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Preface
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and given such generous comments, particularly David Jones, Laurence Freed-
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full responsibility for all errors and idiosyncrasies. Our particular thanks go to

Daniel Farewell for writing the BANDY program, and Nick Freemantle for

providing data. The University of Leicester provided the second author with

study leave, during which part of this work was carried out. Finally, we must

thank Rob Calver and Siân Jones at Wiley for being so patient with the repeated

excuses for delay: in the words of Douglas Adams (1952–2001). ‘‘I love dead-
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1

Introduction

1.1 WHAT ARE BAYESIAN METHODS?

Bayesian statistics began with a posthumous publication in 1763 by Thomas

Bayes, a Nonconformist minister from the small English town of TunbridgeWells.

His work was formalised as Bayes theorem which, when expressed mathematic-

ally, is a simple and uncontroversial result in probability theory. However,

specific uses of the theorem have been the subject of continued controversy for

over a century, giving rise to a steady stream of polemical arguments in a number

of disciplines. In recent years a more balanced and pragmatic perspective has

developed and this more ecumenical attitude is reflected in the approach taken in

this book: we emphasise the benefits of Bayesian analysis and spend little time

criticising more traditional statistical methods.

The basic idea of Bayesian analysis is reasonably straightforward. Suppose an

unknown quantity of interest is the median years of survival gained by using an

innovative rather than a standard therapy on a defined group of patients: we

shall call this the ‘treatment effect’. A clinical trial is carried out, following

which conventional statistical analysis of the results would typically produce a

P-value for the null hypothesis that the treatment effect is zero, as well as a point

estimate and a confidence interval as summaries of what this particular trial

tells us about the treatment effect. A Bayesian analysis supplements this by

focusing on how the trial should change our opinion about the treatment effect.

This perspective forces the analyst to explicitly state

. a reasonable opinion concerning the plausibility of different values of the

treatment effect excluding the evidence from the trial (known as the prior

distribution),

. the support for different values of the treatment effect based solely on data

from the trial (known as the likelihood),

and to combine these two sources to produce

. a final opinion about the treatment effect (known as the posterior distribution).

1
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The final combination is done using Bayes theorem, which essentially weights

the likelihood from the trial with the relative plausibilities defined by the prior

distribution. This basic idea forms the entire foundation of Bayesian analysis,

and will be developed in stages throughout the book.

One can view the Bayesian approach as a formalisation of the process of

learning from experience, which is a fundamental characteristic of all scientific

investigation. Advances in health-care typically happen through incremental

gains in knowledge rather than paradigm-shifting breakthroughs, and so this

domain appears particularly amenable to a Bayesian perspective.

1.2 WHATDOWEMEANBY ‘HEALTH-CAREEVALUATION’?

Our concern is with the evaluation of ‘health-care interventions’, which is a

deliberately generic term chosen to encompass all methods used to improve

health, whether drugs, medical devices, health education programmes, alterna-

tive systems for delivering care, and so on. The appropriate evaluation of such

interventions is clearly of deep concern to individual consumers, health-care

professionals, organisations delivering care, policy-makers and regulators: such

evaluations are commonly called ‘health-technology assessments’, but we feel

this term carries connotations of ‘high’ technology that we wish to avoid.

Awide variety of research designs have beenused in evaluation, and it is not the

purposeof thisbook toargue thebenefitsofonedesignoveranother.Rather,weare

concernedwithappropriatemethods foranalysingand interpretingevidence from

one ormultiple studies of possibly varying designs. Many of the standardmethods

of analysis revolve around the classical randomised controlled trial (RCT): these

includepowercalculationsat thedesignstage,methods for controllingType I error

within sequential monitoring, calculation of P-values and confidence intervals at

the final analysis, andmeta-analytic techniques for pooling the results ofmultiple

studies. Suchmethods have served the medical research community well.

The increasing sophistication of evaluations is, however, highlighting the

limitations of these traditional methods. For example, when carrying out a

clinical trial, the many sources of evidence and judgement available beforehand

may be inadequately summarised by a single ‘alternative hypothesis’, monitor-

ing may be complicated by simultaneous publication of related studies, and mul-

tiple subgroups may need to be analysed and reported. Randomised trials may

not be feasible or may take a long time to reach conclusions. A single clinical

trial will also rarely be sufficient to inform a policy decision, such as embarking

or continuing on a research programme, regulatory approval of a drug or

device, or recommendation of a treatment at an individual or population

level. Standard statistical methods are designed for summarising the evidence

from single studies or pooling evidence from similar studies, and have difficulties

dealing with the pervading complexity of multiple sources of evidence. Many

have argued that a fresh, Bayesian, approach is worth investigating.

2 Introduction
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1.3 A BAYESIAN APPROACH TO EVALUATION

We may define a Bayesian approach as ‘the explicit quantitative use of external

evidence in the design, monitoring, analysis, interpretation and reporting of a

health-care evaluation’. The argument of this book is that such a perspective

can be more flexible than traditional methods in that it can adapt to each unique

situation, more efficient in using all available evidence, more useful in providing

predictions and inputs for making decisions for specific patients, for planning

research or for public policy, and more ethical in both clarifying the basis for

randomisation and fully exploiting the experience provided by past patients.

For example, a Bayesian approach allows evidence from diverse sources

to be pooled through assuming that their underlying probability models

(their likelihoods) share parameters of interest: thus the ‘true’ underlying effect

of an intervention may feature in models for both randomised trials and obser-

vational data, even though there may be additional adjustments for potential

biases, different populations, crossovers between treatments, and so on.

Attitudes have changed since Feinstein (1977) claimed that ‘a statistical

consultant who proposes a Bayesian analysis should therefore be expected to

obtain a suitably informed consent from the clinical client whose data are to be

subjected to the experiment’. Increasing attention to the Bayesian approach is

shown by the medical and statistical literature, the popular scientific press,

pharmaceutical companies and regulatory agencies. However, many important

outstanding questions remain: in particular, to what extent will the scientific

community, or the regulatory authorities, allow the explicit introduction of

evidence that is not totally derived from observed data, or the formal pooling

of data from studies of differing designs? Indeed, Berry (2001) warns that ‘There

is as much Bayesian junk as there is frequentist junk. Actually, there’s probably

more of the former because, to the uninitiated, the Bayesian approach seems

like it provides a free lunch’. External evidence must therefore be introduced

with caution, and used in a clear, explicit and transparent manner that can be

challenged by those who need to critique any analysis: this balanced approach

should help resolve these complex questions.

1.4 THE AIM OF THIS BOOK AND THE INTENDED

AUDIENCE

This book is intended to provide:

. a review of the essential ideas of Bayesian analysis as applied to the evaluation

of health-care interventions, without obscuring the essential message with

undue technicalities;

. a suggested ‘template’ for reporting a Bayesian analysis;

A Bayesian approach to evaluation 3
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. a critical commentary on similarities and differences between Bayesian and

conventional approaches;

. a structured review of published work in the areas covered;

. a wide range of stand-alone examples of Bayesian methods applied to real

data, mainly in a common format, with accompanying software which will

allow the reader to reproduce all analyses;

. a guide to potential areas where Bayesian methods might be particularly

valuable, and where further research may be necessary;

. an indication of appropriate methods that may be applied in different contexts

(although this is not intended as a ‘cookbook’);

. a range of exercises suitable for use in a course based on the material in this

book.

Our intended audience comprises anyone with a good grasp of quantitative

methods in health-care evaluation, and whose mathematical and statistical

training includes basic calculus and probability theory, use of normal tables,

clinical trial design, and familiarity with hypothesis testing, estimation, confi-

dence intervals, and interpretation of odds and hazard ratios, up to the level

necessary to use standard statistical packages. Bayesian statistics has a (largely

deserved) reputation for being mathematically challenging and difficult to put

into practice, although we recommend O’Hagan and Luce (2003) as a good

non-technical preliminary introduction to the basic ideas. In this book we

deliberately try to use the simplest possible analytic methods, largely based on

normal distributions, without distorting the conclusions: more technical aspects

are placed in starred sections that can be omitted without loss of continuity.

There is a steady progression throughout the book in terms of analytic com-

plexity, so that by the final chapters we are dealing with methods that are at the

research frontier. We hope that readers will find their own level of comfort and

make some effort to transcend it.

1.5 STRUCTURE OF THE BOOK

We have struggled to decide on an appropriate structure for the material in

this book. It could be ordered by stage of evaluation and so separate, for

example, initial observational studies, RCTs possibly for licensing purposes,

cost-effectiveness analysis and monitoring interventions in routine use. Alter-

natively, we might structure by study design, with discussion of randomised

trials, databases, case–control studies, and so on. Finally, we could identify the

modelling issue, for example prior distributions, alternative forms for likelihoods,

and loss functions. We have, after much deliberation, made a compromise and

used aspects of all three proposals, using extensive examples to weave together

analytic techniques with evaluation problems.

4 Introduction
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Chapter 2 is a brief revision of important aspects of traditional statistical

analysis, covering issues such as probability distributions, normal tables, para-

meterisation of outcomes, summarising results by estimates and confidence

intervals, hypothesis testing and sample-size assessment. There is a particular

emphasis on normal likelihoods, since they are an important prerequisite for

much of the subsequent Bayesian analysis, but we also provide a fairly detailed

catalogue of other distributions and their use.

Chapter 3 forms the core of the book, being an overview of the main features of

the Bayesian approach. Topics include the subjective interpretation of probabil-

ity, use of prior to posterior analysis in a clinical trial, assessing the evidence in

reported clinical trial results, comparing hypotheses, predictions, decision-

making, exchangeability and hierarchical models, and computation: these

topics are then applied to substantive problems in later chapters. Differing

perspectives on prior distributions and loss functions are shown to lead to

different schools of Bayesianism. A proposed checklist for reporting Bayesian

health-care evaluations forms the basis for all further examples in the book.

Chapter 4 briefly critiques the ‘classical’ statistical approach to health-care

evaluation and makes a comparison with the Bayesian approach. Hypothesis

tests, P-values, Bayes factors, stopping rules and the ‘likelihood principle’

are discussed with examples. This chapter can be skipped without loss of

continuity.

Chapter 5 deals in detail with sources of prior distributions, such as expert

opinion, summaries of evidence, ‘off-the-shelf’ default priors and hierarchical

priors based on exchangeability assumptions. The criticism of prior opinions in

the light of data is featured, and a detailed taxonomy provided of ways of using

historical data as a basis for prior opinion.

Chapter 6 attempts to structure the substantial work on Bayesian approaches

to all aspects of RCTs, including design, monitoring, reporting, and interpret-

ation. The many worked examples emphasise the need for analysis of sensitivity

to alternative prior assumptions.

Chapter 7 covers observational studies, such as case–control and other non-

randomised designs. Particular aspects emphasised include the explicit model-

ling of potential biases with such designs, and non-randomised comparisons of

institutions including ranking into ‘league tables’.

Chapter 8 considers the synthesis of evidence from multiple studies, starting

from ‘standard’ meta-analysis and then considering various extensions such as

potential dependence of treatment effects on baseline risk. We particularly focus

on examples of ‘generalised evidence synthesis’, which might feature studies of

different designs, or ‘indirect’ comparison of treatments that have never been

directly compared in a trial.

Chapter 9 examines how Bayesian analyses may be used to inform policy,

including cost-effectiveness analysis, research planning and regulatory affairs.

The view of alternative stakeholders is emphasised, as is the integration of

evidence synthesis and cost-effectiveness in a single unified analytic model.

Structure of the book 5
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Chapter 10 includes a final summary, general discussion and some sugges-

tions for future research. Appendix A briefly describes available software and

Internet sites of interest.

Most of the chapters finish with a list of key points and questions/exercises,

and some have a further guide to the literature.

This structure will inevitably mean some overlap in methodological ques-

tions, such as the appropriate form of the prior distribution, and whether it is

reasonable to adopt an explicit loss function. For example, a particular issue that

arises in many contexts is the appropriate means of including historical data.

This will be introduced as a general issue and a list of different approaches

provided (Section 3.16), and then these approaches will be illustrated in four

different contexts in which one might wish to use historical data: first, obtaining

a prior distribution from historical studies (Section 5.4); second, historical

controls in randomised trials (Section 6.9); third, modelling the potential biases

in observational studies (Section 7.3), and fourth, pooling data from many

sources in an evidence synthesis (Section 8.2). This overlap means that a

considerable amount of cross-referencing is inevitable and ideally there would

be hypertext links, but a traditional book format forces us into a linear structure.

Different audiences may want to focus on different parts of the book. The

material up to Chapter 5 comprises a basic short course in Bayesian analysis,

suitable for both students and researchers. After that, Chapter 6 may be of more

interest to statisticians working with clinical trials in the pharmaceutical indus-

try or the public sector, while Chapters 7–9 may be more appropriate for those

exploring policy decisions. However, there are no clear boundaries and we hope

that most of the material is relevant for much of the potential readership.

In order to avoid disappointment, we should make clear what this book does

not contain:

. There is almost no guidance on data analysis, model checking and many

other essential ingredients of professional statistical practice. Our discussion of

study design is limited to sample-size calculations, and there is little contribu-

tion to the debate concerning the relative importance of observational and

randomised studies.

. There is no rigorous mathematical or philosophical development of the Bayes-

ian approach, and the technical development is limited entirely to the level

required for the examples.

. The examples are almost all taken from published work by ourselves and

others, and although they deal with real problems and use real data, there is

necessarily a degree of simplification in the presentation. In addition, while

the Bayesian approach emphasises the formal use of substantive knowledge

and subjective opinion, it is inevitable that judgements are introduced in a

somewhat stylised manner into such ‘second-hand’ examples. We should also

point out that numbers given in the text have been rounded, and the accom-

panying programs should be used for a more accurate analysis.

6 Introduction
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. There is limited development of the decision-theoretic approach to evaluation,

and many will feel this is a serious omission. This bias arises from two related

reasons. First, our personal experience has been almost entirely concerned

with problems of inference, and so that is what we feel qualified to write

about. Second, it will become clear that we have some misgivings concerning

the application of decision theory in this context, and so prefer to emphasise

the more immediately relevant material.

. There is very limited exploration of more general Bayesian approaches to

modelling data that arise in health-care evaluations, such as applications to

survival analysis, longitudinal models, non-compliance in trials, drop-outs

and other missing data, and so on.

The accompanying website will be found at http://www.mrc-bsu.cam.

ac.uk/bayeseval/, which provides code for most of the examples in the

book, either using the BANDY spreadsheet program for simple analysis of odds

and hazard ratios, or WinBUGS code for more complex examples. The website

will also contain a list of any errors detected.

Finally, we should emphasise that this book is not intended as a polemic in

favour of Bayesianism – there have been enough of those – and we shall try to

avoid making exaggerated claims as to the benefits of this new ‘treatment’ for

statistical problems. Our hope is that we can contribute to the responsible use of

Bayesian methods and hence help in a small way towards the development of

cost-effective health-care.

Structure of the book 7
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2

Basic Concepts from
Traditional Statistical

Analysis

The Bayesian approach, to a considerable extent, supplements rather than

replaces the kind of analyses traditionally carried out in assessing health-care

interventions, and in this chapter we shall briefly review some of the basic ideas

that will subsequently be found useful. In particular, probability theory is

fundamental to Bayesian analysis, and we therefore revise the basic concepts

with a natural emphasis on Bayes theorem. We also consider random variables

and probability distributions with particular emphasis on the normal distribu-

tion, which plays a vital role in summarising what the observed data can tell us

about unknown quantities of interest. A particularly important practical aspect

is the transformation of output from standard statistical packages into a form

amenable to Bayesian interpretation.

Bayesian analysis makes a much wider use of probability distributions than

traditional statistical methods, in that not only are sampling distributions re-

quired for summaries of data, but also a wide range of distributions are used to

represent prior opinion about proportions, event rates, and other unknown

quantities. The shapes of distributions therefore become particularly important,

as they are intended to represent the plausibility of different values, and so we

shall provide (in starred sections) extensive graphical displays as well the usual

formulae.

Most of the issues addressed in this chapter are covered in a concise and

readable manner in standard textbooks such as Altman (2001) and Berry et al.

(2001b). In addition, Clayton and Hills (1993) consider a likelihood-based

approach to many of the models that are frequently encountered in epidemi-

ology and health-care evaluation.

9
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2.1 PROBABILITY

2.1.1 What is probability?

Suppose a is some event which may or may not take place, such as the next toss

of a coin coming up heads. Although we may casually speak of the ‘probability’

of a occurring, and give it a mathematical notation p(a), it is perhaps remarkable

that there is no universally agreed definition of what this term means. Perhaps

the currently most accepted interpretation is the following: p(a) is the proportion
of times a will occur in an infinitely long series of repeated identical situations.

This is known as the ‘frequentist’ perspective, as it rests on the frequency with

which specific events occur. However, a number of other interpretations of

probability have been made throughout history, and we shall consider a differ-

ent, ‘subjective’, definition in Section 3.1.

There is little dispute, however, about the mathematical properties of prob-

ability. Let a and b be events, and H represent the context in which a and b

might arise, and let p(ajH) denote the probability of a given the context H: the

vertical line represents ‘conditioning’. Then p(ajH) is a number that satisfies the

following three basic rules:

1. Bounds.

0 � p(ajH) � 1,

where p(ajH) ¼ 0 if a is impossible and p(ajH) ¼ 1 if a is certain in the context

H.

2. Addition rule. If a and b are mutually exclusive (i.e. one at most can occur),

p(a or bjH) ¼ p(ajH)þ p(bjH):

(We note that, for technical reasons, it is helpful if Rule 2 is taken as holding

for an infinite set of mutually exclusive events.)

3. Multiplication rule. For any events a and b,

p(a and bjH) ¼ p(ajb,H)p(bjH):

We say that a and b are independent if p(a and bjH) ¼ p(ajH)p(bjH) or equiva-
lently p(ajb,H) ¼ p(ajH): thus the fact that b has occurred does not alter the

probability of a. The multiplication rule can equivalently be expressed as the

definition of conditional probability,

p(ajb,H) ¼ p(a and bjH)

p(bjH)
,

provided p(bjH) 6¼ 0.

10 Basic concepts from traditional statistical analysis
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The explicit introduction of the context H is unusual in standard texts and we

shall subsequently drop it to avoid accusations of pedantry: however, it is always

useful to keep in mind that all probabilities are conditional and so, if the situation

changes, then probabilities may change. We shall see in Section 3.1 that this

notion forms the basis of subjective probability, in whichH, the context, represents

the information on which an individual bases their own subjective assessment of

the degree of belief, i.e. probability, of an event occurring.

Example 2.1 illustrates that these rules can be given an immediate intuitive

justification by comparison with a standard experiment.

Example 2.1 Dice: Illustrationof rulesof probability

Suppose H denotes the roll of two perfectly balanced six-sided dice, and let
‘�’ denote ‘is equivalent to’.

Rule 1. For a single die: if a � ‘throw 7’, then p(a) ¼ 0; if a � ‘throw � 6’,
then p(a) ¼ 1. If c is the sum of the two dice: then if c � ‘13’, then p(c) ¼ 0;
if c � ‘� 12’, then p(c) ¼ 1.

Rule 2. For a single die: if a � ‘throw 3’, b � ‘throw 4’, then

p(a or b) ¼ p(a)þ p(b) since a and b are mutually exclusive

¼ 1=6þ 1=6 ¼ 1=3:

Rule3. If we throw two dice: if a � ‘first die throw 2’, b � ‘second die throw
5’, then

p(a and b) ¼ p(a)p(b) since a and b are independent

¼ 1=6� 1=6 ¼ 1=36:

If a � ‘total score of the two throws is greater than or equal to 6’, b � ‘first
die throw 1’, then

p(a and b) ¼ p(ajb)p(b)
¼ 1=3� 1=6 ¼ 1=18:

Suppose we also consider the events ‘a and b’ and ‘a and b’, where b

represents the event ‘not b’. Then ‘a and b’ and ‘a and b’ are mutually exclusive

and together form the event a, and hence, using Rule 2, we have the identity

p(a) ¼ p(a and b)þ p(a and b) (2:1)

which is known as ‘marginalisation’. Further, by using Rule 3, we obtain

p(a) ¼ p(ajb)p(b)þ p(ajb)p(b), (2:2)

Probability 11
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which is known by the curious title of ‘extending the conversation’ (or ‘extending

the argument’). Example 2.2 shows these expressions follow naturally from

considering the full ‘joint’ distribution over all possible combinations of events.

Example 2.2 Prognosis:Marginalisationandextending the conversation

Suppose we wish to determine the probability of survival (up to a specified
point in time) following a particular cancer diagnosis, given that it depends
on the stage of disease at diagnosis amongst other factors. Whilst directly
specifying the probability of surviving, denoted b, may be difficult, by
extending the conversation to include whether the cancer was at an early
stage, denoted a, or not, denoted a, we obtain from (2.1),

p(b) ¼ p(bja)p(a)þ p(bja)p(a):

Forexample, supposepatientswithearly stagediseasehaveagoodprogno-
sis, say p(bja) ¼ 0:80, but for late stage it is poor, say p(bja) ¼ 0:20, and that
of new diagnoses the majority, 90%, are early stage, i.e. p(a) ¼ 0:90
and p(a) ¼ 0:10. Then the marginal probability of surviving is p(b) ¼
0:80� 0:90þ 0:20� 0:10 ¼ 0:74.

Table 2.1 shows all possible combinations of events and their probabilities,
as well as themarginal probabilities that, appropriately, appear in themargin
of the table. The joint probabilities of events have been obtained byRule 2 so
that, for example, p(b and a) ¼ p(bja)p(a) ¼ 0:80� 0:90 ¼ 0:72:

Table 2.1 Probabilities of all combinations of survival and stage, including
marginal probabilities.

Early stage
a

Late stage
a

Survive b 0.72 0.02 0.74
Not survive b 0.18 0.08 0.26

0.90 0.10 1.00

2.1.2 Odds and log-odds

Any probability p can also be expressed in terms of ‘odds’ O, where

O ¼ p

1� p
and

p ¼ O

1þ O
,

12 Basic concepts from traditional statistical analysis
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so that, for example, a probability of 0.20 (20% chance) corresponds to odds of

O ¼ 0:20=0:80 ¼ 0:25 or, in betting parlance, ‘4 to 1 against’. Conversely,

betting odds of ‘7 to 4 against’ correspond to O ¼ 4=7, or a probability of

p ¼ 4=11 ¼ 0:36.
The natural logarithm (denoted log) of the odds is termed the ‘logit’, so that

logit(p) ¼ log
p

1� p

� �
:

2.1.3 Bayes theorem for simple events

A number of properties can immediately be derived from Rules 1 to 3 of Section

2.1.1. Since p(b and a) ¼ p(a and b), Rule 3 implies that p(bja)p(a) ¼ p(ajb)p(b), or
equivalently

p(bja) ¼ p(ajb)
p(a)

� p(b): (2:3)

We have proved Bayes theorem! In words, this vital result tells us how an initial

probability p(b) is changed into a conditional probability p(bja) when taking into

account the event a occurring: it should be clear by this description that we are

interpreting Bayes theorem as providing a formal mechanism for learning from

experience.

Equation (2.3) also holds for b, so that

p(bja) ¼ p(ajb)
p(a)

� p(b), (2:4)

and dividing (2.3) by (2.4) we obtain the odds form for Bayes theorem:

p(bja)
p(bja) ¼

p(ajb)
p(ajb)�

p(b)

p(b)
: (2:5)

Thus p(b)=p(b) ¼ p(b)=(1� p(b) ), the odds on b before taking into account the event
a, which is changed into the new odds p(bja)=p(bja) after conditioning on a.

Equation (2.5) shows how Bayes theorem accomplishes this transformation

without even explicitly calculating p(a), and this insight is exploited in Section 3.2.

Example 2.3 Prognosis (continued): Bayes theorem for single events

Suppose we were given Table 2.1, and wanted to use Bayes theorem to tell
us how knowing the stage of the disease at diagnosis revises our probabil-
ity for survival a. Initially, before we know the stage, p(b) ¼ 0:74 from the
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marginal probability in Table 2.1. Suppose we find out that the disease is at
an early stage, i.e. a, where we know from Table 2.1 that
p(ajb) ¼ 0:72=0:74 ¼ 0:97 and p(a) ¼ 0:9. Hence from (2.3) we obtain a
revised probability of survival

p(bja) ¼ 0:97

0:9
� 0:74 ¼ 0:80,

matching what, in fact, we knew already.

To use the odds form of Bayes theorem (2.5) we first require the initial odds
for survival, i.e. p(b)=p(b) ¼ 0:74=0:26 ¼ 2:85, and the ratio
p(ajb)=p(ajb) ¼ 0:97=0:69 ¼ 1:405. Then from (2.5) we obtain the final
odds on survival as 2:85� 1:41 ¼ 4:01, corresponding to a probability
p(bja) ¼ 0:80 (up to rounding error).

The two forms of Bayes theorem both give the required results and can be
thought of as a means of moving from a marginal probability in a table to a
conditional probability having taken into account some evidence. As we
shall see in Section 3.2, it is this use of Bayes theorem that is used in many
diagnostic testing situations without any controversy.

2.2 RANDOM VARIABLES, PARAMETERS AND

LIKELIHOOD

2.2.1 Random variables and their distributions

Random variables have a somewhat complex formal definition, but it is suffi-

cient to think of them as unknown quantities that may take on one of a set of

values: traditionally a random variable is denoted by a capital Latin letter, say

Y, before being observed and by a lower-case letter y as a specific observed

value. This convention tends to be broken in Bayesian analysis, in which all

unknown quantities are considered as random variables, but we shall try to

keep to it where it clarifies the exposition.

Loosely speaking, p(y) denotes the probability of a random variable Y taking

on each of its possible values y. p(y) is formally known as the probability density

function, and the probability that Y does not exceed y, P(Y4y), is termed the

probability distribution function. We shall tend to use ‘probability distribution’ as

a generic term, hopefully without causing confusion.

Probability distributions may be:

Binary.WhenY can takeononeof twovalues,weshall generallyuse thenotation

Y ¼ 1 for when an event of interest occurs, and Y ¼ 0 when it does not: this is
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known as aBernoulli trial, after Jakob Bernoulli (1654–1705). The correspond-

ing probability distribution obeys the rules p(Y ¼ 1) ¼ 1�p(Y ¼ 0), and is said
to have a Bernoulli distribution (Section 2.6.1); see Example 2.4.

Discrete. p(y) forms a discrete distribution when Y can take on one of a list of

values, say 0, 1, 2, 3, . . . . The binomial (Section 2.6.1) and Poisson (Section

2.6.2) distributions are used in this book.

Continuous. Suppose Y can, in theory, take on values measured to an arbitrary

degree of precision (of course, in practice, rounding of measurements prevents

this). This means that calculus is needed, and the probability of Y lying in any

specified interval I is obtained by the integral
R
I
p(y) dy. The continuous

distributions met most often in this book are the normal (Section 2.3) and

the uniform (Section 2.6.4), although a wide range of others are discussed in

Section 2.6: many of these are useful as prior distributions for unknown

quantities.

Following Rule 1 in Section 2.1.1, all probability distributions should assign

total probability 1 to the set of all possible events – these are known as ‘proper’

probability distributions. For continuous distributions this would mean that they

integrated to 1, i.e.
R
p(y) dy ¼ 1. In some theoretical exercises it can be useful to

imagine ‘improper’ distributions that do not obey this rule, for example uniform

distributions over the entire range �1 to 1. In practice, however, all distribu-

tions used in our examples will be proper (this can in any case always be achieved

by truncating such a distribution at very low and high values).

The expressions derived in Section 2.1 for simple events have their counter-

parts for continuous random variables x, y. To express how the probability of y is

changed when taking into account an observation x, we write Bayes theorem as

p(yjx) ¼ p(xjy)
p(x)

� p(y): (2:6)

To obtain the (marginal) distribution p(x) from the joint distribution p(x,y), we

require the continuous counterpart to (2.1),

p(x) ¼
Z

p(x,y) dy; (2:7)

shows how this is particularly important in Bayesian analysis as there may be

many unknown quantities but we may only be interested in one at a time.

Finally, the notion of extending the conversation (see (2.2) ), given by

p(x) ¼
Z

p(xjy) p(y) dy, (2:8)

expresses how a conditional distribution p(xjy) is ‘averaged over’ by a distribu-

tion p(y) in order to produce a distribution on x.
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Chapter2 Basic concepts from traditional statistical analysis 17.11.2003 11:45am page 15



Bayesian methods make repeated use of such integrations, and indeed the

technical problems of carrying them out has, in the past, hampered the devel-

opment of the approach. Fortunately, in subsequent chapters their use will be

implicit and intuitive, with the necessary integrations made reasonably

straightforward either by simplifying assumptions of normal distributions, or

by using modern simulation methodology.

2.2.2 Expectation, variance, covariance and correlation

If we have a distribution, p(y), for an unknown quantity, Y, and we require the

expectation (mean) of Y then this is given by

E(Y) ¼�k
i¼1yi p(yi) (2:9)

if the distribution is discrete, and by

E(Y) ¼
Z

y p(y) dy (2:10)

if the distribution is continuous.

The variance of Y is defined as

V(Y) ¼ E(Y � E(Y) )2

¼ E(Y2)� E(Y)2,

which may be calculated, for example, using E(Y2) ¼ R y2p(y) dy. The standard
deviation is then defined as SD(Y) ¼

ffiffiffiffiffiffiffiffiffiffi
V(Y)

p
.

The ‘covariance’ of X and Y is defined as

Cov(X,Y) ¼ E(XY)� E(X)E(Y) (2:11)

and measures the association between X and Y. However the covariance is not

generally easy to interpret, and a better summary measure is the correlation,

which is the covariance scaled by the standard deviations of the variables:

Corr(X,Y) ¼ Cov(X,Y)

SD(X)SD(Y)
: (2:12)

Corr(X,Y) is a number between �1 and 1 which, loosely speaking, expresses

how close X and Y are to lying on a straight line: Corr(X,Y) is near 1 for a

positive relationship, near 0 when X and Y are unrelated, and near �1 for a

negative relationship.
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Conditional expectation and variance*

We return to the relationship between joint and marginal distributions intro-

duced in (2.7). X has both a conditional mean and variance defined for each

value y, i.e. E(Xjy) and V(Xjy), and a marginalmean and variance defined for the

marginal distribution of X alone, i.e. E(X) and V(X). Their relationship can be

shown to be as follows:

E(X) ¼ EY [EX (XjY)], (2:13)

V(X) ¼ VY [EX (XjY)]þ EY [VX (XjY)], (2:14)

where the subscripts indicate the relevant variable for the expectation or

variance. Some interpretation of these expressions might be obtained by assum-

ing that Y will be the interim results of a study, and X will be the final results.

Then (2.13) shows that our overall expectation of the final results can be

calculated by first conditioning on the interim data as if they were known,

and then taking our expectations (with respect to the interim data) of those

conditional expectations. Equation (2.14) is more complex and says that our

overall uncertainty about the final outcomes can be broken down into two

components: our uncertainty about its conditional expectation given the in-

terim data, and our expectation of its conditional variance.

We shall use these expressions in the context of prediction: first for normal

variables in Section 3.13, and then in Section 9.8.3 within the context of micro-

simulation in complex cost-effectiveness models.

2.2.3 Parametric distributions and conditional independence

A central aspect of statistical inference is learning about the assumed under-

lying distribution of quantities we observe, and this is generally carried out by

assuming that the probability distributions follow a particular parametric form

p(yj�), i.e. the distribution of Y depends on some currently unknown parameter

�. Parameters are usually given Greek letters: in Bayesian inference they are

considered as random variables but the usual convention of capital and lower-

case letters is ignored, to no apparent detriment.

For example, for a Bernoulli variable Y such that p(Y ¼ 0) ¼ 1� �,
p(Y ¼ 1) ¼ �, we may write this likelihood in the form

p(yj�) ¼ �y(1� �)1�y
; y ¼ 0, 1: (2:15)

A standard assumption in traditional statistics is that a set of random variables

Y1, . . . , Yn are independent and identically distributed (i.i.d.). If we are willing

to adopt a parametric distribution, this corresponds to assuming that each is

drawn independently from a probability distribution p(yj�) where � is some

unknown parameter or parameters, and hence by Rule 3 of Section 2.1.1

their joint distribution is
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p(y1, . . . , ynj�) ¼
Yn
i¼1

p(yij�): (2:16)

This is an example of what is known as conditional independence, since each Yi is

independent of the others, conditional on �. We shall discuss in Section 3.4 how

this expression can be derived rather than directly assumed.

2.2.4 Likelihoods

Much of traditional statistical inference is based on noting that, once data y

have been observed, p(yj�) can be considered as being a function of �, and can

tell us the extent to which different values of � are supported by the data. When

p(yj�) is considered in this way it is known as the likelihood, and plays a very

important role in Bayesian analysis, as it summarises all the information that

the data y can provide about the parameter �. It is important to note that any

function of � that is proportional to p(yj�) can be considered as the likelihood,

since multiplying p(yj�) by any value that does not depend on � does not affect

the range of values of � being supported.

The likelihood function expresses the relative plausibility of different values of �,
with the value of � for which the likelihood is a maximum is referred to as the

maximum likelihood estimate. We can use a range of values which are best

supported by the data as an interval estimate for �, and it can be argued

(Clayton and Hills, 1993) that a reasonable range is defined by values of the

likelihood above exp (� 1:962=2) ¼ 14:7% of the maximum value – the reason

for this choice will become apparent in Section 2.4.1. In practice, constructing

intervals in such a manner is laborious, and in general we try to approximate

likelihood functions by the normal distribution, as discussed in Section 2.4.

Consider, for example, n individuals in a study; we measure whether the ith

individual responds to treatment, Yi ¼ 1, or not, Yi ¼ 0. If we assume a set

of independent Bernoulli trials such that the probability of response is �,
then, using (2.15) and (2.16), we can obtain the joint distribution for all n

individuals as

p(y1, . . . , ynj�) ¼
Yn
i¼1

p(yij�)

¼
Yn
i¼1

�yi (1� �)1�yi (2:17)

¼ �y1þ...þyn (1� �)(1�y1)þ...þ(1�yn)

¼ �y1þ...þyn (1� �)n�(y1þ...þyn)

¼ �r(1� �)n�r
, (2:18)
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where r ¼�iyi is the number of responders. This likelihood is maximised at

�̂¼ r=n; hence the maximum likelihood estimate is the proportion of responders.

The independence of the individual responsesmeans that the probability (2.18) is

the same regardless of the actual sequence, and hence if we were told that there

were 3 successes out of 10 trials, our likelihood would be precisely the same.

Example 2.4 Response: CombiningBernoulli likelihoods

Suppose we observed the responses of 10 individuals to a drug, and the
particular sequence observed is 0,1,0,0,0,1,0,1,0,0. Let y be the probability
of a random patient responding to the drug. There are 3 successes and 7
failures, and the probability of the data, i.e. the likelihood, is given by

p(y1, . . . , y10jy) ¼ y3(1� y)10�3 ¼ y3(1� y)7: (2:19)

Figure 2.1 shows this likelihood plotted for different values of y and scaled
to have maximum value 1. We return to this example in Section 2.4.1.
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Figure 2.1 Likelihood function for the probability y of response, after observing 10
individuals of whom 3 responded. The likelihood is scaled relative to its maximum
value obtained at the maximum likelihood estimate ŷy ¼ 0:3, and the interval (0.09,
0.61) is based on values with relative likelihood above exp (� 1:962=2) ¼ 0:147.
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2.3 THE NORMAL DISTRIBUTION

The normal (Gaussian) probability distribution is fundamental to much of

statistical analysis and features in the majority of the examples covered in this

book. We shall make frequent reference to properties of the normal distribution,

and therefore it is worth some revision.

We shall use the expression

Y � N[�,�2]

to represent the assumption that the random quantity Y comes from a normal

distribution with mean � and variance �2 (standard deviation �), which means

that

p(y) ¼ 1ffiffiffiffiffiffi
2�

p
�
exp �1

2

(y� �)2

�2

 !
; �1 < y < 1: (2:20)

We also occasionally make use of the notation p(y) ¼ N[yj�, �2]. We note

that the inverse of the variance, 1=�2, is known as the precision of the

distribution.

We shall often want to make use of areas under a normal distribution, for

example the probability that Y is greater than 0 (a ‘tail area’), or the range that

comprises, say, 95% of the distribution (a ‘95% interval’). Let Z � N[0, 1]
denote a standard normal variable with mean � ¼ 0 and standard deviation

� ¼ 1: the shape of its probability distribution is given in Figure 2.2. Tables or

computer programs generally provide the standard normal ‘distribution func-

tion’ F(z) ¼ P(Z4z), the probability that Z is less than or equal to z, and Table

2.2 displays some useful values for F(z).
We note the useful property

F(z) ¼ 1�F(�z): (2:21)

For any tail area �, we denote the corresponding normal deviate by z�, so that

P(Z4z�) ¼ � (2:22)

z� ¼ F�1(�), (2:23)

where F�1 represents the inverse of F. Hence (2.21) leads to the identity

z� ¼ �z1��:

Perhaps the most familiar value is F�1(0:025) ¼ z0:025 ¼ �1:96 ¼ �z0:975:
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Figure 2.2 Probability distribution of a standard normal variable Z � N[0,1]. The
shaded area represents F(�1) ¼ P(Z4�1) ¼ 0:159.

For a general normal quantity we can easily derive tail areas and intervals

from F(z), using the fact that if Y � N[�,�2], then (Y � �)=� is a standard

normal variable Z � N[0, 1]. Hence

P(Y4y) ¼ P
Y � �

�
4

y� �

�

� �
¼ P Z4

y� �

�

� �
¼ F

y� �

�

� �
: (2:24)

Thus, if we want to know P(Y4y) we calculate the standardised statistic

z ¼ (y� �)=� and consult a table such as Table 2.2 to obtain F(z).
Alternatively, if we want, say, a 99% interval for Y, we use a table to find that

the 99% interval for Z is (�2:576, 2:576), and then transform this to an

interval for Y of (�� 2:576�, �þ 2:576�).
An important property of normally distributed quantities is that they retain

normality under addition or subtraction. For example, if Y1 and Y2 are inde-

pendent quantities such that Y1 � N[�1,�
2
1], and Y2 � N[�2,�

2
2], then their sum

has distribution

Y1 þ Y2 � N[�1 þ �2,�
2
1 þ �2

2], (2:25)

i.e. their sum is normally distributed with mean equal to the sum of the means,

and variance equal to the sum of the variances. We shall find this property

very helpful when making predictions (Section 3.13). In many health-care
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applications we also frequently consider the difference between two independent

quantities; when they are both normally distributed we have

Y1 � Y2 � N[�1 � �2,�
2
1 þ �2

2], (2:26)

i.e. their difference is normally distributed with mean equal to the difference of

the means, and variance equal to the sum of the variances.

2.4 NORMAL LIKELIHOODS

In many contexts it will be reasonable to assume that the data relevant to a

parameter � will be, after m ‘observations’, summarised by a statistic Ym with a

normal distribution

Ym � N �,
�2

m

� �
, (2:27)

where � is the parameter of interest, generally a treatment effect defined on a

suitable scale, and �2 is assumed known: note that ‘observations’ is in quotes as

we will find it convenient to use this form even when m is an ‘effective’ number

of observations. After having observed a particular ym, in traditional statistical

terms ym can be considered as an estimate of the true treatment effect �, with

standard error �=
ffiffiffiffi
m

p
.

Table 2.2 Some normal tail areas, expressed as percentages, where 100� ¼ 100F(z�) ¼
100P(Z4z�). From this table we can read, for example, that a symmetric 90% interval for
Z would be (�1:645, 1:645), while a one-sided 90% interval could be (�1, 1:282) or
(�1:282, 1).

zE 100�F(zE) zE 100�F(zE)

0.00 50.0
�0.50 30.8 0.50 69.2
�0.842 20.0 0.842 80.0
�1.00 15.9 1.00 84.1
�1.282 10.0 1.282 90.0
�1.50 6.7 1.50 93.3
�1.645 5.0 1.645 95.0
�1.960 2.5 1.960 97.5
�2.00 2.3 2.00 97.7
�2.326 1.0 2.326 99.0
�2.50 0.6 2.50 99.4
�2.576 0.5 2.576 99.5
�3.00 0.1 3.00 99.9
�3.090 0.1 3.090 99.9
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Much of our approximate analysis is based on assuming a normal likelihood

(2.27) in quite general contexts. These can be characterised as situations in

which it is considered reasonable to quote the results of fitting a statistical model

in terms of estimates and standard errors, for example after using standard

statistical packages. This can, unfortunately, involve some effort transforming

forwards and backwards between the quantities of interest and the somewhat

unintuitive scales on which a normal likelihood is more appropriate. However,

the examples in this book should demonstrate the value of becoming familiar

with this process. It is worth emphasising that, since the likelihood is a function

of � and not a distribution for �, it is not appropriate to speak, for example, of the

mean, variance or tail-area of a likelihood.

We now consider a range of types of data on which the results of different

interventions may be compared, detailing the parameters for which it may be

appropriate to assume a normal likelihood, and describing how the results of

standard regression analyses can be exploited. Obviously there are many areas,

particularly with small samples, which cannot be adequately modelled assuming

normality. This generally indicates a computational shift away from closed-form

analysis and into simulation methodology, which will be discussed in Section

3.19.2.

2.4.1 Normal approximations for binary data

Suppose our data comprise a series of observations in which an event has

occurred or not, and we wish to compare the probability of such events under

two different interventions. For two events with probabilities p1 and p2, the odds

ratio (OR) is

OR ¼ p1

1� p1

�
p2

1� p2
, (2:28)

which is a standard way of reporting changes in the chances of events due to an

intervention, on a scale between 0 and 1. In many circumstances the event is

‘negative’ (e.g. death or disease recurrence) and the ‘new’ intervention is in the

numerator of (2.28), making odds ratios less than 1 favour the new. However,

this will not always be the case and care must be taken. We note that for rare

events, (1� p1) and (1� p2) are near 1, and hence the odds ratio is approxi-

mately the relative risk or risk ratio (RR) ¼ p1=p2, and an odds ratio of, say, 0.7

can also be referred to as a 30% risk reduction. However, we shall try to avoid

the term ‘relative risk’ due to potential confusion.

In order to make the assumption of a normal likelihood more plausible, it is

convenient to work with the natural logarithm of the odds ratio so that it takes

values on the whole range between �1 and þ1. Thus

log (OR) ¼ � ¼ log
p1

1� p1

� �
� log

p2

1� p2

� �
, (2:29)
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and so the interventions are compared through their difference on the logit scale

(Section 2.1.2). This is the standard scale underlying logistic regression analy-

sis. In our analyses we will tend to perform calculations on the log(OR) scale,

but report results as odds ratios, which are more intuitive. To assist slightly in

the interpretation of log(odds ratios), we note that for small values of

� ¼ log (OR), we have the approximation

� � log (1þ �)

so that, for example, log (OR) ¼ �0:1 corresponds roughly to OR ¼ 0:9, or a

10% risk reduction (the exact figure is OR ¼ 0:905). So for small treatment

effects, 100 � log(OR) is approximately the percentage change in risk.

Use of the logit scale has the effect of improving the normal approximation of

the likelihood. For example, Figure 2.3 shows the likelihood from Example 2.4

plotted on both the original probability scale and on the log(odds) scale, and the

improvement is clear. We now argue why it might be appropriate for likelihood-

based intervals to comprise all parameter values with support greater than

14.7% of the maximum, as already quoted in Section 2.2.4 – the following

paragraph may be skipped without loss of continuity.

First, note that if the likelihood really were N[�,�2=m], then from (2.20) it has

a maximum of
ffiffiffiffi
m

p
=(

ffiffiffiffiffiffi
2�

p
�). Hence, relative to its maximum, the likelihood has

ordinate exp [�(y� �)2=2�2]. Second, a 95% interval would comprise values

�� 1:96�=
ffiffiffiffi
m

p
. Plugging these values into the formula for the normal distribu-

tion (2.20) therefore reveals that the boundaries for the 95% interval would

have ordinate relative to the maximum of e�1:962=2 ¼ 0:147. Transforming the

x-scale of the likelihood does not change the relative ordinates in any way, and

hence exactly the same interval is obtained by using this value of 14.7% on the

original likelihood on the untransformed scale. Therefore, as long as there is

some transformation that can give a reasonable normal approximation, the

value of 14.7% of the maximum is justified.

Suppose N observations have been cross-classified by two binary factors, say

intervention and response, leading to the following 2� 2 table:

Intervention
New Control

Event Death a b aþ b
No death c d cþ d

aþ c bþ d N

The maximum likelihood estimate of the odds of death under the new

intervention is a=c (the number of deaths divided by the number of survivors),

under the control is b=d, and of the odds ratio OR is (a=c)=(b=d). � ¼ log (OR)
could be estimated by log [(a=c)=(b=d)], but in fact the estimator of choice is

24 Basic concepts from traditional statistical analysis

Chapter2 Basic concepts from traditional statistical analysis 17.11.2003 11:45am page 24



Probability of response

R
at

io
 to

 m
ax

im
um

 li
ke

lih
oo

d

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Log (odds of response)

R
at

io
 to

 m
ax

im
um

 li
ke

lih
oo

d

−4 −2 0 2 4

0.0

0.2

0.4

0.6

0.8

1.0

Figure 2.3 Likelihood function for the probability of disease, after treating 10 indivi-
duals of whom 3 were successes, plotted on both probability and log(odds) scale. The
improvement to the normal approximation is clear.

�̂� ¼ log
(aþ 1

2
)(dþ 1

2
)

(bþ 1
2
)(cþ 1

2
)

" #
, (2:30)

where �̂� represents an estimate of �. Lower mortality with the new intervention

is represented by OR < 1, or negative values of �. The estimator has approxi-

mate variance

V(�̂�) ¼ 1

aþ 1
2

þ 1

bþ 1
2

þ 1

cþ 1
2

þ 1

dþ 1
2

: (2:31)

The 1
2
s have the effect of lessening the bias of the estimator and preventing

problems with small numbers of events, and will generally have a negligible

effect with reasonable sample sizes. Adjustment for confounding factors, using

either a Mantel–Haenszel analysis or logistic regression, will also provide an

estimate �̂� with estimated standard error s, and provided N is not too small it

will be reasonable to assume a normal likelihood with V(�̂�) ¼ s2.

In the notation of (2.27), we need to set ym ¼ �̂� and �2=m ¼ V(�̂�). Strictly
speaking, it is unnecessary to select appropriate values of �2 and m since we
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could just use V(�̂�) in any analysis, but we shall find that this formulation is

useful both for calculation and interpretation. There are two options:

1. We might fix m as the sample size N and so obtain �2 ¼ N V(�̂�).

2. We might fix � at some specific value, and choose m such that m ¼ �2=V(�̂�).
It turns out that in many contexts � ¼ 2 is a suitable choice. For example,

consider a balanced randomised trial with a rare event occurring approxi-

mately equally often in each arm, so that a � b and c and d are very large

compared to a and b. Then, from (2.31),

V(�̂�) � 2

a
� 4

m
,

where m ¼ aþ b is the number of events. Thus if we take � ¼ 2 and

m ¼ �2=V(�̂�), we should find that m has an approximate interpretation as

the number of events underlying the estimate of �. This is likely to be easier

to interpret than a variance on a log(OR) scale, which is fairly incompre-

hensible. We shall find in Section 2.4.2 that � ¼ 2 is also an appropriate

choice in survival analysis, in that it also leads to m representing the effective

number of events underlying the estimate.

If we are parameterising in terms of differences in proportions rather than the

log(odds ratio), it may still be possible to assume a normal likelihood with large

sample sizes, where ym is the difference in sample response rates. Strictly

speaking, �2 then depends upon the unknown response rates, but an estimate

of �2 may be used.

Example 2.5 GREAT: Normallikelihood froma 2� 2 table

The GREAT trial of early treatment for myocardial infarction, to be de-
scribed in greater detail in Example 3.6, gave rise to the following data:

Treatment
New Control

Event Death 13 23 36
No death 150 125 275

163 148 311

Using (2.30) gives an estimated log(OR) of ym ¼ �0:736, with estimated
variance (2.31) of 0:131 ¼ 0:3622. Taking s ¼ 2, we obtain m ¼ 4=0:131 ¼
30:5, which is reasonably near the observed number of events (36)
and gives an intuitive idea of the amount of evidence underlying the
estimate.
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log (odds ratio)

Figure 2.4 Normal likelihood for y ¼ log (OR) in the GREAT trial, with the upper
axis labelled on the log(OR) scale. The lower scale is marked in terms of OR ¼ ey

for ease of interpretation.

Assuming a normal sampling distribution ym � N[y, s2=m] leads to the
likelihood shown in Figure 2.4, which is plotted on the log(OR) scale but
with axes labelled on both OR and log(OR) scales.

2.4.2 Normal likelihoods for survival data

Suppose we have a set of measurements of time to some event, say death or

disease recurrence, often referred to as survival data. This event is assumed to

occur with hazard rate h(t), which is the chance of an event in a short interval of

time following t. Survival under two different interventions with hazard rates

h1(t) and h2(t) may be compared by their hazard ratio, HR ¼ h1(t)=h2(t): the
common ‘proportional hazards’ assumption assumes HR is constant with time.

The hazard ratio varies between 0 and 1, and once again it is convenient to

work with its natural logarithm,

log (HR) ¼ � ¼ log
h1(t)

h2(t)

� �
: (2:32)
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In our analyses we will tend to perform calculations on the log(HR) scale, but

report results as hazard ratios: generally events will be ‘negative’, such as death

or disease recurrence, and so HR < 1 or � < 0 will favour the treatment in the

numerator, which is usually the new intervention.

We note an important connection between hazard ratios and survival prob-

abilities (although this derivation can be skipped). Let T be a random survival

time with probability density p(t), and let S(t) ¼ P(T > t) be the chance of

surviving beyond t. The hazard rate h(t) is the instantaneous chance of dying,

given survival until t, and hence h(t) ¼ p(t)=S(t). Thus the cumulative hazard

H(t) obeys

H(t) ¼
Z

h(t)dt ¼
Z

p(t)=S(t) dt ¼ � log S(t):

Thus if we assume a proportional hazard model with HR ¼ h1(t)=h2(t), then we

have

HR ¼ h1(t)

h2(t)
¼ H1(t)

H2(t)
¼ log S1(t)

log S2(t)
:

From this it follows that if p1 and p2 are the chances of surviving until some

fixed time under the two interventions being compared, then under the propor-

tional hazards assumption

HR ¼ log p1

log p2
, (2:33)

log (HR) ¼ � ¼ log
log p1

log p2

� �
: (2:34)

This means that if we know the two survival proportions and are willing to

assume proportional hazards, then we can transform onto a log(HR) scale. This

relationship is shown in Figure 2.5, from which can be read approximate values

of log(HR) corresponding to changes in survival probabilities. For example, if a

new treatment is thought to change 5-year survival from p2 ¼ 20% to

p1 ¼ 40%, then Figure 2.5 suggests this corresponds to a log(hazard ratio) of

around �0:5, or HR ¼ 0:61. The precise value is given by � ¼ log [ log (p1)=
log (p2)] ¼ �0:56, corresponding to HR ¼ 0:57.

Suppose that the first intervention corresponds to an active treatment T, and

the second to a control C. Often the results of a survival analysis may be given in

terms of an observed log-rank test statistic Lm, which is defined as the excess of

events under T, compared to that expected were there no treatment effect,

where m is the total number of events observed. Lm is often denoted as O� E

(observed minus expected). Assuming proportional hazards, we have the
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Figure 2.5 Log(hazard ratios) corresponding to changes from survival probability p2
under a control treatment, to p1 under a new treatment, where log (HR) ¼ �
¼ log [ log (p1)= log (p2)].

following approximation in the particular case of equal allocation and follow-up.

If there have been OT events on treatment, and OC events on control, then the

expected number of events in the treatment group under the null hypothesis

is approximately m=2, and hence the log-rank statistic is Lm ¼ OT �m=2 ¼
(OT � OC)=2. It can be shown (Tsiatis, 1981) that, for large trials, ym ¼
4Lm=m ¼ 2(OT � OC)=m is an approximate estimate of the log(hazard ratio) �, and

ym � N[�, 4=m]:

Hence we can set � ¼ 2 and adopt a normal likelihood.

If the estimated variance of the log-rank statistic, denoted V[O� E], is pro-

vided in the report of the study, this will take into account different censoring,

follow-up and so on. Now

V[O� E] ¼ V[Lm] ¼ V[mym=4] ¼ m2V[ym]=16 � m=4,
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and hence V[O� E] can be equated to m=4 in order to obtain the effective

number of events m. In more general circumstances we might adjust for

covariates using a Cox regression analysis, and hence obtain an estimate �̂�
and its standard error s: if we then set � ¼ 2 we may obtain an ‘implicit’ event

count m ¼ �2=s2, in the same manner as in Section 2.4.1.

2.4.3 Normal likelihoods for count responses

Suppose events occur at a rate l per unit of population or time. Then our

responses will be a count y of the number of events in, say, T units of population

or time, which will usually be assumed to have a Poisson distribution with

mean lT (Section 2.6.2). For two series of events with rates l1 and l2, the rate
ratio (RaR) l1=l2 is a standard way of reporting changes in the rates of events

due to an intervention. The rate ratio varies between 0 and 1.

It is again convenient to work with the natural logarithm of a rate ratio,

� ¼ log (l1=l2), which may be estimated either directly from observed rates or

from a Poisson regression.

Suppose we have observed the following data:

Treatment
New Control

Events r1 r2
Patient-years of follow-up n1 n2

Here n1 and n2 are assumed to be large. The maximum likelihood estimate of the

rate ratio is (r1=n1)=(r2=n2), and � ¼ log (RaR) can be estimated by

�̂� ¼ log
(r1 þ 1

2
)=n1

(r2 þ 1
2
)=n2

: (2:35)

RaR < 1, or negative values of �, indicate a lower event rate with the new

treatment. The estimator has approximate variance

V(�̂�) ¼ 1

r1 þ 1
2

þ 1

r2 þ 1
2

: (2:36)

As with binary and survival data, a normal likelihood can be assumed provided

the number of events is not too small, and once again we shall generally set

� ¼ 2.
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2.4.4 Normal likelihoods for continuous responses

Suppose that difference in mean response is the outcome measure of interest, m

individuals are allocated to each treatment in a trial, and their individual

responses are assumed normal with variance �2=2. Let � be the true difference

in mean response, and ym be the difference in group sample means. Then

ym�N[�, �2=m]. (If �2 is unknown, then a full Bayesian analysis with a prior

on �2 is possible: with a specific choice of prior one obtains the standard

Student’s t distribution for ym (Section 5.5.1).)

2.5 CLASSICAL INFERENCE

In this section we give the briefest of summaries of standard statistical analysis

when normal likelihoods can be assumed: for a comparative discussion of the

basis for these and Bayesian techniques, we refer to Chapter 4.

The normal likelihood

ym � N �,
�2

m

� �

leads to � being estimated by �̂� ¼ ym with an accompanying two-sided 95%

confidence interval of ym � 1:96� �=
ffiffiffiffi
m

p
; this may be given the standard

sampling-theory interpretation that 95% of the intervals produced using this

procedure will contain the true parameter. If we wish to test a null hypothesis,

say H0: � ¼ 0, we may examine whether the two-sided 95% interval excludes

H0, or equivalently use zm ¼ ym
ffiffiffiffi
m

p
=� as a standardised test statistic to refer to

normal tables and, for example, declare the result ‘statistically significant at the

two-sided 5% level’ if jzmj > 1:96. We may also calculate the ‘P-value’ Pm

associated with zm, which is the probability of observing data as extreme as zm
under the null hypothesis. This can be taken as

Pm ¼ min (P(Z5zm), P(Z4zm) ) ¼ min (F(�zm), F(zm) ),

although generally the ‘two-sided’ P-value is considered a more appropriate

summary of ‘extremeness’ for H0: � ¼ 0, being

2Pm ¼ P(Z > jzmj) ¼ F(� jzmj):

Suppose we are designing a clinical trial with proposed size n to detect an alter-

native hypothesis H1: � ¼ �A > 0, and we decide that the result will be declared

statistically significant and in favour of H1 if a two-sided 100(1� 2�)% interval

based on a future estimate Yn lies wholly above 0, corresponding to the future

standardised statistic Zn > �z�: typically � ¼ 0:025 and so�z� ¼ �z0:025 ¼ 1:96.
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In this context this event is equivalent to Pn42�, and 2� is therefore the

probability of obtaining a statistically significant conclusion in either direction if

the null hypothesis is in fact true. 2� may be termed the ‘significance level’, the

‘size’, or the Type I error of the study, and is often denoted �. The null

hypothesis will be rejected in favour of H1 provided Yn > �z��=
ffiffiffi
n

p
, which

from (2.21) and (2.24) will occur with probability

1�F
�z��=

ffiffiffi
n

p � �

�=
ffiffiffi
n

p
� �

¼ 1�F �z� � �
ffiffiffi
n

p
�

� �
¼ F

�
ffiffiffi
n

p
�

þ z�

� �
:

The probability that a trial of n observations will lead to a statistically signifi-

cant conclusion at the 2� level, given that the alternative hypothesis is true, is

known as the power of the study, conventionally denoted 1� �, and hence

1� � ¼ F
�A

ffiffiffi
n

p
�

þ z�

� �
: (2:37)

From (2.37) we can easily see that the sample size necessary to obtain a

specified power, say 100(1� �)%, will obey

�A
ffiffiffi
n

p
�

þ z� ¼ F�1(1� �) ¼ z1��,

and therefore

n ¼ (z1�� � z�)
2 �

2

�2A
: (2:38)

Typical values might be � ¼ 0:025, 1� � ¼ 0:80 and so, from Table 2.2,

(z1�� � z�)
2 ¼ (0:842þ 1:96)2 ¼ 7:85.

Note that some care is required in specifying � and n. Our formulation is

based on assuming that the estimate of the treatment effect has distribution

yn � N[�, �2=n]. Suppose, however, that we are performing a two-arm study

with n patients per group, in which yn ¼ y2 � y1, the difference in group means.

Then �2 must be the variance of the difference between the responses from a

random pair of patients, one from each arm. This will be the sum of the

sampling variances in the two arms.

Example 2.6 Power: Choosing the sample size fora trial

Suppose we are designing a trial for a new cancer treatment which it is
hoped will raise 5-year survival from 20% to 40%. From the analysis in
Section 2.4.2, this is equivalent to a hazard ratio of log (0:40)= log (0:20)
¼ 0:57 when assuming proportional hazards, or a log(hazard ratio) of
yA ¼ �0:56. We note the above discussion of power has assumed an
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alternative hypothesis yA > 0, whereas our yA is negative. However, we
may simply reverse the role of null and alternative hypotheses and take
yA ¼ 0:56: this is equivalent to redefining the hazard ratio as control hazard
divided by new intervention hazard instead of its inverse. Taking s ¼ 2, the
power of a study in which n events occur is given by (2.37): assuming
E ¼ 0:025 generates the power curve shown in Figure 2.6. From (2.38),
80% power is achieved at n ¼ 7:85� 22=(0:56)2 ¼ 100: power rises slowly
above this size of trial. Under the alternative hypothesis we expect about a
30% overall 5-year mortality in the trial, and so to observe 100 deaths we
might recruit about 330 patients, 165 in each arm, and follow them for
approximately 5 years.

n = number of deaths

P
ow

er

10 30 50 70 90 110 130 150 170 190

0.0
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Figure 2.6 Power of a clinical trial in which n events are to be observed, and the
alternative hypothesis is a rise from 20% survival to 40% survival, equivalent to a
hazard ratio (control/new) of 1/0.57 ( log(hazard ratio) ¼ yA ¼ 0:56):Power
¼ F(yA

ffiffiffi
n

p
=sþ zE). 80% power is achieved at n ¼ 100.

In Example 2.6 we took the alternative hypothesis as � > 0, leading to a power

curve that rises for increasing values of �. However, we shall be using many

examples where low values of � correspond to benefit of the new intervention,

and hence care must be taken in using the equations. This rather technical point

Classical inference 33

Chapter2 Basic concepts from traditional statistical analysis 17.11.2003 11:45am page 33



is considered in detail in Section 6.5, where we also show how to take into

account uncertainty about parameters when conducting power calculations.

2.6 A CATALOGUE OF USEFUL DISTRIBUTIONS*

Bayesian analysis makes use of a wide range of standard, and not so standard,

parametric probability distributions in two contexts:

. Sampling distributions for individual data points or summary statistics form the

basis for likelihoods, just as in classical statistical inference. We shall make use

of standard distributional families such as the normal, binomial, and Poisson,

but also more unusual choices such as the log-normal for cost data.

. Prior distributions for parameters form the very core of Bayesian inference, and

the shape of the chosen distribution becomes vital as it represents the relative

plausibility for different parameter values. It is therefore important to have a

supply of flexible parametric families that can express properties such as

skewness and having heavy tails, and so although many of the prior opinions

used in this book can be approximated by a normal distribution, we shall also

require less standard forms such as the beta, root-inverse-gamma, and half-

normal.

These two contexts come together in the use of ‘conjugate’ distributions, which

are families of prior distributions that ‘fit together’ with particular sampling

distributions. These are discussed in Section 3.6.2 and are useful for illustrating

Bayesian analysis in simple examples, but modern computational techniques

have reduced their importance.

A familiarity with the uses, shapes and properties of different families of

distributions can be very valuable, and Bayesian texts contain extensive cata-

logues of distributions and their mathematical properties: see, for example, Lee

(1997), Bernardo and Smith (1994), Gelman et al. (1995) and Carlin and Louis

(2000). Here we focus on the distributions that will be used in the examples in

this book. We shall first discuss their derivation and give formal expressions for

their distributional form, expectation and variance, but our primary focus will

be on displaying their shapes and discussing their possible use in practical

circumstances. We omit explicit restrictions on ranges of parameters when

they are clear from the context.

This section might best be used as a reference throughout the book.

2.6.1 Binomial and Bernoulli

A discrete binomial variable Y arises as the sampling distribution of the total

number of ‘successes’ in n independent Bernoulli trials, each with probability � of
success. The likelihood �y(1� �)n�y

gives the probability for a specific sequence of
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n� y ‘failures’ and y ‘successes’ (Section 2.2.3), and there are
n

y

� �
such se-

quences. Thus Y � Bin[n, �] represents a binomial distribution with properties:

p(yjn, �) ¼ n

y

� �
�y(1� �)n�y

; y ¼ 0, 1, . . . , n, (2:39)

E(Yjn, �) ¼ n�, (2:40)

V(Yjn, �) ¼ n�(1� �): (2:41)

The binomial with n ¼ 1 is simply a Bernoulli distribution, denoted Y �
Bern[�].

Shape. The examples in Figure 2.7 illustrate the decreasing relative variability

and the tendency to a normal distribution that occurswhen sample size increases.

Use. The binomial is used as a sampling distribution for empirical counts that

occur as proportions. Uses in this book include preference studies (Section 4.4.4),

meta-analysis (Section8.2.2,Example8.2), andevidence synthesis (Example8.6).

2.6.2 Poisson

Suppose there are a large number of opportunities for an event to occur, but the

chance of any particular event occurring is very low. Then the total number of

events occurring may often be represented by a discrete variable Y, where

Y � Poisson[�] represents a Poisson distribution with properties:

p(yj�) ¼ �ye��

y!
; y ¼ 0, 1, 2, 3, . . . , (2:42)

E(Yj�) ¼ �, (2:43)

V(Yj�) ¼ �: (2:44)

In many applications it will arise as a total number of events occurring in a

period of time T, where the events occur at an unknown rate l per unit of time,

in which case the expected value of Y is � ¼ lT.

Shape. The examples in Figure 2.8 show that if events happen with a constant

rate, observing for longer periods of time leads to smaller relative variability and

a tendency towards a normal shape. Comparison of Figure 2.8 with Figure 2.7

shows that, when sample size increases, a binomial might be approximated by a

Poisson with the same mean.

Use. The Poisson distribution is used for count data, as in Example 8.3.
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(a) θ = 0.3, n = 5
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Figure 2.7 Binomial distributions for the number of successes in n ¼ 5, 20, 100
Bernoulli trials, each with probability � ¼ 0:3 of success.

2.6.3 Beta

Beta distributions form a flexible and mathematically convenient class for

quantities constrained to lie between 0 and 1, and so can be used as a prior

distribution for unknown proportions. Y � Beta[a, b] represents a distribution

with properties:

p(yja,b) ¼ G(aþ b)

G(a)G(b)
ya�1(1� y)a�1

; y 2 (0, 1), (2:45)

E(Yja,b) ¼ a

aþ b
, (2:46)

V(Yja,b) ¼ ab

(aþ b)2(aþ bþ 1)
: (2:47)
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(a)   Rate = 0.3,  T = 5 
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(c) Rate = 0.3, T = 100
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Figure 2.8 Poisson distributions representing the number of events occurring in time
T ¼ 5, 20, 100, when the rate at which an event occurs in a unit of time is r ¼ 0:3: the
Poisson distributions therefore correspond to � ¼ 1:5, 6 and 30.

G(a) represents the gamma function, a generalisation of the factorial for non-

integers, in that G(a) ¼ (a� 1)! if a is an integer. A Beta[1,1] distribution is

uniform between 0 and 1 (see Figure 2.9(b) and Section 2.6.4).

Shape. The examples in Figure 2.9 show the flexibility of the family, with a

tendency to normal as both parameters become larger.

Use. The sole use of beta distributions is for uncertain proportions where they

are ‘conjugate’ to the binomial family of sampling distributions (Section 3.6)

and hence make the necessary computations straightforward. However, we saw

in Section 2.4.1 that in most applications with binary data it is much more

flexible and convenient to transform the quantity of interest from a proportion

(defined on a (0,1) scale) to log(odds) (defined on the full range of �1 to 1).
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(e) a = 15, b = 5
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Figure 2.9 Beta distributions for different parameter values showing the flexibility of
the family: note change in y-axis for (f ).

Therefore, we shall find limited use for the beta except in tutorial examples (see

Examples 3.3 and 8.6).

2.6.4 Uniform

Like the beta distribution, a uniform distribution on a range (a, b) is generally
adopted for an unknown parameter. Y � Unif [a, b] means that:

p(yja,b) ¼ 1

b� a
; y 2 (a, b), (2:48)

E(Yja,b) ¼ aþ b

2
, (2:49)

V(Yja,b) ¼ (b� a)2

12
: (2:50)
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Shape. The shape of this distribution hardly needs plotting, but an example is

given in Figure 2.9(b). Uniform distributions can also be given over a discrete set

of values (see Example 3.2).

Use. The only use in this book is as a means of expressing indifference

concerning the prior plausibility of a range of values – a so-called ‘non-informa-

tive’ or reference prior (Section 5.5.1). We shall frequently use it in this manner

and merely refer to a ‘uniform prior’, which means uniform over a range that is

large enough to encompass all plausible values of �.

2.6.5 Gamma

Gamma distributions form a flexible and mathematically convenient class for

quantities constrained to be positive. Y � Gamma[a, b] represents a gamma

distribution with properties:

p(yja, b) ¼ ba

G(a)
ya�1e�by; y 2 (0, 1), (2:51)

E(Yja,b) ¼ a

b
, (2:52)

V(Yja,b) ¼ a

b2
: (2:53)

Particular cases include the Gamma[1, b] distribution, which is exponential with

mean 1=b, and the Gamma[ 1
2
v, 1

2
], which is the same as the chi-squared distri-

bution �2
v on v degrees of freedom. A useful piece of distribution theory is that if

Y1, . . . , Yn are a set of i.i.d. N[�, �2] variables with mean Y and sample

variance S2 ¼�i(Yi � Y)2=n, then �i(Yi � �)2=�2 � �2
n , and nS2=�2 � �2

n�1.

We shall use this in Example 8.4.

Shape. The examples in Figure 2.10 show the family to be reasonably flexible.

Use. One justification is that the gamma distribution ‘conjugate’ to the Poisson

family (Section 3.6.2). However, as with binary data, we shall see in Section

2.4.3 that in most applications it is much more flexible and convenient to

transform the quantity of interest from a rate (defined on a (0,1) scale) to a

log-rate (defined on the full range of �1 to 1), and then use normal approxi-

mations.

An alternative popular use has been as a prior distribution for the precision

parameter (1/variance) of a normal distribution, for which it is also conjugate

(Section 3.6.2). This is equivalent to using a root-inverse-gamma distribution

for the standard deviation (see Section 2.6.6).
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(b) a = 0.1 , b = 0.1 (c) a = 3 , b =3 
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Figure 2.10 Gamma distributions. (a) is exponential with mean 1, (a), (b) and (c) all
have the same mean but different shapes, (d) is a �2

6 distribution with mean 6, while (e)
has the same mean as (a) but a different shape and becomes increasingly close to normal
as the parameters both increase. (f) is a �2

20 distribution.

2.6.6 Root-inverse-gamma

If X � Gamma[a,b], then 1=
ffiffiffiffi
X

p � RIG[a,b]. Y � RIG[a,b] represents a root-in-

verse-gamma distribution with properties (Bernardo and Smith, 1994, p. 431):

p(yja, b) ¼ 2ba

G(a)

1

y2aþ1
e�b=y2 ; y 2 (0, 1), (2:54)

E(Yja,b) ¼
ffiffiffi
b

p
G(a� 1

2
)

G(a)
, (2:55)

V(Yja,b) ¼ b

a� 1
� E2(Yja, b): (2:56)

We note that the variance is only defined for a > 1.
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Shape. The examples in Figure 2.11 show that the family can have the

somewhat curious property of forcing the quantity away from 0.

Use. The RIG is the implied prior distribution for a standard deviation when a

gamma distribution is used for a precision, and so is frequently implicitly

adopted in Bayesian analysis. However, it is almost never plotted, and the

shape is perhaps not what was intended in many applications, given its property

of rejecting low values. We shall therefore adopt it with some caution in Section

5.7.3 and in Example 8.1.

2.6.7 Half-normal

The half-normal arises by folding a normal distribution around 0: formally, if

X � N[0, �2], then jXj � HN[�2]. Thus Y � HN[�2] represents a half-normal

distribution with properties:

p(yj�2) ¼
ffiffiffiffiffiffiffiffi
2

��2

r
e
�y2

2�2 ; y 2 (0, 1), (2:57)

E(Yj�2) ¼
ffiffiffi
2

�

r
�, (2:58)

V(Yj�2) ¼ �2 1� 2

�

� �
, (2:59)

and a median of F�1(0:75) � ¼ z0:75 � ¼ 0:773 �, using the notation of Section

2.3.
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Figure 2.11 Root-inverse-gamma distributions. Note the different scale for (a), which
has a very long right-hand tail. Comparing (c) with (b) shows that increasing b retains
the shape but multiplies the mean and standard deviation by b.
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Shape. The examples in Figure 2.12 show the family to express maximum

support for 0, with the rate of decline governed by �.

Use. The half-normal is useful to express support for values near 0, with �
controlling the upper range of support. This is applied to standard deviations in

Section 5.7.3, and illustrated in Examples 8.1 and 8.5.

2.6.8 Log-normal

The log-normal is a distribution on positive values, like the gamma, root-inverse-

gamma, and half-normal. It is defined as the exponential of a normal variable (this

can cause confusion). Thus if Y � LN[�, �2], then log (Y) � N[�, �2].
Y � LN[�, �2] represents a log-normal distribution with properties:

p(yj�,�2) ¼ 1ffiffiffiffiffiffi
2�

p
�y

e�( log y��)2=2�2 ; y 2 (0,1), (2:60)

E(Yj�,�2) ¼ e�þ�2=2, (2:61)

V(Yj�,�2) ¼ e2�þ�2 (e�
2 � 1): (2:62)

Shape. The examples in Figure 2.13 show that a range of skewed distributions

can be represented, although the right-hand tail is remarkably long. For

example, Figure 2.13(b) has a broadly similar shape to the Gamma[0.1, 0.1]

shown in Figure 2.11(a): however, while the latter has mean 1 and standard

deviation
ffiffiffiffiffiffi
10

p ¼ 3:2, the LN[0, 3] has mean e4:5 ¼ 90, and standard deviation
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Figure 2.12 Half-normal distributions, with maximum at 0 and declining support for
increasing y.
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Figure 2.13 Log-normal distributions. Comparing (c) with (b) shows that � acts as a
scale parameter and does not change the shape of the distribution.

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e9(e9 � 1)

p
¼ 8100. Thus although the gamma and log-normal are sometimes

considered as alternative options for skewed distributions, the much heavier tail

of the log-normal should be kept in mind.

Use. The log-normal can be used as a sampling distribution for positive obser-

vations such as costs (Example 9.2), or as a prior distribution for posi-

tive parameters such as variances (Examples 6.10 and 9.2). We have seen in

Section 2.4 that in many situations we carry out inferences on logarithms of

quantities, and then transform results back to a more interpretable scale. Thus

in our examples that use normal theory, our posterior distributions of odds

ratios, hazard ratios and rate ratios are in fact log-normal distributions.

2.6.9 Student’s t

A standardised Student’s t distribution arises as the ratio of a standard normal

variable to the square root of an independent �2 variable divided by its degrees

of freedom, and has a prominent role in classical statistics as the sampling

distribution of a sample mean divided by its estimated standard error. It also

occurs as a posterior distribution for the mean of a normal distribution given a

specific choice of prior for the unknown variance (DeGroot, 1970).

Y � t[�, �2, v] represents a Student’s t distribution with v degrees of freedom,

which has properties:

p(yj�,�2,v) ¼ G( vþ1
2

)

G( v
2
)
ffiffiffiffiffi
�v

p
�

1

1þ (y��)2

v�2

� �vþ1
2

; y 2 (1, 1), (2:63)

E(Yj�,�2,v) ¼ �, (2:64)
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V(Yj�,�2,v) ¼ �2 v

v� 2
; (2:65)

the mean only exists if v > 1, and the variance only exists if v > 2.

Shape. Figure 2.14 shows the heavy-tailed nature of the t distribution, with

high degrees of freedom looking increasingly normal.

Use. Apart from arising as a posterior distribution, it can also be used as a

sampling distribution when some outliers are expected.

2.6.10 Bivariate normal

X and Y are said to have a bivariate normal distribution, denoted

X,Y � BN[�X ,�Y ,�X ,�Y ,	], if

p(x,yj�X ,�Y ,�X ,�Y ,	)¼ 1

2��X�Y

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 	2

p exp � Q

2(1� 	2)

� �
; x, y 2 (1,1), (2:66)

where Q is the quadratic expression

Q ¼ (x� �X )
2

�2
X

� 2	(x� �X )(y� �Y )

�X�Y

þ (y� �Y )
2

�2
Y

:

The distribution has properties

E(X) ¼ �X , E(Y) ¼ �Y , V(X) ¼ �2
X , V(Y) ¼ �2

Y ,

and covariance and correlation
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Figure 2.14 Student’s t distributions with � ¼ 0, � ¼ 1: other values of � and � will
change the location and scale but not the shape.
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Cov(X,Y) ¼ 	�X�Y , Corr(X,Y) ¼ 	:

In addition, the conditional distribution of Yjx is normal with mean and

variance

E(Yjx) ¼ �Y þ 	 �Y

�X

(x� �X ),

V(Yjx) ¼ �2
Y (1� 	2):

(2:67)

The conditional variance �2
Y (1� 	2) is never more than the unconditional vari-

ance �2
Y , showing that knowing the value of X never increases our uncertainty

about Y. In addition, the conditional mean is a linear function of x – this is

known as the ‘regression’ of Y on X. The bivariate normal generalises naturally

to higher dimensions but we shall not require this extension for this book.

Shape. Figure 2.15 shows a ‘contour plot’ of a bivariate normal distribution,

where contours are ellipses obtained as solutions of Q ¼ constant.

Use. The bivariate normal can be used as a sampling distribution of two correl-

ated quantities, such as in Example 9.1 where it is used to describe the joint

x
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Figure 2.15 A bivariate normal distribution with parameters �X ¼ 1, �Y ¼ 2,
�X ¼ 3, �Y ¼ 2, 	 ¼ 0:5, with expanding ellipses enclosing 5%, 25%, 50%, 75% and
95% of the probability distribution.
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distribution of costs and benefits. It also arises naturally as a prior distribution

for two possibly correlated unknown parameters, such as the baseline rate and

treatment effect in a clinical trial or epidemiological study (Section 8.2.3): see

Example 8.3 for an example in a meta-analysis of observational studies.

2.7 KEY POINTS

1. Bayesian analysis rests wholly on probability theory, and all inferences can

be derived from three basic rules.

2. The sampling distributions for data are used to derive likelihoods for un-

known parameters, and so familiarity with classical methods helps in Baye-

sian analysis.

3. Normal approximations for likelihoods play a very important role.

4. Bayesian analysis makes use of a wide range of parametric probability

distributions, both as a basis for likelihoods and as prior distributions.

EXERCISES

2.1. A coin is tossed and lands ‘heads’.

(a) What is your assessment of the probability that a second toss of

the coin will also yield a ‘head’?

Before the coin was tossed for the first time it was randomly selected from

two possible coins, one a ‘fair’ coin, i.e. with with both ‘head’ and ‘tail’, and

the other a ‘double-headed’ coin.

(b) What is your assessment of the probability that the second toss of the

coin will now yield a ‘head’?

2.2. Consider a case of disputed paternity, and the blood groups of the mother,

the child and the alleged father. The mother has blood type O and

the alleged father has blood type AB: let F denote the event that he is the

true father. If the child has blood group O then the alleged father can be

excluded from the paternity case. After testing, the child has blood type B,

and Mendelian genetics implies P(BjF) ¼ 0:5. The blood bank gives

P(Bj �FF) ¼ 0:09 for Caucasians. What is P(FjB), i.e. the probability that the

alleged father really is the father given that the child has blood type B, (a)

as a general function of P(F), and (b) when P(F) ¼ 0:5?
2.3. Lee (1997) considers the case of twins and whether they are monozygotic

(M) or dizygotic (D). Monozygotic twins develop from the same egg, look

very similar (often being referred to as identical twins) and are always of

the same sex, whilst dizygotic twins can look very similar too, but can be of

different sexes. Therefore, P(GGjM) ¼ P(BBjM) ¼ 0:5, P(GGjD) ¼ P(BBjD)
¼ 0:25, and P(GBjM) ¼ 0, P(GBjD) ¼ 0:5.
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(a) By extending the argument, express P(GG) in terms of p(M), the prior

probability that a set of twins is monozygotic.

(b) Again in terms of p(M), find the probability that if twins are both girls

they are dizygotic, i.e. P(DjGG).
(c) Find P(DjGG) when p(M) ¼ 0:5.

2.4. In a study of a drug, 20 out of 50 patients respond. (a) Find the maximum

likelihood estimate for the response rate, and use a normal approximation

for the likelihood for the log(odds) to find a 95% interval of values for the

response rate which are supported by the data. A second study is per-

formed, but due to time constraints only 20 patients are observed, of

whom 8 respond. (b) For the second study, what is the most likely value

for the response rate and an approximate 95% interval?

2.5. Gardner et al. (2000) report the results of a trial to investigate whether a

progesterone emitting intra-uterine device (IUD) can reverse endometrial

changes in women being treated for breast cancer with tamoxifen. At the

end of the trial 5 out 56 women in the IUD group were discovered to have

a submucous fibroid, whilst the corresponding number in the control

group was 13 out of 53. Obtain a normal approximation to the likelihood

for the log(odds ratio), and hence give a 95% interval for the odds ratio.

2.6. In the breast cancer trial of Exercise 2.5, women recruited had received

tamoxifen for varying lengths of time, and the investigators felt that it was

important to adjust for this and other possible confounders (including

parity, menopausal status, body-mass index and age) in any analysis.

They therefore used logistic regression to obtain an adjusted odds ratio

of 0.23 with associated 95% confidence interval (CI) from 0.07 to 0.76.

Obtain a normal approximation to the likelihood for the adjusted log(odds

ratio).

2.7. Allen-Mersh et al. (1994) reported the results of a trial in which patients

undergoing chemotherapy for liver metastases were randomised to receive

it either systematically, as was standard, or via hepatic arterial infusion

(HAI). Of 51 randomised to HAI 44 died, and of 49 randomised to systemic

therapy 46 died.

(a) Obtain a rough normal approximation to the likelihood for the

log(hazard ratio).

(b) The reported hazard ratio was 0.60 (95% CI from 0.40 to 0.95). Why

might the approximation be so poor?

2.8. Shepherd et al. (2002) report the results of the PROSPER placebo-

controlled RCT to evaluate the use of pravastin in elderly patients on a

combined primary endpoint of death from coronary heart disease, non-

fatal myocardial infarction, or stroke (fatal or non-fatal). Of 2891 patients

randomised to pravastatin, 408 experienced the primary endpoint, whilst

in the placebo group of 2913 patients 473 experienced it. (a) Obtain a

rough estimate of the log(hazard ratio), assuming equal follow-up. The

authors reported the results of a Cox proportional hazards regression
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model adjusting for a large number of baseline characteristics, which

resulted in a 15% proportionate reduction in the hazard of the primary

endpoint with 95% CI from 3% to 26%. (b) Obtain a normal approximation

to the likelihood for the adjusted log(hazard ratio).

2.9. The PROSPER RCT in Exercise 2.8 also considered whether cancer inci-

dence was higher in those patients receiving statin therapy. In the statin

arm 245 cancers occurred out of 2891 patients, and in the placebo arm

199 cancers occurred in 2913 patients.

(a) Obtain a normal approximation to the likelihood for the log(odds

ratio).

(b) Calculate a classical two-sided P-value.

(c) Assess whether the data support a change in cancer incidence with

statin use.

2.10. Suppose that 10% of patients taking anti-retroviral therapy currently

experience a particular adverse event. Preliminary evidence suggests a

new therapy might reduce this rate to 5%.

(a) What is the hypothesised log(odds ratio)?

(b) Estimate the number of events that would be required in an RCT in

order to detect such a change, assuming a two-sided 5% level of

statistical significance is to be used with a required power of 80%.

(c) How many patients would be required in each arm of an RCT in order

to observe this many events?
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3

An Overview of the
Bayesian Approach

In this chapter we shall introduce the core issues of Bayesian reasoning: these

include subjectivity and context, the use of Bayes theorem, Bayes factors,

interpretation of study results, prior distributions, predictions, decision-making,

multiplicity, using historical data, and computation. This overview necessarily

covers a wide range of material and ideas at an introductory level, and the

issues will be further developed in subsequent chapters. A structure for

reporting Bayesian analyses is proposed, which will provide a uniform style

for the examples presented in this book. A number of starred sections can be

omitted without loss of continuity.

3.1 SUBJECTIVITY AND CONTEXT

The standard interpretation of probability describes long-run properties of

repeated random events (Section 2.1.1). This is known as the frequency interpret-

ation of probability, and standard statistical methods are sometimes referred to as

‘frequentist’. In contrast, the Bayesian approach rests on an essentially ‘subject-

ive’ interpretation of probability, which is allowed to express generic uncertainty

or ‘degree of belief’ about any unknown but potentially observable quantity,

whether or not it is one of a number of repeatable experiments. For example, it is

quite reasonable from a subjective perspective to think of a probability of the

event ‘Earth will be openly visited by aliens in the next ten years’, whereas it may

be difficult to interpret this potential event as part of a ‘long-run’ series. Methods

of assessing subjective probabilities and probability distributions will be discussed

in Section 5.2.

The rules of probability listed in Section 2.1.1 are generally taken as self-

evident, based on comparison with simple chance situations such as rolling

dice or drawing coloured balls out of urns. In these experiments there will be a
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general consensus about the probabilities due to assumptions about physical

symmetries: if a balanced coin is to be tossed, the probability of it coming up

‘heads’ will usually be assigned 0.5, whether this is taken as a subjective belief

about the next toss or whether the next toss is thought of as part of a long series of

tosses. However, as Lindley (2000) emphasises, the rules of probability do not

need to be assumed as self-evident, but can be derived from ‘deeper’ axioms of

reasonable behaviour of an individual (say, You) in the face of Your own uncer-

tainty. This ‘reasonable behaviour’ features characteristics such as Your unwill-

ingness to make a series of bets based on expressed probabilities, such that You

are bound to lose (a so-called ‘Dutch book’), or Your unwillingness to state prob-

abilities that can always be improved upon in terms of their expected accuracy in

predicting events. It is perhaps remarkable that from such conditions one can

prove the three basic rules of probability (Lindley, 1985): as a simple example, if I

state probabilities of 0.7 that it will rain tomorrow, and 0.4 that it will not rain,

and I amwilling to bet at these odds, then a good bookmaker can accept a series of

bets fromme such that I am bound to lose. (For example, assuming small stakes, I

would consider it a good deal to bet 14 units of money for a return of 21 if it

rained, since my expected profit is 0:7� 21� 14 ¼ 0:7, and simultaneously I

would bet 8 units ofmoney for a return of 21 if it did not rain. Thus the bookmaker

is certain tomake a profit of 1 unit whatever happens.) Such probabilities are said

not to ‘cohere’, and are assumed to be avoided by all rational individuals.

The vital point of the subjective interpretation is that Your probability for an

event is a property of Your relationship to that event, and not an objective

property of the event itself. This is why, pedantically speaking, one should

always refer to probabilities for events rather than probabilities of events, and

the conditioning context H used in Section 2.1.1 includes the observer and all

their background knowledge and assumptions. The fact that the probability is a

reflection of personal uncertainty rather than necessarily being based on future

unknown events is illustrated (from personal experience) by a gambling game

played in casinos in Macau. Two dice are thrown out of sight of the gamblers

and immediately covered up: the participants then bet on different possible

combinations. Thus, they are betting on an event that has already occurred,

but about which they are personally ignorant. (Incidentally, their beliefs also do

not appear to be governed by the assumed physical symmetries of the dice:

although they have 2 minutes to bet, everyone remains totally still for at least

90 seconds, and then when the first bet is laid the crowd follow in a rush,

apparently believing in the good fortune of the one confident individual.)

The subjective view of probability is not new, and in past epochs has been the

standard ideology. Fienberg (1992) points out that Jakob Bernoulli in 1713

introduced ‘the subjective notion that the probability is personal and varies with

an individual’s knowledge’, and that Laplace and Gauss both worked with

posterior distributions two hundred years ago, which became known as ‘the

inverse method’. However, from the mid-nineteenth century the frequency

approach started to dominate, and controversy has sporadically continued.
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Dempster (1998) quotes Edgeworth in 1884 as saying that the critics who

‘heaped ridicule upon Bayes’ theorem and the inverse method’ were trying to

elicit ‘knowledge out of ignorance, something out of nothing’. Polemical opin-

ions are still expressed in defence of the explicit introduction of subjective

judgement into scientific research: ‘it simply makes no sense to take seriously

every apparent falsification of a plausible theory, any more than it makes sense

to take seriously every new scientific idea’ (Matthews, 1998).

Bayesian methods therefore explicitly allow for the possibility that the con-

clusions of an analysis may depend on who is conducting it and their available

evidence and opinion, and therefore the context of the study is vital: ‘Bayesian

statistics treats subjectivity with respect by placing it in the open and under the

control of the consumer of data’ (Berger and Berry, 1988). Apart from meth-

odological researchers, at least five different viewpoints might be identified for

an evaluation of a health-care intervention:

. sponsors, e.g. the pharmaceutical industry, medical charities or granting

agencies;

. investigators, i.e. those responsible for the conduct of a study, whether indus-

try or publicly funded;

. reviewers, e.g. regulatory bodies;

. policy makers, e.g. agencies setting health policy;

. consumers, e.g. individual patients or clinicians acting on their behalf.

Each of these broad categories can be further subdivided. An analysis which

might be carried out solely for the investigators, for example, may not be

appropriate for presentation to reviewers or consumers: ‘experimentalists tend

to draw a sharp distinction between providing their opinions and assessments

for the purposes of experimental design and in-house discussion, and having

them incorporated into any form of externally disseminated report’ (Racine et al.,

1996). The roles of these different stakeholders in decision-making is further

explored in Chapter 9.

A characteristic of health-care evaluation is that the investigators who plan

and conduct a study are generally not the same body as those who make deci-

sions on the basis of the evidence provided in part by that study: such decision-

makers may be regulatory authorities, policy-makers or health-care providers.

This division is acknowledged in this book by separating Chapter 6 on the

design and monitoring of trials from Chapter 9 on policy-making.

3.2 BAYES THEOREM FOR TWO HYPOTHESES

In Section 2.1.3 Bayes theorem was derived as a basic result in probability

theory. We now begin to illustrate its use as a mechanism for learning about

unknown quantities from data, a process which is sometimes known as ‘prior to
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posterior’ analysis. We start with the simplest possible situation. Consider two

hypotheses H0 and H1 which are ‘mutually exhaustive and exclusive’, i.e. one

and only one is true. Let the prior probability for each of the two hypotheses,

before we have access to the evidence of interest, be p(H0) and p(H1); for the

moment we will not concern ourselves with the source of those probabilities.

Suppose we have observed some data y, such as the results of a test, and we

know from past experience that the probability of observing y under each of the

two hypotheses is p(yjH0) and p(yjH1), respectively: these are the likelihoods, with

the vertical bar representing ‘conditioning’.

Bayes theorem shows how to revise our prior probabilities in the light of the

evidence in order to produce posterior probabilities. Specifically, by adapting (2.3)

we have the identity

p(H0jy) ¼ p(yjH0)

p(y)
� p(H0), (3:1)

where p(y) ¼ p(yjH0)p(H0)þ p(yjH1)p(H1) is the overall probability of y

occurring.

Now H1 ¼ ‘not H0’ and so p(H0) ¼ 1� p(H1) and p(H0jy) ¼ 1� p(H1jy). In
terms of odds rather than probabilities, Bayes theorem can then be re-expressed

(see (2.5) ) as

p(H0jy)
p(H1jy) ¼

p(yjH0)

p(yjH1)
� p(H0)

p(H1)
: (3:2)

Now p(H0)=p(H1) is the ‘prior odds’, p(H0jy)=p(H1jy) is the ‘posterior odds’, and

p(yjH0)=p(yjH1) is the ratio of the likelihoods, and so (3.2) can be expressed as

posterior odds ¼ likelihood ratio� prior odds:

By taking logarithms we also note that

log (posterior odds) ¼ log (likelihood ratio)þ log (prior odds):

where the log(likelihood ratio) has also been termed the ‘weight of evidence’:

this term was invented by Alan Turing when using these techniques for

breaking the Enigma codes at Bletchley Park during the Second World War.

Example 3.1 shows how this formulation is commonly used in the evaluation

of diagnostic tests, and reveals that our intuition is often poor when processing

probabilistic evidence, and that we tend to forget the importance of the prior

probability (Section 5.2).

Example 3.1 Diagnosis: Bayes theoremindiagnostic testing

Suppose a new home HIV test is claimed to have ‘95% sensitivity and 98%
specificity’, and is to be used in a population with an HIV prevalence of
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1/1000. We can calculate the expected status of 100 000 individuals who
are tested, and the results are shown in Table 3.1. Thus, for example, we
expect 100 truly HIV positive individuals of whom 95% will test positive,
and of the remaining 99 900 HIV negative individuals we expect 2% (1998)
to test positive. Thus of the 2093 who test positive (i.e. have observation y),
only 95 are truly HIV positive, giving a ‘predictive value positive’ of only
95=2093 ¼ 4:5%.

Table 3.1 Expected status of 100 000 tested individuals in a
population with an HIV prevalence of 1/1000.

HIV� HIVþ
Test � 97 902 5 97 907
Test þ 1998 95 2 093

99 900 100 100 000

We can also do these calculations using Bayes theorem. Let H0 be the
hypothesis that the individual is truly HIV positive, and y be the observation
that they test positive. The disease prevalence is the prior probability
(p(H0) ¼ 0:001), and we are interested in the chance that someone who
tests positive is truly HIV positive, i.e. the posterior probability p(H0jy).
Let H1 be the hypothesis that they are truly HIV negative; ‘95% sensitivity’
means that p(yjH0) ¼ 0:95, and ‘98% specificity’ means that
p(yjH1) ¼ 0:02. To use (3.2), we require two inputs: the prior odds
p(H0)=p(H1) which are 1/999, and the likelihood ratio p(yjH0)=p(yjH1)
which is 0:95=0:02 ¼ 95=2. Then from (3.2) the posterior odds are
(95=2)� 1=999 ¼ 95=1998. These odds correspond to a posterior prob-
ability p(H0jy) ¼ 95=(95þ 1998) ¼ 0:045, as found directly from the table.

Alternatively, we can use the form of Bayes theorem given by (3.1).
Now p(y) ¼ p(yjH0)p(H0)þ p(yjH1)p(H1) ¼ 0:95� 0:001þ 0:02� 0:999 ¼
0:020 93. Thus (3.1) says that p(H0jy) ¼ 0:95� 0:001=0:020 93 ¼ 0:045.

The crucial finding is that over 95% of those testing positive will, in fact,
not have HIV.

Figure 3.1 shows Bayes theorem for two hypotheses in either odds or prob-

ability form, for a range of likelihood ratios. The likelihood ratio from a positive

result in Example 3.1 is 0:95=0:02 ¼ 47:5. From a rough inspection of Figure

3.1 we can see that such a likelihood ratio is sufficient to turn a moderately low

prior probability, such as 0.2, into a reasonably high posterior probability of

around 0.9; however, if the prior probability is as low as it is in Example 3.1 (i.e.

0.001), then the posterior probability is still somewhat small.
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Figure 3.1 Bayes theorem for two hypotheses H0 and H1 ¼ ‘not H0’ in (a) probability
p(H0) and (b) odds p(H0)=p(H1) form. By specifying the prior probability or odds, and the
likelihood ratio p(yjH0)=p(yjH1), the posterior probability or odds can be read off the
graph. Note that (b) uses a logarithmic scaling, under which Bayes theorem gives a
linear relationship.

3.3 COMPARING SIMPLE HYPOTHESES: LIKELIHOOD

RATIOS AND BAYES FACTORS

In Section 3.2 we showed how data y influence the relative probabilities of two

hypotheses H0 and H1 through the likelihood ratio p(yjH0)=p(yjH1), and hence

the likelihoods contain all the relevant evidence that can be extracted from the

data: this is the likelihood principle, discussed in more detail in Section 4.3. This
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measure of the relative likelihood of two hypotheses is also known as the ‘Bayes

factor’ (BF), although Cornfield (1976) also termed this the ‘relative betting

odds’ between two hypotheses: see, for example, Goodman (1999b) for a

detailed exposition. The Bayes factor can vary between 0 and 1, with small

values being considered as both evidence against H0 and evidence for H1. The

scale in Table 3.2 was provided by the Bayesian physicist, Harold Jeffreys, and

dates from 1939 (Jeffreys, 1961, p. 432).

The crucial idea is that the Bayes factor transforms prior to posterior odds:

this uses expression (3.2), and the results can be read off Figure 3.1. In Example

3.1 we observed a Bayes factor (likelihood ratio) after a positive HIV test of

BF ¼ 47:5 in favour of being HIV positive (H0). Table 3.2 labels this as ‘very

strong’ evidence in itself in favour of H0, but when combined with strong prior

opinion against H0 (prior odds of 1/999) does not lead to a very convincing

result (posterior odds � 1/21).

Bayes factors can also be obtained for composite hypotheses that include

unknown parameters: this is discussed in Section 4.4 and is a feature when

using a prior distribution that puts a ‘lump’ of probability on a (null) hypothesis

(Section 5.5.4). The relationship between Bayes factors and traditional ways of

hypothesis testing has been the subject of considerable research and controversy,

and is discussed further in Section 4.4.

The use of Bayes theorem in diagnostic testing is an established part of formal

clinical reasoning. More controversial is the use of Bayes theorem in general

statistical analyses, where a parameter � is an unknown quantity such as the

mean benefit of a treatment on a specified patient population, and its prior

distribution p(�) needs to be specified. This major step might be considered as a

natural extension of the subjective interpretation of probability, but the

following (starred) section provides a further argument for why a prior distribu-

tion on a parameter may be a reasonable assumption.

Table 3.2 Calibration of Bayes factor (likelihood ratio) provided by Jeffreys.

Bayes factor range Strength of evidence in favour of H0 and against H1

> 100 Decisive
32 to 100 Very strong
10 to 32 Strong
3.2 to 10 Substantial
1 to 3.2 ‘Not worth more than a bare mention’

Strength of evidence against H0 and in favour of H1

1 to 1/3.2 ‘Not worth more than a bare mention’
1/3.2 to 1/10 Substantial
1/10 to 1/32 Strong
1/32 to 1/100 Very strong

< 1/100 Decisive
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3.4 EXCHANGEABILITY AND PARAMETRIC MODELLING*

In Section 2.2.3 we introduced the concept of independent and identically

distributed (i.i.d.) variables Y1, . . . , Yn as a fundamental component of standard

statistical modelling. However, just as we found in Section 3.1 that the rules of

probability could themselves be derived from more basic ideas of rational behav-

iour, so we can derive the idea of i.i.d. variables and prior distributions of

parameters from the more basic subjective judgement known as ‘exchangeabil-

ity’. Exchangeability is a formal expression of the idea that we find no systematic

reason to distinguish the individual variables Y1, . . . ,Yn – they are similar but not

identical. Technically, we judge that Y1, . . . ,Yn are exchangeable if the probabil-

ity that we assign to any set of potential outcomes, p(y1, . . . , yn), is unaffected by

permutations of the labels attached to the variables. For example, suppose

Y1, Y2, Y3 are the first three tosses of a (possibly biased) coin, where Y1 ¼ 1

indicates a head, and Y1 ¼ 0 indicates a tail. Then we would judge

p(Y1 ¼ 1, Y2 ¼ 0, Y3 ¼ 1) ¼ p(Y2 ¼ 1, Y1 ¼ 0, Y3 ¼ 1) ¼ p(Y1 ¼ 1,Y3 ¼ 0,

Y2 ¼ 1), i.e. the probability of getting two heads and a tail is unaffected by the

particular toss on which the tail comes. This is a natural judgement to make if we

have no reason to think that one toss is systematically any different from another.

Note that it does notmeanwe believe that Y1, . . . ,Yn are independent: independ-

ence would imply p(y1, . . . , yn) ¼ p(y1)� . . .� p(yn) and hence the result of a

series of tosses does not help us predict the next, whereas a long series of heads

would tend tomake us believe the coinwas seriously biased and hencewould lead

us to predict a head as more likely.

An Italian actuary, Bruno de Finetti, published in 1930 a most extraordinary

result (de Finetti, 1930). He showed that if a set of binary variables Y1, . . . ,Yn

were judged exchangeable, then it implied that

p(y1, . . . , yn) ¼
Z Yn

i¼1

p(yij�)p(�)d�: (3:3)

Now (3.3) is unremarkable if we argue from right to left: if Y1, . . . , Yn are

i.i.d., each with distribution p(yij�), their joint distribution (conditional on �)
is p(y1, . . . , ynj�) ¼

Qn
i¼1 p(yij�) (2.16). Hence, their marginal distribution

p(y1, . . . , yn) (2.7), given a distribution p(�), is given by (3.3). However, de Finetti’s

remarkable achievement was to argue from left to right: exchangeable random

quantities can be thought of as being i.i.d. variables drawn from some common

distribution depending on an unknown parameter �, which itself has a prior dis-

tribution p(�). Thus, froma subjective judgement about observable quantities, one

derives the whole apparatus of i.i.d. variables, conditional independence, param-

eters and prior distributions. This was an amazing achievement.

De Finetti’s results have been extended to much more general situations

(Bernardo and Smith, 1994), and the concept of exchangeability will continu-

ally recur throughout this book.
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3.5 BAYES THEOREM FOR GENERAL QUANTITIES

This small section is the most important in this book.

Suppose � is some quantity that is currently unknown, for example the true

success rate of a new therapy, and let p(�) denote the prior distribution of �. As
discussed in Section 3.1, this prior distribution should, strictly speaking, be

denoted p(�jH) to remind us that it represents Your judgement about � condi-

tional on a context H, where You are the person for whom the analysis is being

performed (the client), and not the statistician who may be actually carrying

out the analysis. The interpretation and source of such distributions are dis-

cussed in Section 3.9 and Chapter 5.

Suppose we have some observed evidence y, for example the results of a

clinical trial, whose probability of occurrence is assumed to depend on �. As
we have seen, this dependence is formalised by p(yj�), the (conditional) prob-

ability of y for each possible value of �, and when considered as a function of � is
known as the likelihood. We would like to obtain the new, posterior, probability

for different values of �, taking account of the evidence y; this probability has the
conditioning reversed and is denoted p(�jy).

Bayes theorem applied to a general quantity �was given in (2.6) and says that

p(�jy) ¼ p(yj�)
p(y)

� p(�): (3:4)

Now p(y) is just a normalising factor to ensure that
R
p(�jy) d� ¼ 1, and its value

is not of interest (unless we are comparing alternative models). The essence of

Bayes theorem only concerns the terms involving �, and hence it is often written

p(�jy) / p(yj�)� p(�), (3:5)

which says that the posterior distribution is proportional to (i.e. has the same

shape as) the product of the likelihood and the prior. The deceptively simple

expression (3.5) is the basis for the whole of the rest of this book, since it shows

how to make inferences from a Bayesian perspective, both in terms of estimation

and obtaining credible intervals and also making direct probability statements

about the quantities in which we are interested.

3.6 BAYESIAN ANALYSIS WITH BINARY DATA

In Section 2.2.4 we considered a probability � of an event occurring, and

derived the form of the likelihood for � having observed n cases in which r

events occurred. Adopting a Bayesian approach to making inferences, we wish

to combine this likelihood with initial evidence or opinion regarding �, as

expressed in a prior distribution p(�).
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3.6.1 Binary data with a discrete prior distribution

First, suppose only a limited set of hypotheses concerning the true proportion �
are being entertained, corresponding to a finite list denoted �1, . . . , �J . Suppose
in addition a prior probability p(�j) of each has been assessed, where�jp(�j) ¼ 1.

For a single Bernoulli trial with outcome 0 or 1, the likelihood for each possible

value for � is given by (2.15),

p(yj�j) ¼ �yj (1� �j)
1�y

, (3:6)

i.e. p(yj�j) ¼ �j if y ¼ 1, and p(yj�j) ¼ 1� �j if y ¼ 0.

Having observed an outcome y, Bayes theorem (3.5) states that the posterior

probabilities for the �j obey

p(�jjy) / �yj (1� �j)
1�y � p(�j), (3:7)

where the normalising factor that ensures that the posterior probabilities add to

1 is

p(y) ¼�j�
y
j (1� �j)

1�y � p(�j):

After further observations have been made, say with the result that there have

been r ‘successes’ out of n trials, the relevant posterior will obey

p(�jjr) / �rj (1� �j)
n�r � p(�j): (3:8)

A basic example of these calculations is given in Example 3.2.

Example 3.2 Drug: Binarydataandadiscrete prior

Suppose a drug has an unknown true response rate y, and for simplicity we
assume that y can only take one of the values y1 ¼ 0:2, y2 ¼ 0:4, y3 ¼ 0:6
or y4 ¼ 0:8. Before experimentation we adopt the ‘neutral’ position of
assuming each value yj is equally likely, so that p(yj) ¼ 0:25 for each
j ¼ 1, 2, 3, 4.

Suppose we test the drug on a single subject and we observed a positive
response (y ¼ 1). How should our belief in the possible values of y be
revised?

First, we note that the likelihood is simply p(yjyj) ¼ yyj (1� y)(1�y) ¼ yj. Table
3.3 displays the components of Bayes theorem (3.7): the ‘Likelihood �
prior’ column, normalised by its sum p(y), gives the posterior probabilities.
It is perhaps initially surprising that a single positive response makes it four
times as likely that the true response rate is 80% rather than 20%.
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Table 3.3 Results after observing a single positive response, y ¼ 1, for a drug
given an initial uniform distribution over four possible response rates yj.

j yj Prior
p(yj)

Likelihood
p(yjyj)

Likelihood � prior
p(yjyj)p(yj)

Posterior
p(yjjy)

1 0.2 0.25 0.2 0.05 0.10
2 0.4 0.25 0.4 0.10 0.20
3 0.6 0.25 0.6 0.15 0.30
4 0.8 0.25 0.8 0.20 0.40P

j 1.0 0.50 1.0

Suppose we now observe 15 positive responses out of 20 patients, how is
our belief revised? Table 3.4 shows that any initial belief in y1 ¼ 0:2 is now
completely overwhelmed by the data, and that the only remaining contend-
ers are y3 ¼ 0:6 with about 30% of the posterior probability, and y4 ¼ 0:8
with about 70%.

We note that, had we given any non-zero probability to the extreme values
of y ¼ 0, 1, i.e. the drug either never or always worked, these would give a
zero likelihood and hence zero posterior probability.

Table 3.4 Results after observing 15 positive responses, y ¼ 15, for a drug
out of 20 cases, given an initial uniform distribution over four possible response
rates yj.

j yj Prior
p(yj)

Likelihood
y15j (1� yj)

5

(� 10�7)

Likelihood � prior

y15j (1� yj)
5 p(yj)

(� 10�7)

Posterior
p(yjjX ¼ 1)

1 0.2 0.25 0.0 0.0 0.000
2 0.4 0.25 0.8 0.2 0.005
3 0.6 0.25 48.1 12.0 0.298
4 0.8 0.25 112.6 28.1 0.697P

j 1.0 40.3 1.0

3.6.2 Conjugate analysis for binary data

It is generally more realistic to consider � a continuous parameter, and hence it

needs to be given a continuous prior distribution. One possibility is that we

think all possible values of � are equally likely, in which case we could summar-

ise this by a uniform distribution (Section 2.6.4) so that p(�) ¼ 1 for 04�41.

Applying Bayes theorem (3.5) yields

Bayesian analysis with binary data 59

Chapter 3 An Overview of the Bayesian Approach 17.11.2003 4:24pm page 59



p(�jy) / �r(1� �)n�r � 1, (3:9)

where r is the number of events observed and n is the total number of individ-

uals.

We may recognise that the functional form of the posterior distribution in

(3.9) is proportional to that of a beta distribution (Section 2.6.3). Rewriting the

posterior distribution (3.9) as �(rþ1)�1(1� �)(n�rþ1)�1
, we can see that the pos-

terior distribution is in fact Beta [rþ 1, n� rþ 1]. This immediately means that

we can now summarise the posterior distribution in terms of its mean and

variance, and make probability statements based on what we know about the

beta distribution (for example, many common statistical packages will calculate

tail area probabilities for the beta distribution).

Instead of a uniform prior distribution for � we could take a Beta [a, b] prior
distribution and obtain the following analysis:

Prior / �a�1(1� �)b�1

Likelihood / �r(1� �)n�r

Posterior / �a�1(1� �)b�1�r(1� �)n�r

/ �aþr�1(1� �)bþn�r�1

¼ Beta[aþ r, bþ n� r]:

(3:10)

Thus we have specified a beta prior distribution for a parameter, observed data

from a Bernoulli or binomial sampling distribution, worked through Bayes

theorem, and ended up with a beta posterior distribution. This is a case of

conjugate analysis. Conjugate models occur when the posterior distribution is

of the same family as the prior distribution: other examples include the gamma

distribution being conjugate with a Poisson likelihood, normal priors being

conjugate with normal likelihoods (Section 3.7), and gamma priors for un-

known precisions of normal likelihoods (Section 2.6.5).

Example 3.3 Drug (continued): Binarydataanda continuousprior

Suppose that previous experience with similar compounds has suggested
that response rates between 0.2 and 0.6 could be feasible, with an expect-
ation around 0.4. We can translate this into a prior Beta[a, b] distribution as
follows.

We first want to estimate the mean m and standard deviation s of the prior
distribution. For normal distributions we know that m� 2s includes just
over 95% of the probability, so if we were assuming a normal prior we
might estimate m ¼ 0:4, s ¼ 0:1. However, we know from Section 2.6.3
that beta distributions with reasonably high a and b have an approximately
normal shape, so these estimates might also be used for a beta prior.
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Next, from Section 2.6.3, we know that for a beta distribution

m ¼ a=(aþ b), (3:11)

s2 ¼ m(1�m)=(aþ bþ 1): (3:12)

Expression (3.12) canbe rearranged togiveaþ b ¼ m(1�m)=s2 � 1.Using
the estimatesm ¼ 0:4, s ¼ 0:1,we obtain aþ b ¼ 23. Then, from (3.11), we
see that a ¼ m(aþ b), and hence we finally obtain a ¼ 9:2, b ¼ 13:8: this
can be considered a ‘method of moments’. A Beta[9.2,13.8] distribution is
shown inFigure 3.2(a), showing that it well represents the prior assumptions.
It is convenient to think of this prior distribution as that which would have
arisen had we started with a ‘non-informative’ prior Beta[0,0] and then ob-
served a ¼ 9:2 successes in aþ b ¼ 23 patients (however, this is only a
heuristic argument as there is no agreed ‘non-informative’ beta prior, with
Beta[0,0], Beta[ 12 ,

1
2 ], Beta[1,1] all having been suggested (Section 5.5.1)).

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

(a) Prior

(b) Likelihood

(c) Posterior

Probability of response

0.0 0.2 0.4 0.6 0.8 1.0

Figure 3.2 (a) is a Beta[9.2,13.8] prior distribution supporting response rates
between 0.2 and 0.6, (b) is a likelihood arising from a binomial observation of 15
successes out of 20 cases, and (c) is the resulting Beta[24.2, 18.8] posterior from a
conjugate beta-binomial analysis.
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If we now observed r ¼ 15 successes out of 20 trials, we know from (3.10)
that the parameters of the beta distribution are updated to
[aþ 15, bþ 20� 5] ¼ [24:2, 18:8]. The likelihood and posterior are
shown in Figures 3.2(b) and 3.2(c): the posterior will have mean
24:2=(24:2þ 18:8) ¼ 0:56.

3.7 BAYESIAN ANALYSIS WITH NORMAL

DISTRIBUTIONS

In Section 2.4 we saw that in many circumstances it is appropriate to consider a

likelihood as having a normal shape, although this may involve working

on somewhat uninituitive scales such as the logarithm of the hazard ratio.

With a normal likelihood it is mathematically convenient, and often reasonably

realistic, to make the assumption that the prior distribution p(�) has the form

p(�) ¼ N � �,
�2

n0

				
�
,

�
(3:13)

where � is the prior mean. We note that the same standard deviation � is used

in the likelihood and the prior, but the prior is based on an ‘implicit’ sample size

n0. The advantage of this formulation becomes apparent when we carry out

prior-to-posterior analysis. We note in passing that as n0 tends to 0, the

variance becomes larger and the distribution becomes ‘flatter’, and in the limit

the distribution becomes essentially uniform over (�1, 1). A normal prior

with a very large variance is sometimes used to represent a ‘non-informative’

distribution (Section 5.5.1).

Suppose we assume such a normal prior � � N[�, �2=n0] and likelihood

ym � N[�, �2=m]. Then the posterior distribution obeys

p(�jym) / p(ymj�)p(�)

/ exp � (ym � �)2m

2�2

" #
� exp � (�� �)2n0

2�2

" #
,

ignoring irrelevant terms that do not include �. By matching terms in � it can be

shown that

(ym � �)2mþ (�� �0)
2
n0 ¼ �� n0�0 þmym

n0 þm

� �2

(n0 þm)þ (ym � �)2
1

m
þ 1

n0

� �
,

and we can recognise that the term involving � is exactly that arising from a

posterior distribution
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p(�jym) ¼ N �
n0�þmym

n0 þm
,

�2

n0 þm

				
�
:

�
(3:14)

Equation (3.14) is very important. It says that our posterior mean

(n0�þmym)=(n0 þm) is a weighted average of the prior mean � and parameter

estimate ym, weighted by their precisions, and therefore is always a compromise

between the two. Our posterior variance (1/precision) is based on an implicit

sample size equivalent to the sum of the prior ‘sample size’ n0 and the sample

size of the data m: thus, when combining sources of evidence from the prior and

the likelihood, we add precisions and hence always decrease our uncertainty. As

Senn (1997a, p. 46) claims, ‘A Bayesian is one who, vaguely expecting a horse

and catching a glimpse of a donkey, strongly concludes he has seen a mule’.

Note that as n0 ! 0, the prior tends towards a uniform distribution and the

posterior tends to the same shape as the likelihood.

Suppose we do not adopt the convention for expressing prior and sampling

variances as �2=n0 and �2=m, and instead use the general notation

� � N[�, t2] and likelihood ym � N[�, �2
m]. Then it is straightforward to

show that the posterior distribution (3.14) can be expressed as

p(�jym) ¼ N �

�
t2 þ ym

�2m
1
t2 þ 1

�2m

,
1

1
t2 þ 1

�2m

					
#
:

"
(3:15)

We will sometimes find this general form useful, but will generally find (3.14)

more intuitive.

Example 3.4 provides a simple example of Bayesian reasoning using normal

distributions.

Example 3.4 SBP: Bayesiananalysis fornormaldata

Suppose we are interested in the long-term systolic blood pressure (SBP)
in mmHg of a particular 60-year-old female. We take two independent
readings 6 weeks apart, and their mean is 130. We know that SBP is
measured with a standard deviation s ¼ 5. What should we estimate her
SBP to be?

Let her long-term SBP be denoted y. A standard analysis would use the
sample mean ym ¼ 130 as an estimate, with standard error
s=

ffiffiffiffi
m

p ¼ 5=
ffiffiffi
2

p ¼ 3:5: a 95% confidence interval is ym � 1:96� s=
ffiffiffiffi
m

p
,

i.e. 123.1 to 136.9.

However, we may have considerable additional information about SBPs
which we can express as a prior distribution. Suppose that a survey in the
same population revealed that females aged 60 had a mean long-term
SBP of 120 with standard deviation 10. This population distribution can be
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considered as a prior distribution for the specific individual, and is shown in
Figure 3.3(a): if we express the prior standard deviation as s=

ffiffiffiffiffi
n0

p
(i.e.

variance s2=n0), we can solve to find n0 ¼ (s=10)2 ¼ 0:25.

Figure 3.3(b) shows the likelihood arising from the two observations on the
woman. From (3.14) the posterior distribution of y is normal with mean
(0:25� 120þ 2� 130)=(0:25þ 2) ¼ 128:9 and standard deviation
s=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n0 þm

p ¼ 5=
ffiffiffiffiffiffiffiffiffiffi
2:25

p ¼ 3:3, giving a 95% interval of 128:9� 1:96� 3:3
¼ (122:4, 135:4). Figure 3.3(c) displays this posterior distribution,
revealing some ‘shrinkage’ towards the population mean, and a small
increase in precision from not using the data alone.

Intuitively, we can say that the woman has somewhat higher measure-
ments than we would expect for someone her age, and hence we slightly
adjust our estimate to allow for the possibility that her two measures
happened by chance to be on the high side. As additional measures are
made, this possibility becomes less plausible and the prior knowledge will
be systematically downgraded.

3.8 POINT ESTIMATION, INTERVAL ESTIMATION AND

INTERVAL HYPOTHESES

Although it is most informative to plot an entire posterior distribution, there will

generally be a need to produce summary statistics: we shall consider point

estimates, intervals, and the probabilities of specified hypotheses.

Point estimates. Traditional measures of location of distributions include the

mean, median and mode, and – by imposing a particular penalty on error in

estimation (Berger, 1985) – each can be given a theoretical justification as a

point estimate derived from a posterior distribution. If the posterior distribution

is symmetric and unimodal, as in Figure 3.3, then the mean, median and mode

all coincide in a single value and there is no difficulty in making a choice. We

shall find, however, that in some circumstances posterior distributions are

considerably skewed and there are marked differences between, say, mean

and median. We shall prefer to quote the median in such contexts as it is less

sensitive to the tails of the distribution, although it is perhaps preferable to

report all three summary measures when they show wide disparity.

Interval estimates. Any interval containing, say, 95% probability may be termed

a ‘credible’ interval to distinguish it from a Neyman–Pearson ‘confidence inter-

val’, although we shall generally refer to them simply as posterior intervals.

Three types of intervals can be distinguished – we assume a continuous param-

eter � with range on (�1, 1) and a posterior conditional on generic data y:
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(a) Prior distribution

100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140

(b) Likelihood

100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140

(c) Posterior distribution

Long-term systolic blood pressure of 60-year old woman

100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140

Figure 3.3 Estimating the true long-term underlying systolic blood pressure of a
60-year-old woman: (a) the prior distribution is N[120, 102] and expresses the distribu-
tion of true SBPs in the population; (b) the likelihood is proportional to N[130, 3:52] and
expresses the support for different values arising from the two measurements made on
the woman; (c) the posterior distribution is N[128:9, 3:32] and is proportional to the
likelihood multiplied by the prior.

One-sided intervals. For example, a one-sided upper 95% interval would be

(�L,1), where p(� < �Ljy) ¼ 0:05.
Two-sided ‘equi-tail-area’ intervals. A two-sided 95% interval with equal prob-

ability in each tail area would comprise (�L, �U ), where p(� < �Ljy) ¼ 0:025,
and p(� > �U jy) ¼ 0:975.

Highest posterior density (HPD) intervals. If the posterior distribution is skewed,

then a two-sided interval with equal tail areas will generally contain some

parameter values that have lower posterior probability than values outside

the interval. An HPD interval does not have this property – it is adjusted so

that the probability ordinates at each end of the interval are identical, and

hence it is also the narrowest possible interval containing the required

probability. Of course if the posterior distribution has more than one mode,

then the HPD may be made up of a set of disjoint intervals.

These alternatives are illustrated in Figure 3.4, suggesting that HPD intervals

would be preferable – unfortunately they are generally difficult to compute. For

normal posterior distributions these intervals require only the use of tables or
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(a) Symmetric unimodal distribution

−1.64 1.64

(b) Skewed unimodal distribution

0.4 5.5 6.3

(c) Bimodal distribution

Parameter of interest

−4.5 0.5 2.9 8.6

Figure 3.4 (a) shows a symmetric unimodal distribution in which equi-tail-area and
HPD intervals coincide at �1:64 to 1.64. (b) is a skewed unimodal distribution in which
the equi-tail-area interval is 0.8 to 6.3, whereas the HPD of 0.4 to 5.5 is considerably
shorter. (c) shows a bimodal distribution in which the equi-tail-area interval is �3:9 to
8.6, whereas the HPD appropriately consists of two segments.

programs giving tail areas of normal distributions (Sections 2.3 and 3.7). In

more complex situation we shall generally be simulating values of � and one-

and two-sided intervals are constructed using the empirical distribution of

simulated values (Section 3.19.3). It will not usually be possible to find HPD

intervals when using simulation methods.

Traditional confidence intervals and Bayesian credible intervals differ in a

number of ways.

1. Most important is their interpretation: we say there is a 95% probability that

the true � lies in a 95% credible interval, whereas this is certainly not the
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interpretation of a 95% confidence interval. In a long series of 95% confi-

dence intervals, 95% of them should contain the true parameter value –

unlike the Bayesian interpretation, we cannot give a probability for whether

a particular confidence interval contains the true value, it either does or does

not and all we have to fall back on is the long-run properties of the proced-

ure. Of course, the direct Bayesian interpretation is often wrongly ascribed to

confidence intervals.

2. Credible intervals will generally be narrower due to the additional infor-

mation provided by the prior: for an analysis assuming the normal distribu-

tion they will have width 2� 1:96� �=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n0 þm

p
, compared to

2� 1:96� �=
ffiffiffiffi
m

p
for the confidence interval.

3. Some care is required in terminology: while the width of classical confidence

intervals is governed by the standard error of the estimator, the width of

Bayesian credible intervals is dictated by the posterior standard deviation.

Interval hypotheses. Suppose a hypothesis of interest comprises an interval

H0 : �L < � < �U , for some prespecified �L, �U indicating, for example, a

range of clinical equivalence. Then it is straightforward to report the posterior

probability p(H0jy) ¼ p(�L < � < �U jy), which may again be obtained using

standard formulae or simulation methods.

Example 3.5 SBP (continued): Intervalestimation

We extend Example 3.4 to encompass testing the hypothesis that the
woman has a long-term SBP greater than 135, and the provision of 95%
intervals.

The probability of the hypothesis H0: yL < y < 1, yL ¼ 135, is

p(H0jy) ¼ p(y > yLjy) ¼ 1�F

yl � n0mþmym
n0 þm

s=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n0 þm

p

0
B@

1
CA

and is shaded in Figure 3.5(a). Figure 3.5(b) displays a 95% posterior
interval comprising the posterior mean �1:96� s=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n0 þm

p
. Table 3.5

provides the results for both prior and posterior.

We can contrast the Bayesian analysis with the classical conclusions
drawn from the likelihood alone. This would comprise a 95% confidence
interval ym � 1:96� s=

ffiffiffiffi
m

p
, and a one-sided P-value

p(Y < ymjH0) ¼ F
ym � yL
s=

ffiffiffiffi
m

p
� �

;
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(a)

Systolic blood pressure of a 60-year-old woman

100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140

100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140

(b)

Systolic blood pressure of a 60-year-old woman

Figure 3.5 Inference from the posterior distribution of the true underlying systolic
blood pressure of a 60-year-old woman: (a) shaded area is the probability 0.033
that y > 135; (b) a two-sided 95% interval (both equi-probability and HPD).

this is numerically identical to the tail area of the posterior with a uniform
prior obtained by setting n0 ¼ 0.

We note from Table 3.5 that a traditional one-sided p-value for the
hypothesis H0: y > 135 is 0.08, while the Bayesian analysis has used the
prior opinion to reduce this to 0.03.

Table 3.5 Bayesian and traditional intervals and tests of hypothesis H0: y > 135.

Mean SD 95% credible interval p(H0jym)
Prior 120.0 10.0 100.4 to 139.6 0.067
Posterior 128.9 3.3 122.4 to 135.4 0.033

Estimate SE 95% CI p(Y < ymjH0)
Classical 130.0 3.5 123.1 to 136.9 0.078

If we were to express the (rather odd) prior belief that all values of � were

equally likely, then p(�) would be constant and (3.5) shows that the resulting

posterior distribution is simply proportional to the likelihood: (3.14) shows this

is equivalent to assuming n0 ¼ 0 in an analysis assuming a normal distribution.

In many standard situations a traditional confidence interval is essentially

equivalent to a credible interval based on the likelihood alone, and Bayesian

and classical results may therefore be equivalent when using a uniform or ‘flat’
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prior. Burton (1994) claims that ‘it is already common practice in medical

statistics to interpret a frequentist confidence interval as if it did represent a

Bayesian posterior probability arising from a calculation invoking a prior dens-

ity that is uniform on the fundamental scale of analysis’. In our examples we

shall present the likelihood and often interpret it as a posterior distribution after

having assumed a ‘flat’ prior: this can be termed a ‘standardised likelihood’, and

some possible problems with this are discussed in Section 5.5.1.

Example 3.6 presents a Bayesian analysis of a published trial: it uses a highly

structured format which will be discussed further in Section 3.21. We are aware

of the potentially confusing discussion in terms of mortality rates, odds ratios,

log(odds ratios) and risk reduction – this multiple terminology is unfortunately

inevitable and it is best to confront it early on.

Example 3.6 GREAT (continued): Bayesian analysis of a trial of early
thrombolytic therapy

Reference: Pocock and Spiegelhalter (1992).

Intervention: Thrombolytic therapy after myocardial infarction, given at
home by general practitioners.

Aimofstudy: To compare anistreplase (a new drug treatment to be given at
home as soon as possible after a myocardial infarction) and placebo
(conventional treatment).

Studydesign: Randomised controlled trial.

Outcomemeasure: Thirty-day mortality rate under each treatment, with the
benefit of the new treatment measured by the odds ratio, OR, i.e. the
ratio of the odds of death following the new treatment to the odds
of death on the conventional: OR < 1 therefore favours the new
treatment.

Statistical model: Approximate normal likelihood for the logarithm of the
odds ratio (Section 2.4).

Prospective Bayesian analysis?: No, it was carried out after the trial
reported its results.

Priordistribution: The prior distribution was based on the subjective judge-
ment of a senior cardiologist, informed by empirical evidence derived
from one unpublished and two published trials, who expressed belief that
‘an expectation of 15–20% reduction in mortality is highly plausible, while
the extremes of no benefit and a 40% relative reduction are both un-
likely’. This has been translated to a normal distribution on the log(OR)
scale, with a prior mean of m0 ¼ �0:26 (OR ¼ 0:78) and symmetric 95%
interval of �0:51 to 0.00 (OR 0.60 to 1.00), giving a standard deviation of
0.13. This prior is shown in Figure 3.6(a).

Point estimation, interval estimation and interval hypotheses 69

Chapter 3 An Overview of the Bayesian Approach 17.11.2003 4:24pm page 69



Loss functionordemands: None specified.

Computation/software: Conjugate normal analysis (3.14).

Evidence from study: The 30-day mortality was 23/148 on control and
13/163 on new treatment.

We have already seen in Example 2.5 that the estimated log(OR) is
ym ¼ �0:74 (OR ¼ 0:48), with estimated standard error 0.36, giving a
95% classical confidence interval for log(OR) from �1:45 to � 0:03
(OR from 0.24 to 0.97). The traditional standardised test statistic is
therefore �0:74=0:36 ¼ 2:03, and the null hypothesis of no effect is
therefore rejected with a two-sided P-value of 2F(�2:03) ¼ 0:04
(GREAT Group, 1992). Figure 3.6(b) shows the likelihood expressing
reasonable support for values of y representing a 40–60% reduction in
odds of death. As explained in Example 2.5, it is convenient to express
the variance of ym as s2=m, and take s ¼ 2 and m ¼ 30:5.

Bayesian interpretation: Figure 3.6(c) shows the posterior distribution,
obtained by multiplying the prior and likelihood together and then making
the total area under the curve equal to one (i.e. ‘certainty’). The prior
distribution has a standard deviation of 0.13, and expressing this
as s=

ffiffiffiffiffi
n0

p
leads to an equivalent number of observations

n0 ¼ s2=0:132 ¼ 236:7. Thus the prior can be thought to have around
236.7/30.5 � 8 times as much information as the likelihood, showing the
strength of the subjective judgement in this example.

The equivalent number of observations in the posterior is then
n0 þm ¼ 236:7þ 30:5 ¼ 267:2, with a posterior mean equal to the
weighted average (n0mþmym)=(n0 þm) ¼ �0:31 with standard devi-
ation s=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n0 þm

p ¼ s=
ffiffiffiffiffiffiffiffiffiffiffiffi
267:2

p ¼ 0:12. Thus, the estimated odds ratio is
around e�0:31 ¼ 0:73, or 27% risk reduction (half that observed in the
trial). A 95% credible interval can be calculated on the log(OR) scale to
be from�0:55 to�0:07, which corresponds to odds ratios from 0.58 to
0.93, or a 95% probability that the true risk reduction lies between 7%
and 42%. The posterior probability that the reduction is at least 50% can
be calculated by noting this is equivalent to a log(OR) of �0:69, which
gives a probability of F( (�0:69þ 0:31)=0:12) ¼ F(�3:11) ¼ 0:001. We
can also calculate the posterior probability that there is any treatment
effect as p(y < 0jym) ¼ F( (0þ 0:31)=0:12) ¼ F(2:54) ¼ 0:995 and so,
adopting the prior provided by the ‘expert’, we can be 99.5% certain the
new treatment is of benefit. Nevertheless, the evidence in the likelihood
has been pulled back towards the prior distribution – a formal represen-
tation of the belief that the results were ‘too good to be true’.

Sensitivity analysis: As an alternative prior formulation, we consider an
observer who has no prior bias one way or another, but is more scep-
tical about large treatment effects than the current expert: this can be
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favours home therapy  <-                     Mortality odds ratio                       ->  favours control
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favours home therapy  <-                     Mortality odds ratio                       ->  favours control

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

(a) Prior distribution

(b) Likelihood

(c) Posterior distribution

favours home therapy  <-                     Mortality odds ratio                       ->  favours control

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

Figure 3.6 Prior, likelihood and posterior distributions arising from GREAT trial of
home thrombolysis. These are all normal on the y ¼ log (OR) scale.

represented by a normal prior centred on log(OR) ¼ 0 (OR ¼ 1) and with
a 95% interval that runs from a 50% reduction in odds of death (OR ¼
0.5, log(OR) ¼ �0:69), to a 100% increase (OR ¼ 2.0, log(OR) ¼ 0.69).
On a log(OR) scale, this prior has a 95% interval from�0:69 to 0.69, and
so has a standard deviation 0.69/1.96 ¼ 0.35 and hence m ¼ 4=0:352 ¼
32:3, approximately the same weight of evidence as the likelihood. The
prior can therefore be thought of as providing equivalent evidence to that
arising from an imaginary balanced trial, in which around 16 deaths were
observed on each arm. This prior is shown in Figure 3.7, together with the
likelihod and posterior distribution, which has mean �0:36 (OR ¼ 0.70)
and equivalent size n0 þm ¼ 62:8, leading to a standard deviation of
0.25. The probability that there is no benefit from the new treatment is
now only F(�0:36=0:25) ¼ F(�1:42) ¼ 0:08, shown as the shaded area
in Figure 3.7. This analysis suggests that a reasonably sceptical person
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may therefore not find the GREAT results convincing that there is a
benefit: these ideas are formally explored in Section 3.11.

Comments: It is interesting to note that Morrison etal. (2000) conducted a
meta-analysis of early thrombolytic therapy and estimated OR ¼ 0.83
(95% interval from 0.70 to 0.98), far less impressive than the GREAT
resultsand reasonably in linewith theposteriordistributionshown inFigure
3.6, which was calculated 8 years before publication of themeta-analysis.

However, this finding should not be over-interpreted and two points
should be kept in mind. First, Morrison et al. (2000) include some trials
that contributed to the prior used by the expert in the above example, and
so there is good reason why our posterior (which could be interpreted as
a type of subjective meta-analysis) and the formal meta-analysis should
correspond. Second, their primary outcome measure is in-hospital mor-
tality, for which GREAT showed a non-significant (but still substantial)
benefit of 11/163 vs. 17/148, with an estimated OR of 0.57.

favours home therapy  <-                 Mortality odds ratio                  ->  favours control

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.3 1.5

Likelihood
Prior
Posterior

Figure 3.7 A prior distribution that expresses scepticism about large treatment
effects would be centred on 0 and have, for example, a 95% interval for OR
between 0.5 and 2.0. This is equivalent to a previous study in which 32.3 events
occurred, divided equally between the two arms. Adopting this prior and updating it
with the GREAT data leads to a posterior distribution as shown, with the shaded
area representing a probability of 8% that the treatment is harmful.
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3.9 THE PRIOR DISTRIBUTION

Bayesian analysis is driven by the prior distribution, and its source and use

present many challenges. These will be covered in detail in Chapter 5, including

elicitation from experts, derivation from historical data, the use of ‘default’

priors to represent archetypal positions of ignorance, scepticism and enthusiasm

and, when multiple related studies are being simultaneously analysed, the

assumption of a common prior that may be ‘estimated’.

It is important to clarify a number of possible misconceptions that may arise.

In particular, a prior is:

Not necessarily specified beforehand. Despite the name ‘prior’ suggesting a temporal

relationship, it is quite feasible for a prior distribution to be decided after seeing the

results of a study, since it is simply intended to summarise reasonable uncertainty

given evidence external to the study in question. Cox (1999) states:

I was surprised to read that priors must be chosen before the data have been seen. Nothing

in the formalism demands this. Prior does not refer to time, but to a situation, hypothetical

whenwe have data, where we assess what our evidence would have been if we had had no

data. This assessment may rationally be affected by having seen the data, although there

are considerable dangers in this, rather similar to those in frequentist theory.

Naturally when making predictions or decisions one’s prior distribution needs

to be unambiguously specified, although even then it is reasonable to carry out

analysis of sensitivity to alternative choices.

Not necessarily unique. There is no such thing as the ‘correct’ prior. Instead,

researchers have suggested using a ‘community’ of prior distributions express-

ing a range of reasonable opinions. Thus a Bayesian analysis of evidence is best

seen as providing a mapping from specified prior beliefs to appropriate posterior

beliefs.

Not necessarily completely specified. When multiple related studies are being

simultaneously analysed, it may be possible to have unknown parameters in

the prior which are then ‘estimated’ – this is related to the use of hierarchical

models (Section 3.17).

Not necessarily important. As the amount of data increases, the prior will,

unless it is of a pathological nature, be overwhelmed by the likelihood and

will exert negligible influence on the conclusions.

Of course, conclusions strongly based on beliefs that cannot be supported by

concrete evidence are unlikely to be widely regarded as convincing, and so it is

important to attempt to find consensus on reasonable sources of external
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evidence. As a true exemplification of the idea that the prior distribution should

be under the control of the consumer of the evidence, Lehmann and Goodman

(2000) describe ambitious interactive software which allows users to try their

own prior distributions.

3.10 HOW TO USE BAYES THEOREM TO INTERPRET

TRIAL RESULTS

There have been many connections made between the use of Bayes theorem in

diagnostic testing (Example 3.1) and in general clinical research, pointing out

that just as the prevalence of the condition (the prior probability) is required for

the assessment of a diagnostic test, so the prior distribution on � should supple-

ment the usual information (P-values and confidence intervals) which summar-

ises the likelihood. We need only think of the huge number of clinical trials that

are carried out and the few clearly beneficial interventions found, to realise that

the ‘prevalence’ of truly effective treatments is low. We should thus be cautious

about accepting extreme results, such as observed in the GREAT trial, at face

value; indeed, it has been suggested that a Bayesian approach provides ‘a

yardstick against which a surprising finding may be measured’ (Grieve,

1994b). Example 3.7 illustrates this need for caution.

Example 3.7 Falsepositives:‘The epidemiologyof clinical trials’

Simon (1994b) considers the following (somewhat simplified) situation.
Suppose 200 trials are performed, but only 10% are of truly effective
treatments. Assume each trial is carried out with Type I error a of 5% (the
chance of claiming an ineffective treatment is effective) and Type II error b
of 20% (the chance of claiming an effective treatment is ineffective) – these
are typical values adopted in practice. Table 3.6 displays the expected
outcomes: of the 180 trials of truly ineffective treatments, 9 (5%) are
expected to give a ‘significant’ result; similarly, of 20 trials of effective
treatments, 4 (20%) are expected to be negative.

Table 3.6 shows that 9=25 ¼ 36% of trials with significant results are in fact
of totally ineffective treatments: in diagnostic testing terms, the ‘predictive

Table 3.6 The expected results when carrying out 200 clinical trials with
a ¼ 5%, b ¼ 20%, and of which only 10% of treatments are truly effective.

Treatment

Truly ineffective Truly effective

Trial conclusion Not significant 171 4 175
Significant 9 16 25

180 20 200
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value positive’ is only 64%. In terms of the odds formulation of Bayes
theorem (3.2), when a ‘significant result’ is observed,

p(H0j‘significant result’)
p(H1j‘significant result’) ¼

p(‘significant result’jH0)

p(‘significant result’jH1)
� p(H0)

p(H1)

¼ p( Type I error)

1� p( Type II error)
� p(H0)

p(H1)
:

Hence the prior odds 0.90/0.10 on the treatment being ineffective (H0) are
multiplied by the likelihood ratio a=(1� b) ¼ 0:05=0:80 ¼ 1=16 to give the
posterior odds 9/16, corresponding to a probability of 9/25.

Qualitatively, this says that if truly effective treatments are relatively rare,
then a ‘statistically significant’ result stands a good chance of being a false
positive.

The analysis in Example 3.7 simplistically divides trial results into ‘significant’

or ‘non-significant’, the Bayes factor (likelihood ratio) for the null hypothesis is

�=(1� �): this might typically be 0:05=0:80 ¼ 1=16, categorised as ‘strong’

evidence against H0 by Jeffreys (see Table 3.2). However, in Section 4.4.2 we

describe how the relationship between Bayes factors and traditional hypothesis

tests depends crucially on whether one knows the precise P-value or simply

whether a result is ‘significant’. We note that Lee and Zelen (2000) suggest

selecting � so that the posterior probability of an effective treatment, having

observed a significant result, is sufficiently high, say above 0.9. This is criticised

by Simon (2000) and Bryant and Day (2000) as being based solely on whether

the trial is ‘significant’ or not, rather than the actual observed data.

3.11 THE ‘CREDIBILITY’ OF SIGNIFICANT TRIAL

RESULTS*

Wehave already seen in Example 3.6 how a ‘sceptical’ prior can be centred on ‘no

treatment difference’ (� ¼ 0) to represent doubts about large treatment effects. It

is natural to extend this approach to ask how sceptical we would have to be not to

find an apparently positive treatment effect convincing (Matthews, 2001). Spe-

cifically, suppose we have observed data ywhich is apparently ‘significant’ in the

conventional sense, in that the classical 95% interval for � based on a normal

likelihood lies wholly above or below 0. In addition, suppose our prior mean is 0,

reflecting initial scepticism about treatment differences, with the variance of the

prior expressing the degree of scepticism with which we view extreme treatment

effects, either positive or negative. Matthews (2001) derives an expression for the

critical prior distribution which would just lead to the corresponding posterior

95% interval including 0.
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Suppose we observe ym < 0. For a normal likelihood and prior with mean 0,

(3.14) shows that

� � N
mym

n0 þm
,

�2

n0 þm

� �
,

which means that the upper point um of the 95% posterior interval is

um ¼ mym

n0 þm
þ 1:96

�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n0 þm

p :

The 95% interval will therefore overlap 0 if um > 0. Simple rearrangement

shows this will happen provided

n0 >
mym

1:96�

� �2
�m ¼ m2

1:962�2
y2m � 1:962�2

m

� �
, (3:16)

which provides a simple formula for determining the effective number of events in

the sceptical prior that would just lead to a 95% posterior interval including 0.

Matthews (2001) shows that we can work directly in terms of the lower

and upper points of a 95% interval based on the data alone, denoted lD and

uD. Thus lD, uD ¼ ym � 1:96�=
ffiffiffiffi
m

p
. It follows that (uD � lD)

2 ¼ 4� 1:962�2=m,

and uDlD ¼ y2m � 1:962�2=m. Then from (3.16) the critical value of n0
occurs when the lower point of the 95% prior interval, l0 ¼ �1:96�=

ffiffiffiffiffi
n0

p
,

obeys

l0 ¼ �1:96�ffiffiffiffiffi
n0

p ¼ � (uD � lD)
2

4
ffiffiffiffiffiffiffiffiffi
uDlD

p :

Often we will be working, say, on a log(odds ratio) scale: if we let

l0 ¼ log (L0), lD ¼ log (LD), uD ¼ log (UD) then the corresponding expression is

L0 ¼ exp
�log2(UD=LD)

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log(UD)log(LD)

p
 !

: (3:17)

L0 is the critical value for the lower end of a 95% sceptical interval, such that

the resulting posterior distribution has a 95% interval that just includes 1. Thus

if one’s prior belief lies wholly within (L0, 1=L0) then one will not be convinced

by the evidence, and Matthews suggests a significant trial result is not ‘credible’

unless prior experience indicates that odds ratios lying outside this critical prior

interval are plausible. Figure 3.8 describes how this can be applied to assess-

ment of ‘significant’ odds ratios.

Applying Figure 3.8 to the GREAT study, for which LD ¼ 0:24,UD ¼ 0:97,
gives L0 ¼ 0:10. Hence, unless odds ratios more extreme than 0.1 can be

considered as plausible, the results of the GREAT study should be treated with
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caution. Since such values do not seem plausible, we do not find the GREAT

results ‘credible’. This is easily seen to be a characteristic of any ‘just significant’

results such as those observed in the GREAT trial: just a minimal amount of

prior scepticism is necessary to make the Bayesian analysis ‘non-significant’.

Examples of this approach to scepticism are given in Examples 3.8 and 3.13.

Example 3.8 Credibility: Sumatriptan trialresults

Matthews (2001) considers the results of an early study of subcutaneous
sumatriptan for migraine. This was a small study in which 79% of patients
receiving sumatriptan reported an improvement compared to 25% with
a placebo, with an estimated odds ratio in favour of sumatriptan of 11.4
and a wide 95% interval of 6.0 to 21.5: the likelihood is shown in Figure 3.9,
and we note that odds ratios greater than 1 favour the new

LD

U
D
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Figure 3.8 Assessment of ‘credibility’ of findings. Suppose one had observed a
classical 95% interval (LD,UD) for an odds ratio. Then the value given in the graph is
L0, which is the lower end of a 95% prior interval centred on 1 expressing scepti-
cism about large differences. L0 is the critical value such that the resulting posterior
distribution has a 95% interval that just includes 1, and hence does not produce
‘convincing’ evidence. Thus, unless values for the odds ratio more extreme than L0
are judged plausible based on evidence external to the study, then the ‘significant’
conclusions should not be considered convincing.
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treatment since in this application the events are ‘positive’. It is reasonable
to ask whether such extreme results are really ‘too good to be true’. To use
Figure 3.8 or (3.17) we first need to invert to odds ratios in favour of
placebo, i.e. ORs less than 1: this leads to an estimated odds ratio of
0.088 with an interval (LD,UD) of (0.05, 0.17). Examination of Figure 3.8
reveals an approximate L0 of 0.8: substitution in (3.17) gives an exact value
of L0 ¼ 0:84. Transforming back to the original definition of the odds ratio
gives a critical prior interval of (1=L0, L0) ¼ (0:84, 1=0:84) ¼ (0:84, 1:19).
Figure 3.9 shows this critical prior and the resulting posterior distribution
whose 95% interval just includes OR ¼ 1.

If 95% of our prior belief lies within this critical interval, then the posterior
95% interval would not exclude OR ¼ 1 and we would not find the data
convincing. However, it would seem unreasonable in this context to rule out
on prior grounds advantages of greater than 19%, and hence we reject this
critical prior interval as being unreasonably sceptical, and accept the
results as ‘credible’.

Odds ratio of improvement on sumatriptan compared to placebo

0.8 1 3 5 7 8 9 12 14 16 19 22

Likelihood
Critical Prior
Posterior

2 4 6 10

Figure 3.9 Sumatriptan example: the critical sceptical prior distribution (dotted) is
centred on OR ¼ 1 and is sufficiently sceptical to make the resulting posterior dis-
tribution have a 95% interval that just includes 1, i.e. the shaded area is 0.025.
However, this degree of prior scepticism seems unreasonably extreme, and hence
we might judge that the clinical trial findings are ‘credible’.
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3.12 SEQUENTIAL USE OF BAYES THEOREM*

Suppose we observe data in two or more segments, say ym followed by yn. Then

after the first segment is observed our posterior distribution is given by (3.5):

p(�jym) / p(ymj�) p(�): (3:18)

This posterior becomes the prior distribution for the next use of Bayes the-

orem, so after the next segment yn is observed, the posterior conditioning on all

the data, i.e. p(�jyn, ym), obeys

p(�jyn, ym) / p(ynj�, ym) p(�jym): (3:19)

Combination of the two expressions (3.18) and (3.19) yields

p(�jyn, ym) / p(ynj�, ym) p(ymj�) p(�);

this can also be derived by considering a single use of Bayes theorem with data

yn, ym, but factorising the joint likelihood as p(yn, ymj�) ¼ p(ynj�, ym)p(ymj�).
In most situations the first term in (3.19) will not depend on ym (i.e. Yn is

conditionally independent of Ym given � (Section 2.2.3)) and so p(�jym)
simply becomes the prior for a standard Bayesian update using the likelihood

p(ynj�).

Example 3.9 GREAT (continued): Sequentialuse of Bayes theorem

Suppose the GREAT trial in Example 3.6 had a first analysis around half
way through the trial with the results shown in Table 3.7(b). The estimated
log(OR), its standard error and the effective number of events assuming
s ¼ 2 are calculated as in Example 2.5, and are presented in Table 3.7 with
the prior mean and effective number of events in the prior derived in
Example 3.6. Bayes theorem assuming normal likelihoods leads to the
posterior distribution shown in Table 3.7(c): as shown in (3.14), the effect-
ive number of events has been added to 236:7þ 18:1 ¼ 254:8, and the
posterior mean is the weighted average of the prior and likelihood esti-
mates (236:7��0:255)þ (18:1��0:654)=254:8 ¼ �0:283. The poster-
ior standard deviation is obtained as s=

ffiffiffiffiffiffiffiffiffiffiffiffi
254:8

p ¼ 0:125.

The second half of the study then provided the data shown in Table 3.7(d),
which made up the final totals of 23/144 under control and 13/163 under the
new treatment. The sequential use of Bayes theorem means that the
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posterior following the first part of the study simply becomes the prior for the
second, and the final posterior distribution arises in the same manner as
described above.

Table 3.7 Possible results were the GREAT trial to have been analysed
midway: the ‘final’ posterior is based on using the posterior from the first part
of the trial as the prior for the second part, while the ‘combined’ posterior is
based on pooling all the data into the likelihood. The results only differ through
inadequacy of the normal approximation.

Stage Control
deaths/
cases

New
treatment
deaths/
cases

Estimated
log(OR)

Effective
no.

events

Estimated
SE

(a) Prior �0.255 236.7 0.130

(b) Data – first half 13/74 8/82 �0.654 18.1 0.471
(c) Interim Posterior �0.283 254.8 0.125

(d) Data – second half 10/74 5/81 �0.817 13.1 0.552
(e) ‘Final’ posterior �0.309 267.9 0.122

(f) Combined data 23/144 13/163 �0.736 30.5 0.362
(g) ‘Combined’

posterior
�0.309 267.2 0.122

We note that the results obtained by carrying out the analysis in two stages
(effective number of events 267.9) do not precisely match those obtained
by using the total data shown in Table 3.7(g) (effective number of events
267.2). This is due to the quality of the normal approximation to the
likelihood when such small numbers of events are observed.

3.13 PREDICTIONS

3.13.1 Predictions in the Bayesian framework

Making predictions is one of the fundamental objectives of statistical modelling,

and a Bayesian approach can make this task reasonably straightforward. Sup-

pose we wish to predict some future observations x on the basis of currently

observed data y. Then the distribution we require is p(xjy), and (2.8) shows we

can extend the conversation to include unknown parameters � by

p(xjy) ¼
Z

p(xjy, �) p(�jy) d�:

Now our current uncertainty concerning � is expressed by the posterior distri-

bution p(�jy), and in many circumstances it will be reasonable to assume that x
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and y are conditionally independent given �, and hence p(xjy, �) ¼ p(xj�). The
predictive distribution thus becomes

p(xjy) ¼
Z

p(xj�) p(�jy) d�,

the sampling distribution of x averaged over the current beliefs regarding the

unknown �. Provided we can do this integration, prediction becomes straightfor-

ward.

Such predictive distributions are useful in many contexts: Berry and Stangl

(1996a) describe their use in design and power calculations, model checking,

and in deciding whether to conduct a future trial, while Grieve (1988) provides

examples in bioequivalence, trial monitoring and toxicology. Applications of

predictions considered in this book include power calculations (Section 6.5),

sequential analysis (Section 6.6.3), health policy-making (Section 9.8.4), and

payback from research (Section 9.10).

3.13.2 Predictions for binary data*

Suppose � is the true response rate for a set of Bernoulli trials, and that the current
posterior distribution for � has mean � (note this might be a prior or posterior

distribution, depending on whether data has yet been observed). We intend to

observe a further n trials, and wish to predict Yn, the number of successes. Then

from the iterated expectation (2.13) given in Section 2.2.2 we know that

E(Yn) ¼ E�[E(Ynj�)] ¼ E�[n�] ¼ n�, (3:20)

which means, in particular, that the probability that the next observation

(n ¼ 1) is a success is equal to �, the current posterior mean of �. For example,

after the single observation in Example 3.2, the probability that the next case

shows a response is the current posterior mean of �, i.e.

P(Y1 ¼ 1) ¼ E(Y1) ¼�
j
�j p(�jjdata)

¼ (0:2� 0:1)þ (0:4� 0:2)þ (0:6� 0:3)þ (0:8� 0:4) ¼ 0:6:

If our current distribution for � is a conjugate Beta[a, b], we can write down an

expression for the exact predictive distribution for Yn: this is known as the beta-

binomial distribution and is given by

p(yn) ¼ G(aþ b)

G(a)G(b)

n

yn

� �
G(aþ yn) G(bþ n� yn)

G(aþ bþ n)
: (3:21)

From (3.20) and the fact that E(�) ¼ a=(aþ b), we immediately see that the

mean of this distribution is
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E(Yn) ¼ n
a

aþ b
:

We can also obtain the variance by using the expression for the iterated

variance (2.14) given in Section 2.2.2, to give

V(Yn) ¼ nab

(aþ b)2
aþ bþ n

(aþ bþ 1)
: (3:22)

We note two special cases of the beta-binomial distribution (3.21). First,

when a ¼ b ¼ 1, the current posterior distribution is uniform and the predictive

distribution for the number of successes in the next n trials is uniform over

0, 1, . . . , n. Second, when predicting the next single observation (n ¼ 1), (3.21)
simplifies to a Bernoulli distribution with mean a=(aþ b).

Suppose, then, we start with a uniform prior for � and then observe m

trials, all of which turn out to be positive, so that our posterior distribution

is now Beta[mþ 1, 1] (Section 3.6.2). Then the probability that the event

will occur at the next trial is m=(mþ 1). This is known as ‘Laplace’s law of

succession’, and it means that even if an event has happened in every case so

far (e.g. the sun rising every morning), we can still never be completely

certain that it will happen at the next opportunity (that the sun will rise

tomorrow).

Example 3.10 shows that the beta-binomial distribution can be used in

designing experiments allowing for uncertainty in the true response rate.

Example 3.10 Drug (continued):Makingpredictions forbinarydata

In Example 3.3 we assumed an initial prior distribution for a drug’s re-
sponse rate that could be approximated by a Beta[9.2,13.8], and then
observed 15/20 successes, leading to a posterior Beta[24.2,18.8] shown
in Figure 3.10(a). The mean of this posterior distribution is 0.56, and hence
from (3.20) this is the predictive probability that the next case responds
successfully.

If we plan to treat 40 additional cases, then the predictive distribution of the
total number of successes out of 40 is a beta-binomial distribution (3.21)
which is shown in Figure 3.10(b), and has mean 22.5 and standard devi-
ation 4.3.

Suppose we would consider continuing a development programme if the
drug managed to achieve at least a further 25 successes out of these 40
future trials. The chance of achieving this number can be obtained by
summing the probabilities in the right-hand tail of Figure 3.10(b), and
comes to 0.329. In Example 3.15 we shall contrast this exact analysis
with an approximation using simulation methods.
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(a) Posterior
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(b) Predictive distribution
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Figure 3.10 (a) is the beta posterior distribution after having observed 15 suc-
cesses in 20 trials, (b) is the predictive beta-binomial distribution of the number of
successes Y in the next 40 trials.

3.13.3 Predictions for normal data

Predictionsareparticularly easywhenweareable toassumenormaldistributions.

For example, suppose we assume a normal sampling distribution Yn � N[�,�2=n]
for some future dataYn, and a prior distribution � � N[�,�2=n0].Wewish tomake

predictions concerning future values of Yn, taking into account our uncertainty

about itsmean �.WemaywriteYn ¼ (Yn � �)þ �, and so can considerYn as being

the sum of two independent quantities:Yn � � � N[0, �2=n], and � � N[�, �2=n0].
Now in Section 2.3 we observed that the sum of two independent normal quan-

tities was normal with the sum of the means and the variances, and hence Yn will

therefore have a predictive distribution

Yn � N �,�2 1

n
þ 1

n0

� �� �
: (3:23)
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We could also derive (3.23) using the expressions for the iterated expectation

(2.13) and variance (2.14) given in Section 2.2.2. Specifically,

E(Yn) ¼ E�[E(Ynj�)] ¼ E�[�] ¼ �,

V(Yn) ¼ V�[E(Ynj�)]þ E�[V(Ynj�)] ¼ V�[�]þ E�[�
2=n] ¼ �2(1=n0 þ 1=n):

Thus, when making predictions, we add variances and so increase our uncer-

tainty. This is in direct contrast to combining sources of evidence using Bayes

theorem, when we add precisions and decrease our uncertainty (Section 3.7).

The use of this expression for comparison of prior distributions with data is

described in Section 5.8, and for sample-size determination in Section 6.5.

Now suppose we had already observed data ym and hence our distribution is

� � N[(n0�þmym)=(n0 þm),�2=(n0 þm)]. Then

Ynjym � N
n0�þmym

n0 þm
,�2 1

n0 þm
þ 1

n

� �� �
: (3:24)

The use of this expression is illustrated in Example 3.11, and we shall see in

Section 6.6.3 how to adapt these methods to predict the chance of a ‘significant

result’ in a clinical trial setting.

Example 3.11 GREAT (continued): Predictionsof continuing the trial

Suppose we were considering extending the GREAT trial to include a
further 100 patients on each arm. What would we predict the observed
OR in those future patients to be, with and without using the pre-trial prior
information? It is important to remember that the precision with which the
OR can be estimated does not depend on the actual number randomised
(100 in each arm), but on the number of events (deaths) observed.

We assume the observed log(OR) in those future patients to be
Yn � N[y, s2=n], where the future number of events is n and s ¼ 2: with
100 patients in each arm we can expect n � 20 events, given the current
mortality rate of around 10%. From Example 3.6, the current posterior
distribution is y � N[� 0:31, s2=(n0 þm)] where n0 þm ¼ 267:2. Hence
from (3.24) the predictive distribution of log(OR) has mean �0:31 and
variance s2(1=267:2þ 1=20:0) ¼ s2=18:6 ¼ 0:21 ¼ 0:462. This is shown
in Figure 3.11: the great uncertainty in future observations is apparent.

Using the data from the trial alone is equivalent to setting n0 ¼ 0 and using a
‘flat’ prior, and hence the current posterior distribution is based on the
likelihood alone, y � N[�0:74, s2=m], where m ¼ 30:5. Hence, ignoring
the pre-trial prior based on the expert opinion, the predictive distribution of
log(OR) has mean �0:74 and variance s2(1=30:5þ 1=20:0) ¼ s2=12:1
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¼ 0:33 ¼ 0:582. Figure 3.11 shows that this predictive distribution is consid-
erably flatter than when the prior is included.

We can use the predictive distributions to calculate the chance of
any outcome of interest, say observing an OR of less than 0.50 in the
future component of the trial. Using the fairly sceptical prior information,
this probability is p(Yn < log (0:50)jym) ¼ F((�0:69þ 0:31)=0:46) ¼
F(�0:83) ¼ 0:21, whereas if the prior distribution is ignored this rises to
F((�0:69þ 0:74)=0:58) ¼ F(0:08) ¼ 0:53. So our prior opinion leads us to
doubt that the current benefit will be observed in future patients if the trial is
extended.

Predicted odds ratio of 30 day mortality on home therapy to control

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.9 1 1.2 1.4

With pre-trial prior information

Without pre-trial prior information

Figure 3.11 Predictive distributions for observed OR in a future 100 patients
randomised to each arm in the GREAT trial, assuming around 20 events will be
observed: with and without pre-trial prior information.

3.14 DECISION-MAKING

The appropriate role for formal decision theory in health-care evaluation is the

subject of a long and continuing debate but is not the primary emphasis of this

book. This section presents the basic ideas of which some are developed in later

chapters, but for a full discussion we refer to classic texts such as DeGroot
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(1970) and Lindley (1975), while Parmigiani (2002) provides a detailed expos-

ition in a medical context.

Suppose we wish to make one of a set of decisions, and that we are willing to

assess some value u(d,�), known as a utility, of the consequences of taking each

decision d when � is the true unknown ‘state of nature’. If we have observed

some data y and our current probability distribution for � is p(�jy), then our

expected utility of taking decision d is denoted

E(d) ¼
Z

u (d, �) p(�jy) d�,

where the integral is replaced by a sum if � is discrete. The theory of optimal

decision-making says we should choose the decision dopt that maximises E(d).
For example, suppose our unknown ‘state of nature’ comprises two hypoth-

eses H0 and H1 with current posterior probabilities p(H0jy) and p(H1jy) respect-
ively, and assume we face two possible decisions d0 and d1: we would choose d0
if we believed H0 to be true and d1 if we believed H1. Let u(d0,H0) be the utility of

taking decision d0 when H0 is true, and similarly define the other utilities. Then

the theory of maximising expected utility states that we should take decision d0
if E(d0) > E(d1), which will occur if

u(d0,H0)p(H0jy)þ u(d0,H1)p(H1jy) > u(d1,H0)p(H0jy)þ u(d1,H1)p(H1jy),

which can be rearranged to give

p(H0jy)
p(H1jy) >

u(d1,H1)� u(d0,H1)

u(d0,H0)� u(d1,H0)
: (3:25)

This inequality has an intuitive explanation. The numerator on the right-hand

side is u(d1,H1)� u(d0,H1), the additional utility involved in taking the correct

decision when H1 turns out to be the correct hypothesis – it could also be

considered as the potential regret, in that it is the potential loss in utility when

we erroneously decide on H0 instead of H1. The denominator similarly acts as

the potential regret when H0 is true. Hence (3.25) says we should only take

decision d0 if the posterior odds in favour of H0 are sufficient to outweigh any

extra potential regret associated with incorrectly rejecting H1.

An alternative framework for using the principle of maximising expected

utility occurs when our utility depends on future events, and our choice of action

changes the probability of those events occurring. Suppose decision di can be

taken at cost ci, and leads to a probability pi of an adverse event Y ¼ 0 or 1

occurring with utility UY . Then the expected utility of taking decision i is

E(di) ¼ piU1 þ (1� pi)U0 � ci,
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and so, for example, d0 will be preferred to d1 if

p0U1 þ (1� p0)U0 � c0 > p1U1 þ (1� p1)U0 � c1:

Rearranging terms leads to a preference for d0 if

p1 � p0 >
c0 � c1

U0 � U1

(3:26)

where the denominator U0 � U1 is positive since the event is considered un-

desirable. This is clearly obeyed if d0 both costs less (c0 < c1) and reduces the risk
of Y occurring (p0 < p1), since the right-hand side of (3.26) is negative and the

left-hand side is positive. However, if d0 costs more than d1, then the right-hand

side of (3.26) is positive, and d0 will only be preferred if it reduces the risk by a

sufficient quantity. We note that the decision depends on the risk difference

p1 � p0, rather than a relative measure such as the odds ratio, and this led

Ashby and Smith (2000) to show that (3.26) can be expressed as

NNT ¼ 1

p1 � p0
<

U0 � U1

c0 � c1
: (3:27)

NNT denotes the ‘number needed to treat’ in order to prevent one adverse

event (the expected number of events prevented when treating N individuals

according to d0 instead of d1 is N(p1 � p0), and hence one expects to prevent

one event when treating N ¼ 1=(p1 � p0)). So, if we are willing to assess

the necessary costs and utilities to place in (3.27), we obtain a threshold

for adopting a new treatment based on the NNT, without regard to any

measure of ‘significance’. Example 3.12 provides a somewhat stylised

example.

Example 3.12 Neural tube defects: Making personal decisions about
preventative treatment

Ashby and Smith (2000) consider a somewhat simplified example, but one
that nevertheless illustrates the power (and the difficulties) of carrying out a
formal decision analysis with utilities.

They consider a couple wishing to try and become pregnant but faced with
the decision whether to take folic acid supplements to reduce the risk of a
neural tube defect (NTD), such as spina bifida or anencephaly. Let d0, d1
denote respectively the decisions to take and not to take supplementation,
with respective costs c0, c1, and let p0, p1 be the probabilities of a foetus
having an NTD following each of the two decisions. Finally, let U0, U1 be
the utilities of having a child without and with an NTD, respectively. The
problem is structured as a decision tree in Figure 3.12.
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Supplement

Decision Event? Utility of consequences

No Supplement

NTD

NTD

No NTD

No NTD

U1 − c0

U0 − c01 − p0

1 − p1

U1 − c1p1

p0

d0

d1
U0 − c1

Figure 3.12 Decision tree for folic acid supplementation decision: the square
node represents a decision, circular nodes represent chance events, and values
at the end of branches represent utilities.

Inequality (3.26) can be rearranged to show that the couple should choose
supplementation (d1) if

U0 � U1 >
c0 � c1
p1 � p0

, (3:28)

and the issue becomes one of assigning reasonable values to these
quantities. Estimates of p0 and p1 may be obtained from randomised trial
and epidemiological evidence. Ashby and Smith (2000) provide the results
of the sole available clinical trial of folic acid supplementation (carried out
on couples who had already had a previous pregnancy resulting in an
NTD): 21/602 randomised to placebo had pregnancies with an NTD, com-
pared with 6/593 with supplementation. This corresponds to estimates of
p0 ¼ 0:010, p1 ¼ 0:035, NNT ¼ 1=(p1 � p0) ¼ 40:4 and OR ¼ 0.30. Sup-
pose such a couple are deciding whether to take supplementation at a cost
of c0 � c1 ¼ £c; then (3.28) shows they should take the supplementation if
the ‘disutility’ U0 � U1 of an NTD is greater than around 40c. c may be
costed in money terms if the couple will have to pay for a course of tablets,
but Ashby and Smith (2000) suggest this may only be around £10, leading
to a threshold of around £400. The problem lies in expressing the ‘disutility’
in £s.

This brings into focus the importance of identifying the appropriate deci-
sion-maker whose utilities are to be taken into account. If making public
policy decisions regarding supplementation, it is reasonable that preven-
tion of an NTD is worth more than around 40c, even if the couple decide to
terminate the pregnancy. However, from the couple’s point of view, it may
be best to think in terms of the utility U0 of a ‘healthy baby’. If this is of the
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order of £1 million, then they should take supplementation if the utility of an
NTD is less than £999 600, which would suggest a fairly clear-cut decision.
The crucial quantity is seen to be S ¼ c=U0, the cost of supplementation in
terms of ‘healthy baby’ equivalents. Then the decision threshold (3.28)
reduces to checking if

U1

U0
< 1� (S� NNT):

Thus the previous analysis had S � 0:000 01, NNT � 40, and so supple-
mentation is preferred if an NTD is valued at less than 0.9996 of a healthy
baby.

Ashby and Smith (2000) also consider a couple with no previous history
of an NTD, and they cite an incidence rate of 3.3 per 1000 pregnancies in a
non-supplemented population. Taking this value as p0 ¼ 0:0010, and as-
suming the trial odds ratio applies to this group, leads to an estimate of
p1 ¼ 0:0033, so that p1 � p0 ¼ 0:0023, NNT ¼ 435. We should therefore
prefer supplementation if U1=U0 < 1� 0:000 01� 435 � 0:996. This
threshold is again likely to be met, and the costs would need to become
very substantial before the threshold was crossed into not preferring sup-
plementation.

The use of Bayesian ideas in decision-making is a huge area of research and

application, in which attention is more focused on the utility of consequences

than the use of Bayesian methods to revise opinions. This activity blends

naturally into cost-effectiveness analysis, but nevertheless the subjective inter-

pretation of probability is essential, since the expressions of uncertainty required

for a decision analysis can rarely be based purely on empirical data. There is a

long history of attempts to apply this theory to medicine, and in particular there

is a large literature on decision analysis, whether applied to the individual

patient or for policy decisions. The journal Medical Decision Making contains

an extensive collection of policy analyses based on maximising expected utility,

some of which particularly stress the importance of Bayesian considerations.

Any discussion of utility assessment must take careful account of the context in

which the analysis is taking place, and our discussion is deferred until the

chapter on cost-effectiveness and policy (Chapter 9).

There has been a long debate on the use of loss functions (defined as the

negative of utility), in parallel to that concerning prior distributions, and some

have continually argued that the design, monitoring and analysis of a study

must explicitly take into account the consequences of eventual decisions (Berry,

1993). It is important to note that there is also a frequentist theory of decision-

making that uses loss functions, but does not average with respect to prior or
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posterior distributions: the decision-making strategy is generally ‘minimax’

(DeGroot, 1970), where the loss is minimised whatever the true value of

the parameter might be. This can be thought of as assuming the most pessi-

mistic prior distribution. Thus ‘ideological’ approaches employing all combin-

ations of the use of prior distributions and/or loss functions are possible: this

is further discussed in Section 4.1 and, in the context of clinical trials, in

Section 6.2.

It is particularly important to emphasise that the theory of optimal decision-

making depends solely on the expected benefit, and hence any measures of

uncertainty such as intervals or P-values are strictly speaking irrelevant,

whether conducting clinical trials (Sections 6.2, 6.6.4 and 6.10) or policy-

making (Chapter 9). An exception is when a decision can be made to obtain

further information, and these ideas can be used for assessing the payback from

research (Section 9.10).

3.15 DESIGN

Bayesian design of experiments can be considered as a natural combination of

prediction and decision-making, in that the investigator is seeking to choose

a design which they predict will achieve the desired goals. Nevertheless Baye-

sian design tends to be technically and computationally challenging (Chaloner

and Verdinelli, 1995) except possibly in situations such as choosing the size of a

clinical trial (Section 6.5).

Sequential designs present a particular problem known as ‘backwards induc-

tion’, in which one must work backwards from the end of the study, examine all

the possible decision points that one might face, and optimise the decision

allowing for all the possible circumstances in which one might find oneself.

This can be computationally very demanding since one must consider what one

would do in all possible future eventualities (Section 6.6.4), although approxi-

mations can be made such as considering only a single step ahead. A natural

application is in dose-finding studies (Section 6.10). Early phases of clinical

trials have tended to attract this approach: for example, Brunier and Whitehead

(1994) consider the balancing of costs of experimentation and errors in treat-

ment allocation (Section 6.12).

3.16 USE OF HISTORICAL DATA

Historical evidence has traditionally been used to help in the design of experi-

ments and when pooling data in a meta-analysis, but Bayesian reasoning gives

it a formal role in many aspects of evaluation. Here we introduce a brief

taxonomy of ways in which historical data may be incorporated, which will

be further developed in contexts such as the derivation of prior distributions
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(Section 5.4), the use of historical controls in clinical trials (Section 6.9), the

adjustment of observational studies for potential biases (Section 7.3) and the

synthesis of multiple sources (Section 8.4).

We identify six broad relationships that historical data may have with current

observations, ranging from being completely irrelevant to being of equal stand-

ing, with a number of possible means of ‘downweighting’ in between. There is

an explicit reliance on judgement as to which is most appropriate in any

situation.

(a) Irrelevance. The historical data provides no relevant information.

(b) Exchangeable. Current and past studies are ‘similar’ in the sense described in

Section 3.17, and so their parameters can be considered exchangeable –

this is a typical situation in a meta-analysis, and standard hierarchical

modelling techniques can be adopted.

(c) Potential biases. Past studies are biased, either through lack of quality

(internal bias) or because the setting is such that the studies are not

precisely measuring the underlying quantity of interest (external bias), or

both. The extent of the potential bias may be modelled and the historical

results appropriately adjusted.

(d) Equal but discounted. Past studies may be assumed to be unbiased, but their

precision is decreased in order to ‘discount’ past data.

(e) Functional dependence. The current parameter of interest is a logical function

of parameters estimated in historical studies.

(f) Equal. Past studies are measuring precisely the parameters of interest and

data can be directly pooled – this is equivalent to assuming exchangeability

of individuals.

A fuller graphical and technical description of these stages is provided in

Section 5.4.

3.17 MULTIPLICITY, EXCHANGEABILITY AND

HIERARCHICAL MODELS

Evaluation of health-care interventions rarely concerns a single summary statis-

tic. ‘Multiplicity’ is everywhere: clinical trials may present issues of ‘multiple

analyses of accumulating data, analyses of multiple endpoints, multiple subsets

of patients, multiple treatment group contrasts and interpreting the results of

multiple clinical trials’ (Simon, 1994a). Observational data may feature multiple

institutions, and meta-analysis involves synthesis of multiple studies.

Suppose we are interested in making inferences on many parameters

�1, . . . , �K measured on K ‘units’ which may, for example, be true treatment

effects in subsets of patients, multiple institutions, or each of a series of trials. We

can identify three different assumptions:
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1. Identical parameters. All the �s are identical, in which case all the data can be

pooled and the individual units ignored.

2. Independent parameters. All the �s are entirely unrelated, in which case the

results from each unit can be analysed independently (e.g. using a fully

specified prior distribution within each unit).

3. Exchangeable parameters. The �s are assumed to be ‘similar’ in the following

sense. Suppose we were blinded as to which unit was which, and all we had

was a label for each, say, A, B, C and so on. Suppose further that our prior

opinion about any particular set of �s would not be affected by only knowing

the labels rather than the actual identities, in that we have no reason to

think specific units are systematically different. A set of random variables

Y1, . . . ,Yn with this property was termed ‘exchangeable’ in Section 3.4,

equivalent, broadly speaking, to assuming the variables were independently

drawn from some parametric distribution with a prior distribution on the

parameter. The results of Section 3.4 can be equally applied to exchangeable

parameters �1, . . . , �K , and hence under broad conditions an assumption of

exchangeable units is mathematically equivalent to assuming the �s are

drawn at random from some population distribution, just as in a traditional

random-effects model. This can be considered as a common prior for all

units, but one with unknown parameters. Note that there does not need to

be any actual sampling – perhaps these K units are the only ones that exist –

since the probability structure is a consequence of the belief in exchangeabil-

ity rather than a physical randomisation mechanism. Nor does the distribu-

tion have to be something traditional such as a normal (although we shall

generally use that assumption in our examples): heavy-tailed or skewed

distributions are possible, or ‘partitions’ that cluster units into groups that

are equal or similar. We emphasise that an assumption of exchangeability is

a judgement based on our knowledge of the context (Section 5.7).

If a prior assumption of exchangeability is considered reasonable, a Bayesian

approach to multiplicity is thus to integrate all the units into a single model, in

which it is assumed that �1, . . . , �K are drawn from some common prior

distribution whose parameters are unknown: this is known as a hierarchical

or multi-level model.

We illustrate these ideas assuming normal distributions. In each unit we shall

observe a response Yk assumed to have a normal likelihood

Yk � N[�k, s
2
k ]: (3:29)

The three situations outlined above are then treated as follows.

1. Identical parameters (pooled effect). We assume all the �k are identical and

equal to a common treatment effect � and, therefore, from (3.29),

Yk � N[�, s2k ]:
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1. Transforming to the notation s2k ¼ �2=nk, assuming � � N[0, �2=n0] and
sequential application of Bayes theorem, (3.14) gives a ‘pooled’ posterior

distribution for � (and hence each of the �k) of

� � N
�knkyk

n0 þ�knk
,

�2

n0 þ�knk

� �
; (3:30)

1. the posterior mean for � is equivalent to an overall sample mean, assuming

the prior contributes n0 ‘imaginary’ observations of 0. As n0 ! 0 the prior

distribution on � becomes uniform and the posterior for � tends to

� � N
�knkyk

�knk
,

�2

�knk

� �
: (3:31)

1. Reverting to the original notation s2k ¼ �2=nk reveals that

� � N
�kyk=s

2
k

�k1=s
2
k

,
1

�k1=s
2
k

� �
, (3:32)

1. where the posterior mean is simply the classical pooled estimate �̂�, which

is the average of the individual estimates, each weighted inversely by

its variance. A classical test for heterogeneity, i.e. whether it is reasonable

to assume that all the trials are measuring the same quantity, is provided

by

Q ¼�k

nk

�2
(yk � �̂�)2, (3:33)

1. or equivalently Q ¼�k(yk � �̂�)2=s2k , which has a �2
K�1 distribution under the

null hypothesis of homogeneity. It is well known that this is not a very

powerful test (Whitehead, 2002), and so absence of a significant Q should

not necessarily mean that the trial are homogenous.

2. Independent parameters (fixed effects). In this case each �k is estimated totally

without regard for the others: assuming a uniform prior for each �k and the

likelihood (3.29) gives the posterior distribution

�k � N[yk,s
2
k ], (3:34)

1. which is simply the normalised likelihood.

3. Exchangeable parameters (random effects). The unit means �k are assumed to

be exchangeable, and to have a normal distribution

�k � N[�,t2], (3:35)
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1. where � and t2 are ‘hyperparameters’ for the moment assumed known.

After observing yk, Bayes theorem (3.15) can be rearranged as

�kjyk � N[Bk�þ (1� Bk)yk, (1� Bk)s
2
k ], (3:36)

1. where Bk ¼ s2k=(s
2
k þ t2) is the weight given to the prior mean. It can be seen

that the pooled result (3.32) is a special case of (3.36) when t2 ¼ 0, and the

independent result (3.34) a special case when t2 ¼ 1.

1. An exchangeable model therefore leads to the inferences for each unit

having narrower intervals than if they are assumed independent, but shrunk

towards the prior mean response. This produces a degree of pooling, in

which an individual study’s results tend to be ‘shrunk’ by an amount

depending on the variability between studies and the precision of the indi-

vidual study. Bk controls the ‘shrinkage’ of the estimate towards �, and the

reduction in the width of the interval for �k. If we again use the notation

s2k ¼ �2=nk, t2 ¼ �2=n0, then Bk ¼ n0=(n0 þ nk), clearly revealing how the

degree of shrinkage increases with the relative information in the prior

distribution compared to the likelihood.

1. The unknown hyperparameters � and t may be estimated directly from

the data – this is known as the ‘empirical Bayes’ approach as it avoids

specification of prior distributions for � and t. We shall not detail the variety

of techniques available as they form part of classical random-effects meta-

analysis (Sutton et al., 2000; Whitehead, 2002). However, the simplest is the

‘methods-of-moments’ estimator (DerSimonian and Laird, 1986)

t̂t2 ¼ Q� (K � 1)

N ��kn
2
k=N

, (3:37)

1. where Q is the test for heterogeneity given in (3.33), and N ¼�knk; if

Q < (K � 1), then t̂t2 is set to 0 and complete homogeneity is assumed.

This estimator is used in Example 3.13 and in the Exercises, although we

describe the use of ‘profile-likelihood’ in Section 3.18.

1. Alternatively, � and t2 may be given a prior distribution (known as the

‘full Bayes approach’) and this is done later in the book, taking particular

care in the choice of a prior distribution for the between-unit variation t
(Section 5.7.3). However, the results from either an empirical or full Bayes

analysis will often be similar provided each unit is not too small and there are

a reasonable number of units.

The use of hierarchical models is later discussed with respect to subset

analysis (Section 6.8.1), N-of-1 studies (Section 6.11), institutional comparisons

(Section 7.4) and meta-analysis (Section 8.2).
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Example 3.13 Magnesium:Meta-analysis usingascepticalprior

Reference: Higgins and Spiegelhalter (2002).

Intervention: Epidemiology, animal models and biochemical studies sug-
gested intravenous magnesium sulphate may have a protective effect
after acute myocardial infarction (AMI), particularly through preventing
serious arrhythmias. A series of small randomised trials culminated in a
meta-analysis (Teo et al., 1991) which showed a highly significant
(P < 0:001) 55% reduction in odds of death. The authors concluded that
‘further large scale trials to confirm (or refute) these findings are desirable’,
and the LIMIT-2 trial (Woods et al., 1992) published results showing a
24% reduction inmortality in over 2000 patients. An editorial inCirculation
subtitled ‘An effective, safe, simple and inexpensive treatment’ (Yusuf et
al., 1993) recommended further trials to obtain ‘a more precise estimate
of the mortality benefit’. Early results of the massive ISIS-4 trial pointed,
however, to a lack of any benefit, and final publication of this trial on over
58 000 patients showed a non-significant adverse mortality effect of mag-
nesium. ISIS-4 foundnoeffect in any subgroupsandconcluded that ‘Over-
all, there does not now seem to be any good clinical trial evidence for the
routine use of magnesium in suspected acute MI’ (Collins et al., 1995).

Aimof study: To investigate how a Bayesian perspective might have influ-
enced the interpretation of the published evidence on magnesium sul-
phate in AMI available in 1993. In particular, what degree of ‘scepticism’
would have been necessary in 1993 not to be convinced by the meta-
analysis reported by Yusuf et al. (1993)?

Study design: Meta-analysis of randomised trials, allowing for prior distri-
butions that express scepticism about large effects.

Outcome measure: Odds ratio for in-hospital mortality, with odds ratios
less than 1 favouring magnesium.

Statisticalmodel: All three approaches to modelling the multiple trials are
investigated: (a) a ‘pooled’ analysis assuming identical underlying effects;
(b) a fixed-effects analysis assuming independent, unrelated effects; and
(c) a random-effects analysis assuming exchangeable treatment effects.
For the last we assume a normal hierarchical model on the log(OR) scale,
as given by (3.29) and (3.35). An empirical Bayes analysis is adopted
using estimates of the overall mean m and the between-study standard
deviation t, in order to use the normal posterior analysis given by (3.36).

Prospective analysis?: No.

Prior distribution: For the pooled- and fixed-effects analysis we assume a
uniform prior for the unknown effects on the log(OR) scale. The empirical
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Bayes analysis does not use any prior distributions on the parameters m
and t (although the estimate for m is equivalent to assuming a uniform
prior on the log(OR) scale). Sensitivity analysis is conducted using
‘sceptical’ priors for m centred on ‘no effect’.

Loss functionordemands: None.

Computation/software: Conjugate normal analysis.

Evidence fromstudy: Table 3.8 gives the raw data and the estimated log-
odds ratios yk and their standard deviations sk (Section 2.4.1). The
classical test for heterogeneity Q (3.33) is not significant (9.35 on 7
degrees of freedom), and the method-of-moments estimate for t is
0:29 (3.37). Figure 3.13 shows the profile log(likelihood) which summar-
ises the support from the data for different values of t, and is derived
using the techniques described in Section 3.18.2: superimposed on this
plot are the changing parameter estimates for different values of t. The
maximum likelihood estimate is t̂t ¼ 0 although, from the discussion in
Section 2.4.1, values for t with a profile log(likelihood) above
�1:962=2 � �2 might be considered as being reasonably supported by
the data. t̂t ¼ 0 would not appear to be a robust choice as an estimate
since non-zero values of t, which are well supported by the data, can
have a strong influence on the conclusions. We shall assume, for illus-
tration, the method-of-moments estimator t̂t ¼ 0:29.

The results are shown in Figure 3.14. The standard pooled-effect
analysis estimates an odds ratio OR ¼ 0:67 (95% interval from 0.52 to
0.86). In the random-effects analysis the estimates of individual trials are
‘shrunk’ towards the overall mean by a factor given by Bk in Table 3.8,
and individual trials have narrower intervals. The estimate of the ‘aver-
age’ effect is less precise, but still is ‘significantly’ less than 1: estimated
odds ratio 0.58 (95% interval from 0.38 to 0.89).

Table 3.8 Summary data for magnesium meta-analysis, showing estimated odds ratios,
log(odds ratios) (yk), standard deviations for log(odds ratios) (sk), the effective number of events
assuming s ¼ 2 (nk), and shrinkage coefficients Bk ¼ s2k=(s

2
k þ t̂t2): t̂t is taken to be 0.29.

Trial Magnesium
group

Control
group

Estimated
log(odds
ratio) yk

Estimated
SD sk

Effective
no.

events nk

Shrinkage
Bk

Deaths Patients Deaths Patients

Morton 1 40 2 36 �0.65 1.06 3.6 0.93
Rasmussen 9 135 23 135 �1.02 0.41 24.3 0.65
Smith 2 200 7 200 �1.12 0.74 7.4 0.86
Abraham 1 48 1 46 �0.04 1.17 2.9 0.94
Feldstedt 10 150 8 148 0.21 0.48 17.6 0.72
Shechter 1 59 9 56 �2.05 0.90 4.9 0.90
Ceremuzynski 1 25 3 23 �1.03 1.02 3.8 0.92
LIMIT-2 90 1159 118 1157 �0.30 0.15 187.0 0.19
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Figure 3.13 Profile log(likelihood) of t, showing reasonable support for values of t
between 0 and 1. Also shown are individual and overall estimates of treatment
effects for different values of t: although t ¼ 0 is the maximum likelihood estimate,
plausible values of t have substantial impact on the estimated treatment effects.

Bayesianinterpretation: This random-effects analysis is not really a Baye-
sian technique, as it uses no prior distributions for parameters and
conclusions are reported in the traditional way. One could, however,
treat this as an approximate Bayesian analysis having assumed ex-
changeability between treatments and uniform priors on unknown par-
ameters.

Sensitivity analysis: A meta-analysis using uniform prior distributions,
whether a pooled- or random-effects analysis, finds a ‘significant’ benefit
from magnesium. The apparent conflict between this finding and the
results of the ISIS-4 mega-trial have led to a lengthy dispute, briefly
summarised in Higgins and Spiegelhalter (2002). We shall return to
this issue in Example 8.1, but for the moment we consider the robust-
ness of the meta-analysis results to the choice of prior distribution. In
particular, we use the credibility analysis described in Section 3.11 to
check whether the findings are robust to a reasonable expression of prior
scepticism concerning large benefits. We first consider the pooled an-
alysis. From Figure 3.8, we can see that in order to find unconvincing the
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favours magnesium  <-       Mortality odds ratio          ->  favours placebo

Figure 3.14 Fixed- (solid lines) and random-effects (dashed lines) meta-analysis
of magnesium data assuming t ¼ 0:29, leading to considerable shrinkage of the
estimates towards a common value.

pooled analysis (95% interval from 0.52 to 0.86), a sceptical prior with a
lower 95% point at around 0.80 would be necessary. Figure 3.15 dis-
plays the pooled likelihood, and the ‘critical’ sceptical prior distribution
that leads to a posterior tail area of 0.025 above OR ¼ 1. This prior is
N[0, 22=421], and hence is equivalent evidence to a trial in which 421
events have been observed, with exactly the same number in each arm.
This seems a particularly extreme form of scepticism in that it essentially
rules out all effects greater than around 20% on prior grounds. However,
for the random-effects analysis (95% interval from 0.38 to 0.89), the
lower end of the sceptical interval would need to be 0.6: the likelihood,
‘critical’ sceptical prior and posterior are shown in Figure 3.16. It might
seem reasonable to find odds ratio below 0.6 extremely surprising, and
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favours magnesium  <-            Mortality odds ratio              ->  favours placebo
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Likelihood

Sceptical prior

Posterior

Figure 3.15 Critical sceptical prior for the pooled analysis, just sufficient to make
posterior 95% interval include 1. This degree of scepticism seems unreasonably
severe, as it equivalent to having already observed 421 events – 210.5 on each
treatment.

hence a random-effects analysis and a reasonably sceptical prior render
the meta-analysis somewhat unconvincing. This finding is reinforced by
the comment by Yusuf (1997) that ‘if one assumed that only moderate
sized effects were possible, the apparent large effects observed in the
meta-analysis of small trials with magnesium . . . should perhaps have
been tempered by this general judgment. If a result appears too good to
be true, it probably is.’

Comments: One vital issue is that the maximum likelihood estimate of t
would lead to assuming a pooled estimate for the odds ratio, whereas
there is reasonable evidence for considerable heterogeneity. A simplistic
approach in which the maximum likelihood estimate is assumed to be
true is therefore likely to substantially overstate the confidence in the
conclusions. We note that we might question the exchangeability as-
sumption of a large trial compared with many small ones, and this is
further discussed in Higgins and Spiegelhalter (2002).
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Figure 3.16 Critical sceptical prior for random-effects analysis, just sufficient to
make posterior 95% interval include 1. This degree of scepticism appears quite
reasonable, corresponding to 58 events (29 in each arm) in a previous ‘imaginary
trial’.

3.18 DEALING WITH NUISANCE PARAMETERS*

3.18.1 Alternative methods for eliminating nuisance
parameters*

In many studies we are focused on inferences on a single unknown quantity �,
such as the average treatment effect in a population of interest. However,

there will almost always be additional unknown quantities which influence

the data we observe but which are not of primary interest: these are known as

‘nuisance’ parameters and are a major issue in statistical modeling. Examples

include the variance of continuous quantities, coefficients measuring the

influence of background risk factors, baseline event rates in control groups,

and so on.

Traditional statistical methods are primarily based on analysis of the likeli-

hood for �, and a number of methods have been developed to eliminate the

nuisance parameters from this likelihood. These include the following:
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1. Restricting attention to an estimator of � whose likelihood (at least approxi-

mately) does not depend on the nuisance parameters. This technique is used

extensively in this book in the form of approximate normal likelihoods for

unknown odds ratios, hazard ratios and rate ratios (Section 2.4).

2. Estimating the nuisance parameters and ‘plugging in’ their maximum likeli-

hood estimates into the likelihood for �. This ignores the uncertainty con-

cerning the nuisance parameters, and may be inappropriate if the number of

nuisance parameters is large. In hierarchical modelling we might use this

technique for the hyperparameters of the population distribution, and we

saw in Section 3.17 that this is known as the empirical Bayes approach.

Example 3.13 showed that conditioning on the maximum likelihood esti-

mate might lead us to ignore an important source of uncertainty.

3. By conditioning on some aspect of the data that is taken to be uninformative

about �, forming a ‘conditional likelihood’ which depends only on �.
4. Forming a ‘profile likelihood’ for �, obtained by maximising over the nuis-

ance parameters for each value of �. This was used in Example 3.13 and is

illustrated in Section 3.18.2, although here it is not applied to the parameter

of primary interest.

Each of these techniques leads to a likelihood that depends only on �, and which

could then be combined with a prior in a Bayesian analysis.

However, a more ‘pure’ Bayesian approach would be as follows:

1. Place prior distributions over the nuisance parameters.

2. Form a joint posterior distribution over all the unknown quantities in the

model.

3. Integrate out the nuisance parameters to obtain the marginal posterior

distribution over �.

This approach features in our examples when we do not assume normal

approximations to likelihoods, such as modelling control group risks for bino-

mial data in Examples 8.2 and 9.4, and control group rates for Poisson data in

Example 8.3. We also consider full Bayesian modelling of sample variances for

normal data in Examples 6.10 and 9.2. In other hierarchical modelling

examples we shall generally adopt an approximation at the sampling level,

but a full Bayesian analysis of the remaining nuisance parameter: the be-

tween-group standard deviation t.
It is important to emphasise that sensitivity analysis of prior distributions

placed on nuisance parameters is important, as apparently innocuous choices

may exert unintended influence. For this reason it may be attractive to carry

out a hybrid strategy of using traditional methods to eliminate nuisance param-

eters before carrying out a Bayesian analysis on � alone, although we might

wish to be assured that this was a good approximation to the full Bayesian

approach.
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3.18.2 Profile likelihood in a hierarchical model*

Consider the hierarchical model described in Section 3.17 and Example 3.13 in

which

Yk � N[�k,s
2
k ], �k � N[�,t2]:

The hyperparameters � and t2 will generally be unknown. From (3.24) the

predictive distribution of Yk, having integrated out �k, is

Yk � N[�, s2k þ t2]:

Let the precision wk ¼ 1=(s2k þ t2) be the ‘weight’ associated with the kth study.

Then the joint log(likelihood) for � and t is an arbitrary constant plus

L(�,t) ¼ �1

2
�
k

[(yk � �)2wk � logwk]: (3:38)

By differentiating (3.38) with respect to � and setting to 0, we find that, for fixed

t, the conditional maximum likelihood estimator of � is

�̂�(t) ¼�
k

ykwk=�
k

wk, (3:39)

with variance 1=�kwk (this is also the posterior mean and variance of � when

assuming a uniform prior distribution for �). We can therefore substitute �̂�(t) for
� in (3.38) and obtain the profile log(likelihood) for t as

L(t) ¼ �1

2
�
k

[(yk � �̂�(t))2wk � logwk]: (3:40)

This profile log(likelihood) may be plotted, as in Example 3.13, and maximised

numerically to obtain the maximum likelihood estimate t̂t. This can then be

substituted in (3.39) to obtain the maximum likelihood estimate of �.

3.19 COMPUTATIONAL ISSUES

The Bayesian approach applies probability theory to a model derived from

substantive knowledge and can, in theory, deal with realistically complex

situations – the approach can also be termed ‘full probability modelling’. It

has to be acknowledged, however, that the computations may be difficult,

with the specific problem being to carry out the integrations necessary to obtain

the posterior distributions of quantities of interest in situations where non-

standard prior distributions are used, or where there are additional ‘nuisance

102 An overview of the Bayesian approach

Chapter 3 An Overview of the Bayesian Approach 17.11.2003 4:24pm page 102



parameters’ in the model. These problems in integration for many years re-

stricted Bayesian applications to rather simple examples. However, there has

recently been enormous progress in methods for Bayesian computation, gener-

ally exploiting modern computer power to carry out simulations known as

Markov chain Monte Carlo (MCMC) methods (Section 3.19.2).

In this book we shall downplay computational issues and many of our

examples can be handled using simple algebra. In practice it is inevitable that

MCMC methods will be required for many applications, and our later examples

make extensive use of the WinBUGS software (Section 3.19.3).

3.19.1 Monte Carlo methods

Monte Carlo methods are a toolkit of techniques that all have the aim of

evaluating integrals or sums by simulation rather than exact or approximate

algebraic analysis. The basic idea of replacing algebra by simulation can be

illustrated by the simple example given in Example 3.14.

Example 3.14 Coins: AMonte Carlo approach to estimating tail areas of
distributions

Suppose we want to know the probability of getting 8 or more heads when
we toss a fair coin 10 times. An algebraic approach would be to use the
formula for the binomial distribution given in (2.39) to provide the probabil-
ity of 8, 9 or 10 heads, which results in

P(8 or more heads) ¼ 10

8

� �
1

2

� �8 1

2

� �2

þ 10

9

� �
1

2

� �9 1

2

� �1

þ 10

10

� �
1

2

� �10 1

2

� �0

¼ 1

210
(45þ 10þ 1)

¼ 56

1024

¼ 0:0547:

An alternative, physical approach would be to repeatedly throw a set of
10 coins and count the proportion of throws where there were 8 or more
heads. Basic probability theory then says that eventually, after sufficient
throws, this proportion will tend to the correct result of 0.0547. This rather
exhausting procedure is best imitated by a simulation approach in which
a computer program generates the throws according to a reliable random
mechanism, say by generating a random number U between 0 and 1,
and declaring a ‘head’ if U � 0:5. The results of 102 such simulated throws
of 10 coins are shown in Figure 3.17(a): there were 4, 1 and 0 occurrences
of 8, 9 and 10 heads respectively, an overall proportion of 5=102 ¼ 0:0490,
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compared to the true probability of 0.0547. Figure 3.17(b) shows the
distribution of 10 240 throws, in which there were 428, 87 and 7 occur-
rences of 8, 9 and 10 heads respectively, instead of the expected counts
of 450, 100, and 10. Overall we would therefore estimate the probability
of 8 or more heads as 522=10 240 ¼ 0:0510. After 10 240 000 simulated
throws this empirical proportion is 0.05476, and can be made as close
as required to the true value 0.0547 by simply running a longer simula-
tion.

102 throws

Number of heads

0.0

0.05

0.10

0.15

0.20

0.25

10240 throws

Number of heads

0.0

0.05
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True distribution

Number of heads
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2 4 80 6 102 4 80 6 102 4 8

Figure 3.17 (a) Empirical distribution of the number of heads thrown in 102 tosses
of 10 balanced coins, where the results of the tosses are obtained by a computer
simulation. (b) Empirical distribution after 10 240 throws. (c) True distribution based
on the binomial distribution.
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The Monte Carlo method described in Example 3.14 is used extensively in risk

modelling using software which allows sampling from a wide variety of distri-

butions. The simulated quantities can then be passed into a standard spread-

sheet, and the resulting distributions of the outputs of the spreadsheet will

reflect the uncertainty about the inputs. This use of Monte Carlo methods can

also be termed probabilistic sensitivity analysis, and we shall explore this in detail

in the context of cost-effectiveness (Section 9.5).

Monte Carlo methods will be useful for Bayesian analysis provided the distri-

bution of concern is a member of a known family – this distribution may be the

prior (if no data are available) or current posterior. In conjugate Bayesian

analysis it will be possible to derive such a posterior distribution algebraically

as in Section 3.6.2 and hence to use Monte Carlo methods to find tail areas

(although such tail areas may also be directly obtainable in software), or more

usefully to find the distribution of complex functions of one or more unknown

quantities as in the probabilistic sensitivity analysis mentioned above. An

application of these ideas in power calculations is given in Example 6.5.

3.19.2 Markov chain Monte Carlo methods

Non-conjugate distributions or nuisance parameters (Section 3.18) will gener-

ally mean that in more complex Bayesian analysis it will not be possible to

derive the posterior distribution in an algebraic form. Fortunately, Markov

chain Monte Carlo methods have developed as a remarkably effective means

of sampling from the posterior distribution of interest even when the form of

that posterior has no known algebraic form. Only a brief overview of these

methods can be given here: tutorial introductions are provided by Brooks

(1998), Casella and George (1992) and Gilks et al. (1996).

The following form the essential components of MCMC methods:

. Replacing analytic methods by simulation. Suppose we observe some data y from

which we want to make inferences about a parameter � of interest, but the

likelihood p(yj�,c) also features a set of nuisance parameters (Section 3.18) c:
for example, � may be the average treatment effect in a meta-analysis, and c
may be the control and treatment group response rates in the individual

trials. The Bayesian approach is to assess a joint prior distribution p(�,c),
form the joint posterior p(�,cjy) / p(yj�,c)p(�,c), and then integrate

out the nuisance parameters in order to give the marginal posterior of

interest, i.e.

p(�jy) ¼
Z

p(�,cjy)dc:
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In most realistic situations this integral will not be a standard form and some

approximation will be necessary. The idea behind MCMC is that we sample from

the joint posterior p(�,cjy), and save a large number of plausible values for � and
c: we can denote these sampled values as (�(1), c(1)), (�(2),
c(2)), . . . , (�(j), c(j)), . . . . Then any inferences we wish to make about � are

derived from the sampled values �(1), �(2), . . . , �(j), . . . : for example, we use the

sample mean of the �(j) as an estimate of the posterior mean E(�jy). We can also

create a smoothed histogram of all the sampled �(j) in order to estimate the shape

of the posterior distribution p(�jy). Hence we have replaced analytic integration

by empirical summaries of sampled values.

. Sampling from the posterior distribution. There is a wealth of theoretical work

on ways of sampling from a joint posterior distribution that is known to be

proportional to a likelihood � prior, defined as p(yj�,c) p(�,c), where the latter

expression is of known form. These methods focus on producing a Markov

chain, in which the distribution for the next simulated value (�(jþ1), c(jþ1))
depends only on the current (�(j),c(j)). The theory of Markov chains states

that, under broad conditions, the samples will eventually converge into an

‘equilibrium distribution’. A set of algorithms are available that use the

specified form of p(yj�,c)p(�,c) to ensure that the equilibrium distribution is

exactly the posterior of interest: popular techniques include Gibbs sampling

and the Metropolis algorithm, but their details are beyond the scope of this

book.

. Starting the simulation. The Markov chain must be started somewhere, and

initial values are selected for the unknown parameters. In theory the choice of

initial values will have no influence on the eventual samples from the Markov

chain, but in practice convergence will be improved and numerical problems

avoided if reasonable initial values can be chosen.

. Checking convergence. Checking whether a Markov chain, possibly with very

many dimensions, has converged to its equilibrium distribution is not at all

straightforward. Lack of convergence might be diagnosed simply by observing

erratic behaviour of the sampled values, but the mere fact that a chain is

moving along a steady trajectory does not necessarily mean that it is sampling

from the correct posterior distribution: it might be stuck in a particular area due

to the choice of initial values. For this reason it has become generally accepted

that it is best to run multiple chains from a diverse set of initial values, and

formal diagnostics exist to check whether these chains end up, to expected

chance variability, coming from the same equilibrium distribution which is

then assumed to be the posterior of interest. This technique is illustrated in

Example 3.15, although in the remaining examples of this book we do not go

into the details of convergence checking (in fact, our examples are generally

well behaved and convergence is not a vital issue).
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There are a vast number of published MCMC analyses, many of them using

hand-tailored sampling programs. However, the WinBUGS software is widely

used in a variety of applications and is essential for many of the examples in this

book.

3.19.3 WinBUGS

WinBUGS is a piece of software designed to make MCMC analyses fairly straight-

forward. Its advantages include a very flexible language for model specification,

the capacity to automatically work out appropriate sampling methods, built-in

graphics and convergence diagnostics, and a large range of examples and web

presence that covers many different subject areas. It has two main disadvan-

tages. The first is its current role as a ‘stand-alone’ program that is not inte-

grated with a traditional statistical package for data manipulation, exploratory

analyses and so on (although this is improving to some extent with the ability to

call WinBUGS from other statistical packages). Secondly, it assumes that users

are skilled at Bayesian analyses and hence can assess the impact of their chosen

prior and likelihood, adequately check the fit of their model, check convergence

and so on. It is therefore to be used with considerable care. WinBUGS may

be obtained from www.mrc-bsu.cam.ac.uk/bugs/welcome.shtml (see

also Section A.2).

A simple example of the model language was introduced in Example 3.14,

which concerned the simulation repeated tosses of 10 ‘balanced coins’. This was

carried out in WinBUGS using the program:

model{

Y � dbin (0.5, 10)

P8 <- step (Y�7:5)
}

where Y is binomial with probability 0.5 and sample size 10, and P8 is a step

function which will take on the value 1 if Y�7:5 is non-negative, i.e. if Y is 8 or

more, 0 if 7 or less. There are only two connectives: The ‘�’ indicates a

distribution, ‘< �’ indicates a logical identity. Running this simulation for

10 240 and 1024000 iterations, and then taking the empirical mean of P8,

provided the estimated probabilities that Y will be 8 or more.

A more complex example is given in Example 3.15, which also illustrates the

use of graphs to represent a model, and the use of scripts for running WinBUGS

in the background.
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Example 3.15 Drug (continued): Using WinBUGS to implement Markov
chainMonteCarlomethods

In Example 3.10 we used the exact form of the beta-binomial distribution to
obtain the predictive distribution of the number of successes in future
Bernoulli trials, when the current uncertainty about the probability of suc-
cess is expressed as a beta distribution. Here we use this example as a
demonstration of the ability of the WinBUGS software to both carry out
prior-to-posterior analysis and make predictions. In this instance we can
compare the results with the exact results derived in Example 3.10; of
course, the main use for WinBUGS is in carrying out analyses for which no
algebraic solution is possible.

The basic components of the model being considered can be written as

y � Beta[a, b] prior distribution

y � Bin[y,m] sampling distribution

ypred � Bin[y, n] predictive distribution

Pcrit ¼ P(ypred � ncrit) probability of exceeding critical threshold

which is expressed in the WinBUGS language as follows:

# WinBUGS analysis of Beta-Binomial ‘drug’ example

# Model description stored in file ‘drug-model.txt’

model{

theta � dbeta(a,b) # prior distribution

y � dbin(theta,m) # sampling distribution

y.pred � dbin(theta,n) # predictive distribution

P.crit <- step (y.pred- #¼1 if y.pred >¼ ncrit,

ncritþ0.5) # 0 otherwise

}

As mentioned in Section 3.19.3, the step function is used here as an indica-
tor as to whether a quantity is greater than or equal to 0, so that the mean of
P.crit over a large number of iterations will be the estimate of Pcrit.

The model is also expressed graphically in Figure 3.18. The representation
is described in the figure legend but should be fairly self-explanatory. The
important point is that such a directed graph fully describes the joint
distribution of all the unknown quantities, and in fact these graphs, known
as Doodles, can be used by WinBUGS in place of the model syntax above.
The part of WinBUGS that deals with the graphs, called DoodleBUGS, can
interpret the graphs and either generate WinBUGS code or directly run the
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Figure 3.18 Doodle for drug example. The graphical model represents each quan-
tity as a node in directed acyclic graph. Constants are placed in rectangles, random
quantities in ovals. Stochastic dependence is represented by a single arrow, and a
logical function as a double arrow. The resulting structure ismuch like a spreadsheet,
but allowing uncertainty on the dependencies. WinBUGS allows models to be
specified graphically and run directly from the graphical interface.

analysis from the Doodle. Graphical representations can be useful in
explaining complex model structures without the distraction of equations;
we use them in explaining alternative models for historical data (Section
5.4) and for evidence synthesis (Section 8.4 and Example 8.6).

The relevant values for the model are the parameters of the prior distribu-
tion, a ¼ 9:2, b ¼ 13:8; the number of trials carried out so far, m ¼ 20; the
number of successes so far, y ¼ 15; the future number of trials, n ¼ 40;
and the critical value of future successes ncrit ¼ 25. These values could
have been placed in the model description, or alternatively can be written
as a list using the format below. This list could be in a separate file or listed
after the model description.

# data held in file ‘data.txt’

# these values could alternatively have been given in model

description

list(

a ¼ 9.2, # parameters of prior distribution

b ¼ 13.8,

y ¼ 15, # number of successes

m ¼ 20, # number of trials

n ¼ 40, # future number of trials

ncrit ¼ 25) # critical value of future successes
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WinBUGS can automatically generate initial values for the MCMC an-
alysis, but it is better to provide reasonable values in an initial-values list.
As mentioned in Section 3.19.2, the best way to check convergence is to
carry out multiple runs from widely dispersed starting points and check
that, after a suitable ‘burn-in’, they give statistically indistinguishable
chains. This example is simple enough not to require this level of care,
but we illustrate the idea by setting up three initial-value files with starting
points y ¼ 0:1, 0:5, 0:9.

# initial values held in file ’drug-in1.txt’

list(theta¼0.1)

# initial values held in file ’drug-in2.txt’

list(theta¼0.5)

# initial values held in file ’drug-in3.txt’

list(theta¼0.9)

It is possible to run WinBUGS from a ‘point- and-click’ interface, but once
a program is working it is more convenient to use ‘scripts’ to carry out a
simulation in the background. A script is shown below, checking the syntax
of the model, reading in data and multiple initial values, carrying out the
simulation and generating the results shown below.

# Script for running analysis

display(’log’)

check(’c:/winbugs/drug-model.txt’) # check syntax of model

data(’c:/winbugs/drug-dat.txt’) # load data file

compile(3) # generate code for 3 simulations

inits(1, ’c:/winbugs/drug-in1.txt’) # load initial values 1

for theta

inits(2, ’c:/winbugs/drug-in2.txt’) # load initial values 2

for theta

inits(3, ’c:/winbugs’drug-in3.txt’) # load initial values 3

for theta

gen.inits() # generate initial value for y.pred

set(theta) # monitor the true response rate

set(y.pred) # monitor the predicted number of successes

set(P.crit) # monitor whether 25 or more successes occur

update(11000) # perform 11000 simulations
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Figure 3.19 Some results based on 30 000 iterations. Convergence is rapidly
achieved in such a simple model, and so the burn-in of 1000 iterations was hardly
necessary.

gr(theta) # Gelman-Rubin diagnostic for convergence

beg(1001) # Discard first 1000 iterations as burn-in

stats(*) # Calculate summary statistics for all monitored

quantities

density(theta) # Plot distribution of theta

density(y.pred) # Plot distribution of y.pred

The statistics from the MCMC run are as follows:

node mean sd MC error 2.5% median 97.5% start sample

P.crit 0.3273 0.4692 0.002631 0.0 0.0 1.0 1001 30000

theta 0.5633 0.07458 4.292E-4 0.4139 0.5647 0.7051 1001 30000

y.pred 22.52 4.278 0.02356 14.0 23.0 31.0 1001 30000

The exact answers are available from Example 3.10, and reveal that
the posterior distribution has mean 0.563 and standard deviation
0.075, and the beta-binomial predictive distribution has mean 22.51 and
standard deviation 4.31. The probability of observing 25 or more suc-
cesses is 0.329. The MCMC results are within Monte Carlo error of the
true values, and can achieve arbitrary accuracy by running the simulation
for longer.

The flexibility of WinBUGS allows a variety of modelling issues to be dealt

with in a straightforward manner: our examples include inference on complex

functions of parameters (Examples 8.4, 8.7 and 9.3), alternative prior distribu-

tions (Examples 6.10 and 8.1), inference on ranks (Example 7.2), prediction of

effects in new studies (Example 8.1), analysis of sensitivity to alternative likeli-

hood assumptions (Example 8.2), and hierarchical models for both means and

variances (Example 6.10).
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3.20 SCHOOLS OF BAYESIANS

It is important to emphasise that there is no such thing as a single Bayesian

approach, and that many ideological differences exist between researchers. Four

broad levels of increasing ‘purity’ may be identified:

1. The empirical Bayes approach (Section 3.17), in which a prior distribution

is estimated from multiple experiments. Analyses and reporting are in trad-

itional terms, and justification is through improved sampling properties of

procedures.

2. The reference Bayes approach, in which a Bayesian interpretation is given

to conclusions expressed as posterior distributions, but an attempt is made to

use ‘objective’ or ‘reference’ prior distributions. There have been a number of

attempts to use Bayesian methods but with uniform priors, gaining the

intuitive Bayesian interpretation while having essentially the classical

results (see Section 5.5; see also Burton et al., 1998; Gurrin et al., 2000).

For example, Shakespeare et al. (2001) use ‘confidence levels’ calculated

from a normalised likelihood which is essentially a posterior distribution

under a uniform prior – this type of activity has been termed an attempt to

‘make the Bayesian omelette without breaking the Bayesian eggs’.

3. The proper Bayes approach, in which informative prior distributions are

based on available evidence, but conclusions are summarised by posterior

distributions without explicit incorporation of utility functions. Within this

school there may be more or less focus on hypothesis testing using Bayes

factors (Section 3.3): Bayes factor analyses essentially entertain the possibil-

ity of the precise truth of the null hypothesis (or at least values very close to

the null), i.e. either � is extremely close to 0, or we have almost no idea of

regarding �. Except in particular circumstances where such dichotomies may

be feasible (perhaps in genetics), it might be considered more reasonable to

express a ‘smooth’ sceptical prior: ‘in most RCTs, estimation would be more

appropriate than testing’ (Kass and Greenhouse, 1989).

4. The decision-theoretic or ‘full’ Bayes approach, in which explicit utility

functions are used to make decisions based on maximising expected

utility. There has been long and vigorous debate on whether or not to

incorporate an explicit loss function, and the extent to which a health-care

evaluation should lead to an inference about a treatment effect or a decision

as to future policy. Important objections to a decision-theoretic approach

include the lack of a coherent theory for decision-making on behalf of

multiple audiences with different utility functions, the difficulty of obtaining

agreed utility values, and the fact that a strict decision-theoretic view would

lead to future treatments being recommended on the basis of even marginal

expected gains, without any concern as to the level of confidence with which

such a recommendation is made (see Section 6.2 and Chapter 9).
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Our personal leaning, and the focus in this book, is towards the third, proper,

school of Bayesianism.

In spite of this apparent divergence in emphasis, the schools are united in their

belief in the fundamental importance of three concepts that distinguish Bayesian

from conventional methods: coherence of probability statements (Section 3.1),

exchangeability (Section 3.17) and the likelihood principle (Section 4.3).

3.21 A BAYESIAN CHECKLIST

Bayesian methods tend to be inherently more complex than classical analyses,

and thus there is an additional need for quality assurance. However, there are

limited ‘guidelines’ available for reporting Bayesian analyses. Rudimentary

guidance was provided by Lang and Secic (1997), who gave the following

instructions:

1. Report the pre-trial probabilities and specify how they were determined.

2. Report the post-trial probabilities and their probability intervals.

3. Interpret the post-trial probabilities.

Similar advice is given in the Annals of Internal Medicine’s instructions to

authors. The BaSiS (Bayesian Standards in Science) initiative (Section A.2) is

seeking to establish guidelines for reporting.

In this section we present a checklist against which published accounts of

Bayesian assessments of health-care interventions can be compared. We aim to

ensure that an account which adequately contains all the points mentioned

here would have the property that the analysis could be replicated by another

investigator who has access to the full data. These guidelines should be seen as

complementary to the CONSORT (Moher et al., 2001) guidelines, in that they

focus on those aspects crucial to an accountable Bayesian analysis, in addition

to standard paragraphs concerning the intervention, the design and the results.

Our main examples attempt to use this structure, although it sets a high

standard that we admit we do not always reach! In particular, it is often easier

to present the evidence at the same time as the statistical model, particularly

when there has been some iterative model construction. To avoid tedious

repetition, the phrase ‘should be clearly and concisely described’ should be

assumed to apply to each of the components below.

Background

. The Intervention. The intervention to be evaluated with regard to the popula-

tion of interest and so on.

. Aim of study. It is important that a clear distinction is made between desired

inferences on any quantity or quantities of interest, representing the
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parameters to be estimated, and any decisions or recommendations for action

to be made subsequent to the inferences. The former will require a prior

distribution, while the latter will require explicit or implicit consideration of

a loss or utility function.

Methods

. Study design. This is a standard requirement, but when synthesising evidence

particular attention will be necessary to the similarity of studies in order to

justify any assumptions of exchangeability.

. Outcome measure. The true underlying parameters of interest.

. Statistical model. The probabilistic relationship between the parameter(s) of

interest and the observed data, either mathematically, or in such a way as to

allow its mathematical form to be unambiguously obtained by a competent

reader, including any model selection procedure, whether Bayesian or not.

. Prospective Bayesian analysis? It needs to be made clear whether the prior and

any loss function were constructed preceding the data collection, and

whether analysis was carried out during the study.

. Prior distribution. Explicit prior distributions for the parameters of interest

should be given. If ‘informative’, then the derivation of the prior from an

elicitation process or empirical evidence should be detailed. If claimed to be

‘non-informative’, then this claim should be justified. If it is intended to

examine the effect of using different priors on the conclusion of the study,

this should be stated and the alternative priors explicitly given.

. Loss function or demands. An explicit method of deducing scientific conse-

quences is decided prior to the study. This will often be a range of equivalence

(a range of values such that if the parameter of interest lies within it, two

different technologies may be regarded as being of equal effectiveness), or a

loss function whose expected value is to be minimised with respect to the

posterior distribution of the parameter of interest. Any elicitation process from

experts should be described.

. Computation/software. A mathematically competent reader should, if neces-

sary, be able to repeat all the calculations and obtain the required results, and

any mathematical software used to obtain the results should be described. If

MCMC methods are being used the assumption of convergence should be

justified.

Results

. Evidence from study. As much information about the observed data – sample

sizes, measurements taken – as is compatible with brevity and data confiden-

tiality should be given. It is also essential that the likelihood could be recon-

structed, so that subsequent users can establish the contribution from the

study to, say, a meta-analysis.
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Interpretation

. Bayesian interpretation. The posterior distribution should be clearly summar-

ised: in most cases, this should include a presentation of posterior credible

intervals and a graphical presentation of the posterior distribution. If either a

formal or informal loss function has been described, the results should be

expressed in these terms.

There should be a careful distinction between the report as a current

summary for immediate action, in which case a synthesis of all relevant

sources of evidence is appropriate, and the report as a contributor of infor-

mation to a future evidence synthesis.

. Sensitivity analysis. The results of any alternative priors and/or expressions of

the consequences of decisions.

. Comments. These should include an honest appraisal of the strengths and

possible weaknesses of the analysis.

3.22 FURTHER READING

Historical references concerning Bayesian methods include Bayes (1763),

Holland (1962), Fienberg (1992) and Dempster (1998). For general introduc-

tions, see the chapter by Berry and Stangl (1996a) in their textbook (Berry and

Stangl, 1996b) which covers a whole range of modelling issues, including

elicitation, model choice, computation, prediction and decision-making. Non-

technical tutorial articles include Lewis and Wears (1993), Bland and Altman

(1998) and Lilford and Braunholtz (1996), while O’Hagan and Luce (2003)

provide an excellent primer geared towards cost-effectiveness studies. Other

authors emphasise different merits of Bayesian approaches in health-care evalu-

ation: Eddy et al. (1990a) concentrate on the ability to deal with varieties of

outcomes, designs and sources of bias, Breslow (1990) stresses the flexibility with

whichmultiple similar studies can be handled, Etzioni andKadane (1995) discuss

general applications in the health sciences with an emphasis on decision-making,

while Freedman (1996) and Lilford and Braunholtz (1996) concentrate on the

ability to combine ‘objective’ evidence with clinical judgement. Stangl and Berry

(1998) provide a recent review of biomedical applications.

There is a huge methodological statistical literature on general Bayesian

methods, much of it quite mathematical. Cornfield (1969) provides a theoretical

justification of the Bayesian approaches, in terms of ideas such as coherence. A

rather old article (Edwards et al., 1963) is still one of the best technical intro-

ductions to the Bayesian philosophy. Good tutorial introductions are provided

by Lindley (1985) and Barnett (1982), while more recent books, roughly in

order of increasing technical difficulty, include Berry (1996a), Lee (1997),

O’Hagan (1994), Gelman et al. (1995), Carlin and Louis (2000), Berger

(1985) and Bernardo and Smith (1994).
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Recommended references for specific issues include DeGroot (1970) on deci-

sion theory, axiomatic approaches and backwards induction, Bernardo and

Smith (1994) on exchangeability, and Kass and Raftery (1995) on Bayes

factors. On computational issues, Carlin et al. (1993) and Etzioni and Kadane

(1995) discuss a range of methods which may be used (normal approximations,

Laplace approximations and numerical methods including MCMC), Gelman and

Rubin (1996) review MCMC methods in biostatistics, and van Houwelingen

(1997) provides a commentary on the importance of computational methods in

the future of biostatistics.

With regard to hierarchical models Jerome Cornfield (1969, 1976) was an

early proponent of the Bayesian approach to multiplicity (Section 6.8.1), while

Breslow (1990) gives many examples of problems of multiplicity and reviews

the use of empirical Bayes methods for longitudinal data, small-area mapping,

estimation of a large number of relative risks in a case–control study, and

multiple tumour sites in a toxicology experiment. Louis (1991) reviews the

area and provides a detailed case study, while Greenland (2000) provides an

excellent justification.

3.23 KEY POINTS

1. Bayesian methods are founded on the explicit use of judgement, formally

expressed as prior beliefs and possibly loss functions. The analysis can

therefore quite reasonably depend on the context and the audience. How-

ever, if the aim is to convince a wide range of opinion, subjective inputs must

be strongly argued and be subject to sensitivity analysis.

2. Bayes theorem provides a natural means of revising opinions in the light

of new evidence, and the Bayes factor or likelihood ratio provides a scale

on which to assess the weight of evidence for or against specific hypotheses.

3. Bayesian methods are best seen as a transformation from initial to final

opinion, rather than providing a single ‘correct’ inference.

4. Exchangeability is a vital judgement: exchangeable observations justify the

use of parametric models and prior distributions, while exchangeable par-

ameters lead to the use of hierarchical models.

5. Bayesian methods provide a flexible means of making predictions, and this is

helped by MCMC methods.

6. Hierarchical models provide a flexible and widely applicable structure when

wanting to simultaneously analyse multiple sources of evidence.

7. A decision-theoretic approach may be appropriate where the consequences

of a study are considered reasonably predictable, but this is not the emphasis

of this book.

8. Normal approximations can be used in many contexts, particularly when

deriving likelihoods from standard analyses. This will generally entail trans-

formation between different scales of measurement.
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9. Standards for Bayesian reporting have not been established. The most im-

portant aspect is to provide details of each of the prior distributions, its

justification and its influence assessed through sensitivity analysis.

EXERCISES

3.1. Altman (2001) considers the data in Table 3.9, showing the results of

using a scan of the liver to detect abnormalities compared to classification

at autopsy, biopsy or surgical inspection in 344 patients.

(a) Estimate the likelihood ratio for a positive scan.

(b) For the patients in Table 3.9 the prevalence of an abnormal pathology is

0.75. For this population estimate the posterior probability of an abnor-

maldiagnosisafterobservingapositive scan result.What is the estimated

posterior probability for a population in which the prevalence is 0.25?

3.2. Asked prior to a study of a new chemotherapy, an oncologist said that she

would expect 90% of patients to respond, and that she thought it was

unlikely to be less than 80%. (a) Use a ‘method-of-moments’ argument

similar to that of Example 3.3 to summarise the oncologist’s opinions in

terms of a beta distribution, and plot this prior distribution. In 20 patients

treated, 14 respond. (b) Plot the likelihood. (c) Update the beta parameters

in the light of the data observed.

3.3. Show that if y1, . . . , yn are i.i.d. observations from a Poisson distribution

with unknown mean �, and that a gamma prior distribution with param-

eters � and � is specified for �, the corresponding posterior distribution is

also gamma, i.e. conjugate, with parameters �þ�n
i¼1yi and � þ n.

3.4. Based on national statistics for a large number of similar hospitals, a

manager believes that the mean number of patients attending a specialist

clinic each week in his hospital should lie between 12 and 20. (a) Taking

this range as approximately equivalent to a mean �2 standard deviations,

use a ‘method-of-moments’ argument similar to that in Example 3.3 to

summarise the manager’s beliefs using a gamma distribution. The

numbers of patients attending a specialist clinic each week for 5 weeks

are 11, 15, 18, 13, 19, and are assumed to be independent observations

Table 3.9 Detection of abnormal liver pathology using scan compared to actual
classification at autopsy, biopsy or surgical inspection in 344 patients.

Pathology (Truth) Total

Liver scan (Test) Abnormal (þ) Normal (�)

Abnormal (þ) 231 32 263
Normal (�) 27 54 81

Total 258 86 344
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3.5. from a Poisson distribution. (b) Obtain the posterior distribution for the

mean number of patients per week based on the manager’s prior beliefs.

(c) Plot the prior and posterior densities. If your software permits it,

calculate the prior and posterior probabilities that the mean is greater

than 18.

3.5. Verify (3.14) algebraically, i.e. that a normal prior distribution is conju-

gate for the unknown mean of a normal likelihood.

3.6. Consider the GREAT trial of home thrombolytic therapy described in

Example 3.6. Another cardiologist was more sceptical about the magni-

tude of benefit and thought that the relative reduction in odds of death

was more likely to be around 10–15%, and that the extremes of a 25%

relative reduction and a 2.5% increase were unlikely.

(a) Fit a normal prior distribution for the log(odds ratio) to these opinions.

(b) Obtain the posterior distribution for this cardiologist and compare it

with the posterior distributions in Example 3.6.

3.7. Using the normal approximation to the likelihood derived in Exercise 2.5,

assume a sceptical prior distribution, such that an odds ratio of 1 was

most likely but with a 95% interval from 0.5 to 2.0. Obtain the posterior

estimate for the log(odds ratio), odds ratio and associated 95% intervals.

3.8. Use the normal approximation to the likelihood derived in Exercise 2.8

and assume a sceptical prior distribution equivalent to the evidence in a

balanced trial in which 50 events have occurred on each arm. Obtain the

corresponding posterior distribution for the log(hazard ratio).

3.9. Using the methods of Section 3.11, consider the results seen in the

PROSPER RCT in Exercise 2.8.

(a) Find the sceptical prior distribution for the log(hazard ratio) with

mean 0, such that the resulting posterior 95% interval for the hazard

ratio just includes 1.

(b) Do you think this degree of scepticism is reasonable, and hence are

the trial results credible?

3.10. Baum et al. (1992) report the results of an RCT to investigate the use of

tamoxifen compared to standard care for women treated for breast

cancer, evaluated in terms of disease-free survival. In total, 2030

women were randomised and followed up for over 10 years. Overall,

there were 484 events in the tamoxifen arm, whilst 419.6 were expected.

(a) Assuming balanced randomisation and follow-up, estimate the

number of events in the standard-care arm. During the first 5 years of

the trial 387 events were observed compared to 320.2 expected, and in

the second period of the trial 97 events were observed whilst 99.4 were

expected. (b) Assuming a sceptical prior for the log(hazard ratio) centred

at zero and with precision equivalent to having observed only 10 events,

show that a sequential analysis of the accumulating trial data using the

methods of Section 3.12 gives similar results to an analysis using all the

trial data.
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3.11. In Exercise 2.7 consider another 100 patients randomised between HAI

and control.

(a) About how many deaths would we expect to observe?

(b) What would be the predictive distribution for the observed log(hazard

ratio) using a sceptical prior distribution, i.e. centred at zero and

equivalent to having observed 10 deaths?

(c) Repeat (b) for an optimistic prior that represented beliefs that there

would be a 10% relative reduction in the risk of death associated with

HAI with uncertainty equivalent to having observed 25 deaths.

3.12. Whitehead (2002) considers a meta-analysis of 9 RCTs to evaluate

whether taking diuretics during pregnancy reduces the risk of pre-

eclampsia and which is summarised in Table 3.10. For each study, (a)

estimate the log(odds ratio) and its variance, and (b) obtain an estimate

and 95% intervals for the pooled odds ratio. (c) Using the ‘method of

moments’ (3.37), estimate the between-study variance t2. Hence obtain

the posterior estimates and intervals for (d) the population odds ratio

using random effects assuming the between-study variance is known,

and (e) the odds ratios for each of the 13 studies assuming a random-

effects model.

3.13. Cooper et al. (2002) report the results of an economic decision model to

assess the cost-effectiveness of using prophylactic antibiotics in women

undergoing Caesarean section. Evidence available includes the results of

a Cochrane systematic review of 61 RCTs which evaluated the prophy-

lactic use of antibiotics in women undergoing Caesarean section to

prevent wound infection, which produces an estimated odds ratio of

0.40, where the baseline probability of wound infection without prophy-

lactic use of antibiotics is estimated to be 0.08. Antibiotic treatment is

assumed to cost £10. Women who have a Caesarean section and who do

not develop an infection have a mean total cost of £1159 and are

Table 3.10 RCTs evaluating the use of diuretics during pregnancy to reduce risk of
pre-eclampsia.

Study Diuretic Control

Cases Total Cases Total

1 14 131 14 136
2 21 385 17 134
3 14 57 24 48
4 6 38 18 40
5 12 1011 35 760
6 138 1370 175 1336
7 15 506 20 524
8 6 108 2 103
9 65 153 40 102
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3.14. assumed to have a utility in the subsequent year of 0.95 quality-adjusted

life-years (QALYs), while women who have a Caesarean section and who

develop an infection have mean total cost of £2320 and utility of 0.80

QALYs: it is assumed there is no difference between the groups after one

year.

(a) Structure the decision as in Figure 3.12.

(b) Using the methods of Section 3.14, find the threshold for a policy

decision-maker, in £ per QALY, at which the expected utility of using

prophylactic antibiotics would exceed that of not using prophylactic

antibiotics.

3.14. Use WinBUGS to repeat the analysis of the PROSPER RCT in Exercise 2.9,

assuming a uniform prior (on a suitable wide range) for the log(odds

ratio), and (a) the approximate normal likelihood, (b) exact binomial

likelihoods.

3.15. Use WinBUGS to repeat the analysis in Exercise 3.4 of patients attending

a specialist clinic.
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4

Comparison of Alternative
Approaches to Inference

4.1 A STRUCTURE FOR ALTERNATIVE APPROACHES

It would be misleading to dichotomise statistical methods as either ‘classical’ or

‘Bayesian’, since both terms cover a bewildering range of techniques. A rough

taxonomy can be developed by distinguishing two characteristics: whether or not

prior distributions are used for inferences, and whether the objective is estima-

tion, hypothesis testing or a decision requiring a loss function of some form.All six

combinations of these elements have been investigated in theory and, to some

extent, in practice, and Table 4.1 assigns a label to each possible combination.

This categorisation can be made finer still, and in Section 3.20 an attempt

was made to delineate the different schools of Bayesianism that exist. Empirical

Bayes techniques can be considered as essentially Fisherian since there is no

formal introduction of prior opinion, while reference Bayesian methods, based

on attempts at ‘objective’ priors, fall somewhat between the Fisherian and

proper Bayesian approaches. We acknowledge that many of the examples in

Table 4.1 A taxonomy of six possible ‘philosophical’ approaches to statistical infer-
ence, depending on the objective and the formal quantitative use of prior information.

Objective

Inference
(estimation)

Hypothesis
testing

Decision
(loss function)

Use of
prior
evidence

Informal Fisherian Neyman–Pearson Classical
decision theory

Formal Proper Bayesian ‘Bayes factors’ Full decision-theoretic
Bayesian
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this book do not use informative prior distributions, and their results could be

(approximately) obtained by a likelihood analysis.

With so many options the resulting arguments about their relative merits

inevitably become somewhat complex, and in this chapter we can only highlight

some major issues. The standard approach in the evaluation of medical interven-

tions is a mixture of Fisherian and Neyman–Pearson philosophies and is briefly

summarised in Section 4.2, although Neyman–Pearson ideas have attracted

particularly strong criticism from both Fisherian and Bayesian perspectives

(Section 4.3). P-values are critically compared with Bayes factors in Section 4.4.

In themidst of often polemical arguments, it has also been argued that it would

be ‘a great pity if differences of technical approach were exaggerated into differ-

ences about qualitative issues’ (Cox and Farewell, 1997), while Armitage (1993)

maintains it is not appropriate to polarise the argument as a choice between

extremes. It also appears reasonable to suggest that the appropriate approach

may depend crucially on context (Section 3.1): for example, both Koch (1991)

andWhitehead (1993) claim that a proper Bayesian approachmay be reasonable

at early stages of a drug’s development but is not acceptable in phase III trials.

4.2 CONVENTIONAL STATISTICAL METHODS USED IN

HEALTH-CARE EVALUATION

Conventional approaches to inference can be divided into the two broad schools

of Fisherian and Neyman–Pearson.

The Fisherian approach regarding inference on an unknown intervention

effect � is based on the likelihood function (Section 2.2.4), which expresses

the relative support given to the different values of � by the data. This gives

rise to a maximum likelihood estimate comprising the most supported value for

�, and intervals based on ranges of values of � with most likelihood. More

controversially, Fisher suggested summarising the evidence against specified

null hypotheses by P-values (the chance of getting a result as extreme as that

observed were the null hypothesis true), although this was only intended as an

informal guide to the strength of evidence in the specific experiment being

reported (Goodman, 1999a). Hill et al. (2000) provide a good historical back-

ground, emphasising that the likelihood alone could be used for comparing

hypotheses without calculation of P-values.

The Neyman–Pearson approach has a different perspective, rooted in an

attempt at a theory of ‘inductive behaviour’, in seeking procedures for hypoth-

esis testing and estimation that satisfy certain properties in long-run repeated

use. Specifically, it focuses on the chances of making various types of error when

making decisions on the basis of the data so that, for example, clinical trials are

traditionally designed to have a fixed Type I error � (the chance of incorrectly

rejecting the null hypothesis), usually taken as 5% or 1%, and fixed power (one

minus the Type II error �, the chance of not detecting the alternative hypoth-
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esis), often 80% or 90%. Similarly, formulae for 95% confidence intervals are

designed so that, in 95% of situations in which they are appropriately used, they

will contain the true parameter value. The problem, as discussed in detail by

Goodman (1999a), is that this restricts us in what we can say about the specific

experiment being analysed.

In practice, a combined approach has developed, which is perhaps ironic in view

of the enmity between the initial protagonists of the approaches (see below). Senn

(1997b) points out that clinical trials are generally designed from a Neyman–

Pearson standpoint, but analysed from a Fisherian perspective using P-values as

measures of evidence. Methods used for observational methods and evidence

synthesis tend to be more Fisherian, but Goodman (1999a) argues that the

most common form of statistical analysis is to use P-values but, inappropriately,

to interpret them as saying something about long-run properties.

Advantages of the conventional framework include its apparent separation of

the evidence in the data from subjective factors, the general ease in computa-

tion, its wide acceptability and established criteria for ‘significance’, its rele-

vance to the drug regulatory framework in which quality control of statistical

submissions must be ensured, the availability of software, and the existence of

robust non- and semi-parametric procedures.

Nevertheless, there has been continual criticism of these traditional ap-

proaches since their introduction in the 1920s and 1930s, and their develop-

ment has been marked by considerable animosity and vituperative argument.

When Neyman (1934) presented his theory of confidence intervals at a meeting

of the Royal Statistical Society, Arthur Bowley, a strong advocate of the method

of ‘inverse probability’ (the Bayesian approach), was given the task of proposing

the vote of thanks. Towards the end of his remarks he said: ‘I am not at all sure

that the ‘‘confidence’’ is not a ‘‘confidence trick’’. He then went on to suggest a

Bayesian approach was necessary: ‘Does that really take us any further? . . . Does

it really lead us towards what we need – the chance that in the universe which

we are sampling the proportion is within . . . certain limits? I think it does not’.

Fisher opened the discussion of Neyman (1935) on the attack: ‘Were it not for

the persistent efforts which Dr Neyman and Dr Pearson had made to treat

what they speak of as problems of estimation, by means merely of tests of

significance, he had no doubt that Dr Neyman would not have been in any

danger of falling into the series of misunderstandings which his paper revealed’.

Egon Pearson then came to Neyman’s defence, saying that ‘while he knew there

was a widespread belief in Professor Fisher’s infallibility, he must, in the first

place, beg leave to question the wisdom of accusing a fellow-worker of incompe-

tence without, at the same time, showing that he had succeeded in mastering

the argument’.

In a strong attack on traditional methods, Cornfield (1976) claims that ‘the

paradox is that a solid structure of permanent value has, nevertheless, emerged,

lacking only the firm logical foundation on which it was originally thought to

have been built’. Generic criticisms include the failure of traditional methods to
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incorporate formally the inevitable background information that is available

both at design and analysis, that they take no account of the consequences of

the conclusions, and, from a more ideological perspective, that they disobey

certain reasonable axioms of rational behaviour (Section 3.1). In addition, there

is no doubt that classical inferences are often misinterpreted, in that P-values

are mistaken for probabilities of null hypotheses being true, and 95% confidence

intervals as meaning there is a 95% chance of their containing the true value.

Our personal opinion is that the strongest argument against Neyman–Pearson

methods and P-values is their disobedience of the likelihood principle: this

crucial idea is now discussed within the context of sequential analysis.

4.3 THE LIKELIHOOD PRINCIPLE, SEQUENTIAL

ANALYSIS AND TYPES OF ERROR

4.3.1 The likelihood principle

This principle (Berger andWolpert, 1988) states that all the information that the

data provide about the parameter is contained in the likelihood: we have already

seen in Sections 3.2 and 3.3 how data only influence the relative plausibility of an

alternative hypothesis through the relative likelihood and hence Bayesian infer-

ence automatically obeys this principle. This simple idea, however, has very

strong consequences, as the following classic example demonstrates.

Example 4.1 Stopping:The likelihoodprinciple inaction

Goodman (1999a) considers the following classic problem. Suppose we
hear that six people have each been given treatments A and B, and asked
which they prefer. Five preferred A, and one preferred B. What evidence is
this against the null hypothesis that A and B are preferred equally in the
population?

Let y be the true unknown proportion in the population preferring A, with
y ¼ 0:5 corresponding to the null hypothesis of ‘no preference’. Then the
likelihood arising from the experiment is proportional to y5(1� y) (Section
2.2.4) and the likelihood principle states that all the evidence about y to be
derived from this experiment can be extracted from this function, using
either likelihood or Bayesian methods.

In contrast, let us consider the P-value: the probability of observing a result
at least as extreme as the data, given the null hypothesis H0: y ¼ 0:5. But
what results are ‘at least as extreme’? Suppose we are told that the
experimenter decided in advance that six people were to be included,
and the first five preferred A and the final one preferred B. The possible
results of the experiment and their probabilities under H0 are shown in
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Table 4.2 under ‘Design 1’, with the ‘at least as extreme as observed’
outcomes highlighted in bold: these probabilities come from the binomial
(0.5,6) distribution (Section 2.6.1). It is not clear how to handle the
probability of the observation itself when defining what is ‘as extreme’ –
here we adopt the standard convention of including half its probability so
that the one-sided P-value is 1

2 (6=64)þ 1=64 ¼ 0:0625, with a two-sided
P-value of 0.13; note that Goodman (1999a) considers the one-sided
P-value including the whole contribution from the observed data, leading
to P ¼ 0:11. We may be disappointed that the result is not ‘significant’ at
P < 0:05.

Table 4.2 Two different experimental designs: (1) ask six subjects whether they
prefer A or B; (2) ask subjects sequentially until one prefers B and then stop.
Observed data comprise 5 preferences for A and one for B. Highlighted values
indicate potential data ‘at least as extreme’ as that observed under the null
hypothesis H0 of no overall preference in the population, i.e. the probability of either
preference is 0.5.

Design 1 Design 2

Y1 ¼ No. subjects
preferring A

Probability
under H0

Y2 ¼ First subject
preferring B

Probability
under H0

0 1/64 1 1/2
1 6/64 2 1/4
2 15/64 3 1/8
3 20/64 4 1/16
4 15/64 5 1/32
5 6/64 6 1/64
6 1/64 7 1/128

8 1/256
etc. etc.

But then we hear that a mistake has been made in reporting the results,
and that the experimenter in fact used a different (and admittedly rather
strange) sampling procedure (Design 2): he had decided to carry on
experimenting until he found someone who preferred B, and then stop.
Table 4.2 again shows the possible results with those ‘at least as extreme
as observed’ highlighted: the probabilities follow a ‘geometric’ distribution
in which the chance of first getting a B preference on the nth trial is 1=2n.
This time the P-value is 1

2 (1=64)þ 1=128þ 1=256þ . . . ¼ 1
2 (1=64)þ 1=64

¼ 3=128 ¼ 0:023, with a two-sided P-value of 0.046, and we might now be
delighted that it is ‘significant’ at P < 0:05.

A likelihood and Bayesian approach to this problem is described in
Section 4.4.4.
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In Example 4.1 the intention of the experimenter dictated the conclusions to

be drawn from the results, and the P-values depended on what would have

happened had something else been observed (Berry, 1987). The likelihood

principle claims such behaviour is nonsensical, since only the observed data

influence the conclusions and this is through the likelihood alone.

4.3.2 Sequential analysis

In a sequential experimental design the data are periodically analysed and the

study stopped if sufficiently convincing results obtained. Such repeated analysis

of the data can have a strong effect on the overall Type I error in the experiment,

since there are many opportunities to obtain a false positive result. The trad-

itional approach to sequential analysis identifies classes of ‘stopping boundaries’

with fixed overall Type I error �, and then chooses designs with minimum Type

II error � (maximum power) for particular alternative hypotheses. At the end of

a study P-values and confidence intervals should be adjusted for the sequential

nature of the design (Whitehead, 1997a).

Sequential data fall naturally within the Bayesian framework, as the posterior

distribution following each observation becomes the prior for the next (Section

3.12). As forcefully argued by Cornfield (1976), (3.25) shows that the evidence

for taking alternative decisions depends only on the relative likelihood of alterna-

tive hypotheses (the Bayes factor), prior probabilities, and utilities, and hence

provides a direct decision-theoretic justification for the likelihood principle within

sequential trials. Sequential analysis therefore provides a primary focus for

disagreement between frequentist and Bayesian approaches, since the likelihood

principle means that concern about frequentist stopping rules retaining Type I

error is entirely misplaced, and we can analyse trials at will. Criticism has been

forceful: Anscombe (1963) baldly states that ‘Sequential analysis is a hoax’, and

(1975) considers that ‘provided the investigator has faithfully presented his

methods and all of his results, it seems hard indeed to accept the notion that I

should be influenced in my judgement by how frequently he peeked at the data

while he was collecting it’.

We find the following argument particularly persuasive. If we were to assign

weights to the relative importance of the two types of error that could be made,

any resulting design would seek to minimise a linear combination of the Type I

error rate � and Type II error rate �. Perhaps surprisingly, such a design would

obey the likelihood principle, and this led Cornfield (1966) to point out that

the entire basis for sequential analysis depends upon nothing more profound than a

preference for minimising � for given � rather than minimising their linear combination.

Rarely has so mighty a structure, and one so surprising to scientific common sense,

rested on so frail a distinction and so delicate a preference.

We shall return to this topic when discussing sequential clinical trials in

Section 6.6.
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4.3.3 Type I and Type II error

Neyman–Pearson theory has been strongly criticised from both a Bayesian and

Fisherian perspective. Anscombe (1963) says ‘the concept of error probabilities

of the first and second kinds . . . has no direct relevance to experimentation . . .

The formalism of opinions, decisions concerning further experimentation and

other required actions, are not dictated in a simple prearranged way by the

formal analysis of the experiment, but call for judgement and imagination’.

The selection of values for error rates in trials seems particularly arbitrary:

Healy (1994) asks ‘Why the invariable 5% for �? Conditional on this, why the

larger 10% or even 20% for �? Is it really more important not to make a fool of

yourself than it is to discover something new?’ Sheiner (1991) provides a strong

polemic against hypothesis testing and in favour of an approach in which ‘we

gather data to model and quantify nature’; shifting attention from hypothesis

testing to confidence intervals does not really avoid the problem, since these are,

essentially, just the set of hypotheses that cannot be rejected at a certain � level.

We have already identified the crucial issue that arises in any context in

which simultaneous analysis of multiple studies, or multiple analyses of the

same study, is required. The traditional approach warns that repeated hypoth-

esis testing is bound to raise the chance of a Type I error (incorrectly rejecting a

true null hypothesis), and so suggests some adjustment, such as Bonferroni, to

try to retain a specified overall Type I error. This will typically give larger

P-values and wider confidence intervals.

The problem lies in deciding the set in which to embed the particular analysis

being carried out. Cornfield (1976) asks, with some irony: ‘Do we want error

control over a single trial, over all the independent trials on the same agent, on the

same disease, over the lifetime of an investigator, etc.?’ The need for any such

adjustment,which necessarily depends on the number of hypotheses being tested,

has been strongly questioned even from a non-Bayesian perspective, particularly

in epidemiology; Cole (1979) states that ‘in every study, every association should

be evaluated on its own merits: its prior credibility and its features in the study at

hand. The number of other variables is irrelevant’. Greenland and Robins (1991)

are among the many who have argued that some adjustment is necessary, but

rather than being based on Type I errors, it should be derived from an explicit

model that reflects assumptions about variability, andhence leads naturally to the

approach to multiplicity outlined in Section 3.17.

4.4 P-VALUES AND BAYES FACTORS*

4.4.1 Criticism of P-values

We noted in Section 4.3 that sequential trials present a particular problem for

P-values. Other arguments against this procedure are that the null hypothesis
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may be neither plausible nor of great interest, the arbitrariness of the 0.05 and

0.01 level, and that P-values tend to create a false dichotomy between ‘signifi-

cant’ and ‘non-significant’ which is inappropriate for consequent policy deci-

sions. Furthermore, the definition of ‘more extreme’ and hence the value of P

itself may be unclear even in some simple circumstances, such as testing

association in a 2� 2 table of counts, as well as requiring the choice between

one- or two-sided tests.

The strongest criticism is, perhaps, that P-values focus on statistical rather

than practical significance and hence their interpretation can be very dependent

on sample size. This is illustrated in Example 4.2.

Example 4.2 Preference:P-valuesasmeasuresof evidence

Freeman (1993) considered four hypothetical studies in which equal
number of patients are given treatments A and B and asked which they
prefer, with results shown in Table 4.3. Each results in an identical ‘signifi-
cant’ two-sided P-value of 0.04. However, as Freeman states, the first trial

Table 4.3 Four theoretical studies all with the same two-sided P-value for the
null hypothesis of equal preference in the population.

Number of patients
receiving A and B

Numbers
preferring A:B

%
preferring A

two-sided
P-value

20 15 : 5 75.00 0.04
200 115 : 86 57.50 0.04

2 000 1046 : 954 52.30 0.04
2000 000 1 001445 : 998 555 50.07 0.04

would be considered too small to permit reliable conclusions, while the
last trial (with a preference proportion of 50.07%) would be considered
as evidence for rather than against equivalence, since the preference
rates are, from any practical perspective, equally balanced. Thus equal
P-values can lead to very different conclusions depending on the sample
size.

4.4.2 Bayes factors as an alternative to P-values: simple
hypotheses

We have already seen (Section 3.3) that the Bayes factor or likelihood ratio is

the natural way to compare the support for two alternative hypotheses: when

these hypotheses are ‘simple’ (i.e. there are no unknown parameters), the Bayes

factor is a measure of the evidence in the data alone and is not affected by any
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prior probabilities. In the rather unrealistic situation that data are only reported

as being ‘significant at the 100�% level’, the Bayes factor is

BF ¼ p(‘significant’jH0)

p(‘significant’jH1)
¼ �

1� �
(4:1)

where � and � are the standard Type I and Type II error rates (Example 3.7).

It is important to note the behaviour of (4.1) as the sample size increases but

the alternative hypothesis H1 remains fixed. In this case the power of the study

increases, and hence � decreases and the Bayes factor decreases towards �: we

are left with the conclusion of Peto et al. (1976) that a ‘significant’ result

provides more evidence against the null hypothesis for larger sample sizes.

This finding can be contrasted with Lindley and Scott (1984), who preface

their statistical tables with the claim that ‘all significance tests are dubious because

the interpretation to be placed on the phrase ‘‘significant at 5%’’ depends on the sample

size: it is more indicative of the falsity of the null hypothesis with a small sample than

with a large one’. We therefore appear to have contradictory claims that both

smaller and larger studies suggest increased evidence against the null hypothesis

when reporting a ‘significant’ result.

For simple alternative hypotheses, Royall (1986) explains this apparent para-

dox by contrasting two situations: thatwe know a studywas significant at the 5%

level, and that we know the exact P-value was 5%. The first was covered by (4.1),

while the second is now considered for normal distributions. Suppose

ym � N[�,�2=m]

and we wish to compare two simple hypotheses H0: � ¼ 0 against

H1: � ¼ �A > 0. Then the Bayes factor is the likelihood ratio

BF ¼ p(ymj� ¼ 0)

p(ymj�A) ¼ exp � m

2�2
[y2m � (ym � �A)

2]
� �

¼ exp �m �A
�2

ym � �A
2

� �� �
: (4:2)

This reveals the intuitive behaviour that for ym < �A=2, the Bayes factor will

exceed 1 and hence favour H0, while if ym > �A=2 the Bayes factor will be less

than 1 and favour H1.

Equation (4.2) can also be written

BF ¼ exp � ffiffiffiffi
m

p
zm
 þm
2

2

� �
(4:3)

where 
 ¼ �A=� is a standardised version of the alternative hypothesis, and

zm ¼ ym
ffiffiffiffi
m

p
=� is the standardised test statistic for H0. The crucial observation

is that, for fixed zm and hence fixed P-value, the Bayes factor will increase
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with increasing sample sizem, and hence support Lindley and Scott’s observation

that smaller sample sizes are more indicative of the falsity of the null hypothesis.

The apparent paradox for simple alternative hypotheses is seen to be resolved

by being clearer by what we mean by a ‘significant’ result: when we only know

a result achieved significance at a fixed level, the evidence against H0 increases

with sample size, while if we know the exact significance level, evidence against

H0 decreases with sample size. This reveals the complexity of comparing Bayes

factors with P-values, and we shall now add to the potential confusion by

considering composite alternative hypotheses, which are seen to obey both the

behaviours contrasted above.

4.4.3 Bayes factors as an alternative to P-values: composite
hypotheses

In most cases in which P-values are currently used H1 will be ‘composite’, in

that it encompasses a range of parameter values � as alternatives to the single

value specified by H0, typically � ¼ 0. We therefore need a method to obtain an

overall likelihood p(datajH1) in order to obtain the Bayes factor, i.e.

p(datajH0)=p(datajH1).
A likelihood-based solution is to use the ‘minimum’ Bayes factors, BFmin,

under H1 (Goodman, 1999b). For a general alternative hypothesis H1: � 6¼ 0

in the normal model considered in (4.2), the minimum Bayes factor occurs

when �A ¼ ym, and from (4.3) is

BFmin ¼ exp (� z2m=2), (4:4)

where zm ¼ ym
ffiffiffiffi
m

p
=� is the standardised test statistic for H0. This produces a

direct mapping between one-sided P-values, given by F(zm), and minimum

Bayes factors that is displayed as part of Figure 4.1: using Jeffreys’ descriptions

contained in Table 3.2, a two-sided P-value (denoted 2P) of 0.001 is ‘decisive

evidence’, 2P ¼ 0:01 is on the border of ‘strong’ and ‘very strong’, and

2P ¼ 0:05 is ‘substantial’. The minimum Bayes factor thus leads to conclusions

that are qualitatively similar to P-values but obey the likelihood principle and so

are unaffected by stopping rules. However, they still suffer from the criticism

displayed in Example 4.2: all the four studies have significance corresponding

(up to a normal approximation) to a z statistic of z0:04=2 ¼ �2:05, and hence

would have the same minimum Bayes factor of exp (�2:052=2) ¼ 1=8:2: ‘sub-
stantial’ evidence against H0.

As an alternative to a likelihood-based approach, in a full Bayesian analysis

we need to specify a prior p(�jH1) under the alternative hypothesis. If we assume

�jH1 � N[0, �2=n0],

then from (3.23) we have that
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ymjH1 � N 0, �2 1

n0
þ 1

m

� �� �
,

and hence the Bayes factor is easily shown to be

BF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ m

n0

r
exp

�z2m
2(1þ n0=m)

� �
: (4:5)

n0 can approximately be interpreted as the number of ‘imaginary’ observations

taking on the value of the null hypothesis � ¼ 0, and hence reflects prior

support under H1 for parameter values ‘near’ (but not exactly) H0. The problem

then becomes that of assessing a reasonable value for n0. This will be considered

in Section 5.5.4 in which priors that explicitly consider the ‘truth’ of a (null)

hypothesis are discussed, but we now note that Kass and Wasserman (1995)

suggest that n0 ¼ 1 (a prior equivalent to a single observation) may be a

reasonable choice in many circumstances.

Figure 4.1 displays the resulting relationship between two-sided P-values and

Bayes factors for different choices of m=n0, the ratio of data sample size to prior

sample size under the alternative hypothesis. It is clear that Bayes factors can

produce very different results from the standard measures of evidence, with a

tendency towards preference for the null hypothesis: when m=n0 is large we

note that

BF �
ffiffiffiffiffi
m

n0

r
BFmin: (4:6)

An alternative way of examining the relationship between Bayes factors and

P-values is shown in Figure 4.2, in which the change in Bayes factor with

increasing ratio m=n0 is shown for fixed P-values. For example, evidence that is

labelled as 2P ¼ 0:001 is considered only just ‘strong’ when the sample size is

small relative to the prior precision, but becomes ‘very strong’ for moderate

sample sizes, and then reduces to only ‘substantial’ for overwhelming large

experiments. This non-monotonic relationship to sample size appears to

match well the intuitive desire for measures of evidence brought out in

Example 4.2.

As we have noted in Section 4.4.2, the importance of sample size and

plausibility of benefits in interpreting P-values has often been stressed even

within the non-Bayesian literature: for example, the ISIS-4 investigators state

that ‘when moderate benefits or negligibly small benefits are both much more

plausible than extreme benefits, then a 2P ¼ 0:001 effect in a large trial or

overview would provide much stronger evidence of benefit than the same

significance level in a small trial, a small overview, or a small subgroup analysis’

(Collins et al., 1995). Examination of Figure 4.2 shows that their insight is again
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Figure 4.1 Bayes factors compared to P-values for composite normal hypotheses,
showing bands corresponding to Jeffreys levels of evidence. The minimum Bayes
factor is the Bayes factor against the maximum likelihood estimate for the parameter
under H1.

matched by the behaviour of the Bayes factor: smaller benefits being more

plausible correspond to n0 being relatively large, and hence m=n0 lies in the

‘dip’ of Figure 4.2 in which stronger evidence is shown compared to smaller

sample sizes. However, Figure 4.2 suggests a conclusion that is not mentioned

by Collins et al. (1995) but seems quite appropriate: if the ‘large trial or

overview’ becomes extremely large but still only significant at 2P ¼ 0:001,
then the evidence for benefit will start to decline again.

For composite hypotheses it appears that neither of the views contrasted in

Section 4.4.2 holds: there is no simple monotonic relationship between Bayes

factors and P-values, and it is perhaps not surprising that so much apparent

confusion has arisen.

Bayes factors can be obtained in the presence of nuisance parameters,

but this makes the dependence on the prior distribution of even more concern.

This is an area of substantial research and discussion (Kass and Raftery,

1995).
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Figure 4.2 Bayes factors for composite normal hypotheses for fixed P-values and
different m=n0 ratios, i.e. ratio of observed to prior sample size, with areas delineated by
Jeffreys’ levels of evidence.

4.4.4 Bayes factors in preference studies

Consider the preference studies used in Examples 4.1 and 4.2, in which the

underlying proportion of individuals preferring option A to B is assumed to be �.
Then the number of preferences r for option A out of m independent trials has a

binomial distribution (Section 2.6.1)

p(rj�,m) ¼ m

r

� �
�r(1� �)m�r:

The maximum likelihood estimator is �̂� ¼ r=m, and so the minimum Bayes

factor for the null hypothesis H0: � ¼ 0:5 is

BFmin ¼ p(rj� ¼ 0:5)

p(rj� ¼ �̂�)
¼ 1

2m

r

m

� �r
1� r

m

� �m�r

:
.
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Assuming p(�jH1) is a uniform prior (as suggested by Jeffreys) gives the predict-

ive distributions

p(rjm,H0) ¼ m

r

� �
1

2m
, (4:7)

p(rjm,H1Þ ¼ 1

mþ 1
: (4:8)

Equation (4.7) is simply the Binomial probability when � ¼ 0:5, and (4.8)

shows r has a uniform distribution over all its possible values 0, 1, 2, . . . ,m,

and is a special case of the beta-binomial distribution (Section 3.13.2) with

a ¼ 1, b ¼ 1. Hence the exact Bayes factor is

BF ¼ m

r

� �
mþ 1

2m
: (4:9)

For both the likelihood and Bayesian approaches we can use approximations

for large samples by calculating the P-value, obtaining a corresponding z-

statistic, and substituting in (4.4) and (4.5). For the Bayesian approximation

we do, however, need to specify a normal distribution for p(�jH1) instead of a

uniform distribution, and the problem lies in choosing the normal variance. In

‘interesting’ situations the Bayes factor is driven by the ordinate of the p(�jH1) at
the null hypothesis, and so we choose a normal distribution that has the same

ordinate as a uniform distribution, namely 1. Were �jH1 � N[0:5,�2=n0], then
the ordinate at � ¼ 0:5 would be

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n0=(2��2)

p
. �2 is the variance of a single

obervation under H0, and so �2 ¼ �(1� �) ¼ 1
4
and equating the resulting

ordinate
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2n0=�

p
to 1 gives n0 ¼ �=2 ¼ 1:57, not far from the value of

n0 ¼ 1 suggested by Kass and Wasserman (1995). Thus, for a preference

study with a standardised test statistic of zm, our approximate Bayes factors are

BFmin � exp (� z2m=2), (4:10)

BF �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ m

1:57

r
exp

�z2m
2(1þ 1:57=m)

� �
: (4:11)

The quality of these approximations is explored in Example 4.3.

We again emphasise that the Bayes factors, whether likelihood or Bayesian,

are unaffected by whether the designs were sequential or fixed sample size.

Example 4.3 Preference (continued): Bayes factors in preference
studies

Table 4.4 shows the quality of the approximate Bayes factors for the prefer-
ence data, using the exact Bayes factors in (4.9), and approximations (4.10)
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and (4.11). The approximations for the Bayes factors appear reasonable,
particularly for the minimum Bayes factor. For Example 4.1, both Bayes
factors express minimal evidence against the null hypothesis, as would be
expected from Figure 4.1. For the data in Example 4.2, the increasing
sample size leaves the minimum Bayes factor constant at ‘substantial’
evidence against H0, whereas the full Bayes factor changes from favouring
H1 to favouring H0, and then steadily increases its support for H0. This
behaviour reflects the pattern shown in Figure 4.2 for increasing sample
size and fixed P-value, following approximately the trajectory of 2P ¼ 0:05.

Table 4.4 Bayes factors for preference studies when m individuals asked whether they prefer A or B.
The first row is from Example 4.1 and the other four rows from Example 4.2. zm is a standardised test
statistic that would give rise to the observed one-sided P-value. The approximate Bayes factor assumes
n0 ¼ 1:57.

m r
prefer A

ŷy One-sided
P-value

zm Minimum Bayes factor Bayes factor

Exact Approx Exact Approx

6 5 0.83 0.063 1.53 0.23 0.31 0.65 0.86
20 15 0.75 0.02 2.05 0.07 0.12 0.31 0.53

200 115 0.575 0.02 2.05 0.10 0.12 1.20 1.41
2 000 1046 0.523 0.02 2.05 0.12 0.12 4.30 4.37

2 000 000 1 001445 0.500 722 5 0.02 2.05 0.12 139.8 138.0

Rather than formulating these problems as hypothesis tests, it may be much

more appropriate to assess a reasonable prior for � and then report

p(� > 0:5jr,m) – the posterior probability that a majority of the population

prefer A to B. Of course, such a measure suffers from exactly the same criticism

of the P-values in Example 4.2: the posterior probability may be high even

though the ‘majority’ that prefers A is negligible. In this case it may be more

appropriate to assess an ‘important majority’ �S > 0:5, and consider the

p(� > �Sjr,m). See Section 6.3 for applications of these ideas in clinical trials.

4.4.5 Lindley’s paradox

Close examination of the top right-hand corner of Figure 4.1 reveals what might

appear as odd behaviour: when the ratio m=n0 is high, and the P-value is just

marginally significant against H0, the Bayes factor can be greater than 1 and

hence support H0. This somewhat surprising result is known as Lindley’s para-

dox, after Lindley (1957). An informal explanation is as follows. First, for large

sample sizes, a P-value can be small even if the data support values of � very

close to the null hypothesis, as shown for the large sample sizes in Example 4.2.

Second, such data may indeed be unlikely under the null hypothesis, but are

even more unlikely under an alternative that spreads the prior probability thinly

over a wide range of potential values. Hence the Bayes factor can support H0
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when a significance test would reject it, essentially as the lesser of two evils. An

example of this behaviour is shown in Example 4.4.

Example 4.4 GREAT (continued): ABayes factorapproach

From the ‘Evidence from study’ component of Example 3.6 we note that
the standardised test statistic is z ¼ 2:03: just significant evidence against
H0 at the traditional two-sided P < 0:05. The ‘minimum’ Bayes factor
against H0 is BFmin ¼ exp (� z2=2) ¼ 0:13 ¼ 1=7:8, corresponding to ‘sub-
stantial’ evidence against H0. Thus the classical and Bayesian approaches
align to a reasonable extent if we allow the alternative hypothesis to be
dictated by the data.

However, a fully Bayesian approach might place a prior on y ¼ log (OR)
under H1, centred on 0 and with a large variance. For example, suppose we
used a prior with n0 ¼ 0:5 which is essentially uniform over the log(OR)
scale.

Since m ¼ 30:5 we have a ratio of likelihood to prior precision of
m=n0 ¼ 61. From (4.6) the Bayes factor is approximately

ffiffiffiffiffiffiffiffiffiffiffiffi
m=n0

p
BFmin ¼

1:001 (the exact value from substitution into (4.5) is 1.04), i.e. slight
evidence in favour of H0! This is an example of Lindley’s paradox.

4.5 KEY POINTS

1. There is room for dispute over some of the fundamental principles of con-

ventional statistical analysis.

2. The likelihood principle states that only the observed data should affect

inferences: classical sequential analysis disobeys this.

3. The pragmatic interpretation of P-values strongly depends on sample size.

4. Minimum Bayes factors obey the likelihood principle, but have similar

qualitative behaviour to P-values.

5. Proper Bayes factors can, for large sample sizes relative to the prior precision,

support thenullhypothesiswhenaclassical analysiswould lead to its rejection.

EXERCISES

4.1. Confirm the form of the Bayes factor given by (4.5).

4.2. Calculate the minimum Bayes factor corresponding to the three levels of

significance considered in Figure 4.2. In what circumstances might the
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minimum Bayes factor exaggerate the evidence against the null hypoth-

esis, compared to a full Bayesian approach?

4.3. In the preference studies described in Section 4.4.4, suppose we observed

data that were just ‘significant’, with a two-sided P-value of 0.05. Assume

n0 ¼ 1:57.
(a) What sample size (approximately) would yield a Bayes factor of 1, i.e.

indifference between the null and alternative hypotheses?

(b) What observed data would have given 2P ¼ 0:05 with this sample

size?

4.4. For the PROSPER trial in Exercise 2.8 calculate the one-sided P-value, the

minimum Bayes factor, and the Bayes factor corresponding to a sceptical

prior distribution with an effective number of events n0 ¼ 1.

4.5. In Example 4.4, what would be the Bayes factor were we to adopt Kass and

Wasserman’s suggestion of n0 ¼ 1?
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5

Prior Distributions

5.1 INTRODUCTION

There is no denying that quantifiable prior beliefs exist in medicine. For example,

in the context of clinical trials, Peto and Baigent (1998) state that ‘it is generally

unrealistic to hope for large treatment effects’ and that ‘it might be reasonable to

hope that a new treatment for acute stroke or acute myocardial infarction could

reduce recurrent stroke or death rates in hospital from 10% to 9% or 8%, but not

to hope that it could halve in-hospital mortality’. However, turning informally

expressed opinions into a mathematical prior distribution is perhaps the most

difficult aspect of Bayesian analysis. Five broad approaches are outlined below:

elicitation of subjective opinion; summarising past evidence; default priors;

‘robust’ priors; and estimation of priors using hierarchical models. The discussion

mainly focuses on priors for the primary treatment effects of interest, althoughwe

also consider the difficult issue of specifying a prior for the variance component in

a hierarchical model. Finally, we consider the criticism of prior assessments, from

both an empirical and a methodological perspective.

We should repeat the statements made in Section 3.9 concerning possible

misconceptions about prior distributions: they are not necessarily prespecified,

unique, known or important. Since there is no ‘correct’ prior, Bayesian analysis

can be seen as a means of transforming prior into posterior opinions, rather than

producing the posterior distribution. It is therefore vital to take into account the

context and audience for the assessment (Section 3.1), and analysis of sensitivity

to alternative assumptions should be considered essential. Kass and Greenhouse

(1989) introduced the term ‘community of priors’ to describe the range of

viewpoints that should be considered when interpreting evidence, and the sug-

gestions in this chapter represent possible members of that community.

It is also important to keep in mind that, in certain circumstances, it may be

quite reasonable for a prior to be elicited and used solely for design purposes,

and excluded when publicly reporting a study. However, when wishing to

convince an audience of the benefits of an intervention, it may be important
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to elicit their priors and possibly their utilities (Kadane and Wolfson, 1996).

From a mathematical and computational perspective, we have seen in Section

3.6.2 that it can be convenient if the prior distribution is a member of a family of

distributions that is conjugate to the form of the likelihood, in the sense that they

‘fit together’ to produce a posterior distribution that is in the same family as the

prior distribution. We also saw in Section 2.4 that in many circumstances

likelihoods for treatment effects can be assumed to have an approximately

normal shape, and thus in these circumstances it will be convenient to use a

normal prior (the conjugate family), provided it approximately summarises the

appropriate external evidence. Modern computing power is, however, reducing

the need for conjugacy, and in this chapter we shall largely concentrate on the

source and use of the prior rather than its precise mathematical form.

5.2 ELICITATION OF OPINION: A BRIEF REVIEW

5.2.1 Background to elicitation

A true subjectivist Bayesian approach requires only a prior distribution that

expresses the personal opinions of an individual but, if the health-care interven-

tion is to be generally accepted by a wider community, it would appear to be

essential that the prior distributions have some evidential or at least consensus

support. In some circumstances there may, however, be little ‘objective’ evi-

dence available and summaries of expert opinion may be indispensable. We

shall use the generic term ‘clinical prior’ for such expert assessments.

There is an extensive literature concerning the elicitation of subjective prob-

ability distributions from experts, with some good early references on statistical

(Savage, 1971) and psychological aspects (Tversky, 1974), as well as on

methods for pooling distributions obtained from multiple experts (Genest and

Zidek, 1986). The fact that people are generally not good probability assessors is

well known, and the variety of biases they suffer are summarised by Kadane and

Wolfson (1997):

1. Availability. Easily recalled events are given higher probability, and vice versa.

2. Adjustment and anchoring. Initial assessments tend to exert an inertia, so that

further elicited quantities tend to be insufficiently adjusted. For example, if a

‘best guess’ is elicited first, then subsequent judgements about an interval

may be too close to the first assessment.

3. Overconfidence. Distributions are too tight.

4. Conjunction fallacy. A higher probability can be given to an event which is a

subset of an event with a lower probability.

5. Hindsight bias. If the prior is assessed after seeing the data, the expert may be

biased.
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Nevertheless it has been shown that training can improve experts’ ability to

provide judgements that are ‘well calibrated’, in the sense that if a series of

events are given a probability of, say, 0.6, then around 60% of these events will

occur: see, for example, Murphy and Winkler (1977) with regard to weather

forecasting.

Chaloner (1996) provides a thorough review of methods for prior elicitation

in clinical trials, including interviews with clinicians, postal questionnaires, and

the use of an interactive computer program to draw a prior distribution. She

concludes that fairly simple methods are adequate, using interactive feedback

with a scripted interview, providing experts with a systematic literature review,

basing elicitation on 2.5th and 97.5th percentiles, and using as many experts as

possible. Both Kadane and Wolfson (1996) and Berry and Stangl (1996a)

emphasise the potential benefits of two approaches: eliciting predictive distribu-

tions of future events from which an implicit prior distribution can be derived,

and asking additional questions as a consistency check.

5.2.2 Elicitation techniques

Methods used in practice can be divided into four main categories of increasing

formality, which are listed here with some experience of their use:

1. Informal discussion. Prominent individuals can be informally interviewed for

their opinion, as illustrated in Example 3.6. In a trial of paclitaxel in meta-

static breast cancer, the study’s principal clinical investigator expected the

overall success rate to be 25% and had 50% belief that the true success rate

lay between 15% and 35% (Rosner and Berry, 1995). Example 7.1 features

priors obtained from two doctors for the relative risk of venous thrombosis

associated with the use of oral contraceptives (Lilford and Braunholtz,

1996). There are clear difficulties in using such individual opinions in any

formal context.

2. Structured interviewing and formal pooling of opinion. Freedman and Spiegel-

halter (1983) describe an interviewing technique in which a set of experts

were individually interviewed and hand-drawn plots of their prior distribu-

tions elicited, while deliberate efforts were made to prevent the opinions

being overconfident (too ‘tight’). The distributions were converted to histo-

grams and averaged to produce a composite prior. This technique was also

used for trials of thiotepa in superficial bladder cancer (Spiegelhalter and

Freedman 1986) and osteosarcoma (Spiegelhalter et al., 1993). Gore (1987)

introduced the concept of ‘trial roulette’, in which 20 gaming chips, each

representing 5% belief, could be distributed amongst the bins of a histogram:

in a trial of artificial surfactant in premature babies, 12 collaborators were

interviewed using this technique to obtain their opinion on the possible

benefits of the treatment (Ten Centre Study Group, 1987). Using an elec-
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tronic tool so that individuals in a group could respond without attribution,

Lilford (1994) presented collaborators in a trial with a series of imaginary

patients in order to elicit their opinions on the benefit of early delivery. The

appropriate means of pooling such opinions is discussed in Section 5.2.3.

3. Structured questionnaires. The ‘trial roulette’ scheme described above was

administered by post by Hughes (1991) for a trial in treatment of oesopha-

geal varices and by Abrams et al. (1994) for a trial of neutron therapy.

Parmar et al. (1994) elicited prior distributions for the effect of a new

radiotherapy regime (CHART), in which the possible treatment effect was

discretised into 5% bands and the form was sent by post to each of nine

clinicians. Each provided a distribution over these bands and an arithmetic

mean was then taken: see Example 5.1 for details. Tan et al. (2003) adapted

this questionnaire, while Fayers et al. (2000) provide a similar questionnaire

and document the variability between the elicited responses.

Chaloner and Rhame (2001) provide a copy of the questionnaire they

used to elicit opinions from 58 practising HIV clinicians concerning the

baseline event rates and the potential benefit of two prophylactic treatments.

This asks the minimum information comprising a point estimate and an

estimated 95% interval. They used both post and telephone to carry out the

elicitations.

4. Computer-based elicitation. Chaloner et al. (1993) provide a detailed case study

of the use of a rather complex computer program that interactively elicited

distributions from five clinicians for a trial of prophylactic therapy in AIDS.

Kadane (1996) reports the results of an hour-long telephone interview with

each of five clinicians, using software to estimate prior parameters from the

results of a series of questions eliciting predictive probability distributions for

responses of various patient types. When a second round of elicitation

became necessary, the proposal was met by ‘little enthusiasm’. Kadane and

Wolfson (1996) provide an edited transcript of a computerised elicitation

session in a non-trial context.

We agree with Chaloner (1996) that extremely detailed elicitation methods

have not yet been shown to have any advantage over simple methods. How-

ever, it is feasible that complex policy problems, which necessarily may require

substantial subjective input, would justify a more sophisticated approach. In

any case, Chaloner and Rhame (2001) ‘recommend documenting prior beliefs

irrespective of whether a Bayesian or frequentist approach is taken to data

analysis and formal statistical monitoring’.

5.2.3 Elicitation from multiple experts

Faced with varying prior distributions elicited from multiple experts, we could

adopt one of a number of alternative strategies.
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. Elicit a consensus. If the aim is to produce a single assessment expressing the

belief of the group as a whole, then a range of techniques exist for bringing

diverse opinions into consensus, including both informal and more formal

Delphi-like methods. Care must of course be taken to avoid influence of

dominant individuals.

. Calculate a ‘pooled’ prior. The choice of a method for pooling K multiple

opinions is not clear cut, and Genest and Zidek (1986) provide a detailed

annotated review of the issues. Arithmetic pooling simply takes the average of

the height of the prior distributions for each parameter value �, so that

p(�) ¼�kpk(�)=K. This has the property that pooled probabilities for any

event, such as tail areas, are also averages of the individually assessed tail

areas. An alternative is logarithmic pooling, which takes the average of the

logarithms of the density, equivalent to using a geometric mean of the original

densities, so p(�) / [
Q

k pk(�)]
1=K . This has the apparently attractive property

that the same pooled posterior distribution is achieved, whether the pooling is

done before or after the common likelihood is taken into account. With both

proposals there is an opportunity to apply unequal weights to experts, de-

pendent on their experience or past predictive ability. A further development

is that of the supra-Bayesian, which takes the expressed opinions as data to

manipulate using a statistical model.

. Retain the individual priors. The diversity of opinion might be just as important

as the ‘average’ opinion, in that we may be interested in whether current

evidence is sufficient to convince a full range of observers as to the benefits of

a treatment, and hence to bring them into consensus. The extremes of opinion

can be thought of as marking out the boundaries of the ‘community of priors’

mentioned in Section 5.1.

Our preference is to take a simple supra-Bayesian view, and treat the expressed

heights of the prior distributions as data. Then, if we wish to assess the view of

an ‘average, well-informed participating clinician’, it seems reasonable to simply

use arithmetic pooling as in Example 5.1. Of course, we should not necessarily

assume we have a random sample of clinicians, and so our estimate may be

inevitably ‘biased’.

Example 5.1 CHART: Eliciting subjective judgementsbefore a trial

References: Parmar et al. (1994, 2001) and Spiegelhalter et al. (1994).

Intervention: In 1986 a new radiotherapy technique known as continuous
hyperfractionated accelerated radio therapy (CHART) was introduced.
The idea behind it was to give radiotherapy continuously (no weekend
breaks), in many small fractions (three a day) and accelerated (the
course completed in 12 days). There are clearly considerable logistical
problems in efficiently delivering CHART.
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Aim of studies: Promising non-randomised and pilot studies led the UK
Medical Research Council to instigate two large randomised trials to
compare CHART with conventional radiotherapy in both non-small-cell
lung and head-and-neck cancer, and in particular to assess whether
CHART provides a clinically important difference in survival that compen-
sates for any additional toxicity and problems of delivering the treatment.

Studydesign: The trials began in 1990, randomised in the proportion 60:40
in favour of CHART, with planned annual meetings of the data monitoring
committee (DMC) to review efficacy and toxicity data. No formal stop-
ping procedure was specified in the protocol.

Outcomemeasure: Full data were to become available on survival (lung)
or disease-free survival (head-and-neck), with results presented in terms
of estimates of the hazard ratio, h, defined as the ratio of the hazard
under CHART to the hazard under standard treatment. Hence, hazard
ratios less than one indicate superiority of CHART.

Planned sample sizes: Lung: 600 patients were to be entered, with 470
expected deaths, with 90%power to detect at the 5% level a 10% improve-
ment (15%to25%survival).Using themethodsdescribed inSection2.4.2,
this can be seen to be equivalent to an alternative hypothesis of
hA ¼ log (0:25)= log (0:15) ¼ 0:73. Head-and-neck: 500 patients were to
beentered,with220expected recurrences,with90%power todetectat the
5% level a 15% improvement (45% to 60% disease-free survival), equiva-
lent to an alternative hypothesis of hA ¼ log (0:60)= log (0:45) ¼ 0:64.

Statistical model: Proportional hazards model, providing an approximate
normal likelihood (Section 2.4.2) for the log(hazard ratio), d ¼ log (h),

ym � N y,
s2

m

� �
,

where ym is the estimated log(hazard ratio), s ¼ 2 and m is the ‘equiva-
lent number of events’ in a trial balanced in recruitment and follow-up.

Prospectiveanalysis?: Yes, the prior elicitations were conducted before the
start of the trials, and the Bayesian results presented to the DMC at each
of their meetings.

Prior distribution: Although the participating clinicians were enthusiastic
about CHART, there was considerable scepticism expressed by oncolo-
gists who declined to participate in the trial. Eleven opinions were
elicited for the lung cancer trial and nine for the head-and-neck. The
questionnaire used is described in detail in Parmar et al. (1994) and
summarised in Figure 5.1.
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Lung Study

Your Entry

Head & Neck

Study

Your Entry

Hypothetical

example 0 20 20 20 0 0 20 20 0 100

100

100

CHART worse than
standard by %

CHART worse than
standard by %

10 −15 5 −10 0 − 5 0 − 5 5 − 10 10 − 15 15 − 20 20 − 25 25+ TOTAL

Figure 5.1 Part of the questionnaire used to elicit clinical opinions before the CHART
trials. Participants were invited to distribute 100 points between the bins, indicating their
‘weight of belief’ in the true benefit from CHART. They were reminded to ignore the role
of sampling variability – the hypothetical example was deliberately chosen to be a
‘rather eccentric’ radiotherapist so as not to provide an example that might inappropri-
ately ‘anchor’ their opinions.
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Figure 5.2 Prior opinions for lung cancer trial elicited from 11 clinical participants in
the trial. The arithmetic average is used as the ‘pooled’ distribution.

Figure 5.2 shows the eleven lung cancer opinions as histograms. Note
that subjects 7 and 11 have very different opinions and could be taken
as extremes for a ‘community’ of priors. Here we use the arithmetic
average of the distributions as a summary, since we wish to represent
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an ‘average’ clinician. The prior distribution expressed a median antici-
pated2-year survival benefit of 10%,anda10%chance thatCHARTwould
offer no survival benefit at all. The histogramwas then transformed to a log
(hazard ratio) scale assuming a 15% baseline survival: for example, the
‘bin’ of the histogram with range 5% to 10% was transformed to one with
upper limit log [ log (0:20)= log (0:15)] ¼ �0:16 and lower limit log [ log
(0:25) = log (0:15)] ¼ �0:31. This subjective prior distribution had a mean
of �0:28 and standard deviation of 0.232 (corresponding to an estimated
hazard ratio of 0.76 with 95% interval from 0.48 to 1.19). A normal
N[m, s2=n0] distribution with these characteristics was fitted, with m ¼
�0:28, s ¼ 2, s=

ffiffiffiffiffi
n0

p ¼ 0:23,which impliesn0 ¼ 74:3.FromSection2.4.2,
this prior could alsobe thought of asaposterior havingobserveda log-rank
statistic (L ¼ O� E) such that 4L=n0 ¼ �0:28, and so L ¼ �5:5. The
expected E under the null hypothesis is n0=2 ¼ 37:2 and so the observed
O under CHART is 37:2� 5:5 ¼ 31:7. Thus the prior can be interpreted as
being approximately equivalent to a balanced ‘imaginary’ trial in which 74
deaths had occurred (32 under CHART, 42 under standard).

For the head-and-neck trial, the fitted prior mean log(hazard ratio) is
m ¼ �0:33 with standard deviation 0.26, equivalent to n0 ¼ 61:0.

The clinical prior distributions are displayed in Figure 5.3, which shows
the average transformed onto a log(hazard-ratio) scale for both lung and

Lung trial

 favours CHART <-   Hazard ratio   -> favours control 

0.4 0.5 0.6 0.8 1 1.2 1.5

Head-and-neck trial

 favours CHART <-   Hazard ratio   -> favours control 

0.4 0.5 0.6 0.8 1 1.2 1.5

Figure 5.3 Average opinion for lung cancer and head-and-neck CHART trials with
normal distributions fitted with matching mean and variance.
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head-and-neck trials. The fit of the normal distribution is quite reason-
able, and the similarity between the two sets of opinions is clear, each
supporting around a 25% reduction in hazard, but associated with con-
siderable uncertainty.

5.3 CRITIQUE OF PRIOR ELICITATION

There have been many criticisms of the process of eliciting subjective prior

distributions in the context of health-care evaluation, and claims include the

following:

1. Subjects are biased in their opinions. Gilbert et al. (1977) state that ‘innovations

brought to the stage of randomised trials are usually expected by the innov-

ators to be sure winners’, while the very fact that clinicians are participating

in a trial is likely to suggest they expect the new therapy to be of benefit

(Hughes, 1991) – we shall see that this appears to be borne out in the results

to be shown in Table 5.3. Altman (1994) warns that investigators may even

begin to exaggerate their prior beliefs in order to make their prospective trial

appear more attractive (although we could claim this already happens both

in public and industry-funded studies). Fisher (1996) believes the effort put

into elicitation is misplaced, since the measured beliefs are likely to be based

more on emotion than on scientific evidence.

2. The choice of subject biases results. The biases discussed in Section 5.2 mean

that the choice of subject for elicitation is likely to influence the results. If we

wish to know the distribution of opinions among well-informed clinicians,

then trial investigators are not a random sample and may give biased

conclusions. Fayers et al. (2000) provide a detailed case study in which

there is clear over-optimism of investigators (see Example 6.4). Lewis

(1994) says statisticians reviewing the literature may well provide much

better prior distributions than clinicians, while Chalmers (1997) suggests

even lay people are biased towards believing new therapies will be advances,

and therefore we need empirical evidence on which to base the prior prob-

ability of superiority. Pocock (1994) states that the ‘hardened sceptical

trialist, the hopeful clinician and the optimistic pharmaceutical company

will inevitably have grossly different priors’. An extreme view is that uncer-

tainty as to whose prior to use militates against any use of Bayesian methods

(Fisher, 1996).

3. Timing of elicitation has an influence. Senn (1997a) objects to any retrospec-

tive elicitation of priors as ‘present remembrance of priors past is not the

same as a true prior’, while Hughes (1991) points out that opinions are

likely to be biased by what evidence has recently been presented and by

whom.
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These concerns have led to a call for the evidential basis for priors to be made

explicit, and for effort to go into identifying reasons for disagreement and

attempting to resolve these (Fisher, 1996). Even advocates of Bayesian methods

have suggested that the biases in clinical priors suggest more attention should

be paid to empirical evidence from past trials, possibly represented as priors

expressing a degree of scepticism concerning large effects: Fayers (1994) asks,

given the long experience of negative trials, ‘should we not be using priors

strongly centred around 0, irrespective of initial opinions, beliefs and hopes of

clinicians?’. Our view is similar: elicited priors from investigators show predict-

able positive bias and should be supplemented, if not replaced, by priors

that are either based on evidence or reflect archetypal views of ‘scepticism’ or

‘enthusiasm’. Taking context into account (Section 3.1) means that it is quite

reasonable to allow for differing perspectives, and in many cases substantial

effort in careful elicitation from representative clinicians may not be worth-

while.

5.4 SUMMARY OF EXTERNAL EVIDENCE*

If the results of previous similar studies are available, it is clear they may be used

as the basis for a prior distribution. Suppose, for example, we have historical

data y1, . . . , yH each assumed to have a normal likelihood

yh � N[�h,�
2
h ],

where each of these estimates could itself be based on a pooled set of studies.

Numerous options are available for specifying the relationship between

�h, h ¼ 1, . . . ,H, and �, the parameter of interest, and we shall expand on the

list given in Section 3.16. Each option is represented graphically in Figure 5.4

using a similar convention to that in Section 3.19.3: these approaches for

handling historical data are also considered when considering historical con-

trols in randomised trials (Section 6.9), modelling the potential biases in obser-

vational studies (Section 7.3), and in pooling data from many sources in an

evidence synthesis (Section 8.2).

(a) Irrelevance. Each �h is of no relevance to �, and the prior will need to be

formulated without reference to previous studies.

(b) Exchangeable. We might be willing to assume �h, h ¼ 1, . . . ,H, and � are

exchangeable so that, for example,

�h, � � N[�, t2]:

This leads to a direct use of a meta-analysis of many previous studies.
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Figure 5.4 Different assumptions relating parameters underlying historical data to the
parameter of current interest: single arrows represent a distribution, double arrows
represent logical functions, and wavy arrows represent discounting.
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It is important to note that the appropriate prior distribution for � is the

predictive distribution of the effect � in a new study, and not the posterior

distribution of the ‘average’ effect �. In particular, assuming t is known and

adopting a uniform prior for � before the historical studies, we have from

Section 3.18.2 that the posterior distribution for � given the historical

studies is

�j y1, . . . , yH � N
�hyhwh

�hwh

,
1

�hwh

� �
,

where wh ¼ 1=(�2
h þ t2). Hence the prior distribution for � is

�j y1, . . . , yH � N
�hyhwh

�hwh

,
1

�hwh

þ t2
� �

:

If there is just a single historical study h, then

�j yh � N[yh, 2t2 þ �2
h ]:

In general twill be unknown and need to be estimated, although with few

historical studies it will need to be assumed known or be given an informa-

tive prior distribution.

Exchangeability is quite a strong assumption, but if this is reasonable then

it is possible to use databases to provide prior distributions (Gilbert et al.,

1977). Lau et al. (1995) point out that cumulative meta-analysis can be

given a Bayesian interpretation in which the prior for each trial is obtained

from the meta-analysis of preceding studies, while DerSimonian (1996)

derives priors for a trial of the effectiveness of calcium supplementation in

the prevention of pre-eclampsia in pregnant women by a meta-analysis of

previous trials using both random-effects and fixed-effects models.

(c) Potential biases. We could assume that �h, h ¼ 1, . . . ,H, are functions of �. A
common choice is the existence of a bias 
h so that �h ¼ �þ 
h. Possibilities
then include making the following assumptions:

1. 
h is known.

2. 
h has a known distribution with mean 0, say 
h � N(0,�2

h), and so

�h � N(�,�2

h). This is now almost identical to the exchangeability assump-

tion, except that the previous study parameters are centred around the

parameter of interest � and not the population mean � and the potential

site of the bias may be study-specific. Adapting the results for the ex-

changeability case reveals that the posterior distribution for � given the

historical studies is

�jy1, . . . , yH � N
�hyhw

0
h

�hw
0
h

,
1

�hw
0
h

� �
,
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where w
0
h ¼ 1=(�2

h þ �2

h), which follows by noting the predictive distri-

bution yh � N[�,�2
h þ �2


h]. If there is just a single historical study h, then

�jyh � N[yh,�
2
h þ �2


h];

again, with only one historical study �2

 will need to be assumed known

or have a strong prior distribution.

3. If we suspect systematic bias in one direction, we might take 
h to have a

known distribution with non-zero mean, say 
h � N[�
, �
2

h]: We then

obtain a prior distribution, for a single historical study,

� � N[yh þ �
, �
2
h þ �2


h]:

(d) Equal but discounted. Previous studies may not be directly related to the one

in question, and we may wish to discount their influence: for example, in

the context of control groups, Kass and Greenhouse (1989) state that ‘we

wish to use this information, but we do not wish to use it as if the historical

controls were simply a previous sample from the same population as the

experimental controls’. Ibrahim and Chen (2000) suggest the ‘power’ prior,

in which we assume �h ¼ �, but discount the historical evidence by taking

its likelihood p(yhj�h) to a power �. For normal historical likelihoods this

corresponds to adopting a prior distribution for �, given the historical

studies, of

�jy1, . . . , yH � N
�hyhw

00
h

�hw
00
h

,
1

��hw
00
h

� �

where w00
h ¼ 1=�2

h ; � varies between 0 (totally discount past evidence) to

1 (include past evidence in its totality and at ‘face value’). If there is just a

single historical study h, then

�j yh � N[yh, �
2
h=�]:

For example, Greenhouse and Wasserman (1995) downweight a previous

trial with 176 subjects to be equivalent to only 10 subjects, and Tan et al.

(2002) take � ¼ 0:25 in basing a prior on a previous phase III study; see

Example 5.2 for a detailed illustration of using such a ‘power’ prior. We

note, however, that Eddy et al. (1992) are very strong in their criticism of

this method, claiming it has no operational interpretation and hence no

means of assessing a suitable value for �.
(e) Functional dependence. It is possible that the parameter of interest may be

logically expressed as a function of parameters from historical studies.

For example, suppose �1 were the treatment effect in men derived from a
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male-only study, and �2 were the treatment effect in women derived from a

female-only study. Then the expected treatment effect in a study to be

carried out in a population with proportion p males would be

� ¼ p�1 þ (1� p)�2,

and a prior for � could be derived from evidence on �1 and �2.
(f) Equal. This assumes the past studies have all been measuring identical

parameters: if � is a property of a single patient group rather than a

treatment effect, this assumption is essentially equivalent to direct pooling

of the past data with those in the current study, and hence is based on the

very strong assumption of exchangeability of individual patients. In our

normal model we would assume �h ¼ � and individuals are exchangeable,

and so completely pool the data to obtain a prior

�jy1, . . . , yH � N
�hyhw

00
h

�hw
00
h

,
1

�hw
00
h

� �

where w00
h ¼ 1=�2

h . If there is just a single historical study h, then

�jyh � N[yh,�
2
h ]:

Such a strong assumption may be more acceptable if a prior is to be used in

the design and not the analysis, and Brown et al. (1987) provide such an

example using data from a pilot trial.

We note that, for the Normal model, exchangeability (b), bias (c) and dis-

counting (d) could under certain circumstances all lead to the same prior

distribution for �, provided there is only one historical study. If there are

multiple studies then these three approaches will generally all lead to different

priors for �:
Various combinations of these techniques are possible. For example, Berry

and Stangl (1996a) assume a fixed probability p that each historical patient is

exchangeable with those in the current study, i.e. either option (f) (complete

pooling) with probability p, or option (a) (complete irrelevance) with probability

1� p. Example 9.3 illustrates the combination of an exchangeable and a bias

model: a past parameter �h is assumed to have distribution �h � N[�þ 
h,t2],
where the additional bias term has distribution 
h � N(0,�2


h). Hence the overall
likelihood contribution from the past study is �h � N[�, t2 þ �2


h]; the variance

can also be expressed as t2=qh, where qh ¼ t2=(t2 þ �2

h) can be considered as a

‘quality weight’ of the past study. Values of qh near 1 mean little bias, near 0

mean substantial bias. This model formally justifies the use of ‘quality-weights’

in random-effects meta-analysis.
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Example 5.2 GUSTO:Usingpreviousresults asabasis forprioropinion

References: Brophy and Joseph (1995), Fryback etal. (2001b), Harrell and
Shih (2001), Brophy and Joseph (2000) and Ibrahim and Chen (2000).

Intervention: Streptokinase (SK) compared to tissue plasminogen activator
(tPA) to dissolve clots in occluded coronary arteries following a myocar-
dial infarction. tPA is considerably more expensive than SK.

Aim of study: Two previous trials of SK versus tPA (GISSI-2 and ISIS-3)
showed minimal difference, although the stroke rate was consistently
higher under tPA.

Studydesign: Parallel-group unblinded RCT, with two SK arms with differ-
ent administrations of heparin (later pooled), tPA arm and an arm with
both SK and tPA (ignored in this analysis).

Outcomemeasure: Odds ratio (OR) of stroke and/or death, with OR < 1
favouring tPA.

Planned sample size: The sample size of the GUSTO trial was calculated
on the basis of having 80% power to detect a 15% relative reduction in
the risk of death or a 1% absolute decrease at the 5% significance level.

Statistical model: A normal likelihood was assumed based on the esti-
mated log(odds ratio) (Section 2.4.1); s has been taken as 2.

Prospective analysis?: No.

Priordistribution: It is natural to base, to some extent, a prior distribution on
the two preceding trials, whose results are shown in Table 5.1, using
data presented by Brophy and Joseph (1995). Taking the previous trials
at full weight, the pooled previous trials give rise to a prior for GUSTO
with mean 0.0002 and standard deviation s=

ffiffiffiffiffiffiffiffiffiffiffi
4604

p ¼ 0:03: a very scep-
tical prior indeed, with a 95% interval for the OR from 0.94 to 1.06.

Table 5.1 Historical and observed data for GUSTO study. The ms are the ‘effective
number of events’ in a balanced trial, obtained from setting the estimated variances
of the log(odds ratios) to s2=m: the ms do not exactly match the actual number of
events, particularly in GUSTO, due to imbalance in allocation. The ‘pooled’ results
are obtained by adding the ms and weighting the log(odds ratios) by their respective
ms: this pooledm can be relabelled n0 if it is used as the basis for a prior distribution for
GUSTO.

Trial SK
events/cases

% tPA
events/cases

% OR log(OR) m
(when � ¼ 2)

GISSI-2 985/10 396 9.5% 1067/10 372 10.3% 1.09 0.09 1847
ISIS-3 1596/13 780 11.6% 1513/13 746 11.0% 0.94 �0.06 2757
Pooled 0.0002 n0 ¼ 4604
GUSTO 1574/20 173 7.8% 714/10 343 6.9% 0.88 �0.13 1825
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However, Brophy and Joseph (2000) emphasise important differences
between the studies: the GUSTO study featured an ‘accelerated’ tPA
protocol, more aggressive use of intravenous heparin, increased revas-
cularisation in the tPA arm, and possible increased tPA benefit in US
patients. This suggests downweighting the prior evidence in some way,
and different authors have subsequently used almost all the approaches
outlined in Section 5.4. We shall focus on simple discounting (method
(d) ), but other methods are mentioned under ‘Comments’. Brophy and
Joseph (1995) ‘discounted’ the previous trials, essentially implementing
the power prior distributions of Ibrahim and Chen (2000), which is
equivalent to adjusting the prior ‘number of events’ from n0 to an0.
They considered a to be 0, 0.1, 0.5 and 1.0, equivalent to taking the
prior ‘number of events’ to be 0, 460.4, 2302 and 4604. Taking a ¼ 0 is
equivalent to treating the previous trials as irrelevant (option (a) ) and
hence selecting a uniform prior on the log(odds ratio), while taking a ¼ 1
is equivalent to assuming the trials are measuring equal parameters
(option (f) ) – note that this is not equivalent to pooling the patients on
each arm, but is equivalent to pooling the estimated treatment effects.

Loss function or demands: The GUSTO trial was designed around a 15%
reduction in mortality, so we might take an odds ratio of 0.85 to reflect a
clinically important difference.

Computation/software: Conjugate normal model.

Evidence from study: This is provided in Table 5.1. The standardised test
statistic based on the data alone is zm ¼ ym

ffiffiffiffi
m

p
=s ¼ �0:13

ffiffiffiffiffiffiffiffiffiffiffi
1825

p
=2

¼ �2:78, providing a two-sided P-value of 0.005.

Bayesian interpretation: Figure 5.5 shows plots of prior, likelihood and
posterior under different assumptions concerning a, superimposed on a
clinically important difference of 0.85. The probability that tPA is inferior to
SK is very low unless the prior trials are considered at almost full weight.
However, it is clear that although GUSTO may show ‘statistical signifi-
cance’ in that the posterior probability that OR < 1 is high, there is not
strong evidence of ‘practical significance’, in that the posterior probability
that OR < 0:85 is moderate even when the prior evidence is totally
ignored.

Sensitivity analysis: Figure 5.6 shows changing conclusions as a ranges
from 0 (ignore historical evidence) to 1 (completely pool with historical
evidence). This clearly shows evidence for benefit unless the past data
are quite strongly weighted, but even slight inclusion of past data serves
to exclude a clinically important difference of 15%.

Comments: We can fit previous approaches to this problem within the
structure outlined in Section 5.4.
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(a) Prior weight = 0%

favours tPA  <-  Odds ratio  -> favours SK
0.6 0.7 0.8 0.9 1 1.1 1.3

0.6 0.7 0.8 0.9 1 1.1 1.3 0.6 0.7 0.8 0.9 1 1.1 1.3

Likelihood
Prior
Posterior

(b) Prior weight = 10%

favours tPA  <-  Odds ratio  -> favours SK
0.6 0.7 0.8 0.9 1 1.1 1.3

(c) Prior weight = 50%

favours tPA  <-  Odds ratio  -> favours SK

(d) Prior weight = 100%

favours tPA  <-  Odds ratio  -> favours SK

Figure 5.5 Posterior estimate of the odds ratio for the GUSTO trial under different
prior assumptions: weighting the previous trial results by a factor (a) 0% (i.e. the
reference prior in which the posterior is proportional to the likelihood), (b) 10%, (c)
50% and (d) 100% (i.e. full pooling with the past data). The shaded area represents
the posterior probability that OR > 1 and hence favours SK, and is very low unless
very high weight is given to the previous trials. However, the chance of an odds ratio
less than 0.85 is only moderate even when using the trial data alone, and drops
severely for even 10% weighting of the past trial data.

(a) Irrelevance. Harrell and Shih (2001) consider that the previous trials are
entirely irrelevant toGUSTOdue to the revised tPA protocol, and so only
consider a ‘reference’ and ‘sceptical’ prior (Section 5.5): the reference
prior is uniform on the log(OR) scale and hence the posterior distribution
is the same shape as the likelihood, while the sceptical prior was centred
on the null hypothesis of OR ¼ 1, and expressed 95%belief that the true
OR lay within the bounds 0.75–1.33, i.e. it is unlikely that there is more
than a 25% relative change between the treatments: this prior is even
more diffuse than that shown in Figure 5.5(b).

(b) Exchangeable. One of the models considered by Brophy and Joseph
(2000) assumes the treatment effects in the three trials are exchange-
able, and places a normal population distribution on the three log(odds
ratios) – they use ‘diffuse’ priors on the parameters of mean and
variance of the normal population. However, both the exchangeability
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Figure 5.6 Posterior estimate of the odds ratio for the GUSTO trial downweighting
previous trial results by varying amounts (a ¼ 0 implies total discounting, whilst
a ¼ 1 implies acceptance of previous evidence at ‘face-value’).

(c) assumption, and the attempt to estimate population parameters from
just three trials (regardless of their size), make this prior formulation
somewhat doubtful.

(c) Potential biases. Acknowledging the possible systematic differences
between the trials, Brophy and Joseph (2000) also consider two possible
sources of bias: differences in revascularisation rates in GUSTO, and
differences in tPA administration between GUSTO and the previous
trials. These are applied to the hierarchical model described under (b).

(d) Equal but discounted. In a different application of the discounting ap-
proach, Fryback et al. (2001b) suggests the SK arm in GUSTO is
reasonably compatible with the SK arm in previous trials, and so
adopt aC ¼ 1=3 for SK. However, they severely discount the tPA arm
from a sample size of around 24 000 to one of 50, so that aT � 1=500
for tPA.

Now V( log (OR) ) ¼ V( logOC)þ V( logOT), where OC, OT are the odds
on death under SK and tPA, respectively. With no discounting,
V( logOC) � V( logOT) ¼ V. With differential discounting,

V( log (OR)) ¼ V( logOC)

aC
þ V( logOT)

aT
� V

1

aC
þ 1

aT

� �
:
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Thus the overall discount factor, relative to the undiscounted variance
of 2V, is a ¼ 2=(a�1

C þ a�1
T ) which is the ‘harmonic mean’ of the individ-

ual discounts. Fryback etal.’s assumptions therefore lead to an overall
discount factor of 2=(3þ 500) � 1=250, which means the prior will
have little impact on the likelihood.

(f) Equal. As an extreme of the discounting procedure, if we assume a ¼ 1
we are led to completely pool the results of the three trials.

5.5 DEFAULT PRIORS

It would clearly be attractive to have prior distributions that could be taken ‘off

the shelf ’, rather than having to consider all available evidence external to the

study in their construction: such priors can, at a minimum, be considered as

‘baselines’ against which to measure the impact of past evidence or subjective

opinion. Four main suggestions can be identified.

5.5.1 ‘Non-informative’ or ‘reference’ priors

There has been a huge volume of research into so-called non-informative or

reference priors, that are intended to provide a kind of default or ‘objective’

Bayesian analysis free from subjectivity. Kass and Wasserman (1996) review

the literature, but emphasise the continuing difficulties in defining what is

meant by ‘non-informative’, and the lack of agreed reference priors in all but

simple situations.

In many situations we might adopt a uniform distribution over the range of

interest, possibly on a suitably transformed scale of the parameter (Box and

Tiao, 1973). Formally, a uniform distribution means the posterior distribution

has the same shape as the likelihood function, which in turn means that the

resulting Bayesian intervals and estimates will essentially match the traditional

results. Results with reference priors are generally quoted as one part of a

Bayesian analysis, and may even form the main basis for inferences. For

example, Burton (1994) suggests that most doctors interpret frequentist confi-

dence intervals as credible intervals, and also that information external to a

study tends to be vague, and that therefore results from a study should be

presented by performing a Bayesian analysis with a non-informative prior and

quoting posterior probabilities for the parameter of interest being in various

regions. The fact that a reference prior may produce essentially identical con-

clusions to a classical analysis, and yet allow more flexible and intuitive presen-

tations, has led to the use of what are essentially Bayesian methods but under

names such as ‘confidence levels’ (Shakespeare et al., 2001).
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Invariance arguments may be used as a basis for reference priors (Jeffreys,

1961): for example, if we feel a reference prior on an odds ratio OR should be the

same whichever treatment is taken in the numerator of the odds ratio, then it

means that the same prior should hold for OR and 1/OR, which means that we

must be uniform on the log(OR) scale. Similar arguments can be used to justify a

uniform prior on log (�2) for a sampling variance �2, since this prior is also

equivalent to a uniform prior on log (�) (or indeed any power of �), and hence is

invariant to whether one is working on the standard deviation or variance

scale. This prior is equivalent to assuming p(�2) / ��2, or p(�) / ��1. A stand-

ard result (DeGroot, 1970; Lee, 1997) is that, for normal likelihoods, this prior,

combined with an independent uniform prior on the mean, gives rise to the

familiar classical tail areas based on a t distribution.

The real problem with ‘uniform’ priors is that they are no longer uniform if

the parameter is transformed, which is well illustrated by the problem of

assigning a reference prior to the probability � of an event. The classic solution,

dating back to Bayes and Laplace in the eighteenth century, is to give a uniform

prior for �, equivalent to a Beta[1,1]. From the beta-binomial distribution

(Section 3.13.2) we can show this leads to a uniform distribution over the

number 0, 1, . . . , n of occurrences in n Bernoulli trials, which might seem a

reasonable justification for its claim to be ‘non-informative’. However in many

of our examples we place a uniform distribution over a log(odds) scale, i.e.

log [p=(1� p)] has a uniform distribution. It can be shown that this is equivalent

to a Beta[0,0] distribution for p – an improper distribution that strongly favours

values of p near 0 or 1. As an intermediate suggestion, invariance arguments

(Box and Tiao, 1973) have led to the use of a Beta[0.5,0.5] prior, which is

proper but still favours extreme values of p (Section 2.6.3). Of course, all these

priors will give essentially the same result with a large enough set of data, but

could have some influence with rare events. Even when one has chosen a

suitable scale for a uniform prior, it may be inappropriate to term it ‘non-

informative’: Fisher (1996) points out that ‘there is no such thing as a

‘‘noninformative’’ prior. Even improper priors give information: all possible

values are equally likely’. There is a particular difficulty in assigning such a

‘reference’ prior to random-effect variances in hierarchical models, and we shall

consider this issue in Section 5.7.

5.5.2 ‘Sceptical’ priors

Informative priors that express scepticism about large treatment effects have

been put forward both as a reasonable expression of doubt, and as a way of

controlling early stopping of trials on the basis of fortuitously positive results

(Section 6.6.2). Kass and Greenhouse (1989) suggest that a ‘cautious reason-

able sceptic will recommend action only on the basis of fairly firm knowledge’,

but that these sceptical ‘beliefs we specify need not be our own, nor need they be
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the beliefs of any actual person we happen to know, nor derived in some way

from any group of ‘‘experts’’ ’.

Mathematically speaking, a sceptical prior about a treatment effect will have

a mean of zero and a shape chosen to include plausible treatment differences

which determine the degree of scepticism. Spiegelhalter et al. (1994) argue that

a reasonable degree of scepticism may be feeling that the trial has been designed

around an alternative hypothesis that is optimistic, formalised by a prior with

only a small probability � (say, 5%) that the treatment effect is as large as the

alternative hypothesis �A (see Figure 5.7).

Assuming a prior distribution � � N[0, �2=n0] and such that p(� > �A) is a

small value � implies � ¼ 1�F(�A
ffiffiffiffiffi
n0

p
=�) and so

��
z�ffiffiffiffiffi
n0

p ¼ �A, (5:1)

where F(z�) ¼ �. Now suppose the trial has been designed with size � and

power 1� � to detect an alternative hypothesis �A. Then we have the standard

relation (2.38)

�2
(z�=2 þ z�Þ2

�2A
¼ n (5:2)

between the proposed sample size n and �A. Equating �A in (5.1) and (5.2) gives

0

Benefit of new treatment

sceptical prior
enthusiastic prior

qA

Figure 5.7 Sceptical and enthusiastic priors for a trial with alternative hypothesis �A.
The sceptics’ probability that the true difference is greater than �A is � (shown shaded).
This value has also been chosen for the enthusiasts’ probability that the true difference is
less than 0.
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n0

n
¼ z�

z�=2 þ z�

� �2
:

Reasonable values might be � ¼ 0:05, � ¼ 0:1 and � ¼ 0:05, which gives

n0=n ¼ 0:257.
Thus in a trial designed with 5% size and 90% power, such a sceptical prior

corresponds to adding a ‘handicap’ equivalent to already having run a ‘pseudo-

trial’ with no observed treatment difference, and which contains around 26% of

the proposed sample size.

This approach has been used in a number of case studies (Freedman et al.,

1994; Parmar et al., 1994) and has been suggested as a basis for monitoring

trials (Section 6.6) and when considering whether or not a confirmatory study

is justified (Section 6.7). Other applications of sceptical priors include Fletcher et

al. (1993), DerSimonian (1996), and Heitjan (1997) in the context of phase II

studies, while a senior FDA biostatistician (O’Neill, 1994) has stated that he

‘would like to see [sceptical priors] applied in more routine fashion to provide

insight into our decision making’.

Example 5.3 CHART (continued): Scepticalpriors

References: Parmar et al. (1994, 2001) and Spiegelhalter et al. (1994).

Prior distribution: A scepticalprior was derived using the ideas in Section
5.5.2: the prior mean is 0 and the precision is such that the prior
probability that the true benefit exceeds the alternative hypothesis is
low (5% in this case). Thus a prior with mean 0 and standard deviation
s=

ffiffiffiffiffi
n0

p
will show a 5% chance of being less than dA if n0 ¼ (1:65s=yA)

2 by
(5.1). For the lung trial, the alternative hypothesis on the log(hazard
ratio) scale is yA ¼ log (0:73) ¼ �0:31. Assuming s ¼ 2 gives n0 ¼ 110.
For the head-and-neck trial, the alternative hypothesis is
yA ¼ log (0:64) ¼ �0:45, which gives a sceptical prior with n0 ¼ 54.

The sceptical prior distributions are displayed in Figure 5.8, with the
clinical priors derived in Example 5.1.

5.5.3 ‘Enthusiastic’ priors

As a counterbalance to the pessimism expressed by the sceptical prior, Spiegel-

halter et al. (1994) suggest an ‘enthusiastic’ prior centred on the alternative

hypothesis and with a low chance (say, 5%) that the true treatment benefit is

negative. Use of such a prior has been reported in case studies (Freedman et al.,

1994; Heitjan, 1997; Vail et al., 2001; Tan et al., 2002) and as a basis for

conservatism in the face of early negative results (Fayers et al., 1997); see
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favours CHART <-  Hazard ratio  -> favours control

Lung trial

0.4 0.5 0.6 0.8 1 1.2 1.5

Clinical prior
CHART superior survival
Control superior survival

0.857
0.143

Sceptical prior
CHART superior survival
Control superior survival

0.5
0.5

favours CHART <-  Hazard ratio  -> favours control

Head-and-neck trial

0.4 0.5 0.6 0.8 1 1.2 1.5

Clinical prior
CHART superior survival
Control superior survival

0.891
0.109

Sceptical prior
CHART superior survival
Control superior survival

0.5
0.5

Figure 5.8 Sceptical and clinical priors for both lung and head-and-neck CHART
trials, showing prior probabilities that CHART has superior survival. The sceptical
priors express a 5% prior probability that the true benefit will be more extreme than the
alternative hypotheses of HR ¼ 0:73 for the lung trial and HR ¼ 0:64 for the head-and-
neck trial.

Section 6.6.2. Dignam et al. (1998) provide an example of such a prior but call it

‘optimistic’ (Example 6.7). Such a prior is intended to represent the opinion of

an archetypal enthusiast and does not represent the opinion of an identifiable

individual.

Other options for default priors are possible: for example, Cronin et al. (1999)

adopt an ‘indifference’ prior that lies half-way between ‘sceptical’ and ‘enthusi-

astic’.

5.5.4 Priors with a point mass at the null hypothesis
(‘lump-and-smear’ priors)*

The traditional statistical approach expresses a qualitative distinction between

the role of a null hypothesis, generally of no treatment effect, and alternative

hypotheses. A prior distribution that retains this distinction would place a

‘lump’ of probability on the null hypothesis, and ‘smear’ the remaining prob-

ability over the whole range of alternatives; for example Cornfield (1969) uses a
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normal distribution centred on the null hypothesis, while Hughes (1993) uses

a uniform prior over a suitably restricted range. The resulting posterior distri-

bution retains this structure, giving rise to a posterior probability of the truth of

the null hypothesis; this is apparently analogous to a P-value but is neither

numerically nor conceptually equivalent.

A specific assumption used in our examples is the following:

H0 : � ¼ �0 with probability p,

HA : � � N �0,
�2

n0

� �
with probability 1� p,

where we label the ‘lump’ and the ‘smear’ as null and alternative hypotheses,

respectively.

Cornfield repeatedly argued for this approach, which naturally gives rise to

the ‘relative betting odds’ or Bayes factor (Section 3.3) as a sequential monitor-

ing tool, defined as the ratio of the likelihood of the data under the null

hypothesis to the average likelihood (with respect to the prior) under the

alternative. If we assume a normal likelihood ym � N[�, �2=m], then we have

shown in Section 4.4.3 that the Bayes factor is

BF ¼ p(ymjH0)

p(ymjHA)
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ m

n0

r
exp

�z2m
2(1þ n0=m)

� �
: (5:3)

Since

p(H0jym)
p(HAjym) ¼ BF

p

1� p
,

we can obtain the posterior probability p(H0jym).
The relative betting odds are independent of the ‘lump’ of prior probability

placed on the null (while depending on the shape of the ‘smear’ over the

alternatives), and do not suffer from the problem of ‘sampling to a foregone

conclusion’ (Section 6.6.5). Cornfield suggests a ‘default’ prior under the alter-

native as a normal distribution centred on the null hypothesis and with expect-

ation (conditional on the effect being positive) equal to the alternative

hypothesis �A. Then from the properties of the half-normal distribution (Section

2.6.7) it follows that

E(�j� > 0) ¼
ffiffiffiffiffiffiffiffi
2�2

�n0

s
: (5:4)

Equating this to �A leads to assuming a prior standard deviation under the

alternative hypothesis of
ffiffiffiffiffiffiffiffi
�=2

p
�A. This is similar to the formulation of a
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sceptical prior described in Section 5.5.2, but with probability of exceeding

the alternative hypothesis of � ¼ F(� ffiffiffiffiffiffiffiffi
2=�

p
) ¼ 0:21 – this is larger than the

value of 5% often used for sceptical priors, but the lump of probability on

the null hypothesis is already expressing considerable scepticism. Values for

these prior distributions for 11 outcome measures are reported for the Urokinase

Pulmonary Embolism Trial (Sasahara et al., 1973, p. 27), and Example 5.4

considers one of these outcomes. This method was used in a number of major

studies alongside more standard approaches (Coronary Drug Project Research

Group, 1970; University Group Diabetes Program, 1970), although relative

betting odds were later dropped from the analysis (Coronary Drug Project

Research Group, 1975). A mass of probability on the null hypothesis has also

been used in a cancer trial (Freedman and Spiegelhalter, 1992) and for sensi-

tivity analysis in trial reporting (Hughes, 1993).

Although such an analysis provides an explicit probability that the null

hypothesis is true, and so appears to answer a question of interest, the prior

might be somewhat more realistic were the lump to be placed on a small range

of values representing the more plausible null hypothesis of ‘no clinically

effective difference’. Lachin (1981) has extended the approach to this situation

where the null hypothesis forms an interval, although Cornfield (1969) points

out that the ‘lump’ is in any case just a mathematical approximation to such a

prior.

Example 5.4 Urokinase:‘lumpandsmear’priordistributions

Reference: Sasahara et al. (1973).

Intervention: Urokinase treatment for pulmonary embolism.

Aim of study: To compare thrombolytic capability in urokinase (new) with
heparin (standard).

Study design: RCT entering 160 patients between 1968 and 1970. There
was no prespecified sample size or stopping rule, although data were
examined four times yearly by an advisory committee but not released to
the investigators.

Outcomemeasure: Eleven endpoints based on continuous measures from
angiograms, lung scans and haemodynamics.

Statisticalmodel: Normal likelihoods assumed for an estimate ym of treat-
ment effect y based onm pairs of randomised patients.

Prospectiveanalysis?: Yes, the prior elicitations were conducted before the
start of the trials, and the Bayesian results presented to the advisory
committee at each of their meetings.
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Prior distribution: A ‘lump-and-smear’ prior was assessed for each out-
come (Section 5.5.4). To select n0, Cornfield (1969) suggests setting the
expectation, given there is a positive effect, to the alternative hypothesis,
so from (5.4) the prior standard deviation s=

ffiffiffiffiffi
n0

p
is

ffiffiffiffiffiffiffiffi
p=2

p
yA, and hence

n0 ¼ 2s2=(py2A). Alternative hypotheses were assessed by members of
the advisory committee ‘based on what appeared reasonable from pre-
vious experience with thrombolytics’.

For the outcome ‘Absolute improvement in resolution on lung scan’,
we take s to be the value observed in the study, 9.35 (see below). The
alternative hypothesis was selected to be y ¼ 8, slightly less than a
1 standard deviation effect, giving rise to n0 ¼ 0:87. Thus the prior
under the alternative hypothesis is approximately equivalent to having
observed a single pair of patients, each with the same response. This is
a weak prior, but remarkably corresponds almost precisely to that rec-
ommended in recent theoretical work on Bayes factors (Kass and Was-
serman, 1995); see Section 4.4.3.

Loss functionordemands: None specified.

Computation/software: Conjugate normal analysis.

Evidence from study: For ‘Absolute improvement in resolution on
24-hour lung scan’, outcomes were available on 72 patients treated
with urokinase and 70 with heparin. The difference in mean responses
was ym ¼ 3:61, with standard error 1.11. Assuming m ¼ 71 pairs, we
have s ¼ 1:11

ffiffiffiffi
m

p ¼ 9:35, as mentioned above. Using (5.3) the ‘relative
betting odds’ (Bayes factor) can be calculated to be 0.052 – from Table
3.2 this corresponds to ‘strong’ evidence against the null hypothesis.
Setting p ¼ 0:5 to represent equal prior belief in the null and alternative
hypotheses, this leads to a probability 0:052=(1þ 0:052) ¼ 0:049 that
the null hypothesis is true.

Bayesian interpretation: Figure 5.9 shows the size of the ‘lump’ dropping
dramatically from its prior level. The result is highly significant classically:
z ¼ 3:61=1:11 ¼ 3:25, with a two-sided P-value of 0.001; Sasahara etal.
(1973) report that due to many outcome measures and sequential an-
alysis, only z > 3 would be taken as ‘significant’. Note that the Bayesian
posterior on the null is only 0.047, and so is not as extreme as the
P-value (Section 4.4.3).

Comments: In this application, m=n0 ¼ 71=0:87 ¼ 82; Figure 4.2 shows
that for such results with a classical two-sided P-value of 0.001,
the Bayes factor only provides ‘strong’ evidence against the null hypoth-
esis. The prior drawn in Figure 5.9(a) provides a clue as to the difference
between the two approaches: although the data observed are unlikely
under the null hypothesis, the prior under the alternative is so diffuse
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(a) Prior distribution

Improvement with urokinase in absolute resolution at 24-hour lung scan
−5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

−5 −4 −3 −2 −1

−5 −4 −3 −2 −1

Urokinase inferior
Urokinase superior

0.5
0.5

0.5

(b) Likelihood

Improvement with urokinase in absolute resolution at 24-hour lung scan

Urokinase inferior
Urokinase superior

0.001
0.999

(c) Posterior distribution

Improvement with urokinase in absolute resolution at 24-hour lung scan

Urokinase inferior 0.001
Urokinase superior 0.999

0.049

Figure 5.9 Results from the Urokinase trial analysed by Cornfield using ‘relative
betting odds’ (Bayes factors). Data which are classically ‘highly significant’ (z ¼ 3:25,
two-sided P-value 0.001) only provide ‘strong’ evidence against the null hypothesis
(Bayes factor � 1/20).

that it gives little weight to the parameter values suggested by the
data. Hence the data are not strongly supported by either hypothesis,
although the alternative receives the benefit of the doubt.

5.6 SENSITIVITY ANALYSIS AND ‘ROBUST’ PRIORS

An integral part of any good statistical report is a sensitivity analysis of assump-

tions concerning the form of the model (the likelihood). Bayesian approaches
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have the additional concern of sensitivity to the prior distribution, both in view

of its controversial nature and because it is by definition a subjective assumption

that is open to valid disagreement. We reiterate that this fits naturally into the

idea of a ‘community of priors’ (Kass and Greenhouse, 1989).

A natural development when carrying out a Bayesian post-hoc analysis,

rather than a full Bayesian pre-study design, is to avoid all prespecification of

priors and simply report the impact of the data on a suitable range of opinion:

O’Rourke (1996) emphasises that posterior probabilities ‘should be clearly and

primarily stressed as being a ‘‘function’’ of the prior probabilities and not the

probability of treatment effects’. We can therefore take the following steps after

having observed the data:

1. Select a suitably flexible class of priors.

2. Examine how the conclusions depend on the choice of prior.

3. Identify the subsets of priors that, if seriously held, would lead to posterior

conclusions of specific interest (say, the clinical superiority of an intervention).

4. Report the results and hence allow the audience to judge whether their own

prior lies in the identified ‘critical’ subsets.

This is known as the ‘robust’ approach, and is also known as ‘prior partitioning’

(Carlin and Sargent, 1996; Sargent and Carlin, 1996). See Section 6.6.2 for

further discussion of this approach to monitoring clinical trials.

Three increasingly complex ‘communities’ of priors have been considered:

1. Discrete set. Many case studies carry out analysis of sensitivity to a limited list

of possible priors, possibly embodying scepticism, enthusiasm, clinical opin-

ion and ‘ignorance’; see, for example, Examples 6.6 and 6.7. It is also

possible to consider sensitivity to the opinions of multiple experts, perhaps

summarised by their extremes of opinion (Section 5.2.3).

2. Parametric family. If the community of priors can be described by one varying

parameter, then it is possible to graphically display the dependence of the

main conclusion on that parameter. Hughes (1991) suggested examining

sensitivity of conclusions to priors based on previous trial results and that

reflecting investigators’ opinions, and later Hughes (1993) gives an example

which features a point-mass prior on zero, and an explicit plot of the poster-

ior probability against the prior probability of this null hypothesis. Example

5.2 carries out a similar analysis in which the ‘discount’ parameter is

continuously varied, and the ‘credibility’ analysis described in Section 3.11

provides such a tool for the class of normal sceptical priors.

3. Non-parametric family. The ‘robust’ Bayesian approach has been further

explored by allowing the community of priors to be a non-parametric family

in the neighbourhood of an initial prior. For example, Gustafson (1989),

considers the ECMO study (Example 6.9) with a community centred around

a ‘non-informative’ prior but 20% ‘contaminated’ with a prior with minimal
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restrictions, such as being unimodal. The maximum and minimum posterior

probability of the treatment’s superiority within such a class can be plotted,

providing a sensitivity analysis. A similar approach has also been taken by

Greenhouse and Wasserman (1995) and Carlin and Sargent (1996).

One should, however, beware of carrying out too restricted a sensitivity

analysis. Stangl and Berry (1998) emphasise the need for a fairly broad com-

munity, taking into account not just the spread of the prior but also its location.

They also stress that sensitivity to exchangeability and independence assump-

tions should be examined and that, while sensitivity analysis is important, it

should not serve as a substitute for careful thought about the form of the prior

distribution.

There is limited experience of reporting such analyses in the medical litera-

ture, and it has been suggested (Koch, 1991; Hughes, 1991; Spiegelhalter et al.,

1994) that a separate ‘interpretation’ section is required to display how the data

in a study would add to a range of currently held opinions (Section 3.21). It

would be attractive for people to be able to carry out their own sensitivity

analysis of their own prior opinion; Lehmann and Goodman (2000) describe a

computing architecture for this, and available software and web pages are

described in Section A.2.

5.7 HIERARCHICAL PRIORS

The essence of hierarchical models was summarised in Section 3.17: by assum-

ing that multiple parameters of interest are drawn from some common prior

distribution, i.e. they are exchangeable, we can ‘borrow strength’ between

multiple substudies and improve the precision for each parameter. These models

form an essential component of much of Bayesian analysis, but their added

power does not come without cost. The three essential assumptions are: ex-

changeability of parameters �k, a form for the random-effects distribution of the

�k, and a ‘hyperprior’ distribution for the parameters of the random-effects

distribution of the �k. All these assumptions can be important, and none can

be made lightly.

5.7.1 The judgement of exchangeability

An assumption of exchangeability underlies any random-effects analysis,

whether Bayesian or classical. Nevertheless, Tukey (1977) says that ‘to treat

the true improvements for the classes concerned as a sample from a nicely

behaved population . . . does not seem to me to be near enough the real world to

be a satisfactory and trustworthy basis for the careful assessment of strength of

evidence’. But, as noted in Section 3.4, there does not need to be any actual
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population from which units are sampled, and the very fact that we are carrying

out simultaneous analysis on a number of units suggests some relationship

between them. In addition, if there are known reasons to suspect that specific

units are systematically different, then those reasons might be modelled by

including relevant covariates and then the residual variability more plausibly

reflects exchangeability; for example, Dixon and Simon (1991) discuss the

reasonableness of exchangeability assumptions in the context of subset analysis

(Section 6.8.1), and observe that any subsets of prior interest should be con-

sidered separately.

5.7.2 The form for the random-effects distribution

This is generally taken to be normal until evidence shows otherwise: if there is

no reason to suspect systematic difference between units, a central limit the-

orem argument could be used to justify normality as arising from the sum of

many small unobserved differences between units. Normality is computation-

ally helpful, although with the advent of MCMC methods it has less importance,

and ‘heavier-tailed’ distributions such as the Student’s t can be adopted

(Smith et al., 1995).

Unlike other prior assumptions, the form of the random-effects distribution

can be empirically checked from the data, although strategies for this are

outside the scope of this book; see, for example, Lange and Ryan (1989),

Christiansen and Morris (1996) and Hardy and Thompson (1998).

5.7.3 The prior for the standard deviation of the random
effects*

In a hierarchical model � � N[�,t2], the random-effects standard deviation t
plays an important role, and its value can be very influential in assessing the

uncertainty concerning � or in predicting future �s. However, there may be

limited information in the data to provide a precise estimate of t due either to

there being few units, or to each unit providing little information, or both. This

can make the prior for t particularly important, and yet neither is there any

generally accepted reference prior for t, nor are there formally established

techniques for assessing a subjective prior distribution.

Three strategies have been adopted which broadly follow the ideas for par-

ameters of primary interest described earlier: elicitation (Section 5.2), summary

of evidence (Section 5.4), and reference priors (Section 5.5).

Elicitation of opinion. In order to be able to make judgements about their

relative plausibility, we need to have a clear interpretation of what different

values of t signify. We can first note that 95% of values of � will lie in the
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interval �� 1:96t, and hence the 97.5% and 2.5% values of � are 2� 1:96� t
apart. � will often be measured on a logarithmic scale, for example as a log(odds

ratio), and hence the ratio of the 97.5% odds ratio to the 2.5% odds ratio is

exp (3:92t), roughly representing the ‘range’ of odds ratios. For example, in the

context of meta-analysis, Smith et al. (1995) thought that it was unlikely that

the between-study odds ratios would vary by more than an order of magnitude,

and hence considered exp (3:92t) ¼ 10, or t ¼ log (10)=3:92 ¼ 0:59 to repre-

sent a ‘high’ value of the standard deviation t.
An alternative approach is to imagine two randomly chosen �s drawn from

the random-effects distribution, whose difference will have distribution

�1 � �2 � N[0, 2t2] by (2.26). Their absolute difference j�1 � �2j therefore

has a normal distribution constrained to be greater than 0, which is a half-

normal distribution HN[2t2] (Section 2.6.7). This distribution has median

F�1(0:75)� ffiffiffi
2

p
t ¼ 1:09t, which is therefore the median difference between

the maximum and minimum of a random pair of �s (Larsen et al., 2000). If � is,
for example, a log(odds ratio), then exp (1:09t) is the median ratio of the

maximum to the minimum of any random pair of odds ratios drawn from the

distribution.

Table 5.2 illustrates these two interpretations for a range of values of t when

� represents a log(odds ratio). It is apparent that t ¼ 1 corresponds to a sub-

stantial heterogeneity, with a random pair having a median ratio of 3, for

example one trial showing no effect and another showing an odds ratio of 3.

t ¼ 2 means the trials are effectively independent.

Table 5.2 Possible interpretations of t, the standard deviation of the log(odds
ratio) in a hierarchical model � � N[�, t2]. The ‘range’ exp (3:92t) is actually the ratio
of the 97.5% to the 2.5% point of the distribution of odds ratios, while exp (1:09t) is
the median ratio of the maximum to minimum odds ratio in a random pair of �s
drawn from the distribution.

t exp (3:92t): ‘range’
of odds ratios

exp (1:09t): median ratio
of random pair

0.0 1.00 1.00
0.1 1.48 1.11
0.2 2.19 1.24
0.3 3.24 1.39
0.4 4.80 1.55
0.5 7.10 1.72
0.6 10.51 1.92
0.7 15.55 2.14
0.8 23.01 2.39
0.9 34.06 2.67
1.0 50.40 2.97
1.5 357.81 5.13
2.0 2540.20 8.84
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In conclusion, values of t from 0.1 to 0.5 may appear reasonable in many

contexts, from 0.5 to 1.0 might be considered as fairly high, and above 1.0

would represent fairly extreme heterogeneity.

When assessing a subjective prior distribution for t, we first need to consider

whether t ¼ 0 is a plausible value, representing no variability between �s. At
the other extreme, we should think of an ‘upper’ value for twhich we shall label

tu; Table 5.2 may be useful for this. A possible prior distribution is then a half-

normal distribution HN[(tu=1:96)
2] (Pauler and Wakefield, 2000). This will

have its mode at 0 and be steadily declining in t, with an upper 95% point at

tu. Its median will be F�1(0:75)� tu=1:96 ¼ 0:39tu. This is illustrated in

Figure 5.10(a) for tu ¼ 1, which may be a reasonable prior in many situations;

see Example 8.5.

Summary of evidence. It is natural to construct a prior distribution for t from an

analysis of past hierarchical models in the context being considered, in order to

determine reasonable values of t experienced in practice. Thus we could, for

example, study the typical variability between subgroups, between institutions

in their clinical performance, or between centres in multi-centre clinical trials.

In the field of meta-analysis, Higgins and Whitehead (1996) and Smith et al.

(1996) both consider empirical distributions of past ts: essentially they are

carrying out a meta-analysis of meta-analyses. Higgins and Whitehead

(1996) go on to formally construct an additional level in the hierarchical

model in which t is a random effect with a distribution. They restrict attention

to gamma distributions for t�2, and estimate that a t�2 for a new meta-analysis

has a Gamma[1.0, 0.35] distribution. Transforming this onto the t scale using
standard theory for probability distributions yields a root-inverse-gamma distri-

bution RIG[1, 0.35] (Section 2.6.6). This has its mode at t ¼ 0:48, meanffiffiffiffiffiffiffiffiffiffiffiffiffi
0:35�

p ¼ 1:05 and a standard deviation of 1. Figure 5.10(b) reveals it to

rule out low values of t.

Default ‘non-informative’ priors. A number of suggestions have been made for

placing a ‘default’ prior distribution on t or, equivalently, t2. The standard

reference prior for a sampling variance, p(�2) / ��2 (Section 5.5.1), is inappro-

priate at the random-effects level as it gives an improper posterior distribution

(Berger, 1985). Five of the main contenders are listed below.

(a) A ‘just proper’ prior. An inverse gamma distribution such as

t�2 � Gamma[0:001, 0:001]

is proper and close to being uniform on log (t). Figure 5.10(c) shows that it

gives a high weight near t ¼ 0 and so, if the likelihood supports low values

of t, it could show a preference for a low variance. This may be reasonable

behaviour but should be acknowledged.
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(a) half-normal
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(d) uniform on τ2 (e) uniform on τ (f) uniform shrinkage, s0 = 0.2
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(h) Dumouchel, s0 = 0.2 (i) Dumouchel, s0 = 1.0

Figure 5.10 Alternative prior distributions on the between-unit standard deviation t:
see the text for discussion of each possible choice. (a) supports equality between units
(t ¼ 0) and discounts substantial heterogeneity (t ¼ 1); (b) is based on an empirical
summary of past meta-analyses and forces heterogeneity; (c) is an ‘almost’ improper
prior that has been widely used but gives strong preference for small t, (f) to (i) depend on
the amount of evidence in the data, with s0 ¼ 1 representing weak evidence, and
s0 ¼ 0:2 strong evidence.

(b) Uniform on t2. The uniform prior

p(t2) / constant

is recommended by Gelman et al. (1995) and can be restricted to a suitable

range to make it a proper distribution. Figure 5.10(d) shows its preference

for high values of t, which does not appear attractive.

(c) Uniform on t. The uniform prior

p(t) / constant

is a natural contender and is shown in Figure 5.10(e). Nevertheless,

it would be inappropriate to term this ‘non-informative’, as it is a fairly
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strong statement to declare that small values of t are as likely as large

values.

(d) Uniform shrinkage priors. Following Section 3.17, we assume an approxi-

mate normal likelihood with yk � N[�k,s
2
k ]. A number of authors (Chris-

tiansen and Morris, 1997b; Natarajan and Kass, 2000; Daniels, 1999;

Spiegelhalter, 2001) have investigated a prior on t2 that is equivalent to a

uniform prior on the ‘average’ shrinkage

B0 ¼ s20=(s
2
0 þ t2)

where s20 is the harmonic mean of the s2k , i.e.

1

s20
¼ 1

K
�k

1

s2k
:

Placing a uniform distribution on B0 is equivalent to 1� B0 ¼ t2=(s20 þ t2)
having a uniform distribution. This leads to

p(t2) ¼ s20

(s20 þ t2)2
,

p(t) ¼ 2ts20
(s20 þ t2)2

:

The uniform shrinkage prior distributions have the following properties:

t2 t

Mode 0 s0=3 ¼ 0:57s0
First quartile s20=

ffiffiffi
3

p
s0=

ffiffiffi
3

p ¼ 0:57s0
Median s20 s0
Mean – �s0=2 ¼ 1:57s0
Third quartile 3s20

ffiffiffi
3

p
s0 ¼ 1:73s0

Variance – –

The prior on t2 has an asymptote at 0, but the implied prior on t returns to
0 at the origin.

Suppose s2k ¼ �2
k=nk, so that

yk � N[�k, �2
k=nk]:

Three situations can be distinguished:

(i) �2
k ¼ �2, which is assumed known, such as the frequent adoption of

�2 ¼ 4. Then s20 ¼ �2=n.
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(ii) �2
k ¼ �2, which is unknown. �2 could then be given a standard

Jeffreys prior p(�2) / ��2 – this induces an appropriate dependency

between t2 and �2.

(iii) Each �2
k is unknown. The �2

k could then be assumed either exchange-

able or independent. Within-unit empirical estimates �̂�2
k can be used

to estimate s�2
0 by

1

s20
¼ 1

K
�k

nk

�̂�2
k

:

(d) Essentially, fixed effects are fitted first and then the average precision

is used as an estimate of s�2
0 . This approach is illustrated in Examples

6.10 and 8.1.

(d) In studies based on events we might equate s20 to 4=n0, where n0 represents

themeannumber of events in each study.Hence s0 ¼ 0:2corresponds to large
studies with an average of 100 events each, while s0 ¼ 1:0 corresponds to

very small studieswith an average of 4 events each. These priors are shown in

Figures 5.10(f) and 5.10(g), showing that large studies lead to strong prior

weight on low values of t and hence an expectation of the studies showing

‘similar’ results.

(e) DuMouchel priors. DuMouchel (DuMouchel and Normand, 2000) has sug-

gested a similar form to the uniform shrinkage prior but assuming a uniform

prior for s0=(s0 þ t), which implies

p(t) ¼ s0

(s0 þ t)2
,

p(t2) ¼ s0

2t(s0 þ t)2
:

(d) The distributions have the following properties:

t2 t

Mode 0 0
First quartile s20=9 s0=3
Median s20 s0
Mean – –
Third quartile 9s20 3s0
Variance – –

Note that the quartiles are at B0 ¼ 0:1, 0:5, 0:9, showing the DuMouchel

prior gives preference to either strong or weak shrinkage. Figures 5.10(h)

and 5.10(i) show the DuMouchel priors for s0 ¼ 0:2 and s0 ¼ 1:0, revealing
the preference of these priors for both low and high values of t.

In general our preference will be to use a uniform prior on t as a baseline

when there is reasonable information from the data. When prior information is
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strong or important a suitably informative prior can be chosen: the half-normal

appears particularly attractive.

These points serve to underline the importance of carefully choosing and

justifying the prior distributions used within a hierarchical setting, and subject-

ing those used to the type of sensitivity analysis adopted in Examples 6.10, 7.2,

8.1, 8.3 and 8.5.

5.8 EMPIRICAL CRITICISM OF PRIORS

The ability of subjective prior distributions to predict the true benefits of inter-

ventions is clearly of great interest, and Box (1980) suggested a methodology

for comparing priors with subsequent data. The prior is used to derive a

predictive distribution for future observations, and thus to calculate the chance

of a result with lower predictive ordinate than that actually observed: when the

predictive distribution is symmetric and unimodal, this is analagous to a trad-

itional two-sided P-value in measuring the predictive probability of getting a

result at least as extreme as that observed. With normal assumptions we can

use (3.23) but substituting m for n, to give a pre-trial predictive distribution

Ym � N �, �2 1

n0
þ 1

m

� �� �
: (5:5)

Given observed ym, the predictive probability of observing a Ym less than that

observed is

P(Ym < ym) ¼ F
ym � �

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n0
þ 1

m

r
0
BB@

1
CCA, (5:6)

and hence Box’s generalised significance test is given by

2min [P(Ym < ym), 1� P(Ym < ym)]:

Another way of obtaining (5.6) is as the tail area associated with a standardised

test statistic contrasting the prior and the likelihood, i.e.

zm ¼ ym � �

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n0
þ 1

m

r ,

showing that Box’s statistic explicitly acts as a measure of conflict between prior

and data.

174 Prior distributions

Chapter 5 Prior Distributions 17.11.2003 4:50pm page 174



Example 5.5 GREAT (continued): Criticismof the prior

In Example 3.6, m ¼ �0:26, n0 ¼ 236:7, m ¼ 30:5, s ¼ 2 and hence the
predictive distribution for the observed log(OR) has mean �0:26 and
standard deviation 0.39. This is shown in Figure 5.11 with the observed
OR ¼ 0:48 (ym ¼ log (OR) ¼ �0:74) marked. Box’s measure is twice the
shaded area, which is 2F( (� 0:74þ 0:26)=0:39) ¼ 0:21. We may
also obtain this result as the standardised test statistic between prior
and likelihood z ¼ �1:25, with a two-sided P-value of 0.21. Thus there
is no strong evidence for conflict between prior and data in the GREAT
example.

There have been a number of prospective elicitation exercises for clinical

trials, and many of these trials have now reported their results. Table 5.3

shows a selection of results, including the intervals for the prior distributions

for treatment effects, the evidence from the likelihood, and Box’s P-value sum-

marising the conflict between the prior and the likelihood. The references for the

prior assessments and the data are provided at the end of the section.

Predicted odds ratio of 30-day mortality on home therapy to control
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.3

Figure 5.11 Predictive distribution for observed OR in the GREAT trial with
observed OR ¼ 0.48 (log(OR) ¼ �0:74) marked. Box’s measure of conflict
between prior and data is twice the shaded area ¼ 0.21.
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Table 5.3 A comparison of some elicited subjective prior distributions and the
consequent results of the clinical trials. In each case a pooled prior was provided,
assumed normal on a log(hazard ratio) scale – Box’s P-value is calculated on this scale.
This is transformed to a hazard ratio (HR) scale where HR < 1 corresponds to benefit
of the new treatment: median and 95% intervals are given (note the gastric cancer
results are reported with the inverse hazard ratio in Example 6.4).

Study Prior Likelihood Z P

HR 95% interval HR 95% interval

CHART (Lung)1 0.76 (0.48, 1.19) 0.76 (0.63, 0.90) 0.00 1.00
CHART (HN)1 0.72 (0.44, 1.20) 0.95 (0.79, 1.14) 1.02 0.31
Thiotepa X12 0.61 (0.37, 1.01) 1.11 (0.78, 1.59) 1.91 0.06
Osteosarcoma3 0.90 (0.55, 1.50) 1.07 (0.79, 1.45) 0.58 0.56
Gastric cancer4 0.88 (0.61, 1.28) 1.10 (0.87, 1.39) 1.00 0.32

Sources: 1Example 6.6. 2Spiegelhalter and Freedman (1986) and Richards et al. (1994). 3Spiegel-

halter et al. (1993) and Souhami et al. (1994). 4Example 6.4.

Table 5.3 shows the generally poor experience obtained from prior elicitation.

The clinicians are universally optimistic about the new treatments (median of

prior hazard ratios less than 1), whereas only two of the trials – the CHART

trials – eventually showed any evidence of benefit from the new treatment

(likelihood hazard ratio less than 1), and only the CHART lung trial showed

‘significant’ benefit. The thiotepa trial shows particularly high conflict between

data and prior, with the clinicians expecting a substantial benefit from thiotepa

which failed to materialise. This also reflects the experience of Carlin et al.

(1993) in their elicitation exercise.

Far from invalidating the Bayesian approach, such a conflict between prior

and data only serves to emphasise the importance of pre-trial elicitation of belief;

having these opinions explicitly recorded will help a data monitoring committee

to focus on the difference between anticipated and actual results. Of course,

the precise action to be taken in the face of considerable conflict will depend

on the circumstances.

5.9 KEY POINTS

1. The use of a prior is based on judgement and hence a degree of subjectivity

cannot be avoided.

2. The prior may be important and is not unique, and so a range of options

should be examined in a sensitivity analysis.

3. The quality of subjective priors (as assessed by predictions) show predictable

biases in terms of enthusiasm.

4. For a prior to be taken seriously by an external audience, its basis must be

explicitly given. A variety of models exist for using historical data as a basis

for prior distributions.
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5. Archetypal priors, expressing both scepticism and enthusiasm, may be useful

for identifying a reasonable range of prior opinion.

6. Great care is required in using default priors intended to be minimally

informative.

7. Exchangeability assumptions lead to hierarchical models that are valuable in

many situations, but such judgements should not be made casually.

8. Sensitivity analysis plays a crucial role in assessing the impact of particular

prior distributions, whether elicited, derived from evidence, or reference, on

the conclusions of an analysis.

EXERCISES

5.1. Consider tossing a drawing-pin (thumbtack) onto a flat surface.

(a) Assess your beliefs about the true proportion of times that it will fall

point-up, in terms of a best estimate, and low and high assessments.

(b) Derive a beta prior distribution for this proportion based on these

beliefs.

(c) Use the conjugate beta-binomial model of Section 3.6.2 to update these

beliefs after 12 tosses using the same hand.

5.2. Prior to the publication of the UKMedical Research Council RCT evaluating

the use of high-energy neutrons for treatment of patients with tumours of

the pelvic region (bladder, cervix, prostate and rectum) in 1991 a number of

RCTs evaluating low-energy neutrons had been reported (Errington et al.,

1991). The results of these RCTs are summarised in Table 5.4. (a) Assuming

balanced trials, approximate the log(hazard ratio) and its variance for each

of these studies. (b) Use the ‘method of moments’ (3.37) to estimate the

between-study variance t2. Use this historical evidence to establish a prior

distribution for the MRC trial, assuming (c) the new trial is estimating the

Table 5.4 Summary of RCT evidence in terms of survival at 12 months for
low-energy neutron therapy compared to conventional radiotherapy for tumours of the
pelvic region.

Study Year of
publication

Site Neutrons

Deaths(O) Expected(E) V[0-E]

Batterman 1982 Bladder and Rectum 34 32.6 5.3
Pointon 1985 Bladder 16 13.7 5.1
Duncan 1987 Bladder 26 20.1 6.7
Duncan 1987 Rectum (inoperable) 17 12.8 2.1
Duncan 1987 Rectum (recurrent) 10 7.3 2.0
Duncan 1987 Bladder 4 4.2 0.6
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mean treatment effect of the previous trials, and (d) the new trial is

exchangeable with the previous trials. The fact that the previous trials

were low-energy, and the new trial high-energy, might lead one to doubt

the exchangeability model.

(e) What model for systematic bias might be reasonable?

5.3. In Exercise 5.2, on average the oncologists claimed that they required

the survival rate for neutron therapy to be 61.5%, relative to a 1-year

survival rate of 50% in the control group, before considering it for

routine treatment. The range of equivalence was therefore taken to be

from 50% to 61.5%. For each of the situations modelled, obtain the

prior probabilities of no benefit of neutrons relative to conventional therapy,

the range of equivalence, and clinical benefit in favour of neutron therapy.

5.4. In addition to the meta-analysis in Exercise 5.2, the beliefs and

clinical demands of ten oncologists were elicited before the final analysis of

the high-energy trial data. Table 5.5 summarises the elicited prior distribu-

tions for all ten oncologists for the 1-year survival rate on neutron therapy

compared to a 50% survival rate with conventional therapy.

(a) Calculate an average histogram.

(b) Transform this to a histogram on the log(hazard ratio) scale using the

techniques in Example 5.1.

(c) Fit a normal distribution to this distribution by matching the mean and

variance or by some other method.

(d) Given the disagreement between the oncologists, do you think it rea-

sonable to create such a pooled distribution?

5.5. Prior to the publication of the HAI RCT considered in Exercise 2.7, results

from five previous RCTs had been published, and these are summarised in

terms of overall survival in Table 5.6. (a) For each trial, estimate the

Table 5.5 Elicited prior beliefs in terms of percentage survival at 12 months for high-
energy neutron therapy compared to a 50% survival rate for conventional radiotherapy
for tumours of the pelvic region.

ID Neutron 1-year survival rate (%)

15� 20� 25� 30� 35� 40� 45� 50� 55� 60� 65� 70� 75� 80� 85� 90� 95� Total

1 0 0 0 10 20 25 15 15 10 5 0 0 0 0 0 0 0 100

2 0 0 5 10 20 35 30 0 0 0 0 0 0 0 0 0 0 100

3 0 0 0 0 0 20 60 20 0 0 0 0 0 0 0 0 0 100

4 0 0 0 0 0 30 30 30 10 0 0 0 0 0 0 0 0 100

5 0 0 5 10 25 20 15 10 10 5 0 0 0 0 0 0 0 100

6 0 0 0 0 0 0 5 0 0 0 15 20 20 15 10 10 5 100

7 5 5 10 25 25 15 5 2.5 2.5 2.5 2.5 0 0 0 0 0 0 100

8 0 0 0 5 5 10 25 25 15 5 2.5 2.5 2.5 2.5 0 0 0 100

9 0 0 0 5 5 10 25 25 15 5 2.5 2.5 2.5 2.5 0 0 0 100

10 0 0 0 15 15 25 20 20 5 0 0 0 0 0 0 0 0 100
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5.6. log(hazard ratio) and the effective number of events assuming � ¼ 2.

Obtain a prior distribution for the log(hazard ratio) for overall survival of

HAI compared to control patients, assuming (b) a common effect in all

trials, (c) that the past trials are exchangeable with the current trial.

5.6. Sutton et al. (2000, p. 261) consider 17 single-arm studies of either

radiotherapy alone (RTx) following surgery for childhood medulloblas-

toma, or radiotherapy together with adjuvant chemotherapy (RTx þ
Chm) following surgery. Table 5.7 displays the 5-year survival rates

together with standard errors for all 17 studies.

Table 5.6 Summary of RCT evidence in terms of overall survival, prior to 1994, for
HAI compared to control for the treatment of non-resectable liver metastases associated
with primary colorectal cancer.

Study Year publication HAI Control O�E V[0-E]

Deaths Total Deaths Total

MSKCC 1987 43 45 48 48 �5.8 21.9
NCCTG 1990 39 39 35 35 �1.0 17.9
NCI 1987 25 32 26 32 �2.7 12.5
City of Hope 1986 9 9 6 6 �2.3 3.3
France 1992 72 81 78 82 �14.2 36.4

Table 5.7 Five-year survival rates and standard errors for single-arm studies
considering either radiotherapy alone (RTx) or radiotherapy together with adjuvant
chemotherapy (RTx þ Chm) following surgery for childhood medulloblastoma.

Study RTx þ Chm RTx

S5 SE(S5) S5 SE(S5)

1 0.83 0.030 – –
2 0.82 0.120 – –
3 0.96 0.039 – –
4 0.82 0.384 – –
5 0.55 0.188 – –
6 0.64 0.170 – –
7 0.26 0.196 – –
8 0.60 0.097 – –
9 0.36 0.170 – –
10 0.93 0.120 – –
11 – – 0.71 0.184
12 – – 0.48 0.223
13 – – 0.41 0.087
14 – – 0.32 0.057
15 – – 0.34 0.080
16 – – 0.71 0.068
17 – – 0.33 0.071
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(a) Looking at the data, do you think a pooled effect is a reasonable

assumption?

(b) Estimate the between-study variance for each treatment using (3.37).

(c) Assuming a normal random-effects model, estimate a prior distribu-

tion for the 5-year survival in a new study, assuming exchangeability

with the previous studies.

(d) Combine these two prior distributions into a prior for the difference in

the 5-year survival rate, i.e. RTx þ Chm � RTx, in a proposed clinical

trial.

(e) Is normality a reasonable assumption for the random-effects distribu-

tion?

5.7. The trial discussed in Exercise 5.2 ended by yielding an estimated hazard

ratio of 1.52 (95% CI from 0.91 to 2.50), i.e. in favour of the control

group (Errington et al., 1991).

(a) For the data-based prior using all six previous studies, assess the

conflict of these prior distributions, using the methods of Section 5.8.

(b) Repeat this for oncologists 6 and 7.

5.8. Verify for a normal model in Section 5.4, when there is a single historical

study, the assumptions under which exchangeability, bias and discount-

ing can lead to the same prior distribution. Does this hold for multiple

studies?

5.9. Plot three half-normal prior distributions for a model parameter t which

have the properties that:

5.9. (a) the mean of t is 1.5;
5.9. (b) the median is 3; and

5.9. (c) the probability of t being greater than 1 is 5%.

5.10. For the magnesium meta-analysis in Example 3.13 calculate and plot

DuMouchel and uniform shrinkage prior distributions for the random-

effects standard deviation t.
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6

Randomised Controlled
Trials

A Bayesian: one who asks you what you think before a clinical trial in order to tell you what

you think afterwards. (Senn, 1997b)

6.1 INTRODUCTION

Randomised controlled trials are traditionally considered the ‘gold standard’ for

evaluation of health-care interventions, and have provided fertile territory for

arguments between alternative statistical philosophies. In this chapter we con-

sider a number of specific issues in which a distinct Bayesian approach is

identifiable: these include the role of decision theory, ethics of randomisation,

use of historical controls, selection of sample size, monitoring sequential studies,

subset analysis, alternative designs and so on. Some of the strongest arguments

for the Bayesian approach have been made in this context, with notable

examples being Cornfield (1976), Berry (1993) and Kadane (1995). Each of

these authors has emphasised the internal consistency of the Bayesian ap-

proach, and welcomed the need for explicit prior distributions and loss functions

as producing scientific openness and honesty: see Section 6.13 for additional

references by these and other authors.

The issues in this chapter are largely common to trials both in the public sector

and in the pharmaceutical industry. For industry-sponsored trialswe shall use the

standard language of drug development: phase I studies deal with identifying a

safe dose, usually on healthy volunteers; phase II studies are concerned with

finding an effective dose; phase III studies are intended to prove treatment benefit

over an appropriate control; and phase IV studies monitor the use and possible

side-effects of a drug in routine use. This structure is necessarily rather simplistic,

and there are increasingmoves towardhybrid studies in order to speedup thedrug

development process. Parallel phases of development can be given for complex
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public health interventions (Campbell et al., 2000): in phase I an intervention is

developed possibly through a theoretical model; in phase II explanatory trials in

tightly controlled situations seek to demonstrate the potential efficacy of the

intervention; in phase III pragmatic trials evaluate its costs and effectiveness in

practice; and in phase IV the intervention is rolled out into routine use.

We shall begin by considering the basic issue of whether a trial is for inference

or decision (Section 6.2), and then investigate the role of null hypotheses and

their relation to the demands set of a new intervention (Section 6.3). The ethics

of randomisation are then viewed from a Bayesian perspective (Section 6.4). A

substantial section explores a number of ways in which prior opinion can be

incorporated into sample-size calculations (Section 6.5), followed by a full

discussion of the many ways to tackle the important issue of trial monitoring

(Section 6.6), and the possible use of sceptical priors in deciding whether a

confirmatory trial is necessary (Section 6.7). Apart from repeated looks at the

data, ‘multiplicity’ features in many aspects of trial design and analysis, and we

briefly discuss multiple subsets, outcomes, centres and trial arms (Section 6.8).

The use of historical control groups fits naturally into a Bayesian perspective

and is treated in some detail (Section 6.9); different trial designs are then

examined, for example data-dependent allocation (Section 6.10) and multiple

N-of-1 studies (Section 6.11). We only briefly consider phase I and II studies

(Section 6.12), and discussion about the regulatory context is left until we

consider policy decisions (Chapter 9).

6.2 USE OF A LOSS FUNCTION: IS A CLINICAL TRIAL FOR

INFERENCE OR DECISION?

There has been a heated dispute about whether a clinical trial should be

considered as a decision problem, with an accompanying loss function, or as

an inference problem in which no explicit loss function is developed and conclu-

sions are based solely on the posterior distributions of quantities of interest. This

has been a point of clear distinction between different schools of Bayesianism

(Section 3.20). Here we briefly review the arguments.

1. A clinical trial should be a decision. Lindley (1994) categorically states that

‘Clinical trials are not there for inference but to make decisions’, while Berry

(1994) states that ‘deciding whether to stop a trial requires considering why

we are running it in the first place, and this means assessing utilities’. Healy

(1978) considers that ‘the main objective of almost all trials on human

subjects is (or should be) a decision concerning the treatment of patients in

the future’. The potential role for explicit statement of a loss function is a

running theme throughout discussions on sample size (Section 6.5), sequen-

tial analysis (Section 6.6.4), adaptive allocation (Section 6.10) and payback

from research programmes (Section 9.10), and many would argue that the
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eventual decision is inseparable from the design and analysis of a study.

From an economic perspective, it is claimed that a utility approach to clinical

trial design and analysis is necessary in order to prevent conclusions

based on inferential methods leading to health or monetary losses. This per-

spective derives from the observation made in Section 3.14 that only the

expected utility of a decision is relevant, and expressions of uncertainty are,

theoretically, of no concern except when deciding whether to collect further

evidence.This echoes theoriginalworkonpragmaticclinical trialsbySchwartz

et al. (1980), in which it was argued that P-values and interval estimates are

irrelevant to trials that guide decisions. The role for decision theory in health

policy and regulation will be covered in Section 9.11.

The explicit use of utility functions within the design and monitoring

of clinical trials is controversial but has been explored in a number of contexts:

for example, Berry and Stangl (1996a) discuss the problems of whether to stop

a phase II trial based on estimating the number of women in the trial and who

will respond in the future;whether to continueavaccine trial by estimating the

number of children who will contract the disease; and the use of adaptive

allocation in a phase III trial such that at each point the treatment which

maximises the expected number of responders is chosen.

2. A clinical trial provides an inference. Armitage (1985), Breslow (1990), DeMets

and Lan (1994), Simon (1977) and Orourke (1996) all describe how it is

unrealistic to place clinical trials within a decision-theoretic context, primar-

ily because the impact of stopping a trial and reporting the results cannot be

predicted with any confidence: Peto (1985), in the discussion of Bather

(1985), states that ‘Bather, however, merely assumes . . . ‘‘it is implicit that

the preferred treatment will then be used for all remaining patients’’ and

gives the problem no further attention! This is utterly unrealistic, and leads

to potentially misleading mathematical conclusions’. Peto goes on to argue

that a serious decision-theoretic formulation would have to model the sub-

sequent dissemination of a treatment.

3. It depends on the context. Whitehead (1997b, p. 208) points out that the

theory of optimal decision-making only exists for a single decision-maker,

and that no optimal solution exists when making a decision on behalf of

multiple parties with different beliefs and utilities. He therefore argues that

internal company decisions at phase I and phase II of drug development may

be modelled as decision problems, but that phase III trials cannot (White-

head, 1993).

Our personal view is that the context of evaluation often means that the

investigators who design and carry out a study are generally not the same body

who make decisions on the basis of the evidence (Section 3.1), and so, taking a

pragmatic rather than ideological perspective, our general separation of infer-

ence and decision appears reasonable.
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6.3 SPECIFICATION OF NULL HYPOTHESES

Attention in a trial usually focuses on the null hypothesis of treatment equiva-

lence expressed by � ¼ 0, but realistically this is often not the only hypothesis of

interest. Increased costs, toxicity and so onmaymean that a certain improvement

would be necessary before the new treatment could be considered clinically

superior, and we shall denote this value �S. Similarly, the new treatment might

not actually be considered clinically inferior unless the true benefit were less than

some threshold denoted �I . The interval between �I and �S has been termed the

‘range of equivalence’ (Freedman et al., 1984); often �I is taken to be 0.

This is not a specifically Bayesian idea (Armitage, 1989) and can be con-

sidered as representing an interval null hypothesis. Figure 6.1 shows the

A = old superior

B = new not superior

C = equivocal

C+ = equivocal

D = old not superior

E = new superior

old treatment
superior

range of
equivalence

new treatment
superior

θS θθI

Figure 6.1 Possible situations at any point in a trial’s progress, derived from super-
imposing an interval estimate (say, 95%) on the range of equivalence.
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possible situations one could be in at any stage of a trial when calculating a 95%

interval for a treatment benefit.

A: We are confident that the old treatment is clinically superior.

B: The new treatment is not superior, but the treatments could be clinically

equivalent.

C: We are substantially uncertain as to the two treatments – this is essentially

a position of ‘equipoise’.

Cþ: We are confident the two treatments are clinically equivalent – as applied

to equivalence studies (Section 6.11).

D: The old treatment is not superior, but the treatments could be clinically

equivalent.

E: We are confident that the new treatment is clinically superior.

It could be argued that if one really wants to convince people of the clinical

superiority of a treatment, then one should aim for conclusion E in design and

monitoring, even though this demands increased sample sizes and requires a

highly significant (in the traditional sense) result.

Example 6.1 CHART (continued): Clinicaldemands fornew therapies

References: Parmar et al. (1994, 2001) and Spiegelhalter et al. (1994).
See Example 5.1 for details of the trials and the elicitation process.

Loss function or demands: No formal loss function was elicited, but a pre-
trial survey was carried out of 11 clinicians participating in the trials. The
clinicians were given the following instructions (Parmar et al., 1994):

Suppose you had been told on good authority the exact absolute improvement [in
2-yearsurvival rates] youwouldobtainby treatingpatientswith theCHARTregimen. If
this was exactly zero improvement you would presumably use your standard radical
radiotherapy in the future. If there was an absolute improvement of 20% you would
presumably use CHART. Somewhere in between these figures there is likely to be a
differencewhere youwould change fromstandard therapy toCHART.Theremaybea
range of differences where the decision would not be clearcut, i.e. a range where you
feel the two regimens are approximately equivalent. Please mark your change-over
point or the range on the scale of treatment differences shown below.

The upper and lower values for the ranges were averaged and the
following results were obtained.

Lung trial. The participants would be willing to use CHART routinely if it
conferred at least 13.5% improvement in 2-year survival (from a baseline
of 15%), and unwilling if less than 11% improvement. Thus the range of
equivalence is from 11% to 13.5%: from (2.33) this is equivalent to
hazard ratios (HR) from 0.66 to 0.71, or log(HR) from �0.41 to �0.34.
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favours CHART <-   Hazard ratio   -> favours control favours CHART <-   Hazard ratio   -> favours control

Lung trial

Clinical prior
CHART clinically superior
Equivalent
Control clinically superior
Sceptical prior
CHART superior survival
Equivalent
Control superior survival

0.28
0.11

0.611

0.015
0.021
0.964

Head-and-neck trial

0.4 0.5 0.6 0.8 1 1.2 1.5

Clinical prior
CHART clinically superior
Equivalent
Control clinically superior
Sceptical prior
CHART superior survival
Equivalent
Control superior survival

0.411
0.143
0.446

0.08
0.064
0.856

0.4 0.5 0.6 0.8 1 1.2 1.5

Figure 6.2 Clinical and sceptical priors superimposed on an assessed average
clinical range of equivalence. Probabilities of lying below, within and above the range
of equivalence are given both for clinical and sceptical priors. The juxtaposition of the
clinical priors and ranges of equivalence suggests a reasonable basis for randomisa-
tion.

Head-and-neck trial. The participants would be willing to use CHART
routinely if it conferred a 13% improvement in 2-year recurrence-free
rate (from a baseline of 45%), and unwilling if less than 10% improvement.
Thus the range of equivalence is from 10% to 13%, equivalent to HR from
0.68 to 0.75, or log(HR) from �0.38 to �0.29. The average ranges of
equivalence are shown in Figure 6.2, with the clinical and sceptical priors
derived previously. The average range of equivalence is reasonably cen-
tral to the clinical prior, suggesting, on average, a reasonable basis for
randomisation.

Oneadvantageof theBayesianapproach is that theposterior distribution canbe

juxtaposed to the clinical demands being made in order to graphically display the

current probabilities concerning the status of treatments. There is also no reason

why the ‘goalposts’ shown in Figure 6.1 should not change as a study progresses

and more is learnt about, for example, the side-effects of treatments. However, in

order to prevent subjective bias, itmaybe better for those responsible for specifying

the ‘range of equivalence’ to be blind to the data. Elicitation of such intervals can

be carried out at the same time as elicitation of prior beliefs (Section 5.2) and uses

very similar techniques: see Example 6.1. The crucial aspect is that those whose

opinions are being elicitedmust be very clear in their distinction between demands,

as expressed in their range of equivalence, and their expectation or beliefs, as
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represented by the prior distribution. Two factors increase the potential for confu-

sion: demands and beliefs are often quantitatively similar (indeed,we argue below

that this is the ethical basis for randomisation), and the loose usage of words such

as ‘the difference hoped for’, which carries connotations both of desire and

expectation. It follows that such terms must be strictly avoided!

6.4 ETHICS AND RANDOMISATION: A BRIEF REVIEW

6.4.1 Is randomisation necessary?

Randomisation has two traditional justifications: it ensures treatment groups are

directly comparable (up to the play of chance), and it provides a fundamental basis

for the probability distributions underlying conventional statistical procedures.

Since Bayesian probability models are derived from subjective judgement, and

hence do not require any underlying physical justification for a randomisation

mechanism, the latter requirement is irrelevant. This has led some to question the

need for randomisation at all, provided alternative methods of balancing groups

can be established. For example, Urbach (1993) argues that a ‘Bayesian analysis

of clinical trials affords a valid, intuitively plausible rationale for selective controls,

and marks out a more limited role for randomisation than it is generally

accorded’. It has even been claimed that ‘Randomised trials are inherently uneth-

ical’ (Berry, 1989a). Papineau (1994) refutes Urbach’s position and claims that,

despite it not being essential for statistical inference, experimental randomisation

forms a vital role in drawing causal conclusions (Rubin, 1978). The relationship

between randomisation and causal inferences is beyond the scope of this book, but

in general the need for sound experimental design appears to dominate philosoph-

ical statistical issues (Hutton, 1996). In fact, Berry and Kadane (1997) suggest

that if there are several parties whomake different decisions and observe different

data, randomisation may be a strictly optimal procedure since it enables each

observer to draw their own appropriate conclusions.

The extent to which careful analysis of high-quality databases can comple-

ment or even replace randomised trials is a delicate issue: for example, Howson

and Urbach (1989) and Hlatky (1991) argue in favour of databases, while Byar

(1980) puts an opposing view. Although a full discussion is outside the scope of

this book, we nevertheless point out that Bayesian methods provide a natural

basis for synthesising data from randomised and non-randomised studies: see

the discussion on the use of historical data (Section 3.16), historical controls

(Section 6.9) and cross-design synthesis (Section 8.4).

6.4.2 When is it ethical to randomise?

If we agree that randomisation is useful, then the issue arises of when it is

ethical to randomise. This is closely associated with the process of deciding
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when to stop a trial (Section 6.6) and is often represented as a balance between

individual and collective ethics (Pocock, 1992; Palmer and Rosenberger, 1999):

individual ethics would suggest that it is inappropriate to randomise a patient to

a treatment near the end of a trial in which one could be reasonably confident

as to another treatment’s superiority, while collective ethics could argue that

such a benefit will only be available for future patients if the current trial runs

long enough for the findings to be convincing to a wide range of clinical

opinion. See Edwards et al. (1998) for a full review of issues concerning the

ethics of randomisation in clinical trials.

Freedman (1987) introduced the idea of professional equipoise, in which

disagreement among the medical profession makes randomisation ethical. The

trial design of Kadane (1996) is an expression of this principle, in that only a

treatment that at least one clinician thought optimal could be given to a patient

(although unfortunately a programming error meant that some patients were

allocated to treatments that all clinicians felt were sub-optimal). Perhaps a more

appealing approach is the ‘uncertainty principle’ which is often argued as a

basis for ethical randomisation (Byar et al., 1990): this may be thought of as

‘personal equipoise’ in which the clinician was uncertain as to the best treat-

ment for the patient in front of them. However, a quantified degree of uncer-

tainty is not specified. Senn (2002) argues that it is reasonable for a society to

restrict new interventions to trials, and in those trials it is ethical to randomise

even when one believes in the superiority of the new treatment.

The Bayesian approach can be seen as formalising the uncertainty principle

by explicitly representing, in theory, the judgement of an individual clinician

that a treatment may be beneficial – this could be provided by superimposing

the clinician’s posterior distribution on the range of equivalence (Section 6.3)

relevant to a particular patient (Spiegelhalter et al., 1994). It has been argued

that a Bayesian model naturally formalises the individual ethical position

(Lilford and Jackson, 1995; Palmer, 1993), in that it explicitly confronts the

personal belief in the clinical superiority of one treatment. Berry (1993), how-

ever, has suggested that if patients were honestly presented with numerical

values for their clinician’s belief in the superiority of a treatment, then few

might agree to be randomised. One option might be to randomise but with a

varying probability that is dynamically weighted towards the currently

favoured treatment (Section 6.10).

Chaloner and Rhame (2001) consider the roles of professional and individual

equipoise, and suggest scenarios which indicate different bases for ethical ran-

domisation. Fifty-eight opinions elicited before a trial showed a wide range of

responses, and the acknowledged variability in clinical opinion suggests that a

suitable aim in conducting a trial is to bring disparate opinions into agreement:

Chaloner and Rhame (2001) quote Byar as saying ‘Wemay reasonably ask, if we

do a study that convinces us but convinces no one else and is then ignored or

requires confirmation by yet another study, whether we have really acted in the

most ethical fashion in the long run’. Pocock and White (1999) consider the
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situation in which one has a ‘significant’ effect in a trial, when further random-

isation is ‘unethical, but only if the statistically significant difference is genuine (in

many cases it is not) and if the new treatment would indeed be given to future

patients (which is by no means inevitable)’. We largely agree with the advice of

Kass and Greenhouse (1989), who claim that ‘the purpose of a trial is to collect

data that bring to conclusive consensus at termination opinions that had been

diverse and indecisive at the outset’ and go on to state that ‘randomisation is

ethically justifiable when a cautious reasonable sceptic would be unwilling to

state a preference in favour of either the treatment or the control’. This approach

leads naturally to the development of sceptical prior distributions (Section 5.5.2)

and their use in monitoring sequential trials (Section 6.6.2).

6.5 SAMPLE SIZE OF NON-SEQUENTIAL TRIALS

In this section we consider the Bayesian contribution to selecting the sample size

of a clinical trial which will not be subject to interim monitoring: there is

particular emphasis on ‘hybrid’ methods in which prior information is formally

used but the final analysis is carried out in a classical framework. In some

contexts this may be quite appropriate, as there may be substantial prior infor-

mation that cannot be included in the final report for, say, regulatory purposes.

This section does contain a number of rather complex expressions for quan-

tities of interest, but the content appears too important for this to be a ‘starred’

section. On a technical note, the formulae we present follow the traditional

formulation in which interest focuses on a parameter � and � > 0 indicates

benefit of the experimental treatment. We recognise that in many of our

examples � < 0 has represented such benefit, and furthermore in other cases

we might be using thresholds other than 0. Care must therefore be taken when

using the formulae in this chapter – it may be best to first transform the

particular problem being analysed into the standard formulation adopted

here. Details of these transformations are given in Section 6.5.4.

It could be argued that elicitation of prior beliefs and demands from a broad

community of stakeholders is necessary not only in order to undertake a

specifically Bayesian approach to design and analysis, but also more generally

as part of good research practice. A potential consequence of ignoring this

source of judgement is that trials may be designed on the basis of over-

enthusiastic beliefs and demands, and hence fail to convince others and modify

health-care policy or practice.

6.5.1 Alternative approaches to sample-size assessment

In Section 4.1 we described a taxonomy of six broad statistical approaches to the

evaluation of health-care interventions. Here we focus on how the four main
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viewpoints (ignoring the Bayesian hypothesis-testing and classical decision-

theory approaches) deal with selecting the sample size of a fixed-size

experiment: the design and monitoring of sequential studies will be covered in

Section 6.6. A hybrid philosophy is also included.

Fisherian. In principle there is no need for preplanned sample sizes, but a choice

may be made by selecting a particular precision of measurement and informally

trading that off against the cost of experimentation.

Neyman–Pearson. The first stage is to set up a null hypothesis (Section 6.3),

and then specify an alternative hypothesis HA: � ¼ �A that the trial is being

designed to detect. A variety of opinions have been expressed about the inter-

pretation of �A (Spiegelhalter et al., 1994), including a ‘minimum clinically

significant difference’, a ‘worthwhile difference’ and a difference ‘thought likely

to occur’. These ideas tend to conflate the demands made of the new treatment

and the expectations of its benefit (Section 6.3), and this combined role of the

alternative is reflected in its common definition as a difference that is ‘both

realistic and important’ (within a Bayesian framework these properties are

clearly separated). The sample size is then selected to have reasonable power

to detect this alternative hypothesis. Power is generally set to 80% or 90%:

formula (2.38) can be used to derive the necessary sample size in simple

circumstances. In practice the choice of alternative may be influenced by

available resources.

Hybrid classical and Bayesian. Considerable attention has been paid to a

hybrid approach in which it is assumed that a traditional analysis will take

place at the end of the trial, and the prior distribution is used solely for the

design.

Itmay be helpful to consider the joint probability distribution of hypotheses and

outcomes displayed in Table 6.1. In a traditional framework these are point

hypotheses and the study is designed around the Type I error � ¼ p(ðD1jH0), and
the power 1� � ¼ p(D1jH1). However, if we are prepared to acknowledge prior

Table 6.1 Joint probability distribution of hypotheses and outcomes of a hypothesis
test.

Truth

H0 H1

Outcome D0 : do not reject H0 p(D0, H0) ¼
P(correct negative)

p(D0, H1) ¼
P(false negative)

p(D0Þ

D1 : reject H0 p(D1, H0) ¼
P(false positive)

p(D1, H1) ¼
P(correct positive)

p(D1)

p(H0) p(H1) 1
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probabilities for the hypotheses, then it would appear reasonable to focus also

on the probability of rejecting H0 and this being the correct decision, i.e. the joint

probability p(D1,H1). Since p(D1,H1) ¼ p(D1jH1) p(H1) ¼ (1� �) p(H1), this

simply means adjusting the power by the initial probability of H1: the problem

with using only the conditional power p(D1jH1) is that no account is taken of the

plausibility of the alternative and hence there is a temptation to delude oneself

into designing trials to detect implausible hypotheses.

The unconditional probability of getting a ‘positive’ conclusion can be ex-

pressed as

p(D1) ¼ p(D1,H0)þ p(D1,H1),

and the first term, which is the probability p(D1, H0) ¼ p(D1jH0) p(H0) of a false

positive result, will generally be very small provided that � ¼ p(D1jH0) is small

and the prior opinion is substantially supportive of H1 (as will often be the case

preceding a trial). Thus

p(D1) � p(D1jH1) p(H1); (6:1)

and so the ‘prior-adjusted power’ (1� �) p(H1) will often also be close to the

unconditional probability of the trial getting a ‘significant’ result.

Things get a little more complicated in the more general case when the

hypotheses are composite, for example H0: � < 0 and HA: � > 0. Here the

classical power is given by a curve p(D1j�), and we wish to make use of a

continuous prior distribution p(�).
A number of means of incorporating the prior are possible.

1. One can plot the conditional power curve and superimpose the prior distri-

bution as an informal guide to the relative plausibility of alternative hypoth-

eses. This might prevent a study being designed around an alternative that

was clearly grossly optimistic.

2. The prior mean �might simply be taken as a point alternative hypothesis �A,
representing a ‘plausible and worthwhile difference’, although this does not

acknowledge the current uncertainty about � expressed by the prior.

3. The whole classical power curve p(D1j�) can be averaged with respect to the

prior distribution to obtain an ‘expected’ or ‘average’ classical power

p(D1) ¼
R
p(D1j�) p(�) d�. This will give the unconditional probability of

rejecting H0. From the discussion above, we might expect this to be a

reasonable approximation to the prior-adjusted power p(D1,H1) if p(�) does
not give substantial probability to values of � < 0.

4. The classical power curve can be averaged with respect to the prior distribu-

tion p(�jH1) ¼ p(�j� > 0), i.e. conditional on H1 being true (since

p(�j� > 0) ¼ p(�, � > 0)=p(� > 0), this can be obtained by restricting the

prior to � > 0 and renormalising it to have total probability 1). Brown et al.
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(1987) recommend this technique as predicting the chance of correctly

detecting a positive improvement, rather than the overall chance p(D1) of
getting a positive result regardless of the truth. But this method suffers from

the same difficulty as the original classical power calculation, in that no

account is taken of the plausibility of H1.

5. The predictive distribution over the possible powers could be displayed as an

aid to deciding appropriate sample sizes.

We shall illustrate these options in the following sections, using normal likeli-

hoods and priors.

Prior distributions might be from any of the sources described in Chapter 5,

for example subjective assessments (Ten Centre Study Group, 1987), a single

previous study (Brown et al., 1987), or a meta-analysis of previous results

(DerSimonian, 1996): Example 6.4 illustrates the use of subjective opinion.

Most of the applications have assumed a conventional analysis, although

Bryant and Day (2000) suggest that a suitable Bayesian perspective is for a

trial to be large enough to enable a sceptic and an enthusiast to be brought into

consensus.

Finally, it is natural to express a cautionary note on projecting from previous

studies (Korn, 1990), and possible techniques for discounting past studies are

very relevant (Section 5.4).

Proper Bayesian. As in the Fisherian approach, there is in principle no need for

preplanned sample sizes (Lilford et al., 1995). Alternatively, it is natural to focus

on the eventual precision of the posterior distribution of the treatment effect: for

normal assumptions this is straightforward to calculate. There is an extensive

literature on non-power-based Bayesian sample-size calculations (Joseph et al.,

1997).

When working within a hypothesis-testing framework, all the above discus-

sion on hybrid classical and Bayesian methods holds, except that the final

conclusion of whether the result is ‘significant’ or not will be based on a

posterior distribution rather than a classical analysis. One is still faced with a

variety of means of incorporating the prior distribution, although since the

conclusions are going to include that prior it seems natural to use its full form

and calculate expected power. The necessary formulae for normal likelihoods

and priors are provided in Section 6.5.3.

Lee and Zelen (2000) propose a method based on obtaining a high posterior

probability of an effective treatment after a ‘significant’ result, using the analysis

described in Section 3.10, i.e. by trying to fix p(H1jD1). This has been criticised

by Simon (2000) and Bryant and Day (2000) as ignoring the actual data

observed and hence violating the likelihood principle.

Decision-theoretic Bayesian. If we are willing to express a utility function for

the cost of experimentation and the potential benefit of the treatment, then
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sample sizes can be chosen to maximise the expected utility. Lindley (1997) and

discussants argue strongly for this position. Detsky (1985) conducted an

early attempt to model the impact of a trial in terms of future lives saved,

which required modelling beliefs about the future number to be treated and

the true benefit of the treatment, while Claxton et al. (2000) and Gittins and

Pezeshk (2000), for example, show how sample sizes could be explicitly deter-

mined by a trade-off between the cost of the trial and the expected future benefit:

for further references, see Section 6.13. This approach also attempts to answer

the question ‘what is the expected net benefit from carrying out the trial?’

(Section 9.10). An intermediate ‘information-theoretic’ position is taken by

Lindley (1997) who does not attempt to model the future benefit of a trial,

and instead trades off the information in the posterior distribution against the

cost of sampling.

6.5.2 ‘Classical power’: hybrid classical–Bayesian methods
assuming normality

We now assume we have a prior distribution to use in our study design, but that

the conclusions of the study will be entirely classical and will not make use of

the prior, perhaps because of submission to a regulatory authority. Suppose we

have a normal prior � � N[�, �2=n0] and our future data Yn have distribution

Yn � N[�, �2=n], and we wish to calculate the predictive probability of

obtaining a classically ‘significant’ result when testing the null hypothesis

� < 0. Under a classical analysis (Section 2.5), H0 will be rejected when the

parameter estimate Yn obeys

Yn > � 1ffiffiffi
n

p z��; (6:2)

this event, denoted SC� , will occur with probability

P(SC� j�) ¼ F
�
ffiffiffi
n

p
�

þ z�

� �
, (6:3)

which is the classical power curve previously given in (2.37).

We can plot (6.3) superimposed on the prior p(�), which can reveal

the relative plausibility of the potential alternative hypotheses and suggest

whether the trial is based on over-optimistic assumptions (see Example 6.2).

If we wish to calculate the overall unconditional probability of a ‘significant’

result SC� we can integrate (6.3) with respect to the prior. However, it

is analytically more straightforward to use the the predictive distribution

(3.23)
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Yn � N �,�2 1

n0
þ 1

n

� �� �

to directly evaluate the chance of the critical event (6.2) occurring, which can

be shown to be

P(SC� ) ¼ F

ffiffiffiffiffiffiffiffiffiffiffiffiffi
n0

n0 þ n

r
�
ffiffiffi
n

p
�

þ z�

� �� �
: (6:4)

The relationship to the power curve (6.3) is clear. As n0 ! 1, the prior tends to

a lump on � and P(SC� ) tends to the classical power evaluated at the prior mean

�. However, finite n0 will mean that the expected power is less than the classical

power evaluated at the prior mean �, provided the classical power is greater

than 50%. This may be a more realistic assessment of the chance that the trial

will yield a positive conclusion.

We note that Table 6.1 can be extended to allow ‘equivocal’ decisions, and

that the necessary probabilities can be calculated using tail areas of the bivariate

normal distribution (Spiegelhalter and Freedman, 1986).

Example 6.2 Bayesianpower: Choosing the sample size fora trial

We revisit Example 2.6, in which a trial for a new cancer treatment is
designed to have 80% power to detect a log(hazard ratio) yA ¼ 0:56,
requiring 100 events when assuming a two-sided a of 0.05. Consider an
archetypal enthusiastic prior (Section 5.5.3) centred on the alternative hy-
pothesis and with 5% prior probability that y < 0. Hence y � N [m, s2=n0]
where m ¼ 0:56, s ¼ 2 and m� 1:645s=

ffiffiffiffiffi
n0

p ¼ 0, so that n0 ¼ 1:6452s2=m2

¼ 34:5. The classical power curve and the prior are shown on Figure 6.3: the
power at the prior mean is 80% as designed, the expected power (6.4)
averaging over the entire prior distribution is 0.66, showing the decline
from the conditional value of 0.80. If we took the approach recommended
by Brown et al. (1987) we would average the power curve with respect to
the conditional prior p(yjH1) ¼ p(yjy > 0); this is not straightforward
to calculate and is perhaps easiest to evaluate using Monte Carlo
methods (Section 3.19.1), from which we find, using the notation of Table
6.1, that p(D1jH1) ¼ 0:70. Such a value might have been predicted,
since we know that p(H1) ¼ 0:95, p(D1) ¼ 0:66, and from (6.1) that
p(D1) � p(D1jH1)p(H1).

6.5.3 ‘Bayesian power’

Suppose we have the same normal prior and likelihood as in Section 6.5.2 but

now wish to carry out a fully Bayesian analysis in which the prior will be
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(a) Classical (solid) and Bayesian (dashed) power curves

Favours standard            <--  Hazard ratio  -->      Favours new
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(b) Enthusiastic prior

Favours standard            <--  Hazard ratio  -->      Favours new

Figure 6.3 Power curves (a) for testing H1: y > 0, designed to have classical power
of 80% at yA ¼ 0:56 (HR ¼ 1:75). The Bayesian power curve in (a) assumes that the
enthusiastic prior shown in (b) is to be included in the analysis.

incorporated. We wish to calculate the predictive probability of obtaining a

‘significant’ Bayesian result when testing the null hypothesis � < 0 against an

alternative � > 0, and we shall denote such ‘Bayesian significance’ as

SB� � P(� < 0jdata) < �.
Assuming a future parameter estimate Yn, we will obtain the posterior

distribution

�jYn � N
n0�þ nYn

n0 þ n
,

�2

n0 þ n

� �
,

and so SB� will occur when the parameter estimate Yn obeys

Yn >
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

n0 þ n
p

z� �� n0�

n
: (6:5)

For a particular true value of �, Yn � N[�, �2=n], and hence it can be easily

shown that this event will occur with probability

Sample size of non-sequential trials 195

Chapter 6 Randomised Controlled Trials 17.11.2003 4:53pm page 195



P(SB� j�) ¼ F
�
ffiffiffi
n

p
�

þ �n0
�
ffiffiffi
n

p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
n0 þ n

n

r
z�

" #
: (6:6)

With vague prior opinion, n0 ! 0 and we are left with the standard classical

power curve given in (2.37).

Just as in Section 6.5.2, we can plot (6.6) superimposed on the prior p(�): To
calculate the overall unconditional probability of a ‘significant’ result SB� it is

again analytically more straightforward to use the the predictive distribution of

Yn to evaluate the chance of the critical event (6.5) occurring:

P(SB� ) ¼ P Yn >
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

n0 þ n
p

z��� n0�

n

� �

¼ F
�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
n0 þ n

p ffiffiffiffiffi
n0

p
�
ffiffiffi
n

p þ
ffiffiffiffiffi
n0

n

r
z�

� �
:

(6:7)

Example 6.3 Bayesian power (continued): Choosing the sample size for
a trial

If we are willing to include the prior distribution in the analysis then we
obtain the Bayesian power curve (6.6) shown as a dashed line in Figure
6.3(a), which is substantially higher than the classical power curve due to
the prior giving a ‘head start’. The power at the alternative hypothesis
yA ¼ 0:56 is 0.93, while the chance of a false rejection of y ¼ 0 has risen
from 0.025 to 0.10 – this inflated chance of a Type I error illustrates the
danger of getting the prior ‘wrong’. The expected Bayesian power (6.7),
averaged with respect to the prior distribution in Figure 6.3(b), is 0.78.

6.5.4 Adjusting formulae for different hypotheses

All the formulae provided so far have assumed that � > 0 indicates superior

performance of the innovative treatment and therefore is the alternative hy-

pothesis of interest – this has simplified the exposition but clearly will not hold in

all situations. One option is to redefine the outcome measures and parameters so

that � has the required properties. Alternatively, one can transform the formu-

lae provided, and we now consider the necessary transformations when differ-

ent hypotheses are being considered.

. Non-zero threshold. Suppose the null hypothesis is H0: � < �0 and the

alternative H1: � > �0. Each of the previous formulae can be transformed by

subtracting �0 from the prior mean �, the observed statistic ym and, in

conditional power calculations, the parameter �. For example, suppose in
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Example 6.2 that the threshold of interest was changed to � ¼ 0:2, i.e. the
posterior interval would need to lie wholly above a log(hazard ratio) of

0:2 (HR ¼ 1:22) before H0 is rejected. The conditional power at the alterna-

tive hypothesis �A ¼ 0:56 is now only 0.56, obtained from transforming

(6.6), while the expected power is found from (6.7) to be 0.53.

. Reversal of hypotheses. As we have seen in most of our examples, it is

common to express benefit from the new intervention as a reduction in risk,

and hence on a logarithmic scale to set H1: � < 0. Thus a ‘significant’ result

will be obtained if a final interval lies wholly below 0. If, for example, we were

adopting a fully Bayesian approach this would be equivalent to the event

P(� > 0jdata) < �, which we shall denote SB�� . Now

SB�� � [P(� > 0jdata) < �] � [P(� < 0jdata) > 1� �]

and hence, for example,

P(SB�� Þ ¼ 1� P(SB1��Þ:

Therefore the formulae provided can be transformed by substituting 1� � for
�, and subtracting the result from 1.

For example, suppose in Example 6.2 that the threshold of interest was

changed to � ¼ 0:69, HR ¼ 2, and furthermore we were interested in the

expected power to reject the null hypothesis H0: � > �0, i.e. we are interested

in values of � with an odds ratio less than 2. Using both transformations on

(6.7) leads to

P(SB�� ) ¼ 1� P(SB1��) ¼ 1�F
(�� �0)

ffiffiffiffiffiffiffiffiffiffiffiffiffi
n0 þ n

p ffiffiffiffiffi
n0

p
�
ffiffiffi
n

p þ
ffiffiffiffiffi
n0

n

r
z1��

� �
: (6:8)

Then from (6.8) we find the expected power is 0.24: such a low value might be

anticipated from the substantial prior support for H0.

Example 6.4 Gastric: Sample size fora trialof surgery forgastric cancer

Reference: Fayers et al. (2000).

Intervention: Radical (D2) compared to conventional (D1) surgery for
gastric cancer.

Aim of study: Evidence from Japan suggested that more radical surgery
was a possible explanation for the better survival rates of patients with
gastric cancer, and the UK Medical Research Council initiated a ran-
domised trial to compare survival following radical and conventional
surgery.
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Studydesign: Two-group parallel RCT.

Outcome measure: Hazard ratio of death (HR > 1 favours radical treat-
ment).

Planned sample size: The trial was designed under the assumption that
the minimum clinically significant difference was a 13.5% improvement
in 5-year survival from 20% to 33.5% in patients undergoing conven-
tional surgery – this value for the alternative hypothesis was based on
the opinion of the trial team. This is equivalent to a hazard ratio of
log (0:20)= log (0:335) ¼ 1:47 (Section 2.4.2), or log (HR) ¼ 0:39. For
the trial to be able to detect a 13.5% difference at the 5% significance
level with 90% power, the necessary number of events (i.e. deaths) is
n ¼ s2(1:96þ 1:28)2=0:392 ¼ 276, when taking s ¼ 2 (Section 2.4.2 and
(2.38) ). The trial was designed to have 200 patients per arm which was
predicted to yield this number of events.

Statistical model: For planning purposes, the normal approximation of
Section 2.4.2 was adopted, while for analysis a full Cox regression was
used to obtain a likelihood for log(HR).

Prospective analysis?: Yes.

Prior distribution: In addition to the three surgical members of the trial
steering committee, a further 23 surgeons had their beliefs regarding
the likely benefit/harm of radical compared to conventional surgery
elicited, both at the start of the trial and later when the trial had stopped
but had not yet been published. Fayers etal. (2000) shows each individ-
ual’s prior distribution on a scale representing improvement in 5-year
survival, elicited using a similar questionnaire to that of Parmar et al.
(1994); see Example 5.1. The average distribution had a prior mean of
9.4% improvement over their average assessed control 5-year survival
of 21%, although skewness in the distributions gives rise to a median of
around 4%. Assuming a baseline survival of 21%, the distribution for
an improvement p can be transformed to a log(HR) scale by
log (HR) ¼ log ( log (0:21)=log (0:21þ p) ) as in Example 5.1: fitting a
normal distribution to the transformed histogram yields a prior with
mean m ¼ 0:12 and standard deviation s=

ffiffiffiffiffi
n0

p ¼ 0:19, and so
n0 ¼ 4=0:192 ¼ 111. This corresponds to a hazard ratio of 1.13 (95%
interval from 0.78 to 1.64). This distribution is shown in Figure 6.4(a),
revealing that the probability of exceeding the alternative hypothesis of
HR ¼ 1:47 is 8%. Hence, the overall prior beliefs for the surgeons reveal
the trial has been designed around a rather optimistic target.

Figure 6.4(b) shows the power curve (6.3) for the trial based on an
expected n ¼ 276 events, with 90% power at the alternative hypothesis
of 1.47. Juxtaposing with Figure 6.4(a) shows that the surgeons’ belief is
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concentrated in an area of rather low power. Indeed, (6.4) shows that the
expected power is only 30%, which rises marginally to 31% if a Bayesian
final analysis is undertaken (6.7). Even if the surgeons were consider-
ably more optimistic, and their prior mean was set to the alternative
hypothesis of HR ¼ 1:47, then the expected power would rise to only
45%.

Loss function or demands: No, but as well as eliciting the beliefs of the
surgeons, the authors elicited their demands for radical surgery: around
a 10% improvement was judged to be necessary before wishing to
routinely implement the more radical surgery, which is more extensive
and has extra risk of complications and resource usage.

Computation/software: Conjugate normal model.

Evidence fromstudy: The trial recruited the full 200 patients on each arm,
and eventually 281 events were observed (137 under D1, 144 under
D2), with a result slightly in favour of the conventional surgery. The
observed hazard ratio, based on a Cox regression, was 0.91 (95% CI
from 0.72 to 1.15), equivalent to a log(HR) of �0:09 (standard error 0.11,
equivalent to an effective number of events of m ¼ s2=0:112 ¼ 278,
almost exactly the same as the actual number of events observed).
The 5-year survival rate in those patients undergoing conventional sur-
gery was 30%, considerably higher than the 20% expected before the
trial started. This likelihood is displayed in Figure 6.4(c).

Bayesian interpretation: Figure 6.4(d) displays the predictive distribution
for the observed hazard ratio, derived using the methods described in
Section 3.13. The probability of observing a result as extreme as that
observed is 0.32, twice the shaded area shown in Figure 6.4(d). From
Section 5.8 this is Box’s measure of conflict between prior and likelihood,
and is not particularly extreme even though the prior expectation of a
benefit from D2 conflicted with the observed hazard ratio.

Comments: Fayers et al. (2000) carried out a second elicitation exercise
when the trial was complete but before the results were announced, and
found there was still considerable optimism among the clinical collabor-
ators. They conclude that although opinions change over time, those
involved in a clinical trial tend to be optimistic and if their prior expect-
ations are used as a naive basis for sample-size calculations, the trial
could result in too small a sample size. Nevertheless, in this example the
alternative hypothesis was judged to be optimistic even by the partici-
pants. A more realistic assessment of the trial’s chances of success
might be made by taking into account their full uncertainty.

It is also important to monitor such a trial so that it does not continue
unnecessarily – in this example the trial might have been stopped and
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(a) Clinical prior

Favours standard (D1) <--  Hazard ratio  --> Favours radical (D2)
0.7 0.8 0.9 1 1.2 1.4 1.6 1.8 2

(b) Classical power curve

Favours standard (D1)    <--  Hazard ratio  -->      Favours radical (D2)
0.7 0.8 0.9 1 1.2 1.4 1.6 1.8 2

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

(c) Likelihood from trial

Favours standard (D1)    <--  Hazard ratio  -->    Favours radical (D2)
0.7 0.8 0.9 1 1.2 1.4 1.6 1.8 2

(d) Prediction from prior

Favours standard (D1)   <--  Observed hazard ratio  -->   Favours radical (D2)

0.7 0.8 0.9 1 1.2 1.4 1.6 1.8 2

Figure 6.4 The prior assessment (a) for D2 trial in gastric cancer surgery shows
some expectation of benefit, but the alternative hypothesis of 1.47 around which the
trial has been designed is clearly very optimistic (b). The eventual trial result (c)
showed no clear evidence for benefit. The predictive distribution derived from the
prior (d) shows that the observed result (HR ¼ 0:91) was not particularly surprising,
given the prior opinion as expressed by (a).
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rejected an ‘important difference’ some time before the eventual conclu-
sion. However, as we shall see in Section 6.6.2, it may be more appro-
priate to monitor using the clinical prior, in order to ensure that the
negative finding is convincing even to enthusiasts.

6.5.5 Predictive distribution of power and necessary sample size

Consider the classical power formula given in (2.37). If we express uncertainty

over the parameters as a prior distribution, then the power can be considered as

an unknown quantity with a distribution induced by this prior. This predictive

distribution over the power can best be obtained by simulation methodology:

essentially the unknown parameters are simulated from their prior distribution,

plugged into the formula for the power, and the result recorded. After many

iterations of this procedure a distribution over possible powers is obtained. This

is essentially a Monte Carlo procedure (Section 3.19.1) and is illustrated in

Example 6.5.

Example 6.5 Uncertainty: Predictive distributionof power

Assume that a randomised trial is planned with n patients in each of two
arms, using a response with standard deviation s ¼ 1; hence, the variance
of a contrast between two patients is 2s2. The trial is aimed to have Type I
error (two-sided a) of 5%, and 80% power to detect a true difference of
y ¼ 0:5 in mean response between the groups.

From (2.38) the necessary sample size per group is

n ¼ 2s2

y2
(z0:8 � z0:025)

2

where z0:8 ¼ 0:84, z0:025 ¼ �1:96; note that this differs slightly from (2.38)
as here s is the standard deviation of a single response.

The necessary sample size is n ¼ 63. Suppose, however, that we wish to
express uncertainty concerning both y and s. For y we assess a prior mean
of 0.5 and prior standard deviation of 0.1, while for sweassume a priormean
of 1 and standard deviation of 0.3. y and s are assumed to be independent
and normally distributed (subject to the constraint of s being positive).

Using Monte Carlo methods we simulate values of y and s from their prior
distributions, substitute them in the sample-size formula above, and so
obtain a predictive distribution over n. This distribution has the properties
shown in Table 6.2 and is plotted in Figure 6.5 – it is clear that there is huge
uncertainty as to the appropriate sample size.
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Table 6.2 Properties of predictive distributions of necessary sample size n for
fixed power of 80%, and power for fixed sample size n ¼ 63.

Median 95% interval

n 62.5 9.3 to 247.2
Power (%) 80 29 to 100

n sample: 10000

0.015

0.01

0.005

0.0

0.0 500.0 1.00E+3

power sample: 10000

6.0

4.0

2.0

0.0

0.0 0.25 0.5 0.75 1.0

Figure 6.5 Predictive distributions from WinBUGS for necessary sample size n to
achieve 80% power, and power for n ¼ 63 patients per group.

For fixed n, the power is

power ¼ F

ffiffiffiffiffiffiffiffi
ny2

2s2

s
þ z0:025

0
@

1
A:

If we decide to use 63 patients per group, we can simulate potential values
for the power using the same methodology. The results are again pre-
sented in Table 6.2 and plotted in Figure 6.5, and show that although the
median power is 80%, a trial of 63 patients per group could be seriously
underpowered. We can calculate other quantities that could give insight
into the planned sample size: for example, that there is a 37% chance that
the power is less than 70%.

6.6 MONITORING OF SEQUENTIAL TRIALS

6.6.1 Introduction

Whether or not to stop a trial early is a complex ethical, financial, organisa-

tional and scientific issue, in which statistical analysis plays a considerable role.

Section 4.3 has already demonstrated that sequential analysis might be con-

sidered the ‘front line’ between Bayesian and frequentist approaches, and the

monitoring of sequential trials has been said to reach ‘to the very foundations of

the two paradigms’ (Etzioni and Kadane, 1995).
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Recommendations concerning early stopping or changes in the conduct of

trials increasingly rest in the hands of independent committees known as data

and safety monitoring boards or data monitoring committees (DMC). We shall

adopt the latter term. In Section 6.6.6 we shall discuss the relevance of the

Bayesian perspective to the deliberations of a DMC, where we shall emphasise

the ability to incorporate external evidence and formally account for the desire

to bring the trial to a conclusive result.

Four main statistical approaches can be identified, again corresponding to the

four main entries in Table 4.1:

. Fisherian. This is perhaps best exemplified in trials influenced by the Clinical

Trial and Services Unit in Oxford, in which protocols generally state (Collins et

al., 1995) that the DMC should only alert the steering committee to stop the

trial on efficacy grounds if there is ‘both (a) ‘‘proof beyond reasonable doubt’’

that for all, or for some, types of patient one particular treatment is clearly

indicated . . . and (b) evidence that might reasonably be expected to influence

the patient management of many clinicians who are already aware of the

results of other main studies’. There is no formal expression of what evidence

is required to establish ‘proof beyond reasonable doubt’ (although 2P < 0:001
is mentioned as a possible criterion). We also note the explicit, though again

informal, appeal to the idea that the results should be convincing to a broad

spectrum of opinion, and its close relation to the quote by Kass and Greenhouse

(1989) on the need for trials to bring ‘conclusive consensus’ (Section 6.4.2).

. Neyman–Pearson. This classical method attempts to retain a fixed Type I

error through prespecified stopping boundaries or guidelines which may be

used at prespecified analysis times (‘group-sequential methods’) or with con-

tinuous monitoring. Group-sequential methods boundaries include those of

O’Brien and Fleming, which are very conservative at early interim analyses,

and Pocock, which have constant nominal ‘significance’, while continuous

methods include alpha-spending functions and triangular boundaries. See

Whitehead (1997a) for a detailed review. DeMets (1984) states that ‘while

they are not stopping rules, such methods can be useful in the decision-

making process’, although regulatory authorities require good reasons for

not adhering to such boundaries (International Conference on Harmonisation

E9 Expert Working Group, 1999).

Objections to this approach from both Fisherian and Bayesian perspectives

have already been covered in Section 4.3. In addition, there is no agreed

method of estimation following a sequential trial (Freedman, 1996), although

frequentist sequential rules are ‘prone to exaggerate magnitude of treatment

effect’ (Pocock and Hughes, 1989) since they would tend to stop when on a

random high; Pocock and White (1999) term the tendency for early extreme

results to become less impressive as ‘regression to the truth’. Armitage

(1991a) agrees that adjusted P-values are ‘too tenuous to be quoted in an
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authoritative analysis of the data’, but still considers frequency properties of

stopping rules may be useful guides for ‘mental adjustment’.

In practice, a DMC will need to take into account multiple sources of

evidence when making its judgement and, if working within the traditional

Neyman–Pearson paradigm, classical sequential analysis may be a useful

warning against over-interpretation of naive P-values. Freidlin et al. (1999)

provide a useful analysis, pointing out that the role of a trial is to change

practice and warning of over-strict adherence to formal stopping procedures.

. Proper Bayesian. Probabilities derived from a posterior distribution may be

used for monitoring, without formally prespecifying a stopping criterion or

even prespecifying a sample size (Berry, 1993). It is natural to use the posterior

probabilities of hypotheses of interest as a basis for monitoring (Section 6.6.2),

although this may be supplemented by making predictions of the possible

consequences of continuing (Section 6.6.3). As for trials with fixed sample

size, a hybrid strategy is possible in which prior distributions may be used at

the design stage but assuming a Neyman–Pearson analysis (McPherson,

1982). However, if external evidence becomes available during a clinical trial

it can be argued that this should be incorporated into a prior distribution.

There is no direct implication of the Bayesian approach on trial size. Mat-

thews (1995) and Edwards et al. (1997) have suggested that small, open trials

fit well into a Bayesian perspective in which all evidence contributes and there

is no demand for high power to reject hypotheses. Alternatively, monitoring

with a sceptical prior may demand larger than standard sample sizes in order to

convince an archetypal sceptic about treatment superiority.

. Decision-theoretic Bayesian. This assumes we are willing to explicitly assess

the losses associated with consequences of stopping or continuing the study,

and therefore the trial requires a full specification of the ‘patient horizon’, the

allocation rule and so on. This approach also quantifies the expected benefit of

the trial and therefore helps decide whether to conduct the trial at all – see

Sections 6.6.4 and 9.10.

6.6.2 Monitoring using the posterior distribution

Following the ‘proper Bayesian’ approach, it is natural to consider terminating a

trial when one is confident that one treatment is better than the other, and this

may be formalised by assessing the posterior probability that the treatment

benefit � lies above or below some boundary, such as the ends of the range of

equivalence described in Figure 6.1. For example, when comparing two treat-

ments in which � represents success rates, we might consider stopping in favour

of the new treatment and concluding � > 0 when the posterior probability that

� < 0 is less than some threshold � (we note we are not using � to denote our

tail area in order to avoid confusion with expressions for Type I error). In
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Section 6.5.3 we denoted this event SB� , and for normal prior and likelihood this

will occur if the parameter estimate ym obeys

ym >
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n0 þm
p

z� �� n0�

m
; (6:9)

this is equivalent to (6.5) but seen as a retrospective assessment of observed data

ym rather than a prospective view of future data Yn. Applications of this

procedure have been reported in a wide variety of trials (Section 6.13).

We have already discussed how a well-designed trial should contain sufficient

evidence to bring both a sceptic and an enthusiast to broadly the same conclu-

sions (Section 6.4.2) as to whether the treatment is effective or not. This idea

may be formalised in the following way, using the concept of sceptical and

enthusiastic priors (Section 5.5).

. First, stopping with a ‘positive’ result (i.e. in favour of the new treatment)

might be considered if a posterior based on a sceptical prior suggested a high

probability of treatment benefit.

. Second, stopping with a ‘negative’ result (i.e. that is equivocal or in favour of

the standard treatment) may be based on whether the results were sufficiently

disappointing to make a posterior based on an enthusiastic prior rule out a

treatment benefit.

In other words, we should stop if we have convinced a reasonable adversary

that they are wrong. Fayers et al. (1997) provide a tutorial on such an approach,

and Example 6.6 describes its application by a DMC for two cancer trials. In

addition, Example 6.7 considers a trial in which the data overwhelmed an

optimistic prior centred on a 40% risk reduction, and hence justified assuming

a negative result and early stopping with a conclusion of no treatment benefit.

It is worth considering in more detail the use of a sceptical prior as a basis for

monitoring, particularly as it encourages an explicit comparison with classical

sequentialmethods. Supposeweassumea sceptical prior for a treatmentdifference

� � N 0,
�2

n0

� �
,

and we would consider stopping the trial when the event SB� occurs, i.e.

P(� < 0jdata) < �, or equivalently when a symmetric 100(1� 2�)% interval

lies wholly above 0. From (6.9) this will occur when

yn >
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n0 þm
p

z� �

m
: (6:10)

Let zm ¼ ym�=
ffiffiffiffi
m

p
be the standardised classical test statistic. Then (6.10) can be

rearranged as
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zm > �z�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ n0

m

r
: (6:11)

The term
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ n0=m

p
is a multiplier of the ‘naive’ critical value �z�, and

demonstrates how the sceptical prior opinion introduces conservatism through

increasing the critical value.

Suppose 2� ¼ 0:05 and hence �z� ¼ 1:96, and the maximum intended

sample size of the trial is n. In Section 5.5.2 we argued that a reasonable

‘handicap’ might be n0=n ¼ 0:26, based on a trial with 90% power to detect

an ‘optimistic’ difference. Substituting into (6.11), we stop and reject H0 when

zm > 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 0:26

n

m

r
: (6:12)

The boundary is a function solely of the proportion m=n of the trial that has

been completed, and is shown in Figure 6.6. Assuming a sceptical prior thus
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Figure 6.6 Monitoring boundaries for a sceptical prior opinion with 2� ¼ 0:05 and
handicap 0.26. This is compared to Pocock and O’Brien–Fleming boundaries assuming
five equally spaced analyses, and the Haybittle–Peto boundary in which a difference of
three standard errors is sought at all interim analyses, and then an unadjusted P-value
adopted at the end of trial.
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provides a handicap to early stopping: explicit comparison with boundaries

obtained by classical sequential methods is made in Figure 6.6 and the qualita-

tive similarity is clear, while a quantitative investigation is made in Section

6.6.5. Other comparisons with frequentist procedures have been carried out by

Freedman and Spiegelhalter (1989), DerSimonian (1996) and Freedman et al.

(1994).

It is also possible to use ‘robust priors’ (Section 5.6) in which the set of prior

distributions leading to a specific conclusion are identified at each interim

analysis (Greenhouse and Wasserman, 1995; Carlin and Sargent, 1996). In

addition, posterior probabilities of two responses can be monitored jointly and

stopping considered when an event of interest, such as either outcome occur-

ring (Etzioni and Pepe, 1994), exceeds a certain threshold. This monitoring

scheme has also been proposed for single arm studies and for phase I and II trials

(Section 6.12).

Although monitoring using posterior distributions appears intuitive, criti-

cisms of this procedure include its lack of explicit loss function (Section 6.6.4),

its sampling properties, and its dependence on the prior (Section 6.6.5).

Example 6.6 CHART (continued): Monitoring trials using sceptical and
enthusiastic priors

Reference: Parmar etal. (1994, 2001) and Spiegelhalter etal. (1994). This
example has previously been considered in Examples 5.1, 5.3 and 6.1.

Evidence fromstudy: For the lung cancer trial, the data reported at each of
the annual meetings of the independent DMC is shown in Table 6.3: the
final row is that of the published analysis. Recruitment stopped in early
1995 after 563 patients had entered the trial. It is clear that the extremely
beneficial early results were not retained as the data accumulated,
although a clinically important and statistically significant difference
was eventually found. Perhaps notable is that the DMC recommended
continuation of the trial even when the two-sided P-value was 0.001, i.e.
when the data had crossed the Haybittle–Peto boundary.

Table 6.3 Summary data reported at each meeting of the CHART lung trial DMC. Under a proportional
hazards assumption with hazard ratio HR, the 2-year survival improvement, s, over a baseline of 15%,
obeys HR ¼ log (0:15þ s) / log (0.15), which can be rearranged to s ¼ 0:15HR � 0:15.

Date No. patients No. deaths Hazard ratio 2-year % survival improvement Two-sided
P-value

Estimate (95% CI) Estimate (95% CI)

1992 256 78 0.55 (0.35 to 0.86) 20 (5 to 36) 0.007
1993 380 192 0.63 (0.47 to 0.83) 15 (6 to 26) 0.001
1994 460 275 0.70 (0.55 to 0.90) 12 (4 to 20) 0.003
1995 563 379 0.75 (0.61 to 0.93) 9 (3 to 16) 0.004
1996 563 444 0.76 (0.63 to 0.90) 9 (3 to 15) 0.003
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Table 6.4 Summary data reported at each meeting of the CHART head-and-neck trial DMC. Two-year
survival improvements are based on a baseline of 45% disease-free survival.

Date No. patients No. events Hazard ratio 2-year % survival improvement Two-sided
P-value

Estimate (95% CI) Estimate (95% CI)

1992 531 188 0.91 (0.68, 1.21) 3 (�7, 11) 0.50
1993 674 293 0.92 (0.73, 1.16) 3 (�5, 11) 0.16
1994 791 387 0.89 (0.72, 1.09) 4 (�3, 11) 0.20
1995 918 464 0.92 (0.76, 1.11) 3 (�4, 10) 0.33
1996 918 485 0.95 (0.79, 1.14) 2 (�5, 8) 0.52

For the head-and-neck cancer trial, the data reported at each meeting of
the independent DMC are shown in Table 6.4. There was no strong
evidence of benefit shown at any point in the study.

Bayesian interpretation: For the lung trial, the DMC was presented with
survival curves, and posterior distributions and tail areas arising from a
reference prior (uniform on a log(HR) scale). In view of the positive
findings, the posterior distribution resulting from the sceptical prior de-
rived in Example 5.3 was presented, in order to check whether the
evidence was sufficient to persuade a reasonable sceptic.

Figure 6.7 shows the sceptical prior distributions at the start of the lung
cancer trial, and the likelihood (essentially the posterior under the refer-
ence prior) and posterior for the results available in subsequent years.
Under the reference prior there is substantial reduction in the estimated
effect as the extreme early results are attenuated, while the sceptical
results are remarkably stable and the initial estimate in 1992 is essen-
tially unchanged as the trial progresses. The detailed results under the
sceptical prior are shown in Table 6.5. Before the trial the clinicians were
demanding a 13.5% improvement before changing treatment: however,
the inconvenience and toxicity were found to be substantially less than
expected and so probabilities of improvement are shown for 0% and 7%,
around half the initial demands. Such ‘shifting of the goalposts’ is entirely
reasonable provided it is not based on the primary outcome results.

Table 6.5 Estimates presented to CHART DMC in successive years (apart from 1996, which are the
final published data) for lung cancer trial, obtained under a sceptical prior distribution. Posterior
probabilities are presented for ‘no improvement from CHART’ (analogous to one-sided P-values), and for
‘practically significant improvement from CHART’.

Date No deaths Estimated
hazard ratio (HR)

2-year % survival P (imp. < 0%)
i.e. HR > 0

P (imp. > 7%)
i.e. HR < 0.80improvement (95% CI)

1992 78 0.79 7 (�1 to 17) 0.048 0.56
1993 175 0.73 10 (3 to 18) 0.006 0.73
1994 275 0.78 8 (2 to 15) 0.009 0.60
1995 379 0.80 7 (1 to 13) 0.010 0.48
1996 444 0.81 7 (2 to 12) 0.003 0.52
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CHART superior
Equivalent
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0.274
0.001

1996 Posterior
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0.515
0.482
0.003

Figure 6.7 Prior, likelihood and posterior distributions for the CHART lung cancer
trial assuming a sceptical prior. The likelihood becomes gradually less extreme,
providing a very stable posterior estimate of the treatment effect when adopting a
sceptical prior centred on a hazard ratio of 1. Demands are based on a 7% improve-
ment from 15% to 22% 2-year survival, representing a hazard ratio of 0.80.

The sceptical posterior distribution is centred around these clinical
demands, showing that these data should persuade even a sceptic that
CHART both improves survival and, on balance, is the pragmatic treatment
of choice.

Since the results for the head-and-neck trial were essentially negative, it is
appropriate to monitor the trial assuming a enthusiastic prior in order to see
if it is sufficiently convincing even to optimists. The results are shown in
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0.746
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0.644
0.06

0.236
0.637
0.127

0.688
0.207
0.105

Figure 6.8 Prior, likelihood and posterior distributions for the CHART head-and-
neck cancer trial assuming an enthusiastic prior, and clinical demands of a 7%
improvement from 45% to 52% 2-year survival, equivalent to a hazard ratio of 0.82.

Figure 6.8, using the clinical prior derived in Example 5.1. The initial
clinical demands were a 13% improvement in survival from 45% to 58%,
but in parallel with the lung trial we have reduced this to a 7% improve-
ment. The results remain equivocal, and should be sufficient to convince
a reasonable enthusiast that, on the basis of the trial evidence, CHART
is not of clinical benefit in head-and-neck cancer.

Sensitivityanalysis: The three priors provide the sensitivity analysis.

Comments: There are two important features of the prospective Bayesian
analysis of the CHART trial. First, while classical stopping rules may well
have led the DMC to stop the lung trial earlier, perhaps in 1993 when the
two-sided P-value was 0.001, this would have overestimated the benefit.
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The DMC allowed the trial to continue, and consequently produced a
strong result that should be convincing to a wide range of opinions.
Second, after discovering that the secondary aspects of the new treat-
ment were less unfavourable than expected, the DMC is allowed to ‘shift
the goalposts’ and not remain with unnecessarily strong clinical demands.

6.6.3 Monitoring using predictions: ‘interim power’

Investigators and funders are often concerned with the question – given the

data so far, what is the chance of getting a ‘significant’ result? This is closely

related to the concept of ‘futility’, and the traditional approach to this question is

‘stochastic curtailment’ (Halperin et al., 1982) which calculates the conditional

power of the study, given the data so far, for a range of alternative hypotheses:

this might also be termed ‘interim power’.

The following formulae assume we are interested in predicting whether

future data will result in a posterior probability, or a one-sided P-value, for the

null hypothesis H0: � < 0, being less than �, i.e. either the event SB� or SC� . One

can make the appropriate adjustments for H0: � > 0 and non-zero thresholds

using the methods described in Section 6.5.4.

‘Hybrid’ predictions: using a prior and current data to predict a future classical

analysis. It is straightforward to calculate predictive probabilities of eventual

classical conclusions if we assume a normal likelihood. Suppose we have

observed a parameter estimate ym based on our current sample size m, and

are considering a further n observations which will yield a parameter estimate

Yn. Then, since

mym þ nYn

mþ n
� N �,

�2

mþ n

� �
,

after these observations we shall have a classically ‘significant’ result SC� pro-

vided that

Yn >
� ffiffiffiffiffiffiffiffiffiffiffiffi

mþ n
p

z� ��mym

n
: (6:13)

Since Yn � N[�, �2=n], the probability of this occurring, as a function of the

observed data and unknown �, is

P(SC� jym,�) ¼ F

ffiffiffi
n

p
�

�
þm ym

�
ffiffiffi
n

p þ
ffiffiffiffiffiffiffiffiffiffiffiffi
mþ n

n

r
z�

" #
; (6:14)
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we note that this is exactly the form of the pre-trial Bayesian power curve (6.6)

but replacing the ‘imaginary’ prior data with the observed real data. Equation

(6.14) is known as the ‘conditional power curve’ and forms the basis for a

stochastic curtailment procedure, in which this curve may be plotted and its

value examined at the null, alternative and other values of �.
It does not, however, seem reasonable to condition on a hypothesis that is no

longer tenable (Spiegelhalter et al., 1986; Dignam et al., 1998). From a Bayesian

perspective it is natural to average such conditional powers with respect to the

current posterior distribution, just as the pre-trial power was averaged with

respect to the prior to produce the average or expected power (Section 6.5). By

again using the predictive distribution (3.24) of Yn we can calculate the prob-

ability of SC� to be

p(SC� jym, prior) ¼F

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n0n

(n0 þm)(n0 þmþ n)

r ffiffiffiffiffi
n0

p
�

�

�

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m(n0 þmþ n)

n(n0 þm)

s ffiffiffiffi
m

p
ym

�
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(mþ n)(n0 þm)

n(n0 þmþ n)

s
z�

!
:

(6:15)

We note that if m ¼ 0 there are no current data and (6.15) can be shown to

reduce to the pre-trial average classical power given by (6.4).

Bayesian predictions: using a prior and current data to predict a future Bayesian

analysis. In a fully Bayesian analysis the posterior distribution will eventually be

�jym, Yn � N
n0�þmym þ nYn

n0 þmþ n
,

�2

n0 þmþ n

� �
:

Having observed Yn, we shall assume that we are interested in a ‘significant’

result SB� which we have defined as the event p(� < 0jym, Yn) < �, i.e. the tail

area of the posterior is less than �. This result will occur if

Yn >
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n0 þmþ n
p

z� �� (n0�þmym)

n
: (6:16)

Since Yn � N[�, �2=n], the probability of this event occurring, as a function of

the observed data and unknown �, is

P(SB� jym, �) ¼ F

ffiffiffi
n

p
�

�
þ mym

�
ffiffiffi
n

p þ n0�

�
ffiffiffi
n

p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n0 þmþ n

n

r
z�

" #
: (6:17)
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Equation (6.17) can be thought of as a general form of all the other conditional

power curves we have previously derived: if n0 ¼ 0 we have no prior input and

we obtain the classical conditional power curve in (6.14); if m ¼ 0 we obtain

the Bayesian power curve in (6.6); while if n0 ¼ 0, m ¼ 0 we obtain the

standard power curve in (6.3).

Expression (3.24) gives the predictive distribution of Yn, and from this we can

calculate the unconditional probability of SB� to be

p(SB� jym, prior) ¼ F

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n0 þmþ n

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(n0 þm)n

p (n0�þmym)

�
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n0 þm

n

r
z�

" #
: (6:18)

Classical predictions: using only current data to predict a future classical analysis.

If we wish to ignore prior opinion both in the prediction and in the reporting

then we can set n0 ¼ 0 in either (6.15) or (6.18) and obtain a predictive

probability of a significant result as

p(SC� jym) ¼ F

ffiffiffiffiffiffiffiffiffiffiffiffi
mþ n

p ffiffiffi
n

p
ffiffiffiffi
m

p
ym

�
þ

ffiffiffiffi
m

n

r
z�

� �
: (6:19)

This can be expressed solely in terms of the current standardised test statistic

z ¼ ffiffiffiffi
m

p
ym=� and the fraction f ¼ m=(mþ n) of the trial so far completed, to give

the probability that the future tail area below 0 is less than � as

p(SC� jym) ¼ F
zþ ffiffi

f
p

z�ffiffiffiffiffiffiffiffiffiffiffi
1� f

p
� �

: (6:20)

Values of this quantity are plotted in Figure 6.9, which reveals that predicted

probabilities of success are often surprisingly low.

The technique has been used with results that currently show approximate

equivalence between treatments to justify the ‘futility’ of continuing a trial

(Ware et al., 1985), and may be particularly useful for DMCs and funders

when accrual or event rates are lower than expected (Korn and Simon, 1996;

Abrams, 1998). Example 6.7 provides a practical illustration of its use by a

DMC. The method does not, strictly speaking, require a Bayesian justification,

since the predictions can be based on a ‘pivotal quantity’ that does not depend

on the parameter (Armitage, 1989): the ‘B-value’ of Lan and Wittes (1988)

enables calculation of the predictive probability of significance. Frei et al. (1987)

and Hilsenbeck (1988) provide practical examples of stopping studies due to the

futility of continuing; see Section 6.13 for further references.

In spite of the attraction of making such predictions at interim analyses, we

follow Armitage (1991b) in warning against using this predictive procedure as

any kind of formal stopping rule. It gives an undue weight to ‘significance’, and

makes strong assumptions about the direct comparability of future data with
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Figure 6.9 Predictive probability F[(zþ ffiffi
f

p
z�)=

ffiffiffiffiffiffiffiffiffiffiffi
1� f

p
] of obtaining a classically sig-

nificant result (two-sided P ¼ 0:01 or 0.05, i.e. � ¼ 0:005 or 0.025), given a fraction f of
the study completed ( f ¼ 10%, 25%, 50%, 75% and 90%) and current standardised test
statistic z. For example, if one is half-way through a study (f ¼ 50%), and the treatment
effect is currently one standard error away from 0 (z ¼ 1), then based on this information
alone there is only a 29% chance that the trial will eventually show a significant (two-
sided P ¼ 0:05) benefit of treatment.

those data already observed – for example, if future data involve extended

follow-up there may be undue reliance on an assumption of proportional

hazards.

Example 6.7 B-14: Usingpredictions tomonitora trial

Reference: Dignam et al. (1998).

Intervention: Long-term tamoxifen therapy for prevention of recurrence of
breast cancer.

Aimofstudy: To estimate disease-free survival benefit from tamoxifen over
placebo, in patients who already have had 5 years of taking tamoxifen
without a recurrence.
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Study design: Sequential randomised controlled study (National Surgical
Adjuvant Breast and Bowel Project (NSABP) B-14) using O’Brien–
Fleming stopping boundaries. Interim analyses were planned at intervals
of approximately 1–1.5 years beginning in the fourth year of the study.

Outcomemeasure: Disease-free survival.

Plannedsample size: To detect a 40% reduction in annual risk associated
with tamoxifen (hazard ratio ¼ 0.6), with 85% power and a one-sided tail
area of 5%, 115 events were required. It had been planned that 624
patients were to be randomised, but eventually 1172 were recruited due
to a lower than expected event rate.

Statistical model: Proportional hazards regression model, with summary
using the approximate hazard ratio analysis. Following Section 2.4.2, if
there are OT events on treatment, and OC events on control, then
2(OT � OC)=m is an approximate estimate of the log(hazard ratio) y,
with mean y and variance 4=m.

ProspectiveBayesiananalysis?: No, the DMC used conditional power and
current data in order to make decisions.

Prior distribution: An ‘enthusiastic’ (or optimistic) prior was centred on a
40% hazard reduction and a 5% chance of a negative effect, i.e. HR > 1,
equivalent on the log(HR) scale to a normal prior with mean �0:51 and
standard deviation 0.31 (s ¼ 2, n0 ¼ 41:4). Also a sceptical prior
was adopted with the same standard deviation as the enthusiastic
prior but centred on 0, thus displaying a 5% chance of the true
difference exceeding the alternative hypothesis of 40% hazard
reduction.

Lossfunctionordemands: No explicit loss function or range of equivalence.

Computation/software: Conjugate normal analysis.

Evidence fromstudy: The DMC was presented with the data in Table 6.6.
Unexpectedly, the results favoured the control treatment. At the third
analysis in June 1995, there was a nominal two-sided P ¼ 0:01 using the
full survival data; this was not sufficient to cross the O’Brien–Fleming
stopping boundary which demands two-sided P < 0:003 46. Eighty-eight
of the planned 115 events had been observed, and the DMC calculated
that even if all 27 remaining events occurred in the control arm, the final
results would still not ‘significantly’ favour tamoxifen. The DMC also
considered the conditional power if the trial was extended until 229
events were observed – this was less than 50% for HR ¼ 0.5 in favour
of tamoxifen, and 15% for HR ¼ 0.6. Since these hazard ratios were
implausible in the light of the current data, the DMC recommended
stopping the trial since the data favoured the control treatment and there
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Table 6.6 Summary data from B-14 trial, with hazard ratios and P-values estimated using approximate
normal analysis based only on the total number of events.

Date No. events (OC)
on placebo

No. events (OT )
on tamoxifen

Estimated
log(HR) (SD)

Estimated hazard
ratio (95% CI)

Two-sided
P-value

Sept. 1993 18 28 0.435 (0.295) 1.54 (0.87 to 2.75) 0.140
Sept. 1994 24 43 0.567 (0.244) 1.76 (1.09 to 2.85) 0.020
June 1995 32 56 0.545 (0.213) 1.72 (1.14 to 2.62) 0.010

Dec. 1995 36 66 0.588 (0.198) 1.80 (1.22 to 2.65) 0.003
Dec. 1996 50 85 0.519 (0.172) 1.68 (1.20 to 2.35) 0.003

was negligible chance of the conclusions being reversed. Further events
were subsequently observed and are shown in Table 6.6.

Bayesianinterpretation: Figure 6.10 shows the consequences of assuming
the sceptical and enthusiastic (optimistic) priors considered by Dignam

Optimistic prior
Sceptical prior

Prior

1993 Likelihood

0.4 0.5 0.6 0.70.8 1 1.2 1.41.6 1.9 2.2 2.6 3 0.4 0.5 0.6 0.70.8 1 1.2 1.41.6 1.9 2.2 2.6 3

0.4 0.5 0.6 0.70.8 1 1.2 1.41.6 1.9 2.2 2.6 3

0.4 0.5 0.6 0.70.8 1 1.2 1.41.6 1.9 2.2 2.6 3 0.4 0.5 0.6 0.70.8 1 1.2 1.41.6 1.9 2.2 2.6 3

0.4 0.5 0.6 0.70.8 1 1.2 1.41.6 1.9 2.2 2.6 3 0.4 0.5 0.6 0.70.8 1 1.2 1.41.6 1.9 2.2 2.6 3

0.4 0.5 0.6 0.70.8 1 1.2 1.41.6 1.9 2.2 2.6 3 0.4 0.5 0.6 0.70.8 1 1.2 1.41.6 1.9 2.2 2.6 3

0.4 0.5 0.6 0.70.8 1 1.2 1.41.6 1.9 2.2 2.6 3 0.4 0.5 0.6 0.70.8 1 1.2 1.41.6 1.9 2.2 2.6 3

1993 Posterior

1994 Likelihood 1994 Posterior

June 1995 Likelihood June 1995 Posterior

Dec. 1995 Likelihood Dec. 1995 Posterior

1996 Likelihood

Tamoxifen superior   <-   Hazard ratio   ->  Control superior

1996 Posterior

Tamoxifen superior <-  Hazard ratio  -> Control superior

Figure 6.10 Sceptical and ‘optimistic’ prior distributions, likelihoods and posterior
distributions at meetings of the DMC for the B-14 trial. The strong likelihood brings
sceptics and enthusiasts into agreement.
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etal. (1998). At the first interim analysis the evidence against tamoxifen
is sufficient to bring an ‘optimist’ into a situation of equipoise, with a
posterior mean of almost exactly 0. It is clear that by the end of the trial
the likelihood is sufficiently in favour of control to bring the two extremes
of opinion substantially into agreement.

We may use the results in Section 6.6.3 to calculate the predictive
probability of the consequences of continuing the trial up to 115 events,
based on the data observed at each of the five interim analyses. We first
consider the situation after the first interim analysis in 1993 when 46
events had been observed. Three prior assumptions are examined: a
reference analysis (essentially a classical analysis with no adjustment
for repeated looks at the data), and sceptical and ‘optimistic’ analyses
using the priors derived above. Each column in Figure 6.11 is headed
by the posterior distribution under each assumption, and below are
shown the conditional probability of obtaining different conclusions at
the planned end of the trial, i.e. after a further 115� 46 ¼ 69 events
have occurred. The conclusions are: ‘tamoxifen superior’, defined as a
95% posterior interval for the hazard ratio lying wholly below 1; ‘equivo-
cal’, defined as a 95% posterior interval including 1; and ‘control
superior’, defined as a 95% posterior interval lying wholly above 1.
Conditional on each value of y ¼ log(HR), the probabilities of these
outcomes can be obtained from (6.17) by substituting the appropriate
values for the prior distribution.

Under the reference analyses, the chance of concluding in favour
of control is fairly substantial for true hazard ratios greater than 1.5,
and such values are supported by the current posterior distribution.
The chance of finding in favour of tamoxifen is negligible unless the
true hazard ratio is as low as 0.4, which is essentially ruled out by
the reference posterior. Integrating the power curves with respect to the
reference posterior provides the expected powers shown in the first
column of Table 6.7. These probabilities can be obtained as follows.
The current z statistic in favour of control is 0:435=0:295 ¼ 1:475, the
fraction of the trial completed is f ¼ 46=115 ¼ 0:4, and E ¼ 0:025. From
Figure 6.9 we can read off that the expected power is approximately 0.6,
and substituting in (6.20) gives the exact value of 0.619. For the
expected power to find in favour of tamoxifen, we can take one minus
the expected power for control when E ¼ 0:975, which is 0. The uncondi-
tional probability of finishing with an equivocal result is simply one minus
the other expected powers.

The sceptical analysis has a greater tendency to find an equivocal
result as the sceptical prior will be included in the final analysis, and this
is reflected in both the conditional power curves and the expected
powers
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Table 6.7 Probabilities of eventual conclusions for the B-14 trial after the first
interim analysis in 1993. Three different prior assumptions are considered, first
with the prior to be used in the analysis as well as the predictions, and then with
the prior not being used in the final analysis.

Final conclusion Reference When using
prior in analysis

When not using
prior in analysis

Sceptical ‘Optimistic’ Sceptical ‘Optimistic’

‘Tamoxifen superior’ 0.000 0.000 0.017 0.000 0.003
‘Equivocal’ 0.380 0.724 0.972 0.610 0.846
‘Control superior’ 0.619 0.276 0.011 0.390 0.151

shown in Table 6.7. The optimistic analysis is even more reluctant to
draw a firm conclusion given its current balanced opinion, and firmly (and
wrongly, with hindsight) predicts an equivocal result at the end of the
trial.

In practice it is likely that the final analysis of the trial would be
classical, and therefore it is of interest to carry out a ‘hybrid’ or mixed
prediction in which the prior is used for prediction but not for analysis.
This essentially means that the classical conditional power curves
shown in the first column of Figure 6.11 are averaged with respect to
the sceptical or optimistic posterior distributions. The results are shown
in the last two columns of Table 6.7. The chance of finding a result in
favour of control is strengthened.

The consequences of making mixed predictions at each interim analy-
sis are shown in Figure 6.12; only the chances of obtaining a conclusion
in favour of control are shown, as the chance of finding in favour of
tamoxifen is less than 0.003 in all cases.

Sensitivity analysis: Dignam et al. (1998) considered a range of prior
distributions with means varying between optimistic and sceptical – we
have just illustrated the extremes of this range.

Comments: A predictive calculation suggests that continued follow-up
would almost certainly not lead to evidence of benefit for tamoxifen.
However, when the DMC recommended stopping at the third interim
analysis, Figure 6.10 shows that an optimist could still have 13% belief
in a benefit from tamoxifen, and therefore would not rule out further trials.
Dignam etal. (1998) defend the decision to stop and state that ‘even an
advocate of continued testing of the question might argue that we should
have closed and reported the B-14 study, if for no other reason than to
make way for a confirmatory trial in which participants could be ad-
equately consented’.
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Figure 6.12 Predictive probability of reaching the conclusion ‘control superior’ at
the end of the trial, under different prior assumptions but assuming a classical
analysis. The predictive probability of a ‘significant’ result in favour of tamoxifen is
negligibly small and is not shown. At the third interim analysis (June 1995), even an
enthusiast would admit only a 16% chance of eventually drawing any conclusion
except that control was superior.

6.6.4 Monitoring using a formal loss function

The full Bayesian decision-theoretic approach requires the specification of losses

associated with all combinations of possible true underlying states and all

possible actions. The decision whether to terminate a trial is then, in theory,

based on whether termination has a lower expected loss than continuing, where

the expectation is with respect to the current posterior distribution, and the

consequences of continuing have to consider all possible future actions. This

‘backwards induction’ requires the computationally intensive technique of

‘dynamic programming’ and typically makes practical implementation trouble-

some. There is also an extensive theoretical literature on sequential trials

designed from a non-Bayesian decision-theoretic perspective (Bather, 1985).

However, reasonably straightforward solutions can be found in some some-

what idealised circumstances. For example, Anscombe (1963) considers n pairs

of patients randomised equally to two groups, a total patient horizon of N, a

uniform prior on true treatment benefit, and a loss function proportional to the
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number of patients given the inferior treatment times the size of the inferiority.

He concludes it is approximately optimal to stop and give the ‘best to the rest’

when the standard one-sided P-value is less than n=N – half the proportion of

patients already randomised.

Berry and Pearson (1985) and others have extended such theory to allow for

unequal stages and so on, while Carlin et al. (1998) claim backwards induction

is computationally feasible using Markov chain Monte Carlo methods, in which

forward sampling is used as an approximation to the optimal strategy.

As an illustrative (but retrospective) example, Berry et al. (1994) consider a

trial of influenza vaccine for Navajo children. They construct a theoretical model

consisting of priors for the effectiveness of the vaccine and the placebo treatment,

the probability of obtaining regulatory approval and the time taken to obtain it,

and the probability of a superior vaccine appearing in the next 20 years and the

time taken for it to appear. After each month the expected number of cases of the

strain amongst Navajo children in the next 20 years is calculated in the case of

stopping the trial and of continuing the trial (the latter being calculated by

dynamic programming). The trial is stopped when the former exceeds the latter.

As already discussed in Section 6.2, the level of detail required for such an

analysis has been criticised as being unrealistic (Breslow, 1990), but it has been

argued that trade-offs between benefits for patients within and outside the trial

should be explicitly confronted (Etzioni and Kadane, 1995) and decision theory

used to decide whether a trial is worth embarking on in the first place (Section

9.10).

6.6.5 Frequentist properties of sequential Bayesian methods

Although the long-run sampling behaviour of sequential Bayesian procedures is

irrelevant from the strict Bayesian perspective, a number of investigations have

taken place which generally show good sampling properties (Rosner and Berry,

1995). In particular, Grossman et al. (1994) explore the sampling properties of

the boundaries described in (6.11) arising from assuming a sceptical prior

(Section 5.5) centred on zero and with ‘sample size’ n0, and a planned maximum

experimental sample size n. They estimate by simulation and interpolation the

values for the ‘handicap’ n0=n that would give rise to an overall Type I error of 5%

and 1% for different numbers of equally spaced interim analyses. The results in

Table 6.8 show the required handicap is fairly stable over a range of designs: in

particular, the boundaries displayed in Figure 6.6, based on an ‘imaginary’ prior

trial of around 26% of the planned sample size, will have Type I error around 5%

for five interim analyses. Grossman et al. (1994) also show this boundary has

good power and expected sample size. Thus an ‘off-the-shelf’ Bayesian procedure

assuming a sceptical prior essentially mirrors the conservative behaviour of the

Neyman–Pearson approach. The sampling properties of Bayesian designs has

been particularly investigated in the context of phase II trials (Section 6.12).
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Table 6.8 Handicaps to fix Type I error rate when monitoring using a sceptical
prior for different number of analyses: the handicap is n0=n, the ratio of the prior
‘sample size’ to the maximum intended sample size.

Number of analyses ‘Handicap’ for
two-sided a ¼ 0:05

‘Handicap’ for
two-sided a ¼ 0:01

1 0 0
2 0.16 0.11
3 0.22 0.15
4 0.25 0.17
5 0.27 0.18
6 0.29 0.20
7 0.30 0.21
8 0.32 0.22
9 0.33 0.22
10 0.33 0.23

One contentious issue is ‘sampling to a foregone conclusion’ (Armitage et al.

1969). This mathematical result proves that repeated calculation of posterior

tail areas will, even if the null hypothesis is true, eventually lead a Bayesian

procedure to reject that null hypothesis. This does not, at first, seem an attract-

ive frequentist property of a Bayesian procedure. Nevertheless, Cornfield (1966)

argued that ‘if one is seriously concerned about the probability that a stopping

rule will certainly result in the rejection of a null hypothesis, it must be because

some possibility of the truth of the hypothesis is being entertained’, and if this is

the case then one should be placing a lump of probability on it, as discussed in

Section 5.5, and so fit within the Bayesian hypothesis-testing framework

(Section 3.3). He shows that if such a lump, however small, is assumed then

the problem disappears in the sense that the probability of rejecting a true null

hypothesis does not tend to one. Armitage (1990) is not persuaded, claiming

that even with a continuous prior distribution with no lump at the null

hypothesis, one might still be interested in Type I error rates at the null as

giving a bound to those at non-null values.

A somewhat more subtle objection, well described by Rosenbaum and Rubin

(1984), is that the properties of a Bayesian stopping rule based on posterior tail

areas may be over-dependent on the precise prior distribution (Jennison, 1990).

A possible response is that Bayesian stopping should not be based on a strict rule

derived from a single prior, and instead a variety of reasonable perspectives

investigated and a trial stopped only if there is broad convergence of opinion.

6.6.6 Bayesian methods and data monitoring committees

A DMC is charged with both safeguarding the patients involved in a trial, and

ensuring the quality of a trial’s conduct and conclusions. The principles and
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practice of DMCs are fully discussed in Ellenberg et al. (2002), and here we

restrict ourselves to the possible impact of Bayesian methods on a DMC’s

deliberations. Perhaps the most relevant elements are the ability to use external

evidence as a basis for prior opinion in any analysis, and the formalisation

through sceptical and enthusiastic priors of the wide range of clinical opinion

that it may be necessary to convince before a trial’s results have the appropriate

impact. As outlined in Section 6.6.4, a full decision-theoretic approach would be

attractive but difficult to put into practice in a convincing manner, although

Kadane et al. (1998) report an intention to elicit prior distributions and utilities

from members of the DMC for a large collaborative cancer trials group (NSABP),

and use the forward sampling approach to solve the dynamic programming

problem. Their success in this ambitious venture remains to be seen.

At an interim analysis of trial data, a DMC may be faced with a variety of

possible recommendations that it can make concerning the future conduct of the

trial. Using the structure of Altman et al. (2004), thesemay include the following:

. The study should stop completely. We have already seen in Example 6.6 how

a DMC might use Bayesian methods in order to inform a recommendation

whether to stop in favour of an apparent benefit of the new intervention on a

primary outcomemeasure, possibly throughusing a sceptical prior to assess the

degree to which the results would be convincing to a wide range of opinion.

Similarly, in Example 6.7 we saw how an enthusiastic prior can be used to

temper claims for apparent benefit in the control group. The DMC might also

recommend stopping because of safety concerns on secondary outcomes, al-

though these may not be so amenable to formal stopping procedures. A recom-

mendation to stop could also be influenced by a ‘futility’ argument which

assesses the chance of ever reaching a particular conclusion were the trial to

continue, and this naturally falls into the framework outlined in Section 6.6.3.

Finally, there may be convincing evidence of equivalence or non-inferiority:

while a frequentist framework requires prespecification of this as an objective of

the trial with pre-chosen limits, a Bayesian analysis allows the ‘goalposts’ to

change as the trial progresses and hence a DMC canmake such a recommenda-

tion on the basis of all currently available evidence. In all these deliberations the

DMC is free to incorporate external evidence, such as recently published studies,

into a prior opinion.

. Part of the study should stop. A recommendation could be made for random-

isation to cease for a subgroup of patients or one of many arms in a multi-arm

trial. Hierarchical models may be useful in these contexts: again stopping

might be based on posterior tail areas to assess the extent to which available

evidence would convince a wide body of clinical opinion.

. The study should continue with modifications. Design changes such as

additional interim analysis, extending recruitment or extending follow-up

time can have serious implications for frequentist designs that have pre-set
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criteria for assigning statistical significance based on pre-set design characteris-

tics. A Bayesian analysis is completely unaffected by such decisions and so a

DMC is given considerably more freedom to adapt trial designs.

Of course, a DMC that adopts a Bayesian approach must do so in full recogni-

tion of any regulatory issues, and in such a context it would currently be unwise

not to carry out such an analysis in parallel with a traditional analysis – see

Section 9.12 for future discussion of regulatory acceptance of Bayesian analyses.

6.7 THE ROLE OF ‘SCEPTICISM’ IN CONFIRMATORY

STUDIES

After a clinical trial has given a positive result for a new therapy, there remains

the problem of whether a confirmatory study is needed. Fletcher et al. (1993)

argue that the first trial’s results might be treated with scepticism, and Berry

(1996b) claims that using a sceptical prior is a means of dealing with ‘regression

to the mean’, in which early extreme results tend to return to the average over

time. Example 6.8 illustrates the potential value of this approach.

Example 6.8 CALGB: Assessingwhether to performa confirmatory ran-
domisedclinical trial

Reference: Parmar et al. (1996).

Intervention: Adjunct chemotherapy for non-small-cell lung cancer.

Aimof study: To compare adjunct chemotherapy with radiotherapy alone.

Study design: A RCT conducted by the Cancer and Leukemia Group B
(CALGB) between 1984 and 1987 planned to enrol 240 patients with
locally advanced stage III non-small-cell lung cancer and to observe
approximately n ¼ 190 deaths. From (2.38), this design has 80%
power to detect at the 5% level a log(hazard ratio) of yA ¼ (z0:8 � z0:025)
s=

ffiffiffi
n

p
where s ¼ 2 (Section 2.4.2). Thus yA ¼ 0:405, corresponding to a

hazard ratio (HR) of exp (�0:405) ¼ 0:67, where HR < 1 favours new
over standard therapy.

Outcome measure: Full survival data were available, with results pre-
sented in terms of estimates of HR, the 2-year survival improvement,
and the median improvement in survival in months. From Section 2.4.2,
the relation between these quantities is as follows. Let the 2-year sur-
vival probability under the standard and new therapies be pS and pN,
respectively. Then, assuming proportional hazards, HR ¼ log (pN)=
log (pS): Further, let the median survival time under the standard and
new therapies be sS and sN, respectively. If we assume an exponential
survival distribution (constant hazard rate), then HR ¼ sS=sN.
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Statistical model: Proportional hazards model, providing an approximate
normal likelihood for y ¼ log (HR) (Section 2.4.2).

Prospective analysis?: The Bayesian analysis was carried out retrospect-
ively.

Prior distribution: A default reference (uniform on the log(HR) scale) prior
was termed ‘enthusiastic’ by Parmar et al. (1996). They also derived a
sceptical prior by the method described in Section 5.5.2, with mean 0
and standard deviation s=

ffiffiffiffiffi
n0

p
. The original alternative hypothesis was

yA ¼ log (0:67) ¼ �0:405, and a prior centred at zero and with 5%
chance of exceeding this value would have standard deviation
0:405=1:645 ¼ 0:246. Using s ¼ 2, this is equivalent to a ‘prior sample’
of size n0 ¼ (2=0:246)2 ¼ 66. Figure 6.13 shows this sceptical prior
distribution with a median HR of 1, which is equivalent to an ‘imaginary’
trial in which 33 patients died on each treatment.

Loss function or demands: Parmar et al. (1996) argue that it might be
reasonable to demand an improvement equal to the alternative hypoth-
esis of a hazard ratio of 0.67, or an additional 5 months’ median survival.
The sceptical prior expresses a probability of 45% that the true benefit
lies in the range of equivalence.

Evidencefromstudy: The trial stopped early after enrolling 156 patients and
observing the data shown in Table 6.9. These results suggested a sub-
stantial improvement – the two-sided P-value adjusted for covariates was
0.0075. The results show an estimated log (hazard ratio) ym ¼ �0:489
with standard error (�0:489þ 0:846)=1:96 ¼ 0:183, which from the likeli-
hood above is equivalent tom ¼ (s=0:183)2 ¼ 120 deaths.

Computation/software: Conjugate normal analysis.

Bayesian interpretation: The likelihood plot shows the inferences to be
made from the reference prior, essentially equivalent to those in Table
6.9. The probability that the new treatment is actually inferior is 0.004
(equivalent to the one-sided P-value 0.0075/2.) The probability of clinical
superiority is 68%, which might be considered sufficient to change
treatment policy. The posterior plot shows the impact of the sceptical
prior, in that the chance of clinical superiority is reduced to 27% – hardly
sufficient to change practice.

Comments: In fact, Parmar et al. (1996) report that the NCI Intergroup
Trial investigators were unconvinced by the CALGB trial due to their
previous negative experience, and so carried out a further confirmatory
study. They found a significant median improvement but of only 2.4
months, from 11.4 to 13.8 months. Under an exponential assumption
this corresponds to a hazard ratio of 0.83, suggesting the sceptical
approach might have given a more reasonable estimate than the likeli-
hood based on the CALGB trial alone.
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(a) Sceptical prior distribution

Adjunct chemo. superior   <-  Hazard ratio  ->  Control superior

(b) Likelihood

Adjunct chemo. superior   <-   Hazard ratio  ->  Control superior

(c) Posterior distribution

Adjunct chemo. superior   <-  Hazard ratio  ->  Control superior

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

New superior
Equivalent
Control superior

0.677
0.319
0.004

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

New superior
Equivalent
Control superior

0.271
0.713
0.016

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

New superior
Equivalent
Control superior

0.05
0.45
0.5

Figure 6.13 Prior, likelihood and posterior distributions arising from CALGB trial
of standard radiotherapy versus additional chemotherapy in advanced lung cancer.
The vertical lines give the boundaries of the range of clinical equivalence. Prob-
abilities of lying below, within and above the range of equivalence are shown.

Table 6.9 Results of CALGB trial comparing adjunct chemotherapy with
radiotherapy alone in advanced non-small-cell lung cancer.

Outcome Estimate of improvement 95% CI

Median survival (mo) 6.3 1.4 to 13.3
2-year survival (%) 16 4 to 29
Hazard Ratio HR 0.61 0.43 to 0.88
y ¼ log (HR) �0.489 �0.846 to �0.131
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6.8 MULTIPLICITY IN RANDOMISED TRIALS

6.8.1 Subset analysis

The discussion on multiplicity in Section 3.17 has already described how

multiple simultaneous inferences may be made by assuming a common prior

distribution with unknown parameters, provided an assumption of exchange-

ability is appropriate, i.e. the prior does not depend on the units’ identities.

Within the context of clinical trials this has immediate relevance to the issue of

estimating treatment effects in subgroups of patients.

A reasonablemodelmight be to assigna reference (uniform) prior for the overall

treatment effect, and then assume the subgroup-specific deviations from that

overall effect have a common prior distribution with zero mean. This prior

expresses scepticism about widely differing subgroup effects, although the vari-

ability allowedby theprior isusually estimated from thedata: this procedure ‘leads

to 1) pooling subgroups if the differences among them appear small, 2) keeping

them separate if differences appear large, and 3) providing intermediate results for

intermediate situations.’ (Cornfield, 1976). This specification avoids the need for

detailed subjective input, which may be seen as an attractive feature. Many

applications consider this an empirical Bayes procedure which gives rise to trad-

itional confidence intervalswhicharenotgivenaBayesian interpretation.Donner

(1982) sets out the basic ideas, and Dixon and Simon (1991), Simon (1994b) and

Simon et al. (1996) have elaborated the techniques in a number of examples.

6.8.2 Multi-centre analysis

Methods for subset analysis (Section 6.8.1) naturally extend to multi-centre

analysis, in which the centre-by-treatment interaction is considered as a

random effect drawn from some common prior distribution with unknown

parameters. Explicit estimation of individual institutional effects may be carried

out, which in turn relates strongly to the methods used for institutional com-

parisons of patient outcomes (Section 7.4).

There have been numerous examples of this procedure (Section 6.13), gener-

ally adoptingMarkov chainMonte Carlo techniques due to the intractability of the

analyses. Recent case studies include Gould (1998) who provides WinBUGS code

(Section 3.19.3), and Jones et al. (1998) who compare estimation methods. Senn

(1997b, p. 199) discusses when a random-effects model for centre-by-treatment

interaction is appropriate, emphasising the possible difficulty of interpreting the

conclusions particularly in view of the somewhat arbitrary definition of ‘centre’.

6.8.3 Cluster randomisation

Rather than randomising individual patients, some trials randomise clusters of

patients, grouped (say) by their general practitioner, both for administrative
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convenience and because some interventions, for example those involving

education or organisation, are applied at the cluster level. A Bayesian approach

to the analysis of such trials has been considered by Spiegelhalter (2001) with

respect to continuous responses, and Turner et al. (2001) for binary responses.

In each situation they assume exchangeable clusters, and discuss the appropri-

ate choice of priors on between-cluster variances. Of particular interest is the

growing body of empirical evidence on the magnitude of intra-class correlation

coefficients observed in different clinical trial contexts, and its value in deriving

appropriate prior distributions.

6.8.4 Multiple endpoints and treatments

Multiple endpoints in trials can often be of interest when dealing with, say,

simultaneous concern with toxicity and efficacy. This tends to occur in early

phase studies, and a Bayesian approach allows one to create a two-dimensional

posterior distribution over toxicity and efficacy (Etzioni and Pepe, 1994;

Dominici, 1998; Thall and Sung, 1998). General random-effects models for

more complex situations can be constructed (Legler and Ryan, 1997). Natur-

ally, a two-dimensional prior is required and particular care must be taken over

the dependence assumptions.

A similar situation arises with many treatments: if one is willing to make

exchangeability assumptions between treatment effects, then a hierarchical

model can be constructed to deal with the multiple-comparison problem. This

was proposed long ago by Waller and Duncan (1969). Brant et al. (1992)

update this procedure by assuming exchangeable treatments and setting the

critical values for the posterior probabilities of treatment effects by using a

decision-theoretic argument based on specifying the relative losses for Type I

to Type II error.

Both multiple endpoints and treatments are also common in meta-analysis of

randomised controlled trials (Chapter 8).

6.9 USING HISTORICAL CONTROLS*

A Bayesian basis for the use of historical controls in clinical trials, generally in

addition to some contemporaneous controls, is based on the idea that it is

wasteful and inefficient to ignore all past information on control groups when

making a new comparison. Pocock (1976) argued that careful use of historical

controls may allow fewer controls in current studies and give more accurate

effect estimates, and methods have since been developed particularly within the

field of carcinogenicity studies (Ryan, 1993).

The crucial issue is the extent to which the historical information can be

considered similar to contemporaneous data: Pocock (1976) suggests somewhat
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stringent criteria for use of historical controls, demanding that, in comparison

to contemporaneous controls, they should have the same treatment, the same

eligibility, the same evaluation, the same baseline characteristics, and the

same organisation and investigators, and that there should be no reason to

suspect systematic differences. These issues are essentially indistinguishable

from those to be taken into account when using any historical evidence, such

as when basing prior opinion on past data. We can therefore place the possible

approaches within the structure laid out in Sections 3.16 and 5.4, keeping in

mind that herewe are concernedwith past evidence concerning a single (control)

arm of a trial, whereas in Section 5.4 we were concerned with past data on a

treatment effect. However from an analytic perspective there is little difference

between these two contexts. Possible approaches include the following:

(a) Ignore the historical control data. This is the standard option in which each

trial uses only its own control group.

(b) Assume the historical control groups are exchangeable with the current control

group, and hence build or assume a hierarchical model for the response

within each group (Tarone, 1982; Dempster et al., 1983). Pocock’s criteria,

described above, seem a natural basis for making a subjective judgement of

exchangeability, and such an assumption leads to a degree of pooling

between the control groups, depending on their observed or assumed het-

erogeneity – a classical random-effects formulation of this approach is also

possible (Thall and Simon, 1990). Gould (1991) suggests using past trials to

augment current control group information, assuming exchangeable con-

trol groups. Rather than directly producing a posterior distribution on the

contrast of interest, he uses this historical information to derive predictive

probabilities of obtaining a significant result were a full trial to have taken

place (Section 6.5); his example is treated in Example 8.4.

(c) Assume the historical controls are a biased sample. With only one group of

historical controls, Pocock (1976) adopts the model in Section 5.4 in which

one assumes an additional bias with prior mean 0 – we shall give details of

this method and illustrate its use in Example 6.9. Let yt, yc and yh be the

observed response in the randomised treated, randomised control and his-

torical control groups respectively, where we assume

yt � N[�t,�
2
t ], (6:21)

yc � N[�c,�
2
c ], (6:22)

yh � N[�c þ 
,�2
h ], (6:23)

and the degree of bias 
 in the historical control evidence is assumed to be


 � N[0, �2

 ]: (6:24)
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From (6.23) and (6.24) we find the marginal distribution of yh to be

yh � N[�c,�
2
h þ �2


 ]: (6:25)

Both (6.22) and (6.25) provide evidence concerning �c, and a combined

likelihood for �c is obtained by weighting the two estimates of �c inversely by

their variances:

yc þWyh

1þW
� N �c,

1

�2
c

þ 1

�2
h þ �2




� ��1
" #

, (6:26)

where W ¼ �2
c =(�

2
h þ �2


 ). (6.26) can also be obtained in a somewhat con-

voluted way by assuming a uniform prior for �c, doing two Bayesian updates

using the likelihoods (6.22) and (6.25), and then seeing what likelihood

would have given rise to the resulting posterior.

The parameter of interest is the treatment effect � ¼ �t � �c, and we can

obtain a likelihood for � from (6.21) and (6.26), giving

yt � yc þWyh

1þW
� N �,�2

t þ
1

�2
c

þ 1

�2
h þ �2




� ��1
" #

: (6:27)

The likelihood (6.27) can then be combined with a prior for � in the

standard manner.

In addition to the assumptions above, values or estimates are also required

for �2
e ,�

2
c and �2

h . Finally, prior opinion regarding �2

 also has to be specified.

(d) Discount the size of the historical control group. This is essentially the ‘power’

prior described in Section 5.4, but applied solely to the control arm.

(e) Functional dependence. This would be relevant if, for example, the historical

controls were considered entirely compatible with current controls, but

needed to be adjusted for imbalance in covariates.

(f) Assume the historical control individuals are exchangeable with those in the

current control group, which leads to a complete pooling of historical with

experimental controls.

Various combinations of these assumptions are possible: Berry and Stangl

(1996a) assume a parameter representing the probability that any past individ-

ual is exchangeable with current individuals, while Racine et al. (1986) assume

a certain prior probability that the entire historical control group exactly

matches the contemporaneous controls and hence can be pooled. It is also

possible to use such models as a basis for designing future studies and deciding

the number of patients to be allocated in each arm.
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Example 6.9 ECMO: incorporatinghistorical controls

Reference: Ware (1989) and the subsequent discussion.

Intervention: Extracorporeal membrane oxygenation (ECMO), an invasive
technique for blood oxygenation in newborn babies.

Aim of study: Until the advent of ECMO, conventional medical therapy
(CMT) for infants with severe persistent pulmonary hypertension of the
newborn (PPHN) achieved less than a 20% survival rate. Early experi-
ences with ECMO were promising, and by 1985 survival rates of over
80% were being reported. Following a review of the evidence of CMT
prior to 1985, an RCT was undertaken at two hospitals at Harvard
between 1986 and 1988, in order to evaluate the use of ECMO com-
pared to CMT in this extremely poor prognosis patient population.

Study design: Adaptive two-phase RCT. Phase I randomised patients to
either ECMO or CMT, while in phase II patients were to be allocated to
whichever was the superior treatment in phase I. We consider here an
evaluation of the effectiveness of ECMO based on the evidence from the
first, randomised, phase of the trial, including information from historical
control patients.

Outcomemeasure: Odds ratio (OR) of death (OR < 1 favours ECMO).

Planned sample size: The study was designed so that when stopped with
at most four deaths in each arm, the study would have approximately
77% power to detect an odds ratio of 1/16 at the 5% significance level
corresponding to mortality rates of 20% and 80% in the ECMO and CMT
groups, respectively.

Statistical model: A normal likelihood based on the observed log(odds
ratio) is adopted: more accurate methods would make use of the full
binomial likelihood and MCMC methods (Section 3.19.2).

Prospective analysis?: No.

Priordistribution: Following the approach of Kass and Greenhouse (1989),
we shall investigate the use of a sceptical prior distribution for the treat-
ment effect, and historical evidence for survival in the control group. As
prior evidence of survival under CMT, we shall follow Ware (1989) in
restricting attention to cases of severe PPHN treated with CMT in the
specific Harvard hospitals immediately preceding the trial: 13 patients
were thus identified as ‘historical controls’, of whom 11 died. Table 6.10
shows the resulting estimated odds of death, log-odds of death and its
variance (Section 2.4). Whilst the use of such historical data may be
discounted totally or simply used at ‘face-value’, it may also be reasonable
to discount it in some manner, such as assuming exchangeability,
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Table 6.10 Historical and observed data for Harvard ECMO study showing
notation for estimates and variances of log-odds of death.

Trial ECMO deaths/
cases

CMT deaths/
cases

Odds log(odds) Variance of
log(odds)

Historical data 11/13 4.60 1.53(yh) 0.49 (s2c )
Harvard phase I 0 / 9 0.05 �2:94(yt) 2.11 (s2t )

4/10 0.69 �0:37(yc) 0.38 (s2c )

Table 6.11 Use of historical controls in assessing odds ratio of death for patients
receiving ECMO compared to conventional treatment: OR < 1 favours ECMO. For
example, a fourfold relative bias corresponds to a 95% chance that the odds ratio
between historical and current control mortality lies between 0.25 and 4.

Potential relative bias
assumed in historical
controls

sd Posterior distribution of odds ratio

Mean 95% interval P(OR<1) P(OR<0.4)

0 0.000 0.033 0.0017 to 0.658 98.7% 94.9%
1.1 0.048 0.033 0.0017 to 0.659 98.7% 94.9%
1.5 0.207 0.035 0.0017 to 0.686 98.6% 94.6%
2 0.354 0.037 0.0018 to 0.741 97.7% 92.1%
4 0.707 0.045 0.0022 to 0.929 97.1% 90.3%
8 1.061 0.053 0.0025 to 1.113 96.8% 89.8%
16 1.415 0.055 0.0026 to 1.166 96.7% 89.4%
Not using historical
controls

0.076 0.0035 to 1.673 94.9% 85.4%

bias or simply discounting its sample size (Section 6.9). For a single
historical source, and assuming normal likelihoods, all these methods
lead to essentially the same model (Section 5.4), and here we shall
illustrate the use of the bias model (Pocock, 1976).

Assuming a model such as (6.27) requires prior opinion concerning
the potential extent of the bias as measured by sd. For example, if it were
thought that in fact the historical controls may over- or underestimate the
odds of death in the randomised controls by a factor of 2, then
exp (1:96sd) ¼ 2, or sd ¼ ( log (2)=1:96) ¼ 0:35: this is similar to the an-
alysis in Section 5.7.3 for interpreting the standard deviation of random
effects. Table 6.11 gives a variety of values for sd corresponding to
beliefs which range from acceptance of the historical evidence at ‘face
value’, i.e. sd ¼ 0, to stating that the potential bias could be such that the
historical controls could over- or underestimate the odds of death in the
randomised controls by a factor of 16.

The choice of a suitable value for sd will depend on the circumstances
and the extent to which Pocock’s criteria are met (Section 6.9). In this
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instance the historical controls seem reasonable in that they came from
the same centre and were treated in a similar way, except they were not
involved in a clinical trial which is known can have an impact on outcomes.

Loss functionordemands: No, but an OR of 0.4 was taken to be of clinical
importance by Kass and Greenhouse (1989).

Computation/software: Conjugate normal model.

Evidence fromstudy: The results of phase I of the ECMO study are shown
in Table 6.10: of the ten patients randomised to conventional therapy
four died, whilst of the nine randomised to ECMO none died. The
estimates and variances of the log-odds of death were obtained using
the adjustments given in Section 2.4. We note the apparent contrast
between the mortality rates under CMT before and during the trial: it is
generally felt that all participants in a randomised trial get superior
treatment. Using the randomised evidence alone, the treatment effect
y would be estimated by �2:94þ 0:37 ¼ �2:57, with variance
2:11þ 0:38 ¼ 2:49. A traditional standardised test statistic, ignoring the
sequential nature of the design, is therefore �2:57=

ffiffiffiffiffiffiffiffiffiffi
2:49

p ¼ 1:63, cor-
responding to a one-sided P-value of 0.052; Fisher’s exact test yields a
one-sided P-value of 0.054 (Ware, 1989).

Bayesian interpretation: We first consider an analysis with a reference
prior on the treatment effect. If the historical evidence is totally dis-
counted (sd ¼ 1) then it can be seen from Table 6.11 that the posterior
mean of the odds ratio is 0.076, and the posterior probablity of ECMO
being inferior is 5.1%; the posterior probability of ECMO not being
clinically superior, i.e. an odds ratio above 0.4, is 14.6%. However,
treating the historical controls as exchangeable with the randomised
controls, i.e. at ‘face value’ (sd ¼ 0), gives a posterior mean for the
odds ratio of 0.033, but now the probability of ECMO being inferior is
only 1.3%, and of it not being clinically superior is 5.1%.

Sensitivity analysis: Table 6.11 displays a range of intermediate results
between theextremesof totally acceptingand totally ignoring thehistorical
controls. A 95% posterior interval for the odds ratio will exclude 1 provided
sd is less than around 8, corresponding to a relative bias of around 5. The
probability of the odds ratio being less than 0.4 is only around 95% pro-
vided that the historical controls are accepted at near face value.

We might also consider a sceptical prior on the treatment effect: the
original alternative hypothesis in the Harvard trial was a reduction of
the mortality rate from 80% to 20%, equivalent to an odds ratio of 1/16
or log (OR) ¼ �2:77. Using the argument in Section 5.5.2, we might
assume a prior centred on 0 and with 5% of its probability below
this alternative of�2:77 – this corresponds to a prior standard deviation of

Using historical controls 233

Chapter 6 Randomised Controlled Trials 17.11.2003 4:53pm page 233



(a) Full use of historical controls

favours ECMO <- Odds ratio for mortality -> favours CMT

0.001 0.005 0.1 0.3 0.8 2

Likelihood
Prior
Posterior

(b) Relative bias up to 1.5

favours ECMO <- Odds ratio for mortality -> favours CMT

0.001 0.005 0.1 0.3 0.8 2

(c) Relative bias up to 4

favours ECMO <- Odds ratio for mortality -> favours CMT

0.001 0.005 0.1 0.3 0.8 2

(d) No use of historical controls

favours ECMO <- Odds ratio for mortality  -> favours CMT

0.001 0.005 0.1 0.3 0.8 2

Figure 6.14 Sensitivity analysis of different choices of potential bias in historical
controls in the ECMO trial, assuming a sceptical prior with mean 0 (on the log(OR)
scale), and a 5% chance of an odds ratio less than 0.0625.

�2:77=�1:64 ¼ 1:69. The consequences of using such a sceptical prior
are shown in Figure 6.14 for a range of choices of potential bias in the
historical controls. As Kass and Greenhouse (1989) conclude, a reason-
able sceptic, even taking account of the historical data, is not going to be
completely convinced by the ECMO trial.

Comments: This trial presents a number of interesting challenges which
are fully argued in the discussion of Ware (1989) and in subsequent
publications. For example, there are other historical data available,
including some which show good survival on CMT, and there is a data-
base of outcomes on ECMO. Other statistical models for this trial, includ-
ing and discounting historical data, have been considered by Kass and
Greenhouse (1989), Greenhouse and Wasserman (1995) and Berry and
Stangl (1996a). Berry (1989b) also considers the inclusion of evidence
from an RCT using a play-the-winner design which was also conducted
before 1985. Such information could be included, if assumed to be
exchangeable with the study reported by Ware (1989), using either a
meta-analytic approach (Section 8.2) or by using this historical trial
evidence to derive a prior distribution for the intervention effect (Section
5.4).

The discussants of Ware (1989) also have opposing views concerning
the ethics of randomisation (Section 6.4): Royall and Berry (1989) say
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the trial should never have been started since it was unethical to
randomise given the available evidence, whereas Begg (1989) takes
the completely conflicting view that the Harvard trial was stopped too
early since, as we have seen in the analysis above, the result was not
convincing to a wide range of opinion.

It is notable that the evidence concerning ECMO was not considered
sufficient to prevent a further large trial. After ECMO was introduced in
the UK in 1989, it was agreed to organise a randomised trial involving 55
referral hospitals, in which patients randomised to ECMO were referred
to one of five specialist centres (Field et al., 1996). This pragmatic trial
was designed to randomise 300 babies, but the DMC stopped the trial
after 185 cases when the mortality rate was 30/93 on ECMO and 54/92
on CMT, with an odds ratio of 0.55 (95% interval from 0.39 to 0.77).
Long-term follow-up of the patients over 4 years (Bennett et al., 2001)
revealed only one additional death (in the ECMO arm) but a high rate of
disability and impairment: overall only 16% of survivors were without
abnormal signs or disability, but with no significant excess in the ECMO
group. Treatment was, however, confounded with hospital and the trial
was of a referral service rather than ECMO being carried out in direct
competition to conventional treatment.

6.10 DATA-DEPENDENT ALLOCATION

So far we have only covered standard randomisation designs in which patients

are allocated 50:50 or in some other constant ratio to alternative treatments.

However, a full decision-theoretic approach to trial design would consider data-

dependent allocation so that, for example, in order to minimise the number of

patients getting the inferior treatment, the proportion randomised to the appar-

ently superior treatment could be increased as the trial proceeded. Such ‘adap-

tive’ designs are claimed to satisfy ethical considerations for the patients under

study (Section 6.4). They can be called ‘bandit’ designs, as they are analogous in

theory to a gambler deciding which arm of a two-armed bandit to pull in order

to maximise the expected return: both Bayesian and non-Bayesian approaches

are available. An extreme example is Zelen’s (1969) ‘play-the-winner’ rule

in which the next patient is given the currently superior treatment, and ran-

domisation is dispensed with entirely; Palmer and Rosenberger (1999) review

non-standard trial designs and suggest circumstances where they may be

appropriate. Palmer (2002) claims that many of the current difficulties faced

in carrying out trials could be relieved by using adaptive designs, and Berry

(2001) provides a recent argument for their use.
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Nevertheless, there has been considerable criticism of these ideas as not being

practically rooted in the realities of clinical trials; see, for example, Byar et al.

(1976), Simon (1977), Armitage (1985) and Peto (1985). Objections to adap-

tive allocation include the following:

1. Responses have to be observed without delay.

2. Adaption depends on a one-dimensional response.

3. Sample sizes may have to be bigger.

4. Patients may not be homogeneous throughout the trial.

5. Clinicians may be unhappy with adaptive randomisation.

6. Informed consent may be more difficult to obtain.

7. The trial will be complex and may deter recruitment.

8. Estimation of the treatment contrast will lose efficiency.

9. Potential inflation of Type I error.

10. Treatment assignments may be biased as clinicians may guess which

treatment is ‘in the lead’.

A careful analysis of two-armed trials has been carried out by Berry and Eick

(1995), who conclude that balanced allocation is appropriate if the condition is

reasonably common, but adaptive designs may yield a substantial improvement

in the expected number of successful treatments when a large proportion of

patients with the disease are likely to be in the trial. This is echoed by Senn

(1997b, p. 88), who points out that future patients, who in general will greatly

outnumber those in the trial, would value a more precise treatment estimate and

therefore would prefer large trials with balanced allocation. The ECMO studies

discussed in Example 6.9 provide one of the few examples of adaptive allocation,

and the subsequent controversy did little to encourage the use of such designs;

other examples include an adaptive trial in patients with depressive disorder

(Tamura et al., 1994), while the trial described in Kadane (1996) also adapts

its allocation rules, in a somewhat complex way, to the current evidence.

A recent examplehas proved, however, that it is possible to carryout a large and

complex adaptive trial. Berry et al. (2001a) describe the design of a phase II/III

dose-finding study in acute stroke, in which 15 different doses were to be given at

randomat the start of randomisation,with steady adaptation to the range of doses

around the ED95, i.e. the minimum dose that provides 95% of the maximum

efficacy. This trial has now been completed. Various characteristics may have

contributed to the success of themethodology: only short-term (90-day) outcomes

were considered, modern communication technology was used to ensure rapid

updating of the current posterior distribution of the dose–response curve, a mini-

mum of 15% of patients given placebo dose ensured that the imbalance did not

become too acute, the ability to completely blind clinicians as to the dose provided,

the replacement of the original decision-theoretic stopping criterion with one

based on posterior tail areas being less than a certain value, and classical estima-

tion of the size and power of the study based on pre-trial simulations.
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We may conclude that adaptive designs, which are not a specifically Bayesian

issue, may be better accepted when there are many arms in the trial and not just

an imbalanced randomisation between two arms. In addition, formulation of a

trial as a decision rather than an inference problem leads to many objections

(Section 6.2), and adaptation may be better based on posterior distributions.

6.11 TRIAL DESIGNS OTHER THAN TWO PARALLEL

GROUPS

Equivalence trials. There is a large statistical literature on trials designed to

establish equivalence between therapies. From a Bayesian perspective the solu-

tion is straightforward: define a region of equivalence (Section 6.3) and calcu-

late the posterior probability that the treatment difference lies in this range – a

threshold of 95% or 90% might be chosen to represent strong belief in equiva-

lence. Several examples of this remarkably intuitive approach have been

reported (Section 6.13), which tend to give similar results to traditional analy-

sis. In contrast, Lindley (1998) explores a decision-theoretic formulation that

can give radically different conclusions.

Crossover trials. The Bayesian approach to crossover designs, in which each

patient is given two or more treatments in an order selected at random, is fully

reviewed by Grieve (1994a). More recent references concentrate on Gibbs sam-

pling approaches (Forster, 1994) – see Section 6.13 for other relevant papers.

N-of-1 trials.N-of-1 studies can be thought of as repeatedwithin-person crossover

trials inwhich interest focuses on the response of an individual patient: such trials

may be appropriate in chronic conditions inwhich short-term symptom relief is of

interest. A natural approach to combining such studies is to assume patients are

exchangeable (perhaps conditional on covariates), and adopt a hierarchical

model – an example based on Zucker et al. (1997) is given in Example 6.10. This

can be thought of as an extreme example of the subset procedure described in

Section 6.8.1, in which the subsets have been reduced to individual patients.

Example 6.10 Nof1: poolingindividualresponse studies

Reference: Zucker et al. (1997).

Intervention: Amitriptyline for treatment of fibromyalgia to be compared
with placebo.

Aim of study: To estimate population treatment effects and evaluate indi-
vidual patient responses.
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Study design: Each individual had an N-of-1 study in which they were
treated in a number of periods (3 to 6 per patient), and in each period
both amitriptyline and placebo were administered in random order. All
trials were carried out by a single physician at a single centre.

Outcomemeasure: Each measurement comprised a difference (amitriptyl-
ineminus placebo) in response to a symptomquestionnaire in each paired
crossover period. Higher scores indicated fewer negative symptoms, and
so a positive difference indicated amitriptyline as the superior treatment.

Statistical model: If ykj is the jth measurement on the kth individual, we
assume

ykj � N[yk,s2k ]:

We then assume that both yks and s2ks are exchangeable, as it may not
be reasonable to assume common between-period variability for all
individuals. We make the specific distributional assumption that

yk � N[my,t
2
y ],

log (s2k ) � N[ms,t
2
s]:

A normal distribution for the log-variances is equivalent to a log-normal
distribution for the variances (Section 2.6.8).

Prospective analysis?: No.

Priordistribution:

Independence model. In order to reproduce the classical analysis, we
may assume each yk has a uniform distribution, and each s�2

k has a
Gamma[0.001,0.001] distribution. The latter is essentially equivalent
to log(s2k ) having a uniform distribution and hence leads to the clas-
sical t distribution as a basis for testing for an effect in an individual
(Sections 5.5.1 and 5.7.3).

Exchangeablemodel. We initially adopt uniform priors for my, ty, ms and
ts. Other prior distributions for the between-individual variation ty are
considered as part of a sensitivity analysis.

Loss functionordemands: Zucker etal. (1997) suggest that a difference of
0.5 might be considered as important.

Computation/software: Markov chain Monte Carlo in WinBUGS software.

Evidence from study: The raw data are shown in Figure 6.15, ordered in
terms of the observed sample mean. Seven out of 23 experienced
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Figure 6.15 Raw data from N-of-1 clinical trials on 23 patients, ordered by their
mean response. Each dot represents the difference in responses (amitriptyline minus
placebo) in a single period in which both treatments have been tried in random order.

benefit from the new treatments in all their periods. There appears to be
substantial variability both in the average response and within patients,
justifying the statistical model adopted.

Bayesian interpretation: The independent and exchangeable estimates of
the individual and overall treatment effects are shown in Figure 6.16. The
independent estimates closely follow the raw data, exhibiting substantial
uncertainty. In only six patients do the 95% intervals exclude 0, although
Zucker et al. (1997) report that patients 11–23 were all advised to
continue on the active treatment, while patients 1–10 were advised to
stop active treatment.
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Figure 6.16 Estimates and 95% intervals for the response in each person, assuming
both independent and exchangeable individuals. The vertical lines represent the null
hypothesis of no treatment difference. P(yk > 0), the posterior probability that each
individual’s effect lies above 0, is given on the left.

Table 6.12 Summary of posterior distributions of parameters in exchangeable
analysis.

Parameter Median /
estimate

95%
interval

Overall mean my 0.42 0.13 to 0.73
Prob. overall positive effect P(my > 0) 0.997
Prob. overall important effect P(my > 0:5) 0.29
Between-patient sd ty 0.50 0.20 to 0.92
Between-patient variability in log-variances ts 1.03 0.42 to 1.77
Mean within-patient variance exp (mt þ t2y)=2 0.94 0.49 to 3.05
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The parameter estimates resulting from the exchangeable analysis
are shown in Table 6.12. There is a clear overall positive effect in the
population which is estimated to be 0.42, although the chance that it is
an important effect (i.e. greater than 0.5) is only 29%. There is also
strong evidence of patient heterogeneity in their response, with an
estimated between-patient standard deviation of 0.50, suggesting that
individual patient effects might vary between roughly �0.5 and 1.5.

There is also clear evidence of between-patient heterogeneity in their
variability in responses, as shown by ts being substantially away from 0.
Transforming from a log-variance to a variance scale (Section 2.6.8)
reveals a mean within-patient variance of 0.94.

From the individual estimates shown in Figure 6.16 it is clear that the
exchangeable model brings about substantial shrinkage in the extreme
patients, reflecting the limited information from each individual. For
example, patient 23, with four positive measurements, three of which
are extreme, has a posterior mean of 0.55, less than its minimum obser-
vation! It might be felt that the model is exercising undue influence in this
situation, and some possible alternatives are discussed below. In spite of
the shrinkage, the narrower intervals mean that the number of patients
with 95% intervals excluding 0 rises to nine, compared to six with the
independent analysis. We note one consequence of allowing exchange-
ablewithin-patient variances: patient 9, whose observationswere remark-
ably close together and who hence has a very tight independent interval,
obtains an exchangeable interval that is wider due to their within-patient
variance being pulled towards the population mean of around 0.94.

Sensitivityanalysis: Changing the prior distribution for ty to the alternatives
listed in Section 5.7.3 makes negligible difference to the conclusions,
due to the considerable evidence available concerning ty.

Comments: As pointed out by Zucker et al. (1997), it is straightforward to
include patient-level covariates in such a model, and they illustrate this
by including dose as a predictor. However, this can be shown to have
minimal influence. It might be reasonable to carry out further analysis of
sensitivity to the shape of both the sampling and the random-effects
distribution: assuming t distributions (Section 2.6.9) for either may result,
for example, in substantially less shrinkage for patient 23.

Factorial designs: Factorial trials, in which multiple treatments are given simul-

taneously to patients in a structured design, can be seen as another example of

multiplicity and hence a candidate for hierarchical models. Simon and Freedman

(1997) and Miller and Seaman (1998) suggest suitable prior assumptions that

avoid the need to decide whether interactions do or do not exist.
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6.12 OTHER ASPECTS OF DRUG DEVELOPMENT

Pharmacokinetics. The ‘population’ approach to pharmacokinetics, in which the

parameters underlying each individual’s drug clearance curve are viewed as

being drawn from some population, is well established and is essentially an

empirical Bayes procedure (Sheiner and Wakefield, 1999). Proper Bayesian

analysis of this problem is described in Racine-Poon and Wakefield (1996)

and Wakefield and Bennett (1996), emphasising MCMC methods for estimating

both population and individual parameters, as well as individualising dose

selection (Wakefield and Walker, 1997).

Phase I trials. Phase I trials are conducted to determine that dosage of a new

treatment which produces a level of risk of a toxic response which is deemed to

be acceptable. The primary Bayesian contribution to the development of method-

ology for phase I trials has been the continual reassessment method (CRM)

originally proposed by O’Quigley et al. (1990). In CRM a parameter underlying a

dose–toxicity curve is given a proper prior which is updated sequentially and used

to find the current ‘best’ estimate of the dosage which would produce the accept-

able risk of a toxic event if given to thenext subject, aswell as giving theprobability

of a toxic response at the recommended dose at the end of the trial (O’Quigley,

1992). High sensitivity of the posterior to the prior distribution (Gatsonis and

Greenhouse, 1992) has been reported in a similar procedure. Numerous simula-

tions andmodifications of themethod have been proposed (Section 6.13); Dough-

erty et al. (2000) report a practical application described in Example 6.11.

Example 6.11 CRM: An application of the continual reassessment
method

Dougherty et al. (2000) provide the following application of the continual
reassessment method, in which they wish to establish the maximum toler-
ated dose of the opioid antagonist nalmefene. Lack of tolerability is meas-
ured by reversal of anaesthesia. They are interested in establishing the
maximum dose with probability p of reversal of anaesthesia nearest to
0.20. The available doses are 0.25, 0.50, 0.75 and 1.00, which are given
labels 1 to 4. They adopt a one-parameter logistic response model in
which, for dose i,

logit(pi) ¼ 3þ adi, (6:28)

where a is an unknown parameter with prior set as an exponential distribu-
tion with mean 1 (i.e. Gamma[1,1]), and the di are transformations of the
dose to enable this logistic curve to fit the prior judgements of pi, denoted
p0i . Hence the di are calculated by setting a equal to its prior mean of 1, and
inverting (6.28) to give di ¼ logit(p0i )� 3.

242 Randomised controlled trials

Chapter 6 Randomised Controlled Trials 17.11.2003 4:53pm page 242



Table 6.13 Summary of prior and posterior distributions of parameters in CRM
experiment.

Prior Observed data Posterior

Dose p0i : prior guess at pi di No. patients No. not tolerating Mean SD

1 0.10 �5.20 4 0 0.10 0.05
2 0.20 �4.39 18 3 0.19 0.08
3 0.40 �3.41 3 2 0.38 0.09
4 0.80 �1.61 0 0 0.79 0.03

Table 6.13 shows the prior judgements, the observed data and consequent
posterior distributions. The analysis is straightforward to carry out in Win-
BUGS.

We can make a number of observations concerning this analysis. First,
the posterior means for the pi show strong agreement with the prior, perhaps
suggesting undue influence. Second, the actual doses used do not enter
into the model. Third, a tolerability for dose 4 is estimated with considerable
accuracy, even though no one was ever given this dose. Finally, the implied
prior distributions for the pi are actually bimodal. These all suggest that the
basic CRM procedure should be used with great caution.

Etzioni and Pepe (1994) suggest monitoring a phase I trial with two possible

adverse outcomes via the joint posterior distribution of the probabilities of the

two outcomes with frequentist inference at the end of the trial.

Phase II trials. Phase II clinical trials are carried out in order to discover

whether a new treatment is promising enough (in terms of efficacy) to be

submitted to a controlled phase III trial, and often a number of doses may be

compared. Bayesian work has focused on monitoring, sample-size determin-

ation and adaptive design. Monitoring on the basis of posterior probability of

exceeding a desired threshold response rate was first recommended by Mehta

and Cain (1984), while Heitjan (1997), Cronin et al. (1999) and Weiss et al.

(2001) adapt the proposed use of sceptical and enthusiastic priors (Section

6.6.2) in phase III studies.

With regard to design, Herson (1979) used predictive probability calculations

to select among designs with high power in regions of high prior probability.

Thall and co-workers have also developed stopping boundaries for sequential

phase II studies based on posterior probabilities of clinically important events,

but where the designs are selected from the frequentist properties derived from

extensive simulation studies: see Section 6.13 for references. However Stallard
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(1998) has criticised this approach as being demonstrably sub-optimal when

evaluated using a full decision-theoretic model with a monetary loss function.

Finally, John Whitehead and colleagues have taken a full decision-theoretic

approach to allocating subjects between phase II and phase III studies. For

example, Brunier and Whitehead (1994) consider the case where a single treat-

ment with a dichotomous outcome is being evaluated for a possible phase III trial,

and use Bayesian decision theory to determine the number of subjects needed.

They place a prior on the probability of success and calculate the expected cost of

performing or not performing a phase III trial, using a cost function which

includes consideration of the costs to future patients if the inferior treatment is

eventually used, the power of the possible phase III trial (which they assume will

be carried out by frequentist methods), and the costs of experimentation. They

show how to determine, for given parameter values, the expected cost of perform-

ing a phase II trial of any particular size, and thus the optimal size for a trial.

When faced with selecting among a list of treatments and allocating patients,

Pepple and Choi (1997) have considered two-stage designs, Yao et al. (1996)

deal with screening multiple compounds and allocating patients within a pro-

gramme, while Strauss and Simon (1995) use a prior distribution and horizon.

The successful adaptive study of Berry et al. (2001a) discussed in Section 6.10

can also be considered as a phase II dose-finding study monitored using poster-

ior tail areas.

Phase IV – safety monitoring. A considerable literature exists on Bayesian

causality assessment in adverse drug reactions: see, for example, Lanctot and

Naranjo (1995).

6.13 FURTHER READING

There is a huge literature on Bayesian appraches to trials, which is reviewed

in Spiegelhalter et al. (2000). General discussion papers include tutorial intro-

ductions at a non-technical (Lewis and Wears, 1993) and slightly more

technical level (Abrams et al., 1994). Pocock and Hughes (1990) provide a

non-mathematical discussion concentrating on estimation issues, while Armi-

tage (1989) attempts a balanced view of the competing methodologies. A special

issue of Statistics in Medicine has been devoted to ‘Methodological and Ethical

Issues in Clinical Trials’, containing papers both for (Berry, 1993; Urbach, 1993;

Spiegelhalter et al., 1993) and against (Whitehead, 1993) the Bayesian perspec-

tive, and featuring incisive discussion by Armitage, Cox and others. Particular

emphasis has been placed on the ability of Bayesian methods to take full advan-

tage of the accumulating evidence provided by small trials (Lilford et al., 1995;

Matthews, 1995).

Somewhat more technical reviews are given by Spiegelhalter et al. (1993,

1994). Berry (1991, 1995) has long argued for a Bayesian decision-theoretic
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basis for clinical trial design, and has described in detail methods for elicitation,

monitoring, decision-making and using historical controls. Proponents of a

decision-theoretic choice of sample size include Claxton and Posnett (1996),

Hornberger and Eghtesady (1998) and Hornberger (2001).

Pocock (1992), O’Brien (1998) and Whitehead (1997b) provide good reviews

on sequential trials, and applications of monitoring using posterior intervals

include Berger and Berry (1988), Brophy and Joseph (1997), Carlin et al.

(1993), DerSimonian (1996), George et al. (1994) and Rosner and Berry

(1995). Papers investigating monitoring using predictions include Choi and

Pepple (1989), Qian et al. (1996) and Spiegelhalter et al. (1986).

Empirical Bayes analyses of subsets are provided by Louis (1991) and Pocock

and Hughes (1990), which give rise to traditional confidence intervals that are

not given a Bayesian interpretation. Bayesian techniques for subsets are elabor-

ated in Dixon and Simon (1991), Simon (1994b) and Simon et al. (1996).

Hierarchical models for multicentre analysis have been considered by Gray

(1994), Stangl (1996) and Stangl and Greenhouse (1998), while Matsuyama

et al. (1998) allow a random centre effect on both baseline hazard and treat-

ment, and examine the centres for outliers using a Student’s t prior distribution

for the random effects.

Examples of the Bayesian approach to equivalence trials have been reported

by Selwyn et al. (1981), Fluehler et al. (1983), Selwyn and Hall (1984), Breslow

(1990), Grieve (1991) and Baudoin and O’Quigley (1994). Bayesian ap-

proaches to crossover trials include Grieve (1985, 1995), Albert and Chib

(1996) and Grieve and Senn (1998).

The continuous reassessment method for phase I studies has been developed

by Goodman et al. (1995), Whitehead and Brunier (1995), and Gasparini and

Eisele (2000). For phase II studies, Korn et al. (1993) consider a phase II study

which was stopped after three out of four patients exhibited toxicity; Bring

(1995) and Greenhouse and Wasserman (1995) re-examine their problem

from a Bayesian perspective. See also Thall and Estey (1993), Thall et al.

(1996), Thall and Russell (1998) and Whitehead (1986, 1997a).

6.14 KEY POINTS

Table 6.14 briefly summarises some major distinctions between the Bayesian

and the frequentist approach to trial design and analysis.

1. The Bayesian approach provides a framework for considering the ethics of

randomisation.

2. Prior information can be incorporated in power calculations, which should

warn against conditioning on optimistic alternative hypothesis. ‘Average’

power may give a more realistic assessment of the chances of a trial reaching

a positive conclusion.
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Table 6.14 A brief comparison of Bayesian and frequentist methods in clinical trials.

Issue Frequentist Bayesian

Information other than
that in the study being
analysed

Informally used in design Used formally by
specifying a prior
probability distribution

Interpretation of the
parameter of interest

A fixed state of nature An unknown quantity
which can have a
probability distribution

Basic question How likely are the data
given a particular value
of the parameter?

How likely is a particular
value of the parameter,
given the data?

Presentation of results Likelihood functions,
P-values, confidence
intervals

Plots of posterior
distributions of the
parameter, calculation
of specific posterior
probabilities of interest,
and use of the posterior
distribution in formal
decision analysis

Interim analyses P-values and estimates
adjusted for the number
of analyses

Inference not affected by
the number or timing of
interim analyses

Interim predictions Conditional power
analyses

Predictive probability of
getting a firm conclusion

Dealing with subsets
in trials

Adjusted p-values
(e.g. Bonferroni)

Subset effects shrunk
towards zero by a
‘sceptical’ prior

3. Monitoring trials with a sceptical and other priors may provide a unified

approach to assessing whether a trial’s results would be convincing to a wide

range of reasonable opinion, and could provide a formal tool for data

monitoring committees.

4. Predictions of the consequences of continuing a trial provide a useful adjunct

to current posterior distributions, but should not be used as a formal moni-

toring tool.

5. Various sources of multiplicity can be dealt with in a unified and coherent

way using hierarchical models.

6. A variety of models exist for incorporating historical controls, analogous to

those for using historical data as a basis for a prior distribution.

7. Adaptive studies that change the randomisation ratio dependent on out-

comes may be appropriate when a large proportion of available patients are

taking part in the trial, or when many treatment arms are being simultan-

eously investigated.

8. It is generally unrealistic to formulate a phase III trial as a decision

problem, except in circumstances where future treatments can be reasonably

predicted. Earlier phase studies may be more amenable to this approach.
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EXERCISES

6.1. Prove (6.4), (6.6) and (6.7).

6.2. In Example 6.2, calculate the expected power given that the treatment is

effective. [Hint: There are two possible methods. You could generate the

joint distribution of � and the power, and only count those iterations for

which � > 0. Alternatively, generate � from its prior distribution con-

strained to be positive, using the I(0,) construct in WinBUGS.]

6.3. Consider the prior beliefs for the MRC neutron therapy RCT introduced in

Exercise 5.2. The actual trial results at an interim analysis produced a

hazard ratio of 0.66 (95% CI from 0.40 to 1.10) in favour of the control

group. For each of the prior distributions in Exercise 5.2, update these

priors in the light of the observed results.

6.4. Ben-Shlomo et al. (1998) report the results of the UK Parkinson’s Disease

Research Group RCT of the evaluation of levodopa, levodopa and selegi-

line, and bromocriptine in the treatment of early stage Parkinson’s disease;

we focus on the comparison of levodopa against levodopa and selegiline in

terms of mortality. At a second interim analysis 44 deaths were observed

out of 249 patients in the levodopa alone arm and 76 out of 271 patients

in the levodopa and selegiline arm, producing a hazard ratio of 1.57 (95%

CI from 1.09 to 2.03) for levodopa and selegiline vs. levodopa alone. At

this point the trial was terminated, but follow-up continued and a subse-

quent analysis reported 73 and 103 deaths, producing a hazard ratio of

1.32 (95% CI from 0.98 to 1.79).

(a) Use the credibility analysis of Section 3.11 to establish the degree of

scepticism that would be required not to have found the interim results

convincing of benefit.

(b) In a trial in which m ¼ 120 events were to be observed, what alterna-

tive log(hazard ratio) could be detected with 80% power?

(c) What sceptical prior would express 5% belief that the effect would be as

large as this alternative hypothesis?

(d) Discuss whether, on the evidence provided, it was reasonable to stop

the trial early.

6.5. Table 6.15, adapted from Wheatley and Clayton (2003), shows the accu-

mulating data in a trial of five vs. four treament courses in the MRC Acute

Myeloid Leukaemia trial. An unexpectedly large treatment effect in favour

of five courses was observed early in the trial, which disappeared as the

trial progressed.

(a) Plot the likelihoods for the log(hazard ratio) at each timepoint, and

calculate the two-sided P-values.

(b) If the trial were planned to observe 300 events, what might a reason-

able sceptical prior distribution be?

(c) What would have been the effect had this prior been used to monitor

the trial?
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Table 6.15 Mortality in MRC Acute Myeloid Leukaemia RCT.

Timepoint 5 courses 4 courses O� E V[O� E]

deaths total deaths total

1997 7 102 15 100 �4.6 5.5
1998(1) 23 171 42 169 �12.0 15.9
1998(2) 41 240 66 240 �16.0 26.7
1999 51 312 69 309 �11.9 30.0
2000 79 349 91 345 �9.5 42.4
2001 106 431 113 432 �6.2 53.7
2002 157 537 140 541 þ6.7 74.0

6.6. Prove (6.17) and (6.18).

6.7. Consider the situation in which the Parkinson’s disease trial was stopped

in Exercise 6.4, and the predictions that could have been made concern-

ing the status of the trial at its eventual publication when 176 events had

occurred (an additional 56).

(a) What would have been the expected power, given the data so far, of

rejecting the hypothesis that the log(hazard ratio) was 0, i.e. the

probability that the final 95% interval will lie wholly above 0, with

and without the inclusion of the sceptical prior?

(b) Was there evidence of conflict between the data in the first part of the

trial and that collected in the second part, i.e. after the decision was

made to stop? [Hint: One way to do this is to calculate the predictive

distribution for the observed log(hazard ratio) arising in the second

part and use Box’s measure of conflict to compare it to that actually

observed.]

6.8. (a) Derive the results given in the ECMO study in Example 6.9. (b)

Reanalyse the ECMO study assuming the historical data are to be dis-

counted using the ‘power prior’ model explored in Example 5.2, with

prior weights 0, 10%, 50% and 100%.

6.9. Reanalyse the ECMO study in Example 6.9 with full binomial likelihoods

instead of normal approximations and using WinBUGS for the analysis.

You will need to select a prior distribution for the mortality rates in the

control and ECMO groups ignoring both historical and trial data: compare

the use of (a) independent uniform distributions in each group, (b) inde-

pendent Beta[0.5,0.5] distributions, (c) a uniform distribution for the

control group mortality and a sceptical prior for the treatment effect on

the log(odds ratio) scale.

6.10. Consider Exercise 2.1, repeating the study with the other hand. Using a

subjectively chosen sceptical prior distribution for the log(odds ratio) for

the difference between hands, conduct the second 12 tosses, and update

the prior beliefs in the light of the evidence that you have collected.
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Table 6.16 Estimates of log(hazard ratio) and standard errors for disease-free survival
comparing tamoxifen with control for women with breast cancer within subgroups
defined by œstrogen receptor status, nodal status and postmenopausal status.

No. patients

Oestrogen
receptor þve

Node
þ ve

Postmenopausal Total Tamoxifen Control log
(HR)

SE
[log(HR)]

1 0 0 183 72 111 �0.520 0.207
1 1 0 57 27 30 �0.096 0.319
1 0 1 262 101 161 �0.551 0.190
1 1 1 92 44 48 þ0.040 0.278
0 0 0 493 210 283 �0.061 0.152
0 1 0 128 52 76 �0.256 0.242
0 0 1 583 280 303 �0.287 0.131
0 1 1 161 72 89 �0.275 0.205

6.11. Table 6.16 displays estimates of log(hazard ratio) for disease-free survival

comparing tamoxifen with control for women with breast cancer for

eight mutually exclusive subgroups of women defined by three binary

factors: œstrogen receptor status, nodal status and postmenopausal

status. Assuming exchangeable subgroups, obtain the posterior esti-

mates of the hazard ratio for each subgroup, and thus assess the evidence

for specific subgroup–treatment interactions. [Hint: You could use the

empirical Bayes methodology of Example 3.13, or the full Bayes approach

using WinBUGS shown in Example 8.1.]. Do you think the exchangeabil-

ity assumption is reasonable?
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7

Observational Studies

7.1 INTRODUCTION

The RCT is generally considered the ‘gold-standard’ methodology in evaluating

health-care interventions, but there are circumstances in which randomisation

is either impossible or unethical (e.g. evaluating the health effects of smoking) or

where there is substantial valuable information available in non-randomised or

‘observational’ data (Concato et al., 2000). In many circumstances such obser-

vational data would form part of an evidence synthesis, which is dealt with in

Chapter 8.

It is important to understand that the probability models used in Bayesian

analysis are expressions of personal or group uncertainty and so do not need to

be based on randomisation. Therefore in principle non-randomised studies can

be analysed in exactly the same manner as randomised comparisons. In Section

7.2 we describe how both case–control and cohort designs provide a likelihood

which can be combined with prior information using standard Bayesian

methods, perhaps with extra attention to adjusting for covariates in an attempt

to control for possible baseline differences in the treatment groups with respect

to uncontrolled risk factors or exposures.

Of course, the dangers associated with the use of observational studies in

evaluating health-care interventions have been well described in the medical

literature (Byar et al., 1976). For example, Dunn et al. (2002) compare random-

ised and non-randomised evidence collected according to a common protocol,

and find a potentially misleading treatment comparison based on the observa-

tional data. Essentially, randomised studies should provide an unbiased likeli-

hood for the parameter of interest, while observational studies may have a

degree of systematic bias. In this book we do not argue the case for or against

the use of non-randomised studies, but suggest that if observational studies are

to be used, then their analysis falls naturally into a Bayesian framework.

Specifically, the possibility of bias leads inevitably to a degree of subjective

judgement about the comparability of studies, and this fits well into the
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acknowledged judgement underlying all Bayesian reasoning. Hence, in Section

7.3 we consider the explicit modelling of potential biases, building on the

structure developed in the context of evidence-based priors (Section 5.4) and

using historical controls (Section 6.9), in each of which a range of methods are

possible for ‘downweighting’ studies to allow for doubts about their degree of

relevance.

Finally, in Section 7.4 we consider the specific issue of making institutional

comparisons, also known as ‘profiling’. This fits naturally into a hierarchical

modelling framework, and we also show how a Bayesian approach allows direct

probability statements about the rank of an institution.

7.2 ALTERNATIVE STUDY DESIGNS

Case–control studies involve retrospective investigation of risk factors for a

sample of cases and controls, possibly matched for known risk factors. Inference

is generally on the odds ratio, which is directly estimable from this design.

Bayesian approaches have generally relied on analytic approximations in

order to obtain reasonably simple analyses (Zelen and Parker, 1986; Marshall,

1988; Nurminen and Mutanen, 1989; Zelen, 1990); for example, Ashby et al.

(1993) examine two case–control studies studying leukaemia following chemo-

therapy treatment for Hodgkin’s disease, and consider the consequences of

various prior distributions based on a cohort study. However, all the techniques

for analysing clinical trials can be adopted, with the additional complication in

relation to judgements on the potential for bias and appropriateness of the prior.

Example 7.1 describes the analysis of Lilford and Braunholtz (1996) concerning

potential side-effects of oral contraceptives using a likelihood arising from case–

control studies.

A large cohort study or registry database may provide observational evidence

on the ‘natural history’ of a disease, which might be used to model the conse-

quences of an intervention; for example, Craig et al. (1999) describe an analysis

of a population-based cohort of patients with diabetic retinopathy in order to

evaluate different screening policies. It is, of course, possible to directly estimate

apparent effects of different interventions from registry data, although again

the potential for bias should be acknowledged: Example 9.3 illustrates one

technique for downweighting registry and single cohort data in an evidence

synthesis.

There is also a substantial literature on Bayesian methods for complex epi-

demiological modelling, particularly spatial correlation (Heisterkamp et al.,

1993; Bernardinelli et al., 1995; Richardson et al., 1995; Ashby and Hutton,

1996), measurement error (Richardson and Gilks, 1993) and missing covariate

data (Raghunathan and Siscovick, 1996).
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7.3 EXPLICIT MODELLING OF BIASES

Bayesian techniques for explicitly modelling potential bias, both within studies

and in the attempt to generalise studies outside their target population, were

pioneered by Eddy et al. (1992) under their general title of the ‘confidence profile

method’ (Section 8.1).

Biases to internal validity mean that the effect of interest is not being appropri-

ately estimated within the circumstances of the study. For example, suppose we

suspect that a proportion p of patients in a study did not comply with the

intended treatment, although we do not know who these patients are. If we

are interested in estimating the treatment effect �t in those who actually

received the treatment, then the overall underlying treatment effect in the

trial will be � ¼ (1� p)�t þ p�0, where �0 is the effect in non-compliers. A

likelihood for � can thus be transformed into a likelihood for �t, provided there

is other evidence or prior opinion concerning p and �0. The likelihood therefore

provides information on a function of the parameters of interest, and a fairly

complex example is provided in Example 8.7.

Eddy et al. (1992) identify a range of potential biases that can be modelled in

this manner: these include dilution and contamination due to those who are

offered a treatment not receiving it, errors in measurement of outcomes, errors

in ascertainment of exposure to an intervention, loss to follow-up, and patient

selection and confounding in which the groups differ with respect to measurable

features. These biases may occur singly or in combination.

Biases to external validity concern the ability of a study to generalise to defined

populations or to be combined with studies carried out on different groups, and

may be relevant even if a study has been meticulously carried out and has

obtained an unbiased assessment of the treatment effect within its own study

population. These include ‘population bias’ in which the study and general

population differ with respect to known characteristics, ‘intensity bias’ in

which the ‘dose’ of the intervention is varied when generalised, and differences

in lengths of follow-up.

We have previously discussed the use of historical data as a basis for prior

opinion (Section 5.4) or as historical controls in clinical trials (Section 6.9), and

in each case examined ways of ‘discounting’ the data from their face-value

interpretation. In each of these contexts it has been assumed that the current

observed data, for example in a randomised trial, directly depend on the param-

eter of interest. The potential biases, whether internal or external, in observa-

tional studies can be modelled using similar techniques, but in this context the

current likelihood may be adjusted.

As a simple example, we assume a normal likelihood

ym � N[�Int,�
2=m],
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where �Int represents an ‘internal’ parameter that is being estimated in the

current study. Following the development in Sections 5.4 and 6.9, we might

assume a bias 
 so that �Int ¼ �þ 
, where � is the parameter of real interest.

Options then include the following:

1. Assuming 
 is known.

2. Assuming 
 has a known distribution with mean 0, indicating a non-

systematic bias. If we assume 
 � N[0, �2=n
], from (2.25) we obtain a

likelihood for the parameter of interest �,

ym � N �, �2 1

m
þ 1

n


� �� �
,

i.e. the sample variance is inflated to allow for the potential bias.

3. If we suspect systematic bias in one direction, we might take 
 to have a

known distribution with non-zero mean, say 
 � N[�
, �2=n
]. We then

obtain a likelihood

ym � N �þ �
, �2 1

m
þ 1

n


� �� �
,

or equivalently

ym � �
 � N �, �2 1

m
þ 1

n


� �� �
: (7:1)

Hence, after subtracting the assumed mean bias �
 from the observation ym,

(7.1) provides a likelihood for the parameter of interest that can be combined

with an appropriate prior distribution for �.

Each of these approaches is illustrated in Example 7.1.

In practice, analytic solutionswill rarely be possible andMCMC techniques will

be necessary. More serious are the assumptions required concerning the extent of

the biases, since although data may be available on which to base accurate

estimates, there is likely to be considerable judgemental input. Any unknown

quantity can, of course, be given a prior distribution, and Eddy et al. (1992) claim

this obviates the need for sensitivity analysis. They also argue strongly against

simple downweighting using the ‘power prior’ model (Section 5.4) in which the

effective sample size is reduced: they claim this is an arbitrary technique and that

potential biases should be explicitly modelled. In fact, as we showed in Section

5.4, the models are effectively equivalent when handling a single study. We also

note the increasing pace of research concerning the quantitative bias of observa-

tional studies: see, for example, Kunz and Oxman (1998), Britton et al. (1998),

Benson and Hartz (2000), Ioannidis et al. (2001), Reeves et al. (2001) and

Sanderson et al. (2001).
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Example 7.1 OC: interpreting case^control studies in pharmacoepide-
miology

Reference: Lilford and Braunholtz (1996).

Intervention: Third-generation oral contraceptives (OCs).

Aimof study: Suspicions had been raised as to whether ‘third-generation’
OCs increased the risk of venous thromboembolism compared to
second-generation OCs. The aim of Lilford and Braunholtz (1996) was
to assess the evidence from a Bayesian perspective.

Studydesign: Interpretation of a meta-analysis of four case–control studies.

Outcomemeasure:Odds ratio for venous thromboembolism, OR< 1 being
in favour of 3rd-generation OCs.

Plannedsample size: Not applicable.

Statisticalmodel: Normal likelihood for pooled estimate of log(OR) derived
from the meta-analysis of case–control studies, discounted for potential
biases according to the methods described in Section 7.3. Lilford and
Braunholtz (1996) consider a potential bias d in the meta-analysis with a
normal distrtribution: in the notation of Section 7.3, d � N[md, s2=nd].
They examine the effect of both a non-systematic and a systematic
bias, as detailed below under ‘Sensitivity analysis’.

Prospective analysis?: No.

Prior distribution: Prior beliefs were elicited from two gynaecologists with
an interest in family planning. Expert 1 thought that a 20% risk reduction
in venous thromboembolism would be associated with third-generation
compared to second-generation OCs, i.e. OR ¼ 0.8, but that the OR
could be between 0.4 and 1.6. Assuming this corresponds to a 95%
interval of a normal distribution, the true log(odds ratio), y, can be
assumed to have mean m ¼ log (0:8) ¼ �0:22 and standard deviation
(log (1:6)� log (1:4) )=(2� 1:96) ¼ 0:35: Equivalently, if we take s ¼ 2,
we obtain a prior ‘number of events’ n0 ¼ (s=0:35)2 ¼ 31:9.

Expert 2 thought that there was an equal chance of third-generation
OCs reducing the OR of venous thromboembolism or increasing it, i.e.
OR ¼ 1.0, but was suitably uncertain as to think that the true OR was

likely to be between 0.5 and 2.0. Using the same argument as for Expert 1,

we assume an N[0, s2=31:9] prior for Expert 2.

Loss functionordemands: No.

Computation/software: Conjugate normal model.

Evidence fromstudy: The meta-analysis of case–control studies produced
a pooled odds ratio of 2.0 with a 95% CI from 1.4 to 2.7. On a log(OR)
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scale, this provides a likelihood with mean log (2:0) ¼ 0:69 and standard
deviation (log (2:7)� log (1:4))=(2� 1:96) ¼ 0:17: Equivalently, taking
s ¼ 2, we obtain a sample ‘number of events’ m ¼ (s=0:17)2 ¼ 142:5.

Bayesian interpretation: Combining the evidence from the meta-analysis
with each expert’s prior beliefs produced the posterior distributions seen
in Figure 7.1(a). Given that both gynaecologists were a priori quite
uncertain as to the true odds ratio, their corresponding posterior distri-
butions are influenced considerably by the data, so that the posterior
distributions for both experts indicate less than 0.02% probability that
third-generation OCs reduce the OR of venous thromboembolism.

favours 3rd gen.  <- Odds ratio for VTE    -> favours 2nd gen

Expert 1
(a) Bias: none

0.3 0.8 1.3 1.8 2.8 3.8

0.3 0.8 1.3 1.8 2.8 3.8

0.3 0.8 1.3 1.8 2.8 3.8

Likelihood
Prior
Posterior

Expert 1
(b) Bias: 0% � 67%

Expert 1
(c) Bias: +30% � 67%

favours 3rd gen.  <- Odds ratio for VTE    -> favours 2nd gen

0.3 0.8 1.3 1.8 2.8 3.8

0.3 0.8 1.3 1.8 2.8 3.8

0.3 0.8 1.3 1.8 2.8 3.8

Expert 2
(a) Bias: none

Expert 2
(b) Bias: 0% � 67%

Expert 2
(c) Bias: +30% � 67%

Figure 7.1 Likelihood, prior and posterior distributions for the oral contraceptive
meta-analysis, showing the prior distributions for two experts and the results of (a)
taking the meta-analysis at face value, (b) discounting the evidence by assuming the
possibility of a random bias with standard deviation 30% on the HR scale, and (c)
assuming an additional systematic bias of 30% on the HR scale.
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Sensitivityanalysis: It may be appropriate not to consider the evidence from
such a meta-analysis at ‘face value’ since such retrospective epidemi-
ological studies are known to be prone to various biases. Figure 7.1(b)
shows an analysis in which the evidence from the meta-analysis is dis-
counted using the non-systematic bias model described in Section 7.3.

Figure 7.1(b) shows the influence of a non-systematic md ¼ 0ð Þ bias
such that the odds ratio yInt being estimated may be between 60% and
167% of the true odds ratio y, i.e. up to a 67% bias in either direction. This
corresponds, on a log(OR) scale, to a bias with standard deviation
log (1:67)= 1:96 ¼ 0:26, equivalent, if we take s ¼ 2, to nd ¼ (s=0:26)2 ¼
58:7. The resulting posterior distributions for the twoexperts nowgive11%
and 5%probability to the notion that third-generationOCsmay reduce the
relative risk.

Figure 7.1(c) shows a further series of analyses in which the evidence
from the meta-analysis is not only discounted, but also adjusted for the
belief that case–control studies may have a systematic bias in which
odds ratios are overestimated by a median of 30%: this is modelled by
assuming md ¼ log (1:3) ¼ 0:26, so that d � N[0:26, 0:262]. In this case
the resulting posterior distributions show 27% and 15% probability that
third-generation OCs may reduce the relative risk. Thus reasonable
assumptions about the potential bias in the epidemiological studies,
combined with a reasonably sceptical prior distribution, lead to substan-
tial uncertainty as to the true effect of third-generation OCs.

Comments: There was great publicity surrounding the publication of this
meta-analysis in 1995. Notification of family doctors in the UK was
carried out in a ‘panic’ atmosphere, leading to a sudden drop in use of
third-generation OCs, and reports of subsequent excess abortions. This
Bayesian analysis suggests that such consternation may have been
unfounded. A court case against the makers of third-generation OCs
brought by 99 women who suffered strokes, deep vein thromboses and
pulmonary embolisms was settled in July 2002 in the English courts,
when the judge ruled that there was ‘not, as a matter of probability, any
increased relative risk’ associated with the pills. It is notable that both
sides in the case agreed that a doubling of risk had to be shown, in order
that it was ‘as likely as not’ that any side-effect was caused by the third-
generation OC. In view of this demand, it is hardly surprising the case
against the companies failed.

Whilst this, and many other analyses have concentrated on the poten-
tially negative effects of third-generation OCs, there has been evidence
published that their use has been associated with a reduced relative risk
of myocardial infarction compared to second-generation oral contracep-
tives. However, this example serves to illustrate the fact that in many
situations in which there are numerous outcomes, both positive and
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negative, consideration of one in isolation is fraught with danger. It is also
notable that policy decisions should depend on differences in expected
utilities whch in turn depend on risk differences rather than odds ratio
(Section 3.14), and hence this analysis, strictly speaking, is not in a
suitable form for decision-making.

7.4 INSTITUTIONAL COMPARISONS

If we consider an individual clinician, a medical team or a hospital as represent-

ing a class of ‘intervention’, then the use of performance indicators to compare

outcomes could be considered as a form of evaluation. There are many complex

issues surrounding such ‘profiling’ of institutions, including risk adjustment,

choice of indicator, frequency of analysis, public reporting and so on, but these

are beyond the scope of this book. Bayesian approaches to institutional com-

parisons have been suggested by Goldstein and Spiegelhalter (1996), Normand

et al. (1997) and Christiansen and Morris (1997a), while fully Bayesian

methods have also been used in the analysis of panel agreement data on the

appropriateness of coronary angiography (Ayanian et al., 1998).

A popular method when comparing institutions is to plot the observed

performance (possibly risk-adjusted) and 95% confidence interval; see, for

example, the New York cardiac surgery indicators (New York State Department

of Health, 1998). If the interval does not overlap a benchmark then attention

focuses on that centre. However, by chance alone one can expect 2.5% of

centres to be identified as ‘significantly’ below standard, even if they are actually

performing at the benchmark level. This indicates the need for caution in

interpreting ‘statistically significant’ results, as this is essentially testing the

hypothesis that each surgeon has exactly the same underlying patient mortality

rate, which is neither plausible nor particularly interesting. We can deal with

this ‘multiplicity’ problem (Section 3.17) in an analogous way to subset estima-

tion (Section 6.8.1) and meta-analysis (Section 8.2), in using hierarchical

models to make inferences based on estimating a common prior distribution,

leading to ‘shrunken’ estimates for each centre. Furthermore, regression to the

mean describes the tendency for institutions that have been identified as ‘ex-

treme’ to become less extreme when monitored in the future – put simply, part

of the reason for their extremity was a run of good or bad luck. This simple

phenomenon could lead to spurious claims being made about the benefit of

interventions to ‘rescue’ failing institutions. Shrinkage estimation is intended to

counter this difficulty (Christiansen and Morris, 1997a).

An additional benefit of using Markov chain Monte Carlo methods (Section

3.19) is the ability to derive uncertainty intervals around the rank order of each
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institution (Marshall and Spiegelhalter, 1998). Example 7.2 describes an analy-

sis of success rates in in vitro clinics, in which Bayesian methods are used both to

make inferences on the true rank of each clinic and to estimate the true

underlying success rates with and without an exchangeability assumption.

Benefits of the Bayesian approach to institutional comparisons therefore

include:

. methods for reporting probabilities that any specified centre’s true rate

exceeds any particular threshold of interest;

. a natural way of dealing with ‘regression to the mean’;

. explicit allowance for between-centre variability;

. an opportunity to incorporate covariates both at the patient and institutional

level of the model;

. inferences on the true rank of the institution.

Example 7.2 IVF: estimationandrankingof institutionalperformance

Reference: Marshall and Spiegelhalter (1998).

Intervention: In vitro fertilisation (IVF).

Aim of study: The UK Human Fertilisation and Embryology Authority
(HFEA) monitors clinics licensed to carry out donor insemination (DI)
and IVF, and to help people who are considering fertility treatment to
understand the services offered by licensed clinics and to decide which
clinic is best for them (Human Fertilisation and Embryology Authority,
1996). They publish risk-adjusted live birth rates per treatment cycle
started, and we are concerned with whether one can rank the institutions
with any confidence.

Studydesign: Retrospective analysis of prospectively collected data on 52
clinics carrying out IVF treatment in the UK between April 1994 and
March 1995.

Outcome measure: Estimated adjusted live birth rate p̂pk, with 95% inter-
vals, per treatment cycle started, where the case-mix adjustment is
based on a pooled logistic regression of all IVF treatments.

Statisticalmodel: If there are nk treatments in the kth clinic, we calculate
rk ¼ p̂pknk as the effective number of successful live births. The log-odds
on success for each clinic are denoted yk and estimated to be yk ¼
log [(rk þ 0:5)=(nk � rk þ 0:5)],with estimatedvariance s2k ¼ 1=(rk þ 0:5)þ
1=(nk � rk þ 0:5) (Section 2.4.1). Then we assume

yk � N[yk, s2k ],
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where yk is the true log-odds on success in the kth clinic; an exact
likelihood based on the binomial distribution is possible but makes
negligible difference in this example due to the substantial number of
treatments.

Two models for the yks are considered. First, that they are
independent. Second, the clinics are assumed to be fully exchangeable
(Section 3.4), with the true rates (on a logit scale) being drawn from a
common normal distribution: if, after adjusting for case-mix, we can find
no other contextually meaningful way to differentiate between the insti-
tutions, then the assumption of their exchangeability seems justified.
Hence we assume

yk � N[m, t2]:

Priordistributions:

Independencemodel. Originally assume the yk each have an independ-
ent uniform distribution: this is used for the ranking exercise.

Exchangeablemodel. Uniform priors are adopted for m, t.

Computation/software: MCMC techniques in the WINBUGS software are
used to derive posterior distributions for the ranks of the institutions: this
is done by calculating the current rank of each institution at each iteration
of the simulation, and then summarising the distribution of these calcu-
lated ranks after many thousands of iterations.

Evidence fromstudy: The raw data are shown in Figure 7.2.

Bayesianinterpretation: It is clear from Figure 7.2 that there is substantial
shrinkage towards the overall mean performance when assuming ex-
changeability, although there are still a number of clinics that would
be considered ‘significantly’ above or below average. It can be argued
that this adjustment is an appropriate means of dealing with the problem
of multiple comparisons. In addition, this shrinkage should deal with
‘regression to the mean’, in which extreme institutions will tend back
towards the overall average when they recover from their temporary run
of good or bad luck.

Figure 7.3 shows that there is considerable uncertainty in the true
rank of an institution, even when they show substantial differences in
performance.
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Figure 7.2 Estimates and 95% intervals for the adjusted live birth rate in each clinic,
assuming both independent and exchangeable rates. The vertical lines represent the
national average of 14%. The estimated adjusted live birth rate for each clinic is given
in brackets, together with the number of treatment cycles started.

The consequence of assuming exchangeability is to reduce the differ-
ences between clinics and hence to make their ranks even more uncer-
tain. Figure 7.3 shows this is the case to a limited extent, although since
many of the extreme clinics are also fairly large, their rank is not unduly
effected.

Sensitivity analysis: The results are extremely insensitive to the prior on t
and the use of a full binomial likelihood.
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Figure 7.3 Median and 95% intervals for the rank of each clinic, assuming both
independent and exchangeable rates. The dashed vertical lines divide the clinics into
quarters according to their rank.

7.5 KEY POINTS

1. Data from observational studies may, in principle, be analysed in exactly the

same framework as for randomised trials.

2. Imperfections in the design and conduct, and generalisation to other popu-

lations, may be approached by adopting a more complex model.

3. There are likely to be increased demands for Bayesian analysis, particularly

in areas such as institutional comparisons and gene–environment inter-

actions.
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4. The explicit modelling of potential biases in observational data may be

widely applicable but needs some evidence base in order to be convincing.

5. Analysis of sensitivity to modelling and prior assumptions is even more

important than in RCTs.

EXERCISES

7.1. Ashby et al. (1993) consider the association between treatment for Hodg-

kin’s disease and the subsequent risk of leukaemia. An international case–

control study reported data on 149 cases who had Hodgkin’s disease

followed by leukaemia and 411 matched controls who had Hodgkin’s

disease but no subsequent leukaemia. Table 7.1 displays cases and controls

stratified according to treatment received.

(a) Estimate the probability that cases with leukaemia had been treated

with chemotherapy, i.e. p(CjL), and compare this with the probability

that controls without leukaemia had been treated with chemotherapy,

i.e. p(CjL).
(b) Prove that from these quantities you can estimate the odds ratio

associating leukaemia with treatment with chemotherapy, i.e.

[p(LjC)=p(LjC)]=[p(LjC)=p(LjC)].
(c) Hence estimate the log(odds ratio) and its variance from the table.

(d) Assuming a sceptical prior that doubts whether odds ratios as large as

10 are reasonable, how does this influence the conclusions?

7.2. Suppose that r ¼ 20 people responded out of n ¼ 50 given a particular

drug. We then hear that p ¼ 20% of individuals did not in fact take the

drug. (a) Express the overall response rate � in the experiment in terms of

the true response rate �t of those who did take the drug, the proportion p of

compliers, and the response rate �0 of those who did not take the drug.

Assuming a uniform prior for �t, what inference would you make on �t,
assuming (b) �0 ¼ 0, (c) a Beta[2,10] prior distribution for �0?

7.3. In Example 7.1, justify the statement that the bias is equivalent to a

‘standard deviation of 30% on the HR scale’. How might you interrogate

an expert concerning the potential size of a bias?

Table 7.1 Results from an international case–control
study of leukaemia following treatment for Hodgkin’s dis-
ease.

Treatment Cases Controls

No chemotherapy 11 160
Chemotherapy 138 251
Total 149 411
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Table 7.2 Odds ratios and 95% CIs for venous thromboembo-
lism in users of third-generation oral contraceptives compared to
second-generation OCs.

Study Odds ratio 95% CI

Farley et al. 2.6 1.4 to 4.8
Jick et al. 2.2 1.1 to 4.4
Bloemenkamp et al. 2.5 1.2 to 5.2
Spitzer et al. 1.5 1.1 to 2.2

7.4. Table 7.2 presents the results of the four case–control studies reported by

Lilford and Braunholtz (1996) in Example 7.1. Estimate the log(odds ratio)

assuming (a) a pooled-effects model and (b) a random-effects model, using

the empirical Bayes methodology of Section 3.17. The analysis in Example

7.1 considers a conjugate normal analysis, using the results of a meta-

analysis of the four studies to produce an approximate normal likelihood.

(c) Examine the sensitivity of the conclusions to the assumptions under-

lying the meta-analysis.

7.5. In Example 7.2, investigate the claim that the findings are robust to the

prior on t and the use of a full binomial likelihood.

7.6. Goldstein and Spiegelhalter (1996) report the teenage conception rates

shown in Table 7.3.

Table 7.3 Teenage conception rates (13–15-year-olds) in 1990–1992 for 15 health
boards in Scotland.

Health Board No. conceptions Relevant population

Western Isles 6 1935
Orkney 5 1220
Highland 76 11515
Borders 36 5294
Lanark 230 31944
Argyle 172 23243
Forth 121 14938
Glasgow 388 45647
Shetland 13 1512
Lothian 303 35233
Dumfries 67 7614
Grampian 267 27526
Ayr 204 20606
Fife 188 18614
Tayside 208 20000
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(a) Calculate the observed conception rates per 10 000 population, and

rank the health boards according to their rates.

(b) Assuming either Poisson or binomial responses, estimate the ranks of

each health board in a ‘league table’, assuming both independent and

exchangeable rates.

(c) What is the probability that Tayside truly has the highest rates?

Exercises 265

Chapter 7 Observational Studies 17.11.2003 11:49am page 265



Chapter 7 Observational Studies 17.11.2003 11:49am page 266



8

Evidence Synthesis

8.1 INTRODUCTION

It is unusual for a policy question to be informed by a single study. Interest in

more diffuse areas, such as health-care delivery or broad public health measures,

means that health-care evaluations become more realistically complex and there

is an inevitable demand to make use of the huge volume of published and

unpublished evidence. A quantitative synthesis of multiple studies has become

known as a meta-analysis, whose procedures for randomised trials have become

increasingly formalised by the Cochrane Collaboration (Section A.2). This has led

to parallel developments for observational studies (Stroup et al., 2000), and in the

context of social science by the Campbell Collaboration (Section A.2).

A Bayesian approach to such ‘standard’ meta-analyses is considered in

Section 8.2, emphasising the additional flexibility that arises both from the

use of prior information and the adoption of Markov chain Monte Carlo methods

for dealing with more complex models (Section 8.2.2). In particular, Section

8.2.3 illustrates the ability to handle the tricky and controversial issue of

dependence of the treatment effect on baseline risk. The basic meta-analysis

procedure can be further extended to increasingly complex contexts. First, we

examine the somewhat specific but useful issue of indirect comparison analyses

(Section 8.3), which are required when multiple studies have been carried out

in which multiple treatments have been compared in different combinations,

and we wish to draw inferences about specific treatment contrasts. Second, we

examine the broader topic of generalised evidence synthesis (Section 8.4), in which

studies of possibly different designs are pooled in order to estimate quantities of

interest – a wide range of alternative models for pooling are available, broadly

following the structure outlined for handling historical data (Section 5.4).

Since the basic methodological procedures were established in Section 3.17,

this chapter relies heavily on a series of quite detailed examples, featuring

prediction from meta-analyses (Example 8.1), meta-analysis with rare events

(Example 8.2), dependence on baseline risk (Example 8.3), indirect comparisons

in drug trials (Example 8.4), synthesis of RCTs and observational studies
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(Example 8.5), and two examples of the synthesis of multiple studies to estimate

the effects of a screening programme (Examples 8.6 and 8.7).

Many of the ideas in this chapter were suggested by Eddy et al. (1992) under

the general label ‘confidence profile method’, and promulgated with numerous

worked examples and accompanying software (FAST*PRO). They used directed

conditional independence graphs (Section 3.19.3) to represent the qualitative

way in which multiple contributing sources of evidence relate to the quantity of

interest, explicitly allowing the user to discount studies due to their potential

internal bias or their limited generalisability (Section 7.3). Their analysis was

essentially Bayesian, although it was possible to avoid specification of priors and

use only the likelihoods. The need to make explicit subjective judgements

concerning the existence and extent of possible biases, and the limited capacity

and friendliness of the software, have perhaps limited the application of this

technique. However, throughout this chapter we show that modern software

can allow straightforward implementation of their ideas, and we fully acknow-

ledge their foresight in promoting these concepts.

8.2 ‘STANDARD’ META-ANALYSIS

8.2.1 A Bayesian perspective

A standard classical meta-analysis will comprise a series of K studies each

estimating a treatment effect �k, k ¼ 1, . . . ,K, by means of a likelihood which

can be expressed, possibly approximately, as

yk � N[�k,s
2
k ], (8:1)

whether the sample variances s2k are generally considered known or estimated.

Following the development in Section 3.17, individual estimates of the �k can be

termed a fixed-effects analysis in which there is no pooling; at the other extreme

an analysis in which all the �k are assumed equal may be termed pooled-effect.

An intermediate random-effects analysis (DerSimonian and Laird, 1986) treats

the �k as if they were drawn from a population distribution, generally taken as

�k � N[�,t2]:

As mentioned in Section 3.17, a variety of classical techniques are available for

estimating t2; see Sutton et al. (2000) and Whitehead (2002) for recent reviews.

From a Bayesian perspective, it is natural to treat meta-analysis as a standard

problem of multiplicity (Section 3.17), and follow the approach taken in con-

texts such as subset analysis (Section 6.8.1), multi-centre trials (Section 6.8.2),

multiple N-of-1 studies (Section 6.11) and institutional comparisons (Section

7.4). Thus, if we are willing to treat the trials as exchangeable, the ‘true’
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treatment effect in each trial is considered a random quantity drawn from some

population distribution, in exactly the same manner as the standard random-

effects approach to meta-analysis. However, the latter tends to focus on estimat-

ing an overall treatment effect, while a full Bayesian approach also concentrates

on estimating trial-specific effects and, as we shall see below, permits a variety of

useful extensions. A simple ‘empirical Bayes’ meta-analysis has already been

presented in Example 3.13.

The Bayesian approach requires prior distributions to be specified for the

mean effect size �, the between-studies standard deviation t, and possibly the

within-study variances; as in other hierarchical models, specifying default

‘reference’ priors for t is not straightforward (Section 5.7.3).

Someof the potential advantages of the Bayesian approach tometa-analysis are

rather briefly summarised below (Sutton et al., 2000); of course, many of these

issues can also be tackled from a classical perspective, but perhaps with less

flexibility.

1. Unified modelling. The conflict between fixed- and random-effects meta-

analysis is overcome by explicitly modelling between-trial variability

(which could be assumed to be small). The ‘random-effects’ distribution

can also be much more flexible than the standard normal assumption, for

example partitioned into subgroups within which studies might be assumed

equal or exchangeable.

2. Borrowing strength. As in all areas of Bayesian hierarchical modelling, an

exchangeability assumption leads to each experimental unit ‘borrowing’ infor-

mation from the other units, leading to a shrinkage of the estimate towards the

overallmean, and a reduction in thewidth of the interval estimate. This degree

of pooling depends on the empirical similarity of the estimates from the indi-

vidual units.

3. Exact likelihoods. It is not necessary to adopt approximate normal likelihoods,

although care may be required in dealing with nuisance parameters (Section

8.2.2).

4. Allowing for uncertainty in all parameters. The full uncertainty from all the

parameters is reflected in the widths of the intervals for the parameter

estimates; these will therefore tend to be wider than those from a classical

random-effects analysis.

5. Allowing for other sources of evidence. Other sources of evidence can be

reflected in the prior distributions for parameters, or in pooling multiple

types of study (Section 8.4).

6. Allowing direct probability statements on different scales. Quantities of interest

can be directly addressed, such as the probability that the true treatment

effect in a typical trial is greater than 0. It is also possible to make inferences

on a variety of scales, such as risk difference, risk ratio and odds ratio (Carlin,

2000; Warn et al., 2002).
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7. Predictions. The ease of making predictions within a Bayesian framework

allows, for example, current meta-analyses to be used in designing future

studies. For example, we may use the basic normal model to predict the

treatment effect �new in a new trial by

�new � N[�, t2]: (8:2)

Rather than making predictions based on the ‘plug-in’ random-effects distri-

bution p(�newj�̂�, t̂t), we can use the full predictive distribution

p(�newjdata) ¼
Z

p(�newj�, t) p(�, tjdata) d� dt, (8:3)

which fully takes into account the uncertainty concerning � and t. This may

be easily achieved when using MCMC methods by simulating a value �new at

each iteration; the simulated values form a sample from the full predictive

distribution (8.3).

It could be argued that this predictive distribution is a more appropriate

summary of the treatment than conclusions regarding the mean effect �.
Such a predictive distribution may also be valuable as the basis for power

calculations for confirmatory clinical trials (Section 6.5), and could also act

as a prior distribution in their analysis. Predictions of effects in future

populations are also required if the analysis is to contribute to a policy

model, and these may need to be adjusted for different patient characteris-

tics.

8. Assessing compatibility between meta-analyses and individual clinical trials.

Suppose we have observed data yobs in a new trial and we wish to assess

their compatibility with a meta-analysis. We may consider yobs as providing

a likelihood term for a new treatment effect �new, and the issue becomes one

of assessing compatibility between a likelihood and a prior p(�newjdata)
obtained from (8.3). We have already considered such comparisons in

Section 5.8, where Box’s method was outlined. This compares yobs with

the predictive distribution of new data Ynew, given by

p(Ynewjdata) ¼
Z

p(Ynewj�new) p(�newjdata) d�new:

Specifically, as a form of two-sided P-value, we calculate twice the minimum

tail area 2min(p(Ynew < yobsjdata), p(Ynew > yobsjdata) ). This is easily

achieved when using MCMC by generating �new, then generating Ynew from

p(Ynewj�new), and counting the proportion of simulated Ynews that exceed or

are less than yobs.

Suppose both prior p(�newjdata) and likelihood p(yobsj�new) can be assumed

approximately normal with distributions N[�̂�new,�2=m] and N[�new,�2=n]
respectively. Then Box’s procedure is equivalent to a two-sided test based

on a standardised comparison
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Z ¼ yobs � �̂�new

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m�1 þ n�1

p :

Example 8.1 illustrates the comparison of predictions Ynew from meta-

analyses with observed yobs in new trials, to show the conflict may not be

as great as is often claimed – see also Berry (2000).

9. Cumulative meta-analysis. It is natural to use a cumulative meta-analysis

as external evidence when monitoring a clinical trial (Henderson et al.,

1995), and cumulative meta-analysis can also be given a Bayesian inter-

pretation as providing a prior distribution (Lau et al., 1995; see also Section

5.4): in this situation the Bayesian approach relies on the assumption of

exchangeability of trials but avoids concerns with retaining Type I error

over the entire course of the cumulative meta-analysis.

10. ‘Meta-regression’. It is reasonably straightforward to investigate the rela-

tionship between treatment effect and study-level factors. For example,

suppose we have measured a covariate xk on each study. Then we could

fit the model

�k ¼ �adjk þ �(xk � x), (8:4)

where �adjk is the treatment effect adjusted for the covariate and might be

assumed to have a population distribution �adjk � N[�, t2]. However, par-

ticular care is required for examining the relationship with baseline rates

(Section 8.2.3).

11. Publication bias. It is feasible to model the effects of different degrees of

publication bias, although any conclusions must necessarily be somewhat

dependent on uncheckable assumptions (Silliman, 1997; Begg et al., 1997;

Givens et al., 1997; Smith et al., 2000).

These methods are not restricted to randomised trials and may equally be

applied to meta-analyses of case–control and other observational studies, with

the usual caveats about adjustment for potential bias.

Example 8.1 ISIS: Predictionaftermeta-analyses

Reference: Higgins and Spiegelhalter (2002).

Background: Example 3.13 described a meta-analysis carried out in 1993
which showed an apparent survival benefit from magnesium sulphate
following myocardial infarction. When the ISIS-4 ‘megatrial’ announced
its result of no benefit from magnesium, the apparent conflict with the
meta-analysis led to a long-running argument – see Higgins and Spie-
gelhalter (2002) for a recent analysis. Here we derive a predictive distri-
bution for the effect expected in a new trial based on the data available in
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the meta-analysis and presented in Example 3.13, and see whether that
prediction is really in conflict with the results observed in ISIS-4. We
carry out a full Bayesian analysis on all the parameters, and check
sensitivity to prior assumptions.

Statistical model: The normal approximation for the log(odds ratios) de-
scribed in Section 2.4.1 is adopted.

Priordistribution: As a baseline analysis, m and t, the between-study mean
and standard deviation, are given uniform priors.

Computation/software: MCMC methods implemented using WinBUGS.

Evidence from study: The data contributing to the meta-analysis were
given in Table 3.8. In ISIS-4 2216/29 011 (7.6%) deaths were observed
in the magnesium arm, slightly in excess of the 2103/29 039 (7.2%)
deaths observed under placebo. This corresponds to a log(OR) of
yobs ¼ 0:06, with standard deviation 0.03.

Bayesianinterpretation: Summaries of the simulated values of m and t are
given in Table 8.1 under the uniform prior assumptions. It can be seen that
the between-trial heterogeneity is poorly estimated from these data in that
the 95% interval is extremely wide, and therefore some prior sensitivity
might be expected. Nevertheless the 95% interval for the overall odds
ratio does exclude 1. The predicted log(OR) ynew in a new trial has an
extremelywide interval, and this is reflected in the predictive distribution of
the observed log(OR) Ynew in a trial of the size of ISIS-4, which has a point
prediction of 0.56 but a 95% prediction interval from 0.10 to 2.43.We note
that the huge sample size of ISIS-4 means that the distribution of Ynew is
essentially the same as ynew. The observed log(OR) of yobs ¼ 0:06 lies
well within this interval with a one-sided tail area of 0.12; Box’s compati-
bility measure is the probability of observing such an extreme result,

Table 8.1 Comparison of meta-analysis with megatrial. Ynew are the results
from a further trial that would be predicted from the meta-analysis. The observed
data yobs from ISIS-4 are well within the 95% prediction interval.

Parameter Median 95%
interval

Median
OR

95% interval
for OR

m: mean effect �0.59 �1.35 to �0.01 0.56 0.26 to 0.99
t: between-trial SD 0.55 0.02 to 1.62
ynew: prediction of effect in new trial �0.58 �2.28 to 0.89 0.56 0.10 to 2.43
Ynew: prediction of log(OR) to

be observed in new trial
�0.59 �2.29 to 0.88 0.56 0.10 to 2.43

yobs: observed log(OR) in ISIS-4 0.06 0.00 to 0.12 1.06 1.00 to 1.13
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2� 0:12 ¼ 0:24. This analysis does not therefore indicate strong conflict
between the meta-analysis and the megatrial.

Sensitivity analyses: Six alternative prior distributions for t give predictive
distributions for Ynew shown in Figure 8.1. As expected from the discus-
sion in Section 5.7.3, the Gamma(0.001,0.001) (a) (equivalent to a root-
inverse-gamma on t), DuMouchel (e) and half-normal with tu ¼ 1:0 (f)
tend to support smaller values of t and hence produce narrower poster-
ior intervals, while the uniform on t2 (b) leads to very wide intervals. We
note that s0 ¼ 0:36, roughly corresponding to an average of 31 events
per trial (in fact a total of 286 events are recorded in Table 3.8, or an
average of 36 events per trial).

The resulting one-sided P-values P(Ynew < yobs) ranged from 0.06 (for
(a) and (f) ) to 0.18 (for (b) ), so under no assumption was there particu-
larly strong evidence of incompatibility.
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Figure 8.1 Alternative predictive distributions for the observed log(OR) in a trial
the size of ISIS-4, arising from six different prior distributions on t. The actual
observed log(OR) was 0.058, and hence was not seriously in conflict with any of
the predictive distributions.
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8.2.2 Some delicate issues in Bayesian meta-analysis

The Bayesian approach to meta-analysis promises additional flexibility but

raises some tricky issues, some of which are generic to hierarchical models

and some more specific to this context. These include the following:

The between-study standard deviation t. Comparative studies show that

when there are few studies and hence t cannot be accurately estimated from

the data alone, the prior for this parameter may become important and the

empirical Bayes approach, in which the uncertainty about the between-study

variability is ignored, tends to provide intervals that are too narrow. Priors on

the heterogeneity parameter have already been discussed in Section 5.7.3, in

which it was noted that Higgins and Whitehead (1996) use proper priors

derived from a series of meta-analyses. It is important to check the sensitivity

to the prior on t – see Example 8.1.

Exact likelihoods and nuisance parameters. The standard normal approxi-

mation given in (8.1) may not be appropriate when the studies are small or

their results extreme, as the resulting likelihoods may not be approximately

normal. For example, suppose in the kth trial there are ntk and nck in the

treatment and control groups respectively, and we observe rtk and rck deaths.

If either ntk and nck is small, or mortality rates are near 0% or 100%, we may

adopt a full binomial model instead of the normal approximation of Section 2.4.

Specifically, we assume

rtk � Bin[ ptk, ntk],

rck � Bin[ pck, nck],

where the mortality probabilities are expressed as

logit(ptk) ¼ �k þ �k,

logit(pck) ¼ �k:
(8:5)

Hence �k is the logit(mortality rate) in the control group of trial k, and the

treatment effect �k is the log(odds ratio).

The �k can also be called ‘study effects’ or ‘baseline rates’ and require careful

handling. Generally theywill be considered as nuisance parameters, except in the

situation where a relationship between treatment effect and underlying risk is

suspected (Section 8.2.3). Eliminating such nuisance parameters is a problem

within all schools of statistical inference: see Section 3.18 for a brief review.

In the context of meta-analysis the following methods have been adopted:

. ‘Approximate pivotal quantity’. The standard normal approximation in (8.1)

has a distribution which does not depend on the baseline �k.

274 Evidence synthesis

Chapter 8 Evidence Synthesis 17.11.2003 4:58pm page 274



. ‘Conditional likelihood’. By conditioning on the value of a statistic we derive a

likelihood which depends only on the parameter of interest: see Liao (1999)

for a Bayesian application of this procedure in meta-analysis.

. Prior distributions. The appropriate joint prior distribution for the �k and the �k
presents a particular problem. The ‘study effects’ �k might be given independ-

ent uniform priors, but a choice must be made between the logit (�k) and

probability (pck) scale. Random study effects can be assumed if the control

group risks are considered exchangeable, but a normal distribution may not

be appropriate. Finally, it may be reasonable to assume the �k and the �k are
correlated, and hence carry out a ‘bivariate meta-analysis’ (van Houwelingen

et al., 1993). This is essential if one is explicitly investigating the relationship

between effect and baseline risk (Section 8.2.3), but it has been argued that it

would be appropriate in any situation in which one assumes random �k. The

reasoning is as follows: if the �k and the �k are assumed independent, (8.5)

shows that the variance of the treatment risks is forced to be greater than the

variance of the control risks. Of course this may be a reasonable assumption,

but it should be explicitly acknowledged.

Example 8.2 examines a meta-analysis of trials with rare events, and explores

the sensitivity of conclusions to a range of these modelling options.

Example 8.2 EFM:meta-analyses of trialswith rare events

References: Sutton and Abrams (2001), Sutton et al. (2002).

Intervention: Electronic foetal heart rate monitoring (EFM) in labour, with
the aim of early detection of altered heart-rate pattern and hence a
potential benefit in perinatal mortality.

Aimof study: EFM was gradually introduced in the early 1970s, and early
evaluation of its impact in terms of perinatal death was in terms of either
non-randomised comparative studies or before–after studies. A large
body of evidence was collected which suggested that EFM was indeed
clinically effective in reducing the risk of perinatal death. Despite this
body of evidence a number of randomised trials were conducted, which
were much smaller in terms of sample sizes, but which suggested that
there was little benefit, if any, from the use of EFM. Here we consider the
evidence from the randomised trials, with emphasis on the difficulties
associated with rare events.

Studydesign: Meta-analysis of nine randomised trials.

Outcomemeasure: Perinatal mortality, as measured by the odds ratio in
deaths per 1000 births, odds ratios less than 1 favouring EFM. We note
that Sutton and Abrams (2001) consider the risk difference, which is

‘Standard’ meta-analysis 275

Chapter 8 Evidence Synthesis 17.11.2003 4:58pm page 275



directly related to the number needed to treat (NNT) and hence a policy
decision (Section 3.14).

Statistical model: There are a number of options for dealing with the
nuisance parameters in this model, i.e. the control group risks (Section
3.18), acknowledging that the standard normal approximation for the log
(odds ratio) likelihood within each study may be inappropriate due to the
rarity of perinatal deaths.

(a) Fixed effects. A normal approximation to the likelihood for the
observed log(odds ratio) (Section 2.4), with the log(odds ratios)
yk assumed to be independent.

(b) Approximate normal likelihood, randomeffects. A normal approxi-
mation to the likelihood for the observed log(odds ratio) (Section
2.4), with the log(odds ratios) assumed to have the distribution
yk � N[m, t2].

(c,d) Binomiallikelihood, randomeffects. An exact binomial model (8.5),
with the log(odds ratios) assumed to have the distribution yk �
N[m, t2]. The control group risks are assumed independent, with
options (c) and (d) representing different assumptions (see below).

An exchangeable model for the control group risks could also have
been adopted.

Priordistribution: m and t, the between-study mean and standard deviation,
are given uniform priors. For the full binomial models (c) and (d),
two alternative priors for each study’s control group mortality pck are
considered: (c) pck is given an independent uniform prior, and
(d) fk ¼ logit(pck) is given an independent uniform prior.

Computation/software: MCMC methods implemented using WinBUGS.

Evidence from study: The randomised data are presented in Figure 8.2.
We note that trial 8 has a high mortality rate in the control group, which
would cast doubt on a simplistic normal assumption for exchangeable
control groups risks. The 0s in trials 3 and 6 also suggest that conclu-
sions may be sensitive to ways of dealing with the nuisance parameters.

Bayesian interpretation and sensitivity analyses: Figure 8.2 shows the
estimated odds ratios for each trial and for the population, for each of
the four models (a) to (d). The approximate normal random-effects
model (b) is consistently more conservative in its estimate than the
models using a binomial likelihood, and also more precise. The binomial
model (d) with a uniform prior on the logit of the control risks is more
conservative than model (c) with a uniform prior on the control risks – this
is presumably because model (d) will tend to estimate smaller control
risks than model (c) and hence will reduce any apparent benefit of EFM.
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(a) fixed
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(c) Binomial, uniform risks

(d) Binomial, uniform logits

Figure 8.2 Four different models for a meta-analysis of nine trials of electronic
foetal monitoring. The rare events lead to considerable sensitivity of conclusions to
assumptions concerning the form of the likelihood and prior distributions on nui-
sance parameters.

Table 8.2 shows that the three random-effects models also give rise to
different estimates of t, although each has a wide interval with the bulk of
the density near 0. There is likely to be considerable additional sensitivity
to prior assumptions concerning t.

Comments: This example shows there can be sensitivity to likelihood
assumptions as well as prior distributions, and that analyses with rare
events have to be handled with care. In particular, the traditional normal
approximation, used in so many of our examples, would lead to exces-
sive confidence in the conclusion, whereas the RCTs provide little evi-
dence of efficacy on their own.
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Table 8.2 Posterior summaries for between-trial standard deviation t from three
different random-effects models.

Model Median of t 95% interval

(b) Approximate normal likelihood, random effects: 0.32 0.01 to 1.50
(c) Binomial likelihood, random effects, uniform

on control risks:
0.54 0.01 to 2.25

(d) Binomial likelihood, random effects, uniform
on logit control risks:

0.75 0.09 to 2.82

Sutton and Abrams (2001) present both case–control and cohort data
addressing this comparison: randomised and observational data could
be combined by, for example, using the (possibly discounted) observa-
tional data as a prior for the meta-analysis presented above (Hornbuckle
etal., 2000), or by conducting a generalised evidence synthesis in which
different study designs are pooled in a hierarchical model (Section 8.4).

8.2.3 The relationship between treatment effect and
underlying risk

The appropriate means of modelling the dependence of effect on baseline risk

has been the subject of some controversy. There is general agreement that it is

natural to investigate the linear model

�k ¼ �adjk þ �(�k � �), (8:6)

where �adjk is now the treatment effect adjusted for a measure of baseline risk �k,

also known as a ‘study effect’. �adjk might be assumed to have a distribution

�adjk � N[�, t2]: (8:7)

We note from (8.6) and (8.7) that the treatment effect �k has distribution

�k � N[�þ �(�k � �), t2], (8:8)

and hence the treatment effect in any future trial with true baseline risk � can

be obtained by substitution in (8.8). In particular, the effect is expected to be 0

when � obeys

�0 ¼ ��

�
þ �;
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the solution to this equation is known as the ‘breakeven’ point. MCMC methods

allow inferences to be drawn about this quantity, as demonstrated in Example

8.3. Such models have been investigated by McIntosh (1996), Thompson et al.

(1997), Sharp and Thompson (2000) and Arends et al. (2000).

The controversy arises in the specification of a prior for the ‘study effects’ �k.

Thompson et al. (1997) assume independent priors and hence fixed study

effects, but this is strongly criticised by Houwelingen and Senn (1999), who

argue that since this introduces an additional nuisance parameter for each trial,

the procedure will be ‘inconsistent’ in the sense that under broad assumptions it

will, as the number of trials grows, not tend to give the correct underlying

relationship. In their reply the authors claim that fixed study effects are stand-

ard methodology, for example in using logistic regression, and will only give

misleading conclusions in extreme situations. These alternative approaches are

investigated in Example 8.3.

Van Houwelingen and Senn (1999) also make the important point that there

will always, in a sense, be dependence between effect and baseline, since if there

is no relationship on a logit scale, there would be on an absolute risk scale. An

important aim may therefore be to find a scale on which the effect is most

independent of baseline.

Example 8.3 Hyper:Meta-analysesof trials adjusting forbaseline rates

References: Hoes et al. (1995) and Arends et al. (2000).

Intervention: Drug treatment in mild to moderate hypertension.

Aimof study: To determine whether drug treatment reduced mortality and
to see whether the size of the treatment effect depended on the event
rate in the control group.

Study design: Meta-analysis of 12 randomised trials with considerable
variability in baseline risk.

Outcomemeasure: All-cause mortality per 1000 patient-years of follow-up.

Statistical model: A random-effects Poisson regression model was as-
sumed. In a similar manner to Section 3.18, for the ith study the numbers
of deaths rti and rci in treatment and control groups are assumed

rti � Poisson(mti),

rci � Poisson(mci),

using the notation of Section 2.6.2. The Poissonmeans are expressed as

mti ¼ log(nti=1000)þ fi þ yi,

mci ¼ log(nci=1000)þ fi,
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where nti and nci are the patient-years of follow-up in the treatment and
control groups. Hencefi is the log of the rate per 1000 patient-years in the
control group of trial i, and the treatment effect yi is the log(rate ratio).

The dependence of treatment effect on baseline rate is then modelled
exactly as described in Section 8.2.3.

Prior distribution: For the baseline analysis, m and t, the between-study
mean and standard deviation, are given uniform priors. Following the
discussion in Section 8.2.3, two priors are considered for each study’s
control log(event rate) fi: independent uniform priors, and exchangeable
with a normal distribution

fi � N mf, t
2
f

h i
,

where mf, tf are given uniform priors.

Computation/software: MCMC methods implemented using WinBUGS.

Evidence fromstudy: The data are given in Table 8.3. Figure 8.3(a) shows
the observed rate ratios from Table 8.3 plotted against the observed
control group rates. There is a clear suggestion of a relationship.

Bayesian interpretation: Figure 8.3(b) shows the estimated rate ratios eyi

plotted against the estimated control group rates efi when adjusting for
baseline, assuming independent uniform priors for the fi. There is clear
shrinkage towards theassumedstraight line,with the control group rate for
centre 2 estimated to be even smaller than that observed. The intersection

Table 8.3 Data from 12 randomised trials of drug treatment for mild-to-
moderate hypertension: r is the number of deaths, n is the patient-years of follow-
up, and rates are events per 1000 patient-years.

Treatment group Control group

rt nt ratet rc nc ratec

10 595.2 16.8 21 640.2 32.8
2 762.0 2.6 0 756.0 0.0
54 5 635.0 9.6 70 5600.0 12.5
47 5 135.0 9.2 63 4960.0 12.7
53 3 760.0 14.1 62 4210.0 14.7
10 2 233.0 4.5 9 2084.5 4.3
25 7 056.1 3.5 35 6824.0 5.1
47 8 099.0 5.8 31 8267.0 3.7
43 5 810.0 7.4 39 5922.0 6.6
25 5 397.0 4.6 45 5173.0 8.7
157 22 162.7 7.1 182 22 172.5 8.2
92 20 885.0 4.4 72 20 645.0 3.5
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(a) Observed data
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(b) Fitted data, independent baselines
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(c) Fitted data, exchangeable baselines

Control group rate per 1000 patient years
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Figure 8.3 Estimated control group rates and rate ratios in 12 studies under
different assumptions. (a) can be considered as fixed-effect estimates of control
rate and treatment effects. In (b), the treatment effect is assumed linearly related to
independent log(control group rates), whereas in (c) the log(control group rates) are
assumed exchangeable and hence shrunk towards a common value.
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Table 8.4 Results from fitting independent and exchangeable control group rates.

Independent control
rates

Exchangeable control
rates

Parameter Median 95% interval Median 95% interval

b Dependence on baseline �0.38 �0.57 to �0.17 �0.33 �0.55 to �0.09
ef0 ‘Breakeven’ control rate 6.00 3.67 to 8.01 6.06 2.73 to 8.80
t Residual SD 0.10 0.01 to 0.28 0.10 0.01 to 0.30

of the upper and lower prediction intervals with the null rate ratio 1 cor-
responds to the interval for ef0, the control group rate at which there is no
treatment effect. The corresponding estimates are shown in Table 8.4.

Figure 8.3(c) shows the consequences of assuming the control rates
are exchangeable: the estimates are shrunk towards a common value,
particularly the smaller study 2. The reduced spread in the control group
rates with the exchangeable analysis has resulted in increased uncer-
tainty.

After adjusting for baseline risk, there is very little residual between-
study heterogeneity suggesting it may be reasonable to set t ¼ 0 and
assume all heterogeneity is explained by baseline risk.

Sensitivity analyses: Alternative priors for the between-study standard
deviation t have little influence on this analysis.

Comments: Acknowledging functional dependence of treatment and base-
line rates brings about a reduction in the apparent gradient, compared
with that obtained by plotting the raw data. Assuming exchangeable
control group rates brings some shrinkage but has little influence on
the conclusions. There is little residual variability around the fitted line.

8.3 INDIRECT COMPARISON STUDIES

Suppose that a number of experimental interventions are investigated in a series

of studies, where each study compares a subset of the interventions with a

control group. We would like to draw inferences on the treatment effects

compared with control, and possibly also make comparisons between treat-

ments that may well never have been directly compared. We shall call these

indirect comparisons, although the term mixed comparisons has also been used.

Song et al. (2003) carry out an empirical investigation and report that such

comparisons arrive at essentially the same conclusions as ‘head-to-head’ com-

parisons.

A specific application arises in the context of ‘active control’ studies. Suppose

an established treatment C exists for a condition, and a new intervention T is
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being evaluated. The efficacy of T would ideally be estimated in randomised trial

with a placebo P as the control group, but because of the existence of C this may

be considered unethical. Hence C may be used as an ‘active control’ in a head-

to-head clinical trial, and inferences about the efficacy of T may have to be

estimated indirectly, using past data on comparisons between C and P.

Let �jk represent the expected response (on an appropriate scale) of treatment

j being given in study k, where the control is labelled as j ¼ 0. A simple model

might express �jk as

�jk ¼ �k þ �jk, (8:9)

where �k denotes a ‘study effect’ and �jk a treatment effect in the kth study. It is

often convenient to set �0k ¼ 0, so that we can interpret �k as the response in

the control group. Equation (8.9) needs to be further constrained in order to

estimate parameters: we might assume a common treatment effect across all

studies �jk ¼ �j, or a random effect in which the �jk are assumed drawn from

some population distribution, say, �jk � N[�j, t2j ] (Higgins and Whitehead,

1996; Hasselblad, 1998). A variety of models are possible for the distributions

of the �k and �jk: Higgins and Whitehead (1996) point out that if we wish the

contrasts between all possible treatment pairs (including control) to have the

same distribution, then we need to assume a multivariate normal distribution

for the �jk with a particular correlation structure. Example 8.4 re-examines a

published example of such an analysis.

Example 8.4 Blood pressure: Estimating effects that have never been
directlymeasured

Reference: Gould (1991).

Intervention: Alternative therapies for lowering blood pressure.

Aim of study: To estimate the contrast between two therapies that have
never been compared head-to-head. Gould (1991) suggests such an
inference could then be used to design a direct comparison study.

Available evidence: Table 8.5 displays the results from a set of eight
crossover experiments comprising randomised comparisons and
single-arm studies (Gould, 1991), showing mean and standard deviation
of change in blood pressure, and sample size in each group. Four
treatments (control, A, B and C) have been given, but there has been
no direct comparison between treatments A and B and it is this contrast
that is of particular interest.

Statisticalmodel: Let yjk be the mean response recorded in Table 8.5 for
the jth treatment in the kth study. We assume
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Table 8.5 Sample sizes m, mean and standard deviation of responses under
each treatment given in eight studies: e.g. study 1 compared A with C, while
study 2 randomised between control and B in a 1:2 ratio. The problem is to
compare treatments A and B.

Control ( j ¼ 0) A( j ¼ 1) B( j ¼ 2) C( j ¼ 3)

Study m Mean SD m Mean SD m Mean SD m Mean SD

1 41 8.90 7.49 39 6.05 10.28
2 47 5.51 8.72 100 6.21 8.02
3 53 3.75 7.07 54 10.20 9.39
4 47 3.04 9.20 44 8.43 8.17
5 30 2.97 7.69 32 6.53 7.80
6 69 3.99 8.04
7 68 5.28 7.58
8 67 3.34 8.01

yjk � N fjk,
s2

mjk

� �
,

and assume fjk ¼ fk þ yj (8.9), where y0 ¼ 0 so that fk is the response in
the control group in study k (although there was not necessarily an actual
control in the kth study) and y1, y2, y3 measure the mean effects of
A, B, C over placebo, respectively. Some of the studies have only a single
arm, and if we assume fixed study effects then these will contribute no
information (except in contributing to the estimate of s2). Since all the
studies were carried out in a common research programme by the same
investigators, it may be reasonable to adopt exchangeable study effects
fk, with

fk � N mf, t2f
h i

:

The treatment effects y1, y2, y3 are taken as independent fixed effects.
We may use the following distribution theory to obtain a likelihood for s
(Section 2.6.5). The observed standard deviations sjk have the property

(mjk � 1)s2jk
s2

� w2mjk�1,

and hence (mjk � 1)s2jk � G((mjk � 1)=2, 1=(2s2)).

Prospective analysis?: No.
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Table 8.6 Posterior summaries.

Parameter Median SD 95% interval

md Control mean 4.01 0.50 3.00 to 4.98
y1 A 9.37 0.79 7.87 to 10.98
y2 B 6.10 0.87 4.28 to 7.73
y3 C 6.92 1.08 4.83 to 9.07
y1 � y2 A vs. B 3.28 1.16 1.08 to 5.68
s sampling sd 8.18 0.22 7.79 to 8.63
tf between-study sd 0.46 0.48 0.02 to 1.78

Prior distribution: Uniform distributions are given to log (s), mf, tf and
each of the yj.

Loss functionordemands: None specified.

Computation/software: MCMC implemented in WinBUGS, with inferences
based on 10 000 iterations after a burn-in of 1000.

Bayesian interpretation: The results are shown in Table 8.6, revealing the
between-study standard deviation tf to have a wide interval. The indirect
analysis allows a posterior distribution to be obtained for y1 � y2 which
mightbeused indesigningasuitable trial foradirectcomparisonofAandB.

8.4 GENERALISED EVIDENCE SYNTHESIS

As noted when discussing observational studies in Chapter 7, in some circum-

stances randomised evidence will be less than adequate due to economic,

organisational or ethical considerations (Black, 1996). Considering all the

available evidence, including that from non-randomised studies, may then be

necessary or advantageous. Droitcour et al. (1993) describe the limitations of

using either RCTs or databases alone, in that RCTs may be rigorous but

restricted, whereas databases have a wider range but may be biased. They

introduce what they term cross-design synthesis, an approach for synthesising

evidence from different sources, with the aim ‘not to eliminate studies of overall

low quality from the synthesis, but rather to provide the information needed to

compensate for specific weaknesses’. Although not a strictly Bayesian approach,

they are essentially explicitly modelling potential biases (Section 7.3), and then

attempting to generalise the results of clinical trials for broader populations.

Rubin (1992) emphasises pooling evidence through modelling in order to ‘build

and extrapolate a response surface’, which models the true treatment effect

conditional on both the design of the study and subgroup factors.

Cross-design synthesis was outlined in a report from the US General Account-

ing Office (General Accounting Office, 1992), but a Lancet (1992) editorial was
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critical of this approach, suggesting it would deflect attention from carrying out

serious controlled trials: this was denied in a subsequent reply by Chelimsky et

al. (1993). A commentary by Begg (1992) suggested they had underestimated

the difficulty of the task, and appeared to assume that randomised trials and

databases could be reconciled by statistical adjustments, whereas selection

biases and differences in experimental rigour could not be eliminated so easily.

A non-Bayesian case study is provided by Belin et al. (1995) who combine

observational databases in order to evaluate interventions to increase screening

rates, but need to impute missing data in some studies.

One must clearly be very cautious in such an endeavour, balancing the desire

to make use of all available evidence with due acknowledgement of potential

weaknesses. It is not a purely technical exercise, and must be carried out in

loose collaboration with subject-matter experts. Nevertheless, it is natural to

take a Bayesian approach to the synthesis of multiple study designs, in which

relationships are assumed between some underlying parameters of the different

studies. Such relationships may involve a huge variety of both deterministic

models and probabilistic dependence, and again fall naturally into the tax-

onomy of relationships already explored in the use of historical data (Section

5.4)

(a) Irrelevance. It is always an option, possibly on purely subjective grounds, to

declare certain studies irrelevant to the issue under study.

(b) Exchangeable. Typically we may be able to classify our studies according to a

‘type’, say randomised, case–control or cohort: this naturally leads to hier-

archical exchangeability assumptions, which can specifically allow for the

quantitative within- and between-study-type heterogeneity, and incorpor-

ate prior beliefs regarding qualitative differences between the various

sources of evidence. Figure 8.4 shows a stylised graphical representation

of a possible model, in which treatment effects are assumed exchangeability

within study type, and also that mean study effects are exchangeable.

Examples of this approach include Prevost et al. (2000) who pool random-

ised and non-randomised studies on breast cancer screening (Example 8.5),

Larose and Dey (1997) who similarly assume open and closed studies are

exchangeable, and Dominici et al. (1999) who examine migraine trials and

pool open and closed studies of a variety of designs in a four-level hierarch-

ical model. There is a clearly a difficulty in making such exchangeability

assumptions, since there are few study types and hence little information on

the variance component. Prior assumptions may be very important, and

priors for the degree of ‘similarity’ between alternative designs might be

empirically informed by studies comparing the results of RCTs and observa-

tional data, such as listed in Section 7.3.

(c) Potential biases and (d) Equal but discounted. Both biases and discounting can

be incorporated into a model for between- and within-study-type variation

such as that shown in Figure 8.4.
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Figure 8.4 Hierarchical model in which the effects �ij in studies of type i are assumed
exchangeable with mean �i, and the study-type effects �i are assumed exchangeable with
mean �0.

(e) Functional dependence. Suppose we are interested in drawing inferences on a

quantity f about which no direct evidence exists, but where f can be

expressed as a deterministic function of a set of ‘fundamental’ parameters

� ¼ �1, . . . , �N . For example, f might be the response rate in a new popula-

tion made up of subgroups about which we do have some evidence. More

generally, we might assume we have available a set of K studies in which we

have observed data y1, . . . , yK which depend on parameters c1, . . . , cK ,

where each ck is itself a function of the fundamental parameters �. This
structure is represented graphically in Figure 8.5. This situation sounds very

complex but in fact is rather common, when we have a lot of studies, each of

which informs part of a jigsaw, and which need to be put together to answer

the question of interest. See Example 8.6 for a case where the fundamental

parameters have directly relevant evidence, and Example 8.7 in which the

fundamental parameters have only indirect evidence.

Fundamental parameters

Study-specific parameters

Data

Quantity of interest

y1

y1 yK

q

yK

f

. . .

. . .

Figure 8.5 Data yk in each of K studies depend on parameters ck, which are known
functions of fundamental parameters �. We are interested in some other function f of �,
and so need to propagate evidence from the yk.
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(f) Equal. It is of course possible to assume the treatment effect is common

across studies of different designs. For example, Li and Begg (1994) present

a non-Bayesian analysis of pooling controlled and single-arm studies, in

which each is assumed to have a common treatment effect but the study

effect is taken as random – this is essentially an application of the indirect

comparison models considered in Section 8.3, in which some of the studies

are non-comparative since only one treatment is given.

Such models allow enormous room for imagination and complexity, and

graphical representations (Spiegelhalter, 1998) have been found to be very

useful in clarifying the underlying structure. There is also considerable flexibil-

ity in the logical and stochastic assumptions: for example, Dominici et al. (1999)

assume that between-study variability follows a ‘mixture of normals’ distribu-

tion to allow for skewness. Nevertheless, such analyses may be controversial,

since there may be strong dependence on assumptions and there is concern that

including studies with ‘poor’ designs will weaken the analysis. Careful sensitiv-

ity analyses are clearly vital, and perhaps one reason for the limited uptake of

such syntheses is that they are not seen as ‘clean’ methods, with each analysis

being context-specific, less easy to set quality markers for, easier to criticise as

subjective and so on.

Example 8.5 Screen: generalisedevidence synthesis

Reference: Prevost et al. (2000).

Intervention: Mammographic screening for breast cancer.

Aimofstudy: Breast cancer has the potential to be particularly amenable to
screening in that RCTs and observational studies clearly indicate that
prognosis is extremely good for early stage tumours, especially in
women over 50 years of age. In order to assess the magnitude of this
potential benefit, a number of RCTs and observational studies have been
conducted world-wide. Whilst it is accepted that RCTs provide a ‘gold
standard’ by which to assess efficacy, it has been argued that the
inclusion of observational evidence may help in the estimation of effect-
iveness that may be seen in a potential population. However, observa-
tional studies are often subject to various biases and therefore any
synthesis must be flexible enough to allow these to be incorporated.
This study therefore developed a hierarchical Bayesian model in which
prior opinions regarding the relative plausibility of different sources of
evidence may also be included.

Studydesign: Synthesis of evidence from five RCTs and five observational
studies which evaluated screening in women over 50.

Outcomemeasure: Breast cancer mortality per 1000 patient-years.
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Statisticalmodel: The three-level model follows that shown in Figure 8.4.
Let yik be the observed log(risk ratio) in the ith study of type k, where
k ¼ 1 (RCT), 2 (observational), and s2ik its associated variance. Then we
assume

yik � N[yik, s2ik],

yik � N[mk, n
2
k ],

mk � N[m0, t
2]:

(8:10)

The yik represent the underlying effect, on the log(risk ratio) scale, in
the ith study of type k. The yik are distributed about an overall effect for
the kth type of study, mk, with n2k representing the between-study variabil-
ity for those studies of type k. At the third level of the model the study-
type effects are distributed about an overall population effect, m0, with t2

representing the between-study-type variability. As with many other
meta-analytic models the level 1 variances, s2ik, can be replaced by the
estimated sample variances s2ik, derived in this case using the methods
described in Section 2.4.3. In this case prior distributions are required for
m0, t2 and the n2k .

Prospective analysis?: No.

Priordistribution: A prior distribution for each of the n2k is derived using the
techniques described in Section 5.7.3. We assume we are 95% sure that
the true underlying risk ratio for a study of a particular type will be within a
range from four times to a quarter the overall risk ratio of that type, which
means that the upper 95% point of the prior distribution for each nk is
log (16)=(2� 1:96) ¼ 0:71. A half-normal distribution (Section 2.6.7)
nk � HN[0:362] has this property.

In a similar manner a prior for the between-type variance, t2, can be
derived from assuming 95% belief that the underlying risk ratio for a
particular study type will be less than double or more than half the overall
population effect. On this basis, a half-normal prior distribution
t � HN[0:182] is obtained.

For m0, the overall population effect, a relatively vague prior distribution
is specified on the basis that the overall relative risk is unlikely to exceed
500 in favour of either screening or control, and therefore a prior distribu-
tion form0 has standard deviation log (500)=1:96 ¼ 3:17, orm0 � N [0,10].

Loss functionordemands: None used.

Computation/software: MCMC in WinBUGS.

Evidence fromstudy: Figure 8.6 displays the observed risk ratios (together
with 95% confidence intervals) for the five RCTs and five observational
studies.
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Figure 8.6 Observed risk ratio of breast cancer mortality in RCTs and observa-
tional studies in women over 50, together with Bayesian estimates of overall
synthesis.

Bayesian interpretation: Figure 8.6 also displays the results, in terms of
estimates and 95% intervals, of applying model (8.10) using the prior
distributions derived above. In terms of the individual study estimates
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there is the usual shrinkage towards the overall study-type estimates,
the degree of shrinkage dependent upon the within-study variances, and
towards the overall population estimate for the study-type overall esti-
mates. The overall population estimate is very little different from the
overall RCT estimate, but the 95% interval for the population effect is
considerably larger than that for the RCTs. The key point is that the effect
of synthesising both RCT and observational evidence has not been to
change our overall estimate of the effectiveness of breast cancer
screening, but rather to be less certain about this estimate.

Sensitivityanalysis: Table 8.7 shows the results of changing the prior distri-
butions for the variance parameters used in the analysis above, together
with that for m0, the overall population effect. As an alternative to the prior
distributions described above for the variance parameters, uniform distri-
butions over the range 0 to 5 are assumed on a standard deviation scale,
and the prior distribution for m0 is made even more diffuse. The prior
distribution for t has the largest effect on the estimates for m0, m1 and m2,
which is due to the fact that there are only two study types in this example,
and therefore relatively little data on which to estimate t2.

A further sensitivity analysis was undertaken by Prevost et al. (2000)
regarding the plausibility of introducing the observational evidence at all
into the analysis. In a manner similar to the discounting of historical
evidence (Section 5.4), they considered letting n2, the between-study
standard deviation for the observational studies, be a function of n1 the
between-study standard deviation of the RCTs, i.e. n2 ¼ a� n1. In this

Table 8.7 Sensitivity analysis of estimates of population risk ratio, em0 ,
pooled risk ratio for randomised studies, ey1 , and pooled risk ratio for
observational studies, ey2 (95% credible interval), under different prior distributions.

Prior for t Prior for nj( j ¼ 1, 2) Prior for m0

N(0,10) N(0,10 000)

HN(0.033) HN(0.125) em0 : 0.65 (0.46, 0.86) 0.65 (0.47, 0.90)
ey1 : 0.68 (0.56, 0.82) 0.68 (0.56, 0.83)
ey2 : 0.62 (0.42, 0.81) 0.61 (0.41, 0.84)

U(0,5) em0 : 0.65 (0.44, 0.92) 0.65 (0.44, 0.92)
ey1 : 0.69 (0.53, 0.85) 0.69 (0.53, 0.85)
ey2 : 0.62 (0.39, 0.88) 0.62 (0.39, 0.88)

U(0,5) HN(0.125) em0 : 0.61 (0.24, 1.47) 0.80 (0.19, 13.15)
ey1 : 0.70 (0.57, 0.88) 0.70 (0.56, 0.87)
ey2 : 0.52 (0.30, 0.80) 0.49 (0.26, 0.80)

U(0,5) em0 : 0.59 (0.15, 1.47) 0.67 (0.28, 3.64)
ey1 : 0.70 (0.57, 0.85) 0.70 (0.58, 0.86)
ey2 : 0.50 (0.22, 1.00) 0.52 (0.21, 0.99)
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case a can be used to represent beliefs about the relative credibility of the
two types of evidence. As an illustration they consider placing a N[3,1]
prior distribution on a, which corresponds to prior beliefs that the RCTs
could be ‘valued’ three times as highly as the observational studies, but
that is also consistent with them being valued as much as five times the
observational studies or in fact on an equal basis with the RCTs. Re-
estimating the overall population relative risk incorporating this prior dis-
tribution yields an estimate of 0.66 with 95% credible interval from 0.47 to
0.92. As with the main three-level analysis above, the point estimate is
similar to the overall population relative risk, but the uncertainty surround-
ing this estimate is now greater than both one based on only theRCTs and
a full Bayesian three-level model.

Comments: A wide range of models could be applied to these data. For
example, an alternative approach would be to use the observational
evidence as a prior distribution for a likelihood based on only the
RCTevidence. The model could also be extended to include covariates,
and allow prediction on new populations. Nevertheless, there may be
difficulties in overcoming suspicion of non-randomised studies, in spite
of downweighting and sensitivity analysis.

Example 8.6 Maple: estimatingcomplex functionsof parameters

Reference: This example forms Chapter 27 of Eddy et al. (1992).

Intervention: Neonatal screening for maple syrup urine disease (MSUD),
an inborn error in amino acid metabolism, the early detection of which
should lead to reduced rates of retardation.

Aimof study: To estimate the probability of retardation without screening,
and the change in retardation rate associated with screening. The latter
is denoted ed ¼ yn � ys, where yn is the retardation rate in those not
screened, and ys is the rate in those screened.

Study design: Modelling exercise using results from multiple epidemi-
ological cohort studies.

Outcomemeasure: Expected retardations.

Statisticalmodel: The data described above are all assumed to arise from
binomial distributions with the appropriate parameters. The functional
relationships shown in Table 8.8 then exist.

The graphical model is shown in Figure 8.7, using the graphical tool for
WinBUGS.
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Table 8.8 Model and notation for maple syrup urine disease example.

Factor Notation Derivation

Probability of MSUD r
Prob. of early detection
with screening

fs

Prob. of early detection
without screening

fn

Prob. of retardation with
early detection

yem

Prob. of retardation without
early detection

ylm

Prob. of retardation for a case
of MSUD who is screened

ysm fsyem þ (1� fs)ylm

Prob. of retardation for a case of
MSUD who is not screened

ynm fnyem þ (1� fn)ylm

Expected retardations per 100 000
newborns who are screened

100 000ys ysm r

Expected retardations per 100 000
newborns who are not screened
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Change in retardations due to
screening 100 000 newborns
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e.d

theta.s

theta.nm

name: theta.nm type: logical link: identity

value: phi.n * theta.em + (1-phi.n) * theta.lm

Figure 8.7 A graphical model underlying the maple syrup urine disease example.
The observed data at the top of the graph depend on denominators and unknown
proportions. The quantities of interest are functions of those proportions, where a
double arrow corresponds to a deterministic function. This illustration is taken from
WinBUGS, and shows the logical definition of node ynm, the probability of retarda-
tion for a case of a MSUD patient who is not screened.
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Prospective analysis?: No.

Prior distribution: The prior distributions for all the binomial parameters
used by Eddy et al. are the ‘non-informative’ Jeffreys priors, i.e.
Beta[0.5, 0.5] (Section 5.5.1).

Loss functionordemands: None.

Computation/software: MCMC analysis using WinBUGS; 100 000 iter-
ations were carried out.

Evidence from study: There was no direct evidence on the change in
retardation rate in screened and unscreened populations. The data
shown in Table 8.9 were used, as provided by Eddy et al. (1992).

Bayesianinterpretation: The posterior distribution of ed had the properties
shown in Table 8.10. Eddy et al. display a normal approximation to the

posterior distribution for ed, with an estimate of �0.35 (95% interval from

�0.69 to �0.19). Our wider interval accurately reflects the skewed poster-

ior distribution.

Comments: This example illustrates the synthesis of evidence from mul-
tiple studies, with appropriate allowance for the uncertainty of the par-
ameter estimates. Further extensions could include allowance for
various biases and uncertainty on the inputs to the model.

Table 8.9 Data used in maple syrup urine disease example.

Factor Notation Outcomes Observations

Probability of MSUD r 7 724 262
Prob. early detection with screening fs 253 276
Prob. early detection without screening fn 8 18
Prob. retardation with early detection yem 2 10
Prob. retardation without early detection ylm 10 10

Table 8.10 Results for maple syrup urine disease example.

Parameter Notation Posterior mean 95% credible
interval

Expected retardations per 100 000
newborns who are not screened

yn 0.65 (0.25, 1.27)

Change in expected retardations
due to screening 100 000 newborns

ed �0.35 (�0.77, �0.11)
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Example 8.7 HIV: synthesisingevidence frommultiple sourcesand iden-
tifyingdiscordant information

Reference: Ades and Cliffe (2002).

Intervention: Alternative strategies for screening for HIV in pre-natal clinics:
universal screening of all women, or targeted screening of current intra-
venous drug users (IDUs) or women born in sub-Saharan Africa (SSA).

Aimofstudy: To determine the optimal policy, taking into account the costs
and benefits. However, Ades and Cliffe (2002) point out that the formu-
lation is not wholly realistic as the decision to screen universally through-
out England has now been taken, and in any case a strategy of targeted
testing may not be politically acceptable.

Study design: Synthesis of multiple sources of evidence to estimate par-
ameters of the epidemiological model shown in Figure 8.8. The relevant
fundamental parameters are described in Table 8.11. However, direct
evidence is only available for a limited number of these parameters.

Outcomemeasure: SSA and IDU women will be screened under both uni-
versal and targeted strategies, and hence the only difference between the
strategies comprises the additional tests and additional cases detected

SSA

Risk group? HIV infection?

+
c

Yes

+
d

+
e

−
1−e

−
1−d

−
1−c

f

No

1−f

Yes
g

No

1−g

Yes

h

No

1−h

Already diagnosed?

IDU

Rest

a

b

(1−a−b)

Figure 8.8 Probability tree showing how the proportions of women in different risk
groups can be constructed.
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Table 8.11 Definition of fundamental parameters in HIV model.

Label Parameter

a Proportion of women born in sub-Saharan Africa
b Proportion of women who are intravenous drug users
c HIV infection rate in SSA
d HIV infection rate in IDUs
e HIV infection rate in non-SSA, non-IDUs
f Proportion HIV already diagnosed in SSA
g Proportion HIV already diagnosed in IDUs
h Proportion HIV already diagnosed in non-SSA, non-IDUs

in the non-SSA, non-IDU group. Additional tests per 10 000 women
comprise those on non-SSA, non-IDU women who are not already
diagnosed, and so the rate is given by 10 000(1� a� b)(1� eh). The
rate of new HIV cases detected is 10 000(1� a� b)e(1� h).

Statisticalmodelandevidencefromstudy: Table 8.12 summarises the data
sources available – full details and references are provided by Ades and
Cliffe (2002) who also describe their efforts to select sources which are
as ‘independent’ as possible.

Table 8.12 Available data from relevant studies, generally only allowing direct
estimation of functions of fundamental parameters of interest.

Data items and sources Parameter being estimated Data

1 Proportion born in SSA, 1999 a 11044 / 104 577
2 Proportion IDU last 5 years b 12 / 882
3 HIV prevalence, women born in

SSA, 1997–8
c 252 / 15428

4 HIV prevalence in female
IDUs, 1997–9

d 10 / 473

5 HIV prevalence, women not born in
SSA, 1997–8

dbþ e(1� a� b)
1� a

74 / 136 139

6 Overall HIV seroprevalence in
pregnant women, 1999

caþ dbþ e(1� a� b) 254 / 102 287

7 Diagnosed HIV in SSA women
as a proportion of all diagnosed
HIV, 1999

fca
fcaþ gdbþ he(1� a� b)

43 / 60

8 Diagnosed HIV in IDUs as a
proportion of non-SSA
diagnosed HIV, 1999

gdb
gdbþ he(1� a� b)

4 / 17

9 Overall proportion HIV diagnosed
fcaþ gdbþ he(1� a� b)
caþ dbþ e(1� a� b)

87 / 254
10 Proportion of infected IDUs

diagnosed, 1999 g
12 / 15

11 Prop of serotype B in infected
women from SSA, 1997–8

w 14 / 118

12 Prop of serotype B in infected
women not from SSA, 1997–8

dbþ we(1� a� b)
dbþ e(1� a� b)

5 / 31
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The crucial aspect is that there is no direct evidence concerning the vital
parameters e and h for the low-risk group, and hence their value must be
inferred indirectly from other studies. For this reason the parameter w is
introduced which is not part of the epidemiological model: the assump-
tion that the low-risk group has the same prevalence of subtype B as
SSA women, and that all IDU women are subtype B, allows use of data
source 12 on non-SSA women.

Priordistribution: Uniform priors for all proportions are adopted.

Computation/software: MCMC methods implemented using WinBUGS.

Bayesian interpretation: The posterior estimates and intervals for the pro-
portions underlying the studies are given in Table 8.13, together with the
quantities of interest.

Sensitivity analyses: Here we focus on the consistency of data sources
rather than the usual analysis of sensitivity to model assumptions. We
have synthesised all available data, but the results may be misleading if
we have included data that do not fit our assumed model. A simple way
of assessing possible conflict is to compare the observed proportion in
the 12 sources with that fitted by the model, and it is apparent that the
observation for source 4 is only just included in the 95% interval, while
the data for source 12 lie wholly outside its estimated interval. This is
only a crude method, since a source may strongly influence its estimate,
so a better procedure is to leave each source out in turn, re-estimate the
model, and then predict the data we would expect in a source of that

Table 8.13 Estimates of parameters underlying the available data. Estimates of
quantities of interest in selecting a screening strategy are also shown.

Quantity Observed
proportion

Estimate 95% interval P-value
(excl 4)

1 Proportion SSA 0.106 0.106 0.104 to 0.108 0.47
2 Proportion IDUs 0.0137 0.0088 0.0047 to 0.149 0.46
3 HIV prevalence in SSA 0.0163 0.0172 0.0155 to 0.0189 0.27
4 HIV prevalence in IDUs 0.0211 0.0120 0.0062 to 0.0219 0.004
5 HIV prevalence non-SSA 0.000544 0.000594 0.000478 to 0.000729 0.35
6 Overall HIV prevalence 0.00248 0.00235 0.00217 to 0.00254 0.21
7 SSA as proportion of all

diagnoses
0.717 0.691 0.580 to 0.788 0.50

8 IDU as proportion of non-SSA
diagnoses

0.235 0.298 0.167 to 0.473 0.40

9 Proportion HIV diagnosed 0.343 0.350 0.296 to 0.408 0.47
10 Proportion IDU already

diagnosed
0.800 0.747 0.517 to 0.913 0.44

11 Prop subtype B in SSA 0.119 0.111 0.065 to 0.171 0.43
12 Prop subtype B in non-SSA,

1997–8
0.161 0.285 0.201 to 0.392 0.23

Additional tests per 10 000,
10 000(1� a� b)(1� eh)

8856 8789 to 8898

Additional HIV cases detected,
10 000(1� a� b)e(1� h)

2.49 1.09 to 3.87
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size. This predictive distribution, easily obtained using MCMC methods,
is then compared to the observed data and a P-value calculated in a
parallel manner to Box’s test of prior/data compatibility described in
Section 5.8 (although here we seek to criticise the data rather than the
‘prior’ based on the remaining studies). We may term these ‘cross-
validatory P-values’.

Removing data source 4 from the analyis leads to the cross-validatory
P-values shown in Table 8.13. The small P-value for source 4 shows its
lack of consistency with the remaining data, whereas the predictions for
the remaining data seem quite reasonable. Removing source 4 from the
analysis leads to an estimate of 8810 (8717 to 8872) for additional tests
per 10 000, and 2.73 (1.31 to 4.12) for additional HIV cases detected, so
the removal of this divergent source does not in fact have much influence
on the conclusions. The estimates for the fundamental parameters are
presented in Table 8.14.

Comments: Example 9.5 extends this example to include cost-effective-
ness analysis.

Table 8.14 Estimates of fundamental parameters in HIV model, ignoring
evidence from source 4.

Label Parameter Median 95% interval

a Proportion of women born in SSA 0.106 0.104 to 0.108
b Proportion of women who are IDUs 0.013 0.007 to 0.022
c HIV infection rate in SSA 0.0172 0.0156 to 0.0189
d HIV infection rate in IDUs 0.0046 0.0015 to 0.012
e HIV infection rate in non-SSA, non-IDUs 0.00051 0.00039 to 0.00065
f Proportion HIV already diagnosed in SSA 0.32 0.24 to 0.40
g Proportion HIV already diagnosed in IDUs 0.78 0.55 to 0.93
h Proportion HIV already diagnosed

in non-SSA, non-IDUs
0.40 0.22 to 0.67

8.5 FURTHER READING

Sutton et al. (2000) review the whole area of meta-analysis and Bayesian

methods in particular: other reviews are provided by Jones (1995), Normand

(1999) and Hedges (1998). See also the book edited by Stangl and Berry (2000).

Empirical Bayes approaches for meta-analysis have received most attention in

the literatureuntil recently, largely because of computational difficulties in theuse

of fully Bayesian modelling (Raudenbush and Bryk, 1985; Stijnen and van

Houwelingen, 1990). However, the full Bayesian hierarchical model has been

investigated extensively by DuMouchel and Harris (1983), DuMouchel (1990),
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DuMouchel andWaternaux (1992) andAbramsandSansó (1998)using analytic

approximations, and also using MCMC methods (Morris and Normand, 1992;

Smith et al., 1995). Carlin (1992), for example, considers meta-analyses of both

clinical trials and case–control studies; he examines the sensitivity to choice of

reference priors, and explores checking the assumption of normal random effects.

There have beenmany comparative studies of the full Bayesian approach, includ-

ing trials (Rogatko, 1992; Su and Po, 1996; Tunis et al., 1997) and observational

studies (Biggerstaff et al., 1994; Su and Po, 1996; Tweedie et al., 1996).

Tutorial articles on the confidence profile method include Eddy (1989), Eddy

et al. (1990a, 1990b) and Shachter et al. (1990). The method has been used in

meta-analysis of the benefits of antibiotic therapy (Baraff et al., 1993), mam-

mography in women aged under 50 (Eddy et al., 1988) and angioplasty (Adar et

al., 1989).

8.6 KEY POINTS

1. A unified Bayesian approach appears to be applicable to a wide range of

problems concerned with evidence synthesis.

2. The Bayesian approach provides a natural structure for many subtle issues

that arise in meta-analyses, such as adjusting for baseline risk.

3. Priors on nuisance parameters can be important when there is limited

evidence, such as when there are rare events or few studies.

4. ‘Indirect’ comparisons enable one to infer comparisons where there is limited

or no head-to-head evidence.

5. Generalised evidence synthesis is likely to become increasingly important as

evidence from disparate studies is used in the construction of health-policy

models.

6. Complex synthesis models make extensive use of assumptions, only some of

which can be empirically checked, and careful sensitivity analysis is vital.

EXERCISES

8.1. Repeat the analysis in Example 3.13 but using a full Bayesian analysis as

in Section 8.2, using WinBUGS. Given the relatively small number of

studies, it is important to consider the sensitivity of the posterior results

to the prior distribution for the between-study variability (Section 5.7.3):

explore the options illustrated in Example 8.1.

8.2. Table 8.15 is adapted from Berry (2000) and presents the results of six

RCTs which evaluated cholesterol reduction compared to control in terms

of coronary deaths in patients who had previously suffered a myocardial

infarction.
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Table 8.15 RCTs evaluating cholesterol reduction compared to control in terms of
coronary deaths in patients who had previously suffered a myocardial infarction.

Intervention Control

Study Deaths Total Deaths Total

CDP 398 2224 535 2789
Newcastle 25 244 44 253
Edinburgh 34 350 35 367
Stockholm 47 279 73 276
Oslo 37 206 50 206
MRC 35 322 37 323

(a) Obtain and compare the posterior distribution for the overall pooled

odds ratio using a random-effects meta-analysis based on: (i) a normal

approximation to the likelihood arising from the observed log(odds

ratio) and standard error in each RCT; (ii) modelling the events in

the two arms of each RCT using binomial distributions.

(b) In each case assess the sensitivity of the results to the prior distribution

assumed for the between-study variability, as in Example 8.1.

(c) An additional large-scale RCT (4S) was reported after those in Table

8.15, in which 111 deaths occurred out of 2221 patients in the

intervention arm, and 189 deaths occurred out of 2223 patients in

the control arm. The observed effect in the 4S trial was considered to be

in conflict with that of those in Table 8.15. Obtain the predictive

distribution based on the six RCTs in Table 8.15 for a future RCT and

therefore assess whether the assertion that there was a conflict was in

fact warranted, and in particular whether the sensitivity analyses

considered in (a) affect this assessment.

8.3. Geddes et al. (2000) consider a meta-analysis of 23 RCTs which compared

the use of atypical anti-psychotic drugs with haloperidol in patients with

schizophrenia. The summary data are shown in Table 8.16 with the

relevant dose. Evaluate whether there is evidence for an effect of dose on

treatment effect.

8.4. Using the techniques described in Section 8.2.3, investigate the extent to

which the effect of diuretic therapy on risk of pre-eclampsia considered in

Exercise 3.12 depends upon the baseline level of risk.

8.5. In Example 8.2 a meta-analysis of nine RCTs evaluating the effect of

electronic foetal heart rate monitoring on perinatal mortality was pre-

sented. In addition to the nine RCTs, Sutton and Abrams (2001) also

considered evidence from the seven non-randomised comparative studies

and ten before–after studies which are presented in Table 8.17 together

with the results for the RCTs. Explore the effect that consideration of both

randomised and non-randomised evidence has on the conclusions

obtained in Example 8.2 when: (a) the non-randomised evidence is
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Table 8.16 Standardised effect sizes and associated standard errors (SE) for 23
RCTs evaluating comparing atypical anti-psychotic drugs with haloperidol in patients
with schizophrenia.

Study Standardised effect size SE Dose

1 �0.014 0.158 12.0
2 �0.070 0.150 15.0
3 �0.191 0.136 15.0
4 �0.663 0.312 8.0
5 �0.488 0.320 20.0
6 þ0.455 0.254 11.0
7 �0.273 0.250 20.0
8 þ0.129 0.309 6.0
9 �0.109 0.142 10.0
10 �0.779 0.330 22.5
11 �0.765 0.225 7.6
12 �0.214 0.214 7.5
13 �0.775 0.437 13.5
14 þ0.216 0.116 16.0
15 þ0.018 0.105 10.0
16 �0.406 0.145 20.0
17 �0.234 0.146 17.5
18 �0.112 0.075 10.0
19 �0.294 0.147 16.0
20 �0.469 0.131 17.5
21 �0.903 0.365 20.0
22 �0.237 0.048 12.5
23 þ0.049 0.099 9.4

8.5. considered as prior evidence, either at ‘face value’ or downweighted; and

(b) when both the randomised and non-randomised sources of evidence

are considered within a single hierarchical model following the methods of

Section 8.4 and Example 8.5. You will need to make some explicit prior

assumptions about the size of the potential bias of the non-randomised

studies, and conduct suitable sensitivity analysis.

8.6. In addition to the 17 single-arm studies evaluating either radiotherapy

alone (RTx) or radiotherapy together with adjuvant chemotherapy

(RTxþChm) following surgery for childhood medulloblastoma reported in

Table 5.7, Sutton et al. (2000) also considered six RCTs comparing the two

interventions and summarised in Table 8.18. Using the prior distribution

for the difference in 5-year survival rates between the two therapies in

Exercise 5.6, together with the RCT evidence in Table 8.18, obtain a

posterior distribution for the difference: (a) using the evidence from the

single-arm studies at ‘face value’; (b) possibly downweighting the uncon-

trolled evidence or allowing for bias; (c) modelling both the randomised

and non-randomised sources of evidence within a single model following

the methods of Section 8.4.
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Table 8.17 RCTs, non-randomised comparative studies and before–after
studies evaluating electronic foetal heart rate monitoring (EFM) in terms of
perinatal mortality.

Study Year of publication EFM Control

Deaths Total Deaths Total

RCTs
1 1976 1 175 1 175
2 1976 2 242 1 241
3 1978 0 253 1 251
4 1979 3 463 0 232
5 1981 1 445 0 482
6 1985 0 485 1 493
7 1985 14 6530 14 6554
8 1987 17 122 18 124
9 1993 2 746 9 682
Non-randomised
1 1973 2 1162 17 5427
2 1973 0 150 15 6836
3 1975 1 608 37 6179
4 1977 1 4210 9 2923
5 1978 1 554 3 692
6 1979 0 4978 2 8634
7 1982 10 45880 45 66208
Before–after
1 1975 4 991 0 1024
2 1975 7 1161 9 1080
3 1975 14 11599 1 1950
4 1976 15 4323 1 3529
5 1977 53 4114 21 3852
6 1978 35 15357 6 7312
7 1980 19 4240 2 4503
8 1980 15 6740 5 8174
9 1984 13 7582 2 7911
10 1986 7 17409 5 17586

Table 8.18 Five-year survival rates and standard errors for RCTs comparing radio-
therapy alone (RTx) with radiotherapy together with adjuvant chemotherapy
(RTxþChm) following surgery for childhood medulloblastoma.

Study RTxþChm RTx

S5 SE(S5) S5 SE(S5)

1 0.55 0.026 0.42 0.020
2 0.58 0.058 0.60 0.054
3 0.74 0.083 0.56 0.099
4 0.59 0.060 0.50 0.065
5 0.17 0.217 0.63 0.341
6 0.46 0.114 0.30 0.118
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8.7. In Example 8.7, suppose an additional trial came to light which showed an

HIV prevalence of 10/10 000 in non-SSA, non-IDU women.

(a) Does this study conflict with the available evidence?

(b) How would its inclusion alter the findings?
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9

Cost-Effectiveness,
Policy-Making and

Regulation

9.1 INTRODUCTION

In this chapter we go beyond making inferences based on single or multiple

studies in order to focus on the consequences of adopting particular health

interventions. This broader perspective reflects the increasing attention given to

the cost-effectiveness of new and existing treatments, leading to the develop-

ment of technology-appraisal agencies, such as the National Institute of Clinical

Excellence (NICE) in the UK, which are intended to give guidance to health

providers and decide on treatments to be covered under relevant reimbursement

schemes. We need, however, to take careful account of the context of the

evaluation, particularly with regard to specification of prior distributions and

loss functions, and a framework is outlined in Section 9.2.

As is clear from the name, cost-effectiveness analysis requires a focus on the

dual outcomes of costs and effectiveness, and a typical formulation requires

specification of a model for both, which will contain parameters whose plausible

values will depend on both judgement and evidence. The ‘standard’ approach to

cost-effectiveness analysis is outlined in Section 9.3, in which the value of

concepts such as incremental net benefit and the cost-effectiveness plane are em-

phasised. In many circumstances randomised trial evidence may be lacking or

limited to certain aspects of the model, leading naturally to the use of the

generalised evidence synthesis techniques outlined in Chapter 8.4. In Section

9.4 we identify two alternative approaches to combining evidence synthesis

with a cost-effectiveness model. The first approach is termed two-stage: in the

first stage the evidence from multiple sources is synthesised and used as a basis

for the distributions given to parameters; in the second stage, the effects of the
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resulting uncertainty are propagated through the cost-effectiveness model. The

second stage, in which distributions are placed on unknown parameters, has

become known in the cost-effectiveness literature as probabilistic sensitivity

analysis. The second, integrated, approach simultaneously carries out the syn-

thesis and cost-effectiveness analysis. The two-stage approach is illustrated in

Section 9.5, in which cost-effectiveness acceptability curves are introduced and

shown to be easily handled in the Bayesian framework, illustrated using closed-

form, Monte Carlo and MCMC approaches. The integrated approach is then

demonstrated in Section 9.6.

In view of the potential complexity of the resulting models and analysis it is

important that there is a clear description of the different components of uncer-

tainty, and in Section 9.7 a taxonomy is provided. This is applicable to complex

cost-effectiveness models, typically discrete-state, discrete-time Markov models,

which are commonly used to make predictions of the longer-term consequences

of a particular intervention. Section 9.8 describes their structure and the use of

simulation methods both for micro-simulation of individual cases and probabil-

istic sensitivity analysis.

Since this chapter emphasises decisions as well as inferences, a strict decision-

theoretic approach may be appropriate (see Sections 3.14 and 6.2). For example,

Luce and Claxton (1999) point out that hypothesis testing is of limited relevance

in economic studies, andwhen a cost-effectiveness analysis is being used as one of

the inputs into a formal decision concerning drug regulation or health policy,

they recommend a full decision-theoretic approach in which an explicit loss

function of the decision-maker is assessed. Such a loss function can also be used

as a basis for valuing the expected benefit from further evidence, and this expected

value of information approach to deciding research priorities is discussed in Section

9.10; a brief critique of this approach is contained in Section 9.11. Finally, we

briefly consider the role of regulatory authorities and the particular issues that

arise in relation to Bayesian analysis (Section 9.12).

The combined literature on these topics is becoming large and only selected

references will be provided: Briggs (2000) introduces many of these issues in a

non-technical style, and we make extensive use of Spiegelhalter and Best (2003)

although with some changes in notation. We also note a special issue on

Bayesian methods of the International Journal of Health Technology Assessment

in Health Care which features many relevant articles (Luce et al., 2001), and the

primer by O’Hagan and Luce (2003).

9.2 CONTEXTS

Throughout this book we have emphasised that it is vital to take into account

the context in which a clinical trial is being either designed or analysed and

interpreted, and more generally when evaluating any health-care intervention.

The appropriate prior opinions, and the possibility of explicit loss functions,
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depend crucially on whose behalf any analysis is being reported or a decision is

being made.

This becomes particularly important when considering the ‘end stage’ of an

evaluation – predicting the effects of actually getting the intervention into

practice. We can address this issue using the broad categories of stakeholders

introduced in Section 3.1:

. Sponsors, e.g. pharmaceutical industry, medical charities or granting agencies.

In deciding whether to fund studies, they will be concerned with the potential

‘payback’ from research (Section 9.10), which in industry takes the form of a

portfolio of drug development programmes. For such ‘internal’ analyses it will

be quite reasonable for prior distributions to be based on subjective judgements

and for loss functions to be based, in industry, on profitability. Very different

considerations apply for ‘external’ analyses done onbehalf of others – see below.

. Investigators, i.e. those responsible for the conduct of a study, whether funded

by industry or publicly. In previous chapters we have focused primarily on

those carrying out a single study, whose main concern is with the accuracy of

the inferences to be drawn from their work, although again they may carry

out a cost-effectiveness analysis on behalf of others.

. Reviewers, e.g. regulatory bodies (Section9.12). Theywill be concernedwith the

appropriateness of the inferences drawn from the studies, and so may adopt

their own prior opinions and reporting standards (Section 3.21). Regulatory

bodieswill generally only be concernedwith safety and efficacy issues, and cost-

effectiveness analyses will be dealt with by health-policy agencies.

. Policy-makers, e.g. agencies or clinicians setting health policy. Health-care

organisations may be concerned with the cost-effectiveness of an interven-

tion, although the sponsor or investigator may carry out this analysis on their

behalf. Any analysis is likely to be open to external scrutiny, and hence any

prior distributions used at this stage would need to be evidence-based or

subject to careful justification and sensitivity analysis. Values would be soci-

etally based such as quality measures based on surveys, and future costs and

benefits may be discounted according to accepted criteria.

. Consumers, e.g. individual patients or clinicians acting on their behalf.

These would ideally demand individualised prognostic predictions under

available alternative interventions, which could be combined with the pa-

tient’s own utility function. We shall not deal with such individualised deci-

sion-making here, although it has been recommended that clinical trial

results are presented in such a form as to help such judgements to be made

(Simes, 1986).

There is a large literature on the appropriate means of dealing with values,

whether concerning utility measures, quality adjustments, discount rates for

costs and benefits, and so on, but these important issues are beyond the scope of

this book. See Claxton et al. (2000) for a brief overview from a health-economic

Contexts 307

Chapter 9 Cost-Effectiveness, Policy-Making and Regulation 17.11.2003 5:00pm page 307



perspective, including a contrast between the perspective of health-policy agen-

cies and the wider society in general.

9.3 ‘STANDARD’ COST-EFFECTIVENESS ANALYSIS

WITHOUT UNCERTAINTY

Cost-effectiveness analyses aim to combine information regarding both clinical

effectiveness and economic costs. Given known mean economic costs mc1 and

mc2 under two different treatment options T1 and T2, and similar estimates of

mean clinical effectiveness, me1 and me2, define �c ¼ mc2 �mc1, �e ¼ me2 �me1

as the incremental mean costs and effectiveness. Then the incremental cost-

effectiveness ratio (ICER) is defined by

ICER ¼ �c
�e

¼ mc2 �mc1

me2 �me1

: (9:1)

The ICER can be considered as the cost per unit increase in effectiveness by

adopting treatment option T2 rather than T1.

Until recently almost all cost-effectiveness analyses reported findings in terms

of the ICER. Nevertheless, whilst the ICER appears appealing, difficulties arise in

both the calculation of confidence intervals and its interpretation when the

denominator is negative or zero. Figure 9.1 (O’Hagan et al., 2000) shows a cost-

effectiveness plane divided into four quadrants corresponding to different signs of

�c and �e, with the line �c ¼ K�e drawn, where K represents a maximum

acceptable cost per unit of effectiveness; we shall discuss the specification of K

at the end of this section.

A conceptual difficulty with the ICER is that its interpretation changes

according to the sign of �e. Quadrants II and IV correspond to the ‘domination’

of T1 and T2 respectively, in that one treatment is both less costly and more

effective; in these quadrants the ICER is negative and the interpretation is clear.

In quadrant I, T2 is more costly but more effective: in area IA, T2 is an

acceptable choice as the additional benefit is achieved at a smaller unit cost

than K (here ICER < K), whereas in IB, T2 would be unacceptable. In quadrant

III, T2 is less costly but less effective: in area IIIA, T2 would be considered

unacceptable as insufficient gains in cost were being obtained for the effective-

ness lost, the ICER being less than K, whereas in the area IIIB, where T2 is

acceptable, the ICER is greater than K.

Thus, if there is any possibility that �e < 0, it could be very misleading to base

any conclusions on possible values of the ICER, since T2 is favoured by small

values of the ICERwhen �e < 0, and large values of the ICERwhen �e > 0. In fact,

the area where T2 is favoured corresponds to all the cost-effectiveness plane lying

below the dashed line, which includes all possible values of the ICER. See O’Hagan

et al. (2000) and Heitjan et al. (1999) for further discussion and illustrations.
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Figure 9.1 Interpretation of different segments of the incremental cost-effectiveness
plane. The dashed line represents �c ¼ K�e, where K is the willingness to pay for a unit of
benefit. Since the incremental net benefit INB ¼ K�e � �c, the dashed line represents
INB ¼ 0, the breakeven point. The incremental cost-effectiveness ratio ICER ¼ �c=�e.

The incremental net benefit (INB) function has been proposed as an alternative

means of interpretation of cost-effectiveness analyses which avoids the problems

associated with the ICER, and is defined by

INB(K) ¼ K�e � �c: (9:2)

INB(K) as defined by (9.2) represents the incremental net monetary benefit in

terms of economic costs, and provides a connection to classical cost–benefit

analysis. INB can also be transformed to the incremental net health benefit, in

which case INB	(K) is given by

INB(K)=K ¼ INB	(K) ¼ �e � �c=K: (9:3)

It is straightforward to see that the regions in Figure 9.1 which correspond to

INB > 0, i.e. acceptability of T2, represent all the regions below the dashed line,

i.e. IA, IV and IIIB.
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Setting INB ¼ 0 yields the ‘breakeven’ cost per unit effectiveness K0 ¼ �c=�e
which is numerically equal to the ICER, and this value can be subject to

deterministic sensitivity analysis of alternative assumptions.

The value K must be handled with care. Taking the perspective of a health-

care agency, it represents their ‘willingness to pay’ for the gain of a unit of

effectiveness. Such a value would not usually be considered as fixed, nor as a

random quantity. Instead it is natural to carry out an analysis of sensitivity to

alternative values of K, with values of around $50000 perhaps being con-

sidered reasonable in the USA, and lower values such as £20000 in the UK. See

Claxton et al. (2000) for a recent discussion of this quantity.

9.4 ‘TWO-STAGE’ AND INTEGRATED APPROACHES TO

UNCERTAINTY IN COST-EFFECTIVENESS MODELLING

Let c represent state-of-the-world parameters in a cost-effectiveness model, for

example the true mean cost and benefit of an intervention, and let X be a set of

unknown generic outcomes of interest, both costs and benefits, taking on a

value x. Suppose, for a specified value of c, we can specify a predictive distribu-

tion p(xjc), the chance variability between outcomes on future patients. Our

primary interest is in E(Xjc) ¼ R x p(xjc)dx ¼ mc, the expected outcome in a

homogeneous population. mc will often be available in closed form, say when

using discrete-time, discrete-state Markov models (Section 9.8).

Any uncertainty concerning c may be expressed as a distribution p(c), from
which we can obtain a joint distribution for mc, the expected costs and benefits

of the intervention. By considering different interventions we can thus obtain

a joint distribution over the incremental expected costs and effectiveness from a

new intervention, denoted �c and �e respectively, the quantities of interest in

a cost-effectiveness analysis (Section 9.3). In practice this will generally require

simulation of a value of c from p(c), which is propagated through the cost-

effectiveness model to obtain mc, which in turn provides a value for �c, �e.
Repeated simulations provide a joint distribution for �e, �c, and hence a distri-

bution for any functions of �c, �e such as the INB. The construction and analysis

of this joint distribution has been termed probabilistic sensitivity analysis in the

cost-effectiveness literature, to distinguish it from deterministic sensitivity analy-

sis in which parameters are varied systematically across ranges.

Two approaches are possible. The two-stage approach proceeds as follows. First,

p(c) is constructed as a closed-form distribution, based on subjective judgements,

data analysis or a combination of the two: p(c) can be thought of as a prior

distribution even though it may be partly based on evidence. Generally the

elements ofcwill be assumed independent and parametric distributions adopted.

Values ofc are then simulated from p(c) and the cost-effectivenessmodel provides

the relevant outcomes �e, �c. This is a natural application of Monte Carlo methods

(Section 3.19.1) in homogeneous populations, which has become a standard tool
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in risk analysis to deal with ‘second-order uncertainty’, as opposed to first-order

‘chance’ uncertainty (Section 9.7). It is implementable as a Microsoft Excel1

macro, either from commercial software such as @RISK (Palisade Europe,

2001) and Crystal Ball (Decisioneering, 2000), or self-written. Here, however,

we use the freely available WinBUGS software (Section 3.19.3) in order to facili-

tate both approaches. A schematic representation is shown in Figure 9.2(a).

Applications of the two-stage approach are demonstrated in Example 9.1 for the

simple normal case, and Example 9.3 for a more complex model.

The integrated or unified approach unifies the two stages described above, in

that p(c) is taken to be a posterior distribution arising from a data analysis,

which feeds directly into the cost-effectiveness model without an intermediate

summary step. This corresponds to a full Bayesian probability model and

(b) Unified approach(a) Two-stage approach

Unknown
parameters

Unknown
parameters

Subjective
judgement

Data and
subjective
judgement

Available
evidence

Cost-
effectiveness

model

Cost-
effectiveness

model

Predictions
of effect of
intervention

Predictions
of effect of
intervention

Figure 9.2 Schematic graph showing the two approaches to incorporating uncertainty
about parameters into a cost-effectiveness analysis. (a) The two-stage approach subjec-
tively synthesises data and judgement to produce a prior distribution on the parameters
which is then propagated through the cost-effectiveness model. (b) The unified or inte-
grated approach adopts a fully Bayesian analysis: after taking into account the available
evidence, initial prior opinions on the parameters are revised by Bayes theorem to
posterior distributions, the effects of which are propagated through the cost-effectiveness
model in order to make predictions. An integrated Bayesian approach ensures that the
full joint uncertainty concerning the parameters is taken into account.
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requires MCMC rather than simply Monte Carlo techniques, since in effect the

evidence from the data has to be propagated ‘against the arrow’ in order to give

the uncertainty on the parameters, and then ‘forwards’ through the cost-

effectiveness model; a schematic representation is shown in Figure 9.2(b).

Implementation will generally be in a full MCMC program such as WinBUGS:

see Examples 9.2 and 9.4. The potential advantages and disadvantages of this

integrated approach over the two-stage process are discussed in Section 9.9.2.

9.5 PROBABILISTIC ANALYSIS OF SENSITIVITY TO

UNCERTAINTY ABOUT PARAMETERS: TWO-STAGE

APPROACH

From a strict decision-theoretic approach, any uncertainty about the param-

eters �c, �e is irrelevant to decision-making, and their expectations need only be

placed in (9.2) for a specified K, and T2 chosen if INB > 0. Nevertheless, for

reasons outlined in Sections 3.14 and 6.2, and discussed further in Section

9.11, it is generally considered appropriate to specify a measure of certainty that

T2 is in fact an acceptable option. Confidence intervals for INB can be derived

within the classical framework, but a Bayesian approach is natural and

straightforward and allows the inclusion of additional prior information.

If we take the two-stage approach (Section 9.4) and assume that a joint prior

distribution (�e, �c) is available based on judgment, data, or a mixture of the two,

then this can be plotted on the cost-effectiveness plane shown in Figure 9.1 and

the probability of specific conclusions may be obtained by integrating over the

appropriate areas (Grieve, 1998). As mentioned in Section 9.4, this has become

known as probabilistic sensitivity analysis (Briggs and Gray, 1999). In addition,

Heitjan et al. (1999) suggest obtaining the distribution of the ICER conditional

on being in each quadrant of Figure 9.1.

A joint distribution on (�e, �c) implies a distribution on INB. If we denote

E[�e] ¼ �e, V[�e] ¼ t2e , E[�c] ¼ �c, V[�c] ¼ t2c , Corr[�e, �c] ¼ 	, and similarly for

costs, then without further distributional assumptions we have, for

INB ¼ K�e � �c, that

E[INB] ¼ K�e � �c, (9:4)

V[INB] ¼ K2t2e � 2K	tetc þ t2c : (9:5)

Thus we can plot E[INB] and, for example, its �2 standard deviation interval for

different values of K. The breakeven point K0 occurs at �c=�e.

In terms of decision-making it is natural to consider the probability that

INB(K) in (9.2) is positive for any given value of K, i.e.

Q(K) ¼ P(INB(K) > 0): (9:6)
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Q(K) is referred to as the cost-effectiveness acceptability curve (CEAC); see van

Hout et al. (1994). Although Q(K) has been interpreted in frequentist terms, the

CEAC is most naturally handled within a Bayesian approach.

It may be reasonable to make a normal approximation to the distribution of

INB, and then the CEAC is given by

Q(K) ¼ P(INB > 0) ¼ F
K�e � �cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K2t2e � 2K	tetc þ t2c
p

 !
, (9:7)

and this expression is exact if we assume bivariate normality (Section 2.6.10)

for �e, �c – it is also possible to solve (9.7) explicitly to find the value K at which,

for example, Q(K) ¼ 0:95 or some other desired level of ‘significance’. O’Hagan

et al. (2000) describe various closed-form approximations when normality is not

assumed, but in this situation it seems preferable to move to the MCMC ap-

proaches as described in the next section.

Not all inferences of interest can be obtained in closed form even when

assuming joint normality for �e, �c, and in this case it can be better computation-

ally to model the joint distribution in two stages: from Section 2.6.10 we see

that �e � N[�e, t
2
e ], and �cj�e is normal with mean and variance

E[�cj�e] ¼ �c þ
	tc
te

(�e � �e),

V[�cj�e] ¼ t2c (1� 	2):
(9:8)

Thus we can simulate �e followed by �cj�e. This is illustrated in Example 9.1.

Example 9.1 Anakinra: Two-stage approach to cost-effectiveness
analysis

Reference: van Hout et al. (1994).

Intervention: Human recombinant interleukin-1 receptor antagonist (ana-
kinra) in the treatment of sepsis syndrome.

Aim of study: To assess the cost-effectiveness of anakinra compared to
placebo.

Studydesign: RCT with 25 patients per arm.

Outcomemeasure: Effectiveness measured by survival (proportion surviv-
ing), and costs of treatment measured in Dutch guilders. The guilder,
now replaced by the euro, was valued at around 2.2 to the US dollar.

Statistical model and evidence from study: Table 9.1 shows the data for
one of the outcomes of the trial. There is clearly substantial evidence of a
clinical benefit, but considerable uncertainty about increases in costs.

Probabilistic analysis of sensitivity to uncertainty about parameters 313

Chapter 9 Cost-Effectiveness, Policy-Making and Regulation 17.11.2003 5:00pm page 313



Table 9.1 Available data from anakinra study.

Quantity Estimate SD Correlation

ye: Increase in effectiveness (survival) 0.28 0.123
0.34

yc: Increase in costs (guilders) 1380 5657

Prior distribution: We may approximate a joint prior as having the same
properties as the sample data shown in Table 9.1, so that
me ¼ 0:28, te ¼ 0:123, mc ¼ 1380, tc ¼ 5657, r ¼ 0:34. By further as-
suming joint normality, the contours for (yc, ye) may be plotted as in
Figure 9.3.

Computation/software: The distribution of INB can be obtained exactly
from (9.4) and (9.5), while the CEAC is given by (9.7). Other calcula-
tions, such as the distribution of the ICER and the probabilities of lying in
each of the quadrants, are carried out by Monte Carlo methods imple-
mented using WinBUGS, taking advantage of the conditional sampling
scheme described in (9.8).

Bayesian interpretation: Figure 9.3(a) plots cost per extra survivor when
K ¼ 5000 and 35 000 guilders. The probabilities of lying in quadrants I,
. . . , IV are 59.3%, 0.3%, 0.9%, 39.6% respectively, so that there is
around a 40% chance that anakinra dominates placebo in costs and
benefits. The ICER has median 5146 and 95% interval �79 260 to
þ57990. However, it is not clear whether the high values occur in
quadrant I or III, which would have a completely different interpretation.
Heitjan etal. (1999) report that if the ICER is in quadrant I, then it has an
interval from 791 to 163 400 additional guilders per life saved, while if the
ICER is in quadrant III, the interval is from 8400 to 4 580 000 guilders
saved per life sacrificed. While these conditional statements reveal the
different nature of the ICER in different quadrants, their interpretation is
not straightforward.

Figure 9.3(b) plots the distribution of the incremental net benefit INB
for K ¼ 5000, 35 000, 100 000: for K ¼ 5000 there appears to be almost
complete indifference between the options, while the INB increases
substantially as the willingness to pay per additional survivor increases.
The mean and 95% intervals for the INB for a wide range of K are shown
in Figure 9.3(c), while Figure 9.3(d) plots Q(K) ¼ P(INB > 0) against K:
the analysis suggests, on balance, that anakinra is cost-effective pro-
vided K is greater than around 5000 guilders, and we can be 95% sure
that anakinra is cost-effective provided K is greater than around 45 000
guilders. Whether this would provide an appropriate basis for recom-
mendation of the treatment depends on the decision-maker.
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Figure 9.3 Results for anakinra study. (a) Joint distribution of (ye, yc), superimposed
on lines representing maximum acceptable cost per additional survivor K ¼ 5000,
35 000. (b) Distribution of incremental net benefit for K ¼ 5000, 35 000, 100 000.
(c) E[INB] and 95% intervals for a range of values of K. (d) Cost-effectiveness
acceptability curve.

Sensitivityanalyses: The primary sensitivity analysis concerns the specifi-
cation of K.

9.6 COST-EFFECTIVENESS ANALYSES OF A SINGLE

STUDY: INTEGRATED APPROACH

In the previous section we assumed p(�e, �c) was a prior distribution based on a

subjective synthesis of evidence and judgement. We now suppose we have data

sources available from which to derive a posterior distribution p(�e, �cj data), and
adopt the integrated approach outlined in Section 9.4. We emphasise that �e
and �c must be population mean effectiveness and cost increments, in order to

make measures additive across individuals. Hence, although cost data will

generally have a highly skewed distribution, we must be careful to make

inferences about their mean rather than some other measure of location.
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Data sources available may include clinical trials, meta-analyses, observa-

tional studies and so on, and in later sections we shall consider how to exploit

various sources of evidence. Here we shall only consider data from a single

clinical trial, in which we assume we have observed pairs (eij, cij) representing
the observed effect and cost when treatment i is given to patient j. The process of

modelling the joint sampling distribution of (eij, cij) within each treatment group

requires care and statistical insights which are beyond the scope of this book –

we refer to O’Hagan and Stevens (2002a) for a variety of approaches in this

context. An obvious starting point is to assume bivariate normality (O’Hagan et

al., 2001), although the skewness of the cost data will generally make this

unreasonable and log-costs might better be assumed normal. Cost data are

frequently bimodal and a mixture of distributions may be appropriate

(O’Hagan and Stevens, 2001; Cooper et al., 2003c). It is also natural to consider

a two-stage approach in which we model effectiveness and then costs condi-

tional on effectiveness: this is the approach taken in Example 9.2. In any of

these situation the complexity of the necessary inferences makes MCMC the

computational procedure of choice; Fryback et al. (2001a) provide a further

example of a posterior distribution being used as a direct input to probabilistic

sensitivity analysis using WinBUGS.

Example 9.2 TACTIC: integratedcost-effectivenessanalysis

References: O’Hagan et al. (2001), O’Hagan and Stevens (2001, 2002a).

Intervention: Turbuhaler (treatment 2), a novel inhaler for asthmatics,
compared to conventional CFC pressurised metered dose inhaler
(pMDI, treatment 1).

Aim of study: To investigate whether asthmatic patients who were con-
sidered to be adequately treated using a conventional pMDI could be
transferred to Turbuhaler without decrease in the effect of treatment,
whilst reducing average costs.

Studydesign: RCT with prospective collection of costs: we use the data of
O’Hagan et al. (2001) which comprise only the UK portion of the study.

Outcome measure: Number of days with exacerbation and total costs in
pounds sterling.

Plannedsample size: The original trial was designed to be able to detect a
10% improvement in the proportion of patients experiencing no exacer-
bations during the course of the trial, from 50% on pMDI to 60% on
Turbuhaler.

Evidencefromstudyandstatisticalmodel: The summary data are presented
in Table 9.2. Turbuhaler patients suffered fewer exacerbations: the high
proportion with no exacerbations suggests a normal distribution for
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Table 9.2 Results from UK portion of TACTIC trial of Turbuhaler compared
to pMDI: log-costs are given separately for patients with and without
exacerbations.

Treatment n No. Log-costs (mean and SD)

exacerbations With exac. No exac.

T1 pMDI 58 26 (45%) 6.02 (1.11) 5.87 (1.47)
T2 Turbuhaler 62 36 (58%) 6.37 (0.98) 6.13 (0.85)

clinical outcome is unreasonable and instead we follow O’Hagan and
Stevens (2001) in adopting a binary outcome to measure benefit:
eij ¼ 0 if exacerbation occurred, 1 otherwise, with proportion fi in
treatment group i.

Figure 9.4 shows the distribution of log-costs in the two treatment
groups and according to whether exacerbations were experienced: it is
important to note that there were two extremely high costs of 19 871 and
26201 in the pMDI group who suffered no exacerbations, which are
extremely influential in a normal model for costs (O’Hagan et al., 2001)
and lead to a higher standard deviation for log-costs. Nevertheless, the
empirical distributions in Figure 9.4 suggest adopting a dependent model
in which log-costs are assumed normally distributed with mean and
standard deviation dependent on treatment and exacerbation. We thus
have a model

eij � Bern[fi],

log (cij)jeij ¼ 0 � N[li0, s2i0],

log (cij)jeij ¼ 1 � N[li1, s2i1]:

The mean costs mci in each treatment group are therefore a weighted
average of the means in each exacerbation group and hence, from the
known properties of the log-normal distribution (Section 2.6.8), are

mci ¼ (1� fi)e
li0þs2i0=2 þ fie

li1þs2i1=2,

from which we can derive the mean cost and effectiveness differences

yc ¼ mc2 �mc1,

ye ¼ f2 � f1,

which are the inputs to the cost-effectiveness analysis.

Prospective analysis?: No.
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Figure 9.4 Costs for TACTIC data, broken down by treatment (pMDI or Turbu-
haler) and whether exacerbations occurred or not.

Priordistribution: O’Hagan and Stevens (2001) use an informative prior for
the clinical effectiveness (f1, f2), with a mean of 0.1 on f2 � f1 which
matches the difference used in the power calculations. This initial bias
may be considered unreasonable by any regulatory body unless based
on substantial evidence, and in any case the evidence from the trial is
reasonably strong, and so we adopt independent uniform priors on f1

and f2 (an alternative might be uniform on logit(f2) and on ye ¼ f2 � f1,
but this has negligible impact).

For the log-cost distributions, we assume independent uniform priors
for the li0, li1. Partly in view of the potential influence of individual
observations, and because we might expect the variability in costs to
be similar, O’Hagan and Stevens (2001) suggest assuming
s10, s11, s20,s21 exchangeable in order to ‘smooth’ the four observed
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standard deviations towards a common value. We shall assume the
log (s)s are normally distributed, such that

log sij � N[ms, t
2
s]; i ¼ 1, 2, j ¼ 0, 1,

where ms, ts are given uniform priors.

Loss functionordemands: No.

Computation/software: MCMC using WinBUGS.

Bayesianinterpretation: Figure 9.5(a) plots the joint posterior distribution of
ye and yc, showing they are reasonably independent: the posterior
probability is 0.53 that Turbuhaler is cheaper, and 0.93 that it is more
effective; the probability that it dominates pMDI is 0.51. Figure 9.5(b)
shows the posterior distribution of the incremental net benefit assuming
K ¼ £500 per patient prevented from having exacerbations – a value at
which there is approximate indifference as to the preferred treatment.
The expected INB and 95% intervals are displayed in Figure 9.5(c),
showing a steady preference for Turbuhaler as the willingness to pay
for preventing exacerbations increases. The CEAC in Figure 9.5(d)
suggests we can be 90% sure of the cost-effectiveness of Turbuhaler
provided that K exceeds £5000. Estimates and intervals for relevant
quantities are given in Table 9.3; comparison of the estimates of the ss
with those shown in Table 9.3 reveals the shrinkage arising from the
exchangeability assumption.

(a) Joint distribution
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Figure 9.5 Plots of (a) joint distribution of incremental mean benefits ye and mean
costs yc, (b) distribution of incremental net benefit assuming K ¼ £500, (c) the
expected INB and 95% interval, and (d) the CEAC for a range of K. These plots are
direct output from WinBUGS.
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Table 9.3 Prior-to-posterior cost-effectiveness analysis of Turbuhaler compared to
pMDI: results are given assuming that the standard deviations of the log-costs are
either exchangeable or independent.

Parameter Posterior (exch.) Posterior (indep.)

Median 95% interval Median 95% interval

Effect of pMDI f1 0.45 0.33 to 0.58 0.45 0.33 to 0.58
Effect of Turbuhaler f2 0.58 0.45 to 0.70 0.58 0.45 to 0.70
Excess effect of Turbuhaler ye ¼ f2 � f1 0.13 �0.04 to 0.30 0.13 �0.04 to 0.30
Mean cost of pMDI mc1 862 581 to 1620 983 625 to 2222
Mean cost of Turbuhaler mc2 835 626 to 1235 817 620 to 1225
Excess mean cost of Turbuhaler yc ¼ mc2 �mc1 �21 �801 to 455 �161 �1409 to 371
SD of log-costs, pMDI, exac. s10 1.12 0.89 to 1.41 1.14 0.89 to 1.51
SD of log-costs, pMDI, no exac. s11 1.37 1.08 to 1.84 1.52 1.17 to 2.08
SD of log-costs, Turbuhaler, exac. s20 1.02 0.80 to 1.34 1.01 0.78 to 1.39
SD of log-costs, Turbuhaler, no exac. s21 0.92 0.72 to 1.20 0.87 0.70 to 1.14
INB(500) 89 �394 to 851 438 �238 to 1652
INB(5000) 694 �350 to 1783 2834 �829 to 6455
INB(10 000) 1349 �528 to 3194 5423 �1685 to 12380
Q(500) 0.64 0.90
Q(5000) 0.90 0.94
Q(10 000) 0.92 0.93

Sensitivityanalysis: The assumption of exchangeable ss is the only form of
informative prior that is currently being used. If we adopt independent
uniform priors on the ss we obtain the results shown in the final two
columns of Table 9.3. The independence assumption allows the two
outlying costs to exert a strong influence on s11, which in turn substan-
tially increases the estimated mean cost of pMDI (mc1). This increases
the INB of Turbuhaler, which substantially increases the probability Q(K)
of cost-effectiveness even for low values of K. The posterior probability is
0.72 that Turbuhaler is cheaper, and 0.93 that it is more effective: the
probability that it dominates pMDI is 0.68.

Given the extreme sensitivity to two outlying costs, it would be import-
ant to identify the precise reasons for these values, and ideally collect
further cost information on additional patients.

9.7 LEVELS OF UNCERTAINTY IN COST-EFFECTIVENESS

MODELS

Approaches to uncertainty in cost-effectiveness analysis have been extensively

reviewed by Briggs and Gray (1999), who emphasise the distinction between

conducting ‘deterministic’ sensitivity analysis in which inputs to a model

are systematically varied within a reasonable range, and ‘probabilistic’ sensitiv-

ity analysis in which the relative plausibility of unknown parameters is taken

into account.
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We can relate these different approaches to analysis of sensitivity to different

sources of uncertainty; similar taxonomies have been described by Briggs

(2000) and the US Panel on Cost-Effectiveness (Manning et al., 1996).

1. Chance variability. This is the unavoidable within-individual predictive

uncertainty concerning specific outcomes, which will be empirically demon-

strated by variability in outcomes between homogeneous individuals. We are

usually not interested in this ‘first-order’ uncertainty (Briggs, 2000) since

our focus is on the expected outcomes in homogeneous populations, but we

shall illustrate its calculation in Section 9.8.

2. Heterogeneity. This source concerns between-individual variability in

expected outcomes, due to either (a) identifiable subgroups of individuals

with characteristics such as age, sex and other covariates, or (b) unmeasur-

able differences (latent variables). These are termed ‘patient characteristics’

by Briggs (2000). We shall generally want to use deterministic sensitivity

analysis to see how expected outcomes vary between identifiable subgroups,

possibly followed by probabilistic averaging over population subgroups

according to their incidence.

3. Parameter uncertainty. This concerns within-model uncertainty as to

the appropriate values for parameters. Parameters can be divided into two

types:

(a) States-of-the-world, which could, in theory, be measured precisely if

sufficient evidence were available (e.g. risks, disease incidences): these

have also been termed ‘parameters that could be sampled’ (Briggs,

2000). These can have distributions placed on them, corresponding

to the ‘second-order’ uncertainty used in risk analysis (Burmaster

and Wilson, 1996), and so be subject to probabilistic sensitivity

analysis.

(b) Assumptions, which are quantitative judgements placed in the model

which can only be made precise through consensus agreement, for

example discount rates for health benefits. These can be considered as

one source of ‘methodological uncertainty’ (Briggs, 2000), and sensitiv-

ity to assumptions can only be carried out deterministically by rerunning

analyses under different scenarios.

The appropriate category for a quantity is not always clear. For

example, whether values placed on quality-of-life scales are states-of-

the-world or assumptions is a controversial point, and costs might also

be placed in either category.

4. ‘Ignorance’. this between-model uncertainty describes our basic lack of

knowledge concerning the appropriate qualitative structure of the model,

for example, the dependence of hazard rates on background factors and

history. This is also a component of ‘methodological uncertainty’ (Briggs,

2000). Deterministic sensitivity analysis takes the form of running through

alternative models, although there is a Bayesian argument that model
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structure can itself be considered as an unknown state-of-the-world and be

subject to probabilistic sensitivity analysis (Draper, 1995).

In this chapter we shall primarily be concerned with probabilistic sensitivity

analysis, although we will also illustrate deterministic sensitivity analysis with

respect to parameter assumptions.

9.8 COMPLEX COST-EFFECTIVENESS MODELS

We have so far considered the situation in which the necessary estimates of

effectiveness and costs are derived directly from clinical trial data. However, a

clinical trial may neither address precisely the population of interest, nor last long

enough for the rate of important long-term outcomes to be accurately assessed. In

the former situation the trial results may need to be adjusted in order to generalise

the cost-effectiveness analysis to other populations of interest (Rittenhouse,

1997), whichmay involve the type of adjustments used in cross-design synthesis

(Section 8.4) and the explicit modelling of biases in observational studies (Section

7.3). In the latter case we will need a model for long-term outcomes, such as the

Markov models that have been used extensively in cost-effectiveness analysis.

9.8.1 Discrete-time, discrete-state Markov models

These models are generally applied to the development of a disease process over

time, and assume that in each ‘cycle’ an individual is in one of a finite set of

states, and that there is a certain chance of transferring to a different state at the

next cycle. The ‘Markov’ label refers to the assumption that the chance of

entering a new state at the start of each cycle does not depend on the path

the individual took to their current state (although the chance may depend on

the cycle and other risk factors). There are obviously many extensions to this

reasonably flexible framework (Briggs and Sculpher, 1997, 1998).

We shall first formally describe the generic structure of the model for a single

homogeneous set of patients with common parameters. Assume a discrete-time

model comprising N cycles labelled t ¼ 1, . . . , N, and that within each cycle t a

patient remains in one of R states, and that all transitions occur at the start of

each cycle. The probability distribution at the start of the first cycle t ¼ 1 is

represented by the row vector p1, and we assume a transition matrix Lt whose

(i, j)th element Lt, ij is the probability of moving from state i to state j between

cycle t� 1 and t; thus the probability, for example, of being in state j during the

second cycle is �i�1iL2, ij. Hence, the marginal probability distribution pt

during cycle t > 1 obeys the recursive relationship

pt ¼ pt�1Lt: (9:9)
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Suppose the cost, at current prices, of spending a cycle in state r is

Cr, r ¼ 1, . . . , R and there is a fixed entry cost C0. It is standard practice in

economic evaluations to discount costs that occur in future years, at rate 
c
(say) per cycle. Then the total cost acquired by each patient in the population is

expected to be

mc ¼ C0 þ�
N

t¼1

�tC
0

(1þ 
c)
t�1

: (9:10)

Similarly, if the benefits associated with spending one cycle in each state are

given by a row vector b, discounted at rate 
b per cycle, the total expected

benefit for each patient is

me ¼ �
N

t¼1

�tb
0

(1þ 
b)
t�1

: (9:11)

We note that different types of benefit may be reported, for example both life-

years (b ¼ 1) and quality-adjusted life-years (QALYs), in which case b comprises

a row vector of quality adjustments. A range of discount rates may also be

explored: for example, guidance from NICE in the UK currently recommends

that costs should be discounted at 
c ¼ 6% per annum, while benefits are

discounted at 
b ¼ 1:5% (NICE, 2001). However, they add that sensitivity

analyses should include assumptions of 
b ¼ 0% and 6%.

Suppose there are S discrete subgroups labelled by s. The model described

above can clearly be extended to allow, say, for different transition matrices

within subgroups by extending the notation to Lst: this possibility is explored in

detail in Spiegelhalter and Best (2003).

9.8.2 Micro-simulation in cost-effectiveness models

If we are using a more complex model in which it is not possible to write a

formula for the expected outcomes, then it may be necessary to perform a much

more complex simulation involving the trajectories of individual patients – this

is known as micro-simulation. The sample mean of the simulations can be used

as an estimate of the expected outcome in the population, and this approach

does have the side-effect of giving the whole distribution of outcomes and, in

particular, the variance among the population. This ‘first-order simulation’

approach is illustrated by Briggs (2000) and has been extensively exploited in

the context of evaluating screening interventions (Cronin et al., 1998).

For example, if we wished to explore this approach for the model described

in Section 9.8.1, then we could simulate a starting state y1 from the

distribution �1. We then simulate this individual’s next state y2 from
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the distribution comprising the yth1 row of L2, and so on. The discounted costs

and benefits for the individual are then

C ¼ C0 þ�
N

t¼1

Cyt

(1þ 
c)
t�1

, (9:12)

B ¼�
N

t¼1

byt

(1þ 
b)
t�1

: (9:13)

Averaging over many simulated patients (iterations) gives Monte Carlo esti-

mates of the required expectations and also the variability of each outcome due

to chance; Example 9.3 illustrates this process.

Note that if we simulate a patient under two treatments, then the incremental

net benefit for that patient is estimated as

INB ¼ K(B2 � B1)� (C2 � C1):

We could therefore estimate the proportion of the population for which the

INB > 0 – this has been termed the ‘probability of net benefit’ (Willan, 2001).

O’Hagan and Stevens (2002b) emphasise that this estimated population pro-

portion must be carefully distinguished from the probability plotted in a CEAC,

which reflects our uncertainty about the expectation over the whole population,

and does not in any way take into account heterogeneity in benefit.

9.8.3 Micro-simulation and probabilistic sensitivity analysis

The previous section has described micro-simulation of individual patients, but

this is all carried out for fixed parameters value c. Performing a probabilistic

sensitivity analysis to allow for uncertainty in parameters is considerably more

difficult in this context, and care must be taken. It would be tempting, but

potentially misleading, to carry out a double simulation, in which a parameter

value cj is sampled from p(c), followed by simulation of an outcome Xj condi-

tional on cj. The problem is that the variability in the subsequent Xjs combines

that due to parameter uncertainty and that due to chance variability; unfortu-

nately the two cannot be easily disentangled.

We first note that the total variance of X can be written, using the identity

(2.14) for conditional variances, as

V[X] ¼ Ec[V(Xjc)]þ Vc[E(Xjc) ], (9:14)

i.e. the expectation with respect to c of the conditional variance of X, plus the

variance of the conditional expectations. For a probabilistic sensitivity analysis

we are only really interested in the second term, since the first term is concerned

with chance variability in the population of patients.
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These two components may be separated using a time-consuming nested

simulation procedure (Halpern et al., 2000). We briefly discuss the necessary

computations, when assuming a distribution p(c) derived from either the two-

stage or integrated approach. A value cj for c is simulated from p(c), followed

by simulation of N (where N is large) values of the outcome X
j
1, . . . ,X

j
N condi-

tional on cj. The sample mean X
j

N and variance V
j
N are stored. Monitoring XN

and VN will allow estimation of the components of the overall variability shown

in (9.14), since Vc[XN ] will estimate variability due to parameter uncertainty,

while Ec[VN ] gives that due to chance variability. This technique will be labori-

ous, particularly when heterogeneity is present, although Ec[VN ] may perhaps

be reasonably estimated using only a limited set of c. See Cronin et al. (1998) for

an application.

Example 9.3 HIPS: Cost-effectiveness analysis using discrete-time
Markovmodels

References: Spiegelhalter and Best (2003) and Fitzpatrick et al. (1998).

Intervention: Prosthesis for total hip replacement (THR).

Aim of study: To model the costs and outcomes of THR in a specific
subgroup, men aged 65–74, assuming a Charnley prosthesis as a
baseline analysis.

Studydesign: Cost-effectiveness model.

Outcome measure: Effectiveness measured by life expectancy and
QALYs, and costs of treatment measured in pounds sterling.

Statisticalmodel:We assume a discrete-time, discrete-state Markov model
with cycles of 1 year. Figure 9.6 illustrates the various states and pos-
sible transitions between states. Patients initially enter state 1 (primary
THR) at time t ¼ 0. The first cycle (t ¼ 1) is assumed to start immediately
following the primary operation; patients have either died at operation or
post-operatively, in which case they enter state 5 (death), otherwise they
remain in state 1. In each subsequent cycle, surviving patients remain in
state 1 until they either die from other causes (progress to state 5) or
their hip replacement fails and they require a revision THR operation.
Since the need for revision and the operation are assumed simultan-
eous, patients undergoing a revision operation enter one of two states
depending on whether they die at or post-operation (state 2) or survive
(state 3). Surviving patients progress to state 4 (successful revision
THR) in the following cycle, unless they die from other causes (progress
to state 5). Patients in state 4 remain there until they either die from other
causes (state 5) or require another revision THR operation, in which
case they progress back to states 2 or 3 as before. We also assume a
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Successful
revision THR

(State 4)

Post-op survival
after revision THR

(state 3)

Death
(state 5)

Primary THR
(state 1)

Operative death
after revision
THR (state 2)

Figure 9.6 Markov model for outcomes following primary total hip replacement.

transition from state 2 to state 5 in the cycle following operative death
after a revision THR. This is slightly artificial but is necessary to avoid
multiple counting of revision costs if patients were to remain in state 2.

We assume lop is the operative mortality rate, gt is the chance of
revision in year t, lt is the mortality rate t years after primary operation,
and r is the re-revision rate which is assumed constant. The vector of
state probabilities in cycle t ¼ 1 is �1 ¼ (1� lop, 0, 0, 0, lop). We shall
only consider one stratum, men between 65 and 74, and take 25 cycles
of the model assumed to run between ages 70 and 95. The transition
matrix Lt, jk is the probability of being in state j in year t � 1 and moving
to state k at the start of year t; the transition probability matrix for
t ¼ 2, . . . , 25 is given by

1� gt � lt lopgt (1� lop)gt 0 lt
0 0 0 0 1
0 0 0 1� lt lt
0 rlop r(1� lop) 1� r� lt lt
0 0 0 0 1

2
66664

3
77775:

Baselineassumptions for theparametersof themodel aregiven inTable
9.4; sources for these assumptions are provided in Fitzpatrick et al.
(1998). Notable is the assumption that the revision risk increases linearly
with time since operation, and constant re-revision risk. Health-related
quality of life (HRQL) is measured in QALYs based on the degree of
severity of pain patients would be likely to experience in different states
of the model. Based on results from a Canadian study (Laupacis et al.,
1993), Fitzpatricketal. (1998)assignvaluesv1 ¼ 1, v2 ¼ 0:69, v3 ¼ 0:38
and v4 ¼ 0:19 for the HRQL of patients experiencing no, mild, moderate
and severe pain, respectively. They then assume that after a successful
THR operation, 80% of patients experience no pain and 20% experience
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Table 9.4 Baseline parameters of total hip replacement model using a Charnley
prosthesis: benefit weights b are 1 for life expectancy, b ¼ qk for QALYs.

Parameter Value

Operative mortality rate lop 0.01
Revision rate gt ¼ h(t � 1) 0:0016(t � 1)
Re-revision rate r 0.04
Mortality rate lt 0.038 (65–74)

0.091 (75–84)
0.196 (84þ)

Primary cost C0 £4052
Revision cost C2, C3 £5290
Cost discount rate dc 6%
Benefit discount rate db 1.5%
Quality weights q1 0.938

q2 �0.622
q3 �0.337
q4 0.938
q5 0

mild pain. For patients whose hip replacements fail, they assume that
15% experience severe pain and 85% experience moderate pain in the
year preceding the year of the revision operation, with a 50–50 split
between those experiencing moderate pain and severe pain in the year
of operation. We therefore calculate quality weights for each state in our
Markov model as follows:

q1 ¼ 0:8v1 þ 0:2v2 ¼ 0:938,

q2 ¼ 0þ 1:06� (0:85v3 þ 0:15v4 � 0:8v1 � 0:2v2) ¼ �0:622,

q3 ¼ (v3 þ v4)=2þ 1:06� (0:85v3 þ 0:15v4 � 0:8v1 � 0:2v2) ¼ �0:337,

q4 ¼ 0:8v1 þ 0:2v2 ¼ 0:938,

q5 ¼ 0:

We note that the rather odd negative weights arise from the need to
essentially ‘subtract’ quality from preceding years.

Prior distribution: One relevant state-of-the-world parameter in our model
for prognosis following THR is the revision ‘hazard’ parameter h. It may
be reasonable to assume uncertainty of �50% about our assumed
revision hazard which we now denote h0. This gives an approximate
95% interval of (h0=1:5, h0 � 1:5) for h, which corresponds to a prior
standard deviation on the log scale of around 0.2 (Table 5.2). We
therefore specify the prior distribution for the log-hazard parameter as

log (h) � N[ log (h0), 0:22]: (9:15)
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Computation/software: MCMC methods implemented using WinBUGS.

Bayesianinterpretation:

1. The closed-form calculation of expectations using (9.10) and (9.11) is
shown in the ‘closed-form’ column of Table 9.5. Note that the expected
life-years are around 10, and are not substantially reduced by quality
adjustment.

2. The micro-simulation study showing variability among individuals is
shown in ‘population distribution’ columns. The huge chance variability
in the population is evident: however, as emphasised in Section 9.7, this
between-individual variability is not of primary interest. The sampled
means match the closed-form values up to Monte Carlo error – 100 000
iterations are used as the variability is so great, and even then the
agreement for expected life-years is not good.

3. The final columns show the probabilistic sensitivity analysis by sampling
from p( log (h) ) given in (9.15), and calculating the closed-form expect-
ations at each iteration. This shows that the uncertainty about the
revision hazard has a very limited effect on the expectations, particularly
for life expectancy.

Table 9.5 Predicted outcomes from hip replacement in men aged 65–74 years.
The baseline expectation is obtained in closed form assuming known parameters.
The population distribution is obtained by micro-simulation of individuals. The
probabilistic sensitivity analysis summarises the predictive distribution of the
expectation, allowing for a subjective prior distribution on the hazard rate.

Parameter Closed-form
expectation

Population
distribution

Prob. sens. analysis

Mean SD Median 95% interval

Life-years 9.939 9.954 5.426 9.939 9.936 to 9.941
QALYs 9.17 9.18 4.96 9.17 9.10 to 9.22
Costs 4458 4453 1220 4459 4334 to 4629

9.8.4 Comprehensive decision modelling

The primary advantage of a Bayesian approach is that it allows the synthesis of

all available sources of evidence – whether from RCTs, databases, or expert

judgement – into a single coherent and explicit model that can then be used to

evaluate the cost-effectiveness of alternative policies. The approach has been

termed ‘comprehensive decision modelling’, and can be thought of as extending

the evidence synthesis methods described in Chapter 8 to allow for costs in
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particular and for utilities in general, and possibly incorporating a predictive

model for the natural history of a disease. Alternatively, it can be thought of as

extending standard economic modelling techniques such as decision or Markov

models so that they are probabilistic.

Parmigiani (2002) discusses such models in detail, pointing out that models

should be ‘requisite’, in the sense of only being as complex as necessary. Ideally

such models should allow a variety of viewpoints to be considered and incorpor-

ate the ‘best possible’ evidence, while encouraging analysis of sensitivity to both

deterministic inputs and uncertain parameters. From a computational perspec-

tive, comprehensive decision models might be implemented in spreadsheets if a

two-stage Monte Carlo approach is being adopted, or using MCMC software if

integrated evidence synthesis and predictions are desired.

A number of case studies have been reported. Parmigiani and Kamlet (1993)

and Parmigiani (1999) apply the idea to screening for breast cancer, and many

sources of evidence are brought together in a single model that predicts the

consequences of alternative screening policies, while Cronin et al. (1998) use

micro-simulation at the level of the individual patient to predict the conse-

quences of different policy decisions on lowering expected mortality from pro-

state cancer. Samsa et al. (1999) consider ischaemic stroke and construct a

model for natural history using data from major epidemiological studies, and

a model for the effect of interventions based on databases, meta-analysis of

trials, and Medicare claim records. They also use micro-simulation of the

long-term consequences of different stroke-prevention policies in order to com-

pare their cost-effectiveness. Matchar et al. (1997), Parmigiani et al. (1996,

1997), and Parmigiani (2002) consider further use of their Stroke Prevention

Policy Model. Fully integrated applications using WinBUGS have also been

reported by Cooper et al. (2002, 2003a, 2003b).

9.9 SIMULTANEOUS EVIDENCE SYNTHESIS AND

COMPLEX COST-EFFECTIVENESS MODELLING

The previous section has illustrated the two-stage approach to incorporating

uncertainty into a complex cost-effectiveness model, and we now consider the

full integration with Bayesian prior-to-posterior analysis.

9.9.1 Generalised meta-analysis of evidence

Example 9.2 provided a simple case for the integrated framework using the

evidence from a single study and without a complex cost-effectiveness model,

but the common situation in which evidence is available from a variety of

sources demands a more challenging statistical analysis of the kind discussed
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in detail in Chapter 8. If the evidence comprises a set of similar trials then a

standard Bayesian random-effects meta-analysis may be sufficient. In more

complex situations there may be multiple studies with relevance to the quan-

tities in question but which may suffer from a range of potential inadequacies,

such as being based on different populations, having non-randomised control

groups, outcomes measured on different scales, and so on. As described in

Section 8.4, it is natural to extend Bayesian random-effects modelling to allow

variance components corresponding to different study designs (i.e. assuming

study types are exchangeable), resulting in hierarchical models with a study

type ‘level’. There are clearly a number of issues in carrying out such potentially

controversial modelling, such as when to judge studies or study types as

‘exchangeable’, how to put appropriate prior distributions on variance compon-

ents, and how to carry out sensitivity analyses.

We shall consider as an illustration a somewhat simple formulation of such a

model. Suppose we have a set of studies that are each intending to estimate a

single parameter � but, due to differences in populations studied and so on, any

particular study (if carried out meticulously) would in fact be estimating a

biased parameter �h. Here �h � � is the ‘external bias’, and a standard

random-effects formulation might then assume �h � N[�, t2] (note that the

mean would not necessarily be � if we suspected systematic bias in one direc-

tion). However, suppose that due to quality limitations there is additional

‘internal bias’ in the study, so that the true parameter being estimated is

�h þ 
h. Then we might assume 
h � N[0, �2

h] if we did not suspect that the

internal bias would favour one or other treatment. If we assume all the studies

have the same potential for external bias, then we are left with a random-effects

model in which, for study h, the data are estimating a parameter

�h � N[�, t2 þ �2

h]

� N[�, t2h=qh],

where qh ¼ t2=(t2 þ �2

h) can be considered the ‘quality weight’ for each study,

being the proportion of between-study variability unrelated to internal biasing

factors. Thus a high-quality randomised trial might have q ¼ 1, while a non-

randomised study may be downweighted by assigning q ¼ 0:1. Note that if we

assume all studies are of equal ‘quality’, then we have the standard random-

effects meta-analysis.

Estimates or prior distributions of the between-study variance t2 and the

quality weights qh might be obtained from a possible combination of empirical

random-effects analyses of RCTs of this intervention, historical ‘similar’ case

studies, and judgement. Of course, sensitivity analysis of a range of assumptions

about the quality weights can be carried out.

This technique is illustrated in Example 9.4.
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Example 9.4 HIPS (continued): Integrated generalised evidence synthe-
sis andcost-effectivenessanalysis

Reference: Spiegelhalter and Best (2003).

Available evidence: In order to illustrate the trade-off between increased
costs and benefits, we shall compare the cost-effectiveness of the
Charnley prosthesis with a hypothetical alternative cemented prostheses
costing an extra £350 but with some evidence for lower revision rates.
We assume that all other costs (operating staff/theatre costs, length of
hospital stay, X-rays etc.) are the same for both prosthesis types, and that
the same method of QALY assessment is applicable for both types of
prosthesis.

For illustration, we assume that the revision hazard for our hypothet-
ical alternative is similar to that for the Stanmore prosthesis (a popular
alternative to the Charnley in practice). Evidence on the relative revision
hazards for the two prostheses is limited. The report by NICE on cost-
effectiveness of different prostheses for THR (NICE Appraisal Group,
2000) cites three sources providing direct comparisons between Charn-
ley and Stanmore revision rates:

1. The Swedish Hip Registry (Malchau and Herberts, 1998) provides non-
randomised data submitted from all hospitals in Sweden from 1979, with
record linkage to further procedures and death. Nine-year follow-up
results are used for around 30 000 Charnley and 1000 Stanmore
prostheses.

2. A British RCT (Marston etal., 1996) randomised around 400 patients to
each of Charnley or Stanmore and reported a mean follow-up of 6.5
years.

3. A case series (Britton et al., 1996) of around 1200 patients in a single
hospital with a mean follow-up of 8 years.

The available evidence from these three sources on revision hazards for
Charnley and Stanmore prostheses is summarised in Table 9.6.

Statisticalmodel: We assume the following model for pooling evidence
on the revision hazard ratio for Stanmore versus Charnley prostheses.
Let nik and rik denote the total number of patients receiving prosthesis i
(1 ¼ Charnley, 2 ¼ Stanmore) in study k, and the number requiring a
revision operation, respectively. We assume rik is binomially distributed
with proportion pik, although a little care is required in relating these
cumulative failure rates to a hazard ratio. From Section 2.4.2 we know
that, assuming proportional hazards, the hazard ratio HRk for Stanmore
versus Charnley prostheses obeys
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Table 9.6 Summary of evidence on revision hazards for Charnley and Stanmore
prostheses: hazard ratios less than 1 are in favour of Stanmore.

Charnley Stanmore Estimated hazard ratio

Source Number of
patients

Revision
rate

Number of
patients

Revision
rate

HR (95% int.)

Fixed-effectsmodel
Registry 28 525 5.9% 865 3.2% 0.55 (0.37 to 0.77)
RCT 200 3.5% 213 4.0% 1.34 (0.45 to 3.46)
Case Series 208 16.0% 982 7.0% 0.44 (0.28 to 0.66)

Common-effectmodel
0.52 (0.39 to 0.67)

Quality weights [Registry, RCT, Case Series] Random-effectsmodel
[0.5, 1.0, 0.2] 0.61 (0.36 to 0.98)
[1.0, 1.0, 1.0] 0.54 (0.37 to 0.78)
[0.1, 1.0, 0.05] 0.82 (0.36 to 1.67)

HRk ¼ log (1� p2k)
log (1� p1k)

and hence

log (HRk) ¼ log (�log (1� p2k) )� log (�log (1� p1k) ):

Denoting the ‘complementary log–log’ parameter by
log (� log (1� p1k) ) ¼ ck leads to the following likelihood:

rik � Bin[pik, nik], i ¼ 1, 2,

log (�log (1� p1k) ) ¼ ck,

log (�log (1� p2k) ) ¼ ck þ logHRk:

We consider three models: (a) fixed effects assuming independent
intervention effects HRk; (b) common effect in which HRk ¼ HR; and (c)
random effects. The random-effects analysis with quality weights de-
scribed in Section 8.4 leads to the model

log (HRk) � N log (HR),
t2

qk

� �
,

where HR is the overall estimate of the revision hazard ratio pooled
across studies.
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Priordistributions: For the fixed and common effects, independent uniform
prior distributions are placed over the study effects ck and log (HRk) or
log (HR). For the random-effects model, three studies do not provide
sufficient evidence to accurately estimate the between-study standard
deviation t, and so substantial prior judgement is necessary. We would
expect considerableheterogeneity in revision ratesbetweenstudies, even
if they are internally unbiased, and so assume t has a normal distribution
with mean 0.2 and standard deviation 0.05 (approximate 95% interval 0.1
to 0.3), corresponding to expecting �50% variability in true hazard ratios
betweenstudies,with 95%uncertainty limits of 20% to80%variability (e.g.
at the upper end of the interval, e1:96�0:3 ¼ 1:8 or � 80% variability in
hazard). Our knowledge of the potential biases of registries and case
series suggests downweighting the non-randomisedevidence.As abase-
line assumption for the quality weights we take qk equal to 0.5, 1.0 and 0.2
for the registry, RCT and case series studies, respectively. This corres-
ponds to assuming that ‘bias’ in the registry and case series studies leads
toa two-or fivefold increase in the revision rate variance, respectively, over
and above the between-study variability expected for RCTs.

Computation/software: MCMC methods implemented using WinBUGS.

Bayesianinterpretation: The results of the evidence synthesis are given in
Table 9.6. The ‘fixed-effects’ estimates of the hazard ratio for each source
are shown in the first three rows, revealing reasonable concordance
between the non-randomised studies but with the randomised trial show-
ing some evidence against the Stanmore. Forcing a common hazard ratio
leads to the registry overwhelming the other sources (row 4 of Table 9.6).
The results of a baseline random-effects analysis, with qualityweights 0.5,
1, 0.2, are shown in row 5 of Table 9.6, with the hazard ratio estimated in
favour of the Stanmore but with the 95% interval only just excluding 1.

Feeding these simulated parameter values into the cost-effectiveness
model developed in Example 9.3 provides the estimated incremental
changes in benefits and costs associated with a Stanmore rather than
a Charnley prosthesis shown in Table 9.7. The estimated expected
benefit is somewhat marginal, equivalent to 21 additional days (0.0579
� 365) of discounted quality-adjusted survival, but the CEAC suggests
reasonable confidence of cost-effectiveness provided one is willing to
pay more than around £10000 per QALY.

Sensitivityanalyses:As a sensitivity analysis, we consider two other choices
of quality weights. First, we can further downweight all non-randomised
evidence by taking qk equal to 0.1, 1.0 and 0.05, respectively, which leads
to an equivocal result with substantial uncertainty, as shown in Table 9.6.
At the opposite extreme, setting all quality weights to 1 permits the
domination of the registry data, leading to increased benefit.
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The sensitivity of the final conclusions to the choice of quality weights
is examined in Figure 9.7(a), which also illustrates the sensitivity to two
different discount rates for health: 0% and 6%. It is clear that the choice of
quality weights has a much stronger influence than the discount rates:

Table 9.7 Incremental changes in expected benefits and costs associated
with using Stanmore rather than Charnley prostheses in men aged 65–74,
assuming a synthesis of evidence using quality weights (0.5, 1.0, 0.2) for registry,
RCT and case series data, respectively. INB(K) is the incremental net benefit per
patient when the maximum acceptable cost per unit of effectiveness is K, and
Q(K) ¼ P(INB(K) > 0) is the CEAC. Costs are discounted at 6% per annum,
benefits at 1.5% per annum.

Parameter Median Prediction
95% interval

Incremental change in expected life-years 0.0026 0.0001 to 0.0049
Incremental change in expected QALYs 0.0579 0.0007 to 0.1078
Incremental change in expected costs 219 87 to 372
INB(5 000) 71 �362 to 452
INB(10 000) 360 �352 to 991
INB(15 000) 649 �344 to 1529
Q(5 000) 0.66
Q(10 000) 0.87
Q(15 000) 0.92

(a) Medium weight to registry

K = acceptable cost per QALY

Q
(K

) 
=

 P
(I

N
B

>
0|

da
ta

)

0 5000 10000 15000 20000

0.0

0.2

0.4

0.6

0.8

1.0

0% health discount
1.5%
6%

(b) Low weight to registry

K = acceptable cost per QALY

0 5000 10000 15000 20000

0.0

0.2

0.4

0.6

0.8

1.0

(c) Equal weights

K = acceptable cost per QALY

0 5000 10000 15000 20000

0.0

0.2

0.4

0.6

0.8

1.0

Figure 9.7 CEACs for a Stanmore compared to a Charnley prosthesis. (a) corre-
sponds to the baseline analysis with quality weights (0,5, 1.0, 0.1) for registry, RCT
and case series data, respectively, showing limited sensitivity to the annual discount
rate for health benefits. (b) uses quality weights of (0.1, 1.0, 0.05); substantial down-
weighting the non-randomised evidence prevents a strong conclusion of cost-effec-
tiveness. (c) weights all sources equally, and the increased role of the registry data
leads to a high probability of cost-effectiveness.
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if the non-randomised evidence is substantially downweighted (Figure
9.7(b)) the CEAC shows poor evidence for cost-effectiveness regardless
of K, while equal weighting (Figure 9.7(c)) shows strong evidence for
moderate K, even when discounting costs at 6%.

9.9.2 Comparison of integrated Bayesian and two-stage
approach

To recap on Section 9.4, the integrated approach to evidence synthesis and cost-

effectiveness analysis simultaneously derives the joint posterior distribution of

all unknown parameters from a Bayesian probability model, and propagates the

effects of the resulting uncertainty through the predictive model underlying the

cost-effectiveness analysis. In contrast, the ‘two-stage’ approach would first

carry out the evidence synthesis, summarising the joint posterior distribution

parametrically, and then in a separate analysis use this as a prior distribution in

a probabilistic sensitivity analysis in the cost-effectiveness model.

The advantages of the integrated approach include the following. First, there

is no need to assume parametric distributional shapes for the posterior probabil-

ity distributions, which may be important for inferences for smaller samples.

Second, and perhaps more important, the appropriate probabilistic dependence

between unknown quantities is propagated (Chessa et al., 1999), rather than

assuming either independence or being forced into, for example, multivariate

normality. This can be particularly vital when propagating inferences which are

likely to be strongly correlated, say when considering both baseline levels and

treatment differences estimated from the same studies.

The disadvantages of the integrated approach are its additional complexity

and the need for full MCMC software. The ‘two-stage’ approach, in contrast,

might be implemented in a combination of standard statistical and spreadsheet

programs. However, experience with such spreadsheets suggests that they

might not be particularly transparent for complex problems, due to clumsy

handling of arrays and opaque formula equations.

9.10 COST-EFFECTIVENESS OF CARRYING OUT

RESEARCH: PAYBACK MODELS

9.10.1 Research planning in the public sector

Any organisation funding clinical trials must make decisions concerning the

relative importance of alternative proposals, and hence there have been

increased efforts to measure the potential ‘payback’ of expenditure on research.

Buxton and Hanney (1998) review the issues and propose a staged
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semi-quantitative structure, while Eddy (1989) suggested a fully quantitative

model based on assessing the future numbers to benefit and the expected

benefit, with a subjective probability distribution over the potential benefits to

be shown by the research. However, Eddy’s limited approach was not adopted

by its sponsors, the US Institute of Medicine, who preferred a more informal

method that employed weights.

It is clearly possible to extend this broad approach to increasingly sophisti-

cated models within a Bayesian framework, and Hornberger and Eghtesady

(1998) state that ‘by explicitly taking into consideration the costs and benefits of

a trial, Bayesian statistical methods permit estimation of the value to a health

care organisation of conducting a randomised trial instead of continuing to treat

patients in the absence of more information’. Clearly this is a particular example

of a decision-theoretic Bayesian approach, applied at the planning stage of a

trial (Section 6.5) rather than at interim analyses (Section 6.6.4). Examples

include Detsky (1985), Hornberger et al. (1995) and Hornberger and Eghtesady

(1998) and others who explicitly calculate the expected utility of a trial in order

to select sample sizes; such calculations can also, in theory, be used to rank

studies that are competing for resources, and hence to decide whether the trial is

worth doing in the first place.

The early analysis by Detsky (1985) assumed that a trial would need to

achieve statistical significance in order to have an impact on future treatments,

but Claxton (1999b) strongly argues that dependence on such inferential

methods, whether classical or Bayesian, will lead to sub-optimal use of health

resources. He recommends a full decision-theoretic approach to both fixed

(Claxton and Posnett, 1996) and sequential (Claxton, 1999b) trials, basing

his analysis on quantifying the expected benefit of further experimentation.

This value of information approach is outlined briefly in Section 9.10.3.

9.10.2 Research planning in the pharmaceutical industry

Given the ‘bottom line’ of profitability in the pharmaceutical industry, it is

natural to attempt to apply a decision-theoretic approach to individual trial

design, designing a research programme for a specified intervention, and for

selecting among competing research opportunities. Many of these ideas have

already been discussed in the context of individual clinical trials, but here we are

concerned with the ‘corporate’ context: a whole research programme in which

there are multiple competing projects at different stages of drug development.

Bergman and Gittins (1985) review quantitative approaches to planning a

pharmaceutical research programme. Many of the proposed methods are so-

phisticated uses of bandit theory (Section 6.10) in order to allocate resources in

a dynamically changing environment, but Senn (1996, 1997b) suggests a fairly

straightforward scheme based on the Pearson index, which is the expected net

present value divided by expected net present costs. He discusses the difficulties
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of eliciting suitable probabilities for the success of each stage of a drug develop-

ment programme, conditional on the success of the previous stage, but suggests

that formal Bayesian approaches involving subjective probability assessment

and belief revision should be investigated in this context.

An integral part of this process is a realistic assessment of the chances of

regulatory approval, and subsequent sales in the light of future competition and

so on: although there must inevitable be a degree of speculation in these

assessments, it still seems preferably to have explicit recognition of the relevant

uncertainties when making decisions as to whether to pursue a particular

development programme.

9.10.3 Value of information

Suppose we are deciding whether to adopt treatment 1 or treatment 2 as a

policy, and wondering whether to fund further research to more accurately

determine their relative advantages. The true costs and effectiveness are de-

noted by �. Based on current information, the incremental net benefit INB(�) is
positive for � in a region Q2, where treatment 2 would be preferred, and

negative for � in Q1, where treatment 1 would be preferred. We do not know

�, but suppose that we have a current posterior for which E[INB(�)jdata] > 0

and so, on balance, treatment 2 is preferred. If, in fact, � is in Q2 then we have

made the right decision and there is no gain in knowing the exact value of �,
whereas if � is truly in Q1 we have made the wrong decision and stand to lose

�INB(�). The value of perfect information, VPI(�), is defined as the amount we

would gain by knowing � exactly: VPI(�) is 0 when INB(�) > 0, and �INB(�)
when INB(�) < 0, which can be expressed as

VPI(�) ¼ max (�INB(�), 0):

Hence our expected value of perfect information, EVPI, is

EVPI2 ¼ E[max (�INB(�), 0)jdata], (9:16)

where the subscript 2 indicates that treatment 2 is the currently preferred

option. By symmetry, the EVPI when E[INB(�)jdata] < 0, i.e. when treatment

1 is the preferred option, is

EVPI1 ¼ E[max (INB(�), 0)jdata]:

This quantity is easy to calculate using MCMC by simulating values of �,
calculating INB(�) and the VPI, and recording its Monte Carlo average over

many iterations. However, we shall see in Example 9.5 that care must be taken

with the Monte Carlo error.
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We can obtain the EVPI in closed form if INB(�) has a normal distribution, and

this also sheds some light on the interpretation of this quantity. Suppose

INB(�) � N[�I , t
2
I ],

where the standardised statistic is denoted zI ¼ �I=tI ; we assume �I > 0 and

hence treatment 2 is preferred. For simplicity of notation we shall temporarily

drop the subscripts and denote INB by Y. Then EVPI ¼ E[max (�Y, 0)], and
therefore

EVPI ¼
Z 0

�1
�y

e�(y��)2=(2t2)ffiffiffiffiffiffi
2�

p
t

dy

¼
Z ��=t

�1
(� tt� �)

e�t2=2ffiffiffiffiffiffi
2�

p dt (substituting t ¼ (y� �)=t)

¼ �t
Z �z

�1
t
e�t2=2ffiffiffiffiffiffi
2�

p dt� �F(� z)

¼ t
e�z2=2ffiffiffiffiffiffi

2�
p � zF(� z)

" #
: (9:17)

The expression in square brackets is denoted L(z) and is known as the ‘unit

normal loss function’ (Claxton et al., 2000). Figure 9.8 shows L(z) plotted

against the ‘tail area’ F(� z): the latter is P(INB(�) < 0jdata), the posterior

probability that the wrong treatment is being preferred. The direct relation-

ship in Figure 9.8 reveals that L(z) is qualitatively equivalent to the tail area

(being around 30–50% of its value in the region of interest), and hence EVPI

in (9.17) is, approximately, proportional to the probability of making a wrong

preference, weighted by t, which reflects the potential importance of

drawing a wrong conclusion. We also note that when zI ¼ 0, which occurs

when K achieves its breakeven point, the EVPI reaches its maximum of

t=
ffiffiffiffiffiffi
2�

p
.

In terms of applying the EVPI to a population of current and future patients

over the time horizon of a health-care intervention (T), the EVPI requires an

adjustment to account for the incidence It of patients in each time period t and

the discount rate 
c, so that

EVPIPOP ¼ EVPI��
T

t¼1

It

(1þ 
c)
t�1

, (9:18)

assuming no discounting in the first period.
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Figure 9.8 Plot of ‘unit normal loss function’ against P: the EVPI is the unit normal
loss function multiplied by the standard deviation of the incremental net benefit.

Example 9.5 HIV (continued): Calculating the expected value of perfect
information

Reference: Ades and Cliffe (2002) – see Example 8.7.

Costs and utilities: Ades and Cliffe (2002) specify the cost per test as
T ¼ 3, and the net benefit K per maternal diagnosis is judged to be
around £50 000, with a range of £12 000 to £60 000. In this instance
there is explicit net monetary benefit from maternal diagnosis and so it
may be reasonable to take K as an unknown parameter, and Ades and
Cliffe (2002) perform a probabilistic sensitivity analysis by giving K a
somewhat complex prior distribution. In contrast, we prefer to continue to
treat K as a willingness to pay for each unit of benefit, and therefore
follow previous examples and conduct a deterministic sensitivity analy-
sis in which K is varied up to £60 000.

The prenatal population in London is N ¼ 105 000, and hence the
annual incremental net benefit is

INB ¼ N(1� a� b)(Ke(1� h)� T(1� eh)):
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We can also calculate the CEAC, given by Q(K) ¼ P(INB > 0jdata).
Finally, we consider the calculation of the EVPI, as defined by (9.16).

This is calculated in two ways: first, using MCMC methods; and second,
by assuming a normal approximation to the posterior distribution of
INB(K) and using (9.17). Taking a 10-year horizon and discounting at
6% per year gives a multiplier of 7.8 (not discounting the first year) in
(9.18).

Bayesian interpretation: Following the findings in Example 8.7, the
analysis is conducted without data source 4. Figure 9.9(a) shows the
normal approximations to the posterior distributions of INB for different
values of K. The expected INB and 95% limits are shown in Figure 9.9(b)
for K up to £60 000, indicating that the policy of universal testing is
preferred on balance provided that the benefit K from a maternal diag-
nosis is greater than around £10 000; K is certainly judged to exceed this

(a)

INB = Incremental Net
Benefit (’000 pounds)

−500 0 500 1000 1500 2000 2500

K=10,000
K=30,000
K=60,000

(b)

K = acceptable cost per additional case detected

IN
B

 p
er

 y
ea

r 
(’0

00
 p

ou
nd

s)

0 10000 30000 50000

−500

0

500

1000

1500

2000

2500

(c)

K = acceptable cost per additional case detected

Q
(K

) 
=

 P
(I

N
B

>
0)

0 10000 30000 50000

0.0

0.2

0.4

0.6

0.8

1.0

(d)

K = acceptable cost per additional case detected

E
V

P
I (

po
un

ds
)

0 10000 30000 50000

1

10

100

1000

10000

100000

MCMC estimate
MC error
Approx

Figure 9.9 (a) and (b) show incremental net benefits, (c) cost-effectiveness accept-
ability curve, and (d) expected value of perfect information for universal versus
targeted prenatal testing for HIV. Note that the EVPI is maximised at the threshold
value of K at which the optimal decision changes.
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value. The CEAC in Figure 9.9(c) points to a high probability of universal
testing being cost-effective for reasonable values of K. Figure 9.9(d) shows
the EVPI (�2 Monte Carlo errors) calculated using 100 000 MCMC iter-
ations and also using the normal approximation to the distribution of INB
and (9.17). The Monte Carlo error is considerable even after 100 000
iterations and care must clearly be taken when using MCMC to calculate
the EVPI. Nevertheless, (9.17) provides an adequate approximation. The
EVPI is substantial for low values of K, but for values around £50 000 the
EVPI is negligible. Hence, there appears to be little purpose in further
research to determine the parameters more accurately.

The EVPI is intended for use in deciding whether to pursue a research

programme, how to design it, and when to stop. First, the EVPI must be higher

than the cost of research in order to pass the first ‘hurdle’ for a proposed

programme to overcome, and this should continue to hold throughout

the programme. Roughly, when the chance of making a wrong decision,

weighted by its consequences, is sufficiently low then the programme can stop

and a firm recommendation can be made. Another element of a value of infor-

mation approach to research planning is that of partial expected value of perfect

information (PEVPI), which considers each parameter in the cost-effectiveness

analysis in turn, and thus informs the decision whether to conduct future

research to yield more precise estimates of particular parameters. Claxton et

al. (2001) provide a worked example.

In practice, no further research is going to lead to perfect information. Hence,

the most relevant quantity may be the expected value of sample information

(EVSI), which is essentially the EVPI allowing for the sampling error of a trial.

This must exceed the sample costs to overcome the hurdle for a specific proposed

trial, and the EVSI minus sample costs is known as the expected net benefit from

sampling (ENBS). This model allows for unbalanced allocation of patients

between arms, and the ability to revise design based on interim analyses

(Claxton and Thompson, 2001; Claxton et al., 2001), in order to optimise the

ENBS. Felli and Hazen (1998, 1999) extend this utility perspective to sensitivity

analysis, suggesting that an analysis should be considered sensitive to a par-

ticular uncertain input if the expected gain in utility from eliminating the

uncertainty about that input exceeds a certain specified threshold.

9.11 DECISION THEORY IN COST-EFFECTIVENESS

ANALYSIS, REGULATION AND POLICY

The debate about the formal role of decision theory in policy-making is continu-

ing, and here we briefly run through some arguments for and against. Claims

for its use include the following:
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. Decision theory and economic argument clearly state that maximised

expected utility is the sole criterion on which to choose between two options.

Therefore measures of ‘significance’, posterior tail areas of incremental net

benefit, and high probabilities on a CEAC are all irrelevant. (Claxton and

Posnett, 1996). Claxton et al. (2000) point out that ‘Once a price per effect-

iveness unit has been determined, costs can be incorporated, and the decision

can then be based on (posterior) mean incremental net benefit measured in

either monetary or effectiveness terms’.

. To maximise the health return from the limited resources available from a

health budget, health-care purchasers should use rational resource allocation

procedures. Otherwise the resulting decisions could be considered as ir-

rational, inefficient and unethical.

. Uncertainty is taken into account through evaluating the benefit of further

experimentation, as measured by a value of information analysis.

. This framework provides a formal basis for designing trials, assessing whether

to approve an intervention for use, deciding whether an intervention is cost-

effective, and commissioning further research.

. Specifying all necessary values may be difficult, but it is necessary for rational

decision-making. Claxton (1999b) suggests the first step should be to establish

a normative framework that best meets the needs of a system, and separately

to conduct studies to see how to get the research into practice.

Among the arguments against are the following:

. The standard criticisms of decision-theoretic approaches to trials apply

(Section 6.2): in particular, it is not realistic to specify a full model for the

possible impact of research results (which may not even be ‘significant’) on

clinical practice.

. The idea of a null hypothesis (the status quo), which lies behind the use of

‘statistical significance’ or posterior tail areas, is fundamentally different from

that of an alternative hypothesis (a novel intervention). The consequences

and costs of the former are generally established, whereas the impact of the

latter must contain a substantial amount of judgement. Often, therefore, a

choice between two treatments is not a choice between two equal contenders

to be decided solely on the balance of net benefit – some convincing evidence

is required before changing policy.

. A change in policy carries with it many hidden penalties: for example, it may

be difficult to reverse if later found to be erroneous, and may hinder the

development of other, better innovations. It would be difficult to explicitly

model these phenomena with any plausibility.

. Value of information analysis is dependent on having the ‘correct’ model,

which is never known and generally cannot be empirically checked. Sensitiv-

ity analysis can only compensate to some extent for this basic ignorance.
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9.12 REGULATION AND HEALTH POLICY

9.12.1 The regulatory context

Regulatory bodies have a duty to protect the public from unsafe or ineffective

therapies. Opinions on the relevance of Bayesian methods to drug or device

regulation cover a broad spectrum: Whitehead (1997b, p. 204) and Koch

(1991) see any use of priors as being controversial and inappropriate, while

on the other hand Matthews (1998) claims that the use of sceptical priors

‘should not be optional but mandatory’. Keiding (1994) criticises the ‘ritual

dances’ currently prescribed for regulation, but wonders whether Bayesian

methods will allow anything less ridiculous. O’Neill (1994), as a senior US

Food and Drug Administration (FDA) statistician, acknowledges the appropriate

conservatism arising out of the use of sceptical priors, and considers that

Bayesian methods should be investigated in parallel with other techniques.

The full decision-theoretic approach (Section 9.11) takes an even more radical

perspective. Claxton (1999a) and Claxton et al. (2000) suggest that agencies use

decision theory for regulation, and evaluate the expected value of further investi-

gation in order to assess whether sufficient evidence is available to permit

approval. The crucial idea is that current demands for statistical significance

(e.g. two independent studies with P < 0:05) is an inadequate criterion as it takes

no account of the potential population at risk, the potential consequences of

inappropriate approval, and the costs of obtaining more evidence.

9.12.2 Regulation of pharmaceuticals

The website of the FDA allows one to search for references to Bayesian methods

among their published literature (Section A.2), although much of the discussion

concerns medical devices (see Section 9.12.3). Guidelines for population phar-

macokinetics are provided (US Food and Drug Administration, 1999a), which

can be thought of as an empirical Bayes procedure (Section 6.12). There is also

an interesting use of a Bayesian argument in the approval of the drug enox-

aparin (Lovenox). The transcript of the Cardiovascular and Renal Drugs Advis-

ory Committee meeting on 26 June 1997 (US Food and Drug Administration,

1986, pp. 212–218) shows the pharmaceutical company had been asked to

make a statement about the effectiveness of enoxaparin plus aspirin as com-

pared to placebo (aspirin alone), whereas their clinical trial had used an active

control of heparin plus aspirin. They therefore used meta-analysis data compar-

ing heparin plus aspirin with aspirin alone in order to produce a posterior

distribution on the treatment comparison of interest: an example of indirect-

comparison inference (Section 8.3). Analyses were repeated using the meta-

analysis data directly, but also expressing scepticism about its relevance and
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reducing its influence, with results being expressed as posterior probabilities of

treatment superiority over placebo. The committee welcomed this analysis and

voted to approve the drug.

It is important to note that the latest international statistical guidelines for

pharmaceutical submissions to regulatory agencies state that ‘the use of Baye-

sian and other approaches may be considered when the reasons for their use are

clear and when the resulting conclusions are sufficiently robust’ (International

Conference on Harmonisation E9 Expert Working Group, 1999). Unfortunately

they do not go on to define what they mean by clear reasons and robust

conclusions, and so it is still open as to what will constitute an appropriate

Bayesian analysis for a pharmaceutical regulatory body.

9.12.3 Regulation of medical devices

The greatest enthusiasm for Bayesian methods appears to be in the FDA Center

for Devices and Radiological Health (CDRH). They co-sponsored a workshop on

Bayesian methods in November 1998, and have proposed a document Statistical

Guidance on Bayesian Methods in Medical Device Clinical Trials (US Food and Drug

Administration, 1998a).

Campbell (1999) described the potential for Bayesian methods in assessing

medical devices, emphasising that devices differed from pharmaceuticals in

having better-understood physical mechanisms, which meant that effectiveness

was generally robust to small changes. Since devices tended to develop in

incremental steps, a large body of relevant evidence existed and companies did

not tend to follow established phases of drug development. The fact that an

application for approval might include a variety of studies, including historical

controls and registries, suggests that Bayesian methods for evidence synthesis

might be appropriate. However, the standard conditions apply that the source

and robustness of the prior information must be assessed, and that Bayesian

analysis does not compensate for poor science and poor experimental design.

Campbell drew attention to the Transcan Breast Scanner, whichwas approved

by the CDRH in April 1999 (US Food and Drug Administration, 1999b).

A primary ‘intended use’ study on 72 women was supplemented by two add-

itional studies of differing designs, using a hierarchical multinomial logistic

regression model with study introduced as a random effect. MCMC simulation

methods were used by means of the BUGS software. Searching the FDA website

reveals a growing number of device submissions that exploit Bayesian reasoning.

9.13 CONCLUSIONS

In this chapter we have attempted to explore a range of concerns that arise in

cost-effectiveness modelling, but acknowledge that there are a number of issues
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that we have passed over. In particular, we have not explored the sensitivity of

the conclusions to ‘ignorance’ (Section 9.7) about the structure of the appropri-

ate model: alternative models that could be used in this context include sur-

vival-type models with competing risks. It is vital to admit that even a

reasonably complex model, such as that investigated in our example, cannot

be assumed to be realistic and must be subject to careful criticism (Russell,

1999; Sculpher et al., 2000).

As attempts are made towards evidence-based health policy in both clinical

and public health contexts, models will inevitably become more complex and,

while the methods described in this chapter may appear complicated, we feel that

techniques such as these may well become commonplace in the future. If deci-

sions made with the help of such analyses are to be truly accountable, it is

important that the models and methods are transparent, easily updatable, and

can be run by many parties in order to check sensitivity. Models implememented

in spreadsheet programs have some of these characteristics, but we feel that user-

friendly Bayesian simulation programs could contribute substantially to the field.

9.14 KEY POINTS

1. A Bayesian approach allows explicit recognition of multiple perspectives

from the stakeholders involved.

2. Cost-effectiveness analyses fall naturally into a Bayesian framework,

whether or not the evidence synthesis is carried out separately (the two-

stage approach) or integrated in with the cost-effectiveness analysis.

3. Comprehensive decision modelling is likely to become increasingly important

in making both healthcare and policy decisions.

4. Increased attention to pharmacoeconomics may lead decision-theoretic

models for research planning to be explored, although this will not be

straightforward.

5. There appears to be great potential for formal methods for planning in the

pharmaceutical industry.

6. The regulation of devices is leading the way in establishing the role of

evidence synthesis.

7. We expect this to be a significant area of research activity over the coming

years.

EXERCISES

9.1. Consider the TACTIC study described in Example 9.2, and suppose we try

to use the simple bivariate normal model of Section 9.5 to analyse this

problem.
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(a) Run the WinBUGS code for Example 9.2, and record the posterior

correlation between �e and �c under the exchangeable model.

(b) Plot the joint posterior samples for �e �c and check whether bivariate

normality might be a reasonable assumption.

(c) Making this assumption, use the methods of Section 9.5 to estimate the

CEAC and INB, and hence check whether these analytical methods

yield similar conclusions to those used in Example 9.2.

9.2. Gray et al. (2002) report the results of an economic analysis carried out

alongside an RCT to evaluate the use of an intensive blood glocose control

policy in patients with type 2 diabetes. Table 9.8 reports the results of the

trial in terms of both costs and event-free years. They differentiate between

the actual costs observed during the trial, and those adjusted for the fact

that during the trial patients required additional clinical visits, and thus

incurred additional costs above those seen in routine clinical practice. The

latter estimate of costs is referred to as non-trial. Using the methods of

Section 9.5, examine whether the policy of intensive glucose control is

cost-effective for the different scenarios summarised in Table 9.8, i.e.

whether to use trial costs or adjusted trial costs and/or whether to discount

either costs or costs and life-years. Gray et al. (2002) did not report the

correlation between costs and life-years, so consider assessing cost-effect-

iveness either (a) assuming specific values for the correlation 	, or (b)

placing a suitable prior distribution on 	.
9.3. Consider the case of whether to use prophylactic antibiotics for women

undergoing Caesarean sections described in Exercise 3.13. The problem

may be formulated as a cost-effectiveness decision model and evaluated

using WinBUGS, taking into account sources of uncertainty.

The odds ratio for infection (antibiotics vs. control) is estimated to be

0.40 (95% CI from 0.33 to 0.47) from a Cochrane systematic review, while

the probability of wound infection without antibiotics is estimated to be

Table 9.8 Mean costs (£ at 1997 prices) and event-free life-years for intensive and
conventional blood glucose control in patients with type 2 diabetes.

Discount
rate

Intervention
(n ¼ 2729)

Control
(n ¼ 1138)

Difference

Mean SD Mean SD Mean 95% CI

Costs (£)
Total trial 0% 9608 8343 9869 120222 �261 �1027 to þ505

6% 6958 5774 7170 8689 �212 �761 to þ338

Total non-trial 0% 8349 8153 7871 11841 þ478 �275 to þ1232
6% 6027 5674 5689 8615 þ338 �207 to þ882

Event-free years
Within trial 0% 14.89 6.93 14.29 7.06 þ0.60 þ0.12 to þ1.10

6% 9.17 3.20 8.88 3.44 þ0.29 þ0.06 to þ0.53
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Table 9.9 RCTs evaluating the effectiveness of using prophylactic antibiotics for
women undergoing elective Caesarean sections in terms of infection rates. (Study
quality: A¼Good, B¼OK, C¼Poor.)

Antibotics Control
Study

Study Year Infections Total Infections Total quality

Dashow 1986 3 100 0 33 A
De Boer 1989 1 11 5 17 B
Duff 1982 0 42 0 40 B
Jakobi 1994 4 167 5 140 B
Lewis 1990 1 36 1 25 B
Mahomed 1988 12 115 15 117 A
Rothbard 1975 0 16 1 16 C

0.08, based on observing 60 infections in 750 women. The costs of

administering antibiotics include a fixed cost of £10 plus between 4 and

7 minutes of consultant’s time at £1 per minute. The hospital costs for

Caesarean section without infection are £173 per day, and the average

length of stay is 6.7 days (SE 0.33). If there is infection, the average length

of stay rises to 8.8 days (SE 0.55) and the daily cost to £262. Utilities are

assumed known at 0.95 QALYs without infection and 0.80 QALYs with

infection.

(a) Obtain an algebraic expression for the incremental net benefit of using

antibiotics for various choices of K, the acceptable cost per QALY.

(b) Use the information provided above to obtain the posterior distribu-

tions for the INB, and hence plot the cost-effectiveness acceptability

curve.

9.4 Extend the model in Exercise 9.3 to take account of the actual meta-

analysis of RCTs considering only elective Caesarean sections presented in

Table 9.9 (Cooper et al., 2002). Explore the sensitivity to downweighting

studies according to their assessed quality.

9.5 In Example 9.5, Ades and Cliffe (2002) carried out a probabilistic sensitivity

analysis for K, the net benefit of a maternal diagnosis. They adopted a

distribution representing an estimate of £50 000, with a range from

£12000 to £60 000.

(a) What might be a suitable functional form for a prior distribution with

these qualities?

(b) With such a prior distribution, carry out a probabilistic sensitivity

analysis and estimate the incremental net benefit, the probability of

cost-effectiveness and the EVPI.

9.6 In Example 9.4, what would be the effect of including a (hypothetical)

additional randomised trial in which 28/400 (7%) of Charnley prostheses

had needed revision, compared to 16/400 (4%) of Stanmore?
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10

Conclusions and
Implications for Future

Research

10.1 INTRODUCTION

This book has described the general use of Bayesian methods in evaluation of

health-care interventions, and has considered a number of specific areas of

application. Whilst in many of these areas the advantages of adopting a Baye-

sian approach appear clear, a number of problems have also been identified.

Section 10.2 summarises many of these advantages and disadvantages. Section

10.3 identifies areas requiring further research and makes a series of recom-

mendations for the main participant groups in health-care evaluation. These

conclusions are deliberately expressed in a ‘list’ style.

10.2 GENERAL ADVANTAGES AND PROBLEMS OF A

BAYESIAN APPROACH

Potential advantages of Bayesian approaches in health-care

evaulation

1. All evidence can potentially be taken into account.

2. Specification of a prior distribution requires sponsors, investigators and

policy-makers to think carefully and be explicit about what external evidence

and judgement they should include.

3. Hierarchical models, which also can be handled within a non-Bayesian

framework, allow pooling of evidence and ‘borrowing of strength’ between

multiple substudies.
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4. Potential biases can be explicitly modelled, allowing the synthesis of studies

of varying designs.

5. The Bayesian approach focuses on the vital question: how should this piece

of evidence change what we currently believe?

6. Probability statements can be made directly regarding quantities of interest,

and predictive statements are easily derived.

7. Juxtaposition of current belief with clinical demands provide an intuitive and

flexible mechanism for monitoring and reporting studies.

8. The inferential outputs from a Bayesian analysis feed naturally into a deci-

sion-theoretic and policy-making context.

9. Explicit recognition of the importance of context makes Bayesian methods

particularly suitable for evaluation of health-care interventions, in which

multiple parties may well interpret the same evidence in different ways.

Generic problems

1. Unfamiliarity with Bayesian techniques, perhaps along with their perceived

mathematical complexity, and some conservatism on the part of potential

users, has resulted in limited use of proper Bayesian methods to date.

2. The use of prior opinions acknowledges a subjective input into analyses,

which may appear to contravene the scientific aim of objectivity.

3. Specification of priors, whether by elicitation or choice of defaults, is a

contentious and difficult issue.

4. There are no established standards for design, analysis and reporting of

Bayesian studies.

5. There is a danger that the additional complexity of Bayesian methods will

lead to poor use.

6. A full decision-theoretic framework can lead to innovative but non-standard

trial designs which may be very different from those currently in use.

7. Specification of expected utilities is difficult and may require extensive as-

sumptions about future use of interventions.

8. Computational complexity of the methods has until recently been a major

issue.

9. Software for implementation of the methods is still limited in availability and

user-friendliness.

10.3 FUTURE RESEARCH AND DEVELOPMENT

We have claimed that Bayesian methods could be of great value when evaluat-

ing health-care interventions. For a realistic appraisal of the methodology, it is

useful to distinguish the roles and requirements for six main participant groups:

methodological researchers, sponsors, investigators, reviewers, policy-makers

and consumers (see Sections 3.1 and 9.2). However, two common themes for all
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participants can immediately be identified. The first is the need for an extended

set of case studies showing practical aspects of the Bayesian approach, in

particular for prediction and handling multiple sub-studies, in which math-

ematical details are minimised but details of implementation are provided. We

hope the examples in this book have contributed towards this goal. The second

theme is the development of standards for the performance and reporting of

Bayesian analyses, possibly derived from the checklist described in Section 3.21

and used throughout this book.

1. Methodological researchers. With regard to design, there is a need for

transferable methods for sample-size calculation that are not based on

Type I and Type II error, such as targeting precision, and realistic develop-

ment of payback models, including modelling of dissemination. Simple and

reliable elicitation methods for the priors of ‘non-enthusiasts’ require testing,

as well as demonstrations of the use of empirical data as a basis for prior

distributions. Reasonable default priors in non-standard situations need to be

available. Methods for flexible model selection and robust MCMC analysis

require development and dissemination, and there is a need for user-friendly

software for clinical trials and evidence synthesis.

It is essential to have appraisal criteria along the lines of the checklist used

in this book, with possible reformulation as guidelines along the lines of

‘How to read a Bayesian study’ – it would also be useful to have the term

‘Bayesian’ in all relevant papers in order to aid literature searches. Finally,

increased integration with a health-economic and policy perspective is

highly desirable, together with flexible tools for implementation.

2. Sponsors and investigators. Both public sector and industry could extend

their perspective beyond the classical Neyman–Pearson criteria, and in

particular investigate quantitative payback models. The pharmaceutical

industry might also investigate formal project prioritisation schemes. All

sponsors could focus on the evidential basis for assumptions made concern-

ing alternative hypotheses and the potential gains from technology, and

use empirical reviews to establish reasonable prior opinions. There is also

potential for ‘open’ studies in which interim results are reported to investi-

gators.

It would be valuable to gain experience in eliciting prior opinions from

both enthusiasts and a general cross-section of the target community. There

is great scope, when analysing data, to go beyond the usual limited list of

models and consider a range of priors and structural assumptions. Finally,

when reporting a study, it is vital that any Bayesian reporting allows future

users to include the evidence in their synthesis or decision. The use of our

checklist or a similar scheme for reporting should help in this.

3. Reviewers/regulatory bodies. Regulatory bodies could establish reasonable

prior opinions based on past experience in order to provide default

priors, and could take a more flexible approach to the use of data,
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particularly in areas such as medical devices, and encourage efficient use of

data by appropriate use of historical controls, evidence synthesis and so on.

More experimental would be the explicit modelling of the consequences of

decisions in order to decide evidential criteria.

4. Policy-makers. There is a need for careful case studies in which policy-makers

explicitly go through the following stages in reaching a conclusion based on

a full Bayesian analysis:

. Priors. Specify prior opinions relevant at the time of decision-making.

. Modelling. Pool all available evidence into a coherent model.

. Reporting. Make predictive probability statements about the consequences

of different policies.

. Decision-making. Assign costs to potential consequences, and so assess

(with sensitivity analysis) the expected value of different actions.

5. Consumers. Clinicians might be expected to exercise their subjective judge-

ment concerning how their own prior beliefs are influenced by available

evidence, while individual patients’ utilities values can be elicited to see, for

example, whether a population-based decision made by a health-care agency

matches one based on their personal opinions.
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Appendix A

Websites and Software

Here we give a selection of sites that currently provide useful material on

Bayesian methods applicable to health-care evaluation and lists of links. This

list is not exhaustive but should provide some entry into the huge range of

material available on the internet. All sites were operational in June 2003. A

good search engine is appropriate for specific topics.

A.1 THE SITE FOR THIS BOOK

http://www.mrc-bsu.cam.ac.uk/bayeseval/

This page contains downloads for all the examples that use WinBUGS. You

can also download the BANDY (Bayesian Analysis using Normal DYstributions)

program based on Excel, which allows simple analysis of odds-ratio and

hazard-ratio data assuming normal priors and likelihoods. Many of the

examples in the book are included with BANDY.

A.2 BAYESIAN METHODS IN HEALTH-CARE

EVALUATION

http://www.fda.gov/cdrh/

This is the home page for the US Food and Drug Administration’s Center for

Devices and Radiological Health, which contains a number of items relating

to Bayesian methods. To identify these use the Search facility with keyword

‘Bayesian’.

http://www.shef.ac.uk/chebs/

The Centre for Bayesian Statistics in Health Economics (CHEBS) is a research

centre in the University of Sheffield, UK, and its site provides recent

research reports and news of events.
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http://www.bayesian-initiative.com

The Bayesian Initiative in Health Economics and Outcome Research provides

useful background material on Bayesian approaches to pharmacoeconomics,

and a Bayesian ‘primer’ is provided.

http://lib.stat.cmu.edu/bayesworkshop/2001/BaSis.html

Provides a draft by the BaSiS group of Standards for Reporting of Bayesian

Analyses in the Scientific Literature.

http://www.cochrane.org

The Cochrane Collaboration is not a Bayesian site, but is useful for its material

on ‘Preparing, maintaining and promoting the accessibility of systematic

reviews of the effects of health care interventions’.

http://www.campbellcollaboration.org

The Campbell Collaboration is like the Cochrane Collaboration, but deals with

evaluation of social policy.

A.3 BAYESIAN SOFTWARE

http://www.shef.ac.uk/~st1ao/1b.html

The First Bayes software is freely available and features good graphical

presentation of conjugate analysis of basic data sets. It is suitable for teaching

and is strong on predictive distributions.

http://www.mrc-bsu.cam.ac.uk/bugs/welcome.shtml

The BUGS software is designed for analysis of complex analysis using Markov

chain Monte Carlo methods. The new WinBUGS version features an interface

for specifying models as graphs. The software assumes familiarity with Baye-

sian methods and MCMC computation.

http://www.med.mcgill.ca/epidemiology/Joseph/software.html

Lawrence Joseph’s Bayesian Software site provides downloadable code for a

wide variety of sample-size calculations using prior opinion.

http://omie.med.jhmi.edu/bayes/

The Bayesian Communication page is hosted by Harold Lehmann, and fea-

tures a prototype example in which a Bayesian analysis can be carried out on-

line (Lehmann and Shachter, 1994; Lehmann and Nguyen, 1997).

http://www.research.att.com/~volinsky/bma.html

The Bayesian Model Averaging Home Page provides S-Plus and Fortran

software for carrying out model averaging, as well as featuring reprints and

links.

http://www.palisade.com/

The Palisade Corporation markets the @RISK software, which is an add-on to

Excel that allows probability distributions to be placed over the inputs to spread-

sheets. Predictive distributions over the outputs are then obtained by Monte

Carlo simulation. Demonstration versions are available for downloading.
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http://www.decisioneering.com/

Decisioneering markets the Crystal Ball software, which is also an add-on to

Excel and allows Monte Carlo inference using a range of prior distributions.

Demonstration downloads are available.

http://www-math.bgsu.edu/~albert/mini_bayes/info.html

This site is an adjunct to Jim Albert’s (1996) book Bayesian Computation Using

Minitab and features macros for carrying out a variety of analyses.

A.4 GENERAL BAYESIAN SITES

http://stat.rutgers.edu/~madigan/bayes_people.html

The Bayesians Worldwide site has links to the home pages of many research-

ers in Bayesian methods. These provide a vast array of lecture notes, reprints

and slide presentations.

http://www.bayesian.org/

The International Society for Bayesian Analysis provides information on its

activities and useful links.

http://www.amstat.org/sections/SBSS/

The American Statistical Association Section on Bayesian Statistical Sciences

(SBSS) has a preprint archive and links to other sites.

http://www.isds.duke.edu/sites/bayes.html

This provides a list of Bayesian sites hosted from Duke University.
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for two simple hypotheses, 54–5, 128
from trial results, 75
in preference studies, 133
in urokinase trial, 164
Jeffreys’ calibration of, 55
minimum, 30
transforms prior to posterior odds, 55

Bayes theorem, 1–2
and interpreting trial results, 69–70, 74
definition and proof, 12–13
for binary data, 57, 59–60
for general quantities, 57
for random variables, 14

for simple events, 13
for two hypotheses, 51–2
in diagnostic testing, 52–3
normal data, 62–3
odds form, 13
sequential use, 79

Bayes, Thomas, 1
Bayesian approach
as formalisation of learning process, 2
caution needed, 3
description of, 3
different schools of, 112
future developments, 35
general advantages, 3, 349
generic problems, 350
importance of probability distributions,

9
origins of, 2
overview, 49–121
reporting, see reporting Bayesian

analyses
software, 353
websites, 353

Bernoulli, J., 57, 50
Bernoulli distribution
definition, 57
example of use of, 18, 58

Bernoulli trial, 57
Berry, D., 182, 187
beta distribution
as conjugate prior with binary data, 60
as prior for proportion, 60–1, 82, 108,

294
assessing parameters for, 60–1
definition and uses, 36–7
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beta-binomial distribution
definition, 81
for prediction, 82, 108

between-group standard deviation, see
random-effects variability

bias modelling
in evidence synthesis, 287, 330
in prior, 150
using quality weights, 332
with historical controls, 228, 231
with historical data, 90
with observational studies, 253, 257

binary data
and Bayes theorem, 57
and prediction, 81
normal approximation to likelihood, 23

binomial distribution, 81, 108, 128, 133
definition and uses, 34–5

bivariate normal distribution
definition and uses, 44
for mean costs and benefits, 313, 314

Bletchley Park, 52
blood pressure, 283
Bowley, A., 123
Box’s measure of conflict, 174, 199, 272
breakeven point, 279
Burton, P., 69

CALGB trial, 224
cancer prognosis, 12, 13–14
case–control studies, 252, 255
Chaloner, K., 142, 188
CHART trials

clinical prior distribution, 144
criticism of prior, 176
monitoring, 207
range of equivalence, 185
sceptical prior distribution, 160

checklist for Bayesian analyses, 113
chi-squared distribution

Q test for heterogeneity, 93
definition, 39

classical inference, 31
and sample size, 190
comparison of methods, 121
criticisms of, 123–4
hybrid with Bayesian, 193
interim predictions, 213
limitations of, 2
sample size, 32

Claxton, K., 341, 342
cluster randomisation, 227

coherent probabilities, 50
cohort database, 252
Cole, P., 127
community of priors, 139
and sensitivity analysis, 166

comprehensive decision modelling, 328
computational issues, 102
conditional expectation, 17
conditional independence, 18
in sequential use of Bayes theorem, 79
when making predictions, 81

conditional likelihood
in meta-analysis, 274
to eliminate nuisance parameters, 101

conditional power given interim data, see
interim power

conditional probability, 11
conditional variance, 17
confidence interval, 31, 67
interpretation of, 123

confidence profile method, 253, 268
confirmatory studies, 224
conjugate analysis
beta-binomial, 60
normal-normal, 62–3

conjunction fallacy, 140
CONSORT guidelines, 113
context
of evaluation, 49
and cost-effectiveness analysis, 307

continual reassessment method, 242, 242
continuous responses, normal likelihood

for, 31
Cornfield, J., 123, 127, 227
correlation, 16, 314
cost-effectiveness analysis, 305–348
and decision theory, 89
complex models, 322–335
cost-effectiveness acceptability curve

(CEAC), 313
cost-effectiveness plane, 308
Crystal Ball software, 311
deterministic sensitivity analysis, 311,

321
discrete-time, discrete-state Markov

models, 322
domination, 308
evidence synthesis, 329
expected net benefit from sampling

(ENBS), 341
expected value of perfect information

(EVPI), 337
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‘first-order’ uncertainty, 321
heterogeneity, 321
incremental cost-effectiveness ratio

(ICER), 308
incremental net benefit (INB), 309, 312,

314, 319, 337, 340
incremental net health benefit (INB*),

309
integrated and two-stage approaches

compared, 335
integrated approach, 311
integrated approach with single study,

315–319
levels of uncertainty, 320
Markov models, 322
meta-analysis, 329
micro-simulation, 323, 324
model uncertainty, 321
parameter uncertainty, 321
partial expected value of perfect

information (PEVPI), 341
probabilistic sensitivity analysis, 310,

324
probability of net benefit, 323
‘second-order’ uncertainty, 321
two-stage approach, 310
two-stage approach with single study,

312–314
value of perfect information (VPI), 337
willingness to pay, 308
WinBUGS, 311

count responses, 30
covariance, 16
Cox regression, 30
likelihood based on, 198

Cox, D.R., 122
credibility analysis, 75, 77, 99
credible interval
comparison with confidence intervals,

65
for normal posterior, 68–9
highest posterior density, 65
interpretation, 66
one-sided, 65
two-sided, 65

cross-design synthesis, see evidence
synthesis

crossover trials, 237
Crystal Ball software, 311

data monitoring committee, 176
Bayesian approach, 223

in B-14 trial, 216
in CHART trials, 210

data-dependent allocation in RCTs, 235
databases and RCTs, 187
de Finetti, B., 56
de Finetti’s theorem, 56
decision theory, 85
as ‘full’ Bayesian approach, 112
comparison of methods, 121
conflicting views on, 342
cost-effectiveness analysis, 341
for monitoring trials, 220
in phase II/III trials, 224
in RCTs, 182
in sample-size assessment, 193
irrelevance of measures of uncertainty,

91, 183
loss function, 89
multiple treatments in RCTs, 228
neural tube defects, 87
number needed to treat (NNT), 87
policy, 341
regret, 86
regulation, 341, 342
sequential trials, 204
state of nature, 86
utility, 86

default prior distribution, see reference
prior distribution

DeMets, D., 203
design, 90
diagnostic testing, 52
dice, 11, 50
discount rates, 323, 333
discounting previous studies, see historical

evidence
discrete-time, discrete-state Markov

models, 322
DoodleBUGS, 108
dose-finding study, 236
DuMouchel prior
for random-effects variability, 173, 273

dynamic programming, 90, 220

ECMO trial, 231
Edgeworth, F., 51
effective number of events, 25, 30, 73, 79,

256
Eghtesady, P., 336
electronic foetal heart monitoring, 275
empirical Bayes approach, 94, 112
Enigma codes, 52
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enoxaparin (Lovenox), 343
enthusiastic prior distribution, see prior

distribution
equivalence trials, 237
ethics and randomisation, 187
evidence synthesis, 267–303

and cost-effectiveness analysis, 329
and modelling, 285, 288, 292, 294
cross-design, 285
functional dependence, 287
generalised, 285
quality weights, 331

exchangeability, 92
and historical data, 148
and subset analysis, 227
basic concept, 56
in evidence synthesis, 285
judgement of and hierarchical models,

167
of historical controls in RCTs,

228
of random quantities, 56
of sample variances, 238, 317
of study effects, 284

expectation, 16
conditional, 17, 312
iterated, 17, 81, 84

expected net benefit from sampling (ENBS),
341

expected power, see power
expected value of perfect information

(EVPI), 337
‘extending the conversation’, 12, 15

factorial designs, 241
Farewell, V., 122
FAST* PRO software, 268
Fayers, P., 148
FDA Center for Devices and Radiological

Health, 344
Feinstein, A., 3
‘first-order’ uncertainty in

cost-effectiveness analysis, 321
Fisher, R.A., 123
Fisherian approach, 122

and sequential trials, 203
to sample size, 189

frequentist inference, see classical
inference

function of parameters
example of inference on, 294, 298

futility, see interim power, 211

gamma distribution
as conjugate prior, 39
as prior for random-effects variability,

170
as prior for sample precisions, 238
definition and uses, 39

gastric cancer trial
sample size, 197

generalised evidence synthesis, see
evidence synthesis

graphical model, 292
in WinBUGS, 108

GREAT trial
analysis of, 69–70
and sequential use of Bayes theorem,

79
Bayes factor in, 136
credibility analysis, 75
normal likelihood for, 27
prediction after, 84
prior criticism, 174

Greenhouse, J., 112, 151, 158, 189
group-sequential methods, 202
GUSTO trial, 153

half-normal distribution
as prior for normal mean, 163
as prior for random-effects variability,

168, 272, 289
definition and uses, 41

hazard rate, 27
hazard ratio, see log(hazard ratio)
health-care evaluation, 3
health-care interventions, 2
health-technology assessments, 2
Healy, M., 127, 182
heterogeneity in cost-effectiveness

analysis, 321
hierarchical models
and evidence synthesis, 288
cluster randomisation, 227–8
for institutional comparisons, 259
for meta-analysis, 268
for sample variances, 238
hyperparameter estimation, 94
multi-centre analysis, 227
multiple endpoints, 228
multiple treatments, 228
normal distributions, 93
prior distributions, 167
prior for random-effects variance, see

random-effects variability
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random-effects distribution for, 168
shrinkage, 94
subset analysis, 227

highest posterior density interval, 65
hindsight bias, 140
hip replacement, 325, 331
historical controls
exchangeability, 229
in ECMO trial, 231
modelling bias, 229

historical evidence, 90, 148
about controls, 228
and prior distributions, 148
contexts, 6
discounted, 91, 151, 230, 286
functional dependence, 151
in evidence synthesis, 285
in observational studies, 253
possible relationships to current

observations, 91
quality weights, 152
with potential biases, 150

HIV, screening for, 339
Hornberger, J., 336
Hughes, M., 203
hybrid classical and Bayesian approach,

190, 193
hyperparameters, see hierarchical

models
hypertension, 279
hypothesis testing
comparison of methods, 121

in vitro fertilisation, 259
independent and identically distributed

(i.i.d.), 17
indirect comparison studies, 282
indirect inference, 283
inferences on many parameters, 91
institutional comparisons, 258, 259
benefits of Bayesian approach, 259

integration, importance of in Bayesian
statistics, 16

interim power
Bayesian, 212
classical, 213
curve, 212
hybrid classical and Bayesian

approach, 211
interval estimation, see credible interval
interval hypotheses, 64, 67
ISIS-4, 95, 131, 271

iterated expectation, 16, 81, 84
iterated variance, 16, 81, 84

Jeffreys, H., 55

K, willingness to pay, 308
Kass, R., 112, 151, 158, 189
key points
basic concepts from traditional analysis,

46
comparative inference, 136
cost-effectiveness analysis and policy,

345
evidence synthesis, 299
observational studies, 262
overview of Bayesian approach, 116
prior distributions, 176
randomised controlled trials, 245

Laplace’s law of succession, 82
likelihood
ratio, 52, 54–55
and Bayes theorem, 57
Bernoulli, 19
definition, 18
description, 1–2
function, 18
interval estimates, 24
maximum likelihood estimate, 18
normal, see normal likelihood
profile, 94
supported parameter values, 18

likelihood principle, 54, 124, 126
and sample size, 192

Lindley’s paradox, 135
Lindley, D., 129, 182
location, measures of, 63
log(hazard ratio), 27–8
and survival probabilities, 28
approximate normal likelihood for, 30
example of inference on, 143, 160,

185, 194, 196, 198, 207, 215,
224

in power calculations, 32–33
log-normal distribution
as prior for sample variances, 238, 317
definition and uses, 42–3
for costs, 317

log(odds ratio)
approximate normal likelihood, 25
definition, 23
estimate of, 24–5
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log(odds ratio) (cont.)
example of inference on, 69, 77, 99,

136, 153, 175, 231, 255, 271,
275

log-rank test statistic, 29–30
log(rate ratio), 30

approximate normal likelihood for, 30
estimate of, 30
example of inference on, 279
variance of estimate, 30

log(risk ratio), 23
example of inference on, 289

logistic regression, 25
logit, definition of, 13
loss function, see decision theory, 182
‘lump-and-smear’ prior distribution, see

prior distribution

Macau, 50
magnesium sulphate, 95, 271
mammographic screening for breast

cancer, 288
Mantel–Haenszel analysis, 25
maple syrup urine disease (MSUD), 292
marginalisation, 11, 15
Markov chain Monte Carlo methods

for calculating EVPI, 341
for ranking, 260
introduction, 105

Markov models in cost-effectiveness
analysis, 323, 325

Matthews, R., 51
maximising expected utility, 86
maximum likelihood estimate, 19, 112
MCMC, see Markov chain Monte Carlo

methods
mean, 17
measurement error, 253
Medical Decision Making, 89
Meier, P., 126
meta-analysis, 268

adjustment for baseline rates, 280
advantages of Bayesian approach, 269
and cost-effectiveness analysis (CEA),

329
and prediction, 270
assessing compatibility with individual

trials, 270
Bayesian interpretation of cumulative,

150
between-study variability, 274
cumulative, 271

‘empirical Bayes’, 95
exact likelihoods, 274
nuisance parameters, 274, 275
of case–control studies, 255
prediction in new populations, 271
prediction on new trial, 270
publication bias, 271
relationship between treatment effect

and underlying risk, 278
results on different scales, 269
with sceptical prior, 97
with studies of different types, 285

method of moments, 94
micro-simulation in cost-effectiveness

analysis, 322
minimax approach to decision-making, 89
missing covariate data, 252
mixed comparison studies, 282
monitoring trials, 202
comparison of Bayesian and classical

boundaries, 205
frequentist properties of Bayesian

methods, 221
phase II, 243
using loss function, 220
using posterior distribution, 204
using predictions, 211, 214
using the posterior distribution, 207

Monte Carlo methods, 103
in cost-effectiveness analysis, 310
in probabilistic sensitivity analysis, 105
predicting power, 202

multi-centre analysis, 227
multi-level model, 92
multiple endpoints in RCTs, 228
multiple treatments in RCTs, 228
multiplicity, 91
and institutional comparisons, 259
and meta-analysis, 268
Bayesian approach to, 92
criticism of conventional approach,

127
in RCTs, 227

N-of-1 trials, 237, 237
National Institute of Clinical Excellence

(NICE), 305
Navajo children (influenza vaccine trial),

221
neural tube defects, 87
Neyman–Pearson approach, 122
and sample size, 189
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and sequential trials, 203
criticisms of, 123

non-informative prior distribution, see
reference prior distribution

normal approximations to likelihoods, 23
normal distribution
and prediction, 82
as posterior, 62
as prior, 62
as prior for log(odds ratio), 69
as prior for normal mean, 62
definition, 20
difference, 22
distribution function, 20
in hierarchical models, 93
precision, 20
sum, 21
table of tail areas, 20

normal likelihood
as approximation with nuisance

parameters, 100, 101
and Bayes theorem, 62
applications of, 22
approximate for log(hazard ratio), 30
approximate for log(odds ratio), 26
approximate in GREAT trial, 26–7
approximations for binary data, 23
continuous responses, 31
count responses, 30
for survival data, 27
in classical inference, 31
in hierarchical models, 92

normal mean
example of inference on, 163, 237,

283
normal-normal conjugate analysis, 62–3
nuisance parameters
in meta-analysis, 274, 275
methods for dealing with, 100–1

null hypothesis, 31
in RCTs, 184
transforming power calculations, 196

number needed to treat (NNT), 87, 88

O – E, see observed minus expected
O’Neill, R., 160
O’Rourke, K., 166
objective prior distribution, see reference

prior distribution
observational studies, 251–265
observed – expected, 28
variance of, 29

odds
definition, 12

odds ratio, see log(odds ratio)
oral contraceptives, 255
outcome measures, 23
binary, 23
continuous, 31
counts, 30
survival, 27

P-values, 31–2, 122
criticism of use, 127–8
in sequential experiment, 124
irrelevance to decision-making, 90

parametric distributions, 17
partial expected value of perfect

information (PEVPI), 341
partition models, 92
payback models, 335
Pearson index, 336
Pearson, E., 123
perspectives of different stakeholders, 51
Peto, R., 139, 183
pharmacoepidemiology, 255
pharmacokinetics, 242
play-the-winner rule, 235
Pocock, S., 147, 188, 203
point estimation, 64
Poisson distribution
definition and uses, 35
random-effects regression, 279

policy-making, 305–47
Posnett, J., 342
posterior distribution
and Bayes theorem, 57
description, 1
in monitoring trials, 204
mean, median, mode, 64
normal, 62, 63–4
use in monitoring trials, 207

posterior odds, 52
power
and sample size, 189
Bayesian, 182, 194, 194, 196
changing null hypothesis, 196
classical, 31
conditional, 191
expected, 191, 196
hybrid classical and Bayesian approach,

193
incorporating prior information, 191,

198
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power (cont.)
predictive distribution of, 201
with survival outcomes, 32

‘power’ prior distribution, see prior
distribution

pre-natal HIV screening, 295
precision of normal distribution, 20
prediction, 80

and binary data, 81
and meta-analysis, 268
and normal distributions, 83
binary data, 108
increase in uncertainty, 84
of chance of ‘significant’ result, 211,

217
of power of an RCT, 201

preference studies, 128, 133
prior beliefs in medicine, 139
prior distribution, 139–180

and Bayes theorem, 57
and design, 139
and range of equivalence, 186
clinical, 141
community of,
comparison with observed data, 174
conjugate, 59–60, 139
default, see reference prior distribution
description, 1
discrete, 57
elicitation, see prior elicitation
empirical criticism of, 174
enthusiastic, 159, 160, 205
for normal mean, 63–4
for proportion, 60
for random-effects variance, see random-

effects variability
for sampling variance, 158
from biased historical data, 150
from exchangeable historical data, 150
in hierarchical models, 167
indifference, 161
invariance arguments, 158
lump and smear, 161, 163
misconceptions about, 73
multiple experts, 142
non-informative, see reference prior

distribution
normal, 62, 139
normal approximation to, 146
not uniform under transformation,

158
objective, see reference prior distribution

‘power’ prior for discounting historical
evidence, 151, 153, 230

reference, see reference prior distribution
required to obtain a significant result,

75
robust approach, 166
sceptical, see sceptical prior distribution
sensitivity analysis, 165
transforming histogram, 146
use of external evidence, 148
using databases, 150

prior elicitation
bias in subjects, 147
biased choice of subjects, 147
calibrated judgements, 141
CHART trials, 143
computer-based, 142
critique of, 147
for log(hazard), 327
for log(hazard ratio), 144, 198
for log(odds ratio), 69, 255
for random-effects variability, 168,

332
in gastric cancer trial, 198
informal discussion, 141
methods for, 141
multiple experts, 142
opinion pooling, 141
potential biases in, 141
questionnaire, 142, 144
statistical aspects, 140
structured interviewing, 141
timing, 147

prior odds, 52
prior to posterior analysis, 52
probabilistic sensitivity analysis
using Monte Carlo methods, 105

probability, 10
and physical symmetries, 50
axioms, 10, 11
conditional, 11
degree of belief, 11
density, 14
distribution function, 15
‘extending the conversation’, 11
frequentist, 10
marginalisation, 11
odds, 12
posterior, 52
prior, 52
subjective, 10, 50
subjective, historical development, 50–1
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Bernoulli, see Bernoulli distribution
beta, see beta distribution
bivariate normal, see bivariate normal

distribution
chi-squared, see chi-squared

distribution
gamma, see gamma distribution
half-normal, see half-normal

distribution
log-normal, see log-normal distribution
normal, see normal distribution
root-inverse-gamma, see

root-inverse-gamma distribution
Student’s t, see Student’s t distribution
uniform, see uniform distribution

probability distributions
as prior distributions, 34
as sampling distributions, 32
binary, 14–15
continuous, 15
discrete, 15
importance of in Bayesian approach, 9
improper, 15
parametric, 17
proper, 15

probability interval, see credible interval
probability of net benefit in cost-

effectiveness analysis, 324
professional equipoise, 188
profile likelihood, 94, 102
to eliminate nuisance parameters, 100

proportion
example of inference on, 124, 128, 134,

242, 260, 294, 297
proportional hazards assumption, 27
pseudo-trial, 160
publication bias, 271

quality weights, 152, 330
quality-adjusted life-years (QALYs), 326

Racine, A., 51
random-effects model, see hierarchical

model, 91–2
random-effects variability
DuMouchel prior, 173, 273
gamma prior, 170, 251, 273
half-normal prior, 272, 289
in meta-analysis, 274
normal prior, 332
prior elicitation, 168
prior for, 167

profile likelihood for, 97, 102
reference prior distribution, 170
root-inverse-gamma prior, 170
sensitivity to prior, 272
uniform prior, 171, 238, 260, 272,

276, 280, 285, 319
uniform shrinkage prior, 172, 272

random variables, 14
Bayes theorem for, 15
conditional independence, 17–18
correlation, 16
covariance, 16
expectation, 16
‘extending the conversation’, 15
independent and identically distributed

(i.i.d.), 17
marginalisation, 15
mean, 17
standard deviation, 16

randomisation
arguments for, 187
when ethical, 187–8

randomised controlled trials (RCTs),
181–265

adaptive designs, 182, 235
and observational studies, 251
Bayes theorem and interpretation, 74
cluster randomisation, 227
combined with other data, 285
conditional power, 191
crossover trials, 237
data-dependent allocation, 235
databases, 187, 251
dose-finding study, 236
epidemiology of, 74
equivalence trials, 237
ethics and randomisation, 187
factorial designs, 241
historical controls, 228
inference or decision?, 182
multi-centre analysis, 227
multiple endpoints, 228
multiple treatments, 228
multiplicity, 227
N-of-1 trials, 237
null hypothesis, 184
Phase I, 181, 242, 242
Phase II, 181, 236, 243
Phase III, 181
Phase IV, 181, 244
power, see power
range of equivalence,
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randomised controlled trials (RCTs) (cont.)
sample size, see sample size, 201
subset analysis, 227
uncertainty principle, 188

range of equivalence, 185
changing during trial, 186, 208
elicitation, 185
for N-of-1 trials, 238
in CALGB trial, 224
in ECMO trial, 231

ranking, 260
rate ratio, see log(rate ratio)
reasonable behaviour, axioms of, 50
reference prior distribution

difficulty in specifying, 157–8
for normal likelihood, 62, 68
for random-effects variability, 170
giving standardised likelihood, 69

registry database, 252
regression to the mean, 259
regulation, 343–44

decision theory, 343
devices, 344
pharmaceuticals, 343

relative betting odds, see Bayes factor
relative risk, 23
reporting Bayesian analyses, 113
research planning

pharmaceutical industry, 336
public sector, 335

Rhame, F., 142, 188
root-inverse-gamma distribution

as prior for random-effects variability,
170

definition and uses, 40

sample size, 189
and power, 190
classical approach, 32
Fisherian approach, 190
Neyman–Pearson approach, 190

sampling to a foregone conclusion,
162

sampling variances
likelihood for, 284

sceptical prior distribution, 148
and monitoring trials, 205, 243
critical, 77, 99
for assessing credibility of claim, 75
in B-14 trial, 216
in CHART trials, 160
role in confirmatory studies, 224

suggested form, 160
when interpreting GREAT trial, 72

schools of Bayesian statistics, 112
‘second-order’ uncertainty in cost-

effectiveness analysis, 322
Senn, S., 63, 147, 181
sensitivity, 53
sensitivity analysis, 139
to alternative likelihoods, 276
to alternative priors, 95, 233, 273, 291,

320
to discordant data, 297
to discount rates, 334
to prior in GREAT trial, 72
to quality weights, 333

sequential analysis, 124
criticism of, 126

sequential trials, see monitoring trials
sequential use of Bayes theorem, 80
Sheiner, L., 127
shrinkage, see hierarchical model, 94, 172
Simon, R., 91
spatial correlation, 252
specificity, 52
stakeholders
in evaluations, 51
in cost-effectiveness analysis, 306
role in future developments, 350

standard deviation, 16
stochastic curtailment, see interim power,

211
stopping boundaries
Bayesian and classical, 208–7

Stroke Prevention Policy Model, 329
Student’s t distribution
definition and uses, 43–4

subjective prior distribution, see prior
elicitation

subset analysis, 227
sumatriptan, 80
survival data, 27
systolic blood pressure, 63, 67

traditional inference, see classical inference
Transcan Breast Scanner, 344
Tukey, J., 167
Turbuhaler (asthma treatment), 316
Turing, A., 52
Type I and II errors
Bayesian criticism of, 127

Type I error, 74, 122, 190
Type II error, 74, 122
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uncertainty interval, see credible interval
uncertainty principle, Bayesian approach

to formalising, 188
uniform distribution
as prior for proportion, 60
definition and uses, 38–9

uniform shrinkage prior
for random-effects variability, 172, 272

unit normal loss function, 338
Urbach, P., 187
Urokinase Pulmonary Embolism Trial, 163
utility, see decision theory

value of perfect information, 337
variance, 16

conditional, 17, 312
iterated, 16, 81, 84, 324
of O – E, 29–30

weight of evidence, 52
White, I., 188, 203
WinBUGS
example of use, 202, 241, 242, 260,

271–2, 277, 280, 284, 291, 294,
295, 313, 316, 328, 333, 339

introduction, 106
use in cost-effectiveness analysis, 311

You, 50, 57
Yusuf, S., 99
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