi­
fied to produce better performance. 

STEP 2A 

One way to improve performance would be to use memories of searches 
to guide choices. We introduced a short-term memory by passing the 
stream of choices from the step 1 model through a sieve. As a first approx­
imation, the module that is incorporated as a sieve does not allow immedi­
ate choice of the preceding five locations. A short-term memory capacity 
of 5 items seemed to be a minimal assumption, given the serial recall 
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to 81 :stream1 :stream2 
if (member (sar :stream2) :stream1) 

[nil] 
[fput (sar :stream2) (bl :stream1)] 

end 

to C1 :stream1 :stream2 
repeat (sar :stream2) [make stream1 (sdr :stream1)] 
(sar :stream1) 

end 

to G1 :k 
(list random :k (generator 'G1 (list :k))) 

end 

to G2 :hidinglist 
(list first :hidinglist (generator 'G2 

(list (if emptyp bf :hidinglist 
[:sitelist] {Note global parameter.} 

[bf :hidinglist] )) )) 
end 

FIGURE 11.4. The model instance of step 2A. Modules G1 and Gz are generators, 
C] is a combiner, and S I is a sieve. The Logo code is presented below the diagram. 

abilities of 7-year-old children (Dempster, 1981). Figure 11.4 depicts the 
action of the sieve, labeled S I. Figure 11.5 depicts a representative search 
path that resulted when the sieve was added to the initial model. Repeti­
tious searches dropped to a mean of 16.5 redundant choices with a 5th 
percentile of 12. The distance traveled between successive choices aver­
aged 5.82 m, with a 5th percentile of 5.08 m. The addition of a short-term 
memory module facilitated the reduction of redundant searches, but it 
produced little effect on distance traveled and did not yield the low num­
ber of repetitions shown by the child. Extension of the capacity of this 
short-term memory module to the last 10 choices made little difference. 
This outcome is somewhat surprising because efficient avoidance of de­
pleted sites is often attributed to mnemonic capacity (e.g., Kamil, 1978; 
Shettleworth & Krebs, 1982). Later, we explore the effect of increasing 
memory capacity in more detail. 
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o 
FIGURE 11.5. A representative search path resulting from the model of step 2A, 
including a module of a working memory of five choices. Open circles represent 
cups that were checked; filled circles were not visited. 

STEP 2B 

One possible modification is the inclusion of a simple algorithm that corre­
sponds to many seen in foraging situations (e.g., Pyke, 1978). A forager 
looking for food will sometimes confine search to a delimited region or 
"patch." Accordingly, choices are generally made to adjacent sites, or 
sites that are close to a previous choice. We can examine the impact of 
such an algorithm by defining a composition of modules including an 
accumulation that generates choices according to some criterion distance 
from the last choice. That is, the accumulation selects the next choice 
from those that are close to the last choice made. 

In step 2B we explored the effects of this least-distance module inde­
pendent of the 5-item memory module. We also included the constraint 
that the last two choices (the immediate site and the preceding one) not be 
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repeated by using a sieve like that of step 2A, to prevent alternation 
between two locations. We also allowed for some switches from one 
patch to another by making the neighborhood accumulation probabilistic, 
such that a choice beyond the criterion distance has a small (p =.1 0) 
chance of being produced by the accumulation. A composition to accom­
plish this function is illustrated in Figure 11.6 with the label Al denoting 
the neighborhood or least-distance accumulation. This accumulation 
works in the following way: One input is a stream of random numbers 
between 0 and 9. The other input is the last choice made. Also, Al has 
a table of sites that lists the sites closest to a given site, next closest, 
and so on, to the fifth closest sites. Based on the value of the random 
stream, Al selects one of these sets, or the complement of all of them, 
and chooses the next site to visit. That choice is then screened by the 
sieve to ensure that one of the immediately two preceding responses is 
not repeated. An interesting feature of this model is that the neighbor­
hood computed by Al is from the last choice of AI, not of SI. This 
corresponds to a search algorithm in which the child considers a neigh­
boring cup, decides if she had already checked it, and then chooses a 
neighbor of that cup. 

The results of step 2B are illustrated in Figure 11.7. There were 23.1 
revisits to sites, with a 5th percentile of 18 revisits. The large number of 
repetitions indicated that the simple constraint of avoiding the present and 
last choice was inadequate to minimize redundant searches. However, 
the mean distance between successive choices was 1.92 m, with a 5th 
percentile of 1.34 m. The mean was considerably lower than that of the 
previous models and very close to the distance traversed by the young 
girl. 

We conclude that the independent models of step 2 are inadequate by 
themselves to account for both distance traveled and number of repeti­
tious searches. In step 3, we explore more elaborate models. 

STEP 3 

Here we simply combined the modules of steps 2A and 2B with the 
neighborhood accumulation introduced after the stream of random num­
bers. The resultant stream of sites is then passed through the short-term 
memory sieve. The series of modules is illustrated in Figure 11.6 and a 
representative search path appears in Figure 11.8. Over 100 simulations 
there was a mean of 20.0 revisits to sites, with the 5th percentile of 13 
repetitions. There was a mean of 2.10 m traveled between searches, with 
the 5th percentile of 1.56 m. Although the results of these simulations 
appear closer to the young girl's performance than the results of steps 1, 
2A, and 2B, one dependent measure (actual repetitions) is outside the 5th 
percentile indicated by the model. 
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to 81 :stream1 :stream2 
if (member (sar :stream2) :stream1) 

[nil] 
[fput (sar :stream2) (bl :stream1)] 

end 

to A 1 :Iastchoice :str 
local neighborhood 
make neighborhood bf first assockey :Iastchoice :neighlist 

{Note global variable.} 
local testchoice 
make testindex (sar :str) 
if testindex < 3 
[make neighborhood item 1 :neighborhood 
op item (random count :neighborhood) + 1 :neighborhood] 

[if :testindex < 6 
[make neighborhood item 2 :neighborhood 
op item (random count :neighborhood) + 1 :neighborhood] 

[if :testindex < 7 
[make neighborhood item 3 :neighborhood 
op item (random count :neighborhood) + 1 :neighborhood] 

[if :testindex < 8 
[make neighborhood item 4 :neighborhood 
op item (random count :neighborhood) + 1 :neighborhood] 

[if :testindex < 9 
[make neighborhood item 5 :neighborhood 
op item (random count :neighborhood) +.1 :neighborhood] 
lop disregard :neighborhood :sitelist]]lll {Note global parameter.} 

to G1 :k 
(list random :k (generator 'G1 (list :k))) 

end 

FIGURE 11.6. The model instance of step 2B and step 3. Module GI is a generator, 
Al is an accumulator, and SI is a sieve. The models of steps 2B and 3 differ with 
respect to the size of the list bound to the first parameter of S I. The Logo code is 
presented below the diagram. the variable neighlist is a list that gives the five 
nearest neighbors of a given site. Disregard is a user-defined function that ex­
cludes items listed in the first argument from the list of the second argument. 
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FIGURE 11.7. A representative search path resulting from the model of step 2B, 
including a module producing least-distance choices. Open circles represent cups 
that were checked; filled circles were not visited. 

Validation of a Model 

Up to this point, we have judged each model by the general congruence of 
the simulated output and the actual dependent measures of distance trav­
eled and number of repetitious searches. Our intention has been to pro­
vide a rough assessment of the adequacy of each step, with a view to 
realizing a plausible model. From our inspection of the two dependent 
variables of our search situation, model 3 seems worthy of more exacting 
tests of the match between simulations and the child's performance. We 
now attempt such tests. 

Although there are several approaches to the validation of simulation 
models, we regard a technique proposed by Hanna (1971) as especially 
appropriate to the stochastic models we have developed. Briefly, Hanna 
regards a model as a theoretical tool that reduces the uncertainty of em­
pirical data. Models are viewed as containing information about the ex­
perimental situation; the task of model validation is to measure and com-
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FIGURE 11.8. A representative search path resulting from the model of step 3, 
including modules producing least-distance choices and a working memory of five 
choices. Open circles represent cups that were checked; filled circles were not 
visited. 

pare the informational content of alternate models. For this purpose, 
Hanna derives entropy measures of three characteristics of a model: 

1. A coefficient of predictive power p that measures the information in the 
child's protocol that can distinguish in favor ofa model over a "random 
model" 

2. A coefficient of descriptive power () that is the coefficient of predictive 
power associated with the maximum likelihood estimates of the 
model's parameters 

3. A coefficient of parameter effect e that is the difference between p and 
8 and that measures the amount by which the model can improve if the 
parameters are chosen post hoc 

Hanna (1971) defines certain dominance relationships between models 
depending on the relation of the respective parameters. As applied to our 
simulations, Hanna's method could serve to evaluate the relative contri­
bution of additional modules of a model. That is, the impact of an addi-
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tional module could be used to determine whether that module increases 
predictive power, descriptive power, or both. 

Two decisions were necessary in order to implement Hanna's (1971) 
measurements of the information provided by a model. His techniques 
required that we specify the parameter space, or possible values, of the 
constants within a model. Points representing specific model instances are 
necessary to estimate the coefficients of predictive and descriptive power. 
Thus, we first decided to constrain the parameter space of our models to 
make estimation procedures more tractable. The second decision was to 
constrain the outcome space for our models. The outcome space here is a 
two-dimensional representation of two dependent variables: the number 
of repetitious searches and distance traveled between searches. Hanna's 
techniques require nonzero probabilities for outcomes. To meet this re­
quirement, for both variables we collapsed the outcomes into two catego­
ries. This ensured that the categories were broad enough to provide some 
outcomes in each. 

The procedure is first illustrated by assessing the information provided 
when memory components are added to the model of random choice. We 
examined 10 model instances in which there were memories of 0, 5, 10, 
. . . ,45 past choices excluded from the set of current choices. These 
instances represent different capacities of a short-term memory module 
that is used to avoid repetitious searches. The performance of each model 
instance was estimated by running 100 simulations. The outcome of each 
simulation was categorized in terms of the number of repetitions and the 
average distance between choices. A particular simulation was classified 
as matching the empirical outcome of our gathering task when the number 
of repetitions and the distance traveled produced by the simulation were 
both less than the median of the random model. 

The proportion of the 100 simulations matching the empirical outcome 
was used to calculate a value for p according to Hanna's (1966) equa­
tion 3: 

1 
p = 1 - log, P(w*) 

Here r is the number of possible empirical outcomes, and P(w*) is the 
probability of the particular empirical outcome. In our case, r is 4, due to 
the 2 x 2 classification according to the median of the random model, and 
P(w*) is the proportion of the simulations matching the empirical out­
come. The mean value of p over the 10 possible instances defines p for the 
memory module. This value for p is given in the first row and column of 
Table 11.1. 

The ability of the memory module to account for our data can be appre­
ciated by considering what the value of p would be under different out­
comes of the simulation. If the memory module were a particularly suc­
cessful model of our 7-year-old's performance, then 100 percent of the 
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TABLE 11.1. Coefficients of information 
content of models. 

Memory model 
Neighborhood model 
Combined model 

pSt: 

.268 .582 .314 
-.116 .391 .507 

.745 1.000 .255 

simulations would produce repetitions and distances below the median of 
the random model; in this case, p would equal 1. If the memory module 
were no better (and no worse) than the random model, then only 25 
percent of the simulations would produce repetition and distance data 
below the median number of repetitions and the median distance "trav­
eled" by the random model. In this case, p would equal O. Finally, if the 
memory module were a particularly poor model of search behavior, it 
would produce few simulations below the median repetitions and distance 
of the random model. A module for which only 5 percent of the simula­
tions matched our child's data would result in a value of -1.16 for p. As 
can be seen in Table 11.1, changes in the capacity of the memory module 
in general do not provide a very powerful model of our child's search 
behavior. 

The next coefficient to be computed in Hanna's (1971) analysis is 0, 
which measures the descriptive power of the model. Delta is the maxi­
mum value of p across all possible instances of the model. In our case, the 
model incorporating a short-term memory capacity of 45 items generated 
the highest value of p. The resultant value of 0 is given in the first line and 
second column of Table 11.1. 

Together, p and 0 define the coefficient of parameter effect, which 
describes how a model is affected by changes in the values of its constitu­
ent parameters. This coefficient, e, is given in the first line and third 
column of Table 11.1. 

We interpret these values in relation to those of our neighborhood 
module, which models a very different kind of choice process. This mod­
ule stipulates that the child decides to search on the basis of distance 
relationships among possible search sites. We examined three model in­
stances that differed in the probability of choosing distance relationships. 
For example, the model instance tested in step 2B assumed that the 
searcher chooses sites closest to the last one searched with probability of 
.3. Next closest sites are chosen with probability of .3; third, fourth, and 
fifth closest sites are chosen with probability of .1, and sites farther away 
are grouped into a single category and chosen with probability of .1. This 
set of values corresponds to a type of strategy often seen in gathering 
tasks, in which the searcher tends to check adjacent sites. 

We wanted to distinguish broad classes of neighborhood models; hence 
we examined two other instances with different parameter values. In one 
we reversed the values of the parameters of the above model by using 
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values of .1, .1, .1, .1, .3, and .3 for choosing sites that range from the 
nearest to the farthest set, respectively. This stimulates a tendency to 
check one site in a neighborhood and then move to a more distant neigh­
borhood rather than to continue checking adjacent sites. The third in­
stance of neighborhood models assumed that the searcher chooses sites 
closest to the last one searched with a probability of .3, chooses sites 
beyond the five closest sites with probability of .3, and chooses the four 
intermediate sites with equal probability of .1. This model approximates a 
strategy that organizes search in reference to groups of sites. There is a 
total probability of .7 of searching within a group of five adjacent sites, 
with the most adjacent site given priority. The remaining .3 probability of 
moving to a more distant site mimics such occurrences as leaving when a 
neighborhood is perceived to be exhausted. 

The values for the coefficients of the predictive, descriptive, and pa­
rameter effects of the neighborhood module are given in the second row 
of Table 11.1. When they are compared to the corresponding values for 
the memory simulations, the values suggest that our child's protocol was 
not characterized solely by proximity organization. Indeed, the average 
value of p is negative, indicating that the simulations produce outcomes 
like the child's less often than a equip rob able assignment to the cells of 
the 2 x 2 table. Interestingly, the simulations are quite sensitive to the 
parameters of the module. As reflected by the value of B, the informative­
ness of the module can be improved with the right choice of parameter 
values; indeed, the module is more sensitive than the memory module. 

In the third step of the analysis, we examined the effect of combining 
the memory module with the neighborhood module. The combination can 
be tested with Hanna's procedure. The results of this analysis are pre­
sented in Table 11.1. An interesting form of interaction appears, in that 
the combined effect is much larger than would be expected from the two 
modules considered separately. The average value of p is very high, and 
the best set of parameters results in a simulation with perfect prediction 
(in the sense that all outcomes of this composition of modules are in the 
appropriate cell of the 2 x 2 table). Furthermore, this composition is not 
affected very much by different values of the parameters of the modules. 
In other words, the combination of memory and neighborhood modules 
produces a simulation model that is highly predictive and robust with 
respect to different parametric assumptions. 

Summary and Conclusions 

We have presented an approach to modeling in which a single-case proto­
col is evaluated against a Monte Carlo outcome of a computer simulation. 
In our illustration, the protocol is a record of visits to sites by a child who 
searched for hidden treats. The simulation begins with a program that 
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generates a stream of random numbers. The numbers represent choices or 
responses available in the environment. This permits a first analysis to 
determine whether the behavioral record could have been produced by 
chance. Examination of two dependent measures, the distance traveled 
between searches and the number of repeated visits to sites, indicated 
that the child's performance was extremely rare within the distribution of 
chance outcomes. 

In the subsequent analyses we introduced various programming mod­
ules in addition to the stream generator. These modules provide con­
straints or algorithms that modify the output of the simulation. The design 
of a module is derived from psychological theory. For example, one mod­
ule alters the stream by rejecting choices that have occurred recently. We 
consider this to model a short-term memory of previously visited sites. A 
second module constrains the choice of sites on the basis of proximity 
relationships. The algorithm reduces travel and is compatible with prac­
tices of optimal foraging when resources are distributed in patches. 

Two advantages of the modular approach were illustrated. The parame­
ters of a theoretical process, such as the capacity of short-term memory, 
can be studied independently of the operations of other processes. Or, 
different theoretical processes may be combined, as were the memory 
and neighborhood modules. The evaluation of the models indicated that 
this combination had properties that are not obvious from analysis of the 
output of the separate modules. 

Although psychological theory aids in the design of processing mod­
ules, in practice we view our form of simulation as very data-driven. The 
outcome of the various modules is tested to determine their application to 
the child's protocol. Hence, our model building proceeds in a number of 
distinct steps, in which we introduce a module to determine its effects on 
a simulated protocol, and we evaluate the effectiveness of this module 
relative to other models. 

We illustrated a quantitative evaluation originally formulated by Hanna 
(1971). Hanna's approach is to view the modeling process as involving the 
extraction of information from the situation being modeled. In the context 
of simulation, this approach involves the use of an entropy statistic to 
measure the match of a model to the empirical outcome. Hanna's tech­
nique yields three coefficients that index the precision of our modules. 

The results of this evaluation suggest a characterization of the relative 
attributes of the processing modules. Specifically, Table 11.1 indicates 
that the memory model provides more predictive and more descriptive 
power than the neighborhood model, as we have defined them. However, 
not only is the combined model better than either alone on both counts, 
but also it exhibits less effect due to variation in the parameters of the 
model, despite the fact that it has the additional module. 

We conclude that our 7-year-old gatherer organized her search with two 
cognitive components: memories of previous visits to sites and estimates 
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of the spatial proximity of sites. We arrived at this conclusion by means of 
a method that placed minimal restrictions on the experimental regimen 
but that still permitted the quantitative assessment of different theoretical 
interpretations. In this sense, our technique provides one very important 
function often ascribed to scientific models-their ability to bridge the gap 
between field observation and laboratory analysis. 

We view the general techniques we have described here as appropriate 
in a variety of situations. Monte Carlo simulation is useful when the 
stochastic complexity of a theory makes purely analytic treatments diffi­
cult. The stream-based simulation "toolbox" that we have developed 
would be most applicable in situations where the data consist of a series of 
observations similar to the series of choices we used in our Easter egg 
hunt. Streams are also useful when the investigator wishes to evaluate the 
effect of incorporating additional complexity into a model; a working state 
description of cognitive development may be simulated by a system of 
processing modules. The effects of adding to the model may be as reveal­
ing as the match of simulated and empirical performance. 
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Appendix llA 

The following defines a set of Logo functions that implement the stream­
based simulation package described above. These functions and the spe­
cific simulation modules described in the text are written in ExperLogo­
a commercial Logo package available from ExperTelligence of Santa 
Barbara, California. Readers familiar with Logo programming will notice 
two special functions used in ExperLogo: apply andfuncal!. Both apply 
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the first argument (a function) to the remaining argument or arguments. 
For example, (funcall :sum 2 2) evaluates to 4. In ExperLogo, all func­
tions return values, so that the function "output" or "op" is rarely used. 

The specific definitions given here were developed along the lines of a 
stream manipulation program discussed by Charniak et al. (1981). The 
function sar, when it is applied to a stream, returns the first element or 
head of the stream; the function sdr returns the tail. The function normal­
ize ensures that the stream does not start with a generator. 

Program comments are contained within braces (e.g., {comment}). The 
specification of stream transformers is described in the text. 

to generator :fun :args 
(fput 'gen(fput :fun :args» 

end 

to isgenerator :exp 
(equalp(first :exp) 'gen) 

end 

to fungenerator :1 
(first(bf :1) 

end 

to argsgenerator :1 
(bf(bf :1)) 

end 

to sar :s 
(first(normalize :s» 

end 

to sdr :s 
(normalize(bf(normalize :s») 

end 

{U sed to construct a stream gener­
ator.} 

{Tests a list to determine if it is a 
generator. } 

{Returns the function of a genera­
tor.} 

{Returns the arguments of a gener­
ator.} 

{Returns the head of a stream.} 

{Returns the tail of a stream.} 

to append :lisl :lis2 {Utility function.} 
if(emptyp :lis1)[op :lis2] 
(fput(first :lis1)(append(bf :lis1) :lis2» 

end 

to normalize : s {Expands any generators at the 
head of s.} 

if(or(emptyp :s)(wordp(first :s»(not(isgenerator(first :s»»[op :s] 
make rest nil {Rest is a utility variable, not used 

in this application; see Charniak 
et al. for details.} 
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label loop 
test(and :s(listp(first :s»(isgenerator(first :s») 
iffalse[op :s] 
make rest(bf :s) 
make s(append(apply(thing(fungenerator(first :s») 

(argsgenerator(first :s») :rest) 
go loop 

end 

to map :func :str {Definition of the map trans­
former.} 

(list(funcall(thing :func)(sar :str» 
(generator 'map(list :func(sdr :str»» 

end 

to filter :pred :str 

label loop 

{Definition of the filter trans­
former.} 

test(funcall(thing :pred)(sar :str» 
iffalse[op(list(sar :str)(generator 'filter 

(list :pred(sdr :str»»] 
make str(sdr :str) 
go loop 

end 

to accumulate :func :strl :str2 {Definition of an accumulator.} 
make strl(funcall(thing :func) :strl :str2) 
(list :strl 

(generator 'accumulate(list :func :strl(sdr :str2»» 
end 

to combine :func :strl :str2 {Definition of a combiner.} 
(list(funcall(thing :func) :strl :str2) 

(generator 'combine(list :func(sdr :strl)(sdr :str2»» 
end 

to sieve :func :param :str {Definition of a sieve.} 
local paramlist 
make paramlist(funcall(thing :func) :param :str) 
label loop 
if :paramlist[op(list(sar :str) 

(generator 'sieve 
(list :func :paramlist(sdr :str»»] 

make str(sdr :str) 
make paramlist(funcall(thing :func) :param :str) 
go loop 

end 
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