
123

S P R I N G E R B R I E F S I N
E L E C T R I C A L A N D CO M P U T E R E N G I N E E R I N G

Laura Caponetti
Giovanna Castellano

Fuzzy Logic for
Image Processing
 A Gentle
Introduction Using
Java

SpringerBriefs in Electrical and Computer
Engineering

More information about this series at http://www.springer.com/series/10059

http://www.springer.com/series/10059

Laura Caponetti • Giovanna Castellano

Fuzzy Logic for Image
Processing
A Gentle Introduction Using Java

123

Laura Caponetti
Dipartimento di Informatica
Università degli Studi di Bari Aldo Moro
Bari
Italy

Giovanna Castellano
Dipartimento di Informatica
Università degli Studi di Bari Aldo Moro
Bari
Italy

ISSN 2191-8112 ISSN 2191-8120 (electronic)
SpringerBriefs in Electrical and Computer Engineering
ISBN 978-3-319-44128-3 ISBN 978-3-319-44130-6 (eBook)
DOI 10.1007/978-3-319-44130-6

Library of Congress Control Number: 2016947389

© The Author(s) 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained
herein or for any errors or omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG Switzerland

To Alfred, Philip and Vito and all my
friends

Laura Caponetti

To David and Serena, improved images
of me

Giovanna Castellano

Preface

The secret to getting ahead is getting started.

Mark Twain

This book is the result of many years of teaching image processing and fuzzy logic
taught by the authors for undergraduate courses. Most of the material used is also
the result of fertile interactions with the students whose case studies contributed a
lot in the Java implementation of algorithms and methods. The volume has been
conceived as a gentle introduction to fuzzy logic approaches useful in image pro-
cessing tasks.

First we describe image processing algorithms based on fuzzy logic under a
methodological point of view. Then, we provide some practical applications
without passing over the important formal details. We tried to identify the most
important works that researchers have done in the area of fuzzy image processing,
and we described and illustrated them through Java examples that the interested
readers can easily follow.

The book covers both theoretical and practical applications of fuzzy techniques
in image processing. Accordingly, the chapters have been grouped into two parts:
Fundamentals of Fuzzy Image Processing and Applications to Image Processing.

In the first part, we explain how image processing can take advantage of fuzzy
logic, giving basic theoretical aspects of both fuzzy logic and image processing
through five chapters. Chapter 1 is devoted to the basics of image representation
using Java. Chapter 2 deals with low-level image processing. In Chap. 3 the reader
will find the basic concepts of fuzzy logic, starting from fuzzy set theory up to fuzzy
systems. Chapter 4 discusses the issue of vagueness in digital images, that is the
motivation of using fuzzy techniques to process images. Finally, Chap. 5 introduces
the Java language and its use for image processing.

In the second part, we present four chapters covering different image processing
tasks, namely color contrast enhancement, image segmentation, morphological
analysis, and image thresholding. For each task an example of practical application

vii

http://dx.doi.org/10.1007/978-3-319-44130-6_1
http://dx.doi.org/10.1007/978-3-319-44130-6_3
http://dx.doi.org/10.1007/978-3-319-44130-6_3
http://dx.doi.org/10.1007/978-3-319-44130-6_4
http://dx.doi.org/10.1007/978-3-319-44130-6_5
http://dx.doi.org/10.1007/978-3-319-44130-6_5

is described. Some examples are presented in the medical domain, using light
microscope images provided by the Dipartimento di Endocrinologia ed Oncologia
Molecolare e Clinica of the University “Federico II” of Naples, Italy. Lastly, the
appendix provides some Java code examples that the user can easily run which will
help create a concrete feeling of the potential fuzzy image processing.

We believe that this volume will provide a state-of-art coverage of various
aspects related to fuzzy image processing and show the potential of fuzzy tech-
niques in solving image processing problems. We hope this book will serve as a
reference for scientists and students in this area, as well as a means to stimulate
some new ideas for researchers.

We are grateful to a number of people from academic circles as well as from
domestic environments who have contributed to the writing of this book in many
different ways. In particular, we thank all the members of the CILab (Computational
Intelligence Laboratory) of the Department of Informatics at the University of Bari
“Aldo Moro” for giving answers to our questions at the right time. We thank
Menina Di Gennaro for reading the first draft of some chapters and giving helpful
suggestions at the early stages of the work. Our special thanks go to Mara Basile
and Vito Corsini who gave their contribution to the research on morphology and
segmentation applied to the medical domain. We also thank our Ph.D. student
Przemyslaw Gorecky for his contribution on document analysis by fuzzy approa-
ches. Finally, we thank our students Antonio Vergaro, Francesco Tangari, Gabriella
Casalino, Marco Lucarelli, and Massimo Minervini for developing some Java
examples cited in this book. The contribution of everyone is truly appreciated.

Bari, Italy Laura Caponetti
June 2016 Giovanna Castellano

viii Preface

Contents

Part I Fundamentals of Fuzzy Image Processing

1 Image Representation Using Java . 3
1.1 Introduction . 3
1.2 Gray-Level Images . 4
1.3 Color Models . 5
1.4 Color Image Representation Using Java . 10
References. 13

2 Low-Level Image Processing . 15
2.1 Introduction . 15
2.2 Contrast Enhancement . 18

2.2.1 Gray-Level Transformation . 20
2.2.2 Thresholding . 27
2.2.3 Histogram Transformation. 27

2.3 Image Smoothing . 28
2.4 Edge Detection . 30

2.4.1 Canny Operator. 34
2.4.2 Optimization-Based Operators. 36

References. 37

3 Basics of Fuzzy Logic . 39
3.1 Introduction . 39
3.2 Fuzzy Set Theory . 40
3.3 Fuzzy Rule-Based Systems. 41

3.3.1 Fuzzification . 43
3.3.2 Fuzzy Rule Base and Inference Engine. 43
3.3.3 Defuzzification . 44

3.4 Fuzzy Models . 45
3.4.1 Design of Fuzzy Rule-Based Systems 46
3.4.2 Neuro-Fuzzy Models. 48

References. 51

ix

http://dx.doi.org/10.1007/978-3-319-44130-6_1
http://dx.doi.org/10.1007/978-3-319-44130-6_1
http://dx.doi.org/10.1007/978-3-319-44130-6_1
http://dx.doi.org/10.1007/978-3-319-44130-6_1
http://dx.doi.org/10.1007/978-3-319-44130-6_1#Sec1
http://dx.doi.org/10.1007/978-3-319-44130-6_1#Sec1
http://dx.doi.org/10.1007/978-3-319-44130-6_1#Sec1
http://dx.doi.org/10.1007/978-3-319-44130-6_1#Sec1
http://dx.doi.org/10.1007/978-3-319-44130-6_1#Sec2
http://dx.doi.org/10.1007/978-3-319-44130-6_1#Sec2
http://dx.doi.org/10.1007/978-3-319-44130-6_1#Sec2
http://dx.doi.org/10.1007/978-3-319-44130-6_1#Sec2
http://dx.doi.org/10.1007/978-3-319-44130-6_1#Sec3
http://dx.doi.org/10.1007/978-3-319-44130-6_1#Sec3
http://dx.doi.org/10.1007/978-3-319-44130-6_1#Sec3
http://dx.doi.org/10.1007/978-3-319-44130-6_1#Sec3
http://dx.doi.org/10.1007/978-3-319-44130-6_1#Sec4
http://dx.doi.org/10.1007/978-3-319-44130-6_1#Sec4
http://dx.doi.org/10.1007/978-3-319-44130-6_1#Sec4
http://dx.doi.org/10.1007/978-3-319-44130-6_1#Sec4
http://dx.doi.org/10.1007/978-3-319-44130-6_1#Bib1
http://dx.doi.org/10.1007/978-3-319-44130-6_1#Bib1
http://dx.doi.org/10.1007/978-3-319-44130-6_1#Bib1
http://dx.doi.org/10.1007/978-3-319-44130-6_2
http://dx.doi.org/10.1007/978-3-319-44130-6_2
http://dx.doi.org/10.1007/978-3-319-44130-6_2
http://dx.doi.org/10.1007/978-3-319-44130-6_2
http://dx.doi.org/10.1007/978-3-319-44130-6_2#Sec1
http://dx.doi.org/10.1007/978-3-319-44130-6_2#Sec1
http://dx.doi.org/10.1007/978-3-319-44130-6_2#Sec1
http://dx.doi.org/10.1007/978-3-319-44130-6_2#Sec1
http://dx.doi.org/10.1007/978-3-319-44130-6_2#Sec2
http://dx.doi.org/10.1007/978-3-319-44130-6_2#Sec2
http://dx.doi.org/10.1007/978-3-319-44130-6_2#Sec2
http://dx.doi.org/10.1007/978-3-319-44130-6_2#Sec2
http://dx.doi.org/10.1007/978-3-319-44130-6_2#Sec3
http://dx.doi.org/10.1007/978-3-319-44130-6_2#Sec3
http://dx.doi.org/10.1007/978-3-319-44130-6_2#Sec3
http://dx.doi.org/10.1007/978-3-319-44130-6_2#Sec3
http://dx.doi.org/10.1007/978-3-319-44130-6_2#Sec4
http://dx.doi.org/10.1007/978-3-319-44130-6_2#Sec4
http://dx.doi.org/10.1007/978-3-319-44130-6_2#Sec4
http://dx.doi.org/10.1007/978-3-319-44130-6_2#Sec4
http://dx.doi.org/10.1007/978-3-319-44130-6_2#Sec5
http://dx.doi.org/10.1007/978-3-319-44130-6_2#Sec5
http://dx.doi.org/10.1007/978-3-319-44130-6_2#Sec5
http://dx.doi.org/10.1007/978-3-319-44130-6_2#Sec5
http://dx.doi.org/10.1007/978-3-319-44130-6_2#Sec6
http://dx.doi.org/10.1007/978-3-319-44130-6_2#Sec6
http://dx.doi.org/10.1007/978-3-319-44130-6_2#Sec6
http://dx.doi.org/10.1007/978-3-319-44130-6_2#Sec6
http://dx.doi.org/10.1007/978-3-319-44130-6_2#Sec7
http://dx.doi.org/10.1007/978-3-319-44130-6_2#Sec7
http://dx.doi.org/10.1007/978-3-319-44130-6_2#Sec7
http://dx.doi.org/10.1007/978-3-319-44130-6_2#Sec7
http://dx.doi.org/10.1007/978-3-319-44130-6_2#Sec8
http://dx.doi.org/10.1007/978-3-319-44130-6_2#Sec8
http://dx.doi.org/10.1007/978-3-319-44130-6_2#Sec8
http://dx.doi.org/10.1007/978-3-319-44130-6_2#Sec8
http://dx.doi.org/10.1007/978-3-319-44130-6_2#Sec9
http://dx.doi.org/10.1007/978-3-319-44130-6_2#Sec9
http://dx.doi.org/10.1007/978-3-319-44130-6_2#Sec9
http://dx.doi.org/10.1007/978-3-319-44130-6_2#Sec9
http://dx.doi.org/10.1007/978-3-319-44130-6_2#Bib1
http://dx.doi.org/10.1007/978-3-319-44130-6_2#Bib1
http://dx.doi.org/10.1007/978-3-319-44130-6_2#Bib1
http://dx.doi.org/10.1007/978-3-319-44130-6_3
http://dx.doi.org/10.1007/978-3-319-44130-6_3
http://dx.doi.org/10.1007/978-3-319-44130-6_3
http://dx.doi.org/10.1007/978-3-319-44130-6_3
http://dx.doi.org/10.1007/978-3-319-44130-6_3#Sec1
http://dx.doi.org/10.1007/978-3-319-44130-6_3#Sec1
http://dx.doi.org/10.1007/978-3-319-44130-6_3#Sec1
http://dx.doi.org/10.1007/978-3-319-44130-6_3#Sec1
http://dx.doi.org/10.1007/978-3-319-44130-6_3#Sec2
http://dx.doi.org/10.1007/978-3-319-44130-6_3#Sec2
http://dx.doi.org/10.1007/978-3-319-44130-6_3#Sec2
http://dx.doi.org/10.1007/978-3-319-44130-6_3#Sec2
http://dx.doi.org/10.1007/978-3-319-44130-6_3#Sec3
http://dx.doi.org/10.1007/978-3-319-44130-6_3#Sec3
http://dx.doi.org/10.1007/978-3-319-44130-6_3#Sec3
http://dx.doi.org/10.1007/978-3-319-44130-6_3#Sec3
http://dx.doi.org/10.1007/978-3-319-44130-6_3#Sec4
http://dx.doi.org/10.1007/978-3-319-44130-6_3#Sec4
http://dx.doi.org/10.1007/978-3-319-44130-6_3#Sec4
http://dx.doi.org/10.1007/978-3-319-44130-6_3#Sec4
http://dx.doi.org/10.1007/978-3-319-44130-6_3#Sec5
http://dx.doi.org/10.1007/978-3-319-44130-6_3#Sec5
http://dx.doi.org/10.1007/978-3-319-44130-6_3#Sec5
http://dx.doi.org/10.1007/978-3-319-44130-6_3#Sec5
http://dx.doi.org/10.1007/978-3-319-44130-6_3#Sec6
http://dx.doi.org/10.1007/978-3-319-44130-6_3#Sec6
http://dx.doi.org/10.1007/978-3-319-44130-6_3#Sec6
http://dx.doi.org/10.1007/978-3-319-44130-6_3#Sec6
http://dx.doi.org/10.1007/978-3-319-44130-6_3#Sec7
http://dx.doi.org/10.1007/978-3-319-44130-6_3#Sec7
http://dx.doi.org/10.1007/978-3-319-44130-6_3#Sec7
http://dx.doi.org/10.1007/978-3-319-44130-6_3#Sec7
http://dx.doi.org/10.1007/978-3-319-44130-6_3#Sec8
http://dx.doi.org/10.1007/978-3-319-44130-6_3#Sec8
http://dx.doi.org/10.1007/978-3-319-44130-6_3#Sec8
http://dx.doi.org/10.1007/978-3-319-44130-6_3#Sec8
http://dx.doi.org/10.1007/978-3-319-44130-6_3#Sec9
http://dx.doi.org/10.1007/978-3-319-44130-6_3#Sec9
http://dx.doi.org/10.1007/978-3-319-44130-6_3#Sec9
http://dx.doi.org/10.1007/978-3-319-44130-6_3#Sec9
http://dx.doi.org/10.1007/978-3-319-44130-6_3#Bib1
http://dx.doi.org/10.1007/978-3-319-44130-6_3#Bib1
http://dx.doi.org/10.1007/978-3-319-44130-6_3#Bib1

4 Fuzzy Image Processing . 53
4.1 Introduction . 53
4.2 Image Fuzzification . 55

4.2.1 Fuzzy Image . 56
4.3 Image Defuzzification . 59
4.4 Fuzziness Measures . 60
References. 62

5 Java for Image Processing . 65
5.1 Basic Concepts . 65
5.2 Java for Image Processing . 68
5.3 Applet. 71
5.4 ImageJ . 74

5.4.1 Macros . 75
5.4.2 Plugins . 75

5.5 Fuzzy Systems in Java . 76
References. 81

Part II Application to Image Processing

6 Color Contrast Enhancement . 85
6.1 Introduction . 85
6.2 Multichannel Image Processing . 86
6.3 Fuzzy Techniques for Color Enhancement 86
6.4 A Fuzzy Rule-Based System for Color Enhancement 87
6.5 Example: Natural Image Enhancement . 88
References. 91

7 Image Segmentation . 93
7.1 Introduction . 93
7.2 The Segmentation Problem. 94
7.3 Methods for Segmentation . 95

7.3.1 Crisp Clustering . 96
7.3.2 Fuzzy Clustering . 97
7.3.3 Spatial Fuzzy Clustering . 98

7.4 Example: Color Segmentation . 99
7.5 Example: Texture Segmentation . 101
References. 104

8 Morphological Analysis. 107
8.1 Mathematical Morphology . 107

8.1.1 Morphological Operators. 108
8.2 Fuzzy Morphology . 110
8.3 Example: Biological Image Segmentation. 113
References. 118

x Contents

http://dx.doi.org/10.1007/978-3-319-44130-6_4
http://dx.doi.org/10.1007/978-3-319-44130-6_4
http://dx.doi.org/10.1007/978-3-319-44130-6_4
http://dx.doi.org/10.1007/978-3-319-44130-6_4
http://dx.doi.org/10.1007/978-3-319-44130-6_4#Sec1
http://dx.doi.org/10.1007/978-3-319-44130-6_4#Sec1
http://dx.doi.org/10.1007/978-3-319-44130-6_4#Sec1
http://dx.doi.org/10.1007/978-3-319-44130-6_4#Sec1
http://dx.doi.org/10.1007/978-3-319-44130-6_4#Sec2
http://dx.doi.org/10.1007/978-3-319-44130-6_4#Sec2
http://dx.doi.org/10.1007/978-3-319-44130-6_4#Sec2
http://dx.doi.org/10.1007/978-3-319-44130-6_4#Sec2
http://dx.doi.org/10.1007/978-3-319-44130-6_4#Sec3
http://dx.doi.org/10.1007/978-3-319-44130-6_4#Sec3
http://dx.doi.org/10.1007/978-3-319-44130-6_4#Sec3
http://dx.doi.org/10.1007/978-3-319-44130-6_4#Sec3
http://dx.doi.org/10.1007/978-3-319-44130-6_4#Sec4
http://dx.doi.org/10.1007/978-3-319-44130-6_4#Sec4
http://dx.doi.org/10.1007/978-3-319-44130-6_4#Sec4
http://dx.doi.org/10.1007/978-3-319-44130-6_4#Sec4
http://dx.doi.org/10.1007/978-3-319-44130-6_4#Sec5
http://dx.doi.org/10.1007/978-3-319-44130-6_4#Sec5
http://dx.doi.org/10.1007/978-3-319-44130-6_4#Sec5
http://dx.doi.org/10.1007/978-3-319-44130-6_4#Sec5
http://dx.doi.org/10.1007/978-3-319-44130-6_4#Bib1
http://dx.doi.org/10.1007/978-3-319-44130-6_4#Bib1
http://dx.doi.org/10.1007/978-3-319-44130-6_4#Bib1
http://dx.doi.org/10.1007/978-3-319-44130-6_5
http://dx.doi.org/10.1007/978-3-319-44130-6_5
http://dx.doi.org/10.1007/978-3-319-44130-6_5
http://dx.doi.org/10.1007/978-3-319-44130-6_5
http://dx.doi.org/10.1007/978-3-319-44130-6_5#Sec1
http://dx.doi.org/10.1007/978-3-319-44130-6_5#Sec1
http://dx.doi.org/10.1007/978-3-319-44130-6_5#Sec1
http://dx.doi.org/10.1007/978-3-319-44130-6_5#Sec1
http://dx.doi.org/10.1007/978-3-319-44130-6_5#Sec2
http://dx.doi.org/10.1007/978-3-319-44130-6_5#Sec2
http://dx.doi.org/10.1007/978-3-319-44130-6_5#Sec2
http://dx.doi.org/10.1007/978-3-319-44130-6_5#Sec2
http://dx.doi.org/10.1007/978-3-319-44130-6_5#Sec3
http://dx.doi.org/10.1007/978-3-319-44130-6_5#Sec3
http://dx.doi.org/10.1007/978-3-319-44130-6_5#Sec3
http://dx.doi.org/10.1007/978-3-319-44130-6_5#Sec3
http://dx.doi.org/10.1007/978-3-319-44130-6_5#Sec4
http://dx.doi.org/10.1007/978-3-319-44130-6_5#Sec4
http://dx.doi.org/10.1007/978-3-319-44130-6_5#Sec4
http://dx.doi.org/10.1007/978-3-319-44130-6_5#Sec4
http://dx.doi.org/10.1007/978-3-319-44130-6_5#Sec5
http://dx.doi.org/10.1007/978-3-319-44130-6_5#Sec5
http://dx.doi.org/10.1007/978-3-319-44130-6_5#Sec5
http://dx.doi.org/10.1007/978-3-319-44130-6_5#Sec5
http://dx.doi.org/10.1007/978-3-319-44130-6_5#Sec6
http://dx.doi.org/10.1007/978-3-319-44130-6_5#Sec6
http://dx.doi.org/10.1007/978-3-319-44130-6_5#Sec6
http://dx.doi.org/10.1007/978-3-319-44130-6_5#Sec6
http://dx.doi.org/10.1007/978-3-319-44130-6_5#Sec7
http://dx.doi.org/10.1007/978-3-319-44130-6_5#Sec7
http://dx.doi.org/10.1007/978-3-319-44130-6_5#Sec7
http://dx.doi.org/10.1007/978-3-319-44130-6_5#Sec7
http://dx.doi.org/10.1007/978-3-319-44130-6_5#Bib1
http://dx.doi.org/10.1007/978-3-319-44130-6_5#Bib1
http://dx.doi.org/10.1007/978-3-319-44130-6_5#Bib1
http://dx.doi.org/10.1007/978-3-319-44130-6_6
http://dx.doi.org/10.1007/978-3-319-44130-6_6
http://dx.doi.org/10.1007/978-3-319-44130-6_6
http://dx.doi.org/10.1007/978-3-319-44130-6_6
http://dx.doi.org/10.1007/978-3-319-44130-6_6#Sec1
http://dx.doi.org/10.1007/978-3-319-44130-6_6#Sec1
http://dx.doi.org/10.1007/978-3-319-44130-6_6#Sec1
http://dx.doi.org/10.1007/978-3-319-44130-6_6#Sec1
http://dx.doi.org/10.1007/978-3-319-44130-6_6#Sec2
http://dx.doi.org/10.1007/978-3-319-44130-6_6#Sec2
http://dx.doi.org/10.1007/978-3-319-44130-6_6#Sec2
http://dx.doi.org/10.1007/978-3-319-44130-6_6#Sec2
http://dx.doi.org/10.1007/978-3-319-44130-6_6#Sec3
http://dx.doi.org/10.1007/978-3-319-44130-6_6#Sec3
http://dx.doi.org/10.1007/978-3-319-44130-6_6#Sec3
http://dx.doi.org/10.1007/978-3-319-44130-6_6#Sec3
http://dx.doi.org/10.1007/978-3-319-44130-6_6#Sec4
http://dx.doi.org/10.1007/978-3-319-44130-6_6#Sec4
http://dx.doi.org/10.1007/978-3-319-44130-6_6#Sec4
http://dx.doi.org/10.1007/978-3-319-44130-6_6#Sec4
http://dx.doi.org/10.1007/978-3-319-44130-6_6#Sec5
http://dx.doi.org/10.1007/978-3-319-44130-6_6#Sec5
http://dx.doi.org/10.1007/978-3-319-44130-6_6#Sec5
http://dx.doi.org/10.1007/978-3-319-44130-6_6#Sec5
http://dx.doi.org/10.1007/978-3-319-44130-6_6#Bib1
http://dx.doi.org/10.1007/978-3-319-44130-6_6#Bib1
http://dx.doi.org/10.1007/978-3-319-44130-6_6#Bib1
http://dx.doi.org/10.1007/978-3-319-44130-6_7
http://dx.doi.org/10.1007/978-3-319-44130-6_7
http://dx.doi.org/10.1007/978-3-319-44130-6_7
http://dx.doi.org/10.1007/978-3-319-44130-6_7
http://dx.doi.org/10.1007/978-3-319-44130-6_7#Sec1
http://dx.doi.org/10.1007/978-3-319-44130-6_7#Sec1
http://dx.doi.org/10.1007/978-3-319-44130-6_7#Sec1
http://dx.doi.org/10.1007/978-3-319-44130-6_7#Sec1
http://dx.doi.org/10.1007/978-3-319-44130-6_7#Sec2
http://dx.doi.org/10.1007/978-3-319-44130-6_7#Sec2
http://dx.doi.org/10.1007/978-3-319-44130-6_7#Sec2
http://dx.doi.org/10.1007/978-3-319-44130-6_7#Sec2
http://dx.doi.org/10.1007/978-3-319-44130-6_7#Sec3
http://dx.doi.org/10.1007/978-3-319-44130-6_7#Sec3
http://dx.doi.org/10.1007/978-3-319-44130-6_7#Sec3
http://dx.doi.org/10.1007/978-3-319-44130-6_7#Sec3
http://dx.doi.org/10.1007/978-3-319-44130-6_7#Sec4
http://dx.doi.org/10.1007/978-3-319-44130-6_7#Sec4
http://dx.doi.org/10.1007/978-3-319-44130-6_7#Sec4
http://dx.doi.org/10.1007/978-3-319-44130-6_7#Sec4
http://dx.doi.org/10.1007/978-3-319-44130-6_7#Sec5
http://dx.doi.org/10.1007/978-3-319-44130-6_7#Sec5
http://dx.doi.org/10.1007/978-3-319-44130-6_7#Sec5
http://dx.doi.org/10.1007/978-3-319-44130-6_7#Sec5
http://dx.doi.org/10.1007/978-3-319-44130-6_7#Sec6
http://dx.doi.org/10.1007/978-3-319-44130-6_7#Sec6
http://dx.doi.org/10.1007/978-3-319-44130-6_7#Sec6
http://dx.doi.org/10.1007/978-3-319-44130-6_7#Sec6
http://dx.doi.org/10.1007/978-3-319-44130-6_7#Sec7
http://dx.doi.org/10.1007/978-3-319-44130-6_7#Sec7
http://dx.doi.org/10.1007/978-3-319-44130-6_7#Sec7
http://dx.doi.org/10.1007/978-3-319-44130-6_7#Sec7
http://dx.doi.org/10.1007/978-3-319-44130-6_7#Sec8
http://dx.doi.org/10.1007/978-3-319-44130-6_7#Sec8
http://dx.doi.org/10.1007/978-3-319-44130-6_7#Sec8
http://dx.doi.org/10.1007/978-3-319-44130-6_7#Sec8
http://dx.doi.org/10.1007/978-3-319-44130-6_7#Bib1
http://dx.doi.org/10.1007/978-3-319-44130-6_7#Bib1
http://dx.doi.org/10.1007/978-3-319-44130-6_7#Bib1
http://dx.doi.org/10.1007/978-3-319-44130-6_8
http://dx.doi.org/10.1007/978-3-319-44130-6_8
http://dx.doi.org/10.1007/978-3-319-44130-6_8
http://dx.doi.org/10.1007/978-3-319-44130-6_8
http://dx.doi.org/10.1007/978-3-319-44130-6_8#Sec1
http://dx.doi.org/10.1007/978-3-319-44130-6_8#Sec1
http://dx.doi.org/10.1007/978-3-319-44130-6_8#Sec1
http://dx.doi.org/10.1007/978-3-319-44130-6_8#Sec1
http://dx.doi.org/10.1007/978-3-319-44130-6_8#Sec2
http://dx.doi.org/10.1007/978-3-319-44130-6_8#Sec2
http://dx.doi.org/10.1007/978-3-319-44130-6_8#Sec2
http://dx.doi.org/10.1007/978-3-319-44130-6_8#Sec2
http://dx.doi.org/10.1007/978-3-319-44130-6_8#Sec3
http://dx.doi.org/10.1007/978-3-319-44130-6_8#Sec3
http://dx.doi.org/10.1007/978-3-319-44130-6_8#Sec3
http://dx.doi.org/10.1007/978-3-319-44130-6_8#Sec3
http://dx.doi.org/10.1007/978-3-319-44130-6_8#Sec4
http://dx.doi.org/10.1007/978-3-319-44130-6_8#Sec4
http://dx.doi.org/10.1007/978-3-319-44130-6_8#Sec4
http://dx.doi.org/10.1007/978-3-319-44130-6_8#Sec4
http://dx.doi.org/10.1007/978-3-319-44130-6_8#Bib1
http://dx.doi.org/10.1007/978-3-319-44130-6_8#Bib1
http://dx.doi.org/10.1007/978-3-319-44130-6_8#Bib1

9 Image Thresholding . 121
9.1 Introduction . 121
9.2 Otzu Method . 122
9.3 Fuzzy Thresholding . 124
9.4 Example: Document Image Analysis . 127

9.4.1 Document Segmentation . 128
9.4.2 Region Classification. 129

References. 132

Appendix A: Java Code References. 133

Index . 137

Contents xi

http://dx.doi.org/10.1007/978-3-319-44130-6_9
http://dx.doi.org/10.1007/978-3-319-44130-6_9
http://dx.doi.org/10.1007/978-3-319-44130-6_9
http://dx.doi.org/10.1007/978-3-319-44130-6_9
http://dx.doi.org/10.1007/978-3-319-44130-6_9#Sec1
http://dx.doi.org/10.1007/978-3-319-44130-6_9#Sec1
http://dx.doi.org/10.1007/978-3-319-44130-6_9#Sec1
http://dx.doi.org/10.1007/978-3-319-44130-6_9#Sec1
http://dx.doi.org/10.1007/978-3-319-44130-6_9#Sec2
http://dx.doi.org/10.1007/978-3-319-44130-6_9#Sec2
http://dx.doi.org/10.1007/978-3-319-44130-6_9#Sec2
http://dx.doi.org/10.1007/978-3-319-44130-6_9#Sec2
http://dx.doi.org/10.1007/978-3-319-44130-6_9#Sec3
http://dx.doi.org/10.1007/978-3-319-44130-6_9#Sec3
http://dx.doi.org/10.1007/978-3-319-44130-6_9#Sec3
http://dx.doi.org/10.1007/978-3-319-44130-6_9#Sec3
http://dx.doi.org/10.1007/978-3-319-44130-6_9#Sec4
http://dx.doi.org/10.1007/978-3-319-44130-6_9#Sec4
http://dx.doi.org/10.1007/978-3-319-44130-6_9#Sec4
http://dx.doi.org/10.1007/978-3-319-44130-6_9#Sec4
http://dx.doi.org/10.1007/978-3-319-44130-6_9#Sec5
http://dx.doi.org/10.1007/978-3-319-44130-6_9#Sec5
http://dx.doi.org/10.1007/978-3-319-44130-6_9#Sec5
http://dx.doi.org/10.1007/978-3-319-44130-6_9#Sec5
http://dx.doi.org/10.1007/978-3-319-44130-6_9#Sec6
http://dx.doi.org/10.1007/978-3-319-44130-6_9#Sec6
http://dx.doi.org/10.1007/978-3-319-44130-6_9#Sec6
http://dx.doi.org/10.1007/978-3-319-44130-6_9#Sec6
http://dx.doi.org/10.1007/978-3-319-44130-6_9#Bib1
http://dx.doi.org/10.1007/978-3-319-44130-6_9#Bib1
http://dx.doi.org/10.1007/978-3-319-44130-6_9#Bib1

About the Authors

Laura Caponetti received her degree in Physics at the University of Bari, Italy,
in 1972. She is Associate Professor (retired) at the Computer Science Department
of the University of Bari “A. Moro”, where she has been working from 1982 as
Assistant Professor. Her research interests are in image processing and computer
vision. Her research (https://www.researchgate.net/profile/Laura_Caponetti) spans a
range of topics including image segmentation, 3D object recognition, 3D scene
analysis, fuzzy and image processing. She has published over eighty papers and she
is a referee of international journals and conferences. She has been a member of the
scientific committee of the Master in Remote Sensing Techniques and a member
of the Council of Ph.D. in Computer Science at the Bari University. She has been a
lecturer of Information Processing Systems (Sistemi di Elaborazione della infor-
mazione) for the degree course in Computer Science and Computer System
Foundations (Fondamenti di Informatica) for the degree course in Civil
Engineering. Moreover, she has been a lecturer of Image Processing for the degree
course in Computer Science and for the Master in Remote Sensing Techniques.
Currently she is a referee of the “Ministero dell’Istruzione, dell’Università e della
Ricerca” (http://www.istruzione.it/). Also, she is a member of many scientific
associations such as IAPR (Italian Chapter), AICA, and AIIA.

Giovanna Castellano is Associate Professor at the Computer Science Department
of the University of Bari “A. Moro”, Italy. In 1993 she received her degree in
Informatics from the University of Bari. From 1993 to 1995 she was a fellow
researcher at the CNR Institute for Signal and Image Processing in Bari, Italy. In
2001 she got a Ph.D. in Informatics from the University of Bari, where she became
Assistant Professor in 2002. Her research interests are mainly focused on compu-
tational intelligence, with special focus on fuzzy systems, neural networks,
neuro-fuzzy modeling, fuzzy clustering, granular computing, and fuzzy image
processing. Her current research activity concerns the application of fuzzy tech-
niques in image processing and retrieval. Within these research areas, she has been
co-author of more than 170 papers published on scientific journals, book

xiii

https://www.researchgate.net/profile/Laura_Caponetti
https://www.researchgate.net/profile/Laura_Caponetti
https://www.researchgate.net/profile/Laura_Caponetti
https://www.researchgate.net/profile/Laura_Caponetti
https://www.researchgate.net/profile/Laura_Caponetti
https://www.researchgate.net/profile/Laura_Caponetti
https://www.researchgate.net/profile/Laura_Caponetti
https://www.researchgate.net/profile/Laura_Caponetti
https://www.researchgate.net/profile/Laura_Caponetti
https://www.researchgate.net/profile/Laura_Caponetti
https://www.researchgate.net/profile/Laura_Caponetti
https://www.researchgate.net/profile/Laura_Caponetti
http://www.istruzione.it/
http://www.istruzione.it/

collections, and international conference proceedings. Working on these topics she
joined a number of research projects and she organized a number of special sessions
and workshops in international conferences. She is Associate Editor of the journal
Information Sciences (ISSN:0020-0255) and a member of the editorial board of
several international journals.

xiv About the Authors

Part I
Fundamentals of Fuzzy

Image Processing

The first part of the book introduces the fundamental concepts of fuzzy image
processing; namely, we provide basic concepts of low-level image processing and
fundamental principles of fuzzy logic. These concepts are equipped with a basic
introduction to the Java programming language.

Chapter 1
Image Representation Using Java

Intelligence is not to make no mistakes, but quickly to see how to
make them good.

Bertolt Brecht

Abstract This chapter covers some basic concepts of gray-level and color image
representation. Digital images are logically represented using a matrix of elements,
each element having a single value in case of gray-level images and three/four values
in case of color images. The chapter also introduces the most used color models and
the representation of images provided by Java.

1.1 Introduction

A digital image is a two-dimensional representation of an object or a three-
dimensional scene resulting from a digitalization process (see Fig. 1.1). An image
can be considered as a two-dimensional digital signal acquired by means of two
basic processes: sampling in the spatial domain and quantization in the value/level
domain. In other words, a digital image is defined as a two-dimensional digital func-
tion f (x, y) that is a mapping from a spatial coordinate domain D into an intensity
value domain D′:

f : D → D′

where D is a finite domain consisting of pairs of discrete coordinates (x, y) and D′ is
the discrete domain of values called gray levels. Typically the domain D′ is the range
[0, 255]. A digital image consists of a finite set of elements having a location (x, y)
and a value denoted by l. Each element f (x, y) is called pixel—picture element.

© The Author(s) 2017
L. Caponetti and G. Castellano, Fuzzy Logic for Image Processing,
SpringerBriefs in Electrical and Computer Engineering,
DOI 10.1007/978-3-319-44130-6_1

3

4 1 Image Representation Using Java

Fig. 1.1 Image acquisition and digitalization process

Digital image processing refers to all those tasks that involve processing a digital
image by a computer. We can distinguish among low-level, medium-level, and high-
level processing. In low-level processing tasks we have a digital image as input and
a digital image as output—for example an image improved for the visualization. In
high-level processing the outcome is a description of the content of the input image.
In medium-level processing some features are obtained from the input image, for
examples edges or regions. This book mainly focuses on low-level and medium-
level image processing.

This chapter provides a brief introduction to digital image processing. The aim is
to introduce the fundamentals of gray-level and color image processing, with special
focus on the tasks considered as applications of fuzzy techniques in the second part
of the volume. For further details about the basics of image processing, the reader is
referred to specific bibliography [1, 3].

1.2 Gray-Level Images

A digital image f having a finite number of non negative values—typically in the
range [0, 255]—is called gray-level image. It can be represented by a matrix of
N × M elements, where N is the row number and M the column number. Each
element f (j, k) for 0 ≤ j ≤ N and 0 ≤ k ≤ M is a pixel having abscissa x = k
and ordinate y = − j . Then a digital image can be represented using the logical
coordinate system (x, y) or the image coordinate system (j, k), where x = k is the
column and y = − j is the row (see Fig. 1.2).

1.2 Gray-Level Images 5

Fig. 1.2 Image coordinate system

Fig. 1.3 A gray-level image with a high dynamic range and b low dynamic range

A digital image can be described by means of some features such as

• dimension: the number of pixels in the image.
• size: the number of rows and columns of the image or also the size (width and
height) expressed in cm/inch.

• spatial resolution: the number of pixels for size unity expressed in dot per inch
(dpi).

• dynamic range or resolution in the gray-level range: the number of different gray
levels actually used in the image. For example if the range is [0, 255], an image
using all 256 levels presents a high dynamic range. Conversely, an image using
only few levels presents a very low dynamic range (Fig. 1.3).

1.3 Color Models

There are basically two ways to specify colors in a computer. The RGB (Red Green
Blue) definition is the more natural approach in terms of the human visual system
and it is also the approach used to drive computer monitors. In fact the RGB system

6 1 Image Representation Using Java

matches with the fact that the human eye is strongly perceptive to red, green, and
blues primaries.

The secondary colors CMY (Cyan Magenta Yellow) are used for printing and are
basically complementary to RGB. However, the RGB and CMY color models are not
well suited for describing color for human interpretation. Defining a specific color
using a RGB set of numbers is very difficult, unless it is one of the end members.
Indeed, one does not refer to the color of an object by giving the percentage of each
primary component.

For these reasons other color representations are adopted, such as the HSB rep-
resentation where the features used to distinguish one color from another are Hue,
Saturation, and Brightness. Hue is an attribute associated with the dominant wave-
length in a mixture of light waves. Hue represents dominant color as perceived by an
observer. Saturation refers to the relative purity or the amount of white light mixed
with the hue. The pure spectrum colors are fully saturated and the degree of saturation
being inversely proportional to the amount of light added. Brightness embodies the
chromatic notion of intensity. Hue and saturation together are called chromaticity so
a color can be represented by its brightness and chromaticity.

A color model or color system is a subspace of a three-dimensional coordinate
system inwhich each color is represented by a single point. Generally a colormodel is
oriented either toward hardware (as for monitor and printers) or toward applications.

The most common hardware-oriented color models are

• the RGB model for color monitor and color video cameras;
• the CMY model for color printers;

By contrast, the HSV (Hue, Saturation, and Value) and HSI (Hue, Saturation,
and Intensity) color models, referred to the HSB representation, are user/application
oriented and correspond to the way humans perceive and describe color using the
words tint, shade, and tone.

RGB Color Model

In the RGB system each color is represented by its primary components relative to
Red, Green, and Blue. The model is based on a Cartesian coordinate system. The
RGB space is represented by a cube (see Fig. 1.4), in which the primary colors are at
three corners; cyan, magenta, and yellow are at the three opposite corners. Black is at
the origin and white is at the corner farthest from the origin. The gray scale—points
of equal RGB values—extends from the black point to white point along the line
joining these two points. The different colors in this model are points on or inside the
cube. They are defined by vectors extending from the origin of the Cartesian system.

HSV Color Model

The HSV color system, also called HSB (B for Brightness) is closer than RGB
system to the way human describe color sensations. In artistic terminology hue,

1.3 Color Models 7

Fig. 1.4 RGB color model (taken from [3])

Fig. 1.5 HSV-HSB color
model

saturation, and value refer to tint, shade, and tone. The HSV model is defined in a
subspace represented by a hexacone or six-sided cone (Fig. 1.5). The HSV is based
on cylindrical coordinate. A cylindrical coordinate system is a three-dimensional
coordinate system (ρ, φ, z) that specifies point positions by the distance ρ from a
chosen reference axis, the direction φ from the axis relative to a chosen reference
direction, and the distance z from a chosen reference plane perpendicular to the axis.
Hue, corresponding to φ, is expressed as an angle around a color hexagon using the
red axis as the 0 axis. Value, corresponding to z, is measured along the axis of the
cone lying in the center of the color hexagon. The end of the axis V = 0 represents
black, while the end V = 1 is white. Thus the cone axis represents all shades of gray.
Saturation, corresponding to ρ, is measured as the distance from the V axis.

The conversion from a RGB value to a HSV value is given in the following [2].
We define Δ = max(R,G, B) − min(R,G, B). As concerns the Hue component,
there are two cases. If R = G = B then Δ = 0 and the Hue is undefined. If Δ > 0
then we compute

8 1 Image Representation Using Java

R∗ = (max(R,G, B) − R)/Δ

G∗ = (max(R,G, B) − G)/Δ

B∗ = (max(R,G, B) − B)/Δ

and then

H∗ =
⎧
⎨

⎩

B∗ − G∗ if R = max(R,G, B)

R∗ − B∗ + 2 if G = max(R,G, B)

G∗ − R∗ + 4 if B = max(R,G, B)

Finally, by normalizing, we have

H =
{

1
6 (H

∗ + 6) for H∗ < 0
H∗ otherwise

(1.1)

The S and V components are defined as follows:

S =
{
max(R,G, B)/Δ if Δ > 0
0 otherwise

(1.2)

V = max(R,G, B)/Cmax (1.3)

where Cmax is the maximum value in the RGB scale (generally Cmax = 255).

HSI Color Model

TheHSI colormodel is based on triangular and circular planes, as depicted in Fig. 1.6.
The triangles and circles are perpendicular to the vertical intensity axis. The Hue (H)
is measured by the angle around the vertical axis and has a range of values between
0◦ and 360◦ beginning with red at 0◦. It gives a measure of the spectral composition
of a color. The saturation (S) is a ratio that ranges from 0 (i.e. on the I axis) extending
radially outwards to amaximumvalue of 1 on the surface of the cone. This component
refers to the proportion of pure light of the dominant wavelength and indicates how
far a color is from a gray of equal brightness. The intensity (I) also ranges between
0 and 1 and measures the relative brightness. At the top and bottom of the cone,
where I = 0 and I = 1, respectively, H and S are undefined and meaningless. At any
point along the I axis the saturation component is zero and the Hue is undefined.
This singularity occurs whenever R = G = B.

H = cos−1

{ 1
2 (R − G) + (R − B)

√
(R − G)2 + (R − B)(R − G)

}

(1.4)

S = 1 − 3

R + G + B
[min(R,G, B)] (1.5)

I = 1

3
(R + G + B) (1.6)

1.3 Color Models 9

Fig. 1.6 HSI color model (taken from [3])

The HSV/HSI systems provide a more natural way to define a color: the value
of hue sets the color according to the colors of the rainbow red, orange, yellow,
green, blue, violet, and back to red. Decreasing the value of brightness moves the
color toward black and decreasing the saturation moves the color toward white. The

10 1 Image Representation Using Java

reason is that HSV/HSI systems allow movements in color space which correspond
more closely to what we mean by tint and shade. An instruction like add white is
easy in HSI but not so obvious in RGB. The HSV color system is somewhat similar
to HSI system, but its aim is to present colors that are meaningful when interpreted
in terms of a color artist palette.

1.4 Color Image Representation Using Java

To represent a color image it is necessary to define the color model. Then a color
pixel can be represented directly by means of three components (e.g., Red, Green,
Blue). If a byte is used to represent each component, it is possible to represent
256 × 256 × 256 different colors (about 16 millions). The BitMaP format uses the
direct representation of the color, also known as true color representation. Often to
limit the memory size a number of four or eight bits are used for each pixel. In this
case it is necessary to use also a palette or colormap, that is a look-up table in which
every element contains a tuple of three values RGB. In this case each pixel value
is an entry in the look-up table. Then this representation is an indirect or indexed
representation of the color value. The GIF, TIF, and PNG formats use an indexed
representation of the color and use a look-up table of 4 or 8 bit, hence each pixel is
an index into a palette of 16 or 256 colors.

Java permits to memorize and process a color image by means of the package
image. In Chap.5 an introduction to Java and ImageJ plugin for image processing
is presented.

Java represents a RGB color image by an array of pixels. Each color pixel is
represented in a packed mode using a 32 bit integer value, where the high order byte
represents the alpha component followed by the Red, Green, and Blue components.
The alpha value represents the level of transparency of the pixel varying from 0
(transparent pixel, i.e., invisible) to 255 (opaque pixel). In a gray-level image the
three components (R, G, B) have the same value. To transform a color pixel into a
gray-level one we can use the following formulas:

I = (R + G + B) (1.7)

Since the eye is more sensible to Green and Red than to Blue color, usually a
weighted sum that takes in account the different perception of the human eye for the
three fundamental colors, is used

I = 0.299R + 0.587G + 0.114B (1.8)

Java supports several image formats for RGB true color images, such as TIFF,
BMP, JPEG, PNG, and RAW. Moreover it supports formats for RGB indexed
color images such as GIF, PNG, BMP, and TIFF. In particular the Java class
ColorProcessor provides a support to process easily color images in RGB and
HSB spaces by offering the following functions:

http://dx.doi.org/10.1007/978-3-319-44130-6_5

1.4 Color Image Representation Using Java 11

1. creation of a new image
2. conversion from RGB to HSB and vice versa
3. splitting or merging the color components
4. managing a stack of components or slides by adding a slice or deleting, merging

slides into an image.

The Listing1.1 shows a Java plugin to convert a color image from RGB to a HSB
(HSV) stack using the Eqs. (1.1), (1.2) and (1.3).

Listing 1.1 A Java program to convert RGB to HSI.
import ij.*;
import ij.plugin.filter.PlugInFilter;
import ij.process .*;
import ij.gui.*;
import java.awt.*;
/* Splits an RGB image into three 8-bit grayscale components
(hue , saturation and brightness) */

public class RGB_Splitter_into_HSI_components
implements PlugInFilter {

ImagePlus imp;
public int setup(String arg , ImagePlus imp) {

this.imp = imp;
return DOES_RGB+NO_UNDO;

}
public void run(ImageProcessor ip) {

int w = imp.getWidth ();
int h = imp.getHeight ();

ImageStack hsbStack = imp.getStack ();
ImageStack hueStack = new ImageStack(w,h);
ImageStack satStack = new ImageStack(w,h);
ImageStack brightStack = new ImageStack(w,h);

byte[] hue ,s,b;
ColorProcessor cp;
int n = hsbStack.getSize ();
for (int i=1; i<=n; i++) {

IJ.showStatus(i+"/"+n);
hue = new byte[w*h];
s = new byte[w*h];
b = new byte[w*h];
cp = (ColorProcessor) hsbStack.getProcessor (1);
cp.getHSB(hue ,s,b);
hsbStack.deleteSlice (1);

// System.gc();
hueStack.addSlice(null ,hue);
satStack.addSlice(null ,s);
brightStack.addSlice(null ,b);
IJ.showProgress ((double)i/n);

}
String title = imp.getTitle ();
imp.hide ();
new ImagePlus("(hue)" + title ,hueStack).show ();
new ImagePlus("(saturation)" + title ,satStack).show ();
new ImagePlus("(brightness)" + title ,brightStack).show ();

}
}

12 1 Image Representation Using Java

Listing 1.2 Color inverter Java plugin.
import ij.*;
import ij.gui.*;
import java.awt.*;
import ij.plugin.filter.PlugInFilter;
import ij.process .*;
/* ColorInverter
* Inverts the pixels in the ROI of a RGB image.
* This is an example from the ImageJ plugin writing tutorial:
* http ://www.fh -hagenberg.at/mtd/depot/imaging/imagej
*/
public class ColorInverter_ implements PlugInFilter {
public int setup(String arg , ImagePlus imp) {

if (arg.equals("about"))
{showAbout (); return DONE;}

return DOES_RGB+NO_CHANGES;
}

//
public void run(ImageProcessor ip) {

// get width , height and the region of interest
int w = ip.getWidth ();
int h = ip.getHeight ();
Rectangle roi = ip.getRoi ();
// create a new image with the same size
// and copy the pixels of the original image
ImagePlus inverted = NewImage.createRGBImage(

"Inverted image", w, h, 1, NewImage.FILL_BLACK);
ImageProcessor inv_ip = inverted.getProcessor ();
inv_ip.copyBits(ip ,0,0, Blitter.COPY);
int[] pixels = (int[]) inv_ip.getPixels ();
// invert the pixels in the ROI
for (int i=roi.y; i<roi.y+roi.height; i++) {

int offset =i*w;
for (int j=roi.x; j<roi.x+roi.width; j++) {

int pos = offset+j;
int c = pixels[pos];
int r = (c&0 xff0000)>>16; // extract red component
int g = (c&0 x00ff00)>>8; // extract green component
int b = (c&0 x0000ff); // extract blue component
r=255-r;
g=255-g;
b=255-b;
pixels[pos]=((r & 0xff)<<16)+((g & 0xff)<< 8)+(b & 0xff);

}
}
inverted.show ();
inverted.updateAndDraw ();

}
void showAbout () {

IJ.showMessage("ColorInverter","inverts ROI of a RGB image");
}

}

The Listing1.2 shows an example of Java plugin to convert a RGB value, packed
in an integer c, into the three fundamental components [r g b] and then to invert
each component and produce a new image with the color scale inverted. To isolate
each color component, for each pixel [u,v] a bit-wise AND operation is applied
to an appropriate bit mask expressed in hexadecimal notation. After the extracted

1.4 Color Image Representation Using Java 13

bits are shifted right 16 bit positions for the r component, and right 8 positions for
the g component, as shown in the Listing1.2. The details of the code can be better
understood by reading Chap. 5 about Java introduction for image processing.

References

1. Burger, W., Burge, M.J.: Digital Image Processing: An Algorithmic Introduction Using Java.
Springer Science & Business Media, Heidelberg (2009)

2. Foley, J.D., Van Dam, A.: Fundamentals of Interactive Computer Graphics, vol. 2. Addison-
Wesley, Reading (1982)

3. Gonzalez, R.C., Woods, R.E.: Digital Image Processing. Prentice Hall, Upper Saddle River
(2008)

http://dx.doi.org/10.1007/978-3-319-44130-6_5

Chapter 2
Low-Level Image Processing

As regards obstacles, the shortest distance between two points
can be a curve.

Bertolt Brecht

Abstract This chapter covers some basic concepts of low-level image processing.
It introduces fundamental methods for two primary image processing tasks, namely
contrast enhancement, image smoothing, and edge detection. The chapter also intro-
duces methods of function optimization for searching the optimal configuration of
edge points.

2.1 Introduction

In the previous chapter, we have introduced the concept of low-level, medium-level,
and high-level digital image processing. In low-level processing tasks a digital image
is used as input and another digital image is obtained as output (e.g., an image
improved for the visualization). In high-level processing the outcome is a description
of the content of the input image. In the medium-level processing some features are
obtained from the input image, such as edges or regions.

Different operators are adopted for low-level processing. Usually, we distinguish
among the following operators:

1. Point operators that produce a single output pixel by processing each pixel inde-
pendently of the other pixels.

2. Local operators that produce a single output pixel by processing a neighborhood
of that pixel.

3. Global operators that produce a single output pixel by processing the entire image.

© The Author(s) 2017
L. Caponetti and G. Castellano, Fuzzy Logic for Image Processing,
SpringerBriefs in Electrical and Computer Engineering,
DOI 10.1007/978-3-319-44130-6_2

15

16 2 Low-Level Image Processing

Generally the aim of low-level operators is to improve the visual quality of the input
image by means of enhancement or noise removal processes. In this chapter we
introduce two fundamental image processing tasks that are contrast enhancement
and edge detection. To this aim, some notations are given in the following.

Let f (x, y) a gray-level image of M × N pixels with L gray levels. We introduce
the following definitions:

• the level scale or dynamic range of image f (x, y) is the range [a, b] of values such
that a ≤ f (x, y) ≤ b for each (x, y);

• the histogram h(i), i = 0, . . . ,L − 1 of image f (x, y) denotes the occurrence fre-
quency of each level.

In Listing2.1, we provide a simple applet to compute the histogram of a gray-level
image. The applet can be executed using the HTML code listed in 2.2. To run the
applet it is necessary to create a Java project with the files HistogramApplet.java and
HistogramApplet.html, then include in the same directory an image named im.png

to be processed.
In the RGB color space, individual histograms of each component can be com-

puted. In [5] we find a plugin to compute the histogram of each R, G, B component
given an input color image.

Listing 2.1 HistogramApplet.java: a Java applet for histogram visualization.

import java.awt.*;
import java.awt.image .*;
import java.applet.Applet;
public class HistogramApplet extends Applet {

private Image image;
private ImageCanvas imageCanvas;
private Panel panel;
private TextArea text;

public void init() {
String image_file = getParameter("IMAGEFILE");
image = getImage(getDocumentBase(), image_file);
while(image.getWidth(this)<0);
Dimension imageSize = new Dimension(

image.getWidth(this), image.getHeight(this));
imageCanvas = new ImageCanvas(image , imageSize);
int[] pixels = ImageCanvas.grabImage(image , imageSize);
panel = new Panel(new GridLayout (1 ,2 ,10 ,10));
text = new TextArea (20 ,5);
panel.add(imageCanvas);
panel.add(text);
add(panel);
text.setText ((new Histogram(pixels)). toString ());

}
}
class Histogram {
private int histo[] = new int [256];

public String toString () {
String text = "";
for(int i=0; i <256; i++) {

text += i+" "+histo[i]+’\n’;
}

2.1 Introduction 17

return text;
}
public Histogram(int[] rgb) {

for(int i=0; i<rgb.length; i++) {
int tmp = (int) (

(((rgb[i] & 0xff0000)>>16) * 0.299) +
(((rgb[i] & 0x00ff00)>>8) * 0.587) +
(((rgb[i] & 0x0000ff)) * 0.114));

histo[tmp]++;
}

}
public int getValueAt(int index) {

return histo[index];
}

}
class ImageCanvas extends Canvas {
static final int MIN_WIDTH = 64;
static final int MIN_HEIGHT = 64;
private Image image;
private Dimension size;

public ImageCanvas(Image img , Dimension dim) {
super ();
image = img;
size = dim;

}
public Dimension getMinimumSize () {

return new Dimension(MIN_WIDTH , MIN_HEIGHT);
}
public Dimension getPreferredSize () {

return new Dimension(size);
}

public void paint(Graphics g) {
g.drawImage(image , 0, 0, getBackground(), this);

}
static public int[] grabImage(Image image , Dimension size) {

int[] data = new int[size.width * size.height];
PixelGrabber pg = new PixelGrabber(

image , 0, 0, size.width , size.height , data , 0, size.width);

try {
pg.grabPixels ();

}
catch (InterruptedException e) {

System.err.println(
"ImageSampler: interrupted while grabbing pixels");

return null;
}
if ((pg.status () & ImageObserver.ABORT) != 0) {

System.err.println(
"ImageSampler: pixel grab aborted or errored");

return null;
}
return data;

}
}

18 2 Low-Level Image Processing

Listing 2.2 HistogramApplet.html: Html code to run HistogramApplet.java.
<html >
<head ><title >Histogram </title ></head >
<body >
<H1>Histogram </H1>
<applet

name="HistogramApplet"
code="HistogramApplet.class"
width="800"
height="500"
alt="If you have a Java -enabled browser ,
you would see an applet here.">

<param name="IMAGEFILE" value="im.png">
</applet >
</body >
</html >

Generally, to define each low-level operator, a mapping T that transforms an input
image f (x, y) into an output image g(x, y) has to be defined over some neighborhood
of each pixel. Namely

g(x, y) = T(f (x, y)) (2.1)

where T is a linear or nonlinear function defined on the dynamic range [a, b].

2.2 Contrast Enhancement

The contrast of an image refers to the range of gray levels used in the image—the
dynamic range. It refers to the intensity variation of the pixels, defined by the mini-
mum and maximum intensity value. Contrast resolution is the ability to distinguish
between differences in intensity. For example, low contrast image values may be
concentrated near a few values of the gray scale (e.g., mostly dark, or mostly bright,
or mostly medium values). One definition of image contrast is the following:

C = SA − SB
SA + SB

where SA and SB are intensity average values computed on pixels of two different
regions A and B (for example background and object).

Low contrast images can result from poor illumination, lack of dynamic range
in the imaging sensor, or even wrong set up during image acquisition. A funda-
mental low-level task is to improve the contrast in an image, by means of contrast
enhancement operators.

To improve the contrast it is necessary to transform the levels of the image into
the range of all the levels available for visualization (typically the range [0, 255]).
Specifically, a contrast stretching, that means highlighting a specific range of gray
levels in an image, is performed. The idea behind contrast stretching is to increase

2.2 Contrast Enhancement 19

the dynamic range in the image being processed. Moreover, to enlarge the dynamic
range it is necessary to interpolate between successive levels. Figure2.1 shows an
example.

Fig. 2.1 a A RGB image and its brightness histogram. b The enhanced image and its histogram.
c The enhanced and interpolated image and its histogram

20 2 Low-Level Image Processing

2.2.1 Gray-Level Transformation

Some methods for contrast enhancement are based on gray-level transformation and
histogrammodification. These are point operators that are applied to a neighborhood
reduced to (1 × 1)pixel.HenceEq. (2.1) can be expressed in the form l′ = T(l)where
l and l′ denote the input pixel value and the output pixel value, respectively. Since
the mapping T(·) denotes a point operator, it is independent on the pixel coordinates
and it is the same for all the image pixels. Hence, each output pixel depends only on
the input pixel having the same coordinates. These operators may be expressed by
means of lookup tables.

Gray-level transformation operators can be divided into two main classes: linear
operators and nonlinear operators. In the following we give some examples of both
classes.

Linear Contrast Stretching
This transformation enhances the dynamic range by linearly stretching the origi-
nal gray-level range [a, b] ⊂ [0, 255] to the range [0, 255]. The transformation is
defined as

l′ = T(l) = 255
(l − a)

(b − a)
(2.2)

where a ≤ l ≤ b.
Generally the linear transformation from the range [a, b] to the range [a′, b′] is

l′ = T(l) = (l − a)
(b′ − a′)
(b − a)

+ a′ (2.3)

where a ≤ l ≤ b.

Linear Contrast Stretching with Clipping
This transformation is used when [a, b] ⊃ [0, 255]. If the number of levels outside
the range [0, 255] is small, these levels are clipped in the following manner: levels
l ≤ 0 are set to 0, levels l ≥ 255 are set to 255. For all the other levels, the Eq. (2.2)
is applied.

Logarithmic Transformation
This transformation is defined as

l′ = c log(1 + |l|) (2.4)

with c > 0. This transformation is used to compress the dynamic range so as to
enhance details related to low levels. For example, it is used to visualize the Fourier
spectrum of an image [11].

2.2 Contrast Enhancement 21

Power-Law Transformation
This transformation is defined as

l′ = l(c · expγ) (2.5)

where c and γ are positive constant values. By varying the value of γ different func-
tions can be obtained to compress or to expand the dynamic range of gray levels.
Conventionally, the exponent in the power-law function is referred to as gamma. The
power-law transformations are useful to perform gamma correction in the visualiza-
tion of images on a monitor or generally they are useful for general-purpose contrast
manipulation [6].

Sigmoid Transformation
This transformation is defined as:

S(x) = 1/(1 + exp−γ (x−c) (2.6)

where the value of c indicates the abscissa of the inflection point of the function and
the parameter γ controls the contrast (values greater than 5 results in an enhancement
of the contrast). Figure2.2 shows a plot of the S-function with c = 0.2 and γ = 15.
By applying the S-function with different values of γ and c we obtain different
contrast enhancement results.

In Fig. 2.3we show some examples of contrastmodification using the plugin given
in Listing2.3 that provides different S-functions.

Fig. 2.2 A plot of the S
function with c = 0.2 and
γ = 15

22 2 Low-Level Image Processing

Fig. 2.3 Some examples of contrast modification using different S-functions. a Original image
(brightness component of Fig. 2.1 and its histogram). b Contrasted image obtained using the S-
function with c = 0.2 and γ = 15. c Contrasted image obtained by applying the S-function with
c = 0.2 and γ = 24

2.2 Contrast Enhancement 23

Listing 2.3 S-function.java: Java plugin cor contrast enhancement using the sigmoid function.
/**
* Contrast enhancement by the following sigmoid function:
* bb = 1/(1+ Math.exp(GAMMA*(c-aa))).
*
* Different values for the parameters c and GAMMA
* can be chosen
*
* Author: Ignazio Altomare
* Date: 4/11/2010
*/

import ij.ImagePlus;
import ij.plugin.filter.PlugInFilter;
import ij.process.ImageProcessor;
import ij.gui.GenericDialog;
import ij.*;
import ij.gui.*;
import ij.plugin.filter.PlugInFilter;
import ij.process .*;
import java.awt.*;
import java.awt.event .*;
import javax.swing .*;
import javax.swing.event .*;
import ij.text .*;

public class Sigmoid_Correction extends WindowAdapter
implements PlugInFilter , ChangeListener , ActionListener {

private int w;
private int h;
private ImagePlus im_sig;
private ImageProcessor ip_orig ,ip_sig;
private byte[] im;
private ImageWindow w_sig;

// variables
private int K = 256;
private int aMax = K - 1;
private float GAMMA_ini =15f;
private float c_ini =0.5f;
// window for visualizing the sigmoid function
private JFrame windowSig;
private PlotPanel graphicSig;
// button for applaySig e resetSig
private JButton applySig;
private JButton resetSig;
// labels for C and Gamma
private JLabel C_label;
private JLabel Gamma_label;
// sliderfor the values C and Gamma
private JSlider C_slider;
private JSlider Gamma_slider;

public int setup(String arg , ImagePlus img) {
return DOES_8G;

}
public void run(ImageProcessor ip) {

w = ip.getWidth ();
h = ip.getHeight ();

24 2 Low-Level Image Processing

ip_orig=ip;

// create a copy of the image
im_sig = NewImage.createByteImage("Sigmoid Correction",w,h,1,

NewImage.FILL_BLACK);
ip_sig = (im_sig.getProcessor ()). convertToByte(true);
ip_sig.copyBits(ip ,0,0,Blitter.COPY);

//get pixel values
im = (byte []) ip_sig.getPixels ();

// process
this.process ();

//show the sigmoid window
this.showSig ();

w_sig = new ImageWindow(im_sig);
w_sig.addWindowListener(this);
im_sig.updateAndDraw ();

}

private void process (){
// create a lookup table for the mapping function
int[] Fgc = new int[K];
for (int a = 0; a < K; a++) {

double aa = (double) a / (double)aMax; // scale to [0,1]
double bb = 1/(1+ Math.exp(GAMMA_ini *(c_ini -aa)));

// scale back to [0 ,255]
int b = (int) Math.round(bb * aMax);
Fgc[a] = b;

}

ip_sig.applyTable(Fgc); // modify the image
}

private ImagePlus plotSig (){
float[] x = new float [256];
float[] y = new float [256];

for(int i=0; i <256; i++){
x[i]=(float)i/(float)aMax;
y[i]=(float)(1/(1+ Math.exp(GAMMA_ini *(float)(c_ini -x[i]))));

}

Plot p = new Plot("Sigmoid Correction","","",x,y);
p.setLimits (0.0 ,1.0 ,0.0 ,1.0);
p.setLineWidth (2);

return p.getImagePlus ();
}
private void showSig (){

// create buttons
applySig=new JButton("Apply");
applySig.addActionListener(this);
resetSig=new JButton("Reset");

2.2 Contrast Enhancement 25

resetSig.addActionListener(this);

// create panels
JPanel panelSigmoid=new JPanel(new GridLayout (2 ,2));
JPanel panelApply_Reset=new JPanel ();
graphicSig = new PlotPanel(this.plotSig (). getImage ());

//set borders of panel
panelSigmoid.setBorder(BorderFactory.createTitledBorder

("Sigmoid Correction"));

// create labels
C_label=new JLabel ();
Gamma_label=new JLabel ();

this.setLabelSig ();

//add labels to panel
panelSigmoid.add(C_label);
panelSigmoid.add(Gamma_label);

// create sliders
C_slider=new JSlider(JSlider.HORIZONTAL);
Gamma_slider=new JSlider(JSlider.HORIZONTAL);

this.setSliderSig ();

C_slider.addChangeListener(this);
Gamma_slider.addChangeListener(this);

//add slider to panel
panelSigmoid.add(C_slider);
panelSigmoid.add(Gamma_slider);

//add Apply and Reset buttons
panelApply_Reset.add(applySig);
panelApply_Reset.add(resetSig);

// create window for the Sigmoid function
windowSig = new JFrame("Sigmoid Correction");
windowSig.setSize (700 ,550);
windowSig.setLocation (300 ,200);
windowSig.setDefaultCloseOperation(JFrame.DISPOSE_ON_CLOSE);
windowSig.setLayout(new FlowLayout ());
Container contentPane=windowSig.getContentPane ();
contentPane.add(graphicSig);
contentPane.add(panelSigmoid);
contentPane.add(panelApply_Reset);
windowSig.setVisible(true);

}

private void setLabelSig (){
C_label.setText("c="+c_ini);
Gamma_label.setText("Gamma="+GAMMA_ini);

}

private void setSliderSig (){
C_slider.setMinimum (1);
C_slider.setMaximum (10);

26 2 Low-Level Image Processing

C_slider.setValue ((int)(c_ini *10));
Gamma_slider.setMinimum (1);
Gamma_slider.setMaximum (255);
Gamma_slider.setValue ((int)GAMMA_ini);

}

private void resetSig (){
c_ini =0.5f;
GAMMA_ini =15;
C_slider.setMinimum (1);
C_slider.setMaximum (10);
C_slider.setValue ((int)(c_ini *10));
Gamma_slider.setMinimum (1);
Gamma_slider.setMaximum (255);
Gamma_slider.setValue ((int)GAMMA_ini);

}

public void actionPerformed(ActionEvent e){

Object source=e.getSource ();

if(source == applySig){
ip_sig.copyBits(ip_orig ,0,0,Blitter.COPY);
im = (byte []) ip_sig.getPixels ();
this.process ();
im_sig.updateAndDraw ();

}

if(source == resetSig){
this.resetSig ();
setSliderSig ();
setLabelSig ();
graphicSig.updateImage(plotSig (). getImage ());

}
}

public void stateChanged(ChangeEvent e){
Object source=e.getSource ();

if(source == C_slider){

c_ini = (float)C_slider.getValue ()/(float)10;

setSliderSig ();
setLabelSig ();
graphicSig.updateImage(plotSig (). getImage ());

}

if(source == Gamma_slider){

GAMMA_ini = Gamma_slider.getValue ();

setSliderSig ();
setLabelSig ();
graphicSig.updateImage(plotSig (). getImage ());

}

}

2.2 Contrast Enhancement 27

public void windowClosing(WindowEvent e){
windowSig.setVisible(false);

}
}

2.2.2 Thresholding

Another way to perform contrast stretching is thresholding. A threshold t is defined
so that levels l ≤ t are set to 0, while levels l > t are set to 255. In this way a binary
image is obtained having values {0, 255} or {0, 1} (Fig. 2.4).

2.2.3 Histogram Transformation

Histograms are the basis for numerous spatial domain processing techniques. His-
tograms are simple to calculate and also lend themselves to economic hardware
implementations, thus making them a popular tool for real-time image processing.

The histogram represents a global information for an image: all the pixels having
a particular value i contribute to populate the i-th bin of the histogram. That is
h(i) = ni being ni the number of pixels having value i. The presence of peaks in
an histogram may represent bright or dark regions, or regions having low or high
contrast. The modification of the histogram produces a different distribution of gray
levels.Hencehistogrammanipulation canbeused effectively for image enhancement.
The modification of an histogram is defined by means of a point transformation
T : j → k such that if the level j has frequency h(j) then the transformed level k has
frequency g(k)where h(·) and g(·) are the initial histogram and the transformed one,
respectively.

Fig. 2.4 a LENA image. b Image obtained by thresholding only the brightness channel

28 2 Low-Level Image Processing

Equalization
Equalization or normalization is the transformation of the level distribution into a uni-
form distribution in which the frequency of each transformed level is approximately
constant, i.e., g(i) � constant for i = 0, . . . ,Lmax where Lmax is the maximum gray
level. Since equalization provides an histogram that is almost uniform, it improves
the image by augmenting the contrast and removing regions that are too bright or
too dark.

Let f (x, y) be a gray-level image of n = M × N pixels with Lmax + 1 gray levels
and let h(i) be its histogram. We define the cumulative histogram of f as

hc(i) =
i∑

j=0

h(j) =
i∑

j=0

nj

for i = 0, . . . ,Lmax . If the histogram h is uniform then its cumulative function hc is
a line. Hence the equalization of the histogram h can be computed by imposing the
cumulative histogram hc to be linear. To this aimwe consider the following equation:

i

hc(i)
= Lmax

n
i = 0, ...,Lmax

from which we obtain

i = Lmax
hc(i)

n
= Lmax

∑i
j=0 h(j)

n
= Lmax

∑i
j=0 nj

n

where n is the number of pixels and nj is the occurrence number of the level j.
AppendixAprovides reference to a Java plugin [5] useful to evaluate the histogram

of a color image.

2.3 Image Smoothing

Smoothing, also called blurring, is a simple and frequently image processing oper-
ation, used to ‘blur’ images and remove detail and noise. A blurring process can
attenuate the abrupt transitions of the gray levels between a pixel and its neighbor
(random noise) or the irrelevant details associated to a small number of pixels.

Generally to perform a smoothing operation we apply a filter to the image, by
means of a local operator. A local operator produces a value for each pixel (x, y) of
the output image g computed in a neighbor or window w (Fig. 2.5) centered in the
pixel (x, y) of the input image f by the following equation:

g = T(f ,w)

In Fig. 2.5 a filter is visualized as a window of coefficients sliding across the
image, that is the image is explored in a fixed sequence (for example, from left to

2.3 Image Smoothing 29

Fig. 2.5 Window or mask
centered in the pixel f (x, y)

right and from top to down). The function T can be linear or not linear. The most
common types of filter are linear: the output value g(x, y) is determined as aweighted
sum of input pixel values f (x + i, y + j). Local operators based on the convolution
operation can be formally described bymeans of the theory of linear systems, namely
the Fourier transform and the convolution product theorem.

Linear image smoothing is a local operator based on a convolution of the image
with a matrix h of proper dimension L × L, called mask or kernel, where L is an
odd value. More formally given an image f (x, y) of M × N pixels and h(x, y) a
L × L spatial mask, we define l = 	L/2
 and the following equation describes the
convolution product in the spatial domain between the image f and the mask h, with
origin in the center of the mask.

g = h ⊗ f

g(x, y) =
l∑

i=−l

l∑

j=−l

h(i, j)f (x + i, y + j) for x = 0, ...,M − 1, y = 0, ...,N − 1

There are many kind of filters depending on the mask used in the convolution equa-
tion. In the following we will mention the most used.

Mean Filter

A simple process for image smoothing consists in locally computing the mean value
for each pixel. This can be obtained by means of the convolution of the input image
with the mask in Fig. 2.6 (lowpass spatial filtering). The mask is a square matrix of
coefficients used to compute a new value starting from the neighbor of the examined
pixel. It is also called filter in the spatial domain. The multiplying factor is needed
to normalize the weights to 1. In this way the range of the output results the same as
the input. The effect of the convolution operator is to compute each output pixel as
mean value of the pixels in its L × L neighborhood.

Fig. 2.6 3 × 3 mean filter

30 2 Low-Level Image Processing

Fig. 2.7 A two-dimensional Gaussian function with σ = 1 and the corresponding 5 × 5 mask

Gaussian Filter

The Gaussian smoothing operator is a two-dimensional convolution operator that is
used to blur images and remove details and noise. It uses kernels having the shape
of a two-dimensional Gaussian function:

G(x, y, σ) =
[

1

2πσ 2

]

exp

(

− x2 + y2

2σ 2

)

where σ is the standard deviation and r = x2 + y2 is the ray from the center. The
degree of smoothing is determined by the value of σ . Larger values of σ require
larger convolution kernels in order to be accurately represented. Figure2.7 shows a
two-dimensional Gaussian function and the corresponding mask.

About 99.7 of values drawn from a Gaussian function are within three standard
deviations (σ away from the mean). This fact is known as the three-sigma rule. For
this reason, the Gaussian smoothing eliminates the influence of those points that are
away from 3σ with respect to the current pixel in the mono-dimensional case and
6
√
2σ in the bi-dimensional case (the central lobe of the two-dimensional Gaussian

function has the value 2
√
2σ). A Java plugin for the two-dimensional Gaussian filter

is available at [7]. As an example, Fig. 2.8 shows the effect of theGaussian smoothing
on the Lena image.

2.4 Edge Detection

Edges represent abrupt changes or discontinuities in an amplitude attribute of an
image such as luminance, surface orientation, color and so on. Edges characterize
object boundaries and are usually defined as curves separating two regions having
different average values of their characteristics. The causes of the region dissimi-
larity may be due to some factors such as the geometry of the scene, radiometric
characteristics of the surface, illumination, and so on. If the regions are sufficiently

2.4 Edge Detection 31

Fig. 2.8 The Lena image and the result of Gaussian smoothing with σ = 3

homogeneous, the transition between two adjacent regions may be detected by ana-
lyzing the discontinuities along gray levels.

Edge detection is a fundamental problem in image analysis and computer vision. It
is the process to locate and identify sharp discontinuities in an image giving bound-
aries between different regions. This boundary detection is the first step in many
computer vision edge-based tasks such as face recognition, obstacle detection, target
recognition, image compression, and so on. Edge detection is a local operator based
on a convolution of the image with a matrix h of dimension L × L, called mask or
kernel, where L is an odd value.

An edge is characterized by the following features:

• Edge normal: the unit vector in the direction of maximum intensity change.
• Edge direction: the unit vector along the edge (perpendicular to the edge normal).
• Edge position or center: the image position at which the edge is located.
• Edge strength or magnitude: local image contrast along the normal. Generally a
pixel is an edge pixel if its strength overcomes a predefined threshold value.

An edge detectionmethod detects the pixels candidate to be points of the boundary
of an object or a region. To derive a boundary of an object all the edge pixels of that
boundary should be grouped. This can be done by border following algorithms or
grouping algorithms.

Since edges may not be represented by perfect discontinuities, the quality of
detected edges is highly dependent on noise, lighting conditions, objects of same
intensities, and density of edges in the scene. Regarding this problem it should be
noted that even though noise is not visible in the original image, noise is highlighted
in derivatives, especially in second derivatives. Hence edge detection, being based
on derivatives, is highly affected by noise. Some noise effect can be reduced by
thresholding. For example, we could define a point in an image as an edge point if its
first derivative is greater than a specified threshold. By doing so, we automatically
assess which significant gray-level transitions can be considered as edge. Another
problem arises when the edge is located on a soft discontinuity. A solution to this
problem is proposed in Chap.8.

http://dx.doi.org/10.1007/978-3-319-44130-6_8

32 2 Low-Level Image Processing

Fig. 2.9 Edge profile and
derivatives

Themost common edge detectionmethods are theGradient operator based on first
derivatives, the Laplacian and the LoG (Laplacian of a Gaussian) operators based on
second derivatives. Figure2.9 shows how the magnitude of the first derivative can be
used to detect the presence of an edge in an image. The sign of the second derivative
can be used to determine whether an edge pixel lies on the dark or the light side of an
edge. The zero crossings of the second derivative provide a powerful way of locating
edges in an image.

Generally an edge detection method involves three steps

1. Smoothing to reduce the noise;
2. Applying edge enhancement, that is a local operation that extracts all image pixels

candidate to be edge points;
3. Applying edge localization (thresholding) to select the edge points among all the

candidate points.

Steps 1. and 2. can be implemented by convolving the input image with a proper
mask so as to obtain the gradient image. In the third step the edge points are detected,
for example by looking for maximum and minimum magnitude values for the first
derivative operators. These operators analyze the distribution of the gradient values
in the neighborhood of a given pixel and determine if the pixel has to be classified
as an edge point on the basis of threshold values. The results of these edge detectors
are very sensitive to the threshold value. These operators require high computational
time and hence cannot be used in real-time applications.

Gradient Operator

Given an image f (x, y), its gradient is defined by

∇f (x, y) =
[∂f (x,y)

∂x
∂f (x,y)

∂y

]

2.4 Edge Detection 33

The magnitude of the gradient is given by

m(x, y) = |∇f (x, y)| =
((∂f (x, y)

∂x

)2 +
(∂f (x, y)

∂y

)2
) 1

2

The direction of the gradient is given by

α(x, y) = tan−1

(
∂f (x, y)

∂x

/∂f (x, y)

∂y

)

The Gradient operator may be implemented as a convolution with the masks
shown in Figs. 2.10 and 2.11.

Laplacian Operator

In many applications it is of particular interest to construct derivative operators,
which are isotropic, i.e., rotation invariant. This means that rotating the image f and
applying the operator gives the same result as applying the operator on f and then
rotating the result. In other words, if the operator is isotropic then equally sharpened
edges are enhanced in any direction. One of these isotropic operators is the Laplacian
operator, defined as

∇2f (x, y) = ∂2f (x, y)

∂2x
+ ∂2f (x, y)

∂2y

This can be implemented using the mask of Fig. 2.12. If f (x, y) is not constant or it
does not vary linearly then the Laplacian of f has a zero crossing, i.e., a sign change
crossing the x axis.

Laplacian of a Gaussian

Using second-order derivatives, the edge localization step is based on the extraction
of zero-crossing points which indicate a sign change crossing the x-axis. Since the
second-order derivative is very sensitive to noise, a filtering function is required.
In [8] a Gaussian function is used to smooth the image hence deriving the opera-
tor called Laplacian of a Gaussian (LoG). The Gaussian smoothing operator is a

Fig. 2.10 Sobel masks to
detect vertical edges

Fig. 2.11 Sobel masks to
detect horizontal edges

34 2 Low-Level Image Processing

Fig. 2.12 Laplacian mask

two-dimensional convolution operator that is used to blur images and remove details
and noise. It uses kernels that represent the shape of a two-dimensional Gaussian
function

G(x, y, σ) =
[

1

2πσ 2

]

exp

(−x2 + y2

2σ 2

)

The LoG operator based on this Gaussian function is defined as

LoG(x, y, σ) = c

[
(x2 + y2)

σ 2
− 1

]

exp

(−x2 + y2

2σ 2

)

where c is a factor that normalizes to 1 and the value of σ determines for each pixel
(x, y) the number of points that influence the evaluation of the Laplacian in (x, y).
A significant problem of the LoG operator is that the localization of edges with an
asymmetric profile by zero-crossing points introduces a bias which increases with
the smoothing effect of filtering [1].

2.4.1 Canny Operator

An interesting solution to avoid the dependence of detected edges on noise was
proposed by J. Canny in [2], who defined an optimal operator for edge detection
including three criteria: good detection, good localization, identification of single
edge point (a given edge in the image should be marked only once).

Let f (x, y) a gray-level image ofM × N pixels and G(x, y) a Gaussian filter. The
Canny operator performs the following steps:

1. First the noise is filtered out from the image. A suitable Gaussian filter is used
for this task. Gaussian smoothing can be performed using a convolution product
fs(x, y) = g(x, y) ⊗ f (x, y). Some parameters have to be fixed for this operator,
such as the standard deviation σ of the Gaussian filter. The width of the mask
must be chosen carefully since it is directly proportional to the localization error.
Since the Gaussian smoothing eliminates the influence of the points far more than
3(2

√
2σ) with respect to the current pixel, the mask size must be equal to 6

√
2σ

for a fixed value of σ .

2.4 Edge Detection 35

2. The second step consists of computing the gradient of f by means of the Sobel
masks along x (columns) and y (rows) directions. Edge strength is found out by
taking the gradient of the image.

3. The third step finds the edge direction using the gradient in x and y directions.
For each pixel (x, y) we evaluate the gradient strength m(x, y) and the gradient
direction α(x, y), where m and α are matrices having the same size of the image
f (x, y). A non-maxima suppression algorithm is applied that follows the edge
direction and suppresses any pixel value that is not to be considered as edge
point. That is, for each pixel (x, y) we consider the gradient direction α(x, y) and
check if m(x, y) has a local maximum in that direction. Usually a small number
of directions is considered. For example, the four directions (0◦, 90◦, 45◦,−45◦)
of a (3 × 3) window centered in the pixel (x, y) may be considered to produce an
initial edge map S(x, y).

4. The last step uses double thresholding to eliminate false edges. Two thresholds
t1 < t2 are selected, with a ratio of 2 or 3. Pixels of edge(x, y) having a gradient
magnitudem(x, y) greater than t2 are definitively labeled as edge pixels. If a point
(x, y) has m(x, y) < t2 and is also connected to points yet labeled as edge points
thenm(x, y) is comparedwith t1. Ifm(x, y) > t1 then the point (x, y) is definitively
labeled as an edge point. All the other points are not labeled as edge points.

An Imagej plugin that implements the Canny algorithm can be found at [4]. An
application example is shown in Fig. 2.13.We can observe how an appropriate choice
of the parameters of the Canny operator may produce very thin edges.

Fig. 2.13 a Original image.
b Image obtained by
applying the gradient in
(x, y) directions. c Image
after thresholding of the
brightness of the image b.
d Image obtained from a
after applying Canny
operator with σ = 1,
t1 = 2.5, t2 = 7.5

36 2 Low-Level Image Processing

2.4.2 Optimization-Based Operators

In the previous sections, we have seen that detection of edges usually involves two
stages. The first one is an edge enhancement process that requires the evaluation of
derivatives of the imagemaking use of gradient or Laplacian operators.Methods such
as thresholding or zero crossing produce an edge map that contains pixels candidates
to be labeled as edge points. In the second stage, pixels of the edge map are selected
and combined in contours using processes such as boundary detection, edge linking,
and grouping of local edges [11, 13].

This last phase can be viewed as a search of the optimal configuration of
those pixels that better approximate the edges. More precisely let us consider
an image F = {f (x, y); 0 ≤ x ≤ M − 1, 0 ≤ y ≤ N − 1} and an edge configuration
S = {s(x, y); 0 ≤ x ≤ M − 1, 0 ≤ y ≤ N − 1} where s(x, y) = 1 if (x, y) is an edge
pixel, s(x, y) = 0 otherwise. Therefore an edge could be considered as one of the
possible paths in the universe of the pixels of the image F. If we define a func-
tion T(S) evaluating the edge S, the searching of the best edge configuration can be
accomplished by means of an optimization method that minimizes/maximizes the
function T(S).

In other words, the edge detection problem can be formulated as one of opti-
mization where the evaluation function depends on the local edge structure. Since
the search space for the optimal solution is extremely large due to the number of
possible configurations of theM × N pixels of the image, a ‘blind’ search would be
fully inefficient. Then optimization methods are necessary which take into account
the geometric and topological constraints of the problem. In this sense somemethods
have been introduced such as graph searching, relaxation, and simulated annealing
[9, 10, 12].

In [3] optimization techniques known as Genetic Algorithms are proposed for the
search of the optimal edge. The peculiarities of these algorithms are the robustness
in the application to different classes of problems and the natural parallel implemen-
tation. When using a genetic algorithm for optimization, a solution is encoded as a
string of genes to form a chromosome representing an individual. In [3] an individual
is an edge configuration S represented by a string ofM × N bits. Each bit encodes the
presence (or not) of an edge pixel in the image F. The approach consists essentially
of two phases: evaluation of the likelihood of a pixel to be an edge pixel and bound-
ary detection by means of genetic algorithms. An objective function T is supplied
which assigns a fitness value to each edge configuration S. This function evaluates
the cost of S as the sum of the costs of each pixel (x, y) in S. The assumptions are
that the edges should tend to be continuous, thin and of sufficient length; moreover
the edges should be perpendicular to the gradient at each pixel. The cost function T
evaluates at each point the deviation from the previous assumptions by computing a
linear combination of five weighted factors: fragmentation, thickness, local length,
region similarity, and curvature. These factors capture the local nature of the edges
and are evaluated in a (w × w)window centered on each pixel (x, y) using the values
of the configuration S and a likelihood map L based on the gradient (amplitude and

2.4 Edge Detection 37

direction). The pixels in this window constitute the neighbor of the central pixel.
The genetic algorithm, starting from an initial population (i.e., a collection of pos-
sible solutions) iteratively produces new generations of individuals (i.e., potential
solutions) using the operators of reproduction, crossover, and mutation. Since the
problem is the minimization of the objective function T(S), each individual S of the
populationmust reproduce itself in proportion to the inverse of its function T(S). The
iterative optimization process ends when the mean value of the objective function T
does not change, within a tolerance value, between two consecutive generations.

References

1. Bhardwaja, S., Mittalb, A.: A survey on various edge detector techniques. Procedia Technol.
4, 220–226 (2012)

2. Canny, J.F.: A computational approach to edge detection. IEEE Trans. PAMI 8(6), 679–698
(1986)

3. Caponetti, L., Abbattista, N., Carapella, G.: A genetic approach to edge detection. In: Proceed-
ings of the IEEE International Conference on Image Processing, 1994. ICIP-94, pp. 318–322.
IEEE, New York (1994)

4. Gibara, T.: Canny edge detector. ImageJ plugin available at: http://rsbweb.nih.gov/ij/plugins/
canny/index.html

5. Gibara, T.:Color histogram. ImageJ plugin available at: http://rsb.info.nih.gov/ij/plugins/color-
histogram.html

6. Huang, S.C., Cheng, F.C., Chiu, Y.S.: Efficient contrast enhancement using adaptive gamma
correction with weighting distribution. IEEE Trans. Image Process. 22(3), 1032–1041 (2013)

7. Lieng, E.: 2D Gaussian filter. Java plugin available at: https://imagej.nih.gov/ij/plugins/
gaussian-filter.html

8. Marr, Y.D., Hildreth, E.: Theory of edge detection. Proc. R. Soc. Lond. B: Biol. Sci. 207(1167),
187–217 (1980)

9. Martelli, A.: An application of heuristic search methods to edge and contour detection. Com-
mun. ACM 19(2), 73–83 (1976)

10. Mumford, D., Shah, J.: Boundary detection by minimizing functionals. In: Proceedings of the
IEEE Computer Vision Pattern Recognition (San Francisco), pp. 22–26 (1985)

11. Rosenfeld, A., Kak, A.C.: Digital Picture Processing. Academic Press, Cambridge (1982)
12. Tan, H.L., Gelfand, S.B., Delp, E.J.: A cost minimization approach to edge detection using

simulated annealing. IEEE Trans. PAMI 14(1), 3–18 (1991)
13. Torre, V., Poggio, T.A.: On edge delection. IEEE Trans. PAMI 8(2), 147–163 (1986)

http://rsbweb.nih.gov/ij/plugins/canny/index.html
http://rsbweb.nih.gov/ij/plugins/canny/index.html
http://rsb.info.nih.gov/ij/plugins/color-histogram.html
http://rsb.info.nih.gov/ij/plugins/color-histogram.html
https://imagej.nih.gov/ij/plugins/gaussian-filter.html
https://imagej.nih.gov/ij/plugins/gaussian-filter.html

Chapter 3
Basics of Fuzzy Logic

Of all things that are certain, the most certain is doubt.
Bertolt Brecht

Abstract In this chapter, foundations of fuzzy logic are presented to introduce the
necessary notations used throughout the following chapters. The chapter provides
basic notions of fuzzy set theory and fuzzy systems, such as fuzzification, fuzzy rule
base and inference engine, defuzzification, and fuzzy models.

3.1 Introduction

Fuzzy logic [31] offers a problem-solving tool that is between the precision of clas-
sical logic and the inherent imprecision of the real world. In the last years, several
approaches based on fuzzy logic have been introduced to process image data having
characteristics of vagueness and ambiguity due to the acquisition phase and also to
imprecise and ill-defined knowledge about the image contents. The imprecision in
an image contained in the pixels can be handled using fuzzy sets that are the primary
elements of fuzzy logic [32]. Vague concepts like ‘good contrast’ or ‘sharp bound-
aries,’ ‘light red,’ ‘high saturation,’ etc., can be perceived qualitatively by the human
reasoning and expressed in a formal way by means of fuzzy logic, that enables a
machine to simulate human reasoning.

© The Author(s) 2017
L. Caponetti and G. Castellano, Fuzzy Logic for Image Processing,
SpringerBriefs in Electrical and Computer Engineering,
DOI 10.1007/978-3-319-44130-6_3

39

40 3 Basics of Fuzzy Logic

Fig. 3.1 Example of fuzzy
sets defined for the variable
temperature

3.2 Fuzzy Set Theory

Fuzzy set theory, introduced by Zadeh [31], is a mathematical tool for translating
abstract concepts found in natural language into computable entities. Such entities are
called fuzzy sets. Fuzzy sets represent vague descriptions or properties of objects, i.e.,
tall, small, cold, bright, etc. The fuzzy set theory offers a way to deal with imprecise
and vague information, so as to simulate human reasoning and perception. Fuzzy
logic concerns the concept of partial truth; the truth values vary from 0.0—fully
false to 1.0—fully true. Then a fuzzy set A is defined as a set whose membership
functionμA has values in the range [0.0, 1.0]. ValuesμA(x) = 0.0 andμA(x) = 1.0
stand, respectively, for null and full membership of x to A, whereas all values μA(x)
between 0.0 and 1.0 indicate partial membership of x to A. Mathematically, a fuzzy
set A is represented by amembership function defined on a domain X , called universe
of discourse,1 given by

μA : X → [0, 1]

where A is the fuzzy label or linguistic (value) term describing the variable x . As an
extension to boolean logic,μA(x) represents the grade ofmembership of x belonging
to the fuzzy set A. Fuzzy sets can be used to define the values of fuzzy variables.

Consider the fuzzy variable temperature, which can be described by many dif-
ferent adjectives (linguistic terms) each with its own fuzzy set. A typical par-
tition of the universe of discourse, 0 − 40 ◦C, is shown in Fig. 3.1, where the
fuzzy sets cold, warm, and hot are defined. Here, the crisp temperature 15 ◦C has
a grade of membership of 0.5 for both the cold and the warm fuzzy sets, i.e.,
cold(15 ◦C) = warm(15 ◦C) = 0.5. The power of fuzzy variables is that they facili-
tate gradual transitions between attributes and, consequently, possess a natural capa-
bility to express and deal with uncertainties.

It is clear that the definition of fuzzy sets is nonunique for the nature of language,
but it is very context-dependent and user specific (e.g., this definition may seem
inappropriate to an Eskimo!). On specifying a membership function μA(x) in its
present context the vague fuzzy label A is precisely defined. Hence fuzzy sets can be
thought as measuring the inherent vagueness of language precisely. The properties

1Fuzzy sets can be defined in either discrete or continuous universes. Universes found in real-world
applications are typically continuous, but in the area of digital image processing discrete universes
are more often considered.

3.2 Fuzzy Set Theory 41

Fig. 3.2 Principal types of membership functions

of these fuzzy sets play an important role in the modeling capabilities of the fuzzy
system, and for a model to be truly transparent these sets should sensibly represent
terms that describe the input and output variables. It is up to the system designer to
determine the shape of the fuzzy sets. In most cases, however, the semantics captured
by fuzzy sets is not too sensitive to variations in the shape; hence it is convenient to
use simple membership functions. The most common membership functions are the
triangular, the trapezoidal, and the Gaussian function, depicted in Fig. 3.2. As such,
fuzzy sets constitute a powerful approach not only to deal with incomplete, noisy,
or imprecise data but also to develop models of the data that provide smarter and
smoother performance than traditional modeling techniques.

The popularity and practicality of fuzzy systems derives from their ability to
express complex relations in terms of linguistic rules. Thus, fuzzy systems have
advantages of excellent capabilities to describe a given input–output mapping. The
second important property to be considered concerns function approximation: fuzzy
systems have been proved to be universal approximators [6, 7, 30], i.e., they are able
to uniformly approximate continuous functions to any degree of accuracy on closed
and bounded (compact) sets, a property they share with feedforward neural networks.
Moreover, in contrast with other universal approximators (e.g., neural networks)
fuzzy systems are uniquely suited to incorporate linguistic information in a natural
and systematic way. Since Zadeh’s first pioneering paper [31] fuzzy systems have
been successfully used to build models that can explain complex processes, such as
in biology, chemistry, material science, or in economy, growing into various industry
applications.

3.3 Fuzzy Rule-Based Systems

The working scheme of a fuzzy system is based on a particular inference process
where the involved variables are modeled by means of fuzzy sets.

Using fuzzy sets, a fuzzy system can represent the imprecision characterizing real-
world problems using IF-THEN rules expressed in natural language. A collection
of such rules called the knowledge base is used to describe the I/O mapping being

42 3 Basics of Fuzzy Logic

Fig. 3.3 General scheme of
a fuzzy inference system

approximated, and a proper inference process is applied. Hence a fuzzy system, also
called fuzzy rule-based system, approximates an unknown I/Omapping by inference
from a set of fuzzy rules that are humanly understandable statements such as

R1: IF temperature is cold THEN set output of the heater high
R2: IF temperature is warm THEN set output of the heater zero

describing a typical relationship between room temperature and the desired output
of a heater. Such rules use linguistic terms such as ‘cold’ and ‘warm,’ that express
vague concepts defined over the input variable ‘temperature.’ Such vague concepts
are modeled as fuzzy sets.

The basic structure of a fuzzy system, as described byMamdani andAssillan [19],
is shown in Fig. 3.3. A fuzzy system processes crisp data at the input and produces
crisp data at the output through inference from a fuzzy rule base, which represents
the knowledge base of the system. Therefore a fuzzier is used at the front of the
system to convert crisp data to fuzzy sets, and a defuzzifier is used at the output of
the system to convert fuzzy sets into crisp values.

The fuzzy inference engine combines the rules in the rule base according to
approximate reasoning theory to produce amapping from fuzzy sets in the input space
to fuzzy sets in the output space. Hence a fuzzy system provides a computational
scheme describing how rules must be evaluated and combined to compute a crisp
output value (vector) for any input crisp value. One can therefore think of a fuzzy
system simply as a parameterized function that maps real vectors to real vectors.

According to the form of fuzzy rules, different models can be employed to define
a fuzzy rule-based system. In a Mamdani-type fuzzy system, the consequence of
each rule is a fuzzy set defined for a linguistic variable. The inference of the rules
follows the modus ponens model, extended to fuzzy sets. Namely, given an input
value, the inference of a rule consists in scaling down the consequence fuzzy set by
the firing strength of the rule defined by the membership degree of the input value to
the premise. The definition of the THEN operator, also called implication operator,
gives the output fuzzy set for that rule.

Due to the use of fuzzy sets in the premise of rules, several fuzzy rules can be fired
at the same time. For example, with the fuzzy sets defined in Fig. 3.1, both the two
rules R1 and R2 are fired by input temperature 13 ◦C, hence the output command for
heating is calculated by combining the fuzzy sets resulting from inference of both
rules R1 and R2. Usually, to perform rule aggregation, i.e., to combine partial results
provided by individual rules, the operators MAX or SUM are used.

3.3 Fuzzy Rule-Based Systems 43

However, for most control applications crisp values are needed as output, hence
qualitative information in form of fuzzy sets is not suitable for the output variable. A
defuzzification phase is therefore needed to obtain an output crisp value from a fuzzy
set. There are several defuzzification methods, some are based on the centroid of the
outcomes and others on the maximum values given by the membership functions.

3.3.1 Fuzzification

Fuzzification is the process that converts crisp inputs to fuzzy sets defined on the
input space. Generally the component of the system performing this process is called
fuzzifier. In this step, a fuzzification function is introduced for each input variable
to express the associated measurement uncertainty. The purpose of the fuzzification
function is to interpret measurements of input variables, each expressed by a real
number, as more realistic fuzzy approximations of the respective real numbers. The
fuzzier models uncertainties found on the input and hence it smoothes out the system
response, making it less sensitive to specific input values and hence to uncertainty
on the input, such as noise.

In many cases input variables are not fuzzified. That is, the singleton fuzzification
is applied, which assumes no noise on the crisp inputs, hence measurements of input
variables are employed in the inference process directly. The singleton fuzzification
maps a crisp input value x0 to a fuzzy singleton, i.e., to a fuzzy set such that its support
is reduced to x0. This type of fuzzification requires low computational cost since the
calculation of the system’s output is simplified. However singleton fuzzification may
not always be adequate, especially in cases where input data are corrupted by noise.
To account for uncertainty in the data non-singleton fuzzification is necessary [20].
In such cases, the fuzzification function has the form

fe : [−a, a] → X

where X denotes the set of all fuzzy sets and fe(x0) is a fuzzy approximation of the
measurement x0.

3.3.2 Fuzzy Rule Base and Inference Engine

For a fuzzy system with n inputs and one output, the rule base is composed of a set
of K fuzzy rules formally defined as

Rk : IF (x1 is A1k) AND · · · AND (xn is Ank) THEN (y is Bk) (3.1)

for k = 1, . . . , K , where Aik , i = 1, . . . n are fuzzy sets defined on the input variables
and Bk is a fuzzy set defined on the output variables. The antecedent of a rule can be

44 3 Basics of Fuzzy Logic

seen as multidimensional fuzzy set Ak obtained as intersection of univariate fuzzy
sets Aik , i = 1, . . . , n. Hence the basic form of a fuzzy rule in (3.1) can be also
written as

Rk : IF (x is Ak) THEN (y is Bk) (3.2)

Using the fuzzy implication operator each rule maps the antecedent fuzzy set Ak

into the consequent fuzzy set Bk . Each rule Rk can then be viewed as a fuzzy impli-
cation Ak → Bk characterized by a continuous multivariate membership function

μRk (x, y) = μAk→Bk (x, y) = τ(μAk (x), μBk (y))

where τ is a T-norm operator.
Given a fuzzified inputA0 = (A10, . . . , An0), the inference engine uses the fuzzy

rule base to infer a fuzzy output B0 by means of the compositional rule of inference.
The compositional rule can be applied locally to each rule Rk and the resulting fuzzy
sets are aggregated to provide the inferred fuzzy set. Specifically, the inference engine
first composes A0 (the fuzzified input) with each rule Rk producing as intermediate
result the fuzzy set Bk0 = A0 ◦ Rk with membership function

μBk0(y) = sup
x

[τ(μA0(x), μRk (x, y))]

Then, a fuzzy output is inferred as the union of all individual fuzzy outputs, that
is B0 = ⋃K

k=1 Bk0, being K the number of fuzzy rules in the rule base.

3.3.3 Defuzzification

Frequently, the output of a fuzzy rule-based system is required to be a crisp value,
an essential requirement in many engineering problems, for example fuzzy control
applications. In these cases, a defuzzification stage is needed to obtain a crisp output
from the fuzzy output resulting from the inference of rules.

This stage is performed by the defuzzifier which maps the output fuzzy set to
a single crisp point in the output space. There are many different defuzzification
techniques, most of which are described in [4, 14, 15, 29]. The most successful
method is the center of gravity or center of area where the crisp value for a generic
output variable y is found as

y0 =
∫

y μB0(y)ydy
∫

y μB0(y)dy

Typically, to reduce computational costs, a discrete representation of the above
formula is used

3.3 Fuzzy Rule-Based Systems 45

y0 =
∑Nq

q=1 μB0(yq)yq
∑Nq

q=1 μB0(yq)

where Nq is the number of quantization steps by which the universe of discourse Y
is discretized. There are also a number of computationally simplified defuzzification
methods that combine rule aggregation and defuzzification into a single phase. One
of them is the weighted average method, which computes the defuzzified output as

y0 =
∑K

k=1 μk(x0)bk
∑K

k=1 μk(x0)
(3.3)

where K is the number of rules, μk(x0) is the degree of activation of the k-th rule,
and bk is a numerical value associated with the consequent Bk of the k-th rule.

3.4 Fuzzy Models

Depending on the particular form of the consequent proposition in fuzzy rules, two
categories of fuzzy models can be distinguished, which recall the contrast between
two different goals of modeling: readability and performance [1, 2].

Mamdani Fuzzy Models.
The first vision of fuzzy models, and by far the most innovating one, assumes to
represent an input/output mapping by means of a collections of IF-THEN rules
whose antecedents and consequences use fuzzy values. This is the basic form of
fuzzy rule given in (3.2). The use of fuzzy sets in consequent part makes these
models very intuitive and understandable. This class of fuzzy models uses fuzzy
reasoning [24] and forms the basis for qualitative modeling, which describes an
input–output mapping by using a natural language [27]. The Mamdani model [18]
falls into this category. When adopting this perspective, which pursuits the ultimate
goal of fuzzy logic, i.e., ‘computing with words,’ the emphasis is put essentially on
the readability of the model, rather than on computational cost and accuracy of the
model (i.e., fine quality of approximation, classification or control). However, fuzzy
models of this class tend to become complex, requiring too many parameters, hence
they can become heavy to run, maintain, and tune.

Takagi–Sugeno Fuzzy Models
The second category of fuzzy models is based on the Takagi–Sugeno–Kang (TSK)
method [28]. These models use fuzzy rules with fuzzy antecedents and functional
consequent parts, thereby qualifying them as mixed fuzzy or non-fuzzy models.
Such models can represent a general class of static or dynamic nonlinear mappings
via a combination of several linear models. The whole input space is decomposed
into several partial fuzzy spaces and each output space is represented with a linear

46 3 Basics of Fuzzy Logic

equation. The resulting models are referred to as TS models and are represented by
a series of fuzzy rules of the form

Rk : IF (x is Ak) THEN (y = hk(x)) (3.4)

where hk(x) is a polynomial function of the inputs and represents a local model
used to approximate the response of the system in the region of the input space
represented by the antecedent Ak . This type of knowledge representation does not
allow the output variable to be described in linguistic terms, which is one of the
drawbacks of this approach. Hence, this class of fuzzy models should be used when
only accuracy (not interpretability) is the ultimate goal of predictive modeling.

Singleton Fuzzy Models
Each of these fuzzy models has inherent drawbacks. For Mamdani fuzzy models, the
defuzzification process may be time consuming, and systematic fine-tuning of the
parameters is not easy. For TS fuzzy models it is hard to assign appropriate linguistic
terms to the rule consequence part, which does not use fuzzy values. Readability and
performance thus appear as antagonist objectives in fuzzy rule-based systems. Some
form of compromise can be found by using simplified fuzzy rules of the form

Rk : IF (x is Ak) THEN (y is bk) (3.5)

where bk is a fuzzy singleton, i.e., a fuzzy set reduced to a single element. Fuzzy
models relying on such rules are referred to as singleton fuzzy models. This class of
fuzzy models can employ all the other types of fuzzy reasoning mechanisms because
they represent a special case of each of the above-described fuzzy models. More
specifically, the consequent part of this simplified fuzzy rule can be seen either as
a singleton fuzzy set in the Mamdani model, or as a constant output function in TS
models. Thus the two fuzzy models are unified under this simplified fuzzy model.

3.4.1 Design of Fuzzy Rule-Based Systems

The main advantage of using a fuzzy rule-based system is the possibility to express
the human knowledge in form of linguistically interpretable IF-THEN rules. Despite
no standard technique is available to transform the human knowledge into a set
of fuzzy rules and membership functions, there are some fundamental steps that
are usually performed. The first step is to identify and label the input and output
variables. Then their value ranges should be specified and a fuzzy partition of each
input and output should be defined. The final step is the construction of the rule base
and the specification of the membership functions characterizing the fuzzy sets. In
Sect. 5.5, we give an example of how to define a fuzzy rule-based system using Java.

In the last years, many tools have been developed to enable easy design of a
fuzzy rule-based system by reducing specific expertise. Some tools are currently

http://dx.doi.org/10.1007/978-3-319-44130-6_5

3.4 Fuzzy Models 47

available as open source software, mainly based on Java. Some of existing packages
and libraries, such as DotFuzzy [3], FRBS [25], Funzy [9], JFuzzinator [23], lib-
FuzzyEngine [16], nxtfuzzylogic [22] enable the design of a fuzzy system for specific
purposes. Such specific tools, even if they are simple and easy to use, usually have
limited functionality. For example, they include only one membership function (typ-
ically trapezoid) and/or one defuzzification method. Among general purpose tools,
both JFuzzyLogic [8] (developed in Java) and FisPRO [10, 11] (developed in C++
and Java) provide an interactive environment for designing and optimizing fuzzy
inference systems.

In general, tools with graphical interface (such asFisPRO) are designed to include
the following main components:

1. User work section: it allows the user to access the primary functions of the tool
to introduce configuration information as language and working directory.

2. Fuzzy set editor: it allows the user to define and set the parameters of the fuzzy
sets. This includes input and output definition and fuzzy partitioning specification.
First, the user can define input and output variables and for each variable the
domain name and the range of possible values. Then, for each domain, it is
possible to define a number of fuzzy sets by associating a membership function.
Different membership functions can be defined, namely triangular, Gaussian,
trapezoidal, sigmoid, and singleton. This component allows the user to delete
any of the created fuzzy sets. Moreover the user can also select a defuzzification
method.

3. Fuzzy rule editor: it enables a fuzzy rule definition by selecting the input fuzzy
sets to be included in the antecedent of each rule, together with the fuzzy sets to
be included in the consequent of each rule. Also, the user can choose the fuzzy
operator to be used for implementing the AND connective in the antecedent of
rules (e.g., the MIN or the product operator). Also, other fuzzy operators (OR,
NOT) adopted in the compositional rule of inference can be defined. Using this
component the user can easily define all the necessary rules, so as to create the
knowledge base of the fuzzy system.

4. Rule Inference Engine: given a fuzzified input, this component applies the com-
positional rule of inference to derive a fuzzy output. This component is the core
of the fuzzy rule-based system, and usually it is not visible to the user. It performs
also the defuzzification step, by applying the defuzzification operator selected by
the user among different available defuzzification methods.

5. Fuzzy rule testing: this component allows the user to test any single rule created
in the rule base on a sample input vector.

All these steps are often difficult to be performed manually, especially when
defining a fuzzy rule-based system for a task of image processing. Indeed, the main
advantage of fuzzy systems is that they can provide simple intuitive for interpre-
tation and prediction in the form of fuzzy rules. However, due to vagueness and
subjectivity of natural language statements, fuzzy rules based on qualitative knowl-
edge alone can adequately model only very simple processes. Besides, for complex
ill-defined processes it usually takes a lot of time to define and tune the parameters

48 3 Basics of Fuzzy Logic

which quantitatively define linguistic labels. Finally, expert knowledge in the form
of linguistic statements is unavailable or limited in real-world contexts. This restricts
the application of fuzzy systems to fields where expert knowledge is available and
the complexity of the process to be modeled is limited.

To overcome these inherent limitations of fuzzy systems due to the lack of enough
expert knowledge, fuzzy rules should be learned from examples. Learning in fuzzy
systems is most often implemented by learning techniques derived from neural net-
works [12], leading to the development of neuro-fuzzy modeling techniques, as
explained in the following.

3.4.2 Neuro-Fuzzy Models

Neuro-fuzzy modeling substantially reduces development time and cost of creating
a fuzzy rule base while improving the accuracy of the resulting fuzzy model. Being
able to utilize a neural learning algorithm implies that a fuzzy system with linguistic
information in its rule base can be created or adapted using numerical information.
This gains an even greater advantage over a neural network that cannot make use of
linguistic information and behaves as a black box model. Hence, the behavior of a
neuro-fuzzy system can either be represented by a set of humanly understandable
fuzzy rules or by a combination of localized basis functions associatedwith activation
functions of the artificial neurons.

Integration of fuzzy logic and neural networks has led to the development of
several neuro-fuzzy models with consolidated presence in scientific literature [2, 4,
14, 17, 21].

Here we introduce a general scheme of neuro-fuzzy network, deeply analyzed in
[5]. Let us consider a MIMO (Multi-Input Multi-Output) fuzzy model with n inputs
and m outputs. The rule base is composed of a set of fuzzy rules formally defined as

Rk : IF (x1is A1k)AND · · ·AND(xnisAnk)︸ ︷︷ ︸
antecedent

THEN (y1isB1k)AND · · ·AND(ym isBmk)︸ ︷︷ ︸
consequent

where Aik , i = 1, . . . n and Bjk , j = 1, . . . ,m are fuzzy sets defined on the input
and output variables, respectively. Once we put the components of the fuzzy system
in a parametric form, the fuzzy inference system becomes a parametric model which
can be tuned by a learning procedure. This idea is the basis of neuro-fuzzy mod-
eling. When algebraic operators are used to implement the fuzzy logical functions,
crisp inputs are fuzzified using singleton fuzzification and center of gravity defuzzi-
fication is employed, the input–output mapping of a Mamdani fuzzy system can be
represented by a linear combination of the (normalized) input fuzzy membership
functions

y =
K∑

k=1

{
μAk (x)

∑K
h=1 μAh (x)

}

bk (3.6)

3.4 Fuzzy Models 49

where K is the number of rules and bk are the centers of fuzzy sets Bk . Also the output
of a Takagi–Sugeno fuzzy system, under some mild conditions, can be regarded as
a linear combination of the normalized multivariate input membership functions. In
fact, if the TS fuzzy system uses the weighted mean criterion (3.3) to combine the
local representations, the output for a generic input x is computed as the normalized
sum

y =
∑K

k=1 μk(x)hk(x)
∑K

k=1 μk(x)
(3.7)

The basic assumption of the neuro-fuzzy integration relies on the fact that, at the
computational level, a fuzzy inference system can be seen as a layered architecture,
similar to a multilayer feedforward neural network.

To show the correspondence between a fuzzy system and a neural network, here
we consider a singleton fuzzy system based on rules of the form (3.5), extended to
m outputs

IF (x1 is A1k) AND · · · (xn is Ank) THEN (y1 is b1k) AND · · · (ym is bmk)

for k = 1 . . . K , where K is the number of fuzzy rules, Aik(i = 1 . . . n) are fuzzy
sets defined over the input variables xi , and b jk(j = 1 . . .m) are fuzzy singletons
defined over the output variables y j . Membership functions of fuzzy sets Aik should
be chosen to be everywhere differentiable, a useful property for gradient descent
learning techniques. For example the Gaussian functions can be employed

μik(xi) = exp

(

− (xi − cik)2

2σ 2
ik

)

(3.8)

where cik and σik are the center and the width of the Gaussian function, respectively.
The output values of the singleton fuzzy systems are obtained by rule inference as

y =
∑K

k=1 μk(x)bk
∑K

k=1 μk(x)
(3.9)

This fuzzy system can be visualized as being composed of: rules, fuzzy sets used
in these rules, and fuzzy inference operations (intersection, aggregation, defuzzi-
fication, etc.). Since the specifications of the fuzzy system are fixed in terms of
fuzzy inference operations, the only part that can be defined through learning are the
premise and consequent parameters associated with rules. The problem can be stated
in a preciseway as that of finding a proper configuration ofmembership functions and
generating a set of K fuzzy rules from a data set DN of N input–output pairs such
that the fuzzy system closely approximates the unknown function underlying the
data. To do this, the fuzzy system is implemented using a four-layer neural network
with four layers having following characteristics.

50 3 Basics of Fuzzy Logic

1. Layer 1 provides the crisp input values (x1, . . . , xn) to the network. Nodes in this
layer do not perform any calculation and simply take the input values and pass
them to the second layer.

2. Layer 2 realizes a fuzzification of the input variables. Units in this layer are
organized into K distinctive groups, being K the number of rules. Each group is
associatedwith one of the fuzzy rules, and it is composed of n units, corresponding
to the fuzzy sets in the fuzzy rule. The i-th unit in the k-th group, connected with
the i-th node in layer 1, evaluates the Gaussian membership degree of the input
xi to the fuzzy set Aik according to (3.8).

3. Layer 3 is composed of K units. The k-th unit performs the preconditionmatching
of rule Rk and computes its fulfillment degree by means of the product operator

μAk (x) =
n∏

i=1

μAik (xi)

4. Layer 4 supplies the final output vector y and is composed of m units. The j-th
unit in this layer computes the output value y j , according to (3.9). In particular,
the fulfillment degrees of the rules are weighted by the fuzzy singletons bk , which
are encoded as the values of the connections weights between layers 3 and 4.

Figure3.4 depicts the structure of the above-described neuro-fuzzy network.
Once a fuzzy rule-based system is modeled as a neural network, learning algo-

rithms can be used to learn the parameters cik , σik and bk of the fuzzy rules. Many
neuro-fuzzy systems use direct nonlinear optimization to identify all the parameters
of a fuzzy system. The most widely used is an extension of the well-known back-
propagation algorithm [26] implemented by gradient descent. A very large number
of neuro-fuzzy systems are based on backpropagation-like algorithms, starting from
the most famous ANFIS network [13].

The advantage of neuro-fuzzy modeling is twofold. On one side, model identifi-
cation can be performed using both empirical data and qualitative knowledge. On the
other side the resulting models are transparent, significantly aiding model validation
and knowledge discovery.

Fig. 3.4 General scheme of
a neuro-fuzzy network

References 51

References

1. Babuska, R.: Fuzzy modeling and Identication. Ph.D. thesis, Technische Universiteit Delft
(1996)

2. Bersini, H., Bontempi, G.: Now comes the time to defuzzify neurofuzzy models. Fuzzy Sets
Syst. 90, 161–169 (1997)

3. Bertoli, M.: DotFuzzy. https://github.com/MicheleBertoli/DotFuzzy
4. Brown, M., Harris, C.J.: Neurofuzzy Adaptive Modelling and Control. Prentice Hall, Hemel

Hempstead (1994)
5. Castellano, G.: A neurofuzzy methodology for predictive modeling. Ph.D. thesis, University

of Bari (2000)
6. Castro, J.: Fuzzy Logic Controllers are Universal Approximators. IEEE Trans. Syst., Man

Cybern. 25(4), 629–635 (1995)
7. Castro, J., Delgado, M.: Fuzzy systems with defuzzication are universal approximators. IEEE

Trans. Syst., Man Cybern. 26, 149–152 (1996)
8. Cingolani, P., Alcal-Fdez, J.: jFuzzyLogic: a java library to design fuzzy logic controllers

according to the standard for fuzzy control programming. Int. J. Comput. Intell. Syst. 6, 6175
(2013)

9. Funzy.: Having fun with fuzzy logic. https://code.google.com/p/funzy/
10. Guillaume, S., Charnomordic, B.: Fuzzy inference systems: an integrated modeling environ-

ment for collaboration between expert knowledge and data using FisPro. Expert Syst. Appl.
39(10), 8744–8755 (2012)

11. Guillaume, S., Charnomordic, B., Labl, J-L.: FisPro (Fuzzy inference system professional).
https://www7.inra.fr/mia/M/fispro/

12. Haykin, S.: Neural Networks: A Comprehensive Foundation. MacMillun College Publishing
Company, New York (1994)

13. Jang, J-S.R.: ANFIS: Adaptive-network-based fuzzy inference system. IEEE Trans. Syst., Man
Cybern. 23(3), 665–685 (1995)

14. Jang, J.-S.R., Sun, C.-T.: Neuro-fuzzy modelling and control. Proc. IEEE 83, 378–406 (1995)
15. Lee, C.C.: Fuzzy logic in control systems: Fuzzy logic controller - part I and II. IEEE Trans.

Syst., Man Cybern. 20(2), 404–435 (1990)
16. LibFuzzyEngine++. http://sourceforge.net/projects/libfuzzyengine/
17. Lin, C., Lee, C.: Neural Fuzzy Systems: A Neural Fuzzy Synergism to Intelligent Systems.

Prentice-Hall, Englewood Cliffs (1996)
18. Mamdani, E.H.: Advances in the linguistic synthesis of fuzzy controllers. Int. J. Man-Mach.

Stud. 8, 669–678 (1976)
19. Mamdani, E.H., Assillan, S.: An experiment in linguistic synthesis with a fuzzy logic controller.

Int. J. Man-Mach. Stud. 7(1), 1–13 (1975)
20. Mouzouris, G.C., Mendel, M.J.: Dynamic non-singleton fuzzy logic systems for nonlinear

modeling. IEEE Trans. Fuzzy Syst. 5(2), 199–208 (1997)
21. Nauck, D.: Neuro-fuzzy systems: review and prospects. In: Proceedings of the Fifth European

Congress on Intelligent Techniques and Soft Computing (EUFIT97), pp. 10441053 (1997)
22. NXTfuzzylogic. www.openhub.net/p/nxtfuzzylogic
23. Omran, H.: JFuzzinator. http://sourceforge.net/projects/jfuzzinator/
24. Pedrycz, W.: Fuzzy Control and Fuzzy Systems. Wiley, New York (1989)
25. Riza, L.S., Bergmeir, C., Herrera, F., Benitez, J.M.: FRBS - Fuzzy rule-based systems. http://

dicits.ugr.es/software/FRBS/
26. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating

errors. Nature 323, 533–536 (1986)
27. Sugeno, M., Yasukawa, T.: A fuzzy-logic-based approach to qualitative modeling. IEEE Trans.

Fuzzy Syst. 1, 7–31 (1993)
28. Takagi, T., Sugeno, M.: Fuzzy identification of systems and its application to modeling and

control. IEEE Trans. Syst., Man Cybern. 15, 116–132 (1985)

https://github.com/MicheleBertoli/DotFuzzy
https://code.google.com/p/funzy/
https://www7.inra.fr/mia/M/fispro/
http://sourceforge.net/projects/libfuzzyengine/
www.openhub.net/p/nxtfuzzylogic
http://sourceforge.net/projects/jfuzzinator/
http://dicits.ugr.es/software/FRBS/
http://dicits.ugr.es/software/FRBS/

52 3 Basics of Fuzzy Logic

29. Wang, L.: Adaptive Fuzzy Systems and Control. Prentice Hall, Englewood Clis (1994)
30. Wang, L., Mendel, J.M.: Fuzzy basis functions, universal approximation, and orthogonal least

squares. IEEE Trans. Neural Netw. 3(5), 807–814 (1992)
31. Zadeh, L.A.: Outline of a new approach to the analysis of complex systems and decision

processes. IEEE Trans. Syst. Man Cybern. SMC-3 28–44 (1973)
32. Zimmermann, H.J.: Fuzzy Set Theory and its Applications. Kluwer, Norwell (1992)

Chapter 4
Fuzzy Image Processing

Imagination is more important than knowledge
Albert Einstein

Abstract The use of fuzzy logic for image processing has led to the development
of a wide range of techniques casting in the area of Fuzzy image processing. Fuzzy
image processing consists of all those approaches that understand, represent, and
process an image, its segments and/or its features as fuzzy sets. This chapter covers
some basic concepts of fuzzy image processing, namely image fuzzification, image
defuzzification and fuzziness measures. The chapter shows also that an image can
be considered as an array of fuzzy sets having a membership function that denotes
the degree of some image properties satisfied by the image pixels.

4.1 Introduction

Difficulties in the field of image processing are often connected with the typical
uncertainty embedded in the data, with many forms of ambiguity and vagueness
[8]. Typically vagueness is due to grayness ambiguity in low level processing and it
could appear in an image in the form of imprecise boundaries or poor color contrast.
Other forms of vagueness appear in an image such as geometrical fuzziness in case
of medium level processing tasks (e.g., segmentation) and imprecise and ill-defined
knowledge in case of high level processing tasks (e.g., scene analysis and image
understanding). Some examples of problems that could be naturally addressed by
fuzzy methods are as follows:

• The question whether a pixel is more or less bright in a problem of contrast
enhancement.

© The Author(s) 2017
L. Caponetti and G. Castellano, Fuzzy Logic for Image Processing,
SpringerBriefs in Electrical and Computer Engineering,
DOI 10.1007/978-3-319-44130-6_4

53

54 4 Fuzzy Image Processing

• The question whether a pixel is on the edge among two regions in a problem of
image segmentation.

• The question of what is a face in a problem of scene analysis and image under-
standing.

The imprecision in an image can be handled by modeling the image as a fuzzy set.
Then vague concepts like “dark”, “high contrast”, or “sharp boundaries” can be per-
ceived qualitatively by the human reasoning and expressed in a formal way bymeans
of fuzzy logic. Also many difficulties in some tasks of image processing depend on
the fact that data/results are uncertain. This uncertainty does not only depend on the
data randomness, but also on their ambiguity and vagueness. Indeed randomness
could be a matter of the probability theory, while ambiguity and vagueness are a
matter of the fuzzy set theory.

A fuzzy image processing task [4] consists of three fundamental steps

1. image fuzzification Φ

2. modification of membership values Γ

3. image defuzzification Ψ

The result Y for an input X is given by

Y = Ψ (Γ (Φ(X)))

The fuzzification and the defuzzification steps are motivated from the fact that
we do not have any fuzzy image, namely any hardware device able to produce
fuzzy images. Therefore the coding of image data and decoding of the results are
necessary steps to use fuzzy techniques in image processing. The strength of fuzzy
image processing is in the modification of membership values, depending on the
particular application. As explained in Chap.3 membership functions represent the
basic concept of the fuzzy set theory. Membership values represent the degree of
specific properties satisfied by objects. The fuzzy membership functions represent
similarities among objects belonging to a set, according to properties defined in an
imprecise manner. The membership values also indicate how much fuzzy a set is.
The computation of membership values is fundamental in fuzzy image processing.
Traditionally image data are processed in the gray-level plane, specifying the values
of the gray brightness of each pixel. Instead the aimof the fuzzy image processing is to
map the gray-level plane onto themembership plane bymeans of image fuzzification.
In this way, it is possible to operate at an approximate level closer to human reasoning
and perception. Different examples will be provided in the application part of this
volume.

Themost important theoretical contributions in the field of fuzzy image processing
are

• Fuzzy inference systems, involving the three steps of image fuzzification, infer-
ence, image defuzzification.

• Measures of fuzziness, useful to evaluate how fuzzy an image is. These are useful
in many applications such as thresholding.

http://dx.doi.org/10.1007/978-3-319-44130-6_3

4.1 Introduction 55

• Fuzzy rule-based systems, often used in image contrast enhancement.
• Fuzzy clustering, widely used in image segmentation.
• Fuzzy mathematical morphology.

The rest of this chapter deals with more general contributions, namely fuzzy
inference systems and measures of fuzziness. The other contributions such as fuzzy
rule-based systems, fuzzy clustering, and fuzzy mathematical morphology will be
addressed in the second part of this book.

4.2 Image Fuzzification

Typically we model an image by a set of fuzzy singletons with no modification of
the pixel values. To illustrate how to introduce a fuzzy set related to an image, we
present a simple example: we want to define the set Dark of gray levels that share
the property to be dark. In a standard manner (also called crisp), we can define a
threshold t—for example t = 100 and then we can use the following definition:

• Levels 0 ≤ g ≤ 100 are elements of the set Dark
• All the other levels do not belong to the set Dark

An alternative approach consists ofmodeling the darkness property by introducing
a fuzzy set defined by a suitable membership function. To this aim, we define two
parameters for example 50 and 100 as in Fig. 4.1 and use the following definition:

• Levels g ≤ 50 are fully elements of the set Dark
• Levels g ≥ 150 do not belong to the set Dark
• Levels 50 < g < 150 have a partial degree of belonging to the set

Another example is shown in Fig. 4.2 where three fuzzy sets—Low, Medium and
High—are associated to the input image describing the property brightness useful in
some contrast enhancement problems (see Chap.6).

Let us consider an image G of M × N pixels and L gray levels. To interpret G
in a fuzzy way, we assume that G is associated to an array F of fuzzy singleton
having membership values μ(G(m, n)). Namely μmn = μ(G(m, n)) denotes the
membership value of each pixel (m, n) with respect to a predefined property (e.g.,

Fig. 4.1 A possible
definition of the fuzzy set
“Dark gray levels” (taken
from [2])

http://dx.doi.org/10.1007/978-3-319-44130-6_6

56 4 Fuzzy Image Processing

Fig. 4.2 Fuzzy set—Low Medium High Brightness

brightness, edginess or texture), i.e. the degree to which the pixel (m, n) satisfies a
property. Hence the image G can be defined as

G =
⋃

m

⋃

n

μmn

with μmn ∈ [0, 1]. The property associated to μ depends on the problem at hand and
can be defined by means of global, local, or punctual information.

In other cases, such as imagemorphology, the gray levels of an image are properly
scaled to range in the real interval [0.0, 1.0]. In this case,we transform the pixel values
in order to obtain a real-valued image also called fuzzy image. In this way, we can
regard the gray level of a pixel as a membership degree in the set of high-valued
pixels representing a specific property; thus a gray-level image can be modeled as a
fuzzy set.

4.2.1 Fuzzy Image

The difference between fuzzy image processing and other image processing
approaches is that the input data—histograms, gray levels, features, etc.,—are being
processed in the so-called membership plane. In this plane, methods of fuzzy logic
can be used to modify the membership values in order to classify data or to come to
a decision by means of the fuzzy inference process.

In order to transform the original image in a so-called fuzzy image a suitable
membership function, also called fuzzifier, is used. Since the application of a mem-
bership function modifies the values of the pixels, it introduces some preprocessing
on the image such as contrast modification. Different membership functions can be
used such as the N-function, the sigmoid S-function and the bell-shaped function.
If no contrast modification is required, it could be convenient to use the very simple

4.2 Image Fuzzification 57

N-function that performs just a normalization, that is a scaling of the image intensity
values in the interval [0, 1]. The N-function is a linear transformation with clipping.
Starting from Eq. (2.3) it can be defined as a transformation from the range [a, b] to
the range [0, 1] as follows:

N(x) =
⎧
⎨

⎩

(x−a)
(b−a) = (x−b+w)

w = 1 − (b−x)
w if (b − w) ≤ x ≤ b

1 if x > b ;
0 if x < (b − w)

(4.1)

where b is the maximum intensity value in the image and w = b − a defines the
bandwidth of the value range.

Other fuzzifiers often used in image processing are the single-sigmoid S-function
and the double-sigmoid symmetric S-function. Generally, the single-sigmoid S-
function is used to select intensity bands while the S-function allows to enhance
high-intensity bands; both of them correspond to contrast intensifiers. The S-function
is defined as follows:

S(x) = 1/(1 + exp−γ (x−c) (4.2)

where the value of parameter c indicates the abscissa of the inflection point of the
function and the parameter γ controls the contrast (values greater than 5 results in
an enhancement of the contrast). Figure4.3 shows a plot of the S-function, obtained
using the plugin listed in Listing 2.3. By applying the S-function with c = 0.5 and
different values of γ , we obtain different contrast enhancement results.

In Fig. 4.4 we show some examples of contrast modification using different mem-
bership functions. Figure4.4a shows the original image and its histogram. Figure4.4b
shows the contrasted image obtained by using the N-function and its histogram.
Figure4.4c shows the contrasted image obtained by applying the S-function depicted
in Fig. 4.3 to each RGB channel. Figure4.4d shows the contrasted image obtained
by applying the S-function only to the brightness component in the HSB space.

Fig. 4.3 A plot of the
S-function

http://dx.doi.org/10.1007/978-3-319-44130-6_2

58 4 Fuzzy Image Processing

Fig. 4.4 Some examples of contrast modification using different membership functions

4.3 Image Defuzzification 59

4.3 Image Defuzzification

Fuzziness is an intrinsic feature of images and a natural outcome of many image
processing tasks. However, in many cases a crisp representation is needed. Typically
a crisp representation is required to facilitate easier visualization and interpretation.
Even though it contains less information, a crisp representation is usually easier
to interpret and understand, especially if the spatial dimensionality of the image is
higher than two. Moreover, many tools available for the analysis of binary images
are still not developed for fuzzy images, which may force a further step in the fuzzy
image processing so that it outputs a crisp representation of the image. The process
of replacing a fuzzy representation by a crisp representation is referred to as defuzzi-
fication.

Defuzzification is a process that maps a fuzzy set to a crisp set. Namely, the goal of
defuzzification is generating a good crisp representative of a fuzzy set or recovering
a crisp original set. From an application point of view the following features are
important for defuzzification:

• Continuity of the defuzzification result: this means that small changes in member-
ship values of the output fuzzy set should not give large changes in the resulting
crisp set.

• Computational efficiency: it depends mostly on the kind and the number of oper-
ations required for obtaining the result of defuzzification.

• Compatibility to the other operations used in a fuzzy system, like inference and
composition may be important.

Most of the literature mentioning defuzzification considers defuzzification of a
fuzzy set to a single (crisp) point (see Sect. 3.3.3).Main approaches [4, 6] for defuzzi-
fication to a point are

• Maxima methods give as a result an element from a fuzzy set core.1 The main
advantage of selecting an element from the core of a fuzzy set is the simplicity.
The basic representative of that group is the First-of-Maxima (FOM) technique.

• Distribution methods consider the membership function of the output fuzzy set as
a distribution, whose average value is evaluated. The output of these methods has
continuous and smooth changes in correspondence of changes in the input values.
The basic technique of this group is the Center-of Gravity (COG) technique. It
converts the membership function into a probability distribution and computes the
expected value. Main advantage is the continuity property.

• Areamethods use area under themembership function to determine the defuzzified
output value. The defuzzified value is the (center of area) that divides the area under
the membership function in two (more or less) equal parts. The Center-of-Area
(COA) method is the main technique in this group.

1A fuzzy set core (designated as core) consists of elements of a universe of discourse that belong
to the set with the highest degree of membership.

http://dx.doi.org/10.1007/978-3-319-44130-6_3

60 4 Fuzzy Image Processing

Defuzzification of a fuzzy set to a crisp set, when applied to image processing,
has not been well explored so far. The most commonly used defuzzification method
in image processing consists in thresholding the membership function by selecting a
specificα-cut. Of course the result of defuzzification by thresholding is very sensitive
to the specific choice of the threshold α. Moreover, defuzzification by thresholding
does not take into account spatial properties of the fuzzy set neither it preserves the
geometry, shape, and topology of the original object. Since spatial properties are
of high importance in image processing applications, generally it is necessary to
consider information about global geometrical properties of the object to be defuzzi-
fied, in addition to the membership values of the set. Moreover spatial fuzzy sets
may be useful as information preserving representations of objects in images, and
defuzzification of a spatial fuzzy set can be seen as a crisp segmentation procedure.

In [7] a method of image defuzzification of fuzzy spatial sets based on feature
distance minimization has been proposed as an alternative to crisp segmentation.
This defuzzification method defines an optimal defuzzification as the one that best
preserves (selected) features of the original fuzzy digital object. The correspon-
dence between a fuzzy and a crisp set is established through a distance between
their representations based on selected features, where the different resolutions of
the images are taken into account. The distance measure is based on the Minkowski
distance between feature representations of the sets. The distance minimization pro-
vides preservation of the selected quantitative features of the fuzzy set. This method
utilizes the information contained in the fuzzy representation for defining a mapping
from the collection of fuzzy sets to the collection of crisp sets. If the fuzzy set is a
representation of an unknown crisp original set, such that the selected features of the
original set are preserved in the fuzzy representation, then the defuzzified set may
be seen as an approximate reconstruction of the crisp original set.

4.4 Fuzziness Measures

If we consider an image as a fuzzy set it is useful to introduce some measures to
indicate how fuzzy the image is. Such measures are called fuzziness index. Several
types of fuzziness index have been proposed. The most common ones are listed
below.

Linear index. The fuzziness is evaluated as a difference between membership
values and their complement, using the following equation [3]:

γl = 2

MN

∑

m

∑

n

min(μmn, 1 − μmn) (4.3)

or

γl = 2

MN

L−1∑

g=0

h(g)min(μg, 1 − μg) (4.4)

4.4 Fuzziness Measures 61

where h(g) is the image histogram and μg = μmn = μ(G(m, n)) for g =
G(m, n). According to this linear index of fuzziness, an image is more or less
fuzzy according to increasing or decreasing values of γl.

Quadratic index. It is defined as

γq = 2√
MN

{ ∑

m

∑

n

[min(μmn, 1 − μmn)]2
} 1

2
(4.5)

or

γq = 2√
MN

{ L−1∑

g=0

h(g)[min(μg, 1 − μg)]2
} 1

2
(4.6)

The fuzziness value is zero if all membership values are 0.0 or 1.0 (ordinary
set—binary image). The fuzziness value is maximum when all membership
values are equal to 0.5.

Logarithmic Fuzzy entropy. In [1], a logarithmic function based on the defini-
tion of the entropy of Shannon was introduced. The Shannon function S(μmn)

increases monotonically in the interval [0.0, 0.5] and decreases in [0.5, 1.0].
When μmn = 0.5 for each (m, n), the entropy achieves the maximum value
of fuzziness

E(X) = 1

MN ln 2

∑

m

∑

n

S(μmn)

where
S(μmn) = −μmn ln(μmn) − (1 − μmn) ln(1 − μmn)

for m = 0, 1, ...,M − 1 and n = 0, 1, ...,N − 1. The measure E(X) satisfies
the following properties:

1. 0.0 ≤ E(X) ≤ 1.0
2. E(X) = 0.0 if μmn = 0.0 or μmn = 1.0 for each (m, n)
3. E(X) = 1.0 if μmn = 0.5 for each (m, n)
4. E(X) ≤ E(X ′) if X is more crisp than X ′
5. E(X) = E(X̄) where X̄ is the complement of X.

Fuzzy entropy of r-order introduced in [5] and defined as follows:

Hr(X)(−1/k)
k∑

i=1

[
μ(sri) log(μ(sri)) + (1 − μ(sri)) log(1 − μ(sri))

]
(4.7)

where sri denotes the i-th sequence (combination) of r pixels in X, k is the
number of sequences and μ(sri) is the degree with which the combination sri
as a whole satisfies a specific property μ.

62 4 Fuzzy Image Processing

Hybrid entropy introduced in [5] and defined as

Hhy(X) = −Pw logEw − Pb logEb

where μmn denotes the whiteness degree of pixel (m, n), Pw and Pb are the
occurrence probability of white pixels μmn = 1.0 and black pixels μmn =
0.0, respectively, The quantities Ew and Eb denote the average likeliness of
interpreting a pixel as white or black respectively, namely

Ew = 1

MN

∑

m

∑

n

[μmn exp(1 − μmn)]

Eb = 1

MN

∑

m

∑

n

[(1 − μmn) exp(μmn)]

Yager’s measure. In [9] Yager argued that the measure of fuzziness should
be dependent on the relationship between the fuzzy set X and its complement
x̄. Thus, he suggested that the measure of fuzziness should be defined as the
measure of lack of distinction between X and its complement X̄, defined as

Dp(X, X̄) =
[∑

m

∑

n

|μmn − (1 − μmn)|p
]1/p

for p = 1, 2, 3, ...

For p = 1, D1 is called the Hamming metric, and for p = 2, D2 is called the
Euclidean metric. Thus the Yager’s measure of fuzziness is defined as

ηp(X) = 1 − Dp(X, X̄)

|X|1/p = 1 − Dp(X, X̄)

(MN)1/p
(4.8)

Note that the measure ηp(X) also satisfies the five properties stated in the
previous entropy measure E(X).

The minimization or maximization of a fuzziness measure can be used in image
enhancement and segmentation. In particular, fuzziness measures can be used for
image thresholding, as we show in Chap.9. Given an image X, the thresholding is
made by selecting a proper threshold so as to minimize the fuzziness of X.

References

1. De Luca, A., Termini, S.: A definition of a nonprobabilistic entropy in the setting of fuzzy sets
theory. Inf. Control 20(4), 301–312 (1972)

2. Gonzalez, R.C., Woods, R.E.: Digital Image Processing. Prentice Hall, Upper Saddle River
(2008)

http://dx.doi.org/10.1007/978-3-319-44130-6_9

References 63

3. Kaufmann,A.: Introduction to theTheory of FuzzySubsets - Fundamental Theoretical Elements.
Academic, New York (1975)

4. Kerre, E.E., Nachtegael, M. (eds.): Fuzzy Techniques in Image Processing, vol. 52. Physica,
New York (2013)

5. Pal, N.R., Pal, S.K.: Higher order fuzzy entropy and hybrid entropy of a set. Inf. Sci. 61(3),
211–231 (1992)

6. Runkler, T.A.: Selection of appropriate defuzzification methods using application specific prop-
erties. IEEE Trans. Fuzzy Syst. 5(1), 72–79 (1997)

7. Sladoje, N., Lindblad, J., Nystrom, I.: Defuzzification of spatial fuzzy sets by feature distance
minimization. Image Vis. Comput. 29(2), 127–141 (2011)

8. Tizhoosh, H.R.: Fuzzy Image Processing. Springer, Heidelberg (1997)
9. Yager, R.R.: On the measure of fuzziness and negation. Part I: membership in the unit interval.

Int. J. General Syst. 5, 221–229 (1979)

Chapter 5
Java for Image Processing

Insanity: doing the same thing over and over again and
expecting different results.

Albert Einstein

Abstract This chapter covers some fundamental concepts of Object-Oriented
programming in Java. Fundamental classes of the Java packages java.awt and
java.applet for image processing are presented. Moreover, this chapter intro-
duces the concept of plugins in ImageJ and its on-board tools for plugin development.
It starts with the discussion of the code skeleton of a new plugin and the sample plu-
gins that are part of the ImageJ distribution, and covers those parts of the ImageJ
API, which are essential for writing plugins, with a special focus on the image rep-
resentation.

5.1 Basic Concepts

Java is a high-level programming language widely used in Object-Oriented (OO)
programming. It can support and handle digital image processing efficiently by pro-
viding various classes and methods. A Java program consists of a set of interdepen-
dent classes, where each class contains variables called fields and functions called
methods. Main references for Java OO programming are [1, 2].

The three fundamental and general principles of the OO programming paradigm
are the following:

• Abstraction is the process of taking away or removing characteristics from some-
thing in order to reduce it to a set of essential characteristics. Through the process
of abstraction, a programmer hides all but the relevant data about an object in
order to reduce complexity and increase efficiency. Abstraction is related to both

© The Author(s) 2017
L. Caponetti and G. Castellano, Fuzzy Logic for Image Processing,
SpringerBriefs in Electrical and Computer Engineering,
DOI 10.1007/978-3-319-44130-6_5

65

66 5 Java for Image Processing

encapsulation and information hiding. Creating abstract data types (classes) is a
fundamental concept inOOprogramming.Abstract data typeswork almost exactly
like built-in types: it is possible to create variables of a type (called objects) and
manipulate those variables by sending messages or requests.

• Inheritance enables new classes called subclasses to receive - or inherit - properties
and methods of existing classes. When a subclass is defined, we say that it extends
the superclass or it is derived from the superclass.

• Polymorphism provides separation of interface from implementation to decouple
what from how. Polymorphism allows improved code organization and readability
as well as the creation of extensible programs than can be grown not only during
the original creation of the program but also when new features are required.

Fundamentals concepts of the OO programming in Java are the following:

Class
The class is a fundamental unit in OO programming languages. A class describes
a set of objects that have identical characteristics (data elements) and behaviors
(functionality). In this way, an object is an instance of a class and a class can be
seen as a type. A class is defined by attributes or properties that in Java are called
fields and functionality called methods. Fields and methods of a class are referred
to as class members. The properties of a class are defined by the declaration of the
fields used by its instances or objects. Then a class declaration contains all the code
useful for the objects created from the class: declarations for the fields that provide
the state of the class and its objects, constructors for initializing new objects, and
methods to implement the behavior of the class and its objects. In a class we can
declare variables and objects. A variable is associated to a primitive type (boolean,
char, byte, short, int, long float, double, void). Indeed an object is associated to a
class.

Object
An object is a realization of a class description. The creation of a new object is also
called creation of a new class instance. An object can have internal data which give its
state and methods to produce its behavior. Each object can be uniquely distinguished
from every other object.

Method
A method describes a functionality of a class. It consists of a set of instructions
which is referred to by a name and can be invoked simply by using its interface,
made of the name and the list of its arguments. In this way, the implementation of
the method is hidden. The constructor is the method having the same name of the
class and it contains the code to initialize the objects of the class. The new operator
creates a new object, namely it allocates the memory for the object and invokes the
class constructor.

Interface
An interface is an abstract class that contains only declaration of methods without
implementation. No variables are allowed to be declared by the interface.

5.1 Basic Concepts 67

Encapsulation
It is the capability to wrap data and methods within a class hiding their implementa-
tion. This type of access control is often referred to as implementation hiding.

Inheritance
Inheritance allows to define new versions of a class, called subclasses or derived
classes which can inherit properties and fields of the original class or base class.
A subclass can also rewrite a method yet defined in its superclass by providing
a different version. Essentially a program consists of a class hierarchy in which
the derived classes or subclasses inherit members by the base class and can add
functionalities.

Polymorphism
It is the capability of a method to do different things based on the object that it is
acting upon. In other words, polymorphism allows you to define one interface and
have multiple implementations. In Java, it is possible to define two or more methods
having the same name in a class, provided that their argument lists are different, i.e.,
the arguments may differ in their type or number, or in both or they are sorted in
differentmanner. This concept is known asmethod overloading. Overloadedmethods
should always be part of the same class (or in one of its sub-classes), with the same
name but different parameters.

Dynamic Binding
The redefinition of a method uses the dynamic binding to associate at the run time
the method name to the version to execute.

Package
The code is organized in compilation units with .java extension. Each unit contains
a public class having the same name of the unit file. More class files can be grouped
in a package. The word package must be inserted in each unit. A rule of coding is
that the name of the class must be also the name of the source file (.java). The name
of the package must be also the name of the directory containing all the classes of
that package. Fundamental package are
lang - basic classes for the design of the Java programming language
util - utility classes
io - input/output
text - formatting of input/output
awt - graphics and user interfaces
awt.event - dealing with different types of events from keyboard, mouse, ...
swing - updates some awt functions
applet - creating programs to run on the net
net - network applications.
An applet is a small program that is intended not to be run on its own, but rather to

be embedded inside another application. In Listing 5.1, we provide a Java program
that paints a colored rectangle into a window. It shows the use of packages, objects,
classes, methods, and constructor.

68 5 Java for Image Processing

Listing 5.1 ColoredRectangle.java
import javax.swing .*; // provides a set of components to create

// graphical user interfaces (GUIs) for
// applications and applets

import java.awt.*; // contains all the classes for creating user
// interfaces and painting graphics and images

import java.io.*; // provides for system input/output

// ******* Declaration of the class ColoredRectangle ********
/* The body (the area between the braces) contains:
- declarations for the fields that provide the state of

the class and its objects
- methods to implement the behavior of the class and its objects
- constructors for initializing new objects. */
public class ColoredRectangle {
// declaration of variables

int width; int x;
int height; int y;

// declaration of objects
JFrame window; Color color , color2;

// Jframe is an extended version of java.awt.Frame:
// adds support for the JFC/Swing component architecture.

// ColoredRectangle (): constructor method
public ColoredRectangle () {
// set up the fields
window = new JFrame("ColoredRectangle");
window.setSize (400, 200);
width = 40; x = 80;
height = 20; y = 90;
color = Color.blue;
color2 = Color.red;
window.setVisible(true);

}
// paint (): show the rectangle in its window

public void paint() {
Graphics g = window.getGraphics ();
g.setColor(color);
g.fillRect(x, y, width , height);

}
// main method

public static void main(String [] args)
throws IOException {

ColoredRectangle r = new ColoredRectangle ();
int count = 10;
while (count > 0) r.paint ();
}

}

5.2 Java for Image Processing

The package java.awt contains all the classes for creating user interfaces and
for painting graphics and images. This package provides interfaces such as Paint
and LayoutManager. It provides also classes such as Component, Canvas,

5.2 Java for Image Processing 69

Container, Color, Frame, Graphics, Graphics2D, Image, Menu,
MenuComponent, Rectangle, Toolkit.

The abstract class jawa.awt.Image is the superclass of all classes that rep-
resent graphical images by producing information referred to an image. Indeed
the package java.awt.image provides classes and interfaces to get, visualize
and process an image. Loading an image can require a lot of time depending of
its dimensions. For this reason the loading and the visualization of an image are
asynchronous processes. The image transmission is supervised by two interfaces:
ImageObserver representing the receiver and ImageProducer representing
the sender.

Some interfaces of java.awt.image are as follows:

BufferedImageOp
This interface describes single-input/single-output operations performed on objects
of the BufferedImage class.

ImageConsumer
TheImageConsumer andImageProducer interfaces provide themeans for low
level image creation. The ImageProducer provides the source of the pixel data
that is used by the ImageConsumer to create an Image. It specifies the methods
that must be implemented to receive data from an ImageProducer.

ImageObserver
This is an asynchronous update interface for producing notifications about an image
while the image is loaded. An instance of this class is able to monitor an image
while loaded. For example, it permits to load an image without interrupting other
operations. This class only contains the method imageUpdate invoked when the
information on a image requested in an asynchronous manner becomes available.
This class is implemented by the class Applet and each component of awt are
ImageObserver.

ImageProducer
This is an interface which can produce the image data for an Image instance. The
ImageProducer interface defines the methods that ImageProducer objects
must implement. The methods in the ImageProducer interface let objects of the
ImageConsumer class register their interest in an image. In other words, when a
consumer object is added to an image producer object, the producer delivers all of
the data about the image using the method calls defined in this interface.

Mediatracker
This is a utility class to track the status of a number of media objects. Media objects
could include audio clips as well as images, though currently only images are sup-
ported. To use a media tracker, one should create an instance of MediaTracker
and call its addImagemethod for each image to be tracked. In addition, each image
can be assigned a unique identifier. This identifier controls the priority order in which
the images are fetched. It can also be used to identify unique subsets of the images
that can be waited on independently. Images with a lower ID are loaded in preference
to those with a higher ID number. An example is given in Listing 5.2.

70 5 Java for Image Processing

RasterOp
It describes single-input/single-output operations performed on Raster objects.

RenderedImage
This is a common interface for objects which contain or can produce image data in
a Raster format.

Some classes of the package java.awt.image are the following:

AffineTransformOp
This class uses an affine transform to perform a linear mapping from 2D coordinates
in the source Image or Raster object to 2D coordinates in the destination Image
or Raster object.

AreaAveragingScaleFilter
It is an ImageFilter subclass for scaling images using a simple area averaging
algorithm.

BufferedImage
It is a Image subclass that describes an image with an accessible buffer of image
data. The getRGB() method of the BufferedImage class gets the pixel values.

BufferedImageFilter
It subclasses the ImageFilter class to provide a simple means of using a
single-source/single-destination image operator (BufferedImageOp) to filter a
BufferedImage in the Image Producer/Consumer/Observer paradigm.

ColorConvertedOp
It performs a pixel-by-pixel color conversion of the data in the source image.

ColorModel
It is an abstract class that encapsulates the methods for translating a pixel value to
color components (for example, red, green, and blue) and an alpha component.

ComponentColorModel
It is a ColorModel subclass that works with pixel values by representing color and
alpha information as separate samples and that stores each sample in a separate data
element.

ConvolveOp
It implements a convolution from the source image to the destination image.

ImageFilter
It implements a filter for the set of interface methods that are used to deliver data
from an ImageProducer to an ImageConsumer.

IndexColorModel
It is a ColorModel subclass that works with pixel values, each representing an
index to a fixed colormap in the RGB color space.

LookupTable
It is an abstract class that defines a lookup table object.

5.2 Java for Image Processing 71

Raster
It is a class representing an image as a rectangular array of pixels.

RGBImageFilter
It provides an easyway to create an ImageFilter object whichmodifies the pixels
of an image in the RGB color space.

Listing 5.1 shows a Java program that paints a colored rectangle into a window.
It shows the use of package, objects, classes, methods, and constructor.

5.3 Applet

An applet is a small program that is intended not to be run on its own, but rather to
be embedded inside another application.

An applet is a program written in Java that can be included in an HTML code.
Using a Java technology-enabled browser to view a page that contains an applet,
the applet code is transferred to the user’s system and executed by the Java Virtual
Machine (JVM) of the browser. An applet does not require a main() method. An
applet can be executed in a browser supporting Java or in an applet-viewer invoked
in a HTML page. The interaction with the user takes place only through the graphic
interface provided by the classes of the packages awt and swing. The hierarchy
for the class Applet is shown in Fig. 5.1.

To implement an applet we define a subclass of the class java.applet.
Applet containing the following methods:

• init()Called by the browser or the applet viewer to inform the applet that it has
been loaded into the system. It is always called before the first time the start()
method is called.

Fig. 5.1 Hierarchy for the class Applet - A indicates an Abstract class

72 5 Java for Image Processing

• start() Called by the browser or the applet viewer to inform the applet that it
should start its execution. It is called after the init method and each time the
applet is revisited in a Web page.

• stop() Called by the browser or the applet viewer to inform the applet that it
should stop its execution. It is calledwhen theWeb page that contains the applet has
been replaced by another page, and also just before the applet is to be destroyed.

• destroy() Called by the browser or the applet viewer to inform the applet that
it is being reclaimed and that it should destroy any resources that it allocated. The
stop method is always called before destroy().

Other methods used for applet implementation are: getAppletContext(),
getAppletInfo(), getAudioClip(URL url), getImage(URL url,
String imagineName). Moreover, the method paint() of the abstract class
Container has to be written in the applet.

Applets are event-driven programs. An apple waits for an event to occur, then it
executes the proper operation and it returns the control to the awt runtime system.
The user interaction is realized using the package java.awt.event that handles
events.

Listing 5.2 shows an example of applet. It visualizes an image ad its component R,
G, B. Its execution starts by means of the HTML code given in Listing 5.3. To run the
applet it is necessary to create a Java project with the files ScmpRGB.java and Scm-
pRGB.html, then include in the same directory the image named sampleimage.jpg
to be processed.

Listing 5.2 ScmpRGB.java: a Java program to decompose anRGB image in the three components
Red, Green and Blue.
public class ScmpRGB extends Applet {

Image img; // input image
Image redImg; // red image
Image blueImg; // blue image
Image greenImg; // green component
MediaTracker tracker; /* verify the status of the image
while loaded */
public void init() {

//set background color
setBackground(Color.orange);
tracker=new MediaTracker(this);
//get image from the path
img=getImage(getCodeBase(),"sampleimage.jpg");
tracker.addImage(img ,0);
try {

tracker.waitForID (0);
}
catch (InterruptedException e) {

getAppletContext (). showStatus
("Any problems with the first image?");

}

setSize(img.getWidth(this)*2+60 , img.getHeight(this)*2+60)

redImg=createImage(new FilteredImageSource(img.getSource(),
new RedFilter ())); // extracts red component

5.3 Applet 73

try{
tracker.addImage(redImg ,1);
tracker.waitForID (1);
}

catch (InterruptedException e) {
getAppletContext (). showStatus
("Any problems with the second image?");
}

blueImg=createImage(new FilteredImageSource(img.getSource(),
new BlueFilter ())); // extracts blue component

try{
tracker.addImage(blueImg ,1);
tracker.waitForID (1);
}

catch (InterruptedException e) {
getAppletContext (). showStatus
("Any problems with the third image?");
}

greenImg=createImage(new FilteredImageSource(img.getSource(),
new GreenFilter ())); // extracts green component

try{
tracker.addImage(greenImg ,1);
tracker.waitForID (1);
}

catch (InterruptedException e) {
getAppletContext (). showStatus
("Any problems with the fourth image?");
}

}

public void paint(Graphics g) {
g.drawImage(img ,10,10,this);
g.drawImage(redImg ,img.getWidth(this)+20,10, this);
g.drawImage(blueImg ,10, redImg.getHeight(this)+20, this);
g.drawImage(greenImg ,blueImg.getWidth(this)+20,

redImg.getHeight(this)+20, this);
}

class RedFilter extends RGBImageFilter {
public int filterRGB(int x, int y, int rgb) {

return rgb & 0xFFFF0000;
}

}
class BlueFilter extends RGBImageFilter {

public int filterRGB(int x, int y, int rgb) {
return rgb & 0xFF0000FF;

}
}
class GreenFilter extends RGBImageFilter {

public int filterRGB(int x, int y, int rgb) {
return rgb & 0xFF00FF00;

}
}

}

74 5 Java for Image Processing

Fig. 5.2 ImageJ user interface

Listing 5.3 ScmpRGB.Html: HTML code to run ScmpRGB.java.
<html >
<body >
<applet code= "ScmpRGB.class" width= "650" height= "700">
</applet >
</body >
</html >

5.4 ImageJ

ImageJ is a public-domain Java image processing program inspired by NIH Image
for the Macintosh [3]. It can display, edit, analyze, process, save, and print 8-bit,
16-bit and 32-bit images. Figure5.2 shows the graphical user interface of ImageJ.

ImageJ can read many image formats including TIFF, GIF, JPEG, BMP, DICOM,
FITS and “raw”. It supports “stacks”, i.e., a series of images that share a single
window. It is multithreaded, so time-consuming operations such as image file reading
can be performed in parallel with other operations.

ImageJ is an open source software. Its plugins are free software: any user can
redistribute and/or modify them under the terms of the GNU General Public License
as published by the Free Software Foundation. Specifically, using ImageJ a user has
the following essential freedoms:

• to run the program, for any purpose;
• to study how the program works, and change it to make it do what you wish;
• to redistribute copies so you can help your neighbor;
• to improve the program, and release improved versions to the public, so that the
whole community can benefit of them.

The functions provided by ImageJ built-in commands can be extended by user-
written code in the form of macros and plugins. These two options differ in their
complexity and capabilities, as explained in the following.

5.4 ImageJ 75

Fig. 5.3 Menu Plugin/Macros/Record in the ImageJ environment

5.4.1 Macros

Macros are an easy way to execute a series of ImageJ commands. The simplest way
to create a macro is to use the Record command in the Plugins/Macros/ menu and
execute the commands to be recorded. The code of the macro can be modified in the
built-in editor (see Fig. 5.3). The ImageJ macro language contains a set of control
structures, operators and built-in functions and can be used to call built-in commands
and macros. Details of the macro language can be found in [4].

5.4.2 Plugins

Plugins are a more powerful concept than macros and most of ImageJ built-in menu
commands are indeed implemented as plugins. Plugins are small Java programs that
extend functionalities of ImageJ. This means that a plugin can use all features of
the Java language, can access the full ImageJ API and use all standard Java APIs.
A plugin can implement standard interface classes, as shown in the class hierarchy
depicted in Fig. 5.4.

There are three types of plugin

1. Plugin that implements the Plugin interface. It does not require an image to be
opened before execution.

76 5 Java for Image Processing

Fig. 5.4 Hierarchy class for
Plugins

2. PluginFilter that implements thePlugInFilter interface. It requires an image
to be opened before execution.

3. PlugInFrame, like PluginFilter but it runs in its own window.

Plugins are commonly used to analyze or process image (stacks) or to add support
for new file format. But many other things can be done by plugins, such as rendering
graphics or creating extensions of the ImageJ graphical user interface. Plugins located
in ImageJ “plugins” folder are automatically installed in the Plugins menu. Plugins
can be created or modified using Plugins/Edit. ImageJ provides an integrated editor
for macros and plugins, which can be used not only to modify and edit code but also
to compile and run plugins.

5.5 Fuzzy Systems in Java

A simple way to define fuzzy models in Java is to use NRC FuzzyJ Toolkit [5].
The NRC FuzzyJ Toolkit is a Java(tm) API for representing and manipulating fuzzy
information. The toolkit consists of a set of classes (nrc.fuzzy.*) that allow a
user to build fuzzy systems in Java. It includes a set of Java classes that enable the
definition of a fuzzy rule-based system.

To show the use of the FuzzyJ toolkit, in the following we consider the definition
of a fuzzy system for color classification [6]. The fuzzy rules are defined so as to
perform a segmentation of the HSV color space using a model that follows a human
intuition of color classification. The method is based on the HSV color space, which
is more intuitive and closer to the human perception of color than the RGB space
(humans do not refer to colors in terms of primaries Red, Green and Blue).

The fuzzy rules are defined so as to reflect the process that humans adopt to
associate a label to a color according to perception. Thus, we consider the HSV

5.5 Fuzzy Systems in Java 77

rather than the RGB color model. As explained in Chap.1, in the HSV model each
color is represented in terms of perceptive concepts that are Hue, Saturation and
Value. Hence, the fuzzy model has three antecedent variables (Hue, Saturation, and
Value) and one consequent variable, which is a color class ID. Fuzzy rules of the
following form are considered:

IF (hue is orange) AND (saturation is medium) AND (value is dark)
THEN colorClass is darkBrown

IF (hue is red) AND (saturation is clear) AND (value is bright)
THEN colorClass is pink

The domain of the antecedent variables Hue, Saturation, and Value is the interval
(0,255). The domain of the consequent variable is discrete, and depends on the
number of the predefined color classes.

The input variable Hue can be defined by as many fuzzy sets as the number of
basic hues, namely: Red, Orange, Yellow, Green, Cyan, Blue, Purple, Magenta, and
Pink. The membership functions of these fuzzy sets can be defined according to the
spectrum of hues (Fig. 5.5). Saturation is defined using the fuzzy sets Gray, Medium,
and Clear, as shown in Fig. 5.6. Value is defined using the fuzzy sets Dark, Medium,
and Bright (Fig. 5.7). The fuzzy sets for the output variable colorClass are simply
defined as fuzzy singletons (Fig. 5.8).

Fig. 5.5 Fuzzy sets for the input variable Hue defined according to the spectrum of all hues

http://dx.doi.org/10.1007/978-3-319-44130-6_1

78 5 Java for Image Processing

Fig. 5.6 Fuzzy sets for the input variable Saturation

Fig. 5.7 Fuzzy sets for the input variable Value

Fig. 5.8 Fuzzy singleton for the output variable colorClass

5.5 Fuzzy Systems in Java 79

The toolkit FuzzyJ provides the class FuzzyVariable to define a fuzzy variable
and the method addTerm to add fuzzy terms to it. To define fuzzy sets with trian-
gular and trapezoidal membership functions we use the class TriangleFuzzySet
and TrapezoidFuzzySet respectively. Listing 5.4 shows the definition of the fuzzy
variable Hue and its fuzzy sets.

To define fuzzy IF-THEN rules, FuzzyJ provides the class FuzzyRule that
enables definition of the antecedent and the consequent part using the methods
addAntecedent and addConclusion. In Listing 5.4, we show the definition of
the rule deepRed. To perform the inference of rules, FuzzyJ provides the method
execute() that computes the activation level of a single rule. The last part of code
in Listing 5.4 executes the inference of all the rules having pink as consequent. In
the case of classification rules, all rules having the same consequent are executed
and their activation levels are summed up to produce the final certainty degree of the
corresponding output class. To store the certainty degrees of all the output classes,
we can define a HashMap having as many keys as the number of color classes. For
a given input, the output of the fuzzy system is given by the maximum value in the
HashMap.

Listing 5.4 FuzzyInferenceSystem.java: An excerpt of Java code to define a fuzzy rule-based
system using the FuzzyJ toolkit.
import nrc.fuzzy .*;
import java.util .*;
/*
* Fuzzy inference system to classify colors of an image
*
* @authors Gabriella Casalino , Marco Lucarelli , Massimo Minervini
*
* @version 2.0
*/

public class FuzzyInferenceSystem {

private FuzzyVariable hue;
private FuzzyVariable saturation;
private FuzzyVariable value;
private FuzzyVariable colorClass;

private FuzzyRule whitePreprocessing = new FuzzyRule ();
private FuzzyRule blackPreprocessing = new FuzzyRule ();
private FuzzyRule deepRed = new FuzzyRule ();
private FuzzyRule darkRed = new FuzzyRule ();
// [...] other rules
private FuzzyRule palePink = new FuzzyRule ();

/* **
* definition of input and output fuzzy variables
** */

// definition of input variable "hue"
hue = new FuzzyVariable("hue" ,0.0 ,255.0);
hue.addTerm("red",(new TriangleFuzzySet (0.0 ,0.0 ,21.0)). fuzzyUnion

(new TriangleFuzzySet (234.0 ,255.0 ,255.0)));
hue.addTerm("orange",new TriangleFuzzySet (0.0 ,21.0 ,43.0));
hue.addTerm("yellow",new TriangleFuzzySet (21.0 ,43.0 ,64.0));
hue.addTerm("green",new TrapezoidFuzzySet (43.0 ,64.0 ,106.0 ,128.0));

80 5 Java for Image Processing

hue.addTerm("cyan",new TriangleFuzzySet (106.0 ,128.0 ,150.0));
hue.addTerm("blue",new TrapezoidFuzzySet (128.0 ,150.0 ,175.0 ,191.0));
hue.addTerm("purple",new TriangleFuzzySet (170.0 ,191.0 ,213.0));
hue.addTerm("magenta",new TriangleFuzzySet (191.0 ,213.0 ,234.0));
hue.addTerm("pink",new TriangleFuzzySet (213.0 ,234.0 ,255.0))
// [...] other input variables

// definition of output variable "color"
colorClass = new FuzzyVariable("color", 0.0, 16.0);

/* **********************
* definition of rules
********************** */

deepRed.addAntecedent(new FuzzyValue(hue ,"red"));
deepRed.addAntecedent(new FuzzyValue(saturation ,"gray"));
deepRed.addAntecedent(new FuzzyValue(value ,"dark"));
deepRed.addConclusion(new FuzzyValue(colorClass ,

new SingletonFuzzySet(OutputColors.DARK_BROWN.classId ())));

// [...] other rules

/* *******************
* inference of rules
********************/

// execute rules having PINK as consequent

map.put(OutputColors.DARK_BROWN ,map.get(OutputColors.DARK_BROWN)
+ deepPink.execute (). toFuzzyValueArray ()[0]. getMaxY ());

map.put(OutputColors.DARK_BROWN ,map.get(OutputColors.DARK_BROWN)
+ darkPink.execute (). toFuzzyValueArray ()[0]. getMaxY ());

map.put(OutputColors.RED , map.get(OutputColors.RED)
+ somberPink.execute (). toFuzzyValueArray ()[0]. getMaxY ());

map.put(OutputColors.PINK , map.get(OutputColors.PINK)
+ brightPink.execute (). toFuzzyValueArray ()[0]. getMaxY ());

map.put(OutputColors.PINK , map.get(OutputColors.PINK)
+ mediumPink.execute (). toFuzzyValueArray ()[0]. getMaxY ());

map.put(OutputColors.RED , map.get(OutputColors.RED)
+ grayPink.execute (). toFuzzyValueArray ()[0]. getMaxY ());

map.put(OutputColors.PINK , map.get(OutputColors.PINK)
+ luminousPink.execute (). toFuzzyValueArray ()[0]. getMaxY ());

map.put(OutputColors.PINK , map.get(OutputColors.PINK)
+ lightPink.execute (). toFuzzyValueArray ()[0]. getMaxY ());

map.put(OutputColors.PINK , map.get(OutputColors.PINK)
+ palePink.execute (). toFuzzyValueArray ()[0]. getMaxY ());

// [...] execute other rules

// the output is the color with highest certainty degree

for (OutputColors c : OutputColors.values ())
if (map.get(c) > map.get(pixelClass))

pixelClass = c;

The complete Java code to define and use the above described fuzzy rule-based
system is available as ImageJ plugin at [7]. This plugin is an example of how to
construct a fuzzy image processing application by importing in ImageJ the classes
of the nrc.fuzzy.* package. FuzzyJ offers a facility to easily implement plugins

5.5 Fuzzy Systems in Java 81

Fig. 5.9 Color classification obtained by fuzzy rules on a the Lena image, b the Baboon image

or applets. In Fig. 5.9, we show some results obtained by using the plugin to classify
the pixel color of the Lena and the Baboon image.

References

1. Eckel, B.: Thinking in JAVA. Prentice Hall Professional, USA (2003)
2. Trail: Learning the Java Language. https://docs.oracle.com/javase/tutorial/java/
3. ImageJ. Image Processing and Analysis in Java. http://imagej.nih.gov/ij/index.html
4. ImageJ Macro Language. http://rsb.info.nih.gov/ij/developer/macro/macros.html
5. FuzzyJ Toolkit for the Java(tm) Platform. http://www.csie.ntu.edu.tw/~sylee/courses/FuzzyJ/

Docs/
6. Shamir, L.: Human perception-based color segmentation using fuzzy logic. In: International

Conference on Image Processing. Computer Vision and Pattern Recognition (IPCV 2006), Las
Vegas, NV, vol. II, pp. 496–505 (2006)

7. Casalino, G., Lucarelli, M., Minervini M.: FuzzySegmentation, a Java plugin for color segmen-
tation. https://sites.google.com/site/cilabuniba/research/fuzzysegmentation

https://docs.oracle.com/javase/tutorial/java/
http://imagej.nih.gov/ij/index.html
http://rsb.info.nih.gov/ij/developer/macro/macros.html
http://www.csie.ntu.edu.tw/~sylee/courses/FuzzyJ/Docs/
http://www.csie.ntu.edu.tw/~sylee/courses/FuzzyJ/Docs/
https://sites.google.com/site/cilabuniba/research/fuzzysegmentation

Part II
Application to Image Processing

Fuzzy set theory finds a promising field of application in digital image analysis.
Fuzzy sets are suitable to address situations where image components cannot easily
be defined in a precise way, rather they can be better described in terms of their dif-
fuse localization and extent. Fuzziness is an intrinsic quality of images and a natural
outcome of many imaging techniques. Hence fuzzy set theory is advantageous when
applied to images with little contrast or images immersed in noise, for which most
standard contrast enhancement techniques fail to provide good results. Fuzzy con-
cepts, incorporated in image segmentation techniques, are a useful tool for reducing
the loss of data that is caused by hard decisions in the object definition. As well,
using the concept of fuzzy sets in morphology we can represent both imprecision
and uncertainty in images, from the signal level to the highest decision level. To
show the potential of fuzzy techniques in image processing, this part of the book
deals with fundamental tasks of image processing and shows how fuzzy techniques
can be successfully applied to accomplish these tasks.

Chapter 6
Color Contrast Enhancement

One day machines will be able to solve problems, but none of
them will be able to deliver us one

Albert Einstein

Abstract In this chapter, we present the basic concepts of color contrast enhance-
ment and focus on the use of fuzzy logic as a valid tool to enhance color images.
In particular, we show how to define a fuzzy rule-based system for color image
enhancement. An application to real-world color images is presented.

6.1 Introduction

The use of digital processing techniques for image enhancement has received much
interest especially in applications related to medical image research. Image enhance-
ment consists of a collection of techniques that try to improve the visual appearance
of an image or to convert the image to a form better suited for analysis by a human
viewer or for machine processing.

Classical image enhancement methods can be classified into two groups, namely
frequency domain and spatial domain methods. In the first case, image enhancement
is performed by applying filtering on the frequency transform of an image. However,
computing a two-dimensional transform for an entire image is a very time consuming
task even with fast transformation techniques [7]. Thus, frequency domain methods
are not suitable for real time processing. Spatial domain techniques directly operate
on the pixels by using information such as histograms ormoments (seeChap.2). Con-
trast enhancement is one of the important image enhancement techniques in spatial
domain. Enhancement methods for monochrome images such as contrast manipu-
lation by means of gray level transformation or histogram modification could be

© The Author(s) 2017
L. Caponetti and G. Castellano, Fuzzy Logic for Image Processing,
SpringerBriefs in Electrical and Computer Engineering,
DOI 10.1007/978-3-319-44130-6_6

85

http://dx.doi.org/10.1007/978-3-319-44130-6_2

86 6 Color Contrast Enhancement

applied to color images by processing each color component individually. Typically,
color images are processed in the RGB color space.

Indeed the nature of color images introduces some challenges in the image
enhancement process, such as the choice of the color representation system and
the selection of the more representative channels.

6.2 Multichannel Image Processing

Since a color image contains amultichannel information in a particular representation
system (RGB, HSI, ...) generally methods developed for single channel data could
not be directly applicable to multichannel data. For example, histogram equalization
and its variants are quite useful for enhancing the details in gray level images, but
could fail when applied to the three components (R, G, B) of a degraded color image,
since they alter the original color composition by producing color artifacts.

Therefore, the application of color image enhancement on the RGB color model
could produce results that are not adherent to the human visual system. Color models
suitable for color image enhancement should enable splitting the achromatic and
chromatic information, as well as maintain the color distribution of the original
image. The three main attributes generally used to distinguish one color from another
are hue, saturation and intensity thus the HSI model turns out to be more appropriate
for color image enhancement.

Several adaptive filters for color image processing have been introduced in the last
years [12, 14]. In [11] an adaptive methodology has been proposed that constitutes
a unifying and powerful framework for multichannel signal processing. Using this
methodology, color image filtering problems are treated from a global viewpoint
that readily yields and unifies previous, seemingly unrelated, results. The new filters
utilize Bayesian techniques and nonparametric methodologies to adapt to local data
in the color image.

6.3 Fuzzy Techniques for Color Enhancement

Many image enhancement algorithms using fuzzy techniques have been proposed.
Some examples are given in [2, 3, 6, 8, 10, 13]. In [3], the authors discuss a method
for image enhancement based on manipulation of gray-level pixels. Their approach
involves a transfer of the image into a fuzzy domain and modification using a con-
trast intensification function. This is followed by a defuzzification operation which
converts the data from fuzzy domain to a spatial domain by using an inverse transfor-
mation function.Moreover, in [6] a new intensification operator has been proposed, it
uses a parametric sigmoid function for the modification of the Gaussian membership
function on the basis of optimization of the entropy. The approach presented in [5]

6.3 Fuzzy Techniques for Color Enhancement 87

extended in [6] for the enhancement of color images uses histogram as the basis for
fuzzy modeling of color images. In [10], fuzzy entropy is used to derive a measure
of image quality in the fuzzy domain, although the image quality remains subjective
in nature. This subjectivity in the evaluation of the quality of a color image arises
the necessity to have tools that simplify the definition of a fuzzy system to be used
for the specific contrast enhancement application.

In the field of image enhancement and smoothing using fuzzy logic, interesting
frameworks have been developed using fuzzy IF-THEN rules. In fact, this approach
permits to extend and generalize enhancement methods based on histogram transfor-
mation. In [9] a fuzzy rule-based system is proposed for image enhancement. Here,
a set of neighborhood pixels constitutes the antecedent and the consequent clauses
of fuzzy rules that offer directives similar to human-like reasoning.

In the following section, we show how to define a fuzzy rule-based system for
color contrast enhancement.

6.4 A Fuzzy Rule-Based System for Color Enhancement

As described in Chap.3 a fuzzy rule based system processes crisp data at the input
and produces crisp data at the output through inference from a fuzzy rule base. A
fuzzifer is used at the front of the system to convert crisp data to fuzzy sets, and a
defuzzifier is used at the output of the system to convert fuzzy sets into crisp values.
The core of the fuzzy system is the rule base typically made of K rules of the form
given in (3.1). Given a vector of input values three main steps are performed in order
to derive an output value:

• At first, fuzzification of input values is performed by evaluating a degree of mem-
bership to each fuzzy set describing the input variable. Namely, for each input
xi the degrees of membership µik(xi) to the fuzzy sets Aik are computed accord-
ing to the type of membership functions. If the fuzzy system has to be defined
for a color image processing task, typically the input values xi are the intensity
values of the pixels Ic(n,m) of a N × M color image, for c = 1, 2, 3 channels
and 0 ≤ n ≤ N − 1, 0 ≤ m ≤ M − 1. The fuzzification of the input image I
consists of applying amembership functions to each color channel, thus producing
the membership values µn,m,c for each pixel of each channel. These membership
values represent the fuzzified input, namely the input fuzzy image.

• Then, a fuzzy output is obtained by means of a fuzzy inference process which
combines the fuzzified input (membership values) with the fuzzy rules through
a compositional rule of inference. The resulting fuzzy sets are aggregated via a
fuzzy union operator to provide an output fuzzy set.

• Finally, a defuzzification stage is needed to obtain a crisp output from the fuzzy out-
put resulting from the inference of rules. This stage is performed by the defuzzifier
which maps the output fuzzy set to a single crisp output value.

http://dx.doi.org/10.1007/978-3-319-44130-6_3
http://dx.doi.org/10.1007/978-3-319-44130-6_3

88 6 Color Contrast Enhancement

In particular, to address the task of color contrast enhancement by means of a
fuzzy rule-based system, the following main steps have to be carried out:

1. Select a 32-bit color image
2. Define a fuzzy rule-based system and set all the parameters of the fuzzy rules

(input features, output features, membership functions,..)
3. Fuzzification of the color image for each of the color channels
4. Inference for each channel
5. Defuzzification of the inference results
6. Recompose the 32-bit color image

All these steps are often difficult to be performed manually. Here, we suggest
the use of a Java plugin [1] that is intended to aid the user in the definition of a
fuzzy rule-based system for gray level image enhancement. To obtain color image
enhancement, we decompose the image in the color channels and apply the plugin to
each color channel.

6.5 Example: Natural Image Enhancement

In this section, we present examples of natural image enhancement based on a simple
fuzzy rule-based system. Some images that present a variety of colors and poor
contrast between regions have been considered for testing. In particular, images have
poor brightness, i.e., they are under-exposed and characterized by not discernable
details and colors that are notwell perceivable to the eye.All imageswere represented
using the RGB model and then transformed in the HSB model. For each image, we
derive the three channel components H, S,B and a fuzzy contrast enhancement is
applied to pixel values of each component image. The contrast enhancement is carried
out by applying three well-known fuzzy rules for gray-level contrast enhancement
(see [4]) listed in Fig. 6.1. In our case, the input variable Value is the pixel level of the
channel component in the input image and the output variable New value is the pixel
value of the corresponding component in the enhanced image. The input variable
is modeled by three fuzzy sets Low, Medium, High with the membership functions
defined so as to fit the histogram of the image component. The output variable is
modeled by fuzzy singletons Lower, Medium, Higher. Figures6.2 and 6.3 show the
input and output fuzzy sets, respectively.

To define the fuzzy rules and the input and output fuzzy sets, we refer to a Java
application [1] able to build fuzzy rule-based systems for image processing.

Given any input value x0, the inference of the three rules produces the following
output value:

y0 = µLOW (x0) · bL + µMEDIUM(x0) · bM + µHIGH(x0) · bH
µLOW (x0) + µMEDIUM(x0) + µHIGH(x0)

6.5 Example: Natural Image Enhancement 89

Fig. 6.1 Fuzzy rules for contrast enhancement

Fig. 6.2 Fuzzy sets defined
on the input variable Value

Fig. 6.3 Fuzzy singleton
defined for the output
variable

where bL, bM , vH are the values of the output fuzzy singleton LOWER, MEDIUM,
and HIGHER, respectively. The use of fuzzy singletons in the consequent part of
a fuzzy rule reduces the computational burden of the system. Indeed, fuzzy image
enhancement is computationally intensive because the entire process of fuzzification,
rule inference and defuzzification is applied to every pixel in the input image.

To further reduce the computational complexity, one possibility is to apply the
fuzzy inference rules only to all the 256 levels of an image component, and then
construct a look-up table that provides correspondence between values of the input
image and values of the enhanced image. In this way for each rule-based system
we have a pre-compilated look-up table, thus the enhancement requires only the
application of the look-up table. Operating with a look-up table is possible because
the gray level transformations are point transformations and do not depend on the
pixel position.

90 6 Color Contrast Enhancement

Given a color image f , the complete procedure for color contrast enhancement is
the following:

Require: f = 32-bit color image;
Ensure: f’ = 32-bit color enhanced image;
/*steps performed on f */

1. Select the color space (for example HSB)
2. Convert from RGB image to HSB stack;
3. Select one component - for example Brightness
4. Define the fuzzy rule-based system

/* Steps performed on the Brightness component */
5. Fuzzification of each pixel value (memberships to the Low, Medium and High
fuzzy sets)
6. Inference of rules
7. Computation of the output value
8. Convert from HSB stack to RGB color using the obtained enhanced Brightness

The enhanced images produced after application of the fuzzy rule-based system
only to the Brightness component are presented in Fig. 6.4. A qualitative comparison
with enhanced images obtained by histogram equalization is made. It can be seen that
in most cases a visually pleasing image is obtained with the fuzzy rule-based color
enhancement. The improvement attained with the fuzzy approach is more pleasing in

Fig. 6.4 a Original poorly contrasted images. b Images enhanced by histogram equalization. c
Images enhanced by fuzzy rule-based system approach followed by histogram equalization

6.5 Example: Natural Image Enhancement 91

nature than that with the histogram equalization, which tends to over-enhance certain
regions in some cases. Moreover, the presented approach permits to easily enhance
the range of color values necessary to a specific visual application.

References

1. Alestra S.: ImageJ Plugin Fuzzy Contrast Enhancement. Availableat: http://svg.dmi.unict.it/
iplab/imagej/index.htm

2. Bhattacharya, E.: An algebraic environment to process fuzzy images. Pattern Recognit. Lett.
8, 29–33 (1988)

3. De, T.K., Chatterji, B.N.: An approach to a generalized technique for image contrast enhance-
ment using the concept of fuzzy set. Fuzzy Sets Syst. 25, 145–158 (1988)

4. Gonzales, R.C., Woods, R.E.: Digital Image Processing, 3rd edn. Prentice-Hall Inc, Upper
Saddle River, NJ, USA (2006)

5. Hanmandlu, M., Jha, D.: An optimal fuzzy system for color image enhancement. IEEE Trans.
Image Process. 15(10), 2956–2966 (2006)

6. Hanmandlu, M., Tandon, S.N., Mir, A.H.: A new fuzzy logic based image enhancement. Bio-
med. Sci. Instrum. 34, 590–595 (1997)

7. Lee, J.-S.: Digital image enhancement and noise filtering. IEEE Trans. Pattern Anal. Mach.
Intell. 2, 165–168 (1980)

8. Mahashwari, T., Amit, A.: Image enhancement using fuzzy technique. Int. J. Res. Eng. Sci.
Technol. 2(2), 1–4 (2013)

9. Pal, S.K., Rosenfeld, A.: Image enhancement and thresholding by optimization of fuzzy com-
pactness. Pattern Recognit. Lett. 7(2), 77–86 (1988)

10. Pal, S.K., King, R.A.: Image enhancement using smoothing with fuzzy sets. IEEE Trans. Syst.
Man. Cybern. SMC-11(7), 494–501 (1981)

11. Plataniotis, K.N., Androutsos, D., Vinayagamoorthy, S., Venetsanopoulos, A.N.: Color image
processing using adaptive multichannel filtering. IEEE Trans. Image Process. 6(7), 933–941
(1997)

12. Raju, G., Nair,M.S.: A fast and efficient color image enhancementmethod based on fuzzy-logic
and histogram. AEU-Int. J. Electron. Commun. 68(3), 237–243 (2014)

13. Sun, S.: Image enhancement algorithm based on improved fuzzy filter. J. Multimed. 9(1),
138–144 (2014)

14. Suneel,M., Kumar, K., Bhaskar, P.U.: Color image enhancement using fuzzy set theory. Digital
Image Process. 4(1), 10–12 (2012)

http://svg.dmi.unict.it/iplab/imagej/index.htm
http://svg.dmi.unict.it/iplab/imagej/index.htm

Chapter 7
Image Segmentation

On everything the party considers itself the nature of the whole
Galileo Galilei

Abstract This chapter deals with the methods of region-based image segmentation.
It introduces some basic concepts such as definition of pixel neighbors, connectivity
of a region, and the image segmentation problem. This chapter also describes clus-
tering methods as powerful tools for image segmentation. Two application examples
using clustering for color image segmentation and texture segmentation are provided.

7.1 Introduction

Image segmentation is the process of partitioning an image into nonoverlapped
regionswhich are homogeneouswith respect to some characteristics such as intensity,
color or texture. Image segmentation is a fundamental step for high-level vision and
image understanding, necessary in many applications such as object/pattern recogni-
tion and tracking, image retrieval, and so on. In other words the goal of segmentation
is to simplify and/or change the representation of an image into something that is
more meaningful and easier to analyze [10, 22]. Image segmentation is typically
used to locate objects and boundaries (lines, curves, etc.) in images. More precisely,
image segmentation is the process of assigning a label to every pixel in an image
such that pixels with the same label share certain characteristics.

Although a large number of different segmentation methods have already been
published in past years [6, 9–11, 16, 22] and other novel algorithms are continually
appearing, the segmentation problem is still far from being satisfactorily solved for
real-world images. The performance of each method depends highly on the type of
visual scenes and on image parameters, such as resolution, illumination, and viewing

© The Author(s) 2017
L. Caponetti and G. Castellano, Fuzzy Logic for Image Processing,
SpringerBriefs in Electrical and Computer Engineering,
DOI 10.1007/978-3-319-44130-6_7

93

94 7 Image Segmentation

conditions. Fundamental segmentation methods detect discontinuity among pixels
of different regions or similarity among pixels of the same region. The first category
includes algorithms for detecting isolated points, lines, or edges. In the second cate-
gory we find algorithms of region growing, region splitting, and region merging. In
this chapter we introduce specific region-based approaches that are based on clus-
tering. Clustering-based approaches received a great interest in several domain, such
as medical imaging and content-based image retrieval.

In the followingwe present the segmentation problem andmethods for handling it.
Then crisp and fuzzy clustering are introduced. Finally a fuzzy clustering embedded
with spatial information is presented. In the last section we show the use of cluster-
ing for two applications: color segmentation and texture segmentation of biological
images.

7.2 The Segmentation Problem

Generally the segmentation problem involves separating the image pixels into a
number of distinct partitions corresponding to homogeneous regions. The goal of
segmentation is to accurately capture these regions. To formalize the segmentation
problemwe introduce the concept of neighbors of a pixel and connectivity of a region.

Pixel Neighbors
There are two different ways to define the neighbors of a pixel p located at (x, y)

1. The 4-neighbors of pixel p, denoted by N4(p), are the four pixels located at
(x−1, y), (x+1, y), (x, y−1), and (x, y+1) that are located, respectively, north,
south, west, and east of the pixel p.

2. The 8-neighbors of pixel p, denoted by N8(p), include the 4-neighbors and four
pixels along the diagonal direction located at (x − 1, y − 1) (northwest), (x − 1,
y + 1) (northeast), (x + 1, y − 1) (southwest), and (x + 1, y + 1) (southeast).

Region Connectivity
A region is connected if all pairs of its pixels are connected. Two neighboring pixels
are connected if their values are close to each other, i.e., they both belong to the same
subset of gray levels sharing the same property: p ∈ V and q ∈ V , where V is a
subset of all gray levels in the image that share a particular property. The connectivity
can be defined as one of the following:

1. 4-connected. Two pixels p and q are 4-connected if they are 4-neighbors and
p ∈ V and q ∈ V ;

2. 8-connected. Two pixels p and q are 8-connected if they are 8-neighbors and
p ∈ V and q ∈ V .

Let R be the spatial region occupied by the image. The segmentation process can
be seen as the problem of partitioning R into a number of subregions R1, R2,…, Rn

such that

7.2 The Segmentation Problem 95

1.
⋃n

i=1 Ri = R where Ri is a connected set, i = 1 . . . n;
2. Ri

⋂
Rj = ∅ for i �= j

3. Q(Ri) = TRUE for i = 1 . . . n
4. Q(Ri

⋃
Rj) = FALSE for each pair of adjacent regions (Ri,Rj) where Q(Ri) is a

predicate defined on region Ri.

The first property means that the segmentation must be complete; that is, every
pixel must belong to a region and points in a region must be connected in some
predefined sense (e.g., 4-connected or 8-connected). The second property indicates
that the regions must be disjoint. Property 3. require the pixels belonging to a region
to satisfy a predicate Q. For example Q(Ri) = TRUE if the average gray level of
all pixels in Ri is less than a value m and its standard deviation is less than a value
σ . Property 4. indicates that two regions Ri and Rj are different in the sense of a
predicate Q.

7.3 Methods for Segmentation

Numerousmethods are available for image segmentation. They can be selected based
on the specific applications and imaging modality. Imaging artifacts such as noise,
partial volume effects, and motion can also have significant influence on the perfor-
mance of segmentation algorithms. The main methods for image segmentation may
be grouped in the following manner:

• Discontinuity-based methods. Some segmentation methods such as thresholding
look for the boundaries between regions based on discontinuities in gray scale,
color, or other properties. Thresholding approaches segment an image by creating
a binary partitioning of the image intensities. A thresholding procedure attempts to
determine an intensity value, called threshold, which separates the desired classes.
The segmentation is then achieved by grouping all pixels with intensity greater
than the threshold into one class, and all other pixels into another class. See chapter
8 for more details.

• Region-based methods. Region-based segmentation is a technique for finding the
region directly. One basic method among these is region growing that groups
pixels or subregions into larger regions based on predefined criteria for growth.
The basic approach involves the selection of a set of ’seed’ points and from these
grow regions iteratively by determining whether the pixel neighbors should be
added to the region.

Another category of methods for image segmentation, and the one considered
in this book, is that of clustering methods. Clustering is the process of grouping a
set of points—feature vectors—into subsets (called clusters) so that points in the
same cluster are similar in some sense [13]. The application of clustering to image
segmentation requires taking into account also the spatial information. To this aim,
a common strategy is to divide the image into a number of blocks and to extract

96 7 Image Segmentation

a number of local features for each block. Successively, the clustering algorithm
is applied to these features and a predefined number of clusters is obtained. Both
crisp and fuzzy clustering schemes have been proposed for image segmentation.
Fuzzy techniques revealed more robust than crisp algorithms especially in case of
images characterized by some form of ambiguity, such as poor contrast, noise, and
dishomogeneity in the intensity values.

Among fuzzy clustering algorithms themost used one is the well-known Fuzzy C-
Means (FCM) algorithm. Despite its widespread use, FCM does not always provide
good segmentation results due to the fact that it does not incorporate any information
concerning the spatial context, which is fundamental because the obtained regions
are likely to be disjoint, irregular, and noisy. In order to achieve more effective
segmentation results, many works have been proposed aiming at incorporating the
local spatial information into clustering schemes based on the conventional FCM
algorithm [1, 5, 19, 21]. In the following the main algorithms for crisp, fuzzy, and
spatial clustering are introduced. In [20] an ImageJ plugin implementing all these
clustering algorithms is available.

7.3.1 Crisp Clustering

The conventional (crisp) clustering methods assume that each point of the data set
belongs to exactly one cluster. The major example of partitional crisp clustering
is the K-means algorithm [14]. Even though K-means was first proposed over 50
years ago, it is still by far the most used clustering algorithm for its simplicity of
implementation and its effectiveness.

The K-means clustering aims to partition N point into K partitions (clusters)
in which each point belongs to the cluster having the nearest mean. Let X =
{x1, x2, . . . , xn} be the set of data points and V = {c1, c2, . . . , cK } be the set of
cluster means (centers). A partition of X into K clusters can be represented by mutu-
ally disjoint sets C1, . . . ,CK such that C1 ∪ · · · ∪CK = X. To represent the partition
of X into K clusters, a binary membership matrix U = [uik] is used, where uik = 1
if xi ∈ Ck , uik = 0 otherwise, for i = 1 . . .N and k = 1 . . .K .

The objective of the K-means algorithm is to minimize the distance among points
inside the same cluster and to maximize the distance between clusters. This is
obtained by minimizing the following objective function:

J =
N∑

i=1

K∑

k=1

uikd(xi, ck)2 (7.1)

where d(·, ·) is the Euclidean distance.
The main steps of the K-means algorithm for image segmentation are

1. Fix the parameter K (number of clusters) and initialize the cluster centers ck
(k = 1 . . .K), either randomly or based on some heuristic;

7.3 Methods for Segmentation 97

2. Assign each pixel in the image to the cluster that minimizes the distance between
the pixel and the cluster center;

3. Recompute the cluster centers by averaging all of the pixels in the cluster, namely

ck = 1

|Ck|
∑

xi∈Ck

xifor k = 1 . . .K (7.2)

4. Repeat steps 2 and 3 until convergence is attained (i.e., the assignment of pixels
to clusters does not change).

One main issue of the K-means algorithm is that the clustering result depends
strongly on the initialization of the cluster centers and on the number of clusters.
Besides, K-means usually converges to a local minimum does not take data distrib-
ution in consideration.

7.3.2 Fuzzy Clustering

Fuzzy clustering methods assume that each data point belongs to more than one clus-
ter with different membership degrees and vague or fuzzy borders between different
cluster. The main fuzzy clustering algorithm is the fuzzy version of the K-means
called Fuzzy C-Means (FCM) [3]. FCM is a partition clustering method based on
the minimization of the following objective function:

J =
N∑

i=1

K∑

k=1

(uik)
m d (xi, ck)2, 1 < m < ∞, (7.3)

where d(xi, ck) is the distance between the point xi and the cluster centroid ck , m is
the fuzziness parameter, K is the number of clusters, N is the number of data points
xi, uik ∈ [0, 1] is the membership degree of xi belonging to the cluster k, calculated
as follows:

uik = 1
K∑

l=1

(
d(xi, ck)
d(xi, cl)

) 2
m−1

. (7.4)

for i = 1 . . .N , k = 1 . . .K . Using the fuzzy membership matrix U = [uik] a new
position of the k-th centroid is calculated as

ck =
∑N

i=1 (uik)mxi
∑N

i=1 (uik)m
(7.5)

with the constraint
∑

i uik = 1.

98 7 Image Segmentation

Given the initial parameters (number of clusters K and fuzziness parameter m),
FCM iteratively computes the matrix U according to Eq. (7.4), and updates the cen-
troid positions as in Eq. (7.5). The algorithm terminates after a fixed number of
iterations, or if the improvement expressed by J is substantially small. The para-
meter m determines the fuzziness degree of the clustering process. If this parameter
has value 1 the fuzzy c-means approximates the crisp K-means algorithm, being the
membership values equal only 0 or 1. The most common choice for m is 2.

From Eq. (7.3) it can be observed that FCM does not incorporate any spatial
dependencies between observations. This may degrade the overall clustering result
in case of image segmentation, because neighboring regionsmay be highly correlated
and thus they should belong to the same cluster.

7.3.3 Spatial Fuzzy Clustering

When applied to image segmentation, clustering should take into account the spatial
information of pixels. To this aim, several spatial variants of the FCM have been
proposed. Among these, the Spatial FCM (SFCM) proposed in [7] uses a spatial
function which is defined as:

hij =
∑

k∈NB(xi)

uik (7.6)

where NB(xi) represents a neighbor of the pixel xi in the spatial domain. Just like
the membership function, the spatial function hij represents the membership degree
of pixel xi belonging to the jth cluster.

The spatial function of a pixel for a cluster is large if the majority of its neighbors
belongs to the same clusters. The spatial function modifies the membership function
of a pixel according to the membership statistics of its neighbors as follows:

uij = upijh
q
ij

∑K
k=1 u

p
ikh

q
ik

(7.7)

where p and q are parameters to control the relative importance of both functions.
Each iteration of the SFCM includes two steps. The first one is the same as in standard
FCM to calculate the membership function in the feature domain. In the second step,
the membership information of each pixel is mapped to the spatial domain, and the
spatial function is computed from that. The FCM iteration proceeds with the new
membership that is incorporated with the spatial function.

7.4 Example: Color Segmentation 99

7.4 Example: Color Segmentation

In this section, we present some comparative results of color image segmentation
using different clustering methods. These results were obtained using the ImageJ
plugin SFCM available at [20] (see Appendix A). The SFCM plugin includes the fol-
lowing clustering plugins: Jarek Sacha’s K-Means [12], K-Means, Fuzzy C-Means,
Spatial Fuzzy C-Means [7].

The plugin works on different color spaces. The supported color spaces are: XYZ,
La*b*, and HSB. One can initially transform a RGB color image into HSB or XYZ
or La*b* color spaces and then segment the image in the new color space. Addi-
tional features of the plugin are: smart cluster centroid initialization by implementing
K-Means++, speeding up convergence, stopping criterion selection (number of iter-
ations, norm on parameter matrices, etc.), different methods for result visualization.
The plugin configuration enables selection of the following parameters:

• Number of cluster
• Maximum number of iterations
• Stopping criterion selection
• Tolerance value: Threshold used to stop the algorithm
• Initialization criterion for the centers and the membership matrix (K-Means++ or
Random)

• Randomized seed: Integer used as seed to initialize a random number sequence
• Fuzziness valuem: ifm is near 1, results are similar to those obtained by K-Means
• Parameters p and q used to control the relative importance of membership and
spatial functions

• Radius r: the spatial function is evaluated on a (2r+1)x(2r+1)window centered
on the current pixel

• Visualizationmode for displaying the segmented image. The regions can be labeled
in different ways

1. by the cluster centroid color: each point of a cluster is labeled with the color
of its centroid (in case of color conversion the color space is converted back
to RGB);

2. by a gray level: each pixel is labeled with the number of the cluster it belongs
to, and the range is stretched in 0–255;

3. by a random RGB color: a random RGB value is generated for each cluster
4. by a binary stack: the clustering is represented as a stack of binary images.

Each binary image represents a cluster, each pixel shows a hard cluster mem-
bership. Thus it is possible to extract cluster regions from the original image
by performing an AND operation between a slide of the stack and the original
image.

5. by using a fuzzy stack: a stack of gray-level images is used to show the mem-
bership values of each pixel to each cluster. Each pixel represents the soft
cluster membership value of that pixel in the original image according to the
currently selected cluster.

100 7 Image Segmentation

Fig. 7.1 aOriginal image. b Segmented image usingK-means clustering withK = 7. c Segmented
image using FCM with K = 7 and m = 2. Segmented image using Spatial FCM with K = 7,
p = 1, q = 2, and r = 2 d, r = 4 e and r = 6 f

Fig. 7.2 Regions
corresponding to a red and b
yellow colors of the
clustering results of Fig. 7.1

An example of color image is in Fig. 7.1. The RGB image has been segmented
into seven clusters using the K-means plugin (Fig. 7.1b), the FCM plugin (Fig. 7.1c)
and the SFCM plugin. It can be seen that the SFCM clustering reduces the number
of spurious blobs, providing more homogeneous regions, by augmenting the radius
of the spatial function. Figure7.2 shows separately the regions corresponding to red
and yellow color detected in the original image.

As an example in the medical domain, a brain MR image with the presence of
tumor is considered (Fig. 7.3a). In this case the segmentation is aimed to detect issues
of interest in the brain, including the white matter, the gray matter, the cerebrospinal
fluid and the tumor region. The original MR image is a gray-level image in an RGB
format such that each color component has the same value. The image has been
segmented into five clusters using the K-means plugin (Fig. 7.3b), the FCM plugin
(Fig. 7.3c) and the SFCM plugin ((Fig. 7.3d). It can be seen that the SFCM cluster-
ing reduces the number of spurious blobs, providing more homogeneous regions.
Figure7.4 show separately the regions corresponding to cluster number 3 and cluster
number 5.

7.5 Example: Texture Segmentation 101

Fig. 7.3 aOriginal image. b Segmented image using K-means clustering withK = 5. c Segmented
image using FCM with K = 5 and m = 3. d Segmented image using Spatial FCM with K = 5,
m = 2, p = 1, q = 2, r = 4

Fig. 7.4 a Region corresponding to cluster 3 and b cluster 5 of the segmentation results in Fig. 7.3d

7.5 Example: Texture Segmentation

In this section we present another application of spatial fuzzy clustering to seg-
ment a biological image on the basis of the texture information. This application is
fully described in [4] where we address the problem of automatically analyzing the

102 7 Image Segmentation

cytoplasm of human oocytes, in order to evaluate their quality during an assisted
fertilization process. The ultimate goal of this work is to support the clinicians in the
oocyte scoring by means of a system capable to derive a description of the oocyte
cytoplasm in terms of different granular regions located in the cytoplasm [2]. A fun-
damental step in the quality assessment of the oocyte maturity is represented by the
analysis of the whole cytoplasmic area in order to discover regions with different
level of granularity inside the cytoplasm of a single oocyte. This analysis might high-
light the presence or absence of a particular zone known as polarization or halo effect
that is another important factor already studied in the literature. Hence the problem
to detect different granular regions in the whole cytoplasmic area is of fundamental
importance. To segment the cytoplasm region into different regions according to the
granularity we used the spatial fuzzy clustering algorithm [7] applied to texture fea-
tures. First, we extract of the cytoplasm region starting from the oocyte image. Then,
the spatial fuzzy clustering is applied to some texture descriptors.

The preliminary step is devoted to extract the circular region that corresponds
to the cytoplasm inside the oocyte. Indeed, different parts of the oocyte are visible
in the image, such as the zona pellucida and the perivitelline space that enclose
the cytoplasmic area. To extract the cytoplasm region representing the region of
interest (ROI) we start from the assumption that the shape of the cytoplasm can be
approximated by a circumference. Then the method consists of the following steps:
(1) obtain the gradient image; (2) use the gradient image to obtain points that possibly
belong to circumferences of different radius; (3) select the circumference that better
approximates the cytoplasm boundary. In step (2) we use the Hough transform to
obtain image points belonging to different circles. The Hough transform [18] is a
powerful technique which can be used to isolate features of a particular shape in an
image: it is most commonly used for the detection of regular curves such as lines,
circles, etc. Themain advantage of the Hough transform is that it is tolerant of gaps in
curve descriptions and is relatively unaffected by image noise. In Fig. 7.5a we show
the Hough space obtained for the image in Fig. 7.6a before circle fitting.

Once detected the cytoplasm ROI, we divide it into blocks of w × w pixels. For
each block jwe derive a feature vector xj describing its texture according to a number
of first order statistical characteristics

• mean and variance;
• a measure of relative smoothness;
• third moment, that is a measure of the symmetry of the histogram;
• a measure of uniformity, maximum for an image with all gray levels equal;
• a measure of average entropy, that equals to 0 for a constant image.

These features are computed on thefirst level of themultiresolution decomposition
of each block. More specifically these features are evaluated on the histograms of the
subbands obtained by the Haar wavelet decomposition (for more details see [8, 15]).
The derived features are used for segmentation by means of spatial fuzzy clustering.
Namely, we first calculate the membership function in the feature domain according
to (7.4). Then, we update these values by computing the spatial function as follows:

7.5 Example: Texture Segmentation 103

Fig. 7.5 a Hough space.
b Circumferences that better
approximate the cytoplasm
boundary

Fig. 7.6 Segmentation of a
cytoplasm image. a Best
fitting circle approximating
the cytoplasm. b Detected
cytoplasm ROI. c Square
blocks partitioning the
extracted ROI.
d Segmentation results using
FCM. e Segmentation results
using Spatial FCM with
(p = 1, q = 1).
f Segmentation results using
Spatial FCM with (p = 1,
q = 2)

hij =
∑

k∈NB(bj)

uik (7.8)

where NB(bj) is the set of neighbors of the j-th block that is made up of the 8× 8
surrounding blocks. Thus, in this case, the spatial function hij represents the mem-
bership degree of block bj belonging to ith cluster. After application of the spatial
fuzzy clustering, a defuzzification is applied to assign each block to the cluster for
which the membership is maximal. As a result, our approach provides a segmented
ROI, in which the regions are made up of the clusters obtained in the feature space.

Figure7.6 show an example of the application to a light microscope images of
human oocytes provided by theDipartimento di Endocrinologia edOncologiaMole-
colare e Clinica of the University “Federico II” of Naples, Italy. The image has
dimension 1280×960 pixels. First, the image was processed using the Hough trans-
form, so as to detect the best circle fitting the real shape of the oocyte cytoplasm
(Fig. 7.6a). This was done by searching circles of known radius R ranging from
230 to 250 pixels. In Fig. 7.5 we show the Hough space computed for the image in
Fig. 7.6a.

Once the circular region of the cytoplasmwas identified, a squared ROI surround-
ing the circular region was extracted (Fig. 7.6b). All steps involved in this phase
were implemented using the ImageJ plugin Hough-circles [17] (see Appendix A).
Then, the extracted ROI was splitted into blocks (Fig. 7.6c) and texture features were
extracted from each block.

104 7 Image Segmentation

Several runs were carried out varying the block dimension (namely 8×8, 12×12,
24 × 24, 32 × 32) and the p and q parameters of the clustering algorithm. The best
results were obtained with 8 × 8 blocks. Figure7.6 shows the segmentation result
obtained using the FCM algorithm (K = 3) and the SFCM algorithm applied with
parameters (p = 1, q = 1) and (p = 1, q = 2). It can be seen that the conventional
FCM can poorly segment the ROI image into three clusters; spurious blobs of one
cluster appear inside other clusters. The SFCM drastically reduces the number of
spurious blobs, hence the resulting regions are more homogeneous.

References

1. Ahmed, M.N., Yamany, S.M., Mohamed, N., Farag, A.A., Moriarty, T.: A modified fuzzy c-
means algorithm for bias field estimation and segmentation of MRI data. IEEE Trans. Med.
Images 21(3), 193–199 (2002)

2. Basile, T., Caponetti, L., Castellano, G., Sforza, G.: A texture-based image processing approach
for the description of human oocyte cytoplasm. IEEE Trans. Instrum. Meas. 59, 2591–2601
(2010)

3. Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Kluwer Acad-
emic Publishers, Norwell, MA, USA (1981)

4. Caponetti, L., Castellano, G., Corsini, V., Basile, T.M.: Cytoplasm image segmentation by
spatial fuzzy clustering. In: Fuzzy Logic and Applications, pp. 253-260. Springer, Heidelberg
(2011)

5. Chen, S., Zhang, D.: Robust image segmentation using FCM with spatial constrained based
on new kernel-induced distance measure. IEEE Trans. Syst. Man Cybern. 34(4), 1907–1916
(2004)

6. Cheng, H., Jiang, X., Sun, Y., Wang, J.: Color image segmentation: advances and prospects.
Pattern Recognit. 34, 2259–2281 (2001)

7. Chuang, K.S., Tzeng, H.L., Chen, S., Wu, J., Chen, T.J.: Fuzzy c-means clustering with spatial
information for image segmentation. Comput. Med. Imag. Graph. 30(1), 9–15 (2006)

8. Daubechies, I.: Ten lectures on wavelets. Philadelphia: Society for industrial and applied math-
ematics, pp. 198–202 (1992)

9. Freixenet, J., Munoz, X., Raba, D., Marti, J., Cufi, X.: Yet another survey on image segmen-
tation: region and boundary information integration. In: European Conference on Computer
Vision—ECCV 2002, pp. 408-422. Springer, Heidelberg (2002)

10. Fu, K., Mui, J.: A survey on image segmentation. Pattern Recognit. 13, 3–16 (1981)
11. Ilea, D.E.,Whelan, P.F.: Image segmentation based on the integration of colour-texture descrip-

tors a review. Pattern Recognit. 44(10), 2479–2501 (2011)
12. ImageJ Plugin K-means Clustering. Available at: http://ij-plugins.sourceforge.net/plugins/

segmentation/k-means.html
13. Jain, A.K., Dubes, R.C.: Algorithms for Clustering Data. Prentice Hall, Upper Saddle (1988)
14. MacQueen, J.B.: Some Methods for classification and Analysis of Multivariate Observations.

In: Proceedings of 5-thBerkeleySymposiumonMathematical Statistics andProbability,Berke-
ley. University of California Press, vol. 1, 281–297 (1967)

15. Mallat, S.: A theory formultiresolution signal decomposition: the wavelet representation. IEEE
Trans. Pattern Anal. Mach. Intell. 11(7), 674–693 (1989)

16. Pal, N., Pal, S.: A review on image segmentation techniques. Pattern Recognit. 26(9), 1277–
1294 (1993)

17. Pistori H., Costa E.R.: ImageJ Plugin Hough Circles. Available at: http://rsb.info.nih.gov/ij/
plugins/hough-circles.html

http://ij-plugins.sourceforge.net/plugins/segmentation/k-means.html
http://ij-plugins.sourceforge.net/plugins/segmentation/k-means.html
http://rsb.info.nih.gov/ij/plugins/hough-circles.html
http://rsb.info.nih.gov/ij/plugins/hough-circles.html

References 105

18. Sklansky, J.: On the hough technique for curve detection. IEEE Trans. Comput. 27(10), 923–
926 (1978)

19. Tolias, Y., Panas, S.: Image segmentation by a fuzzy clustering algorithm using adaptive spa-
tially constrained membership functions. IEEE Trans. Syst. Man Cybern. Part A. 28(3), 359–
369 (1998)

20. Vergari,A., Tangari, F.: ImageJ PluginSpatial Fuzzy c-Means.Available at: https://sites.google.
com/site/cilabuniba/research/sfcm

21. Wang, X.Y., Bua, J.: A fast and robust image segmentation using FCMwith spatial information.
Digital Signal Process. 20, 1173–1182 (2010)

22. Zhang,Y.J.: Evaluation and comparison of different segmentation algorithms. PatternRecognit.
Lett. 18, 963–974 (1997)

https://sites.google.com/site/cilabuniba/research/sfcm
https://sites.google.com/site/cilabuniba/research/sfcm

Chapter 8
Morphological Analysis

As our circle of knowledge expands, so does the circumference
of darkness surrounding it.

Albert Einstein

Abstract Fuzzy mathematical morphology is an extension of binary morphology to
gray-scale images using techniques from fuzzy logic. Fuzzy mathematical morphol-
ogy can be applied to process image data having characteristics of vagueness and
imprecision. In this chapter, themain concepts from fuzzymathematical morphology
are briefly introduced and the results of applying fuzzy morphological operators to
construct morphological gradient are reported in low-contrast biological images.

8.1 Mathematical Morphology

Morphology is a mathematical framework for the analysis of spatial structures. It
is based on geometric, algebraic, and topological concepts as well as on set theory.
The main idea lying behind mathematical morphology is assessing image geometric
structures by overlapping small patterns, called structuring elements, in different
parts of the same image.

Originally, mathematical morphology was developed for binary images and used
simple concepts from set theory and geometry such as set inclusion, intersection,
union, complementation, and translation. This resulted in a collection of tools, called
morphological operators, which are eminently suited for the analysis of shape and
structure in binary images. Thus mathematical morphology provides an approach
for processing digital images which is based on shape. If properly used, morpho-
logical operations can be effective in extracting essential shape characteristics and
eliminating irrelevancies.

© The Author(s) 2017
L. Caponetti and G. Castellano, Fuzzy Logic for Image Processing,
SpringerBriefs in Electrical and Computer Engineering,
DOI 10.1007/978-3-319-44130-6_8

107

108 8 Morphological Analysis

The language of mathematical morphology is set theory. Sets in mathematical
morphology represent objects in an image. For example, the set of all black pixels
in a binary image is a complete morphological description of the image. These sets
are members of the 2D integer space Z

2 where each element of a set is a tuple
whose coordinates are the coordinate (x, y) of a black pixel (or white depending on
the convention) of the image. Gray-scale digital images can be represented as sets
whose components are in Z

3. In this case, two components of each element refer
to the coordinates of a pixel and the third component corresponds to its discrete
gray-level value.

8.1.1 Morphological Operators

Basic operations from set theory are union, intersection, complement, difference,
reflection, and translation. The basic operations of mathematical morphology are
dilation, erosion, opening, and closing [9, 13]. Dilation and erosion represent the
primitive operations from which the others are derived. Their definition is based on
operations from the set theory. These operations are the union, the intersection, the
complement, the difference, the reflection, and the translation. Given an image A
and a binary structuring element B, with A and B subsets in Z

2, the morphological
operators are defined as follows.

Dilation
The dilation of A by B is defined as

δB(A) = A ⊕ B =
⋃

y∈B
Ay = {y ∈ Z

2 | B̌y ∩ A �= ∅} (8.1)

where By denotes the translation of B along the vector y, that is, By={b+y|b ∈ B}
and B̌ denotes the reflection of B along the origin, that is B̌ = {−b | b ∈ B}. In
other words, the dilation of image A by element B is the union set of all translations
y such that A and B̌ overlap by at least one element. To compute the dilation of
a binary image A by an element B we overlap the matrix B on the image so that
the origin of B corresponds to the current pixel. If the center of B corresponds
to a foreground pixel of the image A then the current pixel is set to 1. The effect
of this operator on a binary image is to enlarge the boundaries of the regions of
foreground pixels (generally the white pixels). In Fig. 8.1c, we give an example
of dilation applied to a binary image. The area of foreground (black) pixels grows
in size, the gaps between regions are filled. This operator expands or inflates the
black regions and fills in gaps.

Erosion
The erosion of A by B is defined as

A � B = {y ∈ Z
2 | By ⊆ A} (8.2)

8.1 Mathematical Morphology 109

In other words, the erosion of A by B is the set of all points y such that B translated
by y is contained in A. The most important relation between dilation and erosion
is the adjuction relation, defined as

I ⊕ B ⊆ A ⇔ I ⊆ A � B (8.3)

The adjunction relation is considered themost general as well as themost powerful
duality relation between dilations and erosions. In general, dilation and erosion
are not inverse operators. More specifically, if an image A is eroded by an element
B and then dilated by B, the resulting set is not the original set A but a subset of
it (see an example in Fig. 8.1). In most cases, this set is smaller than A. It is called
the opening of A by B and denoted by A ◦ B.

Opening
Formally, the opening of a binary image A by a binary structuring element B is
defined by

A ◦ B = (A � B) ⊕ B) (8.4)

The geometric interpretation of the opening A ◦ B is that the opening is the union
of all translations of B that are contained in A. Consequently, the binary opening
will suppress small peaks and eliminate other small details. In either case, the
result of iteratively applied dilations and erosions is the elimination of specific
image details smaller than the structuring element used.

Closing
Dually, if A is first dilated by B and then eroded by B we get a set which contains
the original set A, and in most cases, is larger than A. It is called the closing of A
by B, denoted by A • B. Formally, the closing of a binary image A by a binary
structuring element B is defined as

A • B = (A ⊕ B) � B (8.5)

If we apply the definition of erosion and dilation in (8.5) we obtain a geometric
interpretation of the closing A • B, that consists of all points y ∈ Z

2 for which
any translation of B that contains y has a nonempty intersection with A. As a
consequence, the binary closing will fill up small gaps on the contour, eliminate
small holes, fuse narrow breaks and long thin gulfs, smooth the contours.

The residual of twomorphological operations is their difference. The first residual
that can be defined is the morphological gradient, which can be used as an edge
detector and as a first approximation for a morphological segmentation. Finally, it is
worth to note that the combination of dilation and erosion leads to other operators
on binary images, such as connected components and region filling.

110 8 Morphological Analysis

Fig. 8.1 a Original binary image. b Binary image obtained by the erosion of a. c Binary image
obtained by the dilation of a. d Binary image obtained by the dilation of b

8.2 Fuzzy Morphology

When working with gray-level images, Boolean logic cannot be applied. As a conse-
quence, binary morphological operators need to be extended. One possible extension
is given by fuzzymathematical morphology, which is a generalization of binary mor-
phology using operators from the theory of fuzzy sets [2, 5, 6, 8]. Using the concept
of fuzzy sets in morphology we can represent both imprecision and uncertainty from
the signal level to the highest decision level [2, 7, 13].

The fuzzy operators used to build fuzzy morphological operators are conjunction
and implication. The basic idea is to use fuzzy conjunctions and implications which
are adjoined in the definition of dilation and erosion, respectively. Here we use the
definitions given in [5], where fuzzy operators are obtained as an extension of the
logical operators, i.e., the Boolean conjunction and the Boolean implication. As
concerns the definition of the fuzzy conjunction C and implication I operators,
several forms have been proposed [4, 6]. In the following, we report the most used
definitions. Given a fuzzy set A(x)where x is an element of the universe of discourse
X , the conjunction operator C , intended as a t-norm, can be defined as

8.2 Fuzzy Morphology 111

• the minimum M(x; y) = min(x; y);
• the algebraic product P(x; y) = x · y;
• the Lukasiewicz t-norm W (x; y) = max(0; x + y1)

The implication operator I can be defined as

• the Kleene-Dienes implicator I K D(x; y) = max(1 − x; y); the Reichenbach
implicator I R(x; y) = 1 − x + x · y;

• the Lukasiewicz implicator I L(x; y) = min(1; 1 − x + y)

Using the extended logical operators, the Definitions (8.1) and (8.2) of binary
dilation and binary erosion can be fuzzified as follows.

Let A be a gray-scale image and let B be a gray-scale structuring element, both
represented as subset of R3. In order to model them as fuzzy sets, the values of
A and B should be mapped in [0, 1] using any membership function. Once both
A and B are fuzzified, we can apply the morphological operators redefined in the
framework of the fuzzy sets. Let C be a fuzzy conjunction operator and let I be a
fuzzy implication operator. The fuzzy dilation and fuzzy erosion of A by B are the
gray-scale images defined by

DC (A, B)(y) = sup
x

C (B(x − y), A(x)) (8.6)

EI (A, B)(y) = inf
x
I (B(x − y), A(x)) (8.7)

Fuzzy closing and fuzzy opening are defined as in the binary case:

CC ,I (A, B)(y) = EI (DC (A, B),−B)(y) (8.8)

OC ,I (A, B)(y) = DC (EI (A, B),−B)(y) (8.9)

where the reflection of the gray-scale structuring element B is defined by −B(x) =
B(−x),∀x ∈ R

2.
As concerns the definition of the fuzzy conjunction C and implication I opera-

tors, several forms have been proposed [2, 7]. In the following, we define the most
used definitions. The conjunction operator C , intended as a t-norm, can be defined
as

• the minimum M(x, y) = min(x, y);
• the algebraic product P(x, y) = x · y;
• the Lukasiewicz t-norm W (x, y) = max(0, x + y − 1)

The implication operator I can be defined as

• the Kleene-Dienes implicator IK D(x, y) = max(1 − x, y);
• the Reichenbach implicator IR(x, y) = 1 − x + x · y;
• the Lukasiewicz implicator IL(x, y) = min(1, 1 − x + y)

112 8 Morphological Analysis

Table 8.1 Different types of fuzzy dilation/erosion operators

Operators C I Dilation D(A, B)(y) Erosion E(A, B)(y)

Kleene-Dienes M IKD supx min(B(x − y), A(x)) infx max(1 − B(x − y), A(x))

Reichenbach P IR supx (B(x − y)A(x)) infx (B(x − y)A(x) + 1 − B(x − y))

Lukasiewicz W IL supx max [0, B(x − y) + A(x) − 1] infx min[1, 1 − B(x − y) + A(x)]

Fig. 8.2 a Original color image. b Image obtained by applying the morphological gradient to each
RGB component of a

Combining the above definitions of C andI in (8.6) and (8.7) we obtain the dif-
ferent types of fuzzy dilation/erosion, namelyKleene-Dienes operators, Reichenbach
operators, Lukasiewicz operators, as described in Table8.1.

Morphological gradient
The combination of dilation and erosion lead to some operators on gray-level images,
such as image smoothing and gradient. In particular, the morphological gradient,
known as theBeucher gradient [1], is the difference between a dilation and an erosion,
or between a dilation and the original image or between the original image and its
erosion. The application of the morphological gradient enhances variations of pixel
intensity in a given neighborhood, thus it is typically used for edge detection and
segmentation. The fuzzy morphological gradient is defined using fuzzy dilation and
fuzzy erosion:

∇C ,I (A, B) = A − EI (A, B),

∇C ,I (A, B) = DC (A, B) − A,

∇C ,I (A, B) = DC (A, B) − EI (A, B).

where C is a conjunction operator and I an implication operator.
This operator highlights sharp gray-level transition in the input image (Fig. 8.2).

It provides a suitable mean to derive and represent the intuitive concept of soft edges
of objects into images. In the following section, we show how to use the fuzzy
morphological gradient to extract soft edges in biological images.

8.2 Fuzzy Morphology 113

Fig. 8.3 A sample
biological image

Morphological smoothing
Image smoothing can be achieved by applying opening followed by a closing. The
results of these two operations is to attenuate both bright and dark artifacts.

8.3 Example: Biological Image Segmentation

In this section, we show how to apply morphological operators in order to segment
an oocyte image. Given a microscope image of an oocyte, the problem faced here
is to separate the oocyte region from other elements (background, injection pipette,
and so on) so as to facilitate the extraction of significant regions from the oocyte,
such as the cytoplasm and the zona pellucida. Figure8.3 shows an example of oocyte
image containing useless elements to be removed.

This process is a crucial step in the analysis of oocyte maturity which may be
directly related to the success rate of Intra Cytoplasmic Sperm Injection (ICSI)
[10, 14] technologies. There are currently some recognized parameters assessing
the quality of oocytes, intended as its maturity: the oocyte and cytoplasm diameter,
its granularity (whether it is central or on border, uniform or not), the presence of
cytoplasmic refractive granules and vacuoles and their size, zona pellucida thickness,
first polar globe diameter and perivitelline space dimension with respect to the first
polar globe, the spindle birefringence and the extracellular dysmorphisms [3, 14].
Hence, the possibility to extract the oocyte from the image for further processing
steps is of fundamental importance in this medical application domain.

The problem of oocyte region extraction in [4] is addressed as a problem of remov-
ing borders touching objects using morphological reconstruction operators. Indeed
regions connected to the border of the oocyte image are not relevant for subsequent
image analysis. Furthermore, it may occur that more than one oocyte is contained in
the image, hence the segmentation process should be able to correctly separate the
regions of different oocytes present in the image to enable further analysis steps.

In order to extract the oocyte region from the entire image in [4] we propose
an approach consisting of two main steps: a soft edge detection based on fuzzy

114 8 Morphological Analysis

morphological gradient, followed by a morphological reconstruction phase. It is
worth to note that in order to simplify the morphological reconstruction step, the
resulting fuzzy edge image is binarized. Since the result of the fuzzy morphological
gradient is a fuzzy set,we can apply a fuzzy thresholdingmethodbasedonminimizing
the measure of fuzziness [11].

Fuzzy morphological gradient.
This processing consists of finding edges in the image, by means of morphological
gradient and successively binarize the result.

The first step is to fuzzify the image. As explained in Sect. 8.2 this can be done
using different membership functions, depending on the preprocessing goal. In our
case, we use the very simple N-function (see Eq.4.1) that performs just a normal-
ization:

N (x) =
{
1 − (b − x)/w if (b − w) ≤ x ≤ b
1 if x > b; 0 if x < (b − w)

(8.10)

where b is the maximum value in the image and w = b−a defines the bandwidth
of the value range.

The fuzzy structuring element B used was built as

B(i, j) = 1 − (1/4) ∗ (i2 + j2)1/2

where i and j are the coordinates of the entry relative to the center of the structuring
element. On such fuzzified image, we calculate the fuzzy morphological gradient:

∇C ,I (A, B) = DC (A, B) − EI (A, B)

Finally, the resulting soft edge image is binarized bymeans of a fuzzy thresholding
algorithm [11].

Morphological reconstruction
After the binarization, elements that are not of interest surrounding the image borders,
such as the holding pipette and the injection pipette, have to be taken out.

In order to eliminate irrelevant elements surrounding the oocyte border, such as
the holding pipette and the injection pipette, we apply a reconstruction operator
based on mathematical morphology. In particular, we perform the reconstruction of
the intersection of the image border with a thick box boundary to eliminate particles
touching the left and right borders of the image that are 4-connected. The extraction
of connected components algorithm [9] is exploited, that is based on dilation and
intersection. In the following, we briefly outline such algorithm.

Let X be a connected component1 contained in a region A and let B be a structuring
element. The algorithm operates by first selecting a point p in the region A belonging

1Two pixels are connected in a subset S of an image A if there exists a path between them made
up of pixels belonging to S. The largest set of pixels connected to the pixel p ∈ S is known as
connected component of S.

http://dx.doi.org/10.1007/978-3-319-44130-6_4

8.3 Example: Biological Image Segmentation 115

to the initial connected component X0 and, starting from it, performs the following
iterative procedure:

Xk = (Xk−1 ⊕ B)
⋂

A k = 1, 2, 3, . . . and X0 = p

The procedure stops when Xk = Xk−1 and then X is defined equal to the connected
component Xk . In this way, if we select as initial pixel p a pixel of the image
border—left or right—any object that is connected to the border of the image can be
individuated as a connected component and successively removed. If we assume that
all foreground points are labeled as 1, then the intersection with A at each iterative
step eliminates dilations centered on elements labeled as 0.

In many cases the obtained image still presents holes in the interior of the object.
These holes can be filled using a filling algorithm [9]. The goal of such an algorithm is
to fill the region of the image by considering a hole as a background region surrounded
by a connected border of foreground pixels. It is based on dilation, complementation,
and intersection. First, a point p is selected in the region to fill, then, starting from that
point, all pixels belonging to the region are set as foreground. Finally, by subtracting
the obtained mask from the original image, the region of the oocyte is achieved on
which a bounding oval region is detected. The complete procedure for oocyte region
extraction is formalized in the following:

Require: J =8-bit gray-level image;

Ensure: R = the region that contains the oocyte;

1. J1= J; /*steps performed on J1*/

2. Apply morphological gradient;

3. Apply fuzzy thresholding;

/* Morphological reconstruction */

4. Apply Kill Borders on the right and left borders;

5. Apply two dilation steps;

6. Fill Holes;

7. Open-Close;

8. J2= J1-J;

/* Oocyte region extraction */

9. Trace the rays starting from the center mass of J2 in the

directions defined by the 8-neighbor of that point.

10. Compute the four Euclidean distances (w, n, s, e) such as

intersections with the rays, traced, respectively, in the

directions West, North, East, South and the image J2;

11. Compute the oocyte diameter and overlap the circumference on

the image J;

12. R = bounding rectangular region of J centered on the mass of

J2 with width (w + e) and height (n + s).

This procedure has been implemented as amacro of ImageJ. The fuzzy operators have
been applied using a modified version of the plugins available at [12]. To give some
illustrative examples, the procedurewas applied to segment somemicroscope images

116 8 Morphological Analysis

Fig. 8.4 Problematic cases requiring the detection of soft edges

Fig. 8.5 Removal of connected components for the image in Fig. 8.3: a binary image obtained by
fuzzy thresholding applied to the fuzzygradient image;b imageobtained after removing components
connected to borders of image (a); c binary imageobtained by thresholding theSobel gradient image;
d image obtained after removing components connected to the borders of image (c)

of human oocytes, provided by the Dipartimento di Endocrinologia ed Oncologia
Molecolare e Clinica of the University “Federico II” of Naples, Italy. Images were
acquired by means of the Nikon Eclipse TE200 Inverted Microscope.

First, we show the need of exploiting fuzzy edge detection instead of a crisp
edge detection such as the Sobel operator. Indeed, strong edges do not allow to
perfectly delineate the limits between regions that are not well separated. There are,
for example, biological images containing more than one cell that are very close
to each other or images containing the pipettes (injection and/or holding) that are
very close to the oocyte (see Fig. 8.4 for some examples). A correct segmentation
of such critical images is not possible using a crisp edge detection. This limitation
is overcame by removing connected components after application of a soft edge
detection, as explained in the previous section.

Figure8.5 shows good results obtained by applying the soft edge detection to the
sample image of Fig. 8.3 compared with the wrong behavior of the Sobel operator.
In the image obtained by Sobel, not only the injection and the holding pipette have

8.3 Example: Biological Image Segmentation 117

Fig. 8.6 a Original image; b Fuzzy gradient image; c binary image; d diameter oocyte; e final
reconstruction; f detected oocyte region

been removed, but also a significant part of the oocyte region. Another example is
shown in Fig. 8.6 that depicts the results of each step of the procedure.

The choice of the fuzzy (erosion/dilation) operators can influence the final result.
In Fig. 8.7 we show the different result obtained by the Kleene-Dienes, Reichenbach,
and Lukasiewicz operators on a sample image. It can be seen that Kleene-Dienes
operators provide softer edges with respect to the other operators. On the overall,
results show that the Kleene-Dienes operators outperform the other operators in this
application domain. This behavior is confirmed by the trend of the relative histograms
reported in Fig. 8.8.

Figure8.9 show the results obtained on a sample images using Kleene-Dienes
operators in the fuzzy dilation and erosion definitions. The outcomes show that our

118 8 Morphological Analysis

Fig. 8.7 Binary image obtained by exploiting a Kleene-Dienes. b Reichenbach. c Lukasiewicz
operators

Fig. 8.8 Histograms of the fuzzy morphological gradient obtained by exploiting. aKleene-Dienes.
b Reichenbach. c Lukasiewicz operators

Fig. 8.9 a Original image. b Fuzzy morphological gradient. c Detected oocyte region

approach can well address the problems of removing the elimination of useless parts
in the image (holding and injection pipettes).

References

1. Beucher, S.: Segmentation d’images et morphologie mathmatique. Doctoral dissertation, Ecole
Nationale Suprieure des Mines de Paris (1990)

2. Bloch, I., Maytre, H.: Fuzzy mathematical morphologies: a comparative study. Pattern Recog-
nit. 28, 1341–1387 (1995)

3. Caponetti, L., Castellano,G., Corsini, V., Sforza,G.:Multiresolution texture analysis for human
oocyte cytoplasm description. In: Proceedings of the MeMeA09, pp. 150–155 (2009)

4. Caponetti, L., Castellano, G., Basile, M.T., Corsini, V.: Fuzzy mathematical morphology for
biological image segmentation. Appl. Intell. 40(1), 1–11 (2014)

5. De Baets, B.: Fuzzy morphology: A logical approach. In: Uncertainty Analysis in Engineer-
ing and Science: Fuzzy Logic, Statistics, and Neural Network Approach, pp. 53–68. Kluwer

References 119

Academic Publishers, Norwel (1997)
6. De Baets, B., Kerre, E.E., Gupta, M.: The fundamentals of fuzzy mathematical morphologies

part i: basics concepts. Int. J. Gen. Syst. 23, 155–171 (1995)
7. Deng, T., Heijmans, H.: Grey-scale morphology based on fuzzy logic. J. Math. Imaging Vis.

16(2), 155–171 (2002)
8. di Gesú, V., Maccarone, M.C., Tripiciano, M.: Mathematical morphology based on fuzzy

operators. Fuzzy Logic 477–486 (1993)
9. Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 3rd edn. Prentice-Hall Inc, Upper

Saddle River, NJ, USA (2006)
10. Hamamah, S.: Oocyte and embryo quality: is their morphology a good criterion?. Journal de

gynecologie, obstetrique et biologie de la reproduction. 34(7 Pt 2), 5S38–5S41 (2005)
11. Huang, L.-K., Wang, M.-J.J.: Image thresholding by minimizing the measure of fuzziness.

Pattern Recognit. 28(4), 41–51 (1995)
12. Landini G.: ImageJ plugin Morphology. Available at: http://sites.imagej.net/Landini/
13. Serra, J.: Image Analysis and Mathematical Morphology. Academic Press Inc., Cambridge

(1983)
14. Wilding, M., DiMatteo, L., DAndretti, S., Montanaro, N., Capobianco, C., Dale, B.: An oocyte

score for use in assisted reproduction. Journal of Ass. Repr. Gen. 24(8), 350–358 (2007)

http://sites.imagej.net/Landini/

Chapter 9
Image Thresholding

Logic will get you from A to B. Imagination will take you
everywhere.

Albert Einstein

Abstract This chapter deals with the methods for image thresholding. It introduces
some basic concepts such as two-level and multilevel thresholding. The chapter
also describes one of the main classical nonfuzzy thresholding methods—the Otzu
method—and presents the Huang method based on minimization of fuzzy entropy.
An application to document image analysis, using fuzzy techniques for segmentation
and neuro-fuzzy system for classification is provided.

9.1 Introduction

Thresholding is a technique widely used in image segmentation. The objective of
histogram thresholding is to determine a threshold value to partition the image space
intomeaningful regions. For example, thresholding is a necessary step inmany image
processing tasks such as automatic recognition of machine printed or handwritten
texts, recognition of object shapes, and image enhancement. A thresholding process
may be applied to values representing gray levels, or edge or properties such as
average or texture.

Two-level thresholding segments pixels of an image into two regions, where one
region contains pixels with gray values smaller than the threshold value and the other
one contains pixels with gray values greater than the threshold value. Precisely, fixed
a value T , a two-level thresholding transforms a gray-level image into a binary image
f ′(x, y) so that

if f (x, y) � T then f ′(x, y) = 1 else f ′(x, y) = 0

© The Author(s) 2017
L. Caponetti and G. Castellano, Fuzzy Logic for Image Processing,
SpringerBriefs in Electrical and Computer Engineering,
DOI 10.1007/978-3-319-44130-6_9

121

122 9 Image Thresholding

When the image is segmented into more than two regions, this is called multilevel
thresholding. Generally in this case, an image f (x, y) is transformed into an image
f ′(x, y) having a restricted number of gray levels. Let Di be a subset of gray levels, a
multilevels thresholding transforms a gray-level image into a binary image f ′(x, y)
so that

if f (x, y) ∈ Di for i = 1 . . . r then f ′(x, y) = i else f ′(x, y) = 0

In general, the threshold is located at the deep valley of the image histogram and
the thresholding results depend on the depth and the width of the valleys separating
the modes of the histogram. However, when the valley is not so obvious, it is very
difficult to determine the threshold. During the past decade, many research studies
have been devoted to the problem of selecting the appropriate threshold value. A
survey can be found in [12, 18].

Generally, the regions in an image may be ill-defined because of image data
ambiguity, due to textured background, information noise, and so on. For this reason,
some approaches based on fuzzy set theory have been proposed. In [6], a method
has been described based on the minimization of the image fuzziness evaluated in
the intensity and spatial domain. In [16] classes of fuzzy entropies are constructed
which are useful for image thresholding based on cost minimization.

In the following, we describe one of the main classical nonfuzzy methods—the
Otzu method—and some methods based on minimization of fuzzy measures [10].
Finally an application from [3] is presented.

9.2 Otzu Method

The Otzu method performs automatic selection of the threshold T . To introduce the
method, we give first some notations.

Let f be an image of M × N pixels with L gray levels. Let ni be the number of
pixels having intensity i and pi = ni/MN its occurrence frequency. Fixed a threshold
value T(k) = k for 0 < k < L − 1, the image can be divided into two classes:

• C1 containing all the pixels having intensity in the range [0, k]
• C2 containing all the pixels having intensity in the range [[k + 1,L − 1]

The probability that a pixel value is assigned to the class C1 called occurrence
probability of the class C1 is defined as a cumulative sum:

P1(k) =
k∑

i=0

pi (9.1)

The occurrence probability of class C2 is

9.2 Otzu Method 123

P2(k) = 1 − P1(k)

The mean intensity value of the pixels assigned to classes C1 and C2 are

m1(k) = 1

P1(k)

k∑

i=0

ipi

m2(k) = 1

P2(k)

L−1∑

i=k+1

ipi

The cumulative mean up to level k is given by

mc(k) =
k∑

i=0

ipi (9.2)

and the average intensity of the entire image, i.e., the global mean, is given by

m =
L−1∑

i=0

ipi (9.3)

Given the above equations, the validity of the following two equations can be
easily verified: P1(k)m1(k) + P2(k)m2(k) = m and P1(k) + P2(k) = 1.

To evaluate the quality of the threshold at level k the following normalized metric
is considered:

η(k) = σ 2
B(k)

σ 2
(9.4)

where σ 2 is the is the intensity variance of all the pixels in the image

σ 2 =
L−1∑

i=0

(i − m)2pi

and σ 2
B is the between-class variance defined as

σ 2
B(k) = P1(k)(m1(k) − m)2 + P2(k)(m2(k) − m)2 (9.5)

Equation (9.5) can be rewritten as

σ 2
B(k) = P1(k)P2(k)(m1(k) − m2(k))

2 = (mP1(k) − mc(k))2

P1(k)(1 − P1(k))
(9.6)

124 9 Image Thresholding

The first expression in (9.6) shows that more distant the two means m1 and m2

are from each other, larger σ 2
B will be. This indicates that the between-class variance

measures the separability between classes. The computation of the second expression
in (9.6) is more efficient since the global meanm is computed only once, so only two
parameters mc and P1 need to be computed for any value of k.

Main peculiarities of the Otzu method are its efficiency since it operates directly
on the gray-level histogram (e.g., a mono-dimensional array of 256 numbers), so it
is fast once the histogram is computed.

The main step of the Otzu method can be summarized as follows:

1. Compute the components of the normalized histogram pi, for i = 1 . . . L − 1.
2. Compute P1(k) for k = 0 . . . L − 1 according to (9.1)
3. Compute mc(k) for k = 0 . . . L − 1 according to (9.2)
4. Compute the global mean m according to (9.3).
5. Compute σ 2

B(k) for k = 0 . . . L − 1 according to (9.6).
6. Obtaining the threshold k∗ as the value of k for which σ 2

B(k) is maximum. If the
maximum is not unique, obtain k∗ by averaging the values of k corresponding to the
maxima.
7. Obtain the separability measure η∗ by evaluating (9.4) at k = k∗.

Moreover, the Otzu method is optimal in the sense that it can find the threshold
that maximizes the interclass variance. Figure9.1 shows an example of thresholding
results, obtained using the plugin [13].

9.3 Fuzzy Thresholding

Fuzzy interpretation of data images is based on the assumption that anM×N image f
ofL gray levels can be associated to an arrayX of fuzzy singletonsμmn = μ(f (m, n)),
each singleton denoting the membership of f (m, n) to the set of gray levels.

Here we describe the fuzzy thresholding approach proposed in [10], where the
membership functionμ(f (m, n)) is a characteristic function that represents the fuzzi-
ness of pixel (m, n) in X. For the purpose of image thresholding, each pixel in the
image should possess a close relationship with its belonging region: the object or the
background. Hence, the membership value of a pixel in X can be defined using the
relationship between the pixel and its belonging region. Let h(g) denote the number
of occurrences of the gray level g in the image. Given a certain threshold value t, the
average gray level of the background, denoted by μ0, and the average gray level of
the object, denoted by μ1, can be obtained as follows:

μ0 =
∑t

g=0 gh(g)
∑t

g=0 h(g)
(9.7)

9.3 Fuzzy Thresholding 125

Fig. 9.1 a A gray-level image and its histogram. b Gaussian smoothed image and its histogram.
c Binary image resulting from Otsu thresholding with T = 129. d Binary image resulting from the
fuzzy thresholding

μ1 =
∑L−1

g=t+1 gh(g)
∑L−1

g=t+1 h(g)
(9.8)

The values μ0 and μ1 can be considered as the target values of the background
and the object for the given threshold value t. The relationship between a pixel in X
and its belonging region should intuitively depend on the difference of its gray level
and the target value of its belonging region. Thus, let the relationship possess the

126 9 Image Thresholding

property that the smaller the absolute difference between the gray level of a pixel and
its corresponding target value is, the larger membership value the pixel has. Hence,
the membership function evaluating the above relationship for the pixel (m, n) can
be defined as

μX(xmn) = 1

1 + |xmn−μ0|
C

if xmn � t (9.9)

μX(xmn) = 1

1 + |xmn−μ1|
C

if xmn � t (9.10)

where C is a constant value such that 1
2 � μX(xmn) � 1. Given a threshold t,

any pixel in the image should belong to either the object or the background region.
Hence, it is expected that the membership value of any pixel should be no less
than 1

2 . The membership function really reflects the relationship of a pixel with its
belonging region. As introduced in Chap.4, a measure of fuzziness [5] indicates the
degree of fuzziness of a fuzzy set. It is a function that associates to the fuzzy set A
a value representing its degree of fuzziness. For a given image set X, the measure
of fuzziness is expected to be as small as possible. Hence, the main purpose is to
select an appropriate threshold value so as to minimize the fuzziness measure of X.
Following [10], here we consider the Yager’s fuzziness measure previously defined
in (4.8) and based on the following distance:

Dp(X, X̄) =
[∑

m

∑

n

|μmn − (1 − μmn)|p
]1/p

for p = 1, 2, 3, . . . (9.11)

For convenience, the following variables are introduced:

S(t) =
t∑

g=0

h(g), S̄(t) =
L−1∑

g=t+1

h(g) and S̄(L − 1) = 0

W (t) =
t∑

g=0

gh(g), W̄ (t) =
L−1∑

g=t+1

gh(g) and W̄ (L − 1) = 0

where in the Eqs. 9.1 and 9.2 the occurrence pi has been evaluated with the histogram
h(i).

http://dx.doi.org/10.1007/978-3-319-44130-6_4
http://dx.doi.org/10.1007/978-3-319-44130-6_4

9.3 Fuzzy Thresholding 127

The algorithm for Huang’s fuzzy thresholding is the following:

Require: The input image, with gray-level range [gmin, gmax].
Ensure: The optimal threshold value.
Set the parameter p in (9.11). Then, calculate S(L − 1) and W (L − 1) for the input
image. Given the threshold value t = gmin, let S(t − 1) = 0 and W (t − 1) = 0.
Repeat from step 1 to step 3 until t = gmax − 1.
1. Compute

S(t) = S(t − 1) + h(t), S(t) = S(L − 1) − S(t),
W (t) = W (t − 1) + txh(t), f̄ (t) = W (L − 1) − W (t)
The average gray levels of the background and the object are, respectively,

obtained by

μ0 = int

[
W (t)

S(t)

]

; μ1 = int

[
f (t)

S(t)

]

where int[x] takes the integer value near the real x.
2. Compute the measure of fuzziness of the input image using (4.8).
3. Set t = t + 1
4. Find the minimum measure to determine the optimal threshold value.

Sometimes, the threshold value located byminimizing the measure of fuzziness is
not necessarily the deepest valley between two peaks. Tomake sure that the threshold
locates at the real valley, a fuzzy range is defined such that the measures within the
range are equal to or less than a tolerance δ = min + (max − min)α% where α is a
specified value 0 ≤ α ≤ 100 and min and max are the minimum and the maximum
measure of fuzziness, respectively. Using the fuzzy range, we can further determine
an improved threshold t∗, which is the best located one in the deep valley of the
gray-level histogram. In other words, the threshold t∗ can be obtained according to
the following equation

min
g

[h(g − 1) + h(g) + h(g + 1)],

whereg belongs to the fuzzy range. Theoretically, the threshold t∗ should have a better
chance of being located at the real valley than the threshold obtained by minimizing
the measure of fuzziness, and it should have a better thresholding result in practice.

A Java plugin implementing Huang’s fuzzy thresholding is available at [11].

9.4 Example: Document Image Analysis

Extraction of the structure or the layout from a document is referred to as docu-
ment analysis. Mapping the layout structure into a logical structure is referred to as
document understanding. Document analysis and understanding are relevant tasks

128 9 Image Thresholding

for the automatic processing of paper documents [14], enabling the recognition of
document contents and the simplification of a number of complex tasks, such as
reediting, storage, maintenance, retrieval, and transmission.

In this section, we focus on document image analysis that provides techniques
for partitioning a document into a hierarchy of physical components such as pages,
columns, paragraphs, words, tables, figures, halftones, etc. [15]. In this context, seg-
mentation of document pages into coherent regions containing homogeneous infor-
mation such as text, graphics, pictures or background, can be seen as a preliminary
phase in the construction of the physical and logical layout. Once the regions of a
document image have been classified, more specific techniques can be applied. For
example, the text regions can be separated in columns, paragraphs, text lines, words,
and characters; then the individual words or characters may be converted into a char-
acter code like ASCII. The graphics regions, such as line drawings, can be further
decomposed in primitives such as strength lines, curve segments, and so on, and then
interpreted.

Several methods for document image segmentation and classification have been
developed [14, 15]. Here we describe an approach designed to solve two document
analysis tasks: segmentation of a document in connected components and classifi-
cation of each component as text region or graphics region. More specifically the
approach, presented in [2, 3, 7], uses a fuzzy technique for segmentation and a
neuro-fuzzy system for classification.

9.4.1 Document Segmentation

A fuzzy technique is applied to segment a document image into homogeneous
regions, also called connected components. Precisely, given a document image, we
initially compute the fuzzy gradient and then we apply the Huang’s fuzzy thresh-
olding described above to the obtained image. Finally the flood-filling operator is
applied to the image resulting from thresholding.

The main steps of the procedure are the ones introduced in Sect. 8.3 for oocyte
image segmentation. The procedure for the extraction of connected components from
a document image can be summarized as follows:

Require: f = 8-bit gray-level image;

Ensure: R = set of connected components;

/*steps performed on f*/

1. Apply fuzzy morphological gradient;

2. Apply fuzzy thresholding;

3. Apply dilation;

4. Fill Holes;

5. Open-Close;

http://dx.doi.org/10.1007/978-3-319-44130-6_8

9.4 Example: Document Image Analysis 129

Fig. 9.2 a Original document image. b Image resulting from the inversion of the fuzzy gradient
image. c Extracted connected components

Fig. 9.3 a Original document image. b Image resulting from the inversion of the fuzzy gradient
image. c Extracted connected components

Figures9.2 and 9.3 show the result of applying the above procedure to segment
two sample document images.

9.4.2 Region Classification

The idea at this stage is to exploit a neuro-fuzzy network to classify each component
(or region) into text, graphics, or background. As described in Sect. 3.4.2, a neuro-
fuzzy model is a fuzzy rule-based model whose rules are automatically defined by
means of a neural network training. Here a neuro-fuzzy network is employed to
learn fuzzy classification rules that enable recognition of text and no-text (graphics)
regions inside the segmented document.

Features Extraction
In order to create the training set for the neuro-fuzzy learning, the Document Image
Database available from the University of Oulu [20] is considered. This database
includes different pages scanned from magazines, newspapers, books, and manuals.
Each image is processed to extract connected components as explained above. Then,
for each region, a feature extraction process is performed in order to describe the
presence (or absence) of text lines in that region. It consists in detecting the skew

http://dx.doi.org/10.1007/978-3-319-44130-6_3

130 9 Image Thresholding

angle φ of the region as the dominant orientation of the straight lines passing through
the region. Inside the text regions, being composed of characters and words, the
direction of the text lines will be highly regular. The dominant orientation of the text
lines determines the skew angle.

This regularity can be captured by means of the Hough transform [8, 9]. The
Hough transform maps each point of the original plane to all points of the Hough
plane describing for each point the possible lines through that point with slope and
distance from origin. The dominant lines are found from peaks in the Hough space
and thus the orientation. Particularly, the skew angle is detected as the angle for
which the Hough transform has the maximum value. The retrieved skew angle φ

is used to obtain the projection profile of the region. The profile is calculated by
accumulating pixel values in the region along the direction of its skew angle, so that
the one-dimensional projection vector vp is obtained. For a text region, vp should
have regular, high frequency sinusoidal shape with peaks and valleys corresponding
to the text lines and the interline spaces, respectively. Conversely, such regularities
can not be observed in graphic regions.

As pointed out in [8, 19] text regions visually present well-defined structures
of lines with specific orientation and periodicity; on the contrary, graphics regions
present uniformity without any specific structure. This means that only text regions
present periodicity of the peaks values in the Hough space. Several techniques can be
used to measure such a periodicity, as Fourier transform, autocorrelation, and power
spectrum density. To measure the regularity of the vp vector, the Power Spectral
Density (PSD) [17] analysis can be performed [2]. In fact, for large text regions, the
PSD coefficients show a significant peak as a consequence of the frequency content
in the region and for nontext the spectrum is almost flat. Then for each region a small
number n of PSD coefficients is selected in the Hough space and used as inputs to
the classifier of document image regions.

A vector x of n coefficients is calculated as follows:

x = |FT(vp)|2

where FT(·) denotes the Fourier Transform [1] and vp is the profile vector in the
direction of the skew angle φ.

By processing the set of available document regions, a number P of input vectors
are generated and labeled as belonging to two classes: text and no text. This set of
labeled vectors represents the training set used to create the classifier.

Neuro-fuzzy Classifier
To classify each region encoded as a vectorX of n coefficients, a neuro-fuzzy network
that learns fuzzy classification rules is used. Assume that the classifier is based on K
rules of the following type:

IF(x1 is A1k)AND . . .AND(xn is Ank)THEN (9.12)

(x ∈ C1 with degree b1k), (x ∈ C2 with degree b2k)

9.4 Example: Document Image Analysis 131

for k = 1 . . .K where K is the number of rules, x = (x1, x2, . . . , xn) are the input
values (i.e., the n PSD coefficients), Aik are fuzzy sets defined on the input variables
and bjk are fuzzy singletons representing the degrees to which a region x belongs to
class Cj, j = 1, 2. The fuzzy sets Aik are defined by Gaussian membership functions:

μik(xi) = exp

[

− (xi − wik)
2

2σ 2
ik

]

As explained in Sect. 3.4, the neuro-fuzzy network encodes fuzzy rules of the form
(9.12) in its topology, and processes information in a way that matches the fuzzy
inference scheme.The adjustable parameters (weights) of the network are the premise
parameters (wik, σik) and the consequent parameters bjk of fuzzy rules.

The fuzzy rule base is automatically defined by a two-step learning of the neuro-
fuzzy network, performed on the training set of these P regions. The first learning
phase consists in clustering the input space via the FCM algorithm introduced in
Sect. 7.3.2. The clustering process is the basis for arranging an initial fuzzy rule
base, referring each rule antecedent to each obtained cluster. For each rule Rk the
center wik of the i-th Gaussian function is defined as the i-th coordinate of the k-th
cluster center, and the width σik is assigned to the value of the cluster radius. The
consequent parameters bjk are initialized by taking into account how much input
vectors belonging to class Cj are covered by the k-th cluster, namely:

bjk =
∑

x∈Cj
μk(x)

∑
x μk(x)

The second learning phase, based on a gradient descent technique, adjusts the free
parameters of the neuro-fuzzy network, thus improving the accuracy of the informa-
tion embedded in the fuzzy rule base. Details of the learning algorithm can be found
in [4] where the neuro-fuzzy methodology has been applied in different contexts.

Fig. 9.4 Result of the neuro-fuzzy classification on the document images of Figs. 9.2a and 9.3a.
White regions corresponding to background, gray regions are classified as text, black regions are
classified as no-text (graphics)

http://dx.doi.org/10.1007/978-3-319-44130-6_3
http://dx.doi.org/10.1007/978-3-319-44130-6_7

132 9 Image Thresholding

After the learning phase, the neuro-fuzzy network is applied to classify regions of
testing documents through the inference of the learned fuzzy rules. To obtain a “hard”
(crisp) classification from the output of the neuro-fuzzy classifier, the class with the
highest membership value is selected and associated to the input region. Figure9.4
shows the classified regions in the two sample documents depicted in Figs. 9.2a and
9.3a. It can be seen that in both documents all the identified components are correctly
classified into text regions and graphics regions.

References

1. Bracewell, R.: The Fourier Transform and its Applications. New York (1965)
2. Caponetti, L., Castellano, G., Fanelli, A.M.: A neuro-fuzzy system for document image seg-

mentation and region classification. In: Proc. of the 2nd IEEE International Workshop on
Intelligent Signal Processing (WISP2001), pp. 27-32 (2001)

3. Caponetti, L., Castiello, C., Goreki, P.: Document pagesegmentation using neuro-fuzzy
approach. Appl. Soft Comput. 8, 118–126 (2008)

4. Castellano, G., Castiello, C., Fanelli, A.M., Mencar, C.: Knowledge discovering by a neuro-
fuzzy modeling framework. Fuzzy Sets Syst. 149(1), 187–207 (2005)

5. De Luca, A., Termini, S.: A definition of a nonprobabilistic entropy in the setting of fuzzy sets
theory. Inf. Control 20(4), 301–312 (1972)

6. Di Zenzo, S., Cinque, L., Levialdi, S.: Image thresholding using fuzzy entropies. IEEE Trans.
Syst. Man Cybern. 28(1), 15–23 (1998)

7. Górecki, P., Caponetti, L., Castiello, C.: Fuzzy techniques for text localisation in images.
In: Computational Intelligence in Multimedia Processing: Recent Advances, pp. 233–270.
Springer, Heidelberg (2008)

8. Hinds, S., Fisher, J., D’Amato, D.: A document skew detectionmethod using run-length encod-
ing and Hough transform. In: Proceedings of the 10th International Conference on Pattern
Recognition (ICPR), pp. 464–468 (1990)

9. Hough, P.: Machine analysis of bubble chamber pictures. In: International Conference on High
Energy Accelerators and Instrumentation, CERN (1959)

10. Huang, L.K., Wang, M.J.J.: Image thresholding by minimizing the measures of fuzziness.
Pattern Recognit. 28(1), 41–51 (1995)

11. Landini, G.: ImageJ Plugin Threholding. Available at: http://imagej.net/User:Landini
12. Lee, S.U., Chung, S.Y.: A comparative performance study of several global thresholding tech-

niques for segmentation. Comput. Vis. Graph. Image Process. 52, 171–190 (1990)
13. Mei, C.: ImageJ PluginOtzuThresholding.Available at: http://rsb.info.nih.gov/ij/plugins/otsu-

thresholding.html
14. Nagy, G.: Twenty years of document image analysis in PAMI. IEEE Trans. Pattern Anal. Mach.

Intell. 22(1), 38–62 (2000)
15. O’Gorman, L., Kasturi, R.: Document Image Analysis. IEEE Computer Society Press, Wash-

ington (1995)
16. Pal, S.K., Rosenfeld, A.: Image enhancement and thresholding by optimization of fuzzy com-

pactness. Pattern Recognit. Lett. 7, 77–86 (1988)
17. Pratt, W.: Digital Image Processing, 3rd edn. Wiley, New York, NY (2001)
18. Sahoo, P.K., Soltani, S., Wong, A.K.C.: A survey of threshold techniques. Comput. Vis. Graph.

Image Process. 41, 233–260 (1988)
19. Srihari, S.N., Govindaraju, V.: Analysis of textual images using the Hough transform. Mach.

Vis. Appl. 2, 141–153 (1989)
20. University of Oulu, Finland, Document Image Database. http://www.ee.oulu.fi/research/imag/

document/

http://imagej.net/User:Landini
http://rsb.info.nih.gov/ij/plugins/otsu-thresholding.html
http://rsb.info.nih.gov/ij/plugins/otsu-thresholding.html
http://www.ee.oulu.fi/research/imag/document/
http://www.ee.oulu.fi/research/imag/document/

Appendix A
Java Code References

All’s well that ends
Arthur Bloch–Murphy’ Law

In this Appendix we report some plugins that are available online for image process-
ing tasks. Reference URLs are listed below.

Chapter2:

• The Imagej plugin implementing the histogram of each component RGB of a color
image is available at: http://rsb.info.nih.gov/ij/plugins/color-histogram.html

• The Imagej plugin implementing theCanny algorithm is available at: http://rsbweb.
nih.gov/ij/plugins/canny/index.html

Chapter7:

• The Imagej plugin implementing theK-means algorithm for image segmentation is
available at: http://ij-plugins.sourceforge.net/plugins/segmentation/k-means.html

• The Imagej plugin implementing the Hough transform for detecting circles of
various radius is available at: http://rsb.info.nih.gov/ij/plugins/hough-circles.html

• The SFCM ImageJ plugin implementing K-means, FCM and SFCM clustering
is available at: https://github.com/arranger1044/SFCM. More information can be
found at: https://sites.google.com/site/cilabuniba/research/sfcm. The web page is
shown in Figs.A.1 and A.2.

Chapter 8:

• The ImageJ plugin implementing the Otzu thresholding method is available at:
http://rsb.info.nih.gov/ij/plugins/otsu-thresholding.html/

• The ImageJ plugin implementing some thresholdingmethods is available at: http://
imagej.net/Auto_Threshold/

© The Author(s) 2017
L. Caponetti and G. Castellano, Fuzzy Logic for Image Processing,
SpringerBriefs in Electrical and Computer Engineering,
DOI 10.1007/978-3-319-44130-6

133

http://dx.doi.org/10.1007/978-3-319-44130-6_2
http://rsb.info.nih.gov/ij/plugins/color-histogram.html
http://rsbweb.nih.gov/ij/plugins/canny/index.html
http://rsbweb.nih.gov/ij/plugins/canny/index.html
http://dx.doi.org/10.1007/978-3-319-44130-6_7
http://ij-plugins.sourceforge.net/plugins/segmentation/k-means.html
http://rsb.info.nih.gov/ij/plugins/hough-circles.html
https://github.com/arranger1044/SFCM
https://sites.google.com/site/cilabuniba/research/sfcm
http://dx.doi.org/10.1007/978-3-319-44130-6_8
http://rsb.info.nih.gov/ij/plugins/otsu-thresholding.html/
http://imagej.net/Auto_Threshold/
http://imagej.net/Auto_Threshold/

134 Appendix A: Java Code References

Fig. A.1 The web page describing the SFCM plugin

Chapter9:

• The ImageJ plugin implementing the morphological operators is available at:
http://sites.imagej.net/Landini/

http://dx.doi.org/10.1007/978-3-319-44130-6_9
http://sites.imagej.net/Landini/

Appendix A: Java Code References 135

Fig. A.2 SFCM plugin configuration

Index

A
Applet, 71

B
Biological image segmentation, 113

C
Canny operator, 34
Class, 66
Color contrast enhancement, 85
Color image representation, 10
Color model, 5
Color segmentation, 99
Connectivity, 94
Contrast enhancement, 18
Convolution product, 29
Crisp clustering, 96

D
Defuzzification, 44
Document image analysis, 127

E
Edge detection, 30

F
Fuzzification, 43
Fuzzy c-means clustering, 97

Fuzzy entropy, 61
Fuzzy index, 60
Fuzzy inference, 42
Fuzzy measures, 60
Fuzzy model, 45
Fuzzy morphology, 110
Fuzzy rule, 41
Fuzzy rule-based system, 87
Fuzzy set, 40
Fuzzy singleton, 55
Fuzzy thresholding, 124

G
Gaussian function, 34
Gradient operator, 32
Gray level, 3
Gray-level contrast enhancement, 88
Gray-level transformation, 20

H
Histogram equalization, 28
Histogram transformation, 27
Hough transform, 130
HSI color model, 8
HSV/HSB color model, 6
Huang method, 127

I
Image defuzzification, 59
Image fuzzification, 55

© The Author(s) 2017
L. Caponetti and G. Castellano, Fuzzy Logic for Image Processing,
SpringerBriefs in Electrical and Computer Engineering,
DOI 10.1007/978-3-319-44130-6

137

138 Index

ImageJ, 74
Image segmentation, 93
Image thresholding, 121

K
K-means clustering, 96

L
Laplacian of a Gaussian (LoG) , 33
Laplacian operator, 33

M
Membership function, 41, 54
Methods, 66
Morphological operators, 108
Multichannel image processing, 86

N
Natural image enhancement, 88
Neuro-fuzzy classifier, 130
Neuro-fuzzy model, 48

O
Object-Oriented programming, 65
Optimization based operators, 36
Otzu method, 122

P
Pixel, 3
Pixel neighbors, 94

R
Region growing, 95
RGB color model, 6

S
Smoothing, 28
Spatial fuzzy c-means clustering, 98

T
Texture segmentation, 101
Thresholding, 27

	Preface
	Contents
	About the Authors
	Part I Fundamentals of Fuzzy Image Processing
	1 Image Representation Using Java
	1.1 Introduction
	1.2 Gray-Level Images
	1.3 Color Models
	1.4 Color Image Representation Using Java
	References

	2 Low-Level Image Processing
	2.1 Introduction
	2.2 Contrast Enhancement
	2.2.1 Gray-Level Transformation
	2.2.2 Thresholding
	2.2.3 Histogram Transformation

	2.3 Image Smoothing
	2.4 Edge Detection
	2.4.1 Canny Operator
	2.4.2 Optimization-Based Operators

	References

	3 Basics of Fuzzy Logic
	3.1 Introduction
	3.2 Fuzzy Set Theory
	3.3 Fuzzy Rule-Based Systems
	3.3.1 Fuzzification
	3.3.2 Fuzzy Rule Base and Inference Engine
	3.3.3 Defuzzification

	3.4 Fuzzy Models
	3.4.1 Design of Fuzzy Rule-Based Systems
	3.4.2 Neuro-Fuzzy Models

	References

	4 Fuzzy Image Processing
	4.1 Introduction
	4.2 Image Fuzzification
	4.2.1 Fuzzy Image

	4.3 Image Defuzzification
	4.4 Fuzziness Measures
	References

	5 Java for Image Processing
	5.1 Basic Concepts
	5.2 Java for Image Processing
	5.3 Applet
	5.4 ImageJ
	5.4.1 Macros
	5.4.2 Plugins

	5.5 Fuzzy Systems in Java
	References

	Part II Application to Image Processing
	6 Color Contrast Enhancement
	6.1 Introduction
	6.2 Multichannel Image Processing
	6.3 Fuzzy Techniques for Color Enhancement
	6.4 A Fuzzy Rule-Based System for Color Enhancement
	6.5 Example: Natural Image Enhancement
	References

	7 Image Segmentation
	7.1 Introduction
	7.2 The Segmentation Problem
	7.3 Methods for Segmentation
	7.3.1 Crisp Clustering
	7.3.2 Fuzzy Clustering
	7.3.3 Spatial Fuzzy Clustering

	7.4 Example: Color Segmentation
	7.5 Example: Texture Segmentation
	References

	8 Morphological Analysis
	8.1 Mathematical Morphology
	8.1.1 Morphological Operators

	8.2 Fuzzy Morphology
	8.3 Example: Biological Image Segmentation
	References

	9 Image Thresholding
	9.1 Introduction
	9.2 Otzu Method
	9.3 Fuzzy Thresholding
	9.4 Example: Document Image Analysis
	9.4.1 Document Segmentation
	9.4.2 Region Classification

	References

	Appendix A Java Code References
	Index

