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Series Preface

For some time now, the study of cognitive development has been far and
away the most active discipline within developmental psychology. Al-
though there would be much disagreement as to the exact proportion of
papers published in developmental journals that could be considered cog-
nitive, 50% seems like a conservative estimate. Hence, a series of schol-
arly books devoted to work in cognitive development is especially appro-
priate at this time.

The Springer Series in Cognitive Development contains two basic types
of books, namely, edited collections of original chapters by several au-
thors, and original volumes written by one author or a small group of
authors. The flagship for the Springer Series is a serial publication of the
‘‘advances’’ types, carrying the subtitle Progress in Cognitive Develop-
ment Research. Each volume in the Progress sequence is strongly the-
matic, in that it is limited to some well-defined domain of cognitive-devel-
opmental research (e.g., logical and mathematical development,
development of learning). All Progress volumes will be edited collections.
Editors of such collections, upon consultation with the Series Editor, may
elect to have their books published either as contributions to the Progress
sequence or as separate volumes. All books written by one author or a
small group of authors are being published as separate volumes within the
series.

A fairly broad definition of cognitive development is being used in the
selection of books for this series. The classic topics of concept develop-
ment, children’s thinking and reasoning, the development of learning,
language development, and memory development will, of course, be in-
cluded. So, however, will newer areas such as social-cognitive develop-
ment, educational applications, formal modeling, and philosophical impli-
cations of cognitive-developmental theory. Although it is anticipated that
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most books in the series will be empirical in orientation, theoretical and
philosophical works are also welcome. With books of the latter sort,
heterogeneity of theoretical perspective is encouraged, and no attempt
will be made to foster some specific theoretical perspective at the expense
of others (e.g., Piagetian versus behavioral or behavioral versus informa-
tion processing).

C. J. Brainerd



Preface

The focus of this volume in the Springer Series in Cognitive Development
is methodology, especially as it concerns the development and testing of
formal theories. The choice of this topic reflects an increasing concern for
the development of sophisticated methodological tools that yield more
perceptive insights into children’s behavior, a theme that was evident in
an earlier volume in this series (Learning in Children) and that, in our
judgment, required more specific attention.

The need for more powerful methods of developing and testing theories
is not new, of course. Experimental research on cognitive development
has proliferated over the past 30 years, partly because of an infusion of
concepts and paradigms from learning theories in the 1950s, from Piaget’s
work in the 1960s, and from the perspective of information processing in
the 1970s. Theories and methods of research have become more sophisti-
cated with each step in this progression. One problem that consistently
emerges, however, is the tendency to formulate theories in terms that
preclude unambiguous predictions about performance. Similarly, meth-
ods of analysis often have been insufficient for providing the kinds of
precise, quantitative, and theoretically meaningful measurements neces-
sary for identifying process variables on diverse tasks. Difficulties in mak-
ing clear-cut predictions and sensitive measurements have resulted in
extended, and often unproductive, controversies. One outcome of these
continuing controversies is the growing realization that the complexity
and relative inaccessibility of cognitive processes require greater preci-
sion in the formulation and testing of theories. As a consequence, there
has been a notable increase in the use of formal models in cognitive
developmental research over the past several years. Computer simula-
tions, mathematical models, and advanced statistical methods are now
being used to investigate a wide range of developmental phenomena.
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Research involving formal models is far from the modal approach in
cognitive developmental research, however. One reason for the common
failure to use more sophisticated methods and theories is that many ap-
proaches to formal modeling are closely linked in the literature to specific
issues or processes. Authors typically do not have the opportunity to
discuss issues and details that are pertinent to applying the methods more
broadly. Thus most developmental researchers do not realize how gener-
ally appropriate these approaches are for diverse phenomena. A second
reason is that many of these newer techniques are quite complex, and
rarely are the details necessary for implementation available in journal
articles.

Our goal in publishing this volume is to communicate the insights and
methodological details researchers need to adopt or develop techniques
that may be useful for advancing their own investigations. The chapters in
this volume are based on presentations at a conference on the use of
formal methods in developmental psychology that was held at the Univer-
sity of Alberta in May, 1985. The conference served as a forum for propo-
nents of different methodological approaches. Participants took the op-
portunity to explain the assumptions and procedures associated with their
particular methods, to illustrate the use of the methods, to highlight par-
ticular strengths and shortcomings, and to exchange information about
recent developments. In the resulting chapters, most authors chose to
describe their methods in the context of specific investigations, and in
each case careful attention is given to the reasons for selecting a particular
method and for implementing or adapting it in useful ways. This approach
allows readers to gain an appreciation of the complex and sensitive man-
ner in which relations between theoretical concepts and empirical out-
comes must be explored in the course of developing and testing a theory.

Taken as a whole, the volume represents a sampling of current methods
and, perhaps more importantly, the issues that must be addressed in
developing more sophisticated methods for theory construction and vali-
dation. Readers interested in a particular method, such as the use of
computer simulation, are encouraged to peruse the pertinent chapters to
gain a broad perspective on the issues, constraints, and procedures asso-
ciated with that method. Brief descriptions are provided below to assist
readers in the selection of chapters.

The volume is divided into two sections. Included in the first section is
a wide range of mathematical and statistical approaches. Charles Brainerd
uses several examples to illustrate the generality and pervasiveness of
measurement problems in developmental research, and he illustrates how
some of these problems can be addressed in certain types of investigation.
The broad issues that are raised provide a context for the contributions of
the other authors in the volume. Johannes Kingma describes the use of
mathematical models in general, and he also provides a very detailed
illustration of how Markov models can be used to understand differences
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in memory processes among groups of children that vary in age and
learning ability. Alex Cherry Wilkinson and Beth Haines use a variety of
mathematical techniques, including Markov modeling, to study three dif-
ferent types of transitions in knowledge acquisition: changes that result
from repeated testing; changes that occur as components of a skill are
acquired; and changes that reflect the process of assembling familiar com-
ponents into a workable strategy. The chapter is very useful for illustrat-
ing how various methods can be combined and how precision in measure-
ment often requires greater specialization of method.

Several chapters represent relatively novel applications of statistical
methods. Colleen Surber illustrates the use of functional measurement
techniques in the study of reversible operations. In the process, she
shows how certain methods of developing and testing theories, many of
which arise from the literature on judgment and decision making, enable
her to examine an expanded concept of reversibility and to identify sev-
eral possible sources of developmental change in children’s thinking. Ro-
bert Sternberg shows how a variety of multivariate methods can be used
systematically to examine implicit theories and belief systems, a new
topic of research that is gaining considerable attention. Hoben Thomas
provides an elegant illustration of how exploratory data analyses and
careful analyses of probabilities can yield revealing insights about possi-
ble sources of individual differences in achievement. In the final chapter
of this section, Kevin Miller provides a thoughtful discussion of issues
associated with geometric methods of analyzing and representing data.
He also illustrates how nonmetric multidimensional scaling and non-
hierarchical clustering can be used productively in developmental re-
search.

The chapters in the second section all pertain to the use of computer
simulation. Michael Rabinowitz, Malcolm Grant, and Louis Dingley pro-
vide a broad overview of the concepts and issues that are associated with
the use of computer simulation in the development of psychological theo-
ries, and they also review a number of studies in which simulations have
been used to understand children’s performance. Mark Ashcraft de-
scribes a specific simulation of mental arithmetic and, more generally,
how simulation became a useful tool for him in his effort to integrate
concepts and test ideas about the organization and development of cogni-
tive processes. Martin Banks argues that computational theories, imple-
mented in computer simulations, provide a more promising way of under-
standing perceptual development than existing approaches. Finally,
Donald Heth and Edward Cornell show how Monte Carlo simulations can
be used to test hypotheses about spatial search behavior in children, and
they provide a set of simulation tools that can be used in a variety of
contexts by researchers.

The conference and subsequent preparation of this volume were made
possible by support from the Natural Sciences and Engineering Research
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Council of Canada and by the Department of Psychology, the Centre for
Research in Child Development, the Conference Fund Committee, and
the Office of the Vice-President of Research at the University of Alberta.
We are grateful for the stimulating comments provided by the conference
discussants (Terry Caelli and Frederick Morrison) and by the many indi-
viduals who attended the conference and contributed significantly to the
discourse. We are also thankful for the expert assistance of Cindy Scott,
Lorri Broda, Frances Russell, and Cecile Cochrane in preparing the con-
ference and this volume.

Jeffrey Bisanz
Charles J. Brainerd
Robert Kail
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1. Structural Measurement Theory and
Cognitive Development

Charles J. Brainerd

The overriding function of scientific theories is to reduce uncertainty
about the world we live in by explaining how things work. A basic di-
lemma in psychological theories, probably the most basic dilemma of all,
is that we do not possess what is sometimes called fundamental measure-
ment control over the constructs that we use to explain behavior. On one
hand, we regularly resort to notions such as short-term memory capacity,
retrieval from long-term memory, attitudes, hypotheses, rule knowledge,
preference, attention, motivation, intelligence, and the like when formu-
lating explanations. On the other hand, these notions are not amenable to
physical measurement operations such as weighing and counting. They lie
somewhere in the uncharted region between true physical reality and
metaphysical speculation. Consequently, we are not certain of how to go
about quantifying them through experimentation. Here, a familiar cate-
chism is that the most that can defensibly be assumed is that data are
related to psychological constructs by unknown but order-preserving
transformations. This is the familiar monotonicity constraint on the mea-
surement of psychological constructs. To take a hoary instance, while we
can presumably say that a person with a Stanford-Binet IQ of 150 is at
least as intelligent as a person with a Stanford-Binet IQ of 100, we cannot
say much more than this. And we certainly cannot say that the first person
is half again as intelligent as the second.

The monotonicity constraint would be less a cause for concern if we
were content with qualitative theories, that is, if we did not seek to quan-
tify such variables and were content instead with nominal-scale measure-
ments. However, theories in all areas of psychology, especially the most
refined theories, routinely make quantitative statements about their ex-
planatory constructs. To test these theories, it is necessary to evaluate
such statements, but the means of doing so under monotonicity restric-
tions are usually obscure.

The problem is conveniently encapsulated by an illustration that Krantz
and Tversky (1971) gave some years ago. Hull once proposed that an
organism’s reaction potential (or response strength) was a multiplicative
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function of three variables, namely, drive, habit strength, and incentive.
That is,

R = DHK, (n

where R, D, H, and K are numerical scales denoting reaction potential,
drive, habit strength, and incentive, respectively. Shortly thereafter,
Spence argued that reaction potential was a multiplicative function of the
sum of habit strength and incentive, on the one hand, and drive, on the
other. That is,

R = D(H + K). )

Both models assume that response strength is a simple algebraic func-
tion of three psychological variables. But how do we secure a differential
test of the two models? Under the monotonicity constraint, we can pre-
sumably obtain ordinal-scale measurements of the pertinent variables by
using, for example, running speed to a goal box for response strength,
amount of prior deprivation for drive, amount of prior training for habit
strength, and amount of reward in the goal box for incentive. But because
only the subjects’ ordering along each of the four dimensions is invariant
under such measurements, how do these data help us to choose between a
model in which drive is distributed over the sum of habit strength and
incentive and a model in which response strength is a simple product of
drive, habit strength, and incentive? If we had ratio-scale measurements
of all the variables, then naturally it would be a trivial matter to decide
whether the value calculated from the right side of Equation 1 or the value
calculated from the right side of Equation 2 was nearer to the observed
value of response strength. We do not have such measurements, how-
ever. (See Chapter 4, this volume, by Surber for a discussion of related
problems in research on human judgment.)

One reason that measurement theories have evolved in psychology is to
show us how to decide between different quantitative statements about
psychological variables. Some say, not without justification, that mea-
surement theories are merely quasitheological devices that allow us to
avoid the bitter fact that we ought not to be using metaphysical ideas in
our theories. I shall let this possibility pass, however.

In this chapter, there are two features of most measurement theories
that I wish to focus on. First, the monotonicity constraint is taken as a
given—that is, most measurement theories operate with ordinal-scale
measurements and do not usually deliver ratio-scale information about
constructs. Second, they are local theories. They do not attempt to solve
the monotonicity problem in general terms for all areas of psychological
theory. Instead, they solve particular manifestations of the problem in
well-defined areas of experimentation. Broadly speaking, then, measure-
ment theories have sought to discover how much mileage can be gotten
from particular classes of theories having only ordinal information about
subjects’ status on psychological constructs.
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These points can be illustrated by two familiar, contemporary measure-
ment frameworks, conjoint-measurement theory (Krantz, Luce, Suppes,
& Tversky, 1971; Krantz & Tversky, 1971) and functional-measurement
theory (e.g., Anderson, 1970, 1974; Anderson & Cuneo, 1978). (See
Chapter 4 by Surber and Chapter 3 by Wilkinson and Haines, this volume,
for additional discussions of functional-measurement theory.) The Hull-
Spence example is an instance of a large class of theories in which some
psychological variable is expressed as a simple algebraic function of a
small number of additional psychological variables, which conjoint-mea-
surement theorists have termed polynomial composition rules. Another
particularly rich source of examples is provided by classical theories of
attitude change, where subjects’ current attitudinal status is expressed as
some polynomial function of constructs such as balance, congruence,
valence, and so forth. In both conjoint-measurement theory and func-
tional-measurement theory, it is often possible to decide between differ-
ent polynomial formulations of the relationship between variables with
data that deliver at most ordinal information. A central feature of both
frameworks turns out to be the interpretation of interaction terms in the
analysis of variance. One framework, Anderson’s functional-measure-
ment theory, has been far more productive of experimentation than the
other, owing primarily to the fact that its statistical machinery has been
more completely developed and, in particular, its connections to analysis
of variance have been carefully spelled out. With functional-measurement
techniques, certain contrasting polynomial composition rules can be dis-
tinguished by merely conducting factorial experiments and examining
plots of various interactions. (See Chapter 4, this volume, by Surber for
illustrations.)

In the study of cognitive development, the realization that measure-
ment theory is critical to research has come very late. Even today, this
point is neither widely understood nor commonly acknowledged in the
literature. The most likely, though by no means complete, explanation is
that the field has historically been dominated by theoretical traditions that
were purely qualitative, with the Piagetian tradition being the prototype.
Piaget coupled a lack of serious quantitative theorizing with an active
antipathy to such work. He believed that theories that incorporated pre-
cise numerical statements about the relationship between children’s un-
derstanding of various concepts and developmental changes in certain
process variables (e.g., attention to relevant dimensions, knowledge of
pertinent rules, capacity of working memory) were somehow inconsistent
with the proposition that cognitive development is a stagelike process.
This is not to say that Piaget’s writings abjured formal modeling of any
sort. They did not. However, his use of modeling technologies such as
group theory and propositional logic (e.g., Piaget, 1949) was normally
metaphorical and invariably opaque.

Because cognitive development theory has traditionally been qualita-
tive, the need for measurement frameworks has been less clear than in
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other areas of psychology. Lately, however, two trends have made this
need more apparent. First, there is a growing awareness that some classi-
cal questions about cognitive development, questions originally brought
to prominence by qualitative theories, are implicitly quantitative in the
sense that different answers turn on assumptions about quantitative rela-
tionships between psychological variables. Three well-known examples
(the stage-learning hypothesis, sequences in concept development, and
the relative contributions of age changes in storage and retrieval to mem-
ory development) are discussed below. Second, there is, for the first time,
a vigorous literature concerned with quantitative theories of cognitive
development, particularly in concept and memory development. Illustra-
tions of such theories are also discussed below.

The general purposes of this chapter are to argue for the importance of
measurement-theoretical considerations in the study of cognitive devel-
opment and for an evolving perspective on measurement that relies on the
theory of maximum likelihood. The chapter consists of three main sec-
tions. In the first section, I review some important research questions
that, although ostensibly qualitative, seem to require careful attention to
measurement issues. Next, I discuss four goals for measurement theories
of cognitive development that follow from the material in the first section.
In the final section, some illustrations of quantitative theories of concept
and memory development are presented. It is suggested some progress
has been made toward a general measurement system for cognitive devel-
opment and, more explicitly, that the objectives set forth in the second
section have sometimes been met. Curiously, this progress has occurred
more or less without any realization that a general measurement frame-
work, one that is adapted to the specialized demands of cognitive devel-
opment theory, is being created.

Three Examples

In the literature on concept and memory development, some long-stand-
ing questions are rooted in failures to give due consideration to measure-
ment issues, specifically to response scaling issues that arise from the
monotonicity constraint on measurement. In the standard scenario, sev-
eral studies concerned with a predicted (qualitative) relationship among
certain variables are reported, but upon reflection it turns out that the
predictions being tested are informative only if it can be assumed that the
response scales (output transformations) that map different theoretical
variables with their empirical measures are identical. Since monotonicity
is normally the strongest assumption that can be made about response
scales, the question then arises, What do the data actually tell us about
the predicted relationships? I give three instances of this situation, exam-
ples that have been chosen with a view toward their familiarity rather than
their profundity.
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Example 1: The Stage-Learning Hypothesis

Experiments on the relationship between children’s concept learning and
their levels of cognitive development provide a textbook illustration of the
response scaling problem. Piagetian theory anticipates that children’s
ability to learn concepts such as conservation, perspective taking, classifi-
cation, and the like will ‘‘vary very significantly as a function of the initial
cognitive levels of the children’’ (Piaget, 1970, p. 715). Most studies con-
cerned with this prediction have used level of posttraining performance to
measure the theoretical variable ‘‘concept learning’’ and have used level
of pretraining performance on tests of the to-be-trained concept to mea-
sure the theoretical variable ‘‘level of cognitive development,”” all of
which seems natural enough at first glance. The featured results in these
studies have been dependencies between the two types of measures; the
conditional probability of being at a higher posttest level given that the
child occupied a higher pretest level is greater than the unconditional
probability of occupying a higher posttest level. Clearly, however, such
dependencies bear upon the predicted relationship only in the unlikely
(and unproven) event that the response scales for the two measures are
identical.

In the usual design of an experiment of this sort, first children are given
a battery of pretests for some Piagetian concept such as conservation.
This is followed by a training session in which the target concept is taught,
with the most common types of instruction being observational learning,
rule instruction, attentional training, and simple corrective feedback.
Training is followed immediately and/or a few days later and/or a few
weeks later by another battery of tests for the trained concept and some-
times for other related concepts. With such designs, there are four psy-
chological variables of interest for which ordinal-scale information is
available. First, there are the children’s pretraining levels of cognitive
development (variable D). Second, there is the power of the training
procedure to produce concept learning (variable P). Third, there is the
amount of learning produced by a given amount of training (variable L).
Fourth, there is the children’s posttraining knowledge of the target con-
cept (variable K). Variables D, K, L, and P are all distinct theoretical
concepts that cannot necessarily be defined in terms of each other; hence,
it is important to include them all in the formulation for completeness. For
example, one cannot simply define L as K — D because learning might be
something very different from the difference between children’s pretrain-
ing stage and their posttraining knowledge of the target concept. Simi-
larly, the power of the training manipulation must be considered because
the relationship between learning and pretraining stage may depend criti-
cally on the effectiveness of training.

To begin, learning is related to the effectiveness or power of the training
method. That is, more effective procedures should tend to produce more
learning. For example, a small number of trials with a given method ought
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to produce less learning than a larger number of trials. In short, we as-
sume that

L=f P ©)

holds, where f] is any monotonic function that maps scale values of P with
scale values of L. Essentially, the familiar Piagetian claim that children’s
concept learning depends on their stage of cognitive development implies
that this expression is an incomplete representation of the relationship
between learning and the power of the training method. Specifically, the
learning function f; should accelerate or decelerate, depending on devel-
opmental status, which is to say that L depends on D as well as on P.
Therefore, learning must be expressed as some joint function

L=f,(D,P) “)

of development and power, where f, is another monotonic function that
maps scale values of L with scale values of D and P. This latter function
would usually be called a composition rule in conjoint-measurement the-
ory or an integration rule in functional-measurement theory. Bear in mind
that, except for the monotonicity assumption, nothing whatsoever is
known about f,.

Now, consider some numerical examples from a mythical conservation
training experiment. The experiment is a 3 X 3 design in which three
levels of development (D) have been factorially crossed with three levels
of training power (P). The examples appear in Table 1.1, and each is
based on a different assumption about f; that satisfies Equation 4. The
composition rule is additive in one case (L = D + P), multiplicative in the
second case (L = DP), and a power function in the third case (L = PP). To
generate these examples, the scale values for D were set at 2, 3, and 4,
and the scale values for P were set at 5, 7, and 9.

The crucial question that Table 1.1 answers is whether the claim that
concept learning depends on developmental stage leads to some unique
result for D X P factorial designs that must be true for all monotonic
composition rules. To begin, note that scale values of L vary both down
the rows and across the columns when the composition rule is additive.
But if learning depends only on the effectiveness of training and not on
development (i.e., Equation 3, not Equation 4, is correct), then L should
only vary across rows. When scale values of L are inspected for the other
two composition rules, the same pattern is observed. This suggests a
basic research strategy for discriminating Equations 3 and 4: Conduct D
X P factorial experiments and test for D main effects, concluding that
Equation 4 is or is not correct accordingly as such effects are or are not
observed.

A difficulty arises, however, in implementing this strategy, namely, the
question of how to measure learning. Learning—like developmental
level, training power, and posttraining knowledge—is a theoretical con-
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TaBLE 1.1. Some numerical examples from a hypothetical
conservation learning experiment.

Rule and Power of training method
developmental
level P1=5 P2=7 P3=9
fo L=D+P
D, = L=7 L=9 L=11
D, = L=28 L=10 L=12
D; = L=9 L=11 L=13
f L =DP
D, = L=10 L=14 L=18
D, = L=15 L=21 L=27
D; =4 L=20 L=28 L =36
f L=PpP
D, = L=25 L =49 L =381
D, = L =125 L =343 L=1729
D; = L =625 L = 2401 L = 6561

struct that is subject to the monotonicity restriction. Experiments of this
type provide two measures of learning. First, there are pretest to posttest
improvements in concept-test scores. In other words, pretest scores on
the concept tests are subtracted from posttest scores, and the residual is
regarded as being monotonically related to amount of learning. Different
scores, however, are subject to well-known reliability problems. The
other, more attractive candidate for the learning measure is the rate at
which concept-test performance improves during training.

With the aid of these distinctions and examples, it is now easy to see
why the prediction usually tested in concept-learning studies with chil-
dren does not actually bear upon the issue of whether developmental
stage constrains learning. The essence of this prediction is that learning
depends jointly on the power of the training method and on the develop-
mental stage, not merely on the former. A simple factorial design evi-
dently is required to test this possibility. But the prediction that has
actually been evaluated in research is that posttraining performance de-
pends on pretraining performance, which merely says that scale values of
K are some monotonic function of scale values of D. Note (1) that L does
not enter into this prediction in any direct way, although K is presumably
some joint function of L and D, (2) that the prediction does not provide
any clear basis for discriminating Equations 3 and 4, and (3) that, indeed,
as long as the concept tests are reliable, the prediction would be consis-
tent with either expression.

Example 2: Concept Sequence Research

Sequentiality, the study of the order in which things develop, has always
been a prominent concern in developmental sciences, but its appearance
in the concept development literature dates to the revival of Piagetian
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theory two decades ago. The theory leads to two familiar predictions
about sequences in concept development. First, children should invari-
ably acquire some concepts, those that belong to earlier stages, before
they acquire certain other concepts, those that belong to later stages.
Second, concepts that belong to the same stage should not be ac-
quired in any particular order. Predictions of this ilk are also centerpieces
of most other theories that are closely connected to Piaget’s work,
with Kohlberg’s theory of moral development being a well-known in-
stance.

Although Piaget’s stages provided the initial impetus, a second, instruc-
tional motivation for sequence research soon emerged. Curriculum se-
quencing, the order in which new concepts and skills are introduced in the
classroom, is a key issue in the design of any curriculum, but especially in
preschool and elementary school curricula. Here, a common assumption
has been that if two (or more) concepts develop in some fixed order, then
teachers should introduce them in that same order in the classroom. Since
many of the concepts associated with Piagetian stages are also taught as
part of elementary school curricula (e.g., number, classification, seria-
tion, proportionality), some of the earliest studies in the literature focused
on such concepts. At the time, it was widely believed that this research
simultaneously afforded tests of theoretical hypotheses and generated
data that were useful in instruction.

The bulk of the early literature was concerned with concrete and formal
operational concepts, and the subjects were usually elementary school-
ers. The designs of these studies were simple. Typically, a single test of
each target concept was administered to a sample of children drawn from
an age range during which, according to theory or extant data, the con-
cepts developed. An overall performance measure based on the average
probability of a correct response was then used to score the data of each
test. As a rule, performance on given tests either was scored pass-fail or
was stratified into a small number of levels deemed analogous to stages.
The empirical evidence of sequentiality consisted of statistically reliable
differences in the pass-fail rates for different tests (if the tests were scored
pass-fail) or statistically reliable differences in stage classifications. In
other words, concept A was said to develop before concept B if the pass
rates or the stage classifications were higher for test A.

Most of these studies produced what, in the minds of investigators of
that era, appeared to be quite striking evidence of sequentiality. Some
early reviewers went so far as to conclude that sequentiality was far more
pronounced than even stage theories would expect. However, an ambigu-
ity materialized with respect to specific sequences that, for one reason or
another, were sufficiently interesting to prompt multiple studies. Minor
procedural variations (e.g., introducing visual illusions, requiring children
to explain their answers) were found to perturb the order of test difficulty



1. Structural Measurement Theory and Cognitive Development 9

rather badly. Hooper and his associates seem to have been the first re-
viewers to focus attention on this fact in connection with the frequently
studied ordering of quantity, weight, and volume conservation (Hooper,
Goldman, Storck, & Burke, 1971). They pointed out that while some data
on this sequence were in precise agreement with theoretical predictions,
other studies, using the same basic tests with slight modifications, had
produced quite different patterns of test difficulty.

Some illustrations of theoretically important sequences that produced
literatures with inconsistent patterns of test difficulty are compensation
versus conservation, class inclusion versus conservation, identity versus
equivalence, ordinal number versus cardinal number, and transitivity ver-
sus conservation. Perhaps the longest tradition of inconsistent findings is
for the developmental ordering of transitivity and conservation.
Smedslund (1959, 1963) originally reported that children conserve before
they make transitive inferences, a result that agreed with theoretical pre-
dictions (Piaget & Szeminska, 1941) and that was subsequently replicated
by others (e.g., McManis, 1969). At the same time, however, Lovell and
Ogilvie (1961) reported that children conserve and make transitive infer-
ences at about the same age. Several other investigators have found that
children make transitive inferences before they conserve (e.g., Brainerd,
1973, 1974; Hooper, Toniolo, & Sipple, 1978). There is even one experi-
ment by Keller and Hunter (1973) in which some comparisons showed
that conservation is understood before transitivity, other comparisons
showed that transitivity is understood before conservation, and still other
comparisons showed that conservation and transitivity are simultaneous
achievements.

Conflicting data of this sort eventually led to a realization that chil-
dren’s performance on a concept test is not merely a measure of their
grasp of the target concept. There is now general agreement that three
types of variables need to be taken into account: (1) children’s knowledge
of the concept being measured; (2) the possibility that both children who
have the concept and children who do not have the concept often make
correct responses by relying on nonconceptual factors (called false-posi-
tive errors in the literature); and (3) the possibility that both children who
have the concept and children who do not have the concept often make
errors by relying on nonconceptual factors (called false-negative errors).
The distinction between these variables merely acknowledges the intui-
tively obvious fact that there are always three paths to a correct response
on a concept-test item: A child may possess the target concept and man-
age to avoid various sources of false-positive and false-negative error, the
child may possess the target concept but make a correct response by
relying on some source of false-positive error, and the child may not
possess the target concept but may make a correct response by relying on
some source of false-positive error. It is the proportion of responses in the
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first category that most investigators would regard as the true measure of
conceptual knowledge.

The literature contains numerous illustrations of potential types of
false-positive and false-negative errors proposed for class inclusion, con-
servation, transitive inference, probability judgment, and other familiar
concepts. However, the dimensions of the underlying problem are clear
enough without a recitation of further examples. On the one hand, several
procedural manipulations (some of which apply to several tasks and
others of which are specific to given tasks) are known to inflate or deflate
performance on concept tests. Moreover, the presence or absence of
these manipulations dramatically affects the developmental ordering of
tests of different concepts. On the other hand, the fact that there are three
paths to any correct response means that we do not know whether the
effects of such manipulations are on the false-positive error rate, the false-
negative error rate, or both. That is, a manipulation that inflates perfor-
mance may do so by expanding the pool of false-positive error sources or
by shrinking the pool of false-negative error sources or by doing both.
Conversely, a manipulation that deflates performance may do so by pro-
ducing the opposite effects.

Owing to these ambiguities, inferences about the developmental order-
ing of concepts that are based on the relative difficulty of tests are pro-
foundly suspect. To make such inferences, correct responses must be
factored into those that are based on the concept and those that derive
from possible sources of false-positive error. As in Example 1, these
requirements are beyond our current capabilities because we lack appro-
priate measurement frameworks. The problem here is more difficult than
in Example 1 because the relevant theoretical variables are harder to
disentangle. We saw with concept learning that there were four such
variables (developmental stage, training efficiency, amount of learning,
and posttraining conceptual knowledge) and that four empirical measures
were available that could reasonably be supposed to be monotonic func-
tions of the respective variables. But in concept sequence studies, the
picture is more muddied. Only two statements can be made with some
confidence about measurement of the relevant variables. First, the proba-
bility of a correct response on a concept test is some monotonic function
of conceptual knowledge, the false-positive error rate, and the false-nega-
tive error rate. Second, when two versions of a concept test that produce
different levels of performance are administered, the conceptual knowl-
edge variable is presumably not affected because the subjects are the
same in both cases. But it is not clear whether the false-positive variable,
the false-negative variable, or both are affected. Unlike Example 1, there-
fore, measurements that are uniquely related to all the theoretical vari-
ables do not seem to be available, which makes the task of a measurement
theory more difficult.



1. Structural Measurement Theory and Cognitive Development 11

Example 3: Contributions of Storage and Retrieval Factors to
Memory Development

In the study of memory development, an interesting set of questions turns
on whether the developmental improvements observed on most memory
tasks are due to age changes in the ability to get information into memory
and/or age changes in the ability to get information out again. The general
issue of whether the development of storage processes or the develop-
ment of retrieval processes is more important to age changes in particular
paradigms has often been raised (e.g., Emmerich & Ackerman, 1978).
The question is also implicit in theoretical controversies associated with
certain paradigms. For example, the current disagreement over capacity
versus efficiency explanations of age changes in short-term memory span
(e.g., Dempster, 1985) can be interpreted as a disagreement about the
relative importance of storage development (capacity) versus retrieval
development (efficiency). Similarly, the controversy over automatic ver-
sus strategic theories of the development of organization in semantic
memory (e.g., Bjorklund, 1985) can be interpreted as a dispute over the
relative importance of storage development (automatic organizational
processes) and retrieval development (strategic organizational pro-
cesses). One need not, of course, agree with these interpretations of
either controversy. They are merely illustrations.

This same issue crops up in the study of age X treatment interactions on
memory tasks. Normally, a task-difficulty manipulation that enhances or
inhibits performance in some standard paradigm (e.g., free recall, paired-
associate learning) has the same qualitative effect at all age levels—that
is, crossover age X treatment interactions are rather uncommon in mem-
ory development. However, a given manipulation’s effects are often
greater or less in adults than in children, which is to say that divergent and
convergent age X treatment interactions are common. Prominent in-
stances of manipulations that show either divergent or convergent devel-
opmental interactions include serial position in serial learning (divergent),
list organization in recall (divergent), cuing in categorized recall (conver-
gent), imposed elaboration in paired-associate learning (convergent), and
concreteness in recall (divergent). One goal of any theory of memory
development is to explain such interactions, and existing explanations
vary in the emphasis placed on the development of mechanisms for repro-
ducing traces on test trials.

In the literature, the standard device for weighing the relative influence
of storage and retrieval factors in memory development has been to con-
duct experiments that incorporate manipulations designed to reduce the
effects of one class of factors on certain aspects of the data. But because
these manipulations are not informed by measurement-theoretic consider-
ations, particularly the monotonicity problem, they actually confound the
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issue more than clarify it. I illustrate this claim with a brief discussion of
two familiar procedures for separating storage and retrieval development,
the study-test technique and the recognition-recall technique.

The assumption that underlies the study-test technique seems sensible
enough: On most list-learning tasks, subjects are administered a series of
trials in which study cycles alternate with test cycles. By study cycles or
study trials, 1 mean opportunities that subjects are given to study the
individual list items. By test cycles or test trials, I mean opportunities that
subjects are given to remember items after having studied them. Since
subjects see the material only on study trials, it is assumed that storage
difficulty is more important on study trials than on test trials. Or, con-
versely, because subjects must reproduce the material on test trials but do
not see it, it is assumed that retrieval difficulty is more important on test
trials than on study trials. Now, suppose some manipulation is known to
interact with age and that it can be independently varied on study and test
trials in what is basically an A (type of trial: study vs. test) X B (treatment)
x C (age) factorial design. Picture cues versus word cues in paired-associ-
ate learning are a simple example: The effect of this manipulation is
known to increase with age, and the type of cue can be independently
varied on the study and test trials of each cycle.

The logic of the procedure says that because storage difficulty and
retrieval difficulty are of differential significance on study and test trials,
certain patterns of results can be interpreted as showing, first, that a
manipulation’s effects are primarily localized within storage or within
retrieval and, second, that the age X treatment interaction is therefore a
consequence of either storage development or retrieval development. For
instance, suppose that the picture-word manipulation produced a main
effect and the usual diverging age X treatment interaction. But suppose
that there was also an age X treatment X type of test interaction such that
age divergence in the picture-word effect is greater for study trials than
test trials. This would probably be interpreted as a demonstration that
the interaction of age with picture-word cuing is localized mainly within
storage development. As another example, suppose that the results
were the same, except that the age X treatment X type of test interac-
tion did not occur. This would probably lead to the conclusion that the
age X cuing interaction is localized within both storage and retrieval
development.

Another procedure for separating storage development and retrieval
development in list learning is the recognition-recall technique. This
method relies on the (presumably) differential contributions of storage
and retrieval difficulty to different tests of the same material. The underly-
ing logic is that if age X treatment interactions vary across testing proce-
dures to which storage difficulty and retrieval difficulty differ in impor-
tance, this is informative with respect to the contributions of storage and
retrieval development to such interactions. This method could, in princi-
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ple, be used with many testing procedures. However, it has almost always
been used with recognition versus recall. This variation has been chosen
because memory theorists normally regard recognition as being more
under the control of storage factors than recall is (e.g., Estes & DaPolito,
1967). Some theorists (e.g., Greeno, James, DaPolito, & Polson, 1978)
have viewed recognition as a pure storage paradigm, although others
maintain that such a strong assumption is inconsistent with findings such
as recognition failure (e.g., Flexer & Tulving, 1978). In any event, there
seems to be widespread consensus that storage difficulty contributes
more to recognition performance than to recall performance.

As with the first procedure, the logic of this method is that factorial
experiments of the form A (recognition vs. recall) X B (treatment) X C
(age) provide evidence about the relative contributions of storage devel-
opment and retrieval development. If we continue the picture-word illus-
tration, the type of cue could be manipulated over recognition tests versus
recall tests rather than over study trials versus test trials. As before,
certain patterns of main effects and interactions would be interpreted as
localizing the usual interaction between age and cuing within either stor-
age or retrieval development. For example, suppose that the usual main
effects for A, B, and C were observed, plusan A X B X C interaction such
that the effects of the picture-word manipulation were always greater for
older children, but this discrepancy was more pronounced with recogni-
tion tests than recall tests. The interpretation here would be that the cuing
effect is storage based and the usual age X treatment interaction is primar-
ily a consequence of storage development. In contrast, suppose that the
pattern of results were the same, except the picture-word manipulation
always had larger effects for recall than for recognition, and this differ-
ence was greater with older children than with younger children. Now the
interpretation would be that the cuing effect is retrieval-based and that the
age X treatment interaction is due to retrieval factors.

In the earlier example of research on the stage-learning hypothesis, I
used numerical illustrations to highlight interpretative difficulties. Here, I
resort to similar illustrations to demonstrate why, under monotonicity
restrictions, paradigms such as the study-test technique and the recogni-
tion-recall technique do not provide unambiguous information about the
comparative roles of storage and retrieval processes in memory develop-
ment. First, a minimum of three theoretical variables must be considered,
namely, memory strength, storage difficulty, and retrieval difficulty. Let
M, S, and R be the scales that denote these respective variables.

On memory tasks, global memory strength is some joint function of
global storage difficulty and global retrieval difficulty. The exact manner
in which scale values of the last two variables combine to produce scale
values of the first variable specifies a composition rule. As usual, this
composition rule is unknown. Also about all we can claim is that it is
monotonic—that is, larger values of S correspond to equal or larger val-
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ues of M when R is invariant, and larger values of R correspond to equal
or larger values of M when § is invariant.

Let P be the probability of a correct response on some memory task.
Under the monotonicity assumption, P is some order-preserving function
of internal memory strength, which is to say

P = f(M), &)

where £, is the function in question. However, we also know that memory
strength is some monotonic function of storage and retrieval difficulty.
This allows us to eliminate the concept of memory strength and express
performance directly in terms of the storage and retrieval scales. The
general form is

P =f1f(S, R, (©)

where f; is the composition rule that maps values on the memory-strength
scale with values on the storage and retrieval scales and f, is still the
output transformation for memory strength. Under the monotonicity as-
sumption, f, and f, may be any order-preserving transformations whatso-
ever.

To localize the effects of a manipulation within storage or retrieval, the
methods that we have considered assume that storage difficulty and re-
trieval difficulty vary in their contributions to different aspects of the data
(study trials vs. test trials or recognition tests vs. recall tests) and that this
somehow implies that comparisons of these different aspects of the data
provide differential evidence on storage and retrieval. However, the nu-
merical examples show that even if the theoretical assumptions of both
methods are sound, this implication does not follow under monotonicity
constraints. We have already considered a prototype A X B X C experi-
ment for each method. Recall that the first factor in the design is always
the methodological variable (study trials vs. test trials or recognition tests
vs. recall tests), the second factor is always a substantive treatment
known to interact with age (e.g., picture cues vs. word cues), and the
third factor is always age. It is clear from the illustrations that each
method’s ability to deliver storage-retrieval explanations of age X treat-
ment interactions depends on the validity of using results for the first two
factors in the design to make inferences about the respective contribu-
tions of storage difficulty and retrieval difficulty. To simplify the numeri-
cal examples, therefore, I confine attention to the first two factors.

The initial series of examples is for the study-test procedure. Recall that
the key assumption is that storage difficulty contributes more to study
trials than to test trials or, equivalently, that retrieval difficulty contrib-
utes more to test trials than to study trials. We now reconsider the earlier
experiments in which picture cues versus word cues are manipulated
factorially over study and test trials. The first step is to insert some scale
values for the S and R variables in this experiment (see Table 1.2). For the
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TABLE 1.2 Some numerical examples from a hypothetical study—test
experiment.

Condition and scale values

A|31: S=4 AzB]Z S=16 A132: S=6 Asz: S=16
and R = 4 andR =6 and R =8 and R = 10

foM=S8+ R and 8 22 14 26
fP=M

fiM=S8+Rand 2.08 3.09 2.64 3.26
fiP=InM

foM=1InS+ R and 5.39 8.77 9.79 12.77
fP=M

feM=1InS + R and 1.69 2.17 2.28 2.55
fiP=InM

Note: A\B, = word/word, A,B, = picture/word, A,B, = word/picture, and A,B, = picture/picture.

four cells of the A X B matrix, suppose that the scale values are S = 4 and
R = 4 for A;B; (word cues on study and test trials), S = 16 and R = 6 for
A,B, (picture cues on study trials and word cues on test trials), S = 6 and
R = 8 for A;B, (word cues on study trials and picture cues on test trials),
and S = 16 and R = 10 for A,B, (picture cues on both study and test
trials). These four sets of values satisfy the method’s assumption that
storage difficulty is more important on study trials than on test trials.
When the cuing variable is manipulated over study trials, the increase in S
values is greater than the increase in R values, with the average scale
differences between conditions having different study cues but the same
test cues being 11 for S and 2 for R. When the cuing variable is manipu-
lated over test trials, the increase in R values is greater than the increase
in S values, with the average scale differences between conditions having
different study cues but the same test cues being 11 for S and 2 for R.
When the cuing variable is manipulated on test trials, the increase in R
values is greater than the increase in S values, with the average scale
differences between conditions having different test cues but the same
study cues being 4 for R and 1 for S. Also, according to the four pairs of
scale values, the cuing effect is more a consequence of storage than of
retrieval: The average difference in scale values between conditions is
7.67 for S and 3.33 for R. Under the logic of the study-test method, we
should find that the cuing variable has larger effects on study trials than on
test trials because study trials depend more on storage difficulty than on
retrieval difficulty and so does cuing.

Table 1.2 shows, however, that the results of an actual factorial experi-
ment will depend more on the nature of the composition rule than on the
validity of the assumptions about storage and retrieval. As we have al-
ready seen, a very large class of functions is consistent with the constraint
that the function mapping values of memory strength with values of stor-
age and retrieval difficulty must be order-preserving. Two such functions
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have been used in the examples that appear in Table 1.2, namely, an
additive rule (M = § + R) and a log-additive rule (M = In S + R). These
two functions have been combined, for purposes of illustration, with an
additive output transformation (P = M) and a logarithmic output transfor-
mation (P = In M).

In Table 1.2, the composition rules and output transformations have
been crossed with four pairs of scale values. In general, we see that the
patterns of between-conditions results for the performance measure P
mirror the relationships in the underlying scale values for storage and
retrieval only when the compositive rule is additive. In the first two rows
of Table 1.1, where the composition rule is always additive and the output
transformation is either additive or logarithmic, the data are in the same
direction as the scale values. In the first row, the average difference in P
values is greater for comparisons where the cues are different on study
trials but the same on test trials (AP = 13) than for comparisons where the
cues are the same on study trials but different on test trials (AP = 5). In
the second row, the difference in P values is in the same direction, with
AP = .82 for the former comparisons and AP = .73 for the latter compari-
sons. In short, cuing affects study and test trials, and there is an interac-
tion such that the study-trial effect is larger. Given that storage difficulty
is more important on study trials than on test trials (an assumption that is
confirmed by the scale values), the conclusion would be that the cuing
effect is more a matter of storage difficulty than of retrieval difficulty,
which also happens to be the correct inference in this case. But if we now
consider the last two rows in Table 1.2, the between-conditions pattern is
reversed. In row 3, the average difference in P values is smaller for
comparisons where the cues are different on study trials but the same on
test trials (AP = 3.18) than for comparisons where the cues are the same
on study trials but different on test trials (AP = 4.20). In the fourth row,
the P difference is .38 for the first type of comparison and .49 for the
second type of comparison. Thus, there are again two main effects and an
interaction, but this time the cuing effect for study trials is smaller than
that for test trials. This result would presumably be interpreted as show-
ing that retrieval difficulty is more responsible for the effect than storage
difficulty is, an inference that is wrong.

The second series of examples is for the recognition-recall procedure.
With this method, the key assumption is that storage difficulty contributes
more to recognition performance than to recall performance. We return to
the hypothetical experiment in which picture cues versus word cues are
factorially combined with recognition tests and recall tests. Suppose that
the scale values for storage and retrieval for the four cells of the experi-
ment are S = 4 and R = 8 for A;B; (word cues on both tests), S = 16 and R
= 14 for A,B; (picture cues on recognition tests and word cues on recall
tests), S = 12 and R = 14 for A,;B, (word cues on recognition tests and
picture cues on recall tests), and S = 28 and R = 18 for A,B; (picture cues
on both tests). These scale values are consistent with the assumption that
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storage difficulty is more important on recognition tests than on recall
tests. The average R scale value is greater on recall tests than on recogni-
tion tests. The scale values, like those for the study-test illustration, are
also consistent with the conclusion that storage difficulty contributes
more to the cuing effect than retrieval difficulty does: The manipulation
produces larger average differences in S scale values than in R scale
values.

The numbers in Table 1.3 illustrate that relationships between scale
values for different conditions may or may not be reflected in results for a
factorial experiment. We saw in Table 1.2 that variations in the composi-
tion rule produce variations in apparent support for theoretical conclu-
sions, even though scale values are invariant. In Table 1.3, both the
composition rule and the output transformation can have this effect. The
two composition rules and output functions are the same as before. Only
the scale values are different.

The first row of Table 1.3, where both functions are linear, produces
data consistent with the underlying state of affairs. There is a main effect
for type of test (such that recognition is easier than recall), there is a main
effect for cue (such that pictures are easier than words), and there is an
interaction such that the cuing effect is greater on recognition tests than
on recall tests. This pattern would, naturally, be interpreted as establish-
ing that cuing depends more on storage factors than on retrieval factors.
But each of the remaining three rows produces the opposite interaction
(i.e., cuing effects are greater on recall trials than on recognition trials),
even though the scale values are consistent with theoretical hypotheses.
Relative to row 1, the composition rule is invariant and the output func-
tion changes in row 2, the composition rule changes and the output func-
tion is invariant in row 3, and both functions change in row 4.

To conclude, both methods discussed in this section make some other-
wise sensible assumptions about the relative influences of storage diffi-
culty and retrieval difficulty on different aspects of list-learning data.

TaBLE 1.3. Some numerical examples from a hypothetical recognition—recall
experiment.

Condition and scale values

AIBI'. S=4 AzBI'. S=16 A1B2: S=12 Asz: S =28
and R = 8 and R = 14 and R = 14 and R = 18

foM=S5+Rand 12 30 26 46
P=M

fioM=S+Rand 2.49 3.40 3.26 3.83
fiP=InM

fiM=InS + R and 9.39 16.77 16.49 21.33
fP=M

foM=InS + R and 2.24 2.82 2.80 3.06
fiP=InM

Note: A\B, = word cues on both tests, A,B, = picture cues on recognition tests and word cues on recall
tests, A B, = word cues on recognition tests and picture cues on recall tests, and A,B, = picture cues on
both tests.
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However, elementary measurement considerations, especially the empiri-
cal consequences of monotonicity restrictions, indicate that these as-
sumptions do not lead to unambiguous conclusions about the memory loci
of either treatment effects or developmental interactions.

Some Objectives

The principal aim of these examples was to illustrate that our historical
tendency to ignore even the most basic measurement distinctions in cog-
nitive development research is perilous. In addition, however, these ex-
amples adumbrate some goals or motivations that we should bear in mind
when attempting to develop measurement systems for cognitive develop-
ment research. In this section, I discuss four objectives that can be drawn
from the examples, namely, the need to factor relevant theoretical vari-
ables, the need to obtain ratio-scale measurements of these variables, the
need to validate particular formulations of theoretical variables, and the
need to test psychological interpretations of theoretical variables.

It is worth mentioning, before we proceed, that these objectives have
not been casually or arbitrarily chosen from recondite questions of con-
cern only to measurement theorists. On the contrary, the issues of how to
disentangle theoretical variables from each other, how to obtain ratio-
scale measurements of such variables, how to assess the validity of differ-
ent formulations of such variables, and how to pit different conceptualiza-
tions of theoretical variables against each other are, by consensus,
fundamental to theory construction in psychology. In treatises on mea-
surement, these questions often serve as textbook instances of founda-
tional crises in psychology (e.g., Krantz & Tversky, 1971). Frankly, one
motivation for the preceding examples is that they implicate these ques-
tions.

Factoring Variables

In Example 1 (concept learning), there were four theoretical processes of
interest: stage, power of the training regimen, amount of learning, and
posttraining conceptual knowledge. For each process, an empirical mea-
sure was available in the design of traditional concept-learning experi-
ments that could be assumed to be uniquely and monotonically related to
that process. That is, there was a manipulable variable for each process
such that changes in its observed values could be assumed to be a conse-
quence of changes in the target process, and not of changes in the other
three. This general situation, where experimental variables exist that pre-
sumably are unique monotonic funtions of process variables, is the stan-
dard one that frameworks such as conjoint-measurement theory and func-
tional-measurement theory are designed to handle. Unfortunately, this is
not a very common circumstance in cognitive development research. In-
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stead, a persistent difficulty is that our experimental variables are com-
plex functions of multiple process variables.

The endemic nature of this problem is apparent from Examples 2 and 3.
In Example 2 (concept sequence research), there were three theoretical
processes of interest: children’s concept knowledge, the false-positive
error rate of a concept test, and the false-negative error rate of a concept
test. There are two classes of experimental variables in the relevant stud-
ies. First, there are the concept tests, performance on which is assumed
to be monotonically related to all three processes. Second, there are
various task-difficulty treatments such as requiring children to give ex-
temporaneous explanations, presenting test items nonverbally, imposing
visual illusions, and so forth. As long as all levels of such a treatment are
administered to the same subjects, its effects are assumed to be monotoni-
cally related to the two error rates but not to concept knowledge. Review-
ers of this literature have concluded that no conceivable task-difficulty
manipulation can, in principle, be said to be uniquely controlled by one of
the two error rates (Brainerd, 1977). As we saw, therefore, the changes in
a child’s concept-test performance observed as a consequence of impos-
ing a given manipulation may occur because it changes the false-positive
error rate or changes the false-negative error rate or changes both. This
would be a less serious problem if such manipulations normally left the
order of difficulty of tests of different concepts invariant. We know, how-
ever, that they perturb these orderings. The result is a vast literature on
developmental ordering that, it now seems, is a sea of ambiguity.

In Example 3, the two theoretical variables of interest were storage
difficulty and retrieval difficulty. Here, the picture was analogous to that
for concept sequence research. On one hand, there are different types of
memory variables and performance measures, such as study trials versus
test trials and recognition tests versus recall tests. In the present state of
our theoretical knowledge, storage and retrieval ostensibly contribute at
different rates to these variables and tests. On the other hand, storage and
retrieval both appear to be involved in all variables and tests.

Two overriding goals of memory development research have been to
decide whether the effects of particular treatments are more a conse-
quence of storage processes or of retrieval processes and to use this
information to tease apart developmental interactions in these effects. As
with concept sequence studies, we do not seem to possess memory mea-
sures that can legitimately be assumed to be unique monotonic functions
of either category of processes. The situation is nominally better than
with concept sequences because there is reason to suppose that certain
measures are more directly controlled by storage than by retrieval and
that certain other measures are more directly controlled by retrieval than
by storage. Under monotonicity constraints, however, this advantage is
not sufficient to avoid contradictory conclusions from experimentation.
Therefore, the consequences—namely, an ambiguous literature on the
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relative contributions of storage development and retrieval development
to age X treatment interactions—are the same as in concept sequence
research.

Evidently, procedures are required for obtaining measurements that are
uniquely controlled by cognitive development processes. Because there
seem to be important areas of research where this cannot be done merely
by introducing empirical variables into experimental designs, attempts to
factor processes mathematically appear to be the most promising strat-
egy. In other words, frameworks that allow one to obtain independent
measurements of theoretical processes from data in which these pro-
cesses are partly or completely confounded would be especially useful in
cognitive development work.

Ratio-Scale Measurement

Assuming that appropriate factoring technologies can be devised, it would
be desirable if the independent measurements of theoretical processes
were something more than monotonically related to these processes. Al-
though systems such as conjoint-measurement theory and information
integration theory have revealed a surprising amount of inferential power
in monotonic information, they have also shown that there are clear limi-
tations. One can, it is true, draw precise conclusions about the algebraic
relationships between process variables with such information, but it is
not usually possible to make statements about the relative magnitudes of
different process variables’ effects on performance.

As a rule, inferences of the latter sort have been of greatest concern to
students of cognitive development. In the concept-learning example, for
instance, the stage-learning hypothesis does not specify what amount of
learning is determined exclusively by developmental stage, nor does it
propose a particular algebraic relationship between the power of the train-
ing method and developmental stage. Instead, effectiveness of training is
presumed to depend on stage; or, more simply, stage is said to make a
larger contribution to learning than training does. Likewise, in the con-
cept sequence example, we need to know the relative magnitudes of the
contributions of conceptual knowledge, false-positive error, and false-
negative error across many versions of a concept test before we can
conclude that there is a robust sequence in knowledge of different con-
cepts. Again, information about how different versions are ordered with
respect to the three variables would not be adequate for our purposes.
Finally, in the storage-retrieval example, assigning memory loci to treat-
ment effects and the subsequent use of such interpretations to explain
developmental interactions also require information about relative magni-
tude. In fact, with both the study-test procedure and the recognition-
recall procedure, it is possible to have information about the ordering of
storage difficulty and retrieval difficulty in distinct features of the data and
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still be unable to make unambiguous statements about the loci of treat-
ment effects. Something more powerful than monotonic information is
again necessary.

In short, another very useful feature of measurement systems for cogni-
tive development would be to deliver estimates of theoretical processes
that permit statements about relative magnitude. If such measurements
were on at least a common interval scale, such statements would ulti-
mately be possible. But in specific applications to data, it would be neces-
sary to confront the bothersome technical problem of finding the zero
point for all the relevant scales. Applications would, therefore, be much
smoother if independent measures of processes could be made on a com-
mon ratio scale (see also Chechile & Richman, 1982).

Validity

If it is possible to obtain independent estimates of theoretical processes
on common ratio scales, the next question is whether our characterization
of these processes as controlling performance on particular tasks is actu-
ally correct. In the three examples, the process descriptions simply were
assumed correct. Explicitly, it was assumed that the four variables of
stage, training power, learning, and posttraining conceptual knowledge
provided an accurate characterization of concept-learning experiments.
Three processes (conceptual knowledge, false-positive error, and false-
negative error) were assumed to account for concept-test performance,
and performance on memory tests was said to be adequately represented
by two classes of processes, storage factors and retrieval factors.

But how do we know that these characterizations are even remotely
accurate? More particularly, two questions, one about parsimony and one
about completeness, can normally be posed: How do we know that all the
processes specified are actually involved? In the concept-learning illustra-
tion, for example, perhaps developmental stages do not exist and con-
cept-test performance on both pretests and posttests merely reflects dif-
ferent levels of the same knowledge scale (cf. Brainerd, 1978). If so, we
can reduce the set of process variables that must be measured to training
power, learning, and conceptual knowledge. Similarly, perhaps separate
storage and retrieval processes do not exist and, instead, what we usually
call storage factors and retrieval factors are indistinguishable components
of a common memory-strength variable. Concerning completeness, how
do we know that processes other than those specified are not also in-
volved? In the storage-retrieval illustration, for example, perhaps encod-
ing and decoding processes operate independently of whatever processes
fix traces in storage and whatever processes find them on test trials. If so,
the number of processes for which independent measurements must be
sought is 4 rather than 2.

In general, then, we would like to know whether our sets of theoretical
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variables are either too rich or too impoverished for the data spaces.
Conceptually, this is a question about goodness of fit, and consequently it
suggests that goodness-of-fit machinery would be a useful component of
measurement theories for cognitive development.

Interpretation of Theoretical Variables

Assuming that the first three objectives can be met, we are still left with
the problem of making psychological interpretations of theoretical con-
structs such as developmental stage, concept learning, false-positive er-
ror, storage, and retrieval. Saying that certain processes are critical to
certain types of data and confirming such statements with goodness-of-fit
tests do not necessarily tell us anything about the nature of these pro-
cesses. Normally, there are a number of competing psychological inter-
pretations of any process. This is perhaps most apparent in Example 3.
The current memory literature contains many physical metaphors for
retrieval that stand as competing interpretations of how traces are located
on performance tests. The metaphors include such things as conveyer
belts, decision trees, junk boxes, and tuning forks. Similarly, concept
learning in Example 1 can be interpreted as discrete shifts in the use of
selected rules (e.g., Brainerd, 1979) or as the gradual accretion of skills
such as attention (e.g., Gelman, 1969). In the same example, between-
subject differences in conceptual knowledge can be viewed as all-or-none
differences in rule state or quantitative differences in component skills.
(See Chapter 3, this volume, by Wilkinson and Haines for a related dis-
cussion.)

Clearly it is important to gain leverage on contrasting interpretations of
process variables. Differences between such interpretations can often be
embodied in experimental manipulations of some sort. For example, if
concept learning is more a matter of changes in rule usage than a matter of
attentional shifts, rule instruction should affect concept learning more
than attentional instruction, other things being equal. In other words,
these manipulations should affect the power of the training procedure in
predictable ways, though not necessarily some of the other processes. So
we would like to be able to compare the relative effects of training meth-
ods that are inspired by different theories of concept learning on the
training power variable. More generally, we would like to be able to
compare the relative effects of manipulations that embody different inter-
pretations of a given process variable on that particular variable indepen-
dently of the other variables being measured.

Three Models

I now summarize a concept-learning model, a concept sequence model,
and a storage-retrieval model from the recent literature. In each case, the
synopsis shows how it is possible both to address the specific problems
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raised in the first section of this chapter and to satisfy some of the general
objectives discussed in the preceding section with a single model.

Two-Stage Model of Concept Learning

Experiments of the type discussed in Example 1 have been principally
concerned with the learning of Piagetian concepts such as conservation,
class inclusion, proportionality, perspective taking, subjective morality,
and so forth, especially conservation. A feature of overriding significance
is that children’s performance on tests of these concepts appears to be
strongly rule-governed: Children’s responses tend to be highly consistent
rather than haphazard, a fact that serves as the basis for nonverbal rule
assessment methodologies (e.g., Siegler & Vago, 1978). When asked to
justify their responses, moreover, children normally state simple rules
that are strongly correlated with these responses. In short, the evidence
seems overwhelming that children retrieve simple rules on concept tests,
although the specific rules and the manner of their application may be in
doubt. (On this point, see also Chapter 3, this volume, by Wilkinson and
Haines.)

Although we may not know the precise rules guiding a child’s perfor-
mance On any given occasion, it is possible to make an exhaustive, ab-
stract characterization of such rules in terms of the probabilities with
which correct responses occur. We can say that any rule that a child
might conceivably use on any concept test must fall into one and only one
of the following sets:

W = set of wrong rules, each of which produces errors on items of target
test with probability 1

V = set of valid rules, each of which produces correct responses on
items of target test with probability 1

P = set of partially valid rules, each of which produces correct re-
sponses on items of target test with some average probability 0 < p
<1

Because every conceivable rule must be a member of exactly one of the
sets, this classification system can be used with any concept test whatso-
ever without regard to the nature of the rules that are actually retrieved.

I have noted elsewhere that the normative data on many Piagetian tests
follow a pattern that can be explained by a simple rule-sampling interpre-
tation of children’s concept learning (Brainerd, 1979, 1982). This theory
can, in turn, be implemented as a Markov model. The normative pattern
to which I refer is one in which performance on tests of concepts such as
conservation, class inclusion, and the like seems to show a stereotyped,
three-step sequence. During an early age range, which usually corre-
sponds to the preschool and early elementary school years with Piagetian
concepts, children make errors more or less across the board. During an
intermediate age range, which usually corresponds to the early-middle
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elementary school years, children sometimes make correct responses.
During a final age range, which usually corresponds to the late elementary
school and adolescent years, errors rarely occur. The rule-sampling the-
ory being considered makes two primary assumptions: (1) Children in the
early, intermediate, and final age ranges use predominately W, P, and V
rules, respectively, and (2) the improvements in test performance that
occur as a function of training consist of surrendering current rules and
sampling new rules with a view toward securing rules that always produce
correct responses. At the start of a learning experiment, a child may be in
state W (using a wrong rule), state P (using a partially correct rule), or
state V (using a valid rule) with respect to the items on the test. Children
in such experiments normally are administered an extensive pretest bat-
tery, and only children who make at least some errors are retained for
training. In terms of rule-state classification, the children in a concept-
learning experiment are always in either state W or state P. For children
who start in state W, test performance can be improved by sampling
either rules from P or rules from V. For children who start in state P,
however, performance can improve only if V rules are sampled.

The notions that children occupy discrete rule states and that concept
learning consists of moving from more error-prone states to less error-
prone states imply a particular three-state Markov model. The mathemati-
cal aspects of the model have been described elsewhere (Brainerd, 1979,
1982; Wilkinson and Haines, Chapter 3, this volume) and need not con-
cern us here. The main feature of interest is that the model provides
different parameters which measure the difficulty of learning in the sense
of abandoning wrong rules and the difficulty of learning in the sense of
abandoning partially valid rules. The specific learning parameters of inter-
est are

a = on any trial, the probability that children who occupy state W escape
that state by sampling either a P rule or a V rule

b = on any trial, where a child escapes state W, the probability that a V
rule is sampled

d = on any trial where a child occupies state P and makes an error on a
test item, the probability that the child escapes state P by sampling a
V rule

It is now possible to conduct simple tests of the stage-learning hypothe-
sis by noting that children who currently occupy more error-prone states
(W in the model) should be at lower stages of cognitive development, on
the average, than children who occupy less error-prone states (P in the
model). Consequently, one would expect that children who occupy state
W should have more difficulty learning than children who occupy state P,
a prediction that can be tested by comparing observed values of a to
observed values of d. Procedures are available for estimating these pa-
rameters via the method of maximum likelihood (Brainerd, 1979, 1982;
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Kingma, Chapter 2, this volume; Wilkinson and Haines, Chapter 3, this
volume). Contrary to the stage-learning hypothesis, the difficulty of learn-
ing for children who occupy state W is not generally greater than for
children who occupy state P. In a series of experiments on conservation
and classification (Brainerd, 1982), either the estimated values of a and d
did not differ, or a was larger than d. Another surprising result from the
standpoint of the stage-learning hypothesis is that the majority of children
who start in state W learn by moving directly from W to V without ever
entering P, the estimates of the parameter b ranged consistently from 0.6
to 0.7. (Wilkinson and Haines report some similar data in Chapter 3.)

In addition to delivering direct tests of the stage-learning hypothesis,
the parameters of the rule-sampling model satisfy the four objectives
mentioned in the preceding section. First, they manage to factor the perti-
nent process variables by providing separate estimates of the difficulty of
concept learning for children who occupy less advanced and more ad-
vanced states at the start of an experiment. To test the stage-learning
hypothesis, about all that is necessary is to conduct a learning experi-
ment, estimate the parameters a and d, and determine whether they differ
reliably. Second, concerning ratio-scale measurement, because the three-
state Markov model gives a complete expression of concept-test perfor-
mance in terms of its parameters, the process variables that serve as
interpretations of these parameters are measured on a common ratio scale
(cf. Brainerd, 1982). In other words, variables such as the difficulty of
learning a P rule and the difficulty of learning a V rule are measured on a
common ratio scale. When the parameters have been estimated, there-
fore, statements such as ‘‘learning in state W was twice as difficult as in
state P”’ and the like can be made.

Third, the validity of the rule-sampling theory’s interpretation of con-
cept learning can be tested. An extensive battery of goodness-of-fit tests
is available that allows one to assess whether three-state Markov pro-
cesses give statistically tolerable accounts of learning data (Brainerd,
Howe, & Desrochers, 1982; Brainerd, Howe, & Kingma, 1982). If the
theory is correct in describing learning as progress through three, discrete
states, then the correspondence between the model and fine-grain statis-
tics of learning data should be virtually exact, a result that has usually
been obtained (Brainerd, 1979, 1982). Fourth, the model also permits
advances in our theoretical understanding of children’s concept learning.
As we have seen, parameters are in hand that measure the difficulty of
learning in different rule states, and learning has been tentatively inter-
preted as a rule-sampling process. However, other interpretations are
possible, some of which were mentioned earlier. It is quite feasible to pit
such interpretations against each other by manipulating treatments that
embody these ideas in experiments and determining how the learning
parameters of different states react. An illustrative research program has
been reported by Wilkinson (1982b; Chapter 3, this volume). In his experi-
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ments, Wilkinson has contrasted the simple rule-sampling view described
here with another interpretation in which concept learning involves both
sampling rules and assembling them into more complex solution proce-
dures.

A Model of Measurement Error in Mental Arithmetic

In Example 2, the underlying dilemma of concept sequence research is
that it is not possible to distinguish conceptual knowledge from false-
positive and false-negative reasoning errors. When children perform bet-
ter on tests of one concept than on tests of another concept, therefore, it
is not possible to tell whether this is due to a developmental sequence in
knowledge of the concepts or to differences in the intrinsic error rates for
the two types of tests. Apparently a model is needed that provides sepa-
rate estimates of the probability that children have the target concept, that
they will make false-positive errors, and that they will make false-nega-
tive errors. As yet, a satisfactory framework that encompasses the full
range of traditional concept sequence studies has not been developed.
However, progress has been made lately in connection with sequences in
basic number concepts (Brainerd 1983b; Wilkinson, 1982a, 1982b; Wilkin-
son & Haines, Chapter 3, this volume). Here, I describe a procedure that
permits the detection of sequences in two such concepts (addition and
subtraction) independently of the inherent error rates of the relevant
tests.

When children are administered arithmetic word problems, a common
finding is that addition problems are solved before subtraction problems
of equivalent logical complexity. For example, items of the form ‘5 + 3 =
2’ and ‘7 + 2 = ?”’ are normally solved before the logically equivalent
items ‘5 — 3 = ?" and “‘7 — 2 = 7”°. Cognitively, performance on such
simple problems might break down in two general ways, namely, process-
ing failure and short-term memory failure. Concerning processing, chil-
dren might not have addition and/or subtraction operations available in
their long-term knowledge stores. Concerning short-term memory, chil-
dren might not be able to encode some of the relevant information in a
word problem, or they might not be able to store the information long
enough to execute the necessary processing operations. If children are
constrained to give a response on every item, they presumably guess or
select a numeral on the basis of irrelevant contextual factors whenever
processing or short-term memory fails.

In this situation, we wish to determine whether the usual sequence in
addition and subtraction performance is due to a sequence in the process-
ing operations or to noise factors, such as guessing and short-term mem-
ory. An elementary model is available that is defined over a modified
mental arithmethic paradigm in which addition and subtraction items are
occasionally followed by short-term memory probes for the problem in-
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formation. Consider an addition item of the form ““m + n = ?”’ that is
followed by a recall probe requiring the child to restate the problem. Let
p(AM), p(AM), p(AM), and p(AM) be, respectively, the probability that
both the addition and probe responses are correct, the probability that the
addition response is wrong and the probe response is correct, the proba-
bility that the addition response is correct and the probe response is
wrong, and the probability that both responses are wrong. Also, let P, be
the probability that the child possesses the necessary addition operations,
S4 the probability that the child correctly encodes that problem informa-
tion into short-term memory and retains it until processing is completed,
and g the probability that the child guesses the correct number on addition
items when processing or short-term memory fails and on probe items
when short-term memory fails. The first four probabilities, all of which
correspond to observable data events, can now be expressed in terms of
the latter three probabilities, all of which are theoretical constructions.

First, correct responses might occur on both the addition and probe
items in three general ways: (1) Short-term memory and processing might
both function correctly (with probability P, S4); (2) short-term memory
might function correctly (with probability S,), which produces a correct
response on the probes, but processing might fail on the addition item and
be accompanied by a correct guess [with probability (1 — P4)ga]; and (3)
short-term memory might fail, and the subject might guess correctly on
both items [with probability (1 — S4)g4]. Hence, p(AM) can be expressed
as

P(AM) = PS4 + (1 — P4)Saga + (1 — Sa)gi. )

Second, an error might occur on the addition item and be accompanied
by a correct probe response in the following ways: (1) Short-term memory
might function correctly (with probability S4), which produces a correct
probe response, but processing might fail and be accompanied by an
incorrect guess on the addition item [with probability (1 — P4)(1 — ga)l;
and (2) short-term memory might fail and be accompanied by correct and
incorrect guesses on the probe and addition items, respectively [with
probability (1 — Sa)ga(1 — ga)]. The expression for p(AM), then, is

P(AM) = (1 = P)Sa (1 — ga) + (1 = Sa)ga (1 = ga). )

Third, a correct addition response might be followed by an incorrect
probe response in just one way, namely, short-term memory fails (with
probability (1 — §,) and the child guesses correctly on the addition item
and incorrectly on the probe [with probability (1 — g4)gal. This gives the
following expression for p(AM):

p(AM) = (1 = Sy)ga (1 = ga). )

Last, an error might occur on both items in just one way, namely, short-
term memory fails (with probability 1 — S,) and the child guesses incor-
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rectly on both items [with probability (1 — g4)%]. The expression for
p(AM), then, is

pAM) = (1 = 8,) (1 — ga) (10)

Turning to subtraction, let p(SM), p(SM), p(SM), and p(SM) be, respec-
tively, the probability of a correct subtraction response followed by a
correct probe response, the probability of an incorrect subtraction re-
sponse followed by a correct probe response, the probability of a correct
subtraction response followed by an incorrect probe response, and the
probability of errors on both the subtraction and probe items. Obviously,
these probabilities, like those for addition problems, can be expressed in
terms of the theoretical events of processing failure, short-term memory
failure, and guessing. Let Ps, S5, and g, be the probabilities of these
respective events for subtraction items followed by a probe for the prob-
lem information. The parallel equations for subtraction are

p(SM) = PsSs + (1 — Ps)Ssgs + (1 — Ss)g5, (11)
p(SM) = (1 — P)Ss (1 = gs) + (1 — Ss)gs (1 — gs), (12)
p(SM) = (1 ~ Ss)gs (1 — gs), (13)

p(SM) = (1 = Sg) (1 = gy, (14)

The method of maximum likelihood can be used to estimate the three
parameters for addition in experiments where addition problems are fol-
lowed by short-term memory probes (Brainerd, 1983b, appendix). The
same procedures can be used to estimate the three parameters for sub-
traction in experiments where subtraction problems are followed by
short-term memory probes. To decide whether there is a developmental
sequence in children’s knowledge of addition and subtraction, it is only
necessary to conduct studies in which both types of probed arithmetic
problems are administered, estimate the three parameters separately for
addition and subtraction, and then determine whether performance differ-
ences are due to differences in the processing parameter P or to differ-
ences in the two noise parameters S and g. I have previously reported
four experiments of this sort (Brainerd, 1983b). In the first two experi-
ments, probed addition items (experiment 1) or probed subtraction items
(experiment 2) were administered to mixed samples of preschool and
kindergarten children. In experiment 1, the average values of the three
parameters were P4, = .68, S4 = .40, and g4 = .14. In experiment 2, the
average values of the three parameters were Ps = .46, Sg = .40 and g5 =
.13. It appeared, therefore, that sequence in addition versus subtraction
knowledge was independent of noise factors. Similar findings were ob-
tained in two follow-up studies. In experiment 3, probed addition items
were administered to both preschool and kindergarten children and first-
grade children. In experiment 4, probed subtraction items were adminis-
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tered to children from the same grades. The average values of the three
parameters in the addition experiment were P, = .67 (younger children)
and P, = .72 (older children), S4 = .40 (younger children) and S, = .60
(older children), and g4 = .18 (younger children) and g4 = .30 (older
children). The corresponding values in the subtraction experiment were
Pg = .44 (younger children) and Ps = .56 (older children), Sg = .41
(younger children) and Sg = .64 (older children), and gs = .08 (younger
children) and gg = .26 (older children). In these latter experiments, the
processing parameter differed reliably at both age levels, although the
difference for the younger children (.23) was somewhat greater than the
difference for the older children (.16).

These data illustrate that by using fairly simple stochastic models one
can measure children’s underlying knowledge of target concepts indepen-
dently of potential sources of measurement error. Further illustrations
can be found in Wilkinson’s (1982a, 1982b, Chapter 3 in this volume)
models of partial knowledge. All these models are confined to elementary
numerical reasoning paradigms, where the major sources of false-positive
and false-negative errors are rather obvious. Nevertheless, concept se-
quence data from these models represent a considerable advance over the
types of studies discussed in Example 2. Moreover, there is reason to
suppose that the basic strategy of segregating performance into parame-
ters that measure conceptual knowledge and parameters that measure
error sources can be extended to more complex tasks where these error
sources are not self-evident.

Models such as these also provide leverage on the four measurement
objectives. First, in Equations 7 to 10 and in Equations 11 to 14, the
present model slices up performance on mental arithmetic items in such a
way that conceptual knowledge and measurement error can be assessed
independently of each other. Second, because performance on probed
arithmetic items is completely expressed in terms of the probabilities of
events such as processing failure, short-term memory failure, and guess-
ing, the latter events are being measured on a single ratio scale. This, in
turn, allows for relative-magnitude statements about the respective prob-
abilities of these events. Third, because the parameters are estimated via
the method of maximum likelihood, familiar likelihood ratio tests of good-
ness of fit can be used to assess the model’s validity. Mathematically, the
expressions in Equations 7 to 10 (as well as those in Equations 11 to 14)
constrain the four observable probabilities in specific ways. One con-
straint is easy to see by manipulating Equations 8 and 9. p(AM) must
always be larger than p(AM). If these constraints are violated, the model
is invalid.

Fourth, the theoretical interpretations of the three parameters—
namely, that P measures processing accuracy, S measures short-term
memory accuracy, and g measures guessing accuracy—can all be tested
by studying the effects of manipulations that should, under the stated
interpretations, selectively affect certain parameters. For example, sup-
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pose that identical probed arithmetic items involving the same numbers
were administered, except that some were addition items (for example,
5 + 3 = ?) and some were subtraction items (for example, 5 — 3 = ?).
Because the problems are identical except for the processing operation
required, one would expect, if the interpretations of the parameters are
sound, that only P should be affected by such a manipulation. Clearly,
from the data reported above, such a result has already been obtained. In
contrast, suppose that identical probed addition (or subtraction) items are
administered except that some problems are stated in more difficult lan-
guage than others. (For example, stating a problem in ordinal terminology
is usually easier for children to comprehend than stating it in cardinal
terminology.) Since the language in which a problem is posed is a pure
encoding manipulation, one would anticipate, under the model’s interpre-
tations, that the processing parameter would not be affected but the short-
term memory parameter would be. Data consistent with this expectation
have been reported (Brainerd, 1983b).

Two-Stage Model of Storage-Retrieval Development

We saw in Example 3 that a number of theoretical questions about mem-
ory development turn out to be questions about changes in the ability to
get information into memory versus changes in the ability to get informa-
tion out again. In some instances, these questions are focused on a spe-

cific memory paradigm (e.g., free recall). In other cases, the questions
are in the nature of general theoretical controversies, such as current

disagreements over capacity versus efficiency explanations of short-term
memory development and automatic versus strategic explanations of or-
ganizational development. As in concept sequence research, the fact that
independent measurements of storage and retrieval development are not
made has contributed to confusing and inconsistent literatures on such
questions.

During the past few years, an especially rich and varied array of models
has been implemented to deal with this problem. These models make it
possible to study the comparative rates of storage and retrieval develop-
ment, plus the development of other theoretical variables, quite indepen-
dently of each other. Different models are defined over different families
of memory tasks, which allows for truly convergent research on storage-
retrieval development. For example, Chechile and his associates (Che-
chile & Meyer, 1976; Chechile & Richman, 1982; Chechile, Richman,
Topinka, & Ehrensbeck, 1981) have proposed a model whose parameters
provide independent estimates of storage and retrieval development in
short-term memory. The model is defined over a modified version of the
familiar Brown-Peterson distractor task in which recognition tests are
intermingled with the normal recall tests (see Chechile & Meyer, 1976).
However, Wilkinson and his associates (Wilkinson, DeMarinis, & Riley,
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1983; Wilkinson & Koestler, 1983, 1984) have developed a model whose
parameters provide independent estimates of storage and retrieval devel-
opment in long-term memory. This model, naturally, is defined over dif-
ferent tasks than Chechile’s model, namely, Buschke-type repeated recall
procedures. A separate review of these models, together with other tech-
niques for measuring storage-retrieval development, is available
(Brainerd, 1985).

Of extant techniques, three-state Markov models of storage-retrieval
development have been by far the most commonly employed procedures.
They have been used to study the respective contributions of storage and
retrieval development in such varied contexts as memory deficits in the
aged (Howe & Hunter, in press), age changes in semantic organization
(Howe, Brainerd, & Kingma, 1985) age changes in the effects of response
knowledge on associative memory (Bisanz, Voss, & Vesonder, 1978),
memory deficits in learning-disabled children (Brainerd, Howe, &
Kingma, in press, a; Howe, Brainerd, & Kingma, in press), age changes
in the effects of concreteness on associative memory (Brainerd & Howe,
1982), age changes in the rate of forgetting from long-term memory
(Brainerd, Kingma, & Howe, in press b), and age changes in recall
(Brainerd, Howe, Kingma, & Brainerd, 1974). These models, which are
extensively discussed in Chapter 2, this volume, by Kingma, have the
advantage, relative to other models, of being applicable to a broad range
of memory paradigms. In particular, they can be used with any of the
standard list learning paradigms as long as the response measure is some
sort of recall (e.g., cued recall, free recall, paired-associate learning, se-
rial learning). A pedagogically instructive point is that the underlying
mathematical model is the same as the three-state model of concept learn-
ing considered earlier in this chapter and in Chapter 3, this volume, by
Wilkinson and Haines.

The logic behind the model is fairly straightforward. When children
memorize a supraspan list under standard recall conditions, the protocols
of individual items show a stereotyped pattern of errors and successes:
An initial series of one or more trials on which only errors occur is
followed by a series of trials on which recall is sometimes successful and
sometimes unsuccessful, and this is followed by a final series of trials
(criterion run) on which recall is always successful. (The complete pattern
is observed only when performance is driven to a stringent criterion.)
Conceptually, this pattern is interpreted as follows. Because the guessing
probability is effectively zero on recall tasks, it is assumed that a correct
recall is not possible until a permanent trace of an item has been deposited
in long-term memory. Because permanent storage does not mean that
retrieval will be infallible on test trials, some further learning may be
necessary before a retrieval algorithm is acquired. The states of the model
are then defined as follows. First, there is an unstored state U in which
only errors are observed because a trace has not yet been fixed in long-
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term memory. Second, there is a stored state S in which a trace has been
deposited but a retrieval algorithm is not yet available. During state S, the
probability of successful recall is some value 0 < p < 1. Third, there is a
retrievable state R in which a retrieval algorithm is available for the trace.

As I mentioned, these assumptions imply the same three-state model as
the one discussed in connection with concept learning. Not surprisingly,
the same parameters are used to measure storage and retrieval develop-
ment on recall tasks. In particular, parameters a, b, and d are redefined as
follows:

a = on any trial, the probability that an item escapes initial state U by
having a trace stored in long-term memory

b = on any trial where a trace is stored, the probability that a retrieval
algorithm is already available for the trace, so the item can proceed
immediately to state R without entering state §

d = on any trial where an item is already in state § (i.e., a trace was stored
on some earlier trial but a retrieval algorithm was not yet available) and
an unsuccessful recall occurs, the probability that a retrieval algorithm
is learned and the item enters state R

Another parameter concerned with retrieval is added to these models:

¢ = on any trial where an item is already in state S and a successful recall
occurs, the probability that a retrieval algorithm is learned and the item
enters state R

In specific research applications, then, one merely estimates parame-
ters such as these from recall protocols and evaluates the respective
contributions of storage and retrieval development to the data. Such ex-
periments evidently satisfy the first objective of measurement theories of
cognitive development because they factor the effects of the pertinent
theoretical processes on the target data: If storage development contrib-
utes more to a certain age effect than retrieval development does, the a
parameter ought to show more age change than the other parameters do;
but the reverse should be true if retrieval development contributes more
to the effect. The most vigorous applications of this factoring strategy
have been to age X treatment interactions—that is, to manipulations
whose effects on list learning tend to increase or decrease with age (e.g.,
category cuing, concreteness, degree of list organization, elaboration). In
most instances, such interactions appear to be either mainly storage ef-
fects or mainly retrieval effects. For example, Howe and I found that the
divergent age X treatment interaction in the effects of concreteness was
primarily the result of storage development during the early childhood
years but primarily the result of retrieval development later on (Brainerd
& Howe, 1982). Other investigators have reported age X treatment inter-
actions in the effects of factors such as learning disability (Brainerd,
Howe, and Kingma, in press, b) and cuing that are consistently due to
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retrieval development (Howe et al., in press). Finally, age X treatment
interactions in certain variables can be chiefly storage-based with some
tasks and chiefly retrieval-based with other tasks. The familiar divergent
interaction for degree of list organization, for instance, has been found to
be due to retrieval development on free-recall tasks (Howe, et al., 1985)
and to storage development on paired-associate tasks (Brainerd et al., in
press, b).

Three-state models of storage-retrieval development also meet the sec-
ond measurement objective by providing ratio-scale measurements of
storage and retrieval development. The reason is the same as for the
concept-learning and concept sequence models, namely, the model gives
a complete specification of performance on the target task (recall para-
digms) in terms of its parameters. Hence, conclusions about the relative
impact of storage and retrieval development on age changes in memory
performance have become routine features of experiments in which these
models, and other storage-retrieval models, have been used (for a review,
see Brainerd, 1989).

Concerning the third measurement objective, well-developed proce-
dures exist for estimating the model’s parameters via the method of maxi-
mum likelihood by using either data from criterion experiments or data
from fixed-trials experiments (Brainerd, in press). As for the concept-
learning and concept sequence models, therefore, a likelihood ratio tech-
nology is also available for assessing the model’s fit to data, which is to
say that the validity of its assumptions about list-learning data are subject
to precise tests. In most developmental studies conducted so far, the
model’s predictions about fine-grain features of data have agreed closely
with observation (for a review, see Brainerd, 1983a).

The final measurement objective, that of interpreting theoretical vari-
ables, is especially well met by this model. If escape from the initial, pure
error state is synonymous with depositing a permanent trace, then manip-
ulations that affect the difficulty of getting information into memory
should affect parameters such as a without affecting parameters such as
b, c, and d. If escape from the intermediate, mixed error-success state is
synonymous with learning how to retrieve a trace, then manipulations
that affect the difficulty of getting information out of memory should
affect parameters such as b, ¢, and d without affecting parameters such as
a. There is a reasonably extensive literature with both adults and children
that tends to agree with the predictions. Insofar as storage is concerned,
visual discriminability of list items appears to be a pure storage-difficulty
treatment: Items that are harder to differentiate visually but are otherwise
(e.g., orally or conceptually) quite distinctive should make it more diffi-
cult to encode a unique trace of each item but should not make it more
difficult to find traces once they are stored. In line with this prediction,
Humphreys and Greeno (1970) found that visually confusable consonant
trigrams decreased the value of parameter a but left the values of parame-
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ters b, ¢, and d invariant. Turning to retrieval, we see that category cuing
would seem to be a pure retrieval-difficulty manipulation: Since cuing the
category to which a word belongs cannot help one retrieve a trace that has
not yet been stored, this manipulation should affect retrieval difficulty
without affecting storage difficulty. Howe et al. (1985) have reported sup-
portive results.

Concluding Remarks

We have traditionally paid very little attention to measurement issues, in
particular the monotonicity problem, in research on memory and cogni-
tive development. An inevitable consequence has been the accumulation
of a large research literature in which there are fundamental disagree-
ments about the reality of certain findings and their theoretical interpret-
ability. The bodies of literature concerned with stage-learning effects in
children’s concept learning, the sequence of acquisition of various con-
cepts, and the relative contributions of storage and retrieval processes to
memory development are all prominent illustrations.

Recent research, however, provides some grounds for believing that
this situation may be changing. Mathematical models developed by a
number of investigators allow researchers to deal with some important
measurement issues. Examples include models that factor the relative
contributions of different theoretical variables to performance data,
models whose parameters deliver ratio-scale measurements of interesting
theoretical processes, models that permit validity tests of their assump-
tions, and models that allow one to pit different theoretical interpretations
of psychological processes against each other in experimentation. Models
that accomplish some of or all these objectives are now available for
concept learning, concept sequentiality, and storage-retrieval develop-
ment. The data base on the latter model is particularly extensive.

In short, we have progressed in a few short years from a state in which
fundamental measurement distinctions were almost entirely ignored to a
state in which some fairly powerful techniques for implementing some of
these distinctions in specific research contexts have been reported. Logi-
cally, the next step is to formulate general measurement frameworks that
focus on uniquely developmental measurement problems. It remains to be
seen, of course, whether this step will be taken.
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2. The New Two-Stage Model of Learning:
A Tool for Analyzing the Loci of Memory
Differences in Intellectually Impaired Children

Johannes Kingma

In modern cognitive theories, memorizing has been conceptualized as a
process of storing information and remembering as a process of retrieving
information. These memory processes have commonly been studied in
standard list-learning paradigm tasks such as free recall, paired-associate
learning, cued recall, serial learning, and recognition memory. When sev-
eral seconds of distracting activity are inserted between consecutive
study and test trials, these tasks can be considered to be long-term mem-
ory tasks (Brainerd, in press). Since the early 1950s, the simple mathe-
matical concept of finite Markov chains has been used to account for the
data of adults in these long-term memory tasks (Estes, 1962; Feller, 1950,
Kemeny & Snell, 1960). Many fruitful hypotheses about the mechanisms
of memory in adults have been generated by using these finite Markov
chains (Greeno, 1970, 1974; Greeno, James, DaPolito, & Polson, 1978;
Levine & Burke, 1972; Norman, 1972).

Before the early 1980s, however, developmental psychologists were
rather disinterested in mathematical modeling techniques (Brainerd,
1982b). In contrast, mathematical psychologists provided some classic
studies with children (e.g., Atkinson & Crothers, 1964; Spiker, 1970;
Suppes & Ginsburg, 1962), but these studies were mostly ignored by
developmental psychologists. It seems that the zeitgeist is changing, be-
cause serious mathematical modeling is becoming more important in de-
velopmental psychology (Bisanz, Vesonder, & Voss, 1978; Brainerd,
1979, 1982a; Heth & Cornell, 1983; Wilkinson & Koestler, 1983, 1984).

Finite Markov models are so fruitful for analysis of list-learning data in
developmental studies because age-level effects can be tested and ex-
plained in a refined way. For example, complex learning can be repre-
sented as a collection of elementary processes (storage, retrieval, etc.),
and the roles of these processes in a learning task can be distinguished
(see Greeno, 1974).

Markov models are also very useful for analyzing the loci of memory
differences in normal achieving children and learning-disabled children.
For example, some aspects of retrieval learning have been found to be
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responsible for the poorer performance of learning-disabled children on
these tasks (Brainerd, Kingma, & Howe, in press, b; Howe, Brainerd, &
Kingma, in press, b). However, as far as we know, information about the
loci of memory differences between atypical subjects (e.g., learning-dis-
abled and educable mentally retarded children) is scarce in the literature.

My principal goal is to illustrate how Markov models can be used to
study the development of memory processes in atypical children. In the
following section I describe the use of mathematical models in general,
and Markov models in particular, in the analysis of data from list-learning
tasks. Then I review some existing research on memory processes in
intellectually impaired children and describe an experiment in which Mar-
kov models are used to clarify the loci of memory difficulties in learning-
disabled children and mentally retarded children. Assumptions and ana-
lytic procedures are described in some detail to illustrate the process by
which mathematical models can be used, applied, and evaluated.

Mathematical Models

General Characteristics

According to Torgeson (1958), ‘“The principle objective of science, other
than the description of empirical phenomena, is to establish, through laws
and theories, general principles by means of which the empirical phenom-
ena can be explained, or accounted for.”” Mathematical models serve as
mediators between theory and empirical data. A mathematical model is a
translation of some theoretical (verbal) constructs into mathematical ex-
pressions, and it is connected to the data by means of measurement.
Measurement is usually defined as the assignment of numbers to the
quantities of properties of objects in accordance with certain rules
(Bohrnstedt, 1982; Torgeson, 1958). Such quantification is necessary for
determining whether a mathematical model hence the translated theoreti-
cal constructs fit the data (Stevens, 1951). In contrast to verbal models,
mathematical models have the advantage that relations between the ele-
ments in their expressions are well defined. A discussion about the rela-
tionship between mathematical model and theory lies outside the scope of
this chapter (for a discussion, see Blalock, 1982; Bohrnstedt, 1982; Ka-
plan, 1973; Nagel, 1961). In the next section, I describe some issues and
procedures that pertain to the use of mathematical models generally,
including how a model is ‘‘tied’’ to the data and how it is tested.

TYING THE MODEL TO THE DATA

Suppose a model builder wants to explain a person’s behavior in a list-
learning task. According to a particular verbal theory, learning can be
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explained in terms of two long-term memory processes, storage and re-
trieval. A specific model must be described in which some elements (stor-
age and retrieval) are related, manifesting the structure of the model. In
mathematical models, these relations are described in mathematical ex-
pressions. If a model describes changes in the state of the subject, it is
often profitable to express this in the language of probability theory. The
mathematical expressions of the model contain different parameters for
estimating the probability of the occurrence of some process in the learn-
ing task. They specify the process underlying the joint distribution of a set
of observable variables.

The process of building and testing models is illustrated in Figure 2.1.
The first step is to formulate the relation into mathematical expressions.
When one is starting to build a new model, it is sometimes convenient to
make simple and complex versions, or exemplars (see Brainerd, Howe,
and Kingma, 1982). This approach has the advantage that the two models
may be tested against each other to determine which is more satisfactory.
Of course, a model is sometimes presented only in the less complex form.
In such a case, Figure 2.1 may be read as a path for one model in which
the necessity test (see below) is deleted.

As an example, Brainerd, Howe, and Kingma (1982a) used two models
for explaining the processes of storage and retrieval in a list-learning task.
The simple version was a one-stage Markov model, and the complex
version was a two-stage Markov model. The mathematical expressions of
these models contain 6 and 11 parameters, respectively, for estimating the
probability of some process (storage and retrieval) in a list-learning task.

The first two steps in model building are formulating the relationships
between the theoretical psychological processes and putting these rela-
tionships into mathematical expressions (see Figure 2.1). Next, a proof is
performed to analyze whether the mathematical model is identifiable. The
logic-of-identifiability proof runs as follows. A model contains a number
of parameters that measure theoretical processes. The outcome space
contains a number of observable variables as measured in the experiment.
In the identifiability proof, the theoretical parameters (unknowns) are
algebraically expressed in terms of the observable variables (knowns).
The model is called identifiable when it is shown that each of the theoreti-
cal parameters can be independently expressed in observable variables. If
the model is identifiable, then we are able to estimate the parameters
because the system of expressions with knowns and unknowns is solv-
able. If a model is nonidentifiable, then we are unable to estimate the
parameters because the system cannot be solved. Unless some alterations
are made, a nonidentifiable model is not suitable for estimating the param-
eters from the data of a particular experiment for which it was designed.

FIGURE 2.1. A schematic representation of the way in which a model may be tied
to the data.
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To check whether a model is identifiable, a general counting rule is easy
to apply (Duncan, 1975). Count the number of theoretical parameters 7.
Then count the number of observable variables O. A necessary condition
for identification is that O = T. This counting rule is, of course, only a rule
of thumb. Necessary and sufficient conditions for identifiability are ob-
tained when identification proof, such as the one proposed by Greeno
(1967, 1968; Greeno & Steiner, 1964), shows that unique estimators can
be delivered for each of the parameters. A variety of techniques are
available for testing identifiability, including ordinary algebra proofs
(Brainerd, Howe, & Desrochers, 1982), proofs using matrix algorithms
(Greeno, Millward, and Merryman, 1971) and computer search programs
(Polson & Huizinga, 1974).

When the number of observable variables in the data is smaller than the
number of theoretical parameters, that is, O < T, the model is nonidenti-
fiable (Brainerd, Howe, & Desrochers 1982; Restle & Greeno, 1970;
Wilkinson, 1982) and the model is improper for the proposed experiment.
Conceptually, such a model requires more degrees of freedom than exist
in the data. There are basically three methods of dealing with a nonidenti-
fiable model (Brainerd, Howe, & Kingma, 1982). One procedure is to
simplify the model. However, such a strategy is often not desirable, espe-
cially when the model contains a very small number (for example, 2 or 3)
of theoretically important parameters (see Brainerd, 1985). Simplifying
such a model may reduce the explanatory power of the model. When the
model contains a larger number (for example, 10) of theoretical parame-
ters, the simplification rule may be a reasonable way to make the model
identifiable.

A second approach to making a nonidentifiable model identifiable is to
introduce testable restrictions on some parameters. A nonidentifiable pa-
rameter may be given a certain value between 0 and 1, or some parame-
ters may be equated. In general, a testable identifying restriction is a
constraint on the freedom of the parameters to vary. The model becomes
identifiable when the introduction of one or more constraints delivers a
unique expression for each theoretical parameter in terms of identifiable
parameters (Brainerd, Howe, & Kingma, 1982). Suppose a model con-
tains 10 parameters: a’, b’, a, b, c, d, e, g, h, and r. Suppose further that
nine parameters can be shown to be identifiable. One may equate, for
example, g = h, or ¢ = 0 to make the model identifiable. These testable
restrictions should make sense theoretically. Several of these restrictions
can be evaluated statistically by using likelihood-ratio tests developed by
Greeno (1968). One also may try to investigate different sets of con-
straints empirically. The advantage of using testable restrictions is that
the model becomes identifiable. A disadvantage is that the model may
become too specific because one constraint may not be acceptable for all
the conditions of a given experiment, especially if the experiment con-
tains a large number of conditions with treatments that have powerful
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effects on the parameters of the given model (Brainerd, Howe, &
Kingma, 1982). In addition, comparisons cannot be made between experi-
ments with the same conditions but using different identifying restric-
tions. Different patterns of parameter values observed in the experiment
could be attributed simply to these restrictions rather than to actual dis-
crepancies in the findings. (For some examples, see Brainerd, Howe, &
Kingma, 1982.)

A third way of changing a nonidentifiable model to an identifiable one is
by increasing the complexity of the data so that all parameters can be
estimated (for examples, see Brainerd, Howe, & Kingma, 1982; Chechile
& Meyer, 1976; Chechile & Richman, 1982). That is, the design of the
experiment may be altered by increasing the number of observable vari-
ables to obtain enough degrees of freedom for the model’s parameters.
For example, the structure of the standard list-learning tasks to which
Markov models apply is normally $,7,5,1>55T5 . . . , where S; denotes
the ith study trial and T; denotes the ith test trial. Study and test trials
alternate until either some performance criterion is met or some fixed
number of study-test cycles is administered. Greeno (1968, 1974) used a
nine-parameter Markov model for list-learning tasks. Only seven parame-
ters were identifiable for experiments with the standard S,7,5,7, struc-
ture. Some restrictions had to be made to obtain an identifiable model.
However, a small change in the structure of the experiment will deliver
sufficient degrees of freedom in the new data space. For example,
Brainerd, Howe, and Kingma (1982) showed that an 11-parameter Mar-
kov model was identifiable for the new data space. When the structure of
the proposed experiment and consequently, the data space, can be altered
so that the model becomes identifiable, then this method is preferred to
that of using identifiable constraints. With the former method, the param-
eters from different conditions of an experiment may be compared,
whereas such comparisons may become impossible when different con-
straints have been used for those conditions.

Following the identifiability proof, the researcher may now actually
perform the experiment and tie the model to the obtained data. The math-
ematical expressions of the model contain different parameters for esti-
mating the probability of the occurrence of some process in the learning
task. However, it is not enough for the mathematical model to describe a
psychological process. It must do so with sufficient completeness to tie it
to the data (Wickens, 1982). Goodness-of-fit tests are used to assess
whether the model fits the data, that is, whether good agreement is ob-
tained between theoretical distributions using the estimated parameters
and some data distributions (e.g., the learning curve, errors before first
success). Such tests of learning models have usually involved two phases
(Brainerd, Howe, Kingma, 1982a; Greeno, 1968): Necessity tests are fol-
lowed by sufficiency tests (see Figure 2.1).

Necessity tests are concerned with whether simpler models give a sta-
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tistically acceptable account for the data. Much of the usefulness of a
model lies in the fact that it is as simple as possible and as complex as
necessary (Blalock, 1969, 1982). The necessity test provides information
about which model is favorable from the principle of parsimony. The logic
behind the necessity test runs as follows. The likelihood function (con-
taining the mathematical expressions with the theoretical parameters) is
computed for each model. Then the likelihood ratio is computed, which
has a x? distribution with the number of degrees of freedom equal to the
difference between the number of parameters of the two models (Greeno,
1968, 1970). If we let L, denote the likelihood of some set of data under
one model and L, denote the likelihood of the same set of data under the
more complex model, then the following likelihood ratio is used for the
necessity test:

A

L
2 (n) = -2 log = 1
X2 (n) 87 (1)

where L, and L, are the estimates for L; and L,, respectively, and n
indicates the degrees of freedom. When x2 exceeds the critical value at a
certain alpha level, the more complex model is more satisfactory. If the
value is below the critical value, the simpler model is chosen. For exam-
ple, Brainerd, Howe, and Kingma (1982) showed that an identifiable two-
stage Markov model with 11 parameters provided a more satisfactory
account for free-recall data than an identifiable one-stage model with 6
parameters.

Subsequently, sufficiency tests are performed for the model that passes
the necessity test (see Figure 2.1). Sufficiency tests are used to determine
whether the model fits the data. First, because mathematical expressions
of the model represent the probabilities of various aspects of the data as
functions of the parameters of the model, parameters can be estimated
from the data. These estimates provide measurements of some aspects of
learning (e.g., the probability that on the first trial an item has been stored
in long-term memory). After the numerical estimates are obtained, the
second step is to perform tests of the differences between observed data
distributions and distributions predicted by the estimated parameters. Ex-
amples of the observed data distributions include such variables as errors
before first success, the learning curve, total errors, and trial number of
the last error. Predicted distributions are obtained from formulas contain-
ing the parameters (see Brainerd, Howe, & Kingma, 1982, equations 47a-
52b). Both necessity and sufficiency tests must be performed for all the
conditions of the experiment. A nonparametric test, such as the Kolmo-
gorov-Smirnov test, may be used for testing the differences between the
two distributions for each condition of the experiment.

When the sufficiency tests fail for a condition [i.e., the difference be-
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tween the two distributions (observed and predicted) is significant], we
conclude that the model does not tie to the data of that particular condi-
tion. The fault may lie in the theory or in the parameter values (Restle,
1971). The solution may be either to reformulate the model or to build new
identifiable constraints. In the latter case, the different conditions cannot
be compared when different constraints are used. Fortunately, Markov
models of free-recall list learning generally fit the data (Greeno et al.,
1978; Howe, 1982).

The evidence from both necessity tests and sufficiency tests has been
quite consistent (Brainerd, 1985). In necessity tests, the two-stage Mar-
kov model is almost always more satisfactory than the one-stage model in
applications to recall data, regardless of whether the subjects are children
or university undergraduates. Brainerd (1985) mentioned only two excep-
tions in which a one-stage Markov model was adequate to account for
recall data: relearning of paired-associate lists that had been memorized
to a stringent acquisition criterion one week earlier (Brainerd, Desro-
chers, & Howe, 1981), and memorization by undergraduates of short
paired-associate lists comprised of very easy words (Humphreys &
Yuille, 1973). The results of sufficiency tests have been similarly positive.
In most experiments, the predicted distributions of two-stage Markov
models closely approximate the observed data distributions (Brainerd,
1985). Despite these very positive results, the necessity and sufficiency
tests must always be performed to ensure that the model ties with the data
of the experiment. Parameter estimation and the goodness of fit are tech-
nical prerequisites for interpretation of the data.

Hypothesis testing (see Figure 2.1) is performed for all conditions of the
experiment that pass the sufficiency tests. Between- and within-condition
comparisons are both of interest. The general aim of the between-condi-
tion tests is to localize treatment effects within particular parameters (see
Brainerd, Howe, & Kingma, 1982; Greeno et al., 1971; Humphreys &
Greeno, 1970), whereas within-condition tests are used to determine
whether obtained parameter values differ (Brainerd, Howe, & Desro-
chers, 1980; Brainerd et al., 1981). Both types of tests concern likelihood
ratio tests for which x? distributions are known (see Brainerd, Howe, &
Kingma, 1982).

Between-condition tests are performed in three steps: experimentwise
tests, conditionwise tests, and parameterwise tests. The first question that
must be answered is whether there are global statistical grounds for sup-
posing that the parameter values differ between conditions. A likelihood
ratio statistic has been developed (Brainerd, 1982a, equation 53) for the
experimentwise test that resembles the omnibus F test in the analysis of
variance. When there are some overall differences (i.e., the null hypothe-
sis fails), a conditionwise test is used, which is conceptually similar to the
well-known ¢ statistic. If L, denotes the likelihood of the set of data of
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condition a and L, denotes the likelihood of condition b, then the follow-
ing likelihood ratio statistic is used for the conditionwise test (see
Brainerd et al., 1982, equation 54):

A
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where L, and L, are the estimated likelihoods of the data for, respec-
tively, conditions a and b, L, is the estimated likelihood of the data when
the protocols for conditions a and b are pooled, and # is the degrees of
freedom. This procedure is repeated for all possible combinations of the
conditions of the experiment. Repeated testing of this sort may inflate
alpha levels. To reduce this problem, a small numerical alpha value may
be used.

When some pair of conditions differs significantly, the parameterwise
test is performed to identify the parameters to which these differences
may be attributed. A likelihood ratio statistic has also been developed
for the parameterwise test (see Brainerd, Howe, & Kingma, 1982, equa-
tion 55).

The majority of hypothesis testing concerns testing between condi-
tions. However, within-condition tests are often of interest. Two types
are distinguished: exact numerical hypotheses and inexact hypotheses.
The former refer to any prediction which specifies that one of the parame-
ters shall take a particular value, whereas inexact numerical hypotheses
concern predictions that specify that a particular algebraic relationship
will be obtained between two or more parameters. Likelihood ratio statis-
tics have been developed for evaluating these two types of hypotheses
(see Brainerd, Howe, & Kingma, 1982, equation 56). Following these
tests, the results are interpreted in terms of the theory underlying the
model.

To summarize, after a model has been shown to be identifiable, neces-
sity and sufficiency tests are used to determine whether the model ties to
the data. If the model fits the data, between- and within-condition tests
are performed. Next, the difference between statistical inference and
model testing is described.

MoDEL TESTING AND CONVENTIONAL STATISTICAL TESTING

Mathematical models enable the researcher to separate different process
variables, such as storage and retrieval. One may argue, however, that
mathematical models are not needed because such research questions can
be investigated with an adequate experimental design and conventional
statistical tests. That is, separating different process variables is seen as a
problem in experimental design rather than a problem in measurement
theory (see Brainerd, 1985).

Although the methodology of an experiment may appear to be correct,
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interpretation of the results may be wrong when conventional statistical
testing, e.g., analysis of variance, is used (Brainerd, 1985). For example,
in a free-recall experiment, performance on the test trials is the dependent
variable (the total number of errors and trial of last error).

However, this performance is the result of both storage and retrieval;
that is, storage and retrieval are interwoven in only one dependent vari-
able in free-recall experiments. Owing to limitations of the structural
linear model, which is the basis of the analysis of variance, the effects of
experimental manipulations on either storage or retrieval cannot be com-
puted separately, because a compound dependent variable has been used
(Krantz & Tversky, 1971; Brainerd, 1985). This problem cannot be solved
with multivariate techniques, because it seems impossible to create two
different types of dependent variables that only measure either storage or
retrieval. The difficulty with the conventional approach is that statistical
models describe what the data look like, but not how they came about
(Wickens, 1982). In contrast, mathematical models can be used to:sepa-
rate the process variables by incorporating fine grained assumptions about
underlying measurement (Brainerd, 1985).

Of course, the goodness-of-fit tests of mathematical models also are
pure statistical tests. They are derived from the fact that the algebraic
assumptions that comprise a model normally constrain the data of perfor-
mance in certain respects; the data must have specific statistical proper-
ties if the assumptions are correct. A goodness-of-fit test is simply a
mechanical procedure. When the data do not pass such tests, a model-
based theory is rejected. However, testing the parameters with the be-
tween- and within-condition tests provides information about each of the
processes. Thus, the quantities on which the mathematical model is de-
pendent reflect characteristics of the behavior under study. The process-
oriented nature of these mathematical models make them useful both for
data analyses and for testing the processes themselves.

Markov Models

LEARNING AS DISCRETE EVENTS

Learning has been viewed historically either as a gradual change or as a
discrete change. Gradual change was assumed in early versions of associ-
ation theory (Boring, 1950), in which strength of associative connection
between ideas was assumed to increase each time the concepts were
experienced together. Pavlov (1927) assumed gradual learning in condi-
tioning of reflexes. Gradualist ideas were popular for a variety of concep-
tual and philosophical reasons (Greeno, 1974). Although some psycholo-
gists viewed learning as a discrete change in the 1920s (Kohler, 1927,
Lashley, 1928), not until the 1950s did the mathematical tools exist for
studying learning as a discrete process. For example, Feller (1950) intro-
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duced the probability theory for discrete sample spaces, while Kemeny
and Snell (1960) and Kemeny, Snell, and Thompson (1957) introduced
finite mathematics for social scientists (see Estes, 1962). From the early
1950s, Markov models were used by psychologists to study learning as
discrete events (Greeno et al., 1978).

Models of learning may be deterministic or stochastic. A deterministic
model predicts the effect of any change in the model with certainty. In
practice, however, there is usually an element of uncertainty in any pre-
diction of human behavior. This uncertainty can be accommodated be-
cause the equations of a model may include random variables. Such a
model is stochastic, i.e., its mathematical entities are known as stochastic
processes. A stochastic process is one that develops in time according to
probabilistic laws (Bartholomew, 1973). Therefore, its future behavior
cannot be predicted with certainty; the most that can be done is to attach
probabilities to the various possible future states of this process. The
mathematical two-stage learning model is such a stochastic Markov
model (see Brainerd, Howe, & Kingma, 1982). Learning can be consid-
ered a ‘‘construct,’’ an indication that a new state has been reached. In an
all-or-none learning model, two states are distinguished, namely, a
learned and an unlearned state. In a two-stage model a partially learned
state is placed between these two. The number of states can be increased
so that long-term memory processes involved in the learning process may
be described in terms of state changes.

In the study of memory, a Markov chain is a model of changes in the
subject’s cognitive states of knowledge and the way in which these knowl-
edge states change. However, these postulated cognitive states cannot be
observed directly in, for example, a list-learning task. The only thing that
can be observed is the subject’s response pattern for each item from the
list. The Markov process is considered a model of the subject’s internal
states, and the responses are the functions of these states. In other words,
there is a mapping function between the space of unobservable cognitive
states and the observable response space.

CHARACTERISTICS OF MARKOV MODELS

Markov models, as presented in this chapter, have three main characteris-
tics: The states are countable, no backward transitions are allowed, and
the future of the process depends only on the current state. The denumer-
able, or finite-state, Markov process is characterized by a set of countable
states. The state of the process is specified by one of a discrete set of
alternatives, that is, by a member of a set of states. The set of states in the
model is called its state space. Changes, such as learning, are represented
by the transitions from one state to another. Defining an appropriate state
space is crucial for building a suitable model, and it involves a balance
between complexity and simplicity. That is, the state space has to be
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sufficiently large to allow interesting properties to appear, but not so
complex that it becomes unworkable (see Wickens, 1982).

The second characteristic mostly appeared in list-learning task studies;
that is, the transitions between the different states are usually defined in a
way that no backward transitions occur. When, for example, an item has
been learned or ‘‘escaped,’’ no backward transition to the unlearned state
is possible, that is, it cannot become unlearned again.

The third feature of the Markov model concerns the Markov property
(Breiman, 1969) about the relationship between the process in the current
and future states. Specifically, the state of the processes at trial n + 1
depends only on the state at trial #. States of the process on trials prior to
trial n are not relevant to the probability of entering a state on trial n +
1; that is, all information about the past is embodied in the current state on
trial n. How the process enters a particular state is not important. In other
words, the past may determine where the subject is now, but the subject’s
current state determines future activity (Wickens, 1982).

In the simplest case, learning involves a single transition between two
states. In such an all-or-none model, the subject’s state of knowledge
about an item to be learned is either that it is unknown or it has been
learned. These two states are represented in Figure 2.2. In free-recall
experiments, the words from a list are presented for study and followed
by a distractor task (e.g., counting backward) to prevent rehearsal. Subse-
quently, the subject is asked to remember the learned words on the test
trial. This sequence of study trial, distractor task, and test trial can be
repeated until the subject has reached a criterion such as all items recalled
correctly on two consecutive trials. The items are usually unknown at the
beginning of the experiment. At this point each item is in state U. Accord-
ing to the all-or-none hypothesis there is a fixed probability ¢ that an item
is learned at each presentation. If an item is learned, it has ‘‘escaped”’
state U. If the item ‘‘remains’’ in U, no learning occurs. When an items
“‘enters’’ (is learned) state L, the probability of a correct response always
is 1.0.

These one-stage (one type of transition) Markov models are rarely ade-
quate for representing free-recall data (Brainerd et al., 1981; Humphreys

(1—C) 1

FIGURE 2.2. One-stage model.
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& Yuille, 1973), but may be satisfactory for recognition data (Brainerd,
1983; Greeno et al., 1978; Kintsch & Morris, 1965). The two-stage model
is more successful for free-recall data.

REPRESENTATION OF THE MARKOV CHAIN

A denumerable, or finite-state, Markov process is typically represented as
a branching tree or as a transition matrix (see Kemeny & Snell, 1960;
Levine & Burke, 1972; Wickens, 1982). For instance, a tree diagram for
the transition probabilities in an all-or-none model of the previous section
is depicted in Figure 2.3. It can be seen from Figure 2.3 that any one
branch (continuous route) of this tree represents the sequence of joint
events necessary to reach a particular state on a particular trial by a
particular route. On the first trial, the probability of escaping the un-
learned state U, and entering state L, is ¢, whereas the probability of
staying in the unlearned state is 1 — ¢ at U;. On the second trial the
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FIGURE 2.3. One-stage model represented as a tree diagram, where ¢, f,,
t3, . . . ,t,represent the trial numbers, L, is the learned state at trial ¢,, and U, is
the unlearned state at trial ¢,.
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probability of staying in state L, is 1 since L, is an absorbing state,
whereas the probability of escape from U, on the second trial is ¢ for
entering the learned state L, and that for staying in the unlearned state U,
is1-c.

The above procedure, depicted in Figure 2.3, can be carried out for any
experiment that takes place in phases or trials. The only requirements are
a finite number of possible outcomes and probabilities for any particular
outcome at the jth phase given the knowledge of the outcome for the first
Jj — 1 stage must be known (Kemeny & Snell, 1960).

The probability of a particular route in Figure 2.3 is simply the product
of the transition probabilities joining the states in that branch, whereas the
probability of being in a particular state on a particular trial is the sum of
all the different branch probabilities that lead to that state on that trial.
For example, in Figure 2.3 there are four paths, each representing a
different way of reaching a learned state Ls on or before the fourth trial #4.
The probability of reaching Ls on the fourth trial ¢, is P(Ls), and that of
reaching Ls on the fourth trial ¢4 is P(Ls)

P(L5)=t1+t2+t3+t4

c+cl—c¢c)+cl —cP+cl-rc)P
c* + 4¢3 — 6¢ + 4c

=1-( -0,

where ¢, is the probability of reaching the learned state L,.; on trial n.
More generally, the probability of reaching the learned state on some trial
nis

P(Lyi) = 1= (1= o),
whereas the probability of staying in the unlearned state on some trial n is
P(Up+1) = (1 = o).

Although the probabilities of reaching a particular state at a particular
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