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And so it is with us: we face change, much of it hard,  
whether we like it or not.

But it is in the hard times especially that we grow,  
that we become transformed.

—Patrick Doyle
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3

Introduction

The goals of this second edition are basically the same as those of the 
original. This book introduces readers to the principles and practice of sta-
tistics reform in the behavioral sciences. It (a) reviews the now even larger 
literature about shortcomings of significance testing; (b) explains why these 
criticisms have sufficient merit to justify major changes in the ways research-
ers analyze their data and report the results; (c) helps readers acquire new 
skills concerning interval estimation and effect size estimation; and (d) reviews 
alternative ways to test hypotheses, including Bayesian estimation. I aim to 
change how readers think about data analysis, especially among those with 
traditional backgrounds in statistics where significance testing was presented 
as basically the only way to test hypotheses. I want all readers to know that 
there is a bigger picture concerning the analysis that blind reliance on signifi-
cance testing misses.

I wrote this book for researchers and students in psychology and other 
behavioral sciences who do not have strong quantitative backgrounds. I 

DOI: 10.1037/14136-011
Beyond Significance Testing: Statistics Reform in the Behavioral Sciences, Second Edition, by R. B. Kline
Copyright © 2013 by the American Psychological Association. All rights reserved.
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4           beyond significance testing

assume that the reader has had undergraduate courses in statistics that cov-
ered at least the basics of regression and factorial analysis of variance. Each 
substantive chapter emphasizes fundamental statistical concepts but does 
not get into the minutiae of statistical theory. Works that do so are cited 
throughout the text, and readers can consult such works when they are ready. 
I emphasize instead both the sense and the nonsense of common data analysis 
practices while pointing out alternatives that I believe are more scientifi-
cally strong. I do not shield readers from complex topics, but I try to describe 
such topics using clear, accessible language backed up by numerous examples. 
This book is suitable as a textbook for an introductory course in behavioral 
science statistics at the graduate level. It can also be used in undergraduate-
level courses for advanced students, such as honors program students, about 
modern methods of data analysis. Especially useful for all readers are Chapters 
3 and 4, which respectively consider the logic and illogic of significance test-
ing and misinterpretations about the outcomes of statistical tests. These mis-
interpretations are so widespread among researchers and students alike that 
one can argue that data analysis practices in the behavioral sciences are based 
more on myth than fact.

That the first edition of this book was so well reviewed and widely cited 
was very satisfying. I also had the chance to correspond with hundreds of read-
ers from many different backgrounds where statistics reform is increasingly 
important. We share a common sense that the behavioral sciences should 
be doing better than they really are concerning the impact and relevance of 
research. Oh, yes, the research literature is very large, but quantity does not 
in this case indicate quality, and many of us know that most published studies 
in the behavioral studies have very little impact. Indeed, most publications 
are never cited again by authors other than those of the original works, and 
part of the problem has been our collective failure to modernize our methods 
of data analysis and describe our findings in ways relevant to target audiences.

New to this edition is coverage of robust statistical methods for param-
eter estimation, effect size estimation, and interval estimation. Most data sets 
in real studies do not respect the distributional assumptions of parametric 
statistical tests, so the use of robust statistics can lend a more realistic tenor 
to the analysis. Robust methods are described over three chapters (2, 3, and 
5), but such methods do not remedy the major shortcomings of significance 
testing. There is a new chapter (3) about the logic and illogic of significance 
testing that deals with issues students rarely encounter in traditional statistics 
courses. There is expanded coverage of interval estimation in all chapters 
and also of Bayesian estimation as an increasingly viable alternative to tradi-
tional significance testing. Exercises are included for chapters that deal with 
fundamental topics (2–8). A new section in the last chapter summarizes best 
practice recommendations.

13170-01_Intro-4thPgs.indd   4 2/1/13   12:01 PM
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Plan of the Book

Part I is concerned with fundamental concepts and summarizes the 
significance testing controversy. Outlined in Chapter 1 is the rationale of 
statistics reform. The history of the controversy about significance testing 
in psychology and other disciplines is recounted in this chapter. Principles 
of sampling and estimation that underlie confidence intervals and statistical 
tests are reviewed in Chapter 2. The logic and illogic of significance testing 
is considered in Chapter 3, and misunderstandings about p values are elabo-
rated in Chapter 4. The purpose of Chapters 3–4 is to help you to understand 
critical weaknesses of statistical tests.

Part II comprises four chapters about effect size estimation in compara-
tive studies, where at least two different groups or conditions are contrasted. 
In Chapter 5, the rationale of effect size estimation is outlined and basic 
effect sizes for continuous outcomes are introduced. The problem of evalu-
ating substantive significance is also considered. Effect sizes for categorical 
outcomes, such as relapsed versus not relapsed, are covered in Chapter 6. 
Chapters 7 and 8 concern effect size estimation in, respectively, single-factor 
designs with at least three conditions and factorial designs with two or more 
factors and continuous outcomes. Many empirical examples are offered in 
Part II. There are exercises for Chapters 2–8 and suggested answers are avail-
able on the book’s website.

Part III includes two chapters that cover alternatives to significance 
testing. Chapter 9 deals with replication and meta-analysis. The main points 
of this chapter are that a larger role for replication will require a cultural 
change in the behavioral sciences and that meta-analysis is an important tool 
for research synthesis but is no substitute for explicit replication. Bayesian 
estimation is the subject of Chapter 10. Bayesian statistics are overlooked in 
psychology research, but this approach offers an inference framework consis-
tent with many goals of statistics reform. Best practice recommendations are 
also summarized in this chapter.

This book has a compendium website, where readers will find sam-
ple answers to the chapter exercises, downloadable raw data files for many 
research examples, and links to other useful websites. The URL for this book’s 
website is http://forms.apa.org/books/supp/kline

13170-01_Intro-4thPgs.indd   5 2/1/13   12:01 PM
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9

1
Changing Times

This chapter explains the basic rationale of the movement for statis-
tics reform in the behavioral sciences. It also identifies critical limitations 
of traditional significance testing that are elaborated throughout the book 
and reviews the controversy about significance testing in psychology and 
other disciplines. I argue that overreliance on significance testing as basi-
cally the sole way to evaluate hypotheses has damaged the research literature 
and impeded the development of psychology and other areas as empirical 
sciences. Alternatives are introduced that include using interval estimation 
of effect sizes, taking replication seriously, and focusing on the substantive 
significance of research results instead of just on whether or not they are 
statistically significant. Prospects for further reform of data analysis methods 
are also considered.

DOI: 10.1037/14136-001
Beyond Significance Testing: Statistics Reform in the Behavioral Sciences, Second Edition, by R. B. Kline
Copyright © 2013 by the American Psychological Association. All rights reserved.

It is simply that the things that appear to be permanent and dominant 
at any given moment in history can change with stunning rapidity. Eras 
come and go.

—George Friedman (2009, p. 3)

13170-02_Ch01-3rdPgs.indd   9 2/1/13   12:01 PM



10           beyond significance testing

Précis of Statistics Reform

Depending on your background, some of these points may seem shock-
ing, even radical, but they are becoming part of mainstream thinking in many 
disciplines. Statistics reform is the effort to improve quantitative literacy in 
psychology and other behavioral sciences among students, researchers, and 
university faculty not formally trained in statistics (i.e., most of us). The basic 
aims are to help researchers better understand their own results, communi-
cate more clearly about those findings, and improve the quality of published 
studies. Reform advocates challenge conventional wisdom and practices that 
impede these goals and emphasize more scientifically defensible alternatives.

Reformers also point out uncomfortable truths, one of which is that 
much of our thinking about data analysis is stuck in the 1940s (if not earlier). 
A sign of arrested development is our harmful overreliance on significance 
testing. Other symptoms include the failure to report effect sizes or consider 
whether results have scientific merit, both of which have nothing to do with 
statistical significance. In studies of intervention outcomes, a statistically sig-
nificant difference between treated and untreated cases also has nothing to do 
with whether treatment leads to any tangible benefits in the real world. In the 
context of diagnostic criteria, clinical significance concerns whether treated 
cases can no longer be distinguished from control cases not meeting the same 
criteria. For example, does treatment typically prompt a return to normal lev-
els of functioning? A treatment effect can be statistically significant yet trivial 
in terms of its clinical significance, and clinically meaningful results are not 
always statistically significant. Accordingly, the proper response to claims of 
statistical significance in any context should be “so what?”—or, more point-
edly, “who cares?”—without more information.

Cognitive Errors

Another embarrassing truth is that so many cognitive errors are associ-
ated with significance testing that some authors describe a kind of trained 
incapacity that prevents researchers from understanding their own results; 
others describe a major educational failure (Hubbard & Armstrong, 2006; 
Ziliak & McCloskey, 2008). These misinterpretations are widespread among 
students, researchers, and university professors, some of whom teach statistics 
courses. So students learn false beliefs from people who should know better, 
but do not, in an ongoing cycle of misinformation. Ziliak and McCloskey 
(2008) put it this way:

The textbooks are wrong. The teaching is wrong. The seminar you just 
attended is wrong. The most prestigious journal in your scientific field is 
wrong. (p. 250)

13170-02_Ch01-3rdPgs.indd   10 2/1/13   12:01 PM
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Most cognitive errors involve exaggerating what can be inferred from 
the outcomes of statistical tests, or p values (probabilities), listed in computer 
output. Common misunderstandings include the belief that p measures the 
likelihood that a result is due to sampling error (chance) or the probability 
that the null hypothesis is true. These and other false beliefs make researchers 
overconfident about their findings and excessively lax in some critical prac-
tices. One is the lip service paid to replication. Although I would wager that 
just as many behavioral scientists as their natural science colleagues would 
endorse replication as important, replication is given scant attention in the 
behavioral sciences. This woeful practice is supported by false beliefs.

Costs of Significance Testing

Summarized next are additional ways in which relying too much on 
significance testing has damaged our research literature. Nearly all published 
studies feature statistical significance, but studies without significant results 
are far less likely to be published or even submitted to journals (Kupfersmid 
& Fiala, 1991). This publication bias for significance suggests that the actual 
rate among published studies of Type I error, or incorrect rejection of the null 
hypothesis, is higher than indicated by conventional levels of statistical sig-
nificance, such as .05. Ellis (2010) noted that because researchers find it dif-
ficult to get negative results published, Type I errors, once made, are hard to 
correct. Longford (2005) warned that the uncritical use of significance test-
ing would lead to a “junkyard of unsubstantiated confidence,” and Simmons, 
Nelson, and Simonsohn (2011) used the phrase “false-positive psychology” 
to describe the same problem.

Publication bias for significance also implies that the likelihood of 
Type II error, or failure to reject the null hypothesis when it is false in the 
population, is basically zero. In a less biased literature, though, information 
about the power, or the probability of finding statistical significance (reject-
ing the null hypothesis) when there is a real effect, would be more relevant. 
There are free computer tools for estimating power, but most researchers—
probably at least 80% (e.g., Ellis, 2010)—ignore the power of their analy-
ses. This is contrary to advice in the Publication Manual of the American 
Psychological Association (APA) that researchers should “routinely provide 
evidence that the study has sufficient power to detect effects of substantive 
interest” (APA, 2010, p. 30).

Ignoring power is regrettable because the median power of published 
nonexperimental studies is only about .50 (e.g., Maxwell, 2004). This implies 
a 50% chance of correctly rejecting the null hypothesis based on the data. In 
this case the researcher may as well not collect any data but instead just toss 
a coin to decide whether or not to reject the null hypothesis. This simpler, 
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12           beyond significance testing

cheaper method has the same chance of making correct decisions in the long 
run (F. L. Schmidt & Hunter, 1997).

A consequence of low power is that the research literature is often dif-
ficult to interpret. Specifically, if there is a real effect but power is only .50, 
about half the studies will yield statistically significant results and the rest 
will yield no statistically significant findings. If all these studies were some-
how published, the number of positive and negative results would be roughly 
equal. In an old-fashioned, narrative review, the research literature would 
appear to be ambiguous, given this balance. It may be concluded that “more 
research is needed,” but any new results will just reinforce the original ambi-
guity, if power remains low.

Confusing statistical significance with scientific relevance unwittingly 
legitimizes fad topics that clutter the literature but have low substantive 
value. With little thought about a broader rationale, one can collect data 
and then apply statistical tests. Even if the numbers are random, some of the 
results are expected to be statistically significant, especially in large samples. 
The objective appearance of significance testing can lend an air of credibility 
to studies with otherwise weak conceptual foundations. This is especially true 
in “soft” research areas where theories are neither convincingly supported nor 
discredited but simply fade away as researchers lose interest (Meehl, 1990). 
This lack of cumulativeness led Lykken (1991) to declare that psychology 
researchers mainly build castles in the sand.

Statistical tests of a treatment effect that is actually clinically signifi-
cant may fail to reject the null hypothesis of no difference when power is 
low. If the researcher in this case ignored whether the observed effect size is 
clinically significant, a potentially beneficial treatment may be overlooked. 
This is exactly what was found by Freiman, Chalmers, Smith, and Kuebler 
(1978), who reviewed 71 randomized clinical trials of mainly heart- and 
cancer-related treatments with “negative” results (i.e., not statistically sig-
nificant). They found that if the authors of 50 of the 71 trials had considered 
the power of their tests along with the observed effect sizes, those authors 
should have concluded just the opposite, or that the treatments resulted in 
clinically meaningful improvements.

If researchers become too preoccupied with statistical significance, they 
may lose sight of other, more important aspects of their data, such as whether 
the variables are properly defined and measured and whether the data respect 
test assumptions. There are clear problems in both of these areas. One is 
the measurement crisis, which refers to a substantial decline in the quality 
of instruction about measurement in psychology over the last 30 years or 
so. Psychometrics courses have disappeared from many psychology under-
graduate programs, and about one third of psychology doctoral programs in 
North America offer no formal training in this area at all (Aiken et al., 1990; 
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changing times           13

Friederich, Buday, & Kerr, 2000). There is also evidence of widespread poor 
practices. For example, Vacha-Haase and Thompson (2011) found that about 
55% of authors did not even mention score reliability in over 13,000 primary 
studies from a total of 47 meta-analyses of reliability generalization in the 
behavioral sciences. Authors mentioned reliability in about 16% of the stud-
ies, but they merely inducted values reported in other sources, such as test 
manuals, as if these applied to their data. Such reliability induction requires 
explicit justification, but researchers rarely compared characteristics of their 
samples with those from cited studies of score reliability.

A related problem is the reporting crisis, which refers to the fact that 
researchers infrequently present evidence that their data respect distribu-
tional or other assumptions of statistical tests (e.g., Keselman et al., 1998). 
The false belief that statistical tests are robust against violations of their 
assumptions in data sets of the type analyzed in actual studies may explain 
this flawed practice. Other aspects of the reporting crisis include the common 
failure to describe the nature and extent of missing data, steps taken to deal 
with the problem, and whether selection among alternatives could apprecia-
bly affect the results (e.g., Sterner, 2011). Readers of many journal articles are 
given little if any reassurance that the results are trustworthy.

Even if researchers avoided the kinds of mistakes just described, there 
are grounds to suspect that p values from statistical tests are simply incorrect 
in most studies:

1.	They (p values) are estimated in theoretical sampling distribu-
tions that assume random sampling from known populations. 
Very few samples in behavioral research are random samples. 
Instead, most are convenience samples collected under con-
ditions that have little resemblance to true random sampling.  
Lunneborg (2001) described this problem as a mismatch between 
design and analysis.

2.	Results of more quantitative reviews suggest that, due to assump-
tions violations, there are few actual data sets in which signifi-
cance testing gives accurate results (e.g., Lix, Keselman, & 
Keseleman, 1996). These observations suggest that p values 
listed in computer output are usually suspect. For example, this 
result for an independent samples t test calculated in SPSS 
looks impressively precise,

t p27 = 2.373, = .025000184017821007( )

	 but its accuracy is dubious, given the issues just raised. If p values 
are generally wrong, so too are decisions based on them.
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14           beyond significance testing

3.	Probabilities from statistical tests (p values) generally assume 
that all other sources of error besides sampling error are nil. This 
includes measurement error; that is, it is assumed that rXX = 1.00,  
where rXX is a score reliability coefficient. Other sources of error 
arise from failure to control for extraneous sources of variance 
or from flawed operational definitions of hypothetical constructs. 
It is absurd to assume in most studies that there is no error vari-
ance besides sampling error. Instead it is more practical to expect 
that sampling error makes up the small part of all possible kinds 
of error when the number of cases is reasonably large (Ziliak & 
McCloskey, 2008).

The p values from statistical tests do not tell researchers what they want 
to know, which often concerns whether the data support a particular hypoth-
esis. This is because p values merely estimate the conditional probability of 
the data under a statistical hypothesis—the null hypothesis—that in most 
studies is an implausible, straw man argument. In fact, p values do not directly 
“test” any hypothesis at all, but they are often misinterpreted as though they 
describe hypotheses instead of data.

Although p values ultimately provide a yes-or-no answer (i.e., reject 
or fail to reject the null hypothesis), the question—p < a?, where a is the 
criterion level of statistical significance, usually .05 or .01—is typically unin-
teresting. The yes-or-no answer to this question says nothing about scientific 
relevance, clinical significance, or effect size. This is why Armstrong (2007) 
remarked that significance tests do not aid scientific progress even when they 
are properly done and interpreted.

New Statistics, New Thinking

Cumming (2012) recommended that researchers pay less attention to 
p values. Instead, researchers should be more concerned with sample results 
Cumming (2012) referred to as the new statistics. He acknowledged that 
the “new” statistics are not really new at all. What should be new instead is a 
greater role afforded them in describing the results. The new statistics consist 
mainly of effect sizes and confidence intervals. The Publication Manual is clear 
about effect size: “For the reader to appreciate the magnitude or importance 
of a study’s findings, it is almost always necessary to include some measure 
of effect size” (APA, 2010, p. 34). The qualifier “almost always” refers to 
the possibility that, depending on the study, it may be difficult to compute 
effect sizes, such as when the scores are ranks or are presented in complex 
hierarchically structured designs. But it is possible to calculate effect sizes in 
most studies, and the effect size void for some kinds of designs is being filled 
by ongoing research.
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Significance tests do not directly indicate effect size, and a common 
mistake is to answer the question p < a? but fail to report and interpret 
effect sizes. Because effect sizes are sample statistics, or point estimates, that 
approximate population effect sizes, they are subject to sampling error. A 
confidence interval, or interval estimate, on a point estimate explicitly indi-
cates the degree of sampling error associated with that statistic. Although 
sampling error is estimated in significance testing, that estimate winds up 
“hidden” in the calculation of p. But the amount of sampling error is made 
explicit by the lower and upper bounds of a confidence interval. Reporting 
confidence intervals reflects estimation thinking (Cumming, 2012), which 
deals with the questions “how much?” (point estimate) and “how precise?” 
(margin of error). The Publication Manual offers this advice: “Whenever pos-
sible, base discussion and interpretation of results on point and interval esti-
mates” (APA, 2010, p. 34).

Estimation thinking is subsumed under meta-analytic thinking, which 
is fundamentally concerned with the accumulation of evidence over studies. 
Its basic aspects are listed next:

1.	An accurate appreciation of the results of previous studies is 
seen as essential.

2.	A researcher should view his or her own study as making a 
modest contribution to the literature. Hunter, Schmidt, and 
Jackson (1982) put it this way: “Scientists have known for cen-
turies that a single study will not resolve a major issue. Indeed, a 
small sample study will not even resolve a minor issue” (p. 10).

3.	A researcher should report results so that they can be easily 
incorporated into a future meta-analysis.

4.	Retrospective interpretation of new results, once collected, is 
called for via direct comparison with previous effect sizes.

Thinking meta-analytically is incompatible with using statistical tests as 
the sole inference tool. This is because the typical meta-analysis estimates the 
central tendency and variability of effect sizes across sets of related primary stud-
ies. The focus on effect size and not statistical significance in individual studies 
also encourages readers of meta-analytic articles to think outside the limitations 
of the latter. There are statistical tests in meta-analysis, but the main focus is on 
whether a particular set of effect sizes is estimating the same population effect 
size and also on the magnitude and precision of mean effect sizes.

The new statistics cannot solve all that ails significance testing; no such 
alternative exists (see Cohen, 1994). For example, the probabilities associated 
with confidence intervals also assume that all other sources of imprecision 
besides sampling error are zero. There are ways to correct some effect sizes for 
measurement error, though, so this assumption is not always so strict. Abelson 
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16           beyond significance testing

(1997a) referred to the law of the diffusion of idiocy, which says that every 
foolish practice of significance testing will beget a corresponding misstep with 
confidence intervals. This law applies to effect sizes, too. But misinterpretation 
of the new statistics is less likely to occur if researchers can refrain from apply-
ing the same old, dichotomous thinking from significance testing. Thinking 
meta-analytically can also help to prevent misunderstanding.

You should know that measuring effect size in treatment outcome stud-
ies is insufficient to determine clinical significance, especially when outcomes 
have arbitrary (uncalibrated) metrics with no obvious connection to real-
world status. An example is a 7-point Likert scale for an item on a self-report 
measure. This scale is arbitrary because its points could be represented with 
different sets of numbers, such as 1 through 7 versus -3 through 3 in whole-
number increments, among other possibilities. The total score over a set of such 
items is arbitrary, too. It is generally unknown for arbitrary metrics (a) how a 
1-point difference reflects the magnitude of change on the underlying con-
struct and (b) exactly at what absolute points along the latent dimension 
observed scores fall. As Andersen (2007) noted, “Reporting effect sizes on 
arbitrary metrics alone with no reference to real-world behaviors, however, 
is no more meaningful or interpretable than reporting p values” (p. 669). 
So, determining clinical significance is not just a matter of statistics; it also 
requires strong knowledge about the subject matter.

These points highlight the idea that the evaluation of the clinical, prac-
tical, theoretical, or, more generally, substantive significance of observed 
effect sizes is a qualitative judgment. This judgment should be informed and 
open to scrutiny, but it will also reflect personal values and societal concerns. 
This is not unscientific because the assessment of all results in science involves 
judgment (Kirk, 1996). It is better to be open about this fact than to base deci-
sions solely on “objective,” mechanically applied statistical rituals that do not 
address substantive significance. Ritual is no substitute for critical thinking.

Retrospective

Behavioral scientists did not always use statistical tests, so it helps to 
understand a little history behind the significance testing controversy; see 
Oakes (1986), Nickerson (2000), and Ziliak and McCloskey (2008) for more 
information.

Hybrid Logic of Statistical Tests (1920–1960)

Logical elements of significance testing were present in scientific papers 
as early as the 1700s (Stigler, 1986), but those basics were not organized into a 
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systematic method until the early 1900s. Today’s significance testing is actu-
ally a hybrid of two schools of thought, one from the 1920s associated with 
Ronald Fisher (e.g., 1925) and another from the 1930s called the Neyman–
Pearson approach, after Jerzy Neyman and Egon S. Pearson (e.g., 1933). Other 
individuals, such as William Gosset and Karl Pearson, contributed to these 
schools, but the work of the three principals listed first forms the genesis of 
significance testing (Ziliak & McCloskey, 2008, elaborate on Gosset’s role).

Briefly, the Neyman–Pearson model is an extension of the Fisher model, 
which featured only a null hypothesis and estimation with statistical tests of 
the conditional probability of the data, or p values. There was no alternative 
hypothesis in Fisher’s model. The conventional levels of statistical signifi-
cance used today, .05 and .01, are correctly attributed to Fisher, but he did not 
advocate that they be blindly applied across all studies. Doing so, wrote Fisher 
(1956, p. 42), would be “absurdly academic” because no fixed level of signifi-
cance could apply across all studies. This view is very different from today’s 
practice, where p < .05 and p < .01 are treated as golden rules. For its focus on 
p values under the null hypothesis, Fisher’s model has been called the p value 
approach (Huberty, 1993). The addition of the alternative hypothesis to the 
basic Fisher model, the attendant specification of one- or two-tailed regions 
of rejection, and the a priori specification of fixed levels of a across all studies 
characterize the Neyman–Pearson model, also called the fixed a approach 
(Huberty, 1993). This model also brought with it the conceptual framework 
of power and related decision errors, Type I and Type II.

To say that advocates of the Fisher model and the Neyman–Pearson 
model exchanged few kind words about each other’s ideas is an understate-
ment. Their long-running debate was acrimonious and included attempts by 
Fisher to block faculty appointments for Neyman. Nevertheless, the integra-
tion of the two models by other statisticians into what makes up contemporary 
significance testing took place roughly between 1935 and 1950. Gigerenzer 
(1993) referred to this integrated model as the hybrid logic of scientific infer-
ence, and Dixon and O’Reilly (1999) called it the Intro Stats method. Many 
authors have noted that (a) this hybrid model would have been rejected by 
Fisher, Neyman, and Pearson, although for different reasons, and (b) its com-
posite nature is a source of confusion among students and researchers.

Rise of the Intro Stats Method, Testimation, and Sizeless Science 
(1940–1960)

Before 1940, statistical tests were rarely used in psychology research. 
Authors of works from the time instead applied in nonstandard ways a variety 
of descriptive statistics or rudimentary test statistics, such as the critical ratio 
of a sample statistic over its standard error (now called z or t when assuming 
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normality). An older term for the standard error—actually two times the 
square root of the standard error—is the modulus, described in 1885 by the 
economist Francis Ysidro Edgeworth (Stigler, 1978) to whom the term statis-
tical significance is attributed. From about 1940–1960, during what Gigerenzer 
and Murray (1987) called the inference revolution, the Intro Stats method 
was widely adopted in psychology textbooks and journal editorial practice 
as the method to test hypotheses. The move away from the study of single 
cases (e.g., operant conditioning studies) to the study of groups over roughly 
1920–1950 contributed to this shift. Another factor is what Gigerenzer 
(1993) called the probabilistic revolution, which introduced indeterminism 
as a major theoretical concept in areas such as quantum mechanics in order  
to better understand the subject matter. In psychology, though, it was used to 
mechanize the inference process, a critical difference, as it turns out.

After the widespread adoption of the Intro Stats method, there was 
an increase in the reporting of statistical tests in journal articles in psychol-
ogy. This trend is obvious in Figure 1.1, reproduced from Hubbard and Ryan 
(2000). They sampled about 8,000 articles published during 1911–1998 in 
randomly selected issues of 12 different APA journals. Summarized in the fig-
ure are percentages of articles in which results of statistical tests were reported. 
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Figure 1.1.  Percentage of articles reporting results of statistical tests in 12 journals 
of the American Psychological Association from 1911 to 1988. From “The Historical 
Growth of Statistical Significance Testing in Psychology—And Its Future Prospects,” 
by R. Hubbard and P. A. Ryan, 2000, Educational and Psychological Measurement, 
60, p. 665. Copyright 2001 by Sage Publications. Reprinted with permission.
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This percentage is about 17% from 1911 to 1929. It increases to around 50% 
in 1940, continues to rise to about 85% by 1960, and has exceeded 90% 
since the 1970s. The time period 1940–1960 corresponds to the inference 
revolution.

Although the 1990s is the most recent decade represented in Figure 1.1, 
there is no doubt about the continuing, near-universal reporting of statisti-
cal tests in journals. Hoekstra, Finch, Kiers, and Johnson (2006) examined 
a total of 266 articles published in Psychonomic Bulletin & Review during 
2002–2004. Results of significance tests were reported in about 97% of the 
articles, but confidence intervals were reported in only about 6%. Sadly, 
p values were misinterpreted in about 60% of surveyed articles. Fidler,  
Burgman, Cumming, Buttrose, and Thomason (2006) sampled 200 articles 
published in two different biology journals. Results of significance testing 
were reported in 92% of articles published during 2001–2002, but this rate 
dropped to 78% in 2005. There were also corresponding increases in the 
reporting of confidence intervals, but power was estimated in only 8% and 
p values were misinterpreted in 63%.

Some advantages to the institutionalization of the Intro Stats method 
were noted by Gigerenzer (1993). Journal editors could use significance test 
outcomes to decide which studies to publish or reject, respectively, those 
with or without statistically significant results, among other considerations. 
The method of significance testing is mechanically applied and thus seems 
to eliminate subjective judgment. That this objectivity is illusory is another 
matter. Significance testing gave researchers a common language and perhaps 
identity as members of the same grand research enterprise. It also distin-
guished them from their natural science colleagues, who may use statistical 
tests to detect outliers but not typically to test hypotheses (Gigerenzer, 1993).

The combination of significance testing and a related cognitive error is 
testimation (Ziliak & McCloskey, 2008). It involves exclusive focus on the 
question p < a? If the answer is “yes,” the results are automatically taken to 
be scientifically relevant, but issues of effect size and precision are ignored. 
Testimators also commit the inverse probability error (Cohen, 1994) by 
falsely believing that p values indicate the probability that the null hypothe-
sis is true. Under this fallacy, the result p = .025, for example, is taken to mean 
that there is only a 2.5% chance that the null hypothesis is true. A researcher 
who mistakenly believes that low p values make the null hypothesis unlikely 
may become overly confident in the results.

Presented next is hypothetical text that illustrates the language of 
testimation:

A 2 × 2 × 2 (Instructions × Incentive × Goals) factorial ANOVA was con-
ducted with the number of correct items as the dependent variable. The 
3-way interaction was significant, F(1, 72) = 5.20, p < .05, as were all 2-way 
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interactions, Instructions × Incentive, F(1, 72) = 11.95, p < .001; Instruc-
tions × Goals, F(1, 72) = 25.40, p < .01; Incentive × Goals, F(1, 72) = 9.25, 
p < .01, and two of three of the main effects, Instructions, F(1, 72) = 11.60, 
p < .01; Goals, F(1, 72) = 6.25, p < .05.

This text chockablock with numbers—which is poor writing style—says 
nothing about the magnitudes of all those “significant” effects. If later in 
the hypothetical article the reader is still given no information about effect 
sizes, that is sizeless science. Getting excited about “significant” results while 
knowing nothing about their magnitudes is like ordering from a restaurant 
menu with no prices: You may get a surprise (good or bad) when the bill 
(statement of effect size) comes.

Increasing Criticism of Statistical Tests (1940–Present)

There has been controversy about statistical tests for more than 80 years, 
or as long as they have been around. Boring (1919), Berkson (1942), and 
Rozeboom (1960) are among earlier works critical of significance testing. 
Numbers of published articles critical of significance testing have increased 
exponentially since the 1940s. For example, Anderson, Burnham, and 
Thompson (2000) found less than 100 such works published during the 
1940s–1970s in ecology, medicine, business, economics, or the behavioral 
sciences, but about 200 critical articles were published in the 1990s. W. L. 
Thompson (2001) listed a total of 401 references for works critical of sig-
nificance testing, and Ziliak and McCloskey (2008, pp. 57–58) cited 125 
such works in psychology, education, business, epidemiology, and medicine, 
among other areas.

Proposals to Ban Significance Testing (1990s–Present)

The significance testing controversy escalated to the point where, by the 
1990s, some authors called for a ban in research journals. A ban was discussed 
in special sections or issues of Journal of Experimental Education (B. Thompson, 
1993), Psychological Science (Shrout, 1997), and Research in the Schools (McLean  
& Kaufman, 1998) and in an edited book by Harlow, Mulaik, and Steiger (1997), 
the title of which asks “What if there were no significance tests?” Armstrong 
(2007) offered this more recent advice:

When writing for books and research reports, researchers should omit men-
tion of tests of statistical significance. When writing for journals, research-
ers should seek ways to reduce the potential harm of reporting significance 
tests. They should also omit the word significance because findings that 
reject the null hypothesis are not significant in the everyday use of the 
term, and those that [fail to] reject it are not insignificant. (p. 326)
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In 1996, the Board of Scientific Affairs of the APA convened the Task 
Force on Statistical Inference (TFSI) to respond to the ongoing signifi-
cance testing controversy and elucidate alternatives. The report of the TFSI 
(Wilkinson & the TFSI, 1999) dealt with many issues and offered suggestions 
for the then-upcoming fifth edition of the Publication Manual:

1.	Use minimally sufficient analyses (simpler is better).
2.	Do not report results from computer output without knowing 

what they mean. This includes p values from statistical tests.
3.	Document assumptions about population effect sizes, sample sizes, 

or measurement behind a priori estimates of statistical power. Use 
confidence intervals about observed results instead of estimating 
observed (post hoc) power.

4.	Report effect sizes and confidence intervals for primary outcomes 
or whenever p values are reported.

5.	Give assurances to a reasonable degree that the data meet 
statistical assumptions.

The TFSI decided in the end not to recommend a ban on statistical tests. In 
its view, such a ban would be a too extreme way to curb abuses.

Fifth and Sixth Editions of the APA’s Publication Manual (2001–2010)

The fifth edition of the Publication Manual (APA, 2001) took a stand 
similar to that of the TFSI regarding significance testing. That is, it acknowl-
edged the controversy about statistical tests but stated that resolving this 
issue was not a proper role of the Publication Manual. The fifth edition went 
on to recommend the following:

1.	Report adequate descriptive statistics, such as means, variances, 
and sizes of each group and a pooled within-groups variance–
covariance matrix in a comparative study. This information is 
necessary for later meta-analyses or secondary analyses by others.

2.	Effect sizes should “almost always” be reported, and the absence 
of effect sizes was cited as an example of a study defect.

3.	The use of confidence intervals was “strongly recommended” 
but not required.

The sixth edition of the Publication Manual (APA, 2010) used similar 
language when recommending the reporting of effect sizes and confidence 
intervals. Predictably, not everyone is happy with the report of the TFSI or 
the wording of the Publication Manual. B. Thompson (1999) noted that only 
encouraging the reporting of effect sizes or confidence intervals presents a 
self-canceling mixed message. Ziliak and McCloskey (2008, p. 125) chastised 
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the Publication Manual for “retaining the magical incantations of p < .05 and 
p < .01.” S. Finch, Cumming, and Thomason (2001) contrasted the rec-
ommendations about statistical analyses in the Publication Manual with the 
more straightforward guidelines in the Uniform Requirements for Manuscripts 
Submitted to Biomedical Journals, recently revised (International Committee 
of Medical Journal Editors, 2010). Kirk (2001) urged that the then-future 
sixth edition of the Publication Manual should give more detail than the fifth 
edition about the TFSI’s recommendations. Alas, the sixth edition does not 
contain such information, but I aim to provide you with specific skills of this 
type as you read this book.

Reform-Oriented Editorial Policies and Mixed Evidence of Progress 
(1980s–Present)

Journal editorials and reviewers are the gatekeepers of the research litera-
ture, so editorial policies can affect the quality of what is published. Described 
next are three examples of efforts to change policies in reform-oriented direc-
tions with evaluations of their impact; see Fidler, Thomason, Cumming, 
Finch, and Leeman (2004) and Fidler et al. (2005) for more examples.

Kenneth J. Rothman was the assistant editor of the American Journal 
of Public Health (AJPH) from 1984 to 1987. In his revise-and-submit letters, 
Rothman urged authors to remove from their manuscripts all references to p 
values (e.g., Fidler et al., 2004, p. 120). He founded the journal Epidemiology 
in 1990 and served as its first editor until 2000. Rothman’s (1998) editorial 
letter to potential authors was frank:

When writing for Epidemiology, you can . . . enhance your prospects if 
you omit tests of statistical significance. . . . In Epidemiology, we do not 
publish them at all. . . . We discourage the use of this type of thinking 
in the data analysis. . . . We also would like to see the interpretation of 
a study based not on statistical significance, or lack of it . . . but rather 
on careful quantitative consideration of the data in light of competing 
explanations for the findings. (p. 334)

Fidler et al. (2004) examined 594 AJPH articles published from 1982 
to 2000 and 100 articles published in Epidemiology between 1990 and 2000. 
Reporting based solely on statistical significance dropped from about 63% 
of the AJPH articles in 1982 to about 5% of articles in 1986–1989. But in 
many AJPH articles there was evidence that interpretation was based mainly 
on undisclosed significance test results. The percentages of articles in which 
confidence intervals were reported increased from about 10% to 54% over 
the same period. But these changes in reporting practices in AJPH articles 
did not generally persist past Rothman’s tenure.
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From 1993 to 1997, Geoffrey R. Loftus was the editor of Memory & 
Cognition. Loftus (1993) gave these guidelines to potential contributors:

I intend to try to decrease the overwhelming reliance on hypothesis test-
ing as the major means of transiting from data to conclusions. . . . In lieu 
of hypothesis testing, I will emphasize the increased use of figures depict-
ing sample means along with standard error bars. . . . More often than 
not, inspection of such a figure will immediately obviate the necessity 
of any hypothesis testing procedures. In such situations, presentation of 
the usual hypothesis-testing information (F values, p values, etc.) will be 
discouraged. I believe . . . that . . . an overreliance on the impoverished 
binary conclusions yielded by the hypothesis-testing procedure has sub-
tly seduced our discipline into insidious conceptual cul-de-sacs that have 
impeded our vision and stymied our potential. (p. 3)

Loftus apparently encountered considerable resistance, if not outright 
obstinacy, on the part of some authors. For example, Loftus calculated confi-
dence intervals for about 100 authors who failed or even refused to do so on 
their own. In contrast, Rothman reported little resistance from authors who 
submitted works to Epidemiology (see Fidler et al., 2004, p. 124). S. Finch et al. 
(2004) examined a total of 696 articles published in Memory & Cognition 
before, during, and after Loftus’s editorship. The rate of reporting of confi-
dence intervals increased from 7% from before Loftus’s tenure to 41%, but the 
rate dropped to 24% just after Loftus departed. But these confidence intervals 
were seldom interpreted; instead, authors relied mainly on statistical test out-
comes to describe the results.

Another expression of statistics reform in editorial policy are the require-
ments of about 24 journals in psychology, education, counseling, and other 
areas for authors to report effect sizes.1 Some of these are flagship journals of 
associations (e.g., American Counseling Association, Council for Exceptional 
Children), each with about 40,000–45,000 members. Included among jour-
nals that require effect sizes are three APA journals, Health Psychology, Journal 
of Educational Psychology, and Journal of Experimental Psychology: Applied. The 
requirement to report effect sizes sends a strong message to potential con-
tributors that use of significance testing alone is not acceptable.

Early suggestions to report effect sizes fell mainly on deaf ears. S. Finch 
et al. (2001) found little evidence for effect size estimation or interval esti-
mation in articles published in Journal of Applied Psychology over the 40-year 
period from 1940 to 1999. Vacha-Haase and Ness (1999) found the rate of 
effect size reporting was about 25% in Professional Psychology: Research and 
Practice, but authors did not always interpret the effect sizes they reported. 
Results from more recent surveys are better. Dunleavy, Barr, Glenn, and 

1 http://people.cehd.tamu.edu/~bthompson/index.htm, scroll down to hyperlinks.
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Miller (2006) reviewed 736 articles published over 2002–2005 in five dif-
ferent applied, experimental, or personnel psychology journals. The overall 
rate of effect size reporting was about 62.5%. Among studies where no effect 
sizes were reported, use of the techniques of analysis of variance (ANOVA) 
and the t test were prevalent. Later I will show you that effect sizes are actu-
ally easy to calculate in such analyses, so there is no excuse for not report-
ing them. Andersen (2007) found that in a total of 54 articles published in 
2005 in three different sport psychology journals, effect sizes were reported in 
44 articles, or 81%. But the authors of only seven of these articles interpreted 
effect sizes in terms of substantive significance. Sun, Pan, and Wang (2010) 
reviewed a total of 1,243 works published in 14 different psychology and 
education journals during 2005–2007. The percentage of articles reporting 
effect sizes was 49%, and 57% of these authors interpreted their effect sizes.

Evidence for progress in statistics reform is thus mixed. Researchers 
seem to report effect sizes more often, but improvement in reporting confi-
dence intervals may lag behind. Too many authors do not interpret the effect 
sizes they report, which avoids dealing with the question of why does an effect 
of this size matter. It is poor practice to compute effect sizes only for statisti-
cally significant results. Doing so amounts to business as usual where the 
significance test is still at center stage (Sohn, 2000). Real reform means that 
effect sizes are interpreted for their substantive significance, not just reported.

Obstacles to Reform

There are two great obstacles to continued reform. The first is inertia: 
It is human nature to resist change, and it is hard to give up familiar routines. 
Belasco and Stayer (1993) put it like this: “Most of us overestimate the value 
of what we currently have, and have to give up, and underestimate the value 
of what we may gain” (p. 312). But science demands that researchers train 
the lens of skepticism on their own assumptions and methods. Such self-
criticism and intellectual honesty do not come easy, and not all researchers 
are up for the task. Defense attorney Gerry Spence (1995) wrote, “I would 
rather have a mind opened by wonder than one closed by belief” (p. 98). This 
conviction identifies a scientist’s special burden.

The other big obstacle is vested interest, which is in part economic. 
I am speaking mainly about applying for research grants. Most of us know 
that grant monies are allocated in part on the assurance of statistical signifi-
cance. Many of us also know how to play the significance game, which goes 
like this: Write application. Promise significance. Get money. Collect data 
until significance is found, which is virtually guaranteed because any effect 
that is not zero needs only a large enough sample in order to be significant. 
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Report results but mistakenly confuse statistical significance with scientific 
relevance. Sound trumpets about our awesomeness, move on to a different 
kind of study (do not replicate). Ziliak and McCloskey (2008) were even 
more candid:

Significance unfortunately is a useful means toward personal ends in the 
advance of science—status and widely distributed publications, a big lab-
oratory, a staff of research assistants, a reduction in teaching load, a better 
salary, the finer wines of Bordeaux. Precision, knowledge, and control. In 
a narrow and cynical sense statistical significance is the way to achieve 
these. Design experiment. Then calculate statistical significance. Publish 
articles showing “significant” results. Enjoy promotion. But it is not sci-
ence, and it will not last. (p. 32)

Maybe I am a naive optimist, but I believe there is enough talent and 
commitment to improving research practices among too many behavioral sci-
entists to worry about unheeded calls for reform. But such changes do not 
happen overnight. Recall that it took about 20 years for researchers to widely 
use statistical tests (see Figure 1.1), and sometimes shifts in scientific mentality 
await generational change. Younger researchers may be less set in their ways 
than the older generation and thus more open to change. But some journal 
editors—who are typically accomplished and experienced researchers—are 
taking the lead in reform. So are the authors of many of the works cited 
throughout this book.

Students are promising prospects for reform because they are, in my 
experience and that of others (Hyde, 2001), eager to learn about the sig-
nificance testing controversy. They can also understand ideas such as effect 
size and interval estimation even in introductory courses. In fact, I find it 
is easier to teach undergraduates these concepts than the convoluted logic 
of significance testing. Other reform basics are even easier to convey (e.g., 
replicate—do not just talk about it.)

Prospective

I have no crystal ball, but I believe that I can reasonably speculate about 
three anticipated developments in light of the events just described:

1.	The role of significance testing will continue to get smaller 
and smaller to the point where researchers must defend its use. 
This justification should involve explanation of why the narrow 
assumptions about sampling and score characteristics in signifi-
cance testing are not unreasonable in a particular study. Estima-
tion of a priori power will also be required whenever statistical 
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tests are used. I and others (e.g., Kirk, 1996) envision that the 
behavioral sciences will become more like the natural sciences. 
That is, we will report the directions, magnitudes, and preci-
sions of our effects; determine whether they replicate; and eval-
uate them for their substantive significance, not simply their 
statistical significance.

2.	I expect that the best behavioral science journals will require 
evidence for replication. This requirement would send the 
strong message that replication is standard procedure. It would 
also reduce the number of published studies, which may actu-
ally improve quality by reducing noise (one-shot studies, unsub-
stantiated claims) while boosting signal (replicated results).

3.	I concur with Rodgers (2010) that a “quiet methodological rev-
olution” is happening that is also part of statistics reform. This 
revolution concerns the shift from testing individual hypotheses 
for statistical significance to the evaluation of entire mathe-
matical and statistical models. There is a limited role for signifi-
cance tests in statistical modeling techniques such as structural 
equation modeling (e.g., Kline, 2010, Chapter 8), but it requires 
that researchers avoid making the kinds of decision errors often 
associated with such tests.

Conclusion

Basic tenets of statistics reform emphasize the need to (a) decrease 
the role of significance testing and thus also reduce the damaging impact 
of related cognitive distortions; (b) shift attention to other kinds of statis-
tics, such as effect sizes and confidence intervals; (c) reestablish the role of 
informed judgment and downplay mere statistical rituals; and (d) elevate rep-
lication. The context for reform goes back many decades, and the significance 
testing controversy has now spread across many disciplines. Progress toward 
reform has been slow, but the events just summarized indicate that continued 
use of significance testing as the only way to evaluate hypotheses is unlikely. 
The points raised set the stage for review in the next chapter of fundamental 
concepts about sampling and estimation from a reform perspective.

Learn More

Listed next are three works about the significance testing controversy 
from fields other than psychology, including Armstrong (2007) in forecasting; 
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Guthery, Lusk, and Peterson (2001) in wildlife management; and McCloskey 
and Ziliak (2009) in medicine.

Armstrong, J. S. (2007). Significance tests harm progress in forecasting. International 
Journal of Forecasting, 23, 321–327. doi:10.1016/j.ijforecast.2007.03.004

Guthery, F. S., Lusk, J. J., & Peterson, M. J. (2001). The fall of the null hypoth-
esis: Liabilities and opportunities. Journal of Wildlife Management, 65, 379–384. 
doi:10.2307/3803089

McCloskey, D. N., & Ziliak, S. T. (2009). The unreasonable ineffectiveness of Fish-
erian “tests” in biology, and especially in medicine. Biological Theory, 4, 44–53. 
doi:10.1162/biot.2009.4.1.44
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2
Sampling and Estimation

Fundamental concepts of sampling and estimation are the subject of 
this chapter. You will learn that (a) sampling error affects virtually all sample 
statistics, (b) interval estimation approximates margins of error associated 
with statistics, but (c) there are other sources of error variance that should 
not be ignored. You will also learn about central versus noncentral test statis-
tics, the role of bootstrapping in interval estimation, and the basics of robust 
estimation. Entire books are devoted to some of these topics, so it is impos-
sible in a single chapter to describe all of them in detail. Instead, the goal is 
to make you aware of concepts that underlie key aspects of statistics reform.

Sampling and Error

A basic distinction in the behavioral sciences is that between popula-
tions and samples. It is rare that entire populations are studied. If a popu-
lation is large, vast resources may be needed. For instance, the budget for 
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In times of change, learners inherit the Earth, while the learned find 
themselves beautifully equipped to deal with a world that no longer exists.

—Eric Hoffer (1973, p. 22)
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the 2010 Census in the United States was $13 billion, and about 635,000 
temporary workers were hired for it (U.S. Census Bureau, 2010). It may be 
practically impossible to study even much smaller populations. The base rate 
of schizophrenia, for example, is about 1%. But if persons with schizophrenia 
are dispersed over a large geographic area, studying all of them is probably 
impracticable.

Types of Samples

Behavioral scientists usually study samples, of which there are four 
basic kinds: random, systematic, ad hoc, and purposive. Random (probability) 
samples are selected by a chance-based method that gives all observations 
an equal likelihood of appearing in the sample. Variations on simple random 
sampling include stratified sampling and cluster sampling. In both, the popu-
lation is divided into smaller groups that are mutually exclusive and collec-
tively exhaustive. In stratified sampling, these groups are referred to as strata, 
and they are formed on the basis of shared characteristics. Strata may have 
quite different means on variables of interest. A random sample is taken from 
each stratum in proportion to its relative size in the population, and these 
subsamples are then pooled to form the total sample. Normative samples of 
psychological tests are often stratified on the basis of combinations of vari-
ables such as age, gender, or other demographic characteristics.

Partitions of the population are called clusters in cluster sampling. Each 
cluster should be generally representative of the whole population, which 
implies that clusters should also be reasonably similar on average. That is, 
most of the variation should be within clusters, not between them. In single-
stage cluster sampling, random sampling is used to select the particular clus-
ters to study. Next, all elements from the selected clusters contribute to the 
total sample, but no observations from the unselected clusters are included. 
In two-stage cluster sampling, elements from within each selected cluster are 
randomly sampled. One benefit of cluster sampling is that costs are reduced 
by studying some but not all clusters. When clusters are geographic areas, 
cases in the final sample are from the selected regions only.

Random sampling implies independent observations, which means that 
the score of one case does not influence the score of any other. If couples 
complete a relationship satisfaction questionnaire in the presence of each 
other, their responses may not be independent. The independence assump-
tion is critical in many types of statistical techniques. Scores from repeated 
measurement of the same case are probably not independent, but techniques 
for such data estimate the degree of dependence in the scores and thus 
control for it. If scores are really not independent, results of analyses that 
assume independence could be biased. There is no magic statistical fix for 
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lack of independence. Therefore, the independence requirement is usually 
met through design, measurement, and use of statistical techniques that take 
explicit account of score dependence, such as designs with repeated measures.

The discussion that follows assumes that random samples are not 
extraordinarily small, such as N = 2. More sophisticated ways to estimate 
minimum sample sizes are considered later, but for now let us assume more 
reasonable sample sizes of, say, N = 50 or so. There are misconceptions about 
random sampling. Suppose that a simple random sample is selected. What 
can be said about the characteristics of the observations in that sample? A 
common but incorrect response is to say that the observations are representa-
tive of the population. But this may not be true, because there is no guarantee 
that the characteristics of any particular random sample will match those in 
the population. People in a random sample could be older, more likely to be 
women, or wealthier compared with the general population. A stratified ran-
dom sample may be representative in terms of the strata on which it is based 
(e.g., gender), but results on other, nonstrata variables are not guaranteed to 
be representative. It is only across replications, or in the long run, that char-
acteristics of observations in random samples reflect those in the population. 
That is, random sampling generates representative samples on average over 
replications. This property explains the role of random sampling in the popu-
lation inference model, which is concerned with generalizability of sample 
results (external validity).

There is a related misunderstanding about randomization, or random 
assignment of cases to conditions (e.g., treatment vs. control). A particular 
randomization is not guaranteed to result in equivalent groups such that 
there are no initial group differences confounded with the treatment effect. 
Randomization results in equivalent groups only on average. Sometimes it 
happens that randomly formed groups are clearly not equal on some char-
acteristic. The expression “failure of random assignment” is used to describe 
this situation, but it is a misnomer because it assumes that randomization 
should guarantee equivalence every time it is used. Random assignment is 
part of the randomization model, which deals with the correctness of causal 
inference that treatment is responsible for changes among treated cases 
(internal validity).

The use of random sampling and randomization together—the statisti-
cian’s two-step—guarantees that the average effect observed over replica-
tions of treatment–control comparisons will converge on the value of the 
population treatment effect. But this ideal is almost never achieved in real 
studies. This is because random sampling requires a list of all observations in 
the population, but such lists rarely exist. Randomization is widely used in 
experimental studies but usually with nonrandom samples. Many more stud-
ies are based on the randomization model than on the population inference 
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model, but it is the latter that is assumed by the probabilities, or p values, 
generated by statistical tests and used in confidence intervals.

Observations in systematic samples are selected according to an orderly 
sampling plan that may yield a representative sample, but this is not certain. 
Suppose that an alphabetical list of every household is available for some 
area. A random number between 10 and 20 is generated and turns out to be 
17. Every 17th household on the list is contacted for an interview, which 
yields a 6% (1/17) sample in that area. Systematic samples are relatively rare 
in the behavioral sciences.

Most samples are neither random nor systematic but rather are ad hoc 
samples, also known as convenience samples, accidental samples, or locally 
available samples. Cases in such samples are selected because they happen 
to be available. Whether ad hoc samples are representative is often a con-
cern. Volunteers differ from nonvolunteers, for example, and patients seen 
in one clinic may differ from those treated in others. One way to mitigate 
bias is to measure a posteriori a variety of sample characteristics and report 
them. This allows others to compare the sample with those in related studies. 
Another option is to compare the sample profile with that of the population 
(if such a profile exists) in order to show that an ad hoc sample is not grossly 
unrepresentative.

The cases in a purposive sample are intentionally selected from defined 
groups or dimensions in ways linked to hypotheses. A researcher who wishes 
to evaluate whether the effectiveness of a drug varies by gender would inten-
tionally select both women and men. After the data are collected, gender 
would be represented as a factor in the analysis, which may facilitate gen-
eralization of the results to both genders. A purposive sample is usually a 
convenience sample, and dividing cases by gender or some other variable 
does not change this fact.

Sampling Error

This discussion assumes a population size that is very large and assumes 
that the size of each sample is a relatively small proportion of the total popu-
lation size. There are some special corrections if the population size is small, 
such as less than 5,000 cases, or if the sample size exceeds 20% or so of the 
population size that are not covered here (see S. K. Thompson [2012] for 
more information).

Values of population parameters, such as means (µ) or variances (s2), 
are usually unknown. They are instead estimated with sample statistics, such 
as M (means) or s2 (variances). Statistics are subject to sampling error, which 
refers to the difference between an estimator and the corresponding param-
eter (e.g., µ - M). These differences arise because the values of statistics from 
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random samples vary around that of the parameter. Some of these statistics 
will be too high and others too low (i.e., they over- or underestimate the 
parameter), and only a relatively small number will exactly equal the popu-
lation value. This variability among estimators is a statistical phenomenon 
akin to background (natural) radiation: It is always there, sometimes more or 
less, fluctuating randomly from sample to sample.

The amount of sampling error is generally affected by the variability 
of population observations, how the samples are selected, and their size. If 
the population is heterogeneous, values of sample statistics may also be quite 
variable. Obviously, estimators from biased samples may differ substantially 
from those of the corresponding parameters. But assuming random sampling 
and constant variability in the population, sampling error varies inversely 
with sample size. This means that statistics in larger samples tend to be closer 
on average than those in smaller samples to the corresponding parameter. 
This property describes the law of large numbers, and it says that one is more 
likely to get more accurate estimates from larger samples than smaller samples 
with random sampling.

It is a myth that the larger the sample, the more closely it approximates 
a normal distribution. This idea probably stems from a misunderstanding of 
the central limit theorem, which applies to certain group statistics such as 
means. This theorem predicts that (a) distributions of random means, each 
based on the same number of scores, get closer to a normal distribution as the 
sample size increases, and (b) this happens regardless of whether the popula-
tion distribution is normal or not normal. This theorem justifies approximat-
ing distributions of random means with normal curves, but it does not apply 
to distributions of scores in individual samples. Thus, larger samples do not 
generally have more normal distributions than smaller samples. If the popula-
tion distribution is, say, positively skewed, this shape will tend to show up in 
the distributions of random samples that are either smaller or larger.

The sample mean describes the central tendency of a distribution of 
scores on a continuous variable. It is the balance point in a distribution, 
because the mean is the point from which (a) the sum of deviations from M 
equals zero and (b) the sum of squared deviations is as small as possible. The 
latter quantity is the sum of squares (SS). That is, if X represents individual 
observations, then

X M SS X M−( ) −( )∑∑ = 0 and the quantity = 2.12 ( )

takes on the lowest value possible in a particular sample. Due to these proper-
ties, sample means are described as least squares estimators. The statistic M is 
also an unbiased estimator because its expected value across random samples 
of the same size is the population mean µ.
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The sample variance s2 is another least squares estimator. It estimates 
the population variance s2 without bias if computed as

s
SS
df

2 = ( )2.2

where df = N - 1. But the sample variance derived as

S
SS
N

2 = ( )2.3

is a negatively biased estimator because its values are on average less than 
s2. The reason is that squared deviations are taken from M (Equation 2.1), 
which is not likely to equal µ. Therefore, sample sums of squares are generally 
too small compared with taking squared deviations from µ. The division of SS 
by df instead of N, which makes the whole ratio larger (s2 > S2), is sufficient 
to render s2 an unbiased estimator. In larger samples, though, the values of 
s2 and S2 converge, and in very large samples they are asymptotically equal. 
Expected values of positively biased estimators exceed those of the corre-
sponding parameter.

There are ways to correct other statistics for bias. For example, although 
s2 is an unbiased estimator of s2, the sample standard deviation s is a nega-
tively biased estimator of s. Multiplication of s by the correction factor in 
parentheses that follows

ˆ ( )σ = +





1
1

4df
s 2.4

yields a numerical approximation to the unbiased estimator of s. Because the 
value of the correction factor in Equation 2.4 is larger than 1.00, ŝ > s. There 
is also greater correction for negative bias in smaller samples than in larger 
samples. If N = 5, for example, the value of the correction factor is 1.0625, 
but for N = 50 it is 1.0051, which shows relatively less adjustment for bias in 
the larger sample. For very large samples, the value of the correction factor is 
essentially 1.0. This is another instance of the law of large numbers: Averages 
of even biased statistics from large random samples tend to closely estimate 
the corresponding parameter.

A standard error is the standard deviation in a sampling distribution, 
the probability distribution of a statistic across all random samples drawn 
from the same population(s) and with each sample based on the same num-
ber of cases. It estimates the amount of sampling error in standard deviation 
units. The square of a standard error is the error variance. Standard errors of 
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statistics with simple distributions can be estimated with formulas that have 
appeared in statistics textbooks for some time. By “simple” I mean that (a) the 
statistic estimates only a single parameter and (b) both the shape and vari-
ance of its sampling distribution are constant regardless of the value of that 
parameter. Distributions of M and s2 are simple as just defined.

The standard error in a distribution of random means is

σ σ
M

N
= ( )2.5

Because s is not generally known, this standard error is typically estimated as

s
s

N
M = ( )2.6

As either sample variability decreases or the sample size increases, the value 
of sM decreases. For example, given s = 10.00, sM equals 10.00/251/2, or 2.00, 
for N = 25, but for N = 100 the value of sM is 10.00/1001/2, or 1.00. That is, 
the standard error is twice as large for N = 25 as it is for N = 100. A graphi-
cal illustration is presented in Figure 2.1. An original normal distribution is 
shown along with three different sampling distributions of M based on N = 4, 
16, or 64 cases. Variability of the sampling distributions in the figure decreases 
as the sample size increases.

The standard error sM, which estimates variability of the group statistic 
M, is often confused with the standard deviation s, which measures vari-
ability at the case level. This confusion is a source of misinterpretation of 
both statistical tests and confidence intervals (Streiner, 1996). Note that 

µ

N = 64 

N = 16 

N = 4 

Original
distribution 

Figure 2.1.  An original distribution of scores and three distributions of random sample 
means each based on different sample sizes, N = 4, N = 16, or N = 64.
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the standard error sM itself has a standard error (as do standard errors for all 
other kinds of statistics). This is because the value of sM varies over random 
samples. This explains why one should not overinterpret a confidence inter-
val or p value from a significance test based on a single sample. Exercises 1–2 
concern the distinction between s and sM.

Distributions of random means follow central (Student’s) t distribu-
tions with degrees of freedom equal to N - 1 when s is unknown. For very 
large samples, central t distributions approximate a normal curve. In central 
test distributions, the null hypothesis is assumed to be true. They are used to 
determine critical values of test statistics. Tables of critical values for distri-
butions such as t, F, and c2 found in many statistics textbooks are based on 
central test distributions. There are also web calculating pages that generate 
critical values for central test statistics.1 The t distribution originated from 
“Student’s” (William Gosset’s) attempt to approximate the distributions of 
means when the sample size is not large and s is unknown. It was only later 
that central t distributions and other theoretical probability distributions 
were associated with the practice of significance testing.

The sample variance s2 follows a central b2 distribution with N − 1 
degrees of freedom. Listed next is the equation for the standard error of s2 

when the population variance is known:

σ σs
df

2
2 2= ( )2.7

If s2 is not known, the standard error of the sample variance is estimated as

s s
df

s2
2 2= ( )2.8

As with M, the estimated standard error of s2 becomes smaller as the sample 
size increases.

Other Kinds of Error

Standard errors estimate sampling error under random sampling. What 
they measure when sampling is not random may not be clear. The standard 
error in an ad hoc sample might reflect both sampling error and systematic 

1This central t distributional calculator accepts either integer or noninteger df values: http://www.usable 
stats.com/calcs/tinv
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selection bias that results in nonrepresentative samples. Standard errors also 
ignore the other sources of error described next:

1.	Measurement error refers to the difference between an observed 
score X and the true score on the underlying construct. The 
reliability coefficient rXX estimates the degree of measurement 
error in a particular sample. If rXX = .80, for example, at least 
1 - .80 = .20, or 20%, of the observed variance in X is due to 
random error of the type estimated by that particular reliabil-
ity coefficient. Measurement error reduces absolute effect sizes 
and the power of statistical tests. It is controlled by selecting 
measures that generally yield scores with good psychometric 
characteristics.

2.	Construct definition error involves problems with how hypo-
thetical constructs are defined or operationalized. Incorrect 
definition could include mislabeling a construct, such as when 
low IQ scores among minority children who do not speak 
English as a first language are attributed to low intelligence 
instead of to limited language familiarity. Error can also stem 
from construct proliferation, where a researcher postulates a 
new construct that is questionably different from existing con-
structs (F. L. Schmidt, 2010). Constructs that are theoretically 
distinct in the minds of researchers are not always empirically 
distinct.

3.	Specification error refers to the omission from a regression equa-
tion of at least one predictor that covaries with the measured 
(included) predictors.2 As covariances between omitted and 
included predictors increase, results based on the included pre-
dictors tend to become increasingly biased. Careful review of 
theory and research when planning a study is the main way to 
avoid a serious specification error by decreasing the potential 
number of left-out variables.

4.	Treatment implementation error occurs when an intervention 
does not follow prescribed procedures. The failure to ensure that 
patients take an antibiotic medication for the prescribed duration 
of time is an example. Prevention includes thorough training 
of those who will administer the treatment and checking after 
the study begins whether implementation remains consistent 
and true.

2It can also refer to including irrelevant predictors, estimating linear relations only when the true relation 
is curvilinear, or estimating main effects only when there is true interaction.
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Shadish, Cook, and Campbell (2001) described additional potential 
sources of error. Gosset used the term real error to refer all types of error 
besides sampling error (e.g., Student, 1927). In reasonably large samples, 
the impact of real error may be greater than that of sampling error. Thus, 
it is unwise to acknowledge sampling error only. This discussion implies 
that the probability that error of any kind affects sample results is virtually 
1.00, and, therefore, practically all sample results are wrong (the parameter 
is not correctly estimated). This may be especially true when sample sizes 
are small, population effect sizes are not large, researchers chase statistical 
significance instead of substantive significance, a greater variety of meth-
ods is used across studies, and there is financial or other conflict of interest 
(Ioannidis, 2005).

Interval Estimation

Assumed next is the selection of a very large number of random samples 
from a very large population. The amount of sampling error associated with 
a statistic is explicitly indicated by a confidence interval, precisely defined by 
Steiger and Fouladi (1997) as follows:

1.	A 1 - a confidence interval for a parameter is a pair of statistics 
yielding an interval that, over many random samples, includes 
the parameter with the probability 1 – a. (The symbol a is the 
level of statistical significance.)

2.	A 100 (1 – a)% confidence interval for a parameter is a pair of 
statistics yielding an interval that, over many random samples, 
includes the parameter 100 (1 – a)% of the time.

The value of 1 – a is selected by the researcher to reflect the degree of 
statistical uncertainty due to sampling error. Because the conventional levels 
of statistical significance are .05 or .01, one usually sees either 95% or 99% 
confidence intervals, but it is possible to specify a different level, such as 
a = .10 for a 90% confidence interval. Next we consider 95% confidence 
intervals only, but the same ideas apply to other confidence levels.

The lower bound of a confidence interval is the lower confidence limit, 
and the upper bound is the upper confidence limit. The Publication Manual 
(APA, 2010) recommends reporting a confidence interval in text with brack-
ets. If 21.50 and 30.50 are, respectively, the lower and upper bounds for the 
95% confidence interval based on a sample mean of 26.00, these results would 
be summarized as

M = 26.00, 95% Ci 21.50, 30.50[ ]
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Confidence intervals are often shown in graphics as error bars repre-
sented as lines that extend above and below (or to the left and right, depend-
ing on orientation) around a point that corresponds to a statistic. When the 
length of each error bar is one standard error (M ± sM), the interval defined 
by those standard error bars corresponds roughly to a = .32 and a 68% con-
fidence interval. There are also standard deviation bars. For example, the 
interval M ± s says something about the variability of scores around the mean, 
but it conveys no direct information about the extent of sampling error asso-
ciated with that mean. Researchers do not always state what error bars repre-
sent: About 30% of articles with such figures reviewed by Cumming, Fidler, 
and Vaux (2007) did not provide this information.

Traditional confidence intervals are based on central test distributions, 
and the statistic is usually exactly between the lower and upper bounds (the 
interval is symmetrical about the estimator). The interval is constructed by 
adding and subtracting from a statistic the product of its standard error and 
the positive two-tailed critical value at the a level of statistical significance 
in a relevant central test distribution. This product is the margin of error. 
In graphical displays of confidence intervals, each of the two error bars cor-
responds to a margin of error.

Confidence Intervals for 

The relevant test statistic for means when s is unknown is central t, 
so the general form of a 100 (1 - a)% confidence interval for µ based on a 
single observed mean is

M s t NM± −( )[ ]2-tail, 2.9α 1 ( )

where the term in brackets is the positive two-tailed critical value in a cen-
tral t distribution with N – 1 degrees of freedom at the a level of statistical 
significance. Suppose that

M s N=100.00, = 9.00, and = 25

The standard error is

sM = =9 00

25
1 800

.
.

and t2-tail, .05 (24) = 2.064. The 95% confidence interval for µ is thus

100.00 1.800 2.064 , or 100.00 3.72± ( ) ±
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which defines the interval [96.28, 103.72]. Exercise 3 asks you to verify that 
the 99% confidence interval is wider than the 95% confidence interval based 
on the same data. Cumming (2012) described how to construct one-sided 
confidence intervals that are counterparts to statistical tests of null hypoth-
esis versus directional (one-tailed) alternative hypotheses, such as H1:  
µ > 130.00.

Let us consider how to interpret the specific 95% confidence interval 
for µ just derived:

1.	The interval [96.28, 103.72] defines a range of values consid-
ered equivalent within the limits of sampling error at the 95% 
confidence level. But equivalent within the bounds of sampling 
error does not imply equivalent in a scientific sense. This is espe-
cially true when the range of values included in the confidence 
interval indicates very different outcomes, such as when the 
upper confidence limit for the average blood concentration of 
a drug exceeds a lethal dosage.

2.	It also provides a reasonable estimate of the population mean. 
That is, µ could be as low as 96.28 or µ could be as high as 
103.72, again at the 95% confidence level.

3.	There is no guarantee that µ is actually included in the confi-
dence interval. We could construct the 95% confidence inter-
val based on the mean in a different sample, but the center 
or endpoints of this new interval will probably be different. 
This is because confidence intervals are subject to sampling 
error, too.

4.	If 95% confidence intervals are constructed around the means 
of very many random samples drawn from the same very large 
population, a total of 95% of them will contain µ.

The last point gives a more precise definition of “95% confident” from 
a frequentist or long-run relative-frequency view of probability as the like-
lihood of an outcome over repeatable events under constant conditions 
except for random error. A frequentist view assumes that probability is a 
property of nature that is independent of what the researcher believes. In 
contrast, a subjectivist or subjective degree-of-belief view defines prob-
ability as a personal belief that is independent of nature. The same view 
also does not distinguish between repeatable and unique events (Oakes, 
1986). Although researchers in their daily lives probably take a subjective 
view of probabilities, it is the frequentist definition that generally underlies 
sampling theory.

A researcher is probably more interested in knowing the probability 
that a specific 95% confidence interval contains µ than in knowing that 
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95% of all such intervals do. From a frequentist perspective, this probabil-
ity for any specific interval is either 0 or 1.00; that is, either the interval 
contains the parameter or it does not. Thus, it is generally incorrect to  
say that a specific 95% confidence interval has a 95% likelihood of includ-
ing the corresponding parameter. Reichardt and Gollob (1997) noted that 
this kind of specific probability inference is permitted only in the circum-
stance that every possible value of the parameter is considered equally 
likely before the data are collected. In Bayesian estimation, the same cir-
cumstance is described by the principle of indifference, but it is rare when 
a researcher truly has absolutely no information about plausible values for 
a parameter.

There is language that splits the difference between frequentist and 
subjectivist perspectives. Applied to our example, it goes like this: The inter-
val [96.28, 103.72] estimates µ, with 95% confidence. This statement is not 
quite a specific probability inference, and it also gives a nod to the subjectiv-
ist view because it associates a degree of belief with a unique interval. Like 
other compromises, however, it may not please purists who hold one view 
of probability or the other. But this wording does avoid the blatant error of 
claiming that a specific 95% confidence interval contains the parameter with 
the probability .95.

Another interpretation concerns the capture percentage of random 
means from replications that fall within the bounds of a specific 95% confi-
dence interval for µ. Most researchers surveyed by Cumming, Williams, and 
Fidler (2004) mistakenly endorsed the confidence-level misconception that 
the capture percentage for a specific 95% confidence interval is also 95%. 
This fallacy for our example would be stated as follows: The interval [96.28, 
103.72] contains 95% of all replication means. This statement would be 
true for this interval only if the values of µ - M and s – s were both about 
zero; otherwise, capture percentages drop off quickly as the absolute distance 
between µ and M increases. Cumming and Maillardert (2006) estimated that 
the average capture percentage across random 95% confidence intervals for 
µ is about 85% assuming normality and N ≥ 20, but percentages for more 
extreme samples are much lower (e.g., < 50%).

These results suggest that researchers underestimate the impact of sam-
pling error on means. Additional evidence described in the next chapter says 
that researchers fail to appreciate that sampling error affects p values from 
statistical tests, too. It seems that many researchers believe that results from 
small samples behave like those from large samples; that is, they believe that 
results from small samples are likely to replicate. Tversky and Kahneman 
(1971) labeled such errors the law of small numbers, an ironic twist on the 
law of large numbers, which (correctly) says that there is greater variation 
across results from small samples than from large samples.
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Confidence Intervals for m1 – m2

Next we assume a design with two independent samples. The standard 
error in a distribution of contrasts between pairs of means randomly selected 
from different populations is

σ σ σ
M M

n n1 2

1
2

1

2
2

2
− = + ( )2.10

where σ2
1 and σ2

2 are the population variances and n1 and n2 are the sizes of 
each group. If we assume homogeneity of population variance or homosce-
dasticity (i.e., σ2

1 = σ2
2), the expression for the standard error reduces to

σ σM M
n n1 2

2

1 2

1 1
− = +



 ( )2.11

where s2 is the common population variance. This parameter is usually 
unknown, so the standard error of mean differences is estimated by

s s
n n

M M1 2
2

1 2

1 1
− = +



pool 2.12( )

where s2
pool is the weighted average of the within-groups variances. Its equa-

tion is

s
df s df s

df df
SS
df

W

W
pool 2.132 1 1

2
2 2

2

1 2
= +

+
=( ) ( )

( ))

where s2
1 and s2

2  are the group variances, df1 = n1 – 1, df2 = n2 – 1, and SSW and 
dfW are, respectively, the pooled within-groups sum of squares and the degrees 
of freedom. The latter can also be expressed as dfW = N – 2. Only when the 
group sizes are equal can s2

pool also be calculated as the simple average of the 
two group variances, or (s2

1 + s2
2)/2.

The general form of a 100 (1 – a)% confidence interval for µ1 – µ2 based 
on the difference between two independent means is

M M s t NM M1 2 21 2 2−( ) ± −( )[ ]− −tail 2.14, ( )α

Suppose in a design with n = 10 cases in each group we observe

M s M s1 2 2
2=13.00, =7.50 and = 11.00, = 5.001

2
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which implies M1 – M2 = 2.00 and s2
pool = (7.50 + 5.00)/2 = 6.25. The esti-

mated standard error is

sM M1 2 6 25
1

10
1

10
1 118− = +



 =. .

and t2-tail, .05 (18) = 2.101. The 95% confidence interval for µ1 – µ2 is

2.00 1.118 2.101± ( )

which defines the interval [-.35, 4.35]. On the basis of these results, we can 
say that µ1 – µ2 could be as low as -.35 or as high as 4.35, with 95% confidence.

The specific interval [-.35, 4.35] includes zero as an estimate of µ1 – µ2. 
This fact is subject to misinterpretation. For example, it may be incorrectly 
concluded that µ1 = µ2 because zero falls within the interval. But zero is only 
one value within a range of estimates of µ1 – µ2, so it has no special status 
in interval estimation. Confidence intervals are subject to sampling error, so 
zero may not be included within the 95% confidence interval in a replication. 
Confidence intervals also assume that other sources of error are nil. All these 
caveats should reduce the temptation to fixate on a particular value (here, 
zero) in a confidence interval.

There is special relation between a confidence interval for µ1 – µ2 and 
the outcome of the independent samples t test based on the same data: 
Whether a 100 (1 – a)% confidence interval for µ1 – µ2 includes zero yields 
an outcome equivalent to either rejecting or not rejecting the corresponding 
null hypothesis at the a level of statistical significance for a two-tailed test. 
For example, the specific 95% confidence interval [-.35, 4.35] includes zero; 
thus, the outcome of the t test for these data of H0: µ1 – µ2 = 0 is not statisti-
cally significant at the .05 level, or

t p18 =
2.00

1.118
=1.789, = .091( )

But if zero is not contained within a particular 95% confidence interval for 
µ1 – µ2, the outcome of the independent samples t test will be statistically 
significant at the .05 level.

Be careful not to falsely believe that confidence intervals are just statis-
tical tests in disguise (B. Thompson, 2006a). One reason is that null hypoth-
eses are required for statistical tests but not for confidence intervals. Another 
is that many null hypotheses have little if any scientific value. For example, 
Anderson et al. (2000) reviewed null hypotheses tested in several hundred 
empirical studies published from 1978 to 1998 in two environmental sciences 
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journals. They found many implausible null hypotheses that specified things 
such as equal survival probabilities for juvenile and adult members of a spe-
cies or that growth rates did not differ across species, among other assump-
tions known to be false before collecting data. I am unaware of a similar 
survey of null hypotheses in the behavioral sciences, but I would be surprised 
if the results would be very different.

Confidence intervals over replications may be less susceptible to mis-
interpretation than results of statistical tests. Summarized in Table 2.1 are 
outcomes of six hypothetical replications where the same two conditions 
are compared on the same outcome variable. Results of the independent 
samples t test lead to rejection of the null hypothesis at p < .05 in three out 
of six studies, a “tie” concerning statistical significance (3 yeas, 3 nays). More 
informative than the number of null hypothesis replications is the average 
of M1 – M2 across all six studies, 3.54. This average is from a meta-analysis 
of all results in the table for a fixed effects model, where a single population 
effect size is presumed to underlie the observed contrasts. (I show you how 
to calculate this average in Chapter 9.) The overall average of 3.54 may be a 
better estimate of µ1 - µ2 than M1 – M2 in any individual study because it is 
based on all available data.

The 95% confidence intervals for µ1 – µ2 in Table 2.1 are shown in 
Figure 2.2 as error bars in a forest plot, which displays results from replications 
and a meta-analytic weighted average with confidence intervals (Cumming, 
2012). The 95% confidence interval based on the overall average of 3.54, or 
[2.53, 4.54] (see Table 2.1), is narrower than any of the intervals from the six 
replications (see Figure 2.2). This is because more information contributes 
to the confidence interval based on results averaged over all replications. For 
these data, µ1 – µ2 may be as low as 2.53 or as high as 4.54, with 95% confi-
dence based on all available data.

Table 2.1
Results of Six Hypothetical Replications

Study M1 − M2 s1
2 s2

2 t (38) Reject H0? 95% CI

1 2.50 17.50 16.50 1.92 No -.14, 5.14
2 4.00 16.00 18.00 3.07 Yes 1.36, 6.64
3 2.50 14.00 17.25 2.00 No -.03, 5.03
4 4.50 13.00 16.00 3.74 Yes 2.06, 6.94
5 5.00 12.50 16.50 4.15 Yes 2.56, 7.44
6 2.50 15.00 17.00 1.98 No -.06, 5.06

Average: 3.54 2.53, 4.54

Note.  Independent samples assumed. For all replications, the group size is n = 20, a = .05, the null hypothe-
sis is H0: µ1 − µ2 = 0, and H1 is two-tailed. Results for the average difference are from a meta-analysis assum-
ing a fixed effects model. CI = confidence interval.
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There is a widely accepted—but unfortunately incorrect—rule of thumb 
that the difference between two independent means is statistically significant 
at the a level if there is no overlap of the two 100 (1 – a)% confidence inter-
vals for µ (Belia, Fidler, Williams, & Cumming, 2005). It also maintains that 
the overlap of the two intervals indicates that the mean contrast is not sta-
tistically significant at the corresponding level of a. This rule is often applied 
to diagrams where confidence intervals for µ are represented as error bars that 
emanate outward from points that symbolize group means.

A more accurate heuristic is the overlap rule for two independent 
means (Cumming, 2012), which works best when n ≥ 10 and the group sizes 
and variances are approximately equal. The overlap rule is stated next for 
a = .05:

1.	If there is a gap between the two 95% confidence intervals for 
µ (i.e., no overlap), the outcome of the independent samples 
t test of the mean difference is p < .01. But if the confidence 
intervals just touch end-to-end, p is approximately .01.

2.	No more than moderate overlap of the 95% confidence inter-
vals for µ implies that the p value for the t test is about .05, but 
less overlap indicates p < .05. Moderate overlap is about one half 
the length of each error bar in a graphical display.
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Figure 2.2.  A forest plot of 95% confidence intervals for µ1 – µ2 based on mean 
differences from the six replications in Table 2.1 and the meta-analytic 95%  
confidence interval for µ1 – µ2 across all replications for a fixed effects model.
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Summarized next are the basic descriptive statistics for the example 
where n1 = n2 = 10:

M s M s1 2=13.00, =7.50 and =11.00, = 5.001
2

2
2

You should verify for these data the results presented next:

s

s

M

M

1

2

= .866, 95% Ci for 11.04,14.96

= .707,

1µ [ ]
995% Ci for 9.40,12.602µ [ ]

These confidence intervals for µ are plotted in Figure 2.3 along with the 95% 
confidence interval for µ1 – µ2 for these data [-.35, 4.35]. Group means are 
represented on the y-axis, and the mean contrast (2.00) is represented on 
the floating difference axis (Cumming, 2012) centered at the grand mean 
across both groups (12.00). The error bars of the 95% confidence intervals 
for µ overlap by clearly more than one half of their lengths. According to 
the overlap rule, this amount of overlap is more than moderate. So the mean 
difference should not be statistically significant at the .05 level, which is true 
for these data.
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Figure 2.3.  Plot of the 95% confidence interval for µ1, 95% confidence interval for µ2, 
and 95% confidence interval for µ1 – µ2, given M1 = 13.00, s2

1  = 7.50, M2 = 11.00, s2
2 = 

5.00, and n1 = n2 = 10. Results for the mean difference are shown on a floating differ-
ence axis where zero is aligned at the grand mean across both samples (12.00).
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Confidence intervals for µ1 – µ2 based on sM1 – M2
 assume homoscedastic-

ity. In the Welch procedure (e.g., Welch, 1938), the standard error of a mean 
contrast is estimated as

s
s
n

s
n

Wel 2.15= +1
2

1

2
2

2
( )

where s2
1 estimates s2

1 and s2
2 estimates s2

2 (i.e., heteroscedasticity is allowed). 
The degrees of freedom for the critical value of central t in the Welch proce-
dure are estimated empirically as

df

s
n

s
n

s
n n

sWel =
+





−
+

1
2

1

2
2

2

2

1
2 2

1
2

1

2

1
( )
( )

( 22 2

2
2

2 1
)

( )

( )

n n −

2.16

Summarized next are descriptive statistics for two groups:

M s n

M s

1 1
2

1

2

=112.50, =75.25, = 25

=108.30, =15.02
2 00, = 202n

Variability among cases in the first group is obviously greater than that in the 
second group. A pooled within-groups variance would mask this discrepancy. 
The researcher elects to use the Welch procedure. The estimated standard 
error is

sWel 1 939= + =75 25
25

15 00
20

. .
.

and the approximate degrees of freedom are

dfWel =
+





+

75 25
25

15 00
20

75 25
25 24

1

2

2

2

. .

.
( )

55 00
20 19

2

2

.
( )

.= 34 727

The general form of a 100 (1 – a)% confidence interval for µ1 – µ2 in 
the Welch procedure is

M M s t df1 2 Wel 2-tail, Wel– 2.17( ) ± ( )[ ]α ( )
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Tables for critical values of central t typically list integer df values only. An alter-
native is to use a web distributional calculator page that accepts noninteger df 
(see footnote 1). Another is to use a statistical density function built into widely 
available software. The statistical function TINV in Microsoft Excel returns 
critical values of central t given values of a and df. The function Idf.T (Inverse 
DF) in SPSS returns the two-tailed critical value of central t given df and 1 – a/2, 
which is .975 for a 95% confidence interval. For this example, SPSS returned

t2-tail, .05 34.727 = 2.031( )

The 95% confidence interval for µ1 – µ2 is

112.50 – 108.30 1.939 2.031( ) ± ( )

which defines the interval [.26, 8.14]. Thus, the value of µ1 – µ2 could be as 
low as .26 or as high as 8.14, with 95% confidence and not assuming homo
scedasticity. Widths of confidence intervals in the Welch procedure tend to 
be narrower than intervals based on sM1 – M2 for the same data when group 
variances are unequal. Welch intervals may less accurate when the popula-
tion distributions are severely and differently nonnormal or when the group 
sizes are unequal and small, such as n < 30 (Bonett & Price, 2002); see also 
Grissom and Kim (2011, Chapter 2).

Confidence Intervals for D

I use the symbol MD to refer to the mean difference (change, gain) 
score when two dependent samples are compared. A difference score is com-
puted as D = X1 – X2 for each of the n cases in a repeated measures design or 
for each of the n pairs of cases in a matched groups design. If D = 0, there is 
no difference; any other value indicates a higher score in one condition than 
in the other. The average of all difference scores equals the dependent mean 
contrast, or MD = M1 – M2. Its standard error is

σ σ
M

D
D

n
= ( )2.18

where sD is the population standard deviation of the difference scores. The 
variance of the difference scores can be expressed as

σ σ ρD
2 2= 2 2.191 12−( ) ( )

where s2 is the common population variance assuming homoscedasticity and 
r12 is the population cross-conditions correlation of the original scores.
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When there is a stronger subjects effect—cases maintain their relative 
positions across the conditions—r12 approaches 1.00. This reduces the vari-
ance of the difference scores, which in turn lowers the standard error of the 
mean contrast (Equation 2.18). It is the subtraction of consistent individual 
differences from the standard error that makes confidence intervals based on 
dependent mean contrasts generally narrower than confidence intervals based 
on contrasts between unrelated means. It also explains the power advantage 
of the t test for dependent samples over the t test for independent samples. 
But these advantages are realized only if r12 > .50 (Equation 2.19); other-
wise, confidence intervals and statistical tests may be wider and less powerful 
(respectively) for dependent mean contrasts.

The standard deviation sD is usually unknown, so the standard error of 
MD is estimated as

s
s

n
M

D
D = ( )2.20

where sD is the sample standard deviation of the D scores. The corresponding 
variance is

s s s covD
2

1
2

2
2

122= + − ( )2.21

where cov12 is the cross-conditions covariance of the original scores. The latter is

cov r s s12 12 1 2= 2.22( )

where r12 is the sample cross-conditions correlation. (The correlation r12 is 
presumed to be zero when the samples are independent.)

The general form of a 100 (1 – a)% confidence interval for µD is

M s t nD MD± −( )[ ]2-tail, 2.23α 1 ( )

Presented in Table 2.2 are raw scores and descriptive statistics for a small data 
set where the mean contrast is 2.00. In a dependent samples analysis of these 
data, n = 5 and r12 = .735. The cross-conditions covariance is

cov12 = .735 2.739 2.236 = 4.50( ) ( )

and the variance of the difference scores is

sD
2 =7.50 + 5.00 – 2 4.50 = 3.50( )

which implies that sD = 3.501/2, or 1.871. The standard error of MD = 2.00 is 
estimated as
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sMD = =1 871

5

.
.837

The value of t2-tail, .05 (4) is 2.776, so the 95% confidence interval for µD is

2.00 .837 2.776± ( )

which defines the interval [-.32, 4.32]. Exercise 4 asks you to verify that the 
95% confidence interval for µD assuming a correlated design is narrower than 
the 95% confidence interval for µ1 – µ2 assuming unrelated samples for the 
same data (see Table 2.2), which is [-1.65, 5.65].

Confidence Intervals Based on Other Kinds of Statistics

Many statistics other than means have complex distributions. For exam-
ple, distributions of the Pearson correlation r are symmetrical only if the pop-
ulation correlation is r = 0, but they are negatively skewed when r > 0 and 
positively skewed when r < 0. Other statistics have complex distributions, 
including some widely used effect sizes introduced in Chapter 5, because they 
estimate more than one parameter.

Until recently, confidence intervals for statistics with complex distri-
butions were estimated with approximate methods. One method involves 
confidence interval transformation (Steiger & Fouladi, 1997), where the 
statistic is mathematically transformed into normally distributed units. The 
confidence interval is built by adding and subtracting from the transformed 
statistic the product of the standard error in the transformed metric and the 
appropriate critical value of the normal deviate z. The lower and upper bounds 

Table 2.2
Raw Scores and Descriptive Statistics for Two Samples

Sample

1 2

9 8
12 12
13 11
15 10
16 14

M 13.00 11.00
s2 7.50 5.00
s 2.739 2.236

Note.  In a dependent samples analysis, r12 = .735.
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of this interval are then transformed back into the original metric, and the 
resulting confidence interval may be asymmetric (unequal margins of error). 
Fisher’s transformation is used to approximate construct intervals for r. It 
converts a sample correlation r with the function

Z
r
r

r = +
−







1
2

1
1

ln ( )2.24

where ln is the natural log function to base e, which is about 2.7183. The 
sampling distribution of Zr is approximately normal with the standard error

s
N

Zr =
−
1

3
( )2.25

The lower and upper bounds of the 100 (1 – a)% confidence interval based 
on Zr are defined by

Z s zr Zr± ( )2-tail, 2.26α ( )

where z2-tail, a is the positive two-tailed critical value of the normal deviate, 
which is 1.96 for a = .05 and the 95% confidence level. Next, transform both 
the lower and upper bounds of the confidence interval in Zr units back to  
r units by applying the inverse transformation

r
e
e

Z

Z

Z

r

r

= −
+

2

2

1
1

( )2.27

There are calculating web pages that automatically generate approximate 
95% or 99% confidence intervals for r, given values of r and the sample size.3 
Four-decimal accuracy is recommended for hand calculation.

In a sample of N = 20 cases, r = .6803. Fisher’s transformation and its 
standard error are

Z sr Zr
= +

−






= =1
2

1 6803
1 6803

1
20

ln
.
.

.8297 and
−−

=
3

.2425

The approximate 95% confidence interval in Zr units is

.8297 .2425 1.96± ( )

3http://faculty.vassar.edu/lowry/rho.html
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which defines the interval [.3544, 1.3051]. To convert the lower and upper 
bounds of this interval to r units, I apply the inverse transformation to each:

e
e

e2 3544

2 3544

2 1 30511
1

0
1(. )

(. )

( . )

.
−
+

= −
34 3 and

ee2 1 3051 1
0

( . )
.

+
= 863

In r units, the approximate 95% confidence interval for r is [.34, .86] at two-
place accuracy.

Another approximate method builds confidence intervals directly 
around the sample statistic; thus, they are symmetrical about it. The width 
of the interval on either side is a product of the two-tailed critical value of a 
central test statistic and an estimate of the asymptotic standard error, which 
estimates what the standard error would be in a large sample (e.g., > 500). If 
the researcher’s sample is not large, though, this estimate may not be accu-
rate. Another drawback is that some statistics, such as R2 in multiple regres-
sion, have distributions so complex that a computer is needed to estimate 
standard error. Fortunately, there are increasing numbers of computer tools 
for calculating confidence intervals, some of which are mentioned later.

A more precise method is noncentrality interval estimation (Steiger & 
Fouladi, 1997). It also deals with situations that cannot be handled by approx-
imate methods. This approach is based on noncentral test distributions that 
do not assume a true null hypothesis. Some perspective is in order. Families 
of central distributions of t, F, and c2 (in which H0 is assumed to be true) are 
special cases of noncentral distributions of each test statistic just mentioned. 
Compared to central distributions, noncentral distributions have an extra 
parameter called the noncentrality parameter that indicates the degree to 
which the null hypothesis is false.

Central t distributions are defined by a single parameter, the degrees of 
freedom (df), but noncentral t distributions are described by both df and the 
noncentrality parameter D (Greek uppercase delta). In two-group designs, 
the value of D for noncentral t is related to (but not exactly equal to) the true 
difference between the population means µ1 and µ2. The larger that differ-
ence, the more the noncentral t distribution is skewed. That is, if µ1 > µ2, then 
D > 0 and the resulting noncentral t distributions are positively skewed, and 
if µ1 < µ2, then D < 0 and the corresponding resulting noncentral t distribu-
tions are negatively skewed. But if µ1 = µ2 (i.e., there is no difference), then 
D = 0 and the resulting distributions are the familiar and symmetrical central 
t distributions. Presented in Figure 2.4 are two t distributions where df = 10. 
For the central t distribution in the left part of the figure, D = 0, but for the 
noncentral t distribution in the right side of the figure, D = 4.00. (The mean-
ing of a particular value for D is defined in Chapter 5.) Note in the figure that 
the distribution for noncentral t (10, 4.00) is positively skewed.
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Noncentral test distributions play a role in estimating the power of 
statistical tests. This is because the concept of power assumes that the null 
hypothesis is false. Thus, computer tools for power analysis analyze non
central test distributions. A population effect size that is not zero generally 
corresponds to a value of the noncentrality parameter that is also not zero. 
This is why some methods of interval estimation for effect sizes rely on non-
central test distributions. Noncentrality interval estimation for effect sizes is 
covered in Chapter 5.

Calculating noncentral confidence intervals is impractical without 
relatively sophisticated computer programs. Until recently, such programs 
were not widely available to applied researchers. An exception is Exploratory 
Software for Confidence Intervals (ESCI; Cumming, 2012), which runs 
under Microsoft Excel. It is structured as a tool for learning about confidence 
intervals, noncentral test distributions, power estimation, and meta-analysis. 
Demonstration modules for ESCI can be downloaded.4 I used ESCI to create 
Figure 2.4.

Another computer tool for power estimation and noncentrality inter-
val estimation is Steiger’s Power Analysis procedure in STATISTICA 11 
Advanced, an integrated program for general statistical analyses, data mining, 
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Figure 2.4.  Distributions of central t and noncentral t where the degrees of freedom 
are df = 10 and where the noncentrality parameter is D = 4.00 for noncentral t.

4http://www.thenewstatistics.com/
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and quality control.5 Power Analysis can automatically calculate noncentral 
confidence intervals based on several different types of effect sizes. Other 
computer tools or scripts for interval estimation with effect sizes are described 
in later chapters. The website for this book also has links to corresponding 
download pages. Considered next is bootstrapping, which can also be used 
for interval estimation.

Bootstrapped Confidence Intervals

The technique of bootstrapping, developed by the statistician Bradley 
Efron in the 1970s (e.g., 1979), is a computer-based method of resampling 
that recombines the cases in a data set in different ways to estimate statistical 
precision, with fewer assumptions than traditional methods about population 
distributions. Perhaps the best known form is nonparametric bootstrapping, 
which generally makes no assumptions other than that the distribution in the 
sample reflects the basic shape of that in the population. It treats your data file 
as a pseudo-population in that cases are randomly selected with replacement 
to generate other data sets, usually of the same size as the original. Because of 
sampling with replacement, (a) the same case can be selected in more than 
one generated data set or at least twice in the same generated sample, and 
(b) the composition of cases will vary slightly across the generated samples.

When repeated many times (e.g., 1,000) by the computer, bootstrap-
ping simulates the drawing of many random samples. It also constructs an 
empirical sampling distribution, the frequency distribution of the values 
of a statistic across the generated samples. Nonparametric percentile boot-
strapped confidence intervals for the parameter estimated by the statistic 
are calculated in the empirical distribution. The lower and upper bounds of a 
95% bootstrapped confidence interval correspond to, respectively, the 2.5th 
and 97.5th percentiles in the empirical sampling distribution. These limits 
contain 95% of the bootstrapped values of the statistic.

Presented in Table 2.3 is a small data set where N = 20 and r = .6803. 
I used the nonparametric bootstrap procedure of SimStat for Windows 
(Provalis Research, 1995–2004) to resample from the data in Table 2.3 in 
order to generate a total of 1,000 bootstrapped samples each with 20 cases.6 
The empirical sampling distribution is presented in Figure 2.5. As expected, 
this distribution is negatively skewed. SimStat reported that the mean and 
median of the sampling distribution are, respectively, .6668 and .6837. The 
standard deviation in the distribution of Figure 2.5 is .1291, which is actually 

5http://www.statsoft.com/#
6http://www.provalisresearch.com/
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the bootstrapped estimate of the standard error. The nonparametric boot-
strapped 95% confidence interval for r is [.3615, .8626], and the bias-adjusted 
95% confidence interval is [.3528, .8602]. The latter controls for lack of inde-
pendence due to potential selection of the same case multiple times in the 
same generated sample.

The bias-adjusted bootstrapped 95% confidence interval for r, which is 
[.35, .86] at two-decimal accuracy, is similar to the approximate 95% confi-
dence interval of [.34, .86] calculated earlier using Fisher’s approximation for 
the same data. The bootstrapped estimate of the standard error in correlation 
units generated by SimStat is .129. Nonparametric bootstrapping is potentially 

Table 2.3
Example Data Set for Nonparametric Bootstrapping

Case X Y Case X Y

A 12 16 K 16 37
B 19 46 L 13 30
C 21 66 M 18 32
D 16 70 N 18 53
E 18 27 O 22 52
F 16 27 P 17 34
G 16 44 Q 22 54
H 20 69 R 12 5
I 16 22 S 14 38
J 18 61 T 14 38
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Figure 2.5. E mpirical sampling distribution for the Pearson correlation r in 1,000 
bootstrapped samples for the data in Table 2.3.
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more useful when applied to statistics for which there is no approximate 
method for calculating standard errors and confidence intervals. This is also 
true when no computer tool for noncentral interval estimation is available 
for statistics with complex distributions.

The technique of nonparametric bootstrapping seems well suited for inter-
val estimation when the researcher is either unwilling or unable to make a lot 
of assumptions about population distributions. Wood (2005) demonstrated 
the calculation of bootstrapped confidence intervals based on means, medi-
ans, differences between two means or proportions, correlations, and regres-
sion coefficients. His examples are implemented in an Excel spreadsheet7 and 
a small stand-alone program.8 Another computer tool is Resampling Stats 
(Statistics.com, 2009).9 Bootstrapping capabilities were recently added to 
some procedures in SPSS and SAS/STAT.

Outlined next are potential limitations of nonparametric bootstrapping:

1.	Nonparametric bootstrapping simulates random sampling, but 
true random sampling is rarely used in practice. This is another 
instance of the design–analysis mismatch.

2.	It does not entirely free the researcher from having to make 
assumptions about population distributions. If the shape of 
the sample distribution is very different compared with that 
in the population, results of nonparametric bootstrapping may 
have poor external validity.

3.	The “population” from which bootstrapped samples are drawn 
is merely the original data file. If this data set is small or the 
observations are not independent, resampling from it will not 
somehow fix these problems. In fact, resampling can magnify the 
effects of unusual features in a small data set (Rodgers, 2009).

4.	Results of bootstrap analyses are probably quite biased in small 
samples, but this is true of many traditional methods, too.

The starting point for parametric bootstrapping is not a raw data file. 
Instead, the researcher specifies the numerical and distributional properties of 
a theoretical probability density function, and then the computer randomly 
samples from that distribution. When repeated many times by the com-
puter, values of statistics in these synthesized samples vary randomly about 
the parameters specified by the researcher, which simulates sampling error. 
Bootstrapped estimation in parametric mode can also approximate standard 

7http://woodm.myweb.port.ac.uk/nms/resample.xls
8http://woodm.myweb.port.ac.uk/nms/resample.exe
9Resampling Stats is available for a 10-day trial from http://www.resample.com/
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errors for statistics where no textbook equation or approximate method is 
available, given certain assumptions about the population distribution. These 
assumptions can be added incrementally in parametric bootstrapping or suc-
cessively relaxed over the generation of synthetic data sets.

Robust Estimation

The least squares estimators M and s2 are not robust against the effects 
of extreme scores. This is because their values can be severely distorted by 
even a single outlier in a smaller sample or by just a handful of outliers in a 
larger sample. Conventional methods to construct confidence intervals rely 
on sample standard deviations to estimate standard errors. These methods 
also rely on critical values in central test distributions, such as t and z, that 
assume normality or homoscedasticity (e.g., Equation 2.13).

Such distributional assumptions are not always plausible. For example, 
skew characterizes the distributions of certain variables such as reaction times. 
Many if not most distributions in actual studies are not even symmetrical, 
much less normal, and departures from normality are often strikingly large 
(Micceri, 1989). Geary (1947) suggested that this disclaimer should appear 
in all introductory statistics textbooks: “Normality is a myth; there never was, 
and never will be, a normal distribution” (p. 214). Keselman et al. (1998) 
reported that the ratios across different groups of largest to smallest variances 
as large as 8:1 were not uncommon in educational and psychological studies, 
so perhaps homoscedasticity is a myth, too.

One option to deal with outliers is to apply transformations, which con-
vert original scores with a mathematical operation to new ones that may be 
more normally distributed. The effect of applying a monotonic transforma-
tion is to compress one part of the distribution more than another, thereby 
changing its shape but not the rank order of the scores. Examples of transfor-
mations that may remedy positive skew include X1/2, log10 X, and odd-root 
functions (e.g., X1/3). There are many other kinds, and this is one of their 
potential problems: It can be difficult to find a transformation that works in 
a particular data set. Some distributions can be so severely nonnormal that 
basically no transformation will work. The scale of the original scores is lost 
when scores are transformed. If that scale is meaningful, the loss of the scal-
ing metric creates no advantage but exacts the cost that the results may be 
difficult (or impossible) to interpret.

An alternative that also deals with departures from distributional 
assumptions is robust estimation. Robust (resistant) estimators are gener-
ally less affected than least squares estimators by outliers or nonnormality. 
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An estimator’s quantitative robustness can be described by its finite-sample 
breakdown point (BP), or the smallest proportion of scores that when made 
arbitrarily very large or small renders the statistic meaningless. The lower the 
value of BP, the less robust the estimator. For both M and s2, BP = 0, the low-
est possible value. This is because the value of either statistic can be distorted 
by a single outlier, and the ratio 1/N approaches zero as sample size increases. 
In contrast, BP = .50 for the median because its value is not distorted by 
arbitrarily extreme scores unless they make up at least half the sample. But 
the median is not an optimal estimator because its value is determined by a 
single score, the one at the 50th percentile. In this sense, all the other scores 
are discarded by the median.

A compromise between the sample mean and the median is the trimmed 
mean. A trimmed mean Mtr is calculated by (a) ordering the scores from low-
est to highest, (b) deleting the same proportion of the most extreme scores 
from each tail of the distribution, and then (c) calculating the average of the 
scores that remain. The proportion of scores removed from each tail is ptr. If  
ptr = .20, for example, the highest 20% of the scores are deleted as are the 
lowest 20% of the scores. This implies that

1.	the total percentage of scores deleted from the distribution is 
2ptr = 2(.20), or 40%;

2.	the number of deleted scores is 2nptr = .40n, where n is the 
original group size; and

3.	the number of scores that remain is ntr = n – 2nptr = n - .40n, 
where ntr is the trimmed group size.

For an odd number of scores, round the product nptr down to the near-
est integer and then delete that number of scores from each tail of the dis-
tribution. The statistics Mtr and M both estimate µ without bias when the 
population distribution is symmetrical. But if that distribution is skewed, Mtr 
estimates the trimmed population mean µtr, which is typically closer to more 
of the observations than µ.

A common practice is to trim 20% of the scores from each tail of the 
distribution when calculating trimmed estimators. This proportion tends to 
maintain the robustness of trimmed means while minimizing their standard 
errors when sampling from symmetrical distributions; it is also supported by the 
results of computer simulation studies (Wilcox, 2012). Note that researchers 
may specify ptr < .20 if outliers constitute less than 20% of each tail in the 
distribution or ptr > .20 if the opposite is true. For 20% trimmed means, BP = 
.20, which says they are robust against arbitrarily extreme scores unless such 
outliers make up at least 20% of the sample.

A variability estimator more robust than s2 is the interquartile range, 
or the positive difference between the score that falls at the 75th percen-
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tile in a distribution and the score at the 25th percentile. Although BP = 
.25 for the interquartile range, it uses information from just two scores. An 
alternative that takes better advantage of the data is the median absolute 
deviation (MAD), the 50th percentile in the distribution of |X – Mdn|, 
the absolute differences between each score and the median. Because it is 
based on the median, BP = .50 for the MAD. This statistic does not esti-
mate the population standard deviation s, but the product of MAD and 
the scale factor 1.483 is an unbiased estimator of s in a normal population 
distribution.

The estimator 1.483 (MAD) is part of a robust method for outlier 
detection described by Wilcox and Keselman (2003). The conventional 
method is to calculate for each score the normal deviate z = (X – M)/s, which 
measures the distance between each score and the mean in standard devia-
tion units. Next, the researcher applies a rule of thumb for spotting potential 
outliers based on z (e.g., if |z|> 3.00, then X is a potential outlier). Masking, 
or the chance that outliers can so distort values of M or s that they cannot be 
detected, is a problem with this method. A more robust method is based on 
this decision rule applied to each score:

X Mdn−
( ) >

1 483
2 24

.
. ( )

mad
2.28

The value of the ratio in Equation 2.28 is the distance between a score and 
the median expressed in robust standard deviation units. The constant 2.24 
in the equation is the square root of the approximate 97.5th percentile in a 
central c2 distribution with a single degree of freedom. A potential outlier 
thus has a score on the ratio in Equation 2.28 that exceeds 2.24. Wilcox 
(2012) described additional robust detection methods.

A robust variance estimator is the Winsorized variance s2
Win. (The 

terms Winsorized and Winsorization are named after biostatistician Charles 
P. Winsor.) When scores are Winsorized, they are (a) ranked from lowest 
to highest. Next, (b) the ptr most extreme scores in the lower tail of the 
distribution are all replaced by the next highest original score that was not  
replaced, and (c) the ptr most extreme scores in the upper tail are all replaced 
by the next lowest original score that was not replaced. Finally, (d) s2

Win is 
calculated among the Winsorized scores using the standard formula for s2 
(Equation 2.3) except that squared deviations are taken from the Winsorized 
mean MWin, the average of the Winsorized scores, which may not equal Mtr 
in the same sample. The statistic s2

Win estimates the Winsorized population 
variance σ2

Win, which may not equal s2 if the population distribution is 
nonnormal.

13170-03_Ch02-3rdPgs.indd   59 2/1/13   12:02 PM



60           beyond significance testing

Suppose that N = 10 scores ranked from lowest to highest are as follows:

15 16 19 20 22 24 24 29 90 95

The mean and variance of these scores are M = 35.40 and s2 = 923.60, both 
of which are affected by the extreme scores 90 and 95. The 20% trimmed 
mean is calculated by first deleting the lower and upper .20 (10) = 2 most 
extreme scores from each end of the distribution, represented next by the 
strikethrough characters:

15 16 19 20 22 24 24 29 90 95

Next, calculate the average based on the remaining 6 scores (i.e., 19–29). 
The result is Mtr = 23.00, which as expected is less than the sample mean, 
M = 35.40.

When one Winsorizes the scores for the same trimming proportion 
(.20), the two lowest scores in the original distribution (15, 16) are each 
replaced by the next highest score (19), and the two highest scores (90, 95) 
are each replaced by the next lowest score (29). The 20% Winsorized scores 
are listed next:

19 19 19 20 22 24 24 29 29 29

The Winsorized mean is MWin = 23.40. The total sum of squared deviations 
of the Winsorized scores from the Winsorized mean is SSWin = 166.40, and 
the degrees of freedom are 10 – 1, or 9. These results imply that the 20% 
Winsorized variance for this example is s2

Win = 166.40/9, or 18.49. The vari-
ance of the original scores is greater (923.60), again as expected.

Robust Interval Estimation

The Tukey–McLaughlin method (Tukey & McLaughlin, 1963) to 
calculate robust confidence intervals for µtr based on trimmed means and 
Winsorized variances is described next. The standard error of Mtr is estimated 
in this method as

s
s

p n
tm

Win

tr

2.29=
−( )

( )
1 2

For the example where

n p s M= = = = =10 20 18 49 4 30 231 2, . , . . , .tr Win trand 000
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the standard error of the trimmed mean (23.00) is

stm 2 266=
− ( )[ ]

=4 30

1 2 20 10

.

.
.

The general form of a robust 100 (1 – a)% confidence interval for µtr in this 
method is

M s t ntr tm 2-tail, tr – 1 2.30± ( )[ ]α ( )

where ntr is the number of scores that remain after trimming. For the example 
where n = 10 and ptr = .20, the number of deleted scores is 4, so ntr = 6. The 
degrees of freedom are thus 6 – 1 = 5. The value of t2-tail, .05 (5) is 2.571, so the 
robust 95% confidence interval for µtr is

23.00 2.266 2.571± ( )

which defines the interval [17.17, 28.83]. It is not surprising that this robust 
interval is narrower than the conventional 95% confidence interval for µ 
calculated with the original scores, which is [13.66, 57.14]. (You should verify 
this result.)

A robust estimator of the standard error for the difference between inde-
pendent trimmed means when not assuming homoscedasticity is part of the 
Yuen–Welch procedure (e.g., Yuen, 1974). Error variance of each trimmed 
mean is estimated as

w
s n
n n

i
ii

i i

=
−( )
−( )

Win

tr tr
2.31

2 1
1

( )

where s2
Wini

, ni, and ntri
 are, respectively, the Winsorized variance, original group 

size, and effective group size after trimming in the ith group. The Yuen–Welch 
estimate for the standard error of Mtr may be somewhat more accurate than 
the estimate in the Tukey–McLaughlin method (Equation 2.29), but the two 
methods usually give similar values (Wilcox, 2012).

The Yuen–Welch standard error of Mtr1 – Mtr2 is

s w wYW 2.32= −1 2 ( )

and the adjusted degrees of freedom in a central t distribution are estimated as

df
w w

w
n

w
n

YW

tr1 tr2

2.33= +

−
+

−

( )
( )1 2

2

1
2

2
2

1 1
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The general form of a 100 (1 – s)% confidence interval for µtr1 – µtr2 in this 
method is

M – M s t dftr1 tr2 YW 2-tail, YW 2.34± ( )[ ]α ( )

Listed in Table 2.4 are raw scores with outliers and descriptive statis-
tics for two groups where n = 10. The trimming proportion is ptr = .20, so 
ntr = 6 in each group. Outliers in both groups inflate variances relative to 
their robust counterparts (e.g., s2

2 = 503.78, s2
Win2  = 9.07). Extreme scores in 

group 2 (2, 3, 82) fall in both tails of the distribution, so nonrobust versus 
robust estimates of central tendency are more similar (M2 = 21.00, Mtr2 = 
17.00) than in group 1. Exercise 5 asks you to verify the robust estimators 
for group 2 in Table 2.4.

Summarized next are robust descriptive statistics for the data in Table 2.4:

M s M str1 Win1 tr2 Win2= 23.00, =18.489 and =17.00,2 22 = 9.067

– =6.00tr1 tr2M M

The standard error of the trimmed mean contrast is estimated in the Yuen–
Welch method as

Table 2.4
Raw Scores With Outliers and Descriptive Statistics for Two Groups

Group

1 2

15 3
16 2
19 21
20 18
22 16
24 16
24 13
28 19
90 20
95 82

M 35.40 21.00
Mtr 23.00 17.00
MWin 23.40 16.80
s2 923.600 503.778
s2

Win 18.489 9.067

Note.  The trimming proportion is ptr = .20.
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w w1 25 547 and 2= = = =18 489 9
6 5

9 067 9
6 5

. ( )
( )

.
. ( )

( )
..

. . .

72

2 875YW

0

5 547 2 720s = + =

and the degrees of freedom are calculated as

dfYW 8 953= +( )
+

=5 547 2 720
5 547

5
2 720

5

2

2 2

. .
. .

.

The value of t2-tail, .05 (8.953) is 2.264. The robust 95% confidence interval for 
µtr1 – µtr2 is

6.00 2.875 2.264± ( )

which defines the interval [-.51, 12.51]. Thus, µtr1 – µtr2 could be as low as 
-.51 or it could be as high as 12.51, with 95% confidence and not assuming 
homoscedasticity. Wilcox (2012) described a robust version of the Welch 
procedure that is an alternative to the Yuen–Welch method, and Keselman, 
Algina, Lix, Wilcox, and Deering (2008) outlined robust methods for depen-
dent samples.

A modern alternative in robust estimation to relying on formulas to esti-
mate standard errors and degrees of freedom in central test distributions that 
assume normality is bootstrapping. There are methods to construct robust non-
parametric bootstrapped confidence intervals that protect against repeated 
selection of outliers in the same generated sample (Salibián-Barrera & Zamar,  
2002). Otherwise, bootstrapping is applied in basically the same way as described 
in the previous section but to generate empirical sampling distributions for 
robust estimators.

Standard computer programs for general statistical analyses, such as SPSS 
and SAS/STAT, have limited capabilities for robust estimation. Wilcox (2012) 
described add-on modules (packages) for conducting robust estimation in R, a 
free, open source computing environment for statistical analyses, data mining, 
and graphics.10 It runs on Unix, Microsoft Windows, and Apple Macintosh fam-
ilies of operating systems. A basic R installation has about the same capabilities 
as some commercial statistical programs, but there are now over 2,000 packages 
that further extend its capabilities. Wilcox’s (2012) WRS package has routines 
for robust estimation, outlier detection, comparisons, and confidence interval 

10http://www.r-project.org/
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construction in a variety of univariate or multivariate designs.11 Additional  
R packages for robust estimation are available from the Institut universitaire de 
médecine sociale et préventive (IUMSP).12 See Erceg-Hurn and Mirosevich 
(2008) for more information about robust estimation.

Conclusion

The basic logic of sampling and estimation was described in this chap-
ter. Confidence intervals based on statistics with simple distributions rely on 
central test statistics, but statistics with complex distributions may follow 
noncentral distributions. Special software tools are typically needed for non-
centrality interval estimation. The lower and upper bounds of a confidence 
interval set reasonable limits for the value of the corresponding parameter, 
but there is no guarantee that a specific confidence interval contains the 
parameter. Literal interpretation of the percentages associated with a confi-
dence interval assumes random sampling and that all other sources of impre-
cision besides sampling error are nil. Interval estimates are better than point 
estimates because they are, as the astronomer Carl Sagan (1996, pp. 27–28) 
described them, “a quiet but insistent reminder that no knowledge is com-
plete or perfect.” Methods for robust interval estimation based on trimmed 
means and Winsorized variances were introduced. The next chapter deals 
with the logic and illogic of significance testing.

Learn More

Cumming (2012) gives clear introductions to interval estimation, effect 
size estimation, and meta-analysis. Chernick (2008) describes bootstrapping 
methods for estimation, forecasting, and simulation. The accessible book by 
Wilcox (2003) gives more detail about robust statistics.

Chernick, M. R. (2008). Bootstrap methods: A guide for practitioners and researchers 
(2nd ed.). Hoboken, NJ: Wiley.

Cumming, G. (2012). Understanding the new statistics: Effect sizes, confidence intervals, 
and meta-analysis. New York, NY: Routledge.

Wilcox, R. R. (2003). Applying contemporary statistical techniques. New York, NY: 
Academic Press.

11http://dornsife.usc.edu/labs/rwilcox/software/
12http://www.iumsp.ch/Unites/us/Alfio/msp_programmes.htm
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Exercises

1.	Explain the difference between the standard deviation s and 
the standard error sM.

2.	Interpret s = 60.00 and sM = 6.00 for the same data set. What is 
the sample size?

3.	 For M = 100.00, s = 9.00, and N = 25, show that the 99% confi-
dence interval for µ is wider than the corresponding 95% interval.

4.	For the data in Table 2.2, calculate the 95% confidence interval 
for µD and the 95% confidence interval for µ1 - µ2.

5.	For the data in Table 2.4, verify the values of the robust estima-
tors for group 2.

6.	What is the relation between Mtr and MWin in the Tukey–
McLaughlin method?
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3
Logic and Illogic of 
Significance Testing

This chapter covers the logic of significance testing, including ele-
ments that make little sense in most studies. Poor practices are also out-
lined, such as the specification of arbitrary levels of statistical significance 
and the failure to estimate a priori power. It is emphasized that all statisti-
cal tests rely on assumptions that are generally unrealistic. They are also 
confounded measures of effect size and sample size. Robust statistical tests 
that depend on fewer distributional assumptions than do parametric tests 
are introduced, but robust tests do not solve major shortcomings of signifi-
cance testing. Some of the topics reviewed next are relatively complicated, 
but they illustrate limitations of statistical tests with which you may be less 
familiar. Completing the exercises for this chapter will help you to manage 
this material.

DOI: 10.1037/14136-003
Beyond Significance Testing: Statistics Reform in the Behavioral Sciences, Second Edition, by R. B. Kline
Copyright © 2013 by the American Psychological Association. All rights reserved.

One more asterisk
To rest like eyes of dead fish—
Rigor mortis stars

—Stephen Ziliak and Deirdre McCloskey (2008, p. 87)
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Two Schools

Summarized in Table 3.1 are the basic steps of the Fisher and Neyman–
Pearson approaches to statistical inference. In Fisher’s method, p from a sta-
tistical test measures the strength of the evidence against the null hypothesis 
H0. If p is sufficiently small, H0 can be rejected. Fisher advocated p < .05 as 
a pragmatism for “small enough” (i.e., to reject H0 due to a sufficiently low 
value of p) but not as a golden rule. There was no alternative hypothesis H1 
in Fisher’s method. Specification of a fixed level of a (e.g., .05 or .01) and an 
explicit H1 typifies the Neyman–Pearson model. These steps imply the dis-
tinction between Type I error (false rejection of H0) and Type II error (false 
retention of H0). The probability of a Type I error is a, and the likelihood of 
a Type II error is represented by b. Power is the complement of b, or 1 – b, 
defined as the probability of correctly rejecting H0 when H1 is true. A power 
analysis estimates the probability of a Type II error as b = 1 – power. Recall 
that power is the probability of getting a statistically significant result over 
random replications (in the long run) when H1 is true.

Power analysis concerns a loss function for Type II error. A loss func-
tion estimates with a single number the cost of a specific decision error. Cost 
can be measured in monetary terms or in a different metric that represents 
loss of utility, or relative satisfaction, in some area. A loss function theoreti-
cally enables the researcher to weigh the consequences of low power (high b) 
against the risk of Type I error (a). This mental balancing act could facilitate 
a better understanding of implications for specifying a = .05 versus a = .01 
(or some other value).

Fisher vehemently opposed loss functions because he believed that sta-
tistical inference must respect the pure aim of science, the accumulation and 
dissemination of knowledge. Entertaining any other consideration would, 

Table 3.1
Steps in Fisher Significance Testing and Neyman–Pearson  

Hypothesis Testing

Fisher Neyman–Pearson

1.  State H0. 1.  State H0 and H1.
2.  Specify test statistic. 2.  Specify a (usually .05 or .01)
3. � Collect data, calculate test statistic, 

determine p.
3. � Specify test statistic and critical 

value(s).
4. � Reject H0 if p is small; otherwise,  

H0 is retained.
4. � Collect data, calculate test statistic, 

determine p.
5. � Reject H0 in favor of H1 if p < a;  

otherwise, H0 is retained.

Note.  H0 = null hypothesis; H1 = alternative hypothesis.
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in his view, sully the scientific process and censor the researcher in advance 
(e.g., Fisher, 1956, pp. 102–103). What is probably closer to the truth is that 
Fisher’s rather acerbic personality was unable to tolerate any extension of his 
original work or share academic credit with Neyman, Pearson, Gosset, and 
others (see Ziliak & McCloskey, 2008, Chapters 21–22).

It was rarely mentioned in statistics textbooks from the 1960s–2000s 
that the Intro Stats method is the synthesis of two schools with contradictory 
elements. Instead, it was typically described in these works without mention-
ing Fisher, Neyman, or Pearson by name and with no citations at all. This 
anonymous style of presentation gave the false impression that the Intro Stats 
method is so universal that citation is unnecessary. Most books also failed 
to mention the significance testing controversy (Gliner, Leech, & Morgan, 
2002), which also discouraged critical thinking on the part of students about 
what they are reading (Gigerenzer, 2004). Some more recent books do not 
make these mistakes (e.g., McGrath, 2011), but they are still too rare.

Sense and Nonsense of the Intro Stats Model

Emphasized next are aspects of significance testing that are not well 
understood by many students and researchers.

Null Hypotheses

The standard H0 is both a point hypothesis and a nil hypothesis. A 
point hypothesis specifies the numerical value of a parameter or the differ-
ence between two or more parameters, and a nil hypothesis states that this 
value is zero. The latter is usually a prediction that an effect, difference, or 
association is zero. Examples of nil hypotheses are presented next:

H H HD0 0 0: 0 : 0 : 0µ µ µ ρ1 2− = = =

In contrast, a non-nil hypothesis asserts that an effect is not zero. Examples 
include

H H HD0 1 2 0 0: 5.00 : 10.00 : .30µ µ µ ρ– = = =

Nil hypotheses as default explanations may be fine in new research 
areas when it is unknown whether effects exist at all. But they are less suit-
able in established areas when it is known that some effect is probably not 
zero. For example, gender differences in certain personality characteristics 
have remained fairly constant over time, although their magnitudes can 

13170-04_Ch03-3rdPgs.indd   69 2/1/13   12:02 PM



70           beyond significance testing

vary with age or context (Hyde, 2005). Specification of a nil hypothesis 
when measuring gender differences in such characteristics may set the bar 
too low.

There are also cases where nil hypotheses are indefensible, such as when 
testing score reliability coefficients for statistical significance. This is because 
“declaring a reliability coefficient to be nonzero constitutes the ultimate 
in stupefyingly vacuous information” (Abelson, 1997b, p. 13). Such coef-
ficients should be interpreted in an absolute sense depending on the context 
(e.g., requiring rXX > .70 for test–retest reliability). Nil hypotheses also usu-
ally make little sense for validity coefficients. It is more realistic to assume 
nonzero population correlations because, at some level, everything is related 
to everything else. Meehl (1990) referred to these expected nonzero associa-
tions as a crud factor. Although exact values of the crud factor are unknown, 
correlations may depart even further from zero for variables assessed with the 
same measurement method. Correlations that result from common method 
variance may be as high as .20 to .30 in absolute value. Validity coefficients 
should be interpreted in absolute ways, too, given the context of the study. 
For example, such coefficients are typically higher in cross-sectional studies 
than in longitudinal studies. What represents a “significant” (i.e., substan-
tive) correlation depends on the research area, not on the results of a statisti-
cal significance test.

Nil hypotheses are tested much more often than non-nil hypotheses 
even when the former are implausible. Many researchers are unaware of the 
possibility of specifying non-nil hypotheses, but most statistical computer 
tools test only nil hypotheses. This means that such tests must be calculated 
by hand, but doing so is feasible only for simple hypotheses, such as H0: 
µ1 – µ2 = 10.00, which can be evaluated without difficulty with the t test. 
If a nil hypothesis is implausible, estimated probabilities of data will be too 
low. This means that risk for Type I error is basically zero and a Type II error 
is the only possible kind when H0 is known in advance to be false.

The most common context for significance testing is reject-support 
testing, where rejection of H0 supports the researcher’s theory. The oppo-
site is true in accept-support testing, where the failure to reject H0 supports 
the researcher’s expectations (Steiger & Fouladi, 1997). An implication of 
this distinction is that statistical significance is not always good news for the 
researcher’s hypotheses. Another is that accept-support tests are logically 
weak because lack of evidence to disprove an assertion does not prove that 
it is true. Low power can lead to failure to reject H0, which in accept-support 
testing favors the researcher’s hypothesis. In other words, the researcher is 
potentially “rewarded” for having a sample size that is too small (i.e., low 
power) in accept-support testing. In contrast, low power works against the 
researcher’s hypothesis in reject-support testing.
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Alternative Hypotheses

The standard H1 is a range hypothesis. A two-tailed (nondirectional) 
hypothesis predicts any result not specified in H0, but a one-tailed (direc-
tional) hypothesis predicts values on only one side of H0. Given H0: r = 0,  
for example, there is only one nondirectional alternative, H1: r ≠ 0, but there 
are two possible directional alternatives, H1: r > 0 or H1: r < 0. The form 
of H1 is supposed to be specified before data are collected. The choice also 
affects the outcome. It is easier to reject H0 when the data are consistent 
with a one-tailed H1, and power is greater, too, if H0 is actually false. If H1 
is directional but the data indicate an effect in the other direction, H0 is 
retained though the results are very inconsistent with it. This rule is not 
always followed. Sometimes researchers switch from a nondirectional H1 to 
a directional H1 or from one directional H1 to its opposite in order to reject 
H0. Some would consider changing H1 based on the data a kind of statistical 
sin to be avoided. Like those against other kinds of sin, such admonitions are 
not always followed.

Level of Type I Error

Alpha (a) is the probability of making a Type I error over random rep-
lications. It is also the conditional prior probability of rejecting H0 when it 
is actually true, or

α = ( )p H HReject true 3.10 0 ( )

Both descriptions are frequentist statements about the likelihood of Type I 
error.

Too many researchers treat the conventional levels of a, either .05 or 
.01, as golden rules. If other levels of a are specified, they tend to be even 
lower, such as .001. Sanctification of .05 as the highest “acceptable” level is 
problematic. In reject-support testing, where rejecting H0 favors the research-
er’s theory, a should be as low as possible from the perspective of journal 
reviewers and editors, who may wish to guard against bogus claims (Type I 
error). But in accept-support testing, a greater worry is Type II error because 
false claims in this context arise from not rejecting H0, which supports the 
researcher’s theory. Insisting on low values of a in this case may facilitate 
publication of sham claims, especially when power is low.

Instead of blindly accepting either .05 or .01, one does better to follow 
Aguinis et al.’s (2010) advice: Specify a level of a that reflects the desired 
relative seriousness (DRS) of Type I error versus Type II error. Suppose a 
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researcher will study a new treatment for a disorder where no extant treat-
ment is effective. The researcher decides that the risk of a Type II error should 
be no more than .10. A Type II error in this context means that the treat-
ment really makes a difference, but the null hypothesis of no difference is 
not rejected. This low tolerance for Type II error reflects the paucity of good 
treatment options. It is also decided that the risk of a Type I error is half as 
serious as that of making a Type II error, so DRS = .50.

The desired level of a is computed as

α β
des

dRS
3.2= ( )

− ( )












p H
p H

1

11
1

( )

where p (H1) is the prior probability that the alternative hypothesis is 
true. This probability could be established rationally based on theory or the 
researcher’s experience, or it could be estimated in a Bayesian analysis given 
results from prior studies. Suppose the researcher estimates that p (H1) = .60 
for the example where b = .10 and DRS = .50. The desired level of a is

αdes = ( )
−











 =. .

. .
.

60 10
1 60

1
50

30

which says that a = .30 reflects the desired balance of Type I versus Type II 
error. The main point is that researchers should not rely on a mechanical 
ritual (i.e., automatically specify .05 or .01) to control risk for Type I error 
that ignores the consequences of Type II error. Note that the estimate of  
p (H1) could come from a Bayesian analysis based on results of prior stud-
ies. In this case, the form of the probability that H1 is true would be that of 
the conditional probability p (H1 | Data), where “Data” reflects extant results 
and the whole conditional probability is estimated with Bayesian methods 
(Chapter 10).

The level of a sets the risk of Type I error for a single test. There is also 
experimentwise (familywise) error rate, or the likelihood of making at least 
one Type I error across a set of tests. If each individual test is conducted at 
the same level of a, then

α αew 1 3.3= −( )– ( )1 c

where c is the number of tests. Suppose that 20 statistical tests are conducted, 
each at a = .05. The experimentwise error rate is

αew
201 1 .05 .64= ( ) =– –
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which says that the risk of making a Type I error across all tests is .64. 
Equation 3.3 assumes independent hypotheses or outcomes; otherwise, the 
estimate of .64 is too low. This result is the probability of one or more Type I 
errors, but it does not indicate how many errors may have been committed 
(it could be 1, or 2, or 3 . . . ) or on which tests they occurred.

Experimentwise Type I error is controlled by reducing the number of 
tests or specifying a lower a for each one. The former is realized by prioritiz-
ing hypotheses (i.e., testing just the most important ones), which means that 
“fishing expeditions” in data analysis are to be avoided. Another way is to use 
multivariate techniques that can test hypotheses across several variables at 
once. The Bonferroni correction is a simple method to set a for individual 
tests: Just divide a target value of aew by the total number of tests; the result 
is aBon. Suppose a researcher wishes to limit the experimentwise error rate to 
.30 for a set of 20 tests. Thus, aBon = .30/20 = .015, which is the level of a for 
each individual test. Not all methodologists believe that controlling experi-
mentwise Type I error is generally a desirable goal, especially when power is 
already low in reject-support testing at the conventional levels of statistical 
significance, such as .05.

A danger of conducting too many significance tests is HARKing 
(hypothesizing after the results are known). This happens when the researcher 
keeps testing until H0 is rejected—which is practically guaranteed by the 
phenomenon of experimentwise error—and then positions the paper as if 
those findings were the object of the study (Ellis, 2010). Austin, Mamdani, 
Juurlink, and Hux (2006) demonstrated how testing multiple hypotheses 
not specified in advance increases the likelihood of discovering implausible 
associations. Using a database of about 10 million cases, they conducted sta-
tistical tests until finding 2 out of 200 disorders for which people born under 
particular astrological signs had significantly higher base rates. These associa-
tions “disappeared” (were no longer statistically significant) after controlling 
for multiple comparisons.

Another argument against using statistical tests to “snoop” for results 
by checking for significance is Feynman’s conjecture, named after the physi-
cist and Nobel laureate Richard Feynman (Gigerenzer, 2004). It is the asser-
tion that the p < a is meaningful only when hypotheses are specified before 
the data are collected. Otherwise, significance testing capitalizes on chance, 
which is not taken into account by p values. That is, the appropriate way to 
test a pattern found by accident in one sample is to repeat the analysis in a 
replication sample with new cases. Only in the latter case would p for the test 
of the original pattern be meaningful. A related misuse is testing to a fore-
gone conclusion, or the practice of collecting data until p < .05 is observed. 
The problem with this tactic is that the actual rate of Type I error for the 
last statistical test is > .05, and the reason is Feynman’s conjecture. A better 
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stopping rule for data collection is a minimum sample size needed to attain 
a target level of power (e.g., ≥ .80) in a particular study. Power analysis is 
described later.

p Values

All statistical tests do basically the same thing: The difference between 
a sample result and the value of the corresponding parameter(s) specified in 
H0 is divided by the estimated sampling error, and this ratio is then summa-
rized as a test statistic (e.g., t, F, c2). That ratio is converted by the computer 
to a probability based on a theoretical sampling distribution (i.e., random 
sampling is assumed). Test probabilities are often printed in computer output 
under the column heading p, which is the same abbreviation used in jour-
nal articles. You should not forget that p actually stands for the conditional 
probability

p Hdata and all other assumptions+( )0

which represents the likelihood of a result or outcomes even more extreme 
(Data +) assuming

1.	the null hypothesis is exactly true;
2.	the sampling method is random sampling;
3.	all distributional requirements, such as normality and homosce-

dasticity, are met;
4.	the scores are independent;
5.	the scores are also perfectly reliable; and
6.	there is no source of error besides sampling or measurement 

error.

In addition to the specific observed result, p values reflect outcomes 
never observed and require many assumptions about those unobserved 
data. If any of these assumptions are untenable, p values may be inaccurate. 
If p is too low, there is positive bias, and (a) H0 is rejected more often than it 
should be and (b) the nominal rate of Type I error is higher than the stated 
level of a. Negative bias means just the opposite—p is too high—and it also 
reduces statistical power because it is now more difficult to reject the null 
hypothesis.

Although p and a are derived in the same theoretical sampling dis-
tribution, p does not estimate the conditional probability of a Type I error 
(Equation 3.1). This is because p is based on a range of results under H0, but a 
has nothing to do with actual results and is supposed to be specified before any 
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data are collected. Confusion between p and a is widespread (e.g., Hubbard, 
Bayarri, Berk, & Carlton, 2003). To differentiate the two, Gigerenzer (1993) 
referred to p as the exact level of significance. If p = .032 and a = .05, H0 is 
rejected at the .05 level, but .032 is not the long-run probability of Type I 
error, which is .05 for this example.

The exact level of significance is the conditional probability of the 
data (or any result even more extreme) assuming H0 is true, given all other 
assumptions about sampling, distributions, and scores. Some other correct 
interpretations for p < .05 are listed next:

1.	Suppose the study were repeated many times by drawing many 
random samples from very large population(s) where H0 is true. 
Less than 5% of these hypothetical results would be even more 
inconsistent with H0 than the actual result.

2.	Less than 5% of test statistics from many random samples are 
further away from the mean of the sampling distribution under 
H0 than the one for the observed result.

That is about it; other correct definitions may just be variations of those 
listed. The range of correct interpretations of p is thus actually narrow. It also 
depends on many assumptions about idealized sampling methods or measure-
ment that do not apply in most studies.

Because p values are estimated assuming that H0 is true, they do not 
somehow measure the likelihood that H0 is correct. At best they provide 
only indirect evidence against H0, but some statisticians object to even this 
mild characterization (e.g., Schervish, 1996). The false belief that p is the 
probability that H0 is true, or the inverse probability error (see Chapter 1), 
is widespread. Many other myths about p are described in the next chapter.

Cumming (2008) studied prediction intervals for p, which are inter-
vals with an 80% chance of including p values from random replications. 
Summarized next for designs with two independent samples are computer 
simulation results for one-tailed prediction intervals for one-tailed repli-
cations, or results that are in the same direction as the initial study. The 
lower bound is 0, and the upper bound is the 80th percentile in the sam-
pling distribution of p values from replications. This interval contains the 
lower 80% of p values in the sampling distribution and the rest, or 20%, 
exceed the upper bound. The one-tailed prediction interval for p = .05 
regardless of sample size is (0, .22), so 80% of replication p values are 
between 0 and .22, but 20% exceed .22. The corresponding interval for  
p = .01 is (0, .083), which is narrower than that for p = .05 but still rela-
tively wide. Cumming (2008) concluded that p values generally provide 
unreliable information about what is likely to happen in replications unless 
p is very low, such as < .001.
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Probabilities from significance tests say little about effect size. This is 
because essentially any test statistic (TS) can be expressed as the product

TS eS 3.4= × ( )f N ( )

where ES is an effect size and f (N) is a function of sample size. This equation 
explains how it is possible that (a) trivial effects can be statistically signifi-
cant in large samples or (b) large effects may not be statistically significant 
in small samples. So p is a confounded measure of effect size and sample size. 
Statistics that directly measure effect size are introduced in Chapter 5.

Power

Power is the probability of getting statistical significance over many ran-
dom replications when H1 is true. It varies directly with sample size and the 
magnitude of the population effect size. Other factors that influence power 
include

1.	the level of statistical significance (e.g., a = .05 vs. a = .01);
2.	the directionality of H1 (i.e., directional vs. nondirectional);
3.	whether the design is between-subjects or within-subjects;
4.	the particular test statistic used; and
5.	the reliability of the scores.

This combination leads to the greatest power: a large population effect size, 
a large sample, a higher level of a (e.g., .05 instead of .01), a within-subjects 
design, a parametric test rather than a nonparametric test (e.g., t instead of 
Mann–Whitney), and very reliable scores.

A computer tool for power analysis estimates the probability of rejecting 
H0, given specifications about population effect size and study characteristics. 
Power can be calculated for a range of estimates about population effect size 
or study characteristics, such as sample size. The resulting power curves can 
then be compared. A variation is to specify a desired level of power and then 
estimate the minimum sample size needed to obtain it.

There are two kinds of power analysis, proper and improper. The former 
is a prospective (a priori) power analysis conducted before the data are col-
lected. Some granting agencies require a priori power analyses. This is because 
if power is low, it is unlikely that the expected effect will be detected, so why 
waste money? Power ≥ .80 is generally desirable, but an even higher standard 
may be need if consequences of Type II error are severe. There are some free 
power analysis computer tools, including G*Power 3 (Faul, Erdfelder, Lang, 
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& Buchner, 2007)1 and Lenth’s (2006–2009) online Java applets for power 
analysis.2

The improper kind is a retrospective (post hoc, observed) power analysis 
conducted after the data are collected. The effect size observed in the sample 
is treated as the population effect size, and the computer estimates the prob-
ability of rejecting H0, given the sample size and other characteristics of the 
analysis. Post hoc power is inadequate for a few reasons (Ellis, 2010; O’Keefe, 
2007). Observed effect sizes are unlikely to equal corresponding population 
effect sizes. The p values from statistical tests vary inversely with power, so if 
results are not statistically significant, observed power must be low. Low post 
hoc power suggests that the sample is too small, but the researcher should 
have known better in the first place. A retrospective power analysis is more 
like an autopsy conducted after things go wrong than a diagnostic procedure 
(i.e., a priori power analysis). Do not bother to report observed power.

Reviews from the 1970s and 1980s indicated that the typical power of 
behavioral science research is only about .50 (e.g., Sedlmeier & Gigerenzer, 
1989), and there is little evidence that power is any higher in more recent 
studies (e.g., Brock, 2003). Ellis (2010) estimated that < 10% of studies have 
samples sufficiently large to detect smaller population effect sizes. Increasing 
sample size would address low power, but the number of additional cases nec-
essary to reach even nominal power when studying smaller effects may be so 
great as to be practically impossible (F. L. Schmidt, 1996). Too few research-
ers, generally < 20% (Osborne, 2008), bother to report prospective power 
despite admonitions to do so (e.g., Wilkinson & the TFSI, 1999).

The concept of power does not stand without significance testing. As 
statistical tests play a smaller role in the analysis, the relevance of power 
also declines. If significance tests are not used, power is irrelevant. Cumming 
(2012) described an alternative called precision for research planning, where 
the researcher specifies a target margin of error for estimating the parameter 
of interest. Next, a computer tool, such as ESCI (see footnote 4, Chapter 2), 
is used to specify study characteristics before estimating the minimum sample 
size needed to meet the target. The advantage over power analysis is that 
researchers must consider both effect size and precision in study planning.

Reviewed next are the t and F tests for means and the c2 test for two-
way contingency tables. Familiarity with these basic test statistics will help 
you to better appreciate limitations of significance testing. It is also possible 
in many cases to calculate effect sizes from test statistics, so learning about t, 
F, and c2 gives you a head start toward understanding effect size estimation.

1http://www.psycho.uni-duesseldorf.de/abteilungen/aap/gpower3/
2http://www.stat.uiowa.edu/~rlenth/Power/
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t Tests for Means

The t tests reviewed next compare means from either two independent 
or two dependent samples. Both are special cases of the F test for means such 
that t2 = F for the same contrast and a nil hypothesis. The general form of t 
for independent samples is

t N
M M

sM M

−( ) = −( )− −( )
−

2 1 2 1 2

1 2

µ µ
( )3.5

where N – 2 are the pooled within-groups degrees of freedom dfW,  M1 – M2 
and sM1 - M2 are, respectively, the observed mean contrast and its standard error 
(Equation 2.12), and µ1 - µ2 is the population contrast specified in H0. For a 
nil hypothesis, µ1 - µ2 = 0.

Suppose that patients given an established treatment score on average 
10 points more than control cases on an outcome where higher scores are better. 
A new treatment is devised that is hoped to be even more effective; otherwise, 
there is no need to abandon the old treatment. If population 1 corresponds to 
the new treatment and population 2 is control, the non-nil hypothesis

H0 1 2: 10.00µ µ– =

is more appropriate than the nil hypothesis

H0 1 2: 0µ µ– =

because the effect of the old treatment is not zero. Results from a study of the 
new treatment are

M M n n sM M1 2 1 215.00, 25, 4.50– = = = =−1 2

For a two-tailed H1, results of the t test for the two null hypotheses are

t p

t

non-nil

ni

48 1 11 272( ) = − = =15 00 10 00
4 50

. .
.

. , .

ll 48( ) = = =15 00
4 50

3 33 002
.
.

. , .p

This example illustrates the principle that the relative rareness of data under 
implausible null hypotheses compared with more null plausible hypotheses 
is exaggerated (respectively, .002 vs. .272). This is why Rouder, Speckman, 
Sun, and Morey (2009) wrote, “As a rule of thumb, hypothesis testing should 
be reserved for those cases in which the researcher will entertain the null as 
theoretically interesting and plausible, at least approximately” (p. 235).
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Computer tools for statistical analyses generally assume nil hypoth-
eses and offer no option to specify non-nil hypotheses. It is no problem 
to calculate the t test by hand for non-nil hypotheses, but it is practically 
impossible to do so for many other tests (e.g., F). It is ironic that modern 
computer tools for statistics are so inflexible in their nil-hypothesis-centric 
focus.

Power of the independent samples t test is greatest in balanced designs 
with the same number of cases in each group. There is loss of power in unbal-
anced designs even if the total number of cases is equal for a balanced versus 
unbalanced design. Rosenthal, Rosnow, and Rubin (2000) showed that the 
power loss for an unbalanced design where n1 = 70 and n2 = 30 is equivalent 
to losing 16 cases (16% of the sample) from the balanced design where n1 =  
n2 = 50. Relative power generally decreases as the group size disparity increases 
in unbalanced designs.

The form of the t test for a dependent mean contrast is

t n
M

s
D D

MD

−( ) = −
1

µ
( )3.6

where the degrees of freedom are the group size (n) minus 1, MD and sMD 
are, respectively, the observed mean difference score and its standard error 
(Equation 2.20), and µD is the population dependent mean contrast specified 
in H0. The latter is zero for a nil hypothesis.

Assuming a nil hypothesis, both forms of the t test defined express a 
contrast as the proportion of its standard error. If t = 1.50, for example, the 
first mean is 1½ standard errors higher than the second, but the sign of t is 
arbitrary because it depends on the direction of subtraction. You should know 
that the standard error metric of t is affected by sample size. Suppose descrip-
tive statistics for two groups in a balanced design are

M s M s1 213.00, 7.50 and 11.00, 5.00= = = =1
2

2
2

which imply M1 – M2 = 2.00. Reported in Table 3.2 are results of the indepen-
dent samples t test for these data at three different group sizes, n = 5, 15, and 
30. Note that the pooled within-groups variance, s2

pool = 6.25 (Equation 2.13), 
is unaffected by group size. This is not true for the denominator of t, sM1 - M2, 
which gets smaller as n increases. This causes the value of t to go up and its  
p value to go down for the larger group sizes. Consequently, the test for n = 5 is 
not statistically significant at p < .05, but it is for the larger group sizes. Results 
for the latter indicate less sampling error but not a larger effect size. Exercise 1 
asks you to verify the results in Table 3.2 for n = 15.
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The standard error metric of t is also affected by whether the means are 
independent or dependent. Look back at Table 2.2, which lists raw scores and 
descriptive statistics for two samples where M1 – M2 = 2.00, s2

1 = 7.50, and s2
2 = 

5.00. Summarized next for these data are results of the t test and confidence 
intervals assuming n = 5 in each of two independent samples:

M M s t pM M1 2 ind2.00, 1.581, (8) 1.26, .24− = = = =−1 2 22

95% ci for 1.65, 5.651 2µ µ− −[ ]

Results for the same data but now assuming n = 5 pairs of scores across depen-
dent samples are

M r s tD MD= = = ( ) = =2.00, .735, .837, 4 2.39, p .12 dep 0075

95% ci for .32, 4.32µD −[ ]

Note the smaller standard error, higher value of t and its lower p value, and the 
narrower 95% confidence interval in the dependent samples analysis relative 
to the independent samples analysis of the same raw scores. The assumptions 
of the t tests are the same as those of the independent samples F test, which 
are considered in the next section.

The Welch t test, also called the Welch–James t test (e.g., James, 1951), 
for independent samples assumes normality but not homoscedasticity. Its 
equation is

t df =
M M

s
wel wel

wel
3.7( ) −( ) − −( )1 2 1 2µ µ

( )

Table 3.2
Results of the Independent Samples t Test at Three Different Group Sizes

Group size (n)

Statistic 5 15 30

sM1-M2 1.581 .913 .645
t 1.26 2.19 3.10
dfW 8 28 58
p .242 .037 .003
t2-tail, .05 2.306 2.048 2.002
95% CI for µ1 - µ2 -1.65, 5.65 .13, 3.87 .71, 3.29

Note.  For all analyses, M1 = 13.00, s1
2 = 7.50, M2 = 11.00, s2

2 = 5.00, s2
pool = 6.25, and p values are two-tailed 

and for a nil hypothesis. CI = confidence interval.
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where sWel and the estimated degrees of freedom dfWel are defined by, respec-
tively, Equations 2.15 and 2.16. The Welch t test is generally more accurate 
than the standard t test when the population distributions are heteroscedastic 
but normal (Keselman et al., 2008). But neither test may be accurate when 
the population distributions are not normal, the group sizes are both small 
and unequal, or there are outliers.

F Tests for Means

The t test analyzes focused comparisons (contrasts) between two 
means. A contrast is a single-df effect that addresses a specific question, such 
as whether treatment and control differ. The F test can analyze focused com-
parisons, too (t2 = F for a contrast). But only F can also be used in omnibus 
comparisons that simultaneously compare at least three means for equality.

Suppose factor A has a = 3 levels. Its omnibus effect has two degrees of 
freedom (dfA = 2), and the hypotheses tested by F for this effect are listed next:

H H H0 1 2 3 1 1 2 3 0: and : i.e., otµ µ µ µ µ µ= = ≠ ≠ ( )n

Rejecting H0 says only that differences among M1, M2, and M3 are unlikely. 
This result alone is not very informative. A researcher may be more inter-
ested in focused comparisons, such as whether each of two treatment condi-
tions differs from control, which break down the omnibus effect into specific 
directional effects. Thus, it is common practice either to follow an omni-
bus comparison with contrasts or to forgo the omnibus test and analyze only 
contrasts. The logic of the F test in single-factor designs with a ≥ 3 levels is 
considered next. Chapter 7 addresses contrast analysis in such designs, and 
Chapter 8 covers designs with multiple factors.

Independent Samples

The general form of the F test for independent samples is

F df df
MS
MS

A W
A

W

, ( )( ) = 3.8

where dfA = a – 1 and dfW are the pooled within-groups degrees of freedom, or

df df n N aW i
i

a

i
i

a

= = − = −
= =
∑ ∑

1 1

1( ) ( )3.9
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The numerator is the between-groups mean square. Its equation is

MS
SS
df

n M M

a
A

A

A

i i T
i

a

= =
−

−
=
∑ ( )

( )

2

1

1
3.10

where SSA is the between-groups sum of squares, ni and Mi are, respectively, 
the size and mean of the ith group, and MT is the grand mean. This term 
reflects group size and sources of variation that lead to unequal group means, 
including sampling error or a real effect of factor A.

The denominator of F is the pooled within-groups variance MSW, and 
it measures only error variance. This is because cases within each group are 
all treated the same, so variation of scores around group means has nothing 
to do with any effect of the factor. This error term is not affected by group 
size because functions of n appear in both its numerator and its denominator,

MS
SS
df

df s

df
W

W

W

i i
i

a

i
i

a= = =

=

∑

∑

( )
( )

2

1

1

3.11

where s2
i is the variance of the ith group. If there are only two groups, MSW = 

s2
pool, and only in a balanced design can MSW also be computed as the aver-

age of the within-groups variances. The total sum of squares SST is the sum 
of SSA and SSW; it can also be computed as the sum of squared deviations of 
individual scores from the grand mean.

Presented next are descriptive statistics for three groups:

M s M s M1 2 313.00, =7.50 11.00, = 5.00 12.= = =1
2

2
2 000, = 4.003

2s

Reported in Table 3.3 are the results of F tests for these data at group sizes n = 5, 
15, and 30. Note in the table that MSW = 5.50 regardless of group size. But both  
MSA and F increase along with the group size, which also progressively lowers 
p values from .429 for n = 5 to .006 for n = 30. Exercise 2 asks you to verify 
results in Table 3.3 for n = 30.

Equation 3.10 for MSA defines a weighted means analysis where squared 
deviations of group means from the grand mean are weighted by group size. 
If the design is unbalanced, means from bigger groups get more weight. This 
may not be a problem if unequal group sizes reflect unequal population base 
rates. Otherwise, an unweighted means analysis may be preferred where all 
means are given the same weight by (a) computing the grand mean as the 
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simple arithmetic average of the group means and (b) substituting the har-
monic mean nh for the actual group sizes in Equation 3.10:

n
a

nii

ah 3.12=

=
∑ 1

1

( )

Results of weighted versus unweighted analysis for the same data tend to 
diverge as group sizes are increasingly unbalanced.

The assumptions of the t tests are the same as for the independent sam-
ples F test. They are stated in many introductory books as independence, 
normality, and homoscedasticity, but there are actually more. Two are that 
(a) the factor is fixed and (b) all its levels are represented in the study. Levels 
of fixed effects factors are intentionally selected for investigation, such as 
the equally spaced drug dosages 0 (control), 3, 6, 9, and 12 mg  kg-1. Because 
these levels are not randomly selected, the results may not generalize to other 
dosages not studied, such as 15 mg  kg-1. Levels of random effects factors 
are randomly selected, which yields over replications a representative sample 
from all possible levels. A control factor is a special kind of random factor 
that is not itself of interest but is included for the sake of generality (Keppel 
& Wickens, 2004). An example is when participants are randomly assigned 
to receive different versions of a vocabulary test. Using different word lists 

Table 3.3
Results of the Independent Samples F Test at Three Different Group Sizes

Source SS df MS F

n = 5

Between (A)   10.00   2   5.00   .91a

Within (error)   66.00 12   5.50
Total   76.00 14

n = 15

Between (A)   30.00   2 15.00 2.73b

Within (error) 231.00 42   5.50
Total 261.00 44

n = 30

Between (A)   60.00   2 30.00 5.45c

Within (error) 478.50 87   5.50
Total 538.50 89

Note.  For all analyses, M1 = 13.00, s2
1 = 7.50, M2 = 11.00, s2

2 = 5.00, M3 = 12.00, and s2
3 = 4.00.

ap = .429. bp = .077. cp = .006.
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may enhance generalizability compared with using a single list. Designs with 
random factors are dealt with in Chapters 7 and 8.

A third additional requirement is that the factor affects only means; 
that is, it does not also change the shapes or variances of distributions. Some 
actual treatments affect both means and variances, including certain medi-
cations for high blood pressure (Webb, Fischer, & Rothwell, 2011). Such a 
pattern could arise due to a nonadditive effect where treatment does not have 
the same efficacy for all cases. For example, a drug may be more effective for 
men than women. A conditional treatment effect in human studies is called 
a person × treatment interaction. Interactions can be estimated in factorial 
designs but not in single-factor designs, because there is no systematic effect 
other than that of the sole factor. Altogether, these additional requirements 
are more restrictive than many researchers realize.

It is beyond the scope of this section to review the relatively large 
literature about consequences of violating the assumptions of the F test 
(e.g., Glass, Peckham, & Sanders, 1972; Keppel & Wickens, 2004; Winer, 
Brown, & Michels, 1991), so this summary is selective. The independence 
assumption is critical because nonindependence can seriously bias p val-
ues. Too many researchers believe that the normality and homoscedas-
ticity assumptions can be violated with relative impunity. But results by 
Wilcox (1998) and Wilcox and Keselman (2003), among others, indi-
cated that (a) even small departures from normality can seriously distort 
the results and (b) the combination of small and unequal group sizes and 
homoscedasticity can have similar consequences. Outliers can also distort 
outcomes of the F test.

Dependent Samples

The variances MSA and MSW are calculated the same way regardless of 
whether the samples are independent or dependent (Equations 3.10–3.11), 
but the latter no longer reflects only error variance in correlated designs. 
This is due to the subjects effect. It is estimated for factors with ≥ 3 levels 
as Mcov, the average covariance over all pairs of conditions. The subtraction 
MSW – Mcov literally removes the subjects effect from the pooled within-
conditions variance and also defines the error term for the dependent sam-
ples F test. A similar subtraction removes the subjects effect from the error 
term of the dependent samples t test (Equation 2.21).

An additive model assumes that the quantity MSW – Mcov reflects only 
sampling error. In some sources, this error term is designated as MSres, where 
the subscript refers to residual variance after removal of the subjects effect. 
A nonadditive model assumes that the error term reflects both random 
error and a true person × treatment interaction where some unmeasured 
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characteristic of cases either amplifies or diminishes the effect of factor A 
for some, but not all, cases. The error term for a nonadditive model may be 
called MSA×S, where the subscript reflects this assumption. Unfortunately, it 
is not possible to separately estimate variability due to random error versus 
true person × treatment interaction when each case is measured just once in 
each condition in a single-factor design. This implies that MSres = MSA×S in the 
same data set, so the distinction between them for now is more conceptual 
than practical. In Chapter 7, I consider cases where assumptions of additive 
versus nonadditive models in correlated designs can make a difference in 
effect size estimation.

For a nonadditive model, the general form of the dependent samples  
F test is

F df df
MS

MS
A A S

A

A S

( , ) ( )×
×

= 3.13
 

where dfA × S = (a – 1) (n – 1) and MSA × S = MSW – Mcov. The latter can also 
be expressed as

MS
SS
df

SS SS
df df

A S
A S

A S

W S

W S
×

×

×
= = −

−
( )3.14

where SSS is the sum of squares for the subjects effect with dfS = n – 1 degrees 
of freedom. Equation 3.14 shows the decomposition of the total within- 
conditions sum of squares into two parts, one due to the subjects effect and 
the other related to error, or SSW = SSS + SSA × S.

The potential power advantage of the dependent samples F test over 
the independent samples F test is demonstrated next. Data for three samples 
are presented in Table 3.4. Results of two different F tests with these data are 
reported in Table 3.5. The first analysis assumes n = 5 cases in each of three 
independent samples, and the second analysis assumes n = 5 triads of scores 
across three dependent samples. Only the second analysis takes account of 
the positive correlations between each pair of conditions (see Table 3.4). 
Observe the higher F and the lower p values for the dependent sample analy-
sis (Table 3.5). Exercise 3 asks you to verify the results of the dependent 
samples F test in Table 3.5.

The dependent samples F test assumes normality. Expected depen-
dency among scores due to the subjects effect is removed from the error term 
(Equation 3.14), so the assumptions of homoscedasticity and independence 
concern error variances across the levels of the factor. The latter implies that 
error variance in the first condition has nothing to do with error variance in 
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the second condition, and so on. This is a strong assumption and probably 
often implausible, too. This is because error variance from measurements 
taken close in time, such as adjacent trials in a learning task, may well over-
lap. This autocorrelation of the errors may be less with longer measurement 
intervals, but autocorrelated error occurs in many within-subjects designs.

Another assumption for factors with ≥ 3 levels is sphericity (circular-
ity), or the requirement for equal population variances of difference scores 
between every pair of conditions, such as

σ σ σD D D12 13 23

2 2 2= =

Table 3.4
Raw Scores and Descriptive Statistics for Three Samples

Sample

1 2 3

9 8 13
12 12 14
13 11 16
15 10 14
16 14 18

M 13.00 11.00 15.00
s2 7.50 5.00 4.00

Note.  In a dependent samples analysis, r12 = .7348, r13 = .7303, and r23 = .8385.

Table 3.5
Results of the Independent Samples F  Test and the Dependent  

Samples F  Test for the Data in Table 3.4

Source SS df MS F

Independent samples analysis

Between (A)   40.00   2 20.00   3.64a

Within (error)   66.00 12   5.50
Total 106.00 14

Dependent samples analysis

Between (A)   40.00   2 20.00 14.12b

Within   66.00 12   5.50
  Subjects 54.67 4 13.67
  A × S (error) 11.33 8   1.42
Total 106.00 14

ap = .058.  bp = .002.
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in designs with three dependent samples. Even relatively small violations of 
this requirement lead to positive bias (H0 is rejected too often). There are 
statistical tests intended to detect violation of sphericity, such as Mauchly’s 
test, but they lack power in smaller samples and rely on other assumptions, 
such as normality, that may be untenable. Such tests are not generally useful 
(see Baguley, 2004). Keppel and Wickens (2004) suggested that (a) sphericity 
is doubtful in most studies and (b) researchers should direct their efforts to 
controlling bias. Exercise 4 asks you to explain why the sphericity require-
ment does not apply to the dependent samples t test.

Summarized next are basic options for dealing with the sphericity 
assumption in correlated designs; see Keselman, Algina, and Kowalchuk 
(2001) for more information:

1.	Assume maximal violation of sphericity, compute F in the usual 
way, but compare it against a higher critical value with 1, n – 1 
degrees of freedom, which makes the test more conservative. 
This method is the Geisser–Greenhouse conservative test.

2.	Measure the degree of departure from sphericity with estimated 
epsilon, ̂ε. It ranges from 1/(a - 1) for maximal departure to 1.00 
for no departure. The two degrees of freedom for the critical 
value for F (between-conditions, within-conditions) are then 
computed as, respectively, ε̂ (a - 1) and ε̂ (a - 1) (n - 1), which 
makes the test more conservative for ε̂ < 1.00. Names for ε̂ 
include the Box correction, Geisser–Greenhouse epsilon, and 
Huynh–Feldt epsilon.

3.	Conduct focused comparisons instead of the omnibus compari-
son, where each contrast has its own error term, so the spheric-
ity requirement does not apply. This contrast test is actually a 
form of the dependent samples t test.

4.	Analyze the data with multivariate analysis of variance 
(MANOVA), which treats difference scores as multiple, corre-
lated outcomes in univariate within-subjects designs (Huberty & 
Olejnik, 2006). Equal error variances are assumed in MANOVA, 
but autocorrelation is allowed.

5.	Use a statistical modeling technique, such as structural equa-
tion modeling or hierarchical linear modeling, that allows for 
both unequal and correlated error variances in within-subjects 
designs (e.g., Kline, 2010).

6.	Use nonparametric bootstrapping to construct an empirical sam-
pling distribution for dependent samples F. The critical value for 
a = .05 falls at the 95th percentile in this distribution. Sphericity 
is not assumed, but this tactic is not ideal in small samples.
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7.	Use a robust test for correlated designs based on trimmed means 
and nonparametric bootstrapping (e.g., Keselman, Kowalchuk, 
Algina, Lix, & Wilcox, 2000).

Analysis of Variance as Multiple Regression

All forms of ANOVA are nothing more than special cases of multiple 
regression. In the latter, predictors can be either continuous or categorical 
(Cohen, 1968). It is also possible in multiple regression to estimate interaction 
or curvilinear effects. In theory, one needs just a regression computer procedure 
to conduct any kind of ANOVA. The advantage of doing so is that regression 
output routinely contains effect sizes in the form of regression coefficients and 
the overall multiple correlation (or R2). Unfortunately, some researchers do not 
recognize these statistics as effect sizes and emphasize only patterns of statistical 
significance. Some ANOVA computer procedures print source tables with no 
effect sizes, but it is easy to calculate some of the same effect sizes seen in regres-
sion output from values in source tables (see Chapter 5).

c2 Test of Association

Whether there is a statistical association between two categorical 
variables is the question addressed by the c2 test. A two-way contingency 
table summarizes the data analyzed by this test. Presented in the top half 
of Table 3.6 is a 2 × 2 cross-tabulation with frequencies of treatment and 
control cases (n = 40 each) that either recovered or did not recover. A total 
of 24 cases in the treatment group recovered, or .60. Among control cases, 
16 cases recovered, or .40. The recovery rate among treated cases is thus .20 
higher than among untreated cases.

The c2 statistic for two-way contingency tables is

χ2
2

11

1 1r c
f f

f
ij i j

i jj

c

i

r

−( ) −( )[ ] = −
==
∑∑ ( )

(o e

e
3..15)

where the degrees of freedom are the product of the number of rows (r) 
minus one and the number of columns (c) minus one; foij is the observed fre-
quency for the cell in the ith row and jth column; and feij is the expected fre-
quency for the same cell under the nil hypothesis that the two variables are 
unrelated. There is a quick way to compute by hand the expected frequency 
for any cell: Divide the product of the row and column (marginal) totals for 
that cell by the total number of cases, N. It is that simple. Assumptions of 
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the c2 test include independence, mutually exclusive cells in the contin-
gency table, and a sample size large enough so that the minimum expected 
frequency is at least 5 in 2 × 2 tables.

For the contingency table in the top part of Table 3.6, the expected 
value for every cell is

fe 40 = 20= ×( )40 80

which shows the pattern under H0 where the recovery rate is identical in the 
two groups (20/40, or .50). The test statistic for n = 40 is

χ2 1 3.20, .074( ) = =p

so H0 is not rejected at the .05 level. (You should verify this result.) The effect 
of increasing the group size on c2 while keeping all else constant is demon-
strated in the lower part of Table 3.6. For example, H0 is rejected at the .05 
level for n = 80 because

χ2 1 6.40, .011( ) = =p

even though the difference in the recovery rate is still .20. Exercise 5 asks you 
to verify the results of the c2 test for the group size n = 80 in Table 3.6.

Table 3.6
Results of the Chi-Square Test of Association for the Same  

Proportions at Different Group Sizes

Outcome

Observed frequencies

Group n Recovered Not recovered Recovery rate c2 (1)

n = 40

Treatment   40 24 16 .60 3.20a

Control   40 16 24 .40
Total   80 40 40

n = 80

Treatment   80 48 32 .60 6.40b

Control   80 32 48 .40
Total 160 80 80

ap = .074.  bp = .011.
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Robust Tests

Classical nonparametric tests are alternatives to the parametric t and  
F tests for means (e.g., the Mann–Whitney test is the nonparametric ana-
logue to the t test). Nonparametric tests generally work by converting the 
original scores to ranks. They also make fewer assumptions about the distri-
butions of those ranks than do parametric tests applied to the original scores. 
Nonparametric tests date to the 1950s–1960s, and they share some limita-
tions. One is that they are not generally robust against heteroscedasticity, and 
another is that their application is typically limited to single-factor designs 
(Erceg-Hurn & Mirosevich, 2008).

Modern robust tests are an alternative. They are generally more flex-
ible than nonparametric tests and can be applied in designs with multiple 
factors. The robust tests described next assume a trimming proportion of .20. 
Selecting a different trimming proportion based on inspecting the data may 
yield incorrect results. This is because these robust tests do not control for 
post hoc trimming, so their p values may be wrong if any trimming proportion 
other than .20 is specified (Keselman et al., 2008).

Presented next is the equation for Yuen–Welch t test based on trimmed 
means:

t df
M M

s
Yw Yw

tr1 tr2 tr1 tr2

Yw
3.16( ) = −( ) − −( )µ µ

( )

where the robust standard error sYW and degrees of freedom dfYW adjusted 
for heteroscedasticity are defined by, respectively, Equations 2.32 and 2.33. 
There is also a robust Welch–James t test, but the robust Yuen–Welch t test 
may yield effective levels of Type I error that are slightly closer to stated levels 
of a over random samples (Wilcox, 2012).

Listed next are values of robust estimators for the data from two groups 
in Table 2.4:

M s w

M

tr1 win 1 1

tr2

23.00, 18.489, = 5.547

17.00

= =

=

2

,, 9.067, 2.720

6.00, 2

win 2 2

tr1 tr2 Yw

s w

M M s

2 = =

− = = ..875, 8.953Ywdf =

The value of the Yuen–Welch t statistic is

tYw 8.953 2.09( ) = =6 00
2 875

.
.
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and t2-tail, .05 (8.953) = 2.264. Thus, the nil hypothesis H0: µtr1 – µtr2 = 0 is not 
rejected at the .05 level. This outcome is consistent with the robust 95% 
confidence interval for µtr1 – µtr2 of [-.51, 12.51] computed for the same data 
in Chapter 2 with the Yuen–Welch method.

Robust nonparametric bootstrapping is another way to estimate criti-
cal values for a robust test. For example, the critical values for the test of H1: 
µtr1 - µtr2 ≠ 0 fall at the 2.5th and 97.5th percentiles in the empirical sampling 
distribution of the robust Yuen–Welch t statistic generated in nonparametric 
bootstrapping. Unlike critical values based on central t distributions, these 
bootstrapped critical values do not assume normality. The bootstrapping 
option for robust t tests generally requires group sizes of n > 20.

Keselman et al. (2000, 2008) described extensions of the robust 
Welch t test for contrasts in between-subjects factorial designs, and 
Keselman et al. (2000) found that a version of the robust Welch test con-
trolled Type I error reasonably well in correlated designs where the sphe-
ricity assumption is violated. Source code by Keselman et al. (2008) in 
the SAS/IML programming language that conducts the robust Welch t 
test with nonparametric bootstrapping can be downloaded.3 See Wilcox 
(2012) for descriptions of additional robust tests based on trimmed means 
and Winsorized variances.

Erceg-Hurn and Mirosevich (2008) described a class of robust tests 
based on ranks that are generally better than classical nonparametric tech-
niques. They can also be applied in designs with multiple factors. One is the 
Brunner–Dette–Munk test based on the ANOVA-type statistic (ATS), 
which tests the null hypothesis that both the population distributions and 
relative treatment effects are identical over conditions. Relative treatment 
effects are estimated by converting the original scores to ranks and then 
computing the proportion of scores in each condition that are higher (or 
lower) on the outcome variable than all cases in the whole design. Relative 
treatment effects range from 0 to 1.00, and they all equal .50 under a nil 
hypothesis. Macros in the SAS/STAT programming language for calculat-
ing the ATS in factorial designs can be downloaded from the website of the 
Abteilung Medizinische Statistik at Universitätsmedizin Göttingen.4 Wilcox 
(2012) described packages for R that calculate the ATS.

At the end of the day, robust statistical tests are subject to many of the 
same limitations as other statistical tests. For example, they assume random 
sampling albeit from population distributions that may be nonnormal or het-
eroscedastic; they also assume that sampling error is the only source of error 

3http://supp.apa.org/psycarticles/supplemental/met_13_2_110/met_13_2_110_supp.html
4http://www.ams.med.uni-goettingen.de/amsneu/ordinal-de.shtml
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variance. Alternative tests, such as the Welch–James and Yuen–Welch ver-
sions of a robust t test, do not always yield the same p value for the same data, 
and it is not always clear which alternative is best (Wilcox, 2003). They are 
also subject to most of the cognitive distortions described in the next chapter. 
Researchers should not imagine that they hear in robust tests a siren’s song to 
suspend critical judgment about significance testing.

Conclusion

Outcomes of statistical tests rely on many assumptions that are far- 
fetched in most studies. Classical parametric tests depend on distributional 
assumptions, such as normality and homoscedasticity, that are probably unten-
able in many analyses. Robust tests ease some distributional assumptions, but 
their p values may still be generally incorrect in actual data sets, especially 
in samples that are not random. The default null hypothesis in significance 
testing is a nil hypothesis, which is often known to be false before the data are 
collected. That most researchers disregard power also complicates the inter-
pretation of outcomes of statistical tests. For all these reasons, p values in 
computer output should never be literally interpreted. Additional problems of 
statistical tests and related myths are considered in the next chapter.

Learn More

F. L. Schmidt (1996) reviews problems with overreliance on signifi-
cance testing. Appropriate types of power analysis are considered by O’Keefe 
(2007), and Keselman et al. (2008) introduces robust hypothesis testing with 
trimmed means in various designs.
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19312450701641375
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Exercises

1.	For the results reported in Table 3.2, conduct the t test for inde-
pendent samples for n = 15 and construct the 95% confidence 
interval for µ1 – µ2.

2. For the results listed in Table 3.3, conduct the F test for inde-
pendent samples for n = 30.

3. For the data in Table 3.4, verify the results of the dependent 
samples F test in Table 3.5. Calculate the source table by hand 
using four-decimal accuracy for the error term.

4. Explain why the dependent samples t test does not assume 
sphericity.

5. For the data in Table 3.6, verify the results of the c2 test for  
n = 80.
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4
Cognitive Distortions in 

Significance Testing

Many false beliefs are associated with significance testing. Most involve 
exaggerating what can be inferred from either rejecting or failing to reject a 
null hypothesis. Described next are the “Big Five” misinterpretations with 
estimates of their base rates among psychology professors and students. Also 
considered in this chapter are variations on the Intro Stats method that may 
be helpful in some situations. Reject-support testing is assumed instead of 
accept-support testing, but many of the arguments can be reframed for the 
latter. I assume also that a = .05, but the issues dealt with next apply to any 
other criterion level of statistical significance.

Big Five Misinterpretations

Please take a moment to review the correct interpretation of statisti-
cal significance (see Chapter 3). Briefly, p < .05 means that the likelihood 
of the data or results even more extreme given random sampling under the 

DOI: 10.1037/14136-004
Beyond Significance Testing: Statistics Reform in the Behavioral Sciences, Second Edition, by R. B. Kline
Copyright © 2013 by the American Psychological Association. All rights reserved.

If psychologists are so smart, why are they so confused? Why is statistics 
carried out like compulsive hand washing?

—Gerd Gigerenzer (2004, p. 590)
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null hypothesis is < .05, assuming that all distributional requirements of the 
test statistic are satisfied and there are no other sources of error variance. Let 
us refer to any correct definition as p (D +H0), which emphasizes p as the 
conditional probability of the data under H0 given all the other assumptions 
just mentioned.

Listed in Table 4.1 are the Big Five false beliefs about statistical signifi-
cance. Three concern p values, but two others involve their complements, 
or 1 - p. Also reported in the table are base rates in samples of psychol-
ogy professors or students (Haller & Krauss, 2002; Oakes, 1986). Overall, 
psychology students are no worse than their professors regarding erroneous 
beliefs. These poor results are not specific to psychology (e.g., forecasting; 
Armstrong, 2007). It is also easy to find similar misunderstandings in jour-
nal articles and statistics textbooks (e.g., Cohen, 1994; Gigerenzer, 2004). 
These results indicate that myths about significance testing are passed on 
from teachers and published works to students.

Odds-Against-Chance Fallacy

This myth is so pervasive that I believe the odds-against-chance fallacy 
(Carver, 1978) is the biggest of the Big Five. It concerns the false belief that 
p indicates the probability that a result happened by sampling error; thus, 

Table 4.1
The Big Five Misinterpretations of p < .05 and Base Rates  

Among Psychology Professors and Students

Fallacy Description

Base rate (%)

Professorsa Studentsb

Misinterpretations of p

Odds against chance Likelihood that result is due to 
chance is < 5%

— —

Local Type I error Likelihood that Type I error was 
just committed is < 5%

67–73 68

Inverse probability Likelihood that H0 is true is < 5% 17–36 32

Misinterpretations of 1 – p

Validity Likelihood that H1 is true is > 95% 33–66 59

Replicability Likelihood that result will be  
replicated is > 95%

37–60 41

Note.  Table adapted from R. B. Kline, 2009, Becoming a Behavioral Science Researcher: A Guide to  
Producing Research That Matters, p. 125, New York, Guilford Press. Copyright 2009 by Guilford Press. 
Adapted with permission. Dashes (—) indicate the absence of estimated base rates.
aHaller and Krauss (2002), Oakes (1986). bHaller and Krauss (2002).
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p < .05 says that there is less than a 5% likelihood that a particular finding 
is due to chance. There is a related misconception I call the filter myth, 
which says that p values sort results into two categories, those that are a result 
of “chance” (H0 not rejected) and others that are due to “real” effects (H0 
rejected). These beliefs are wrong for the reasons elaborated next.

When p is calculated, it is already assumed that H0 is true, so the prob-
ability that sampling error is the only explanation is already taken to be 1.00. 
It is thus illogical to view p as measuring the likelihood of sampling error. 
Thus, p does not apply to a particular result as the probability that sampling 
error was the sole causal agent. There is no such thing as a statistical tech-
nique that determines the probability that various causal factors, including 
sampling error, acted on a particular result. Instead, inference about causa-
tion is a rational exercise that considers results within the context of design, 
measurement, and analysis. Besides, virtually all sample results are affected 
by error of some type, including measurement error.

I am not aware of an estimate of the base rate of this fallacy, but I believe 
that it is nearly universal. This is because one can find this misinterpretation 
just about everywhere. Try this exercise: Enter the term define: statistical signifi-
cance in the search box of Google. What you will then find displayed on your 
computer monitor are hundreds of incorrect definitions, most of which invoke 
the odds-against-chance fallacy. Granted, these web pages are not academic 
sources, but similar errors are readily found in educational works, too.

Local Type I Error Fallacy

Most psychology students and professors may endorse the local Type I 
error fallacy (Table 4.1). It is the mistaken belief that p < .05 given a = .05 
means that the likelihood that the decision just taken to reject H0 is a Type I  
error is less than 5%. Pollard (1993) described this fallacy as confusing the 
conditional probability of a Type I error, or

α = ( )p H Hreject true0 0

with the conditional posterior probability of a Type I error given that H0 has 
been rejected, or

p H H0 0true reject( )

But p values from statistical tests are conditional probabilities of data, so 
they do not apply to any specific decision to reject H0. This is because any 
particular decision to do so is either right or wrong, so no probability is associ-
ated with it (other than 0 or 1.0). Only with sufficient replication could one 
determine whether a decision to reject H0 in a particular study was correct.
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Inverse Probability Fallacy

About one third of psychology students and professors endorse the 
inverse probability error (Table 4.1), also known as the fallacy of the trans-
posed conditional (Ziliak & McCloskey, 2008), the Bayesian Id’s wishful 
thinking error (Gigerenzer, 1993), and the permanent illusion (Gigerenzer 
& Murray, 1987) due to its persistence over time and disciplines. It was 
defined earlier as the false belief that p measures the likelihood that H0 is true, 
given the data. A researcher who interprets the result p < .05 as saying that 
H0 is true with a probability < .05 commits this error. It stems from forgetting 
that p values are conditional probabilities of the data, or p (D + | H0), and not 
of the null hypothesis, or p (H0D +). There are ways in Bayesian statistics to 
estimate conditional probabilities of hypotheses (see Chapter 10) but not in 
traditional significance testing.

Validity Fallacy

Two of the Big Five misunderstandings concern 1 - p. One is the valid 
research hypothesis fallacy (Carver, 1978), which refers to the false belief 
that the probability that H1 is true is > .95, given p < .05. The complement of 
p is a probability, but 1 – p is just the probability of getting a result even less 
extreme under H0 than the one actually found. This fallacy is endorsed by 
most psychology students and professors (see Table 4.1).

Replicability Fallacy

About half of psychology students and professors endorse the replicabil-
ity fallacy (see Table 4.1), or the erroneous belief that the complement of p 
indicates the probability of finding a statistically significant result in a replica-
tion study (Carver, 1978). Under this falsehood, given p < .05, a researcher 
would infer that the probability of replication is > .95. If this fallacy were true, 
knowing the probability of replication would be very useful. Alas, p is just the 
probability of the data in a particular study under H0 under many stringent 
assumptions.

You should know that there is a sense in which p values indirectly 
concern replication, but the probability of the latter is not generally 1 – p. 
Greenwald, Gonzalez, Harris, and Guthrie (1996) showed there is a curvilin-
ear relation between p values and the average statistical power in hypotheti-
cal random replications based on the same number of cases. In general, if the 
population effect size is the same as that in a specific sample needed to obtain 
p < .05, the probability that the same H0 will be rejected in a replication is 
about .50, not .95.
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Killeen (2005, 2006) described a point estimate of the probability of 
getting statistical significance over random replications in the same direction 
as in an original sample known as prep. The method for estimating prep assumes 
that the observed effect size is the same as the population effect size, which is 
unlikely. It is based on a random effects model for population effect sizes, which 
assumes a distribution of population effect sizes, or that there is a different true 
effect size for each study. Estimation of prep relies on accurate estimation of 
variation in population effect sizes, or the realization variance.

Killeen (2006) described an inference model that replaces significance 
testing with a utility theory approach based on prep and interval estimation. 
It takes account of the seriousness of different types of decisions errors about 
whether to replicate a particular study. An advantage of this framework is 
that it makes apparent the falsehood that 1 – p is the probability of replica-
tion. Killeen suggested that prep may be less subject to misinterpretation, but 
this remains to be seen. The estimate of prep also assumes random sampling, 
which is difficult to justify in most studies; see J. Miller (2009) and Iverson 
and Lee (2009) for additional criticisms. I believe it is better to actually con-
duct replications than to rely on statistical prediction.

Ubiquitary Nature of the Big Five

Results by Oakes (1986) and Haller and Krauss (2002) indicated that 
virtually all psychology students and about 80 to 90% of psychology profes-
sors endorsed at least one of the Big Five false beliefs. So it seems that most 
researchers believe for the case a = .01 and p < .01 that the result is very 
unlikely to be due to sampling error and that the probability a Type I error was 
just committed is just as unlikely (< .01 for both). Most researchers might also 
conclude that H1 is very likely to be true, and many would also believe that 
the result is very likely to replicate (> .99 for both). These (misperceived) 
odds in favor of the researcher’s hypothesis are so good that it must be true, 
right? The next (il)logical step would be to conclude that the result must 
also be important. Why? Because it is significant! Of course, none of these 
things are true, but the Big Five are hardly the end of cognitive distortions in 
significance testing.

Mistaken Conclusions After Making a Decision  
About the Null Hypothesis

Several different false conclusions may be reached after deciding to 
reject or fail to reject H0. Most require little explanation about why they are 
wrong.
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Magnitude Fallacy

The magnitude fallacy is the false belief that low p values indicate large 
effects. Cumming (2012) described a related error called the slippery slope 
of significance that happens when a researcher ambiguously describes a result 
for which p < a as “significant” without the qualifier “statistically” and then 
later discusses the effect as if it were automatically “important” or “large.” 
These conclusions are unwarranted because p values are confounded mea-
sures of effect size and sample size (see Equation 3.4). Thus, effects of trivial 
magnitude need only a large enough sample to be statistically significant. 
If the sample size is actually large, low p values just confirm a large sample, 
which is circular logic (B. Thompson, 1992).

Meaningfulness Fallacy and Causality Fallacy

Under the meaningfulness fallacy, the researcher believes that rejec-
tion of H0 confirms H1. This myth actually reflects two cognitive errors. First, 
the decision to reject H0 in a single study does not imply that H1 is “proven.” 
Second, even if the statistical hypothesis H1 is correct, it does not mean that 
the substantive hypothesis behind H1 is also correct. Statistical significance 
does not “prove” any particular hypothesis, and there are times when the 
same numerical result is equally consistent with more than one substantive 
hypothesis.

Statistical versus substantive hypotheses not only differ in their levels 
of abstraction (statistical: lowest; scientific: highest) but also have different 
implications following rejection of H0. If H0 and H1 reflect merely statistical 
hypotheses, there is little to do after rejecting H0 except replication. But if 
H1 stands for a scientific hypothesis, the work just begins after rejecting H0. 
Part of the task involves evaluating competing substantive hypotheses that 
are also compatible with the statistical hypothesis H1. If alternative expla-
nations cannot be ruled out, confidence in the original hypothesis must 
be tempered. There is also the strategy of strong inference (Platt, 1964), in 
which experiments are devised that would yield different results depending on 
which competing explanation is correct. For the same reasons, the causality 
fallacy that statistical significance means that the underlying causal mecha-
nism is identified is just that.

Zero Fallacy and Equivalence Fallacy

The zero fallacy or the slippery slope of nonsignificance (Cumming, 
2012) is the mistaken belief that the failure to reject a nil hypothesis means 
that the population effect size is zero. Maybe it is, but you cannot tell based 
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on a result in one sample, especially if power is low. In this case, the decision 
to not reject a nil hypothesis would be a Type II error. Improper design, pro-
cedures, or measures can also lead to Type II errors. The equivalence fallacy 
occurs when the failure to reject H0: µ1 = µ2 is interpreted as saying that the 
populations are equivalent. This is wrong because even if µ1 = µ2, distribu-
tions can differ in other ways, such as variability or distribution shape. The 
inference of equivalence would be just as wrong if this example concerned 
reliability coefficients or validity coefficients that were not statistically dif-
ferent (B. Thompson, 2003). Proper methods for equivalence testing are 
described later.

Quality Fallacy and Success Fallacy

The beliefs that getting statistical significance confirms the quality of 
the experimental design and also indicates a successful study are, respec-
tively, the quality fallacy and the success fallacy. Poor study design or just 
plain old sampling error can lead to incorrect rejection of H0, or Type I 
error. Failure to reject H0 can also be the product of good science, especially 
when a false claim is not substantiated by other researchers. You may have 
heard about the case in the 1990s about a group of physics researchers who 
claimed to have produced cold fusion (a low energy nuclear reaction) with 
a simple laboratory apparatus. Other scientists were unable to replicate the 
phenomenon, and the eventual conclusion was that the original claim was 
an error. In an article about the warning signs of bogus science, Park (2003) 
noted that

a PhD in science is not an inoculation against foolishness or mendacity, 
and even some Nobel laureates seem to be a bit strange. The sad truth 
is that there is no claim so preposterous that a PhD scientist cannot be 
found to vouch for it. (p. 33)

In this case, lack of positive results from replication studies is informative.

Failure Fallacy

The failure fallacy is the mistaken belief that lack of statistical sig-
nificance brands the study as a failure. Gigerenzer (2004) recited this older 
incantation about doctoral dissertations and the critical ratio, the predeces-
sor of p values: “A critical ratio of three [i.e., p < .01], or no PhD” (p. 589). 
Although improper methods or low power can cause Type II errors, the failure 
to reject H0 can be an informative result. Researchers tend to attribute fail-
ure to reject H0 to poor design rather than to the validity of the substantive 
hypothesis behind H1 (Cartwright, 1973).
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Reification Fallacy

The reification fallacy is the faulty belief that failure to replicate a 
result is the failure to make the same decision about H0 across studies (Dixon 
& O’Reilly, 1999). In this view, a result is not considered replicated if H0 is 
rejected in the first study but not in the second study. This sophism ignores 
sample size, effect size, and power across different studies. Suppose a mean 
difference is found in an initial study and a nil hypothesis is rejected. The 
same contrast is found in a replication, but H0 is not rejected due to a smaller 
sample size. There is evidence for replication even though different decisions 
about H0 were made across the two studies (e.g., see Table 2.1).

Objectivity Fallacy

The myth that significance testing is an objective method of hypothesis 
testing but all other inference models are subjective is the objectivity fallacy 
(Gorard, 2006). To the contrary, there are many decisions to be made in sig-
nificance testing, some of which have little to do with substantive hypotheses 
(see Chapter 3). Significance testing is objective in appearance only. It is also 
not the only framework for testing hypotheses. Bayesian estimation as an 
alternative to significance testing is considered in Chapter 10.

Sanctification Fallacy

The sanctification fallacy refers to dichotomous thinking about con-
tinuous p values. If a = .05, for example, p = .049 versus p = .051 are practi-
cally identical in terms of test outcomes. Yet a researcher may make a big 
deal about the first but ignore the second. There is also evidence for the cliff 
effect, which refers to an abrupt decline in the degree of confidence that an 
effect exists for p just higher than .05 (Nelson, Rosenthal, & Rosnow, 1986). 
Nelson et al. (1986) also found a second decline when p values were just above 
.10. These changes in rated confidence are out of proportion to changes in 
continuous p values. More recently, Poitevineau and Lecoutre (2001) found 
that a minority of researchers exhibited the cliff effect, which is consistent 
with the prior specification of a in the Neyman–Pearson approach. Other 
researchers showed more gradual declines in confidence as p values increased, 
which is more consistent with the Fisher approach. Just as the Intro Stats 
method is a mishmash of Fisher’s and Neyman–Pearson’s models, so it seems 
are researchers’ patterns of rated confidence as a function of p.

Differences between results that are “significant” versus “not signifi-
cant” by close margins, such as p = .03 versus p = .07 when a = .05, are them-
selves often not statistically significant. That is, relatively large changes in p 
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can correspond to small, nonsignificant changes in the underlying variable 
(Gelman & Stern, 2006). This is another reason not to make big distinc-
tions among results with similar p values. There is also the bizarre practice of 
describing results where p is just higher than a as “trends” or as “approaching 
significance.” These findings are also typically interpreted along with statis-
tically significant ones. The problem is that results with p values just lower 
than a (e.g., p = .049, a = .05) are almost never described as “approaching 
nonsignificance” and subsequently discounted.

Robustness Fallacy

Classical parametric statistical tests are not robust against outliers or 
violations of distributional assumptions, especially in small, unrepresentative 
samples. But many researchers believe just the opposite, which is the robust-
ness fallacy. Indirect support for this claim comes from observations that most 
researchers do not provide evidence about whether distributional or other 
assumptions are met (e.g., Keselman et al., 1998; Onwuegbuzie, 2002). These 
surveys reflect a large gap between significance testing as described in text-
books and its use in practice. The fact that most articles fail to reassure readers 
that the results are trustworthy is part of the reporting crisis (see Chapter 1). 
It is too bad that most researchers ignore this sound advice of Wilkinson and 
the TFSI (1999): Address data integrity before presenting the results. This 
includes any complications, such as missing data or distributional anomalies 
and steps taken to remedy them (e.g., robust estimation, transformations). 
This quote attributed to the Scottish author George MacDonald is apropos for 
researchers: “To be trusted is a greater compliment than being loved.”

Why So Many Myths?

Many fallacies involve wishful thinking about things that researchers 
really want to know. These include the probability that H0 or H1 is true, the 
likelihood of replication, and the chance that a particular decision to reject 
H0 is wrong. Alas, statistical tests tell us only the conditional probability of the 
data. Cohen (1994) noted that no statistical technique applied in individual 
studies can fulfill this wish list. Bayesian methods are an exception because 
they estimate conditional probabilities of hypotheses (see Chapter 10). But 
there is a method that can tell us what we want to know. It is not a statistical 
technique; rather, it is good, old-fashioned replication, which is also the best 
way to deal with the problem of sampling error.

Most people who use statistical tests have science backgrounds, so why 
is there so much misunderstanding about significance testing? Two possibilities 
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were offered in Chapter 1: It is hard for people (scientists included) to change 
bad habits. There is conflict of interest in playing the significance game, or 
the well-trodden routine of promising asterisks (statistical significance) for 
money from granting agencies, and then delivering those asterisks in written 
summaries with little understanding of what the presence versus absence of 
those asterisks really means (if anything) before promising more asterisks, 
and so on. It is also true that careers in behavioral research are generally 
based on amassing large piles of asterisks over the years, and some researchers 
may resist, as Leo Tolstoy put it, any pressure to “admit the falsity of conclu-
sions which they have delighted in explaining to colleagues, which they have 
proudly taught to others, and which they have woven, thread by thread, into 
the fabric of their lives” (as cited in Gleick, 1987, p. 38).

An additional factor is that it is hard to explain the convoluted logic 
of significance testing and dispel confusion about it (Pollard, 1993). Authors 
who defend significance testing concede widespread false beliefs but note that 
users are responsible for misinterpretations (e.g., Hurlbert & Lombardi, 2009, 
p. 337, “Researchers, heal thyselves! No fault lies with the significance test!”) 
Critics counter that any method with so much potential to be misconstrued 
must bear some blame. It is also clear that the cliché of “better teaching” 
about significance testing has not in more than 60 years improved the situa-
tion (Fidler et al., 2004).

Another problem is that people readily make judgment errors based 
on perceived probabilities of events, sometimes at great cost to their per-
sonal well-being (e.g., gambler’s fallacy). It is especially difficult for people to 
think correctly and consistently about conditional probabilities, which are 
ratios of event probabilities (e.g., Dawes, 2001). A complication is the phe-
nomenon of illusory correlation, or the expectation that two things should 
be correlated when in fact they are not. If such expectations are based on 
apparently logical associations, the false belief that two things go together 
can be very resistant to disconfirmation. Semantic associations between the 
concepts of “chance” and “data” combined with poor inherent probabilistic 
reasoning may engender illusory correlation in significance testing (e.g., the 
odds-against-chance fallacy). Once engrained, such false beliefs are hard to 
change. But stripping away the many illusions linked with significance test-
ing should precede the realization that

there is no automatic method for statistical induction which consists 
of a simple recipe. Analyzing research results and drawing inferences 
therefrom require rethinking the situation in each case and devising an 
appropriate method. Such a challenge is not always welcome. (Falk & 
Greenbaum, 1995, p. 76)

It is regrettable that the word significant was ever associated with reject-
ing H0. Connotations of this word in everyday language, which are illus-
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trated in Figure 4.1 created with the Thinkmap Visual Thesaurus,1 include 
“important,” “noteworthy,” and “monumental,” but none of them automati-
cally apply to H0 rejections. One way to guard against overinterpretation 
is to drop the word significant from our data analysis vocabulary altogether. 
Hurlbert and Lombardi (2009) reminded us that there is no obligation is use 
the word significant at all in research. Another is to always use the phrase 
statistically significant (see B. Thompson, 1996), which signals that we are not 
talking about significance in the everyday sense (e.g., Figure 4.1). Using just 
the word statistical should also suffice. For example, rejection of H0: µ1 = µ2 
could be described as evidence for a statistical mean difference (Tryon, 2001). 
Calling an effect statistical implies that it was observed but not also necessar-
ily important or real.

Another suggested reform is to report exact p values, such as

t p t p20 2.40, .026 instead of 20 2.40, < .05( ) = = ( ) =

evidential 
evidentiary 

fundamental 

operative

momentous

probatory 

probative 

noteworthy 

profound 

significance 

meaningful 

important epoch-making 

epochal 

of import 
remarkable 

world-shattering

earthshaking 

large

portentous 

significant 

monumental 

world-shaking 
prodigious 

Figure 4.1.  Visual map of words with meanings similar to that of “significant.” Image 
and text from the Visual Thesaurus (http://www.visualthesaurus.com). Copyright 
1998–2011 by Thinkmap, Inc. All rights reserved. Reprinted with permission.

1http://www.visualthesaurus.com/
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If p values are incorrect in most studies, though, reporting them at even 
greater precision could give a false impression. In large samples, p values are 
often very low, such as .00012, and reporting such small probabilities could 
invite misunderstanding. I think that 3-decimal accuracy is fine, but do not 
take p values literally and help your readers to do the same.

Whatever cognitive mechanisms engender or maintain false beliefs about 
significance testing, it is clear that data analysis practices in psychology and 
other areas are based more on myth than on fact. This is why Lambdin (2012) 
described significance testing as a kind of statistical sorcery or shamanism where 
researchers hold up p values that they do not understand as the assurance of 
confirmatory evidence in a farcical imitation of science passed on from one 
generation to the next. For the same reasons, Bakan (1966) basically referred 
to significance testing as psychology’s “dirty little secret” (Lambdin, 2012) and 
Lykken (1991) described its continued practice as a kind of cargo-cult ritual 
where we mimic the natural sciences but are not really doing science at all.

Additional Problems

Considered next are negative consequences of letting p values do our 
thinking for us:

1.	The ease with which a researcher can report statistically significant 
evidence for untrue hypotheses fills the literature with false positive 
results. Many decisions influence outcomes of statistical tests, 
including ones about sample size (e.g., when to stop collect-
ing data) and the specification of directional versus nondirec-
tional alternative hypotheses, among other factors not always 
disclosed. Simmons et al. (2011) described these kinds of deci-
sions as researcher degrees of freedom. They also demonstrated 
through computer simulations that practically any result can be 
presented as statistically significant due to flexibility in choices. 
Simmons et al. (2011) suggested that researchers disclose all 
decisions that affect p values, but this rarely happens in practice.

2.	Significance testing diverts attention from the data and the measurement 
process. If researchers are too preoccupied with H0 rejections, they 
might lose sight of more important aspects of their data, such as 
whether constructs are properly defined and measured. By focus-
ing exclusively on sampling error, researchers may neglect dealing 
with the greater problem of real error (see Chapter 2).

3.	The large amount of time required to learn significance testing limits 
exposure to other approaches. Students in the behavioral sciences 
typically know very little about other inference models, such as 
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Bayesian estimation, even in graduate school. That extensive 
training in traditional significance testing seems to mainly fill 
many students’ heads with fairy tales about this procedure is 
another problem.

4.	Strongly embedded significance testing mentality hinders continued 
learning. Next I describe a phenomenon I call the great p value 
blank-out. This happens when students put little effort into learn-
ing what is for them a new statistical technique until they get to 
the part about significance testing. Once they figure out whether 
rejecting H0 is “good” or “bad” for their hypotheses, the technique 
is then applied with little comprehension of its theory or require-
ments. In computer output, the student skips right to the p values 
but shows little comprehension of other results. This cognitive 
style is a kind of self-imposed trained incapacity that obstructs 
new learning. Rodgers (2010) described similar experiences with 
students trained mainly in traditional significance testing.

5.	Overemphasis on statistical significance actually dampens enthusiasm 
for research. Low power (e.g., 50) may result in a research litera
ture where only about half the results are positive, and this ambi-
guity cannot be resolved by additional studies if power remains 
low. This may explain why even undergraduates know that “the 
three most commonly seen terms in the [research] literature 
are ‘tentative,’ ‘preliminary,’ and ‘suggest.’ As a default, ‘more 
research is needed’” (Kmetz, 2002, p. 62). It is not just a few 
students who are skeptical of the value of research but also practi-
tioners, for whom statistical significance often does not translate 
into relevance or substantive significance (Aguinis et al., 2010).

Illegitimate Uses of Significance Testing

Some applications of statistical tests are inappropriate in just about 
any context. Two were mentioned in the previous chapter: One is testing 
score reliabilities or validity coefficients for statistical significance against 
nil hypotheses. A second concerns statistical tests that evaluate the distribu-
tional assumptions of other statistical tests, such as Mauchley’s test for sphe-
ricity in correlated designs. The problem with such “canary in a coal mine” 
tests (i.e., that evaluate assumptions of other statistical tests) is that they 
often depend on other assumptions, such as normality, that may be indefen-
sible. This is why Erceg-Hurn and Mirosevich (2008) advised that “researchers 
should not rely on statistical tests to check assumptions because of the fre-
quency with which they produce inaccurate results” (p. 594).
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A third example is the stepwise method in multiple regression or dis-
criminant function analysis where predictors are entered into the equation 
based solely on statistical significance (e.g., which predictor, if selected, 
would have the lowest p value for its regression weight?). After they are 
selected, predictors at a later step can be removed from the equation, again 
according to statistical test outcomes (e.g., if p > .05 for a predictor’s regres-
sion weight). The stepwise process stops when there could be no statistically 
significant increase in R2 by adding more predictors. There are variations on 
stepwise methods, but all such methods are directed by the computer, not 
the researcher.

Problems of stepwise methods are so severe that they are actually 
banned in some journals (e.g., B. Thompson, 1995) and for good reason, too. 
One is extreme capitalization on chance. Because every result in these meth-
ods is determined by p values, the results are unlikely to replicate in a new 
sample. Another is that p values in computer output for stepwise methods 
are typically wrong because they are not adjusted for nonchance selection 
(i.e., Feynman’s conjecture; see Chapter 3). Worst of all, stepwise methods 
give the false impression that the researcher does not have to think about the 
problem of predictor selection and entry order; see Whittingham, Stephens, 
Bradbury, and Freckleton (2006) for additional criticisms.

Defenses of Significance Testing

The litany of complaints reviewed so far raises the question of whether 
anything is right with significance testing. Some authors defend its use while 
acknowledging that significance testing should be supplemented with effect 
sizes or confidence intervals (e.g., Aguinis et al., 2010; Hurlbert & Lombardi, 
2009). Some supportive arguments are summarized next:

1.	If nothing else, significance testing addresses sampling error. Sig-
nificance testing provides a method for managing the risk of 
sampling error and controlling the long-run risk of Type I error. 
Thus, some researchers see significance testing as addressing 
important needs and therefore may be less like passive follow-
ers of tradition than supposed by critics. Those critics rightly 
point out that confidence intervals convey more direct infor-
mation about sampling error. They also suggest that excessive 
fixation on p values is one reason why confidence intervals are 
not reported more often.

2.	Significance testing is a gateway to decision theory. In situations 
where researchers can estimate costs of Type I versus Type II 
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error and benefits of correct decisions, decision theory offers a 
framework for estimating overall utility in the face of uncer-
tainty. Decision theory may also be able to detect long-term 
negative consequences of an intervention even while statisti-
cal tests fail to reject the nil hypothesis of no short-term effect 
(D. H. Johnson, 1999). But it is rare in the behavioral sciences 
that researchers can estimate costs versus benefits regarding 
their decisions. This is why Hurlbert and Lombardi (2009) 
and others have suggested that mass manufacturing is the ideal 
application for the Intro Stats method. Manufacturing pro-
cesses are susceptible to random error. If this error becomes 
too great, products fail. In this context, H0 represents a product 
specification that is reasonable to assume is true, samples can 
be randomly selected, and exact deviations of sample statistics 
from the specification can be accurately measured. Costs for 
corrective actions, such as a product recall, may also be known. 
Perhaps the behavioral sciences are just the wrong context for 
significance testing.

3.	Some research questions require a dichotomous answer. There are 
times when the question that motivates research is dichoto-
mous (e.g., Should this intervention be implemented? Is this 
drug more effective than placebo?). The outcome of significance 
testing is also dichotomous. It deals with whether observed 
effects stand out against sampling error. But significance testing 
does not estimate the magnitudes of those effects, nor does it 
help with real-world decisions of the kind just stated. The lat-
ter involve judging whether observed effect sizes are sufficiently 
large to support the investment of resources. Evidence for repli-
cation would also be crucial, but the final yes-or-no decision is 
ultimately a matter of informed judgment based on all available 
evidence.

4.	Nil hypotheses are sometimes appropriate. Robinson and Wainer 
(2002) noted that nil hypotheses are sometimes justified in 
multiple factor designs when there is no reason to expect an 
effect when just one independent variable is manipulated. In 
most studies, though, nil hypotheses are feeble arguments.

Variations on the Intro Stats Method

This section identifies variations on significance testing that may be 
useful in some situations.
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Neo-Fisherian Significance Assessments

Hurlbert and Lombardi (2009) recommended replacing the Intro Stats 
method, or the paleo-Fisherian and Neyman–Pearsonian approaches, with 
a modified version, Neo-Fisherian significance assessments. This model has 
the three characteristics listed next:

1.	No dichotomization of p values. This means that (a) exact p values 
are reported, but they are not compared with an arbitrary stan-
dard such as .05. (b) The terms significant versus not significant 
when describing p values are dropped. The former modification is 
closer to the original Fisher approach than the Neyman–Pearson 
approach (see Table 3.1), and the latter is intended to minimize 
the cliff effect.

2.	High p values lead to the decision to suspend judgment. The label 
for this outcome reminds researchers not to “accept” H0 in this 
case or somehow believe p > a is evidence that H0 is true. This 
variation may protect researchers against the inverse probabil-
ity, zero, or equivalence fallacies when p values are high.

3.	Adjunct analyses may include effect size estimation and interval 
estimation. When metrics of outcome variables are meaningful, 
effect sizes should be estimated in that original metric. That is, 
researchers should report unstandardized effect sizes. Standard-
ized effect sizes that are metric free, such as squared correlations 
(i.e., proportions of explained variance), should be reported 
only when scales of outcomes of variables are arbitrary. The dis-
tinction between unstandardized and standardized effect sizes is 
elaborated in the next chapter.

The decision to suspend judgment derives from an approach to signifi-
cance testing based on three-valued logic (e.g., Harris, 1997), which allows 
split-tailed alternative hypotheses that permit statistically significant evi-
dence against a substantive hypothesis if the direction of the observed effect 
is not as predicted. Hurlbert and Lombardi (2009) also emphasized the dis-
tinction between statistical hypotheses and substantive hypotheses. In par-
ticular, researchers should not mistake support for a statistical hypothesis as 
automatically meaning support for any corresponding substantive hypothesis. 
The Hulbert–Lombardi model features some welcome reforms, but it relies on 
the assumption that p values are generally accurate in most studies.

Customer-Centric Science

Aguinis et al. (2010) described an approach to significance testing 
known as customer-centric science. It is intended to make results more rel-
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evant for stakeholders other than researchers, especially practitioners. The 
basic ideas are listed next:

1.	Set the level of a rationally, not arbitrarily, and report the exact value 
of p. This means that the researcher estimates the probability of 
a Type II error b, calculates the desired relative serious of a Type 
I versus Type II error, and estimates the prior probability that H1 
is true. Next, the researcher applies Equation 3.2 to compute the 
optimal level of a, given the information just mentioned. After 
the test is conducted, the exact p value is reported.

2.	Report effect sizes that indicate the degree to which an outcome 
is explained or predicted. Aguinis et al. (2010) emphasized that 
researchers should also avoid applying arbitrary standards for 
describing observed effect sizes as “small,” “medium,” or “large,” 
or any other qualitative description that may not apply in a par-
ticular research area. This point is elaborated in the next chapter.

3.	Interpret statistically significant results and their magnitudes in 
ways that are meaningful for stakeholders other than researchers. 
This part of Aguinis et al.’s (2010) approach explicitly recog-
nizes that neither statistical significance nor effect size directly 
addresses the practical, clinical, or, more generally, substantive 
significance of the findings. These authors do not suggest that 
this kind of communication should be mandatory in research 
reports, but doing so presents potential opportunities to narrow 
the communication gap between researchers and practitioners.

Suggestions for how to convey the substantive meaning of research 
results are offered in the next chapter (and are discussed by Aguinis et al., 
2010), but this process requires that researchers become aware of the con-
cerns of stakeholders and speak in language relevant to this audience. It 
also means that the overly technical, jargon-filled discourse that avoids any 
consideration of substantive significance and is seen in far too many journal 
articles is to be avoided. A key difference between customer-centric science 
and my recommendations presented in the next section is a central role for 
significance testing in the former.

Equivalence Testing

The method of equivalence testing is better known in pharmacology 
and environmental sciences. It concerns the problem of how to establish 
equivalence between groups or treatments. Suppose that a researcher wishes 
to determine whether a generic drug can be substituted for a more expensive 
drug. In traditional significance testing, the failure to reject H0: µ1 = µ2 is not 

13170-05_Ch04-5thPgs.indd   111 2/1/13   12:03 PM



112           beyond significance testing

evidence that the drugs are equivalent. In equivalence testing, a single point 
null hypothesis is replaced by two range subhypotheses. Each subhypothesis 
expresses a range of µ1 - µ2 values that corresponds to substantive mean dif-
ferences. For example, the pair of subhypotheses

H
H
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0

0

0

:
: < 10.00

: > 10.00

1

2

µ µ

µ µ

1 2

1 2

−( ) −

−( )
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says that the population means cannot be considered equivalent if the abso-
lute value of their difference is greater than 10.00. The complementary inter-
val for this example is

− ≤ −( ) ≤10 00 10 001 2. .µ µ

which is a good-enough belt for a hypothesis of equivalence, also called a range 
of practical equivalence. It is a range hypothesis that indicates the value(s) 
of the parameter(s) considered equivalent and uninteresting. Standard sta-
tistical tests are used to contrast the observed mean difference against each 
of these one-sided null hypotheses for a directional H1. Only if both range 
subhypotheses are rejected at the same level of a can the compound null 
hypothesis of nonequivalence be rejected.

In the approach just outlined, Type I error is the probability of declar-
ing two populations or conditions to be equivalent when in truth they are 
not. In a drug study, this risk is the patient’s (consumer’s) risk. McBride 
(1999) showed that if Type I error risk is to be the producer’s instead of the 
patient’s, the null hypothesis appropriate for this example would be the range 
hypothesis

H0 210 00 10 00: . .− ≤ −( ) ≤µ µ1

and it would be rejected either if the lower end of a one-sided confidence 
interval about the observed mean difference is greater than 10.00 or if the 
upper end of a one-sided confidence interval is less than –10.00. See Wellek 
(2010) for more information.

Inferential Confidence Intervals

Tryon (2001) proposed an integrated approach to testing means for sta-
tistical difference, equivalence, or indeterminancy (neither statistically dif-
ferent or equivalent). It is based on inferential confidence intervals, which 
are modified confidence intervals constructed around individual means. The 
width of an inferential confidence interval is the product of the standard 
error of the mean (Equation 2.6) and a two-tailed critical t value reduced 
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by a correction factor that equals the ratio of the standard error of the mean 
difference (Equation 2.12) over the sum of the individual standard errors. 
Because values of this correction factor range from about .70 to 1.00, widths 
of inferential confidence intervals are generally narrower than those of stan-
dard confidence intervals about the same means.

A statistical difference between two means occurs in this approach 
when their inferential confidence intervals do not overlap. The probability 
associated with this statistical difference is the same as that from the standard 
t test for a nil hypothesis and a nondirectional H1. Statistical equivalence 
is concluded when the maximum probable difference between two means 
is less than an amount considered inconsequential as per an equivalence 
hypothesis. The maximum probable difference is the difference between the 
highest upper bound and the lowest lower bound of two inferential confi-
dence intervals. For example, if [10.00, 14.00] and [12.00, 18.00] are the 
inferential confidence intervals based on two different means, the maximum 
probable difference is 18.00 - 10.00, or 8.00. If this difference lies within the 
range set by the equivalence hypothesis, statistical equivalence is inferred. A 
contrast neither statistically different nor equivalent is indeterminant, and it 
is not evidence for or against any hypothesis.

Tryon and Lewis (2008) extended this approach when testing for statis-
tical equivalence over two or more populations. Tryon (2001) claimed that 
the method of inferential confidence intervals is less susceptible to misinter-
pretation because (a) the null hypothesis is implicit instead of explicit, (b) 
the model covers tests for both differences and equivalence, and (c) the avail-
ability of a third outcome—statistical indeterminancy—may help to prevent 
the interpretation of marginally nonsignificant differences as “trends.”

Building a Better Future

Outlined next are recommendations that call for varying degrees of use 
of statistical tests—from none at all to somewhat more pivotal depending on 
the context—but with strict requirements for their use. These suggestions are 
intended as a constructive framework for reform and renewal. I assume that 
reasonable people will disagree with some of the specifics put forward. Indeed, 
a lack of consensus has characterized the whole debate about significance 
testing. Even if you do not endorse all the points elaborated next, you may 
at least learn new ways of looking at the controversy over statistical tests or, 
even better, data, which is the ultimate goal of this discussion.

A theme underlying these recommendations can be summarized like 
this: Significance testing may have helped us in psychology and other behav-
ioral sciences through a difficult adolescence during which we struggled to 
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differentiate ourselves from the humanities while at the same time strived 
to become more like the natural sciences. But just as few adults wear the 
same style of clothes, listen to the same types of music, or have the same 
values they did as teenagers, behavioral science needs to leave its ado-
lescence behind. Growing up is a series of conscious choices followed by 
more mature actions. Continued arrested development and stagnation of 
our research literature are possible consequences of failing the challenge of 
statistics reform.

A second theme is the realization that statistical significance provides 
even in the best case nothing more than low-level support for the existence 
of an effect, relation, or difference. That best case occurs when researchers 
estimate a priori power, specify the correct construct definitions and opera-
tionalizations, work with random or at least representative samples, analyze 
highly reliable scores in distributions that respect test assumptions, control 
other major sources of imprecision besides sampling error, and test plausible 
null hypotheses. In this idyllic scenario, p values from statistical tests may 
be reasonably accurate and potentially meaningful, if they are not misinter-
preted. But science should deal with more than just the existence question, a 
point that researchers overly fixated on p values have trouble understanding. 
As Ziliak and McCloskey (2008) put it, two other vital questions are “how 
much?” (i.e., effect size) and “so what?” (i.e., substantive significance).

A third theme is that behavioral science of the highest caliber is pos-
sible without significance testing at all. Here it is worth noting that some of 
the most influential empirical work in psychology, including that of Piaget, 
Pavlov, and Skinner, was conducted without rejecting null hypotheses 
(Gigerenzer, 1993). The natural sciences have thrived without relying on 
significance testing. Ziliak and McCloskey (2008) argued that this is one of 
the reasons why the natural sciences have fared better than the behavioral 
sciences over recent decades. This provocative argument ignores some dif-
ferences between the subject matter in the natural sciences and that in the 
behavioral sciences (e.g., Lykken, 1991). But there seems little doubt that 
collective overconfidence in significance testing has handicapped the behav-
ioral sciences.

Times of change present opportunities for both progress and peril. 
Guthery et al. (2001) counted the following potential advantages of the 
decline of significance testing: Researchers might pay less attention to sta-
tistical hypotheses and more attention to the good, creative ideas that drive 
scientific progress. Researchers may better resist the temptation to become 
preoccupied with statistical tools at the expense of seeking true cumulative 
knowledge. A risk is that another mechanically applied statistical ritual will 
simply replace significance testing. There does not appear at this point to be 
any contender, including Bayesian estimation, that could take the place of 
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significance testing across whole disciplines, so the likelihood that we will 
simply swap one set of bad habits for another seems remote for now.

Recommendations

Specific suggestions are listed next and then discussed:

1.	 Routine use of significance testing without justification is no 
longer acceptable.

2.	 If statistical tests are used, (a) information about a priori power 
must be reported, (b) the representativeness of the sample must 
be addressed (i.e., is the population inference model, which 
assumes random sampling, tenable?), and (c) distributional or 
other assumptions of the test must be verified. If nil hypotheses 
are tested, the researcher should explain why such hypotheses 
are appropriate.

3.	 If an a priori level of a is specified, do so based on rational 
grounds, not arbitrary ones. Otherwise, do not dichotomize 
p values; just report them.

4.	 Drop the word significant from our data analysis vocabulary. 
Use it only in its everyday sense to describe something actu-
ally noteworthy or important.

5.	 If scores from psychological tests are analyzed, report reli-
ability coefficients and describe other relevant psychometric 
information.

6.	 It is the researcher’s responsibility to report and interpret 
effect sizes and confidence intervals whenever possible. This 
does not mean the researcher should report effect sizes only for 
results with low p values.

7.	 It is also the researcher’s responsibility to consider the sub-
stantive significance of the results. Statistical tests are inad-
equate for this purpose. This means no more knee-jerk claims 
of importance based solely on low p values.

8.	 Replication is the decisive way to deal with sampling error. 
The best journals should require evidence for replication.

9.	 Statistics education needs more reform than is apparent to 
date. The role of significance testing should be greatly reduced 
so that more time can be spent showing students how to deter-
mine whether a result has substantive significance and how to 
replicate it.

10.	 Researchers need more help from their statistical software to 
compute effect sizes and confidence intervals and also to test 
non-nil hypotheses.
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No Unjustified Use of Statistical Tests

Today nearly all researchers use significance testing, but most fail to 
explain why its use makes sense in a particular study. For example, there is 
little point to significance testing when power is low, but few researchers esti-
mate power or even mention this issue. This failure is critical when expected 
results are not statistically significant. If readers knew that power was low 
in such analyses, it would be clear that the absence of asterisks may be due 
more to the design (e.g., N is too small) than to the validity of the research 
hypotheses. We probably see so few examples of reporting power when results 
are mainly negative because of bias for publishing studies with H0 rejections. 
In a less biased literature, p values that exaggerate the relative infrequency of 
the results are expected under implausible null hypotheses. If it is feasible to 
test only a nil hypothesis but such a null hypothesis is dubious, interpretation 
of statistical test outcomes should be modified accordingly.

If the use of significance testing is justifiable, other suggested reforms 
are relevant. One is to specify the level of a based on rational grounds that 
also take account of the serious of Type II error. If a researcher cannot think 
of a reason to set the level of statistical significance to a value other than the 
“defaults” of .05 or .01, that researcher has not thought sufficiently about 
the problem. This also means that significance testing should be applied in 
an informed way. An alternative is to just report p values without dichoto-
mizing them. If so, the word significant would not apply to any result, but 
the researcher should be careful not to base interpretations on undisclosed 
dichotomization of p values (e.g., results are not interpreted unless p < .05).

The capability of significance tests to address the dichotomous question 
of whether effects, relations, or differences are greater than expected levels 
of sampling error may be useful in some new research areas. Due to the many 
limitations of statistical tests, this period of usefulness should be brief. Given 
evidence that an effect exists, the next steps should involve estimation of 
its magnitude and evaluation of its substantive significance, both of which 
are beyond what significance testing can tell us. More advanced study of the 
effect may require statistical modeling techniques (Rodgers, 2010). It should 
be a hallmark of a maturing research area that significance testing is not the 
primary inference method.

Report Psychometrics for Test Scores

There is a misconception that reliability is an attribute of tests rather 
than of the scores for a particular population of examinees (B. Thompson, 
2003). This misconception may discourage researchers from reporting the reli-
abilities of their own data. Interpretation of effect size estimates also requires 
assessments of score reliability (Wilkinson & the TFSI, 1999). The best type 
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of estimate is calculated in the researcher’s own sample. If these coefficients 
are satisfactory, readers are reassured that the scores were reasonably precise. 
Reliability induction is a second-best practice where only coefficients from 
previous studies are reported. Too many authors who depend on reliability 
induction fail to explicitly compare characteristics of their sample with those 
from cited studies of score reliability (e.g., Vacha-Haase & Thompson, 2011).

Report and Interpret Effect Sizes and Confidence Intervals

That some journals require effect sizes supports this recommendation. 
Reporting confidence intervals for effect sizes is even better: Not only does 
the width of the confidence interval directly indicate the amount of sam-
pling error associated with a particular effect size, it also estimates a range 
of effect sizes in the population that may have given rise to the observed 
result. Although it not always possible to compute effect sizes in certain kinds 
of complex designs or construct confidence intervals based on some types 
of statistics, this concerns a minority of studies. In contrast to authors who 
recommend calculating effect sizes only for statistically significant results 
(Onwuegbuzie & Levin, 2003), I urge reporting of effect sizes for all substan-
tive analyses, especially if power is low or p values are deemed untrustworthy.

Demonstrate Substantive Significance

Null hypothesis rejections do not imply substantive significance, so 
researchers need other frames of reference to explain to their audiences why 
the results are interesting or important. A start is to learn how to describe 
your results without mention of statistical significance at all. In its place, 
refer to descriptive statistics and effect sizes and explain why those effect sizes 
matter in a particular context. Doing so may seem odd at first, but you should 
understand that statistical tests are not generally necessary to detect mean-
ingful or noteworthy effects, which should be obvious to visual inspection of 
relatively simply kinds of graphical displays (Cohen, 1994). The description 
of results at a level closer to the data may also help researchers to develop 
better communication skills.

Replicate, Replicate

The rationale for this recommendation is obvious. A replication 
requirement would help to filter out some of the fad research topics that 
bloom for a short time but then disappear. Such a requirement could be 
relaxed for original results with the potential for a large impact in their 
field, but the need to replicate studies with unexpected or surprising results 
is even greater (Robinson & Levin, 1997). Chapter 9 deals with replication 
in more detail.
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Statistics Education Should Be Less Significance-Centric

Significance testing is presented as the pinnacle in many introductory 
statistics courses. Graduate courses often do little more than inform students 
about additional kinds of statistical tests and strategies for their use. The situ-
ation is little better in undergraduate psychology programs, which emphasize 
traditional approaches to analysis (i.e., statistical tests) and have not generally 
kept pace with changes in the field. And too many statistics textbooks still fail 
to tell students about effect size estimation (Capraro & Capraro, 2002).

Some topics already taught in introductory courses should be given more 
prominence. Many effect sizes are nothing more than correlations, proportions 
of standard deviations, or percentages of scores that fall at certain points. These 
are all basic kinds of statistics covered in many introductory courses. But poten-
tial application outside classical descriptive or inferential statistics is often 
unexplained. For example, students usually learn about the t test for comparing 
independent means. The same students often do not know about the point-
biserial correlation, rpb. In a two-sample design, rpb is the correlation between 
a dichotomous independent variable (group membership) and a quantitative 
dependent variable. It is easily derived from the t test and is just a special case 
of the Pearson correlation, r. These ideas are elaborated in the next chapter.

Better integration between courses in research methods and statistics is 
also needed. In many undergraduate programs, these subjects are taught in sepa-
rate courses, and there is often little connection between the two. The conse-
quence is that students learn about data analysis methods without getting a good 
sense of their potential applications. This may be an apt time to rethink the 
partition of the teaching of research skills into statistics versus methods courses.

Statistical Software Should Be Modernized

Most general statistical software programs are still overly significance-
test-centric. That more of them now optionally print at least some kinds of 
effect sizes is encouraging. It should also be the case that, for a given analytical 
choice, different kinds of effect size are options. Given these discussions, per-
haps it is results of statistical tests that should be the optional output. Some pro-
grams also optionally print confidence intervals based on means or regression 
coefficients, but they should give confidence intervals based on effect sizes, too.

Conclusion

Significance testing has been like a collective Rorschach inkblot test for 
the behavioral sciences: What we see in it has more to do with wish fulfill-
ment than reality. This magical thinking has impeded the development of 
psychology and other disciplines as cumulative sciences. There would be no 
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problem with significance testing if researchers all routinely specified plau-
sible null hypotheses, set the level of a based on rational grounds, estimated 
power before collecting the data in randomly selected samples, verified dis-
tributional and other assumptions, analyzed scores with little measurement 
error, and understood the correct meaning of p values. But the gap between 
what is required for significance tests to be accurate and characteristics of 
real world studies is just too great. I offered suggestions in this chapter, all of 
which involve a smaller role—including none at all—for significance testing. 
Replication is the most important reform of all. The next chapter introduces 
effect size estimation in comparative studies with continuous outcomes.

Learn More

Aguinis et al. (2010) and Hurlbert and Lombardi (2009) give spirited 
defenses of modified forms of significance testing. Ziliak and McCloskey (2008) 
deliver an eloquent but hard-hitting critique of significance testing, and Lambdin 
(2012) takes psychology to task for its failure to abandon statistical witchcraft.
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Exercises

Explain why each statement about statistical significance listed next is 
incorrect.

1.	Statistically significant: “Said of a sample size which is large 
enough to be considered representative of the overall popula-
tion being studied.”2

2http://www.investorwords.com/4704/statistically_significant.html
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2.	“Many researchers get very excited when they have discovered 
a ‘statistically significant’ finding, without really understanding 
what it means. When a statistic is significant, it simply means 
that you are very sure that the statistic is reliable.”3

3.	“Statistical tests are used because we want to do the experi-
ment once and avoid the enormous cost of repeating it many 
times. The test will tell us how likely a particular mean differ-
ence would be to occur by chance; those unlikely to occur by 
chance are termed significant differences and form the basis for 
scientific conclusions” (M. K. Johnson & Liebert, 1977, p. 60).

4.	“A long-standing convention in psychology is to label results as 
statistically significant if the probability is less than 5% that the 
research hypothesis is wrong” (Gray, 2002, p. 41).

5.	“The message here is that in judging a study’s results, there are 
two questions. First, is the result statistically significant? If it is, 
you can consider there to be a real effect. The next question is 
then, is the effect size large enough for the result to be useful or 
interesting” (Aron & Aron, 2002, p. 147).

3http://www.statpac.com/surveys/statistical-significance.htm
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5
Continuous Outcomes

Effect size estimation with continuous outcomes is introduced in this 
chapter. Also considered are conceptual issues and limitations of effect size 
estimation including the challenge of establishing substantive significance. 
Two major effect size types, standardized mean differences and measures 
of association, are described. These effect sizes are among the most widely 
reported in the literature, both in primary studies and in meta-analytic stud-
ies. Interval estimation for effect sizes is also covered. Research designs con-
sidered next compare only two independent or dependent samples, but later 
chapters extend effect size estimation to more complex designs. Exercises for 
this chapter involve the computation and interpretation of effect size mea-
sures, which are introduced next.

DOI: 10.1037/14136-005
Beyond Significance Testing: Statistics Reform in the Behavioral Sciences, Second Edition, by R. B. Kline
Copyright © 2013 by the American Psychological Association. All rights reserved.

Statistical significance is the least interesting thing about the results. You 
should describe the results in terms of measures of magnitude—not just, 
does a treatment affect people, but how much does it affect them.

—Gene Glass (quoted in M. Hunt, 1997, pp. 29–30)
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Definitions of Effect Size

Kelley and Preacher (2012) defined effect size as a quantitative reflec-
tion of the magnitude of some phenomenon used for the sake of addressing a 
specific research question. In this sense, an effect size is a statistic (in samples) 
or parameter (in populations) with a purpose, that of quantifying a phenom-
enon of interest. More specific definitions may depend on study design. For 
example, effect size in experimental studies usually refers to the magnitude 
of the impact of the independent variable on the dependent (outcome) vari-
able. Thus, effect size is measured on the latter. In contrast, cause size refers 
to the independent variable and specifically to the amount of change in it 
that produces a given effect on the dependent variable. A related idea is that 
of causal efficacy, or the ratio of effect size to the size of its cause. The greater 
the causal efficacy, the more that a given change on an independent variable 
results in proportionally bigger changes on the dependent variable. The idea 
of cause size is most relevant when the factor is experimental and its levels are 
quantitative.

In nonexperimental studies, effect size can be described as the degree 
of covariation between variables of interest. If there is a distinction between 
predictor and criterion variables, effect size is generally measured on the 
criterion, when doing so addresses a question of interest. But there are times 
when there is no clear distinction between predictors and criteria. In this 
case, an effect size would correspond to something more akin to a correlation 
(standardized) or covariance (unstandardized) than to a regression coeffi-
cient. Kelley and Preacher (2012) noted that even simpler kinds of out-
comes, such as proportions, can be considered as effect sizes if they describe 
what exists in a sample or population in a way that addresses a particular 
question.

An effect size measure, as defined by Kelley and Preacher (2012), is 
a named expression that maps data, statistics, or parameters onto a quan-
tity that represents the magnitude of the phenomenon of interest. This 
expression connects dimensions or generalized units that are abstractions 
of variables of interest with a specific operationalization of those units. 
For example, the abstract quality of “variability” can be operationalized in 
terms of variances, standard deviations, or ranges, among other units, and 
the quality of “relatedness” can be quantified in units that correspond to 
correlations, regression coefficients, or covariances, among other possi-
bilities. An effect size measure is thus a particular implementation of the 
dimension(s) of interest. Likewise, an effect size value is the real number 
(e.g., .35, 1.65) that results from applying the effect size measure to data, 
statistics, or parameters, and it is this outcome that is interpreted in terms 
of a particular research question.
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A good effect size measure has the characteristics listed next (Kelley & 
Preacher, 2012):

1.	Its scale (metric) should be appropriate for the research ques-
tion. Specific metrics for effect sizes are considered below.

2.	It should be independent of sample size. Recall that test statis-
tics reflect both sample size and effect size (e.g., Equation 3.4).

3.	As a point estimate, an effect size should have good statistical 
properties; that is, it should be unbiased, consistent (its values 
converge to that of the corresponding parameter as sample size 
increases), and efficient (it has minimum error variance).

4.	The effect size is reported with a confidence interval.

Not all effect size measures considered in this book have all the proper-
ties just listed. But it is possible to report multiple effect sizes that address 
the same question in order to improve the communication of the results. An 
example is when an effect size is commonly reported in a particular literature, 
but its properties may not be optimal. If so, there is no problem with reporting 
both the “expected” effect size and one with better properties.

Contexts for Estimating Effect Size

Major contexts for effect size estimation and the difference between 
unstandardized and standardized effect sizes are outlined next.

Meaningful Versus Arbitrary Metrics

Examples of outcomes with meaningful metrics include salaries in dollars 
and post-treatment survival time in years. Means or contrasts for variables with 
meaningful units are unstandardized effect sizes that can be directly inter-
preted. For example, Bruce et al. (2000) evaluated the effect of moderate doses 
of caffeine on the 2,000-meter rowing performance times in seconds (s) of 
competitive male rowers. Average times in the placebo and caffeine conditions 
were, respectively, 415.39 s and 411.01s. The unstandardized contrast of 4.38 s 
is both directly interpretable and practically significant: Four seconds can make 
a big difference in finish order among competitive rowers over this distance.

In medical research, physical measurements with meaningful metrics 
are often available. Examples include milligrams of cholesterol per deciliter 
of blood, inches of mercury displacement in blood pressure, and patterns 
of cardiac cycle tracings generated by an electrocardiogram device, among 
others that could be considered gold standard measures in particular areas of 
health research. But in psychological research there are typically no “natu-
ral” units for abstract, nonphysical constructs such as intelligence, scholastic 
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achievement, or self-concept. Unlike in medicine, there are also typically no 
universally accepted measures of such constructs.

Therefore, metrics in psychological research are often arbitrary instead 
of meaningful. An example is the total score for a set of true-false items. 
Because responses can be coded with any two different numbers, the total is 
arbitrary. Standard scores such as percentiles and normal deviates are arbi-
trary, too, because one standardized metric can be substituted for another. 
Standardized effect sizes can be computed for results expressed in arbitrary 
metrics. Such effect sizes can also be directly compared across studies where 
outcomes have different scales. This is because standardized effect sizes are 
based on units that have a common meaning regardless of the original metric.

Summarized next are relative advantages of unstandardized versus stan-
dardized effect sizes (Baguley, 2009):

1.	It is better to report unstandardized effect sizes for outcomes 
with meaningful metrics. This is because the original scale is 
lost when results are standardized.

2.	Unstandardized effect sizes are best for comparing results across 
different samples measured on the same outcomes. Because stan-
dardized effect sizes reflect the variances in a particular sample, 
the basis for that standardization is not comparable when cases 
in one sample are more or less variable than in another.

3.	Standardized effect sizes are better for comparing conceptually 
similar results based on different units of measure. Suppose that 
different rating scales are used as outcome variables in two studies 
of the same treatment. They measure the same construct but 
have different score metrics. Calculating the same standardized 
effect size in each study converts the results to a common scale.

4.	Standardized effect sizes are affected by the corresponding 
unstandardized effect sizes plus characteristics of the study, 
including its design (e.g., between-subjects vs. within-subjects), 
whether factors are fixed or random, the extent of error variance, 
and sample base rates. This means that standardized effect sizes 
are less directly comparable over studies that differ in their designs 
or samples.

5.	There is no such thing as T-shirt effect sizes (Lenth, 2006–
2009) that classify standardized effect sizes as “small,” “medium,” 
or “large” and apply over all research areas. This is because what 
is considered a large effect in one area may be seen as small or 
trivial in another. B. Thompson (2001) advised that we should 
avoid “merely being stupid in another metric” (pp. 82–83) by 
interpreting effect sizes in the same rigid way that characterizes 
significance testing.
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6.	There is usually no way to directly translate standardized effect 
sizes into implications for substantive significance. This means 
that neither statistical significance nor observation of effect 
sizes considered large in some T-shirt metric warrants conclud-
ing that the results are meaningful.

Meta-Analysis

It is standardized effect sizes from sets of related studies that are analyzed 
in most meta-analyses. Consulting a meta-analytic study provides a way for 
researchers to gauge whether their own effects are smaller or larger than those 
from other studies. If no meta-analytic study yet exists, researchers can calculate, 
using equations presented later, effect sizes based on descriptive or test statistics 
reported by others. Doing so permits direct comparison of results across different 
studies of the same phenomenon, which is part of meta-analytic thinking.

Power Analysis and Significance Testing

A priori power analysis requires specification of population effect sizes, 
or the parameters of statistics introduced next. Thus, one needs to know about 
effect size in order to use a computer tool for power analysis. Estimating sample 
effect sizes can help to resolve two interpretational quandaries that can arise in 
significance testing: Trivial effects can lead to rejection of H0 in large samples, 
and it may be difficult to reject H0 in small samples even for larger effects. 
Measurement of effect magnitudes apart from the influence of sample size dis-
tinguishes effect size estimation from significance testing (see Equation 3.4).

Levels of Analysis

Effect sizes for analysis at the group or variable level are based on aggre-
gated scores. Consequently, they do not directly reflect the status of indi-
vidual cases, and there are times when group- or variable-level effects do not 
tell the whole story. Knowledge of descriptive statistics including correla-
tion coefficients is required in order to understand group- or variable-level 
effect sizes. Not so for case-level effect sizes, which are usually proportions of 
scores that fall above or below certain reference points. These proportions 
may be observed or predicted, and the reference points may be relative, such 
as the median of one group, or more absolute, such as a minimum score on an 
admissions test. Huberty (2002) referred to such effect sizes as group overlap 
indexes, and they are suitable for communication with general audiences. 
There is an old saying that goes, “The more you know, the more simply you 
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should speak.” Case-level analysis can help a researcher do just that, espe-
cially for audiences who are not formally trained in research.

Families of Effect Sizes

There are two broad classes of standardized effect sizes for analysis at the 
group or variable level, the d family, also known as group difference indexes, 
and the r family, or relationship indexes (Huberty, 2002; Rosenthal et al., 
2000). Both families are metric- (unit-) free effect sizes that can compare 
results across studies or variables measured in different original metrics. Effect 
sizes in the d family are standardized mean differences that describe mean 
contrasts in standard deviation units, which can exceed 1.0 in absolute value. 
Standardized mean differences are signed effect sizes, where the sign of the 
statistic indicates the direction of the corresponding contrast.

Effect sizes in the r family are scaled in correlation units that generally 
range from -1.0 to +1.0, where the sign indicates the direction of the relation 
between two variables. For example, the point-biserial correlation rpb is an 
effect size for designs with two unrelated samples, such as treatment versus 
control, and a continuous outcome. It is a form of the Pearson correlation r 
in which one of the two variables is dichotomous. If rpb = .30, the correlation 
between group membership and outcome is .30, and the former explains 
.302 = .09, or 9%, of the total variance in the latter. A squared correlation 
is a measure of association, which is generally a proportion of variance 
explained effect size. Measures of association are unsigned effect sizes and 
thus do not indicate directionality.

Because squared correlations can make some effects look smaller than 
they really are in terms of their substantive significance, some researchers 
prefer unsquared correlations. If r = .30, for example, it may not seem very 
impressive to explain .302 = .09, or <10%, of the total variance. McCloskey 
and Ziliak (2009) described examples in medicine, education, and other 
areas where potentially valuable findings may have been overlooked due to 
misinterpretation of squared correlations. Rutledge and Loh (2004) calcu-
lated correlation effect sizes for 15 widely cited studies in behavioral health 
(e.g., heart disease, smoking, depression). They found that proportions of 
explained variance were typically <.10, yet these studies are considered to be 
landmark investigations that demonstrated clinically meaningful results. For 
example, the Steering Committee of the Physicians’ Health Study Research 
Group (1988) found that the clinical value of small doses of aspirin in pre-
venting heart attack was so apparent that it terminated a randomized clinical  
trial early so that the results could be reported. The correlation effect size 
was .034. This means that taking aspirin versus placebo explained about 
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.0342 = .0012, or .12%, of the variability in cardiovascular health outcomes. 
See Ferguson (2009) for cautions about comparing effect sizes in medicine 
with those in psychology or other behavioral sciences.

Due to capitalization on chance, squared sample correlations estimate 
population proportions of explained variance with positive bias. This is a 
greater problem when the sample size is small. There are methods to correct 
squared correlations for bias, and they do not all yield the same results for the 
same effect. Methods described in the regression literature generate corrected 
squared multiple correlations such that R̂2 < R2, where R̂2 is a bias-adjusted 
result that controls for sample size and the number of predictors (e.g., Snyder 
& Lawson, 1993). In very large samples, R̂2 and R2 are asymptotically equal 
(i.e., there is virtually no bias). In smaller samples, some researchers prefer R̂2 

over R2 because the former is a more conservative estimator of r2, the popula-
tion proportion of explained variance.

The technique of ANOVA is just a special case of multiple regression, 
but in the ANOVA literature R2 is often called estimated eta-squared, η̂2. Two 
bias-adjusted estimators for designs with fixed factors are estimated omega-
squared, ŵ2, and estimated epsilon-squared, ê2. Note that some authors use 
the symbols h2, w2, and e2 to refer to sample statistics, but this is potentially 
confusing because Greek letters without the hat symbol (ˆ) usually refer to 
parameters (e.g., µ). It is generally true for the same data that

ˆ ˆ ˆη ε ω2 2 2> >

but their values converge in large samples. The effect size ŵ2 is reported more 
often than ê2, so the latter is not covered further; see Olejnik and Algina 
(2000) for more information about ê2. Kirk (1996) described a category of 
miscellaneous effect size indexes that includes some statistics not described in 
this book, including the binomial effect size display and the counternull value 
of an effect size; see also Rosenthal et al. (2000), Ellis (2010), and Grissom 
and Kim (2011).

Standardized Mean Differences

The parameter estimated by a sample standardized mean difference is

δ µ µ
σ

= −1 2

*
( )5.1

where the numerator is the population mean contrast and the denomi-
nator is a population standard deviation on the outcome variable. The 
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parameter d (Greek lowercase delta) expresses the contrast as the pro-
portion of a standard deviation. For example, d = .75 says that the mean  
of population 1 is three quarters of a standard deviation higher than the  
mean of population 2. Likewise, d = -1.25 says that the mean of the first 
population is 1¼ standard deviations lower than the mean of the second. 
The sign of d is arbitrary because the direction of the subtraction between 
the two means is arbitrary. Always indicate the meaning of the sign for an 
estimate of d.

The denominator of d is s*, a population standard deviation (Equa
tion 5.1). This denominator is the standardizer for the contrast. There is more 
than one population standard deviation in a comparative study. For exam-
ple, s* could be the standard deviation in just one of the populations (e.g.,  
s* = s1), or, assuming homoscedasticity, it could be the common popula-
tion standard deviation (i.e., s* = s1 = s2). Because there is more than one 
potential standardizer, you should always describe the denominator in any 
estimate of d.

The general form of a sample standardized mean difference is

d
M M= −1 2

ˆ *
( )

σ
5.2

where the numerator is the observed contrast and the denominator is an 
estimator of s* that is not the same in all kinds of d statistics. This means 
that d statistics with different standardizers can—and usually do—have 
different values for the same contrast. Thus, to understand what a par-
ticular d statistic measures, you need to know which population standard 
deviation its standardizer estimates. This is critical because there are no 
standard names for d statistics. For example, some authors use the term 
Cohen’s d to refer any sample standardized mean difference, but Cohen 
(1988) used the symbol d to refer to d, the parameter. Others authors use 
the same term to refer to d statistics with a particular standardizer. This 
ambiguity in names is why specific d statistics are designated in this book 
by their standardizers.

Presented in the top part of Table 5.1 are the results of two hypotheti-
cal studies in which the same group contrast is measured on variables that 
reflect the same construct but with different scales. The unstandardized con-
trast is larger in the first study (75.00) than in the second (11.25), but the 
estimated population standard deviation is greater in the first study (100.00) 
than in the second (15.00). Because d1 = d2 = .75, we conclude equal effect 
size magnitudes in standard deviation units across studies 1 and 2. Reported 
in the bottom part of the table are results of two other hypothetical studies 
with the same unstandardized contrast, 75.00. Because the standard devia-
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tion in the third study (500.00) is greater than that in the fourth (50.00), 
we conclude unequal effect sizes across studies 3 and 4 because d3 = .15 and 
d4 = 1.50.

Specific types of d statistics seen most often in the literature and their 
corresponding parameters are listed in Table 5.2 and are discussed next (see 
also Keselman et al., 2008). From this point, the subscript for d designates its 
standardizer.

dpool

The parameter estimated by dpool is d = (µ1 - µ2)/s, where the denomi-
nator is the common population standard deviation assuming homoscedas-
ticity. The estimator of s is spool, the square root of the pooled within-groups 
variance (Equation 2.13). When the samples are independent, dpool can 
also be calculated given just the group sizes and the value of tind, the inde-
pendent samples t statistic with dfW = N – 2 degrees of freedom for a nil 
hypothesis:

d t
n n

pool ind 5.3= +1 1

1 2
( )

This equation is handy when working with secondary sources that do not 
report sufficient group descriptive statistics to calculate dpool as (M1 – M2)/spool. 
It is also possible to transform the correlation rpb to dpool for the same data:

d r
df

r n n
W

pool pb
pb

5.4=
−







+



1

1 1
2

1 2
( )

Table 5.1
Standardized Mean Differences for Two Hypothetical Contrasts

Study M1 – M2 σ̂* d

Different mean contrast, same effect size

1 75.00 100.00 .75
2 11.25 15.00 .75

Same mean contrast, different effect size

3 75.00 500.00 .15
4 75.00 50.00 1.50
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Equation 5.4 shows that dpool and rpb describe the same contrast but in dif-
ferent standardized units. An equation that converts dpool to rpb is presented 
later.

In correlated designs, dpool is calculated as MD/spool, where MD is the 
dependent mean contrast. The standardizer spool in this case assumes that the 
cross-conditions correlation r12 is zero (i.e., any subjects effect is ignored). 
The parameter estimated when the samples are dependent is µD/s. The value 
of dpool can also be computed from tdep, the dependent samples t with n – 1 
degrees of freedom for a nil hypothesis, and group size, the within-condition 
variances, and the variance of the difference scores (Equation 2.21) as

d t
s

n s s
D

pool dep 5.5=
+

2 2

1
2

2
2( )

( )

Table 5.2
Types of Standardized Mean Differences for Two-Sample Designs

Statistic Equation Parameter

Nonrobust

dpool
M M
s
1 2−
pool  

µ µ
σ

1 2−

ds1
M M

s
1 2

1

− µ µ
σ
1 2

1

−

ds2
M M

s
1 2

2

− µ µ
σ
1 2

2

−

dtotal
M M

sT
1 2− µ µ

σ
1 2−
total

ddiff
M
s

D

D

µ
σ ρ

D

2 1 12( )−

Robust

dWin p
M M

s
tr1 tr2

Winp

− µ µ
σ
tr1 tr2

Win

−

dWin1
M M

s
tr1 tr2

Win1

− µ µ
σ
tr1 tr2

Win1

−

dWin2
M M

s
tr1 tr2

Win2

− µ µ
σ
tr1 tr2

Win2

−
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ds1 or ds2

The standardizer spool assumes homoscedasticity. An alternative is to 
specify the standard deviation in either group, s1 or s2, as the standardizer. 
If one group is treatment, the other is control, and treatment is expected 
to affect both central tendency and variability, it makes sense to specify the 
standardizer as scon, the standard deviation in the control group. The result-
ing standardized mean difference is (M1 – M2)/scon, which some authors call 
Glass’s delta. It estimates the parameter (µ1 - µ2)/scon, and its value describes 
the treatment effect only on means.

Suppose that the two groups do not correspond to treatment versus 
control, and their variances are heterogeneous, such as s2

1 = 400.00 and  
s2

2 = 25.00. Rather than pool these dissimilar variances, the researcher will 
specify one of the group standard deviations as the standardizer. Now, which 
one? The choice determines the value of the resulting d statistic. Given  
M1 - M2 = 5.00, for instance, the two possible results for this example are

d ds s1 2or= = = =5 00

400 00
25

5 00

25 00
1 00

.

.
.

.

.
.

The statistic ds2 indicates a contrast four times larger in standard deviation 
units than ds1. The two results are equally correct if there are no conceptual 
grounds to select one group standard deviation or the other as the standardizer. 
It would be best in this case to report values of both ds1 and ds2, not just the one 
that gives the most favorable result. When the group variances are similar, dpool 
is preferred because spool is based on larger sample sizes (yielding presumably 
more precise statistical estimates) than s1 or s2. But if the ratio of the largest 
over the smallest variance exceeds, say, 4.0, then ds1 or ds2 would be better.

dtotal

Olejnik and Algina (2000) noted that spool, s1, and s2 estimate the full 
range of variation for experimental factors but perhaps not for individual 
difference (nonexperimental) factors. Suppose there is a substantial gender 
difference on a continuous variable. In this case, spool, s1, and s2 all reflect a 
partial range of individual differences. The unbiased variance estimator for 
the whole data set is s2

T = SST/dfT, where the numerator and denominator are, 
respectively, the total sum of squares and total degrees of freedom, or N – 1. 
Gender contrasts standardized against sT would be smaller in absolute value 
than when the standardizer is spool, s1, or s2, assuming a group difference. 
Whether standardizers reflect partial or full ranges of variability is a crucial 
problem in factorial designs and is considered in Chapter 8.
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Correction for Positive Bias

Absolute values of dpool, ds1, ds2, and dtotal are positively biased, but 
the degree of bias is slight unless the group sizes are small, such as n < 20. 
Multiplication of any of these statistics by the correction factor

c df
df

( ) = −
−

1 5.6
3

4 1
( )

where df refers to the standardizer’s degrees of freedom, yields a numerical 
approximation to the unbiased estimator of d. Suppose that dpool is calculated 
in a balanced two-sample design where n = 10. The degrees of freedom are 
dfW = 18, so the approximate unbiased estimator is .9578 dpool. But for n = 20 
and dfW = 38, the approximate unbiased estimator is .9801 dpool. For even 
larger group sizes, the correction factor is close to 1.0, which implies little 
adjustment for bias. Some authors refer to c (df) dpool as Hedges’s g, but others 
apply this term to dpool. Given this ambiguity, I do not recommend using the 
term to describe either statistic.

Suppose that the means and variances of two samples in a balanced 
design (i.e., the groups have the same number of cases, n) are

M s M s1 213.00, 7.50 and 11.00, 5.00= = = =1
2

2
2

which implies M1 – M2 = 2.00 and s2
pool = 6.25. Reported in Table 5.3 are 

results of the independent samples t test and values of d statistics for n = 5, 
15, and 30. The t test shows the influence of group size. In contrast, dpool = .80 
for all three analyses and in general is invariant to group size, keeping all else 
constant. The approximate unbiased estimator c (dfW) dpool is generally less 
than dpool, but their values converge as n increases. The two possible values 
of d for these data when the standardizer is a group standard deviation are 
ds1 = .73 and ds2 = .89. Values of dtotal are generally similar to those of other 
d statistics for these data (see Table 5.3), but, in general, dtotal is increasingly 
dissimilar to dpool, ds1, and ds2 for progressively larger contrasts on nonexperi-
mental factors. Exercise 1 asks you to verify some of the results in Table 5.3.

ddiff for Dependent Samples

Standardized mean differences in correlated designs are called stan-
dardized mean changes or standardized mean gains. There are two different 
ways to standardize contrasts in these designs. The first method does so just 
as one would in designs with independent samples (i.e., calculate any of the  
d statistics described so far). For example, one possibility is dpool = MD/spool, 
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where the standardizer is the pooled within-conditions standard deviation 
that assumes homoscedasticity. This assumption may be untenable in a 
repeated measures design, however, when treatment is expected to change 
variability among cases from pretest to posttest. A better alternative in this 
case is ds1, where the denominator is the standard deviation from the pretest 
condition. Some authors refer to MD/s1 as Becker’s g.

The second method is to calculate a standardized mean change as  
ddiff = MD/sD, where the denominator is the standard deviation of the dif-
ference scores, which takes account of the cross-conditions correlation r12. 
In contrast, spool, s1, and s2 all assume that this correlation is zero. If r12 is 
reasonably high and positive, it can happen that sD is smaller than the other 
standardizers just mentioned. This implies that ddiff can be bigger in absolute 
value than dpool, ds1, and ds2 for the same contrast. The effect size ddiff estimates 
the parameter

δ =
−

µ
σ ρ

D

2 1
5 7

12( )
( . )

where s and r12 are, respectively, the common population standard deviation 
and cross-conditions correlation. Note in this equation that the denominator 
is less than s only if r12 > .50.

Table 5.3
Results of the t Test and Effect Sizes at Three Different Group Sizes

Statistic

Group size (n)

5 15 30

t test

t 1.26 2.19 3.10
dfW 8 28 58
p .242 .037 .003

Standardized mean differences

dpool .80 .80 .80
c (dfW) dpool .72 .78 .79
ds1 .73 .73 .73
ds2 .89 .89 .89
dtotal .77 .75 .75

Point-biserial correlation

rpb .41 .38 .38

Note.  For all analyses, M1 = 13.00, s2
1 = 7.50, M2 = 11.00, s2

2 = 5.00, s2
pool = 6.25, and p values are two-tailed 

and for a nil hypothesis.
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A drawback is that ddiff is scaled in the metric of difference scores, not 
original scores. An example from Cumming and Finch (2001) illustrates 
this problem: A verbal test is given before and after an intervention. Test 
scores are based on the metric µ = 100.00, s = 15.00. The observed standard 
deviations at both occasions are also 15.00, and the standard deviation of 
the difference scores is 7.70. The result is MD = 4.10 in favor of the inter-
vention. If our natural reference for thinking about scores on the verbal 
test is their original metric, it makes sense to report a standardized mean 
change as 4.10/15.00, or .27, instead of 4.10/7.70, or .53. This is true even 
though the latter standardized effect size estimate is about twice as large as 
the former.

Cortina and Nouri (2000) argued that d should have a common mean-
ing regardless of the design, which implies a standardizer in the metric of the 
original scores. This advice seems sound for effects that could theoretically 
be studied in either between-subjects or within-subjects designs. But stan-
dardized mean differences based on sD may be preferred when the emphasis 
is on measurement of change. The researcher should explain the choice in 
any event. Exercise 2 asks you to verify that dpool = .80 but ddiff = 1.07 for the 
data in Table 2.2.

Robust Standardized Mean Differences

The d statistics described so far are based on least squares estimators 
(i.e., M, s) that are not robust against outliers, nonnormality, or heteroscedas-
ticity. Algina, Keselman, and Penfield (2005a, 2005b) described the robust d 
statistics listed in Table 5.2. One is

d
M M

s
Win p

tr1 tr2

Win p
= −

( . )5 8

where Mtr1 – Mtr2 is the contrast between 20% trimmed means and sWin p is the 
20% pooled Winsorized standard deviation that assumes homoscedasticity. 
The latter in a squared metric is

s
df s df s

dfW
Win p

Win1 Win22 1
2

2
2

5 9= +( ) ( )
( . )

where s2
Win1 and s2

Win2 are the 20% Winsorized group variances and df1 = n1 – 1, 
df2 = n2 – 1, and dfW = N – 2. The parameter estimated by dWin p is

δ µ µ
σrob

tr1 tr2

Win
= −

( . )5 10
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which is not d = (µ1 – µ2)/s when population distributions are skewed or 
heteroscedastic. Otherwise, multiplication of dWin p by the scale factor .642 
estimates d when the scores are selected from normal distributions with equal 
variances for 20% trimming and Winsorization.

If it is unreasonable to assume equal Winsorized population variances, 
two alternative robust effect sizes are

d
M M

s
d

M M
s

Win1
tr1 tr2

Win1
Win2

tr1 tr2

Win2
or= − = −

(55 11. )

where the standardizer is the Winsorized standard deviation in either group 1  
or group 2. The product .642 dWin1 estimates (µ1 - µ2)/s1, and the product 
.642 dWin2 estimates (µ1 - µ2)/s2, assuming normality for 20% trimming and 
Winsorization (see Table 5.2).

Look back at Table 2.4, in which raw scores with outliers for two groups 
(n = 10 each) are presented. Listed next are the 20% trimmed means and 
Winsorized variances for each group:

M s M str1 Win1
2

tr2 Wi23.00, 18.489 and 17.00,= = = nn2
2 9.067=

which implies s2
Win p = 13.778. (You should verify this result using Equation 5.9.) 

The robust d statistic based on the pooled standardizer is

dWin p = − =23 00 17 00

13 778
1 62

. .

.
.

so the size of the trimmed mean contrast is 1.62 Winsorized standardized 
deviations, assuming homoscedasticity. If it is reasonable to also assume nor-
mality, the robust estimate of d would be .642 (1.62), or 1.04. Exercise 3 asks 
you to calculate dWin1 and dWin2 for the same data.

Limitations of Standardized Mean Differences

Limitations considered next apply to all designs considered in this book, 
not just two-sample designs. Heteroscedasticity across studies limits the use-
fulness of d as a standardized effect size. Suppose that M1 – M2 = 5.00 in two 
different studies on the same outcome measure. The pooled within-groups 
variance is 625.00 in the first study but is only 6.25 in the second. As a con-
sequence, dpool for these two studies reflects the differences in their variances:

d dpool1 pool2and= = = =5 00

625 00
20

5 00

6 25
2 0

.

.
.

.

.
. 00
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These results indicate a contrast tenfold greater in the second study than 
in the first. In this case, it is better to compare the unstandardized contrast 
M1 – M2 = 5.00 across studies.

Correlation Effect Sizes

The point-biserial correlation rpb is the correlation between member-
ship in one of two different groups and a continuous variable. A conceptual 
equation is

r
M M

S
pq

T
pb = −





1 2 5 12( . )

where ST is the standard deviation in the total data set computed as (SST/N)1/2 
and p and q are the proportions of cases in each group (p + q = 1.0). The 
expression in parentheses in Equation 5.12 is a d statistic with the standard-
izer ST. It is the multiplication of this quantity by the standard deviation of 
the dichotomous factor, (pq)1/2, that transforms the whole expression into 
correlation units. It is also possible to convert dpool to rpb for the same data:

r
d

d df
n n

W

pb
pool

pool

=
+ +





2

1 2

1 1
5 13( . )

It may be easier to compute rpb from tind with dfW = N - 2 for a nil 
hypothesis:

r
t

t dfW
pb

ind

ind

=
+2

5 14( . )

The absolute value of rpb can also be derived from the independent samples  
F statistic with 1, dfW degrees of freedom for the contrast:

r
F

F df
SS
SSW

A

T
pb

ind

ind
=

+
= = ˆ ( . )η 5 15

This equation also shows that rpb is a special case of η̂2 = SSA/SST, where 
SSA is the between-groups sum of squares for the dichotomous factor A. In 
particular, r2

pb = η̂2 in a two-group design. Note that η̂ is an unsigned correla-
tion, but rpb is signed and thus indicates directionality.
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Reported in the lower part of Table 5.3 are values of rpb at three different 
group sizes, n = 5, 15, and 30, for the same contrast. For the smallest group 
size, rpb = .41, but for the larger group sizes, rpb = .38. This pattern illustrates a 
characteristic of rpb and other sample correlations that approach their maxi-
mum absolute values in very small samples. In the extreme case where the 
size of each group is n = 1 and the two scores are not equal, rpb = ±1.00. This 
happens out of mathematical necessity and is not real evidence for a perfect 
association. Taking rpb = .38 as the most reasonable value, we can say that 
the correlation between group membership and outcome is .38 and that the 
former explains about .382 = .144, or 14.4%, of the total observed variance. 
Exercise 4 involves reproducing some of the results in Table 5.3 for rpb.

Two Dependent Samples

The correlation rpb is for designs with two unrelated samples. For depen-
dent samples, we can instead calculate the correlation of which rpb is a special 
case, η̂. It is derived as (SSA/SST)1/2 whether the design is between-subjects 
or within-subjects. A complication is that η̂ may not be directly comparable 
when the same factor is studied with independent versus dependent samples. 
This is because SST is the sum of SSA and SSW when the samples are unrelated, 
but it comprises SSA, SSS, and SSA × S for dependent samples. Thus, SST reflects 
only one systematic effect (A) when the means are independent but two 
systematic effects (A, S) when the means are dependent.

A partial correlation that controls for the subjects effect in correlated 
designs assuming a nonadditive model is

partial ˆ ( . )η =
+ ×

SS
SS SS

A

A A S

5 16

where the denominator under the radical represents just one systematic effect 
(A). The square of Equation 5.16 is partial η̂2, a measure of association that 
refers to a residualized total variance, not total observed variance. Given 
partial η̂2 = .25, for example, we can say that factor A explains 25% of the 
variance controlling for the subjects effect.

If the subjects effect is relatively large, partial η̂2 can be substantially 
higher than η̂2 for the same contrast. This is not contradictory because only 
η̂2 is in the metric of the original scores. This fact suggests that partial η̂2 from 
a correlated design and η̂2 from a between-subjects design with the same fac-
tor and outcome may not be directly comparable. But η̂2 = partial η̂2 when the 
means are unrelated because there is no subjects effect. Exercise 5 asks you to 
verify that η̂2 = .167 and partial η̂2 = .588 in the dependent samples analysis 
of the data in Table 2.2.
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Robust Measures of Association

The technique of robust regression is an option to calculate r-type effect 
sizes that are resistant against outliers, nonnormality, or heteroscedasticity. A 
problem is that there are different robust regression methods (e.g., Wilcox, 
2003), and it is not always clear which is best in a particular sample. For 
instance, the ROBUSTREG procedure in SAS/STAT offers a total of four 
methods that vary in their efficiencies (minimization of error variance) or 
breakdown points. It is more straightforward to work with robust d statistics 
than robust measures of association in two-sample designs.

Limitations of Measures of Association

The correlation rpb (and η̂2, too) is affected by base rate, or the pro-
portion of cases in one group versus the other, p and q. It tends to be high-
est in balanced designs. As the design becomes more unbalanced holding 
all else constant, rpb approaches zero. Suppose that M1 – M2 = 5.00 and  
ST = 10.00 in each of two different studies. The first study has equal group 
sizes, or p1 = q1 = .50. The second study has 90% of its cases in the first 
group and 10% of them in the second group, or p2 = .90 and q2 = .10. Using 
Equation 5.12, we get

r rpb1 pb2and= 



 = =5 00

10 00
50 50 25

5 0.
.

. (. ) .
. 00

10 00
90 10 15

.
. (. ) .



 =

The values of these correlations are different even though the mean contrast 
and standard deviation are the same. Thus, rpb is not directly comparable 
across studies with dissimilar relative group sizes (dpool is affected by base rates, 
too, but ds1 or ds2 is not). The correlation rpb is also affected by the total vari-
ability (i.e., ST). If this variation is not constant over samples, values of rpb 
may not be directly comparable. Assuming normality and homoscedasticity, 
d- and r-type effect sizes are related in predictable ways; otherwise, it can 
happen that d and r appear to say different things about the same contrast 
(McGrath & Meyer, 2006).

Correcting for Measurement Error

Too many researchers neglect to report reliability coefficients for scores 
analyzed. This is regrettable because effect sizes cannot be properly inter-
preted without knowing whether the scores are precise. The general effect 
of measurement error in comparative studies is to attenuate absolute stan-
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dardized effect sizes and reduce the power of statistical tests. Measurement 
error also contributes to variation in observed results over studies. Of special 
concern is when both score reliabilities and sample sizes vary from study 
to study. If so, effects of sampling error are confounded with those due to 
measurement error.

There are ways to correct some effect sizes for measurement error (e.g., 
Baguley, 2009), but corrected effect sizes are rarely reported. It is more 
surprising that measurement error is ignored in most meta-analyses, too. 
F. L. Schmidt (2010) found that corrected effect sizes were analyzed in 
only about 10% of the 199 meta-analytic articles published in Psychological 
Bulletin from 1978 to 2006. This implies that (a) estimates of mean effect 
sizes may be too low and (b) the wrong statistical model may be selected 
when attempting to explain between-studies variation in results. If a fixed 
effects model is mistakenly chosen over a random effects model, confidence 
intervals based on average effect sizes tend to be too narrow, which can 
make those results look more precise than they really are. Underestimating 
mean effect sizes while simultaneously overstating their precision is a 
potentially serious error.

The correction for attenuation formula for the Pearson correlation 
shows the relation between rXY and r̂XY, which estimates the population 
correlation between X and Y if scores on both variables were perfectly 
reliable:

ˆ ( . )r
r

r r
Y

XY

XX YY
X = 5 17

where rXX and rYY are the score reliabilities for the two variables. For example, 
given rXY = .30, rXX = .80, and rYY = .70,

ˆ .

. .
.r YX =

( )
=30

80 70
40

which says that the estimated correlation between X and Y is .40 controlling 
for measurement error. Because disattenuated correlations are only estimates, 
it can happen that r̂XY > 1.0.

In comparative studies where the factor is presumably measured with 
nearly perfect reliability, effect sizes are usually corrected for measurement 
error in only the outcome variable, designated next as Y. Forms of this cor-
rection for d- and r-type effect sizes are, respectively,

ˆ ˆ ( . )d
d

r
r

r

rYY YY

= =and pb
pb 5 18
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For example, given d = .75 and rYY = .90,

ˆ .

.
.d = =75

90
79

which says that the contrast is predicted to be .79 standard deviations large 
controlling for measurement error. The analogous correction for the correla-
tion ratio is η̂2/rYY.

Appropriate reliability coefficients are needed to apply the correction 
for attenuation, and best practice is to estimate these coefficients in your 
own samples. The correction works best when reliabilities are good, such 
as rXX > .80, but otherwise it is less accurate. The capability to correct effect 
sizes for unreliability is no substitute for good measures. Suppose that d = .15 
and rYY = .10. A reliability coefficient so low says that the scores are basically 
random numbers and random numbers measure nothing. The disattenuated 
effect size is d̂ = .15/.101/2, or .47, an adjusted result over three times larger than 
the observed effect size. But this estimate is not credible because the scores 
should not have been analyzed in the first place. Correction for measurement 
error increases sampling error compared with the original effect sizes, but 
this increase is less when reliabilities are higher. Hunter and Schmidt (2004) 
described other kinds of corrections, such as for range restriction.

Interval Estimation With Effect Sizes

Links to computer tools, described next, are also available on this book’s 
web page.

Approximate Confidence Intervals

Distributions of d- and r-type effect sizes are complex and generally fol-
low, respectively, noncentral t distributions and noncentral F distributions. 
Noncentral interval estimation requires specialized computer tools. An alter-
native for d is to construct approximate confidence intervals based on hand-
calculable estimates of standard error in large samples. An approach outlined 
by Viechtbauer (2007) is described next.

The general form of an approximate 100 (1 – a)% confidence interval 
for d is

d s zd t± ( ( . )2- ail, )σ 5 19

where sd is an asymptotic standard error and z2-tail, a is the positive two-tailed 
critical value of the normal deviate at the a level of statistical significance. 
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If the effect size is dpool, ds1, ds2, or dtotal (or any of these statistics multiplied by 
c (df); Equation 5.6) and the means are treated as independent, an approxi-
mate standard error is

s
d
df

N
n n

d ind = +
2

1 22
5 20( . )

where df are the degrees of freedom for the standardizer of the corresponding 
d statistic. An estimated standard error when treating the means based on  
n pairs of scores as dependent is

s
d
n

r
n

d dep =
−

+ −2
12

2 1
2 1

5 21
( )

( )
( . )

where r12 is the cross-conditions correlation. Finally, if the effect size in a 
dependent samples analysis is ddiff or c (df) ddiff, the asymptotic standard error is

s
d
n n

ddiff

2

2 1
1

5 22
( )

( . )
−

+

There are versions of these standard error equations for very large samples 
where the sample size replaces the degrees of freedom, such as N instead of 
dfW = N – 2 in Equation 5.20 for the effect size dpool (e.g., Borenstein, 2009). In 
very large samples, these two sets of equations (N, df) give similar results, but 
I recommend the versions presented here if the sample size is not very large.

Suppose that n = 30 in a balanced design and dpool = .80. The estimated 
standard error is

sd pool = + =.
( ) ( )

.
80

2 58
60

30 30
2687

2

Because z2-tail, .05 = 1.96, the approximate 95% confidence interval for d is

.80 .2687 (1.96)±

which defines the interval [.27, 1.33]. This wide range of imprecision is due to 
the small group size (n = 30). Exercise 6 asks you to construct the approximate 
95% confidence interval based on the same data but for a dependent contrast 
where r12 = .75.
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A method to construct an approximate confidence interval for r using 
Fisher’s transformation of the Pearson r was described in Chapter 2. Another 
method by Hunter and Schmidt (2004) builds approximate confidence inter-
vals directly in correlation units. These approximate methods may not be 
very accurate when the effect size is rpb. An alternative is to use a computer 
tool that constructs noncentral confidence intervals for h2 based on ĥ2, of 
which rpb is a special case.

Noncentral Confidence Intervals for c

When the means are independent, d statistics follow noncentral t distri-
butions, which have two parameters, df and D, the noncentrality parameter 
(e.g., Figure 2.4). Assuming normality and homoscedasticity, D is related to 
the population effect size d and the group sizes,

∆ = δ n n
N
1 2 5 23( . )

When the nil hypothesis is true, d = 0 and D = 0; otherwise, D has the same 
sign as d. Equation 5.23 can be rearranged to express d as a function of D and 
group sizes:

δ = ∆ N
n n1 2

5 24( . )

Steiger and Fouladi (1997) showed that if we can obtain a confidence 
interval for D, we can also obtain a confidence interval for d using the con-
fidence interval transformation principle. In theory, we first construct a 
100 (1 – a)% confidence interval for D. The lower bound DL is the value of 
the noncentrality parameter for the noncentral t distribution in which the 
observed t statistic falls at the 100 (1 - a/2)th percentile. The upper bound 
DU is the value of the noncentrality parameter for the noncentral t distribu-
tion in which the observed t falls at the 100 (a/2)th percentile. If a = .05, 
for example, the observed t falls at the 97.5th percentile in the noncentral  
t distribution where the noncentrality parameter equals DL. The same observed 
t also falls at the 2.5th percentile in the noncentral t distribution where the 
noncentrality parameter is DU. But we need to find which particular non
central t distributions are most consistent with the data, and it is this problem 
that can be solved with the right computer tool. The same tool may also auto-
matically convert the lower and upper bounds of the interval for D to d units. 
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The resulting interval is the noncentral 100 (1 – a)% confidence interval for 
d, which can be asymmetrical around the sample value of d.

Suppose that n = 30 in a balanced design and dpool = .80, which implies 
t (58) = 3.10 (Equation 5.3). I used ESCI (Cumming, 2012; see footnote 4, 
Chapter 2) to construct the 95% noncentral confidence interval for d for 
these data. It returned these results

95% cI for [1.0469, 5.1251]∆

95% cI for [.270, 1.323]δ

We can say that the observed t of 3.10 falls at the

97.5th percentile in the noncentral t 58 1, .00469( ) distribution,

and the same observed t falls at the

2.5th percentile in the noncentral t 58 5 1, . 2251( ) distribution

You can verify these results with an online noncentral t percentile cal-
culator1 or J. H. Steiger’s Noncentral Distribution Calculator (NDC), a freely 
available Windows application for noncentrality interval estimation.2 Thus, 
the observed effect size of dpool = .80 is just as consistent with a population effect 
size as low as d = .27 as it is with a population effect size as high as d = 1.32, with 
95% confidence. The approximate 95% confidence interval for d for the same 
data is [.27, 1.33], which is similar to the noncentral interval just described.

Smithson (2003) described a set of freely available SPSS scripts that 
calculate noncentral confidence intervals based on dpool in two-sample designs 
when the means are treated as independent.3 Corresponding scripts for SAS/
STAT and R are also available.4 Kelley (2007) described the Methods for the 
Behavioral, Educational, and Social Sciences (MBESS) package for R, which 
calculates noncentral confidence intervals for many standardized effect sizes.5 
The Power Analysis module in STATISTICA Advanced also calculates non-
central confidence intervals based on standardized effect sizes (see footnote 5, 
Chapter 2). In correlated designs, distributions of dpool follow neither central 
nor noncentral t distributions (Cumming & Finch, 2001). For dependent 
mean contrasts, ESCI uses Algina and Keselman’s (2003) method for finding 
approximate noncentral confidence intervals for µD/s.

1http://keisan.casio.com/
2http://www.statpower.net/Software.html
3http://core.ecu.edu/psyc/wuenschk/SPSS/SPSS-Programs.htm
4http://dl.dropbox.com/u/1857674/CIstuff/CI.html
5http://cran.r-project.org/web/packages/MBESS/index.html
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Noncentral Confidence Intervals for g2

Methods for constructing confidence intervals for h2 based on non-
central F distributions in designs with independent samples and fixed fac-
tors were described by Fidler and Thompson (2001), Smithson (2003), and 
Kelley (2007). Briefly, noncentral F distributions for single-factor designs 
have three parameters, dfA, dfW, and the noncentrality parameter l (Greek 
lowercase lambda). The general method for obtaining a noncentral confi-
dence interval for h2 is similar to that for obtaining a noncentral confidence 
interval for d. Assuming the 95% confidence level, a computer tool first 
finds the lower bound lL, the noncentrality parameter of the noncentral 
F distribution in which the observed F for the contrast falls at the 97.5th 
percentile. The upper bound lU is the noncentrality parameter of the non-
central F distribution in which the observed F falls at the 2.5th percentile. 
The endpoints of the interval in l units are then converted to h2 units with 
the equation

η λ
λ

2 =
+ N

( . )5 25

I use the same data as in the previous example. In a balanced design,  
n = 30, dpool = .80, and t (58) = 3.10. These results imply rpb = .377 (see Equa-
tion 5.13), ĥ2 = .142, and F (1, 58) = 3.102, or 9.60. I used Smithson’s (2003) 
SPSS scripts to compute these results:

95% cI for [1.0930, 26.2688]λ

95% cI for [.0179, .3045]2η

Thus, the observed effect size of ĥ2 = .142 is just as consistent with a popula-
tion effect size as low as h2 = .018 as it is with a population size as high as  
h2 = .305, with 95% confidence. The range of imprecision is wide due to the 
small sample size. You should verify with Equation 5.25 that the bounds of 
the confidence interval in l units convert to the corresponding bounds of the 
confidence interval in h2 units for these data.

Other computer tools that generate noncentral confidence intervals 
for h2 include the aforementioned MBESS package for R and the Power 
Analysis module in STATISTICA Advanced. There is a paucity of programs 
that calculate noncentral confidence intervals for h2 in correlated designs. 
This is because the distributions of h2 in this case may follow neither central 
nor noncentral test distributions. An alternative is bootstrapped confidence 
intervals.
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Bootstrapped Confidence Intervals

In theory, bootstrapping could be used to generate confidence intervals 
based on any effect size described in this book. It is also the method generally 
used for interval estimation based on robust d statistics. Results of computer 
simulation studies by Algina et al. (2005a, 2005b); Algina, Keselman, and 
Penfield (2006); and Keselman et al. (2008) indicated that nonparametric 
percentile bootstrap confidence intervals on robust d statistics for indepen-
dent or dependent means are reasonably accurate compared with the method 
of noncentrality interval estimation when distributions are nonnormal or 
heteroscedastic. Described next are some freely available computer tools for 
constructing bootstrapped confidence intervals based on various robust or 
nonrobust estimators of d in two-sample designs:6

1.	The program ES Bootstrap: Independent Groups (Penfield, 
Algina, & Keselman, 2004b) generates bootstrapped con-
fidence intervals for d based on the estimator .642 dWin p in 
designs with two unrelated groups.

2.	The ES Bootstrap 2 program (Penfield, Algina, & Keselman, 
2006) extends this functionality for the same design to addi-
tional robust or nonrobust estimators of d.

3.	 In correlated designs, ES Bootstrap: Correlated Groups (Penfield, 
Algina, & Keselman, 2004a) generates bootstrapped confidence 
intervals for d based on various robust or nonrobust estimators.

Keselman et al. (2008) described scripts in the SAS/IML programming 
language that generate robust tests and bootstrapped confidence intervals in 
single- or multiple-factor designs with independent or dependent samples.7 
Wilcox’s (2012) WRS package has similar capabilities for robust d statistics 
(see footnote 11, Chapter 2).

I used Penfield et al.’s (2004b) ES Bootstrap: Independent Groups pro-
gram to construct a bootstrapped 95% confidence interval for d based on the 
raw data for two groups with outliers in Table 2.4. For these data, dWin p = 1.62, 
and the estimate of d is the product of the scale factor .642 and 1.62, or 1.04. 
Based on the empirical sampling distribution of 1,000 generated samples, 
the bootstrapped 95% confidence interval returned by the computer tool is 
[-.19, 2.14]. Thus, the observed robust effect size of 1.04 standard deviations 
is just as consistent with a population effect size as low as d = -.19 as it is with 
a population effect size as high as d = 2.14, with 95% confidence. The wide 
range of imprecision is due to the small sample size (N = 20).

6http://plaza.ufl.edu/algina/index.programs.html
7http://supp.apa.org/psycarticles/supplemental/met_13_2_110/met_13_2_110_supp.html
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Analysis of Group Differences at the Case Level

The methods outlined next describe effect size at the case level.

Measures of Overlap

Presented in Figure 5.1 are two pairs of frequency distributions, each of 
which illustrates one of Cohen’s (1988) overlap measures, U1 and U3. Both 
pairs depict M1 > M2, normal distributions and equal group sizes and vari-
ances. The shaded regions in Figure 5.1(a) represent areas where the two 
distributions do not overlap, and U1 is the proportion of scores across both 
groups within these areas. The difference 1 – U1 is thus the proportion of 
scores within the area of overlap. If the mean difference is nil, U1 = 0, but if 
the contrast is so great that no scores overlap, U1 = 1.00. The range of U1 is 

b. U3

M2 M1

a. U1

M2 M1

Figure 5.1.  Measures of distribution overlap, U1 (a) and U3 (b).
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thus 0–1.00. Illustrated in Figure 5.1(b) is U3, the proportion of scores in the 
lower group exceeded by a typical score in the upper group. A typical score 
could be the mean, median, or some other measure of central tendency, 
but the mean and median are equal in symmetrical distributions. If two 
distributions are identical, U3 = .50, but if U3 = 1.00, the distributions are 
so distinct that the typical score in the upper group exceeds all scores in the 
lower group. The range of U3 is thus .50–1.00.

In real data sets, U1 and U3 are derived by inspecting group frequency 
distributions. For U1, count the total number of scores from each group 
outside the range of the other group and divide this number by N. For U3, 
locate the typical score from the upper group in the frequency distribution 
of the lower group and then calculate the percentile equivalent of that score 
expressed as a proportion. A potential problem with U1 is that if the range of 
scores is limited, the proportion of nonoverlapping scores may be zero even if 
the contrast is relatively large.

Suppose that treated cases have a higher mean than control cases on an 
outcome where a higher score is a better result. If U1 = .15 and U3 = .55, we 
can say that only 15% of the scores across the two groups are distinct. The 
rest, or 85%, fall within the area of overlap. Thus, most treated cases look like 
most untreated cases and vice versa. The typical treated case scores higher 
than 55% of untreated cases. Whether these results are clinically significant 
is another matter, but U1 and U3 describe case-level effects in ways that gen-
eral audiences can understand.

It is also possible in graphical displays to give information about distri-
bution overlap at the case level. The display in Figure 5.2(a) shows the means 
for two groups based on the scores with outliers in Table 2.4. The format of 
this line graphic is often used to show the results of a t test, but it conveys 
no case-level information. Plotting error bars around the dots that represent 
group means in Figure 5.2(a) might help, but M and sM are not robust estima-
tors. The display in Figure 5.2(b) with group box plots (box-and-whisker 
plots) is more informative. The bottom and top borders of the rectangle in 
a box plot correspond to, respectively, the 25th percentile and 75th percen-
tile. The total region in the rectangle thus represents 50% of the scores, and 
comparing these regions across groups says something about overlap. The 
line inside the rectangle of a box plot represents the median (50th percen-
tile). The “whiskers” are the vertical lines that connect the rectangle to the 
lowest and highest scores that are not extreme. The box plot for group 1 in 
Figure 5.2(b) has no whisker because the score at the 75th percentile (29) 
is also the last nonextreme score at the upper end of the distribution. Tukey 
(1977) described other visual methods of exploratory data analysis that show 
case-level information.
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Tail Ratios

A right-tail ratio (RTR) is the relative proportion of scores from two 
different groups that fall beyond a cutting point in the upper tails of both 
distributions. Such thresholds may be established based on merit, such as 
a minimum score on an admissions test. Likewise, a left-tail ratio (LTR) is 
the relative proportion of scores that fall below a cutting point in the lower 
extremes of both distributions, which may be established based on need. An 
example of a needs-based classification is a remedial (compensatory) program 
available only for students with low reading test scores. Students with higher 
scores would not be eligible.

Because tail ratios are computed with the largest proportion in the 
numerator, their values are ≥1.00. For example, RTR = 2.00 says that cases 
from the group represented in the numerator are twice as likely as cases in 
the other group to have scores above a threshold in the upper tail. Presented 
in Figure 5.3(a) are two frequency distributions where M1 > M2. The shaded 
areas in each distribution represent the proportion of scores in group 1 (p1) and 
group 2 (p2) that exceed a cutting point in the right tails. Because relatively 
more scores from group 1 exceed the threshold, p1 > p2 and RTR = p1/p2 > 1.00.
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(a)  Group means only (b)  Group box plots 

Figure 5.2. A  graphical display of means only (a) versus one that shows box plots 
(b) for the scores from two groups with outliers in Table 2.4.
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Maccoby and Jacklin (1974) reported the following descriptive statis-
tics for large samples of women and men on a verbal ability test for which 
µ = 100.00, s = 15.00:

M s M sW W m m103.00, 14.80 and 100.00, 14.21= = = =

Suppose that job applicants will be considered only if their scores exceed 130, 
or two standard deviations above the mean. Normal deviate equivalents of this 
threshold in the separate distributions for women and men are, respectively,

z zW mand= − = = −130 103 00
14 80

1 82
130 100 00

14 2
.

.
.

.
. 11

2 11= .

Assuming normality, zW = 1.82 falls at the 96.56th percentile in the distri-
bution for women, so .0344 of their scores exceed 130. For men, zM = 2.11 

M1 = M2

b. d = 0

a. d > 0

M1

p1

p2

p1

p2

M2

Figure 5.3.  The right tail ratio p1/p2 relative to cutting point when d > 0 for M1 > M2 (a) 
and d = 0 for M1 = M2 (b).
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falls at the 98.26th percentile, which implies that .0174 of their scores 
exceed the cutting point. (You can use a normal curve table or a web calcu-
lator for a normal curve to generate these proportions.) Given these results,

rtr = =.
.

.
0344
0174

1 98

Thus, women are about twice as likely as men to have scores that exceed the 
cutting point. This method may not give accurate results if the distributions 
are not approximately normal. One should instead analyze the frequency 
distributions to find the exact proportions of scores beyond the cutting point. 
Tail ratios are often reported when gender differences at the extremes of dis-
tributions are studied.

Tail ratios generally increase as the threshold moves further to the 
right (RTR) or further to the left (LTR) when M1 ≠ M2, assuming sym-
metrical distributions with equal variances. But it can happen that tail 
ratios are not zero even though M1 = M2 and d = rpb = 0 when there is hetero
scedasticity. For example, the two distributions in Figure 5.3(b) have the 
same means, but the tail ratios are not also generally 1.00 because group 1 is 
more variable than group 2. Thus, scores from group 1 are overrepresented 
at both extremes of the distributions. If the researcher wants only to com-
pare central tendencies, this “disagreement” between the tail ratios and  
d may not matter. In a selection context, though, the tail ratios would be 
of critical interest.

Other Case-Level Proportions

McGraw and Wong’s (1992) common language effect size (CL) is the 
predicted probability that a random score on a continuous outcome selected 
from the group with the higher mean exceeds a random score from the group 
with the lower mean. If two frequency distributions are identical, CL = .50, 
which says that it is just as likely that a random score from one group exceeds 
a random score from the other group. As the two frequency distributions 
become more distinct, the value of CL increases up to its theoretical maxi-
mum of 1.00. Vargha and Delaney (2000) described the probability of (sto-
chastic) superiority, which can be applied to ordinal outcome variables. 
Huberty and Lowman’s (2000) improvement over chance classification, or 
I, is for the classification phase of logistic regression or discriminant func-
tion analysis. The I statistic measures the proportionate reduction in the 
error rate compared with random classification. If I = .35, for example, the 
observed classification error rate is 35% less than that expected in random 
classification.
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Relation of Group- or Variable-Level Effect Size  
to Case-Level Proportions

Assuming normality, homoscedasticity, and large and equal group sizes, 
case-level proportions are functions of effect size at the group level. Listed in the 
first column in Table 5.4 are values of d in the range 0–3.0. (Here, d refers to dpool, 
ds1, or ds2, which are asymptotically equal under these assumptions.) Listed in the 
remaining columns are values of rpb and case-level proportions that correspond to  
d in each row. Reading each row in Table 5.4 gives a case-level perspective on 
mean differences of varying magnitudes. If d = .50, for example, the expected value  
of rpb is .24. For the same effect size, we expect the following at the case level:

1.	About one third of all scores are distinct across the two distri-
butions (U1 = .33). That is, about two thirds of the scores fall 
within the area of overlap.

2.	The typical score in the group with the higher mean exceeds 
about 70% of the scores in the group with the lower mean  
(U3 = .69).

Table 5.4
Relation of Selected Values of the Standardized Mean Difference  

to the Point-Biserial Correlation and Case-Level Proportions

Group or variable 
level Case level

d rpb U1 U3 RTR + 1 RTR + 2

0 0 0 .500 1.00 1.00
.10 .05 .007 .540 1.16 1.27
.20 .10 .148 .579 1.36 1.61
.30 .15 .213 .618 1.58 2.05
.40 .20 .274 .655 1.85 2.62
.50 .24 .330 .691 2.17 3.37
.60 .29 .382 .726 2.55 4.36
.70 .33 .430 .758 3.01 5.68
.80 .37 .474 .788 3.57 7.46
.90 .41 .515 .816 4.25 9.90

1.00 .45 .554 .841 5.08 13.28
1.25 .53 .638 .894 8.14 29.13
1.50 .60 .707 .933 13.56 69.42
1.75 .66 .764 .960 23.60 —a

2.00 .71 .811 .977 43.04 —a

2.50 .78 .882 .994 —a —a

3.00 .83 .928 .999 —a —a

Note.  RTR + 1 = right tail ratio for a cutting point one standard deviation above the mean of the combined 
distribution; RTR + 2 = right tail ratio for a cutting point two standard deviations above the mean of the  
combined distribution.
a>99.99.
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3.	The upper group will have about twice as many scores as the 
lower group that exceed a threshold one standard deviation 
above the mean of the combined distribution (RTR = 2.17). 
For a cutting point two standard deviations above the mean 
of the combined distribution, the upper group will have more 
than three times as many scores as the lower group that exceed 
the threshold (RTR = 3.37).

The relations summarized in Table 5.4 hold only under the assumptions 
of normality, homoscedasticity, and balanced designs with large samples. 
Otherwise, it can happen that the group statistics d or rpb tell a different story 
than case-level effect sizes. Look back at Figure 5.3(b), for which d = rpb = 0 but 
tail ratios are not generally 1.0 due to heteroscedasticity. In actual data sets, 
researchers should routinely evaluate effects at both the group and case levels, 
especially in treatment outcome studies; see McGrath and Meyer (2006) for 
more examples.

Substantive Significance

This section provides interpretive guidelines for effect sizes. I also sug-
gest how to avoid fooling yourself when estimating effect sizes.

Questions

As researchers learn about effect size, they often ask, what is a large 
effect? a small effect? a substantive (important) effect? Cohen (1962) devised 
what were probably the earliest guidelines for describing qualitative effect 
size magnitudes that seemed to address the first two questions. The descriptor 
medium corresponded to a subjective average effect size in nonexperimental 
studies. The other two descriptors were intended for situations where neither 
theory nor prior empirical findings distinguish between small and large effects. 
In particular, he suggested that d = .50 indicated a medium effect size, d = .25  
corresponded to a small effect size, and d = 1.00 signified a large effect size. 
Cohen (1969) later revised his guidelines to d = .20, 50, and .80 as, respectively, 
small, medium, and large, and Cohen (1988) described similar benchmarks for 
correlation effect sizes.

Cohen never intended the descriptors small, medium, and large—T-shirt 
effect sizes—to be applied rigidly across different research areas. He also 
acknowledged that his conventions were an educated guess. This is why he 
encouraged researchers to look first to the empirical literature in their areas 
before using these descriptors. Unfortunately, too many researchers blindly 
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apply T-shirt effect sizes, claiming, for example, that d = .49 indicates a small 
effect but d = .51 is a medium-sized effect (first mistake), because Cohen said 
so (second mistake). It seems that the bad habit of dichotomous thinking in 
significance testing is contagious.

The best way for researchers to judge the relative magnitudes of their 
effects is to consult relevant meta-analytic studies. There are computer tools 
with the capabilities to calculate, record, and organize effect sizes for sets 
of related studies. An example is Comprehensive Meta-Analysis (CMA; 
Borenstein, Hedges, Higgins, & Rothstein, 2005), which accepts different 
forms of input data and computes various effect sizes.8 Although intended for 
researchers who conduct meta-analyses, CMA and similar programs can be 
used by primary researchers to collect and analyze effect sizes from individual 
studies. The real benefit from reporting standardized effect sizes comes not 
from comparing them against arbitrary guidelines but instead from comparing 
effect sizes directly with those reported in previous studies.

What Is a Substantive Effect?

The third question about effect size—what is a substantive result?—is the 
toughest. This is because demonstration of an effect’s significance—whether 
theoretical, practical, or clinical—calls for more discipline-specific expertise 
than the estimation of its magnitude (Kirk, 1996). For example, the magnitude  
of the gender difference in height among adults is about d = 2.00. Whether 
this difference is substantive depends on the context. In terms of general life 
adjustment, this gender difference is probably irrelevant. But in the context 
of automobile safety, the gender difference in height may be critical. Remember 
a problem with the front air bags in automobiles manufactured before the late 
1990s: Their deployment force could injure or kill a small-stature driver or pas-
senger, which presented a greater risk to women. Nowadays, most cars have front 
seat air bags that vary deployment force according to driver weight. But even 
smart air bags can injure or kill children, so the even greater height difference 
between adults and children still has substantive significance in this domain.

By the same logic, results gauged to be small in a T-shirt metric are 
not necessarily unimportant. Bellinger (2007), Fern and Monroe (1996), 
Prentice and Miller (1992), and B. Thompson (2006b) described the con-
texts for when small effects may be noteworthy summarized next:

1.	Minimal manipulation of the independent variable results in 
some change in the outcome variable; that is, a small cause size 
nevertheless produces an observable effect size.

8http://www.meta-analysis.com/index.html
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2.	An effect operates in a domain where theoretically no effect is 
expected. An example is the finding that the physical attrac-
tiveness of defendants in courtroom trials predicts to some 
degree sentence severity.

3.	The outcome variable is very important, such as human life.
4.	An effect is observed on an outcome variable that is difficult to 

influence. Finding that a treatment alters the course of a severe, 
degenerative disease is an example.

5.	Small shifts in mean values of health-related variables can 
sometimes lead to big effects when spread over the whole popu-
lation. The aforementioned finding that taking small doses of 
aspirin can reduce the risk for heart attack is an example.

6.	It can also happen that effects in early stage research are larger 
than those in later research. This can occur as researchers shift 
their attention from determining whether an effect exists to 
studying its more subtle mechanisms at boundary conditions.

In general, effect sizes that are “unimportant” may be ones that fall 
within the margins of measurement error. But even this general definition 
does not always hold. The difference in vote totals for the two major can-
didates in the 2000 presidential election in the United States was within 
the margin of error for vote counting in certain precincts, but these small 
differences determined the outcome. Effect sizes that are “important” should 
also have theoretical, practical, or clinical implications, given the research 
context. Just as there is no absolute standard for discriminating between 
small and large effects, however, there is no absolute standard for determin-
ing effect size importance. Part of the challenge in a particular research area 
is to develop benchmarks for substantive significance. Awareness of effect 
sizes in one’s own area helps, as does an appreciation of the need to examine 
effects at both group and case levels.

If practitioners such as therapists, teachers, or managers are the 
intended audience, researchers should describe substantive significance in 
terms relevant to these groups. As part of their customer-centric science 
model, Aguinis et al. (2010) described the use of ethnographic techniques to 
elucidate frames of reference among practitioners. The goal is to discover rel-
evance from the perspective of stakeholders, who may use different meanings 
or language than researchers. This process may involve study of phenomena 
in their natural settings or use of semistructured interviews, diaries, or other 
qualitative methods. A conversation analysis involves the identification of 
key words or phrases that signal affirmation of relevance when practitioners 
discuss a problem. A narrative analysis in which practitioners describe per-
sonal experiences using notes, photographs, or case studies has a similar aim. 

13170-06_Ch05-3rdPgs.indd   156 2/1/13   12:03 PM



continuous outcomes           157

Other ethnographic methods include focus groups, historical research, and 
field notes analysis. The point is to facilitate communication between pro-
ducers and consumers of research. Similar techniques are used in computer 
science to discover requirements of those who will use a computer tool and 
to design program interfaces for specific type of users (e.g., Sutcliffe, 2002).

Clinical Significance

Comparing treated with untreated patients is the basis for discerning 
clinical significance. One should observe at the case level that a typical 
treated case is distinguishable from a typical untreated case. The case-level 
effect sizes U1 and U3 speak directly to this issue (see Figure 5.1). For exam-
ple, the treatment effect size should generally exceed one full standard devi-
ation (d > 1.0) in order for most treated and untreated patients to be distinct 
(U1 > .50; see Table 5.4). At the group level, criterion contrasts involve 
comparisons between groups that represent a familiar and recognizable dif-
ference on a relevant outcome. Some possibilities include contrasts between 
patients with debilitating symptoms and those with less severe symptoms or 
between patients who require inpatient versus outpatient treatment.

If the metric of the outcome variable is meaningful, it is easier to interpret 
unstandardized criterion contrasts in terms of clinical significance, but judg-
ment is still required. An example by Blanton and Jaccard (2006) illustrates 
this point: Suppose a new treatment reduces the mean number of migraines 
from 10 to 4 per month. A change of this magnitude is likely to be seen by both 
patients and practitioners as clinically important. But what if the mean reduc-
tion were smaller, say, from 10 migraines per month to 9? Here, the researcher 
must explain how this result makes a difference in patients’ lives, such as their 
overall quality of life, balanced against risk such as side effects when evalu-
ating clinical significance. Again, this is a matter of judgment based on the 
researcher’s domain knowledge, not solely on statistics.

When metrics of outcome variables are arbitrary, it is common for 
researchers to report standardized criterion contrast effect sizes as d sta-
tistics. Because metrics of standardized effect sizes are just as arbitrary as the 
original units, they do not directly convert to implications for clinical signifi-
cance. This includes effects deemed large in some T-shirt metrics (Blanton & 
Jaccard, 2006). The realization that neither statistical significance nor stan-
dardized effect sizes are sufficient to establish clinical significance means that 
some so-called empirically validated therapies, such as cognitive behavioral 
therapy for depression, are not really empirically validated in terms of clinical 
significance (Kazdin, 2006).

For measures with arbitrary metrics, researchers should also try to 
identify real-world referents of changes in scores of different magnitudes. A 
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critical issue is whether effects observed in university laboratories generalize 
to real-world settings. Another is whether participants in such studies are 
representative of patients in the general population. For example, patients 
with multiple diagnoses are often excluded in treatment outcome studies, but 
many patients in real clinical settings are assigned more than one diagnosis. 
Some psychological tests have been used so extensively as outcome measures 
that guidelines about clinical significance are available. For example, Seggar, 
Lambert, and Hansen (2002) used multiple methods, including analysis of 
distribution overlap, to recommend thresholds for clinical significance on 
the Beck Depression Inventory (Beck, Rush, Shaw, & Emory, 1979). Fournier 
et al. (2010) applied a similar definition in a meta-analysis of the effects of 
anti-depressant medication. They found that such effects were not clinically 
significant for patients with mild or moderate levels of depression, but larger 
and clinically meaningful changes were observed among patients who were 
severely depressed.

How to Fool Yourself With Effect Size Estimation

Some ways to mislead yourself with effect size estimation mentioned 
earlier are summarized next. There are probably other paths to folly, but I 
hope that the major ones are included below:

1.	 Measure effect size magnitude only at the group level (ignore 
the case level).

2.	 Apply T-shirt definitions of effect size without first looking to 
the empirical literature in one’s area.

3.	 Believe that an effect size judged as large according to T-shirt 
conventions must be an important result and that a small 
effect is unimportant.

4.	 Ignore the question of how to establish substantive signifi-
cance in one’s research area.

5.	 Estimate effect size only for results that are statistically significant.
6.	 Believe that effect size estimation somehow lessens the need 

for replication.
7.	 Report values of effect sizes only as point estimates; that is, 

forget that effect sizes are subject to sampling error, too.
8.	 Forget that effect size for fixed factors is specific to the par-

ticular levels selected for study. Also forget that effect size is 
in part a function of study design.

9.	 Forget that standardized effect sizes encapsulate other quanti-
ties or characteristics, including the unstandardized effect size, 
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error variance, sample base rates, and experimental design. 
These are all crucial aspects in study planning and must not 
be overlooked.

10.	 As a journal editor or reviewer, substitute effect size for statis-
tical significance as a criterion for whether a work is published.

Research Example

This example illustrates effect size estimation at both the group and 
case levels in an actual data set. You can download the raw data file in SPSS 
format for this example from the web page for this book. At the beginning of 
courses in introductory statistics, 667 psychology students (M age = 23.3 years, 
s = 6.63; 77.1% women) were administered the original 15-item test of basic 
math skills reproduced in Table 5.5. The items are dichotomously scored 
as either 0 (wrong) or 1 (correct), so total scores range from 0 to 17. These 

Table 5.5
Items of a Basic Math Skills Test
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scores had no bearing on subsequent course grades. The internal consistency 
reliability (Cronbach’s alpha) in this sample is .72.

Reported in the left side of Table 5.6 are descriptive statistics for stu-
dents with satisfactory outcomes in statistics (a final course letter grade of 
C- or better) versus those with unsatisfactory outcomes (final letter grade of 
D+ or lower or withdrew). Effect sizes for the group contrast are listed in the 
right side of the table. Students with satisfactory outcomes had higher mean 
math test scores (M1 = 10.96, 64.5% correct) than those with unsatisfactory 
outcomes (M2 = 9.52, 56.0% correct) by .46 standard deviations, noncentral 
95% CI for d [.28, .65]. Adjusted for measurement error, this effect size is 
.54 standard deviations.

The observed correlation between math test scores and satisfactory ver-
sus unsatisfactory outcomes in statistics is .19, so the proportion of explained 
variance is .192, or .037, noncentral 95% CI for h2 [.014, .069] (see Table 5.6). 
The correlation effect size adjusted for measurement error is .22. Because the 
range of math test scores is relatively narrow, it is not surprising that only 
about 5% fall outside the area of overlap of the two distributions. There were 
no math test scores of 16 or 17 among students with unsatisfactory outcomes, 
but a total of 34 students with satisfactory outcomes achieved scores this high 
(U1 = 34/667 = .05). The median score of students with satisfactory outcomes 
in statistics (11) exceeded about two thirds of the scores among students with 
unsatisfactory outcomes (U3 = .67). Exercise 7 asks you to reproduce some of 
the results in Table 5.6.

Presented in Table 5.7 are results of an alternative case-level analysis 
that makes implications of the results more obvious for general audiences. 
Scores on the math test were partitioned into four categories, 0–39, 40–59, 
60–79, and 80–100% correct. This was done to find the level of performance 
(if any) that distinguished students at risk for having difficulties in statistics. 
Percentages in rows of Table 5.7 indicate proportions of students with satis-
factory versus unsatisfactory outcomes for each of the four levels of math test  

Table 5.6
Descriptive Statistics and Effect Sizes for the Contrast of Students With 
Satisfactory Versus Unsatisfactory Outcomes in Introductory Statistics  

on a Basic Math Skills Test

Group n M s2

Group or variable level Case level

dpool d̂pool rpb r̂pb U1 U3

Satisfactory 511 10.96  9.45 .46a .54 .19b .22 .05 .67

Unsatisfactory 156  9.52 10.45

Note. For a nil hypothesis, t (665) = 5.08. Corrections for measurement error based on rXX = .72.
aNoncentral 95% confidence interval for d [.28, 65]. bNoncentral 95% confidence interval for h2 [.014, .069].
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performance. The risk for a negative outcome in statistics increases from about 
12% among students who correctly solved at least 80% of the math test items 
to the point where nearly half (45.3%) of the students who correctly solved 
fewer than 40% of test items had unsatisfactory outcomes.

Conclusion

This chapter introduced basic principles of effect size estimation and two 
families of group- or variable-level standardized effect sizes for continuous out-
comes, standardized mean differences and correlation effect sizes. Denominators 
of standardized mean differences for contrasts between independent means are 
standard deviations in the metric of the original scores, but it is critical to report 
which particular standard deviation was specified as the standardizer. There are 
robust standardized mean differences that may be less affected by nonnormality, 
heteroscedasticity, or outliers. Descriptive correlation effect sizes considered are 
all forms of ĥ, or the square root of the sum of squares for the contrast over the 
total sum of squares. Case-level analysis of proportions of scores from one group 
versus another group that fall above or below certain reference points can illu-
minate practical implications of group-level differences. Estimating effect size is 
part of determining substantive significance, but the two are not synonymous. 
The next chapter deals with effect sizes for categorical outcomes.

Learn More

Breaugh (2003) reviews mistakes to avoid, and books about effect size 
estimation by Ellis (2010) and Grissom and Kim (2011) are good resources 
for applied researchers. Kelley and Preacher (2012) give an excellent over-
view of the concept of effect size.

Table 5.7
Relation Between Outcomes in Introductory Statistics  
and Level of Performance on a Basic Math Skills Test

Math score (%) n

Course outcomea

Satisfactory Unsatisfactory

80–100 133 117 (88.0) 16 (12.0)
60–79 237 181 (76.4) 56 (23.6)
40–50 222 172 (77.5) 50 (22.5)
<40  75   41 (54.7) 34 (45.3)

aFrequency (row percentage).
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Exercises

1.	Calculate the d statistics in Table 5.3 for n = 30.
2.	 For the scores in Table 2.2, verify that dpool = .80 and ddiff = 1.07.
3.	For the data in Table 2.4, calculate the robust effect sizes dWin1 

and dWin2.
4.	Calculate rpb for the data in Table 5.3 for n = 30.
5.	Verify that ĥ2 = .177 and partial ĥ2 = .588 in a dependent sam-

ples analysis of the data in Table 2.2.
6.	Given dpool = .80, n = 30, and r12 = .75 in a dependent samples 

analysis, construct the approximate 95% confidence interval 
for d.

7.	Calculate an approximate 95% confidence interval for d based 
on the results in Table 5.6.
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6
Categorical Outcomes

Some outcomes are categorical instead of continuous. The levels of a 
categorical outcome are mutually exclusive, and each case is classified into 
just one level. Widely used effect sizes for categorical outcomes in areas such as 
medicine, epidemiology, and education are introduced in this chapter. Some 
of the effect sizes described next can also be estimated in logistic regression 
or log-linear analysis. Doing so bases effect sizes for categorical outcomes on 
an underlying statistical model and also corrects for intercorrelations among 
multiple predictors. In contrast, the same effect sizes computed with the 
methods described next should be considered descriptive statistics. Exercises 
for this chapter provide additional practice in estimating effect size for  
categorical outcomes.
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Change is not merely necessary to life—it is life.
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Types of Categorical Outcomes

The simplest categorical outcomes are binary (dichotomous) variables 
with only two levels, such as relapsed or not relapsed. When two groups are 
compared on a dichotomy, the data are frequencies that are represented in 
a 2 × 2 contingency table, also called a fourfold table. Categorical variables 
can also have more than 2 levels, such as agree, disagree, and uncertain. The 
size of the contingency table is larger than 2 × 2 if two groups are contrasted 
across > 2 categories. Only some effect sizes for 2 × 2 tables can be extended 
to larger tables. The same statistics can also be used when > 2 groups are 
compared on a categorical outcome.

Levels of categorical variables are either unordered or ordered. Unordered 
categories, such as those for ethnicity, marital status, or occupational type, 
imply no rank order. The technique of binary logistic regression is for dichoto-
mous outcomes, and its extension for outcomes with ≥ 3 unordered categories 
is multinomial logistic regression. Ordered categories (multilevel ordinal 
categories) have ≥ 3 levels that imply a rank order. An example is the Likert 
scale strongly agree, agree, disagree, or strongly disagree. There are specialized 
techniques for ordered categories such as ordinal logistic regression, which 
analyzes the relative frequencies of each level of an ordinal criterion and all 
outcomes that are ordered before it. Methods for ordered categories are not 
as familiar as those for unordered categories, so the former are not considered 
further. One alternative is to collapse multilevel categories into two sub-
stantively meaningful, mutually exclusive outcomes. Estimation of effect size 
magnitude is then conducted with methods for fourfold tables.

Another framework that analyzes data from fourfold tables is the sensi-
tivity, specificity, and predictive value model. Better known in medicine as a 
way to evaluate the accuracy of screening tests, this approach can be fruitfully 
applied to psychological tests that screen for problems such as depression or 
learning disabilities (e.g., Kennedy, Willis, & Faust, 1997). Because screening 
tests are not as accurate as more individualized and costly diagnostic meth-
ods, not all persons with a positive test result will actually have the target 
condition. Likewise, not everyone with a negative result is actually free of 
that condition. The 2 × 2 table analyzed is the cross-tabulation of screening 
test results (positive–negative) and true status (disorder–no disorder).

The sensitivity, specificity, and predictive value model is a special case 
of the receiver operating characteristic (ROC) model based on signal detec-
tion theory. The latter was developed in the 1950s by researchers who studied 
the ability of radar operators to correctly determine whether a screen blip was 
or was not a threat as a function of thresholds for classifying radar readings as 
indicating signal versus noise. The ratio of the rate of true positives over false 
negatives is plotted in ROC curves, which can be studied over different cutting 
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points. Analysis of ROC curves has been applied in the behavioral sciences to 
the study of sensory thresholds in psychophysics and decision making under 
conditions of uncertainty (Swets, 1996). Screening test accuracy can also be 
analyzed in Bayesian estimation controlling for base rates when estimating the 
probability of a disorder given positive versus negative test results.

Effect Sizes for 2 × 2 Tables

Effect sizes, considered next, estimate the degree of relative risk for an 
undesirable outcome, such as relapsed–not relapsed, across different popula-
tions, such as treatment versus control. The same estimators and their cor-
responding parameters can also be defined when neither level of the outcome 
dichotomy corresponds to something undesirable, such as agree–disagree. In 
this case, the idea of risk is replaced by that of comparing relative proportions 
for binary outcomes.

Presented in Table 6.1 is a fourfold table for comparing treatment and 
control groups on the outcome relapsed–not relapsed. The letters in the table 
represent observed frequencies in each cell. For example, the size of the con-
trol group is nC = A + B, where A and B, respectively, stand for the number 
of untreated cases that relapsed or did not relapse. The size of the treatment 
group is nT = C + D, where C and D, respectively, symbolize the number of 
treated cases that relapsed or did not relapse. The total sample size is the sum 
of A, B, C, and D. Listed in Table 6.2 are the effect sizes, the equation for 
each effect size based on the cell frequencies represented in Table 6.1, and 
the corresponding parameter.

Risk Rates

With reference to Table 6.1, the proportion of cases in the control 
group (C) and the treatment group (T) that relapsed are respectively defined 
as pC = A/(A + B) and pT = C/(C + D). The complements of these ratios, 

Table 6.1
A Fourfold Table for a Contrast on a Dichotomy

Relapsed Not relapsed

Control A B
Treatment C D

Note.  The letters A–D represent observed cell frequencies.

13170-07_Ch06-3rdPgs.indd   165 2/1/13   12:03 PM



166           beyond significance testing

or 1 – pC and 1 – pT, are the proportions of cases in each group that did not 
relapse. The statistic pC estimates pC, the proportion of cases in the control 
population that relapsed, and pT estimates the corresponding parameter pT in 
the treatment population.

Comparative Risk

The risk difference (RD) is defined as pC – pT, and it estimates the 
parameter pC – pT. The result pC – pT = .10 indicates a relapse rate 10% higher 
in the control sample than in the treatment sample. Likewise, pC – pT = -.20  
says that the relapse rate among treated cases is 20% higher than that 
among control cases. The risk ratio (RR) is the ratio of the risk rates. It 
is defined here as pC /pT, but which rate appears in the numerator versus  
the denominator is arbitrary, so one should always explain how RR is com-
puted. If pC /pT = 1.30, for example, the relapse risk is 1.3 times higher 
among control than treated cases. Similarly, if RR = .80, the relapse risk 
in the control group is 80% as high as that in the treatment group. The 
statistic RR estimates pC /pT.

Table 6.2
Risk Effect Sizes for Fourfold Tables

Statistic Equation Parameter

Risk rates
  pC A

A B+
pC

  pT C
C D+

pT

Comparative risk

  RD pC − pT pC − pT

  RR p
p
C

T

π
π
C

T

  OR odds
odds

p p
p p

C

T

C C

T T
=

−( )
−( )

1

1
ω = Ω

Ω
C

T

Correlation

   ̂ϕ AD BC
A B C D A C B D N

−
+( ) +( ) +( ) +( )

= ×χ2 2
2  ϕ

Note.  The letters A–D represent observed cell frequencies in Table 6.1. If A, B, C, or D = 0 in computation 
of OR, add .5 to the observed frequencies in all cells. RD = risk difference; RR = risk ratio; OR = odds ratio; 
χ2 2

2
××  = contingency table chi-square with a single degree of freedom.
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The odds ratio (OR) is the ratio of the within-groups odds for the unde-
sirable event. It is defined in Table 6.1 as the ratio of the odds for relapse in 
the control group, oddsC, over the odds for relapse in the treatment group, 
oddsT. These odds are defined as

odds
p

p
odds

p
pC

C

C
t

t

t

and=
−

=
−1 1

6 1( . )

Suppose pC = .60 and pT = .40 are, respectively, the relapse rates among 
control and treated cases. The relapse odds in the control group are .60/.40 
= 1.50, so the odds of relapse are 3:2. In the treatment group, the odds for 
relapse are lower, .40/.60 = .67; that is, the odds of relapse are 2:3. The odds 
ratio is OR = 1.50/.67 = 2.25, which says that the relapse odds are 2¼ times 
higher among control cases than treated cases. Likewise, OR = .75 would say 
that the relapse odds in the control group are only 75% as high as the odds 
in the treatment group. In fourfold tables where all margin totals are equal, 
OR = RR2. The parameter for OR is w = WC /WT, the ratio of the within-
populations odds where

Ω ΩC
C

C
t

t

t
and=

−
=

−
π

π
π

π1 1
6 2( . )

A convenient property of OR is that it can be converted to a kind of 
standardized mean difference known as logit d (Chinn, 2000). Here, a logit 
is ln (OR), the natural log of OR. This logistic distribution is approximately 
normal with a standard deviation that equals pi/31/2, or about 1.8138. The 
ratio of ln (OR) over pi/31/2 is a logit d that is comparable to a standardized 
mean difference for the same contrast but on a continuous outcome. The 
logit d can also be expressed in basically the same form as a conventional 
standardized mean difference:

logit
ln (or)

pi

ln ( ln (

pi
C td

odds odds= = −
3 3

6
) )

( .33)

Reporting logit d may be of interest when the hypothetical variable that 
underlies the observed dichotomy is continuous. For example, there may be 
degrees of recovery that underlie the binary classification of recovered–not 
covered. Suppose that pC = .60 and pT = .40, which implies oddsC = 1.50, 
oddsT = .67, and OR = 2.25. The value of logit d is

logit
ln (2.25)

pi

ln (1.50 ln (.67

pi
45d = = − =

3 3

) )
.

13170-07_Ch06-3rdPgs.indd   167 2/1/13   12:03 PM



168           beyond significance testing

Thus, the finding that the odds for relapse are 2¼ times higher among control 
cases corresponds to a treatment effect size magnitude of about .45 standard 
deviations in logistic units. Hunter and Schmidt (2004) described other ways 
to adjust for dichotomization of continuous outcomes.

Correlation

The Pearson correlation between two dichotomous variables is ϕ̂ 
(Greek lowercase phi). It can be calculated with the standard equation for 
the Pearson r if the levels of both variables are coded as 0 or 1. It may be 
more convenient to calculate  ̂ϕ directly from the cell and margin frequencies 
using the equation in Table 6.2. The theoretical range of  ̂ϕ derived this way 
is -1.0 to 1.0, but the sign of  ̂ϕ is arbitrary because it depends on the particu-
lar arrangement of the cells. But remember that effects in 2 × 2 tables are 
directional. For example, either treated or untreated cases will have a higher 
relapse rate (if there is a difference). The absolute value of  ̂ϕ also equals 
the square root of the ratio of c2 (1) statistic for the fourfold table over the 
sample size (see Table 6.2). In a squared metric,  ̂ϕ2 estimates the proportion 
of explained variance. In fourfold tables where the row and column marginal 
totals are all equal, |RD| = | ̂ϕ|.

The parameter estimated by  ̂ϕ is

ϕ π π π π
π π π π

= −
• • • •

Cr tNr CNr tr

C t r Nr

( . )6 4

where subscripts C, T, R, and NR mean, respectively, control, treatment, 
relapsed, and not relapsed. The proportions in the numerator represent the 
four possible outcomes and sum to 1.0. For example, pCR is the probability 
of being in the control population and relapsing. The subscript  indicates a 
marginal proportion. For example, pC and pT are, respectively, the relative 
proportions of cases in the control and treatment populations, and they sum 
to 1.0.

Evaluation

The risk difference RD is easy to interpret but has a drawback: Its range 
depends on the values of the population proportions pC and pT. That is, the 
range of RD is greater when both pC and pT are closer to .50 than when they 
are closer to either 0 or 1.00. The implication is that RD values may not be 
comparable across different studies when the corresponding parameters pC 
and pT are quite different. The risk ratio RR is also easy to interpret. It has 
the shortcoming that only the finite interval from 0 to < 1.0 indicates lower 
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risk in the group represented in the numerator, but the interval from > 1.00 
to infinity is theoretically available for describing higher risk in the same 
group. The range of RR varies according to its denominator. For example, the 
range of pC/pT is 0–2.50 for pT = .40, but for pT = .60 its range is 0–1.67. This 
property limits the value of RR for comparing results across different studies. 
This problem is dealt with by analyzing natural log transformations of RR, a 
point elaborated momentarily.

The odds ratio OR shares the limitation that the finite interval from  
0 to < 1.0 indicates lower risk in the group represented in the numerator, 
but the interval from > 1.0 to infinity describes higher risk for the same 
group. Analyzing natural log transformations of OR and then taking antilogs 
of the results deals with this problem, just as for RR. The odds ratio may  
be the least intuitive of the comparative risk effect sizes, but it probably has 
the best overall statistical properties. This is because OR can be estimated 
in prospective studies, in studies that randomly sample from exposed and 
unexposed populations, and in retrospective studies where groups are first 
formed based on the presence or absence of a disease before their exposure 
to a putative risk factor is determined (Fleiss & Berlin, 2009). Other effect 
sizes may not be valid in retrospective studies (RR) or in studies without 
random sampling ( ̂ϕ).

Do not lose sight of absolute risk rates when reporting risk or odds ratios 
for rare events. Suppose that the rate of a serious side effect among treated 
patients is 1/1,000. The base rate of the same complication in the general 
public is 1/10,000. These results imply

rr and or= = = −.
.

.
. ( . )

. (
001
0001

10 00
001 1 001

0001 1−−
=

. )
.

0001
10 01

but these tenfold increases in relative risk or odds among treated cases refer 
to a rare outcome. Ten times the likelihood of rare event still makes for a low 
base rate. Only the risk difference makes it clear that the absolute increase in 
risk is slight, RD = .0009, or .09%. King and Zeng (2001) discussed challenges 
in estimating rare events in logistic regression.

The correlation  ̂ϕ can reach its maximum absolute value (1.0) only if the 
marginal proportions for rows and columns in a fourfold table are equal. As the 
row and column marginal proportions diverge, the maximum absolute value 
of  ̂ϕ approaches zero. This implies that the value of  ̂ϕ will change if the cell 
frequencies in any row or column are multiplied by an arbitrary constant. This 
makes  ̂ϕ a margin-bound effect size; the correlation rpb is also margin bound 
because it is affected by group base rates (see Equation 5.12). Exercise 1 asks 
you to demonstrate this property of  ̂ϕ . Grissom and Kim (2011, Chapters 8–9) 
described additional effect sizes for categorical outcomes.
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Interval Estimation

Sample proportions follow binomial distributions. The Wald method for 
constructing approximate 100 (1 – a)% confidence intervals for p depends 
on normal approximations. Widths of confidence intervals centered on pC 
or pT in this method are calculated as products of the standard errors listed 
in Table 6.3 and z2-tail, a. A potential problem is overshoot, which happens 
when the lower bound of an interval based on a very low sample proportion, 
such as .02, is less than zero. It can also happen that the upper bound based 
on a very high proportion, such as .97, exceeds 1.0. Overshoot is dealt with 
by truncating the interval to lie within the range 0–1.0. Another problem is 
degeneracy, which refers to confidence intervals with zero widths when the 
sample proportion is either 0 or 1.0. A continuity correction avoids degen-
erate intervals by adding the constant 1/2n where n is the group size, but 
this correction can cause overshoot. Newcombe (1998) described additional 
approximate methods.

Approximate standard errors for RD, RR, and OR are also listed in 
Table 6.3. Distributions of RR and OR are not generally normal, but natural 
log transformations of these statistics are approximately normal. Consequently, 
the lower and upper bounds of confidence intervals in natural log units are 
converted back to their respective original units by taking their antilogs. The 

Table 6.3
Asymptotic Standard Errors of Risk Effect Sizes

Statistic Standard error

pC p p
n

C C

C

1−( )

pT p p
n

T T

T

1−( )

RD p p
n

p p
n

C C

C

T T

T

1 1−( )
+

−( )

ln (RR) 1 1− + −p
n p

p
n p

C

C C

T

T T

ln (OR) 1
1

1
1n p p n p pC C C T T T−( ) +

−( )
Note.  Four-decimal accuracy is recommended in computations. RD = risk difference; RR = risk ratio; ln = 
natural log; OR = odds ratio.
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equation for the asymptotic standard error of  ̂ϕ is complicated and is not 
presented here (see Fleiss & Berlin, 2009, p. 242).

The results pC = .60 and pT = .40 imply RD = .20, RR = 1.50, and 
OR = 2.25. Assume group sizes of nC = nT = 100. Next, we calculate the 
approximate 95% confidence interval for the population risk difference  
pC – pT. When the third equation in Table 6.3 is used, the estimated stan-
dard error is

srD 693= − + − =. ( . ) . ( . )
.

40 1 40
100

60 1 60
100

0

The value of z2-tail, .05 is 1.96, so the approximate 95% confidence interval for 
pC – pT is

.20 .0693 (1.96)±

which defines the interval [.06, .34]. Thus, the sample result RD = .20 is just 
as consistent with a population risk difference as low as .06 as it is with a 
population risk difference as high as .34, with 95% confidence.

This time, I construct the approximate 95% confidence interval for the 
population odds ratio w based on OR = 2.25:

ln (2.25) .8109=

sln or( ) =
−

+
−

=1
100 40 1 40

1
100 60 1 60(. ) ( . ) (. ) ( . )

..2887

The approximate 95% confidence interval for ln (w) is

.8109 .2887 (1.96)±

which defines the interval [.2450, 1.3768]. To convert the lower and upper 
bounds of this interval back to OR units, I take their antilogs:

ln (.2450) e 1.2776 and ln (1.3768) e1 .2450 1 1− −= = = ..3768 3.9622=

The approximate 95% confidence interval for w is [1.28, 3.96] at two-decimal 
accuracy. I can say that OR = 2.25 is just as consistent with a population 
odds ratio as low as w = 1.28 as it is with a population odds ratio as high as  
w = 3.96, with 95% confidence. Exercise 2 asks you to calculate the approx-
imate 95% confidence interval for pC /pT given RR = 1.50 in this example. 
There are some calculating web pages that derive approximate confidence 
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intervals for w.1 Herbert’s (2011) Confidence Interval Calculator is a 
Microsoft Excel spreadsheet for means, proportions, and odds.2 The R pack-
age EpiTools by T. Aragón supports point and interval estimation with risk 
effect sizes in applied epidemiological studies.3

Effect Sizes for Larger Tables

If the categorical outcome has more than two levels or there are more 
than two groups, the contingency table is larger than 2 × 2. Measures of 
comparative risk (RD, RR, OR) can be computed for such a table only if it is 
reduced to a 2 × 2 table by collapsing or excluding rows or columns. What is 
probably the best known measure of association for contingency tables with 
more than two rows or columns is Cramer’s V, an extension of the ϕ̂ coef-
ficient. Its equation is

V
r c N

=
− − ×

×χr c
2

1 1
6 5

min ( , )
( . )

where the numerator under the radical is the contingency table chi-square 
with degrees of freedom equal to the number of rows (r) minus one times the 
number of columns (c) minus one (see Equation 3.15). The denominator 
under the radical is the product of the sample size and the smallest dimension 
of the table minus one. For example, if the table is 3 × 4 in size, then

min (3 – 1, 4 – 1) 2=

For a 2 × 2 table, the equation for Cramer’s V reduces to that for |ϕ̂|. For 
larger tables, Cramer’s V is not a correlation, although its range is 0 to 1.00. 
Thus, one cannot generally interpret the square of Cramer’s V as a proportion 
of explained variance. Exercise 3 asks you to calculate Cramer’s V for the 
4 × 2 cross-tabulation in Table 5.7.

Sensitivity, Specificity, and Predictive Value

Suppose for a disorder there is a gold standard diagnostic method that is 
individualized and expensive. A screening test is not as accurate as the gold 
standard, but it costs less and is practical for group administration. Screening 

1http://www.hutchon.net/ConfidOR.htm
2http://www.pedro.org.au/english/downloads/confidence-interval-calculator/
3http://cran.r-project.org/web/packages/epitools/index.html
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tests are often continuous measures, such as the blood concentration of a 
particular substance. They also typically have a threshold that differentiates 
between a positive result that predicts the presence of the disorder (clinical) 
and a negative result that predicts its absence (normal).

Distributions of clinical and normal groups on continuous screening 
tests tend to overlap. This situation is illustrated in Figure 6.1, where the 
clinical group has a higher mean than the normal group. Also represented in 
the figure is a threshold that separates positive and negative test results. Some 
clinical cases have negative results; these are false negative test outcomes. 
Likewise, some normal cases have positive results, which are false positive 
outcomes. Such results represent potential diagnostic or prediction errors. 
Analyzing ROC curves can help to determine optimal thresholds, ones that 
balance costs of a decision error (false positive or negative) against benefits 
of correct prediction (Perkins & Schisterman, 2006). The discussion that 
follows assumes a threshold is already established.

The relation between screening test results (positive–negative) and 
actual status as determined by a gold standard method (clinical–normal) is 
represented in the top part of Table 6.4. The letters in the table stand for cell 
frequencies. For example, A represents the number of clinical cases with a 
positive result, and D represents the number of normal cases with negative 
results. Both cells just described correspond to correct predictions. Cells B 
and C in the table represent, respectively, false positive and false negative 
results.

Normal Clinical

Sensitivity

Cutting
point

Specificity

Positive
result

Negative
result

Figure 6.1.  Distributions of clinical and normal groups on a continuous screening 
test with a cutting point. A positive result means predict clinical; a negative result 
means predict normal.
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Sensitivity and Specificity

Sensitivity, specificity, base rate, and predictive value are defined in the 
bottom part of Table 6.4 based on cell frequencies in the top part of the table. 
Sensitivity is the proportion of screening test results from clinical cases that 
are correct, or A/(A + C). If sensitivity is .80, then 80% of test results in 
the clinical group are valid positives and the rest, 20%, are false negatives. 
Specificity is the proportion of results from normal cases that are correct, or 
D/(B + D). If specificity is .70, then 70% of the results in the normal group are 
valid negatives and the rest, 30%, are false positives. The ideal screening test 
is 100% sensitive and 100% specific. Given overlap of distributions such as 
that illustrated in Figure 6.1, this ideal is not within reach.

Sensitivity and specificity are determined by the threshold on a screen-
ing test. This means that different thresholds on the same test will generate 
different sets of sensitivity and specificity values in the same sample. But both 
sensitivity and specificity are independent of population base rate and sample 
size. For example, a test that is 80% sensitive for a disorder should correctly 

Table 6.4
Definitions of Sensitivity, Specificity, Predictive Value, and Base Rate

Screening test result Prediction

True status

Clinical Normal

Positive Clinical A B
Negative Normal C D

Statistic Equation

Sensitivity A
A C+

Specificity D
B D+

BR A C
A B C D

+
+ + +

PPV A
A B+

NPV D
C D+

Note.  The letters A–D represent observed cell frequencies. BR = base rate; PPV = positive predictive value; 
NPV = negative predictive value. The total number of cases is N = A + B + C + D.
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detect 80 of 100 or 400 of 500 clinical cases. Likewise, a test that is 70% spe-
cific should correctly classify 140 of 200 or 700 of 1,000 normal cases.

Predictive Value and Base Rate

Sensitivity and specificity affect predictive value, the proportion of 
test results that are correct, and in this sense predictive value reflects the 
confidence that diagnosticians can place in test results. Positive predictive 
value (PPV) is the proportion of all positive results that are correct—that 
is, obtained by clinical cases, or A/(A + B) in Table 6.4. Negative predictive 
value (NPV) is the proportion of negative test results that are correct, that 
belong to normal cases, or D/(C + D) in the table. In general, predictive val-
ues increase as sensitivity and specificity increase.

Predictive value is also influenced by the base rate (BR), the propor-
tion of all cases with the disorder, or (A + C)/N in Table 6.4. The effect of 
BR on predictive value is demonstrated in Table 6.5. Two different fourfold 
tables are presented there for hypothetical populations of 1,000 cases and a 
test where sensitivity = .80 and specificity = .70. In the first table, BR = .10 
because 100/1,000 cases have the disorder, and 80% of them (80) have a cor-
rect (positive) test result. A total of 90% of the cases do not have the disorder 
(900), and 70% of them (630) have a correct (negative) result. But of all posi-
tive results, only 80/350 = 23% are correct, so PPV = .23. But most negative 
test results are correct, or 630/650 = 97%, so NPV = .97. These predictive 
values say that the test is quite accurate in ruling out the disorder but not in 
detecting its presence.

Table 6.5
Positive and Negative Predictive Values at Two Different Base Rates  

for a Screening Test 80% Sensitive and 70% Specific

Screening 
test result

True status Predictive value

Prediction Clinical Normal Total Positive Negative

Base rate = .10

Positive Clinical 80 270   350 .23 .97
Negative Normal 20 630   650
Total 100 900 1,000

Base rate = .75

Positive Clinical 600   75   675 .89 .54
Negative Normal 150 175   325
Total 750 250 1,000
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If BR is not .10, both predictive values change. This is shown in the sec-
ond 2 × 2 cross-tabulation in Table 6.5 for the same test but now for BR = .75.  
(Base rates of certain parasitic diseases in some parts of the world are this 
high.) Of all 675 cases with positive test results, a total of 600 belong 
to clinical cases, so PPV = 600/675, or .89. Likewise, of all 325 negative 
results, a total of 175 are from normal cases, so NPV = 175/325, or .54. 
Now more confidence is warranted in positive test results than in negative 
results, which is just the opposite of the case for BR = .10. Exercise 4 asks 
you to calculate PPV and NPV for sensitivity = .80, specificity = .70, and 
BR = .375.

In general, PPV decreases and NPV increases as BR approaches zero. 
This means that screening tests tend to be more useful for ruling out rare 
disorders than correctly predicting their presence. It also means that most 
positive results may be false positives under low base rate conditions. This 
is why it is difficult for researchers or social policy makers to screen large 
populations for rare conditions without many false positives. It also explains 
why the No-Fly List, created by national intelligence services after the 2001 
terrorist attacks in New York, seems to mainly prevent innocent passengers 
from boarding commercial aircraft for travel in or out of the United States. 
For example, it has happened that prospective passengers have been matched 
to the list based only on surnames, some of which are common in certain 
ethnic groups. Once they have been flagged as a risk, innocent passengers find 
it difficult to clear their names. This problem is expected given the very low 
base rate of the intention to commit terrorist acts when relying on imperfect 
screening measures.

Depicted in Figure 6.2 are the expected relations between base rate and 
predictive values for a screening test where sensitivity = .80 and specificity = 
.70. The figure makes apparent that PPV heads toward zero as BR is increas-
ingly lower. If PPV < .50, most positive test results are false positives, but BR 
must exceed roughly .30 before it is even possible for PPV to exceed .50. As 
BR increases, the value of PPV gets progressively higher, but NPV gradually 
declines toward zero as BR approaches 1.00. That is, the screening test is not 
very accurate in ruling out some conditions when most of the population is 
afflicted.

The effect of BR on predictive values is striking but often overlooked, 
even by professionals (Grimes & Schulz, 2002). One misunderstanding 
involves confusing sensitivity and specificity, which are invariant to BR, 
with PPV and NPV, which are not. This means that diagnosticians fail to 
adjust their estimates of test accuracy for changes in base rates, which exem-
plifies the base rate fallacy. This type of question presented by Casscells, 
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Schoenberger, and Graboys (1978) to senior medical students and physicians 
illustrates this fallacy:

The prevalence (base rate) of a disease is .10. A test is used to detect 
the disease. The test is useful but not perfect. Patients with the disease 
are identified by the test 80% of the time. Patients without the disease 
are correctly identified by the test 70% of the time. A patient seen 
recently at a clinic was diagnosed by the test as having the disease. How 
likely is it that this result is correct? (p. 999)

The correct answer to this question is the PPV of the test, which you 
now know is .23 (see Table 6.5). But most respondents in Casscells et al.’s 
(1978) study gave answers close to .80, which is sensitivity. In this case, con-
fusing PPV with sensitivity means that the former is overestimated by a factor 
of almost four. The base rate fallacy is still a concern in medical education 
(Maserejian, Lutfey, & McKinlay, 2009).

Figure 6.2. E xpected predictive values as functions of base rate for a screening test 
that is 80% sensitive and 70% specific.
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Likelihood Ratio and Posttest Odds

The likelihood ratio is the probability that a screening test result—
positive or negative—would be expected among clinical cases compared 
with the probability of the same result among normal cases. The positive 
likelihood ratio (PLR) is

Plr
sensitivity

specificity
=

−1
6 6( . )

which indicates the number of times more likely that a positive result comes 
from clinical cases (numerator) than from normal cases (denominator). The 
negative likelihood ratio (NLR) is

Nlr
sensitivity

specificity
= −1

6 7( . )

and it measures the degree to which a negative result is more likely to come 
from clinical cases than from normal cases.

Using Bayesian methods, diagnosticians can estimate how much the 
odds of having a disorder will change given a positive versus negative test 
result and the disorder base rate expressed as odds. The relation is

odds oddspost pre lr= × ( . )6 8

where oddspre are the odds of having the disorder before administering the 
screening test calculated as BR/(1 – BR). The term LR in Equation 6.8 refers 
to the likelihood ratio, either positive or negative, and it is the factor by 
which the pretest odds will change given the corresponding test result. The 
expression oddspost is the odds of having the disorder, given both the test result 
and the pretest odds. Equation 6.8 is Bayesian because it updates the old 
belief (pretest odds) by a factor that estimates the likelihood of either a posi-
tive or a negative result.

A screening test is 80% sensitive and 70% specific, and BR = .15. The 
value of PLR is

Plr 2 667=
−

=.
.

.
80

1 70

so positive test results are about 22/3 times more likely among clinical cases 
than among normal cases. The value of NLR is

Nlr = =.
.

.
20
70

286
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so we can conclude that a negative test result among clinical cases is only about 
.29 times as likely as among normal cases. The pretest odds are .15/(1 - .15) = 
.176. The posttest odds of the disorder following a positive result are

oddspost .176 2.667 = .471+ = ×

which, as expected, are higher than the pretest odds (.176). To convert odds 
to probability, we calculate p = odds/(1 + odds). So the probability of the dis-
order increases from BR = .15 before testing to .471/(1 + .471), or about .32, 
after a positive test result. The posttest odds of the disorder after a negative 
result are

oddspost .176 286 = .050− = × .

which are lower than the pretest odds (.176). Thus, the probability of the 
disorder decreases from BR = .15 to .050/(1 + .050), or about .048, after 
observing a negative result.

A negative test result in this example has a greater relative impact than 
a positive result on the odds of having the disorder. The factor by which the 
pretest odds are increased, given a positive result, is PLR = 2.667. But the 
factor by which the pretest odds are reduced, given a negative result, is NLR = 
.286, which is same as dividing the pretest odds by a factor of 1/.286, or about 
3.50. This pattern is consistent with this screening test, where sensitivity = 
.80, specificity = .70, and BR = .15. That is, the test will be better at ruling out 
a disorder than at detecting it under this base rate (see Figure 6.2). In general, 
test results have greater impact on changing the pretest odds when the base 
rate is moderate, neither extremely low (close to 0) nor extremely high (close 
to 1.0). But if the target disorder is either very rare or very common, only a 
result from a highly accurate screening test will change things much. There 
are web pages that calculate likelihood ratios.4

The method just described to estimate posttest odds can be applied 
when base rate or test characteristics vary over populations. Moons, van Es, 
Deckers, Habbema, and Grobbee (1997) found that sensitivity, specificity, 
and likelihood ratios for the exercise (stress) test for coronary disease varied 
by gender and systolic blood pressure at baseline. In this case, no single set 
of estimates was adequate for all groups. Exercise 5 concerns the capability 
to tailor estimates for different groups, in this case the disorder base rate. It 
is also possible to combine results from multiple screening tests, which may 
further improve prediction accuracy.

4http://www.medcalc.org/calc/diagnostic_test.php
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These issues have great relevance from a public health perspective. As 
I was writing this chapter, the Canadian Task Force on Preventive Health 
Care (CTFPHC; 2011) released new guidelines for breast cancer screening. 
The main change is that clinical breast exams are no longer routinely rec-
ommended for women at average risk. For women in this group who are 40 
to 49 years old, the task force also recommended that mammography should 
not be routinely conducted. Part of the rationale concerned the relatively 
high rate of false positives from mammograms for healthy women in this 
age range. The CTFPHC estimated that for every 2,100 women age 40–49 
years routinely screened every 2–3 years, about 690 will have a false posi-
tive mammogram leading to unnecessary stress and follow-up testing. About 
75 of these women are expected to undergo an unnecessary breast biopsy. 
These guidelines were controversial at the time of their publication (e.g., 
The Canadian Press, 2011), in part due to the false belief that the CTFPHC 
recommended that mammograms should be denied to women who request 
them. There is a similar controversy about the value of routine prostate- 
specific antigen (PSA) screening for prostate cancer (Neal, Donovan, Martin, 
& Hamdy, 2009).

In summary, sensitivity and specificity describe how the presence versus 
absence of a disorder affects screening test results, and they are not affected by 
base rates. In contrast, predictive values estimate the probabilities of abnor-
mality versus normality for, respectively, positive versus negative test results, 
and they are subject to base rates. Likelihood ratios can be used to estimate 
the odds (or probability) of having the disorder while taking account of the 
prior odds (base rate) of the disorder, given a positive versus negative result. 
Base rate estimates can be adjusted for different patient groups or contexts 
(Deeks & Altman, 2004).

Estimating Base Rates

Estimates of disorder base rates are not always readily available. Without 
large-scale epidemiological studies, other sources of information, such as case 
records or tabulations of the frequencies of certain diagnoses, may provide 
reasonable approximations. The possibility of estimating base rates from such 
sources prompted Meehl and Rosen (1955) to say that “our ignorance of base 
rates is nothing more subtle than our failure to compute them” (p. 213). One 
can also calculate predictive values for a range of base rates. The use of impre-
cise (but not grossly inaccurate) estimates may not have a large impact on 
predictive values, especially for tests with high sensitivities and specificities. 
But lower sensitivity and specificity values magnify errors due to imprecise 
base rate estimates.
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Interval Estimation

Sensitivity, specificity, and predictive values are proportions that are typi-
cally calculated in samples, so they are subject to sampling error. Base rates are 
subject to sampling error, too, if they are empirically estimated. It is possible to 
construct confidence intervals based on any of these proportions using the Wald 
method. Just use the equation for either pC or pT in Table 6.3 to estimate the 
standard error for the proportion of interest. Another option is to use one of the 
other methods described by Newcombe (1998) for sample proportions.

Likelihood ratios are affected by sampling error in estimates of sensitivity 
and specificity. Simel, Samsa, and Matchar (1991) described a method to con-
struct approximate confidence intervals based on observed likelihood ratios. 
Their method analyzes natural log transformations of likelihood ratios, and it is 
implemented in some web calculating pages that also derive confidence inter-
vals based on sample sensitivity, specificity, and predictive values.5 Herbert’s 
(2011) Confidence Interval Calculator spreadsheet for Excel also uses the 
Simel et al. (1991) method to calculate confidence intervals based on observed 
likelihood ratios and values of sensitivity and specificity (see footnote 2).

Posttest odds of the disorder are affected by sampling error in estimates 
of specificity, sensitivity, likelihood ratios, and base rates. Mossman and Berger 
(2001) described five different methods of interval estimation for the posttest 
odds following a positive test result. Two of these methods are calculable by 
hand and based on natural log transformations, but other methods, such as 
Bayesian interval estimation, require computer support. Results of computer 
simulations indicated that results across the five methods were generally 
comparable for group sizes > 80 and sample proportions not very close to 
either 0 or 1.00.

Crawford, Garthwaite, and Betkowska (2009) extended the Bayesian 
method described by Mossman and Berger (2001) for constructing confidence 
intervals based on posttest probabilities following a positive result. Their 
method accepts either empirical estimates of base rates or subjective estimates 
(guesses). It also constructs either two-sided or one-sided confidence intervals. 
One-sided intervals may be of interest if, for example, the diagnostician is inter-
ested in whether the posttest probability following a positive result is lower 
than the point estimate suggests but not in whether it is higher. A computer 
program that implements the Crawford et al. (2009) method can be freely 
downloaded.6 It requires input of observed frequencies, not proportions, and 
it does not calculate intervals for posttest probabilities after negative results.

Suppose that results from an epidemiological study indicate that a total 
of 150 people in a sample of 1,000 have the target disorder (BR = .15). In 

5http://ktclearinghouse.ca/cebm/practise/ca/calculators/statscalc
6http://www.abdn.ac.uk/~psy086/dept/BayesPTP.htm
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another study of 150 patients with the disorder and 300 control cases, the 
sensitivity of a screening test is .80 (i.e., 120 valid positives, 30 false nega-
tives), and the specificity is .70 (i.e., 210 valid negatives, 90 false positives). 
The positive and negative likelihood ratios of the test are, respectively, PLR = 
2.667 and NLR = .286. Given these results, the posttest odds for the disorder 
after a positive test result are .471, which converts to a posttest probability 
of .320. I used the Wald method to calculate approximate 95% confidence 
intervals based on the observed values for sensitivity, specificity, and base rate 
with sample sizes of, respectively, N = 150, 300, and 1,000. I used Herbert’s 
(2011) Excel spreadsheet to generate 95% approximate intervals based on 
the likelihood ratios. Finally, I used the Crawford et al. (2009) computer tool 
to construct an approximate 95% confidence interval based on the posttest 
probability of the disorder after a positive test result. You should verify that 
the confidence intervals reported next are correct:

sensitivity = .80, 95% Ci [.736, .864] specifficity .70, 95% Ci [.648, .752]=

Br .15, 95% Ci [.128, .172]=

Plr 2.667, 95% Ci [2.204, 3.226]=

Nlr .286, 95% Ci [.206, .397]=

oddspost .471, 95% Ci [.364, .610]+ =

ppost .320, 95% Ci [.267, .379]+ =

Research Examples

The examples presented next demonstrate effect size estimation with 
binary outcomes.

Math Skills and Statistics Course Outcome

The data for this example are described in Chapter 5. Briefly, a total of 
667 students in introductory statistics courses completed a basic math skills 
test at the beginning of the semester. Analysis of scores at the case level 
indicated that students with test scores < 40% correct had higher rates of 
unsatisfactory course outcomes (see Table 5.7). These data are summarized 
in the fourfold table on the left side of Table 6.6. Among the 75 students 
with math test scores < 40%, a total of 34 had unsatisfactory outcomes, so  
p< 40% = 34/75, or .453, 95% CI [.340, .566]. A total of 122 of 592 students 
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with math test scores ≥ 40% had unsatisfactory outcomes, so their risk rate  
is p≥ 40% = 122/592, or .206, 95% CI [.173, .239]. The observed risk difference is  
RD = .453 - .206, or .247, 95% CI [.129, .364], so students with the lowest 
math test scores have about a 25% greater risk for poor outcomes in introduc-
tory statistics.

The risk ratio is RR = .453/.206, or 2.199, 95% CI [1.638, 2.953], which 
says that the rate of unsatisfactory course outcomes is about 2.2 times higher 
among the students with the lowest math scores (Table 6.6). The odds ratio is

or 3 192= −
−

=. ( . )
. ( . )

.
453 1 453
206 1 206

with 95% CI [1.943, 5.244], so the odds of doing poorly in statistics are about 
3.2 times higher among students with math scores < 40% correct than among 
their classmates with higher scores. The correlation between the dichotomies 
of < 40% versus ≥ 40% correct on the math test and unsatisfactory–satisfactory 
course outcome is ϕ̂ = .185, so the former explains about 3.4% of the variance 
in the latter.

Screening for Urinary Incontinence

About one third of women at least 40 years of age experience urinary 
incontinence. There are two major types, urge (leakage happens with the 
urge to urinate) and stress (urine leaks when stretching, straining, or cough-
ing). Although both urge and stress incontinence may be reduced through 
behavioral intervention, such as bladder control, urge incontinence can 
be effectively treated with antimuscarinic or anticholinergic medications, 
and stress incontinence is treated with pelvic muscle exercises and surgery 
(Holroyd-Leduc & Straus, 2004). Comprehensive differential diagnosis of 
urge versus stress incontinence involves neurologic and pelvic examination, 
measurement of residual urine volume after voiding, a test for urinary tract 
infection, a cough stress test, and keeping a voiding diary. This diagnos-
tic regimen is expensive, invasive, and impractical in many primary care 
settings.

J. S. Brown et al. (2006) devised a questionnaire intended to categorize 
types of urinary incontinence. Based on women’s responses to the 3 Incontinence 
Questions (3IQ) scale, their pattern of urinary incontinence is classified as  
urge, stress, mixed (both urge and stress), or other. The 3IQ was administered 
in a sample of 301 women with untreated incontinence. The same women were 
also individually examined by urologists or urogynecologists. The final diagnoses 
from these examinations were the criterion for the 3IQ. There were no control 
samples. Instead, J. S. Brown et al. (2006) estimated the sensitivity, specificity, 
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likelihood ratios, and posttest probabilities of the 3IQ in the differentiation of 
urge versus stress incontinence. Their reporting of the results is a model in that 
confidence intervals were calculated for all point estimates and significance test-
ing played little substantive role in the analysis. They also explicitly compared 
their results with those from other published studies in the same area. But they 
did not estimate score reliabilities of the 3IQ, which is a drawback.

J. S. Brown et al. (2006) reported separate results for the classification 
of urge versus stress incontinence based on the 3IQ, but just the former set of 
findings is summarized next. The sensitivity of the 3IQ in the prediction of 
urge incontinence is .75, 95% CI [.68, .81], so 75% of women diagnosed by 
clinical examination as having urge incontinence were correctly classified. 
The specificity is .77, 95% CI [.69, .84], which says that 77% of women diag-
nosed as having a non-urge type of incontinence were correctly identified. 
The positive and negative likelihood ratios are, respectively, PLR = 3.29, 
95% CI [2.39, 4.51], and NLR = .32, 95% CI [.24, .43]. Thus, a classification 
of urge incontinence is about 3.3 times more likely among women who actu-
ally have this condition based on clinical examinations than among women 
who have other types of urinary incontinence. Also, a classification of a non-
urge type of incontinence is only about one third as likely among women who 
actually manifest urge incontinence than among women who have other, 
non-urge varieties of incontinence.

Given the sensitivity, specificity, and likelihood ratios just summarized, 
J. S. Brown et al. (2006) estimated posttest probabilities of urge urinary 
incontinence given a classification of such on the 3IQ at the three different 
base rates, 25, .50, and .75. These rates are estimated proportions of urge 
incontinence among women who are, respectively, < 40, 40–60, and > 60 years 
old. For a base rate of .25, the posttest probability of urge incontinence given 
a positive test result is .52, 95% CI [.44, .60], or about double the pretest 
probability. For base rates of .50 and .75, the estimated posttest probabilities 
of urge incontinence given positive test results are, respectively, .77, 95% CI 
[.70, .82] and .91, 95% CI [.88, .93]. J. S. Brown et al. (2006) described these 
results as indicating a modest level of accuracy, but they noted that the use 
of the 3IQ in combination with urine analysis to rule out urinary tract infec-
tion and hematuria (blood in the urine) may help to triage the treatment of 
women with urinary incontinence.

Conclusion

Effect sizes for categorical outcomes were introduced in this chapter. 
Some measure comparative risk across two groups for a less desirable versus 
a more desirable outcome where the data are summarized in a fourfold 
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table. The risk effect size with the best overall properties is the odds ratio, 
which can be converted to logistic d statistics that are comparable to 
d-type effect sizes for continuous outcomes. The sensitivity, specificity, 
and predictive value framework takes direct account of base rates when 
estimating the decision accuracy of screening tests. Likelihood ratios esti-
mate the degree to which the odds of having the target disorder change 
given either a positive or a negative result. Considered in the next chapter  
is effect size estimation in single-factor designs with ≥3 conditions and 
continuous outcomes.

Learn More

The text by Agresti (2007) is a good resource about statistical tech-
niques for categorical data. Drobatz (2009) and Halkin, Reichman, Schwaber, 
Paltiel, and Brezis (1998) discuss evaluation of screening test accuracy and 
the role of likelihood ratios in diagnosis.

Agresti, A. (2007). An introduction to categorical data analysis. Hoboken, NJ: Wiley. 
doi:10.1002/0470114754

Drobatz, K. J. (2009). Measures of accuracy and performance of diagnostic 
tests. Journal of Veterinary Cardiology, 11(Suppl. 1), S33–S40. doi:10.1016/ 
j.jvc.2009.03.004

Halkin, A., Reichman, J., Schwaber, M., Paltiel, O., & Brezis, M. (1998). Likelihood 
ratios: Getting diagnostic testing into perspective. Quarterly Journal of Medicine, 
91, 247–258. doi:10.1093/qjmed/91.4.247

Exercises

1.	Show that  ̂ϕ is margin bound using the following fourfold table:

Relapsed
Not 

relapsed

Control 60 40

Treatment 40 60
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2.	For RR = 1.50 and nC = nT = 100, construct the approximate 
95% confidence interval for pC/pT.

3.	Calculate Cramer’s V for the 4 × 2 cross-tabulation in Table 5.7.
4.	Calculate positive and negative predictive values for a base 

rate of .375 for a screening test where sensitivity = .80 and 
specificity = .70.

5.	For sensitivity = .80, specificity = .70, and base rate = .15, I 
earlier calculated these results: oddspost + = .471, ppost + = .176, 
oddspost -  = .050, and ppost - = .048. Now assume that the base rate 
is .50 among high-risk persons. Recalculate the posttest odds and 
probabilities.
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7
Single-Factor Designs

Effect size estimation in single-factor designs with ≥3 conditions and 
continuous outcomes is covered next. Because the omnibus comparison of 
all means is often uninformative, greater emphasis is placed on focused com-
parisons (contrasts), each with a single degree of freedom. A relatively large 
omnibus effect can also be misleading if it is due to a single discrepant mean 
not of substantive interest. Contrast specification and effect size estimation 
with standardized mean differences are described next. Later sections deal 
with measures of association for fixed or random factors and special issues for 
effect size estimation in covariate analyses. Chapter exercises build computa-
tional skills for effect size estimation in these designs.

DOI: 10.1037/14136-007
Beyond Significance Testing: Statistics Reform in the Behavioral Sciences, Second Edition, by R. B. Kline
Copyright © 2013 by the American Psychological Association. All rights reserved.

Most of us are far more comfortable with the pseudo-objectivity of null 
hypothesis significance testing than we are with making subjective yet 
informed judgments about the meaning of our results.

—Paul D. Ellis (2010, p. 43)
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Contrast Specification and Tests

A contrast is a directional effect that corresponds to a particular facet 
of the omnibus effect. It is often represented with the symbols y or ŷ. The 
former is a parameter that represents a weighted sum of population means:

ψ µ=
=
∑ci i
i

a

1

7 1( . )

where (c1, c2, . . . , ca) is the set of contrast weights (coefficients) that 
specify the comparison. Application of the same weights to sample means 
estimates y:

ˆ ( . )ψ =
=
∑c Mi i
i

a

1

7 2

Contrast weights should respect a few rules: They must sum to zero, 
and weights for at least two different means should not equal zero. Means 
assigned a weight of zero are excluded, and means with positive weights are 
contrasted with means given negative weights. Suppose factor A has a = 3 
levels. The weights (1, 0, -1) meet the requirements just stated and specify

1ˆ ( ) ( ) ( ) –ψ = + + − =1 0 11 2 3 1 3M M M M M

which is the pairwise comparison of M1 with M3 excluding M2. The weights 
(-1, 0, 1) just change the sign of ŷ1. Thus, a contrast’s sign is arbitrary, but 
one should always explain the meaning of positive versus negative contrasts. 
By the same logic, the sets of weights

1
2

1
20 5 0 5 1 7 0 1 7, , , , , , . , , .−( ) −( ) −( )and

among innumerable others with the same pattern of coefficients, all specify 
the same pairwise comparison as the set (1, 0, -1). The scale of ŷ1 depends on 
which sets of weights are applied to the means. This does not affect statistical 
tests or measures of association for contrasts because their equations correct 
for the scale of the weights.

But the scale of contrast weights is critical if a comparison should be 
interpreted as the difference between the averages of two subsets of means. If 
so, the weights should make up a standard set and satisfy what Bird (2002) 
called mean difference scaling: The sum of the absolute values of the coeffi-
cients in a standard set is 2.0. This implies for a pairwise comparison that one 
weight must be +1, another must be -1, and the rest are all zero. For example, 
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the coefficients (1, 0, -1) are a standard set for comparing M1 with M3, but 
the set (½, 0, -½) is not.

At least three means contribute to a complex comparison. An example 
is when a control condition is compared with the average of two treatment 
conditions. A complex comparison is still a single-df effect because only two 
means are compared, at least one of which is averaged over ≥2 conditions. A 
standard set of weights for a complex comparison is specified as follows: The 
coefficients for one subset of conditions to be averaged together each equal 
+1 divided by the number of conditions in that subset; the coefficients for 
the other subset of conditions to be averaged together each equal -1 divided 
by the number of conditions in that subset; weights for any excluded condi-
tion are zero. For example, the coefficients (½, -1, ½) form a standard set for 
comparing M2 with the average of M1 and M3:

ψ̂2
1

2 1 2
1

2 3
1 3

21
2

= ( ) + −( ) + ( ) = + −M M M
M M

M

But the weights (1, -2, 1) for the same pattern are not a standard set because 
the sum of their absolute values is 4.0, not 2.0.

Two contrasts are orthogonal if they each reflect an independent aspect 
of the omnibus effect; that is, the result in one comparison says nothing about 
what may be found in the other. In balanced designs (i.e., equal group sizes), 
a pair of contrasts is orthogonal if the sum of the products of their corresponding 
weights is zero, or

c ci i

i

a

1 2
1

0 7 3
=
∑ = ( . )

But in unbalanced designs, two contrasts are orthogonal if

c c
n
i i

ii

a
1 2

1

0 7 4
=
∑ = ( . )

where ni is the number of cases in the ith condition. Otherwise, a pair of 
contrasts is nonorthogonal, and such contrasts describe overlapping facets of 
the omnibus effect.

Presented next is a pair of weights for contrasts in a balanced design 
with a = 3 levels:

ψ̂1: ( , , )1 0 1−

ψ̂2 2 2: ( , , )1 11−
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This pair is orthogonal because the sum of the cross-products of their weights 
is zero, or

c ci i

i

a

1 2
1

1
2

1
21 0 1 1 0

=
∑ = ( ) ( ) + ( ) −( ) + −( )( ) =

Intuitively, these contrasts are unrelated because the two means compared 
in ŷ1, M1 and M3, are combined in ŷ2 and contrasted against the third 
mean, M2. The weights for a second pair of contrasts in the same design are 
listed next:

ψ̂2 2 2: ( , , )1 11− −

ψ̂3: ( , , )1 1 0−

This second pair is not orthogonal because the sum of the weight cross-products 
is not zero:

c ci i

i

a

2 3
1

1
2

1
21 1 1 0 1 5

=
∑ = ( )( ) + −( ) −( ) + ( )( ) = .

Contrasts ŷ2 and ŷ3 are correlated because M2 is one of the two means com-
pared in both.

If every pair in a set of contrasts is orthogonal, the entire set is 
orthogonal. The maximum number of orthogonal contrasts is limited by 
the degrees of freedom for the omnibus effect, dfA. Thus, the omnibus 
effect can theoretically be broken down into a – 1 independent directional 
effects, where a is the number of groups. Expressed in terms of sums of 
squares, this is

SS SSA
i

a

i=
=

−

∑ ˆ ( . )ψ
1

1

7 5

where SSA and SSŷ i are, respectively, the sum of squares for the omnibus effect 
and the ith contrast in a set of a – 1 orthogonal comparisons. The same idea 
can be expressed in terms of the correlation ratio

ˆ ˆ ( . )η ηψA
i

a

i

2 2

1

1

7 6=
=

−

∑

where  η̂2
A and η̂2

yi are, respectively, estimated eta-squared for the omnibus 
effect and the ith contrast in a set of all possible orthogonal comparisons.
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There is generally more than one set of orthogonal comparisons that 
could be specified for a ≥ 3 conditions. For example, the contrasts defined by 
the weights listed next

ψ̂1: ( , , )1 0 1−

ψ̂2 2 2: ( , , )1 11−

make up an orthogonal set. A different pair of orthogonal contrasts for the 
same design is

ψ̂3: ( , , )1 1 0−

ψ̂4 2 2: ( , , )1 1 1−

Any set of a – 1 orthogonal contrasts satisfies Equations 7.5–7.6. Different 
sets of orthogonal contrasts for the same factor just specify different patterns 
of directional effects among its levels (groups), but altogether any set of 
orthogonal contrasts will capture all possible ways that the groups could dif-
fer. Statisticians like sets of orthogonal contrasts because of the independence 
of the directional effects specified by them. But it is better to specify a set of 
nonorthogonal contrasts that addresses substantive questions than a set of 
orthogonal contrasts that does not.

If levels of the factor are equally spaced along a quantitative scale, such 
as the drug dosages 3, 6, and 9 mg  kg-1, special contrasts called trends or 
polynomials can be specified. A trend describes a particular shape of the rela-
tion between a continuous factor and outcome. There are as many possible 
trend components as there are degrees of freedom for the omnibus effect. 
For example, if a continuous factor has three equally spaced levels, there 
are only two possible trends, linear and quadratic. If there are four levels, an 
additional polynomial, a cubic trend, may be present. But it is relatively rare 
in behavioral research to observe nonlinear trends beyond cubic effects (e.g., 
dose–response or learning curves). Because trends in balanced designs are 
orthogonal, they are called orthogonal polynomials.

There are conventional weights for polynomials, and some computer pro-
cedures that analyze trends automatically generate them. Tables of polynomial 
weights are also available in several sources (e.g., Winer et al., 1991, p. 982). For 
example, the weights (-1, 0, 1) define a linear trend (positive or negative) for 
continuous factors with three equally spaced levels, and the set (1, -2, 1) speci-
fies a quadratic trend (U-shaped or inverted-U-shaped). Most trend weights for 
larger designs are not standard sets, but this is not a problem because magnitudes 
of trends are usually estimated with measures of association, not standardized 
mean differences. A research example presented later concerns trend analysis.
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Test Statistics

The general form of the test statistic for contrasts is

t df
s

ˆ
ˆ

( )
ˆ

( . )ψ
ψ

ψ ψ= − 0 7 7

where y0 is the value of contrast specified in H0 and sŷ is the standard error. 
For a nil hypothesis, y0 = 0 and this term drops out of the equation. If the 
means are independent, df = dfW = N – a, the pooled within-groups degrees of 
freedom, and the standard error is

s MS
c
n

W
i

ii

a

ˆ ( . )ψ ind = 



=

∑
2

1

7 8

where MSW is the pooled within-groups variance (see Equation 3.11).
In a correlated design, the degrees of freedom for tŷ are n – 1, where n is 

the group size, and the standard error takes the form

s
s

n
D

ˆ
ˆ ( . )ψ
ψ

dep =
2

7 9

where the term in the numerator under the radical is the variance of the 
contrast difference scores. Suppose the weights (1, 0, -1) define ŷ1 in a cor-
related design with three conditions. If Y1, Y2, and Y3 are scores from these 
conditions, the difference score is computed for each case as

D Y Y Y Y Yˆ ( ) ( ) ( )ψ1 1 0 11 2 3 1 3= + + − = −

The variance of these difference scores reflects the cross-conditions correla-
tion r13, or the subjects effect for this contrast (see Equation 2.21). The error 
term sŷ  dep does not assume sphericity because just two means are compared 
in any contrast.

Some computer programs, such as SPSS, print Fŷ for contrasts instead of 
tŷ. For a nil hypothesis, t2

ŷ  = Fŷ, but tŷ preserves the sign of the contrast and can 
test non-nil hypotheses, too. The form for a contrast between independent 
means is Fŷ (1, dfW) = SSŷ/MSW, where the numerator equals

SS
c
n

i

ii

aˆ
ˆ

( . )ψ
ψ=

=
∑

2

2

1

7 10
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The error term for Fŷ in designs with dependent samples is typically not 
the omnibus error term (e.g., MSA × S for a nonadditive model) that assumes 
sphericity when a ≥ 3. Instead, it is based on scores from just the two subsets 
of conditions involved in the contrast. The degrees of freedom for Fŷ in this 
case are 1, n – 1. If the samples are independent, researchers can compute a 
standardized mean difference or a correlation effect size for a contrast from 
either tŷ or Fŷ for a nil hypothesis. This makes these test statistics useful even 
when a nil hypothesis is likely false.

Controlling Type I Error and ANOVA Rituals

Methods for planned comparisons assume a relatively small number of 
a priori contrasts, but those for unplanned comparisons anticipate a larger 
number of post hoc tests, such as all possible pairwise contrasts. A partial 
list of methods is presented in Table 7.1 in ascending order by degree of 
protection against experimentwise Type I error and in descending order by 
power. These methods generally use tŷ or Fŷ as test statistics but compare 
them against critical values higher than those from standard tables (i.e., it is 
more difficult to reject H0). For example, the adjusted level of statistical sig-
nificance for an individual contrast (aBon) in the Bonferroni–Dunn method 
equals aEW/c, where the numerator is the target experimentwise error rate and 
c is the number of contrasts. Methods in Table 7.1 are also associated with 
the construction of simultaneous confidence intervals for y. See Hsu (1996) 

Table 7.1
Methods for Controlling Type I Error Over Multiple Comparisons

Method Nature of protection against aEW

Planned comparisons

  Unprotected None; uses standard critical values for t ψ̂ or Fψ̂

  Dunnett Across pairwise comparisons of a single control group 
with each of a – 1 treatment groups

 B echhofer–Dunnett Across a maximum of a – 1 orthogonal a priori contrasts

 B onferroni–Dunn Bonferroni correction applied across total number of 
either orthogonal or correlated contrasts

Unplanned comparisons

  Newman–Keuls Across pairwise comparisons within sets of means 
ordered by differences in rank order

  Tukey HSD Across all possible pairwise comparisons

  Scheffé Across all possible pairwise or complex comparisons

Note.  aEW = experimentwise Type I error; HSD = honestly significant difference. Tukey HSD is also called Tukey A.
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for information about additional methods to control for Type I error across 
multiple comparisons.

Controlling Type I error over contrast tests may not be desirable if power 
of the unprotected tests is already low. There is also little need to worry about 
experimentwise Type I error if few contrasts are specified. Wilkinson and 
the TFSI (1999) noted that the ANOVA ritual of routinely testing all pair-
wise comparisons following rejection of H0 for the omnibus effect is typically 
wrong. This approach makes individual comparisons unnecessarily conserva-
tive when a classical post hoc method (e.g., Scheffé) is used, and it is rare that 
all such contrasts are interesting. The cost for reducing Type I error in this case 
is reduced power for the specific tests the researcher really cares about. This 
ritual is also a blind search for statistical significance, somewhere, anywhere, 
among pairs of means. It should be avoided in favor of analyzing contrasts of 
substantive interest with emphasis on effect sizes and confidence intervals.

Confidence Intervals for y

The general form of a 100 (1 – a)% confidence interval for y is

ˆ ( . )ˆ ˆψ ψ ψ α± [ ]s t df2 7 11-tail, error( )

where the standard error is defined by Equation 7.8 for independent samples 
and by Equation 7.9 for dependent samples. The degrees of freedom for the 
critical value of tŷ equal those of the corresponding error term. Simultaneous 
(joint) confidence intervals are based on sets of contrasts, and they are gen-
erally wider than confidence intervals for individual contrasts defined by 
Equation 7.11. This is because the former control for multiple comparisons. 
Suppose in the Bonferroni–Dunn method that aEW = .05 and c = 10, which 
implies aBon = .05/10, or .005 for each comparison. The resulting 10 simulta-
neous 99.5% confidence intervals for y are each based on tŷ 2-tail, .005, and these 
intervals are wider than the corresponding 95% confidence interval based 
on tŷ 2-tail, .05 for any individual contrast; see Bird (2002) for more information.

Standardized Contrasts

Contrast weights that are standard sets are assumed next. A standard-
ized mean difference for a contrast is standardized contrast. It estimates the 
parameter dy = y/s*, where the numerator is the unstandardized popula-
tion contrast and the denominator is a population standard deviation. The 
general form of the sample estimator is dŷ = ŷ/ŝ*, where the denominator 
(standardizer) is an estimator of s* that is not the same in all kinds of stan-
dardized contrasts.
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Independent Samples

Two methods for standardizing contrasts in designs with ≥3 independent 
samples are described next. The first method may be suitable for pairwise com-
parisons, but the second method is good for simple or complex comparisons.

1.	Calculate a standardized contrast using one of the methods for 
two-group designs described in Chapter 5. These methods dif-
fer according to specification of the standardizer and whether 
the estimators are robust or not robust (see Table 5.2). In designs 
with ≥3 groups, the standardizer is based on data from just the 
two groups involved in a particular comparison. For example, the 
standardizer spool for comparing M1 and M2 in a three-group design 
is the pooled within-groups standard deviation that excludes s3, 
the standard deviation from the third group. It assumes homosce-
dasticity, but selection of either s1 or s2 as the standardizer does 
not. Robust alternatives include sWin p based on the pooled within-
groups 20% Winsorized variances from groups 1 and 2 or either 
sWin1 or sWin2 from just one of these groups. Keselman et al. (2008) 
described SAS/STAT syntax that calculates robust standardized 
contrasts with confidence intervals in between-subjects single-
factor designs that can be downloaded.1 A drawback of these 
methods is that each contrast is based on a different standard-
izer, and each standardizer ignores information about variability 
in groups not involved in a particular contrast.

2.	Select a common standardizer for any comparison, pairwise or 
complex, based on all information about within-groups vari-
ability. An example is the square root of MSW, the pooled 
within-groups variance for the whole design. Contrasts stan-
dardized against (MSW)1/2 are designated next as dwith. In two-
group designs, dwith = dpool for the sole contrast. But in larger 
designs, values of dwith and dpool may differ for the same contrast. 
The effect size dwith assumes homoscedasticity over all groups. 
An alternative standardizer is the unbiased standard deviation 
for the total data set, sT = (SST /dfT)1/2. This option estimates the 
full range of variation for nonexperimental factors.

The value of dwith = ŷ/(MSW)1/2 can also computed from tŷ for a nil 
hypothesis, the contrast weights, and the group sizes:

d t
c
n

i

ii

a

with =
=
∑ˆ ( . )ψ

2

1

7 12

1http://supp.apa.org/psycarticles/supplemental/met_13_2_110/met_13_2_110_supp.html
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In balanced designs, this equation reduces to dwith = tŷ(2/n)1/2 for pairwise 
contrasts.

Look back at Table 3.4, which lists raw scores for a balanced three-
sample design where n = 5, M1 = 13.00, M2 = 11.00, and M3 = 15.00. Reported 
in Table 7.2 are results of an independent samples ANOVA for the omnibus 
effect and two orthogonal contrasts defined by the sets of weights (1, 0, -1) 
and (½, -1, ½) where

ˆ – . – . .ψ1 1 3 13 00 15 00 2 00= = = −M M

ˆ . .
. .ψ2

1 3
2

2
13 00 15 00

2
11 00 3 00= + − = + − =M M

M

Note in Table 7.2 that

SS SS SSA = + = + =ˆ ˆ . . .ψ ψ1 2 10 00 30 00 40 00

which is just as predicted by Equation 7.5 for a set of a – 1 = 2 orthogonal 
contrasts. Given MSW = 5.50, values of the corresponding standardized con-
trasts are

d dwith withand1 2
2 00

5 50
85

3 00

5 50
1 2= − = − = =.

.
.

.

.
. 88

In words, M1 is .85 standard deviations lower than M3, and the average of M1 
and M3 is 1.28 standard deviations higher than M2.

Table 7.2
Independent Samples Analysis of the Data in Table 3.4

Source SS df MS F dwith η̂2

Partial 
η̂2 

Between (A)   40.00   2 20.00 3.64c — .377h .377
ŷ1 = -2.00a 10.00 1 10.00 1.82d -.85f .094 .132i

ŷ2 = 3.00b 30.00 1 30.00 5.45e 1.28g .283 .313j

Within (error)   66.00 12   5.50

Total 106.00 14

Note.  The contrast weights for ŷ1 are (1, 0, -1) and those for ŷ2 are (½, -1, ½). A dash (—) indicates that it 
is not possible to calculate the statistic indicated in the column heading for the effect listed in that row of the 
table. CI = confidence interval.
a95% CI for y1 [-5.23, 1.23]. b95% CI for y2 [.20, 5.80]. cp = .058. dp = .202. ep = .038. fApproximate 95% CI for 
dy1 [-2.23, .53]. gApproximate 95% CI for dy2 [.09, 2.47]. hNoncentral 95% CI for η2

A [0, .601]. iNoncentral 95% 
CI for partial η2

ψ1 [0, .446]. jNoncentral 95% CI for partial η2
ψ2 [0, .587].
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Dependent Samples

There are two basic ways to standardize mean changes when the sam-
ples are dependent:

1.	With one exception, use any of the methods described in the 
previous section for contrasts between unrelated means. These 
methods estimate population standard deviations in the metric 
of the original scores, but they ignore the subjects effect in cor-
related designs. The exception is Equation 7.12, which requires 
tŷ for independent samples to compute dwith.

2.	Standardize the mean change against the standard deviation of 
the difference scores for that particular contrast. This option 
takes account of the cross-conditions correlation, but it does 
not describe change in the metric of the original scores.

Reported in Table 7.3 are the results of a dependent samples analysis 
for an additive model of the data in Table 3.4 for the omnibus effect and the 
same two contrasts analyzed in Table 7.2. The F and p values differ for all 
effects across the independent samples analysis in Table 7.2 and the depen-
dent samples analysis in Table 7.3. But dwith1 = -.85 and dwith2 = 1.28 in both 
analyses, because each is calculated the same way regardless of the design.

Approximate Confidence Intervals for cy

If the samples are independent and the effect size is dwith, an approximate 
confidence interval for dy can be obtained by dividing the endpoints of the 

Table 7.3
Dependent Samples Analysis of the Data in Table 3.4

Source SS df MS F dwith η̂2

Partial 
η̂2 

Between (A)   40.00   2 20.00 14.12c — .377 .779
ŷ1 = -2.00a 10.00 1 10.00   5.71d -.85f .094 .588

ŷ2 = 3.00b 30.00 1 30.00 27.69e 1.28g .283 .874

Within   66.00 12   5.50
Subjects 54.67 4 13.67
Residual (A) 11.33 8   1.42

Residual (ŷ1)     7.00 4   1.75

Residual (ŷ2)     4.33 4   1.08
Total 106.00 14

Note.  The contrast weights for ŷ1 are (1, 0, -1) and those for ŷ2 are (½, -1, ½). A dash (—) indicates that it is not 
possible to calculate the statistic indicated in the column heading for the effect listed in that row of the table.
a95% CI for y1 [-4.32, .32]. b95% CI for y2 [1.42, 4.58]. cp = .002. dp = .075. ep = .006. fApproximate 95% CI for dy1 
[-1.84, .14]. gApproximate 95% CI for dy2 [.60, 1.95].
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corresponding interval for y (Equation 7.11) by the square root of MSW. The 
form of the resulting interval is

d s t dfd Wwith with -tail, ( )± [ ]ˆ ( . )ψ α2 7 13

where the approximate standard error is

s
c
n

d
i

ii

a

with =
=
∑

2

1

7 14( . )

Four-decimal accuracy is recommended for hand calculations.
Bird (2002) recommended the same method when the samples are 

dependent and the effect size is dwith except that the degrees of freedom for  
tŷ 2-tail, a are n – 1, not dfW. The resulting confidence interval for y controls for 
the subjects effect. Next, divide the lower and upper bounds of this confidence 
interval by the square root of MSW, which standardizes the interval in the 
metric of the original scores. The result is the approximate confidence inter-
val for dy for a dependent standardized mean change.

Refer back to Table 7.2 and look over the results of the independent 
samples analysis where dfW = 12 and MSW = 5.50. The standard error of  
ŷ1 = -2.00 is

s ˆ . .ψ1 ind = + + −



 =5 50

1
5

0
5

1
5

1 4832
2 2 2

Given tŷ 2-tail, .05 (12) = 2.179, the 95% confidence interval for y1 is

− ±2 00 1 4832 2 776. . ( . )

which defines the interval [-5.2319, 1.2319]. If we divide the endpoints of 
this interval by 5.501/2 = 2.345, we obtain the approximate 95% confidence 
interval for dy1. The lower and upper bounds of this interval based on dwith1 
= -.85 are [-2.2309, .5253]. Thus, we can say that dwith1 = -.85 is just as 
consistent with a population effect size as small as dy1 = -2.23 as it is with a 
population effect size as large as dy1 = .53, with 95% confidence. The range 
of imprecision is this great due to the small group size (n = 5). Exercise 1 
involves constructing the approximate 95% confidence interval for dy2 based 
on the results in Table 7.2.

Now look at the results of the dependent samples analysis in Table 7.3. 
Given r13 = .7303, s2

1 = 7.50, and s2
3 = 4.00 for ŷ1 = -2.00 (see Table 3.4), 

the variance of the difference scores and the standard error of ŷ1 are, 
respectively,
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sD ˆ
. . . . .

ψ 1
7 5 4 2 (4.00) 73 3 3 52 0 00 7 50 0 0= + − ( ) =

s ˆ
.

.ψ1 dep 8367= =3 50
5

Given tŷ 2-tail, .05 (4) = 2.776, the 95% confidence interval for y1 is

− ±2 00 8367 2 776. . ( . )

which defines the interval [-4.3226, .3226]. Dividing the endpoints of this 
interval by the square root of MSW = 5.50 gives the lower and upper bounds 
of the approximate 95% confidence interval for dy1 based on dwith1 = -.85 in 
the dependent samples analysis. The resulting interval is [-1.8432, .1376], or 
[-1.84, .14] at two-decimal accuracy. As expected, this interval for dy1 in the 
dependent samples analysis is narrower than the corresponding interval in 
the independent samples analysis of the same scores, or [-2.23, .53]. Exercise 
2 asks you to construct the approximate 95% confidence interval for dy2 for 
the dependent samples analysis in Table 7.3.

The PSY computer program (Bird, Hadzi-Pavlovic, & Isaac, 2000) for 
Microsoft Windows calculates individual or simultaneous approximate confi-
dence intervals for dy when the effect size is dwith in designs with one or more 
between-subjects or within-subjects factors.2 It accepts only integer contrast 
weights, but it can automatically convert the weights to a standard set so that 
all contrasts are scaled as mean differences.

Results of computer simulations by Algina and Keselman (2003) indi-
cated that Bird’s (2002) approximate confidence intervals for dy were reason-
ably accurate in between-subjects designs except for larger population effect 
sizes, such as dy > 1.50. But in correlated designs, their accuracies decreased as 
either the population effect size increased or the cross-conditions correlation 
increased. In both designs under the conditions just stated, approximate con-
fidence intervals for dy were generally too narrow, which makes the results 
look falsely precise. Algina and Keselman (2003) also found that noncentral 
confidence intervals in between-subjects designs and approximate noncen-
tral confidence intervals in within-subjects designs were generally more accu-
rate than Bird’s (2002) approximate intervals.

Noncentral Confidence Intervals for cy

When the means are independent, dwith follows noncentral tŷ (dfW, D) dis-
tributions. A computer tool calculates a noncentral 100 (1 – a)% confidence 

2http://www.psy.unsw.edu.au/research/research-tools/psy-statistical-program
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interval for dy by first finding the corresponding confidence interval for D. 
Next, the endpoints of this interval, DL and DU, are converted to dy units 
based on the equation

δψ =
=
∑∆ c

n
i

ii

a 2

1

7 15( . )

For the independent samples analysis in Table 7.2 where n = 5 and  
ŷ1 = -2.00 is defined by the weights (1, 0, -1), the standardized contrast is 
dwith1 = -.85 and the test statistics are

F t i e tˆ ˆ ˆ( , ) . ( ) . ( . .,ψ ψ ψ1 11 12 1 82 12 1 35= = −and 11
2

1= Fˆ )ψ

I used J. H. Steiger’s NDC calculator (see footnote 2, Chapter 5) to construct 
the noncentral 95% confidence interval for D, which is [-3.3538, .7088]. 
When Equation 7.15 is used, the endpoints of this interval in D units are 
transformed to dy units by multiplying each by

1
5

0
5

1
5

6325
2 2 2

+ + − = .

The result, [-2.1213, .4483], or [-2.12, .45] at two-decimal accuracy, is the 
noncentral 95% confidence interval for dy1. Earlier, the approximate 95% 
confidence interval for dy1 was calculated based on the same data as [-2.23, 
.53] (see also Table 7.2).

Two computer tools that construct noncentral confidence intervals for 
dy in designs with independent samples include MBESS for R (Kelley, 2007; 
see footnote 5, Chapter 5) and syntax for SAS/IML presented by Algina and 
Keselman (2003; see footnote 7, Chapter 5). Distributions of dwith in corre-
lated designs are complex and may follow neither central nor noncentral tŷ 

distributions. Algina and Keselman (2003) described a method to calculate 
approximate confidence intervals for dy in such designs based on noncentral 
tŷ distributions, and SAS/IML syntax for this method can be downloaded 
from the source just mentioned. Steiger (2004) described additional methods 
of interval estimation for contrasts in ANOVA.

Bootstrapped Confidence Intervals Based  
on Robust Standardized Contrasts

Two software packages or scripts compute bootstrapped confidence 
intervals for the product of the scale factor .642 and dy rob (i.e., dy is estimated) 
based on trimmed means and Winsorized variances in single- or multiple-
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factor designs. These include the SAS/IML script by Keselman et al. (2008) 
and Wilcox’s (2012) WRS package for R (see footnote 11, Chapter 2).

Correlations and Measures of Association

Reviewed next are descriptive and inferential r-type effect sizes for con-
trasts and the omnibus effect. The descriptive effect sizes assume a fixed factor 
(as do standardized contrasts). The most general descriptive effect size is the 
correlation ratio. For contrasts it takes the form ̂η2

ψ = SSy/SST, and it measures 
the proportion of total observed explained by that contrast. The correspond-
ing effect size for the omnibus effect is ̂η2

A = SSA/SST. In balanced designs with 
a fixed factor, the inferential measures of association ω̂2

ψ for contrasts and ω̂2
A 

for omnibus effects control for positive bias in, respectively, η̂2
ψ and η̂2

A. But for 
random factors, contrast analysis is typically uninformative. This is because 
levels of such factors are randomly selected, so they wind up in a particular 
study by chance. In this case, the appropriate inferential measure of associa-
tion is the intraclass correlation ρ̂1, which is already in a squared metric, for 
the omnibus effect in balanced designs.

Correlation Effect Sizes for Contrasts

The unsigned correlation between a contrast and the outcome variable 
is η̂ψ. Its signed counterpart in designs with independent samples is rψ̂, which 
is calculated as follows:

r t
F df F dfW

ˆ ˆ
ˆ ˆ ˆ( )

( . )ψ ψ
ψ ψ ψ

=
+ +

1
7 16

non- non-

where dfnon-ψ̂ and Fnon-ψ̂ are, respectively, the degrees of freedom and F statistic 
for all noncontrast sources of between-groups variability. The statistic Fnon-ψ̂ = 
MSnon-ψ̂ /MSW, where

MS SS dfnon- non- non-ψ ψ ψ= ˆ

SS SS SS df dfA Anon- non-andˆ ˆ ˆψ ψ ψ= − = −1

For the results in Table 7.2 where the weights (1, 0, -1) specify ŷ1,

ˆ . , . , . , ( , )ˆ ˆψ ψ ψ1 1 12 00 10 00 5 50 1 12 1= − = = =SS MS FW ..82

t SS dfA Aˆ . , . ,ψ1 12 1 35 40 00 2( ) = − = =
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which imply that

SS dfnon- non-ˆ ˆ. . . ,ψ ψ1 140 00 10 00 30 00 2 1 1= − = = − =

Fnon- ˆ . . .ψ1 30 00 5 50 5 45= =

Now we calculate

rˆ .
. ( ) .

.ψ1 307= −
+ +

= −1 35
1

1 82 1 5 45 12

So we can say that the correlation between the dependent variable and the con-
trast between the first and third groups is -.307 and that this contrast explains 
-.3072, or about .094 (9.4%), of the total observed variance in outcome.

The partial correlation effect size

partial r t
F dfW

ˆ ˆ
ˆ

( . )ψ ψ
ψ

=
+
1

7 17

removes the effects of all other contrasts from total variance. For ŷ1 in Table 7.2,

partial rˆ .
.

.ψ1 1 35
1

1 82 12
363= −

+
= −

which says that correlation between ŷ1 and outcome is -.363 controlling for 
ŷ2 and that ŷ1 explains -.3632, or about .132 (13.2%), of the residual variance. 
The absolute value of partial rŷ is usually greater than that of rŷ for the same 
contrast, which is here true for ŷ1 (respectively, .363 vs. .307). Also, partial 
r2

ŷ values are not generally additive over sets of contrasts, orthogonal or not. 
Exercise 3 asks you to calculate rŷ2 and partial rŷ2 for the results in Table 7.2.

The correlation rŷ assumes independent samples. For dependent sam-
ples, we can compute instead the unsigned correlation of which rŷ is a special 
case, η̂ψ. For the dependent contrast ŷ1 in Table 7.3 where SSŷ1

 = 10.00 and 
SST = 106.00, η̂2

ψ1 = (10.00/106.00)1/2, or .307, which is also the absolute value 
of rŷ 1 for the same contrast in the independent samples analysis of the same 
data (see Table 7.2). The proportion of total variance explained is also the 
same in both analyses, or η̂2

ψ1
 = r2

ŷ1 = .094 (i.e., 9.4% of total variance).
The general form of partial η̂2

ψ is SSŷ/(SSŷ + SSerror), where SSerror is the 
error sum of squares for the contrast. If the samples are independent, partial 
η̂2

ψ controls for all noncontrast sources of between-conditions variability; if the 
samples are dependent, it also controls for the subjects effect. For example, par-
tial η̂2

ψ1
 = .132 and η̂2

ψ1 = .094 for the independent samples analysis in Table 7.2. 
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But partial ̂η2
ψ1

 = .588 for the dependent samples analysis in Table 7.3 because 
it controls for both ŷ2 and the subjects effect. Exercise 4 involves calculating 
partial  ̂η2

ψ2
 for the results in Table 7.3. Rosenthal et al. (2000) described many 

examples of contrast analyses in single- and multiple-factor designs.

Descriptive Measures of Association for Omnibus Effects

When dfA ≥ 2, η̂2
A is the squared multiple correlation (R2) between the 

omnibus effect and outcome. If the samples are independent, η̂2
A can also be 

computed as

ˆ ( . )ηA
A

A
W

A

F

F
df
df

2 7 18=
+

where FA is the test statistic for the omnibus effect with dfA, dfW degrees 
of freedom (see Equation 3.8). For example, SSA = 40.00 and SST = 106.00 
for the omnibus effect in Tables 7.2 and 7.3, so the omnibus effect explains 
40.00/106.00 = .377, or about 37.7%, of the total variance in both analyses. 
But only for the independent samples analysis in Table 7.2 where FA (2, 12) 
= 3.64 can we also calculate (using Equation 7.18) for the omnibus effect

ˆ .

.
.ηA

2 3 64

3 64
12
2

377=
+

=

The general form of partial η̂2
A is SSA / (SSA + SSerror). In a between-sub-

jects design where MSW is the error term, η̂2
A = partial η̂2

A because there is no 
other source of systematic variation besides the omnibus effect. But in a within- 
subjects design, it is generally true that η̂2

A ≤ partial η̂2
A because only the latter 

controls for the subjects effect. For example, η̂2
A = .377 but partial η̂2

A = .779 for 
the omnibus effect for the dependent samples analysis in Table 7.3.

Inferential Measures of Association

The inferential measures ω̂2 for fixed factors and ρ̂1 for random factors in 
balanced designs are based on ratios of variance components, which involve 
the expression of expected sample mean squares as functions of population 
sources of systematic versus error variation. Extensive sets of equations for 
variance component estimators in sources such as Dodd and Schultz (1973), 
Kirk (2012), Vaughan and Corballis (1969), and Winer et al. (1991) provide 
the basis for computing inferential measures of association. Schuster and von 
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Eye (2001) showed that random effects models and repeated measures models 
are variations of each other because both control for scores dependencies. It 
is not always possible to estimate population variance components without 
bias, and certain components cannot be expressed as unique functions of 
sample data in some designs. But there are heuristic estimators that may let 
one get by in the latter case.

Both ω̂2 and ρ̂1 have the general form σ̂2
effect/σ̂2

total, where the numerator 
estimates the variance component for the effect of interest and the denomi-
nator estimates total variance due to all sources in the design. For a fixed 
factor, σ̂2

effect  is the numerator of ω̂2
effect . In designs with either independent or 

dependent samples, its general form is

ˆ – ( .effectσ 2 7 19= ( )df
an

MS MSeffect
effect error ))

where MSeffect and dfeffect are, respectively, the effect mean square and its 
degrees of freedom, and MSerror is its error term. When Equation 7.20 is used, 
the estimator for the omnibus effect is

ˆ – ( . )σ A A
a
an

MS MSfix error
2 1

7 20= − ( )

and that for a contrast is

ˆ – ( . )ˆσ ψ ψ
2 1

7 21= ( )
an

MS MSerror

(Recall that MSŷ = SSŷ because dfŷ = 1.) But for a random factor the estimator 
for the omnibus effect is

ˆ – ( . )σ A A
n

MS MSran error
2 1

7 22= ( )

Estimation of σ̂2
total also depends on the design. The sole estimate of error 

variance when the samples are independent is MSW, regardless of whether the 
factor is fixed or random. This means that total variance in either case is 
estimated as

ˆ ˆ .σ σtotal
2 2 7 23= + ( )A WMS

where  σ̂2
A is defined by Equation 7.20 for a fixed factor but by Equation 7.22 

for a random factor. The composition of total variance for fixed versus ran-
dom factors is thus not the same.
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Estimation of total variance is more complicated in correlated designs. 
For a fixed factor assuming a nonadditive model, it is not possible to uniquely 
estimate variance components for the subjects effect, the person × treatment 
interaction, and random error (e.g., Winer et al., 1991, p. 276). Instead, com-
binations of these parameters are estimated heuristically by the equations for 
direct calculation of ω̂2

effect  introduced below. These heuristic estimators are 
negatively biased, so they generally underestimate population proportions 
of explained variance. For a random factor, though, the combined effects of 
person × treatment interaction and random error are estimated with a single 
error mean square in a nonadditive model.

The equations presented in Table 7.4 allow you to directly calculate  
ω̂2

effect  or ρ̂1 instead of working with all the variance component estimators 
that make up each effect size. For example, the numerator of ω̂2

effect  for fixed 
factors in the method of direct calculation is always

df MS MSeffect effect error−( ) ( . )7 24

but computation of the denominator depends on the design. Likewise, the 
numerator of ρ̂1 for random factors in Table 7.4 is always

a MS MSA −( )error ( . )7 25

but calculation of its denominator also depends on the design.
Outlined next is a method for direct computation of inferential mea-

sures of association based on residual variance. These statistics are partial 

Table 7.4
Numerators and Denominators for Direct Calculation of Inferential Measures 

of Association Based on Total Variance for Single-Factor Designs

Sample Model Denominator

Fixed factora

Independent — SST + MSW

Dependent Additive SST + MSS

Dependent Nonadditive SST + MSS + n MSA × S

Random factorb

Independent — SST + MSA

Dependent Additive SST + MSA + MSS - MSres

Dependent Nonadditive a MSA + n MSS + (an –a – n) MSA × S

Note.  The cell size is n, factor A has a levels, and MSerror is the ANOVA error term for the corresponding 
effect.
aEffect size is ŵ2

effect, numerator = dfeffect (MSeffect - MSerror). bEffect size is r̂I, numerator = a (MSA – MSerror).
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ω̂2
effect  for effects of fixed factors and partial ρ̂1 for omnibus effects of random 

factors. The general form of both is σ̂2
effect/(σ̂2

effect + σ̂2
error):

1.	 Independent samples. The error variance estimator is σ̂2
error = MSW. 

a)	 Fixed factor. The numerator of partial ω̂22
y is σ̂22

y (Equa-
tion 7.21), and the denominator is σ̂22

y + MSW. For the omni-
bus effect, partial ω̂22

A = ω̂22
A because there is no other source 

of between-groups variability and MSW is the sole error vari-
ance estimator. 

b)	 Random factor. Partial ρ̂1 = ρ̂1 for the omnibus effect, for the 
reasons just stated.

2.	Dependent samples, additive model. The error variance estimator 
is σ̂2

error = MSerror, the error term for the effect of interest. 
a)	 Fixed factor. The numerator of partial ω̂2

y is σ̂2
y (Equa-

tion 7.21), and the denominator is σ̂2
y + MSerror. The numera-

tor of partial ω̂2
A is σ̂2

A (Equation 7.20), and the denominator 
is σ̂2

A + MSerror. 
b)	 Random factor. The numerator of partial ρ̂1 is σ̂2

A (Equa-
tion 7.22), and the denominator is σ̂2

A + MSerror.
3.	Dependent samples, nonadditive model. Because error variance 

cannot be uniquely estimated apart from that due to a true per-
son × treatment interaction, there is no unbiased definition of 
partial ω̂2

effect  or partial ρ̂1. The statistic partial η̂2   is an alterna-
tive in this case.

For the independent samples analysis in Table 7.2, assuming a fixed factor,

MS MS MS MSWa 20.00, 10.00, 30.00, 5.5= = = =ˆ ˆψ ψ1 2 00, SST = 106 00.

ˆ ˆ ˆη η ηψ ψA
2

1
2

2
2= + = =.094 + .283 .377

Using the method of direct calculation outlined in Table 7.4, we compute 
inferential measures of association based on total variance as follows:

ˆ ( . . )
. .

.ωA
2 2 20 00 5 50

106 00 5 50
0= −

+
= 26

ˆ . .
. .

. ˆω ωψ ψ1 2

2 210 00 5 50
106 00 5 50

0 0
30= −

+
= =4 and

.. .
. .

.
00 5 50

106 00 5 50
0

−
+

= 22

As expected, values of the inferential measures just calculated are each smaller 
than the corresponding descriptive measure (e.g., ̂η2

A = .377, ω̂2
A = .260). Because 

ŷ1 and ŷ2 are orthogonal and dfA = 2, it is also true that
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ˆ ˆ ˆω ω ωψ ψA
2

1
2

2
2= + = + =.040 .220 .260

Proportions of observed residual variance explained by the contrasts in 
Table 7.2 are

partial .132 and partial .303ˆ ˆη ηψ ψ1
2

2
2= =

The numerator of partial ω̂2
ψ for each contrast is calculated with Equa-

tion 7.21 as

ˆ . – . . ˆ .σ σψ ψ1
2

2
21

15
0 00 0

1
15

0 00= ( ) = =1 5 5 300 and 3 −−( ) =5 5 1 633. .0

Given σ̂2
error = MSW = 5.50, next we calculate

partial 052 and partialˆ .
. .

. ˆω ωψ1
2 300

300 5 50
=

+
= ψψ 2

2 1 633
1 633 5 50

=
+

=.
. .

.229

Again, each bias-adjusted proportion of explained residual variance is smaller 
than its observed counterpart for each contrast. Exercise 5 asks you to verify 
that ρ̂1 = .345 assuming a random factor for the results in Table 7.2. Exercise 
6 asks you to compute ω̂2

A, partial ω̂2
y1, and partial ω̂2

y2 for the dependent 
samples analysis in Table 7.3 for an additive model and a fixed factor.

An alternative to ANOVA-based estimation of variance components 
in designs with random factors is maximum likelihood estimation, which 
iteratively improves the estimates until statistical criteria are satisfied. It also 
requires large samples; see Searle, Casella, and McCulloch (1992) for more 
information. A problem that arises in both ANOVA and maximum likeli-
hood methods is negative variance estimates, which are most likely in small 
samples or when effect sizes are about zero. Estimates < 0 are usually inter-
preted as though the value were zero.

Effect Sizes for Power Analysis

Population effect size for fixed factors is represented in some computer 
tools for power analysis with the f2 parameter (Cohen, 1988), which is 
related to h2 as follows:

f2
2

21
7 26=

−
η

η
( . )

That is, f2 is the ratio of explained variance over unexplained vari-
ance, and thus it is a kind of population signal-to-noise ratio. The f 2 
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parameter can also be expressed for balanced designs and assuming homo
scedasticity as

f2
2

1

1
7 27= −



=

∑
a

i

i

a µ µ
σ

( . )

where the expression in parentheses is the contrast between each of the i 
population means and the grand mean, µi – µ, standardized by the common 
population standard deviation, s. Thus, f 2 is the average squared standard-
ized contrast over all populations. Researchers infrequently report sample 
estimators of f 2 as effect sizes, but see Winer et al. (1991, pp. 126–127) for an 
example. Steiger (2004) described additional forms of f 2.

Interval Estimation

Measures of association generally have complex distributions, and meth-
ods for obtaining approximate confidence intervals are not really amenable to 
hand calculation. Some of the computer tools described earlier that cal-
culate noncentral confidence intervals for h2 in two-group designs can 
also be used in designs with ≥3 independent samples. For example, I used 
Smithson’s (2003) scripts (see footnotes 3–4, Chapter 5) to calculate for 
the results in Table 7.2 (a) the noncentral 95% confidence interval for 
h2

A based on the omnibus effect and (b) the noncentral 95% confidence 
intervals for partial h2 ψ based on the two contrasts, given the test statistics 
for these effects. The input data and results are summarized next:

η̂A AF2 = .377, 95% ci 0, .601 , 2, 12 3.64[ ] ( ) =

partial .132 95% ci 0, .446 , 1,1
2ˆ , ˆηψ ψ= [ ] F 1 112 1.82( ) =

partial .313 95% ci 0, .587 , 1,122
2ˆ , ˆηψ ψ= [ ] F 2 (( ) = 5.45

Fidler and Thompson (2001) gave a modification of an earlier version of 
Smithson’s (2003) SPSS scripts that constructs noncentral confidence inter-
vals for w2. They also reviewed methods to construct confidence intervals for 
rI in designs with independent samples and random factors. They found that 
confidence intervals are typically wider (less precise) when the factor is ran-
dom than when it is fixed. This is one of the costs of generalizing beyond the 
particular levels randomly selected for study. W. H. Finch and French (2012) 
compared in computer simulations different methods of interval estimation 
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for w2 in single-factor and two-way designs. No method performed well under 
conditions of nonnormality, especially for N < 50; otherwise, nonparametric 
bootstrapping with bias correction was generally accurate. They also reported 
that adding a second factor affected the precision of confidence intervals for 
the original factor, so interval estimation for one factor was affected by other 
variables in the design.

The MBESS package for R (Kelley, 2007) can calculate noncentral 
confidence intervals for f2 or h2 in designs with independent samples. Steiger 
(2004) outlined noncentrality interval estimation for w2 and a root-mean-
squared standardized effect size related to the f 2 parameter in balanced, com-
pletely between-subjects designs. He also described ANOVA methods for 
testing non-nil hypotheses, such as whether observed effect sizes differ sta-
tistically from trivial levels or nontrivial (exceeds a threshold for substantive 
significance) levels. There is a paucity of computer tools that calculate con-
fidence intervals based on measures of association in correlated designs, but 
this situation is likely to change.

Effect Sizes in Covariate Analyses

A covariate is a variable that predicts outcome but is ideally unrelated 
to the independent variable (factor). The variance explained by the covari-
ate is removed, which reduces error variance. With sufficient reduction in 
error variance, the power of the statistical test for the factor may be higher 
in ANCOVA than in ANOVA without the covariate. The ANCOVA also 
yields group means on the dependent variable adjusted for the covariate. 
These adjustments reflect (a) the pooled within-groups regression of the out-
come variable on the covariate and (b) the amount of deviation of group 
covariate means from the grand mean. If this deviation is slight, there is little 
adjustment. Otherwise, the adjusted means can be substantially higher or 
lower than the corresponding unadjusted means.

In experimental designs where cases are randomly assigned to condi-
tions, group means on the covariate vary only by chance. As a consequence, 
(a) adjusted group means on the outcome variable tend to be similar to the 
unadjusted means, and (b) it may be only the error term that differs apprecia-
bly across ANCOVA and ANOVA results for the same outcome. But groups 
in nonexperimental designs may differ systematically on the covariate. If so, 
the covariate is related to both the factor and the dependent variable, and 
both the ANCOVA error term and the adjusted means can differ substan-
tially from their ANOVA counterparts. But unless the covariate reflects basi-
cally all sources of differences between intact groups, the adjusted means 
may be incorrect. This is why ANCOVA does not cure preexisting group 
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differences on confounding variables (i.e., covariates); see G. A. Miller and 
Chapman (2001) for a review.

The technique of ANCOVA has two more assumptions than 
ANOVA does. One is homogeneity of regression, which requires equal 
within-populations unstandardized regression coefficients for predicting 
outcome from the covariate. In nonexperimental designs where groups 
differ systematically on the covariate (and presumably also on other vari-
ables related to outcome), the homogeneity of regression assumption is 
rather likely to be violated. The second assumption is that the covariate 
is measured without error (its scores are perfectly reliable). Violation of 
either assumption may lead to inaccurate results. For example, an unreli-
able covariate in experimental designs causes loss of statistical power and 
in nonexperimental designs may also cause inaccurate adjustment of the 
means (Culpepper & Aguinis, 2011). In nonexperimental designs where 
groups differ systematically, these two extra assumptions are especially 
likely to be violated.

An alternative to ANCOVA is propensity score analysis (PSA). It 
involves the use of logistic regression to estimate the probability for each case 
of belonging to different groups, such as treatment versus control, in designs 
without randomization, given the covariate(s). These probabilities are the pro-
pensities, and they can be used to match cases from nonequivalent groups. But 
PSA offers no magic, because the accuracy of propensities requires that the 
covariates measure in large part the selection process whereby cases wound up 
in their respective nonequivalent groups; see Shadish et al. (2001) for more 
information.

The SPSS raw data file for this example can be downloaded from this 
book’s web page. McWhaw and Abrami (2001) conducted a 30-minute 
workshop for Grade 11 students about finding main ideas in text. The same 
students were later randomly assigned to one of two incentive conditions. 
Students in the extrinsic condition were offered a monetary reward if they 
found 75% of the main ideas in a text passage, but students in the intrinsic 
condition were merely encouraged to see the task as a challenge. The out-
come variable was the number of main ideas found, and the covariate was 
the students’ grades in school expressed as percentages. Descriptive statistics 
are summarized in Table 7.5. Observed means on the reading task indicate 
that the extrinsic group found on average about one more main idea than the 
intrinsic group, respectively, 3.05 versus 2.08. Adjusted means controlling for 
grades in the extrinsic and intrinsic groups are, respectively, 3.02 and 2.11. 
These means are similar to the observed means because the factor and covari-
ate are essentially unrelated in this experimental design.

Reported at the top of Table 7.6 is the ANOVA source table for the data 
in Table 7.5 except for the covariate. The intrinsic–extrinsic factor in this 
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Table 7.5
Descriptive Statistics on the Outcome Variable and Covariate  

for Two Learning-Incentive Conditions

Incentive conditiona

Variable Intrinsic Extrinsic

School grades (covariate) 74.59 (7.37)b 75.13 (10.69)

Main ideas found (outcome)
  Observed   2.08 (2.09)   3.05 (2.42)
 A djusted 2.11c 3.02

Note.  These data are from K. McWhaw (personal communication, January 23, 2012) and are used with per-
mission. The unstandardized pooled within-groups coefficient for the regression of outcome on the covariate 
is .117.
aIntrinsic condition, n1 = 55; extrinsic condition, n2 = 37. bMean (standard deviation). cMean.

Table 7.6
Analysis of Variance (ANOVA) and Analysis of Covariance  

(ANCOVA) Results for the Data in Table 7.5

Source SS df MS F η̂2

ANOVA

Between (incentive)   20.91   1 20.91   4.21b .045
Within (error) 446.77 90   4.96
Total 467.68 91

Traditional ANCOVAa

Total effects 117.05   2 58.52 14.86c .250
Covariate (grades)   96.14 1 96.14 24.40c .206
Between (incentive)   18.25 1 18.25   4.63d .039
Within (error) 350.63 89   3.94
Total 467.68 91

ANCOVA-as-regression

Step Predictors R 2 R2 change F change df1 df2

1 Grades .211 .211 24.11c 1 90
2 Grades, incentive .250 .039   4.63d 1 89

Note. E ntries in boldface emphasize common results across traditional ANCOVA and ANCOVA-as- 
regression analyses of the same data and are discussed in the text.
aType III sums of squares. bp = .043. cp < .001. dp = .034.

analysis explains about 4.5% of total variance on the reading task (ĥ2 = .045). 
Other key ANOVA results are

MS F pW = ( ) = =4.96, 1, 90 4.21, .043

Presented in the middle of Table 7.6 is the traditional ANCOVA source 
table. The sums of squares are Type III, which reflect the unique explanatory 
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power of individual predictors. The factor and covariate together explain 
about 25.0% of the total variance in reading scores (η̂2  = .250). Of the two, 
the factor and covariate each uniquely explain, respectively, about 3.9% and 
20.6% of total variance. The prime symbol “ ′” designates results adjusted for 
the covariate, and the results of the F test presented next are for incentive 
condition:

MS F pW′ = ( ) = =3.94, 1, 89 4.63, .034

The ANCOVA error term is related to the ANOVA error term as follows:

MS MS
df r

dfW W

W

W

′ =
−( )
−











1

1
pool
2

(7.28)

where r2
pool is the squared pooled within-groups correlation between the covari-

ate and the dependent variable. For this example, where dfW = 90 and rpool = .464,

MSW′ =
−( )

−






=4 96
90 1 464

90 1
3 94

2

.
.

.

Results at the bottom of Table 7.6 represent a third perspective. They 
are from a hierarchical multiple regression analysis where grade (covariate) 
is the sole predictor of reading at step 1 and incentive condition is entered 
as the second predictor at step 2. At step 1, the result R2

1 = .212 is just the 
squared Pearson correlation between grades and reading. At step 2, R2

2 = .250 
is the squared multiple correlation where the predictors are grades and incen-
tive condition. This result (.250) is presented in boldface in the table to 
emphasize its equivalence with  ̂η2  = .250 for the total effects in the traditional 
ANCOVA. The statistic F (1, 89) = 4.63 reported in boldface for the regres-
sion results tests whether

R R2
2

1
2− = =.250 – 210 .039

differs statistically from zero. The F statistic and R2 change values just stated 
are each identical to their counterparts in the traditional ANCOVA results 
(e.g., ̂η2  = .039 for incentive condition; see Table 7.6). Thus, ANCOVA from 
a regression perspective is nothing more than a test of the incremental valid 
ity of the factor over the covariate in predicting outcome.

Let us now estimate the magnitude of the standardized contrast between 
the extrinsic and intrinsic conditions on the reading task. There are two 
possibilities for the numerator: the contrast of the two unadjusted means,  
M1 – M2, or means adjusted for the covariate, M′1 – M′2. There are also at least 
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two possibilities for the standardizer: a standard deviation in the metric of the 
original scores or a standard deviation in the metric of the adjusted scores. 
This makes a total of at least four possible forms of a standardized mean con-
trast for these ANCOVA results. In an experimental design, there should be 
little difference between M1 - M2 and M′1 – M′2, which is true for this example 
(see Table 7.5). Unless the highly restrictive assumptions described earlier 
hold in a nonexperimental design, the value of M′1 – M′2 may be inaccurate, 
so M1 - M2 as the numerator may be the best option. The most general choice 
for the standardizer in the metric of the original scores is the square root of 
the ANOVA error term, MSW (i.e., the effect size is dpool when there are two 
groups). This term reflects variability due to the covariate, but the ANCOVA 
error term MS′W holds the covariate constant (statistically controls for it).

Cortina and Nouri (2000) suggested that if the covariate varies natu-
rally in the population to which the results should generalize, selection of the 
square root of MSW as the standardizer may be the best choice. This would be 
true even if MS′W is substantially less than MSW. The grades covariate for the 
present example varies naturally among students, so the standardized mean 
difference for the comparison of the extrinsic and intrinsic conditions, given 
MSW = 4.96 and the group descriptive statistics in Table 7.5, is calculated as

dpool = − =3 05 2 08

4 96
44

. .

.
.

That is, the students in the extrinsic reward condition outperformed their 
peers in the intrinsic reward condition on the reading task by about .44 stan-
dard deviations. See Colliver and Markwell (2006) and Rutherford (2011, 
Chapter 4) for more information.

Research Examples

Raw data files for the two examples considered next are not available, 
but you can download from this book’s web page SPSS syntax that analyzes 
the summary statistics for each.

Relative Cognitive Status of Recreational Ecstasy Users

Ecstasy (MDMA) and related stimulant compounds (MDA, MDEA) 
make up a class of recreational drugs used by some adolescents and young 
adults. Results of animal studies from the early 1990s indicated neurotoxic 
effects of high doses, but whether lower doses of ecstasy impair cognitive 
functioning in humans was not well understood during the ensuing decade. 
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Gouzoulis-Mayfrank et al. (2000) recruited 28 ecstasy users who also smoked 
cannabis and compared their performance on tasks of attention, learning, 
and abstract thinking with that of two different control groups of similar age 
(M = 23 years) and educational backgrounds, cannabis-only users and non
users of either substance. The ecstasy users agreed to abstain from the drug 
for at least seven days, which was confirmed by urine analysis on the day of 
testing.

Gouzoulis-Mayfrank et al. (2000) found many statistically significant 
differences but did not report effect sizes. Presented in Table 7.7 are repre-
sentative results for five tasks where dpool is reported for each pairwise com-
parison. The three groups performed about the same on an attention task 
of simple reaction time. On a more demanding selective attention task and 
also on measures of learning and abstract thinking, ecstasy users performed 
worse than both other groups by about .80 standard deviations. Sizes of dif-
ferences between cannabis users and nonusers of either substance were gener-
ally smaller—about .10 standard deviations—except on the verbal learning 
task, where the nonusers had an advantage of about .40 standard deviations. 
Exercise 7 asks you to calculate ĥ2 for the two attention tasks in Table 7.7.

Table 7.7
Cognitive Test Scores for Ecstasy (MDMA) Users,  

Cannabis Users, and Nonusers

User groupa dwith for pairwise  
contrasts

1
Ecstasy

2
Cannabis

3
NonuserTask F (2, 81) 1 vs. 2 1 vs. 3 2 vs. 3

Attentionb

  Simple 218.9e

(28.2)
221.1
(26.3)

218.7
(27.5)

  .07f -.08   .01   .09

  Selective 532.0
(65.4)

484.4
(57.9)

478.6
(48.4)

7.23g .83   .93   .10

Learning and abstract thinking
  Verbalc 4.46

(.79)
3.71

(1.15)
3.29

(1.12)
9.22h .73 1.13   .41

  Visualc 4.61
(.96)

4.00
(1.41)

4.11
(1.13)

2.12i .52   .42 -.09

 A bstract  
  thinkingd

25.96
(4.10)

29.46
(4.19)

29.50
(3.64)

7.29g -.88 -.89 -.01

Note.  From “Impaired Cognitive Performance in Drug Free Users of Recreational Ecstasy (MDMA),” by E. 
Gouzoulis-Mayfrank, J. Daumann, F. Tuchtenhagen, S. Pelz, S. Becker, H.-J. Kunert, B. Fimm, and H. Sass, 
2000. Journal of Neurology, Neurosurgery & Psychiatry, 68, p. 723. Copyright 2000 by BMJ Publishing Group 
Limited. Adapted with permission.
an = 28 for all groups. bScores are in milliseconds; higher scores indicate worse performance. cNumber of tri-
als; higher scores indicate worse performance. dHigher scores indicate better performance. eMean (standard 
deviation). fp = .933. gp = .001. hp < .001. ip = .127.
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Gouzoulis-Mayfrank et al. (2000) discussed the possibility that pre-
existing differences in cognitive ability or neurological status may explain 
their findings. There has been subsequent evidence that, compared with 
nonusers, chronic ecstasy users may be susceptible to hippocampal damage 
(den Hollander et al., 2012) and aberrant visual cortical excitability in trans
cranial magnetic stimulation studies (Oliveri & Calvo, 2003). Turning back 
to the original example, let us consider the practical significance of group 
differences in cognitive functioning that are about .80 standard deviations 
in magnitude. Assuming normal distributions and homoscedasticity, it is 
expected that the typical nonecstasy user will outperform about 80% of the 
ecstasy users (U3 = .79; see Table 5.4). It is also expected that ecstasy users 
will be underrepresented by a factor of about 3½ among those young adults 
who are more than one standard deviation above the mean in the combined 
distribution for learning and abstract thinking ability (RTR = 3.57).

Analysis of Learning Curve Data

Kanfer and Ackerman (1989) administered to 137 U.S. Air Force per-
sonnel a computerized air traffic controller task, presented over six 10-minute 
trials, where the outcome variable was the number of successful landings. 
Summarized in Table 7.8 are the means, standard deviations, and correla-
tions across all trials. The last show a typical pattern for learning data in 
that correlations between adjacent trials are higher than those between 
nonadjacent trials. This pattern may violate the sphericity assumption of 
statistical tests for comparing dependent means for equality. Accordingly,  
p values for effects with more than a single degree of freedom are based on the 
Geisser–Greenhouse conservative test. Task means over trials exhibit both 
linear and quadratic trends, which are apparent in Figure 7.1.

Reported in Table 7.9 are the results of repeated measures analyses of 
variance of the omnibus trials effect, the linear and quadratic trends, and all 
other higher order trends combined (cubic, quartic, quintic; i.e., respectively, 
2, 3, or 4 bends in the curve). Effect size is estimated with ŵ2 for an additive 
model. All effects have p values <.001, but their magnitudes are clearly differ-
ent. The omnibus trials effect explains about 43% of the total variance cor-
rected for capitalization on chance. Because the linear trend itself accounts 
for about 38% of the total variance, it is plain to see that this polynomial is 
the most important aspect of the learning curve. The quadratic trend explains 
an additional 5% of the total variance, and all higher order trends together  
explain <.1% of the total variance. The orthogonal linear and quadratic trends 
together thus account for virtually all of the explained variance.

In their analysis of the same learning curve data, Kanfer and Ackerman 
(1989) reduced unexplained variance even more by incorporating a cognitive 
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Table 7.8
Descriptive Statistics for a Computerized Air Traffic Controller Task

Trial

1 2 3 4 5 6

M 11.77 21.39 27.50 31.02 32.58 34.20
s   7.60   8.44   8.95   9.21   9.49  9.62

r   1.00
    .77   1.00
    .59     .81   1.00
    .50     .72     .89   1.00
    .48     .69     .84     .91   1.00
    .46     .68     .80     .88     .93 1.00

Note.  The group size is n = 137, and the correlation matrix is in lower-diagonal form. Adapted from 
“Models for Learning Data,” by M. W. Browne and S. H. C. Du Toit, 1991. In L. M. Collins and J. L. Horn 
(Eds.), Best Methods for Analysis of Change, p. 49, Washington, DC: American Psychological Association. 
Copyright 1991 by the American Psychological Association.
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Figure 7.1.  Means and 95% confidence intervals for µ for the learning trial data in 
Table 7.8.
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ability test as a predictor of learning in addition to the trials factor. This 
approach was elaborated by Browne and Du Toit (1991), who specified and 
tested various latent variable models of Kanfer and Ackerman’s (1989) data. 
These models attempted to predict not only the mean level of performance 
over trials but also the shapes and variabilities of the learning curves of indi-
vidual participants and whether parameters of these curves covary with over-
all cognitive ability. In this approach, the proportions of explained variance 
were >50%, which is better than the results reported in Table 7.9. Browne 
and Du Toit’s (1991) analyses highlight the potential value of a model-fitting 
approach for analyzing learning curve data.

Conclusion

It is often more informative to analyze contrasts than the omnibus effect in 
single-factor designs. The most general standardized contrast is dwith, where the 
standardizer is the square root of MSW, the pooled within-conditions variance. 
There are also robust standardized contrasts for data sets with outliers, nonnor-
mal distributions, or heteroscedasticity. Descriptive measures of association are 
all forms of the correlation ratio η̂2. The inferential measure of association  ω̂2 

corrects for positive bias in η̂2 but requires balanced designs. Both statistics just 

Table 7.9
Analysis of the Learning Curve Data in Table 7.8

Source SS df MS F ω̂2

Between (trials) 49,419.08 5 9,883.82 470.88a .43
 L inear 43,590.62 1 43,590.62 742.84a .38
  Quadratic 5,524.43 1 5,524.43 269.58a .05
 A ll other trends 304.04 3 101.35 11.79a <.001

Within 64,807.36 816 79.42
  Subjects (S) 50,531.23 136 371.55
 � Residual  

    (trials)
14,276.13 680 20.99

  �  Residual  
    (linear)

7,980.64 136 58.68

  �  Residual 
    (quadratic)

2,787.00 136 20.49

  �  Residual  
    (all other)

3,508.49 408 8.60

Total 114,226.44 821

Note.  The contrast weights for linear are (-5, -3, -1, 1, 3, 5) and those for quadratic are (5, -1, -4, -4, -1, 5).
ap < .001.
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mentioned are proportions of total variance explained by an effect. There 
are versions of these effect sizes that control for other effects, namely, partial 
η̂2 and partial ω̂2, but they are proportions of explained residualized vari-
ance. The intraclass correlation ρ̂1 is an appropriate measure of association  
for omnibus effects in balanced designs with random factors. How to estimate 
effect sizes in designs with multiple factors and continuous outcomes is consid-
ered in the next chapter.

Learn More

Miller and Chapman (2001) consider misuses of ANCOVA, and 
Rosenthal et al. (2000) describe many examples of contrast analysis. Steiger 
(2004) reviews effect size confidence intervals and tests of non-nil hypotheses 
in ANOVA for balanced designs with fixed factors.

Miller, G. A., & Chapman, J. P. (2001). Misunderstanding analysis of covariance. 
Journal of Abnormal Psychology, 110, 40–48. doi:10.1037/0021-843X.110.1.40

Rosenthal, R., Rosnow, R. L., & Rubin, D. B. (2000). Contrasts and effect sizes in 
behavioral research. New York, NY: Cambridge University Press.

Steiger, J. H. (2004). Beyond the F test: Effect size confidence intervals and tests of 
close fit in the analysis of variance and contrast analysis. Psychological Methods, 
9, 164–182. doi: 10.1037/1082-989X.9.2.164

Exercises

1.	Calculate the approximate 95% confidence interval for dy2 for 
the independent samples analysis in Table 7.2.

2.	Calculate the approximate 95% confidence interval for dy2 for 
the dependent samples analysis in Table 7.3.

3.	Calculate and interpret rŷ and partial rŷ for ŷ2 in Table 7.2.
4.	Calculate and interpret partial η̂2  for each contrast in Table 7.3.
5.	Verify that ρ̂1 = .345 for the independent samples analysis in 

Table 7.2 for a random factor.
6.	Calculate and interpret ω̂2

A, partial ω̂2
y1, and partial ω̂2

y2 for the 
dependent samples analysis in Table 7.3 assuming a fixed factor 
and an additive model.

7.	Calculate η̂2  for the omnibus effects for each of the two atten-
tion tasks in Table 7.7.
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8
Multifactor Designs

Designs with multiple factors and continuous outcomes require special 
considerations for effect size estimation. This is because some methods for 
single-factor designs may not give the best results in multifactor designs, and 
ignoring this problem may introduce variation across studies because of statisti-
cal artifacts rather than real differences in effect sizes. Described in the next two 
sections are various kinds of multifactor designs and the basic logic of factorial 
ANOVA. Effect size estimation with standardized contrasts and measures of 
association in factorial designs are then considered. Exercises for this chapter 
help you to consolidate skills about effect size estimation in multifactor designs.

Types of Multifactor Designs

The most common type of multifactor design is a factorial design where 
every pair of factors is crossed, which means that the levels of each factor 
are studied in all combinations with levels of other factors. If factor A has 

DOI: 10.1037/14136-008
Beyond Significance Testing: Statistics Reform in the Behavioral Sciences, Second Edition, by R. B. Kline
Copyright © 2013 by the American Psychological Association. All rights reserved.

Fools ignore complexity. Pragmatists suffer it. Some can avoid it. Geniuses 
remove it.

—Alan J. Perlis (1982, p. 10)
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a = 2 levels and factor B has b = 3 levels, for instance, a full A × B factorial 
design would have a total of 2 × 3, or 6, conditions, including

A B A B A B A B A B A B1 1 1 2 1 3 2 1 2 2 2 3, , , , , and

The conditions are studied with independent samples in a completely 
between-subjects factorial design. That is, the subjects factor is nested under 
these combinations, which means that there is a separate group for each 
one. If cases are randomly assigned to conditions, the design is a randomized 
groups factorial design, but if at least one factor is an individual difference 
(nonexperimental) variable and the rest are manipulated (experimental) 
variables, it is a randomized blocks design. An example is where samples of 
women and men (A) are randomly assigned to one of three different incen-
tive conditions (B) in a 2 × 3 randomized blocks design.

A mixed within-subjects factorial design—also called a split-plot 
design—has both between-subjects and within-subjects factors. An example 
is where samples of women and men are each tested twice on the same out-
come, such as before and after an intervention. In this case, the subjects 
factor is nested under gender, but it is crossed with measurement occasion 
because every person is tested twice in this 2 × 2 design. In a completely 
within-subjects factorial design, each case in a single sample is tested under 
all combinations of two or more crossed factors. That is, the subjects factor is 
crossed with all independent variables.

This chapter deals with factorial designs, but their basic principles gen-
eralize to the variations mentioned next. In a hierarchical design, at least 
one factor is nested under another. Suppose factor A is drug versus placebo 
and factor B represents patient groups from four separate clinics. Patients 
from the first two clinics are randomly assigned to receive the drug, and the 
rest get a placebo. The four combinations are

A B A B A B A B1 1 1 2 2 3 2 4, , , and

which are not all possible permutations (8) due to nesting of B under A. 
Nested factors are typically considered random. Levels of factors in fractional 
(partial, incomplete) factorial designs may not be studied in every combina-
tion with levels of other factors. This reduces the number of conditions, but 
certain main and interaction effects may be confounded. A Latin square 
design, which also counterbalances order effects for repeated measures fac-
tors, is perhaps the best known example; see Kirk (2012, Chapters 11–16) for 
more information.
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Factorial Analysis of Variance

To understand effect size estimation in factorial designs, you need to 
know about factorial ANOVA. This is a broad topic, and its coverage in 
applied textbooks is often lengthy. These facts preclude a detailed review, so 
this presentation emphasizes common principles of factorial ANOVA that 
also inform effect size estimation. It deals first with concepts in balanced two-
way designs and then extends them to larger or unbalanced designs (i.e., with 
unequal cell sizes). It also encourages you to pay more attention to the sums of 
squares and mean squares in a factorial ANOVA source table than to F ratios 
and p values. See Kirk (2012); Myers, Well, and Lorch (2010); Rutherford 
(2011); or Winer et al. (1991) for more information.

Basic Distinctions

Factorial ANOVA models are distinguished by (a) whether the factors 
are between-subjects versus within-subjects, (b) whether the factors are fixed 
versus random, and (c) whether the cell sizes are equal or unequal. The first 
two distinctions affect the denominators (error terms) of F tests and their 
statistical assumptions, but they do not influence the numerators. That is, 
effect sums of squares and mean squares are derived the same way regardless of 
whether the factor is between-subjects versus within-subjects or fixed versus 
random. In balanced factorial designs (i.e., all cell sizes are equal), the main 
and interaction effects are independent, which means that they can occur 
in any pattern. Accordingly, balanced factorial designs are called orthogo-
nal designs. Independence of effects in such designs simplifies their analysis, 
but many real-world factorial designs are not balanced, especially in applied 
research (e.g., Keselman et al., 1998).

We must differentiate between unbalanced factorial designs with pro-
portional versus disproportional cell sizes. Consider the two 2 × 3 factorial 
layouts represented in the table that follows, where the numbers are cell 
sizes (n):

B1 B2 B3

A1   5 10 20

A2 10 20 40

B1 B2 B3

A1   5 20 10

A2 10 10 50
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The cell sizes in the upper left matrix are proportional because the ratios 
of their relative values are constant across all rows (1:2:4) and columns 
(1:2). The cell sizes are disproportional in the upper right matrix because 
their relative ratios are not constant over rows or columns. This distinction 
is crucial because factorial designs with unequal-but-proportional cell sizes 
can be analyzed as orthogonal (balanced) designs (e.g., Winer et al., 1991, 
pp. 402–404). This is true because equal cell sizes are a special case of pro-
portional cell sizes.

Disproportional cell sizes cause the factors to be correlated, which implies 
that their main effects overlap. The greater the departure from proportional 
cell sizes, the greater is this overlap. Thus, factorial designs with dispropor-
tional cell sizes are called nonorthogonal designs, and they require special 
methods that try to disentangle correlated effects. Unfortunately, there are 
different methods for nonorthogonal designs, and it is not always clear which 
one is best for a particular study. The choice among alternative methods for 
nonorthogonal designs affects both statistical tests and effect size estimation 
for main effects.

Factorial designs tend to have equal or at least proportional cell sizes if 
all or all but one of the factors is experimental. If at least two factors are non-
experimental and cases are drawn from a population where these variables are 
correlated, the cell sizes may be disproportional. But this nonorthogonality 
may actually be an asset if it reflects disproportional population group sizes. 
It may be possible to force equal cell sizes by dropping cases from the larger  
cells or recruiting additional participants for the smaller cells, but the result-
ing pseudo-orthogonal design may not be representative. This is why non-
orthogonal designs are sometimes intentional—that is, based on a specific 
sampling plan.

A critical issue is missing data. For example, a nonorthogonal design 
may arise due to randomly missing data from a factorial design intended as bal-
anced, such as when equipment fails and scores are not recorded. A handful of 
missing observations is probably of no great concern, such as n = 50 in all cells 
except for n = 47 in a single cell as a result of three randomly missing scores. 
A more serious problem occurs when nonorthogonal designs result from non-
randomly missing data, such as when higher proportions of participants drop 
out of the study under one combination of treatments than others. Systematic 
data loss may cause a bias: Patients who withdrew may differ from those who 
remain, and the results may not generalize to the intended population(s). 
There is no simple statistical fix for bias because of nonrandomly missing 
data. About all that can be done is to understand the nature of the data loss 
and then accordingly qualify your interpretation of the results. McKnight, 
McKnight, Sidani, and Figueredo (2007) reviewed contemporary options for 
dealing with missing data.
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Basic Sources of Variability

Just as in single-factor designs, there are two basic sources of variability 
in factorial designs, between and within conditions (cells). In both kinds of 
ANOVA, differences in cell means (between variation) correspond to effects 
of the factors on the outcome variable. If all cell means are equal, there are 
no effects; otherwise, the factors may affect the dependent variable to some 
extent. Variation within the cells is not attributed to the factors. The esti-
mate of overall (pooled) within-cells variation has the same general form in 
any type of ANOVA, or MSW = SSW/dfW, which is the weighted average of 
the cell variances. For example, the following equation generates MSW in any 
factorial design with two factors, A and B, where none of the cells are empty:

MS
SS
df

df s

df
W

W

W

ij ij
j

b

i

a

ij
j

b

i

= = ==

==

∑∑

∑

( )2

11

11

aa

∑
( . )8 1

where dfij and s2
ij are, respectively, the degrees of freedom (nij - 1) and vari-

ance of the cell at the ith level of A and the jth level of B. Only in a balanced 
design can MSW also be computed as the simple arithmetic average of the 
cell variances.

The between-conditions variance in a single-factor design, MSA, reflects 
the effects of factor A, sampling error, and cell size (Equation 3.10). In a fac-
torial design, the overall between-conditions variance reflects the main and 
interactive effects of all factors, sampling error, and cell size. For example, the 
between-cells variance in a two-way design is designated below as
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where the subscript indicates the main and interaction effects analyzed 
together (total effects), and the degrees of freedom equal the number of cells 
minus one, or ab - 1. It is only in balanced two-way designs that the sum of 
squares for the total effects can be computed directly as

SS n M MA B AB ij T
j

b

i

a

, , ( . )= −( )
==
∑∑ 2

11

8 3

where n is the size of all cells, Mij is the mean for the cell at the ith level of A 
and the jth level of B, and MT is the grand mean for the whole design. That is, 
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SSA, B, AB is estimated as the total of the squared deviations of each cell mean 
from the grand mean weighted by the cell size. It is also only in balanced 
designs that the total effects sum of squares can be broken down into unique 
(orthogonal) and additive values for the individual effects:

SS SS SS SSA B AB A B AB, , ( . )= + + 8 4

This relation can also be expressed in terms of the correlation ratio in bal-
anced designs:

ˆ ˆ ˆ ˆ ( . ), ,η η η ηA B AB A B AB
2 2 2 2 8 5= + +

(Recall that the general form of η̂2
effect is SSeffect/SST.) Equations 8.4 and 8.5 

define effect orthogonality in two-way designs. Orthogonality in factorial 
designs of any size means that the main and interaction effects can appear in 
any combination. This means that observing one type of effect, such as a 
main effect of factor A, says nothing about whether any other effect will be 
found, such as a main effect of B or the interaction effect AB. 

Effects in Balanced Two-Way Designs

A balanced design where factor A has a = 2 levels and factor B has b = 3 
levels is represented in Table 8.1. Cell means and variances, marginal (row or 
column) means, and the grand mean are shown. Because the cell sizes are equal, 
the marginal means are just the arithmetic averages of the corresponding row 
or column cell means. Each marginal mean can also be computed as the aver-
age of the individual scores (not shown in the table) in the corresponding 
row or column. That is, the marginal means for each factor are calculated by 

Table 8.1
General Descriptive Statistics for a Balanced 2 × 3 Factorial Design

B1 B2 B3 Row means

A1 M11 (s 2
11) M12 (s 2

12) M13 (s 2
13) MA1

A2 M21 (s 2
21) M22 (s 2

22) M23 (s 2
23) MA2

Column means MB1 MB2 MB3
MT

Note.  The size of all cells is n.
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collapsing across the levels of the other factor. The grand mean for the whole 
design is the arithmetic average of all six cell means. It can also be computed 
as the average of the row or column means or as the average of the abn indi-
vidual scores.

Main Effects and Main Comparisons

Conceptual equations for sample main and interaction sums of squares in 
balanced two-way designs are presented in Table 8.2. A main effect is estimated 
by the differences among the observed marginal means for the same factor, and 
the sample sum of squares for that effect is the total of the weighted squared 
deviations of the associated marginal means from the grand mean. For example, 
if MA1 = MA2 in Table 8.1, the estimated main effect of A is zero and SSA = 0; 
otherwise, SSA > 0, as is the estimated main effect of this factor. The main effect 
of B is estimated in a similar way but concerns weighted variation of the mar-
ginal means MB1, MB2, and MB3 around MT. Because main effects are estimated 
by collapsing over the levels of the other factor, they are single-factor effects.

The main effect of A in Table 8.1 is a contrast because dfA = 1, but the 
B main effect is omnibus because dfB = 2 (i.e., > 1). This implies that up to 
two orthogonal contrasts could be specified among the levels of this factor. 
Keppel and Wickens (2004) referred to such contrasts as main comparisons. 
Such contrasts can be either planned or unplanned, but analyzing main com-
parisons would make sense only if the magnitude of the overall main effect 
were appreciable and the magnitude of the interaction effect were negligible.

Table 8.2
Equations for Main and Interaction Effect Sums of Squares 

in Balanced Two-Way Factorial Designs

Source SS df

A bn M MA T
i

a

i
( )−

=
∑ 2

1
a - 1

B an M MB T
j

b

j
( )−

=
∑ 2

1
b – 1

AB n M M M M M Mij A T B T T
j

b

i

a

i j
[ ( ) ( ) ]− − − − −

==
∑∑ 2

11

(a – 1) (b – 1)

= − − +
==

∑∑ n M M M Mij A B T
j

b

i

a

i j
( )2

11

Note.  The size of all cells is n.
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Interaction Effects, Simple Effects, and Simple Comparisons

An interaction effect can be understood in several ways. It is a combined 
or joint effect of the factors on the outcome variable above and beyond their 
main effects. It is also a conditional effect that, if present, says that effects of 
each factor on outcome change over the levels of the other factor and vice 
versa (i.e., interaction is symmetrical).1 Interaction effects are also called mod-
erator effects, and the factors involved in them are moderator variables. Both 
terms emphasize the fact that each factor’s relation with outcome depends on 
the other factor when there is interaction. Do not confuse a moderator effect 
with a mediator effect, which refers to the indirect effect of one variable on 
another through a third (mediator) variable. Mediator effects can be estimated 
in structural equation modeling and meta-analysis but not in the ANOVA 
models discussed in this chapter; see Kline (2010) for more information.

Sums of squares for the two-way interaction, AB, reflect variability of 
cell means around the grand mean controlling for main effects (if any) and 
weighted by cell size (see Table 8.2). The pattern of this variation is not 
exactly predictable from that among marginal means when there is inter-
action. That is, interaction is related to sets of conditional simple effects 
(simple main effects). They correspond to cell means in the same row or 
column, and there are as many simple effects of each factor as there are levels 
of the other factor. For example, there are two estimated simple effects of 
factor B represented in Table 8.1. One is the simple effect of B at A1, and it 
corresponds to the three cell means in the first row, M11, M12, and M13. If any 
two of these means are different, the estimate of the B at A1 simple effect is 
not zero. The other estimated simple effect of this factor, B at A2, corresponds 
to the cell means in the second row, M21, M22, and M23. Because df = 2 for each 
simple effect of factor B, they are omnibus.

Simple comparisons are contrasts within omnibus simple effects. They 
are analogous to main comparisons, but simple comparisons concern rows or 
columns of cell means, not marginal means. Estimated simple effects of factor 
A in Table 8.1 correspond to the pair of cell means in each of the three col-
umns, such as M11 versus M21 for the simple effect of A at B1. Because df = 1 for 
each of the three simple effects of A at B, they are also simple comparisons. 
But the two simple effects of factor B in Table 8.1 each concern three cell 
means, such as M21, M22, and M23 for the simple effect of B at A2. Thus, they 
are omnibus effects, each with 2 degrees of freedom. The contrast of M21 with 
M22 in Table 8.1 is an example of a simple comparison within the omnibus 
simple effect of B at A2.

1A common but incorrect description of interaction is that “the factors affect each other.” Factors may 
affect the dependent variable individually (main effects) or jointly (interaction), but factors do not affect 
each other in factorial designs.
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Sums of squares for simple effects have the same general form as those for 
main effects (see Table 8.2) except that the former are the total of the weighted 
squared deviations of row or column cell means from the corresponding mar-
ginal mean, not the grand mean. It is true in balanced two-way designs that

SS SS SS SS SS SSA B
j

b

A AB B A
i

a

Bj iat atand
= =
∑ ∑= + = +

1 1
AAB ( . )8 6

In words, the total sum of squares for all simple effects of each factor equals 
the total sum of squares for the main effect of that factor and the interaction. 
When all simple effects of a factor are analyzed, it is actually the main and 
interactive effects of that factor that are analyzed. Given their overlap in sums 
of squares, it is usually not necessary to analyze both sets of simple effects, A at 
B and B at A. The choice between them should be made on a rational basis, 
depending on the perspective from which the researcher wishes to describe 
interaction.

An ordinal interaction occurs when simple effects vary in magnitude but 
not in direction. Look at the cell means for the 2 (drug) × 2 (gender) layout 
in the left side of Table 8.3, where higher scores indicate a better result. The 
interaction is ordinal because (a) women respond better to both drugs, but 
the size of this effect is greater for drug 2 than drug 1 (gender at drug simple 
effects). Also, (b) mean response is always better for drug 2 than drug 1, but 
this is even more true for women than for men (drug at gender simple effects). 
Both sets of simple effects just mentioned vary in magnitude but do not change 
direction.

The cell means in the right side of Table 8.3 indicate a disordinal (cross-
over) interaction where at least one set of simple effects reverses direction. 
These results indicate that drug 2 is better for women, but just the opposite 
is true for men. That is, simple effects of drug change direction for women 

Table 8.3
Cell Means and Marginal Means for Two-Way Designs 

With Ordinal Versus Disordinal Interaction

Ordinal interaction Disordinal interaction

Drug 1 Drug 2 Drug 1 Drug 2

Women 45.00 70.00 57.50 Women 60.00 70.00 65.00

Men 25.00 30.00 27.50 Men 25.00 15.00 20.00

35.00 50.00 42.50 42.50 42.50 42.50

Note.  The size of all cells is n.
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versus men. The same data also indicate that simple effects of gender do not 
reverse because women respond better than men under both drugs, but the 
whole interaction is nevertheless disordinal.

Disordinal interaction is also indicated whenever lines that represent 
simple effects cross in graphical representations, but this may depend on how 
cell means are plotted. Presented in Figure 8.1(a) are two line graphics for 
cell means from the left side of Table 8.3. The graphics differ only in their 
representation of gender versus drug on the abscissa (x-axis). Lines for both 
sets of simple effects are not parallel, which indicates interaction, but they do 

Drug 1 Drug 2 

10.0

20.0

30.0

40.0

50.0

60.0

70.0 Women

Men

Women Men

10.0

20.0

30.0

40.0
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60.0

70.0

Drug 1 

Drug 2 

(a) Ordinal interaction 

Drug 1 Drug 2 

10.0

20.0
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Women Men
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50.0

60.0

70.0

Drug 1 

Drug 2

(b) Disordinal interaction 

Figure 8.1.  Cell mean plots for the data in Table 8.3 for (a) ordinal interaction and  
(b) disordinal interaction.
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not cross, so the interaction is ordinal. Presented in Figure 8.1(b) are the line 
graphics for the cell means in the right side of Table 8.3, for which the inter
action is disordinal. This fact is apparent by the crossing of the lines for at least 
one set of simple effects, those of drug for women versus men; see the right side 
of Figure 8.1(b). Exercise 1 asks you to calculate effects sum of squares given 
the means in the left side of Table 8.3 for n = 10 and MSW = 125.00.

Stevens (1999) noted that ordinal interactions can arise from floor or 
ceiling effects in measurement. A ceiling effect occurs when cases with some-
what high versus very high levels on the construct cannot be distinguished by 
the outcome measure, which results in underestimation of some cell means. 
Floor effects imply the opposite: Certain means may be overestimated if the 
outcome measure cannot distinguish among cases with the lowest levels on 
the construct. Ceiling or floor effects basically convert interval data to ordi-
nal data. Although ordinal interaction sometimes occurs due to measurement 
artifacts, disordinal interaction cannot be explained by such artifacts.

Interaction Contrasts and Interaction Trends

An interaction contrast is specified by a matrix of coefficients the 
same size as the original design that are doubly centered, which means that 
the coefficients sum to zero in every row and column. This property makes 
the resulting single-df interaction effect independent of the main effects. The 
weights for a two-way interaction contrast can be assigned directly or taken 
as the product of the corresponding weights of two single-factor comparisons, 
one for each factor. If the interaction contrast should be interpreted as the dif-
ference between a pair of simple comparisons (i.e., mean difference scaling), the 
sum of the absolute values of the coefficients must be 4.0 (Bird, 2002). This 
can be accomplished by selecting coefficients for the comparison on each fac-
tor that are a standard set (i.e., their absolute values sum to 2.0) and taking 
their corresponding products.

In a 2 × 2 design where all effects are contrasts, weights that define the 
interaction as the difference between two simple effects are presented in the 
cells of the leftmost matrix:

B1 B2 B1 B2

A1   1 -1 A1 M11 M12

A2 -1   1 A2 M21 M22
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These weights are doubly centered, and the sum of their absolute values is 4.0. 
We can get the same set of weights for this interaction contrast by taking the 
corresponding products of the weights (1, -1) for factor A and the weights 
(1, -1) for factor B. After applying these weights to the corresponding cell 
means in the above rightmost matrix, we get

ˆ ( . )ψAB M M M M= − − +11 12 21 22 8 7

Rearranging the terms shows that  ψ̂AB equals (a) the difference between 
the two simple effects of A and (b) the difference between the two simple 
effects of B:

ˆ ˆ ˆ – – –

ˆ

ψ ψ ψ

ψ

AB A B A B M M M M= − = ( ) ( )
=

at at1 2 11 21 12 22

BB A B A M M M Mat at1 2 11 12 21 22 8 8− = ( ) ( )ˆ – – – ( . )ψ

In two-way designs where at least one factor has ≥ 3 levels, an inter
action contrast may be formed by ignoring or collapsing across at least two 
levels of that factor. For example, the following coefficients define a pair-
wise interaction contrast in a 2 × 3 design (I):

B1 B2 B3

A1   1 0 -1

A2 -1 0   1

In the contrast specified, the simple effect of A at B1 is compared with the 
simple effect of A at B3. It is equivalent to say that these weights specify the 
contrast of the simple comparison of B1 with B3 across the levels of A.

The weights for the complex interaction contrast represented next 
compare B2 with the average of B1 and B3 across the levels of A (II):

(II)B1 B2 B3

A1   ½ -1   ½

A2 -½   1 -½

(I)
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Exercise 2 asks you to prove that the interaction contrasts defined in (I) and 
(II) are orthogonal in a balanced design, and Exercise 3 involves showing 
that the sums of squares for the omnibus interaction can be uniquely decom-
posed into the sums of squares for each interaction contrast. The following 
equation for a balanced design will be helpful for this exercise:

SS
n

c c
AB

AB

i
i

a

j
j

b
ˆ

ˆ
ψ

ψ
= ( )











= =

∑ ∑

2

2

1

2

1

(( . )8 9

If at least one factor is quantitative with equally spaced levels, contrast 
weights for an interaction trend may be specified. Suppose in a 2 × 3 design 
that factor A represents two different groups of patients and the levels of 
factor B are three equally spaced dosages of a drug. The weights for the inter
action contrast presented below

B1 B2 B3

A1   1 -2   1

A2 -1   2 -1

compare the quadratic effect of the drug across the groups. That the sum of 
the absolute values of the weights is not 4.0 is not a problem because magni-
tudes of differential trends are usually estimated with measures of association.

Unlike simple effects, interaction contrasts and main effects are not 
confounded. For this reason, some researchers prefer to analyze interaction 
contrasts instead of simple effects when the main effects are relatively large. It 
is also possible to test a priori hypotheses about specific facets of an omnibus 
interaction through the specification of interaction contrasts. It is not usu-
ally necessary to analyze both simple effects and interaction contrasts in the 
same design, so either one or the other should be chosen as a way to describe 
interaction.

Tests in Balanced Two-Way Designs

Presented in Table 8.4 are raw scores and descriptive statistics for bal-
anced 2 × 3 designs, where n = 3. The data in the top part of the table are 
arranged in a layout consistent with a completely between-subjects design, 
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where each score comes from a different case. The same layout is also con-
sistent with a split-plot design, where the three scores in each row are from 
the same case (e.g., A is a group factor, B is a repeated measures factor). The 
same basic data are presented in the bottom part of the table in a completely 
within-subjects layout, where the six scores in each row are from the same 
case. You should verify the following results by applying Equations 8.1 and 8.3 
and those in Table 8.2 to the data in Table 8.4 in either layout:

SS

SS SS SS SS

W

A B AB A B AB

=

= + + = + +

64 00

18 00 48 00

.

. ., , 884 00 150 00

64 00 150 00 214 00

. .

. . .

=

= + =SST

The results of three different factorial analyses of variance for the data 
in Table 8.4 assuming fixed factors are reported in Table 8.5. Results in the 
top of Table 8.5 are from a completely between-subjects analysis, results in 

Table 8.4
Raw Scores and Descriptive Statistics for Balanced 2 × 3 Factorial Designs

Completely between-subjects or split-plot layouta

A1

B1 B2 B3

8 10 9
7 11 7

12 15 11

9.00 (7.00)b 12.00 (7.00) 9.00 (4.00) 10.00

A2

3 5 10
5 5 14
7 8 15

5.00 (4.00) 6.00 (3.00) 13.00 (7.00) 8.00

7.00 9.00 11.00

Completely within-subjects layout

A1B1 A1B2 A1B3 A2B1 A2B2 A2B3

8 10 9 3 5 10
7 11 7 5 5 14

12 15 11 7 8 15

9.00 (7.00) 12.00 (7.00) 9.00 (4.00) 5.00 (4.00) 6.00 (3.00) 13.00 (7.00)

aAssumes A is the between-subjects factor and B is the repeated measures factor. bCell mean (variance).
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the middle of the table are from a split-plot analysis, and results in the bottom 
of the table are from a completely within-subjects analysis. Note that only the 
error terms, F ratios, and p values depend on the design. The sole error term in 
the completely between-subjects analysis is MSW, and the statistical assump-
tions for tests with it are described in Chapter 3. In the split-plot analysis, SSW 
and dfW are partitioned to form two different error terms, one for between-
subjects effects (A) and another for repeated measures effects (B, AB). Tests 
with the former error term, designated in the table as S/A for “subjects within 
groups under A,” assume homogeneity of variance for case average scores 
across the levels of the repeated measures factor. The within-subjects error 

Table 8.5
Analysis of Variance Results for the Data in Table 8.4  

for Balanced Factorial Designs

Source SS df MS F p η̂2

Completely between-subjects analysis

Between-subjects effects
  A 18.00 1 18.00 3.38 .091 .084
  B 48.00 2 24.00 4.50 .035 .224
  AB 84.00 2 42.00 7.88 .007 .393

Within cells (error) 64.00 12 5.33

Mixed within-subjects analysis

Between-subjects effects
  A 18.00 1 18.00 1.27 .323 .084

Within-subjects effects
  B 48.00 2 24.00 26.18 <.001 .224
  AB 84.00 2 42.00 45.82 <.001 .393

Within cells 64.00 12 5.33
  S/A (error for A) 56.67 4 14.17
  B × S/A 

  (error for B, AB)
7.33 8 .92

Completely within-subjects analysis

Within-subjects effects
  A 18.00 1 18.00 5.68 .140 .084
  B 48.00 2 24.00 144.00 <.001 .224
  AB 84.00 2 42.00 25.20 .005 .393

Within cells 64.00 12 5.33
  Subjects (S) 50.33     2 25.17
  A × S (error for A) 6.33 2 3.17
  B × S (error for B) .67 4 .17
  AB × S (error for AB) 6.67 4 1.67

Note.  For all analyses, SST = 214.00 and dfT = 17.
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term for a nonadditive model, B × S/A, assumes that both within-populations 
covariance matrices on the repeated measures factor are not only spherical 
but equal; see Kirk (2012, Chapter 12) and Winer et al. (1991, pp. 512–526) 
for more information. A different partition of SSW in the completely within-
subjects analysis results in sums of squares for three different error terms for 
repeated measures effects, A × S, B × S, and AB × S, and a sum of squares for 
the subjects effect, S (see Table 8.5).

Factorial ANOVA generates the same basic source tables when either 
one or both factors are considered random instead of fixed. The only dif-
ference is that main effects may not have the same error terms in a random 
effects model as in a fixed effects model. For example, the error term for the 
main effects in a completely between-subjects design with two random fac-
tors is MSAB, not MSW, but the latter is still the error term for the AB effect. 
Tabachnick and Fidell (2001) gave a succinct, nontechnical explanation: 
Because levels of both factors are randomly selected, it is possible that a spe-
cial interaction occurred with these particular levels. This special interaction 
may confound the main effects, but dividing the mean squares for the main 
effects by MSAB is expected to cancel out these confounds in statistical tests 
of the former. Maximum likelihood estimation can also be used to estimate 
effects of random factors in large samples.

Extensions to Designs With Three or More Factors

All of the principles discussed to this point extend to balanced factorial 
designs with more than two factors. For example, there are a total of seven 
estimated main and interaction effects in a three-way design, including three 
main effects (A, B, and C) each averaged over the other two factors, three 
two-way interactions (AB, AC, and BC) each averaged over the third fac-
tor, and the highest order interaction, ABC. A three-way interaction means 
that the effect of each factor on the outcome variable changes across the 
levels of the other two factors. It also means that the simple interactions of 
any two factors are not the same across the levels of the third factor (e.g., the 
AB effect changes across C1, C2, and so on). Omnibus ABC effects can be 
partitioned into three-way interaction contrasts. When expressed as a mean 
difference contrast, a three-way interaction contrast involves two levels from 
each factor. That is, a 2 × 2 × 2 matrix of means is analyzed, and the sum of 
the absolute values of the contrast weights that specify it is 8.0. Exercise 4 
asks you to prove that the three-way interaction in a 2 × 2 × 2 design equals 
the difference between all possible pairs of simple interactions, or

ˆ ˆ ˆ ˆ ˆ

ˆ

ψ ψ ψ ψ ψABC AB C AB C AC B AC B= − = −

=

at at at at1 2 1 2

ψψ ψBC A BC Aat at1 2 8 10− ˆ ( . )
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See Keppel and Wickens (2004, Chapter 22) for examples of the specifica-
tion of three-way interaction contrasts. Winer et al. (1991, pp. 333–342) 
described geometric interpretations of three-way interactions including 
interaction contrasts.

Just as in two-way designs, the derivation of effect sums of squares in fac-
torial designs with three or more independent variables is the same regardless 
of whether the factors are between-subjects versus within-subjects or fixed 
versus random. But there may be no proper ANOVA error term for some 
effects, given certain combinations of fixed and random factors in complex 
designs. By “proper” I mean that the expected mean square of the error term 
estimates all sources of variance as the numerator except that of the effect 
being tested. There are algorithms to derive by hand expected mean squares 
in various factorial designs (e.g., Winer et al., 1991, pp. 369–382), and with 
such an algorithm it may be possible in complex designs to pool mean squares 
and form quasi-F ratios with proper error terms. Another method is pre-
liminary testing and pooling, where parameters for higher order interactions 
with random variables may be dropped from the analysis based on results of 
statistical tests. The goal is to find a simplified model with fewer parameters 
that generates expected mean squares so that all effects have proper error 
terms. But a testing and pooling procedure based solely on statistical signifi-
cance is flawed because it ignores effect size and capitalizes on chance.

Keeping track of error terms that go along with different effects in 
designs with both fixed and random factors is one of the complications in 
factorial ANOVA. It also highlights the fact that p values in such designs 
are merely estimates, and different algorithms for deriving expected mean 
squares can yield different p values for the same effect in the same sample. 
Considering the shortcomings of statistical tests in perhaps most studies in 
the behavioral sciences, however, it is best not to focus too much attention 
on p values to the neglect of other, more useful information in ANOVA 
source tables. This idea is elaborated next.

Analysis Strategy

There are many effects that could be analyzed in two-way designs—
main, interaction, simple, and focused comparisons for any of the aforemen-
tioned effects that are omnibus. The number of effects grows exponentially 
as even more factors are added to the design. One can easily get lost by esti-
mating every possible effect in a factorial analysis. It is thus crucial to have a 
plan that minimizes the number of analyses while still respecting the essential 
research hypotheses.

Some of the worst misuses of statistical tests are seen in factorial designs 
where all possible effects are tested and sorted into two categories, those 
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found to be statistically significant and then discussed at length versus those 
found to be not statistically significant and then ignored. Perhaps research-
ers who do so believe the filter myth (see Chapter 4). These mistakes are 
compounded when power is ignored. This is because power can be different 
for various effects in a factorial design. This is so because (a) the degrees of 
freedom associated with the F statistic for different effects can be different 
and (b) the numbers of scores that contribute to different means vary. In a 
balanced 2 × 4 design where n = 10, for example, the two means for the A 
main effect are each based on 40 scores, but the four means of the B main 
effect are each based on just 20 scores. The power for the test of the A main 
effect may be different from the power of the test of the B main effect, and 
the power for the test of the AB effect may be different still. This is especially 
true in split-plot designs where some effects are between-subjects and others 
are within-subjects (see Table 8.5).

Too many sources emphasize statistical significance only when outlin-
ing ANOVA rituals for factorial designs, but this is a potential route to folly. 
It is better to estimate a priori power if statistical tests are to be used com-
bined with effect size estimation. It also helps to realize that as the size of 
interaction effects becomes larger compared to those of the main effects, 
detailed analysis of the latter is increasingly fruitless. This is especially true 
for disordinal interactions, where some simple effects are reversed relative to 
the main effects for the same factor (see Table 8.3). A better general strategy 
is described next.

A factorial design affords the opportunity to estimate presumed interac-
tions. Thus, analysis of interaction should take center stage. That is, do not 
take your eyes off the prize of hypotheses about interaction that motivated 
the specification of a factorial design. State a minimum effect size that cor-
responds to a substantially meaningful interaction, one that is not trivial in 
magnitude (Steiger, 2004). Look to meta-analytic studies in your area for 
guidelines about effect size. If no such studies exist, you must rely on your 
knowledge of prior studies, the population, and the outcome measures to 
make an informed estimate.

If the interaction effect is omnibus (df > 1) and you have a priori hypoth-
eses about specific facets of that effect, specify and estimate the magnitudes 
of the corresponding interaction contrasts or interaction trends. Analyzing 
simple effects is an alternative when the researcher predicts the presence 
of interaction but not its specific form. Analyzing simple comparisons is an 
option for omnibus simple effects, but fishing expeditions are to be avoided if 
such comparisons are unplanned.

Main effects warrant little attention if the sizes of interaction effects are 
appreciable and they are disordinal. This advice is counter to some factorial 
ANOVA rituals where all “significant” effects are slavishly interpreted regard-
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less of effect size or prior hypotheses. Otherwise, consider whether the magni-
tudes of the main effects are appreciable. If so, contrast analysis is an option 
for omnibus main effects, but again avoid blind reliance on significance test-
ing if main comparisons are unplanned. Always report the full source table. In 
it include information about the main and interaction effects and any other 
effects, such as simple effects, that were analyzed. Always include effect sizes; 
a source table without effect sizes is incomplete.

Model Testing

Lunneborg (2000) explored the theme of treating factorial ANOVA as 
a model-fitting technique in the same way that regression procedures can be 
applied; that is, in ways not strictly exploratory. An example of this approach 
is when researchers compare the relative fits to the data of two different 
models in ANOVA, the complete structural model versus a reduced struc-
tural model. A structural model expresses a hypothetical score as the sum of 
population parameters that correspond to sources of variation. The complete 
model for a between-subjects two-way design with fixed factors is

Yijk i j ij ijk= + + + +µ α β αβ ε ( . )8 11

where Yijk is the kth score in the cell at the ith level of factor A and the jth 
level of factor B; µ is the population grand mean; ai, bj, and abij, respectively, 
represent the population main and interaction effects as deviations from 
the grand mean; and eijk is a random error component. This model under-
lies the derivation of the sums of squares for the source table in the top of 
Table 8.5. The complete structural models that underlie the other two source 
tables in Table 8.5 are somewhat different because either one or both factors 
are within-subjects, but the idea is the same. A structural model generates 
predicted marginal and cell means, but these predicted means equal their 
observed counterparts for a complete model. That is, the observed marginal 
means estimate population main effects, and the observed cell means esti-
mate the population interaction effect.

A reduced structural model does not include parameters for all effects. 
Parameters in the complete model are typically considered for exclusion in a 
sequential order beginning with the highest order interaction. If the param-
eters for this interaction are retained, the complete model cannot be simpli-
fied. But if the parameters that correspond to abij are dropped, the complete 
model reduces to the main effects model

Yijk i j ijk= + + +µ α β ε ( . )8 12
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which assumes only population main effects. Two consequences arise from 
rejection of the complete structural model in favor of the main effects model. 
First, the sums of squares for the AB effect are pooled with those of the total 
within-cells variability to form a composite error term for tests of the main 
effects. Second, the reduced structural model generates predicted cell means 
that may differ from the observed cell means. It is also possible that standard 
errors of differences between predicted cell means may be less than those for 
differences between observed cell means. Accordingly, the researcher may 
choose to analyze the predicted cell means instead of the observed cell means. 
This choice also impacts effect size estimation.

In brief, there are two grounds for simplifying structural models, ratio-
nal and empirical. The first is based on the researcher’s domain knowledge 
about underlying sources of variation, and the second is based on results of 
statistical tests. In the latter approach, parameters for interactions that are 
not statistically significant become candidates for exclusion from the model. 
The empirical approach is controversial because it capitalizes on chance and 
ignores effect size.

Nonorthogonal Designs

If all factorial designs were balanced—or at least had unequal but pro-
portional cell sizes—there would be no need to deal with the technical prob-
lem raised next. Only two-way nonorthogonal designs are discussed, but the 
basic principles extend to larger nonorthogonal designs. One problem is that 
the factors are correlated, which means that there is no single, unambigu-
ous way to apportion the total effects sum of squares to individual effects. A 
second concerns ambiguity in estimates for means that correspond to main 
effects. This happens because there are two different ways to compute mar-
ginal means in unbalanced designs: as arithmetic or as weighted averages of 
the corresponding row or column cell means. Consider the data in Table 8.6 
for a nonorthogonal 2 × 2 design. The two ways to calculate the marginal 
mean for A2 just mentioned are summarized respectively as

2 00 5 33
2

3 67
2 2 00 6 5 33

8
4 50

. .
.

( . ) ( . )
.

+ = + =versus

The value to the right is the same as that you would find if working with the 
eight raw scores in the second row of the 2 × 2 matrix in Table 8.6. There is 
no such ambiguity in balanced designs.
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There are several methods for analyzing data from nonorthogonal designs 
(e.g., Maxwell & Delaney, 2004, pp. 320–343). Statisticians do not agree about 
optimal methods for different situations, so it is not possible to give defini-
tive recommendations. Most of these methods attempt to correct effect sums 
of squares for overlap. They give the same results only in balanced designs, 
and estimates from different methods tend to diverge as the cell sizes become 
increasingly disproportional. Computer procedures for factorial ANOVA typi-
cally use by default one of the methods described next. If the default is not 
suitable in a particular study, the researcher must specify a better method.

An older method for nonorthogonal designs amenable to hand calcula-
tion is unweighted means analysis. Effect sums of squares are computed in this 
method using the equations for balanced designs, such as those in Table 8.2 
for two-way designs, except that the design cell size is taken as the harmonic 
mean of the actual cell sizes, or

n
ab

nijj

b

i

ah =

==
∑∑ 1

8 13

11

( . )

This method estimates marginal means as arithmetic averages of the corre-
sponding row or column cell means. It also estimates the grand mean as the 
arithmetic average of the cell means. A consequence of weighting all cell 
means equally is that overlapping variance is not attributed to any individual 
effect. Thus, the unweighted means method generates adjusted sums of squares 
that reflect unique predictive power.

Table 8.6
Raw Scores and Descriptive Statistics for a Nonorthogonal  

2 × 2 Factorial Design

B1 B2 Row means

A1

2, 3, 4 1, 3
2.50/2.60b

3.00 (1.00)a 2.00 (2.00)

A2

1, 3 4, 5, 5, 6, 6, 6
3.67/4.50

2.00 (2.00) 5.33 (.67)

Column means 2.50/2.60 3.67/4.50 3.08/3.77

aCell mean (variance). bArithmetic/weighted average of the corresponding cell means.
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A related regression-based technique called Method 1 by Overall and 
Spiegel (1969) estimates effect sums of squares controlling for all other effects. 
In a two-way design, for example, estimates for the main effect of factor A in 
this method are adjusted for both the B main effect and the interaction effect 
AB, and estimates for the B main effect are corrected for both the A and AB 
effects. Estimates for the interaction are always adjusted for the main effects 
(see, e.g., the last equation in Table 8.2). These Method 1 adjusted sums of 
squares may be labeled Type III in the output of statistical software programs.

The methods just described may be best for experiments designed with 
equal cell sizes but where there was random data loss from a few cells. This 
is because cells with fewer scores by chance are not weighted less heavily in 
either method. In nonexperimental designs, though, disproportional cell sizes 
may arise due to population correlations between factors. If so, it may be bet-
ter for the actual cell sizes to contribute to the analysis. Two other regression-
based methods do just that. They also give higher priority to one or both main 
effects than do the methods described earlier. Overall and Spiegel (1969) 
referred to these techniques as Method 2 and Method 3, and sums of squares 
generated by them may be labeled in computer program output as Type II for 
the former versus Type I for the latter.

In Method 2, main effect sums of squares are adjusted for overlap only 
with each other, but the interaction sum of squares is corrected for both main 
effects. For example, estimates for the A main effect are corrected only for 
the B main effect and not for the interaction effect. Corresponding correc-
tions are made for the B main effect (i.e., corrected for A but not for AB). As 
in Method 1, estimates for the AB effect are adjusted for both main effects. 
Method 3 does not remove shared variance from the sums of squares of one 
main effect (e.g., A); it adjusts the sums of squares of the other main effect for 
overlap with the first (e.g., B adjusted for A) and then adjusts the interaction 
sum of squares for both main effects. If the researcher has no a priori hypoth-
eses about effect priority but wishes the cell sizes to influence the results, 
Method 2 should be preferred over Method 3. Too many researchers neglect 
to state the method used to analyze data from nonorthogonal designs much 
less explain their choice, if one was intentionally made.

The data from the nonorthogonal 2 × 2 design in Table 8.6 were ana-
lyzed with the three regression-based approaches just described, assuming a 
completely between-subjects design with fixed factors. The results are summa-
rized in Table 8.7. Observe that the sums of squares for the total effects, inter
action, pooled within-cells variation, and total data set are the same across all 
three analyses. It is the estimates for the main effects that change depending 
on the method. Neither main effect has a p value less than .05 in Method 1/
Type III sums of squares (p = .094 for both), which adjusts main effects for 
all other effects. Proportions of total variance explained by the main effects,  
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η̂2
A = ̂η2

B = .095, are also the lowest in this method. The p values for both main 
effects are <.05 and have greater explanatory power in Method 2/Type II 
sums of squares and Method 3/Type I sums of squares, which gives them higher 
priority than in Method 1. Only in Method 3—which analyzes the A, B, and 
AB effects sequentially in this order—are the sums of squares and η̂2 values 
additive but not unique.

Which of the three sets of results in Table 8.7 is correct? From a purely 
statistical view, all are because there is no definitive way to estimate effect 
sums of squares in nonorthogonal designs. There may be a preference for 
one set of results given a clear rationale about effect priority. But without 
such a justification, there is no basis for choosing among these results.

Standardized Contrasts

Designs with fixed factors are assumed next. Methods for standardizing 
contrasts in factorial designs are not as well developed as they are for one-way 
designs. There is also not complete agreement across works by Glass, McGaw, 
and Smith (1981); Morris and DeShon (1997); Cortina and Nouri (2000); 

Table 8.7
Results of Three Different Regression Methods for the Data in Table 8.6 

From a Nonorthogonal Design

Source SS df MS F p η̂2

Method 1/Type IIIa

Total effects (A, B, AB) 28.97 3 9.66 9.31 .004 .756
    A adjusted for B, AB 3.63 1 3.63 3.50 .094 .095
    B adjusted for A, AB 3.63 1 3.63 3.50 .094 .095
    AB adjusted for A, B 12.52 1 12.52 12.07 .007 .327

Method 2/Type II

Total effects (A, B, AB) 28.97 3 9.66 9.31 .004 .756
    A adjusted for B 5.35 1 5.35 5.15 .049 .140
    B adjusted for A 5.35 1 5.35 5.15 .049 .140
    AB adjusted for A, B 12.52 1 12.52 12.07 .007 .327

Method 3/Type I

Total effects (A, B, AB) 28.97 3 9.66 9.31 .004 .756
    A (unadjusted) 11.11 1 11.11 10.71 .010 .290
    B adjusted for A 5.35 1 5.35 5.15 .049 .140
    AB adjusted for A, B 12.52 1 12.52 12.07 .007 .327

Note.  For all analyses, SSW = 9.33; dfW = 9; MSW = 1.04; SST = 38.31; and dfT = 12.
aOverall and Spiegel (1969) method/sum of squares type.
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and Olejnik and Algina (2000) that address this issue. It is therefore not pos-
sible to describe a complete method. But this discussion is consistent with a 
general theme of the sources just cited: how to make standardized contrasts 
from factorial designs comparable to those that would have occurred in non-
factorial designs. This implies that (a) estimates for effects of each indepen-
dent variable in a factorial design should be comparable to effect sizes for the 
same factor studied in a single-factor design and (b) changing the number of 
factors in the design should not necessarily change the effect size estimates 
for any one of them.

Standardized mean differences may be preferred over measures of associ-
ation if contrasts are the focus of the analysis, such as in designs where all fac-
tors have just two levels. An advantage of measures of association is that they 
can summarize with a single number total predictive power across the whole 
design, such as η̂2

A, B, AB in a two-way design. There is no analogous capability 
with standardized contrasts. The two families of effect size statistics can also 
be used together; see Wayne, Riordan, and Thomas (2001) for an example.

Standardized contrasts in factorial designs have the same general form 
as they do in one-way designs,  ̂ψ/σ̂*, where the denominator estimates a pop-
ulation standard deviation. But it is more difficult in factorial designs to figure 
out which standard deviation should be the standardizer. This is because what 
is probably the most general choice in a one-way design, the square root of 
MSW, may not be the best option in a factorial design (i.e., the effect size is 
dwith). Also, there is more in the literature about standardizing main com-
parisons than simple comparisons in factorial designs. This is unfortunate 
because main comparisons may be uninteresting when there is interaction. 
I recommend that main and simple comparisons for the same factor have 
the same standardizer. This makes  ψ̂/σ̂* for these two kinds of single-factor 
contrasts directly comparable.

Single-Factor Contrasts in Completely Between-Subjects Designs

The choice of the standardizer for a single-factor contrast, such as for a 
simple comparison of two levels of factor A at the B1 level, is determined by 
(a) the distinction between the factor of interest (targeted factor) versus the 
off-factors (peripheral factors) and (b) whether or not the off-factors vary 
naturally in the population. That is, the off-factors are, respectively, intrin-
sic factors versus extrinsic factors. Intrinsic factors tend to be individual-
difference, group, or classificatory factors that are nonexperimental, such as 
gender. Glass et al. (1981) referred to intrinsic factors as being of theoretical 
interest concerning estimation of population standard deviation. In contrast, 
extrinsic factors do not vary naturally, and they tend to be manipulated or 
experimental factors.
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Suppose in a two-way design that two levels of factor A are compared. 
The factor of interest is A, and B is the off-factor. Suppose that the off-factor B 
varies naturally in the population. The square root of MSW may not be an 
appropriate standardizer for contrasts between levels of A in this case. This 
is because MSW controls for the effects of both factors, including their inter-
action. We can see this in the following expression for a balanced two-way 
design:

MS
SS
df

SS SS SS SS
df df df df

W
W

W

T A B AB

T A B AB

= = − − −
− − −

(( . )8 14

Because MSW does not reflect variability due to effects of the intrinsic off-
factor B, its square root may underestimate s. This implies that a contrast 
between levels of A standardized against (MSW)1/2 may overestimate the abso-
lute population effect size. A way to calculate an alternative standardizer that 
reflects the total variation on off-factor B is described below.

Now suppose that the off-factor B is extrinsic (it does not vary natu-
rally in the population). Such factors are more likely to be manipulated or 
repeated measures variables than individual difference variables. For exam-
ple, the theoretical population for the study of a new treatment can be viewed 
as follows: It is true either that every case in the population is given the treat-
ment or that none of them are given the treatment. In either event, there is 
no variability because of treatment versus no treatment (Cortina & Nouri, 
2000). Because extrinsic off-factors are not of theoretical interest for the sake 
of variance estimation, their effects should not contribute to the standard-
izer. In this case, the square root of MSW from the two-way ANOVA would 
be a suitable denominator for standardized contrasts on factor A when the 
off-factor B does not vary naturally.

Described next are two methods to standardize main or simple compari-
sons that estimate the full range of variability on an intrinsic off-factor that 
varies naturally in the population. Both methods pool the variances across 
all levels of the factor of interest, so they also generate standardized contrasts 
for single-factor comparisons in factorial designs that are directly comparable 
with dwith in single-factor designs. These two methods yield the same result in 
balanced designs. The first is the orthogonal sums of squares method (Glass 
et al., 1981). It requires a complete source table with additive sums of squares. 
Assuming that A is the factor of interest, the following term estimates the full 
range of variability on the intrinsic off-factor B:

MS
SS SS SS
df df df

SS SS
df

W B AB
W B AB

W B AB

T A
, , = + +

+ +
= −

TT Adf−
( . )8 15
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The subscript for the mean square indicates that variability associated with the 
B and AB effects is pooled with error variance. Equation 8.15 also shows that 
MSW, B, AB in a two-way design has the same form as MSW in a one-way design, 
where A is the sole factor. Indeed, the two terms just mentioned are equal 
in balanced two-way designs, where MSW in a single-factor ANOVA is com-
puted after collapsing the data across the levels of the off-factor B. The square 
root of MSW, B, AB is the standardizer for contrasts between levels of factor A 
in this method.

The reduced cross-classification method (Olejnik & Algina, 2000) does 
not require a complete source table with additive sums of squares. It also gener-
ates unique adjusted-variance estimates in unbalanced designs. The researcher 
creates with a statistical software program a reduced cross-classification of 
the data where the off-factor that varies naturally in the population is omit-
ted. Next, a one-way ANOVA is conducted for the factor of interest, and 
the square root of the error term in this analysis is taken as the standardizer 
for contrasts on that factor. In balanced designs, this standardizer equals the 
square root of MSW, B, AB computed with Equation 8.15. It also equals MSW in 
the one-way ANOVA for factor A after collapsing across the levels of factor B. 
A variation is needed when working with a secondary source that reports only 
cell descriptive statistics. In this case, the variance MSW, B, AB can be derived 
as follows:

MS
df s n M M

W B AB

ij ij ij ij A
j

b

i
i

, ,

( ) ( )
=

+ −[ ]
==
∑ 2 2

11

aa

N a

∑
−

( . )8 16

This equation is not as complicated as it appears. Its numerator involves the 
computation of a “total” sum of squares within each level of the factor of 
interest A that reflects the full range of variability on the intrinsic off-factor 
B. This is done by combining cell variances across levels of B and taking 
account of the simple effect of B at that level of A. These “total” sums of 
squares are added up across the levels of A and then divided by N - a, the 
total within-conditions degrees of freedom in the reduced cross-classification 
where A is the only factor.

The methods described for standardizing contrasts that involve one fac-
tor in the presence of an off-factor that varies naturally in the population can 
be extended to designs with three or more factors. For example, we can state 
the following general rule for the reduced cross-classification method:

The standardizer for a single-factor comparison is the square root of MSW 
from the cross-classification that includes the factor of interest and any 
off-factors that do not vary naturally in the population but excludes any 
off-factors that do.
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Suppose in a three-way design that A is the factor of interest. Of the 
two off-factors, B varies naturally but C does not. According to the rule, 
the denominator of standardized contrasts for main or simple comparisons 
is the square root of the MSW from the two-way ANOVA for the reduced 
cross-classification that includes factors A and C but not B. This standard 
deviation estimates the full range of variability on off-factor B but not on 
off-factor C. If the design were balanced, we would get the same result by 
taking the square root of the following variance,

MS
SS SS SS SS SS

df
W B AB BC ABC

W B AB BC ABC

W
, , , , = + + + +

+ ddf df df dfB AB BC ABC+ + +
( . )8 17

which pools the within-conditions variability in the three-way ANOVA 
with all effects that involve the off-factor B. As Cortina and Nouri (2000) 
noted, however, there is little statistical research that supports the general 
rule stated earlier for different combinations of off-factors, some intrinsic 
but others extrinsic, in complex designs. One hopes that such research will 
be forthcoming. In the meantime, you should explain in summaries of your 
analyses exactly how main or simple comparisons were standardized.

Let us consider an example for a balanced two-way design where fac-
tor B varies naturally in the population but factor A does not. The orthogonal 
sums of squares method is demonstrated using the source table at the top of 
Table 8.5 for the data in Table 8.4 for a completely between-subjects 2 × 3 
design, where n = 3 and

SS SS SS SSA B AB W= = = =18 00 48 00 84 00 64 0. , . , . , .and 00

The standardizer for main or simple comparisons where A is the factor of 
interest and B is an intrinsic off-factor is the square root of

MSW A B AB, , ,
. . .

.= + +
+ +

=64 00 48 00 84 00
12 2 2

12 25

or 3.50. As expected, the variance just computed (12.25) is greater than 
MSW = 5.33 from the original 2 × 3 analysis (see Table 8.5) because the former 
includes effects of the off-factor B. Standardized contrasts for the three simple 
comparisons of A at B are derived as follows:

d dA B A Bat 1 at 2and= − = = −9 00 5 00
3 50

1 14
12 00 6. .

.
.

. .000
3 50

1 71
.

.=

dA Bat 3 = − = −9 00 13 00
3 50

1 14
. .

.
.

13170-09_Ch08-3rdPgs.indd   247 2/1/13   12:04 PM



248           beyond significance testing

Where the standardizer, 3.50, is the square root of MSW, B, AB = 12.25. In 
summary, the interaction is disordinal because at least one simple effect of 
A reverses over the levels of B. In particular, the mean difference between 
A1 and A2 is positive and exceeds one full standard deviation at levels B1 
and B2, but the difference is negative—about -1.14 standard deviations—at 
B3. These results precisely describe how the effect of factor A changes 
across the levels of B in standard deviation units. Exercise 5 asks you to 
apply the reduced cross-classification method (Equation 8.16) to calculate 
MSW, B, AB = 12.25 based on the cell descriptive statistics in Table 8.4 for 
this example.

Continuing with this example, a better standardizer for main or simple 
comparisons on factor B—for which A is the off-factor and assuming that A 
does not varies naturally—is the square root of MSW = 5.33, or 2.31, from 
the two-way factorial ANOVA for these data (see Table 8.5). This example 
shows that different sets of simple comparisons in the same factorial design 
may have different standardizers. The choice of which set of simple compari-
sons to analyze (i.e., those of A at B vs. B at A) should be based on theoretical 
grounds, not on whichever set would have the smaller standardizer. Other 
options to standardize main or simple comparisons in factorial designs are 
discussed by Cortina and Nouri (2000) and Morris and DeShon (1997).

Interaction Contrasts in Completely Between-Subjects Designs

Suppose that the within-cells variances in a factorial design are similar 
and all contrasts are standardized against the square root of MSW. This would 
make sense in a study in which none of the factors vary naturally in the popu-
lation (e.g., the design is experimental). The standardized two-way interac-
tion contrast would in this case equal the difference between either pair of 
standardized simple comparisons, row-wise or column-wise. For example, the 
following relation would be observed in a 2 × 2 design where all effects are 
contrasts:

d d d d dAB A B A B B A B Aˆ – – ( . )ψ = =at at at at1 2 1 2 8 18

But this relation may not hold if either factor varies naturally in the popula-
tion. This is because different sets of simple comparisons can have different 
standardizers in this case. Because interaction is a joint effect, however, there 
are no off-factors.

There is relatively little in the statistical literature about exactly how 
to standardize an interaction contrast when only some factors vary naturally. 
Suppose in a balanced 2 × 2 design that factor B varies naturally, but factor A 
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does not. Should  ψ̂AB be standardized against the square root of MSW from the 
two-way ANOVA or against the square root of MSW, B, AB? The former excludes 
the interaction effect. This seems desirable in a standardizer for  ψ̂AB, but it 
also excludes variability due to the B main effect, which implies that s may 
be underestimated. The term MSW, B, AB reflects variability due to the inter
action, but standardizers for single-factor comparisons do not generally reflect 
variability because of the main effects of those factors. Olejnik and Algina 
(2000, pp. 251–253) described a way to choose between the variances just 
mentioned, but it requires designating one of the independent variables as the 
factor of interest. This may be an arbitrary decision for an interaction effect.

It is also possible to standardize ψ̂ABC for a three-way interaction con-
trast, but it is rare to see standardized contrasts for interactions among three 
or more factors. If all comparisons are scaled as mean difference contrasts, the 
following relation would be observed in a 2 × 2 × 2 design where all effects 
are single-df comparisons:

d d d d d

d

ABC AB C AB C AC B AC B

BC

ˆ – –ψ = =

=

at at at at1 2 1 2

aat atA BC Ad1 2 8 19– ( . )

That is, the standardized three-way interaction equals the difference 
between the standardized simple interactions for any two factors across 
the levels of the third factor. But this relation may not hold if different sets 
of simple interactions have different standardizers.

These uncertainties should not affect researchers who analyze simple 
effects instead of interaction contrasts as a way to understand a conditional 
effect. There should also be little problem in experimental designs where the 
square root of MSW may be an appropriate standardizer for any contrast, and 
researchers who can specify a priori interaction contrasts also tend to work 
with experimental designs.

Designs With Repeated Measures Factors

Olejnik and Algina (2000) recommended standardizers in the metric 
of the original scores for contrasts that involve within-subjects factors. This 
makes standardized contrasts more directly comparable across different facto-
rial designs. A common design is a split-plot design where unrelated samples 
are compared across multiple measurement occasions. Assuming homosce-
dasticity, the square root of MSW is a natural choice for standardizing com-
parisons between groups. It also treats the repeated measures factor as an 
extrinsic off-factor that does not vary naturally in the population, but the 
same standardizer ignores cross-conditions correlations for within-subjects 
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factors. Cortina and Nouri (2000) described a method to standardize group 
comparisons after collapsing the data across levels of repeated measures fac-
tors; see also Cumming (2012, pp. 413–416) for advice about confidence 
intervals in split-plot designs.

The difference between the standardized mean changes for any two groups 
in a split-plot design is a standardized interaction contrast. For example, if the 
pretest-to-posttest standardized mean change is .75 for the treatment group 
and .10 for the control group, the standardized interaction contrast equals the 
difference, or .75 - .10 = .65. That is, the change for the treatment group is 
.65 standard deviations greater than the change for the control group.

Interval Estimation

Some of the computer tools described in previous chapters generate 
confidence intervals for standardized contrasts in factorial designs. For exam-
ple, PSY (Bird et al., 2000; see footnote 2, Chapter 7) analyzes raw data from 
factorial designs with one or more between-subjects factors or one or more 
within-subjects factors. It standardizes all contrasts against the square root of 
MSW for the whole design. The SAS/IML script by Keselman et al. (2008) 
analyzes trimmed means and Winsorized variances in factorial designs with 
fixed factors that are either between-subjects or within-subjects. It also gen-
erates bootstrapped confidence intervals based on robust standardized con-
trasts (see footnote 7, Chapter 5). Wilcox’s (2012) WRS package for R also 
constructs bootstrapped confidence intervals based on robust standardized 
contrasts in factorial designs (see footnote 11, Chapter 2).

Measures of Association

Outlined next are descriptive and inferential measures of association for 
designs with fixed or random factors.

Descriptive Measures

The effect size η̂2 = SSeffect/SST in factorial designs with fixed factors is the 
proportion of total variance explained by an effect. The proportion of residual 
variance explained after removing all systematic effects from total variance 
other than that due to the effect of interest is partial  ̂η2 = SSeffect/(SSeffect + SSerror),  
where SSerror is the sum of squares for the effect error term. Some researchers 
report η̂2 for total effects and partial η̂2 for individual effects, such as

ˆ , ˆ , ˆ ,, , ,η η ηA B AB A B
2 2 2partial partial and partiaal η̂AB

2
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in two-way designs. The rationale is that the denominators of the effect sizes 
just listed all have the general form, SSeffect + SSerror.

Pierce, Block, and Aguinis (2004) noted that too many researchers erro-
neously report partial η̂2 values as η̂2 for individual effects. This is potentially 
misleading because (a) partial η̂2 usually exceeds η̂2 for the same effect and 
(b) values of partial η̂2 are not generally additive even within sets of orthogo-
nal effects. Indeed, partial η̂2 values for the individual main and interactive 
effects can sum to greater than 1.0, because these statistics can be based on 
different yet overlapping subsets of total variance.

Olejnik and Algina (2003) argued that measures of association for 
effects in factorial designs should reflect whether other factors are extrinsic or 
intrinsic. Suppose in a balanced, completely between-subjects design that A 
is a manipulated (experimental) extrinsic factor that does not vary naturally 
in the population, but factor B is gender. An appropriate effect size for factor 
A is η̂2

A because its denominator, SST, reflects variability due to gender (i.e., 
B, AB). But a better effect size for intrinsic factor B is SSB /(SST – SSA), where 
the denominator removes effects due to intrinsic factor A but preserves 
all effects of gender. This ratio is neither η̂2

B nor partial η̂2
B. The effect size 

SSAB/(SST – SSA) for the interaction has the same rationale.
Now suppose that both factors are measured, intrinsic variables. 

Computing effect sizes as SSeffect /SST (i.e., η̂2) for A, B, and AB preserves all 
variation due to these factors in the denominator. But if both A and B are 
manipulated, extrinsic factors that do not vary naturally, the effect size partial 
η̂2, or SSeffect /(SSeffect + SSW), removes from the denominator variation due to 
main or interactive effects of these factors.

Olejnik and Algina (2003) defined generalized estimated eta-squared 
for balanced factorial designs that takes account of whether factors are 
manipulated (extrinsic) or measured (intrinsic) and also whether they are 
between- or within-subjects. It controls for the presence of covariates in 
the analysis. Its general form is

generalized effect
effect

effect

ˆ
( )

η2 =
× +

SS
m SS SSS SSmeas sub∑ ∑+ , cov

( . )8 20

where m = 1 if the effect of interest concerns a manipulated factor but is zero 
otherwise; ∑SSmeas is the total of the sums of squares for effects of all measured 
factors; and ∑SSS, cov is the total of the sums of squares for all effects that con-
cern covariates (if any) or subjects. The latter includes sums of squares for 
the subjects effect in a correlated design or for error terms based on within-
cells variation, the total of which is SSW (see Table 8.5). If the effect is for 
a measured factor, SSeffect is already included in the expression ∑SSmeas in 
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Equation 8.19; thus, m = 0 for such effects. But for effects of manipulated 
factors, setting m = 1 in the equation includes SSeffect in the denominator of 
generalized η̂2.

Suppose that A is a manipulated factor and B is a measured factor in the 
completely between-subjects analysis at the top of Table 8.5. In this analysis, 
where

SS SS SS SSA B AB W= = = =18 00 48 00 84 00 64 00. , . , . , . , annd SST = 214 00.

η̂2
AB = .393 and partial η̂2

AB = .568, but neither effect size controls for the status 
of the factors as manipulated versus measured. Because factor B is measured, 
m = 0 in Equation 8.20 and

SS SS SS SS SSB AB S Wmeas and= + = = =∑ 132 00 64 00. .,cov∑∑

The denominator of generalized η̂2
AB is thus 132.00 + 64.00, or 196.00, which 

also equals SST – SSA, or 214.00 – 18.00. The whole expression is

generalized 429ˆ .
.

.ηAB
2 84 00

196 00
= =

Thus, the interaction explains about 42.9% of the residual variable control-
ling only for the main effect of extrinsic factor A, which does not vary natu-
rally in the population.

Inferential Measures

The effect sizes described next assume balanced designs. The inferen-
tial measures of association ω̂2 or partial ω̂2 for effects of fixed factors and ρ̂I 
or partial ρ̂I for effects of random factors are estimated as ratios of variance 
components that depend on the design (see Chapter 7). I use the symbol ρ̂I 
only if all factors are random. An equation for directly computing ω̂2 that is 
good for any effect in a completely between-subjects factorial design is

ˆ ( )
( .ωeffect

effect effect2 8 2= −
+

df MS MS
SS MS

W

T W

11)

An equation for partial ω̂2 for any effect in the same kind of design is

partial effect
effect effect

effec

ˆ ( )ω2 1= −df F
df tt effect( )

( . )
F N− +1

8 22
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If some factors are random, it is actually easier to work with equations 
for the variance components that contribute to inferential measures of asso-
ciation. Listed in Table 8.8 are ANOVA-based variance components esti-
mators for completely between-subjects two-way designs where either both 
factors are random or factor A is random but factor B is fixed. To calculate the 
desired measure of association, one just computes the appropriate estimators 
using the equations in Table 8.8 and then assembles them in the correct way.

Suppose that both factors are random in a completely between-subjects 
3 × 6 design, where n = 5 and

MS MS MS MSA B AB W= = = =48 00 40 00 6 00 4 00. , . , . , .and

When the equations in Table 8.8 are used, the variance components esti-
mators are

ˆ
( )

. – . . ˆ
( )

σ σA B
2 21

6 5
48 00 6 00 1 400

1
3 5

0= ( ) = =and 4 .. – . .00 006 2 267( ) =

ˆ . – . . ˆ .σ σAB
2 21

5
00 00 00 000= ( ) = =6 4 4 and 4error

ˆ . . . . .σ total
2 1 400 2 267 400 4 00 8 067= + + + =

for the interaction

ˆ .
.

ˆ .
.

ρ ρi, i,.050 and partialAB AB= = =40
8 067

40
40 ++

=
4 00.

.091

Table 8.8
Equations for Variance Components Estimators in Completely  

Between-Subjects Two-Way Designs

Estimator Both factors random A random, B fixed

σ̂2
A

1
bn

MS MSA AB( )−
1
bn

MS MSA W( )−

σ̂2
B

1
an

MS MSB AB( )− df
abn

MS MSB
B AB( )−

σ̂2
AB

1
n

MS MSAB W( )− 1
n

MS MSAB W( )−

Note.  In all cases, σ̂2
error = MSW, and σ̂2

total is the sum of σ̂2
A, σ̂2

B, σ̂2
AB , and σ̂2

error.
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In words, the AB effect explains about 5.0% of the total variance and about 
9.1% of the variance controlling for the main effects. Exercise 6 asks you to 
calculate ω̂2

AB and partial ω̂2
AB for the same data but assuming that factor B 

is fixed.
Space limitations preclude listing equations for variance components 

estimators in larger factorial designs with dependent samples, but Vaughan 
and Corballis (1969) is a good source. Computer procedures for factorial 
ANOVA are gradually getting better at reporting measures of association 
in complex designs. Variance component estimation with maximum likeli-
hood methods is an alternative, but large samples are needed. Olejnik and 
Algina (2003) described generalized estimated omega-squared for balanced 
designs with fixed factors. It has the same form as generalized η̂2 except that 
generalized ω̂2 is based on variance component estimators, not on sums of 
squares. Both control for covariates and whether the factors are extrinsic 
versus intrinsic or between-subjects versus within-subjects. Generalized ω̂2 

also controls for positive bias in generalized η̂2.

Interval Estimation

Smithson’s (2003) scripts for SPSS, SAS/STAT, and R calculate 
noncentral confidence intervals for h2 based on the total effects and for 
partial h2 based on individual main or interaction effects in completely 
between-subjects factorial designs (see footnotes 3–4, Chapter 5). Fidler 
and Thompson (2001) gave SPSS scripts for calculating noncentral confi-
dence intervals for w2 or partial w2 in completely between-subjects factorial 
designs; see also W. H. Finch and French (2012), who compared different 
methods of interval estimation for w2 in two-way designs with independent 
samples. Sahai, Khurshid, Ojeda, and Velasco (2009) discussed interval 
estimation for population variance components in balanced designs with 
two random factors.

Extensions to Multivariate Analyses

There are multivariate versions of d statistics and measures of associ-
ation for designs with two or more continuous outcomes. For example, a 
Mahalanobis distance is a multivariate d statistic, and it estimates the differ-
ence between two group centroids (the sets of all univariate means) in stan-
dard deviation units controlling for intercorrelation. Multivariate measures 
of association also control for correlated outcomes; see Grissom and Kim 
(2011, Chapter 12) and Olejnik and Algina (2000) for more information.
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Research Examples

Two examples of effect size estimation in actual factorial designs are 
described next.

Differential Effectiveness of Aftercare Programs for Substance Abuse

You can download the raw data for this example in SPSS format from 
the web page for this book. T. G. Brown, Seraganian, Tremblay, and Annis 
(2002) randomly assigned 87 men and 42 women who had just been dis-
charged from residential treatment centers for substance abuse to one of two 
different 10-week aftercare programs, structured relapse prevention (SRP) 
and 12-step facilitation (TSF). The former stressed rehearsal of skills to 
avoid relapse, and the latter emphasized traditional methods of Alcoholics 
Anonymous. Reported in the top part of Table 8.9 for this 2 × 2 randomized 
blocks design are descriptive statistics for a measure of the severity of alcohol-
related problems administered 6 months later where higher scores indicate 
more problems. The interaction is disordinal and is illustrated in Figure 8.2: 
Women who completed the SRP program have relatively worse outcomes 
than women who completed the TSF program, but men had similar outcomes 
regardless of aftercare program type.

Presented in the bottom part of Table 8.9 are the source table and values 
of standardized contrasts for single-factor effects, including the simple effects 
of aftercare program for each gender. The sums of squares are Type I, and the 
rationale for their selection in this nonorthogonal design is as follows: Men 
have more problems with alcohol than women, so the gender main effect (G) 
was not adjusted for other effects. It was less certain whether the aftercare 
program (P) would make any difference, so its effect was adjusted for gender. 
The GLM procedure of SPSS controlled through its graphical user interface 
does not offer an option for calculating sums of squares for user-defined simple 
effects, but there is an alternative.

In brief, it is possible to control SPSS by writing text-based syntax 
that specifies the data and analysis options. One uses the syntax editor in 
SPSS to write and edit the commands, and the resulting syntax file is saved 
with the extension .sps (for SPSS syntax). The syntax is executed by high-
lighting (selecting) it with the mouse cursor and then clicking on the “run” 
icon, which resembles the icon for “play” in a media player application. 
Knowing something about SPSS syntax gives the user access to capabilities 
that are not available through the graphical user interface of the program. 
For this example, the SPSS syntax listed next requests sums of squares for 
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Table 8.9
Descriptive Statistics, Analysis of Variance Results, and Effect Sizes  

for Severity of Alcohol-Related Problems by Gender  
and Aftercare Program Type

Aftercare program

n TSF SRP Row means

Women 42 10.54 (15.62)a 27.91 (21.50) 18.40

23b 19

Men 87 17.90 (20.12) 16.95 (21.55) 17.47

48 39

Column means 15.52 20.54 17.77

Source SS df MS F d

Total effects 3,181.33 3 1,060.44 2.63c —
    Gender 24.37 1 24.37 <1.00   .05g

    Program 804.28 1 804.28 2.00d -.25h

    Gender × program 2,352.69 1 2,352.69 5.84e —
Simple effects of program
    Program at women 3,137.53 1 3,137.53 7.79f -.85h

    Program at men 19.43 1 19.43 <1.00  .05h

Within-cells (error) 50,367.22 125 402.94
Total 53,548.55 128

Note.  These data are from T. Brown (personal communication, January 23, 2012) and are used with  
permission. TSF = 12-step facilitation; SRP = structured relapse prevention. aCell mean (standard deviation). 
bCell size. cp = .053. dp = .160. ep = .017. fp = .006. gStandardizer is sw = 20.07.  hStandardizer is sw, G, GP = 20.38.

simple effects of aftercare program at gender and a graphical display of the 
interaction:

glm alcohol by gender program/method =sstype(1)/

emmeans=tables (gender*program)compare(program)/

plot= profile (gender*program).

Gender is intrinsic, but the aftercare program factor is assumed to be 
extrinsic. This is because there are far more traditional, 12-step aftercare pro-
grams than there are programs based on principles of behavior therapy. Thus, 
the appropriate standardizer for the gender main effect is the square root of 
MSW = 402.94, or 20.07, which does not reflect variation due to program 
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type. Given the marginal means in Table 8.9, women reported more alcohol-
related problems at follow-up than men did by about .05 standard deviations 
regardless of program type.

Because gender varies naturally, the standardizer for main or simple 
effects of program type is the square root of

MS
SS SS SS
df df df

W G GP
W G GP

W G GP
, ,

, .= + +
+ +

= 52 744 288
127

415 31= .

or 20.38. Based on the marginal means in Table 8.9, the average difference 
between the two aftercare programs is -.25 standard deviations in favor of the 
TSF program. But this result is uninformative due to the presence of disordinal 
interaction. Standardized contrasts for the simple effects of program type are

d dP Pat women at men85 and= − = −10 54 27 91
20 38

. .
.

. == − =17 90 16 95
20 38

0
. .

.
. 5

These results say that women in the SRP program reported more alcohol-
related problems than women in the TSF program did by about 85% of a 
standard deviation. The magnitude of the corresponding difference for men 
was only 5% in standard deviation units, but men did somewhat better in 
the TSF program than in the SRP program. The difference between the two 
standardized simple effects is a standardized interaction contrast, or

d dP Pat women at men= .85 .05= .90− − − −

SRP

TSF

Women Men
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Figure 8.2.  Cell means and 95% confidence intervals for µ for the data in Table 8.9. 
SRP = structured relapse prevention; TSF = 12-step facilitation.
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That is, gender difference in the effect of aftercare program type is almost a 
full standard deviation in magnitude.

Earwitness Testimony and Moderation  
of the Face Overshadowing Effect

The face overshadowing effect (FOE) happens when identification of the 
once-heard voice of a stranger in conditions that resemble a police lineup is 
worse if the speaker’s face is seen at the time of exposure. Cook and Wilding 
(2001) evaluated whether the FOE is affected by hearing the voice more than 
once or by explicit instructions to attend to the voice instead of the face. In 
total, 216 young adults were randomly assigned to one of eight conditions in this 
balanced 2 × 2 × 2 experimental design where the fixed factors are face (present 
or absent), voice repetition (once or three times), and instruction (intentional, 
specifically told to focus on the voice; incidental, no specific instructions given). 
All participants heard two different voices, one a man’s and the other a woman’s, 
say two different sentences. One week later the participants were asked to pick 
each voice out of separate gender voice lineups. The outcome variable was the 
number of correct identifications. Before analyzing these data, I multiplied the 
scores by the constant 10.00 in order to avoid very small sums of squares. This 
change does not affect values of F, p, or the effect sizes reported next.

Listed in the top part of Table 8.10 are cell descriptive statistics, and the 
source table is reported in the bottom part. For the total effects, η̂2 = .117, 
95% CI [.026, .175], so the main and interactive effects together explain 
about 11.7% of the total observed variance in correct identifications. The 
repetition main effect is the best individual predictor, partial η̂2 = .090, 95% 
CI [.030, .169]. As expected, there are more correct identifications when the 
voice is heard three times than when it is heard just once. The main effect of 
the face–no face factor was the second best predictor, partial η̂2 = .021, 95% 
CI [.004, .073], and the marginal mean is indeed higher when the face is not 
present (10.85) than when the face is present (8.90).

Observed proportions of residual variance explained by the remaining 
effects are close to zero except for the interaction between the face (F) and rep-
etition (R) factor, partial η̂2 = .011, 95% CI [.004, .054]. Means on the outcome 
variable for this two-way interaction averaged over the instruction factor are

Repeat 1× Repeat 3×

No face 9.45 12.25

Face 6.10 11.70
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We can see in this matrix that the size of the FOE is greater when the voice 
is heard just once instead of three times. The unstandardized interaction 
contrast based on these cell means is

ˆ . . . . .ψFR = − − + =9 45 12 25 6 10 11 70 2 80

Assuming that none of factors vary naturally, standardizing this contrast 
against the square root of MSW = 46.42 for the whole design gives us

d FRˆ
.

.
.ψ = =2 80

46 42
41

Source SS df MS F Partial η̂2

Total effects 1,275.90 7 182.27 3.93b .117 [.026, .175]e

    Instruction (I ) .14 1 .14 <1.00 <.001
    Face (F ) 205.34 1 205.34 4.42c .021 [.004, .073]
    Repetition (R ) 952.56 1 952.56 20.52b .090 [.030, .169]
    I × F 10.94 1 10.94 <1.00 <.001
    I × R .54 1 .54 <1.00 <.001
    F × R 105.84 1 105.84 2.28d .011 [.004, .054]
    I × F × R .54 1 .54 <1.00 <.001

Within-cells 
(error)

9,654.73 208 46.42

Total 10,930.63 215

Note.  Cell descriptive statistics are from “Earwitness Testimony: Effects of Exposure and Attention on the 
Face Overshadowing Effect,” by S. Cook and J. Wilding, 2001, British Journal of Psychology, 92, p. 621. 
Copyright 2001 by John Wiley and Sons. Reprinted with permission. Partial η̂2 for the total effects = η̂2 for 
those same effects.
aCell mean (standard deviation); n = 27 for all cells. bp < .001. cp = .037. dp = .133.
eNoncentral 95% confidence interval reported in brackets for effect sizes > .001.

Table 8.10
Descriptive Statistics, Analysis of Variance Results, and Effect Sizes  

for Accuracy of Voice Recognition by Instruction, Repetition, and Presence 
Versus Absence of the Speaker’s Face

Instruction

Condition Incidental Intentional

Voice once 9.60 (6.50)a 9.30 (6.80)

Voice three times 12.60 (7.60) 11.90 (6.20)

Voice once + face 5.90 (6.40) 6.30 (6.90)

Voice three times + face 11.50 (7.20) 11.90 (6.80)
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Thus, the magnitude of the FOE is .41 standard deviations larger given one 
repetition of the voice than it is given three repetitions. Because intentional 
versus incidental instruction does not appreciably moderate the two-way 
interaction just analyzed, Cook and Wilding (2001) attributed the FOE to an 
involuntary preference for processing face information that is not overcome 
on hearing an unfamiliar voice just once.

Conclusion

Estimation of the magnitudes and precisions of interaction effects 
should be the focus of the analysis in factorial designs. Methods to calculate 
standardized mean differences for contrasts in such designs are not as well 
developed as those for one-way designs. Standardizers for single-factor con-
trasts should reflect variability as a result of intrinsic off-factors that vary nat-
urally in the population, but variability due to extrinsic off-factors that do not 
vary naturally should be excluded. Measures of association may be preferred 
in designs with three or more factors or where some factors are random. They 
can also evaluate the predictive power of several effects analyzed together. 
Characteristics of designs with fixed factors can affect values of η̂2 and ω̂2, 
but there are generalized forms of both effect sizes that control for covariates 
and whether factors are extrinsic versus intrinsic or between-subjects versus 
within-subjects. The intraclass correlation ρ̂I can be calculated for effects of 
random factors.

Learn More

Montgomery, Peters, and Little (2003) give suggestions for reporting 
the results of factorial analyses. Olejnik and Algina (2000) review effect sizes 
for factorial designs, and Pierce et al. (2004) caution about the failure to 
distinguish between η̂2 and partial η̂2.

Montgomery, A. A., Peters, T. J., & Little, P. (2003). Design, analysis and presentation 
of factorial randomised controlled trials. BMC Medical Research Methodology, 3, 
Article 26. doi:10.1186/1471-2288-3-26

Olejnik, S., & Algina, J. (2000). Measures of effect size for comparative studies: 
Applications, interpretations, and limitations. Contemporary Educational Psy-
chology, 25, 241–286. doi:10.1006/ceps.2000.1040

Pierce, C. A., Block, R. A., & Aguinis, H. (2004). Cautionary note on reporting eta-
squared values from multifactor ANOVA designs. Educational and Psychological 
Measurement, 64, 916–924. doi:10.1177/0013164404264848
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Exercises

1.	Calculate sums of squares for the main and interaction effects 
and for the simple effects of drug at gender for the data in the 
left side of Table 8.3 for n = 10 and MSW = 125.00.

2.	Show that the interaction contrasts in (I) and (II) are orthogo-
nal in a balanced design.

3.	Show that the sum of squares for the omnibus interaction in 
the completely between-subjects analysis at the top of Table 8.5 
can be uniquely broken down in the sums of squares for the 
interaction contrasts specified in (I) and (II).

4.	Cell means for a balanced 2 × 2 × 2 design are presented as fol-
lows. Show that Equation 8.10 holds for these data:

C1 C2

B1 B2 B1 B2

A1 15.00 14.00 17.00 10.00

A2 10.00   8.00 18.00 10.00

5.	For the completely between-subjects analysis in the top part of 
Table 8.5, show for this balanced design that the reduced cross-
classification method generates MSW, B, AB = 12.25 based on the 
cell descriptive statistics in Table 8.4 using Equation 8.16.

6.	Given MSA = 48.00, MSB = 40.00, MSAB = 6.00, MSW = 4.00, 
a = 3, b = 6, and n = 5, ρ̂I = .050 and partial ρ̂I = .091 for the 
interaction effect assuming that both factors are random. Recal-
culate proportions of explained variance assuming that factor B 
is fixed.
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9
Replication and Meta-Analysis

Replication is a foundational scientific activity but one neglected in 
the behavioral sciences. This is a paradox: Most behavioral researchers 
along with their colleagues in the natural sciences would probably endorse 
replication as a gold standard. Replication is common in the natural sci-
ences, but it is hard to find studies in our own literature conducted specifi-
cally as replications. There are also obstacles in the behavioral sciences in 
the form of disincentives and outright biases against replication research. 
These cultural factors discourage genuine appreciation for replication.  
If the behavioral sciences are ever to mature out of their extended adoles-
cence, this neglect of replication must end. Considered next are basic kinds 
of replication, attitudes and policies that work against replication, and the 
role of meta-analysis. A key point is that meta-analysis is not a substitute for 
systematic replication.
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For life is not a tournament. Its race is not always to the swift nor its 
battle to the strong. What counts is enduring to the end.

—Gilbert Meilaender (2011, p. 20)
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Concepts About Replication

Basic definitions and concepts about replication are introduced in this 
section.

Theoretical and Empirical Cumulativeness

The historian and philosopher Thomas S. Kuhn (1996) described sci-
ence as alternating between two basic states. One is the steady state of normal 
science, characterized by a high level of paradigm development. A paradigm 
is a shared set of theoretical structures, methods, and definitions that supports 
the essential activity of normal science, puzzle solving, the posing and work-
ing out of problems. If a paradigm’s empirical and theoretical structures build 
on one another in a way that permits results of current research to extend 
earlier work, it provides theoretical cumulativeness (Hedges, 1987). The 
second state involves crises that arise when certain persistent problems, or 
anomalies, cannot be solved under the current paradigm. These crises lead 
to challenges by scholars who may be younger or who have backgrounds in 
different fields than those who defend the current paradigm. A scientific rev-
olution occurs when the old paradigm is replaced by a new one. The assump-
tions of the new paradigm may be so different that the subsequent course of 
the discipline is radically altered. It is normal science that concerns us, in 
particular its cumulative nature through replication and synthesis of results.

That the behavioral or “soft” sciences lack a true scientific paradigm is 
a matter of debate. Note that our use of a more-or-less common set of statisti-
cal techniques does not by itself constitute a paradigm. The use of common 
tools is only a small part of a paradigm. The rest involves shared assumptions 
and methods that together identify the main problems of interest and how to 
go about solving them. There is little agreement in the behavioral sciences 
about just what the main problems are and exactly how to study them. This 
basic disagreement reflects our preparadigmatic (i.e., prescientific) state.

Another requirement for a cumulative science is empirical cumula-
tiveness, or the extent of agreement of replicated results and whether such 
results fall into patterns that make sense (Hedges, 1987). Perhaps behavioral 
research results are simply less replicable than those in the natural sciences. 
This may be especially true in studies with human participants. In animal 
studies, the subjects can literally be transported to and from the experimental 
situation at the behest of the researcher, but those who conduct human studies 
know all too well that they are “studying complex organisms that do have 
moods, can be generally uncooperative, and are known to evidence behav-
ioral inconsistencies over time” (Easley, Madden, & Dunn, 2000, p. 84). 
Human research participants miss scheduled appointments, try to guess the 

13170-10_Ch09-3rdPgs.indd   266 2/1/13   12:05 PM



replication and meta-analysis           267

purpose of the study when they do show up, react to the knowledge that they 
are being measured, and sometimes fail to complete all requested forms or 
withdraw from the study altogether.

When physical scientists study things like neutrons and protons and 
observe how neutrons and protons react in each other’s presence, they do 
not have to qualify their results by saying “generally,” “for most neutrons,” 
or “only for neutrons with good nutrition during proton gestation.” Social 
scientists study people, who by their nature are idiosyncratically individual. 
The uniqueness of every person is what makes people so interesting, but it 
is also what makes generalizing about people so daunting a prospect. In this 
sense the very subject matter of behavioral research may be more complex 
than many phenomena studied in the natural sciences (Lykken, 1991).

There are also strong familial or social context effects for many aspects of 
human behavior. This is another way to describe interaction, which concerns 
associations that change over situations or cultures. Context effects can also be 
era dependent. For example, social conditions concerning the status of women 
changed dramatically over the last few decades, and certain effects of disparate 
treatment of women versus men are different today than in the past. Probably 
as a result of improved access to educational resources by women, gender dif-
ferences in math skills may have narrowed over the 1960s–1980s to the point 
where little substantive difference may now exist (Lindberg, Hyde, Petersen, & 
Linn, 2010). There is also evidence that international variation in gender differ-
ences at the highest levels of mathematics achievement is related to inequality 
in the labor market and differences in the social status of women and men 
(Penner, 2008). Behavioral researchers seem to underestimate the impact of 
both sampling error and context effects on their results (Shadish et al., 2001).

Hedges (1987) evaluated whether empirical cumulativeness may be 
inherently lower for behavioral data than for natural science data. He esti-
mated the consistency of results in physics research about the mass and lifetime 
of stable particles, such as neutrons or protons, with the consistency of results 
in the “hard” area of gender differences in cognitive abilities and the “soft” 
area of effects of educational programs on achievement. Surprisingly, he found 
similar degrees of consistency in the physics and behavioral research areas just 
mentioned as measured by a standard index of between-studies variability in 
meta-analysis (the Q statistic, described later). These findings suggested that 
physical science data may not be inherently more empirically cumulative than 
behavioral science data, at least in the domains studied by Hedges (1987).

Types of Replication

There is no single nomenclature to classify replication studies (e.g., Easley 
et al., 2000), but there is enough consensus to outline at least the broad types 
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described next. B. Thompson (1997) distinguished between internal and 
external replication. Internal replication includes statistical resampling and 
cross-validation by the original researcher(s). Resampling includes bootstrap-
ping and related computer-based methods, such as the jackknife technique, 
that randomly combine the cases in an original data set in different ways to esti-
mate the effect of idiosyncrasies in the sample on the results (e.g., Figure 2.5). 
Such procedures are not replication in the usual scientific sense. The total 
sample in cross-validation is randomly divided into a derivation sample and 
a cross-validation sample, and the same analyses are conducted in each one. 
External replication is conducted by people other than the original research-
ers, and it involves new samples collected at different times or places.

There are two broad contexts for external replication. The first con-
cerns different kinds of replications of experimental studies. One is exact 
replication, also known as direct replication, literal replication, or precise 
replication, where all major aspects of an original study—its sampling meth-
ods, design, and outcome measures—are closely copied. True exact replica-
tions exist more in theory than in practice because it is difficult to perfectly 
duplicate a study, especially when human factors among participants and 
researchers inevitably vary over time, settings, and samples. Other sources of 
variation include differences in equipment or procedures across laboratories. 
Another type is operational replication—also referred to as partial replica-
tion or improvisational replication—where just the sampling and methods 
of an original study are duplicated. Operational replication tests whether a 
result can be found by a researcher who follows just the basic “recipe” in the 
Method section of an original study. The outcome of operational replica-
tion is potentially more informative than that of literal replication, because 
robust effects should stand out against variations in procedures, settings, or 
samples.

In balanced replication, operational replications are used as control 
conditions. Other conditions may represent the manipulation of additional 
substantive variables to test new hypotheses. For example, a drug condition 
from an original study could be replicated in a new study. Additional condi-
tions in the latter may feature the administration of the same drug at dif-
ferent dosages, other kinds of drugs, or a different type of treatment. The 
logic of balanced replication is similar to that of strong inference, which 
features designing studies to rule out competing explanations, and to that 
of dismantling research. The aim of the latter is to study elements of treat-
ments with multiple components in smaller combinations to find the ones 
responsible for treatment efficacy.

A researcher who conducts a construct replication or conceptual repli-
cation avoids close imitation of the specific methods of an original study. An 
ideal construct replication would be carried out by telling a skilled researcher 
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little more than the original empirical result. This researcher would then spec-
ify the design, measures, and data analysis methods deemed appropriate to test 
whether a finding has generality beyond the particular situation studied in 
an original work. This provides an even more demanding test of the robust-
ness of some finding. But it is possible that the nature of the phenomenon 
could actually change depending on how it is measured, the particular sample 
studied, or the specific experimental method used. Without a systematic cata-
loging of how construct replications differ from each other, it may be difficult 
to associate study characteristics with observed changes in the effect (if any). 
Meta-analysis can partially fill this role, as discussed below.

A second context for replication concerns psychometrics, which seems 
to have a stronger tradition of replication. This may be in part a result of 
professional standards that outline benchmarks for establishing score valid-
ity, such as Standards for Educational and Psychological Testing, developed 
jointly by the American Educational Research Association, the American 
Psychological Association, and the National Council on Measurement in 
Education (1999). The demonstration of construct validity requires more 
than one line of evidence, which includes the use of multiple methods among 
other variations in assessment procedures. There is also an appreciation of 
the need to cross-validate tests that generate scores based on mathemati-
cally weighted combinations of predictor variables. These weights—usually 
regression coefficients—are susceptible to capitalization on chance. It is thus 
necessary to determine whether their values are observed in other samples.

Replication in the Behavioral Sciences

There is evidence that only small proportions—in some cases < 1%— 
of all published studies in the behavioral sciences are specifically described 
as replications (e.g., Easley et al., 2000; Kmetz, 2002). Some possible reasons 
are listed next:

1.	Misinterpretation of statistical significance. Many widespread false 
beliefs about the meaning of statistical significance undoubt-
edly discourage replication. Among the obvious suspects are 
the replicability, odds-against-chance, inverse probability, and 
valid research hypothesis fallacies. The combined effect of cog-
nitive distortions about p values could lead researchers to be 
so overconfident about their results that replication is seen as 
unnecessary.

2.	Editorial preference for novelty. It is easy to see the clear prefer-
ence among journal editors and reviewers for work characterized 
as original; that is, providing new theoretical, methodological, 
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or substantive contributions to the field. From this perspec-
tive, replication studies may be seen as derivative rehashes of 
old ideas and the researchers who conduct them as uncreative, 
scholarly dullards who can imitate but not innovate. About 
95% of the editors of behavioral science research journals sur-
veyed by Neuliep and Crandall (1990) said that replication 
studies were not explicitly encouraged for submission in edito-
rial policy. Most journal reviewers also prefer original studies 
over replications (Neuliep & Crandall, 1993). If researchers 
correctly perceive that the odds are slim for getting replication 
studies published, it is no wonder that they would shy away 
from conducting them.

3.	Other disincentives for replication. Most graduate programs require 
that dissertation research should make contributions to knowl-
edge resulting from original and independent research. These 
requirements do not explicitly rule out replication, but doctoral 
students may be dissuaded from conducting such studies due to 
the novelty requirement. Faculty members are also aware they 
may be evaluated less positively if their research portfolios are 
weighted toward replication.

All of these factors combine to create a kind of cultural bias against 
replication in the behavioral sciences. These pressures also favor works in 
which new theory is generated over those that develop or refine theory. 
This explains why our research literature is awash with unsubstantiated 
claims based on one-shot studies about a myriad of “new” theories, most 
of which have the staying power of castles in the sand. But this cogent 
recommendation would send a powerful message to authors of empirical 
studies: “The publishing of a paper that has relied on results from a single 
study (and, thus, has not been replicated) should be unacceptable to the 
discipline because of the inherent variability in human subjects” (Easley 
et al., 2000, p. 89).

K. Hunt (1975), S. Schmidt (2009), and others have argued that 
most replication in the behavioral sciences occurs covertly in the form of 
follow-up studies, which combine direct replication (or at least construct 
replication) with new procedures, measures, or hypotheses in the same 
investigation. Such studies may be described by their authors as “extensions” 
of previous works with new elements but not as “replications,” probably to 
avoid the stigma of replication with journal editors and reviewers. The prob-
lem with this informal approach to replication is that it is not explicit and 
therefore is unsystematic. Authors of follow-up studies may not document all 
the ways in which their investigation differed from those of previous studies 
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in the same area. Suppose that results in a follow-up study based loosely on 
a prior study disagree with those in the original work. Now, what does this 
outcome mean? One possibility is that the original finding is not robust over 
minor variation in participants, methods, or settings. If those variations are 
major, though, the results may not be directly comparable over the original 
and new studies.

The issue just described is the apples and oranges problem, well known 
in the meta-analytic literature, and it refers to doubt concerning whether it is 
reasonable to directly compare results from different studies. Although there 
are ways in meta-analysis to address this problem, they are not magic, espe-
cially when the meta-analyst must infer the factors that account for varia-
tion in results over studies not conducted as explicit replications. This is 
why meta-analysis could never cure the replication deficit in the behavioral 
sciences. But meta-analysis is superior to old-fashioned, narrative literature 
reviews, especially ones based on the box-score (vote counting) method, 
where tallies of the numbers and directions of null hypothesis rejections over 
a set of studies determined the conclusion. That effect sizes are synthesized 
in most meta-analyses also reminds us of the importance of this aspect of 
describing results.

Perhaps replication would be more highly valued if confidence intervals 
were reported more often. Then readers of empirical articles would be able to 
see the low precision with which many studies are conducted. Widths of con-
fidence intervals for behavioral data are often, to quote Cohen (1994, p. 999), 
“so embarrassingly large!” (see also Cumming, 2012). Wide confidence inter-
vals indicate that a study contains only limited information, a fact that is 
concealed when only results of statistical tests are reported (F. L. Schmidt & 
Hunter, 1997).

Meta-Analysis

One cannot deny that meta-analysis is an important and widely used 
technique for research synthesis. Since the publication of the first modern 
meta-analysis—the classic Smith and Glass (1977) study of psychotherapy 
outcomes measured with standardized mean differences—thousands of meta-
analytic articles have been published in psychology, psychiatry, education, 
and medicine, among other disciplines. There are also introductions to 
meta-analysis in areas such as behavioral medicine (Nestoriuc, Kriston, & 
Rief, 2010) and criminal justice (Pratt, 2010), plus many books that intro-
duce meta-analysis to wider audiences (e.g., Card, 2012). Next, I emphasize 
aspects of meta-analysis that highlight how effect sizes are synthesized and 
limitations of the technique.
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Predictors

If a set of studies is made up of exact replications, there may be little 
quantitative analysis to do other than estimate the central tendency and 
variability of the results. The former could be seen as a better estimate of the 
population parameter than the result in any one study, and the latter could be 
used to identify individual results that are outliers. Because exact replications 
are inherently similar, outliers may be more a result of chance than systematic 
differences among studies. This is less certain for operational or construct 
replications and even less so for follow-up studies. For the latter, observed 
variability in results may reflect actual changes in the effect due to differences 
in samples, measures, or designs over studies.

Because sets of related investigations in the behavioral sciences are 
generally made up of follow-up studies, the explanation of observed vari-
ability in their results is a common goal in meta-analysis. That is, the meta-
analyst tries to identify and measure characteristics of follow-up studies that 
give rise to variability among the results. These characteristics include attri-
butes of samples (e.g., mean age, gender), settings in which cases are tested 
(e.g.,  inpatient vs. outpatient), and the type of treatment administered 
(e.g., duration, dosage). Other factors concern properties of the outcome 
measures (e.g., self-report vs. observational), quality of the research design,  
source of funding (e.g., private vs. public), professional backgrounds of the 
authors, or date of publication. The last reflects the potential impact of tem-
poral factors such as changing societal attitudes. These characteristics can 
be classified as low versus high inference. A low-inference characteristic 
is one that is readily apparent in the text or tables of a primary study, such 
as the measurement method. In contrast, a high-inference characteristic 
requires a judgment. The quality of the research design is an example of a 
high-inference characteristic because it must be inferred from the informa-
tion reported in the study.

Study factors are conceptualized as meta-analytic predictors, and study 
outcome measured with the same standardized effect size is typically the cri-
terion. Each predictor is actually a moderator variable, which implies inter-
action. This is because the criterion, study effect size, usually represents the 
association between the independent and dependent variables. If observed 
variation in effect sizes across a set of studies is explained by a meta-analytic 
predictor, the relation between the independent and dependent variables 
changes across the levels of that predictor. For the same reason, the terms 
moderator variable analysis and meta-regression describe the process of esti-
mating whether study characteristics explain variability in results. The latter 
term is especially appropriate because study factors can covary, such as when 
different variations of a treatment tend to be administered to patients with 
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acute versus chronic forms of a disorder. If meta-analytic predictors covary, 
it is necessary to control for overlapping explained proportions of variability 
in effect sizes.

It is also possible for meta-analytic predictors to interact, which means 
that they have a joint influence on observed effect sizes. Interaction also 
implies that to understand variability in results, one must consider the pre-
dictors together. This is a subtle point, one that requires some elaboration: 
Each individual predictor in meta-analysis is a moderator variable. But the 
relation of one meta-analytic predictor to study outcome may depend on 
another predictor. For example, the effect of treatment type on observed 
effect sizes may depend on whether cases with mild versus severe forms of 
an illness were studied.

A different kind of phenomenon is mediation, or indirect effects among 
study factors. Suppose that one factor is degree of early exposure to a toxic 
agent and another is illness chronicity. The exposure factor may affect study 
outcome both directly and indirectly through its influence on chronicity. 
Indirect effects can be estimated in meta-analysis by applying techniques 
from structural equation modeling to covariance matrices of study factors and 
effect sizes pooled over related studies. The use of both techniques together is 
called mediational meta-analysis or model-driven meta-analysis. Estimation 
of mediation requires specific a priori hypotheses about patterns of direct or 
indirect effects of study factors on effect sizes.

Steps

The basic steps in meta-analysis are similar to those in a primary study. 
They may be iterative in both because it is often necessary to return to an 
earlier step for refinement when problems are discovered at later stages. They 
are listed next:

1.	Formulate the research question.
2.	Collect the data (primary studies).
3.	Evaluate the quality of the data (i.e., study design, procedures, 

and measurement).
4.	 Identify and measure the predictors (study factors) and criterion 

(effect sizes).
5.	Analyze the data (synthesize effect sizes).
6.	Describe, interpret, and report the results.

Because the steps just listed are described in many published intro-
ductions to meta-analysis, I will elaborate on just a few critical issues. It 
is just as important in meta-analysis as when conducting a primary study 
to clearly specify the hypotheses and operational definitions of constructs. 
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These specifications in meta-analysis should also help to distinguish between 
relevant and irrelevant studies. A meta-analysis obviously requires that 
research about a topic exists, which raises the question of how many studies 
are necessary. A researcher can use meta-analytic methods to synthesize as 
few as two studies, but more are typically needed. Although there is no abso-
lute minimum, it seems to me that at least 20 different primary studies would 
be required before a meta-analysis is feasible. This assumes that the studies 
are relatively homogeneous and that only a small number of moderator vari-
ables are analyzed. The failure to find sufficient numbers of studies indicates 
a knowledge gap.

Data collection is characterized by computer searches in multiple 
sources including published works, such as articles, books, or reports from 
public agencies, and unpublished studies. The latter include conference 
presentations, papers submitted for publication but rejected, student theses, 
and technical reports from private agencies. There are computer databases 
for some unpublished kinds of studies, such as doctoral dissertations, but 
other kinds of unpublished works are not always stored in accessible data-
bases or even available at all through the Internet. This makes them harder 
to find.

A related issue is the file drawer problem, which is that some studies 
may be conducted but never reported, and results from unreported studies 
could differ on average from results that are reported. There are ways to 
estimate in meta-analysis what is known as the fail-safe N, which is the 
number of additional studies where the average effect size is zero that would 
be needed to increase the p value in a meta-analysis for the test of the mean 
observed effect size to > .05 (i.e., the nil hypothesis is not rejected). These 
additional studies are assumed to be file drawer studies or to be otherwise not 
found in the literature search of a meta-analysis. If the estimated number of 
such studies is so large that it is unlikely that so many studies (e.g., 2,000) 
with a mean nil effect size could exist, more confidence in the results may be 
warranted. But estimates of fail-safe N are just that despite what is implied 
by their name.

Studies from each source are subject to different types of biases. For 
example, bias for statistical significance implies that published studies 
have more H0 rejections and larger effect sizes than do unpublished studies 
(e.g., Table 2.1). There are techniques in meta-analysis for estimating the 
extent of publication bias (e.g., Gilbody, Song, Eastwood, & Sutton, 2000). If 
such bias is indicated, a meta-analysis based mainly on published sources may 
be inappropriate. Results from unpublished studies may be prone to distortion 
because of design or analysis problems that otherwise may have been detected 
in peer review, but coding of study source as a meta-analytic predictor permits 
direct evaluation of its effect on study outcome.
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For two reasons, it is crucial to assess the high-inference characteristic 
of research quality for each found primary study. The first is to eliminate from 
further consideration studies so flawed that their results are untrustworthy. 
This helps to avoid the garbage in, garbage out problem, where results from 
bad studies are synthesized along with those from sound studies. The other 
reason concerns the remaining (nonexcluded) studies, which may be divided 
into those that are well designed versus those with significant limitations. 
Results synthesized from the former group may be given greater weight in the 
analysis than those from the latter group. There are some standard systems 
for coding quality of primary studies (e.g., Conn & Rantz, 2003). Nowadays it 
should be standard practice for meta-analysts to describe how they evaluated 
the research designs in found studies and specify the criteria used to retain 
or reject these studies from further analysis. Relatively high proportions of 
found studies in meta-analyses are often discarded due to poor rated quality, 
a sad comment on the status of a research literature.

The computation of standardized effect sizes based on descriptive or test 
statistics reported in a set of primary studies is the main way to convert all 
findings to a common metric. But if very different types of outcome measures 
are used across the studies, their results may not be directly comparable even if 
the same kind of standardized effect size is computed for each one. This is the 
apples and oranges problem concerning effect sizes, which are the data points 
in meta-analysis. Suppose that gender differences in aggression are estimated 
over a series of studies. There is more than one type of aggressive behavior 
(e.g., verbal, physical) and more than one way to measure it (e.g., self-report, 
observational). An average d statistic that compares men and women and is 
computed across a diverse set of aggression measures may not be very mean-
ingful. A way to deal with this problem is to code the content or measure-
ment method of the outcome variable and represent this information in the 
analysis as one or more study factors, but doing so requires that the meta-analyst 
knows to make this distinction.

It is common in meta-analysis to weight the standardized effect sizes 
by a factor that represents sample size and error variance. This gives greater 
weight to results based on larger samples, which are less subject to sampling 
error. It is also possible to weight effect sizes by other characteristics, such as 
score reliability (see Chapter 5). Hunter and Schmidt (2004) described an 
extensive set of corrections for attenuation in effect sizes for problems such as 
artificial dichotomization in continuous outcome variables and range restric-
tion, but primary studies do not always report sufficient information for one 
to apply these corrections.

There is also the problem of correlated effect sizes, or nonindependence 
of study results. It seldom happens that each individual result comes from 
an independent study where a single hypothesis is tested. In some studies, 
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the same research participants may be tested with multiple outcome mea-
sures. If these measures are intercorrelated, effect sizes across these measures 
are not independent. Likewise, effect sizes for the comparison of variations 
of a treatment against a common control group are probably not indepen-
dent. Fortunately, statistical techniques that handle correlated effect sizes are 
available.

Synthesizing Effect Sizes

Summarized next are the basic iterative phases of effect size synthesis 
in meta-analysis:

1.	Decide whether to combine results across studies and what to 
combine.

2.	Estimate a common (average) effect size.
3.	Estimate the heterogeneity in effect sizes across studies, and 

attempt to explain it—that is, find an appropriate statistical 
model for the data.

4.	Assess the potential for bias.

The first step is often the computation of a weighted average effect size. 
If it can be assumed that the observed effect sizes estimate a single population 
effect size—that is, a fixed effects model—their average takes the form
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where ESi is the effect size (e.g., d) for the ith result in a set of k effect sizes and 
wi is the weight for that result. A weight for each effect size that minimizes 
the variance of MES is
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where the denominator is the conditional variance (squared standard error) 
of an effect size, or the within-studies variance. The equation for the condi-
tional variance depends on the particular effect size (e.g., Equation 5.20 for 
dpool in two-sample designs), but it generally varies inversely with sample size 
but directly with the extent of within-groups variability. Thus, results based 
on larger samples and more homogeneous groups in comparative studies are 
given greater weight.
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The conditional variance of the weighted average effect size MES is 
determined by the total number of effect sizes and their weights:
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The square root of Equation 9.3 is the standard error of the average weighted 
effect size. The general form of a 100 (1 – a)% confidence interval for the 
population effect size µES is

M s zES MES± ( )2 9 4-tail, ( . )α

If a confidence interval for µES includes zero and z2-tail, a = 1.96, the nil hypothesis 
that the population effect size is zero cannot be rejected at the .05 level. This 
is an example of a statistical test in meta-analysis. The power of this test will 
be low if the number of study effect sizes is relatively small, but even trivial 
average effect sizes will be statistically significant given sufficiently many pri-
mary studies. These tests also assume that the found studies were randomly 
sampled from the population of all studies, but this is not how primary studies 
wind up being included in most meta-analyses (i.e., this is another instance 
of the design–analysis gap). Thus, statistical tests in meta-analysis are subject 
to the same basic limitations as in primary studies.

Weighting of effect sizes as just described assumes a fixed effects model, 
or a conditional model. It assumes that (a) there is one population of studies 
with a single true effect size and (b) study effect size departs from true effect size 
due to within-studies variance only. Thus, effect sizes in conditional models 
are weighted solely by functions of their conditional variances (Equation 9.2). 
Other variation in observed effect sizes is viewed as systematic and as a result 
of identifiable differences due to meta-analytic predictors (study factors). 
Generalizations in a fixed effects model are limited to studies such as those 
actually found.

An alternative model for a meta-analysis is a random effects model, also 
called an unconditional model. There is no single population of studies or a 
constant population effect size presumed to underlie all studies in a random 
effects model. It assumes instead that (a) there is a distribution of population 
effect sizes (i.e., there is a different true effect size for each study) and (b) there 
are two sources of error variance. One is within-studies variation, which in an 
unconditional model is conceptualized as the difference between an observed 
effect size and the population effect size estimated by that particular study, just as 
in a fixed effects model. The second source is between-studies variance, which 
concerns the distribution of all population effect sizes around the population 
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grand mean effect size. It is commonly assumed that the distribution of popula-
tion effect sizes is normal, which simplifies the estimation of error variance in 
a random effects model (Cumming, 2012). A random effects model assumes 
that the between-studies variance is completely random. In contrast, a mixed 
effects model assumes that between-studies variation may be a result both  
of systematic factors that can be identified, such as study factors, and of random 
sources that cannot. In both random and mixed models, the estimation of two 
sources of error variance instead of just one, as in a fixed effects model, may 
improve prediction of observed effect sizes. It is also consistent with generaliza-
tion of results to studies not identical to the set of found studies.

If the between-studies variance is about zero, there is essentially a single 
population effect size, which suggests a fixed effects model. This implies that 
within-studies variance alone is sufficient to explain variation in observed 
effect sizes and that those effect sizes are therefore homogeneous. But greater 
variation of population effect sizes says just the opposite, that the observed 
effect sizes are expected to be heterogeneous because they do not estimate a 
common parameter. In a random effects model, a weighted mean effect size 
estimates the grand mean of all population effect sizes. Because there is an 
additional source of presumed error variance, widths of confidence intervals 
around weighted mean effect sizes in random effects models are typically wider 
than the corresponding confidence intervals, assuming a fixed effects model.

An older practice in meta-analysis was to assume a fixed effects model 
and then estimate the variability of the observed effect sizes. If this variability 
were too large, a fixed effects model would be rejected in favor of a random 
effects model (or a mixed effects model). There is a statistic known as Q that 
measures the degree of heterogeneity within a set of observed effect sizes. It is 
the total weighted sum of the squares for between-studies variation in effect 
sizes, and it is calculated as
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where the mean effect size MES and the weights wi for each of the k effect 
sizes are computed assuming a fixed effects model (Equations 9.1–9.2). The 
expression in the right side of Equation 9.5 is a computational version more 
amenable to hand calculation.

Under the null hypothesis of a single population effect size, the Q sta-
tistic is distributed as a central chi-square with k – 1 degrees of freedom. 
The latter is the expected value in a central chi-square distribution. If the 
null hypothesis about a fixed effects model is false, more and more sample c2 
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statistics will exceed the expected value. Suppose that Q = 10.00 for a set of 
15 effect sizes. Here, the value of Q (10.00) is actually below the expected 
value (14.00), assuming a fixed effects model. Also, the critical value for c2 
(14) at the .05 level is 23.68, so the null hypothesis that the 15 results reflect 
a common population effect size is clearly not rejected at p < .05. But the 
homogeneity hypothesis would be rejected for the same number of effect sizes 
if Q = 25.00 because c2 (14) = 25.00, p = .035. The test statistic Q is subject 
to all the same limitations as any other significance test, including low power 
for small numbers of effect sizes.

Assuming that Q > df, the quantity Q – df estimates the noncentrality 
parameter of the chi-square distribution, or in this case the degree to which 
the null hypothesis of homogeneity is false. In particular, it reflects the extra 
variation between studies beyond that expected in a fixed effects model 
(Cumming, 2012). If a fixed effects model is rejected, between-studies variation 
is assumed to be an additional source of error variance. One way to estimate this 
extra variance is to calculate the T2 statistic, which is

T
Q df

C
2 9 6= −

( . )

where C is a scaling factor that controls for the fact that Q is a sum of squares, 
not a variance. In Equation 9.6, it is the division of Q - df by C that estimates 
the between-studies variance in the same metric as the within-studies variance 
(Equation 9.2). A computational formula for C is
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The parameter estimated by T2 is t2 (tau-squared), the variance of popula-
tion effect sizes around the population grand mean effect size in a random 
effects model.

A more modern approach is to routinely assume random effects models 
(e.g., Cumming, 2012; F. L. Schmidt, 2010). The rationale for this strategy 
is threefold: First, incorrect specification of a fixed effects model when the 
true model is random implies that confidence intervals based on weighted 
mean effect sizes will be too narrow, which overstates the precision of the 
results. Second, low power of the test for homogeneity based on the Q statis-
tic could lead to the false retention of a fixed effects model. Third, if there is 
low between-studies variance, results assuming a fixed effects model versus a 
random effects model tend to be quite similar.
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In fixed effects models, the weight for each effect size reflects just the 
within-studies variance, s2

ES. But in a random effects model, both within-
studies and between-studies variance contribute to the weight for each effect 
size. One way to estimate weights in random effects models is to add the 
quantity T2, which estimates between-studies variance (Equation 9.6), to 
the within-studies variance of each individual effect size. Because weights are 
the inverse of error variance, they are computed in a random effects model as

w
s Ti

ESi

* ( . )=
+
1

9 8
2 2

where the asterisk designates a random effects model. As the value of T2 

increases—that is, there is greater estimated between-studies variation—the 
weights for a set of effect sizes become more similar. This implies that effect sizes 
based on smaller versus larger sample sizes are more similarly weighted in ran-
dom effects models than in fixed effects models. Cumming (2012) explained it 
this way: The effect size from a particular study estimates a unique parameter in 
a random effects model. Because this effect is the only estimate of its correspond-
ing parameter, it cannot be ignored even if the sample size is relatively small.

Computation of the average weighted effect size and its standard error 
in a random effects model is based on the weights defined by Equation 9.8. 
The corresponding formulas are

M
w ES

w
ES

i i
i

k

i
i

k
*

*

*
( . )= =

=

∑

∑
1

1

9 9

s
w

M

i
i

kES
*

*
( . )2

1

1
9 10=

=
∑

The general form of a 100 (1 - a)% confidence interval for the population 
grand mean effect size µ*ES has the following general form:

M s zES MES
* ( . )*± ( )2-tail, α 9 11

Confidence intervals for µ*ES assuming a random effects model are generally 
wider than those for µES assuming a fixed effects model for the same data and 
level of a. Thus, the choice between the two models in meta-analysis affects 
the relative contribution of individual effect sizes and the estimation of both 
the weighted average effect size and its precision.
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Listed in the left side of Table 9.1 are the results of eight hypothet-
ical studies each based on a two-sample design. The observed effect sizes 
are dpool (Equations 5.3–5.4). I used ESCI (Cumming, 2012; see footnote 4, 
Chapter 2) to calculate the within-studies variances and weights for a fixed 
effects model that are reported in the table.1 Also reported in Table 9.1 are per-
centages that indicate the relative contribution of each result to the weighted 
average. These percentages are derived as the ratio of the weight for each study 
over the total of all the weights, which is 154.130 for a fixed effects model. For 
example, the weight for study 1 in Table 9.1 is 10.667, so the relative contribu-
tion of this effect size is 10.667/154.131 = .069, or about 6.9%.

Given these results from Table 9.1

w w di i i= =∑ ∑154 131 165 999. .and

the average weighted effect size and its estimated standard error are com-
puted as

M sd Md= = = =165 999
154 131

1 077
1

154 131
0 08

.

.
.

.
.and 005

Based on these results, the 95% confidence interval for µES is

1 077. ± ( ).0805 1.96

Table 9.1
Study Effect Sizes and Weights for a Fixed Effects Model Versus  

a Random Effects Model in a Meta-Analysis

Fixed effects model Random effects model

Study dpool n1 n2 s2
d w w (%) wd w* w* (%) w*d

1 .50 22 22 .0938 10.667 6.9 5.334 4.285 10.8 2.143
2 .50 12 24 .1285 7.784 5.1 3.892 3.730 9.4 1.865
3 1.20 40 40 .0590 16.949 11.0 20.339 5.034 12.7 6.041
4 .80 80 80 .0270 37.037 24.0 29.630 6.001 15.2 4.801
5 1.30 50 45 .0511 19.563 12.7 25.432 5.242 13.2 6.815
6 1.20 14 85 .0905 11.054 7.2 13.265 4.346 11.0 5.215
7 1.00 55 120 .0294 34.046 22.1 34.046 5.917 14.9 5.917
8 2.00 30 100 .0587 17.031 11.0 34.061 5.041 12.7 10.082

Total 154.131 165.999 39.596 42.878

Note. Σw 2
i = 3,787.470; Σwid

2
i = 203.872; Σwi*

2 = 200.416; Σwi*d 2
i = 54.292.

1The ESCI program calculates the error variance of dpool using the square of Equation 5.20 except that 
the overall sample size N replaces the expression df = N - 2 in this equation.
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which defines the interval [.92, 1.23] at two-decimal accuracy. Thus, the 
population effect size could be as low as .92 standard deviations or as high as 
1.23 standard deviations, with 95% confidence and assuming a fixed effect 
model for the eight results in Table 9.1.

Given Σwidi
2 = 203.872 from Table 9.1, the value of Q is

Q = − =203 872
165 999
154 131

25 091
2

.
.
.

.

With a total of k = 8 studies, the degree of freedom are 7, and the p value for 
c2 (7) = 25.091 is .001. If using a conventional significance test, we would 
reject the hypothesis of homogeneity that there is a common population 
effect size at the .05 level.

Now assuming a random effects model for the data in Table 9.1, we 
estimate the between-studies variance as

wi
2 3 787 470=∑ , .

Q df− = − =25 091 7 18 091. .

C = − =154 131
3 787 470
154 131

129 558.
, .

.
.

T2 18 091
129 558

140= =.
.

.

The last result, .140, is the estimated between-studies variance expressed 
in the metric of the within-studies variances for these data.

You should verify with Equation 9.8 that the weights in Table 9.1 for 
the random effects model are computed for each effect size as the inverse 
of the sum of the within-conditions variances and T2 = .140. Also note in  
the table that, as expected, the relative contributions of the individual effect 
sizes in the random effects models are more generally equal than those in the 
fixed effects model. This new set of weights for the random effects model also 
implies new values for the average weighted effect size, its standard error, and 
the corresponding 95% confidence interval for the population grand mean 
effect size compared with the fixed effects model. These values for the random 
effects model, given the data in Table 9.1, are computed as follows:

w w di i i* . * .= =∑∑ 39 596 42 878and

w w di i i* . * .2 200 416 54 2922= =∑∑ and
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M sd Md
* .

.
. *

.
.= = = =42 878

39 596
1 083

1
39 596

1589and

95 1589 1 96% * , . . ,ci for 1.083 or .77,µES ± ( ) 1.39[ ]

As expected, the width of the 95% confidence interval for the random effects 
model, or [.77, 1.39], is wider than that for the fixed effects model, or [.92, 1.23].

The results just described for the data in Table 9.1 are summarized with 
the forest plots in Figure 9.1. The noncentral 95% confidence intervals for d 

d
3.00.50.50 0 1.00 1.50 2.00 2.50 

d
3.00.50.50 0 1.00 1.50 2.00 2.50 

Fixed effects model 

Random effects model 

Figure 9.1.  Forest plot for a fixed effects model and a random effects model for the 
data in Table 9.1.
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based on each of the eight primary studies are shown oriented horizontally in 
the figure in the same order as they are listed in the table. Each point estimate 
of d is represented in the figure with rectangles depicted in relative sizes that 
reflect the weight for each study in Table 9.1. Represented as diamonds in the 
figure are the 95% confidence intervals based on the weighted average effect 
size from all eight studies. As expected, widths of the confidence intervals 
based on the aggregated results are narrower than those from any individual 
study. Comparing the forest plots in the upper and lower parts of Figure 9.1, 
we can see that the relative contributions of each effect size are generally 
more similar in the random effects model than in the fixed effects model.

Statistical Techniques

After selecting a model for error variance, the meta-analyst typically 
chooses a statistical technique for analyzing weighted effect sizes. Techniques 
include analogs of ANOVA and multiple regression. For example, it is pos-
sible to disaggregate studies by the levels of two crossed, categorical study 
factors (e.g., gender and illness severity) and perform a two-way ANOVA on 
the weighted effect sizes. This analysis would estimate both main and inter
active effects of the predictors. Regression analysis in meta-analyses can include 
either categorical or continuous factors, such as average patient age in each 
study, in the same equation. Regression methods also allow individual predic-
tors or blocks of predictors to be entered into or removed from the equation in 
an order specified by the researcher. Borenstein et al. (2009) described other 
techniques for analyzing weighted effect sizes.

As is probably obvious by now, many decisions made while analyzing 
effect sizes can influence the results of a meta-analysis. Conducting a sensi-
tivity analysis is one way to address this issue. In meta-analysis, this means 
that effect sizes are reanalyzed under different assumptions, and the results 
are compared with the original findings. If the two sets of results are similar, 
the original meta-analytic findings may be robust with regard to the manipu-
lated assumptions. Suppose that the criteria for study inclusion are modified 
in a reasonable way, and a somewhat different subset of all found studies is 
retained. If the meta-analysis is repeated with the new subset and the results 
are not appreciably different from those under the original criteria, the over-
all findings are robust concerning the inclusion criteria.

Threats to the Validity of a Meta-Analysis

Those who have promoted (e.g., M. Hunt, 1997) or dismissed  
(e.g., Eysenck, 1995) meta-analysis would probably agree that it is no less 
subject to many of the problems that can beset the primary studies on which 
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it is based. Meta-analysis is also susceptible to additional limitations specific 
to the technique. Some examples were mentioned, including the apples and 
oranges problem and the garbage in, garbage out problem. Other possible 
threats are outlined next; see also Borenstein et al. (2009, Chapter 43) for 
more information.

Although it is useful to know average effect sizes in some research areas, 
effect size by itself says little about substantive significance (see Chapter 5, 
this volume). It is also true that explaining a relatively high proportion of 
observed variance in outcomes with a set of study factors does not imply that 
these variables are actually the ones involved in the underlying process. It is 
possible that an alternative set of study factors may explain just as much of 
the variance or that some of the measured predictors are confounded with 
other, unmeasured factors that are actually more important. Meta-analysis 
is not a substitute for primary studies. Despite their limitations, primary 
studies are the basic engine of science. Indeed, a single brilliant empirical 
or theoretical work could be worth more than hundreds of mediocre studies 
synthesized in a meta-analysis. There is also concern about the practice of 
guarding against experimenter bias by having research assistants code the 
primary studies. The worry is about a crowding out of wisdom that may occur 
if what is arguably the most thought-intensive part of a meta-analysis—the 
careful reading of the individual studies—is left to others.

It is probably best to see meta-analysis as a way to better understand the 
status of a research area than as an end in itself or some magical substitute for 
critical thought. Its emphasis on effect sizes and the explicit description of 
study retrieval methods and assumptions is an improvement over narrative 
literature reviews. It also has the potential to address hypotheses not directly 
tested in primary studies. If the results of a meta-analysis help researchers 
conduct better primary studies, little more could be expected. But meta-
analysis does not solve the replication crisis in the behavioral sciences. It is 
merely a stopgap until we change our mentality and behavior so that explicit 
replication is both expected and rewarded. The availability of meta-analysis 
should not prevent the behavioral sciences from growing up in this regard.

Meta-Analysis and Statistics Reform

Meta-analysis can bring clarity to a research problem previously con-
sidered only through the lens of significance testing. For example, Lytton 
and Romney (1991) conducted one of the first meta-analyses in the area of 
differential socialization, which refers to the encouragement of certain traits 
or behaviors more for children of one gender than of another. It is also pos-
sible that fathers may make greater differences between sons and daughters 
than do mothers or vice versa. Some narrative reviews published in the 1970s 
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and 1980s concluded that “significant” differential socialization effects were 
found in about half the studies and called for more research to resolve the 
ambiguity. But no amount of additional research would have ever resolved 
the ambiguity if power were about .50, which is consistent with the pattern 
just described.

Lytton and Romney (1991) synthesized standardized mean differences 
from studies where mothers and fathers reported about their emphasis on var-
ious traits or behaviors in the upbringing of their sons versus daughters. They 
further partitioned the effect sizes in the retained set of about 160 studies from 
North America by eight different socialization areas, such as warmth, disci-
pline, achievement, and gender-typed activities. Weighted average d statistics 
for boys versus girls were generally close to zero for both mothers and fathers 
in most areas. For example, both mothers and fathers emphasized achieve-
ment more with their sons than with their daughters, but the mean effect 
size in this area was d = .05 for mothers and d = .11 for fathers. Both mothers 
and fathers encouraged reasoning more strongly among sons than daughters, 
but the average effect size for both parents was only about d = .01. Lytton 
and Romney (1991) found evidence for stronger differential socialization 
in just one area, gender-typed activities. For mothers, the average effect 
size was d = .34, and for fathers it was d = .49. That is, both mothers and 
fathers emphasized gender-typed activities more strongly among sons than 
daughters, but fathers tended to differentiate more strongly than mothers 
between boys and girls in this area. See Cumming (2012) for descriptions of 
other occasions when results of meta-analytic studies have brought clarity 
to research areas long dominated by significance testing.

Conclusion

There is little evidence for direct or even approximate replication in 
the behavioral science literature. This fact contradicts what is expected from 
the most basic presumption of science, but the reality in the behavioral sci-
ences is that there are few incentives for students or researchers to conduct 
explicit replications. Instead, replication is more often carried out implicitly 
in the form of follow-up studies that extend prior investigations by adding 
new elements. The problem is that differences between original and follow-up 
studies may not be systematically cataloged, which makes it difficult to inter-
pret the meaning of an apparent failure to find consistent results over studies. 
Meta-analysis generally estimates average weighted effect sizes from primary 
studies and evaluates whether various study factors, such as characteristics of  
participants or treatments, explain variation in effect sizes. Crucial questions 
about the validity of meta-analysis concern the selection of studies, assessment 
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of their quality and measurement of their characteristics, how lack of indepen-
dence in effect sizes is handled, and the underlying statistical model assumed. 
A good meta-analysis should summarize the status of a literature and suggest 
new directions. It is not a substitute for explicit replication, but the behav-
ioral sciences are not yet mature enough to do without meta-analysis.

Learn More

Card (2012) gives a clear introduction to meta-analysis, and Borenstein 
et al. (2009) is for researchers who intend to conduct meta-analyses. 
S. Schmidt (2009) analyzes replication in the behavioral sciences.

Borenstein, M., Hedges, L. V., Higgins, J. P. T., & Rothstein, H. R. (2009). Introduction 
to meta-analysis. Chichester, England: Wiley. doi:10.1002/9780470743386

Card, N. A. (2012). Applied meta-analysis for social science research. New York, NY: 
Guilford Press.

Schmidt, S. (2009). Shall we really do it again? The powerful concept of replication 
is neglected in the social sciences. Review of General Psychology, 13, 90–100. 
doi: 10.1037/a0015108
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10
Bayesian Estimation and Best 

Practices Summary

This chapter introduces the Bayesian approach to hypothesis test-
ing and interval estimation. Potential advantages include the capabilities 
to estimate probabilities of hypotheses, directly compare the likelihoods 
of competing hypotheses, and estimate inferential confidence intervals, 
all under explicit assumptions. It also provides a systematic framework for 
revising the plausibility of hypotheses as new data are collected. Entire 
books are devoted to Bayesian statistics, so it is not possible to give a com-
plete account here. The more modest goal is to make you aware of an infer-
ence model that increasing numbers of behavioral science researchers see 
as a viable alternative to significance testing. Presented at the end of this 
chapter are best practice recommendations based on all topics considered 
to this point.

DOI: 10.1037/14136-010
Beyond Significance Testing: Statistics Reform in the Behavioral Sciences, Second Edition, by R. B. Kline
Copyright © 2013 by the American Psychological Association. All rights reserved.

Friends do not let friends compute p values.
—John K. Kruschke (2010, p. 294)
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Contexts for Bayesian Estimation

We considered many limitations of significance testing. One is that 
p values do not estimate the probability that H0 is true, given the data. 
They tell us instead the conditional probability of the data or results even 
more extreme under H0, designated as p (Data +H0). They are subject to 
many decisions, or researcher degrees of freedom, not all of which are always 
explicit. The default form of H0 is a nil hypothesis, but such hypotheses are 
usually implausible. Percentages associated with standard confidence inter-
vals, such as 95%, cannot generally be interpreted as the chance that the 
interval contains the corresponding parameter.

Bayesian estimation is not constrained by these limitations, in part 
because it is not based on a frequentist model of probability. Also, a param-
eter in Bayesian methods is generally conceptualized as a random variable 
with its own distribution that summarizes the current state of knowledge 
about that parameter. The distribution’s expected value is the single best 
guess about the true value of the parameter, and its variability reflects the 
amount of uncertainty. In contrast, a parameter in significance testing is 
viewed as a constant that should be estimated with sample statistics. This 
difference explains why symbols for parameters are printed in italic font 
to emphasize that they are variables in Bayesian estimation, such as µ for a 
random population mean in Bayesian statistics instead of µ for a constant 
parameter in classical statistics.

Since the late 1950s, Bayesian methods have been used in disciplines 
such as economics, medicine, engineering, and computer science (e.g., Pourret, 
Naïm, & Marcot, 2008). Your computer may be connected to a network pro-
tected by a dynamic Bayesian system that continually updates estimated prob-
abilities of hacking (intentional malevolent access) for each user, given recent 
activities on the network. If this probability exceeds some threshold (e.g.,  
> .75), that user or account may be locked out of the network (e.g., Christina, 
2010). Introduced to psychology in the 1960s by authors such as Edwards, 
Lindman, and Savage (1963), Bayesian statistics never really caught on among 
behavioral scientists over the next 40 years.

Recently, there has been a surge of interest in Bayesian methods among 
behavioral scientists. An example is the controversy about Bem (2011), 
who reported evidence for psi, the ability to anticipate events before they 
happen, based on statistically significant results in eight of nine experiments 
with a mean effect size of about d = .25. The same results analyzed from a 
Bayesian perspective, however, are not as convincing (e.g., Kruschke, 2011; 
Wetzels et al., 2011). Another example of increasing attention is the spe-
cial edition about Bayesian methods in Trends in Cognitive Science (e.g., 
Chater, Tenenbaum, & Yuille, 2006). As I edited this chapter, the Journal 
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of Management issued a call for papers for a special issue titled “Bayesian 
Probability and Statistics in Management Research: A New Horizon,” to 
be published in 2014.

Once some fundamentals are mastered, Bayesian hypothesis testing is 
closer to intuitive scientific reasoning than significance testing. For instance, 
the following principles are all supported in Bayesian analysis:

1.	Not all hypotheses are equally plausible before there is evi-
dence, and implausible hypotheses require stronger evidence 
to be supported. This is a basic tenet of science that extra
ordinary claims require extraordinary proof. I mentioned that 
p values under implausible nil hypotheses are generally too 
low, which exaggerates the relative rarity of the data. In con-
trast, Bayesian methods take explicit account of hypothesis 
plausibility.

2.	Not all researchers will see the same hypothesis as equally 
plausible before data collection. This is another basic fact of 
science, if not human nature. The effect of assuming differ-
ent degrees of plausibility for the same hypothesis can also be 
explicitly estimated in a Bayesian analysis. Doing so is a kind 
of sensitivity analysis that makes plain the effects of differing 
initial assumptions.

3.	The impact of initial differences in the perceived plausibility 
of a hypothesis tends to become less important as results accu-
mulate. So open-minded scientists with different initial beliefs 
are generally driven toward the same conclusion as new data 
are collected. The real long-term effect of initial differences in 
belief is that skeptics will require more data to reach the same 
level of belief as that held by those more enthusiastic about 
a theory.

4.	Data that are not precise will have less sway on the subsequent 
plausibility of a hypothesis than data that are more precise. This 
is a principle of meta-analysis, too.

A longtime objection is that Bayesian methods are associated with a 
subjectivist view of probability. Recall that a subjectivist view does not distin-
guish between repeatable and unrepeatable (unique) events, and probabilities 
are considered as degrees of personal belief that may vary from person to per-
son. There is a perception among those unfamiliar with Bayesian statistics that 
prior probabilities of hypotheses are wholly subjective guesses just plucked out 
of thin air, perhaps to suit some whim or prejudice.

These perceptions of Bayesian statistics are false. If nothing is known 
about some hypothesis, the researcher has little choice other than to guess 
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about plausibility. But it is rare for researchers to have absolutely no previ-
ous information on which to base estimates of prior probabilities. There are 
heuristic methods for eliciting consistent prior probabilities from content 
experts that try to avoid common difficulties that arise when people rea-
son with probabilities. One is the conjunction fallacy, which occurs when 
a higher probability is estimated for two joint events than for the individual 
events. Some of these methods include the posing of questions in a frequency 
format instead of a probability format, which may help to avoid inconsistent 
or illogical reasoning with probabilities. Estimates of prior probabilities in 
Bayesian analyses are explicit and thus open to debate. It is also possible to 
estimate conditional probabilities of hypotheses under a range of estimates 
about their prior probabilities.

Bayes’s Theorem

The starting point is Bayes’s theorem, which is from a posthumous publi-
cation (1763) of a letter by Rev. Thomas Bayes in the Philosophical Transactions 
of the Royal Society. It is based on the mathematical fact that the joint prob-
ability of two events, D and H, is the product of the probability of the first 
event and the conditional probability of the second event given the first, or

p D H p D p H D p H p D H∧( ) = ( ) ( ) = ( ) ( ) ( )10.1

where the logical connective ∧ designates the conjunctive and.
Now let us assume that D in Equation 10.1 stands for a particular 

result in a primary study and does not include all more extreme results. 
Next we designate this particular result as Data in order to distinguish 
it from Data +, which in significance testing includes all more extreme 
results under H0. Let us also take the symbol H in Equation 10.1 to mean 
hypothesis but not necessarily a point hypothesis such as H0: µ1 – µ2 = 0 in 
significance testing. A hypothesis in Bayesian estimation about a continuous 
parameter can be either a point hypothesis or a range hypothesis. In signifi-
cance testing, H1 is almost always a range hypothesis (e.g., H1: µ1 – µ2 > 0), 
but H0 is usually a point hypothesis. The larger issue is that the specifica-
tion of hypotheses is more flexible in Bayesian inference than in classical 
significance testing.

With these definitions in mind, solving Equation 10.1 for the condi-
tional probability p (HData) gives us the basic form of Bayes’s theorem:

p H
p H p H

p
data

data
data

10.2( ) = ( ) ( )
( ) ( )
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In words, p (HData) is the posterior probability of the hypothesis, and it 
estimates the probability of that hypothesis in view of a particular result. 
It is a function of two prior (marginal, unconditional) probabilities,  
p (H) and p (Data), and a conditional probability called the likelihood, or 
p (DataH). The latter is the probability of a result under the hypothesis, 
and it is analogous to p (Data +H0) in significance testing, given the dif-
ferences between the terms Data and Data+ and between the terms H and 
H0 just explained.

The term p (H) in Equation 10.2 is the probability of the hypothesis 
before the data are collected, and p (Data) is the probability of the data irre-
spective of the truth of any hypothesis. Bayes’s theorem thus takes an initial 
belief about the hypothesis, p (H), and combines it with information from 
the sample to generate an updated belief, p (HData). It also shows us that to 
correctly translate the conditional probability of the data to the conditional 
probability of the hypothesis, we need also to estimate the prior probabilities 
of both the data and the hypothesis.

If extant theory makes no relevant prediction or there are no empirical 
studies, the specification p (H) = .50 is consistent with this lack of informa-
tion. The specification p (H) < .50 is more consistent with a skeptic’s view, 
but stating that p (H) > .50 may be warranted when there is already evidence 
that favors the hypothesis. A lower initial assignment of p (H) means that 
more evidence will be required to eventually raise the estimate of p (HData) 
to a level that more clearly supports the hypothesis. But the specification of 
prior probabilities of hypotheses in Bayesian estimation must be explicit, and 
the consequences of different assumptions about p (H) can be evaluated in a 
sensitivity analysis.

This example by Dixon and O’Reilly (1999) illustrates a simple appli-
cation of Bayes’s theorem. Suppose we want to estimate the probability 
that it will snow sometime during the day, given a below-freezing tem-
perature in the morning. The chance of snow on any particular day of the 
year is only 10%, so p (H) = .10. The chance of a below-freezing morning 
temperature on any particular day is 20%, so p (Data) = .20. Of all days 
it snowed, the chance of a below-freezing temperature in the morning is 
80%, so p (DataH) = .80. When Equation 10.2 is used, the posterior prob-
ability is

p H data( ) = ( ) =. .
.

.
10 80

20
40

which says that there is a 40% chance that it will snow on days when it is 
cold in the morning.
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Bayesian Testing for Point Hypotheses

Next we assume k mutually exclusive and exhaustive point hypotheses 
about a parameter. The sum of their prior probabilities is 1.0, or

p Hi
i

k

( ) =
=
∑

1

1 0. ( )10.3

The prior probability of the data in Equation 10.2 for Bayes’s theorem can 
now be expressed as

p p H p Hi
i

k

idata data 10.4( ) = ( ) ( )
=
∑

1
( )

which is the sum of the products of the prior probabilities for each of the k 
discrete hypotheses and the likelihood of the data under it.

Suppose that the distribution on a continuous variable in a population 
is normal, the variance is known—that is, it is a constant, not a variable, and 
we assume s2 = 144.00—but the mean is not known (i.e., it is a random vari-
able, m). There are two competing hypotheses, or

H H1 2100 00 110 00: . : .m m= =and

Assuming no previous information, the two hypotheses are judged to be 
equally likely, or

p H p H1 2 50( ) = ( ) = .

The assignment of equal prior probabilities to all competing hypotheses when 
there are no grounds to favor any one of them follows the principle of indif-
ference (see Chapter 2). Related descriptive terms include agnostic priors 
and uninformative priors. In contrast, informative priors reflect greater con-
fidence in one hypothesis than the other. For example, specification of the 
prior probabilities

p H p H1 240 60( ) = ( ) =. .and

would reflect greater confidence in H2 than H1. The ratio p (H2) / p (H1), or 
.60/.40 = 1.67, is the prior odds (i.e., 3:2) that H2 is correct. But if p (H1) = 
p (H2), as in this example, the prior odds that either hypothesis is correct are 
1.0 (i.e., 1:1, no difference).
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A sample of 16 cases is collected, and the observed mean is M1 = 106.00. 
Because the population variance is known, the standard error of the mean is 
(144.00/16)1/2 = 3.00. Under the normality assumption, the conditional prob-
ability of the sample mean under each hypothesis—the likelihoods—can be 
found with the standard normal density function

ndf
e

pi
10.5z

z

( ) =
− 2

2
( )

where z is a normal deviate, e is the natural base (about 2.7183), and pi 
is approximately 3.1416. The function takes a z score and returns its prob-
ability, which is the height of the normal curve with a mean of zero and a 
standard deviation of 1.0 at that point.1 The z score equivalents of the sample 
mean under each hypothesis are

z zH H1 2

106 00 100 00
3 00

2 000
106 00 11= − = = −. .

.
.

.
and

00 00
3 00

1 333
.

.
.= −

and the likelihoods of M1 = 106.00 under each hypothesis are

p H

p H

data
ndf

data

1

1

1
2 000
2

0540
2

0 0270( ) = ( ) = =. .
.

22
1 333
2

1640
2

0 0820( ) = −( ) = =ndf . .
.

The results of the ndf function are divided by two because there are two 
hypotheses. These results say that the probabilities of the data under H1 
and H2 are, respectively, .0270 and .0820. The prior probability of the data 
(M1 = 106.00) is

p data1( ) = ( )+ ( ) =. . . . .50 0270 50 0820 0545

and applying Bayes’s theorem tells us that the posterior probabilities for each 
hypothesis are

p H

p H

1

2

50 0270
0545

2477data

data

1

1

( ) = ( ) =

( ) =

. .
.

.

.. .
.

.
50 0820

0545
7523

( ) =

1In Microsoft Excel, the function NORMDIST(z, 0, 1, True) returns the likelihood of z.
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In summary, our revised estimate of the probability of H2: m = 110.00 (about .75) 
is higher than that for H1: m = 100.00 (about .25), given M1 = 106.00.

Posterior Odds and the Bayes Factor

The posterior odds are the ratio of the conditional probabilities of two 
competing hypotheses for the same data. For the example

Posterior odds
data
data

1
1

1
= ( )

( ) =p H
p H

2

1

7523.
.22477

3 04= .

which says that the odds are about 3:1 in favor of H2 that the population 
mean is 110.00 over H1 that this mean is 100.00 after observing M1 = 106.00. 
Which of the two hypotheses is represented in the numerator is arbitrary. For 
this example, the ratio .2477/.7523, or .329, is the posterior odds for H1 rela-
tive to H2 (i.e., about 1:3 against H1).

With Equation 10.2 used for Bayes’s theorem, it can be demonstrated 
that posterior odds can be expressed as the product of the prior odds and the 
likelihood ratio, or the Bayes factor (BF). That is,

Posterior odds Prior odds BF 10.5= × ( )

where the prior odds are p (H2) / p (H1) and the Bayes factor is

BF
data
data

10.62

1
= ( )

( )
p H
p H

( )

which summarizes the relative likelihood of the same data under the two 
hypotheses. (Compare Equations 6.8 and 10.5.) The Bayes factor also sum-
marizes the results of the study that allow the update of the odds of the two 
hypotheses from what they were before collection of the data (prior odds) 
to what they should be given the data. If the prior odds do not favor one 
hypothesis over the other (i.e., it is 1.0), the value of BF directly equals that 
of the posterior odds. For the example where the prior odds are 1.0, the value 
of the Bayes factor is

BF
data
data

1
1 2

1 1
= ( )

( ) = =p H
p H

.

.
.

0820
0270

3 04

which equals the posterior odds for this example calculated earlier (3.04) as 
the ratio of the likelihood of the two hypotheses, given M1 = 106.00.
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The Bayes factor is a continuous measure of the likelihood of the data 
under two competing hypotheses. If the value of BF is close to 1.0, the results 
of the study failed to differentiate between the hypotheses. Otherwise, values 
of BF that exceed about 3.00 (or are less than .33) are generally taken as indi-
cating support for one hypothesis over another, but this rule of thumb should 
not be rigidly applied (i.e., do not dichotomize the Bayes factor). This heu-
ristic is useful for comparing p values in significance testing to BF values 
computed for the same data. For example, Jeffreys (1961) suggested that  
p < .05 from statistical tests would generally correspond to about BF > 3.00 
(or BF < .33) for typical sample sizes.

Wetzels et al. (2011) provided a more empirical basis for relating p and 
BF in the same samples. They compared results from a total of 855 t tests 
reported in 252 articles published in the 2007 volumes of two different experi-
mental psychology research journals. They found that about 70% of p values 
between .01 and .05 were associated with a value of the Bayes factor that 
indicated only anecdotal support for the alternative hypothesis (e.g., BF < 3.00 
assuming the numerator corresponds to H1 of the t test). Although p values 
and BF values were strongly correlated, Wetzels et al. (2011) suggested that 
the Bayesian approach was generally more conservative than the standard 
t test over this collection of studies.

Sample size affects p values and BF values in different ways, too. If H0 is 
true, p does not converge to any particular value as more data are collected. 
There is also the problem that a researcher is practically guaranteed to get sta-
tistically significant results by simply collecting more data (the stopping rule 
issue; see Chapter 3). In contrast, values of BF are driven toward zero as more 
data are collected, if H0 is true. But when H0 is false, p values tend to decrease 
and BF values tend to increase as more cases are added (Dienes, 2011). Wetzels 
et al. (2011) reminded us that the Bayes factor is not synonymous with effect 
size and that estimating effect sizes complements a Bayesian analysis, too. It is 
also possible in Bayesian methods to directly analyze effect sizes.

Updating Posterior Odds

The posterior odds can be updated as additional data are collected by 
iteratively applying Bayes’s theorem. This is why Edwards et al. (1963) said 
that key principles of Bayesian estimation are “that probability is orderly 
opinion, and that inference from data is nothing other than the revision 
of such opinion in the light of relevant new information” (p. 194). Recall 
the previous example where the posterior odds are 3.04 in favor of H2 that 
m = 110.00 against H1 that m = 100.00, given M1 = 106.00, N = 16. Suppose 
in a second sample of 16 cases it is found that M2 = 107.50. The posterior 
odds from the previous analysis (BF1 = 3.04) become the prior odds in the 
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new analysis. The updated posterior odds after observing the new result are 
calculated as the product of the Bayes factor from the original analysis and 
the new Bayes factor, or

Posterior odds BF BF 10.72 1 2= × ( )

The value of the normal deviate for M2 = 107.50 is 2.500, given sM = 3.00 
and assuming m = 100.00 under H1, so the likelihood of the second mean under 
this hypothesis is

p Hdata
ndf 2.500

2 1
2

0175
2

0088( ) = ( ) = =.
.

Under H2, which assumes m = 110.00, the normal deviate for the second 
mean is -.833, so the likelihood under this hypothesis is

p Hdata
ndf .833

2 2
2

2820
2

1410( ) = −( ) = =.
.

The value of the new Bayes factor is

BF
data
data

2
2

2
= ( )

( ) = =p H
p H

2

1

1410
0088

16 02
.
.

.

so the likelihood of M2 = 107.50 is about 16 times greater under H2 than H1. 
This is also the factor by which the posterior odds from the first analysis will 
be updated given the second result. The new posterior odds are

Posterior odds 3.04 16.02 48.712 = × =

which now favor H2 that m = 110.00 over H1 that m = 100.00 even more 
strongly than the original posterior odds when only the first result (3.04) was 
available.

Bayesian Testing for Range Hypotheses

It is rare that hypothesis testing is as narrow as described in the previ-
ous example. Researchers do not typically know the population variance, nor 
do they generally evaluate competing point hypotheses about the value of an 
unknown population parameter. Although the default null hypothesis in sig-
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nificance testing is a point hypothesis, the alternative hypothesis is usually a 
range hypothesis. If the alternative hypothesis in Bayesian estimation concerns 
a continuous random parameter, such as the directional range hypothesis 
H1: m1 - m2 > 0 tested against the point hypothesis H0: m1 - m2 = 0, the researcher 
must specify the prior distribution of that parameter under each hypothesis. A 
prior distribution for a range hypothesis is usually described with a probability 
density function that defines the likelihood of any value contained within the 
distribution. It is the mathematical operation of integration on this function 
that gives the probability for a range of values, and the integral over the whole 
range is 1.0.

The trick in Bayesian estimation is to specify an appropriate prior distri-
bution for a range hypothesis. If this specification is grossly wrong, subsequent 
estimates of the conditional probabilities of the data under range hypotheses 
may also be incorrect. The same thing goes for the posterior distribution, 
which is basically an updated version of the prior distribution after observ-
ing the data. Because the whole framework of Bayesian estimation is iterative, 
the posterior distribution at the conclusion of one study can be specified as 
the prior distribution in a subsequent study about the same random parameter 
and so on.

Presented in Figure 10.1 are examples of prior distributions for hypoth-
eses about a random population parameter. Figures 10.1(a)–10.1(e) represent 
prior distributions for the difference between two random population means, 
m1 - m2, of the type discussed by Dienes (2011), Kruschke (2011), and Rouder 
et al. (2009) for Bayesian versions of the t test. Depicted in Figure 10.1(a) 
is the probability distribution for the point null hypothesis H0: m1 - m2 = 0. 
This distribution has only one value (zero), and its likelihood is assumed 
to be 1.0. The prior distribution in Figure 10.1(b) includes a good-enough 
belt around the point hypothesis m1 - m2 = 0. The majority of the values con-
tained within this distribution are considered as practically equivalent and 
uninteresting departures from zero. These deviations are assumed to be nor-
mally distributed. In Bayesian equivalence testing, the prior distribution for 
the null hypothesis could be specified in a similar manner.

Represented in Figure 10.1(c) is the continuous uniform (rectangular) 
prior distribution for the directional alternative hypothesis

H1 1 20 5 0: .< −( ) <m m

which predicts m1  > m2 but also limits the upper bound of the expected popula-
tion mean difference to 5.0. The distribution in Figure 10.1(c) also represents 
every result within the range 0–5.0 as equally plausible. Specification of the 
lower and upper bounds of a rectangular distribution is sometimes justified by 
the scale on which means are calculated. If scores on that scale range from 0 
to 5, the difference between two means cannot exceed 5.0.
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It may be unreasonable for some research problems to assume that all 
possible outcomes are equally probable. The prior distribution depicted in 
Figure 10.1(d) is for a directional alternative hypothesis where the most plau-
sible estimate of m1 - m2 is 2.5, but where values lower or higher than 2.5 
are represented as progressively unlikely. The drop-off in likelihoods mov-
ing away from the center of the distribution in Figure 10.1(d) is assumed 
to follow a normal curve. The prior distribution in Figure 10.1(e) is also for 
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Figure 10.1.  Examples of prior distributions for hypotheses about differences 
between random population means (a–e) and a random population variance (f).
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a directional alternative hypothesis. It is a half-normal distribution with a 
mode of zero that explicitly assumes that smaller effects are more likely than 
increasingly larger effects.

If we assume a common population variance but its precise value is 
unknown, the random parameter s 2 has its own prior distribution. Depending 
on the analysis, it may also be necessary to specify a probability density 
function for s 2. An example is presented in Figure 10.1(f), which depicts 
an inverse chi-square distribution with a single degree of freedom. The 
expected value for s 2 is 1.0, and the prior distribution in the figure repre-
sents the prediction that likelihood falls off sharply for very small and very 
large values of s 2. There are also times when it makes sense to expect that 
effect sizes follow similar distributions (Rouder et al., 2009). Other candi-
dates for prior distributions of random variances include inverse chi-square 
distributions where df ≥ 2 and inverse-gamma distributions, which have 
parameters for shape and scale. Selection of a suitable prior distribution for 
a random variance should also be guided by theory and empirical results.

There are many other theoretical probability density functions, such 
as the binomial distribution for proportions and the multivariate normal 
distribution for joint random variables such as covariances, and a Bayesian 
analysis is easier if a known distribution can be selected to model the prior 
distributions. The same family of known probability distributions—also 
called conjugate distributions—may be used in the analysis to specify both 
the prior distribution and the posterior distribution. If so, the prior distribu-
tion is referred to as the conjugate prior when estimating the likelihood of 
the data under each hypothesis.

Selection of an appropriate prior distribution is a question of statis-
tical model fitting. The choice can affect the results, but consequences of 
specifying different distributions can be evaluated in a sensitivity analysis. 
An alternative is to specify a noninformative prior, which assumes no spe-
cific knowledge. A noninformative prior for a continuous random parameter 
is just a flat distribution with infinite variance, ∞. The limit of the ratio 
1/∞ is infinitely small, so the precision of the knowledge about a parameter 
described by a flat distribution (noninformative prior) is also infinitely small 
(i.e., practically zero). In general, it takes more evidence to eventually sup-
port a particular hypothesis with an uninformed prior than with an informed 
prior that is more approximately correct.

Dienes (2011) described a Bayesian version of the t test for either a 
single sample or two samples (independent or dependent) that estimates the 
Bayes factor for comparing a range alternative hypothesis against a point nil 
hypothesis. The test assumes normality and homoscedasticity in two-sample 
tests, and sample variance is assumed to estimate the random population 
variance. The latter means that no specification for the prior distribution of 
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the population variance is required. There is also a freely available online 
calculator that computes Bayes factor values.2 To use the calculator, the 
researcher must enter the mean (or mean difference) and its standard error 
(i.e., Equation 2.6, 2.12, or 2.20). The researcher must also specify whether 
H1 is one- or two-tailed and the form of the prior distribution under H1. There 
are three choices:

1.	A uniform distribution for a definite range over which all val-
ues are represented as equally plausible. The lower and upper 
bounds must be specified; see Figure 10.1(c).

2.	A normal distribution where the mean equals the predicted 
value under H1 and where values lower or higher are repre-
sented as progressively less likely. The researcher must also 
specify the standard deviation in this normal prior distribution. 
If the mean of the distribution is not zero, Dienes (2011) sug-
gested, a reasonable specification would be .50 times the value 
of the distribution’s mean, such as .50 × 2.50, or 1.25 for the 
normal curve in Figure 10.1(d). Otherwise, a value that equals 
.50 times the range of plausible values is a reasonable specifica-
tion for the standard deviation. For example, if the lower and 
upper bounds for this plausible range are, respectively, 0 and 
5.0, then one half of the range is 2.5, which is the specification 
for the standard deviation.

3.	A half-normal distribution where the mode is centered on zero 
and increasingly larger values are represented as progressively 
less plausible; see Figure 10.1(e). A reasonable specification for 
the standard deviation of this distribution is .50 times the range 
of plausible values for the parameter under H1.

Suppose the results of the standard t test in a balanced design with two 
independent samples where M1 – M2 = 2.00, sM1-M2

 = .90, and n = 30 are

t p H H58 2 22 015 00 1 2 1( ) = = − =. , . :for againstµ µ :: µ µ1 2 0− >

Based on these results, the conventional nil hypothesis is rejected at the 
.05 level. In a Bayesian version of this test, plausible values for m1 - m2 
range from zero to 10.0. Listed next are values of Bayes factor computed 
for these data with Dienes’s (2008) online calculator:

1.	For a uniform prior distribution over the range 0–10.0, BF = 2.63, 
which does not strongly support H1 over H0.

2http://www.lifesci.sussex.ac.uk/home/Zoltan_Dienes/inference/bayes_factor.swf
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2.	For a normal prior distribution where the mean is 5.0 and the 
standard deviation is 2.5, BF = 2.12, which also does not clearly 
support H1.

3.	But for a half-normal distribution centered at zero and assuming 
a standard deviation of 2.5, BF = 5.92, which indicates more 
reasonable support for H1.

Thus, the outcome of a Bayesian t test for the same data depends on 
assumptions about prior distributions for m1 - m2. In contrast, the standard 
t test is not sensitive to hypotheses about the distributional form of the effect 
under study. Rouder et al. (2009) described Bayesian versions of the t test 
and also Bayesian tests for regression analyses and binomial data, such as the 
proportion of successful learning trials over all trials. An online calculator 
that computes BF values for these tests is available.3 See Kruschke (2011) and 
Morey and Rouder (2011) for more information about testing nil hypotheses 
in a Bayesian framework. Masson (2011) described Bayesian hypothesis test-
ing in designs where the technique of ANOVA is used.

Bayesian Credible Intervals

Methods for Bayesian parameter estimation do not directly com-
pare competing hypotheses. Instead, they are analogous to interval estima-
tion in more standard analyses except that credible intervals in Bayesian 
estimation—also called highest density regions or Bayesian confidence 
intervals—establish relative probabilities for a range of candidate values 
of a random parameter. These intervals are represented in posterior prob-
ability distributions that are updated as new data are collected. The vari-
ances of posterior distributions generally decrease as more and more new 
results are synthesized along with the old, just as in meta-analysis. But 
unlike those for traditional confidence intervals, percentages associated 
with credible intervals, such as 95%, are interpreted as the probability that 
the true value of the random parameter is between the lower and upper 
bounds of the interval.

With one exception, traditional confidence intervals are not to be 
interpreted this way (see Chapter 2). The exception occurs when the prior 
distribution is flat (uninformative), which implies that the parameters of 
the posterior distribution are estimated solely with the sample data. In this 
case, the Bayesian confidence interval is asymptotically identical in large 
samples to the traditional confidence interval for the unknown parameter, 

3http://pcl.missouri.edu/bayesfactor
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given the same distributional assumptions. But when the prior distribution 
is informative, the parameters of the posterior distribution are basically a 
weighted combination of those from the prior distribution and those esti-
mated in the sample. The weights reflect the precision of each source of 
information. In this case the Bayesian confidence interval is also generally 
different from the traditional confidence interval for the same result.

Suppose the mean and variance in a normal prior distribution for a 
random population mean are, respectively, m0 and s 2

0. The precision of this 
distribution is prc0 = 1/s 2

0. The shape of the posterior distribution will be 
normal, too, if (a) the distribution of scores in the population is normal 
and (b) the sample size is not small, such as N > 50, in which case at least 
approximate normality may hold (Howard, Maxwell, & Fleming, 2000). 
The latter also permits reasonable estimation of the population variance 
with the sample variance. The observed mean and error variance in a sam-
ple are, respectively, M1 and s2

M1
, and the precision of the sample mean is 

prc1 = 1/s2
M1

. Given the assumptions stated earlier, the mean in the posterior 
distribution, m1, is the weighted combination of the mean in the prior dis-
tribution and the observed mean:

m m1
0

0 1
0

1

0 1
=

+






+
+







prc
prc prc

prc
prc prc  M1 ( )10.8

The variance of the posterior distribution, s 2
1, is estimated as

s 1
2

0 1

1=
+prc prc

( )10.9

Note in Equation 10.8 that the relative contribution of new knowledge, the 
observed mean M1, depends on its precision, prc1, and the precision of all 
prior knowledge taken together, prc0.

An example demonstrates the iterative estimation of the posterior 
distribution for a random population mean as new data are collected. The 
distributional characteristics stated earlier are assumed. Suppose that the 
researcher has no basis to make a prior prediction about the value of m, so a 
flat prior distribution with infinite variance is specified as the prior distribu-
tion. A sample of 100 cases is selected, and the results are

M s sM1 1106 00 25 00 2 501= = =. , . , .and

The traditional 95% confidence interval for the population mean computed 
with z2-tail, .05 = 1.96 instead of t2-tail, .05 (99) = 1.98 is

106 00 2 50 1 96 110 90. . . , , .± ( ) [ ]or 101.10
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The precision of the observed mean is the reciprocal of the error variance, 
or prcl = 1/2.502, which is .16. But because the precision of the prior distribu-
tion is prc0 = 1/∞, or essentially zero, the mean and standard deviation of the 
posterior distribution given the data, respectively,

m s1 1106 00 2 50= =. .and

equal the observed mean and standard error, respectively. The Bayesian 95% 
credible interval for the random population mean m calculated in the poste-
rior distribution is

106 00 2 50 1 96 110 90. . . , , .± ( ) [ ]or 101.10

which defines exactly the same interval as the traditional 95% confidence 
interval calculated earlier. We can say, based on the data, that the probability 
is .95 that the interval [101.10, 110.90] includes the true value of m. But after 
something is known about the parameter (i.e., there are data), traditional 
confidence intervals are no longer interpreted this way.

All of the information just described is summarized in the first row of 
Table 10.1. The remaining rows in the table give the characteristics of the 
prior and posterior distributions and results in three subsequent samples, 
each based on 100 cases. For each new result, the posterior distribution from 
the previous study is taken as the prior distribution for that result. For exam-
ple, the posterior distribution, given just the results of the first sample, with 
the characteristics

m s1 1 1
2106 00 2 50 1 2 50 16= = = =. , . , . .and prc

becomes the prior distribution for the results in the second sample, which are

M s prcM2 2
2107 50 3 00 1 3 00 112= = = =. , . , . .

Table 10.1
Means and Standard Deviations of Prior Distributions and Posterior 

Distributions Given Data From Four Different Studies

Prior distribution Data Posterior distribution

Study M s M sM m s 95% CI

1 — ∞ 106.00 2.50 106.00 2.50 [101.10, 110.90]
2 106.00 2.50 107.50 3.00 106.61 1.92 [102.85, 110.37]
3 106.61 1.92 112.00 2.80 108.33 1.58 [105.32, 111.43]
4 108.33 1.58 109.00 2.50 108.52 1.34 [105.89, 109.86]

Note.  The sample size for all studies is N = 100. The prior distribution for Study 1 is a flat prior distribution with 
infinite variance and where no prediction is made about the population mean. CI = Bayesian credible interval.
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The mean and standard deviation in the posterior distribution, given the 
results in the first and second samples, are

m2
16

16 11
106 00

11
16 11

1=
+





 +

+






.
. .

.
.

. .
007 50 106 61

1
16 11

1 922

. .

. .
.

=

=
+

=s

That is, our best single guess for the true population mean has shifted slightly 
from 106.00 to 106.61 after the second result, and the standard deviation in 
the posterior distribution is reduced from 2.50 before collecting the second 
sample to 1.92 after observing the second sample. Our new Bayesian 95% 
credible interval is [102.85, 110.37], which is slightly narrower than the pre-
vious 95% credible interval, [101.10, 110.90].

I used an online plotter by Dienes (2008) to display the prior, sample, 
and posterior distributions shown in Figure 10.2 for the results just described.4 
This graphic shows the change from the prior to posterior distributions after 
observing the results in the second sample. The last two rows in Table 10.1 
show changes in the prior and posterior distributions as results from two 
additional samples are synthesized. Note in the table that the widths of the 

4http://www.lifesci.sussex.ac.uk/home/Zoltan_Dienes/inference/bayes_normalposterior.swf
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Figure 10.2.  Plots of the prior distribution before collecting the second sample, 
the distribution in the second study, and the posterior distribution for the data in 
Table 10.1. Prior 1 (m1 = 106.00, s1 = 2.50), Study 2 (M1 = 107.50, sM1

 = 3.00), 
Posterior 2 (m2 = 106.61, s 2 = 1.92).
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posterior distributions get gradually narrower, which indicates decreasing 
uncertainty with more information.

Conventional meta-analysis and Bayesian analysis are both methods 
for research synthesis, and it is worthwhile to briefly summarize their relative 
strengths. Both methods accumulate evidence about a parameter of inter-
est and generate confidence intervals for that parameter. Both methods also 
allow sensitivity analysis of the consequences of making different kinds of 
decisions that may affect the results. Because meta-analysis is based on tradi-
tional statistical methods, it tests basically the same kinds of hypotheses that 
are evaluated in primary studies with traditional statistical tests. This limits 
the kinds of questions that can be addressed in meta-analysis. For example, a 
standard meta-analysis cannot answer the question, What is the probability 
that treatment has an effect? It could be determined whether zero is included 
in the confidence interval based on the average effect size across a set of stud-
ies, but this would not address the question just posed. In contrast, there is no 
special problem in dealing with this kind of question in Bayesian statistics. 
A Bayesian approach takes into account both previous knowledge and the 
inherent plausibility of the hypothesis, but meta-analysis is concerned only 
with the former. It is possible to combine meta-analytical and Bayesian meth-
ods in the same analysis (see Howard et al., 2000).

Evaluation

Bayesian methods are flexible and can evaluate the kinds of questions 
that researchers would really like answered. An obstacle to their wider use 
in the behavioral sciences was that many older reference works for Bayesian 
statistics were quite technical. They often required familiarity with inte-
gral notation for probability distributions and estimation techniques for the 
parameters of different kinds of probability distributions. Such presentations 
are not accessible for applied researchers without strong quantitative back-
grounds. But this situation is changing, and there are now some books that 
introduce Bayesian methods to a wider audience in the behavioral sciences 
(e.g., Dienes, 2008).

A second obstacle was the relative paucity of Bayesian software tools 
for behavioral scientists, but things have improved in this area, too. A freely 
available software tool for Bayesian analysis is WinBUGS (Bayesian Inference 
Using Gibbs Sampling; Lunn, Thomas, Best, & Spiegelhalter, 2000) for 
personal computers.5 There is an open-source version of WinBUGS that 

5http://www.mrc-bsu.cam.ac.uk/bugs/welcome.shtml
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runs under the LINUX/UNIX, Microsoft Windows, and Apple Macintosh 
operating systems.6 The OpenBugs computer tool will eventually supplant 
WinBUGS. Wetzels, Raaijmakers, Jakab, and Wagenmakers (2009) described 
the WinBUGS implementation of a Bayesian t test.

Bayesian methods are no more magical than any other set of statistical 
techniques. One drawback is that there is no direct way in Bayesian estima-
tion to control Type I or Type II errors regarding the dichotomous decision 
to reject or retain some hypothesis. Researchers can do so in traditional 
significance testing, but too often they ignore power (the complement of 
the probability of a Type II error) or specify an arbitrary level of Type I error 
(e.g., a = .05), so this capability is usually wasted. Specification of prior prob-
abilities or prior distributions in Bayesian statistics affects estimates of their 
posterior counterparts. If these specifications are grossly wrong, the results 
could be meaningless (e.g., Hurlbert & Lombardi, 2009). But assumptions 
in Bayesian analyses should be explicitly stated and thus open to scrutiny. 
Bowers and Davis (2012) criticized the application of Bayesian methods in 
neuroscience. They noted in particular that Bayesian methods offer little 
improvement over more standard statistical techniques, but they also noted 
problems with use of the former, such as the specification of prior probabilities 
or utility functions in ways that are basically arbitrary. As with more standard 
statistical methods, Bayesian techniques are not immune to misuse. Overall, 
behavioral researchers comfortable with structural equation modeling or 
other statistical modeling techniques should be able to manage the basics 
of Bayesian estimation. But do give careful thought to the representation of 
your hypotheses in this approach, which is critical in any kind of analysis.

Best Practice Recommendations

Summarized next are suggestions for best practices in reporting results 
from empirical studies; see also Cumming (2012), Ellis (2010), and Ziliak and 
McCloskey (2008).

1.	 Do not express research hypotheses solely in terms of statistical 
significance. For example, to say something like “It is expected 
that the effect of learning incentive on performance will be 
significant” is to make a hollow prediction, one that betrays 
confusion of statistical significance with scientific relevance. 
Instead, state hypotheses in terms of expected directions and 
magnitudes for effects of interest.

6http://www.openbugs.info/w/
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2.	 To make predictions about effect size, you need to have a sense 
of typical effect sizes observed in previous studies. If there is no 
meta-analysis, you may be able to compute effect sizes based 
on descriptive or test statistics reported in primary studies. 
Doing so is harder for newer research topics for which there 
are few studies, but estimating effect sizes over even a small 
number of previous works is still worthwhile.

3.	 If a relevant meta-analysis is based on a fixed effects model, look 
skeptically at confidence intervals for average weighted effect 
sizes. The widths of these intervals may be too narrow if the 
true model is really a random effects model (see Figure 9.1).

4.	 Given your outcome measures, estimate minimum effect sizes 
needed before the results would be considered substantively 
significant. For example, establish a good-enough belt around 
zero that marks the boundaries of unappreciable effect sizes. 
Any result beyond this belt would be considered as potentially 
of scientific interest.

5.	 It is harder to relate effect sizes to substantive significance when 
metrics of outcome variables are arbitrary instead of mean-
ingful. This explains in part why the illusion that statisti-
cal significance indicates scientific relevance is so appealing 
when the metrics of outcome variables have no real-world 
referents. In treatment outcome studies, where the ultimate 
goal is to evaluate clinical significance, this problem should 
motivate researchers to consider alternative outcomes or 
look deeper into the literature to find meaningful correlates 
of scores expressed in arbitrary metrics.

6.	 Select a standardized effect size for results measured in arbi-
trary metrics that would be most familiar in your research area 
(e.g., d-type vs. r-type effect sizes). But report unstandardized 
effect sizes for outcomes scales in meaningful metrics.

7.	 In treatment outcome studies, estimate effect size at both the 
group and case levels. Results of the latter should describe 
the degree to which treated versus control cases are distinct.

8.	Select measures and procedures in ways to reduce measure-
ment error or other sources of irrelevant variance. Do not 
assume that measures or procedures have acceptable psy-
chometric properties just because they were used in previous 
studies.

9.	 If scores on predictor or outcome variables come from psycho-
logical tests, estimate and report reliability coefficients in your 
own sample. If the results for a set of scores are unsatisfactory, 
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such as rXX < .50, then skip analyzing those scores (Little, 
Lindenberger, & Nesselroade, 1999, described some excep-
tions to this rule).

10.	 If it is not possible to estimate score reliabilities in your own 
sample, then (a) report values of these coefficients given in 
other studies but (b) explicitly compare characteristics of 
samples from other studies with those of your own (i.e., justify 
reliability induction).

11.	 Build replication into the study plan. One way is to collect 
sufficient cases until there are both a derivation sample and a 
cross-replication sample (i.e., conduct internal replication).

12.	 Follow an analysis plan that respects both theory and results 
of previous empirical studies but also minimizes the total num-
ber of analyses. Avoid “snooping” using statistical tests to find 
potentially interesting results.

13.	 Do not hide HARKing—hypothesizing after the results are 
known—from your readers. That is, do not invent a rationale 
for the study after conducting preliminary analyses. It is better 
to explicitly state that the original hypotheses were not sup-
ported. Some of the most interesting findings in science have 
come from studies where expected results were not found. 
Such “failures” can lead to new discoveries.

14.	 Select a minimally sufficient statistical technique, or the sim-
plest one that addresses the hypotheses. It is also critical that 
you understand the output of this technique. Otherwise, you 
are not ready to use that technique in a meaningful way for 
your intended audience.

15.	If results of significance testing are to be reported, then  
(a) estimate a prior power for expected population effect 
sizes and (b) specify a intelligently (e.g., Equation 3.3), not 
arbitrarily. Be prepared to explain why the assumption of 
random—or at least representative—sampling in signifi-
cance testing is not grossly incorrect in your study. Also 
justify why testing a nil hypothesize is warranted.

16.	 Report effect sizes for all effects of substantive interest, not 
just for those that are statistically significant.

17.	Do not use the word significant in ambiguous ways. For exam-
ple, never use the word significant without the qualifier sta-
tistically when describing statistical test outcomes. There is 
no requirement to use the word significant for results where 
p < a. One context is when p values are reported but not 
dichotomized relative to some arbitrarily specified level of a.
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18.	 Describe data integrity in the very first paragraph of the Results 
section. Give information about complications, such as miss-
ing data, and steps taken to deal with these problems. Reas-
sure readers that assumptions of statistical techniques, such 
as requirements for normality or homoscedasticity, are not 
untenable. If assumptions are violated, describe any interven-
tion, such as transformations, taken to remedy the trouble 
(Wilkinson & the TFSI, 1999).

19.	 Do not refer to the T-shirt effect sizes of small, medium, or large, 
especially if there is no basis in your research area for distin-
guishing between smaller versus larger effects.

20.	 Whenever possible, report confidence intervals for effect sizes 
of substantive interest. Treat the lower and upper bounds of 
these intervals as estimating the range of effects that are equiva-
lent to your point estimates within the limits of sampling error 
and assuming that all other sources of error are nil.

21.	Evaluate the substantive significance of your observed effect 
sizes. Doing so may require that you find a way to communi-
cate with stakeholders about how to differentiate between 
trivial and meaningful results. Without doing so, it is diffi-
cult to communicate meaningfully with practitioners, clini-
cians, managers, or other audiences without strong research 
backgrounds.

22.	 Report sufficient summary statistics so that others can, with-
out access to your raw data file, reproduce at least your main 
analyses. For example, report correlations, standard deviations, 
and means for all variables in regression analyses, and list cell 
means, standard deviations, and sizes for each dependent vari-
able in ANOVA. Also report the correlation matrix in each 
group for within-subjects factors. Make these summaries avail-
able online if there is not enough space in a published report 
to provide this information. Zientek and Thompson (2009) 
described how following this practice can improve research 
reports.

23.	Even better, make your raw data available online. There are 
online repositories for data sets in some research areas, such 
as for clinical drug trials. Otherwise, put your data files on 
your own web page. Doing so makes a strong statement about 
openness and transparency. (This recommendation assumes 
that confidentiality obligations are respected.)

24.	 Never forget that the point of data analysis is not to report sta-
tistically significant results or effect sizes that seem relatively 
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large. These outcomes are incidental to the real purpose of 
empirical science, which is to test good ideas about outcomes 
of potential theoretical, practical, or substantive significance.

Conclusion

In an ideal world, students in the behavioral sciences would be taught the 
basics of Bayesian inference either along with or in lieu of traditional signifi-
cance testing. This is not to say that Bayesian estimation is without potential 
limitations. There is no such thing as a perfect inference model that works 
equally well in all situations. But a Bayesian approach comes closer to the 
goal of directly evaluating hypotheses in light of the data. Bayesian estimation 
also requires that all assumptions are explicitly stated in the form of specifica-
tions about prior probabilities or distributions. This aspect of Bayesian statistics 
directly acknowledges the role of reasoned judgment in science, which is hidden 
behind a veneer of objectivity in significance testing.

The main point of this chapter—and that of the whole book—is that 
there are alternatives to the unthinking overreliance on significance testing 
that has handicapped the behavioral sciences for so long. And if you have 
gained new perspectives on your research in the course of reading this book, 
then I have attained my goals for writing it. In a science fiction story from 
the 1950s by Alfred Bester (1979), the dark wizard protagonist poses a ques-
tion to a talented but immature young artist: “It’s late. Time to make up your 
mind. Which will it be? The reality of dreams or the dream of reality?” (p. 221). 
The artist eventually chooses the hard road of reality and thus opens new 
prospects. May our own choices about how to analyze data and describe the 
results be so brave. All the best.

Learn More

Articles by Dienes (2011), Kruschke (2010), and Wetzels et al. (2011) 
clearly describe applications of Bayesian methods in the behavioral sciences.

Dienes, Z. (2011). Bayesian versus orthodox statistics: Which side are you on? Per-
spectives on Psychological Science, 6, 274–290. doi: 10.1177/1745691611406920

Kruschke, J. K. (2010). What to believe: Bayesian methods for data analysis. Trends 
in Cognitive Sciences, 14, 293–300. doi:10.1016/j.tics.2010.05.001

Wetzels, R., Matzke, D., Lee, M. D., Rouder, J. N., Iverson, G. J., & Wagenmakers,  
E.-J. (2011). Bayesian assessment of null values via parameter estimation and 
model comparison. Perspectives on Psychological Science, 6, 291–298. doi: 10.1177/ 
1745691611406925

13170-11_Ch10-3rdPgs.indd   312 2/1/13   12:05 PM



313

References

Abelson, R. P. (1997a). A retrospective on the significance test ban of 1999 (If there  
were no significance tests, they would be invented). In L. L. Harlow, S. A. Mulaik, 
& J. H. Steiger (Eds.), What if there were no significance tests? (pp. 117–141). 
Mahwah, NJ: Erlbaum.

Abelson, R. P. (1997b). On the surprising longevity of flogged horses: Why there is a case for 
the significance test. Psychological Science, 8, 12–15. doi:10.1111/j.1467-9280.1997.
tb00536.x

Agresti, A. (2007). An introduction to categorical data analysis (2nd ed.). Hoboken, NJ: 
Wiley. doi:10.1002/0470114754

Aguinis, H., Werner, S., Abbott, J. L., Angert, C., Park, J. H., & Kohlhausen, D. 
(2010). Customer-centric science: Reporting significant research results with 
rigor, relevance, and practical impact in mind. Organizational Research Methods, 
13, 515–539. doi:10.1177/1094428109333339

Aiken, L. S., West, S. G., Sechrest, L., Reno, R. R., Roediger, H. L., III, Scarr, 
S., . . . Sherman, S. J. (1990). Measurement in psychology: A survey of PhD pro-
grams in North America. American Psychologist, 45, 721–734. doi:10.1037/0003-
066X.45.6.721

Algina, J., & Keselman, H. J. (2003). Approximate confidence intervals for effect 
sizes. Educational and Psychological Measurement, 63, 537–553. doi:10.1177/ 
0013164403256358

Algina, J., Keselman, H. J., & Penfield, R. D. (2005a). An alternative to Cohen’s stan-
dardized mean difference effect size: A robust parameter and confidence inter-
vals in the two independent groups case. Psychological Methods, 10, 317–328. 
doi:10.1037/1082-989X.10.3.317

Algina, J., Keselman, H. J., & Penfield, R. (2005b). Effect sizes and their intervals: 
The two-level repeated measures case. Educational and Psychological Measure-
ment, 65, 241–258. doi:10.1177/0013164404268675

Algina, J., Keselman, H. J., & Penfield, R. D. (2006). Confidence intervals for an 
effect size when variances are not equal. Journal of Modern Applied Statistical 
Methods, 5, 2–13. doi:10.1177/0013164406288161

American Educational Research Association, American Psychological Associa-
tion, & National Council on Measurement in Education. (1999). Standards for 
educational and psychological testing. Washington, DC: American Psychological 
Association.

American Psychological Association. (2001). Publication manual of the American 
Psychological Association (5th ed.). Washington, DC: Author.

American Psychological Association. (2010). Publication manual of the American 
Psychological Association (6th ed.). Washington, DC: Author.

13170-12_References-3rdPgs.indd   313 2/1/13   12:05 PM



314           references

Andersen, M. B. (2007). But what do the numbers really tell us? Arbitrary metrics 
and effect size reporting in sport psychology research. Journal of Sport & Exercise 
Psychology, 29, 664–672. Retrieved from http://journals.humankinetics.com/jsep

Anderson, D. R., Burnham, K. P., & Thompson, W. L. (2000). Null hypothesis test-
ing: Problems, prevalence, and an alternative. Journal of Wildlife Management, 64, 
912–923. doi:10.2307/3803199

Armstrong, J. S. (2007). Significance tests harm progress in forecasting. International 
Journal of Forecasting, 23, 321–327. doi:10.1016/j.ijforecast.2007.03.004

Aron, A., & Aron, E. N. (2002). Statistics for the behavioral and social sciences (2nd ed.). 
Upper Saddle River, NJ: Prentice Hall.

Austin, P. C., Mamdani, M. M., Juurlink, D. N., & Hux, J. E. (2006). Testing multiple 
statistical hypotheses resulted in spurious associations: A study of astrological 
signs and health. Journal of Clinical Epidemiology, 59, 964–969. doi:10.1016/j.
jclinepi.2006.01.012

Baguley, T. (2004). An introduction to sphericity. Retrieved from http://homepages.
gold.ac.uk/aphome/spheric.html

Baguley, T. (2009). Standardized or simple effect size: What should be reported? 
British Journal of Psychology, 100, 601–617. doi:10.1348/000712608X377117

Bakan, D. (1966). The test of significance in psychological research. Psychological 
Bulletin, 66, 423–437. doi:10.1037/h0020412

Bayes, T. (1763). A letter to John Canton. Philosophical Transactions of the Royal Society 
of London, 53, 293–295.

Beck, A. T., Rush, A. J., Shaw, B. F., & Emory, G. (1979). Cognitive therapy of depression. 
New York, NY: Guilford Press.

Belasco, J., & Stayer, R. (1993). Flight of the buffalo: Soaring to excellence, learning to let 
employees lead. New York, NY: Warner.

Belia, S., Fidler, F., Williams, J., & Cumming, G. (2005). Researchers misunderstand 
confidence intervals and standard error bars. Psychological Methods, 10, 389–396. 
doi:10.1037/1082-989X.10.4.389

Bellinger, D. C. (2007). Interpretation of small effect sizes in occupational and envi-
ronmental neurotoxicology: Individual versus population risk. Neurotoxicology, 
28, 245–251. doi:10.1016/j.neuro.2006.05.009

Bem, D. J. (2011). Feeling the future: Experimental evidence for anomalous retroactive 
influences on cognition and affect. Journal of Personality and Social Psychology, 100, 
407–425. doi:10.1037/a0021524

Berkson, J. (1942). Tests of significance considered as evidence. Journal of the American 
Statistical Association, 37, 325–335. doi:10.1080/01621459.1942.10501760

Bester, A. (1979). 5,271,009. In M. H. Greenberg & J. Olander (Eds.), Science fiction of 
the fifties (pp. 187–221). New York, NY: Avon Books. (Original work published 
1954)

Bird, K. D. (2002). Confidence intervals for effect sizes in analysis of variance. Educational 
and Psychological Measurement, 62, 197–226. doi:10.1177/0013164402062002001

13170-12_References-3rdPgs.indd   314 2/1/13   12:05 PM



references           315

Bird, K. D., Hadzi-Pavlovic, D., & Isaac, A. (2000). PSY [Computer program]. 
Retrieved from http://www.psy.unsw.edu.au/research/resources/psyprogram.html

Blanton, H., & Jaccard, J. (2006). Arbitrary metrics in psychology. American Psy-
chologist, 61, 27–41. doi:10.1037/0003-066X.61.1.27

Bonett, D. G., & Price, R. M. (2002). Statistical inference for a linear function of 
medians: Confidence interval, hypothesis testing, and sample size requirements. 
Psychological Methods, 7, 370–383. doi:10.1037/1082-989X.7.3.370

Borenstein, M. (2009). Effect sizes for continuous data. In H. Cooper, L. V. Hedges, 
& J. C. Valentine (Eds.), The handbook of research synthesis and meta-analysis 
(2nd ed., pp. 221–235). New York, NY: Russell Sage Foundation.

Borenstein, M., Hedges, L. V., Higgins, J. P. T., & Rothstein, H. R. (2005). Compre-
hensive Meta-Analysis (Version 2) [Computer software]. Englewood, NJ: Biostat.

Borenstein, M., Hedges, L. V., Higgins, J. P. T., & Rothstein, H. R. (2009). Introduction 
to meta-analysis. Chichester, England: Wiley. doi:10.1002/9780470743386

Boring, E. G. (1919). Mathematical vs. scientific importance. Psychological Bulletin, 
16, 335–338. doi:10.1037/h0074554

Bowers, J. S., & Davis, C. J. (2012). Bayesian just-so stories in psychology and neuro-
science. Psychological Bulletin, 138, 389–414. doi:10.1037/a0026450

Breaugh, J. A. (2003). Effect size estimation: Factors to consider and mistakes to 
avoid. Journal of Management, 29, 79–97. doi:10.1177/014920630302900106

Brock, F. (2003). The “power” of international business research. Journal of Inter-
national Business Studies, 34, 90–99. doi:10.1057/palgrave.jibs.8400006

Brown, J. S., Bradley, C. S., Subak, L. L., Richter, H. E., Kraus, S. R., & Brubaker, 
L., . . . Grady, D. (2006). The sensitivity and specificity of a simple test to distin-
guish between urge and stress urinary incontinence. Annals of Internal Medicine, 
144, 715–723. Retrieved from http://www.annals.org/

Brown, T. G., Seraganian, P., Tremblay, J., & Annis, H. (2002). Matching sub-
stance abuse aftercare treatments to client characteristics. Addictive Behaviors, 
27, 585–604. doi:10.1016/S0306-4603(01)00195-2

Browne, M. W., & Du Toit, S. H. C. (1991). Models for learning data. In L. M. Collins 
& J. L. Horn (Eds.), Best methods for the analysis of change (pp. 47–68). Washington, 
DC: American Psychological Association.

Bruce, C. R., Anderson, M. E., Fraser, S. F., Stepko, N. K., Klein, R., Hopkins, W. 
G., & Hawley, J. A. (2000). Enhancement of 2000-m rowing performance after 
caffeine ingestion. Medicine and Science in Sports and Exercise, 32, 1958–1963. 
doi:10.1097/00005768-200011000-00021

Canadian Task Force on Preventive Health Care. (2011). Recommendations on 
screening for breast cancer in average-risk women aged 40–74 years. Canadian 
Medical Association Journal, 183, 1991–2001. doi: 10.1503/cmaj.110334

Capraro, R. M., & Capraro, M. (2002). Treatments of effect sizes and statistical sig-
nificance in textbooks. Educational and Psychological Measurement, 62, 771–782. 
doi:10.1177/001316402236877

13170-12_References-3rdPgs.indd   315 2/1/13   12:05 PM



316           references

Card, N. A. (2012). Applied meta-analysis for social science research. New York, NY: 
Guilford Press.

Cartwright, D. (1973). Determinants of scientific progress: The case of research on 
the risky shift. American Psychologist, 28, 222–231. doi:10.1037/h0034445

Carver, R. P. (1978). The case against significance testing. Harvard Educational Review, 
48, 378–399. Retrieved from http://www.hepg.org/main/her/Index.html

Casscells, W., Schoenberger, A., & Graboys, T. (1978). Interpretation by physicians 
of clinical laboratory results. New England Journal of Medicine, 299, 999–1001. 
doi:10.1056/NEJM197811022991808

Chater, N., Tenenbaum, J. B., & Yuille, A. (2006). Probabilistic models of cog-
nition: Conceptual foundations. Trends in Cognitive Sciences, 10, 287–291. 
doi:10.1016/j.tics.2006.05.007

Chernick, M. R. (2008). Bootstrap methods: A guide for practitioners and researchers 
(2nd ed.). Hoboken, NJ: Wiley.

Chinn, S. (2000). A simple method for converting an odds ratio to effect size for 
use in meta-analysis. Statistics in Medicine, 19, 3127–3131. doi:10.1002/1097-
0258(20001130)19:22<3127::AID-SIM784>3.0.CO;2-M

Christina, R. (2010). Extreme risk management: Revolutionary approaches to evaluating 
and measuring risk. New York, NY: McGraw Hill.

Cohen, J. (1962). The statistical power of abnormal–social psychological research: 
A review. Journal of Abnormal and Social Psychology, 65, 145–153. doi:10.1037/
h0045186

Cohen, J. (1968). Multiple regression as a general data-analytic system. Psychological 
Bulletin, 70, 426–443. doi:10.1037/h0026714

Cohen, J. (1969). Statistical power analyses for the behavioral sciences. New York, NY: 
Academic Press.

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). New York, 
NY: Academic Press.

Cohen, J. (1994). The earth is round (p < .05). American Psychologist, 49, 997–1003. 
doi:10.1037/0003-066X.49.12.997

Colliver, J. A., & Markwell, S. J. (2006). ANCOVA, selection bias, statistical equat-
ing, and effect size: Recommendations for publication. Teaching and Learning in 
Medicine, 18, 284–286. doi:10.1207/s15328015tlm1804_1

Conn, V. S., & Rantz, M. J. (2003). Research methods: Managing primary study qual-
ity in meta-analyses. Research in Nursing & Health, 26, 322–333. doi:10.1002/
nur.10092

Cook, S., & Wilding, J. (2001). Earwitness testimony: Effects of exposure and atten-
tion on the face overshadowing effect. British Journal of Psychology, 92, 617–629. 
doi:10.1348/000712601162374

Cortina, J. M., & Nouri, H. (2000). Effect size for ANOVA designs. Thousand Oaks, 
CA: Sage.

13170-12_References-3rdPgs.indd   316 2/1/13   12:05 PM



references           317

Crawford, J. R., Garthwaite, P. H., & Betkowska, K. (2009). Bayes’ theorem and 
diagnostic tests in neuropsychology: Interval estimates for post-test probabili-
ties. Clinical Neuropsychologist, 23, 624–644. doi:10.1080/13854040802524229

Culpepper, S. A., & Aguinis, H. (2011). Using analysis of covariance (ANCOVA) with 
fallible covariates. Psychological Methods, 16, 166–178. doi:10.1037/a0023355

Cumming, G. (2008). Replication and p intervals: p values predict the future only 
vaguely, but confidence intervals do much better. Perspectives on Psychological 
Science, 3, 286–300. doi:10.1111/j.1745-6924.2008.00079.x

Cumming, G. (2012). Understanding the new statistics: Effect sizes, confidence intervals, 
and meta-analysis. New York, NY: Routledge.

Cumming, G., Fidler, F., & Vaux, D. L. (2007). Error bars in experimental biology. 
Journal of Cell Biology, 177, 7–11. doi:10.1083/jcb.200611141

Cumming, G., & Finch, S. (2001). A primer on the understanding, use, and calcula-
tion of confidence intervals that are based on central and noncentral distribu-
tions. Educational and Psychological Measurement, 61, 532–574. doi:10.1177/ 
00131640121971374

Cumming, G., & Maillardet, R. (2006). Confidence intervals and replication: Where 
will the next mean fall? Psychological Methods, 11, 217–227. doi:10.1037/1082-
989X.11.3.217

Cumming, G., Williams, J., & Fidler, F. (2004). Replication and researchers’ under-
standing of confidence intervals and standard error bars. Understanding Statistics, 
3, 299–311. doi:10.1207/s15328031us0304_5

Dawes, R. M. (2001). Everyday irrationality: How pseudo-scientists, lunatics, and the 
rest of us systematically fail to think rationally. Cambridge, MA: Westview Press.

Deeks, J. J., & Altman, D. G. (2004). Diagnostic tests 4: Likelihood ratios. BMJ, 329, 
168–169. doi:10.1136/bmj.329.7458.168

den Hollander, B., Schouw, M., Groot, P., Huisman, H., Caan, M., Barkhof, F., & 
Reneman, L. (2012). Preliminary evidence of hippocampal damage in chronic 
users of ecstasy. Journal of Neurology, Neurosurgery & Psychiatry, 83, 83–85. 
doi:10.1136/jnnp.2010.228387

Dienes, Z. (2008). Understanding psychology as a science: An introduction to scientific 
and statistical inference. New York, NY: Palgrave Macmillan.

Dienes, Z. (2011). Bayesian versus orthodox statistics: Which side are you on? Per-
spectives on Psychological Science, 6, 274–290. doi:10.1177/1745691611406920

Dixon, P., & O’Reilly, T. (1999). Scientific versus statistical inference. Canadian 
Journal of Experimental Psychology, 53, 133–149. doi:10.1037/h0087305

Dodd, D. H., & Schultz, R. F. (1973). Computational procedures for estimating mag-
nitude of effect for some analysis of variance designs. Psychological Bulletin, 79, 
391–395. doi:10.1037/h0034347

Drobatz, K. J. (2009). Measures of accuracy and performance of diagnostic tests. Journal 
of Veterinary Cardiology, 11(Suppl. 1), S33–S40. doi:10.1016/j.jvc.2009.03.004

13170-12_References-3rdPgs.indd   317 2/1/13   12:05 PM



318           references

Dunleavy, E. M., Barr, C. D., Glenn, D. M., & Miller, K. R. (2006). Effect size report-
ing in applied psychology: How are we doing? The Industrial-Organizational Psy-
chologist, 43(4), 29–37. Retrieved from http://www.siop.org/tip/tip.aspx

Easley, R. W., Madden, C. S., & Dunn, M. G. (2000). Conducting marketing science: 
The role of replication in the research process. Journal of Business Research, 48, 
83–92. doi:10.1016/S0148-2963(98)00079-4

Edwards, W., Lindman, H., & Savage, L. J. (1963). Bayesian statistical inference for 
psychological research. Psychological Review, 70, 193–242. doi:10.1037/h0044139

Efron, B. (1979). Bootstrap methods: Another look at the jackknife. Annals of Statis-
tics, 7, 1–26. doi:10.1214/aos/1176344552

Ellis, P. D. (2010). The essential guide to effect sizes: Statistical power, meta-analysis, and 
the interpretation of research results. New York, NY: Cambridge University Press. 
doi:10.1017/CBO9780511761676

Erceg-Hurn, D. M., & Mirosevich, V. M. (2008). Modern robust statistical methods: 
An easy way to maximize the accuracy and power of your research. American 
Psychologist, 63, 591–601. doi:10.1037/0003-066X.63.7.591

Eysenck, H. J. (1995). Meta-analysis squared—Does it make sense? American Psy-
chologist, 50, 110–111. doi:10.1037/0003-066X.50.2.110

Falk, R., & Greenbaum, C. W. (1995). Significance tests die hard: The amazing 
persistence of a probabilistic misconception. Theory & Psychology, 5, 75–98. 
doi:10.1177/0959354395051004

Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G*Power 3: A flexible 
statistical power analysis program for the social, behavioral, and biomedical 
sciences. Behavior Research Methods, 39, 175–191. doi:10.3758/BF03193146

Ferguson, C. J. (2009). Is psychology research really as good as medical research? 
Effect size comparisons between psychology and medicine. Review of General 
Psychology, 13, 130–136. doi:10.1037/a0015103

Fern, E. F., & Monroe, K. B. (1996). Effect-size estimates: Issues and problems. Journal 
of Consumer Research, 23, 89–105. doi:10.1086/209469

Fidler, F., Burgman, M. A., Cumming, G., Buttrose, R., & Thomason, N. (2006). 
Impact of criticism of null-hypothesis significance testing on statistical report-
ing practices in conservation biology. Conservation Biology, 20, 1539–1544. 
doi:10.1111/j.1523-1739.2006.00525.x

Fidler, F., Cumming, G., Thomason, N., Pannuzzo, D., Smith, J., Fyffe, P., . . . Schmitt, 
R. (2005). Toward improved statistical reporting in the Journal of Consulting and 
Clinical Psychology. Journal of Consulting and Clinical Psychology, 73, 136–143. 
doi:10.1037/0022-006X.73.1.136

Fidler, F., Thomason, N., Cumming, G., Finch, S., & Leeman, J. (2004). Editors can 
lead researchers to confidence intervals, but can’t make them think: Statistical 
reform lessons from medicine. Psychological Science, 15, 119–126. doi:10.1111/
j.0963-7214.2004.01502008.x

13170-12_References-3rdPgs.indd   318 2/1/13   12:05 PM



references           319

Fidler, F., & Thompson, B. (2001). Computing correct confidence intervals for 
ANOVA fixed- and random-effects effect sizes. Educational and Psychological 
Measurement, 61, 575–604. doi:10.1177/0013164401614003

Finch, S., Cumming, G., & Thomason, N. (2001). Reporting of statistical inference 
in the Journal of Applied Psychology: Little evidence of reform. Educational and 
Psychological Measurement, 61, 181–210. doi:10.1177/00131640121971167

Finch, S., Cumming, G., Williams, J., Palmer, L., Griffith, E., Alders, C., . . . Goodman, 
O. (2004). Reform of statistical inference in psychology: The case of Memory & 
Cognition. Behavior Research Methods, Instruments, & Computers, 36, 312–324. 
doi:10.3758/BF03195577

Finch, W. H., & French, B. F. (2012). A comparison of methods for estimating con-
fidence intervals for omega-squared effect size. Educational and Psychological 
Measurement, 72, 68–77. doi:10.1177/0013164411406533

Fisher, R. A. (1925). Statistical methods for research workers. Edinburgh, Scotland: 
Oliver & Boyd.

Fisher, R. A. (1956). Statistical methods and scientific inference. Edinburgh, Scotland: 
Oliver & Boyd.

Fleiss, J. L., & Berlin, J. A. (2009). Effect sizes for dichotomous data. In H. Cooper, 
L. V. Hedges, & J. C. Valentine (Eds.), The handbook of research synthesis and 
meta-analysis (2nd ed., pp. 237–253). New York, NY: Russell Sage Foundation.

Fournier, J. C., DeRubeis, R. J., Hollon, S. D., Dimidjian, S., Amsterdam, J. D., 
Shelton, R. C., & Fawcett, J. (2010). Antidepressant drug effects and depression 
severity: A patient-level meta-analysis. Journal of the American Medical Associa-
tion, 303, 47–53. doi:10.1001/jama.2009.1943

Freiman, J. A., Chalmers, T., Smith, H., & Kuebler, R. R. (1978). The importance 
of beta, the Type II error and sample design in the design and interpretation of 
the randomized control trial: Survey of 71 negative trials. New England Journal 
of Medicine, 299, 690–694. doi:10.1056/NEJM197809282991304

Friederich, J., Buday, E., & Kerr, D. (2000). Statistical training in psychology: A 
national survey and commentary on undergraduate programs. Teaching of Psy-
chology, 27, 248–257. doi:10.1207/S15328023TOP2704_02

Friedman, G. (2009). The next 100 years: A forecast for the 21st century. New York, 
NY: Doubleday.

Geary, R. C. (1947). Testing for normality. Biometrika, 34, 209–242. doi:10.1093/
biomet/34.3-4.209

Gelman, A., & Stern, H. (2006). The difference between “significant” and “not sig-
nificant” is not itself statistically significant. American Statistician, 60, 328–331. 
doi:10.1198/000313006X152649

Gigerenzer, G. (1993). The superego, the ego, and the id in statistical reasoning. In 
G. Keren & C. Lewis (Eds.), A handbook for data analysis in the behavioral sciences: 
Vol. 1. Methodological issues (pp. 311–339). Hillsdale, NJ: Erlbaum.

13170-12_References-3rdPgs.indd   319 2/1/13   12:05 PM



320           references

Gigerenzer, G. (2004). Mindless statistics. Journal of Socio-Economics, 33, 587–606. 
doi:10.1016/j.socec.2004.09.033

Gigerenzer, G., & Murray, D. (1987). Cognition as intuitive statistics. Hillsdale, NJ: 
Erlbaum.

Gilbody, S. M., Song, F., Eastwood, A. J., & Sutton, A. (2000). The causes, conse-
quences and detection of publication bias in psychiatry. Acta Psychiatrica Scan-
dinavica, 102, 241–249. doi:10.1034/j.1600-0447.2000.102004241.x

Glass, G. V., McGaw, B., & Smith, M. L. (1981). Meta-analysis in social research. 
Newbury Park, CA: Sage.

Glass, G. V., Peckham, P. D., & Sanders, J. R. (1972). Consequences of failure to 
meet assumptions underlying the fixed analysis of variance and covariance. 
Review of Educational Research, 42, 237–288. doi:10.2307/1169991

Gleick, J. (1987). Chaos: Making a new science. New York, NY: Viking Penguin.

Gliner, J. A., Leech, N. L., & Morgan, G. A. (2002). Problems with null hypothesis 
significance testing (NHST): What do the textbooks say? Journal of Experimental 
Education, 71, 83–92. doi:10.1080/00220970209602058

Gorard, S. (2006). Towards a judgment-based statistical analysis. British Journal of 
Sociology of Education, 27, 67–80. doi:10.1080/01425690500376663

Gouzoulis-Mayfrank, E., Daumann, J., Tuchtenhagen, F., Pelz, S., Becker, S., Kunert, 
H.-J., . . . Sass, H. (2000). Impaired cognitive performance in drug free users of 
recreational ecstasy (MDMA). Journal of Neurology, Neurosurgery & Psychiatry, 
68, 719–725. doi:10.1136/jnnp.68.6.719

Gray, P. O. (2002). Psychology (4th ed.). New York, NY: Worth.

Greenwald, A. G., Gonzalez, R., Harris, R. J., & Guthrie, D. (1996). Effect sizes 
and p values: What should be reported and what should be replicated? Psycho-
physiology, 33, 175–183. doi:10.1111/j.1469-8986.1996.tb02121.x

Grimes, D. A., & Schulz, K. F. (2002). Uses and abuses of screening tests. Lancet, 
359, 881–884. doi:10.1016/S0140-6736(02)07948-5

Grissom, R. J., & Kim, J. J. (2011). Effect sizes for research: Univariate and multivariate 
applications (2nd ed.). New York, NY: Routledge.

Guthery, F. S., Lusk, J. J., & Peterson, M. J. (2001). The fall of the null hypoth-
esis: Liabilities and opportunities. Journal of Wildlife Management, 65, 379–384. 
doi:10.2307/3803089

Halkin, A., Reichman, J., Schwaber, M., Paltiel, O., & Brezis, M. (1998). Likelihood 
ratios: Getting diagnostic testing into perspective. Quarterly Journal of Medicine, 
91, 247–258. doi:10.1093/qjmed/91.4.247

Haller, H., & Krauss, S. (2002). Misinterpretations of significance: A problem stu-
dents share with their teachers? Methods of Psychological Research Online, 7(1), 
1–17. Retrieved from http://www.dgps.de/fachgruppen/methoden/mpr-online/

Harlow, L. L., Mulaik, S. A., & Steiger, J. H. (Eds.). (1997). What if there were no 
significance tests? Mahwah, NJ: Erlbaum.

13170-12_References-3rdPgs.indd   320 2/1/13   12:05 PM



references           321

Harris, R. J. (1997). Reforming significance testing via three-valued logic. In L. L. 
Harlow, S. A. Mulaik, & J. H. Steiger (Eds.), What if there were no significance 
tests? (pp. 145–174). Mahwah, NJ: Erlbaum.

Hedges, L. V. (1987). How hard is hard science, how soft is soft science? American 
Psychologist, 42, 443–455. doi:10.1037/0003-066X.42.5.443

Herbert, R. (2011). Confidence Interval Calculator [Computer software]. Available 
from http://www.pedro.org.au/english/downloads/confidence-interval-calculator/

Hoekstra, R., Finch, S., Kiers, H., & Johnson, A. (2006). Probability as certainty: 
Dichotomous thinking and misuse of p values. Psychonomic Bulletin & Review, 
13, 1033–1037. doi:10.3758/BF03213921

Hoffer, E. (1973). Reflections on the human condition. New York, NY: Harper & Row.

Holroyd-Leduc, J. M., & Straus, S. E. (2004). Management of urinary incontinence 
in women: Scientific review. Journal of the American Medical Association, 291, 
986–995. doi:10.1001/jama.291.8.986

Howard, G. S., Maxwell, S. E., & Fleming, K. J. (2000). The proof of the pudding: 
An illustration of the relative strengths of null hypothesis, meta-analysis, 
and Bayesian analysis. Psychological Methods, 5, 315–332. doi:10.1037/1082-
989X.5.3.315

Hsu, J. C. (1996). Multiple comparisons: Theory and methods. New York, NY: Chapman 
& Hall.

Hubbard, R., & Armstrong, J. S. (2006). Why we don’t really know what “statistical 
significance” means: A major educational failure. Journal of Marketing Educa-
tion, 28, 114–120. doi:10.1177/0273475306288399

Hubbard, R., Bayarri, M. J., Berk, K. N., & Carlton, M. A. (2003). Confusion over 
measures of evidence (p’s) versus errors (a’s) in classical statistical testing. 
American Statistician, 57, 171–178. doi:10.1198/0003130031856

Hubbard, R., & Ryan, P. A. (2000). The historical growth of statistical significance 
testing in psychology—and its future prospects. Educational and Psychological 
Measurement, 60, 661–681. doi:10.1177/00131640021970808

Huberty, C. J. (1993). Historical origins of statistical testing practices: The treatment 
of Fisher versus Neyman–Pearson views in textbooks. Journal of Experimental 
Education, 61, 317–333. Retrieved from http://www.tandf.co.uk/journals/
titles/00220973.asp

Huberty, C. J. (2002). A history of effect size indices. Educational and Psychological 
Measurement, 62, 227–240. doi:10.1177/0013164402062002002

Huberty, C. J., & Lowman, L. L. (2000). Group overlap as the basis for effect size. Educational 
and Psychological Measurement, 60, 543–563. doi:10.1177/00131640021970718

Huberty, C. J., & Olejnik, S. (2006). Applied MANOVA and discriminant analysis 
(2nd ed.). Hoboken, NJ: Wiley.

Hunt, K. (1975). Do we really need more replications? Psychological Reports, 36, 
587–593. doi:10.2466/pr0.1975.36.2.587

13170-12_References-3rdPgs.indd   321 2/1/13   12:05 PM



322           references

Hunt, M. (1997). How science takes stock. New York, NY: Russell Sage Foundation.

Hunter, J. E., & Schmidt, F. L. (2004). Methods of meta-analysis: Correcting error and 
bias in research findings (2nd ed.). Thousand Oaks, CA: Sage.

Hunter, J. E., Schmidt, F. L., & Jackson, G. B. (1982). Meta-analysis: Cumulating 
research findings across studies. Beverly Hills, CA: Sage.

Hurlbert, S. H., & Lombardi, C. M. (2009). Final collapse of the Neyman–Pearson 
decision theory framework and rise of the neoFisherian. Annales Zoologici Fen-
nici, 46, 311–349. Retrieved from http://www.sekj.org/AnnZool.html

Hyde, J. S. (2001). Reporting effect sizes: The role of editors, textbook authors, and 
publication manuals. Educational and Psychological Measurement, 61, 225–228. 
doi:10.1177/0013164401612005

Hyde, J. S. (2005). The gender similarities hypothesis. American Psychologist, 60, 
581–592. doi:10.1037/0003-066X.60.6.581

International Committee of Medical Journal Editors. (2010). Uniform requirements 
for manuscripts submitted to biomedical journals: Writing and editing for bio-
medical publication. Retrieved from http://www.icmje.org/urm_full.pdf

Ioannidis, J. P. A. (2005). Why most published research findings are false. PLoS 
Medicine, 2(8), e124. doi:10.1371/journal.pmed.0020124

Iverson, G. J., & Lee, M. D. (2009). prep misestimates the probability of replication. 
Psychonomic Bulletin & Review, 16, 424–429. doi:10.3758/PBR.16.2.424

James, G. S. (1951). The comparison of several groups of observations when the ratios 
of the population variances are unknown. Biometrika, 38, 324–329. doi:10.1093/ 
biomet/38.3-4.324

Jeffreys, H. (1961). Theory of probability (3rd ed.). Oxford, England: Oxford Univer-
sity Press.

Johnson, D. H. (1999). The insignificance of statistical significance testing. Journal 
of Wildlife Management, 63, 763–772. doi:10.2307/3802789

Johnson, M. K., & Liebert, R. M. (1977). Statistics: Tool of the behavioral sciences. 
Englewood Cliffs, NJ: Prentice Hall.

Kanfer, R., & Ackerman, P. L. (1989). Motivation and cognitive abilities: An 
integrative/aptitude–treatment interaction approach to skill acquisition. Jour-
nal of Applied Psychology, 74, 657–690. doi:10.1037/0021-9010.74.4.657

Kazdin, A. (2006). Arbitrary metrics: Implications for identifying evidence- 
based treatments. American Psychologist, 61, 42–49. doi: 10.1037/0003-066X. 
61.1.42

Kelley, K. (2007). Confidence intervals for standardized effect sizes: Theory, applica-
tion, and implementation. Journal of Statistical Software, 20(8). Retrieved from 
http://www.jstatsoft.org/v20/i08

Kelley, K., & Preacher, K. J. (2012). On effect size. Psychological Methods, 17, 137–152. 
doi:10.1037/a0028086

13170-12_References-3rdPgs.indd   322 2/1/13   12:05 PM



references           323

Kennedy, M. L., Willis, W. G., & Faust, D. (1997). The base-rate fallacy in school 
psychology. Journal of Psychoeducational Assessment, 15, 292–307. doi:10.1177/ 
073428299701500401

Keppel, G., & Wickens, T. D. (2004). Design and analysis: A researcher’s handbook 
(4th ed.). Upper Saddle River, NJ: Prentice Hall.

Keselman, H. J., Algina, J., & Kowalchuk, R. K. (2001). The analysis of repeated 
measures designs: A review. British Journal of Mathematical and Statistical Psychol-
ogy, 54, 1–20. doi:10.1348/000711001159357

Keselman, H. J., Algina, J., Lix, L. M., Wilcox, R. R., & Deering, K. N. (2008). A 
generally robust approach for testing hypotheses and setting confidence inter-
vals for effect sizes. Psychological Methods, 13, 110–129. doi:10.1037/1082-
989X.13.2.110

Keselman, H. J., Huberty, C. J., Lix, L. M., Olejnik, S., Cribbie, R. A., Donahue, 
B., . . . Levin, J. R. (1998). Statistical practices of education researchers: An 
analysis of their ANOVA, MANOVA, and ANCOVA analyses. Review of Edu-
cational Research, 68, 350–368. doi:10.3102/00346543068003350

Keselman, H. J., Kowalchuk, R. K., Algina, J., Lix, L. M., & Wilcox, R. (2000). Test-
ing treatment effects in repeated measures designs: Trimmed means and boot-
strapping. British Journal of Mathematical and Statistical Psychology, 53, 175–191. 
doi:10.1348/000711000159286

Killeen, P. R. (2005). An alternative to null-hypothesis significance tests. Psychologi-
cal Science, 16, 345–353. doi:10.1111/j.0956-7976.2005.01538.x

Killeen, P. R. (2006). Beyond statistical inference: A decision theory for science. 
Psychonomic Bulletin & Review, 13, 549–562. doi:10.3758/BF03193962

King, G., & Zeng, L. (2001). Logistic regression in rare events data. Political Analysis, 
9, 137–163. doi:10.1093/oxfordjournals.pan.a004868

Kirk, R. E. (1996). Practical significance: A concept whose time has come. Educational 
and Psychological Measurement, 56, 746–759. doi:10.1177/0013164496056005002

Kirk, R. E. (2001). Promoting good statistical practices: Some suggestions. Educational 
and Psychological Measurement, 61, 213–218. doi:10.1177/00131640121971185

Kirk, R. E. (2012). Experimental design: Procedures for the behavioral sciences (4th ed.). 
Thousand Oaks, CA: Sage.

Kline, R. B. (2009). Becoming a behavioral science researcher: A guide to producing 
research that matters. New York, NY: Guilford Press.

Kline, R. B. (2010). Principles and practice of structural equation modeling (3rd ed.). 
New York, NY: Guilford Press.

Kmetz, J. L. (2002). The skeptic’s handbook: Consumer guidelines and a critical assess-
ment of business and management research. doi:10.2139/ssrn.334180

Kruschke, J. K. (2010). What to believe: Bayesian methods for data analysis. Trends 
in Cognitive Sciences, 14, 293–300. doi:10.1016/j.tics.2010.05.001

13170-12_References-3rdPgs.indd   323 2/1/13   12:05 PM



324           references

Kruschke, J. K. (2011). Bayesian assessment of null values via parameter estima-
tion and model comparison. Perspectives on Psychological Science, 6, 299–312. 
doi:10.1177/1745691611406925

Kuhn, T. S. (1996). The structure of scientific revolutions (3rd ed.). Chicago, IL: Uni-
versity of Chicago Press.

Kupfersmid, J., & Fiala, M. (1991). A survey of attitudes and behaviors of authors 
who publish in psychology and education journals. American Psychologist, 46, 
249–250. doi:10.1037/0003-066X.46.3.249

Lambdin, C. (2012). Significance tests as sorcery: Science is empirical—significance 
tests are not. Theory & Psychology, 22, 67–90. doi:10.1177/0959354311429854

Lenth, R. V. (2006–2009). Java applets for power and sample size. Retrieved from 
http://www.stat.uiowa.edu/~rlenth/Power

Lindberg, S. M., Hyde, J. S., Petersen, J. L., & Linn, M. C. (2010). New trends in 
gender and mathematics performance: A meta-analysis. Psychological Bulletin, 
136, 1123–1135. doi: 10.1037/a0021276

Little, T. D., Lindenberger, U., & Nesselroade, J. R. (1999). On selecting indica-
tors for multivariate measurement and modeling with latent variables: When 
“good” indicators are bad and “bad” indicators are good. Psychological Methods, 
4, 192–211. doi:10.1037/1082-989X.4.2.192

Lix, L. M., Keselman, J. C., & Keselman, H. J. (1996). Consequences of assump-
tions violations revisited: A quantitative review of alternatives to the one-
way analysis of variance F test. Review of Educational Research, 66, 579–619. 
doi:10.3102/00346543066004579

Loftus, G. R. (1993). Editorial comment. Memory & Cognition, 21, 1–3. doi:10.3758/
BF03211158

Longford, N. T. (2005). Editorial: Model selection and efficiency: Is “which 
model . . . ?” the right question? Journal of the Royal Statistical Society: Series A, 
168, 469–472. doi:10.1111/j.1467-985X.2005.00366.x

Lunn, D. J., Spiegelhalter, D., Thomas, A., & Best, N. (2009). The BUGS project: 
Evolution, critique and future directions. Statistics in Medicine, 28, 3049–3082. 
doi:10.1002/sim.3680

Lunn, D. J., Thomas, A., Best, N., & Spiegelhalter, D. (2000). WinBUGS—A Bayes-
ian modelling framework: Concepts, structure, and extensibility. Statistics and 
Computing, 10, 325–337. doi:10.1023/A:1008929526011

Lunneborg, C. (2000). Modeling experimental and observational data. Belmont, CA: 
Duxbury Press.

Lunneborg, C. E. (2001). Random assignment of available cases: Bootstrap standard 
errors and confidence intervals. Psychological Methods, 6, 402–412. doi:10.1037/ 
1082-989X.6.4.402

Lykken, D. T. (1991). What’s wrong with psychology, anyway? In D. Cicchetti & W. 
Grove (Eds.), Thinking clearly about psychology (Vol. 1, pp. 3–39). Minneapolis: 
University of Minnesota Press.

13170-12_References-3rdPgs.indd   324 2/1/13   12:05 PM



references           325

Lytton, H., & Romney, D. M. (1991). Parents’ differential socialization of boys and 
girls: A meta-analysis. Psychological Bulletin, 109, 267–296. doi:10.1037/0033-
2909.109.2.267

Maccoby, E. E., & Jacklin, C. N. (1974). The psychology of sex differences. Stanford, 
CA: Stanford University Press.

Maserejian, N. N., Lutfey, K. E., & McKinlay, J. B. (2009). Do physicians attend to 
base rates? Prevalence data and statistical discrimination in the diagnosis of 
coronary heart disease. Health Services Research, 44, 1933–1949. doi:10.1111/
j.1475-6773.2009.01022.x

Masson, M. E. J. (2011). A tutorial on a practical Bayesian alternative to null-hypothesis 
significance testing. Behavior Research Methods, 43, 679–690. doi:10.3758/s13428-
010-0049-5

Maxwell, S. E. (2004). The persistence of underpowered studies in psychological 
research: Causes, consequences, and remedies. Psychological Methods, 9, 147–163. 
doi:10.1037/1082-989X.9.2.147

Maxwell, S. E., & Delaney, H. D. (2004). Designing experiments and analyzing data: A 
model comparison perspective (2nd ed.). Mahwah, NJ: Erlbaum.

McBride, G. B. (1999). Equivalence testing can enhance environmental science and 
management. Australian & New Zealand Journal of Statistics, 41, 19–29. doi:10.1111/ 
1467-842X.00058

McCloskey, D. N., & Ziliak, S. T. (2009). The unreasonable ineffectiveness of Fish-
erian “tests” in biology, and especially in medicine. Biological Theory, 4, 44–53. 
doi:10.1162/biot.2009.4.1.44

McGrath, R. E. (2011). Quantitative models in psychology. Washington, DC: Ameri-
can Psychological Association. doi:10.1037/12316-000

McGrath, R. E., & Meyer, G. J. (2006). When effect sizes disagree: The case of r and 
d. Psychological Methods, 11, 386–401. doi:10.1037/1082-989X.11.4.386

McGraw, K. O., & Wong, S. P. (1992). A common language effect size statistic. Psy-
chological Bulletin, 111, 361–365. doi:10.1037/0033-2909.111.2.361

McKnight, P. E., McKnight, K. M., Sidani, S., & Figueredo, A. J. (2007). Missing 
data: A gentle introduction. New York, NY: Guilford Press.

McLean, J., & Kaufman, A. S. (Eds.). (1998). Statistical significance testing [Special 
issue]. Research in the Schools, 5(2). Retrieved from http://www.msera.org/rits.htm

McWhaw, K., & Abrami, P. C. (2001). Student goal orientation and interest: Effects 
on students’ use of self-regulated learning strategies. Contemporary Educational 
Psychology, 26, 311–329. doi:10.1006/ceps.2000.1054

Meehl, P. E. (1990). Why summaries on research on psychological theories are often 
uninterpretable. Psychological Reports, 66 (Monograph Suppl. 1-V66), 195–244. 
doi:10.2466/PR0.66.1.195-244

Meehl, P. E., & Rosen, A. (1955). Antecedent probability and the efficiency of psy-
chometric signs, patterns, or cutting scores. Psychological Bulletin, 52, 194–216. 
doi:10.1037/h0048070

13170-12_References-3rdPgs.indd   325 2/1/13   12:05 PM



326           references

Meilaender, G. (2011). Playing the long season. First Things, 214, 19–20. Retrieved 
from http://www.firstthings.com/

Micceri, T. (1989). The unicorn, the normal curve, and other improbable creatures. 
Psychological Bulletin, 105, 156–166. doi:10.1037/0033-2909.105.1.156

Miller, G. A., & Chapman, J. P. (2001). Misunderstanding analysis of covari-
ance. Journal of Abnormal Psychology, 110, 40–48. doi:10.1037/0021-843X. 
110.1.40

Miller, J. (2009). What is the probability of replicating a statistically significant 
effect? Psychonomic Bulletin & Review, 16, 617–640. doi:10.3758/PBR.16.4.617

Montgomery, A. A., Peters, T. J., & Little, P. (2003). Design, analysis and presentation 
of factorial randomised controlled trials. BMC Medical Research Methodology, 3, 
Article 26. doi:10.1186/1471-2288-3-26

Moons, K. G. M., van Es, G.-A., Deckers, J. W., Habbema, J. D. F., & Grobbee, D. E. 
(1997). Limitations of sensitivity, specificity, likelihood ratio, and Bayes’ theo-
rem in assessing diagnostic probabilities: A clinical example. Epidemiology, 8, 
12–17. doi:10.1097/00001648-199701000-00002

Morey, R. D., & Rouder, J. N. (2011). Bayes factor approaches for testing interval 
null hypotheses. Psychological Methods, 16, 406–419. doi:10.1037/a0024377

Morris, S. B., & DeShon, R. P. (1997). Correcting effect sizes computed with fac-
torial analyses of variance for use in meta-analysis. Psychological Methods, 2, 
192–199. doi:10.1037/1082-989X.2.2.192

Mossman, D., & Berger, J. O. (2001). Intervals for posttest probabilities: A com-
parison of 5 methods. Medical Decision Making, 21, 498–507. doi:10.1177/ 
0272989X0102100608

Myers, J. L., Well, A. D., & Lorch, R. F., Jr. (2010). Research design and statistical 
analysis (3rd ed.). New York, NY: Routledge Academic.

Neal, D. E., Donovan, J. L., Martin, R. M., & Hamdy, F. C. (2009). Screening for 
prostate cancer remains controversial. Lancet, 374, 1482–1483. doi:10.1016/
S0140-6736(09)61085-0

Nelson, N., Rosenthal, R., & Rosnow, R. L. (1986). Interpretation of significance 
levels and effect sizes by psychological researchers. American Psychologist, 41, 
1299–1301. doi:10.1037/0003-066X.41.11.1299

Nestoriuc, Y., Kriston, L., & Rief, W. (2010). Meta-analysis as the core of evidence-
based behavioral medicine: Tools and pitfalls of a statistical approach. Current 
Opinion in Psychiatry, 23, 145–150. doi:10.1097/YCO.0b013e328336666b

Neuliep, J. W., & Crandall, R. (1990). Editorial bias against replication research. 
Journal of Social Behavior and Personality, 5, 85–90. Retrieved from http://www.
rickcrandall.com/services/jsbp/#posts

Neuliep, J. W., & Crandall, R. (1993). Reviewer bias against replication research. 
Journal of Social Behavior and Personality, 8, 21–29. Retrieved from http://www.
rickcrandall.com/services/jsbp/#posts

13170-12_References-3rdPgs.indd   326 2/1/13   12:05 PM



references           327

Newcombe, R. G. (1998). Two-sided confidence intervals for the single proportion: 
Comparison of seven methods. Statistics in Medicine, 17, 857–872. doi:10.1002/
(SICI)1097-0258(19980430)17:8<857::AID-SIM777>3.0.CO;2-E

Neyman, J., & Pearson, E. S. (1933). On the problem of the most efficient tests of 
statistical hypotheses. Philosophical Transactions of the Royal Society of London, 
Series A, 231, 289–337. doi:10.1098/rsta.1933.0009

Nickerson, R. S. (2000). Null hypothesis significance testing: A review of an old and 
continuing controversy. Psychological Methods, 5, 241–301. doi:10.1037/1082-
989X.5.2.241

Oakes, M. (1986). Statistical inference. New York, NY: Wiley.

O’Keefe, D. J. (2007). Post hoc power, observed power, retrospective power, prospec-
tive power, achieved power: Sorting out appropriate uses of power analyses. Com-
munication Methods and Measures, 1, 291–299. doi:10.1080/19312450701641375

Olejnik, S., & Algina, J. (2000). Measures of effect size for comparative studies: 
Applications, interpretations, and limitations. Contemporary Educational Psy-
chology, 25, 241–286. doi:10.1006/ceps.2000.1040

Olejnik, S., & Algina, J. (2003). Generalized eta and omega squared statistics: Mea-
sures of effect size for some common research designs. Psychological Methods, 8, 
434–447. doi: 10.1037/1082-989X.8.4.434

Oliveri, M., & Calvo, G. (2003). Increased visual cortical excitability in ecstasy 
users: A transcranial magnetic stimulation study. Journal of Neurology, Neuro-
surgery & Psychiatry, 74, 1136–1138. doi:10.1136/jnnp.74.8.1136

Onwuegbuzie, A. J. (2002). Common analytical and interpretational errors in edu-
cational research: An analysis of the 1998 volume of the British Journal of Edu-
cational Psychology. Educational Research Quarterly, 26, 11–22.

Onwuegbuzie, A. J., & Levin, J. R. (2003). Without supporting statistical evidence, 
where would reported measures of substantive importance lead? To no good 
effect. Journal of Modern Applied Statistical Methods, 2, 133–151.

Osborne, J. W. (2008). Sweating the small stuff in educational psychology: How effect 
size and power reporting failed to change from 1969 to 1999, and what that 
means for the future of changing practices. Educational Psychology, 28, 151–160. 
doi:10.1080/01443410701491718

Overall, J. E., & Spiegel, D. K. (1969). Concerning least-squares analysis of experi-
mental data. Psychological Bulletin, 72, 311–322. doi:10.1037/h0028109

Park, R. L. (2003). The seven warning signs of voodoo science. Think, 1, 33–42. 
doi:10.1017/S1477175600000427

Penfield, R. D., Algina, J., & Keselman, H. J. (2004a). ES Bootstrap: Correlated 
Groups [Computer software]. Available from http://plaza.ufl.edu/algina/index.
programs.html

Penfield, R. D., Algina, J., & Keselman, H. J. (2004b). ES Bootstrap: Independent 
Groups [Computer software]. Available from http://plaza.ufl.edu/algina/index.
programs.html

13170-12_References-3rdPgs.indd   327 2/1/13   12:05 PM



328           references

Penfield, R. D., Algina, J., & Keselman, H. J. (2006). ES Bootstrap 2 [Computer 
software]. Available from http://plaza.ufl.edu/algina/index.programs.html

Penner, A. M. (2008). Gender differences in extreme mathematical achievement: 
An international perspective on biological and social factors. American Journal 
of Sociology, 114(Suppl. 1), S138–S170. doi:10.1086/589252

Perkins, N. J., & Schisterman, E. F. (2006). The inconsistency of “optimal” cutpoints 
using two criteria based on the receiver operating characteristic curve. (2006). 
American Journal of Epidemiology, 163, 670–675. doi:10.1093/aje/kwj063

Perlis, A. J. (1982). Epigrams on programming. ACM SIGPLAN Notices, 17(9), 
7–13. doi:10.1145/947955.1083808

Pierce, C. A., Block, R. A., & Aguinis, H. (2004). Cautionary note on reporting eta-
squared values from multifactor ANOVA designs. Educational and Psychological 
Measurement, 64, 916–924. doi:10.1177/0013164404264848

Platt, J. R. (1964, October 16). Strong inference: Certain systematic methods of 
scientific thinking may produce much more rapid progress than others. Science, 
146, 347–353. doi:10.1126/science.146.3642.347

Poitevineau, J., & Lecoutre, B. (2001). The .05 cliff effect may be overstated. Psycho-
nomic Bulletin & Review, 8, 847–850. doi:10.3758/BF03196227

Pollard, P. (1993). How significant is “significance”? In G. Keren & C. Lewis (Eds.), 
A handbook for data analysis in the behavioral sciences: Vol. 1. Methodological issues 
(pp. 449–460). Hillsdale, NJ: Erlbaum.

Pourret, O., Naïm, P., & Marcot, B. (Eds.). (2008). Bayesian networks: A practical 
guide to applications. New York, NY: Wiley.

Pratt, T. C. (2010). Meta-analysis in criminal justice and criminology: What it is, 
when it’s useful, and what to watch out for. Journal of Criminal Justice Education, 
21, 152–168. doi:10.1080/10511251003693678

Prentice, D. A., & Miller, D. T. (1992). When small effects are impressive. Psychologi-
cal Bulletin, 112, 160–164. doi:10.1037/0033-2909.112.1.160

Provalis Research. (1994–2004). SimStat (Version 2.5.8) [Computer software]. 
Montréal, Québec, Canada: Author.

Reichardt, C. S., & Gollob, H. F. (1997). When confidence intervals should be used 
instead of statistical tests, and vice versa. In L. L. Harlow, S. A. Mulaik, & J. H. 
Steiger (Eds.), What if there were no significance tests? (pp. 259–284). Mahwah, 
NJ: Erlbaum.

Robinson, D. H., & Levin, J. R. (1997). Reflections on statistical and substantive 
significance, with a slice of replication. Educational Researcher, 26(5), 21–26. 
doi:10.3102/0013189X026005021

Robinson, D. H., & Wainer, H. (2002). On the past and future of null hypothesis signifi-
cance testing. Journal of Wildlife Management, 66, 263–271. doi:10.2307/3803158

Rodgers, J. L. (2009). The bootstrap, the jackknife, and the randomization test: A 
sampling taxonomy. Multivariate Behavioral Research, 34, 441–456. doi:10.1207/
S15327906MBR3404_2

13170-12_References-3rdPgs.indd   328 2/1/13   12:05 PM



references           329

Rodgers, J. L. (2010). The epistemology of mathematical and statistical modeling: A 
quiet methodological revolution. American Psychologist, 65, 1–12. doi:10.1037/
a0018326

Rosenthal, R., Rosnow, R. L., & Rubin, D. B. (2000). Contrasts and effect sizes in 
behavioral research. New York, NY: Cambridge University Press.

Rothman, K. J. (1998). Writing for Epidemiology. Epidemiology, 9, 333–337. doi:10.1097/ 
00001648-199805000-00019

Rouder, J. N., Speckman, P. L., Sun, D., & Morey, R. D. (2009). Bayesian t tests for 
accepting and rejecting the null hypothesis. Psychonomic Bulletin & Review, 16, 
225–237. doi:10.3758/PBR.16.2.225

Rozeboom, W. W. (1960). The fallacy of the null hypothesis significance test. Psycho-
logical Bulletin, 57, 416–428. doi:10.1037/h0042040

Rutherford, A. (2011). ANOVA and ANCOVA: A GLM approach. Hoboken, NJ: 
Wiley.

Rutledge, T., & Loh, C. (2004). Effect sizes and statistical testing in the determina-
tion of clinical significance in behavioral medicine research. Annals of Behav-
ioral Medicine, 27, 138–145. doi:10.1207/s15324796abm2702_9

Sagan, C. (1996). The demon-haunted world: Science as a candle in the dark. New York, 
NY: Random House.

Sahai, H., Khurshid, A., Ojeda, M. M., & Velasco, F. (2009). Simultaneous confi-
dence intervals for variance components in two-way balanced crossed classifi-
cation random effects model with interaction. Revista Investigación Operacional, 
30, 250–265. Retrieved from http://rev-inv-ope.univ-paris1.fr/

Salibián-Barrera, M., & Zamar, R. H. (2002). Bootstrapping robust estimates of 
regression. Annals of Statistics, 30, 556–582. doi:10.1214/aos/1021379865

Schervish, M. J. (1996). p values: What they are and what they are not. American 
Statistician, 50, 203–206. doi:10.2307/2684655

Schmidt, F. L. (1996). Statistical significance testing and cumulative knowledge in 
psychology: Implications for the training of researchers. Psychological Methods, 
1, 115–129. doi:10.1037/1082-989X.1.2.115

Schmidt, F. L. (2010). Detecting and correcting the lies that data tell. Perspectives on 
Psychological Science, 5, 233–242. doi:10.1177/1745691610369339

Schmidt, F. L., & Hunter, J. E. (1997). Eight common but false objections to the 
discontinuation of significance testing in the analysis of research data. In L. L. 
Harlow, S. A. Mulaik, & J. H. Steiger (Eds.), What if there were no significance 
tests? (pp. 37–64). Mahwah, NJ: Erlbaum.

Schmidt, S. (2009). Shall we really do it again? The powerful concept of replication 
is neglected in the social sciences. Review of General Psychology, 13, 90–100. 
doi:10.1037/a0015108

Schuster, C., & von Eye, A. (2001). The relationship of ANOVA models with ran-
dom effects and repeated measurement designs. Journal of Adolescent Research, 
16, 205–220. doi:10.1177/0743558401162006

13170-12_References-3rdPgs.indd   329 2/1/13   12:05 PM



330           references

Searle, S. R., Casella, G., & McCulloch, C. E. (1992). Variance components. New York, 
NY: Wiley.

Sedlmeier, P., & Gigerenzer, G. (1989). Do studies of statistical power have an effect 
on the power of studies? Psychological Bulletin, 105, 309–316. doi:10.1037/0033-
2909.105.2.309

Seggar, L. B., Lambert, M. J., & Hansen, N. B. (2002). Assessing clinical significance: 
Application to the Beck Depression Inventory. Behavior Therapy, 33, 253–269. 
doi:10.1016/S0005-7894(02)80028-4

Shadish, W. R., Cook, T. D., & Campbell, D. T. (2001). Experimental and quasi-
experimental designs for generalized causal inference. New York, NY: Houghton 
Mifflin.

Shrout, P. E. (1997). Should significance tests be banned? Introduction to a special 
section exploring the pros and cons. Psychological Science, 8, 1–2. doi:10.1111/ 
j.1467-9280.1997.tb00533.x

Simel, D. L., Samsa, G. P., & Matchar, D. B. (1991). Likelihood ratios with con-
fidence: Sample size estimation for diagnostic test studies. Journal of Clinical 
Epidemiology, 44, 763–770. doi:10.1016/0895-4356(91)90128-V

Simmons, J. P., Nelson, L. D., & Simonsohn, U. (2011). False-positive psychol-
ogy: Undisclosed flexibility in data collection and analysis allows presenting 
anything as significant. Psychological Science, 22, 1359–1366. doi: 10.1177/ 
0956797611417632

Smith, M. L., & Glass, G. V. (1977). Meta-analysis of psychotherapy outcome stud-
ies. American Psychologist, 32, 752–760. doi:10.1037/0003-066X.32.9.752

Smithson, M. (2003). Confidence intervals. Thousand Oaks, CA: Sage.

Snyder, P., & Lawson, S. (1993). Evaluating results using corrected and uncorrected 
effect size estimates. Journal of Experimental Education, 61, 334–349. Retrieved 
from http://www.tandfonline.com/toc/vjxe20/current

Sohn, D. (2000). Significance testing and the science. American Psychologist, 55, 
964–965. doi:10.1037/0003-066X.55.8.964

Spence, G. (1995). How to argue and win every time: At home, at work, in court, every-
where, everyday. New York, NY: St. Martin’s Press.

Statistics.com. (2009). Resampling Stats (Version 4) [Computer software]. Arlington, 
VA: Author.

Steering Committee of the Physicians’ Health Study Research Group. (1988). Pre-
liminary report: Findings from the aspirin component of the ongoing Physicians’ 
Health Study. New England Journal of Medicine, 318, 262–264. doi:10.1056/
NEJM198801283180431

Steiger, J. H. (2004). Beyond the F test: Effect size confidence intervals and tests of 
close fit in the analysis of variance and contrast analysis. Psychological Methods, 
9, 164–182. doi:10.1037/1082-989X.9.2.164

Steiger, J. H., & Fouladi, R. T. (1997). Noncentrality interval estimation and the 
evaluation of statistical models. In L. L. Harlow, S. A. Mulaik, & J. H. Steiger 

13170-12_References-3rdPgs.indd   330 2/1/13   12:05 PM



references           331

(Eds.), What if there were no significance tests? (pp. 221–257). Mahwah, NJ: 
Erlbaum.

Sterner, W. R. (2011). What is missing in counseling research? Reporting missing data. 
Journal of Counseling & Development, 89, 56–62. doi:10.1002/j.1556-6678.2011.
tb00060.x

Stevens, J. J. (1999). Interaction effects in ANOVA. Retrieved from http://pages.
uoregon.edu/stevensj/interaction.pdf

Stigler, S. M. (1978). Francis Ysidro Edgeworth, statistician. Journal of the Royal Sta-
tistical Society, Series A, 141, 287–322. doi:10.2307/2344804

Stigler, S. M. (1986). The history of statistics. Cambridge, MA: Belknap.

Streiner, D. L. (1996). Maintaining standards: Differences between the standard 
deviation and standard error, and when to use each. Canadian Journal of Psy-
chiatry, 41, 498–502. Retrieved from http://publications.cpa-apc.org/browse/
sections/0

Student [W. S. Gosset]. (1927). Errors of routine analysis. Biometrika, 19, 151–164. 
doi:10.2307/2332181

Sun, S., Pan, W., & Wang, L. L. (2010). A comprehensive review of effect size report-
ing and interpreting practices in academic journals in education and psychol-
ogy. Journal of Educational Psychology, 102, 989–1004. doi:10.1037/a0019507

Sutcliffe, A. (2002). User-centred requirements engineering. London, England: Springer-
Verlag. doi:10.1007/978-1-4471-0217-5

Swets, J. A. (1996). Signal detection theory and ROC analysis in psychology and diagnostics: 
Collected papers. Mahwah, NJ: Erlbaum.

Tabachnick, B. G., & Fidell, L. S. (2001). Computer-assisted research design and analy-
sis. Boston, MA: Allyn & Bacon.

The Canadian Press. (2011, November 25). Controversy over new mammogram guide-
lines continues. Retrieved from http://www.ctv.ca/CTVNews/Health/20111125/
mammogram-guidelines-111125/

Thompson, B. (1992). Two and one-half decades of leadership in measurement and 
evaluation. Journal of Counseling & Development, 70, 434–438. doi:10.1002/ 
j.1556-6676.1992.tb01631.x

Thompson, B. (Ed.). (1993). Statistical significance testing in contemporary practice 
[Special issue]. Journal of Experimental Education, 61(4). Retrieved from http://
www.tandfonline.com/loi/vjxe20

Thompson, B. (1995). Stepwise regression and stepwise discriminant analysis need 
not apply here: A guidelines editorial. Educational and Psychological Measure-
ment, 55, 525–534. doi:10.1177/0013164495055004001

Thompson, B. (1996). AERA editorial policies regarding statistical significance test-
ing: Three suggested reforms. Educational Researcher, 25(2), 26–30. doi:10.3102/ 
0013189X025002026

Thompson, B. (1997). Editorial policies regarding statistical significance tests: Further 
comments. Educational Researcher, 26(5), 29–32. doi:10.3102/0013189X026005029

13170-12_References-3rdPgs.indd   331 2/1/13   12:05 PM



332           references

Thompson, B. (1999). Journal editorial policies regarding statistical significance tests: 
Heat is to fire as p is to importance. Educational Psychology Review, 11, 157–169. 
doi:10.1023/A:1022028509820

Thompson, B. (2001). Significance, effect sizes, stepwise methods, and other issues: 
Strong arguments move the field. Journal of Experimental Education, 70, 80–93. 
doi:10.1080/00220970109599499

Thompson, B. (Ed.). (2003). Score reliability: Contemporary thinking on reliability issues. 
Thousand Oaks, CA: Sage.

Thompson, B. (2006a). Foundations of behavioral statistics: An insight-based approach. 
New York, NY: Guilford Press.

Thompson, B. (2006b). Research synthesis: Effect sizes. In J. Green, G. Camilli, & 
P. B. Elmore (Eds.), Handbook of complementary methods in education research 
(pp. 583–603). Washington, DC: American Educational Research Association.

Thompson, S. K. (2012). Sampling (3rd ed.). Hoboken, NJ: Wiley.

Thompson, W. L. (2001). 402 citations questioning the indiscriminate use of null 
hypothesis significance tests in observational studies. Retrieved from htttp://
warnercnr.colostate.edu/~anderson/thompson1.html

Toffler, A. (1970). Future shock. New York, NY: Random House.

Tryon, W. W. (2001). Evaluating statistical difference, equivalence, and indetermi-
nacy using inferential confidence intervals: An integrated alternative method of 
conducting null hypothesis statistical tests. Psychological Methods, 6, 371–386. 
doi:10.1037/1082-989X.6.4.371

Tryon, W. W., & Lewis, C. (2008). An inferential confidence interval method of 
establishing statistical equivalence that corrects Tryon’s (2001) reduction fac-
tor. Psychological Methods, 13, 272–277. doi:10.1037/a0013158

Tukey, J. W. (1977). Exploratory data analysis. Reading, MA: Addison-Wesley.

Tukey, J. W., & McLaughlin, D. H. (1963). Less vulnerable confidence and significance 
procedures for location based on a single sample: Trimming/Winsorization 1.  
Sankhya, Series A, 25, 331–352. Retrieved from http://sankhya.isical.ac.in/
index.html

Tversky, A., & Kahneman, D. (1971). Belief in the law of small numbers. Psychologi-
cal Bulletin, 76, 105–110. doi:10.1037/h0031322

U.S. Census Bureau. (2010). Door-to-door visits begin for 2010 census [Press release]. 
Retrieved from http://2010.census.gov/news/releases/operations/door-to-door-
visits-begin.html

Vacha-Haase, T., & Ness, C. N. (1999). Statistical significance testing as it relates to 
practice: Use within Professional Psychology: Research and Practice. Professional 
Psychology: Research and Practice, 30, 104–105. doi:10.1037/0735-7028.30.1.104

Vacha-Haase, T., & Thompson, B. (2011). Score reliability: A retrospective look 
back at 12 years of reliability generalization. Measurement and Evaluation in 
Counseling and Development, 44, 159–168. doi:10.1177/0748175611409845

13170-12_References-3rdPgs.indd   332 2/1/13   12:05 PM



references           333

Vargha, A., & Delaney, H. D. (2000). A critique and improvement of the CL com-
mon language effect size statistics of McGraw and Wong. Journal of Educational 
and Behavioral Statistics, 25, 101–132. doi:10.3102/10769986025002101

Vaughan, G. M., & Corballis, M. C. (1969). Beyond tests of significance: Estimat-
ing strength of effects in selected ANOVA designs. Psychological Bulletin, 72, 
204–213. doi:10.1037/h0027878

Viechtbauer, W. (2007). Approximate confidence intervals for standardized effect 
sizes in the two-independent and two-dependent samples design. Journal of Edu-
cational and Behavioral Statistics, 32, 39–60. doi:10.3102/1076998606298034

Wayne, J. H., Riordan, C. M., & Thomas, K. M. (2001). Is all sexual harassment 
viewed the same? Mock juror decisions in same- and cross-gender cases. Journal 
of Applied Psychology, 86, 179–187. doi:10.1037/0021-9010.86.2.179

Webb, A. J. S., Fischer, U., & Rothwell, P. M. (2011). Effects of b-blocker selectivity 
on blood pressure variability and stroke: A systematic review. Neurology, 77, 
708–709. doi:10.1212/WNL.0b013e31822b007a

Welch, B. L. (1938). The significance of the difference between two means when 
the population variances are unequal. Biometrika, 29, 350–362. doi:10.1093/
biomet/29.3-4.350

Wellek, S. (2010). Testing statistical hypotheses of equivalence and noninferiority (2nd ed.). 
Boca Raton, FL: Chapman & Hall. doi:10.1201/EBK1439808184

Wetzels, R., Matzke, D., Lee, M. D., Rouder, J. N., Iverson, G. J., & Wagenmakers,  
E.-J. (2011). Bayesian assessment of null values via parameter estimation and 
model comparison. Perspectives on Psychological Science, 6, 291–298. doi:10.1177/ 
1745691611406923

Wetzels, R., Raaijmakers, J. G. W., Jakab, E., & Wagenmakers, E.-J. (2009). How 
to quantify support for and against the null hypothesis: A flexible WinBUGS 
implementation of a default Bayesian t test. Psychonomic Bulletin & Review, 16, 
752–760. doi:10.3758/PBR.16.4.752

Whittingham, M. J., Stephens, P. A., Bradbury, R. B., & Freckleton, R. P. (2006). 
Why do we still use stepwise modelling in ecology and behaviour? Journal of 
Animal Ecology, 75, 1182–1189. doi:10.1111/j.1365-2656.2006.01141.x

Wilcox, R. R. (1998). How many discoveries have been lost by ignoring modern sta-
tistical methods? American Psychologist, 53, 300–314. doi:10.1037/0003-066X. 
53.3.300

Wilcox, R. R. (2003). Applying contemporary statistical techniques. New York, NY: 
Academic Press.

Wilcox, R. R. (2012). Introduction to robust estimation and hypothesis testing (3rd ed.). 
San Diego, CA: Academic Press.

Wilcox, R. R., & Keselman, H. J. (2003). Modern robust data analysis methods: Mea-
sures of central tendency. Psychological Methods, 8, 254–274. doi:10.1037/1082-
989X.8.3.254

13170-12_References-3rdPgs.indd   333 2/1/13   12:05 PM



334           references

Wilkinson, L., & the Task Force on Statistical Inference. (1999). Statistical methods 
in psychology journals: Guidelines and explanations. American Psychologist, 54, 
594–604. doi:10.1037/0003-066X.54.8.594

Winer, B. J., Brown, D. R., & Michels, K. M. (1991). Statistical principles in experimen-
tal design (3rd ed.). Boston, MA: McGraw-Hill.

Wood, M. (2005). Bootstrapped confidence intervals as an approach to statistical infer-
ence. Organizational Research Methods, 8, 454–470. doi:10.1177/1094428105280059

Yuen, K. K. (1974). The two-sample trimmed t for unequal population variances. 
Biometrika, 61, 165–170. doi:10.1093/biomet/61.1.165

Zientek, L. R., & Thompson, B. (2009). Matrix summaries improve research reports: 
Secondary analyses using published literature. Educational Researcher, 38, 343–352. 
doi:10.3102/0013189X09339056

Ziliak, S., & McCloskey, D. N. (2008). The cult of statistical significance: How the 
standard error costs us jobs, justice, and lives. Ann Arbor: University of Michigan 
Press.

13170-12_References-3rdPgs.indd   334 2/1/13   12:05 PM



335

Index

Abelson, R. P., 15–16
Abrami, P. C., 212
Abteilung Medizinische Statistik  

at Universitätsmedizin  
Göttingen, 91

Accept-support testing, 70
Accidental samples, 32
Ackerman, P. L., 217, 219
Additive model, 84
Ad hoc samples, 32
Aftercare programs for substance abuse, 

differential effectiveness in, 
255–258

Agnostic priors, 294
Aguinis, H., 71, 110, 111, 156, 251
Alcoholics Anonymous, 255
Algina, J., 63, 87, 129, 133, 136, 145, 

147, 201, 202, 244, 249, 251, 254
American Educational Research 

Association, 269
American Journal of Public Health 

(AJPH), 22
American Psychological Association 

(APA), 11, 269
ANCOVA (analysis of covariance), 

211–215
Andersen, M. B., 16, 24
Anderson, D. R., 20, 43–44
Annis, H., 255
Anomalies, 266
ANOVA (analysis of variance), 24, 202, 

209
computer procedures in, 241, 254
in contrast specification, 195–196
in correlations and measures of 

association, 211–214
and estimated eta-squared, 129
factorial, 223–226, 236–237
as model-fitting technique, 239–240
in multifactor design, 238–239, 

245–248
and multiple regression, 88–89
and weighted effect size, 284

ANOVA-type statistic (ATS), 91
APA (American Psychological 

Association), 11, 269

Apples and oranges problem, 271
A priori power analysis, 76
Aragón, T., 172
Arbitrary metrics, 16
Armstrong, J. S., 14, 20
Association

limitations of measures of, 140
measure of, 128
robust measures of, 140

Asymptotic standard error, 52
ATS (ANOVA-type statistic), 91
Attenuation, correction for, 141
Austin, P. C., 73
Autocorrelation of the errors, 86

Bakan, D., 106
Balanced replication, 268
Balanced two-way designs

in multifactor design, 226–233
tests of, in multifactor design, 

233–237
Barr, C. D., 23–24
Base rate (BR), 175–177, 180, 181
Base rate fallacy, 176–177
Bayes, Thomas, 292
Bayes factor (BF), 296–297
Bayesian analysis, 72, 103, 289–308

and Bayes’s theorem, 292–293
in behavioral sciences, 307–308
credible intervals in, 303–307
for estimation, 290–292
for point hypotheses, 294–298
for range hypotheses, 298–303

Bayesian estimation, 41, 102, 290
Bayesian Id’s wishful thinking error, 98
Bayesian parameter estimation, 303
Bayes’s theorem, 292–293
Beck Depression Inventory, 158
Becker, S., 216
Becker’s g, 135
Behavioral sciences

Bayesian analysis in, 290–291, 
307–308

replication in, 269–271
Belasco, J., 24
Bellinger, D. C., 155

13170-13_Index-2ndPgs.indd   335 2/1/13   12:06 PM



336      index

Bem D. J., 290
Berger, J. O., 181
Berkson, J., 20
Bester, Alfred, 312
Betkowska, K., 181
Between-studies variance, in meta 

analysis, 277–278
BF (Bayes factor), 296–297
Bias, for statistical significance,  

in meta-analyses, 274–275
“Big Five” misinterpretations, 95–103
Binary logistic regression, 164
Bird, K. D., 190, 201
Blanton, H., 157
Block, R. A., 251
Board of Scientific Affairs (APA), 21
Bonferroni correction, 73
Bonferroni–Dunn method, 196
Bootstrapped confidence intervals, and 

standardized contrasts, 202–203
Bootstrapping, 54, 63

nonparametric, 54–56
parametric, 56–57

Borenstein, M., 284, 285
Boring, E. G., 20
Bowers, J. S., 308
Box correction, 87
Box plots (box-and-whisker plots), 149
Box-score (vote counting) method, 271
BP (finite-sample breakdown point), 58
BR. See Base rate
Bradbury, R. B., 108
Brown, J. S., 184, 185
Brown, T. G., 255
Browne, M. W., 218, 219
Bruce, C. R., 125
Brunner–Dette–Munk test, 91
Burgman, M. A., 19
Burnham, K. P., 20
Buttrose, R., 19

Campbell, D. T., 38
Canadian Task Force on Preventative 

Health Care (CTFPHC), 180
Capture percentage, 41
Casella, G., 209
Casscells, W., 176–177
Categorical outcomes, 163–186

and effect sizes for 2 × 2 tables, 
165–172

and effect sizes for 3 × 4 tables, 172
research example, 182–185
screening tests of, 172–182
types of, 164–165

Causal efficacy, 124
Causality fallacy, 100
Cause size, 124
Central chi-square distribution, 36
Central limit theorem, 33
Central t distribution, 36, 52, 53
Chalmers, T., 12
Change, mean, 48
Chapman, J. P., 212
Chi-square test, 88–89
Circularity, 86, 87
Cliff effect, 102
Clinical significance, 10, 157–158
Cluster sampling

single-stage, 30
two-stage, 30

Cognitive distortions, 95–119
Cognitive errors, 10–11
Cohen, J., 103, 130, 154, 271
Cohen’s d, 130
Collins, L. M., 218
Colliver, J. A., 215
Common language effect size (CL), 152
Comparative risk, in categorical 

outcomes, 166–168
Completely between-subjects designs, 

222
interaction contrasts in, 248–249
single-factor contrasts in, 244–248

Complex comparison, 191
Complex interaction contrast, 232–233
Conditional model, in meta-analysis, 

277
Confidence Interval Calculator, 181
Confidence intervals, 40, 41

Bayesian, 303–307
for dy, 199–201
and effect sizes, 142–147
for m, 39–41
for m1 – m2, 42–48
for mD, 48–50
noncentral, for d, 144–145
noncentral, for h2, 146
in Publication Manual 6 ed., 21
reporting of, 117
Wald method and, 170

13170-13_Index-2ndPgs.indd   336 2/1/13   12:06 PM



index      337

Criterion contrasts, 157
Critical ratio, 17–18
Cross-validation sample, 268
Crud factor, 70
Cumming, G., 14, 19, 22, 39–41, 75, 

100, 250, 280, 286
Customer-centric science, 110–111

Daumann, J., 216
Davis, C. J., 308
Decision theory, 109
Deckers, J. W., 179
Deering, K. N., 63
Degeneracy, 170
Degrees of freedom (df), 48, 52, 53
Delaney, H. D., 152
d, noncentral confidence intervals for, 

144–145
Dependent samples

F test for, 84–88
p values, 85
and standardized contrasts, 199

Derivation sample, 268
DeShon R. P., 243, 248
Desired relative seriousness (DRS), 

71–72
df (degrees of freedom), 48, 52, 53
d family (group difference indexes), 128
Dichotomization, of p values, 109, 110
Dienes, Z., 299, 301, 302, 306
Diffusion of idiocy, law of, 16
Dismantling research, in treatment 

efficacy, 268
Disordinal (crossover) interaction, 

229–231
Distributional assumptions, 57
Dixon, P., 17, 293
Dodd, D. H., 205
DRS (desired relative seriousness), 

71–72
Dunleavy, E. M., 23–24
Du Toit, S. H. C., 218, 219

Earwitness testimony, 258–260
Ecstasy (MDMA) use, 215–217
Edgeworth, F. Y., 18
Editorial policies, 22
Educational and Psychological 

Measurement (Hubbard), 18
Edwards, W., 290, 297

Confidence interval transformation, 
50–51

Confidence-level misconception, 41
Conjugate distributions, 301
Conjugate prior, 301
Conjunction fallacy, 292
Construct replication (conceptual), 

268–269
Continuous outcomes, 128–161

case-level analysis of, 148–154
correlation of effect sizes for,  

138–140
families of effect sizes for, 128–129
interval estimation for, 142–147
measurement error in, 140–142
misinterpretations with, 158–159
research example, 159–161
and standardized mean differences, 

129–138
substantive significance of, 154–158

Contrast specification, in single-factor 
designs, 190–196

Contrast weights (coefficients),  
190, 191

Control factor, use of, 83–84
Convenience samples, 32
Conversation analysis, 156
Cook, S., 258, 260
Cook, T. D., 38
Corballis, M. C., 205, 254
Correction for attenuation, 141
Correlated effect sizes, 275–276
Correlation(s)

autocorrelation of the errors, 86
of effect sizes, 138–140
illusory, 104
and measures of association, in 

single-factor designs, 203–211
Pearson, 168
in single-factor designs, 203–211

Cortina, J. M., 136, 215, 243, 247, 248, 
250

Covariate, 211
Covariate analyses, effect sizes in, 

211–215
Cramer’s V, 172
Crandall, R., 270
Crawford, J. R., 181, 182
Credible intervals (Bayesian analysis), 

303–307

13170-13_Index-2ndPgs.indd   337 2/1/13   12:06 PM



338      index

Epidemiology, 22
EpiTools, 172
Equivalence fallacy, 101
Equivalence testing, 111–112
Erceg-Hurn, D. M., 64, 91, 107
Error(s)

Bayesian Id’s wishful thinking error, 
98

construct definition, 37
inverse probability error, 19, 75
margin of, 39
measurement, 37
real, 38
sampling, 38
specification, 37
standard, 34–37, 57
standard, of Fisher’s transformation, 

51–52
standard of M, 35
standard, of MD, 49–50
standard metric, of t, 79, 80
treatment implementation, 37
Type I, 11, 68, 101, 112, 308
Type II, 11, 68, 71, 76, 101, 308

Error bars, 39
ES Bootstrap: Correlated Groups, 147
ES Bootstrap: Independent Groups, 

147
ES Bootstrap 2 (software), 147
ESCI (Exploratory Software for 

Confidence Intervals), 53, 77, 
145, 281

Estimated epsilon-squared, 129
Estimated eta-squared, 129
Estimated omega-squared, 129
Estimation, Bayesian analysis and, 

290–292
Estimation thinking, 15
Estimators

least square, 33
negatively biased, 34
positively biased, 34
resistant, 57–64

h2, noncentral confidence intervals for, 
146

Ethnographic techniques, 156–157
Exact level of significance, 75
Exact replication (direct, literal, or 

precise), 268
Experimentwise error rate, 72, 73

Effect size(s), 111, 123–129, 142–159
for 2 × 2 tables, 165–172
for 3 × 4 tables, 172
case-level analysis of, 148–154
cause size vs., 124
common language, 152
correlated, 275–276
correlation, for contrasts, 203–205
correlation of, 138–140
in covariate analyses, 211–215
definitions of, 124–125
editorial policies about, 23–24
estimates of, 77, 110, 116–117, 

125–127
families of, 128–129
group- or variable-level, and case-

level proportions, 153–154
interpretive guidelines for, 154–158
interval estimation with, 142–147
levels of analysis, 127–128
margin-bound, 169
in meta-analyses, 271
metric-free, 128
misinterpretations of, 158–159
population, 38
for power analysis, 209–210
proportion of variance explained, 

128
in Publication Manual, 14, 21
and relative risk for undesirable 

outcomes, 164–166
reporting of, 10
sensitivity analysis and, 284
signed, 128
standardized, 126
standardized criterion contrast, 157
unsigned, 128
unstandardized, 125
weighed, 276–277, 280, 284

Effect size measures, 124–127
Effect size synthesis (meta-analysis), 

276–284
Effect size value, 124
Efficacy, causal, 124
Efron, B., 54
Ellis, P. D., 11, 129, 189
Empirical cumulativeness, 266–267
Empirical sampling distribution, 54, 55
Empirical studies, best practices for 

reporting results from, 308–312

13170-13_Index-2ndPgs.indd   338 2/1/13   12:06 PM



index      339

Freckleton, R. P., 108
Freiman, J. A., 12
French, B. F., 210, 254
Frequentist perspective, 40–41
Friedman, G., 9
F test(s)

for dependent samples, 84–88
for independent samples, 81–84
for significance testing, 81–88

Gain, mean, 48
Garbage in, garbage out problem, in 

meta-analyses, 275
Garthwaite, P. H., 181
Geisser–Greenhouse conservative test, 

87
Geisser–Greenhouse epsilon, 87
Generalized estimated eta-squared, 

251–252
Gigerenzer, G., 17–19, 75, 95, 101
Glass, G. V., 123, 243, 244, 271
Glass’s delta, 133
Glenn, D. M., 23–24
Gollob, H. F., 41
Gonzalez, R., 98
Gossett, W., 17, 38
Gouzoulis-Mayfrank, E., 216, 217
Graboys, T., 176–177
Great p value blank-out, 107
Greenwald, A. G., 98
Grissom, R. J., 48, 129, 169, 254
Grobbee, D. E., 179
Group overlap

indexes, 127–128
measures of, 148–150

Guthery, F. S., 114
Guthrie, D., 98

Habbema, J. D. F., 179
Haller, H., 96, 99
Hansen, N. B., 158
HARKing, 73, 310
Harlow, L. L., 20
Harris, R. J., 98
Health Psychology, 23
Hedges, L. V., 267
Hedges’s g, 134
Herbert, R., 172, 181, 182
Heteroscedasticity, 90, 137
Hierarchical design, 222

Exploratory Software for Confidence 
Intervals (ESCI), 53, 77

External replication, 268
Extrinsic factors, intrinsic factors vs., 244

f 2 parameter, 209–210
Face overshadowing effect (FOE), 

258–260
Factorial analysis of variance, 223–226
Factorial designs, standardized contrasts 

in, 244
Factor of interest (targeted factor), 244
Fad topics, 12
Fail-safe N, in meta-analysis, 273
Failure fallacy, 101
Fallacy(-ies)

in significance testing, 103–106
of the transposed conditional, 98

“False-positive psychology,” 11
Familywise error rate, 72, 73
Ferguson, C. J., 129
Fern, E. F., 155
Feynman, R., 73
Feynman’s conjecture, 73
Fidell, L. S., 236
Fidler, F., 19, 22, 39, 41, 146, 210
Figuerdo, A. J., 224
File-drawer problem, in meta-analysis, 

273
Filter myth, 97
Fimm, B., 216
Finch, S., 19, 22, 23
Finch, W. H., 210, 254
Finite-sample breakdown point (BP), 58
Fisher, R., 17, 51
Fisher approach, 102
Fisher model, 17
Fisher’s transformation, 51–52
Fixed effects factors, 83
Fixed effects model, 44, 279–284
Focused comparisons, between two 

means, 81
FOE (face overshadowing effect), 258–260
Follow-up studies, replication and, 

270–271
Forest plot, 44
Fouladi, R. T., 38, 144
Fourfold table, 164
Fractional (partial, incomplete) factorial 

designs, 222

13170-13_Index-2ndPgs.indd   339 2/1/13   12:06 PM



340      index

Interaction contrasts
in completely between-subjects 

design, 248–249
in factorial analysis of variance, 

231–233
Interaction effect, 228, 238
Interaction trends, 231–233
Internal replication, 268
Interquartile range, 58–59
Interval estimation, 15, 38–64, 110, 

181–182
approximate methods for, 50–52
with bootstrapping, 54–57
in categorical outcomes, 170–172
in correlations and measures of 

association, 210–211
with effect sizes, 142–147
misinterpretations in, 43
for m, 39–41
for m1 - m2, 42–48
for mD, 48–50
non-centrality, 64
noncentrality interval estimation, 

52–54
robust estimators for, 57–64

Intrinsic factors, extrinsic factors vs., 244
Intro Stats Method, 17–19, 69, 102, 

109–113
Inverse chi-square distribution, 301
Inverse gamma distribution, 301
Inverse probability error, 19, 75
Inverse probability fallacy, 98
IUMSP (Institut universitaire de 

médecine sociale et préventive), 
64

Iverson, G. J., 99

Jaccard, J., 157
Jackknife technique, 268
Jacklin, C. N., 151
Jackson, G. B., 15
Jakab, E., 308
Johnson, A., 19
Journal of Applied Psychology, 23
Journal of Educational Psychology, 23
Journal of Experimental Education, 20
Journal of Experimental Psychology: 

Applied, 23
Journal of Management, 290–291
Juurlink, D. N., 73

High-inference characteristics, in meta-
analysis, 272

Hoekstra, R., 19
Hoffer, E., 29
Homogeneity of regression, 212
Homoscedasticity, 42, 47, 48, 57
Horn, J. L., 218
Hubbard, R., 18
Huberty, C. J., 127, 152
Hunt, K., 270
Hunter, J. E., 15, 141, 144, 168, 275
Hurlbert, S. H., 105, 109, 110
Hux, J. E., 73
Huynh–Feldt epsilon, 87
Hypothesis(--es)

alternatives to, in significance 
testing, 70

Bayesian methods, 291
nil, 69, 70
nondirectional, 71
non-nil, 69
null, 69–70, 91
one-tailed, 71
point, 69
range, 71
testing of, 73
two-tailed, 71

Illegitimate uses, of significance testing, 
107–108

Illusory correlation, 104
Improvement over chance 

classification (I), 152
Independent samples

F test for, 81–84
and standardized contrasts, 197–198

Indexes
group difference (d family), 128
group overlap, 127–128
relationship (r family), 128

Inertia, 24
Inference revolution, 18
Inferential confidence intervals, 

112–113
Inferential measures of association, 

252–254
Informative priors, 294
Institut universitaire de médecine 

sociale et préventive  
(IUMSP), 64

13170-13_Index-2ndPgs.indd   340 2/1/13   12:06 PM



index      341

Loss function, 68
Lower confidence limit, 38
Low-inference characteristics, in meta-

analysis, 272
Lowman, L. L., 152
LTR (left-tail ratio), 150, 152
Lunneborg, C., 13, 239
Lykken, D. T., 12, 106
Lytton, H., 285, 286

Maccoby, E. E., 151
MacDonald, George, 103
MAD (median absolute deviation), 59
Magnitude fallacy, 100
Maillardert, R., 41
Main comparisons, 227
Main effect, 227, 233, 238
Main effects model, 239–240
Mamdani, M. M., 73
MANOVA (multivariate analysis of 

variance), 87
Marginal probability, 293
Margin-bound effect, 169
Margin of error, 39
Markwell, S. J., 215
Matchar, D. B., 181
Mathematical models, evaluation of, 26
Mauchly’s test, 87
Maximum likelihood estimation, 209
Maximum probable difference, 113
MBESS. See Methods for the 

Behavioral, Educational, and 
Social Sciences

McBride, G. B., 112
McCloskey, D. N., 10, 20–22, 25, 67, 

114, 128
McCulloch, C. E., 209
McGraw, B., 243
McGraw, K. O., 152
McKnight, K. M., 224
McKnight, P. E., 224
McWhaw, K., 212
Mean

trimmed, 58, 60, 61
Winsorized, 59–60

Mean change, 48
Mean difference, 48, 190, 244. See also 

Standardized mean difference(s)
Mean gain, 48
Meaningfulness fallacy, 100

Kahneman, D., 41
Kanfer, R., 217
Kelley, K., 124, 145, 146
Keppel, G., 87, 227, 237
Keselman, H. J., 59, 63, 84, 87, 91, 136, 

145, 147, 197, 201–203, 250
Khurshid, A., 254
Kiers, H., 19
Killeen, P. R., 99
Kim, J. J., 48, 129, 169, 254
King, G., 169
Kirk, R. E., 22, 129, 205, 222, 223, 236
Kline, R. B., 96, 228
Kowalchuk, R. K., 87
Krauss, S., 96, 99
Kruschke, John K., 289, 299, 303
Kuebler, R. R., 12
Kuhn, Thomas S., 266
Kunert, H.-J., 216

Lambdin, C., 106
Lambert, M. J., 158
Large numbers, law of, 33
Latin square design, 222
Law of diffusion of idiocy, 16
Law of large numbers, 33
Law of small numbers, 41
Learning curve data, analysis of, 

217–219
Least squares estimators, 33
Lecoutre, B., 102
Lee, M. D., 99
Leeman, J., 22
Left-tail ratio (LTR), 150, 152
Lewis, C., 113
Likelihood, 293
Likelihood ratio, in screening tests, 

178–179
Likert scale, 164
Lindman, H., 290
Lix, L. M., 63
Locally available samples, 32
Local Type I error fallacy, 97
Loftus, G. R., 23
Logit d, 167
Loh, C., 128
Lombardi, C. M., 105, 109, 110
Longford, N. T., 11
Long-run relative frequency, 40–41
Lorch, R. F. Jr., 223

13170-13_Index-2ndPgs.indd   341 2/1/13   12:06 PM



342      index

Moderator effects, 228
Moderator variables, 228, 272
Modulus, 18
Monotonic transformation, 57
Monroe, K. B., 155
Moons, K. G. M., 179
Morey, R. D., 78
Morris, S. B., 243, 248
Mossman, D., 181
Muliak, S. A., 20
Multifactor designs, 221–260

analysis strategy in, 237–240
effects in balanced two-way designs, 

226–233
extensions to multivariate analyses, 

254
factorial analysis of variance in, 

223–226
measures of association, 250–254
nonorthogonal designs, 240–243
research examples, 255–260
standardized contrasts in, 243–250
tests in balanced two-way designs, 

233–237
types of, 221–222

Multiple regression, ANOVA and, 
88–89

Multivariate analyses, extensions to, in 
multifactor design, 254

Multivariate analysis of variance 
(MANOVA), 87

Murray, D., 18
Myers, J. L., 223

Narrative analysis, 156
National Council on Measurement in 

Education, 269
NDC (Noncentral Distribution 

Calculator), 145
Negative consequences, of significance 

testing, 106–107
Negative likelihood ratio (NLR), 178, 

182
Negatively biased estimator, 34
Negative predictive value (NPV), 

175–177
Nelson, L. D., 11, 102
Neo-Fisherian significance assessments, 

110
Neuliep, J. W., 270

Means, 33, 35
F tests for, 81–88
t tests for, 78–81

Means analysis
unweighted, 82–83
weighted, 82

Measurement crisis, 12
Measurement error, correcting for, in 

continuous outcomes, 140–142
Measures of association, 128

descriptive, 250–252
inferential, 205–209, 252–254
in multifactor design, 250–254
in single-factor designs, 203–211

Median absolute deviation (MAD), 59
Mediational meta-analysis, 273
Mediator effect, 228
Meehl, P. E., 70, 180
Memory & Cognition, 23
Meta-analysis, 271–286

effect size synthesis in, 276–284
estimation thinking and, 15–16
limitations to, 285
predictors in, 272–273
statistical techniques in, 284
and statistics reform, 285–286
steps in, 273–276
validity of, 284–285

Meta-regression, and variability of 
results, 272–273

Method 1 regression-based technique, 
242, 243

Method 2 regression-based technique, 
242, 243

Methods for the Behavioral, Educational, 
and Social Sciences (MBESS),	
 145, 202, 211

Metric-free effect sizes, 128
Metrics, arbitrary, 16
Microsoft Excel, 48
Miller, D. T., 155
Miller, G. A., 212
Miller, J., 99
Miller, K. R., 23–24
Mirosevich, V. M., 64, 91, 107
Mixed within-subjects factorial design 

(split-plot design), 222
Model-driven meta-analysis, 273
Model testing, in multifactor design, 

239–240

13170-13_Index-2ndPgs.indd   342 2/1/13   12:06 PM



index      343

Ordinal categories, 164
Ordinal interaction, 229–231
O’Reilly, T., 17, 293
Orthogonal contrasts, 191, 192
Orthogonal designs, 223
Orthogonal polynomials, 193
Orthogonal sums of squares method, 

245–246
Outliers, 59, 62, 84
Overall, J. E., 242
Overlap rule for two independent 

means, 45–46

Pairwise comparison, 190
Pairwise interaction contrast, 232
Paleo-Fisherian approach, 110
Pan, W., 24
Paradigm, 266
Parametric bootstrapping, 56–57
Park, R. L., 101
Partial replication (improvisational), 

268
Pearson, E. S., 17
Pearson, K., 17
Pearson correlation, 168
Pelz, S., 216
Penfield, R. D., 136, 147
Perlis, Alan J., 221
Person × treatment interaction, 84, 85, 

207
Philosophical Transactions of the Royal 

Society, 292
Pierce, C. A., 251
Planned comparisons, 195
PLR (positive likelihood ratio), 178, 

182
Point estimates, 15
Point hypothesis, 69, 294–298
Poitevineau, J., 102
Pollard, P., 97
Polynomials, 193
Population inference model, 31
Positive bias, 87, 134
Positive likelihood ratio (PLR), 178, 182
Positively biased estimators, 34
Positive predictive value (PPV), 

175–177
Posterior odds, 296–298
Posterior probability, 293
Post hoc, observed (power analysis), 77

New statistics, 14–16
Neyman, J., 17
Neyman–Pearson model, 17, 68–69, 

102, 110
Nil hypothesis, 69, 78, 79, 100–101, 109
NLR (negative likelihood ratio), 178, 

182
Nonadditive model, 84–85
Noncentral confidence intervals for dy, 

201–202
Noncentral Distribution Calculator 

(NDC), 145
Noncentrality parameter, 52
Noncentral t, 52, 53
Noncentral test distributions, 52
Nondirectional hypothesis, 71
Non-nil hypothesis, 69, 78, 79
Nonorthogonal contrasts, 191, 192
Nonorthogonal designs, 224, 240–243
Nonparametric bootstrapping, 87
Nonparametric percentile bootstrapped 

confidence levels, 54, 63
Nonparametric testing, 90
Normal science, 266
Nouri, H., 136, 215, 243, 247, 248, 250
NPV (negative predictive value), 

175–177
Null hypothesis, 69–70, 91

Oakes, M., 96, 99
Objectivity fallacy, 102
Odds

posterior, 296–298
prior, 294
in screening tests, 178–179

Odds-against-chance fallacy, 96–97
Odds ratio, 167, 169
Off-factors (peripheral factors),  

244–245
Ojeda, M. M., 254
Olejnik, S., 129, 133, 244, 249, 251,  

254
Omnibus comparisons, 81
Omnibus effects, in correlation and 

measures of association, 205
One-tailed hypothesis, 71
OpenBugs, 308
Operational replication, 268
Ordered categories (multilevel ordinal 

categories), 164

13170-13_Index-2ndPgs.indd   343 2/1/13   12:06 PM



344      index

Fisher model and, 17
incorrect, 13–14
misinterpretation of, 19
in significance testing, 74–76

Quality fallacy, 101
Quasi-F ratios, 237

Raaijmakers, J. G. W., 308
Random effects factors, 83
Random effects model, 99, 279–284
Randomization model, 31–32
Randomized blocks design, 222
Randomized groups factorial design, 

222
Random sampling, 30–31
Range hypotheses, 71, 298–303
Range of practical equivalence, 112
RD (risk difference), 166, 168
Real error, 38
Realization variance, 99
Receiver operating characteristic 

(ROC) model, 164–165, 173
Reduced cross-classification method, 

246
Reichardt, C. S., 41
Reification fallacy, 102
Reject-support testing, 70
Reliability induction, 13
Replicability fallacy, 98–99
Replication, 265–271

in behavioral sciences, 269–271
cultural bias vs., 270
defined, 165
and follow-up studies, 270–271
requirement of, 117
as standard procedure, 26
and theoretical/empirical 

cumulativeness, 266–267
types of, 267–269

Reporting crisis, 13
Reporting results, from empirical 

studies, 308–312
Resampling, 54
Resampling Stats, 56
Research

communication in, 111
enthusiasm for, 107

Researcher degrees of freedom, 106
Research in the Schools, 20

Power analysis, 53–54, 68, 145
and effect size, 127
effect sizes for, 209–210
retrospective, 77
in significance testing, 76–77

Power curves, 76
PPV (positive predictive value), 175–177
Preacher, K. J., 124
Prediction intervals for p, 75
Predictive value, in screening tests, 

175–177
Predictors, in meta-analysis, 272–273
Prentice, D. A., 155
Presumed interactions, 238
Principle of indifference, 41
Prior odds, 294
Prior probability, 72, 293
Probabilistic revolution, 18
Probability

Bayesian methods and, 291
long-run relative frequency and, 

40–41
posterior, 293
prior, 293
subjective degree-of-belief and, 40–41

Probability of (stochastic) superiority, 
152

Probability samples, 30
Professional Psychology: Research and 

Practice, 23
Propensity score analysis (PSA), 212
Proportion of variance explained effect 

size, 128
Prospective power analysis, 76
Prostate-specific antigen (PSA) 

screening, 180
Pseudo-orthogonal design, 224
PSY, 201, 250
Psychological Bulletin, 141
Psychological Science, 20
Psychonomic Bulletin & Review, 19
Publication bias, 11
Publication Manual, 5 ed. (APA), 21, 22
Publication Manual, 6 ed. (APA), 11, 14, 

15, 21, 38
Purposive sample, 32
Puzzle solving, 266
p value(s), 11, 97–103, 105–108, 110

for dependent sample analysis, 85
dichotomization of, 109, 110

13170-13_Index-2ndPgs.indd   344 2/1/13   12:06 PM



index      345

Sampling distribution, 34, 35
Sampling error, 32–34
Samsa, G. P., 181
Sanctification fallacy, 102–103
SAS/IML, 147, 202, 250
Sass, H., 216
SAS/STAT, 254
Savage, L. J., 290
Scaling, mean difference, 190
Schmidt, F. L., 15, 141, 144, 168, 275
Schmidt, S., 270
Schoenberger, A., 176–177
Schultz, R. F., 205
Schuster, C., 205–206
Screening tests, 172–185

base rate in, 175–177
defined, 173
estimating base rates in, 180
interval estimation in, 181–182
likelihood ratio in, 178–179
negative predictive value in, 

175–177
and odds, 178–179
positive predictive value in, 175–177
predictive value in, 175–177
sensitivity in, 174
specificity in, 174–175
for urinary incontinence, 184–185

Searle, S. R., 209
Seggar, L. B., 158
Sensitivity, in screening tests, 174
Sensitivity, specificity, and predictive 

value model, 164
Sensitivity analysis, effect size and, 284
Seraganian, P., 255
Shadish, W. R., 38, 212
Sidani, S., 224
Signal detection theory, 164
Signed effect sizes, 128
Significance game, 24
Significance testing, 67–92, 95–119

alternative hypotheses in, 70
“Big Five” misinterpretations in, 

95–103
chi test, 88–89
cognitive distortions in, 95–119
cognitive errors in, 10–11
costs of, 11–14
defenses of, 108–109
and effect size, 127

Resistant estimators, 57–64
Retrospective power analysis, 77
r family (relationship indexes), 128
Rief, W., 271
Right-tail ratio (RTR), 150–152
Riordan, C. M., 244
Risk difference (RD), 166, 168
Risk rates, in categorical outcomes, 

165–166
Risk ratio, 166, 168–169
Robinson, D. H., 109
Robust estimation, 57–64
Robust interval estimation, 60–64
Robust method for outlier detection, 59
Robustness fallacy, 103
Robust statistical tests, significance 

testing and, 90–92
ROC model, 164–165, 173
Rodgers, J. L., 107
Romney, D. M., 285, 286
Rosen, A., 180
Rosenthal, R., 79, 129, 205
Rosnow, R. L., 79
Rothman, K. J., 22, 23
Rouder, J. N., 78, 299, 303
Rozeboom, W. W., 20
R script, 254
RTR (right-tail ratio), 150–152
Rubin, D. B., 79
Rutherford, A., 215, 223
Rutledge, T., 128
Ryan, P. A., 18

Sagan, C., 64
Sahai, A., 254
Samples

accidental, 32
ad hoc, 32
convenience, 32
cross-validation, 268
derivation, 268
locally available, 32
probability, 30
purposive, 32
systematic, 32

Sampling, 29–38
errors in, 32–38
random, 30–31
stratified, 30
types of, 30–32

13170-13_Index-2ndPgs.indd   345 2/1/13   12:06 PM



346      index

Specific probability inference, 41
Speckman, P. L., 78
Spence, G., 24
Sphericity, 86, 87, 107
Spiegel, D. K., 242
SPSS, 145, 194, 212, 215, 254, 255
SRP (structured relapse prevention), 

255–258
SS (Sum of squares), 33, 34
Standard deviation bars, 39
Standard error, 34

estimation of, 57
of Fisher’s transformation, 51–52
in risk effect sizes, 170–171

Standard error bars, 39
Standardized contrasts

and bootstrapped confidence 
intervals, 202–203

and confidence intervals for dy, 
199–201

defined, 196
dependent samples and, 199
independent samples and, 197–198
in multifactor design, 243–250
and noncentral confidence intervals 

for dy, 201–202
in single-factor designs, 196–203

Standardized criterion contrast effect 
sizes, 157

Standardized effect sizes, 126, 275
Standardized mean changes 

(standardized mean gains), 134, 
250

Standardized mean difference(s), 128, 
129–138

and correction for positive bias, 134
ddiff for dependent samples, 134–136
dpool, 131–133
dtotal, 133
dwith

general form for, 130
limitations of, 137–138
robust, 136–137

Standardizers, 130
Standard set, 190
Standards for Educational and 

Psychological Testing, 269
STATISTICA 11 Advanced, 53–54
STATISTICA Advanced, 145
Statistical analysis, 11–12

F tests for, 81–88
illegitimate uses of, 107–108
limitations of, 290
negative consequences of, 106–107
Neyman–Pearson approaches vs., 

68–69
null hypotheses in, 69–70
overreliance on, 10
power analysis in, 76–77
p values, 74–76
reasons for fallacies in, 103–106
recommendations for use of,  

113–118
and robust statistical tests, 90–92
role of, 25–26
t tests for, 78–81
Type I error, 71–74
variations on, 109–113

Simel, D. L., 181
Simmons, J. P., 11, 106
Simonsohn, U., 11
Simple comparisons, 228
Simple effects (simple main effects), 

228
Simple interactions, 236
SimStat, 54, 55
Simultaneous (joint) confidence 

intervals, 196
Single-factor contrasts, in completely 

between-subjects designs, 
244–248

Single-factor designs, 90, 189–220
contrast specification in, 190–196
correlations and measures of 

association in, 203–211
effect sizes in covariate analyses, 

211–215
research examples, 215–219
standardized contrasts in, 196–203

Single-stage cluster sampling, 30
Sizeless science, 20
Slippery slope of nonsignificance, 

100–101
Slippery slope of significance, 100
Small numbers, law of, 41
Smith, H., 12, 271
Smith, M. L., 243
Smithson, M., 145, 146, 210, 254
Specificity, in screening tests, 174–175

Significance testing, continued

13170-13_Index-2ndPgs.indd   346 2/1/13   12:06 PM



index      347

Sum of squares (SS), 33, 34
Sun, D., 78
Sun, S., 24
Systematic samples, 32

Tabachnick, B. G., 236
Tail ratios, 150–152
Task Force on Statistical Inference 

(TFSI), 21, 22, 103
Testimation, 19–20
Testing to a forgone conclusion, 73
Test statistic (TS), 76
Test statistics (contrast specification), 

194–195
TFSI (Task Force on Statistical 

Inference), 21, 22, 103
Theoretical cumulativeness, 266–267
Thinkmap Visual Thesaurus, 105
Thomas, K. M., 244
Thomason, N., 19, 22
Thompson, B., 13, 21, 126, 146, 155, 

210, 254, 268, 311
Thompson, W. L., 20
3 Incontinence Questions (3IQ) scale, 

184–185
Three-valued logic, 110
Toffler, Alvin, 163
Tolstoy, Leo, 104
Total variance, estimation of, 207
Trained incapacity, 10–11
Tremblay, J., 255
Trends, 193
Trends in Cognitive Science, 290
Trimmed mean, 58, 60, 61, 91
Tryon, W. W., 112, 113
TS (test statistic), 76
TSF (12-step facilitation), 255–258
T-shirt effect, 126–127, 311
t test(s), 78, 79

Bayesian version of, 301–302
for significance testing, 78–81
Welch (Welch–James), 80–81, 90–92
Yuen–Welch, 90–92

Tuchtenhagen, F., 216
Tukey, J. W., 149
Tukey–McLaughlin method, 60–61
Tversky, A., 41
12-step facilitation (TSF), 255–258
Two-stage cluster sampling, 30
Two-tailed hypothesis, 71

Statistical equivalence, testing for,  
over two or more populations, 
113

Statistical hypotheses, substantive vs., 
100

Statistical inference, Fisher vs. 
Neyman–Pearson approaches to, 
68–69

Statistical models, 26
Statistical significance, 117
Statistical software, 118
Statistical tests (statistical testing)

history of, 16–24
justified use of, 116

Statistician’s two-step, 31
Statistics education, 118
Statistics reform, 9–26

and cognitive errors in significance 
testing, 10–11

and costs of significance testing, 
11–14

future directions, 25–26
and history of statistical testing, 

16–24
meta-analysis and, 285–286
“new” statistics in, 14–16
obstacles to, 24–25

Stayer, R., 24
Steering Committee of the Physicians’ 

Health Study Research Group, 
128

Steiger, J. H., 20, 38, 53, 144, 145, 202, 
210, 211

Stephens, P. A., 108
Stepwise method, 108
Stevens, J. J., 231
Stopping rule, 74
Stratified sampling, 30
Strong inference, 100
Structured relapse prevention (SRP), 

255–258
Student’s t distribution, 36
Subjective degree-of-belief, 40–41
Subjectivist perspective, 40–41
Subjects effect, 49
Substantive effects, 154–157
Substantive hypotheses, statistical vs., 

100
Substantive significance, 16
Success fallacy, 101

13170-13_Index-2ndPgs.indd   347 2/1/13   12:06 PM



348      index

Wald method, 170, 182
Wang, L. L., 24
Wayne, J. H., 244
Weighted means analysis, 82
Welch procedure, 47–48
Welch t test (Welch–James t test), 

80–81, 90–92
Well, A. D., 223
Wellek, S., 112
Wetzels, R., 297, 308
Whittingham, M. J., 108
Wickens, T. D., 87, 227, 237
Wilcox, R. R., 59, 63, 84, 91, 147,  

203, 250
Wilding, J., 258, 260
Wilkinson, L., 103
Williams, J., 41
WinBUGS, 307–308
Winer, B. J., 205, 210, 223, 236, 237
Winsorized mean, 59–60
Winsorized variance, 59, 61–62
Within-studies variance, 276–277
Within-subjects factors, 249–250
Women, social conditions of, 267
Women, urinary incontinence in, 

184–185
Wong, S. P., 152
Wood, M., 56
WRS, 147
WRS package for R, 250

Yuen–Welch procedure, 61–63
Yuen–Welch t test, 90–92

Zeng, L., 169
Zero fallacy, 100–101
Zientek, L. R., 311
Ziliak, S. T., 10, 20–22, 25, 67, 114,  

128

Type I error, 68, 101, 112
in Bayesian estimation, 308
controlling, 195–196
defined, 11
in significance testing, 71–74

Type II error, 11, 68, 71, 101, 308

Unbiased estimator, 33
Uncalibrated metrics, 16
Unconditional probability, 293
Uniform Requirements for Manuscripts 

Submitted to Biomedical  
Journals, 22

Uninformative priors, 294
Unit-free effect sizes, 128
Unordered categories, 164
Unplanned comparisons, 195
Unsigned effect sizes, 128
Unstandardized effect sizes, 125
Unweighted means analysis, 82–83
Upper confidence limit, 38
Urinary incontinence, 184–185
U.S. Air Force, 217

Vacha-Haase, T., 13, 23
Validity, of meta-analysis, 284–285
Validity fallacy, 98
van Es, G.-A., 179
Vargha, A., 152
Variance, realization, 99
Variance components, 205
Vaughn, G. M., 205
Vaux, D. L., 39
Velasco, F., 254
Vested interest, 24–25
Viechtbauer, W., 142
von Eye, A., 205–206

Wagenmakers, E.-J., 308
Wainer, H., 109

13170-13_Index-2ndPgs.indd   348 2/1/13   12:06 PM



349

Rex B. Kline, PhD, is a professor of psychology at Concordia University 
in Montréal, Canada. He has a doctorate in clinical psychology. His areas 
of research and writing include the psychometric evaluation of cognitive 
abilities, cognitive and scholastic assessment of children, structural equation 
modeling, the training of behavioral science researchers, and usability engi-
neering in computer science. He has published six books and nine chapters 
in these areas (see http://tinyurl.com/rexkline).

About the Author

13170-14_AboutAU-4thPgs.indd   349 2/1/13   12:06 PM


	Contents
	Acknowledgments
	Introduction
	I. Fundamental Concepts
	Chapter 1. Changing Times
	Chapter 2. Sampling and Estimation
	Chapter 3. Logic and Illogic of Significance Testing
	Chapter 4. Cognitive Distortions in Significance Testing

	II. Effect Size Estimation in Comparative Studies
	Chapter 5. Continuous Outcomes
	Chapter 6. Categorical Outcomes
	Chapter 7. Single-Factor Designs
	Chapter 8. Multifactor Designs

	III. Alternatives to Significance Testing
	Chapter 9. Replication and Meta-Analysis
	Chapter 10. Bayesian Estimation and Best Practices Summary

	References
	Index
	About the Author



