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Preface

The group of topics known broadly as ‘Global Analysis’ has developed considerably over
the past twenty years, to such an extent that workers in one area may sometimes be unaware
of relevant results from an adjacent area. The many variations in notation and terminology
add to the difficulty of comparing one branch of the subject with another.

Our purpose in preparing this Handbook has been to try to overcome these difficulties
by presenting a collection of articles which, together, give an overall survey of the sub-
ject. We have been guided in this task by the MSC2000 classification, and so the scope of
the Handbook may be described by saying that it covers the 58-XX part of the classifica-
tion: ranging from the structure of manifolds, through the vast area of partial differential
equations, to particular topics with their own distinctive flavour such as holomorphic bun-
dles, harmonic maps, variational calculus and non-commutative geometry. The coverage
is not complete, but we hope that it is sufficiently broad to provide a useful reference for
researchers throughout global analysis, and that it will also be of benefit to mathematical
physicists and to PhD and post-doctoral students in both areas.

The main work involved in the preparation of the Handbook has, of course, been that
of the authors of the articles, who have carried out their task with skill and professional-
ism. Our debt to them is immediate and obvious. Some other potential authors have, for
personal reasons, been unable to offer contributions to the Handbook, but we hope that
those omissions will not detract too much from its value. The editors also wish to ac-
knowledge the assistance of Petr Volný in the formatting of the LATEX manuscripts, and of
Andy Deelen, Kristi Green and Simon Pepping at Elsevier for their help and advice during
the preparation of the book. In addition, we should like to record our particular thanks
to Arjen Sevenster from Elsevier, who commissioned the project and gave us support and
encouragement during its development.

We should finally like to acknowledge the support of the Czech Science Foundation
(grant 201/06/0922) and the Czech Ministry of Education, Youth, and Sports (grant MSM
6198959214) for our work on this project.

Demeter Krupka
David Saunders

Palacký University, Olomouc.
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Global aspects of Finsler geometry1

Tadashi Aikou and László Kozma

Contents

1 Finsler metrics and connections
2 Geodesics in Finsler manifolds
3 Comparison theorems: Cartan-Hadamard theorem, Bonnet-Myers theorem,

Laplacian and volume comparison
4 Rigidity theorems: Finsler manifolds of scalar curvature

and locally symmetric Finsler metrics
5 Closed geodesics on Finsler manifolds, sphere theorem

and the Gauss-Bonnet formula

1 Finsler metrics and connections

1.1 Finsler metrics

Let π : TM →M be the tangent bundle of a connected smooth manifold M of dimM =
n. We denote by v = (x, y) the points in TM if y ∈ π−1(x) = TxM . We denote by z(M)
the zero section of TM , and by TM× the slit tangent bundle TM\z(M). We introduce
a coordinate system on TM as follows. Let U ⊂ M be an open set with local coordinate
(x1, · · · , xn). By setting v =

∑
yi
(
∂/∂xi

)
x

for every v ∈ π−1(U), we introduce a local
coordinate (x, y) = (x1, · · · , xn, y1, · · · , yn) on π−1(U).
Definition 1.1 A function F : TM −→ R is called a Finsler metric on M if

(1) F (x, y) ≥ 0, and F (x, y) = 0 if and only if y = 0,

(2) F (x, λy) = λF (x, y) for ∀λ ∈ R+ = {λ ∈ R : λ > 0},

(3) F (x, y) is smooth on TM×, the out-side of the zero section,

1 Tadashi Aikou: work supported in part by Grant-in-Aid for Scientific Research No. 17540086(2006),
The Ministry of Education, Science Sports and Culture. László Kozma: partially supported by the Hungarian
Scientific Research Fund OTKA T048878.



2 Global aspects of Finsler geometry

(4) G = F 2/2 is strictly convex on each tangent space TxM , that is, the Hessian (Gij)
defined by

Gij(x, y) =
∂2G

∂yi∂yj
(1.1)

is positive-definite,

are satisfied. The pair (M,F ) is called a Finsler manifold.
We note that the last condition in this definition is equivalent to the convexity of the

unit ball Bx = {y ∈ TxM | F (x, y) ≤ 1}.
If a Finsler metric F is defined, then the norm ‖y‖ of each y ∈ TxM is defined by

‖y‖ = F (x, y), and the length s(t) of a smooth curve c(t) = (x1(t), · · · , xn(t)) is defined

by s(t) =
∫ 1

0

‖ċ(t)‖dt =
∫ 1

0

F (x(t), ẋ(t)) dt.

Example 1.2 (Funk metric) Let g be a Riemannian metric onM . We define α : TM → R
by α(v) =

√
g(v, v). Since α is convex, there exists a 1-from β such that β(v) ≤ α(v).

The function F = α + β defines a convex Finsler metric on M so-called Randers metric.
We shall review a typical example of Randers metric (see [37] or [14]). Let Rn be an
n-dimensional Euclidean space with the standard coordinate (x1, · · · , xn), and B the unit
ball centered the origin: B = {x ∈ Rn | φ(x) = 1− ‖x‖2 > 0}. The Riemannian metric
gH defined by

gH =
(1− ‖x‖2)

(∑
dxi
)2 +

(∑
xidxi

)2
(1− ‖x‖2)2

is called the Hilbert metric on B. We define a 1-form β by

β =
∑
xidxi

1− ‖x‖2
= −1

2
d log φ.

The norm ‖β‖H of β with respect to gH is given by ‖β(x)‖H = ‖x‖ < 1, and thus the
function F on B defined by F (v) =

√
gH(v, v) + β(v) is a Finsler metric called the Funk

metric on B. We note that the relation between gH and F is given by

‖v‖H =
1
2

[F (v) + F (−v)]

for all v ∈ TM .
For the differential π∗ of the submersion π : TM× −→ M , the vertical subbundle V

of T (TM×) is defined by V = kerπ∗, and V is locally spanned by {∂/∂y1, · · · , ∂/∂yn}
on each π−1(U). Then it induces the exact sequence

0 −→ V
i−→ T (TM×) π∗−→ T̃M −→ 0, (1.2)

where T̃M = {(y, v) ∈ TM× × TM v ∈ Tπ(y)M} is the pull-back bundle π∗TM .

TM×

T̃M TM

M

-

?
-

?

π

π
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Since the natural local frame field {∂/∂xi}i=1,··· ,n on each U is identified with the one of
T̃M on π−1(U), any section X of T̃M is written in the form X =

∑
(∂/∂xi) ⊗Xi for

smooth functions Xi on each π−1(U). Furthermore, since kerπ∗ = V , the differential π∗
is given by π∗ =

∑
(∂/∂xi)⊗ dxi.

We define a metric G on the bundle T̃M by

G(X,Y ) =
∑

GijX
iY j (1.3)

for every section X =
∑

(∂/∂xi)⊗Xi and Y =
∑

(∂/∂xj)⊗ Y j . We also set

Cijk =
1
2
∂gij
∂yk

=
1
4

∂3L2

∂yi ∂yj ∂yk
.

Then we define a symmetric tensor field C : ⊗3T̃M → R by

C(X,Y, Z) =
∑

CijkX
iY jZk (1.4)

for all sections X , Y , Z of T̃M . It is trivial that C vanishes identically if and only if G is
a Riemannian metric on M . This tensor field C is called the Cartan tensor field.

In the sequel, we use the notation A0(T̃M) for the space of smooth sections of T̃M .
Since T̃M is naturally identified with V ∼= kerπ∗, any section X of T̃M is considered as
a section of V . We denote by XV the section of V corresponding to X ∈ A0(T̃M):

A0(T̃M) 3 X =
∑ ∂

∂xi
⊗Xi ⇐⇒

∑ ∂

∂yi
⊗Xi := XV ∈ A0(V ).

The following is trivial since (1.2) is exact.

π∗(XV ) = 0 (1.5)

for every X ∈ A0(T̃M).
The multiplier group R+ ∼= {cI ∈ GL(n,R); c ∈ R+} ⊂ GL(n,R) acts on the total

space by multiplication

mλ : TM× 3 v = (x, y)→ λv = (x, λy) ∈ TM×

for every λ ∈ R+. This action induces a canonical section E of V defined by E(v) = (v, v)
for all v ∈ TM×. By the homogeneity of F , we have

E(F ) =
d

dt t=0
F (x, y + tE) = F.

We shall consider E as a section of T̃M , and we denote it by the same notation E , that is,
E(x, y) =

∑
(∂/∂xi)⊗ yi. This section E is called the tautological section of T̃M . Then

it is easily shown that F =
√
G(E , E) and

C(E , •, •) ≡ 0. (1.6)
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1.2 Ehresmann connection

For the submersion π : TM× → M , the vertical subbundle is defined by V = kerπ∗,
while the horizontal subbundle H is defined by a subbundle H ⊂ T (TM×) which is
complementary to V . These subbundles give a smooth splitting

T (TM×) = H ⊕ V. (1.7)

Although the vertical subbundle V is uniquely determined, the horizontal subbundle is not
canonically determined. An Ehresmann connection of the submersion π : TM× → M is
a selection of horizontal subbundles. In this report, we shall define this as follows.
Definition 1.3 An Ehresmann connection of the submersion π : TM× → M is a bundle
morphism θ : T (TM×)→ T̃M satisfying

θ(XV ) = X (1.8)

for every X ∈ A0(T̃M).
If an Ehresmann connection θ is given, then a horizontal subbundle H is defined by

H = ker θ. In this report, we shall assume that the subbundle H defined by θ is invariant
by the actionm•, that is, (mλ)∗H = H◦mλ for all λ ∈ R+. This assumption is equivalent
to

LEH ⊂ H. (1.9)

Remark 1.4 A linear connection of the tangent bundle TM is a selection of horizontal
subbundles in GL(n,R)-invariant way. Thus, an Ehresmann connection θ in our sense is
sometimes called a non-linear connection of TM .

In the sequel, we denote by Ak and Ak(T̃M) the space of smooth k-forms and T̃M -
valued k-form on TM× respectively. We suppose that an Ehresmann connection θ is given.
Then, the exterior differential d : Ak → Ak+1 is decomposed into the form d = dH ⊕ dV
according to the decomposition (1.7), where dH is the differential along H and dV is the
one along V . If a covariant derivation D : A0(T̃M) → A1(T̃M) of the bundle T̃M is
also decomposed into the form D = DH ⊕DV .
Proposition 1.5 If an Ehresmann connection θ is given, then there exists a covariant exte-
rior derivation D of T̃M satisfying

θ = DE , (1.10)

or equivalently

DHE = 0. (1.11)

Proof We define a covariant derivation D by DV = dV and DH
XY = θ[XH , Y V ] for all

X,Y ∈ A0(T̃M). It is easily shown that D = DH ⊕ dV is a covariant derivation on T̃M .
Then we have

DV
XE = XV (E) = XV = θ(X)

and, from (1.9) we obtain

DH
XE = θ[XH , E ] = −θ(LEXH) = 0.
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Therefore we obtain (1.11).
Since we are concerned with the tangent bundle, T̃M is also naturally identified with

the horizontal subbundle H , and any section X of T̃M is considered as a section of H .
We denote by XH the section of H corresponding to X ∈ A0(T̃M):

A0(T̃M) 3 X =
∑ ∂

∂xi
⊗Xi ⇐⇒

∑ δ

δxi
⊗Xi := XH ∈ A0(H),

where {
δ

δx1
=
(

∂

∂x1

)H
, · · · , δ

δxn
=
(

∂

∂xn

)H}
denotes the horizontal lift of natural local frame field

{
∂/∂x1, · · · , ∂/∂xn

}
with respect

to the given Ehresmann connection θ. The set {dx1, · · · , dxn} is the dual basis ofH∗. For
the two bundle morphism π∗ and θ from T (TM×) onto T̃M , we have
Proposition 1.6 The bundle morphisms π∗ and θ satisfy

π∗(XH) = X, π∗(XV ) = 0 (1.12)

and

θ(XH) = 0, θ(XV ) = X (1.13)

for every X ∈ A0(T̃M).

1.3 Chern connection

If a Finsler metric F is given on TM , then there exists a natural metric G on T̃M defined
by (1.3). Then we shall introduce a covariant derivation ∇ which satisfies some natural
axioms.

For a given covariant derivation∇ on T̃M , we always define an Ehresmann connection
θ : T (TM×)→ T̃M by

θ = ∇E . (1.14)

With respect to the splitting (1.7),∇ is also decomposed into the form∇ = ∇H ⊕∇V .
Definition 1.7 ([10]) The Chern connection on (M,F ) is a covariant exterior differentia-
tion∇ : Ak(T̃M)→ Ak+1(T̃M) uniquely determined from the following conditions.

(1) ∇ is symmetric:

∇π∗ = 0, (1.15)

where we considered π∗ =
∑

(∂/∂xi)⊗ dxi as a section of A1(T̃M).

(2) ∇ is almost G-compatible:

∇HG = 0. (1.16)
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Remark 1.8 In the case ofC = 0, the metricF is the norm function of a Riemannian metric
g, and the Chern connection∇ is given by∇ = π∗∇M for the Levi-Civita connection∇M
of (M, g). The Chern connection is also called the Rund connection of (M,F ) (cf. [3],
[12] [32]).

We can easily show that θ defined by (1.14) is invariant by the natural action m• of
R+. In local coordinate, θ is given by

θ = ∇
(∑ ∂

∂xi
⊗ yi

)
=
∑ ∂

∂xi
⊗
(
dyi +

∑
ωijy

j
)
,

where ωij is the connection forms of ∇ with respect to
{
∂/∂x1, · · · , ∂/∂xn

}
. The set

{θi, · · · , θn} of 1-forms defined by θi = dyi +
∑
ωijy

j (i = 1, · · · , n) is the dual basis
of V ∗ defined by θ.

Then the covariant derivative ∇ is also decomposed into the form ∇ = ∇H ⊕ ∇V ,
where ∇H : A0(T̃M) −→ A0(T̃M ⊗ H∗) is defined by ∇HXY = ∇XHY , and ∇V :
A0(T̃M) −→ A0(T̃M ⊗ V ∗) is defined by ∇VXY = ∇XV Y for all X,Y ∈ A0(T̃M)
respectively. The covariant derivative ∇G of the metric G is decomposed into the form
∇G = ∇HG+∇VG, and thus the assumption (1.16) is equivalent to∇HXG = 0:

XHG(Y,Z) = G(∇HXY,Z) +G(Y,∇HXZ) (1.17)

for all X,Y, Z ∈ A0(T̃M). By the definition (1.4) of Cartan tensor field C, we have

(∇VXG)(Y, Z) = 2C(X,Y, Z) (1.18)

for all X,Y, Z ∈ A0(T̃M).
On the other hand, (1.17) implies∇HXE = θ(XH) = 0 and

XHF 2 = XHG(E , E) = G(∇HXE , E) +G(E ,∇HXE) = 0.

Therefore we obtain
Proposition 1.9 Let θ ∈ A1(T̃M) be the Ehresmann connection of π : TM× → M
defined by (1.14) for the Chern connection∇ of (M,F ). Then we have

dHF ≡ 0. (1.19)

Since the condition (1.15) is equivalent to
∑
ωij ∧ dxj = 0, the connection form ω is

given in the form ωij =
∑
Γ ijk(x, y)dxk with the coefficients Γ ijk satisfying the symmetric

property Γ ijk = Γ ikj . Then the condition (1.17) is written as dHG − tωG − Gω = 0, and
thus the coefficients Γ ijk are given by

Γ ijk(x, y) =
1
2

∑
Gil
(
δGlk
δxj

+
δGjl
δxk

− δGjk
δxl

)
, (1.20)

where (Gij) denotes the inverse of (Gij).
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1.4 Parallel translation

Let (M,F ) be a Finsler manifold with the Chern connection∇. For a non-vanishing vector
field v =

∑
vi(x)(∂/∂xi) on M , we define its covariant derivative ∇v with respect to ∇.

Let ṽ : M → T̃M be the natural lift of v defined by ṽ(x) = E(v(x)) = (v∗E)(x). The
covariant derivative∇v with respect to∇ is given by∇v = ṽ∗∇E = ṽ∗θ:

∇v = ṽ∗∇E =
∑ ∂

∂xi
⊗ (dvi +

∑
vjΓ ijk(x, v)dxk). (1.21)

If v satisfies∇v = 0, then v is said to be parallel with respect to∇.
Let c = (x(t)) : I = [0, 1] → M be a smooth curve, and v(t) be a non-vanishing

vector field along c. Then we define a lift c̃v : I → TM× of c by c̃v = (x(t), v(t)). A lift
c̃v is said to be horizontal if it satisfies c̃∗vθ = 0:

c̃∗v∇E =
∑ ∂

∂xi
⊗
[
dvi

dt
+
∑

vj(t)Γ ijk (c̃v(t))
dxk

dt

]
= 0. (1.22)

If v(t) satisfies this equation, v(t) is said to be parallel along c.
The system (1.22) has a unique solution vζ(t) which depends on the initial condition

ζ = vζ(0) smoothly. From smooth dependence of solutions on ζ, the mapping Pc(t) :
Tc(0)M → Tc(t)M defined by Pc(t)(ζ) = (c(t), vζ(t)) is a diffeomorphism for every
t ∈ I . Because of homogeneity of θ, if vζ(t) is a solution of (1.22), then λvζ(t) is also a
solution satisfying λvζ(0) = λζ, and thus the uniqueness of solutions implies that vλζ(t) =
λvζ(t). Hence the horizontal lift c̃v(t) of a curve c starting at ζ ∈ Tc(0)M satisfies the
homogeneity c̃λv(t) = (c(t), λvζ(t)) = λc̃v(t), and Pc(t) also satisfies the homogeneity
Pc(t)(λζ) = λPc(t)(ζ) for all λ > 0 and ζ ∈ Tc(0)M . The family Pc = {Pc(t) : t ∈ I} is
called the parallel translation along c with respect to∇.

The tangent space TxM at every point x ∈ M becomes a normed linear space with a
norm ‖ • ‖x = F (x, • ). If we put Pc(t)(ζ) = (c(t), vζ(t)) for any point ζ in Tc(0)M , the
norm ‖vζ(t)‖ of the vector field vζ(t) along c(t) is given by F (c(t), vζ(t)). Then, because
of Proposition 1.9 we have

dF (c(t), vζ(t)) = d(c̃∗vF ) = c̃∗v(d
V F + dHF ) = c̃∗v(d

HF ) = 0.

Hence the parallel translation Pc is norm-preserving:‖Pc(t)(ζ)‖c(t) = ‖ζ‖c(0).

Proposition 1.10 The parallel translation Pc along any curve c = c(t) on M is a norm-
preserving map between the tangential normed-spaces.

The parallel translation Pc is said to be isometry if it satisfies∥∥Pc(t)(ζ)− Pc(t)(η)
∥∥
q

= ‖ζ − η‖p (1.23)

for all ζ, η ∈ TpM . The parallel translation Pc along a curve c = c(t) is norm-preserving,
but not isometry in general. It is trivial that, if Pc is a linear mapping, then Pc is an
isometry. In a later section, we shall consider the case where every tangent spaces are
isometric mutually as normed linear spaces.

We denote by Cp the set of all (piecewise) smooth curves cwith starting point p = c(0)
and ending point p = c(1). Then there exists a natural product ”◦” in Cp. We also set
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Hp =
{
Pc(1) : TpM −→ TpM | c ∈ Cp

}
. Defining Pc1(1) ◦ Pc2(1) = P(c1·c2)(1), we can

easily show that Hp is a group with the multiplication ”◦”. This group Hp is called the
holonomy group with reference point p ∈ M . In general, since the parallel translation Pc
is not linear between the fibres, Hp is not a Lie group.

1.5 Torsion

The canonical bundle morphism π∗ : T (TM×)→ T̃M in the sequence (1.2) is identified
as a section ofA1(T̃M), and the Chern connection∇makes π∗ parallel by the assumption
(1.15). We shall calculate the covariant exterior derivative∇π∗:

∇π∗ =
∑ ∂

∂xi
⊗
(∑

ωij ∧ dxj
)
.

Since V is integrable and π∗ satisfies (1.12), we have ∇π∗(XV , Y V ) = 0. Furthermore,
for all X,Y ∈ A0(T̃M), we have

(∇π∗)(XH , Y H) = ∇XHπ∗(Y H)−∇Y Hπ∗(XH)− π∗[XH , Y H ]

= ∇HXY −∇
H
Y X − π∗[XH , Y H ]

and

(∇π∗)(XV , Y H) = ∇XV π∗(Y H)−∇Y Hπ∗(XV )− π∗[XV , Y H ]

= ∇VXY − π∗[XV , Y H ].

Therefore we have
Proposition 1.11 The assumption (1.15) of the Chern connection∇ is equivalent to

∇HXY −∇
H
Y X = π∗[XH , Y H ] (1.24)

and

∇VXY = π∗[XV , Y H ] (1.25)

for all X,Y ∈ A0(T̃M).

On the other hand, the Chern connection ∇ defines another bundle morphism θ :
T (TM×) → T̃M by (1.10). In Finsler geometry, the covariant exterior differential ∇θ
plays an important role.
Definition 1.12 The torsion T of∇ is defined by

T = ∇θ. (1.26)

We remark that the vertical part of T vanishes identically. In fact, we have

T (XV , Y V ) = ∇XV θ(Y V )−∇Y V θ(XV )− θ[XV , Y V ]

= ∇VXY −∇
V
YX − θ[XV , Y V ] = 0

for all X,Y ∈ A0(T̃M), since the vertical subbundle V is integrable. Similar computa-
tions lead us to
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Proposition 1.13 The horizontal part THH and the mixed part THV are given by

THH(X,Y ) = −θ[XH , Y H ] = dθ(XH , Y H) (1.27)

and

THV (X,Y ) = ∇HXY − θ[XH , Y V ] (1.28)

for all X,Y ∈ A0(T̃M) respectively. In particular, the mixed part THV satisfies

THV (X, E) = 0, (1.29)

where THH(X,Y ) = T (XH , Y H) and THV (X,Y ) = T (XH , Y V ).

Remark 1.14 Using local coordinate (x1, · · · , xn), the torsion form T is given by

T =
∑ ∂

∂xi
⊗
(
dθi +

∑
ωij ∧ θ

j
)
. (1.30)

Case of THH ≡ 0

The horizontal subbundle H is integrable if and only if [H,H] ⊂ H . Then, from (1.13),
H is integrable if and only if θ([XH , Y H ]) = 0 for all X,Y ∈ A0(T̃M).

Definition 1.15 The integrability tensor Θ ∈ A2(T̃M) of θ is defined by

Θ (X,Y ) = dθ(XH , Y H) = −θ[XH , Y H ]. (1.31)

From (1.27), we have THH = Θ, and thus THH = 0 means that the horizontal sub-
bundle H is integrable. Therefore H defines a foliation F on the total space TM× which
is transversal to the fibres if THH ≡ 0.
Definition 1.16 A non-vanishing smooth section v : M → TM× is said to be horizontal
with respect to∇ if it satisfies∇v = v∗∇E = v∗θ = 0.

For a horizontal section v, we have v∗dV ≡ 0, and thus v∗ ◦ dH = d ◦ v∗.
From this, the integrability condition d(v∗θ) = 0 for v to be horizontal is given by

v∗Θ = 0. Hence, if we assume Θ ≡ 0, this assumption guarantees the existence of a
horizontal section v(x) = (x, y(x)) satisfying v(x0) = ζ( 6= 0) for an arbitrary initial
point ζ ∈ Tx0M . The n-dimensional submanifold of TM defined by y = y(x) is the
maximal integrable manifold, which is the leaf Fζ of the foliation F through the point
(x0, ζ).

For the metric G on T̃M , we define a Riemannian metric gv on M by gv = v∗G for
a horizontal section v. For the connection form ω of ∇, the form ωv := v∗ω defines a
connection∇M on TM . Then we have
Proposition 1.17 Assume that THH ≡ 0. Let v : M → TM× be a horizontal section,
and gv the induced metric on M . The induced connection ∇M on M is the Levi-Civita
connection of (M, g), and v is parallel with respect to∇M .
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Case of THV ≡ 0 : Landsberg spaces

The metric G on T̃M makes each fibre TxM a Riemannian space with the metric Gx.
Since the parallel translation Pc along any curve c is given by the horizontal lift c̃v and its
tangent vector field lies in horizontal space:

dc̃v(t)
dt

=
∑ δ

δxi
⊗ dxj

dt
∈ Hc̃v(t),

Pc is an isometry between the fibres if and only if

LXHG = 0 (1.32)

for every X ∈ A0(T̃M) (cf. [23]). We have then
Proposition 1.18 The Lie derivative LXHG is given by

[LXHG] (Y,Z) = G(THV (X,Y ), Z) +G(Y, THV (X,Z)) (1.33)

for all X,Y, Z ∈ A0(T̃M).

Definition 1.19 A Finsler manifold (M,F ) is said to be a Landsberg if THV ≡ 0.
From the relation (1.33), we can prove that (1.32) is equivalent to THV = 0.

Theorem 1.20 ([22]) A Finsler manifold (M,F ) is Landsberg if and only if the parallel
translation Pc along any curve c is an isometry between the tangential Riemannian spaces.

From this theorem, we see that any parallel translation Pc ∈ Hp along c ∈ Cp is a
isometry in the tangential Riemannian space TpM if (M,F ) is a Landsberg space. Then it
is shown that Hp is a Lie group, since the isometry group G of any Riemannian manifold
is a Lie group.
Proposition 1.21 ([26]) Suppose that (M,F ) is a Landsberg space. Then the holonomy
group Hp with reference point p ∈M is a Lie group.

Remark 1.22 Each fibre TxM is a Riemannian manifold with the metric induced form G.
Then, the condition THV = 0 means that each fibre TxM is totally geodesic in TM with
some Sasakian-type metric (cf. [1]).

On the other hand, the volume form on each fibre TxM is induced from the n-form
Π =

√
detG θ1 ∧ · · · ∧ θn. We shall consider the case where each fibre TxM is minimal

in TM . From (1.25), we have

(LXHΠ)(Y1, · · · , Yn)=LXH (Π(Y1, · · · , Yn))+
n∑
k=1

Π
(
Y1, · · · , THV (X,Yk), · · · , Yn

)
for all X, Y1, · · · , Yn ∈ A0(T̃M). If we put (trTHV )(X) := trace{Y →
THV (X,Y )}, then, by direct computations, we can show the following

LXHΠ = (trTHV )(X)Π.

Thus LXHΠ = 0 if and only if (trTHV )(X) = 0.
For any X ∈ A0(T̃M), we denote by ϕt the one parameter group of local transfor-

mation in TM induced from XH . For a compact subset K0 ⊂ Tx0M, x0 ∈ M , we set
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Kt = ϕt(K0) ⊂ Tϕt(x0)M . Then the volume V (Kt) is defined by V (Kt) =
∫
Kt

Π . Sup-

pose that (M,F ) is Landsberg space. Then by Theorem 1.20, each ϕt is isometry between
the fibres, and we have

d

dt
V (Kt) =

d

dt

∫
Kt

Π =
d

dt

∫
K0

ϕ∗tΠ =
∫
K0

d

dt
(ϕ∗tΠ) =

∫
K0

LXHΠ = 0.

Hence, if (M,F ) is Landsberg, the volume V (Kt) is constant(cf. [7]).
A Finsler manifold (M,F ) satisfying trTHV = 0 is called a weak Landsberg space

(cf. [44]). The condition trTHV = 0 means that each fibre TxM is is minimal submani-
fold in TM with some Sasakian-type metric (cf. [1]).

1.6 Curvature

An important quantity in geometry is the curvature which measures the flatness of the
space.
Definition 1.23 The curvature R of ∇ is defined by

R = ∇2. (1.34)

Similarly to the case of torsion T , we first remark that the vertical part of R vanishes
identically. In fact, we obtain

R(XV , Y V )Z = ∇VX∇
V
Y Z −∇

V
Y∇

V
XZ −∇[XV ,Y V ]Z

=
∑ ∂

∂xi
⊗
[
XV Y V (Zi)− Y VXV (Zi)− [XV , Y V ](Zi)

]
= 0

for all sections X,Y, Z ∈ A0(T̃M), since the vertical subbundle V satisfies [V, V ] ⊂ V .
Hence the surviving part of R are the horizontal part RHH and the mixed part RHV :

RHH(X,Y ) = R(XH , Y H)Z = ∇XH∇Y HZ −∇Y H∇XHZ −∇[XH ,Y H ]Z

= ∇HX∇
H
Y Z −∇

H
Y ∇

H
XZ −∇[XH ,Y H ]Z

and

RHV (X,Y ) = R(XH , Y V )Z = ∇XH∇Y V Z −∇Y V∇XHZ −∇[XH ,Y V ]Z

= ∇HX∇
V
Y Z −∇

V
Y∇

H
XZ −∇[XH ,Y V ]Z.

The following is trivial from the definition.

RHH(X,Y )Z +RHH(Y,X)Z = 0. (1.35)

From the assumption (1.15), the Ricci identity ∇2π∗ = R ∧ π∗ gives R ∧ π∗ = 0.
Then

(R ∧ π∗)(XH , Y H , ZH) = R(XH , Y H)π∗(ZH) +R(Y H , ZH)π∗(XH)

+R(ZH , XH)π∗(Y H) = RHH(X,Y )Z +RHH(Y,Z)X +RHH(Z,X)Y
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and

(R ∧ π∗)(XH , Y V , ZH) = R(XH , Y V )π∗(ZH) +R(Y V , ZH)π∗(XH)

+ R(ZH , XH)π∗(Y V ) = RHV (X,Y )Z − RHV (Z, Y )X

induce the following.

Proposition 1.24 For all X,Y, Z ∈ A0(T̃M), the curvatures RHH and RHV satisfy the
following identities:

RHH(X,Y )Z +RHH(Y, Z)X +RHH(Z,X)Y ≡ 0 (1.36)

and

RHV (X,Y )Z −RHV (Z, Y )X ≡ 0. (1.37)

By the definition (1.26), the Ricci identity∇2E = RE implies the relation T = RE .
Proposition 1.25 The curvature R and the torsion T of the Chern connection ∇ satisfy
the relations

RHH(X,Y )E = THH(X,Y ) (1.38)
and

RHV (X,Y )E = THV (X,Y ) (1.39)

for all X,Y ∈ A0(T̃M).

The symmetry assumption (1.15) derives Proposition 1.24. The almostG-compatibility
assumption (1.16) derives the followings. Firstly, concerning with RHH , we have
Proposition 1.26 The horizontal curvature RHH satisfies

G(RHH(X,Y )Z,W ) +G(RHH(X,Y )W,Z) + 2C(THH(X,Y ), Z,W ) = 0 (1.40)

for all X , Y , Z and W ∈ A0(T̃M).

Secondary, concerning the mixed part RHV , we have
Proposition 1.27 The mixed part RHV satisfies the following identities.

G(RHV (X,Y )Z,W ) +G(Z,RHV (X,Y )W )

+ 2(∇HXC)(Y,Z,W ) + 2C(THV (X,Y ), Z,W ) = 0 (1.41)

for all sections X,Y, Z and W of T̃M .

As an application of Proposition 1.27, we obtain the following
Proposition 1.28 The mixed part RHV of the curvature R satisfies the following identity

RHV (X, E) = 0 (1.42)

for every X ∈ A0(T̃M).
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Remark 1.29 The curvature form Ωij of ∇ is the 2-form on TM× defined by setting

R
∂

∂xj
=
∑ ∂

∂xi
⊗ Ωij . By definition of R, we obtain the 1-st Bianchi identity

Ω = dω + ω ∧ ω:

Ωij = dωij +
∑

ωil ∧ ωlj . (1.43)

Differentiating this identity, we obtain the 2-nd Bianchi identity∇Ω = 0:

dΩij +
∑

ωil ∧Ωlj −
∑

Ωil ∧ ωlj = 0. (1.44)

In the case of Finsler geometry, this identity induces some complicated identities, since ∇
has non-zero torsions THH and THV . For example, if we calculate the horizontal 3-form
of the left-hand-side of (1.44), we obtain

(∇HXRHH)(Y, Z) + (∇HY RHH)(Z,X) + (∇HZRHH)(X,Y )

= RHV (Y, THH(X,Z)) +RHV (Z, THH(Y,X)) +RHV (X,THH(Z, Y )).

The other identities including the terms ∇HRHV , ∇VRHH and ∇VRHV , see the
book [10] or [32].

Case of RHH ≡ 0

We suppose RHH ≡ 0. Then (1.38) gives Θ = THH ≡ 0, and thus TM× admits a
horizontal section v : M → TM×.
Proposition 1.30 If RHH ≡ 0, the induced metric gv = v∗G is a flat Riemannian metric
on TM , and so M is locally Euclidean.

Case of RHV ≡ 0 : Berwald spaces

In this subsection, we shall consider the case of RHV ≡ 0.
Definition 1.31 A Finsler manifold (M,F ) is said to be Berwald if RHV ≡ 0.

Because of (1.39), a Berwald space is a special class of Landsberg spaces. If (M,F )
is Berwald, the Chern connection ∇ is linear, that is, there exists a symmetric linear con-
nection∇M on TM such that∇ = π∗∇M .

If (M,F ) is a Berwald space, then Szabó’s theorem [49] showed that we can find a
Riemannian metric g on M which is compatible with ∇M . We show the outline of the
proof of this fact. For this, we define a isometric group G of F . For an arbitrary point
x ∈ M , we set G = {g ∈ GL(n,R) | ‖gy‖ = ‖y‖, ∀y ∈ TxM}. By the continuity of the
norm ‖ · ‖ and the homogeneity of F , we can prove that G is a compact Lie group [21].
Then we define an inner product 〈·, ·〉x on TxM by

〈y1, y2〉x =
∫
G

(gy1, gy2)dg

for an arbitrary inner product (·, ·) on TxM and a bi-invariant Haar measure dg on G. By
definition, it is trivial that this inner product 〈·, ·〉x is G-invariant.
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On the other hand, the holonomy group Hx of ∇M with the reference point x is a
subgroup of G, since ∇M preserves F invariant. Hence 〈·, ·〉x is also Hx-invariant. Thus
we can extend the inner product 〈·, ·〉x to a Riemannian metric g on TM by the help of the
parallel displacement with respect to ∇M . It is trivial that ∇M is compatible with respect
to this metric g. Hence we have
Theorem 1.32 ([49]) Suppose that a Finsler manifold (M,F ) is a Berwald space. Then
there exists a Riemannian metric g on M such that the Chern connection ∇ of (M,F ) is
given by∇ = π∗∇M for the Levi-Civita connection∇M of (M, g).

The curvature is related with parallel translation. The following theorem due to [21]
characterizes Berwald spaces in terms of parallel translations.
Theorem 1.33 ([21]) A Finsler manifold (M,F ) is Berwald if and only if the parallel
translation Pc along any curve c is an isometry between the tangential normed spaces.

Proof We suppose that the parallel translation Pc along any curve c = c(t) in M is
an isometry between the tangential normed spaces. Then, by the Mazur-Ulam’s theorem
(cf. [33] and [50]), the mapping Pc is linear and there exists a GL(n,R)-valued function
Ac = (Aij(t)) satisfying Pc(ζ) = (c(t), Ac(t)ζ) = (xi(t),

∑
Aij(t)ζ

j). From (1.22) we
get ∑ dAij(t)

dt
ζj = −

∑
N i
j (c(t), Ac(t)ζ)

dxj

dt

for all curves c(t) and initial point ζ. Therefore the coefficients N i
j(x, y) =

∑
Γ iljy

l

are linear with respect to the fibre coordinate (y1, · · · , yn), namely, Γ ilj = Γ ilj(x), which
shows RHV = 0.

Conversely we suppose that (M,F ) is Berwald. Then, since the functions N i
j(x, y)

are linear in the fibre coordinate (y1, · · · , yn), the solutions yζ(t) of (1.22) are linear in ζ.
Hence the parallel translation Pc is linear, and from (1.23), we have

‖Pc(ζ)− Pc(η)‖c(t) = ‖Pc(ζ − η)‖c(t) = ‖ζ − η‖c(0)

for all ζ, η ∈ Tc(0)M . Hence Pc is an isometry.

Example 1.34 Let F = α + β be a Randers metric on M . Then, by the well-known
theorem due to [25], (M,F ) is Berwald if and only if β is parallel 1-form on the base
Riemannian manifold (M, g).
Remark 1.35 From (1.39), if RHV vanishes identically, then THV also vanishes. Hence
the class of Landsberg spaces contains the class of Berwald spaces. There exists a lot of
example of Berwald spaces. However it is still an open problem to find an example of
non-Berwald Landsberg space.

Case of RHH = RHV ≡ 0 : Locally Minkowski spaces

In this section, we shall be concerned with flat Finsler manifolds.
Definition 1.36 A Finsler manifold (M,F ) is said to be locally Minkowski if there exists
a local coordinate system on M with respect to which the function F is independent of the
base point x ∈M .

We have the following well-known theorem (cf. [32]).
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Theorem 1.37 A Finsler manifold (M,F ) is locally Minkowski if and only if the Chern
connection∇ is flat.

Proof We suppose that ∇ is flat, that is, RHH = RHV ≡ 0. Then, the Chern connection
∇ is induced from a flat connection ∇M on TM . Hence there exists an open cover U of
M and local frame fields (e1, · · · , en) on U ∈ U such that ∇ej = 0. This condition is

equivalent to the existence of the change of frames ej =
∑ ∂

∂xi
Aij(x), A = (Aij(x)) :

U → GL(n,R), on each U satisfying dA + ωA = 0. With respect to such a local frame
field e, the connection form ω̃ = A−1dA+A−1ωA of∇ vanishes on U . Then, ω̃ = 0 and
(1.19) imply the independence of F on the base point x ∈ U . If we denote byB = (Bij(x))
the inverse of the matrix A, the condition above is equivalent to

∂Bij(x)
∂xk

=
∑

BimΓ
m
jk .

Since∇ is symmetric, there exist some functions wi(x) such that Bij = ∂wi/∂xj , and the
local frame ej is given by

ej =
∑ ∂

∂xi
∂xi

∂wj
=

∂

∂wj
.

Hence there exists a local coordinate system {U, (wi)} on M with respect to which the
function F is independent on the base point x ∈ U .

Conversely we assume that F is independent of the base point x. By definition, the
metric tensorGij is also independent of the base point x. Then, we getN i

j =
∑
Γ iljy

l = 0
and (1.20) imply Γ ijk = 0, and thus the Chern connection∇ is flat.

Example 1.38 Let F = α + β be a Randers metric on M . Then (M,F ) is locally
Minkowski if and only if (M,F ) is Berwald and the base Riemannian manifold (M, g)
is flat ([25]).

This example is true for any locally Minkowski space.
Proposition 1.39 A Finsler manifold (M,F ) is locally Minkowski if and only if (M,F ) is
Berwald and its associated Riemannian metric is flat.

1.7 Flag curvature

Let X be a tangent vector at x ∈ M . We may consider X a section of T̃M . Then the
2-plane F(X) spanned by X and E is called the flag with the flagpole E . For the curvature
tensor R of ∇, the sectional curvature

G(R(X, E)E , X)
‖X‖2 ‖E‖2 −G(X, E)2

is called the flag curvature of the flag F(X), and denoted by K. From (1.42), we have
G(RHV (X, E)E , X) = 0 for every section X ∈ Γ (T̃M), and so the flag curvature K is
given by

K(X) =
G(RHH(X, E)E , X)
‖X‖2 ‖E‖2 −G(X, E)2

. (1.45)
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The flag curvature K depends on X and the point (x, y) ∈ TM× : K = K(x, y,X).
If the flag curvature K is independent of X at every point (x, y) ∈ TM×, the space is
said to be of scalar flag curvature K(x, y). A Finsler manifold (M,F ) is said to be of
constant flag curvature if K is constant. For Finsler manifolds of constant flag curvature,
see Chapter 12 in [10]. The proof of the following theorem is found in [32].
Theorem 1.40 (Schur’s lemma) Let (M,F ) be a Finsler manifold of scalar flag curvature
K = K(x, y). If K is a function of position x ∈M alone, then (M,F ) is of constant flag
curvature provided dimM ≥ 3.

Example 1.41 Let F be the Funk metric on the unit ball B defined in Example 1.1. It is
well-known that F has negative constant flag curvature K = −1 (see [37] or [14]).

2 Geodesics in Finsler manifolds

Let γ : I = [0, 1] → M be a smooth curve. Since the symmetry condition F (x, y) =
F (x,−y) is not assumed, the orientation of curves is essential, that is, if a curve γ is given,
then we always assume that γ is oriented by the parameter t. A smooth curve γ = γ(t) is
said to be regular if γ̇(t) := dγ/dt 6= 0 for every t ∈ I .

Let Γ (p, q) be the set of all regular oriented curves with the initial point p = γ(0) and
the terminal point q = γ(1). Then we define a functional LF : Γ (p, q)→ R by

LF (γ) =
∫ 1

0

‖γ̇(t)‖ dt =
∫ 1

0

F (γ̃(t)) dt.

Since F satisfies the homogeneity condition, this definition is well-defined. For an ordered
pair (p, q) ∈M ×M , the distance function dF (p, q) is defined by dF (p, q) = infc LF (γ),
where infinimum is taken over of all oriented (piecewise) smooth curves from p to q. In
general, since the symmetry condition is not assumed, the distance function dF does not
satisfy the symmetric property dF (p, q) = dF (q, p). However, the distance dF satisfies the
following conditions:

(1) dF (p, q) ≥ 0,

(2) dF (p, q) = 0 if and only if p = q,

(3) dF (p, q) ≤ dF (p, r) + dF (r, q).

The metric topology of M is defined by the sets B(p, δ) = {q ∈M | dF (p, q) < δ}, and
the metric topology of a connected Finsler manifold (M,F ) coincides with the manifold
topology of M .

2.1 Geodesics in Finsler manifolds

The canonical lift of a regular oriented curve γ is the curve γ̃ : I → TM× defined by
γ̃(t) = (γ(t), γ̇(t)). For a vector field X(t) along γ, we consider X(t) as a section of T̃M
along γ̃. Then we use the notation∇tX instead of γ̃∗∇X:

∇tX =
∑ ∂

∂xi
⊗
[
dXi

dt
+
∑

Xj(t)Γ ijk (γ̃(t))
dxk

dt

]
. (2.1)



Tadashi Aikou and László Kozma 17

In particular, if X(t) = γ̇(t), then we have ∇tγ̇(t) = γ̃∗θ. We note that this equation
is written as ∇tX = γ̃∗∇HX , since X is a vector field along the curve γ(t) in the base
manifold M . The definition (2.1) and the metrical condition (1.14) imply

d

dt
G(X,Y ) = G(∇tX,Y ) +G(X,∇tY ) (2.2)

for all vector fields X(t) and Y (t) along γ. Hence we have
Proposition 2.1 If ∇tX = ∇tY = 0, then the inner product G(X,Y ) is constant
along γ.

Let (M,F ) be a Finsler manifold with the Chern connection∇.
Definition 2.2 A regular oriented curve γ : I →M is said to be a path if its canonical lift
γ̃ is horizontal, that is,∇tγ̇ = γ̃∗θ = 0.

The length s of a regular curve γ is defined by s(t) =
∫ t

0

‖γ̇(t)‖ dt, and the function

s(t) is an increasing function of the parameter t. If the parameter t is positively propor-
tional to s, then t is said to be normal.
Definition 2.3 Let (M,F ) be a Finsler manifold. A path in M with a normal parameter is
called a is a geodesic in (M,F ).

From (2.1), a regular oriented curve γ(t) = (xi(t)) with normal parameter t is a
geodesic if and only if∇tγ̇(t) = 0:

d2xi

dt2
+
∑

Γ ijk (γ̃(t))
dxj

dt

dxk

dt
= 0 (2.3)

is satisfied. From the metrical condition (2.2), if γ = γ(t) with normal parameter t is a
geodesic, the tangent vector γ̇(t) has a constant norm and γ has constant speed. In the
sequel, we always assume that the parameter of a geodesic to be normal otherwise stated.

Let γX : I → M be a geodesic with initial point x = γX(0) and the initial direction
X = γ̇X(0), where the parameter t is, of course, is normal. We shall define the exponential
map exp by exp(x,X) = γX(1) if X 6= 0 and exp(x, 0) = x. The restriction of exp to
D∩TxM is denoted by expx. The restricted exponential map expp maps the rays through
the origin 0 ∈ TxM to the unique geodesics through the point x in sufficiently small
Bx(r) = {X ∈ TxM | ‖X‖ < r}.

The exponential map exp is defined on an open neighborhood D of the zero section
z(M) of TM , and exp is C∞-class away from z(M). Furthermore exp is C1-class at
z(M), and its derivative at z(M) is the identity map. By a result due to Akbar-Zadeh, the
map exp is C2-class at z(M) if and only if (M,F ) is a Berwald space (see [10]).

For each X ∈ TxM , the radial geodesic γX is given by γX(t) = expx(tX) for
all t ∈ I such that either side is defined. This geodesic segment γX has tangent vector
field γ̇X with γ̇X(0) = X . Since ∇tγ̇X = 0, (2.2) implies that ‖γ̇X‖

2 = G(γ̇X , γ̇X)
is constant along γX , and thus ‖γ̇X(t)‖ = ‖γ̇X(0)‖ = ‖X‖. Consequently we have∫ 1

0

‖γ̇X(t)‖ dt = ‖X‖.
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2.2 The first variation of arc length and geodesics

In this section, we shall show the first variation formula in Finsler manifolds. For this end,
we introduce some definitions.

Let γ = γ(t) ∈ Γ (p, q) be a regular oriented curve with unit speed, that is, ‖γ̇(t)‖ = 1.
Then a variation of γ is a family {γs} of oriented curves γs(t) parameterized by s ∈
(−ε, ε) such that γ0(t) = γ(t) for all t ∈ I . A variation Γγ is said to be proper if
it fixes the end points, that is, γs(0) = p and γs(1) = q. We suppose that the map
Γγ : (−ε, ε)×I →M defined by Γγ(s, t) = γs(t) is smooth. (For the variational problem
of arc length, it is enough to assume that Γγ is piecewise differentiable with respect to the
parameter t (cf. [32], Chapter VII), however, we shall assume the smoothness of Γγ for the
simplicity of discussions.)

By the assumption, the map Γ satisfies Γγ(0, t) = γ(t), p = Γγ(s, 0) and
q = Γγ(s, 1). Setting s = constant for each s ∈ (−ε, ε), the parameterized curve
γs : I → M defined by γs(t) = Γγ(s, t) is called a s-curve, while the parameterized
curve γt(s) = Γγ(s, t) is a t-curve which is transversal curve to γ. In local coordinates,
we set Γγ(s, t) =

(
x1(s, t), · · · , xn(s, t)

)
. We denote by S = ∂γt/∂s and T = ∂γs/∂t

the tangent vector fields of t-and s-curves respectively:

S =
∑ ∂

∂xi
⊗ ∂xi

∂s
, T =

∑ ∂

∂xi
⊗ ∂xi

∂t
.

In particular, the vector field V(t) along γ defined by

V(t) =
(
∂γt
∂s

)
(0,t)

= S(0, t)

is called the variational field induced from Γγ . If Γγ is proper, that is, Γγ satisfies γs(0) =
γ(0) = p and γs(1) = γ(1) = q for all s ∈ (−ε, ε), then the variational field V is proper,
that is, V satisfies V(0) = V(1) = 0.

We are always concerned with the variation Γγ whose variational field V is independent
of the tangent vector γ̇ at least one point on γ. Let V = V(t) be any vector filed along a
regular oriented curve γ = γ(t). Then there exists a variation Γγ which induces V as its
variational field. In fact, if we take Γγ(s, t) = exp(sV(t)), then Γγ : (−ε, ε)× I →M is
a variation of γ with variational field V .
Lemma 2.4 Let V be any vector field along γ. Then V is a variational field of some
variation Γγ of γ. If V is proper, then V is the variational field induced from a some proper
variation Γγ .

The vector fields S and T are naturally identified with sections of T̃M along the canon-
ical lift γ̃s of s-curve γs:

S (γ̃s(t)) =
∑ ∂

∂xi
⊗ ∂xi

∂s
, T (γ̃s(t)) =

∑ ∂

∂xi
⊗ ∂xi

∂t
.

Lemma 2.5 Let Γγ : (−ε, ε)× I →M be a variation. Then we have

∇HS T = ∇HT S (2.4)

along γ̃s = (γs(t), γ̇s(t)).
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Let Γγ be a proper variation of a regular oriented curve γ ∈ Γ (p, q). We compute
the first variation of length functional LF (γs). Since G(T , T ) = F (γs(t), γ̇s(t))2 =
LF (γs)2, we have

d

ds
LF (γs) =

1
2

∫ 1

0

1
‖T ‖

∂G(T , T )
∂s

dt.

Furthermore, (1.17) and (2.4) imply

1
‖T ‖

∂G(T , T )
∂s

=
2
‖T ‖

G
(
∇HS T , T

)
=

2
‖T ‖

G
(
∇HT S, T

)
(2.5)

along γ̃s. Consequently we have

1
‖T ‖

∂G(T , T )
∂s

=
2
‖T ‖

[
d

dt
G (S, T )−G

(
S,∇HT T

)]
,

which gives

d

ds
LF (γs) =

∫ 1

0

1
‖T ‖

[
d

dt
G (S, T )−G

(
S,∇HT T

)]
dt.

Evaluating s = 0, then ‖T ‖s=0 = ‖γ̇(t)‖ = 1 derives the following:
Proposition 2.6 (First Variation Formula) Let γ : I → M be a regular oriented curve,
and Γγ a proper variation of γ. Then

d

ds s=0
LF (γs) = −

∫ 1

0

G (V,∇tγ̇) dt (2.6)

where V is the variational field of Γγ .

A regular oriented curve γ is said to be a stationary point of the functional LF if
(dLF (γs)/ds)s=0 = 0 for any proper variation Γγ . If a regular oriented curve γ : I →M
is a geodesic, then γ satisfies (2.3), and thus γ is a stationary point of LF from (2.6).

Conversely we suppose that γ is a stationary point of the functional LF . Since the
condition (dLF (γs)/ds)s=0 = 0 is satisfied for any variational field V along γ, we take
V(t) = ϕ(t)∇tγ̇ for a smooth function ϕ satisfying ϕ(0) = ϕ(1) = 0 and ϕ > 0 else-
where. Then, since V is proper and from (2.6), we have

−
∫ 1

0

ϕ(t) ‖∇tγ̇‖2 dt = 0,

which implies∇tγ̇ = 0 on I .
Proposition 2.7 A regular oriented curve in a Finsler manifold (M,F ) is a stationary
point of the functional LF if and only if γ is a geodesic from p to q.

A curve γ from p = γ(0) to q = γ(1) is said to be minimizing if dF (p, q) = LF (γ).
Since minimizing curve is a stational curve, we have
Theorem 2.8 Every minimizing curve in (M,F ) is a geodesic if γ is regular.

The converse of this theorem is also true.
Theorem 2.9 Every geodesic in a Finsler manifold (M,F ) is locally minimizing.



20 Global aspects of Finsler geometry

This theorem is proved by using the Gauss lemma. We define the geodesic ball Bx(r)
centered at x ∈ M of radius r by Bx(r) = exp (Bx(r)) for the tangential ball Bx(r) =
{ζ ∈ TxM | ‖ζ‖ < r}. Let Sx(r) = {X ∈ TxM | ‖X‖ = r} be the tangent sphere. Then
the set Sx(r) = exp (Sx(r)) is called the geodesic sphere at x of radius r. Then the Gauss
lemma is stated as follows.
Lemma 2.10 (The Gauss Lemma) The radial geodesic γX is orthogonal to the geodesic
sphere Sx(r) at x ∈M .

For the proof of Theorem 2.9, we need more technical preliminaries, and thus we omit
it here. For the complete proof, see [10] or [13].

2.3 Euler-Lagrange equation

From Proposition 2.8, a geodesic in (M,F ) is characterized as the critical points of length
functional LF . In general, the equation which characterizes the critical points of a func-
tional on Γ (p, q) is called the Euler-Lagrange equation of LF . For details, refer to the
book [4] or [32].

We consider an arbitrary proper variation Γγ : γs(t) = γ(t)+sX(t) of a smooth curve
γ(t) with fixed end points, that is, X(0) = X(1) = 0. Then, by definition of norms, we
have ‖γ̇s(t)‖ = F (γs(t), γ̇s(t)). The Taylor extension gives

‖γ̇s(t)‖ − ‖γ̇(t)‖ = s

(∑ ∂F

∂xi
Xi +

∑ ∂F

∂yi
Ẋi

)
+
s2

2!
(· · · ) + · · · ,

and this extension implies

d

ds s=0
LF (γs) =

∫ 1

0

(∑ ∂F

∂xi
Xi +

∑ ∂F

∂yi
Ẋi

)
dt.

Because of
d

dt

(∑ ∂F

∂yi
Xi

)
=
∑ ∂F

∂yi
Ẋi +

d

dt

∂F

∂yi
Xi,

we have

d

ds s=0
LF (γs) =

∫ 1

0

[∑ ∂F

∂xi
Xi +

d

dt

(∑ ∂F

∂yi
Xi

)
− d

dt

(∑ ∂F

∂yi

)
Xi

]
dt

=
[∑ ∂F

∂yi
Xi

]1

0

+
∫ 1

0

∑[
∂F

∂xi
− d

dt

(
∂F

∂yi

)]
Xidt

=
∫ 1

0

∑[
∂F

∂xi
− d

dt

(
∂F

∂yi

)]
Xidt.

Hence, γ(t) is a critical point of LF if and only if

Ei(γ) :=
∂F

∂xi
− d

dt

(
∂F

∂yi

)
= 0. (2.7)

This equation is the Euler-Lagrange equation of the functional LF . The quantity Ei is
written as

Ei(γ) =
1
F

(∑
Gij

dyi

dt
+ 2Gi −

∂F

∂yi
dF

dt

)
,
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where we put

2Gi =
∑ ∂2

∂yi∂xi

(
F 2

2

)
yj − ∂

∂xi

(
F 2

2

)
.

Putting Gi =
∑
GimGm and yi = dxi/dt, the Euler-Lagrange equation Ei(γ) = 0

implies the equation of the geodesic as follows:

d2xi

dt2
+ 2Gi

(
x,
dx

dt

)
= p

dxi

dt

for the function p = d logF/dt, where we note that t is an arbitrary parameter of γ. In
particular, if we take Finslerian arc length as the parameter t of γ, that is, dt = F (x, dx),
we obtain the equation of geodesic as follows:

d2xi

dt2
+ 2Gi

(
x,
dx

dt

)
= 0. (2.8)

Example 2.11 (Geodesics of Randers metrics) Let F = α+β be a Randers metric, where
α2 =

∑
gij(x)yiyj and β =

∑
bi(x)yi. We denote by γijk the Chiristoffel symbol of the

base Riemannian manifold (M, g). Let t be the Finslerian arc length.
We define the quantities∇gj bi and bij by

∇gj bi =
∂bi
∂xj
−
∑

bmγ
m
ij , bij =

∑
gim

(
∂bm
∂xj

− ∂bj
∂xm

)
.

Then, by direct computations, we see that the functions Gi in (2.8) are given by

2Gi =
∑

γijky
jyk +

yi

F

(∑
∇gkbjy

jyk − α
∑

bmb
m
j y

j
)

+ α
∑

bijy
j .

Hence the equation (2.8) with the Finslerian arc length parameter t is given by the follow-
ing complicated form:

d2xi

dt2
+
∑

γijk
dxj

dt

dxk

dt
+
(∑

∇gkbj
dxj

dt

dxk

dt
−α

∑
bmb

m
l

dxl

dt

)
dxi

dt
+α

∑
bij
dxj

dt
= 0.

If we take the Riemannian arc length u as the parameter, that is, du = α(x, dx), we have
dt = du+

∑
bi(x)dxi, and so

dt

du
= 1 +

∑
bi(x)

dxi

du
.

Then the equation above is reduced to the following form:

d2xi

du2
+
∑

γijk
dxj

du

dxk

du
+
∑

bij
dxj

du
= 0.

In particular, if the 1-form β =
∑
bi(x)dxi is closed, then bij = 0 implies

d2xi

du2
+
∑

γijk
dxj

du

dxk

du
= 0,

and so any geodesic in (M,F ) coincides with one in the base Riemannian manifold (M, g).
Consequently it is shown that, if the 1-form β is closed, then (M,F ) is projectively equiv-
alent to the base Riemannian manifold (M, g).
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Example 2.12 (Geodesics of Funk metric) Let F = α+ β be the Funk metric on the unit
ball B ⊂ Rn stated in Example 1.1. In this case, the 1-form β is exact form, and so any
geodesic in (B, F ) is given by the one in the Hilbert’s space (B, gH). We shall show the
equation of geodesic parameterized by its Finslerian arc length t. From Example 2.1, it is
given by

d2xi

dt2
+
∑

γijk
dxj

dt

dxk

dt
+
(∑

∇gkbj
dxj

dt

dxk

dt

)
dxi

dt
= 0.

Since the Hilbert’s metric gH =
∑
gij(x)dxi ⊗ dxj is given by

gij =
1

1− ‖x‖2

(
δij +

xixj

1− ‖x‖2

)
,

its Christoffel symbol γijk is given by

γijk =
1

1− ‖x‖2
(
xjδik + xkδij

)
.

Then, because of

bj = −1
2
∂

∂xj
log
(

1− ‖x‖2
)

=
xj

1− ‖x‖2
,

we obtain
∇gj bi =

∂bi
∂xj
−
∑

bmγ
m
ij =

δij

1− ‖x‖2
= gij − bibj .

Hence the equation (2.8) is given by

d2xi

dt2
+

1
1− ‖x‖2

(
2
∑

xk
dxk

dt
+
∥∥∥∥dxdt

∥∥∥∥2
)
dxk

dt
= 0.

Furthermore, from dt =
√∑

gij(x)dxidxj +
∑
bi(x)dxi, we obtain

1
1− ‖x‖2

(
2
∑

xk
dxk

dt
+
∥∥∥∥dxdt

∥∥∥∥2
)

=
∑

(gij − bibj)
dxi

dt

dxj

dt
+ 2

∑
bi(x)

dxi

dt
= 1.

Consequently, the equation of geodesics in (B, F ) is given by the following simple form:

d2xi

dt2
+
dxi

dt
= 0.

The solution of this differential equation with initial conditions A = (a1, · · · , an) = x(0)

and λi =
dxi

dt
(0)(6= 0) is given by xi = λi(1 − e−t) + ai. Therefore any geodesic in

(B, F ) is given by a line in B.
Let P the point (λ1 + a1, · · · , λn + an) = x(∞) on the boundary ∂B, and B a point

on the line. We denote by AP (resp. BP ) the Euclidean distance between the points A
and P (resp. B and P ). Because of

1− e−t =
xi − ai

λi
=

√∑
(xi − ai)2√∑

(λi)2

=
AB

AP
,
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●

●

●

●

we obtain e−t = 1− AB

AP
=
BP

AP
which implies that the Funk’s distance dF is given by

dF (A,B) = log
AP

BP
.

Since the Hilbert’s distance dH is given by dH(A,B) = [dF (A,B) + dF (B,A)] /2, the
distance dH is given by

dH(A,B) =
1
2

(
log

AP

BP
+ log

BQ

AQ

)
.

2.4 The Jacobi fields and conjugate points

A variation Γγ = Γγ(s, t) of a geodesic γ is said to be a geodesic variation if each s-curve
γs is also a geodesic. Since each s-curve γs is a geodesic, we have∇HT T = 0.

Let X be a vector field along γs. Then, since [S, T ] = 0, we have

∇HS ∇
H
T X −∇

H
T ∇

H
S X = RHH(S, T )X (2.9)

along γs. From this equation, we get the so-called the Jacobi equation.
Proposition 2.13 (The Jacobi Equation) Let γ be a geodesic, and V the variational field
of a geodesic variation Γγ of γ in a Finsler manifold (M,F ). Then V satisfies

∇t∇tV +RHH(V, γ̇)γ̇ = 0. (2.10)

Definition 2.14 Let (M,F ) be a Finsler manifold. The differential equation (2.10) is
called the Jacobi equation. A vector field J along a geodesic satisfying (2.10):

∇t∇tJ +RHH(J, γ̇)γ̇ = 0
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is called a Jacobi field in (M,F ).
By definition, the variational field V of a geodesic variation of a geodesic γ is a Jacobi

field. Conversely, every Jacobi field along a geodesic γ is the variational field of some
geodesic variation of γ. The differential equation (2.10) is linear and of second order, we
have 2n linearly independent solution. Therefore, along any geodesic γ, the set of Jacobi
field is a 2n-dimensional vector space.

Let γ ∈ Γ (p, q) be a geodesic segment in M . Then q is said to be conjugate along γ if
there exists a Jacobi field J(6= 0) along γ such that J vanishes at p and q.

ForX ∈ TpM , we set q = exppX . For an arbitrary Y ∈ TX(TpM), we shall compute
the differential (expp)∗Y at X:

(expp)∗Y =
d

ds s=0
expp(X + sY ).

To compute (expp)∗, we define a geodesic variation Γγ of γX by Γγ(s, t) = expp t(X +
sY ). The variational field J = ∂Γγ/∂s is a Jacobi field along γX , and we have J(1) =
(expp)∗Y . The conjugate points are the image of the singularities by the exponential
mapping.
Proposition 2.15 Let γX(t) = expp(tX) (t ∈ I) be the radial geodesic for X ∈ TxM .
Then expp is a local diffeomorphism if and only if q = exppX is not conjugate to p
along γX .

2.5 The second variational formula and index form

Let γ : I → M be a geodesic with unit speed. We shall compute the second variation of
the length functional LF . We shall compute

d2

ds2 s=0
LF (γs) =

∫ 1

0

[
∂

∂s

G
(
∇HT S, T

)
‖T ‖

]
s=0

dt

Differentiating with respect to s, we have

∂

∂s

G
(
∇HT S, T

)
‖T ‖

= − 1
‖T ‖2

∂ ‖T ‖
∂s

G
(
∇HT S, T

)
+

1
‖T ‖

∂

∂s
G
(
∇HT S, T

)
.

From (2.2) and (2.4), we get

∂ ‖T ‖
∂s

=
1
‖T ‖

G
(
∇HT S, T

)
.

Furthermore

∂

∂s
G
(
∇HT S, T

)
= G

(
∇HS ∇

H
T S, T

)
+G

(
∇HT S,∇

H
S T
)

= G
(
∇HT ∇

H
S S +RHH(S, T )S, T

)
+G

(
∇HT S,∇

H
T S
)
.

Consequently we have
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d2LF (γs)
ds2

=
∫ 1

0

1
‖T ‖

[
G
(
∇HT ∇

H
S S +RHH(S, T )S, T

)
+ ‖∇HT S‖2 −

G
(
∇HT S, T

)2
‖T ‖2

]
dt

along γs. Since∇HT T = 0 and V(0) = V(1) = 0 imply∫ 1

0

[
G
(
∇HT ∇

H
S S, T

)]
s=0

dt =
∫ 1

0

[
∂

∂t
G
(
∇HS S, T

)]
s=0

dt

= G
(
∇HV V, γ̇

)
t=1
−G

(
∇HV V, γ̇

)
t=0

= 0,

we have

d2

ds2 s=0
LF (γs) =

∫ 1

0

[
G
(
RHH(V, γ̇)V, γ̇

)
+ ‖∇tV‖2 −G (∇tV, γ̇)2

]
dt. (2.11)

Let V> = G(V, γ̇)γ̇ be the tangential part of V . We also denote by V⊥ the normal part
of V , that is, V⊥ = V − V>. Then, ∇tγ̇ = 0 implies ∇tV> = ∇t(G(V, γ̇)γ̇) = (∇tV)>

and∇tV⊥ = ∇tV −∇tV> = (∇tV)⊥. Hence we have

‖∇tV‖2 = ‖∇tV>‖2 + ‖∇tV⊥‖2 = G(∇tV, γ̇)2 + ‖∇tV⊥‖2.

Then, since G(RHH(γ̇, γ̇)•, •) = 0 from (1.35) and C(γ̇, •, •) = 0 along γ from (1.6),
we have G(RHH(•, •)γ̇, γ̇) = 0 from (1.36). Hence we get

G(RHH(V, γ̇)V, γ̇) = G(RHH(V⊥, γ̇)V⊥, γ̇).

Consequently, we obtain the second variation formula of LF .
Proposition 2.16 (Second Variation Formula) Let γ : I → M be any geodesic with unit
speed, and Γγ a proper variation of γ, and V its variation field. Then

d2

ds2 s=0
LF (γs) =

∫ 1

0

[
G(RHH(V⊥, γ̇)V⊥, γ̇) + ‖∇tV⊥‖2

]
dt, (2.12)

where V⊥ is the normal part of V .

Since (1.36) implies

G(RHH(V⊥, γ̇)V⊥, γ̇) = −G(RHH(V⊥, γ̇)γ̇,V⊥)

along γ, and since V⊥ is normal to γ̃, we obtain

G(RHH(V⊥, γ̇)V⊥, γ̇) = −‖V⊥‖2K(V⊥)

for the flag curvature K. Hence the second variation formula (2.12) has the form

d2

ds2 s=0
LF (γs) =

∫ 1

0

[
‖∇tV⊥‖2 − ‖V⊥‖2K(V⊥)

]
dt. (2.13)

Therefore we have
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Proposition 2.17 Let (M,F ) be a Finsler manifold with non-positive flag curvature K.
Then, the second variation of any geodesic satisfies

d2

ds2 s=0
LF (γs) > 0.

We define the index form on a Finsler manifold (M,F ). Let γ be a unit speed geodesic
in (M,F ). We set

I(X,Y ) =
∫ 1

0

[
G(RHH(X, γ̇)Y, γ̇) +G(∇tX,∇tY )

]
dt (2.14)

for normal proper vector fields X,Y along γ. The index form I is a symmetric bi-linear
form on the space of normal proper vector fields. In fact, the Bianchi identity (1.36) implies

G(RHH(X, γ̇)Y, γ̇) +G(RHH(γ̇, Y )X, γ̇) +G(RHH(Y,X)γ̇, γ̇) = 0.

Since the last term on the left hand side vanishes from (1.6) and (1.42), we have

G(RHH(X, γ̇)Y, γ̇) = −G(RHH(γ̇, Y )X, γ̇) = G(RHH(Y, γ̇)X, γ̇)

along γ. Thus I is a symmetric bi-linear form: I(X,Y ) = I(Y,X).
Since (1.35) induces G(RHH(X, γ̇)Y, γ̇) = −G(RHH(X, γ̇)γ̇, Y ) along γ, if X and

Y are proper, we have ∫ 1

0

G (∇tX,∇tY ) = −
∫ 1

0

G (∇t∇tX,Y )

which implies

I(X,Y ) = −
∫ 1

0

[
G(∇t∇tX −RHH(X, γ̇)γ̇, Y )

]
dt. (2.15)

By the definition of I and (2.11), the second variation of LF of unit speed geodesic is
given by I(X,X), and it can be thought as the Hessian of the length functional LF . Thus,
if γ is minimizing, then I(X,X) ≥ 0 for any proper normal vector field X along γ. The
following is a generalization of the well-known theorem in Riemannian geometry which
shows that no geodesics is minimizing past its first conjugate point (e.g., Theorem 10.15
in [30]).
Theorem 2.18 If γ ∈ Γ (p, q) is a geodesic segment in a Finsler manifold (M,F ) such
that γ has an interior conjugate point to p, then there exists a proper normal vector field
X along γ such that I(X,X) < 0. In particular, γ is not minimizing.

We also consider the completeness of Finsler manifolds. For details of this contents,
see Chapter VII in [32], Chapter 6 in [10]or Chapter 8 in [13].
Definition 2.19 A Finsler manifold (M,F ) is said to be geodesically complete if the ex-
ponential mapping expx is defined on the whole of TxM for every point x ∈M .

We denote by E(p, δ) the subset of the closure B(p, δ) consisting by the points joining
by minimal geodesic with p. Then, if (M,F ) is geodesically complete, the following three
conditions are mutually equivalent.
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(1) E(p, δ) is compact,

(2) E(p, δ) = B(p, δ) for all δ > 0

(3) any ordered two points in M are joined by a minimal geodesic.

We shall introduce another completeness of Finsler manifolds.
Definition 2.20 A point sequence {pm} in (M,F ) is called a Cauchy sequence, if for any
ε > 0 there exists an integer N such that dF (pi, pj) < ε (i, j > N). Then (M,F ) is said
to be metrically complete if any Cauch sequence in M converges.

The following theorem is a natural generalization of the one in Riemannian geometry.
The proof of it is omitted here. For the complete proof, see Chapter 8 in [13].
Theorem 2.21 (Hopf-Rinow Theorem) Let (M,F ) be a connected Finsler manifold. Then
the following three conditions are mutually equivalent.

(1) (M,F ) is geodesically complete.

(2) (M,F ) is metrically complete with respect to the distance dF .

(3) Any bounded closed subset of M is compact.

3 Comparison theorems: Cartan–Hadamard theorem,
Bonnet–Myers theorem, Laplacian and volume comparison

3.1 Cartan–Hadamard theorem

Before stating the theorems we need two notions:

(1) For a vector y ∈ SxM , we define cy > 0 to be the first number r > 0 such that there
exists Jacobi field J(t) along c(t) = exp(ty), 0 ≤ t ≤ r, satisfying J(0) = J(r) =
0. cy is called the conjugate value of y. Then we set

cx = inf
y∈SxM

cy cM = inf
x∈M

cx,

called the conjugate radius at x and of M , resp.

(2) For a vector y ∈ SxM , we define iy to be the supremum of r > 0 such that expx(ty)
is minimizing on [0, r], and then the injectivity radius ix at x is defined by ix =

inf
y∈SxM

iy , and iM = inf
x∈M

ix.

One can prove ([46]) that at each point x ∈ M , iy ≤ cy for all y ∈ SxM , and hence
ix ≤ cx.

The generalization of Cartan-Hadamard theorem for Finsler spaces was first proved by
Auslander [5], cf. [46].
Theorem 3.1 Let (M,F ) be a positively complete Finsler manifold. Suppose that the flag
curvature satisfies K ≤ λ. Then the conjugate radius satisfies cy ≥ π/

√
λ. In particular,

if K ≤ 0, then cy = ∞ for any y ∈ SM . Hence expx : TxM → M is non-singular for
any x ∈M .
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A Finsler spacer is called a Hadamard space if it is positively complete, simply con-
nected with K ≤ 0. So, for a Hadamard space the exponential map expx : TxM → M is
non-singular for all x ∈M .

We mention that in [36] Neeb generalized the classical theorem of Cartan-Hadamard
for Banach-Finsler manifolds endowed with a spray which have semi-negative curvature in
the sense that the corresponding exponential function has a surjective expansive differential
in every point.

A Finsler space is called uniform with uniformity constant C (cf. Egloff’s work [17])
if for any x ∈M and u, v ∈ TxM

C−1gu ≤ gv ≤ Cgu.

We call a Finsler metric F reversible, if for all tangent vectors X we have: F (−X) =
F (X). Otherwise we call the metric non-reversible (or irreversible).
Theorem 3.2 ([46]) Let (M,F ) be a complete reversible uniform Finsler manifold. As-
sume that M is simply connected, and F satisfies K ≤ 0. Then expx : (TxM,Fx) → M
is distance quasi-nondecreasing:

Fx(y2 − y1) ≤
√
Cd(expx(y1)− expx(y2)), ∀ y1, y2 ∈ TxM.

This theorem expresses the dispersing of the geodesics emanating for the same point
in the case of negative flag curvature. See a relating analysis about this in [10], p. 137.

In general, the conjugate radius is always less than or equal to the injectivity radius.
However, in the case of positive flag curvature of an even-dimensional oriented Finsler
manifolds they are equal.
Theorem 3.3 Let (M,F ) be an even-dimensional oriented closed Finsler manifold with
K > 0. Then iM = cM .

It can be proved that in this case M is simply connected (Synge theorem), cf. [5] and
[27] for a different proof.

3.2 Bonnet–Myers theorem

The trace of the Riemann curvatureRy : TxM → TxM is called the Ricci curvature (Ricci
scalar) of the Finsler manifold:

Ricy =
n∑
i=1

Rii(y).

If we use an orthonormal basis with respect to gy such that bn = y/F (y), then the
Ricci curvature can be expressed with the flag curvature. Namely, taking the flags
Pi = span {bi, y}, i = 1, . . . , n− 1, and the fact Ry(y) = 0, one can see easily that

Ricy = F 2(y)
n−1∑
i=1

K(Pi, y).

Theorem 3.4 Let (M,F ) be an n-dimensional positively complete Finsler manifold with
Ricy ≥ (n− 1)λ for all y ∈ SM , λ > 0. Then for any unit vector y ∈ SM , the conjugate
value satisfies cy ≤ π/

√
λ.
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From this theorem of Bonnet and Myers it follows that the diameter of M is at most
π/
√
λ, M is compact, and the fundamental group π(M,x) is finite. See also [10].

3.3 Laplacian comparison

The Laplacian in the Finslerian case was given by Shen [46]. To obtain some Laplacian
comparison theorems for the distance function, we need first the following function, which
has an important role on the Rauch comparison theorem:

ctc(t) =


√
c · cot (

√
ct), c > 0

1
t , c = 0
√
−c · coth (

√
−ct), c < 0.

The S-curvature Sx is a real Finslerian quantity: For y ∈ T:xM \ 0, define the distortion
of (M,F ) as

τ(y) := log

√
det(gij(x, y))

σ
,

where σ is the Busemann-Hausdorff volume form.
The S-curvature measures the rate of the distortion along geodesics:

S(y) :=
d

dt
[τ(γ̇(t))]t=0,

where γ(t) is the geodesic with γ̇(0) = y. In local coordinates it can be expressed (cf. [46])
by

S(y) = N i
i −

yi

σ(x)
∂σ

∂xi
(x).

The Laplacian of a function f on M is given as follows: ∆f = div (∇f) =
div (`−1(df)), where ` : TM → T ∗M is the Legendre transformation.

In the first theorem the assumption is given with the flag curvature, while in the second
one with the Ricci curvature.
Theorem 3.5 ([51]) Let (M,F, dµ) be a Finsler manifold, r = dF (p, ·) the distance func-
tion from a fixed point p. Suppose that the flag curvature of M satisfies K(V,W ) ≤ c for
any V,W ∈ TM . Then for any vector X on M the following inequality holds whenever r
is smooth:

∆r ≥ (n− 1) ctc(r)− ‖S‖,

where ‖S‖ is the positive norm function of S-curvature which defined by

‖S‖x = sup
X∈TxM\0

S(X)
F (X)

.

Theorem 3.6 ([51]) Let (M,F, dµ) be a Finsler manifold with non-positive flag curvature.
If the Ricci curvature of M satisfies RicM ≤ c < 0, then the following inequality holds
whenever r is smooth:

∆r ≥ ctc(r)− ‖S‖
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For the case where the Ricci curvature is bounded from below, the following compari-
son theorem is valid (cf. [51]):
Theorem 3.7 Let (M,F, dµ) be a Finsler manifold with non-positive flag curvature. If
the Ricci curvature of M satisfies RicM ≥ (n − 1)c. Then the following inequality holds
whenever r is smooth:

∆r ≤ ctc(r) + ‖S‖.

3.4 Volume comparison

For real numbers c,Λ and positive integer n, let

Vc,λ,n := Vol (Sn−1(1))
∫ r

0

eΛtsc(t)n−1 dt,

where

sc(t) :=


sin(
√
ct), c > 0

t, c = 0
sh (
√
−ct) c < 0.

First the flag curvature and the norm of the S-curvature are bounded from above:
Theorem 3.8 ([51]) Let (M,F, dµ) be a complete Finsler manifold which satisfies
K(V,W ) ≤ c and ‖S‖ ≤ Λ. Then the function

Vol (Bp(r))
Vc,−Λ,n(r)

is monotone increasing for 0 < r < ip, where ip is the injectivity radius of p. In particular,
for dµ = dVF , the Busemann-Haussdorff volume form, one has

Vol (Bp(r)) ≥ Vc,−Λ,n(r), r ≤ ip.

Theorem 3.9 ([51]) Let (M,F, dµ) be a complete Finsler manifold with non-positive flag
curvature. If the Ricci curvature of M satisfies RicM ≤ c < 0 and ‖S‖ ≤ Λ, then the
function

Vol (Bp(r))
Vc,−Λ,2(r)

is monotone increasing for 0 < r < ip, where ip is the injectivity radius of p. In particular,
for dµ = dVF ,

Vol (Bp(r)) ≥
Vol (Bn(1))
Vol (B2(1))

Vc,−Λ,2(r), r ≤ ip.

The Bishop-Gromov volume comparison theorem of Riemannian geometry uses a
lower Ricci curvature bound to control the ratio between the volume of a metric ball in
the space and the metric ball of the same size in the comparison space form. First Shen
proved in [45] a generalization of the Bishop-Gromov theorem, where the Ricci curvature
is bounded below and the mean covariation is bounded on both sides. As in Riemannian
geometry, this volume comparison theorem leads to precompactness and homotopy finite-
ness theorems in any class of Finsler n-manifolds with fixed bounds on Ricci curvature,
diameter and S-curvature. Here we state the version of Wu ([51]), using the Laplacian
comparison theorem, see Theorem 3.7 above.
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Theorem 3.10 ([51]) Let (M,F, dµ) be a complete Finsler manifold. If the Ricci curva-
ture of m satisfies RicM ≥ (n− 1)c and ‖S‖ ≤ Λ, then the function

Vol (Bp(r))
Vc,Λ,n(r)

is monotone decreasing in r. In particular, for dµ = dVF ,

Vol (Bp(r)) ≤ Vc,Λ,n(r).

4 Rigidity theorems: Finsler manifolds of scalar curvature and
locally symmetric Finsler metrics

4.1 Curvature rigidity

Rigidity results state that under such and such assumptions about the curvature, the un-
derlying Finsler structure must be either Riemannian or locally Minkowskian. A famous
result of this type is Akbar-Zadeh’s theorem ([2]) about spaces with constant flag curvature
(a generalization of the sectional curvature).
Theorem 4.1 ([2]) Let (M,F ) be a compact connected boundaryless Finsler manifold of
constant flag curvature λ.

• If λ < 0, then (M,F ) is Riemannian.

• If λ = 0, then (M,F ) is locally Minkowskian.

In the paper [48], Shen addressed the case of negative but not necessarily constant flag
curvature. He showed that in this case, if we impose the additional hypothesis that the
S-curvature be constant, then the said rigidity still holds. As in the Akbar-Zadeh result,
the compact boundaryless hypothesis may be replaced by a growth condition on the Cartan
tensor.
Theorem 4.2 Let (M,F ) be a complete Finsler manifold with nonpositive flag curvature.
Suppose that F has constant S-curvature and bounded mean Cartan curvature. Then F
is weakly Landsbergian. Moreover, F is Riemannian at points where the flag curvature is
negative.

Any Finsler metric on a closed manifold is complete with bounded Cartan torsion.
Therefore one immediately obtains
Corollary 4.3 Let (M,F ) be a closed Finsler manifold with negative flag curvature. If F
has constant S-curvature, then it must be Riemannian.

Let K(P, y) be the flag curvature of the Finsler space (M,F ). One calls (M,F ) a
Finsler space of scalar curvature if K(P, y) = K(x, y) is independent of the flags P
(associated with any fixed flagpole y)

Mo and Shen ([35]) proved that, for any n-dimensional (n ≥ 3) compact negatively
curved Finsler spaces (M,F ) of scalar curvature, F is a Randers metric.
Theorem 4.4 Let (M,F ) be an n-dimensional complete Finsler manifold of scalar flag
curvature K = K(x, y) ≤ −1 (n ≥ 3). Suppose that the Matsumoto torsion grows
sub-exponentially at rate k = 1. Then F is a Randers metric.
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Any Finsler metric on a closed manifold is complete with bounded Cartan torsion, and
hence bounded Matsumoto torsion. Therefore we have
Corollary 4.5 Let (M,F ) be an n-dimensional closed Finsler manifold of scalar curva-
ture with negative flag curvature, n ≥ 3. Then F is a Randers metric.

If we impose the reversibility condition on the Finsler metric, we obtain the following
Corollary 4.6 Let F be a reversible Finsler metric on a closed manifold of dimension
n ≥ 3. Suppose that F has of scalar curvature with negative flag curvature, then it is a
Riemannian metric of constant curvature.

Furthermore, Foulon in [18] proved a rigidity theorem for compact Finsler spaces.
The curvature is assumed to be covariantly constant along a distinguished vector field on
the homogeneous bundle of tangent half lines. Also, the flag curvature is assumed to be
strictly negative, though variable. Under these conditions, the Finsler structure is shown to
be Riemannian.

4.2 Curvature obstruction for Finsler surfaces

Given a Finsler structure on a surface one can define a canonical coframing on the unit
sphere bundle in TM . The structure equations of this coframing are determined by three
scalar functions, usually denoted by I , K and J . The function I is called the Cartan scalar
of the structure and it vanishes iff the structure is Riemannian. When the Finsler structure is
Riemannian, K is the usual Gaussian curvature. Landsberg structures are those for which
J vanishes identically. In [9], Bao, Chern and Shen studied Landsberg surfaces for which
the functionK descends to a function onM . For compact surfaces withK ≤ 0, their main
result says that if the structure is Landsberg or K descends to a function on M , then the
Finsler structure is Riemannian everywhere if K does not vanish identically, or is locally
Minkowskian everywhere if K is identically zero.

Paternain proved a rigidity theorem for Finsler surfaces which are real analytic ([38]).
It says that if the surface is of Landsberg type or its Gaussian curvature has no directional
dependence, and if the Euler characteristic is negative, then the real analytic Finsler struc-
ture in question must be Riemannian. For comparison, Bao, S. S. Chern and Z. Shen have
proved in [9] that if a Finsler surface is of Landsberg type or its Gaussian curvature has
no directional dependence, and if the Gaussian curvature is everywhere negative, then the
Finsler structure must be Riemannian. In Paternain’s theorem, real analyticity is assumed,
but the Gaussian curvature only needs to be negative on average. In [9], real analyticity is
not needed, but then the Gaussian curvature is required to be pointwise negative.

The next theorem of Szabó ([49]) states that strongly convex Berwald surfaces are
always trivial: locally Minkowskian or Riemannian.
Theorem 4.7 Let (M,F ) be a connected Berwald surface with smoth and strongly convex
F on TM \ 0. Then

• if the Gauss curvature K vanishes identically, then F is locally Minkowskian,

• if the Gauss curvature K is not identically zero, then F is Riemannian.

The proof is based on the following fact: If (M,F ) is a Landsberg surface with smooth
F on TM \ 0, then the value of the Gauss curvature K at any point of the indicatric SxM
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is determined by the Cartan scalar I accoding to the following formula:

K(t) = K(0)e
∫ t
0 I(τ) dτ .

See also [10], p. 277.

4.3 Locally symmetric Finsler manifolds

Foulon ([19]) gave a sophisticated treatment of locally symmetric spaces for the Finsler
case. Here local assumptions on curvature are much more flexible than in the Riemannian
case. It is clear that the flag curvature governs the Jacobi equation and the second variation
of length. Due to this, there exists a description of the flag curvature in terms of the
dynamics of the geodesic flow. In fact, the generator of the geodesic flow of a Finsler
metric is a second order differential equation. It may be observed ([18]) that, in the much
more general context of second order differential equations, there is a natural operator
which plays the role of the flag curvature.

A smooth reversible Finsler metric is said to be parallel if and only if DXR = 0, i.e. if
the curvature is parallel along the flow lines. A Finsler metric is called locally symmetric
if for any chosen point the geodesic reflection is a local isometry.

There are many examples of non-Riemannian parallel Finsler spaces; for instance, Rn,
equipped with a Banach norm satisfying the positivity condition. But these cases are flat
Finsler spaces. The most famous negatively curved symmetric Finsler space was invented
by Hilbert in 1894. It is known as the Hilbert geometry of bounded convex sets in Rn.

First one can prove the following
Proposition 4.8 ([19]) A reversible, locally symmetric, C3 Finsler metric is parallel.

In contrast to the Riemannian case, the converse is not true in general. For instance, D.
Egloff showed that a Hilbert geometry is locally symmetric if and only if it is Riemannian.
The main rigidity theorem for Finsler manifolds with negative flag curvature states:
Theorem 4.9 ([19]) A compact Finsler space with parallel negative curvature is isometric
to a Riemannian locally symmetric negatively curved space.

Combining Theorem 4.9 with Proposition 4.8 immediately implies the following
Corollary 4.10 A locally symmetric compact Finsler space with negative curvature is iso-
metric to a negatively curved Riemannian locally symmetric space.

Theorem 4.9 contains, as a particular case, compact manifolds with constant curvature,
for which this result was known by a theorem of Akbar Zadeh [2].

5 Closed geodesics on Finsler manifolds, sphere theorem and the
Gauss–Bonnet formula

5.1 Closed geodesics

The study on closed geodesics on spheres is a classical and important problem in both
dynamical systems and differential geometry. The results of V. Bangert in 1993 and J.
Franks in 1992 prove that for every Riemannian metric on S2 there exist infinitely many
geometrically distinct closed geodesics. In contrast, in 1973, A. Katok ([24]) constructed a
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remarkable irreversible Finsler metric on S2 which possesses precisely two distinct prime
closed geodesics. See a fine analysis about it in [52].

Closed geodesics on a compact manifold with a Finsler metric F can be characterized
as the critical points of the energy functional

E : ΛM → R; E(γ) =
1
2

∫ 1

0

F 2(γ′(t)) dt.

Here ΛM is the free loop space consisting of closed H1-curves γ : S1 := [0, 1]/{0, 1} →
M on the manifold M . On M there is an S1-action (u, γ) ∈ S1 × ΛM 7→ u.γ ∈
ΛM ; u.γ(t) = γ(t+ u), t ∈ S1 leaving the energy functional invariant. In addition there
is the mapping m : γ ∈ ΛM 7→ γm ∈ ΛM ; γm(t) = γ(mt); t ∈ S1 and E(γm) =
m2E(γ). Here γm is the m-fold cover of γ. A closed geodesic c is called prime if there
is no closed geodesic c1 and no integer m > 1 with c = cm1 . Recall that a Finsler metric
F is called reversible, if for all tangent vectors X we have: F (−X) = F (X). Otherwise
we call the metric non-reversible. We call two closed geodesics c1, c2 : S1 → M of a
non-reversible Finsler metric on a differentiable manifold M geometrically equivalent if
their traces c1(S1) = c2(S1) coincide and if their orientations coincide. The equivalence
class is also called a geometric closed geodesic. For a closed geodesic c1 there is a prime
closed geodesic c such that the set of all geometrically equivalent closed geodesics consists
of u.cm; m ≥ 1, u ∈ S1. Let θ : ΛM → ΛM be the orientation reversing, i.e. θ(c)(t) =
c(1 − t). For a non-reversible Finsler metric this mapping in general does not leave the
energy functional invariant. And in general for a closed geodesic c the curve θc is not a
geodesic.

The second order behaviour of the energy functional in a neighborhood of a closed
geodesic is determined by its index formHc which equals the hessian d2E(c) of the energy
functional by the second variational formula, cf. [39]. The index ind (c) of the closed
geodesic c is the index of the index formHc i.e. it is the maximal dimension of a subspace
on whichHc is negative definite. The nullity (c) is the nullity of the index formHc minus
1. This convention is used since due to the S1-action the nullity of the index formHc is at
least 1. We call a Finsler metric bumpy, if all closed geodesics are non-degenerate, i.e. for
all closed geodesics c the nullity (c) = 0 vanishes. We call two prime closed geodesics c
and d distinct if there is no θ ∈ (0, 1) such that c(t) = d(t + θ). We shall omit the word
”distinct” for short when we talk about more than one prime closed geodesics. In recent
years, geodesics and closed geodesics on Finsler manifolds have got more attentions. We
refer readers to [11] of Bao, Robles and Shen, and [31] of Long and the references therein
for recent progress in this area.

Note that by the classical theorem of Lyusternik–Fet in 1951, there exists at least one
closed geodesic on every compact Riemannian manifold. Because the proof is variational,
this result works also for compact Finsler manifolds. In [41] of 2005, Rademacher obtained
existence of closed geodesics on n–dimensional Finsler spheres under pinching conditions
which generalizes results on Riemannian manifolds. There are few results on the existence
of multiple closed geodesics on Finsler spheres without pinching conditions. Read the
story in [16], where the latest result in this direction states the following one, specially for
bumpy irreversible Finsler rationally homological n–spheres without pinching conditions.
Theorem 5.1 ([16], [42]) For every bumpy Finsler metric F on every rationally homolog-
ical n-sphere Sn with n ≥ 2, there exist at least two distinct prime closed geodesics.
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Note that the proof in [16] uses only the Q-homological properties of the Finsler man-
ifold, thus one can carry out the proof of this theorem just for n-dimensional spheres.
Meanwhile, the main ingredients of the proof in [42] are the relation between the average
indices of closed geodesics for metrics with only finitely many closed geodesics and a de-
tailed analysis of the sequence of Morse indices ind (cm) of the coverings cm of a prime
closed geodesic c using a formula due to Bott as well as a careful discussion of the Morse
inequalities.

We mention that in [28] Kristály, Kozma and Varga studied the critical point theory
on the loop space of closed geodesics, and proved that the energy integral satisfies the so-
called Palais-Smale condition. This implies that if M1 and M2 are closed submanifolds of
M , and (M,F ) is a dominated by a Riemannian metric, then under different assumptions
on M1 and M2, there exist infinitely many Finsler geodesics on M joining the submani-
folds M1 and M2.

5.2 Sphere theorem

The classical sphere theorem states that a simply connected and compact manifold of di-
mension n with a Riemannian metric whose sectional curvature K satisfies 1

4 < K ≤ 1
is homeomorphic to the n-sphere. In the proof the homeomorphism is constructed using
the estimate for the injectivity radius inj ≥ π and the Toponogov comparison theorem.
W. Klingenberg showed that one can give a different proof without using the Toponogov
comparison theorem: The injectivity radius estimate gives as lower bound for the length of
a closed geodesic the value 2π: Then a Rauch comparison argument shows that the Morse
index of a closed geodesic is at least n − 1: From the Morse theory of the energy func-
tional on the free loop space one can conclude, that the free loop space is (n−2)-connected.
This implies that the manifold is homotopy equivalent to the n-sphere. P. Dazord ([15])
remarked that this proof extends to the case of a reversible Finsler metric, i. e. a Finsler
metric F for which F (−X) = F (X) for all tangent vectors. The flag curvature, which
depends on a flag (V ;σ) consisting of a non-zero tangent vector V and a 2-plane σ in
which V lies, generalizes the sectional curvature.

In [39] Rademacher considered also non-reversible Finsler metrics, introduced the re-
versibility λ = λ(M,F ) of a Finsler metric F on a compact manifold M :

λ := max{F (−X) ‖X ∈ TM, F (X) = 1}.

Obviously λ ≥ 1 and λ = 1 if and only if F is reversible. The reversibility enters in the
following generalization of the injectivity radius estimate for Riemannian metrics:
Theorem 5.2 ([39]) Let (M,F ) be a simply connected, compact Finsler manifold of di-

mension n ≥ 2 with reversibility λ and flag curvature
(

1− 1
1+λ

)2

< K ≤ 1. Then the

length of a closed geodesic is at least π(1 + 1
λ ).

Using a Hamiltonian description A. Katok defined in [24] a 1-parameter family Fε; ε ∈
[0, 1) of Finsler metrics on the 2-sphere. For ε = 0 this is the standard Riemannian metric,
for ε ∈ (0, 1) these metrics are nonreversible and for irrational parameter ε these metrics
have exactly two geometrically distinct closed geodesics, cf. [39, 52]. These two geodesics
differ by orientation. These examples show that the estimate for the length of a closed
geodesic in Theorem 5.2 is sharp.



36 Global aspects of Finsler geometry

Using a Rauch comparison argument and the Morse theory of the energy functional on
the free loop space one concludes from Theorem 5.2 the following Sphere Theorem:
Theorem 5.3 A simply connected and compact Finsler manifold of dimension n ≥ 3 with

reversibility λ and with flag curvature
(

1− 1
1+λ

)2

< K ≤ 1 is homotopy equivalent to
the n-sphere.

It remains an open problem whether one can improve the sphere theorem in the nonre-
versible case by choosing the lower curvature bound 1/4 as in the reversible case.

5.3 Gauss-Bonnet-Chern theorem for Finsler manifolds

Historically the Gauss-Bonnet formula gives the relationship between curvature and an-
gular excess. The notion of angular excess for a geodesic triangle on a surface is evident,
however for more general figures in higher dimension, angular excess becomes much more
complex. The modern view of the Gauss-Bonnet formula is that the curvature of a Rieman-
nian manifold reflects the topology of the space: for a compact and oriented Riemannian
manifold without boundary one has:

χ(M) =
∫
M

Ψ(ζ)dv(ζ),

where χ(M) is the Euler characteristic of the manifold, Ψ(ζ) is the Pfaffian of the Rie-
mannian curvature suitable normalized, dv is the Riemannian volume form.

In 1944 Chern gave a simple proof for the famous Riemannian formula using the
so-called method of transgression. Extending the formula to Finsler spaces is natural;
while the method of transgression requires the lifting of the curvature to the sphere bun-
dle, for a Finsler manifold the curvature form already lives on the sphere bundle. This
was done in 1996 by Bao and Chern ([7]): The Gauss-Bonnet-Chern theorem was es-
tablished for Finsler manifolds under an additional assumption that the volume function
V (x) = Vol(SxM) of the tangent sphere SxM is a constant. This happens in the case
of Landsberg manifolds. Consequently, Bao, Chern, and Shen in [8] showed how the
Gauss-Bonnet integrand is simplified on 4-dimensional Landsberg spaces. Further, one
can rewrite the horizontal part of the simplified Gauss-Bonnet integrand, in a way which
formally generalizes an identity derived for Riemannian 4-manifolds. The integrand is
written in terms of the hh-curvature tensor of the Chern-Rund connection and Cartan’s
tensor Aijk, containing Vol(FinslerS3).

Lackey in [29] generalized the Gauss-Bonnet formula for even-dimensional closed ori-
ented Finsler manifolds without any additional restriction on the Finsler structure.
Theorem 5.4 Let (M,F ) be such a Finsler manifold, and let ψ be a section of its pro-
jective sphere bundle π : SM → M , possibly with isolated singularities. Let (ωij) be a
torsion-free Finslerian connection with curvature forms (Ωij). Then∫

M

ψ∗
[ −1

Vol(x)
(Ω + F)

]
= χ(M),

where Vol(x) is the volume of the tangent sphere SxM ,

Ω =
(−1)m−1

22m−1(m− 1)!m!
Pf(Ωjk), m =

1
2

dimM,
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is a 2m-form on SM expressed in terms of Ωjk as defined in the Riemannian case by S. S.
Chern, and F is a polynomial in the entries of σjk := ωjk + ωkj , Σjk := Ωjk + Ωkj , Ωij
and d ln Vol(x).

The above Gauss-Bonnet formula is established using an arbitrary torsion-free connec-
tion whose structure equations in a preferred orthogonal coframe {ωj} with ωn := Fyidx

i

take the following form:

dωj + ωjk ∧ ω
k = 0, ωjk + ωkj = Mjklω

l +Ajklω
l
n.

This general setting allows to select a new torsion-free connection involving d ln Vol(x)
such that the integrand of the Gauss-Bonnet formula consists solely of polynomials in the
connection forms, curvature forms, and covariant derivatives thereof. One can make a
choice of ωij with

Mjkldx
l :=

1
n− 1

(
alj lk − bhjk

)
d ln Vol(x),

where a, b are arbitrary constants with a+ b = 1, li := Fyi and hjk := gjk − lj lk.
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1 Introduction

Classical Morse theory’s object is the relation between the topological type of critical
points of a function f and the topological structure of the manifold X on which f is
defined. Traditionally Morse theory deals with the case where all critical points are non-
degenerate and it relates the index of the Hessian of a critical point to the homology of the
manifold. A closely related more homotopy theoretical approach goes back to Lusternik
and Schnirelmann allowing for degenerate critical points. Nowadays these topics are sub-
sumed under the more general heading of critical point theory. The classical Morse theory
in finite dimension is described in [42], first extensions to Hilbert manifolds in [43, 47].
In this survey we treat Morse theory on Hilbert manifolds for functions with degenerate
critical points.

In section 2 the general case of a topological space X and a continuous function f :
X → R is considered.

The topological type of the “critical set” between a and b is described by the Morse
polynomial Mf (t; a, b). The relative homology of the pair (fa, f b) is described by the
Poincaré polynomial Pf (t; a, b). By definition fa = {x ∈ X : f(x) ≤ a}. Then there
exists a polynomial Q(t) with non-negative integer coefficients such that

Mf (t; a, b) = Pf (t; a, b) + (1 + t)Q(t).



42 Morse theory and nonlinear differential equations

The Morse inequalities follow from this relation.
In section 3 the Morse polynomial is computed in the case of isolated critical points of

finite Morse index. Besides the Morse lemma, the main results are the Shifting Theorem
and the Splitting Theorem, due to Gromoll and Meyer. As in [17] and [39] we consider the
case of an infinite-dimensional Hilbert space.

In section 4 we give some elementary, but typical, applications to semi-linear elliptic
problems. We consider in particular the Dirichlet problem{

−∆u = g(u), in Ω,
u = 0, on ∂Ω.

This section contains also a general bifurcation theorem.
Another typical problem to which Morse theory can be applied is the study of exis-

tence of periodic solutions for the second order Newtonian systems of ordinary differential
equations

−q̈ = Vq(q, t), q ∈ RN .

However, since we consider the more general and more difficult case of first order Hamil-
tonian systems in section 6 in some detail, we do not discuss second order systems here and
refer the reader e.g. to [39]. We do however discuss the problem of the existence of closed
geodesics on a riemannian manifold. Work on this problem was vital for the development
of Morse theory, it still offers open problems, and it contains difficulties also present in the
more general problem of first order Hamiltonian systems.

Section 5 contains a Morse theory for functionals of the form

Φ(x) =
1
2
||x+||2 − 1

2
||x−||2 − ψ(x)

defined on a Hilbert space E, where x = x+ + x0 + x− ∈ E = E+ ⊕ E0 ⊕ E−,
dimE0 < ∞, dimE± = ∞ and ∇ψ is a compact operator. The Morse indices are
infinite but using a suitable cohomology theory, the Poincaré and the Morse polynomials
can be defined. Theorem 5.7 contains the Morse inequalities. The local theory is also
extended to this setting.

Section 6 contains applications of the results of section 5 to Hamiltonian systems. We
consider the existence of periodic solutions of the system

ż = JHz(z, t), z ∈ R2N

where J is the standard symplectic matrix. The problem is delicate since the Morse indices
of the corresponding critical points are infinite. The existence of nontrivial solutions of
asymptotically linear sytems is considered in Theorems 6.5 and 6.6. Another application
is the existence of at least 22N periodic solutions when the Hamiltonian is periodic in all
variables and when all the periodic solutions are nondegenerate.

We refer to [13] and [14] for surveys on Morse theory with historical remarks. The
homotopy index, introduced by C. Conley, is a generalization of the Morse index. We
refer to the monograph by Rybakowski [44], and, for a Morse theory based on the Conley
index, to Benci [9]. A useful survey of Morse theory in the context of nonsmooth critical
point theory is due to Degiovanni [23]. Morse theory on infinite-dimensional manifolds
for functions with infinite Morse index is due to Witten and Floer. Here we refer the reader
to [34, 40, 45, 46].
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2 Global theory

2.1 Preliminaries

Let H∗ denote a homology theory with coefficients in a field F. Thus H∗ associates to
a pair (X,Y ) of topological spaces Y ⊂ X a sequence of F-vector spaces Hn(X,Y ),
n ∈ Z, and to a continuous map f : (X,Y ) → (X ′, Y ′) a sequence of homomorphisms
f∗ : H∗(X,Y ) → H∗(X ′, Y ′) satisfying the Eilenberg-Steenrod axioms. In particular,
given a triple (X,Y, Z) of spaces Z ⊂ Y ⊂ X there is a long exact sequence

. . .
jn+1−→ Hn+1(X,Y )

∂n+1−→ Hn(Y,Z) in−→ Hn(X,Z)
jn−→

jn−→ Hn(X,Y ) ∂n−→ Hn−1(Y,Z)
in−1−→ . . .

Given two homomorphisms V1
ϕ1→ V2

ϕ2→ V3 with image ϕ1 = kerϕ2 we have dimV2 =
rankϕ1 + rankϕ2. It follows that

dimHn(X,Z) = rank in + rank jn
= dimHn(Y,Z) + dimHn(X,Y )− rank ∂n+1 − rank ∂n

(2.1)

holds for n ∈ Z. We define the formal series

P (t;X,Y ) :=
∞∑
n=0

[dimHn(X,Y )]tn

and

Q(t;X,Y, Z) :=
∞∑
n=0

[rank ∂n+1]tn.

It follows from (2.1) and ∂0 = 0 that:

P (t;X,Y ) + P (t;Y,Z) = P (t;X,Z) + (1 + t)Q(t;X,Y, Z). (2.2)

This is correct even when some of the coefficients are infinite so that the series lie inN0[[t]],
N0 = N0 ∪ {∞}.
Proposition 2.1 Given a sequence X0 ⊂ X1 ⊂ . . . ⊂ Xm of topological spaces there
exists a series Q(t) ∈ N0[[t]] such that

m∑
k=1

P (t;Xk, Xk−1) = P (t;Xm, X0) + (1 + t)Q(t).

Proof By (2.2) the result is true for m = 2. If it holds for m− 1 ≥ 2 then
m∑
k=1

P (t;Xk, Xk−1) = P (t;Xm, Xm−1) + P (t;Xm−1, X0) + (1 + t)Qm−1(t)

= P (t;Xm, X0) + (1 + t)Q(t;Xm, Xm−1, X0) + (1 + t)Qm−1(t)
= P (t;Xm, X0) + (1 + t)Qm(t).
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Remark 2.2 Let mn, pn ∈ N0 be given for n ≥ 0, and set M(t) :=
∑∞
n=0mnt

n, P (t) :=∑∞
n=0 pnt

t. Then the following are equivalent:

(i) There exists a series Q(t) ∈ N0[[t]] with M(t) = P (t) + (1 + t)Q(t)

(ii) mn−mn−1 +mn−2−+ . . .+ (−1)nm0 ≥ pn− pn−1 + pn−2−+ . . .+ (−1)np0

holds for every n ∈ N0

In fact, if (i) holds withQ(t) =
∑∞
n=0 qnt

n we havemn = pn+qn+qn−1 where q−1 := 0,
hence

n∑
i=0

(−1)n−imi =
n∑
i=0

(−1)n−i(pi+qi+qi−1) =
n∑
i=0

(−1)n−ipi+qn ≥
n∑
i=0

(−1)n−ipi.

On the other hand, if (ii) holds we define q−1 := 0,

qn :=
n∑
i=0

(−1)n−imi −
n∑
i=0

(−1)n−ipi ∈ N0, n ≥ 0,

and obtain qn + qn−1 = mn − pn for all n ≥ 0. This yields (i).
Clearly, (i) and (ii) imply mn ≥ pn for all n ∈ N0. If M(t) =

∑N
n=0mnt

n, P (t) =∑N ′

n=0 pnt
n are polynomials and (i), (ii) hold then N = N ′ and applying (ii) for n = N ,

N + 1 yields the equality:

N∑
i=0

(−1)N−imi =
N∑
i=0

(−1)N−ipi.

As a consequence of these observations we obtain:
Corollary 2.3 Consider a sequence X0 ⊂ X1 ⊂ . . . ⊂ Xm of topological spaces such
that all Betti numbers dimHn(Xk, Xk−1) are finite, and set

mn :=
m∑
k=1

dimHn(Xk, Xk−1), pn := dimHn(Xm, X0).

Then

n∑
i=0

(−1)n−imi ≥
n∑
i=0

(−1)n−ipi

holds for all n ≥ 0. In particular, mn ≥ pn holds for all n ∈ N0. Moreover, if mn = 0 for
n > N then pn = 0 for n > N and

N∑
i=0

(−1)N−imi =
N∑
i=0

(−1)N−ipi.

Remark 2.4 In this section we have only used the exact sequence of a triple for H∗. We
may also work with cohomology instead of homology.
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2.2 The Morse inequalities

Let X be a topological space, f : X → R be continuous, K ⊂ X closed. In the differen-
tiable setting K will be the set of critical points of f and f(K) the set of critical values.
For c ∈ R we set f c := {x ∈ X : f(x) ≤ c} and Kc := {x ∈ K : f(x) = c}. For c ≤ d
we shall also use the notation fdc := {x ∈ X : c ≤ f(x) ≤ d}. Let H∗ be a homology
theory. For c ∈ R and S ⊂ f−1(c) we define

Cn(f, S) := Hn(f c, f c \ S), n ∈ Z.

For x ∈ f−1(c) we set

Cn(f, x) := Cn(f, {x}) = Hn(f c, f c \ {x}), n ∈ Z.

Lemma 2.5 If S1, S2 ⊂ f−1(c) are closed and disjoint then Cn(f, S1 ∪ S2) =
Cn(f, S1)⊕ Cn(f, S2).

Proof This follows from the relative Mayer-Vietoris sequence of the triad (f c; f c\S1, f
c\

S2). Observe that (f c \ S1)∩ (f c \ S2) = f c \ (S1 ∪ S2) and (f c \ S1)∪ (f c \ S2) = f c.
Thus we have an exact sequence

Hn+1(f c, fc)→ Hn(f c, f c \ (S1 ∪ S2))→ Hn(f c, f c \ S1)⊕Hn(f c, f c \ S2)→ Hn(f c, f c)
‖ ‖
0 0

Now we fix two real numbers a < b and require:

(A1) f(K) ∩ [a, b] = {c1, . . . , ck} is finite and
c0 := a < c1 < c2 < . . . < ck < ck+1 := b

(A2) H∗(f cj+1 \Kcj+1, f
cj ) = 0 for j = 0, . . . , k, n ∈ Z.

If one wants to prove the existence of one or many critical points of f using Morse theory
one can assume (A1) to hold because otherwise one has already infinitely many critical
values. Condition (A2) is equivalent to:

(A3) The inclusion ij : f cj ↪→ f cj+1 \Kcj+1 induces an isomorphism ij∗ : H∗(f cj ) →
H∗(f cj+1 \Kcj+1) in homology for all j = 0, . . . , k.

In classical Morse theory, f cj will in fact be a strong deformation retract of f cj+1 \Kcj+1.
Recall that Z ⊂ Y is a strong deformation retract of Y if there exists a continuous map
h : [0, 1]× Y → Y such that h(0, x) = x and h(1, x) ∈ Z for all x ∈ Y , and h(t, x) = x
for all x ∈ Z, 0 ≤ t ≤ 1. h deforms Y into Z keeping Z fixed. This implies that Z ↪→ Y
is a homotopy equivalence, hence it induces an isomorphism in homology.

Now for n ≥ 0 we define

mn :=
k∑
j=1

dimCn(f,Kcj ) ∈ N0 and pn := dimHn(f b, fa) ∈ N0.
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We also set

Mf (t; a, b) :=
∞∑
n=0

mnt
n ∈ N0[[t]] and Pf (t; a, b) :=

∞∑
n=0

pnt
n ∈ N0[[t]]

If these are polynomials with finite coefficients then Mf (t; a, b) is called Morse poly-
nomial, Pf (t; a, b) Poincaré polynomial.
Theorem 2.6 If (A1), (A2) hold then there exists a series Q(t) ∈ N0[[t]] such that

Mf (t; a, b) = Pf (t; a, b) + (1 + t)Q(t).

If in addition all coefficients mn, pn of Mf (t; a, b), Pf (t; a, b) are finite then the following
Morse inequalities hold:

n∑
i=0

(−1)n−imi ≥
n∑
i=0

(−1)n−ipi, all n ≥ 0.

Consequently, mn ≥ pn for all n ≥ 0 and, if Mf (t; a, b) ∈ N0[t] is a polynomial of degree
N so is Pf (t; a, b). In that case, the Morse equality

N∑
i=0

(−1)N−imi =
N∑
i=0

(−1)N−ipi

holds.

Proof The long exact sequence of the triple (f cj , fcj \Kcj , f
cj−1) and (A2) yield:

Cn(f,Kcj ) = Hn(f cj , fcj \Kcj ) = Hn(f cj , f cj−1) for j = 1, . . . , k+ 1, n ∈ Z.

The theorem follows from Proposition 2.1 and Corollary 2.3 applied to Xj = f cj , j =
0, . . . , k + 1.

What we presented so far is just elementary algebraic topology. Analysis enters when
proving (A2) for certain (classes of) maps f : X → R. As mentioned above, (A1) is
usually assumed to hold. We begin with a simple and classical situation.
Proposition 2.7 Let X be a smooth closed (i.e. compact without boundary) riemannian
manifold, f ∈ C2(X,R), and let a < b be regular values of f . Let K := {x ∈ X :
f ′(x) = 0} be the set of critical points of f and assume that K ∩ f ba is finite. Then (A1)
and (A2) hold.

In fact, (A1) holds trivially true. (A2) follows from a stronger result.
Proposition 2.8 In the situation of Proposition 2.7 let c, d ∈ (a, b), c < d, be such that
f(K) ∩ (c, d) = ∅. Then f c is a strong deformation retract of fd \Kd.

The proof of Proposition 2.8 uses the negative gradient flow associated to f . If 〈 · , · 〉
denotes the riemannian metric on X then ∇f(x) ∈ TxX is defined by 〈∇f(x), v〉 =
f ′(x)v for all v ∈ TxX . Since f is C2, ∇f : X → TX is a C1-vector field and induces a
flow ϕf on X defined by

d

dt
ϕf (t, x) = −∇f(ϕf (t, x))

ϕf (0, x) = x.
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We only need the induced semiflow on Y := X \ K which we simply denote by ϕ :
[0,∞)× Y → Y . We also write ϕt(x) := ϕ(t, x) and denote the ε-neighborhood of K by
Uε(K).
Lemma 2.9 ϕ has the following properties:

(ϕ1) For every ε > 0 there exists δ > 0 such that for x ∈ Y ∩ f ba , t > 0 there holds:
If ϕs(x) ∈ f ba \Uε(K) for all 0 ≤ s ≤ t then f(x)− f(ϕt(x)) ≥ δd(x, ϕt(x)) > 0.

(ϕ2) If f(ϕt(x)) ≥ a for all t ≥ 0 then the orbit {ϕt(x) : t ≥ 0} is relatively compact in
X .

In (ϕ1), d(x, y) = infγ
∫ 1

0
‖γ̇(t)‖dt denotes the distance in X; the infimum extends

over all C1-paths γ : [0, 1] → X with γ(0) = x, γ(1) = y. According to (ϕ1), for
every x ∈ Y ∩ f ba the level f(ϕt(x)) strictly decreases as a function of t, as long as
ϕt(x) ∈ Y ∩ f ba . Moreover, if ϕt(x) stays uniformly away from the set K, the difference
quotient

(
f(x)− f(ϕt(x))

)/
d(x, ϕt(x)) is bounded away from 0.

Proof (ϕ2) is clear because X is compact. In order to prove (ϕ1) fix ε > 0 and set

δ := inf{‖∇f(x)‖ : x ∈ f ba \ Uε(K)} > 0.

Then we have for x, t as in (ϕ1):

f(x)− f(ϕt(x)) = −
∫ t

0

d

ds
f(ϕs(x))ds =

∫ t

0

‖∇f(ϕs(x))‖2ds

≥ δ
∫ t

0

‖∇f(ϕs(x))‖ds = δ

∫ t

0

‖ d
ds
ϕs(x)‖ds ≥ δd(ϕt(x), x).

For the proof of Proposition 2.8 we only use the properties (ϕ1), (ϕ2). We need the
map

τ : fd \Kd → [0,∞], τ(x) := inf{t ≥ 0 : f(ϕt(x)) ≤ c}.

Here inf ∅ =∞, so τ(x) =∞ if and only if f(ϕt(x)) > c for all t ≥ 0. Clearly τ(x) = 0
if and only if x ∈ f c.
Lemma 2.10 If τ(x) =∞ then ϕt(x)→ x ∈ Kc as t→∞.

Proof By (ϕ2) the ω-limit set

ω(x) :=
⋂
t≥0

clos{ϕs(x) : s ≥ t} = {y ∈ X : there exists tn →∞ with ϕtn(x)→ y}

is a compact connected nonempty subset of X . (ϕ1) implies that ω(x) ⊂ K, hence
ω(x) ⊂ Kc because f(K)∩(c, d) = ∅ by assumption. Finally, sinceKc is finite we obtain
ω(x) = {x} for some x ∈ Kc.

Lemma 2.11 τ is continuous.
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Proof Fix x ∈ fd \Kd and t < τ(x). Then f(ϕt(x)) > c, hence there exists a neighbor-
hood N of x with f(ϕt(y)) > c for every y ∈ N . This implies τ(y) > t for y ∈ N , so τ
is lower semi-continuous. Analogously one shows that τ is upper semi-continuous.
Proof of Proposition 2.8 Clearly, the flow ϕ deforms any x ∈ Z := fd \Kd within the
time τ(x) to a point in f c. In order to define the deformation h : [0, 1]× Z → Z required
in Proposition 2.8 we just need to rescale the interval [0, 1] to [0, τ(x)]. This is achieved,
for instance, by the map

χ(s, t) :=


st

1 + t− st
for 0 ≤ s ≤ 1, 0 ≤ t <∞;

s

1− s
for 0 ≤ s < 1, t =∞.

For fixed t < ∞ we have a reparametrization χ(·, t) : [0, 1] → [0, t], while for t = ∞ we
have a reparametrization χ(·,∞) : [0, 1)→ [0,∞). Clearly χ is continuous.

Now we define

h : [0, 1]× Z → Z, h(s, x) :=

{
lim
t→∞

ϕt(x) if s = 1, τ(x) =∞;

ϕ(χ(s, τ(x)), x) else.

Then h(0, x) = ϕ(0, x) = x, h(1, x) = ϕ(τ(x), x) ∈ f c if τ(x) < ∞ and h(1, x) =
limt→∞ ϕt(x) ∈ Kc ⊂ f c if τ(x) = ∞. Moreover, if x ∈ f c then τ(x) = 0 and
h(t, x) = ϕ(0, x) = x for all t ∈ [0, 1].

It remains to prove that h is continuous. Since ϕ, χ, τ are continuous we only need
to consider the continuity at points (1, x) with τ(x) = ∞. We first show that f ◦ h is
continuous at (1, x). For ε > 0 there exists tε ≥ 0 with f(ϕtε(x)) < c + ε. There
also exists a neighborhood Nε of x with f(ϕtε(y)) < c + ε for all y ∈ Nε, hence c <
f(ϕt(y)) < c + ε for all y ∈ Nε, t ∈ [tε, τ(y)]. This implies c ≤ f(h(s, y)) < c + ε
for all y ∈ Nε, all s ≥ χ(·, τ(y))−1(tε) =: sε,y . By the continuity of τ we may assume
that τ(y) ≥ tε + 1 for all y ∈ Nε. This implies that sε := supy∈Nε sε,y < 1, and
c ≤ f(h(s, y)) < c+ ε for all s ∈ [sε, 1], y ∈ Nε. Thus f ◦ h is continuous.

Set x̄ := h(1, x) and suppose there exist sequences sn → 1, xn → x such that
h(sn, xn) 6∈ U2ε(x̄) for some ε > 0. Since ϕk(x) → x̄ as k → ∞ and since
ϕ is continuous, there exists a subsequence xnk with ϕk(xnk) → x̄. Setting tnk :=
χ(·, τ(xnk))−1(k) we have h(tnk , xnk) → x̄ and tnk → 1. Thus, after passing to a sub-
sequence, we may assume that h(tn, xn) → x̄ for some sequence tn → 1. We may
also assume that U3ε(x̄) ∩ K = {x̄}. Then between the times sn and tn, the orbit
ϕt(x) passes through U2ε(x̄) \ Uε(x̄) ⊂ f ba \ Uε(K), so (ϕ1) yields δ > 0 such that
|f(h(sn, xn)) − f(h(tn, xn))| ≥ δε/2 for all n ∈ N. On the other hand, since f ◦ h is
continuous we obtain f(h(sn, xn))− f(h(tn, xn))→ 0, a contradiction.

If, in the smooth case of Proposition 2.7 all critical points in K ∩ f ba are nondegenerate
then dimCn(f c, f c\Kc) is precisely the number of critical points inKc with Morse index
n. This will be proved in section 3.2 below. Here x is a nondegenerate critical point of f
if the hessian f ′′(x) : TxX × TxX → R is a nondegenerate quadratic form. The Morse
index of x is the maximal dimension of a subspace of TxX on which f ′′(x) is negative
definite. Combining Theorem 3.6 with Theorem 2.6 and Proposition 2.7 we obtain
Theorem 2.12 Let X be a smooth closed riemannian manifold, f ∈ C2(X,R), and let
a < b be regular values of f . Let K = {x ∈ X : f ′(x) = 0} and suppose that all critical
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points in K ∩ f ba are nondegenerate. For i ∈ N0 let mi ∈ N0 be the number of critical
points in K ∩ f ba with Morse index i, and let pi := dimHi(f b, fa). Then there exists a
polynomial Q(t) ∈ N0[t] such that

dimX∑
i=0

mit
i =

dimX∑
i=0

pit
i + (1 + t)Q(t).

Equivalently, the Morse inequalities

n∑
i=0

(−1)n−imi ≥
n∑
i=0

(−1)n−ipi, n ≥ 0

hold.

In the special case a < min f , b > max f we have that pi = dimHi(X) is the i-th
Betti number of X and mi is the number of all critical points of f with Morse index i.
Then we obtain the classical Morse inequalities.

In applications to boundary value problems for ordinary or partial differential equa-
tions, X is an infinite-dimensional Hilbert space or Hilbert manifold and f : X → R is
often only of class C1. In that case one needs a replacement for the negative gradient flow.
This is being achieved by considering pseudo-gradient vector fields. A vector v ∈ X (or
v ∈ TxX) is said to be a pseudo-gradient vector for f at x if the following two conditions
are satisfied:

(pg1) ‖v‖ < 2‖f ′(x)‖

(pg2) f ′(x)v > 1
2‖f

′(x)‖2

A pseudo-gradient vector field for f on Y ⊂ X is a locally Lipschitz continuous vector
field V : Y → TX such that V (x) is a pseudo-gradient vector for f at x. Using partitions
of unity it is easy to construct a pseudo-gradient vector field for f on X \ K; see [17,
Lemma I.3.1]. The conditions (ϕ1), (ϕ2) do not hold in general, however. They do hold if
the following Palais-Smale condition is satisfied for c ∈ R.

(PS)c Every Palais-Smale sequence xn in X , i.e. a sequence such that f ′(xn) → 0 and
f(xn)→ c, has a convergent subsequence.

Proposition 2.13 LetX be a complete C2-Hilbert manifold (without boundary), f : X →
R be C1 and let K be the set of critical points of f . Let a < b be given and suppose that
the Palais-Smale condition (PS)c holds for every c ∈ [a, b]. Then there exists a flow ϕ on
Y := X \K with the properties (ϕ1), (ϕ2) from Lemma 2.9.

Proof One constructs a pseudo-gradient vector field V for f on Y and takes ϕ to be
the semi-flow induced by −V . The conditions (ϕ1), (ϕ2) follow easily since ‖f ′(x)‖ is
bounded away from 0 for x ∈ f ba \ Uε(K). We cheated a bit because ϕ is not defined
on Y × [0,∞), in general. This can be remedied however by considering the vector field
−χV with an appropriately chosen cut-off function χ : X → [0, 1]. Alternatively, one
may rewrite the proof of Proposition 2.8 for not globally defined semiflows.
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As a consequence we obtain the Morse inequalities also in the infinite-dimensional
setting. In the setting of Proposition 2.13 we call a critical point x of f topologi-
cally nondegenerate with Morse index µ ∈ N0 if it is an isolated critical point and
dimCk(f, x) = δk,µ.
Theorem 2.14 Let X be a C2-Hilbert manifold, f : X → R be C1 and let K be the set of
critical points of f . Let a < b be given and suppose that the Palais-Smale condition (PS)c
holds for every c ∈ [a, b]. Suppose moreover that f(K)∩[a, b] = {c1 < · · · < ck} ⊂ (a, b)
is finite. Then the Morse inequalities from Theorem 2.6 hold. If in addition all critical
points in f ba are topologically nondegenerate and have finite Morse index then the Morse
inequalities from Theorem 2.12 hold.

If f is C2 then the concepts of nondegeneracy and Morse index are as in the finite-
dimensional setting, and a nondegenerate critical point is topologically non-degenerate;
see Definition 3.3 and Theorem 3.6.
Remark 2.15 For a number of applications it would be useful to develop Morse theory
on Banach manifolds. This is rather delicate, however. For instance, if X is a Banach
space and f : X → R is C2, then the existence of a nondegenerate critical point of f
with finite Morse index implies the existence of an equivalent Hilbert space structure on
X . Extensions of Morse theory to the Banach space setting are still a topic of research; see
[16, 19, 41, 52, 53].
Remark 2.16 The Morse theory developed here can be refined to localize critical points.

a) Suppose the semi-flow associated to a pseudo-gradient vector field leaves a subset
Z ⊂ Y positively invariant, that is if x ∈ Z then ϕt(x) ∈ Z for all t ≥ 0. In order to find
critical points in Z one may replace X by Z and K by K ∩ Z. The conditions (ϕ1), (ϕ2)
continue to hold so that one obtains the Morse inequalities constrained to Z. It is important
to note however that the coefficients in the Morse and the Poincaré polynomials depend on
Z. This idea can be used for instance, to find positive (or negative) solutions of semilinear
elliptic boundary value problems, that is, solutions lying in the cone of positive functions
– provided one can construct a flow ϕ as above leaving this cone positively invariant.

b) One can also localize critical points outside of a positive invariant set Z. It can
also be used to find sign-changing solutions of elliptic boundary value problems, that is
solutions lying outside of the cone of positive or negative functions; see [18] for such an
application. A first idea is to use the inverse flow ϕ−(t, x) = ϕ(−t, x) corresponding to
−f . Observe that X \ Z is positive invariant with respect to ϕ− if Z is positive invariant
with respect to ϕ. In the infinite-dimensional setting this does not work so easily because
the theory developed so far yields nontrivial results only if the Morse indices are finite. If
X is an infinite-dimensional manifold and x ∈ X is a critical point of f of finite Morse
index (and finite nullity) then it has infinite Morse index considered as a critical point of
−f . Instead one can set up a relative Morse theory replacing X by the pair (X,Z) and K
byK∩(X\Z). The coefficientsmn, pn are now defined asmn =

∑k
j=1 dimCn(f,Kcj∩

(X \ Z)) and pn = dimHn(f b, fa ∪ Z).
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3 Local theory

3.1 Morse lemma

The Morse lemma is the basic tool for the computation of the critical groups of a nonde-
generate critical point. For degenerate isolated critical points, the splitting theorem gives
the appropriate representation. Since the theory is local, we consider a Hilbert space E.
We require in this section

(M) U is an open neighborhood of 0 in the Hilbert space E, 0 is the only critical point
of f ∈ C2(U,R), L = f ′′(0) is invertible or 0 is an isolated point of σ(L).

Here, using the scalar product of E, the Hessian f ′′(0) : E × E → R of f at 0
corresponds to a linear map L : E → E. By abuse of notation we write f ′′(0) for both
maps.
Theorem 3.1 (Morse Lemma.) Let L be invertible. Then there exists an open ball Bδ and
local diffeomorphism g : Bδ → E such that g(0) = 0 and, on Bδ ,

f ◦ g(u) =
1
2

(Lu, u).

If 0 is an isolated point of σ(L), E is the orthogonal sum of R(L), the range of L, and
N(L), the kernel of L. Let u = v + w be the corresponding decomposition of u ∈ E.
Theorem 3.2 (Splitting Theorem.) Let 0 be an isolated point of σ(L). Then there exists an
open ball Bδ , a local homeomorphism g : Bδ → E such that g(0) = 0 and a C1 mapping
h : Bδ ∩N(L)→ R(L) such that, on Bδ ,

f ◦ g(v + w) =
1
2

(Lv, v) + f(h(w) + w) =
1
2

(Lv, v) + f̂(w).

For the proofs of Theorems 3.1 and 3.2, we refer to [17] and to [39].

3.2 Critical groups

In this section, we denote by U an open subset of the Hilbert space E. Let us recall a
definition of section 2.2 in this setting.
Definition 3.3 Let x be an isolated critical point of f ∈ C1(U,R). The critical groups of
x are defined by

Cn(f, x) = Hn(f c, fc\{x}), n ∈ Z,

where c = f(x).
Remark 3.4 By excision, the critical groups depend only on the restriction of f to an
arbitrary neighborhood of x in U . The critical groups of a critical point of f ∈ C2(X,R),
where X is a C2-Hilbert manifold are defined in the same way.
Definition 3.5 Let x be a critical point of f ∈ C2(U,R). The Morse index of x is the
supremum of the dimensions of the subspaces of E on which f ′′(x) is negative definite.
The critical point x is nondegenerate if f ′′(x) is invertible. The nullity of x is the dimension
of the kernel of f ′′(x).
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Theorem 3.6 Let x be a nondegenerate critical point of f ∈ C2(U,R) with finite Morse
index m. Then

dimCn(f, x) = δmn .

Proof We can assume that x = 0 and f(x) = 0. By Theorem 3.1, there exists a local
diffeomorphism g : Bδ → E such that g(0) = 0 and, on Bδ ,

f ◦ g(u) =
1
2

(Lu, u) := ψ(u).

We have, for m ≥ 1,

Cn(f, 0) = Hn(f0 ∩ g(Bδ), f0 ∩ g(Bδ)\{0})
∼= Hn(ψ0 ∩Bδ, ψ0 ∩Bδ\{0})
∼= Hn(Bm, Sm−1)

and

dimHn(Bm, Sm−1) = δmn .

We have also, for m = 0,

Cn(f, 0) ∼= Hn({0}, ∅)

and

dimHn({0}, ∅} = δ0
n.

Theorem 3.7 (Shifting Theorem.) Let U be an open neighborhood of 0 in the Hilbert
space E. Assume that 0 is the only critical point of f ∈ C2(U,R), that the Palais-Smale
condition is satisfied over a closed ball in U and that the Morse indexm of 0 is finite. Then

Cn(f, 0) ∼= Cn−m(f̂ , 0)

where f̂ is defined in Theorem 3.2.

For the proof we refer to Theorem 8.4 in [39].
Corollary 3.8 Assume moreover that the nullity k of 0 is finite. Then

a) Cn(f, 0) ∼= 0 for n ≤ m− 1 and n ≥ m+ k + 1;

b) 0 is a local minimum of f̂ iff dimCm(f, 0) = δmn ;

c) 0 is a local maximum of f̂ iff dimCm(f, 0) = δm+k
n .

For the proof see Corollary 8.4 in [39].
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4 Applications

4.1 A three critical points theorem

Let E be a Hilbert space and f ∈ C1(E,R). As in section 2.2, f satisfies the (PS)c
condition, c ∈ R, if every sequence (xn) in X with f ′(xn) → 0 and f(xn) → c has a
convergent subsequence. The function f satisfies the (PS) condition if, for every c ∈ R,
the (PS)c condition is satisfied.
Theorem 4.1 Let f ∈ C2(E,R) be bounded from below. Assume that f satisfies the (PS)-
condition and that x1 is a nondegenerate nonminimum critical point of f with finite Morse
index. Then f has at least three critical points.

Proof Since f is bounded from below and satisfies (PS), there exists a minimizer x0 of
f on E. Let us assume that x0 and x1 are the only critical points of f . Corollary 3.8 and
Theorem 3.6 yield

dimCn(f, x0) = δ0
n, dimCn(f, x1) = δmn ,

where m is the Morse index of x1. Theorem 2.14, applied to a = f(x0) − 1 and b =
f(x1) + 1 yields a polynomial Q ∈ N0[t]

1 + tm = 1 + (1 + t)Q(t),

a contradiction. We have used the fact that f b is a deformation retract of E so that, for
n ∈ Z,

Hn(f b, fa) = Hn(E, ∅) = Hn(E).

Let us consider the Dirichlet problem
−∆u = g(u), in Ω,

u = 0, on ∂Ω,
(4.1)

where Ω ⊂ RN is a smooth bounded domain. We assume that

(g1) g ∈ C1(R) and

|g′(t)| ≤ c1(1 + |t|p−2), 2 ≤ p < 2∗,

with 2∗ = +∞ if N = 2, 2∗ = 2N/(N − 2) if N ≥ 3.

Let λ1 < λ2 ≤ . . . be the eigenvalues of −∆ with the Dirichlet boundary condition on Ω.
We assume also that

(g2) G(t) ≤ c2(1 + t2), c2 < λ1/2, where G(t) =
∫ t

0
g(s)ds,

(g3) g(0) = 0, λj < g′(0) < λj+1, j ≥ 1.
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It follows from (g1) that the solutions of (4.1) are the critical points of the C2-functional

f(u) =
1
2

∫
Ω

|∇u|2dx−
∫

Ω

G(u)dx,

defined on H1
0 (Ω). The space H1

0 (Ω) is the subspace of functions of

H1(Ω) =
{
u ∈ L2(Ω) :

∂u

∂xk
∈ L2(Ω), 1 ≤ k ≤ N

}
satisfying the Dirichlet boundary condition in the sense of traces.
Theorem 4.2 Under assumptions (g1−2−3), problem (4.1) has at least 3 solutions.

Proof It follows from (g2) that

f(u)→ +∞ as ‖u‖ = ‖∇u‖L2 →∞, (4.2)

on H1
0 (Ω). By Rellich’s theorem, the imbedding H1

0 (Ω) ⊂ Lp(Ω) is compact for p < 2∗.
Using (g1), it is then not difficult to verify the (PS)-condition. In particular, by (4.2), there
exists a minimizer x0. By assumption (g3), 0 is a nondegenerate critical point of f with
Morse index j ≥ 1. In particular x0 6= 0. By Theorem 4.1, f has at least 3 critical
points.

4.2 Asymptotically linear problems

We consider again problem (4.1) under the assumptions (g1) and

(g4) g(0) = 0, λj < g′(0) < λj+1, j ≥ 0, where λ0 = −∞,

(g5) g(t) = λt+ o(t), |t| → +∞, λk < λ < λk+1, 0 ≤ k 6= j.

Theorem 4.3 Under assumptions (g1−4−5), problem (4.1) has at least 2 solutions.

Proof Let us assume that 0 is the only solution and, hence, the only critical point of f .
As a consequence of (g1) and (g5) the (PS)-condition holds (cf. [17]). Moreover, for b > 0
and a < 0,

dimHn(f b, fa) = δkn.

By Theorem 3.6,

dimCn(f, 0) = δjn.

It follows from Theorem 2.14 that j = k, contrary to our assumptions.
More solutions exist if

(g6) g is odd.

Theorem 4.4 Under assumptions (g1−4−5−6), problem (4.1) has at least m = |j − k|
pairs ±u1, . . . ,±um of solutions in addition to the trivial solution 0.
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Proof We sketch the proof in the case j > k. Let G = {±1} denote the group of 2
elements acting on E := H1(Ω) via the antipodal map u 7→ −u. Observe that f is even
by (g6), hence sublevel sets fa are invariant under G. Moreover, if u is a critical point of
f then so is −u because f ′ is odd: f ′(u) = −f ′(−u). We consider the Borel cohomology
H∗G(fa) of the sublevel set fa for a < 0. Since 0 is the only fixed point of the action of G
onE and 0 /∈ fa for a < 0 one hasH∗G(fa) ∼= H∗(fa/G;F2) where fa/G = fa/u ∼ −u
is the quotient space and F2 = {0, 1} is the field of 2 elements. The cohomology group
H∗G(fa) is a module over the ring H∗G(E \ {0}) ∼= H∗(RP∞) ∼= F2[w].

As a consequence of (g5), equation (4.1) is asymptotically linear and f is asymptoti-
cally quadratic. More precisely, let ei, i ∈ N, be an othogonal basis of H1(Ω) consisting
of eigenfunctions of −∆ corresponding to the eigenvalues λi. Then

f(u)→ −∞ for u ∈ E∞ := span{e1, . . . , ek}, ‖u‖ → ∞

and

f(u)→ +∞ for u ∈ E⊥∞ = span{ei : i ≥ k + 1}, ‖u‖ → ∞.

by (g5). Thus for b� 0 and R� 0 we have inclusions

SRE∞ := {u ∈ E∞ : ‖u‖ = R} ↪→ f b ↪→ E \ E⊥∞ ' SRE∞.

These are in fact homotopy equivalences which implies that

H∗G(f b) ∼= H∗G(SRE∞) ∼= H∗(RP k) ∼= F2[w]/wk+1.

On the other hand, f(u) < 0 for u ∈ E0 := span{e1, . . . , ej} with ‖u‖ ≤ r, r > 0 small,
by (g4). Thus for a < 0 close to 0 we have the inclusion SrE0 ↪→ fa ↪→ E \ {0}. On the
cohomology level this yields homomorphisms

F2[w]→ H∗G(fa)→ F2[w]/wj

whose composition is surjective. Consequently, Hi
G(fa) 6= 0 = Hi

G(f b) for i = k +
1, . . . , j, and therefore Hi

G(fa, f b) 6= 0 for i = k + 1, . . . , j. If all critical points are
nondegenerate we immediately obtain critical points u1, . . . , um, m = j − k, with Morse
indices m(ui) = i + k. In the degenerate case the argument is more complicated and one
has to use the structure of H∗G(fa, f b) as a module over F2[w].

4.3 Bifurcation theory

In this section we consider nontrivial solutions of the parameter dependent problem

∇fλ(u) = 0 (4.2)

under the assumption that

∇fλ(0) = 0

holds for all parameters λ.
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Definition 4.5 Let U be an open neighborhood of 0 in the Hilbert space E, let Λ be an
open interval and let f ∈ C1(Λ × U,R) be such that ∇fλ(0) = 0 for every λ ∈ Λ when
fλ = f(λ, ·). A point (λ0, 0) ∈ Λ × U is a bifurcation point for equation (4.2) if every
neighborhood of (λ0, 0) in Λ × U contains at least one solution (λ, u) of (4.2) such that
u 6= 0.
Theorem 4.6 Let f ∈ C1(Λ × U,R) be as in Definition 4.5. Assume that the following
conditions are satisfied :

i) 0 is an isolated critical point of fa and fb for some reals a < b in Λ,

ii) for every a < λ < b, fλ satisfies the Palais-Smale condition over a closed ball
B[0, R] ⊂ U , that is, every (PS)-sequence inB[0, R] has a convergent subsequence.

iii) there exists n ∈ N such that Cn(fa, 0) 6∼= Cn(fb, 0).

Then there exists a bifurcation point (λ0, 0) ∈ [a, b]× {0} for equation (4.2).
Theorem 4.6 is due to Mawhin and Willem (see [39]).
Let us consider a variant of problem (4.1) :

−∆u = λg(u), in Ω,
u = 0, on ∂Ω.

(4.3)

We assume that g satisfies (g1) and

(g6) g(0) = 0, g′(0) = 1.

The corresponding functional is defined on H1
0 (Ω) by

f(λ, u) =
1
2

∫
Ω

|∇u|2dx− λ
∫

Ω

G(u)dx.

Theorem 4.7 Under assumptions (g1) and (g6), (λ, 0) is a bifurcation point for problem
(4.3) if and only if λ is an eigenvalue of −∆ with the Dirichlet boundary condition.

For the proof we refer to [56].

4.4 Closed geodesics

Let (M, g) be a compact riemannian manifold without boundary. A geodesic is a curve
c : I → M , I ⊂ R an interval, satisfying the differential equation ∇ċ ċ = 0, that is the
tangent field ċ is tangent along c. A periodic geodesic c : R→M is said to be closed.

Closed geodesics are critical points of the energy functional

f : H1(S1,M)→ R, f(c) =
∫ 1

0

‖ċ‖2dt

where S1 = R/Z. They are also critical points of the lenght functional L(c) =
∫ 1

0
‖ċ‖dt.

However, this functional is invariant under reparametrizations which implies that given a
nonconstant closed geodesic c, all reparametrizations c◦σ, σ : R→ R a strictly increasing
C1-map such that σ(t + 1) = σ(t) + 1, are also critical points of L at the same level
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L(c) = L(c ◦ σ). It follows that the Palais-Smale condition cannot hold for L. On the
contrary, a critical point of f is automatically parametrized proportional to arc-length. The
functional f does satisfy the Palais-Smale condition.

Although being a classical problem of Morse theory, the problem of the existence of
closed geodesics has new features not present in our discussion so far. First of all observe
that although f is not invariant under reparametrizations, it is invariant under time shifts.
Given a 1-periodic H1-function c : R→M and given τ ∈ R, we define cτ (t) := c(t+ τ).
This defines an action of S1 = R/Z on H1(S1,M) and clearly f is invariant under this
action: f(cτ ) = f(c). As a consequence, if c is a critical point of f , so is cτ and therefore
f does not have isolated critical points. Instead each critical point corresponding to a
nonconstant closed geodesic yields a manifold cτ , τ ∈ R/Z, of critical points. The local
theory developed in Section 3 can be extended to cover manifolds of critical points. This
goes back to the work of Bott [11]; see also [39, Chapter 10] for a presentation with
applications to differential equations.

The S1-invariance of f can be used very successfully to obtain “many” critical points.
We have seen already in section 4.2 that symmetry implies the existence of multiple critical
points. For the closed geodesic problem yet another difficulty appears. If c is a critical point
of f then cm(t) := c(mt) is also a critical point of f , anym ∈ N. Geometrically, c and cm,
m > 1, describe the same closed geodesic and should not be counted separately. A closed
geodesic is said to be prime if it is not the m-th iterate, m > 1, of a geodesic. In order to
understand the contribution of c and its iterates cm Bott [12] developed an iteration theory
for closed geodesics.

A discussion of the Morse theory for the closed geodesics problem goes far beyond the
scope of this survey. We state two important results where Morse theory played a decisive
role.
Theorem 4.8 If M is simply connected and if the Betti numbers of the free loop space
H1(S1,M) ' C0(S1,M) with respect to some field of coefficients form an unbounded
sequence then there exist infinitely many, geometrically different prime closed geodesics on
M . The hypothesis on the free loop space is satisfied if the cohomology algebraH∗(M ;Q)
is not generated (as a Q-algebra with unit) by a single element.

Since f is bounded below and satisfies the Palais-Smale condition it has infinitely many
critical points provided there are infinitely many non-zero Betti numbers. The condition
that the Betti numbers form an unbounded sequence can be used to show that the infinitely
many critical points are not just the multiples of only finitely prime closed geodesics. The
first statement of Theorem 4.8 is due to Gromoll and Meyer [29], the second purely topo-
logical result to Vigué-Poirrier and Sullivan [54]. It applies to many manifolds, in par-
ticular to products M = M1 ×M2 of compact simply connected manifolds. It does not
apply to spheres, for instance. The reader may consult the paper [20] for further results,
references and a discussion of topological features of the problem.
Theorem 4.9 On the 2-sphere (S2, g), any metric g, there are always infinitely many,
geometrically different prime closed geodesics.

This theorem is due to Franks [27] and Bangert [6], covering separate cases. The proof
of Bangert is via Morse theory, the proof of Franks uses dynamical systems methods. A
Morse theory proof of this part can be found in [33].

Similar problems as in the closed geodesic problem appear for the search of periodic
solutions of autonomous Hamiltonian systems. In particular one has an S1-symmetry,
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critical points are not isolated, and one has the problem that iterates of critical points are
also critical points. We refer the reader to the book [38] for a presentation of the Morse
index theory and index formulas for iterated curves for periodic solutions of Hamiltonian
systems. In additon to the above mentioned difficulties the corresponding functional is
strongly indefinite, Morse indices of critical points are infinite. The next section is devoted
to Morse theory for strongly indefinite functionals.

5 Strongly indefinite Morse theory

5.1 Cohomology and relative Morse index

Let E be a real Hilbert space and consider the functional

Φ(x) =
1
2
‖x+‖2 − 1

2
‖x−‖2,

where x± ∈ E± andE = E+⊕E− is an orthogonal decomposition. Then∇Φ(x) = x+−
x−, the critical set K = {0}, the Morse index M−(Φ′′(0)) = dimE− and Cq(Φ, 0) = F
if q = dimE− and 0 otherwise. Hence, if dimE− = +∞, then C∗(Φ, 0) = 0, and
the critical point 0 will not be seen by the Morse theory developed in sections 2 and 3.
In what follows we will be concerned with functionals which are of the form Φ(x) =
1
2‖x

+‖2 − 1
2‖x
−‖2 − ψ(x), where E = E+ ⊕ E0 ⊕ E−, dimE± = +∞ and ∇ψ is

compact. If Φ ∈ C2(E,R), then it is easy to see that M−(±Φ′′(x)) = +∞ for any
x ∈ K, and therefore the Morse theory developed so far becomes useless. It is also easy to
see that functionals of the type described here are strongly indefinite in the sense that they
are unbounded below and above on any subspace of finite codimension.

In order to establish a Morse theory which is useful for strongly indefinite functionals
we first introduce a suitable cohomology theory [36]. Let (En)∞n=1 be a sequence of closed
subspaces of E such that En ⊂ En+1 for all n and

⋃∞
n=1En is dense in E. We shall call

(En) a filtration of E. For a closed set X ⊂ E we use the shorthand notation

Xn := X ∩ En.

To each En we assign a nonnegative integer dn and we write

E := (En, dn)∞n=1.

Next, if (Gn)∞n=1 is a sequence of abelian groups, then we define the asymptotic group

[(Gn)∞n=1] :=
∞∏
n=1

Gn
/ ∞⊕

n=1

Gn,

i.e., [(Gn)∞n=1] =
∏∞
n=1 Gn/ ∼, where (gn)∞n=1 ∼ (g′n)∞n=1 if and only if gn = g′n for all

n large enough. In what follows we shall use the shorter notation

[Gn] = [(Gn)∞n=1] and [Gn] = G if Gn = G for almost all n.

Let (X,A) be a pair of closed subsets of E such that A ⊂ X and denote the Čech
cohomology with coefficients in a field F by H∗. If E is as above, then for each q ∈ Z we
define

Hq
E(X,A) := [Hq+dn(Xn, An)].
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Observe that H∗E = H∗ if En = E and dn = 0 for almost all n, and in general
Hq
E need not be 0 for all q < 0. As morphisms in the category of closed pairs we

take continuous mappings f : (X,A) → (Y,B) which preserve the filtration, i.e.,
f(Xn) ⊂ En for almost all n. Such f will be called admissible. If fn := f |Xn ,
then f induces a homomorphism f∗ : Hq

E(Y,B) → Hq
E(X,A) given by f∗ = [f∗n],

where f∗n : H∗+dn(Yn, Bn) → H∗+dn(Xn, An). Similarly, the coboundary operator
δ∗ : H∗E(A)→ H∗+1

E (X,A) is given by δ∗ = [δ∗n]. We also define admissible homotopies
G : [0, 1] × (X,A) → (Y,B) by requiring that G([0, 1] × Xn) ⊂ En for almost all n.
It is easy to see from the definitions and the properties of H∗ that H∗E satisfies the usual
Eilenberg-Steenrod axioms for cohomology except the dimension axiom. Moreover, since
H∗ satisfies the strong excision property, so does H∗E . More precisely, this means that if
A,B are closed subsets of E, then there is an isomorphism

H∗E(A,A ∩B) ∼= H∗E(A ∪B,B).

The need for strong excision was in fact our reason for using the Čech cohomology.

Let L̃ : E → E be a linear selfadjoint Fredholm operator such that L̃(En) ⊂ En for
almost all n. Then E = E+(L̃)⊕N(L̃)⊕E−(L̃), where N(L̃) is the nullspace (of finite
dimension) and E±(L̃) are the positive and the negative space of L̃. Since

〈L̃x+, y+〉 − 〈L̃x−, y−〉+ 〈x0, y0〉, x±, y± ∈ E±(L̃), x0, y0 ∈ N(L̃)

is an equivalent inner product, we may (and will) assume without loss of generality that
L̃x = x+ − x−. We also take

dn := M−(L̃|En) + d0 ≡ dimE−(L̃)n + d0,

whereE−(L̃)n = E−(L̃)∩En and d0 is a convenient normalization constant to be chosen.
Let B : E → E be linear, compact and selfadjoint, L := L̃ − B, denote the orthogonal
projector on En by Pn and the orthogonal projector from the range R(L) of L on R(L)n
by Qn, and let

M−E (L) := lim
n→∞

(
M−(QnL|R(L)n)− dn

)
. (5.1)

Then M−E (L) is a well-defined (and not necessarily positive) integer [36, Proposition 5.2].
Note that M−(QnL|R(L)n) is the Morse index of the quadratic form 〈Lx, x〉 restricted to
R(L)n. It is not too difficult to show that if N(L) ⊂ En0 for some n0, then

M−E (L) = lim
n→∞

(
M−(PnL|En)− dn

)
= lim
n→∞

(
M−(PnL|En)−M−(L̃|En)

)
−d0

(5.2)

(see [36, Remark 5.1]). Hence M−E (L) is a relative Morse index in the sense that it mea-
sures the difference between the Morse indices of the operators L and L̃ restricted to En
(n large). If N(L) 6⊂ En for any n, then M−E (L) may not be equal to the limit in (5.2). A
justification why (5.1) and not (5.2) is used as the definition of M−E (L) may be found in
[36].

Let

D := {x ∈ E−(L) : ‖x‖ ≤ 1}, S := {x ∈ E−(L) : ‖x‖ = 1}.

The connection between H∗E and M−E (L) is expressed in the following
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Proposition 5.1 Suppose L satisfies the conditions formulated above, N(L) ⊂ En and
L(En) ⊂ En for almost all n. Then Hq

E(D,S) = F if q = M−E (L) and Hq
E(D,S) = 0

otherwise.

Proof Since PnL = LPn, the negative space of L|En is E−(L)n. Hence Dn = {x ∈
E−(L)n : ‖x‖ ≤ 1}, so dimDn = M−E (L) + dn for almost all n. It follows that
Hq+dn(Dn, Sn) = F if q = M−E (L) and 0 otherwise.

Note in particular that if dimE−(L) = +∞, then H∗(D,S) is trivial while H∗E(D,S)
is not.
Remark 5.2 Different though related to H∗E cohomology theories may be found in [1, 49].
Both theories are constructed by a suitable modification of an infinite-dimensional co-
homology of Gȩba and Granas [28]. In [3] the reader may find an infinite-dimensional
homology theory constructed in a very different way, with the aid of a Morse-Witten com-
plex.

5.2 Critical groups and Morse inequalities

The critical groups of an isolated critical point x were defined in section 2.2 by setting
Cq(Φ, x) = Hq(Φc,Φc \ {x}). It may seem natural to define CqE here by simply replacing
Hq with Hq

E . However, this is not possible because Hq
E(X,A) has been defined for closed

sets only, and moreover, if x is an isolated critical point of Φ, it is not clear in general how
the critical set for Φ|En looks like in small neighborhoods of x, not even if x ∈ En0 for
some n0.

We shall construct a Morse theory for functionals which are of the form

Φ(x) =
1
2
〈L̃x, x〉 − ψ(x) ≡ 1

2
‖x+‖2 − 1

2
‖x−‖2 − ψ(x), (5.3)

where x = x+ + x0 + x− ∈ E = E+ ⊕ E0 ⊕ E−, dimE0 < ∞, and ∇ψ is a compact
operator. Although it is possible to allow a larger class of Φ (see [36]), there can be
no useful Morse theory which includes all smooth Φ such that M−(±Φ′′(x)) = +∞
whenever x ∈ K. This is a consequence of a result by Abbondandolo and Majer [4].

In order to avoid the problem with the critical set of Φ|En mentioned above we shall
use an approach which goes back to Gromoll and Meyer (see e.g. [17]). Its main feature
is that to each isolated critical point x one assigns a pair (W,W−) of closed sets such that
x is in the interior of W , W− is the exit set (from W ) for the flow of −∇Φ, and then one
defines the critical groups of x by setting C∗(Φ, x) = H∗(W,W−) (in homology theory)
and C∗(Φ, x) = H∗(W,W−) (in cohomology theory). Since ∇Φ is not admissible for
H∗E , we shall need a class of mappings which are related to ∇Φ and admissible. The
results we summarize below may be found, in a more general form, in [36].

LetE be a real Hilbert space, (En) a filtration and suppose Φ ∈ C1(E,R). A sequence
(xj) is said to be a (PS)∗-sequence (with respect to (En)) if Φ(xj) is bounded, xj ∈ Enj
for some nj , nj → ∞ and Pnj∇Φ(xj) → 0 as j → ∞. If each (PS)∗-sequence has a
convergent subsequence, then Φ is said to satisfy the (PS)∗-condition. Using the density
of
⋃∞
n=1En it is easy to show that convergent subsequences of (xj) tend to critical points

and (PS)∗ implies the Palais-Smale condition.
Lemma 5.3 If Φ is of the form (5.3), then each bounded (PS)∗-sequence has a convergent
subsequence.
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Proof Let (xj) be a bounded (PS)∗-sequence. Then xj ⇀ x̄ and∇ψ(xj)→ w for some
w ∈ E after passing to a subsequence. If xj = yj + x0

j , yj ∈ R(L̃), x0
j ∈ E0 ≡ N(L̃),

then L̃yj − Pnj∇ψ(xj) → 0, and since E0 is finite-dimensional and L̃|R(L̃) invertible,
xj → x̄ after passing to a subsequence once more.

In order to construct flows which are admissible mappings for the cohomology theory
H∗E we need to modify the notion of pseudogradient. Let Y ⊂ E \ K. A mapping V :
Y → E is said to be a gradient-like vector field for Φ on Y if V is locally Lipschitz
continuous, ‖V (x)‖ ≤ 1 for all x ∈ Y and there is a function β : Y → R+ such that
〈∇Φ(x), V (x)〉 ≥ β(x) for all x ∈ Y and infx∈Z β(x) > 0 for any set Z ⊂ Y which is
bounded away from K and such that supx∈Z |Φ(x)| <∞.
Lemma 5.4 ([36], Lemma 2.2) If U is an open subset of E and Φ satisfies (5.3) and
(PS)∗, then there exists a gradient-like and filtration-preserving vector field V on U \K.

Suppose now A is an isolated compact subset of K. A pair (W,W−) of closed subsets
of E is said to be an admissible pair for Φ and A with respect to E if: (i) W is bounded
away from K \ A, W− ⊂ bd(W ) and A ⊂ int(W ) (bd and int respectively denote the
boundary and the interior), (ii) Φ|W is bounded, (iii) there exist a neighborhood N of W
and a filtration-preserving gradient-like vector field V for Φ on N \ A, (iv) W− is the
union of finitely many (possibly intersecting) closed sets each lying on a C1-manifold of
codimension 1, V |W− is transversal to these manifolds, the flow ϕ of −V can leave W
only through W− and if x ∈W−, then ϕt(x) /∈W for any t > 0.

Since W is bounded away from K \ A, it is easy to see that for each neighborhood
U ⊂ W of A the critical points of Φ|Wn

are contained in Un provided n is large enough.
The following two results are basic for our Gromoll-Meyer type approach to Morse theory:
Proposition 5.5 ([36], Proposition 2.5) Suppose Φ satisfies (5.3), (PS)∗ and Φ(K) ⊂
(a, b). Then (Φba,Φ

a
a) is an admissible pair for Φ and K.

Proposition 5.6 ([36], Propositions 2.6 and 2.7) Suppose Φ satisfies (5.3), (PS)∗ and
p is an isolated critical point. Then for each open neighborhood U of p there exists an
admissible pair (W,W−) for Φ and p such that W ⊂ U . Moreover, if (W̃ , W̃−) is
another admissible pair, then H∗E(W,W

−) ∼= H∗E(W̃ , W̃−).

The existence part of this proposition is shown by considering the flow defined by

dϕ

dt
= −χ(ϕ)V (ϕ), ϕ(0, x) = x,

where χ is a cutoff function at x = p. Choosing a small ε > 0 and a sufficiently small ball
Bδ(p) ⊂ Φc−ε, where c = Φ(p), we can take

W = {ϕt(x) : t ≥ 0, x ∈ B̄δ(p), ϕt(x) ∈ Φc−ε} and W− = W ∩ Φc−εc−ε.

The second part of the proposition is also shown by cutting off the flow of V in a suitable
way. The proof is rather technical and the strong excision property of H∗E comes to an
essential use here.

If x is an isolated critical point and (W,W−) an admissible pair for Φ and x, we set

CqE(Φ, x) := Hq
E(W,W

−), q ∈ Z.

According to Proposition 5.6 the critical groups CqE(Φ, x) are well defined by the above
formula. If the set Kc is finite and isolated in K for some c, then for each xi ∈ Kc there
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exists an admissible pair (Wi,W
−
i ), and we may assume Wi ∩Wj = ∅ whenever i 6= j.

So in an obvious notation and by the argument of Lemma 2.5,

CqE(Φ,Kc) =
⊕
x∈Kc

CqE(Φ, x), q ∈ Z.

Let

dimE H
q
E(X,A) := [dimHq+dn(X,A)] ∈ [Z] =

∞∏
n=1

Z
/ ∞⊕

n=1

Z

(to be more precise, [dimHq+dn(X,A)] ∈ [N0] because all the dimensions are of course
nonnegative). If dimHq+dn(X,A) = d for almost all n, according to our earlier conven-
tion we write dimE H

q
E(X,A) = d. Suppose K is finite and Φ(K) ⊂ (a, b). As in section

2.2, we may define

mq
E :=

∑
j

dimE C
q
E(Φ,Kcj ), pqE := dimE H

q
E(Φ

b
a,Φ

a
a)

and

MΦ
E (t; a, b) :=

∑
q∈Z

mq
E t
q, PΦ

E (t; a, b) :=
∑
q∈Z

pqE t
q

(note that (Φba,Φ
a
a) is an admissible pair for Φ and K according to Proposition 5.5). These

are formal Laurent series with coefficients in [N0]. If mq
E and pqE are 0 for all but finitely

many q, then MΦ
E (t; a, b), PΦ

E (t; a, b) ∈ [N0] [t, t−1], where [N0][t, t−1] is the set of Lau-
rent polynomials with coefficients in [N0]. If the coefficients are the same for almost all n,
we write MΦ

E (t; a, b), PΦ
E (t; a, b) ∈ N0[t, t−1].

Theorem 5.7 (Morse inequalities, [36], Theorem 3.1 and Corollary 3.3) Suppose Φ sat-
isfies (5.3), (PS)∗, K is finite, Φ(K) ⊂ (a, b) and mq

E = 0 for almost all q ∈ Z. Then
pqE = 0 for almost all q ∈ Z and there exists QE ∈

[
N0[t, t−1]

]
such that

MΦ
E (t; a, b) = PΦ

E (t; a, b) + (1 + t)QE(t).

The proof is rather similar to that of Theorem 2.6; however, in lack of (A2) more
complicated sets than Φcj and Φcj \Kcj need to be used.

In order to apply the Morse inequalities we need to be able to perform local computa-
tions.
Theorem 5.8 ([36], Theorem 5.3) Suppose Φ satisfies (5.3), (PS)∗, p is an isolated criti-
cal point of Φ and

Φ(x) = Φ(p) +
1
2
〈L(x− p), x− p〉 − ψ̃(x), (5.4)

where L is invertible and ∇ψ̃(x) = o(‖x − p‖) as x → p. Then CqE(Φ, p) = F for
q = M−E (L) and 0 otherwise.



Thomas Bartsch, Andrzej Szulkin and Michel Willem 63

We note that M−E (L) is well defined and finite because L− L̃ is compact according to
(5.3).

Suppose now Φ ∈ C2(U,R), where U is a neighborhood of an isolated critical point
p. Then (5.4) holds, dimN(L) <∞,∇Φ(p) = 0, Φ′′(p) = L and

∇Φ(p+ z + y) = Ly −∇ψ̃(p+ z + y),

where x = p+ z + y, z ∈ N(L), y ∈ R(L). Denote the orthogonal projector on R(L) by
Q. Since L|R(L) is invertible, we may use the implicit function theorem in order to obtain
δ > 0 and a C1-mapping α : Bδ(0) ∩N(L)→ R(L) such that α(0) = 0, α′(0) = 0 and

Q∇Φ(p+ z + α(z)) ≡ 0.

Letting

g(z) := Φ(p+ z + α(z))− Φ(p) =
1
2
〈Lα(z), α(z)〉 − ψ̃(p+ z + α(z)),

one readily verifies that 0 is an isolated critical point of g, hence the critical groupsCq(g, 0)
of section 2.2 are well defined (however, we use cohomology instead of homology here).
Theorem 5.9 (Shifting theorem, [36], Theorem 5.4) Suppose Φ satisfies (5.3), (PS)∗ and
Φ ∈ C2(U,R), where U is a neighborhood of an isolated critical point p. Then

CqE(Φ, p) = Cq−M
−
E (L)(g, 0), q ∈ Z.

Remark 5.10 Other Morse theories for strongly indefinite functionals may be found e.g.
in the papers [1, 3, 49] already mentioned and also in [2, 31, 32]. With an exception of [3]
they are similar in essence but differ by the way the technical issues have been resolved and
by the range of applications. Each of them also has certain advantages and disadvantages.
We would also like to mention that we have neither touched upon equivariant Morse theory
for strongly indefinite functionals [35] nor upon the Floer and Floer-Conley theories (see
e.g. [5], [40], [46]).

6 Strongly indefinite variational problems

6.1 Hamiltonian systems

As an application of Morse theory for strongly indefinite functionals we shall consider the
problem of existence of periodic solutions to Hamiltonian systems

ż = JHz(z, t), z ∈ R2N , (6.1)

where

J :=
(

0 −I
I 0

)
is the standard symplectic matrix. We shall need the following assumptions on H:

(H1) H ∈ C(R2N × R,R), Hz ∈ C(R2N × R,R2N ) and H(0, t) ≡ 0;
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(H2) H is 2π-periodic in the t-variable;

(H3) |Hz(z, t)| ≤ c(1 + |z|s−1) for some c > 0 and s ∈ (2,∞);

(H4) Hzz ∈ C(R2N × R,R4N2
);

(H5) |Hzz(z, t)| ≤ d(1 + |z|s−2) for some d > 0 and s ∈ (2,∞).

When (H2) is satisfied, the natural period for solutions of (6.1) is 2π. It is clear that the
assumption H(0, t) ≡ 0 in (H1) causes no loss of generality and if (H5) is assumed, then
(H3) necessarily holds. We also remark that any period T in (H2) may be normalized to
2π by a simple change of the t-variable.

Below we give a short account of a variational setup for periodic solutions of (6.1). We
follow [8] where more details and references may be found. Let E := H1/2(S1,R2N ) be
the Sobolev space of 2π-periodic R2N -valued functions

z(t) = a0 +
∞∑
k=1

ak cos kt+ bk sin kt, a0, ak, bk ∈ R2N (6.2)

such that
∑∞
k=1 k(|ak|2 + |bk|2) <∞. Then E is a Hilbert space with an inner product

〈z, w〉 := 2πa0 · a′0 + π

∞∑
k=1

k(ak · a′k + bk · b′k)

(a′k, b′k are the Fourier coefficients of w). It is well known that the Sobolev embedding
E ↪→ Lq(S1,R2N ) is compact for any q ∈ [1,∞) but E 6⊂ L∞(S1,R2N ). Let

Φ(z) :=
1
2

∫ 2π

0

(−Jż · z) dt−
∫ 2π

0

H(z, t) dt ≡ 〈L̃z, z〉 − ψ(z). (6.3)

Proposition 6.1 ([8], Proposition 2.1) If H satisfies (H1−2−3), then Φ ∈ C1(E,R) and
∇Φ(z) = 0 if and only if z is a 2π-periodic solution of (6.1). Moreover, ∇ψ is completely
continuous in the sense that ∇ψ(zj) → ∇ψ(z) whenever zj ⇀ z. If, in addition, H
satisfies (H4) and (H5), then Φ ∈ C2(E,R) and ψ′′(z) is a compact linear operator for
all z ∈ E.

Suppose z(t) = ak cos kt± Jak sin kt. Then

〈L̃z, z〉 =
∫ 2π

0

(−Jż · z) dt = ±2πk|ak|2 = ±‖z‖2 (6.4)

by a simple computation and it follows that E has the orthogonal decomposition E =
E+ ⊕ E0 ⊕ E−, where

E0 = {z ∈ E : z = a0 ∈ R2N},

E± =

{
z ∈ E : z(t) =

∞∑
k=1

ak cos kt± Jak sin kt, ak ∈ R2N

}
.

According to (6.4),

〈L̃z, z〉 = ‖z+‖2 − ‖z−‖2 (z = z+ + z0 + z− ∈ E+ ⊕ E0 ⊕ E−),
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and since E± are infinite-dimensional, Φ is strongly indefinite. Let

En :=

{
z ∈ E : z(t) = a0 +

n∑
k=1

ak cos kt+ bk sin kt

}
,

then (En) is a filtration of E and L̃(En) ⊂ En for all n. Set

dn := N(1 + 2n) ≡M−(L̃|En) +N (6.5)

(hence d0 = N in the notation of section 5.1).
Suppose A is a symmetric 2N × 2N constant matrix and let

〈Bz,w〉 :=
∫ 2π

0

Az · w dt. (6.6)

Then B is a selfadjoint operator on E and it follows from the compactness of the embed-
ding E ↪→ L2(S1,R2N ) that B is compact. A simple computation using (6.2) shows that
setting L := L̃−B, we have

〈Lz, z〉 = −2πAa0 ·a0+π
∞∑
k=1

k

(
(−Jbk −

1
k
Aak) · ak + (Jak −

1
k
Abk) · bk

)
. (6.7)

Note in particular that L(En) ⊂ En for all n. The restriction of the quadratic form 〈Lz, z〉
to a subspace corresponding to a fixed k ≥ 1 is represented by the 4N × 4N matrix
πkTk(A), where

Tk(A) :=
(
− 1
kA −J
J − 1

kA

)
.

For a symmetric matrix C, set M+(C) := M−(−C) and let M0(C) be the nullity of C.
The matrix(

0 −J
J 0

)
has the eigenvalues ±1, both of multiplicity 2N , hence M±(Tk(A)) = 2N for all k large
enough. Therefore

i−(A) := M+(A)−N +
∞∑
k=1

(M−(Tk(A))− 2N),

i+(A) := M−(A)−N +
∞∑
k=1

(M+(Tk(A))− 2N),

i0(A) := M0(A) +
∞∑
k=1

M0(Tk(A))

are well defined finite numbers and it is not difficult to see that i−(A)+i0(A)+i+(A) = 0.
Again, we refer to [8] for more details and references. It follows using (6.7) that i0(A) =
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dimN(L) is the number of linearly independent 2π-periodic solutions of the linear system
ż = JAz (so in particular, dimN(L) ≤ 2N ) and N(L) ⊂ En for almost all n. It can
be further seen that L is invertible if and only if σ(JA) ∩ iZ = ∅, where σ denotes the
spectrum (this is called the nonresonance condition because the linear system above has
z = 0 as the only 2π-periodic solution). Also, using (6.7) again,

dimE−n (L) = M+(A) +
n∑
k=1

M−(Tk(A)),

hence by (5.2) and (6.5), M−E (L) = i−(A). Similarly, M+
E (L) := M−E (−L) = i+(A).

We have sketched a proof of the following
Proposition 6.2 ([36], Proposition 7.1) dimN(L) = i0(A) and M±E (L) = i±(A).

Remark 6.3 The number i−(A) (and thus M−E (L)) equals the Maslov index of the funda-
mental solution of the system ż = JAz. For comments and references, see [8, Remark 2.8]
and [36, Remark 7.2].

Assume thatHz satisfies the following asymptotic linearity conditions at 0 and infinity:

H(z, t) =
1
2
A∞z ·z+G∞(z, t), where (G∞)z(z, t) = o(|z|) uniformly in t as |z| → ∞

(6.8)

and

H(z, t) =
1
2
A0z ·z+G0(z, t), where (G0)z(z, t) = o(z) uniformly in t as z → 0. (6.9)

Here A∞ and A0 are constant symmetric 2N × 2N matrices. It is clear that (6.8) implies
(H3) for any s > 2. We shall use the notation L∞ = L̃ − B∞ and L0 = L̃ − B0, where
B∞, B0 are the operators defined in (6.6), with A replaced by A∞ and A0 respectively.
We also set

ψ∞(z) :=
∫ 2π

0

G∞(z, t) dt and ψ0(z) :=
∫ 2π

0

G0(z, t) dt.

It is easy to show [8, Lemma 2.4] that ∇ψ∞(z) = o(‖z‖) as ‖z‖ → ∞ and ∇ψ0(z) =
o(‖z‖) as z → 0.
Lemma 6.4 Suppose H satisfies (H1−2) and (6.8). If σ(JA∞) ∩ iZ = ∅, then the func-
tional Φ satisfies the (PS)∗-condition.

Proof Let (zj) be a (PS)∗-sequence. Then

Pnj∇Φ(zj) = L∞zj − Pnj∇ψ∞(zj)→ 0,

so (zj) is bounded because L∞ is invertible and∇ψ∞(zj)/‖zj‖ → 0 if ‖zj‖ → ∞. Now
it remains to invoke Lemma 5.3 (with L̃ and ψ given by (6.3)).

A 2π-periodic solution z0 of (6.1) is said to be nondegenerate if w = 0 is the only
2π-periodic solution of the system ẇ = JHzz(z0(t), t)w. It is easy to see that z0 is
nondegenerate if and only if Φ′′(z0) is invertible.
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Theorem 6.5 ([36], Theorem 7.4 and Remark 7.7) Suppose H satisfies (H1−2), (6.8),
(6.9) and σ(JA∞)∩ iZ = σ(JA0)∩ iZ = ∅. If i−(A∞) 6= i−(A0), then (6.1) has a non-
trivial 2π-periodic solution z0. Moreover, if H satisfies (H4−5) and z0 is nondegenerate,
then (6.1) has a second nontrivial 2π-periodic solution.

Proof It follows from our earlier considerations and from the hypotheses that L∞(En) ⊂
En, L0(En) ⊂ En, N(L∞) = N(L0) = {0}, M−E (L∞) = i−(A∞) and M−E (L0) =
i−(A0). Suppose 0 is the only 2π-periodic solution of (6.1). Consider the functional
I(z) := 1

2 〈L∞z, z〉 whose only critical point is 0, and for R0 > 0 let

W := {z = w+ + w− ∈ E+(L∞)⊕ E−(L∞) : 〈±L∞w±, w±〉 ≤ R0} (6.10)

W− := {z ∈W : 〈L∞w−, w−〉 = −R0}.

It is easy to see that the mapping V1(z) = ‖L∞z‖−1L∞z is a gradient-like vector field
for I on E \ {0}, it preserves the filtration and (W,W−) is an admissible pair for I and 0.
Hence by Theorem 5.8,

Hq
E(W,W

−) = δqi−(A∞)F. (6.11)

Since ∇ψ∞(z) = o(‖z‖) as ‖z‖ → ∞, V1 is also gradient-like for Φ on E \ BR(0)
provided R is large enough. By Lemma 5.4 there exists a gradient-like and filtration-
preserving vector field V2 on BR+1(0) \ {0}. Setting V = χ1V1 + χ2V2, where {χ1, χ2}
is a partition of unity subordinated to the cover

{
E \ B̄R(0), BR+1(0) \ {0}

}
of E \ {0},

one verifies using this V that (W,W−) is an admissible pair for Φ and 0 ifR0 is sufficiently
large. Therefore by Proposition 5.6,Hq

E(W,W
−) = CqE(Φ, 0) = δqi−(A0)F, a contradiction

to (6.11).
It is clear that (W,W−) is also an admissible pair for Φ and {0, z0}, possibly after

taking larger R and R0. If z0 is nondegenerate, then Cq0E (Φ, z0) = δqq0F for some q0 ∈ Z,
hence choosing t = −1 in Theorem 5.7 we obtain

(−1)i
−(A0) + (−1)q0 = (−1)i

−(A∞),

a contradiction again.
It is in fact not necessary to assume (H5). It has been shown in [36] that (H4) implies

the existence (but not continuity) of Φ′′(z0). We also remark that the existence of one
nontrivial solution can be shown without using Morse theory, with the aid of a linking
argument [8]. And since it is in general not possible to verify whether the solution z0 is
nondegenerate, we can only make a heuristic statement that “usually” this will be the case.
Below we give a sufficient condition for (6.1) to have two nontrivial solutions regardless
of any nondegeneracy assumption.
Theorem 6.6 ([10], Theorem 2.3, [36], Theorem 7.8) Suppose H satisfies (H1−2−4−5),
(6.8), (6.9) and σ(JA∞) ∩ iZ = σ(JA0) ∩ iZ = ∅. If |i−(A∞) − i−(A0)| ≥ 2N , then
(6.1) has at least 2 nontrivial 2π-periodic solutions.

Proof Let z0 be the nontrivial solution obtained in the preceding theorem and suppose
there are no other ones. By Theorem 5.9,

CqE(Φ, z0) = Cq−r0(g, 0),
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where r0 = M−E (Φ′′(z0)) and g is defined in an open neighborhood of 0 in N(Φ′′(z0)).
Since dimN(Φ′′(z0)) ≤ 2N , CqE(Φ, z0) = 0 for q− r0 < 0 and q− r0 > 2N . Moreover,
if g has a local minimum at 0, then Cq−r0(g, 0) 6= 0 if and only if q − r0 = 0, and if
g has a local maximum there, Cq−r0(g, 0) 6= 0 if and only if q − r0 = dimN(Φ′′(z0)).
Otherwise C0(g, 0) = C2N (g, 0) = 0 (cf. Corollary 3.8). Therefore there exists q0 ∈ Z
such that CqE(Φ, z0) = 0 whenever q < q0 and q > q0 + 2N − 2. Hence by (6.11) and the
Morse inequalities,

ti
−(A0) +

q0+2N−2∑
q=q0

bqt
q = ti

−(A∞) + (1 + t)QE(t),

where bq ∈ [N0]. Since there is an exponent i−(A∞) on the right-hand side, we must have
q0 ≤ i−(A∞) ≤ q0 + 2N − 2. Moreover, q0 − 1 ≤ i−(A0) ≤ q0 + 2N − 1. To see this,
suppose i−(A0) ≤ q0 − 2 (the other case is similar). Then on the left-hand side there is
an exponent i−(A0) but no exponents i−(A0) ± 1 which is impossible for the right-hand
side. Now combining the inequalities above we obtain |i−(A∞) − i−(A0)| ≤ 2N − 1, a
contradiction.

As our final application we consider the system (6.1) with H being 2π-periodic in all
variables. It is clear that if z0 is a 2π-periodic solution of (6.1), so is zk(t) = z0(t) + 2πk,
k ∈ Z2N . We shall call two solutions z1, z2 geometrically distinct if z1 − z2 6≡ 2πk for
any k ∈ Z2N . Let z = x + v, x ∈ Ẽ := E+ ⊕ E−, v ∈ E0. Since N(L̃) = E0 ≡ R2N ,
we may redefine Φ by setting

Φ(x, v) =
1
2

∫ 2π

0

(−Jẋ · x) dt−
∫ 2π

0

H(x+ v, t) dt =
1
2
〈L̃x, x〉 − ψ(x, v).

The periodicity of H with respect to z1, . . . , z2N implies Φ(x, v1) = Φ(x, v2) when-
ever v1 ≡ v2 (mod 2π). Therefore v may be regarded as an element of the torus
T 2N = R2N/2πZ2N and Φ ∈ C1(M,R), where M := Ẽ × T 2N . The advantage of
such representation of Φ is that distinct critical points of Φ on M correspond to geometri-
cally distinct solutions of (6.1).
Theorem 6.7 Suppose H is 2π-periodic in all variables and satisfies (H1−4). If all 2π-
periodic solutions of (6.1) are nondegenerate, then the number of geometrically distinct
ones is at least 22N .

This is the second part of the celebrated result by Conley and Zehnder on Arnold’s con-
jecture [21]. The first part asserts that without the nondegeneracy assumption the number
of geometrically distinct 2π-periodic solutions is at least 2N + 1 (see [8, section 2.6] for a
sketch of a proof).

Proof We outline the argument. Since the periodicity implies (H5), Φ ∈ C2(M,R). Let
E := (Mn, dn), where Mn = Ẽn × T 2N and dn = 2nN . According to [36, Remark
2.15], the theory developed in section 5.2 still applies. Suppose Φ has only finitely many
critical points and define Ĩ(x) = 1

2 〈L̃x, x〉. Then Ĩ : Ẽ → Ẽ, 0 is the only critical point
of Ĩ and (W̃ , W̃−) is an admissible pair for Ĩ and 0, where (W̃ , W̃−) is defined in the
same way as (W,W−) in (6.10), but with L∞ replaced by L̃. We see as in the proof of
Theorem 6.5 that (W̃ , W̃−)× T 2N is an admissible pair for Φ and K provided R and R0
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are large enough. Since M−(L̃|En) = dn, Cq+dn(Ĩ , 0) = δq0 F for all n and therefore
Hq
E(W̃ , W̃−) = CqE(Ĩ , 0) = δq0 F. By Künneth’s formula [17, p. 8],

H∗E((W̃ , W̃−)× T 2N ) = H∗E(W̃ , W̃−)⊗H∗(T 2N ) = H∗(T 2N ).

Since H∗(T 2N ) = H∗(S1) ⊗ · · · ⊗ H∗(S1) (2N times), Hq(T 2N ) is the direct sum of(
2N
q

)
copies of F if 0 ≤ q ≤ 2N and is 0 otherwise (cf. [17, p. 6]). Thus

pqE = dimE H
q
E((W̃ , W̃−)× T 2N ) =

(
2N
q

)
, 0 ≤ q ≤ 2N

and pqE = 0, q 6∈ [0, 2N ]. As the coefficients ofQE are in [N0], it follows from Theorem 5.7
that mq

E ≥ pqE . Denoting the cardinality of the critical set K by #K and using Theorem
5.8 we obtain

#K =
∑
q∈Z

mq
E ≥

∑
q∈Z

pqE =
2N∑
q=0

(
2N
q

)
= 22N .

6.2 Concluding remarks

In the preceding subsection we have assumed that A∞ and A0 are constant matrices which
satisfy the nonresonance condition σ(JA∞) ∩ iZ = σ(JA0) ∩ iZ = ∅. More generally,
one can admit t-dependent matrices with 2π-periodic entries and replace the nonresonance
condition by certain conditions on G∞ and G0. However, the proofs become more techni-
cal. See e.g. [30, 36, 51].

Existence of multiple periodic solutions in the setting of Theorem 6.7 has also been
studied under the assumption that H is periodic in some (but not necessarily all) z-
variables, see e.g. [17, 36, 49]. The result of Conley and Zehnder [21] described in
Theorem 6.7 was a starting point for Floer’s work on Arnold’s conjectures and on what
became known as the Floer homology and cohomology, see e.g. the already mentioned
references [40, 46], the papers [26, 37] for a solution of the Arnold conjecture, and the
recent survey [15].

In [50] the Morse theory of [49] has been applied in order to study bifurcation of non-
constant periodic solutions of small amplitude for the autonomous Hamiltonian system
ż = JH ′(z), z ∈ R2N . By a change of the independent variable one can equivalently
look for bifurcation of 2π-periodic solutions for the system ż = λH ′(z), and the results
of [50] assert that if Φλ(z) := 1

2

∫ 2π

0
(−Jż · z) dt − λ

∫ 2π

0
H(z) dt and the Morse in-

dex M−E (Φ′′λ(0)) changes as λ crosses λ0, then (0, λ0) is a bifurcation point (this can be
translated into a statement concerning the original system and the change of index may be
expressed in terms of the properties of the matrix H ′′(0)). See also [7] where a more pre-
cise result has been obtained by employing a finite-dimensional reduction and equivariant
Conley index theory. The above result is local. It has been shown in [22] that if a suitable
S1-degree changes at λ0, then the bifurcation from (0, λ0) is in fact global.

Other problems where critical point theory for strongly indefinite functionals has been
employed are the wave equation of vibrating string type, the beam equation and certain
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elliptic systems of partial differential equations in bounded domains. For more information
on these problems we respectively refer to [36, 58], [58, 59], [36, 50, 59] and the references
therein.

If H is convex in z or H(z, t) = 1
2Az · z + G(z, t), where G is convex in z, it is

possible to replace Φ by a dual functional to which the Morse theory of sections 2 and 3
can be applied. See e.g. [24, 25, 38, 39, 55]. In particular, this approach has turned out
to be successful when studying the number of geometrically distinct periodic solutions for
autonomous Hamiltonian systems on a prescribed energy surface H(z) = c bounding a
convex set in R2N .
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Index theory

David Bleecker
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1 Introduction and some history

When first considering infinite dimensional linear spaces, there is the immediate realization
that there are injective or surjective linear endomorphisms which are not isomorphisms,
and more generally the dimension of the kernel minus that of the cokernel (i.e., the index)
could be any integer. However, in the classical theory of Fredholm integral operators which
goes back at least to the early 1900s (see [22]), one is dealing with perturbations of the
identity and the index is zero. Several sources point to Fritz Noether (in his study [38] of
singular integral operators, published in 1921), as the first to encounter the phenomenon
of a nonzero index for operators naturally arising in analysis and to give a formula for the
index in terms a winding number constructed from data defining the operator. Over some
decades, this result was generalized in various directions by I.N. Vekua and others (see
[45]). Meanwhile, many working mainly in abstract functional analysis were producing
results, such as the stability of the index of a Fredholm operator under perturbations by
compact operators or bounded operators of sufficiently small operator norm (e.g., first J.A.
Dieudonne [21], followed by F.W. Atkinson [14], B. Yood [48], I.Z. Gohberg and M.G.
Krein [28], etc.).

Around 1960, the time was ripe for I.M. Gelfand (see [23]) to propose that the index
of an elliptic differential operator (with suitable boundary conditions in the presence of
a boundary) should be expressible in terms of the coefficients of highest order part (i.e.,
the principal symbol) of the operator, since the lower order parts provide only compact
perturbations which do not change the index. Indeed, a continuous, ellipticity-preserving
deformation of the symbol should not affect the index, and so Gelfand noted that the index
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should only depend on a suitably defined homotopy class of the principal symbol. The
hope was that the index of an elliptic operator could be computed by means of a formula
involving only the topology of the underlying domain (or manifold), the bundles involved,
and the symbol of the operator. In early 1962, M.F. Atiyah and I.M. Singer discovered
the Dirac operator in the context of Riemannian geometry and were busy working at Ox-
ford on a proof that the Â-genus of a spin manifold is the index of this Dirac operator.
At that time Stephen Smale happened to pass through Oxford and turned their attention to
Gelfand’s general program described in [23]. Drawing on the foundational and case work
of analysts (e.g., M.S. Agranovic, A.D. Dynin, L. Nirenberg, R.T. Seeley and A.I. Volpert),
particularly that involving pseudo-differential operators, Atiyah and Singer discovered and
proved the desired index formula at Harvard in the Fall of 1962. Moreover, the Riemannian
Dirac operator played a major role in establishing the general case. The details of this orig-
inal proof involving cobordism actually first appeared in [41]. A K-theoretic embedding
proof was given in [12], the first in a series of five papers. This proof was more direct and
susceptible to generalization (e.g., to G-equivariant elliptic operators [10] and families of
elliptic operators [13]).

The approach to proving the Index Theorem in [12] is based on the following clever
strategy. The invariance of the index under homotopy implies that the index (say, the ana-
lytic index) of an elliptic operator is stable under rather dramatic, but continuous, changes
in its principal symbol while maintaining ellipticity. Using this fact, one finds (after con-
siderable effort) that the index (i.e., the analytic index) of an elliptic operator transforms
predictably under various global operations such as embedding and extension. Using K-
theory and Bott periodicity, a topological invariant (say, the topological index) with the
same transformation properties under these global operations is constructed from the sym-
bol of the elliptic operator. One then verifies that a general index function having these
properties is unique, subject to normalization. To deduce the Atiyah–Singer Index Theo-
rem (i.e., analytic index = topological index), it then suffices to check that the two indices
are the same in the trivial case where the base manifold is just a single point. A particularly
nice exposition of this approach for twisted Dirac operators over even-dimensional mani-
folds (avoiding many complications of the general case) is found in E. Guentner’s article
[30] following an argument of P. Baum.

Not long after the K-theoretical embedding proof (and its variants), there emerged a
fundamentally different means of proving the Atiyah–Singer Index Theorem, namely the
heat kernel method. This is outlined here (see subsection 5.4) in the important case of the
chiral half D+ of a twisted Dirac operator D. In the index theory of closed manifolds, one
usually studies the index of a chiral half D+ instead of the total Dirac operator D, since D
is symmetric for compatible connections and then index D = 0. The heat kernel method
had its origins in the late 1960s (e.g., in [35]) and was pioneered in the works [42], [26],
[6]. The method is exhibited with a high degree of virtuosity in book [15]. In the final
analysis, it is debatable as to whether this method is really much shorter or better. That de-
pends on the background and tastes of the beholder. Geometers and analysts (as opposed
to topologists) are likely to find the heat kernel method appealing. The method not only
applies to geometric operators which are expressible in terms of twisted Dirac operators,
but also largely for more general elliptic pseudo-differential operators, as R.B. Melrose has
done in [36]. Moreover, the heat kernel method gives the index of a “geometric” elliptic
differential operator naturally as the integral of a characteristic form (a polynomial of cur-
vature forms) which is expressed solely in terms of the geometry of the operator itself (e.g.,
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curvatures of metric tensors and connections). One does not destroy the geometry of the
operator by using ellipticity-preserving deformations. Rather, in the heat kernel approach,
the invariance of the index under changes in the geometry of the operator is a consequence
of the index formula itself rather than a means of proof. However, considerable analysis
and effort are needed to obtain the heat kernel for e−tD

2
and to establish its asymptotic

expansion as t → 0+. Moreover, in [34], we are cautioned that the index theorem for
families (in its strong form) generally involves torsion elements in K-theory that are not
detectable by cohomological means, and hence are not computable in terms of local den-
sities produced by heat asymptotics. Nevertheless, when this difficulty does not arise, the
K-theoretical expression for the topological index may be less appealing than the integral
of a characteristic form, particularly for those who already understand and appreciate the
geometrical formulation of characteristic classes. More importantly, the heat kernel ap-
proach exhibits the index as just one of a whole sequence of spectral invariants appearing
as coefficients of terms of the asymptotic expansion (as t → 0+) of the trace of the rel-
evant heat kernel (see P.B. Gilkey’s contribution to this volume). All disputes aside, the
student who learns both approaches and formulations to the index formula will be more
accomplished (and probably older).

Insofar as the coverage of topics in this article is concerned, we hope the above table
of contents needs no elaboration, except to say that space limitations prevented the inclu-
sion of some important topics (e.g., the index theorem for families, and index theory for
manifolds with boundary, other than the A-P-S Theorem). However, we now provide some
guidance for further study. A fairly complete exposition, by Atiyah himself, of the history
of index theory from 1963 to 1984 is found in Volume 3 of [1] and duplicated in Volume
4. Volumes 3, 4 and 5 contain many unsurpassed articles written by Atiyah and collabo-
rators on index theory and its application to gauge theory. We all owe a debt of gratitude
to Herbert Schröder for the definitive guide to the literature on index theory (and its roots
and offshoots) through 1994 in Chapter 5 of the excellent book [27] of P.B. Gilkey. The
present author has benefited greatly not only from this book, but also from the marvelous
work [34] of H.B. Lawson and M.L. Michelsohn. In that book, there are proofs of index
formulas in various contexts, and numerous beautiful applications illustrating the power
of Dirac operators, Clifford algebras and spinors in the geometrical analysis of manifolds,
immersions, vector fields, and much more. The classic book [44] of P. Shanahan is also a
masterful, elegant exposition of not only the standard index theorem, but also the G-index
theorem and its numerous applications. A fundamental source on index theory for certain
open manifolds and manifolds with boundary is the authoritative book [36] of R.B. Mel-
rose. In the case of boundary-value problems for Dirac operators, there is also the carefully
written and very readable book [20] of B. Booss–Bavnbek and K.P. Wojciechowski.

2 Fredholm operators – theory and examples

2.1 Definition of Fredholm operator and index

Let H1 and H2 be separable Hilbert spaces, and let F : H1 → H2 be a bounded
(continuous) linear transformation. The kernel of F is the closed subspace KerF :=
{v ∈ H1 | F (v) = 0} = F−1 ({0}) and the cokernel of F is the vector space CokerF :=
H2/F (H1). Suppose that Ker(F ) and Coker(F ) have finite dimension. Then F is a
Fredholm operator. The concept of “Fredholm operator” can be extended to encompass
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certain bounded (and unbounded) operators between Banach spaces, but we will not do
so. It might be argued that we could further simplify matters by taking H2 = H1, but
in applications F is often a Sobolev extension of a differential operator with H1 and H2

different Sobolev spaces, which is desirable to ensure that F is bounded.
It is often required that the range ofF be closed, but this is implied by dim Coker(F ) <

∞. Indeed, since Ker(F ) is closed,H1/Ker(F ) is Hilbertable and F induces a continuous
injection

G : H1/KerF → H2

of Hilbert spaces. Let H3 be an algebraic complement of F (H1) in H2. Since dimH3 =
dim Coker(F ) <∞, H3 is a Hilbert space, as is (H1/KerF )⊕H3. Define

G̃ : (H1/KerF )⊕H3 → H2 by G̃(v, w) = G(v) + w.

Note that G̃ is injective, and bounded since

||G̃(v, w)|| = ‖G(v) + w‖ ≤ ‖G(v)‖+ ‖w‖ ≤ ‖G‖ ‖v‖+ ‖w‖
≤ (‖G‖+ 1) (‖v‖+ ‖w‖) ≤ 2 (‖G‖+ 1) ‖(v, w)‖ .

By the open mapping theorem, G̃ is a topological isomorphism, and hence

F (H1) = G(H1/KerF ) = G̃((H1/KerF )⊕ {0})

is closed.
The adjoint of F is F ∗ : H2→ H1 which is uniquely determined by the property:

〈F ∗w, v〉 = 〈w,Fv〉 for all v ∈ H1 and w ∈ H2.

We have ‖F ∗‖ ≤ ‖F‖, since

‖F ∗w‖2 = |〈F ∗w,F ∗w〉| = |〈w,FF ∗w〉| ≤ ‖w‖ ‖F‖ ‖F ∗w‖
⇒ ‖F ∗w‖ ≤ ‖F‖ ‖w‖ .

Since F ∗∗ = F , we have ‖F‖ = ‖F ∗‖. Clearly

KerF ∗ = F (H1)⊥ := {w ∈ H2 | 〈F (v), w〉 = 0 for all v ∈ H1} .

As F (H1) is closed, H2 = F (H1)⊕ F (H1)⊥, and hence

dim Coker(F ) = dimF (H1)⊥ = dim KerF ∗.

Note that F ∗ is Fredholm since dim KerF ∗ = dimF (H1)⊥ < ∞ and F ∗(H2) =
(kerF )⊥ .

The index of F is defined by

indexF := dim KerF − dim CokerF

= dim KerF − dimF (H1)⊥ = dim KerF − dim KerF ∗.



David Bleecker 79

Plainly, indexF ∗ = − indexF . If H1 and H2 are finite-dimensional, then indexF is
independent of F , since

indexF = dim Ker(F )− dimF (H1)⊥ = dimH1 − dimF (H1)− dimF (H1)⊥

= dimH1 −
(
dimF (H1) + dimF (H1)⊥

)
= dimH1 − dimH2.

In general dim Ker(F ) and dim Ker(F ∗) (if positive) can both decrease under a perturba-
tion of F , but we might suspect that the difference (i.e., indexF ) is invariant under suitable
perturbations or deformations, as it is in finite dimensions. Before exploring such stability
properties, we now look at some more examples.

2.2 Elementary examples

Example 2.1 (The classical Fredholm Alternative) Let −∞ ≤ a < b ≤ ∞ and
suppose K ∈ L2([a, b] × [a, b]) (i.e., K : [a, b] × [a, b] → C is measurable with∫ b
a

∫ b
a
|K(x, y)|2 dxdy <∞. Let F : L2([a, b])→ L2([a, b]) be given by

F [u](x) = u(x) +
∫ b

a

K(x, y)u(y) dx

This is a Fredholm operator and its adjoint is given by

F ∗[v](y) = v(y) +
∫ b

a

K(x, y) v(x) dx

In this case, the Fredholm alternative says that dim kerF = dim kerF ∗ (i.e., indexF =
0). In other words, if v1, . . . , vk form a basis of kerF ∗, then F [u] = v has a solution u if
and only if 〈v1, v〉 = · · · = 〈vk, v〉 = 0. Moreover, two solutions differ by an element of
kerF which also has dimension k.
Example 2.2 (shift operators) Take H1 = H2 = L2(Z+) be the Hilbert space of se-
quences (c0, c1, c2, . . .) of complex numbers for which

∑∞
n=0 |cn|

2
< ∞, and define the

left and right shift operators SL and SR on L2(Z+) via

SL(c0, c1, c2, . . .) := (c1, c2, . . .) and SR(c0, c1, c2, . . .) := (0, c0, c1, . . .).

Clearly, indexSL = 1 and indexSR = −1. By considering compositions of SL and SR,
we can achieve any integer for the index.
Example 2.3 (Toeplitz operators) Let

S1 := {z ∈ C | |z| = 1} =
{
eiθ ∈ C | θ ∈ R

} ∼= R/(2πZ)

denote the unit circle. Recall that the functions en(z) := zn/
√

2π (n ∈ Z) form an
orthonormal basis (complete orthonormal set) of L2(S1). For u ∈ L2(S1),

u =
∑∞

n=−∞
〈u, en〉 en = lim

N→∞

∑N

n=−N
〈u, en〉 en in L2(S1).

Let P : L2(S1)→ L2(S1) be the projection onto the closed subspace

H0 := span {en | n ≥ 0}.
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This is the subspace of functions u ∈ L2(S1) with Fourier coefficients cn(u) :=
1

2π

∫ π
−π u(eiθ)e−inθdθ = 1√

2π
〈u, en〉 which are 0 for n < 0. Suppose that f : S1 →

C∗ := C \ {0} is continuous. Let Mf : L2(S1) → L2(S1) be the multiplication operator
Mf (u) = fu. Define Tf : H0 → H0 by Tf = P ◦Mf |H0 ; i.e., Tf (u) = P (Mf (u)) for
u ∈ H0; Tf is known as a Toeplitz operator. Note that for f(z) = zm (or simply f = zm,
where z is the identity function on S1), we obtain

Tzm(en) = P (en+m) =
{
en+m for n ≥ −m

0 for n < −m.

Thus, for m ≥ 0, KerTzm = {0} and CokerTzm ∼= span({e0, . . . , em−1}), while for
m < 0, we get KerTzm = span(

{
e0, . . . , e|m|−1

}
). In either case, indexTzm = −m. It

can be shown that T(·) : C0(S1) → B(H0) is continuous. Moreover Tf is Fredholm for
f with values in C∗. As a consequence of the invariance of the index under continuous
deformation in F(H0) (see below), we get that for f : S1 → C∗, indexTf is minus the
winding number of f about 0.
Example 2.4 (oblique Neumann problem) Let U := {z ∈ C | |z| < 1} Consider a C∞

vector field ν : S1 → C on the boundary ∂U = S1 := {z | |z| = 1}. For f ∈ C∞(U,C),
z ∈ S1, and ν(z) = α(z) + iβ(z), one defines the “directional derivative” of f relative to
the vector field ν at the point z to be

∂f
∂ν (z) := α(z)∂f∂x (z) + β(z)∂f∂y (z) ∈ C.

Let ∆ = ∂2

∂x2 + ∂2

∂y2 = 4 ∂2

∂z∂z̄ : C∞(U,C)→ C∞(U,C) be the Laplace operator. The pair
(∆, ∂∂ν ) defines a linear operator

(∆, ∂∂ν ) : C∞(U,C)→ C∞(U,C)⊕ C∞(S1,C) given by f 7→ (∆f, ∂f∂ν ).

The following result is due to I. N. Vekua (see [45]).
Theorem 2.5 For p ∈ Z and ν(z) := zp, we have that (∆, ∂∂ν ) is an operator with finite-
dimensional kernel and cokernel, and

index(∆, ∂∂ν ) = 2 (1− p) .

Remark 2.6 The theorem of Vekua remains true, if we replace zp by any nonvanishing
“vector field” ν : S1 → C \ {0} with “winding number” p. This is because of the fact that
such a vector field can be deformed without zeros on S1 to zp, and the index is invariant
under the induced deformation of the operator (∆, ∂∂ν ). In the next subsection, we explore
the invariance properties of the index under suitable deformations or perturbations.

2.3 Basic properties

Let B(H1, H2) be the Banach space of all bounded linear maps from H1 to H2. Recall
thatK ∈ B(H1, H2) is compact ifK maps bounded subsets ofH1 into relatively compact
subsets of H2. Define K(H1, H2) to be the subset of compact elements of B(H1, H2).
If dimK(H1) < ∞ (i.e., K has finite rank), then K is compact, but there are K ∈
K(H1, H2) with dimK(H1) =∞ and K(H1) not closed. Clearly, K(H1, H2) is a linear
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subspace ofB(H1, H2). Also, it is immediate that for T ∈ B(H1, H2) andKi ∈ K(Hi) :=
K(Hi, Hi) (i = 1, 2), we have K2 ◦T and T ◦K1 ∈ K(H1, H2). In particular, for a single
Hilbert space H , K(H) is a two-sided ideal in B(H) := B(H,H). Let Bf (H1, H2) :=
{T ∈ B(H1, H2) | dimT (H1) <∞}, the linear subspace of operators in B(H1, H2) with
finite rank.
Theorem 2.7 K(H1, H2) is the closure of the subset Bf (H1, H2) of B(H1, H2) in the
strong topology induced by the operator norm.

Proof We first show that K(H1, H2) is closed. Let T ∈ B(H1, H2) be an operator in the
closure of K(H1, H2). To prove that T ∈ K(H1, H2), we verify that the image T (BH1)
of the closed unit ball BH1 in H1 is precompact. Let v1, v2, . . . be a bounded sequence
in BH1 and let T1, T2, . . . be a sequence in K(H1, H2) converging to T . By a diagonal
argument, we can find a subsequence u1, u2, . . . of v1, v2, . . ., such that Tn(v1), Tn(v2), . . .
converges for each n = 1, 2, . . . . Given ε > 0, we can choose n large enough so that
‖T − Tn‖ < ε/3 and ‖Tn (uj)− Tn (uk)‖ < ε/3 for j, k ≥M . Then for j, k ≥M

‖T (uj)− T (uk)‖
< ‖T (uj)− Tn (uj)‖+ ‖Tn (uj)− Tn (uk)‖+ ‖Tn (uk)− T (uk)‖
< ε/3 ‖uj‖+ ε/3 + ε/3 ‖uk‖ ≤ ε

Thus, T (u1), T (u2), . . . is a Cauchy sequence, converging by the completeness of H2. We
now show that eachK ∈ K(H1, H2) is the limit of a sequence of operators in Bf (H1, H2).
Let e1, e2, ... be a complete orthonormal system inH2, and letQn : H2 → span(e1, ..., en)
be the orthogonal projection from H2 to the linear span of e1, ..., en. It remains to prove
that, for each K ∈ K, the sequence (QnK)∞1 converges to K in B(H1, H2). For this,
choose (for each ε > 0) a finite covering of the precompact set K(BH1) by balls of radius
ε/3, say with centers at K(u1), ...,K(um). Then choose some n ∈ N, so large that
‖Kui −QnKui‖ < ε/3 for i = 1, ...,m. This is no problem, since (Qn)∞1 converges
pointwise to the identity. For each u ∈ BH1 , we then have (noting that ‖Qn‖ = 1 for the
last term)

‖Ku−QnKu‖ ≤ ‖Ku−Kui‖+‖Kui −QnKui‖+‖QnKui −QnKu‖ < 3(ε/3)

for some i ∈ {1, ...,m}. Thus, we have proven ‖K −QnK‖ < ε for all sufficiently large
n, depending on ε. Thus, K ⊂ Bf (H1, H2) and Bf (H1, H2) ⊂ K ⇒ Bf (H1, H2) ⊂
K = K, and so K = Bf (H1, H2).

Proposition 2.8 If K ∈ K(H1, H2), then K∗ ∈ K(H2, H1).

Proof If T has finite rank, then T =
∑n
i=1 〈·, ui〉 vi, where u1, ..., vn ∈ H . Note that

T ∗ =
∑n
i=1 〈·, vi〉ui, since

〈T (v), w〉 =
〈∑n

i=1
〈v, ui〉 vi, w

〉
=
∑n

i=1
〈v, ui〉 〈vi, w〉

=
〈
v,
∑n

i=1
〈vi, w〉ui

〉
=
〈
v,
∑n

i=1
〈w, vi〉ui

〉
.

Thus, T ∗ also has finite rank. Now, we can reduce the general caseK ∈ K to the finite-rank
case. Namely,K ∈ K(H1, H2) is the limit of a sequence (Tn)∞1 in Bf (H1, H2) and T ∗n →
K∗, since ‖T ∗n −K∗‖ =

∥∥(Tn −K)∗
∥∥ = ‖Tn −K‖. Hence, K∗ ∈ K(H2, H1).

Let F(H1, H2) be the set of Fredholm operators from H1 to H2.
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Theorem 2.9 For F ∈ B(H1, H2), we have F ∈ F(H1, H2) if and only if there is G ∈
B(H2, H1) such that

GF − IH1 ∈ K(H1, H1) and FG− IH2 ∈ K(H2, H2).

In other words, the Fredholm operators are precisely those which are invertible modulo
compact operators.

Proof If F ∈ F(H1, H2), then H1 = KerF ⊕ (KerF )⊥ and H2 = F (H1)⊕ F (H1)⊥.
Then F |(KerF )⊥ : (KerF )⊥ → F (H1) is a continuous linear isomorphism, and

(F |(KerF )⊥)−1 : F (H1) → (KerF )⊥ is then continuous (by open mapping theorem).
Take

G := (F |(KerF )⊥)−1 ⊕ 0 : F (H1)⊕ F (H1)⊥ → H1.

Then, GF = 0⊕ I(KerF )⊥ : KerF ⊕ (KerF )⊥ → (KerF )⊥ and

GF − IH1 = −IKerF ⊕ 0 : KerF ⊕ (KerF )⊥ → KerF

is of finite rank. Moreover,

FG = IF (H1) ⊕ 0 : F (H1)⊕ F (H1)⊥ → F (H1) and

FG− IH2 = −0⊕ IF (H1)⊥ : F (H1)⊕ F (H1)⊥ → F (H1)⊥,

which is also of finite rank. Conversely, suppose that GF − IH1 ∈ K(H1, H1) and FG−
IH2 ∈ K(H2, H2). Then dim KerF < ∞, since otherwise (GF − IH1)|KerF = IKerF ,
and GF − IH1 would not be compact. Moreover,

FG− IH2 ∈ K(H2, H2)⇒ G∗F ∗ − IH2 ∈ K(H2, H2)

and hence dim KerF ∗ <∞ by the same reasoning. Although dim KerF ∗ <∞, we still
need to show that F (H1) is closed. Suppose that F (vk) → w ∈ H2 for vk ∈ (KerF )⊥.
We need to show that by taking a suitable subsequence vk → v, so that F (v) = w ∈
F (H1). We first prove that vk is bounded. If not we may assume by taking a subsequence
that ‖vk‖ → ∞. Then, ‖F (vk/ ‖vk‖)‖ = 1

‖vk‖ ‖F (vk)‖ → 0, since ‖F (vk)‖ < ‖w‖+ 1
for k sufficiently large, and so F ( vk

‖vk‖ )→ 0. Now, since IH1 −GF is compact, by taking
a subsequence, we may assume (IH1 −GF ) (vk/ ‖vk‖) → u, for some u ∈ H1. Since
GLF (vk/ ‖vk‖)→ 0, we then have vk/ ‖vk‖ → u ∈ (KerF )⊥, and

F (u) = F ( lim
k→∞

vk/ ‖vk‖) = lim
k→∞

F (vk/ ‖vk‖) = 0.

As u ∈ (KerF )⊥, we have u = 0, but vk/ ‖vk‖ → u ⇒ 1 = ‖vk/ ‖vk‖‖ → ‖u‖ ⇒
‖u‖ = 1. Thus, vk is bounded. Since IH1 −GF is compact, by passing to a subsequence
we may assume that (IH1 −GLF ) (vk) converges, say to v′. Then, as required,

vk = (IH1 −GF ) (vk) +GF (vk)→ v′ +GF (vk)→ v′ +Gw.
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Theorem 2.10 For T ∈ F(H1, H2) and S ∈ F(H2, H3), we have ST ∈ F(H1, H3) and

index (ST ) = indexS + indexT.

Proof Since dim Ker (ST ) ≤ dim KerT + dim KerS <∞, and

dim Coker (ST ) ≤ dim CokerS + dim CokerT <∞,

we have ST ∈ F(H1, H3). The exact sequence

0→ T−1(0) ↪→ Ker
(
T−1S−1(0)

) T→ S−1(0) ∩ T (H1)→ 0

can be written as

0→ KerT ↪→ Ker (ST ) T→ Ker(S) ∩ T (H1)→ 0,

from which we get

dim Ker (ST ) = dim KerT + dim (KerS ∩ T (H1))

= dim KerT + dim
(

KerS ∩ (KerT ∗)⊥
)

= dim KerT + dim KerS − dim (KerS ∩KerT ∗) .

Subtracting result (obtained from the above by switching S and T ∗)

dim Ker
(
(ST )∗

)
= dim KerS∗ + dim KerT ∗ − dim (KerT ∗ ∩KerS) ,

we get the desired result.

Theorem 2.11 F(H1, H2) is open in B(H1, H2) and the index function index :
F(H1, H2)→ Z is constant on each connected component of F(H1, H2) and surjective.

Proof For F0 ∈ F(H1, H2), let

H3 := H1 ⊕ F0(H1)⊥ = H1 ⊕KerF ∗0 and H4 := H2 ⊕KerF0,

For A ∈ B(H1, H2), define

A : H3 → H4 by A(v, w) = (Av − w, πKerF0v).

Note that A is bounded, since
∥∥A∥∥2 ≤ ‖A‖2 + 1 :∣∣A(v, w)

∣∣2 = |Av − w|2 + |πKerF0v|
2 ≤ |Av|2 + |w|2 + |v|2

≤
(
‖A‖2 + 1

)(
|v|2 + |w|2

)
=
(
‖A‖2 + 1

)
‖(v, w)‖2 .

For the obvious inclusion i : H1 → H1 ⊕KerF ∗0 and projection π : H2 ⊕KerF0 → H2,
we have A = π ◦A ◦ i. For A,B ∈ B(H1, H2) we have

∥∥A−B∥∥ ≤ ‖A−B‖ , since∣∣(A−B) (v, w)
∣∣ = |(Av − w, πKerF0v)− (Bv − w, πKerF0v)|

= |(A−B)v| ≤ ‖A−B‖ |v| ≤ ‖A−B‖ |(v, w)| .
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Observe that F 0 ∈ Iso(H1, H2) :=
{
C ∈ B(H1, H2) : C−1 ∈ B(H2, H1)

}
. Indeed,

Ker(F0) = {(0, 0)}, since

F0(v, w) = (F0v − w, πKerF0v) = (0, 0)

⇒ F0v = w ∈ F0(H1)⊥ and v ∈ (KerF0)⊥ ⇒ (v, w) = (0, 0) ,

Also F0 is onto, since given (x, y) ∈ H2 ⊕ KerF0, we have x = F0(u) + w, where
u ∈ (KerF0)⊥ and w ∈ F0(H1)⊥, whence

F0(u+ y,−w) = (F0(u+ y) + w, πKerF0(u+ y)) = (x, y).

Then F 0 ∈ Iso(H1, H2) by the Open Mapping Theorem. Since
∥∥A−B∥∥ ≤ ‖A−B‖,

we have
∥∥F − F 0

∥∥ < ∥∥F 0

∥∥ for ‖F − F0‖ <
∥∥F 0

∥∥, in which case F ∈ Iso(H3, H4).
This implies that F = π ◦ F ◦ i ∈ F(H1, H2), since each of π, F and i are Fredholm.
Moreover,

indexF = indexπ + indexF + index i
= dim KerF0 + 0− dim KerF ∗0 (H1) = indexF0,

which shows that index : F(H1, H2)→ Z is locally constant, and hence constant on each
connected component of F(H1, H2). By composing F0 with shift operators on H1 or H2,
we see that index : F(H1, H2)→ Z is surjective.

Corollary 2.12 If F ∈ F(H1, H2) and K ∈ K(H1, H2), then F +K ∈ F(H1, H2) and
index (F +K) = index (F ). Thus, if F ∈ Iso(H1, H2), then index (F +K) = 0.
Proof Note that t 7→ F+tK, t ∈ [0, 1] connects F with F+K inF(H1, H2) by Theorem
2.9, and then index (F +K) = index (F ) by Theorem 2.11.

Corollary 2.13 About every F0 ∈ F(H1, H2), there is an open neighborhood U0 ⊆
B(H1, H2), such that F ∈ U0 implies

(i) (KerF0)⊥ ∩KerF = {0} ,
(ii) F ((KerF0)⊥)⊕ F0(H1)⊥ = H2, and hence H2

F ((KerF0)⊥)
∼= F0(H1)⊥, and

(iii)
for any W ⊆ KerF0 of finite codimension, we have
F (W )⊕ F0(W )⊥ = H2, and hence H2

F (W )
∼= F0(W )⊥.

Proof Recall from the proof of Theorem 2.11 that for F ∈ B(H1, H2), F : H1 ⊕
F0(H1)⊥ → H2 ⊕KerF0 is defined by

F (v, w) = (Fv − w, πKerF0v).

Moreover, for F ∈ U0 :=
{
G ∈ B(H1, H2) : ‖G− F0‖ <

∥∥F 0

∥∥} we have shown that
F ∈ Iso(H3, H4). Note that the injectivity of F yields (i), since

v ∈ (KerF0)⊥ ∩KerF ⇒ F (v, 0) = (Fv, πKerF0v) = (0, 0)⇒ v = 0.

For (ii), it remains to show that

F ∈ Iso(H3, H4)⇒ F ((KerF0)⊥)⊕ F0(H1)⊥ = H2.
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First we show that F ((KerF0)⊥) ∩ F0(H1)⊥ = {0}. Indeed, suppose that F (v) = w for
some v ∈ (KerF0)⊥ and some w ∈ F0(H1)⊥. Then F (v, w) = (Fv − w, πKerF0v) =
(0, 0) in which case (v, w) = (0, 0) by the injectivity of F . Moreover, since F is onto,
for any (u, f0) ∈ H2 ⊕ KerF0, there is (v, w) ∈ H1 ⊕ F0(H1)⊥, with u = Fv + w and
πKerF0v = f0. Note that v − f0 ∈ (KerF0)⊥, and u = Fv + w = F (v − f0) + w.
Thus, H2 = F ((KerF0)⊥) + F0(H1)⊥. Combining the above yields F ((KerF0)⊥) ⊕
F0(H1)⊥ = H2. For (iii), we first show that F (W ) ∩ F0(W )⊥ = {0}. Indeed, suppose
that F (v) = w for some v ∈ W and some w ∈ F0(W )⊥. Then F (v, w) = (Fv −
w, πKerF0v) = (0, 0) and so (v, w) = (0, 0). Now

F (W )⊕ F0(W )⊥ = H2 = F (W )⊕ F (W )⊥,

provided that dimF0(W )⊥ = dimF (W )⊥ (i.e., codimF0(W ) = codimF (W )). Note
that

F ((KerF0)⊥)⊕ F0(H1)⊥ = H2 ⇒

codimF0((KerF0)⊥) = dimF0(H1)⊥ = codimF
(

(KerF0)⊥
)
, and so

codimF0(W ) = dim
F0((KerF0)⊥)

F0(W )
+ codimF0((KerF0)⊥)

= dim
F ((KerF0)⊥)

F (W )
+ codimF ((KerF0)⊥)) = codimF (W ).

Proposition 2.14 The group Iso(H) of invertible bounded linear operators on a Hilbert
space H is pathwise connected.

Proof Each T ∈ Iso(H) can be factored as T = UB where U is unitary, and B =√
T ∗T is in the convex set of self-adjoint, positive elements of Iso(H). Using the Spectral

Theorem, U can be written in the form U = eiA where A is a self-adjoint operator. Let

t 7→ Ut := eitA and Bt := (1− t) Id +tB, t ∈ [0, 1] .

Then t 7→ UtBt is a continuous path in Iso(H) from Id to T .
Let π0(F(H1, H2)) denote the connected components of F(H1, H2). Since an open

subset of a locally path-connected space is connected if and only if it is path-connected,
the connected components of F(H1, H2) are the same as the path components. In the
case H1 = H2 =: H , composition in F(H) := F(H,H) induces a well-defined group
operation on π0(F(H)). Namely, if [F ] ∈ π0(F(H)) denotes the component of F in
F(H), then [F ] = [F ′] and [G] = [G′] imply [FG] = [F ′G′]. The identity is [I] and the
inverse of [F ] is [G], where G satisfies FG = I + K for K ∈ K(H) = K(H,H). Note
that [I +K] = [I] since I + tK connects I to I +K in F(H). Since

index(FG) = indexF + indexG = indexF ′ + indexG′ = index(F ′G′),

index induces a well-defined homomorphism Index : π0(F(H))→ Z.
Theorem 2.15 Index : π0(F(H))→ Z is a group isomorphism.
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Proof By Example 2.2, we have surjectivity of Index. For injectivity, it remains to show
that there is a path in F(H) from any F ∈ F(H) with indexF = 0 to some operator in
Iso(H). Since indexF = 0, we can find an isomorphism L : KerF → F (H)⊥, and let
π : H → KerF be orthogonal projection. Then t 7→ F+t (L ◦ π) (for t ∈ [0, 1]) connects
F with F + (L ◦ π) which is in Iso(H) since L ◦ π has finite rank. Indeed, for v ∈ KerF
and w ∈ (KerF )⊥, we have

(F + (L ◦ π)) (v + w) = F (w) + L(v) = 0⇒ F (w) = −L(v) ∈ F (H) ∩ F (H)⊥

⇒ F (w) = L(v) = 0⇒ w = v = 0, and

(F + (L ◦ π)) (H) = F (H) + (L ◦ π) (H) = F (H) + F (H)⊥ = H.

3 The space of Fredholm operators and K-theory

There is a far-reaching generalization of Theorem 2.15, namely the Atiyah-Jänich Theorem
which exhibits the close relation of Fredholm operators, index theory and K-theory. This
Theorem is stated and finally proved in subsection 3.4, after some preliminary subsections.
We start with a brief introduction to K-theory.

3.1 An introduction to K-theory

Let X be a compact topological space. We denote the set of all isomorphism classes of
complex vector bundlesE → X by Vect(X). Note that Vect(X) has an abelian semigroup
structure u : Vect(X) × Vect(X) → Vect(X) induced by direct sum of vector bundles,
namely [E] u [F ] := [E ⊕ F ]. The class of the zero vector bundle is an identity, and so
Vect(X) is an abelian monoid (commutative semigroup with identity). There is a standard
way (known as the Grothendieck construction) to produce an abelian group from an abelian
monoid. In the case of Vect(X), the abelian group is K(X). Explicitly, K(X) consists of
equivalence classes of pairs ([E] , [F ]) , where

([E] , [F ]) ≡ ([E′] , [F ′])⇔ ([E]u [G] , [F ]u [G]) = ([E′]u [G′] , [F ′]u [G′]) ,

for some [G] , [G′] ∈ Vect(X). In other words, K(X) is the quotient semigroup of
Vect(X)×Vect(X) by its diagonal:

K(X) =
Vect(X)×Vect(X)

∆ (Vect(X)×Vect(X))
.

Then K(X) is a group since [([E] , [F ])] and [([F ] , [E])] are additive inverses:

[([E] , [F ])]+[([F ] , [E])] = [([E]u [F ] , [F ]u [E])] = [([E ⊕ F ] , [E ⊕ F ])] ≡ [(0, 0)] .

If we apply this construction to the semigroup Z+ = {0, 1, 2, . . .}, we obtain Z+×Z+

∆(Z+×Z+)

which is isomorphic to Z via [(m,n)] 7→ m − n and the natural embedding Z+ → Z
factors through the semigroup monomorphism Z+ → Z+×Z+

∆(Z+×Z+) given by m 7→ [(m, 0)].
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However, in general the homomorphism Vect(X) → K(X), given by [E] 7→ [([E] , [0])]
is not injective. For example, since

π4(GL(2,C)) ∼= π4(U(2)) ∼= π4(S3 × S1) ∼= π4(S3) ∼= Z2,

there is a nontrivial two-dimensional complex vector bundle E over S5, but K(S5) = Z,
which implies that [E] = [X×C2] inK(S5), even thoughE is not trivial. Nevertheless, in
general it is customary to write [([E] , [0])] ∈ K(X) simply as [E], even though [E] = [F ]
in K(X) may not imply that E and F are equivalent vector bundles. Since

[([E] , [F ])] = [([E] , [0])] + [([0] , [F ])] = [([E] , [0])] + (− [([F ] , [0])]) ,

it is convenient to use the notation [E] − [F ] := [([E] , [F ])] , and to refer to elements of
K(X) as virtual bundles. If we assume that X is not only compact, but also Hausdorff,
then for any complex vector bundle π : F → X , there is another F ′, such that [F ⊕ F ′] =
[n], where [n] denotes the class of the trivial bundleCn×X → X and n = dimF+dimF ′.
To show this, we may cover X by a finite number of open sets U1, . . . , Uk, such that
ϕi : F|Ui ∼= Ui × Cm (m = dimF ). Then (owing to the Hausdorff assumption), there
is a partition of unity {ρi : X → [0, 1]}mi=1 subordinate to {U1, . . . , Uk}, so that (for πi :
Ui × Cm → Cm the projection onto the second factor) we have an injective vector bundle
morphism

Φ : π × (π1ϕ1ρ1 ⊕ · · · ⊕ πkϕkρk) : F → X × (Cm ⊕ · · · ⊕ Cm) = X × Ckm.

We then take F ′ to be the subbundle of X × Ckm whose fiber F ′x at any point x ∈ X
is the orthogonal complement of Φ(Fx), relative to a Hermitian metric on Ckm. As a
consequence, any [E]− [F ] ∈ K(X) can be written in the form [H]− [n] for some n ≥ 0,
since

[E]− [F ] = [E] + [F ′]− ([F ] + [F ′]) = [E ⊕ F ′]− [F ⊕ F ′] = [E ⊕ F ′]− [n] .

Moreover, while by definition [E] = [F ] in K(X) ⇔ E ⊕ G ∼= F ⊕ G for some bundle
G, note that

E⊕G ∼= F ⊕G⇒ E⊕G⊕G′ ∼= F ⊕G⊕G′ ⇒ E⊕
(
X × CN

) ∼= F ⊕
(
X × CN

)
,

where (as we have just seen) G′ can be so that G ⊕ G′ ∼= X × CN . Thus, [E] = [F ] in
K(X) ⇔ E ⊕ G ∼= F ⊕ G for some trivial bundle G; i.e., [E] = [F ] iff E and F are
stably equivalent.

If E → X and F → X are complex vector bundles, then the tensor product E ⊗
F := ∪x (Ex ⊗ Fx)→ X is a complex vector bundle and this induces a multiplication on
K(X) making it a ring. For a base point x0 ∈ X , the inclusion i : {x0} → X induces
i∗ : K(X) → K({x0}) ∼= Z. The reduced K-ring of X is K̃(X) := Ker i∗ ⊂ K(X).
For a closed nonvoid subset Y ⊂ X , we define K(X,Y ) = K̃(X/Y ), where Y/Y is the
base point. For a locally compact space X , one defines K(X) := K̃(X+), where X+

is the one-point compactification of X and the point at infinity is the base point; if X is
already compact, then X+ is just X with a disjoint base point, so that K̃(X+) = K(X).
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3.2 The index bundle

Let X be a compact, Hausdorff topological space, and let [X,F(H)] denote the set of
homotopy classes of continuous maps X → F(H). For two such maps f and g we define
a product fg : X → F(H) via (fg) (x) = f(x) ◦ g(x), and this induces a product on
[X,F(H)], giving it the structure of an associative semigroup with identity [Id] where
Id : X → {Id} ⊂ F(H) is the constant map. We will show that there is a natural
homomorphism

Index : [X,F(H)]→ K(X).

The fact that this is an isomorphism is the Atiyah-Jänich Theorem (see subsection 3.4
below). In the case where X = {p} is a singleton, [X,F(H)] is simply π0(F(H)),
K(X) = K({p}) ∼= Z, and the map Index : [X,F(H)] → K(X) ∼= Z, induced by
f 7→ Index(f(p)), is an isomorphism by Theorem 2.15.

Let A be a compact subset of F(H). We will show that there is a canonical element
iA ∈ K(A). If KerA := ∪F∈A {KerF} and CokerA := ∪F∈A {CokerF} were bundles,
then we could define iA = [KerA]− [CokerA]. While KerA and CokerA are not bundles,
recall that F 7→ dim KerF−dim CokerF is locally constant, which offers some hope that
iA can be defined. We cover compact A by a finite number of neighborhoods U1, . . . , Uk
as in Corollary 2.13 about F1, . . . , Fk ∈ A. Let V be a (closed) subspace of H of finite
codimension such that for all F ∈ A, we have

(1) V ∩KerF = {0}
(2) codim (F (V )) = dim (F (V ))⊥ <∞ (and so F (V ) is closed as well)

(3)
H

A(V ) := ∪F∈A
(
F, H

F (V )

)
→ A is a vector bundle,

where H
A(V ) gets the quotient topology from F(H)×H .

We say that V is suitable for A. An example of such V is V0 := (KerF1)⊥ ∩ · · · ∩
(KerFk)⊥. That (1) and (2) are satisfied for V = V0 is clear from Corollary 2.13. For (3),
we use part (iii) of Corollary 2.13 with W = V0 to get that H

F (V0)
∼= Fi(V0)⊥ for F ∈ Ui.

Thus, over Ui ∩ A, each H
F (V0) is identified with the vector space Fi(V0)⊥ independent of

F , providing a suitable trivialization of H
A(V ) over Ui ∩A. Note that if V is suitable for A

and V ′ ⊆ V has finite codimension, then V ′ is also suitable for A. We set

iA(V ) =
[
A× H

V

]
−
[

H

A(V )

]
,

whereA× H
V is the trivial bundle with fiber HV . We need to show that iA(V ) is independent

of the choice of suitable V for A. If V1 and V2 are suitable for A, then we have exact
sequences of vector bundles

0→ A× V1

V1 ∩ V2
→ A× H

V1 ∩ V2
→ A× H

V1
→ 0 and

0→ A× V1

V1 ∩ V2
→ H

A (V1 ∩ V2)
→ H

A (V1)
→ 0.
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Thus, [
A× V1

V1 ∩ V2

]
=
[
A× H

V1 ∩ V2

]
−
[
A× H

V1

]
,[

A× V1

V1 ∩ V2

]
=
[

H

A (V1 ∩ V2)

]
−
[

H

A (V1)

]
and

iA(V1) =
[
A× H

V1

]
−
[

H

A (V1)

]
=
[
A× H

V1 ∩ V2

]
−
[

H

A (V1 ∩ V2)

]
= iA (V1 ∩ V2) ,

which is the same as iA(V2) by symmetry, as required.
For continuous f : X → F(H), we define

Index : [X,F(H)]→ K(X) by Index ([f ]) = f∗(iA),

where A is any compact set containing f(X) and f∗ : K(A) → K(X) is induced by
pull-back of bundles. More directly we have

Index ([f ]) =
[
X × H

V

]
−
[
H

f(V )

]
, where

H

f(V )
:= ∪x∈X

(
x,

H

f(x)(V )

)
→ X

which is a vector bundle. We show that f∗(iA) only depends on the homotopy class of f .
If f0 is homotopic to f1, say there is h : X × [0, 1] → F(H) with h(x, 0) = f0(x) and
h(x, 1) = f1(x), then for it : X → X × [0, 1] given by it(x) = (x, t) we have (where A
is now any compact subset of F(H) containing h(X × [0, 1]))

f∗0 (iA) = (h ◦ i0)∗ (iA) = i∗0h
∗(iA) = i∗1h

∗(iA) = (h ◦ i1)∗ (iA) = f∗1 (iA).

To show that Index : [X,F(H)] → K(X) is a homomorphism, let f, g : X → F(H)
be continuous. Let Vf be suitable for f(X). Let πVf , πV ⊥f ∈ B(H) denote orthogonal

projections onto Vf and (Vf )⊥. Note that I − tπV ⊥f ∈ F(H) for each t ∈ [0, 1], and
hence we have a homotopy h : X × [0, 1] → F(H) between g and πVf ◦ g, given by
(I − tπV ⊥f ) ◦ g(x) : X × [0, 1] → F(H). Hence we may assume that g(x)(H) ⊆
Vf for all x ∈ X . Let Vg be suitable for g(X). Then Vg is also suitable for the set
(fg) (X) := {f(x) ◦ g(x) | x ∈ X}. Indeed, Ker (f(x) ◦ g(x)) ⊆ Ker g(x), since (using
g(x)(H) ⊆ Vf )

v ∈ Ker (f(x) ◦ g(x))⇒ 0 = (f(x) ◦ g(x)) (v) = f(x)(g(x)(v))
⇒ g(x)(v) ∈ Ker f(x) ∩ g(x)(H) ⊆ Ker f(x) ∩ Vf = {0}
⇒ v ∈ Ker g(x).

Thus, Vg ∩ Ker (f(x) ◦ g(x)) ⊆ Vg ∩ Ker g(x) = {0}. Note that g(x)(Vg) ⊆
Vf has finite codimension and f(x) (Vf ) has finite codimension in H. Hence,
codim ((f(x) ◦ g(x)) (Vg)) <∞. Since g(x)(Vg) ⊆ Vf and

H

f(Vf )
:= ∪x∈X

(
x,

H

f(x) (Vf )

)
→ X is a vector bundle,
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we have that

H

(fg) (V )
:= ∪x∈X

(
x,

H

f(x) (g(x)(Vg))

)
→ X is a vector bundle.

Again using g(Vg) ⊆ Vf , we have exact sequences

0→ Vf
g(Vg)

f→ H

(fg) (Vg)
→ H

f(Vf )
→ 0

⇒
[

H

(fg) (Vg)

]
=
[
Vf
g(Vg)

]
+
[

H

f(Vf )

]
,

and

0→ H

Vf
→ H

g(Vg)
→ Vf

g(Vg)
→ 0

⇒
[

H

g(Vg)

]
=
[
H

Vf

]
+
[
Vf
g(Vg)

]
⇒
[
Vf
g(Vg)

]
=
[

H

g(Vg)

]
−
[
H

Vf

]
.

Thus, recalling that Vg is suitable for fg(X),

Index ([fg]) =
[
H

Vg

]
−
[

H

(fg) (Vg)

]
=
[
H

Vg

]
−
([

Vf
g(Vg)

]
+
[

H

f(Vf )

])
=
[
H

Vg

]
−
(([

H

g(Vg)

]
−
[
H

Vf

])
+
[

H

f(Vf )

])
=
[
H

Vf

]
−
[

H

f(Vf )

]
+
[
H

Vg

]
−
[

H

g(Vg)

]
= Index ([f ]) + Index ([g]) .

The proof that Index : [X,F(H)] → K(X) is an isomorphism (i.e., The Atiyah-Jänich
Theorem) consists of showing that it is injective and surjective. Injectivity rests on Kuiper’s
Theorem which is also of independent interest, and we cover that next.

3.3 Kuiper’s Theorem

For finite n, the group GL(n,C) is not simply-connected. Indeed, GL(1) is C \ {0}
and det : GL(n,C) → GL(1) induces an isomorphism π1(GL(n,C)) ∼= π1(GL(1)) ∼=
Z. However, in infinite dimensional spaces one can generally escape finite-dimensional
topological constraints by moving aside into a new dimension. In particular, it was shown
by N. I. Kuiper [33] that Iso(H), with the operator norm topology, is contractible. For our
purposes, it suffices to prove Theorem 3.2 below, but first we establish
Proposition 3.1 For R, S : X → B(H), the two maps SR⊕ I, R⊕S : X → B(H ×H)
are homotopic (i.e., SR⊕ I ∼ R⊕ S).

Proof Writing operators in B(H×H) as 2×2 (block) matrices, define F : X×[0, π/2]→
B(H ×H) by

F (x, t) :=
[

cos t − sin t
sin t cos t

] [
S(x) 0

0 I

] [
cos t sin t
− sin t cos t

] [
R(x) 0

0 I

]
,
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where cos t and sin t stand for the operators (cos t) I and (sin t) I ∈ B(H). Note that

F (x, 0) =
[
S(x)R(x) 0

0 Id

]
, while F (x, π/2) =

[
R(x) 0

0 S(x)

]
.

Moreover, if S and R have values in U(H) (or Iso(H)), then so does F . The continuity F
in the norm topology of B(H ×H) is straightforward (but a bit tedious) to check.

Theorem 3.2 (Kuiper) Let X be compact and let f : X → Iso(H) be continuous. Then f
is homotopic in Iso(H) to the constant map c : X → {I} .
Proof Suppose that H = H1 ⊕ H ′, where H ′ and H1 are infinite-dimensional closed
orthogonal complements. Let

Y =
{
A ∈ Iso(H) : A|H′ = IH′ and A (H1) = H1

}
.

We provide a homotopy h : Y × I → Y with h0(A) = A and h1(A) = I; i.e., Y is
contractible in itself to I . Once this is done, it suffices to show that f : X → Iso(H) is
homotopic in Iso(H) to a map with values in Y relative some decomposition of the form
H = H1 ⊕ H ′. To show that Y is contractible, note that there is a decomposition H ′ =
H2 ⊕ H3 ⊕ · · · of H ′ into an infinite number of infinite-dimensional closed, orthogonal
subspaces, each of which can be identified with a copy ofH1. ForA ∈ Y , letB := A|H1 ∈
Iso(H1). In block diagonal form, relative to the decompositionH = H1⊕H2⊕H3⊕· · · =
H1 ⊕H1 ⊕H1 ⊕ · · · , we have A = B ⊕ I ⊕ I ⊕ I ⊕ · · · . By Proposition 3.1, we have

B ⊕B−1 ∼ B−1B ⊕ I = I ⊕ I = BB−1 ⊕ I ∼ B−1 ⊕B.

Using I ⊕ I ∼ B−1 ⊕B and then using B ⊕B−1 ∼ I ⊕ I , we obtain

A = B⊕ I⊕ I⊕ I⊕· · · ∼ B⊕B−1⊕B⊕B−1⊕· · · ) ∼ I⊕ I⊕ I⊕ I⊕· · · = IH .

To show that f : X → Iso(H) is homotopic in Iso(H) to a map X → Y , we first show
that f is homotopic in Iso(H) to a map f1 : X → Iso(H) with values in the intersec-
tion of a finite-dimensional subspace V of B(H) with Iso(H). Note that the distance
from the compact set f(X) to the closed complement of Iso(H) in B(H) is positive,
say 2ε. We cover the compact set f(X) with a finite number of balls B(f(xi), ε) =
{A ∈ B(H) : ‖A− f(xi)‖ < ε} , i = 1, . . . , N . For A ∈ U :=

⋃N
i=1B(f(xi), ε) and

i = 1, . . . , N, define φi : U → (0, 1] by

φi (A) :=
ψi(A)∑N
i=1 ψi(A)

, where ψi(A) :=
{
ε− ‖A− f(xi)‖ for A ∈ B (f(xi), ε)
0 otherwise.

For each t ∈ [0, 1] and A ∈ U , we define an operator

gt(A) := (1− t)A+ t
∑N

i=1
φi(A)f(xi).

Note that g0 : U → B×(H) is the inclusion and g1 : U → Iso(H) maps U into the
convex hull of the points f(x1), ..., f(xN ). (We thank the concerned reader in advance for
verifying the joint continuity of gt(A) in (t, A), as well as for other homotopies defined
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later.) To show that gt(U) ⊂ Iso(H), note that A ∈ B(f(xi0), ε) for some i0, and for
t ∈ [0, 1]

‖gt(A)− f(xi0)‖ ≤ ‖gt(A)−A‖+ ‖A− f(xi0)‖ < ε+ ε, since

‖gt(A)−A‖ ≤ ‖t
∑N

i=1
φi(A)f(xi)− tA‖ = t‖

∑N

i=1
φi(A) (f(xi)−A) ‖

≤
∑N

i=1
φi(A) ‖f(xi)−A‖ ≤

∑
φi(A)>0

φi(A)ε ≤ ε.

Thus, gt(A) ∈ B(f(xi0), 2ε) ⊆ Iso(H). For t ∈ [0, 1], ft := gt ◦ f is a homotopy in
Iso(H) from f = f0 to f1 : X → B×(H) with the desired property f1(X) ⊂ V ∩ Iso(H),
where V := span (f(x1), ..., f(xN ), I) with dimV ≤ N + 1 < ∞. For any vector
w ∈ H , let

V w := {Rw ∈ H | R ∈ V } = span (w, f(x1)w, ..., f(xN )w)

We construct a sequence of orthogonal unit vectors a1, a2, ... ∈ H and a sequence of
orthogonal (N + 2)-dimensional subspaces A1, A2, ... ⊂ H , such that for all i = 1, 2, ...,
V ai ⊆ Ai (in particular, ai ∈ Ai since I ∈ V ). To begin, let a1 be any unit vector, and let
A1 be an (N + 2)-dimensional subspace such that V a1 ⊆ A1. For a subspace W ⊆ H , let

V −1 (W ) := {v ∈ H | Rv ∈W for all R ∈ V } = W ∩
(
∩Ni=1f(xi)−1(W )

)
.

Let a2 be any unit vector in V −1
(
A⊥1
)

(so that V a2 ⊆ A⊥1 ), and let A2 be an (N + 2)-
dimensional subspace of A⊥1 , such that V a2 ⊆ A2. Then A1 and A2 are orthogonal
(N + 2)-dimensional subspaces of H with V ai ⊆ Ai, i = 1, 2. Inductively, given orthog-
onal A1, A2, ..., Ak ⊂ H with V ai ⊆ Ai for i = 1, . . . , k, let ak+1 be any unit vector in
V −1

(
∩ki=1A

⊥
i

)
(so that V ak+1 ⊆ ∩ki=1A

⊥
i ). Choose Ak+1 to be an (N + 2)-dimensional

subspace of ∩ki=1A
⊥
i (of infinite codimension), such that V ak+1 ⊆ Ak+1.Then we have

orthogonal A1, A2, ..., Ak+1 ⊂ H with V ai ⊆ Ai for i = 1, . . . , k + 1, and by induction
the construction is complete.

Since f1(X) is compact in V ∩ Iso(H), there is a constant c ≥ 1 such that c−1 ≤
‖f1(x)‖ ≤ c for all x ∈ X. Let Vc :=

{
v ∈ V : c−1 < ‖v‖ < c

}
, so that f1(X) ⊆ Vc. We

now deform f1 to f2 with the property that so that f2(x)(ai) is a unit vector for all x ∈ X .
Define g : Vc × [0, 1]→ Iso(H), for v ∈ Vc and w ∈ H , by

gt(v)(w) =

{
v(w) for w ∈ (

⊕∞
i=1Ai)

⊥(
(1− t) + t

‖v(ai)‖

)
v(w) for w ∈ Ai.

Note that ‖v(ai)‖ > c−1 ‖ai‖ = c−1 > 0, and g1(v)(ai) = v(ai)
‖v(ai)‖ is a unit vector. Let

ft+1(x) = gt (f1(x)). We have agreement at t = 0, since g0 (f1(x)) (w) = f1(x)(w), and

f2(x)(ai) = g1 (f1(x)) (ai) =
f1(x) (ai)
‖f1(x)(ai)‖

,

which is a unit vector. Since dim(V ai) ≤ N +1 and dim(Ai) = N +2, we can find a unit
vector bi ∈ Ai with bi⊥V ai. We now deform f2 to f3 with f3(x)(ai) = bi for all x ∈ X .
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Let g′ : Vc × [0, 1]→ Iso(H) be defined for v ∈ Vc, w ∈ H and t ∈ [0, 1] by

g′t(v)(w) =


cos(π2 t)v (ai) + sin(π2 t)bi if w = v (ai) for some i
− sin(π2 t)v (ai) + cos(π2 t)bi if w = bi for some i

w w ∈ (
⊕∞

i=1 span (bi, v (ai)))
⊥
.

Thus, g′t(v) rotates v (ai) toward bi through the angle π
2 t in each of the planes

span (bi, v (ai)). Let ft+2(x) = g′t (f2(x)) ◦ f2(x), t ∈ [0, 1]. Then

f3(x)(ai) = g′1 (f2(x)) (f2(x)ai) = bi.

Now we will deform f3 to f4 with f4(x)(ai) = ai for all x ∈ X . Define g′′ : Vc× [0, 1]→
Iso(H) by

g′′t (w) =


cos(π2 t)bi + sin(π2 t)ai if w = bi for some i
− sin(π2 t)bi + cos(π2 t)ai if w = ai for some i

w w ∈ (
⊕∞

i=1 span (bi, ai))
⊥ .

Thus, g′t(v) rotates bi toward ai through the angle π
2 t in each of the planes span (ai, bi).

Let ft+3(x) = g′′t ◦ f3(x), t ∈ [0, 1]. Then

f4(x)(ai) = g′′1 (f3(x)ai) = g′′1 (bi) = ai.

Let H ′ be the closed subspace of H with orthonormal basis a1, a2, . . ., and let H1 =
(H ′)⊥. Finally, let π′ : H → H ′ and π1 : H → H1 be the orthogonal projections. For
t ∈ [4, 5], define

ft(x) = (5− t)f4(x) + (t− 4) (π′ + π1 ◦ f4(x) ◦ π1)

Note that f5(x)|H′ = IH′ and f5(x) (H1) ⊂ H1, as required.

3.4 The Atiyah-Jänich Theorem

The following generalization of Theorem 2.15 appeared in [31], where a different proof
due to Atiyah and Palais is also given; for other treatments, see [2, p.153-166] and [34,
p.208-210].
Theorem 3.3 (Atiyah and Jänich) The homomorphism Index : [X,F(H)]→ K(X) is an
isomorphism.

Proof We use Kuiper’s Theorem 3.2 to prove that Index : [X,F(H)] → K(X) is injec-
tive; i.e., for f : X → F with Index ([f ]) = 0 ∈ K(X), f is homotopic to the constant
map X → {Id}. Recall that

Index ([f ]) =
[
X × H

V

]
−
[
H

f(V )

]
, where

H

f(V )
:= ∪x∈X

(
x,

H

f(x)(V )

)
→ X.

where V is suitable for f(X). Now Index ([f ]) = 0 implies that the bundles X × H
V and

H
f(V ) are stably equivalent; i.e., for some integer N ≥ 0,(

X × H

V

)
⊕
(
X × CN

) ∼= H

f(V )
⊕
(
X × CN

)
.
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If V ′ is a subspace of V with dim (V/V ′) = N , then this is the same as saying

X × H

V ′
∼=

H

f(V ′)
,

by virtue of the exact bundle sequences

0→ X × V

V ′
→ X × H

V ′
→ X × H

V
→ 0, 0→ X × V

V ′
→ H

f (V ′)
→ H

f (V )
→ 0.

Indeed, we may choose any space V ′ of V of codimension n, and then there is an isomor-
phism

k : X × H

V ′
∼=
(
X × H

V

)
⊕ (X × Cn) ∼=

H

f(V )
⊕ (X × Cn) ∼=

H

f(V ′)
.

We then have a continuous map j : X → B((V ′)⊥ , H) given by the composition

j(x) : (V ′)⊥ ∼=
H

V ′

k(x,·)∼=
H

f(x)(V ′)
∼= (f(x)(V ′))⊥ ↪→ H.

Since j(x) is of finite rank, we have a homotopy h : X × [0, 1]→ F(H) given by

h(x, t) := f(x) + t (0⊕ j(x)) : V ′ ⊕ (V ′)⊥ ∼= f(x)(V ′)⊕ f(x)(V ′)⊥.

Note that h(x, 0) = f(x), while h(x, 1) = f(x) + (0⊕ j(x)) is an isomorphism for each
x ∈ X . The surjectivity of f(x) + (0⊕ j(x)) is shown via

(f(x) + (0⊕ j(x))) (V ′ ⊕ (V ′)⊥) ⊇ f(x) (V ′) + j(x)((V ′)⊥)

= f(x) (V ′) + (f(x)(V ′))⊥ = H,

and the injectivity of f(x) + (0⊕ j(x)) is proved (for (v, w) ∈ V ′ ⊕ (V ′)⊥) via

0 = (f(x) + (0⊕ j(x))) (v, w) = f(x)(v) + f(x)(w) + j(x)(w)
⇒ j(x)(w) = 0 and f(x)(v) = −f(x)(w)⇒ w = 0 and f(x)(v) = 0
⇒ w = 0 and v = 0, since V ′ ∩Ker(f(x)) = {0} .

Hence, Index[f ] = 0 implies that f is homotopic to a map g = f + (0⊕ j(x)) : X →
Iso(H). Theorem 3.2 (of Kuiper) yields that g (and hence f ) is homotopic to the constant
map X → {I}; i.e., [f ] is the identity in [X,F ].

We now show that Index : [X,F(H)] → K(X) is onto. Let E → X be any vector
bundle of dimensionm. We know thatE can be regarded as a subbundle of a trivial bundle,
sayX×Cn, and we letE⊥ be the orthogonal complement ofE so thatE⊕E⊥ = X×Cn.
Let π : X × Cn → E be orthogonal projection (with kernel E⊥). Let SL be a left shift
operator on H (i.e., under the identification of H with L2(Z+) via an orthonormal basis of
H , SR is the right shift operator onL2(Z+) with index−1). DefineB : X → F (H ⊗ Cn)
by

B(x) = SR ⊗ πx + IH ⊗ (ICn − πx)
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For x ∈ X , we let e1, . . . , en be an orthonormal basis of Cn such that e1, . . . , em is an
orthonormal basis of Ex. For any v1,. . . ,vn ∈ H ,

(SR ⊗ πx + IH ⊗ (ICn − πx)) (v1 ⊗ e1 + · · ·+ vn ⊗ en)
= ((SR ⊗ πx) (⊕ni=1vi ⊗ ei) + (IH ⊗ (ICn − πx))⊕ni=1 vi ⊗ ei)
= SR (v1)⊗ e1 + · · ·+ SR (vm)⊗ em + vm+1 ⊗ em+1 + · · ·+ vn ⊗ en,

which is 0 ⇔ v1 = · · · = vn = 0. If 0 6= v ∈ SR(H)⊥, then a complement to
B (H ⊗ Cn) in H ⊗ Cn is span {v ⊗ e1, · · · , v ⊗ em} ∼= SR(H)⊥ ⊗ Ex ∼= Ex. Thus,
B(x) is injective for all x, and

H ⊗ Cn

B (H ⊗ Cn)
:= ∪x∈X

H ⊗ Cn

B(x) (H ⊗ Cn)
∼= ∪x∈XE = E.

Following B with an isomorphism H ⊗Cn ∼= H , we obtain B̃ : X → H with Index B̃ =
− [E], and Index(B̃ + (SL)k) = [k] − [E] . Since any element of K(X) is of the form
[k]− [E] (as its negative is of the form [E]− [k]) for some vector bundle E → X , we have
Index : [X,F(H)]→ K(X) is onto.

4 Elliptic operators and Sobolev spaces

Elliptic operators on sections of complex vector bundles over manifolds provide a primary
source of Fredholm operators. In this section, we indicate how this happens.

4.1 Differential operators and symbols

Let X be a compact C∞ n-manifold without boundary, and let πE : E → X be a
C∞ complex vector bundle over X . We denote the linear space of C∞ sections of E
by C∞(E) := {s : X → E | πE ◦ s = IdX}. Unless otherwise stated, we remain in the
C∞ category. Let πF : F → X be another complex vector bundle. A linear function
P : C∞(E) → C∞(E) is called a differential operator of order k, if for all coordinate
neighborhoods U and trivializations τE : E|U ∼= U × CM and τF : F|U ∼= U × CN , P
can be locally expressed in the form

P [s](x) = τ−1
F

(∑
|α|≤k

aα(x)Dα (τE ◦ s)
)
, x ∈ U.

where α ranges over all multi-indices (α1, . . . , αn) ∈ Z+ ×
n· · · × Z+ with |α| := α1 +

· · ·+ αn ≤ k, aα(x) ∈ Hom(CM ,CN ), and

Dα := i−|α|
∂|α|

∂α1x1 · · · ∂αnxn
,

where x1, ..., xn are the local coordinates on U . The reason for inclusion of the factor i−|α|

is related to the fact under Fourier transform 1
i
d
dx is converted into a simple multiplication

operator, and it’s also convenient when integrating Hermitian inner products by parts. Let
π : T ∗X → X denote the cotangent bundle of X , and let π∗E → T ∗X and π∗F → T ∗X
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be the pull-backs of πE : E → X and πE : F → X via π. We then have a bundle
Hom(π∗E, π∗F ) → T ∗X . We will define the (principal) symbol σ(P ) of P as a section
σ(P ) : T ∗X → Hom(π∗E, π∗F ) of this bundle; i.e., σ(P ) ∈ C∞(Hom(π∗E, π∗F )).
For ξx ∈ T ∗xX , note that the fiber (π∗E)ξx may be identified withEx and we will do so; we
write the identification as (π∗E)ξx ∼ Ex. In terms of local coordinates x1, ..., xn onU , we
may write ξx = ξ1dx

1 + · · ·+ξndx
n and write ξα1

· · · ξαn as ξα. For e ∈ (π∗E)ξx ∼ Ex,
we then define

σ(P )(ξx)(e) := τ−1
F (x,

∑
|α|=m

aα(x) (τE(x, e)) ξα) ∈ Fx ∼ (π∗F )ξx ,

=
∑
|α|=m

τ−1
F (x, a(α1,...,αn)(x) (τE(x, e)))ξα1

· · · ξαn

Making identifications (π∗E)ξx ∼ Ex ∼ CM (via τE) and (π∗F )ξx ∼ Fx ∼ CN (via
τF ), we can write this more transparently as

σ(P )(ξx) =
∑
|α|=m

a(α1,...,αn)(x)ξα1
· · · ξαn ∈ Hom(CM ,CN ).

One can show that σ(P ) ∈ C∞(Hom(π∗E, π∗F )) is well-defined (i.e., independent of the
choice of local coordinates and trivializations τE and τF ), but this is not obvious. Indeed,
if we had summed over α with |α| = m− 1, the resulting so-called “subprincipal symbol”
is not well-defined.

4.2 Elliptic differential operators

Definition 4.1 Let P : C∞(E) → C∞(F ) be a differential operator with symbol σ(P ) :
T ∗X → Hom(π∗E, π∗F ). If σ(P )(ξx) is an isomorphism for all nonzero ξx ∈ T ∗xX ,
then P is called an elliptic differential operator.

We consider some standard examples. Even though C∞(E) and C∞(F ) are not
Hilbert spaces (and hence P is not Fredholm), here we take the index of P to be
dim KerP − dim KerP ∗, where P ∗ is the formal adjoint of P . This is the same as the
usual index of a Fredholm extension of P to a suitable Sobolev space, as is explained in
the next subsection.
Example 4.2 (The Laplace operator) Let ∂xi be a shorthand notation for ∂

∂xi . A simple
example is the Laplace operator ∆ = ∂2

x1 + · · · + ∂2
xn on C∞ (Rn,C), which we may

regard as the space of sections of the trivial bundle Rn × C→ Rn. We have

σ(∆) : T ∗Rn → Hom(π∗ (Rn × C) , π∗ (Rn × C)), given by

σ(∆)(ξ1dx
1 + · · ·+ ξndx

n) = −
(
ξ2

1 + · · ·+ ξ2
2

)
∈ End(π∗ (Rn × C)ξ),

regarded as multiplication on π∗ (Rn × C)ξ ∼= C.
Example 4.3 (The Cauchy-Riemann operator) The Cauchy-Riemann operator

∂z̄ = ∂
∂z̄ = 1

2 ( ∂
∂x + i ∂∂y ) = 1

2 (∂x + i∂y) : C∞
(
R2,C

)
→ C∞

(
R2,C

)
is a first-order elliptic operator on the same space of sections as in Example 4.2, but with a
different symbol

σ( ∂∂z̄ )(ξ1dx
1 + ξ2dx

2) = 1
2 i (ξ1 + iξ2) ,



David Bleecker 97

regarded as complex multiplication on π∗
(
R2 × C

)
ξ
∼= C. One similarly has the elliptic

operator ∂z = 1
2 (∂x − i∂y). Note that ∆ = 4 ∂2

∂z̄∂z and at ξ1dx
1 + ξ2dx

2 we have

σ(∆) = 4σ(∂z)σ(∂z̄) = 41
2 i (ξ1 − iξ2) 1

2 i (ξ1 + iξ2) = −
(
ξ2

1 + ξ2
2

)
.

There is a type of exterior derivative on Ω0,0
(
R2,C

)
:= C∞

(
R2,C

)
, namely the Dol-

beault operator

∂ : Ω0,0
(
R2,C

)
→ Ω0,1

(
R2,C

)
:=
{
gdz̄ | g ∈ C∞

(
R2,C

)}
,

given by ∂z̄(f) := ∂f
∂z̄ dz̄.

Here Ω0,1
(
R2,C

)
is called the space of complex forms of type (0, 1). For a compact

Riemann surface S, a strictly analogous operator ∂ : Ω0,0 (S,C) → Ω0,1 (S,C) can be
defined. By the Riemann-Roch Theorem, we have index ∂ = 1−g, where g is the genus of
S (i.e., the number of holes). For higher-dimensional compact, complex manifolds, there
is a Dolbeault operator complex ∂ : Ω0,k (X,C) → Ω0,k+1 (X,C), k = 0, 1, . . .m :=
dimC X which can be “rolled up” to give an elliptic operator

∂ : ⊕nk evenΩ0,k (X,C)→ ⊕nk oddΩ0,k (X,C) .

The Hirzebruch-Riemann-Roch Theorem expresses index ∂, called the arithmetic genus of
X or the holomorphic Euler characteristic χ(X) in terms of the Todd genus of X which in
turn can be expressed in terms of Chern numbers, as in the table

dimC X 1 2 3 4
χ(X) 1

2c1
1
12

(
c2 + c21

)
1
24c1c2

1
720

(
−c4 + c3c1 + 3c22 + 4c2c21 − c41

)
.

Example 4.4 (The Euler operator) Let Λk(X)→ X denote the bundle of complex exterior
k-covectors over the compact, orientable C∞ Riemannian n-manifold X with metric ten-
sor g. Let Ωk (X) = C∞

(
Λk(X)

)
denote the space ofC∞ sections of Λk(X), namely the

space ofC-valued k-forms onX . We have the exterior derivative d : Ωk (X)→ Ωk+1 (X)
and the codifferential δ : Ωk+1 (X)→ Ωk (X) which is the formal adjoint of d; i.e.,

(dα, β) =
∫
X

〈dα, β〉g νg =
∫
X

〈α, δβ〉g νg = (α, δβ) ,

where νg is the volume element and 〈·, ·〉g is the inner product on Λ∗(X) induced by g.
Let Ω∗ (X) = ⊕nk=0Ωk (X). In terms of the Hodge star operator ∗,

δ = − (−1)nk ∗ d∗ : Ωk+1 (X)→ Ωk (X) .

Then we have a first-order operator d + δ : Ω∗ (X) → Ω∗ (X). That d + δ is elliptic is
seen as follows. Let ∧ and x denote wedge product and interior product on Λ∗(X). The
symbol

σ(d+ δ) : T ∗X → Hom (π∗Λ∗(X), π∗Λ∗(X)) is given at ξ ∈ T ∗X by
σ(d+ δ)ξ(α) = i (ξ ∧ α− ξxα) where α ∈ (π∗Λ∗(X))ξ .
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Note that σ(d + δ)ξ is invertible for all ξ 6= 0 (and hence d + δ is elliptic), since
(σ(d+ δ)ξ ◦ σ(d+ δ)ξ) = − |ξ|2 Idπ∗Λ∗(X)ξ :

(σ(d+ δ)ξ ◦ σ(d+ δ)ξ) (α)
= i (ξ ∧ (σ(d+ δ)ξ(α))− ξxσ(d+ δ)ξ(α))
= − (ξ ∧ (ξ ∧ α− ξxα)− ξx(ξ ∧ α− ξxα))

= ξ ∧ (ξxα)− ξx(ξ ∧ α) = − (ξxξ)α = − |ξ|2 α.

Since d+δ is formally self-adjoint, its index is zero. By definition, elements of Ker (d+ δ)
are known as harmonic forms. Hodge theory tells us that the algebra of harmonic forms,
say H∗(X), is isomorphic to the cohomology algebra H∗(X;C) where wedge product of
harmonic forms corresponds to cup product in H∗(X;C). If we restrict d+ δ to Ωe (X) =
⊕nk evenΩk (X), we obtain a differential operator

(d+ δ)e : Ωe (X)→ Ωo (X) := ⊕nk oddΩk (X) ,

whose formal adjoint is (d+ δ)o := (d+ δ) |Ωo(X). The restricted operators (d+ δ)e and
(d+ δ)o are still elliptic with symbols that are inverses modulo a factor of − |ξ|2. The
index of (d+ δ)e is not necessarily zero. Indeed,

index (d+ δ)e = dim Ker (d+ δ)e − dim Ker (d+ δ)o

=
∑n

k=0
(−1)k dimHk(X;C) = χ(X),

the Euler characteristic of X . Consequently, (d+ δ)e is sometimes called the Euler oper-
ator.
Example 4.5 (The Hirzebruch signature operator) With the notation of Example 4.4, let
∗k : Λk(X)→ Λn−k(X) be the Hodge star operator, characterized by the property (∗kα)∧
β = 〈α, β〉 vg . Assume that n is even, say n = 2m. Since ∗2m−k ◦ ∗k = (−1)k,
∗ :=

⊕n
k=0 ∗kis not an involution. However, let τk = im+k(k−1)∗k. Then

τ2m−k ◦ τk = im+(2m−k)(2m−k−1)im+k(k−1) (−1)k = · · · = 1,

and so τ :=
⊕2m

k=0 τk is an involution (τ2 = 1 := IdΛ∗(X)). Thus, Λ∗(X) =
Λ+(X)⊕Λ−(X), where Λ+(X) = (1 + τ) Λ∗(X) and Λ−(X) = (1− τ) Λ∗(X) are the
±1 eigenbundles of τ ; we set Ω±(X) := C∞(Λ±(X)). Using δ = − ∗ d∗ (for n = 2m
even), one can check that (d+ δ) τ = −τ (d+ δ) so that (d+ δ) (Ω±(X)) = Ω∓(X).
The Hirzebruch signature operator is

(d+ δ)+ := (d+ δ) |Ω+(X) : Ω+(X)→ Ω−(X).

with adjoint (d+ δ)− := (d+ δ) |Ω−(X). We have

Ker (d+ δ)± = (1± τm)Hm(X)⊕
(
⊕k<m(1± τk)Hk(X)

)
For k < m, the maps

(1± τk) : Hk(X)→ Hk(X)⊕ τkHk(X) = Hk(X)⊕H2m−k(X)
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are injections, and so for any k < m, (1 ± τk)Hk(X) have equal dimensions. Conse-
quently, only when k = m do we have a contribution to the index:

index (d+ δ)+ = dim Ker (d+ δ)+ − dim Ker (d+ δ)−

= dim ((1 + τm)Hm(X))− dim ((1− τm)Hm(X)) .

Note that τm = im+m(m−1)∗m = im
2
∗m =

{
±i∗m for m odd
∗m for m even.

It follows that index (d+ δ)+ = 0 for m odd (i.e., n ≡ 2 mod 4). Consider m even, so
that τm = ∗m. LetHm(X)R be the space of R-valuedm-forms α with (d+ δ)α = 0. We
have a quadratic form Q : Hm(X)→ R given by

Q(α) =
∫
X

α ∧ α =
∫
X

〈α, ∗mα〉g νg.

Note that Q is positive-definite on (1 + τm)Hm(X)R on which ∗m is Id and negative-
definite on (1− τm)Hm(X)R. Thus, for n ≡ 0 mod 4,

index (d+ δ)+ = SignQ := the signature of Q.

As a consequence of the Atiyah-Singer Index Formula, SignQ is the L-genus of X , de-
noted by L(X) expressible in terms of the Pontryagin numbers of X; e.g.,

index (d+ δ)+ = Sign (Q) = L(X) =
{

1
3p1 for n = 4
1
45

(
7p2 − p2

1

)
for n = 8.

This result explained the once mysterious fact that p1 is divisible by 3.

4.3 Sobolev spaces

To describe how an elliptic differential operator P determines a Fredholm operator (and
hence an index), we need to introduce Sobolev spaces. We equip the bundle E → X with
a Hermitian structure and compatible covariant differentiation operator ∇E : C∞(E) →
C∞(T ∗X ⊗ E), and do the same for F → X . By also employing a Riemannian metric g
and Levi-Civita connection∇X on X , we obtain for any k ≥ 0 a connection

∇ = ∇X,E : C∞(
(
⊗kT ∗X

)
⊗ E)→ C∞(

(
⊗k+1T ∗X

)
⊗ E)

For u, v ∈ C∞(E) and k > 0, we then set

(u, v)k :=
∑k

j=0

∫
X

〈
∇ju,∇jv

〉
νg, and ‖u‖k =

√
(u, u)k,

where νg is the volume element for g, and the inner product
〈
∇ju,∇jv

〉
is the natural one

constructed from the one induced by g on ⊗jT ∗X and the Hermitian structure on E.
Definition 4.6 The Sobolev space W k(E) is the completion of C∞(E) with the norm
‖·‖k.
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The Hilbert spaceW k(E) coincides with the subspace of L2(E) := W 0(E) consisting
of sections that have “weak derivatives” of orders≤ k in L2, a notion described as follows.
The formal adjoint of

∇ : C∞(
(
⊗kT ∗X

)
⊗ E)→ C∞(

(
⊗k+1T ∗X

)
⊗ E),

is the unique first order differential operator

∇∗ : C∞(
(
⊗k+1T ∗X

)
⊗ E)→ C∞(

(
⊗kT ∗X

)
⊗ E),

such that for all u ∈ C∞(
(
⊗kT ∗X

)
⊗ E) and w ∈ C∞(

(
⊗k+1T ∗X

)
⊗ E), we have∫

X

〈∇u,w〉 νh =
∫
X

〈u,∇∗w〉νh.

Now, u ∈ W k(E), if for each j ≤ k, there is vj ∈ L2(⊗j(T ∗X) ⊗ E), such that for
all w ∈ C∞(⊗j(T ∗X) ⊗ E), we have

∫
X
〈vj , w〉 νh =

∫
X
〈u, (∇∗)j w〉νh. We say that

“∇ju = vj in the weak (or distributional) sense.” Proofs of the following theorems in this
subsection may be found in [27], [34], [40] and [41].
Theorem 4.7 Let P : C∞(E) → C∞(F ) be a linear differential operator of order m
(not necessarily elliptic). For each k ≥ 0, P has a unique continuous extension

Dk+m : W k+m(E)→W k(E) with ‖Dk+m (α)‖k ≤ K ‖α‖k+m ,

for some K > 0, independent of α ∈W k+m(E).

Let Cm (E) be the Banach space of m-times (strongly) differentiable sections of E
with norm

‖u‖Cm :=
∑m

j=0
sup
x∈X

∣∣(∇ju)
x

∣∣ , u ∈ Cm (E) .

Theorem 4.8 For n = dimX , k ∈ Z+ and 0 ≤ m < k − n
2 , we have a compact (i.e.,

completely continuous) inclusion

W k(E) ⊆ Cm (E) . (1)

For k > h, we also have a compact inclusion

W k(E) ⊆Wh(E).

Theorem 4.9 (Fundamental elliptic estimate) Assume that P : C∞(E) → C∞(F ) is an
elliptic differential operator of order m, with formal adjoint P ∗ : C∞(F ) → C∞(E).
Suppose that for some u ∈ L2(E), we have v ∈W k(F ) such that∫

X

〈v, w〉 νh =
∫
X

〈u, P ∗w〉 νh,

for all w ∈ C∞(F ) (i.e., Pu := v exists weakly in W k(F )). Then u ∈ W k+m(E).
Moreover, for each k ≥ 0, there is a constant Ck > 0 independent of u, such that

‖u‖k+m ≤ Ck (‖Pu‖k + ‖u‖2) .

If Pu ∈ C∞(F ), then for all k ≥ 0, ‖Pu‖k < ∞, and we have ‖u‖k+m < ∞, in which
case u ∈ C∞ (E) by (1); e.g., weak solutions of Pu = 0 are C∞.
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Theorem 4.10 (Elliptic decomposition) Let P : C∞(E) → C∞(F ) be a differential
operator of orderm with a symbol which is injective or surjective, and let P ∗ be the formal
adjoint of P . If P k+m : W k+m(E)→W k(F ) (P ∗)k+m : W k+m(F )→W k(E) are the
Sobolev extensions of P and P ∗, then we have the following direct sum decompositions
into closed subspaces for k ≥ 0,

W k+m(E) = Ker(P k+m)⊕ Im
(

(P ∗)k+2m
)

and

W k+m(F ) = Ker((P ∗)k+m)⊕ Im(P k+2m).

If the symbol of P is injective, then P ∗ ◦ P is elliptic and

Ker(P k+m) = Ker(P ) = Ker(P ∗ ◦ P ) ⊆ C∞(E)

is finite-dimensional. If the symbol of P is surjective, then P ◦ P ∗ is elliptic and

Ker((P ∗)k+m) = Ker(P ∗) = Ker(P ◦ P ∗) ⊆ C∞(F )

is finite-dimensional. In particular, if P is elliptic (i.e., with injective and surjective sym-
bol), then both Ker(P ) and Ker(P ∗) are finite-dimensional and P k+2m : W k+2m(E)→
W k+m(F ) is Fredholm with

index
(
P k+2m

)
= dim Ker(P )− dim Ker(P ∗) =: indexP.

4.4 Pseudo-differential operators

We work within the C∞ category unless stated otherwise. Let ρ be the injectivity radius
of the compact manifold X with Riemannian metric g and Levi-Civita connection ∇; i.e.,
for all x ∈ X , the exponential map expx : TxX → X relative to g is injective on the disk
of radius ρ about 0x ∈ TxX . Let πE : E → X and πF : F → X be complex Hermitian
vector bundles equipped with Hermitian connections ∇E : C∞(E) → C∞(T ∗X ⊗ E)
and ∇F : C∞(F ) → C∞(T ∗X ⊗ F ), where C∞(E) denotes the space of (smooth)
sections of πE : E → X . For x, y ∈ X , with d(x, y) < ρ, let τEx,y : Ey → Ex denote
parallel translation relative to ∇E along the unique geodesic from y to x with minimal
length d(x, y). Let ψ : [0,∞) → [0, 1] be smooth, with ψ(r) = 1 for r ∈ [0, ρ/3] and
ψ(r) = 0 for r ∈ [2ρ/3,∞]. For π : T ∗X → X and u ∈ C∞(E), let u∧ ∈ C∞(π∗E) be
defined (where x = π(ξ) and ξ ∈ T ∗X) by

u∧(ξ) :=
∫
TxX

e−iξ(v)ψ(|v|)τEx,expx v
[u(expx v)] d′v ∈ Ex for ξ ∈ T ∗xX.

where d′v = (2π)−n/2dv and dv is the volume element on TxX associated with gx. For
x, y ∈ X with d(x, y) < ρ, we have y = expx v for a unique v ∈ TxX with |v| = d(x, y),
and we may define α ∈ C∞(X ×X, [0, 1]) by

α(x, y) :=
{
ψ (d(x, y)) = ψ(|v|) for d(x, y) < ρ
0 for d(x, y) ≥ ρ.

Note that we can think of the function (in C∞(TxX,Ex))

v 7→ ψ(|v|)τEx,expx v
[u(expx v)] = τEx,expx v

[α(x, expx v)u(expx v)] (v ∈ TxX)
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as a “pull-back” (of sorts), using τE and expx : TxX → X , of the bump function α(x, ·)
times u(·) in a neighborhood of x, and u∧|T∗xX is the Fourier transform of this “pull-back”
of α(x, ·)u(·). The “inverse Fourier transform” (u∧)∨ : TX → E of u∧ is given by

(u∧)∨ (v) :=
∫
T∗xX

eiξ(v)u∧(ξ) d′ξ = ψ(|v|)τx,expx v [u(expx v)],

where d′ξ = (2π)−n/2dξ. Since (u∧)∨ (v) ∈ Ex, (u∧)∨ is a section of the pull-back of
E to TX via π : T ∗X → X . Moreover, we can recover u locally about x from u∧|T∗xX .
In particular, for v = 0x ∈ TxX , we have (u∧)∨ (0x) = u(x). For π : T ∗X → X and a
section p ∈ C∞ (Hom(π∗E, π∗F )) (of Hom(π∗E, π∗F )→ T ∗X), we define an operator
Op(p) : C∞(E)→ C∞(F ) via

Op(p)(u)x :=
∫
T∗xX

eiξ(v)p(ξ) (u∧(ξ)) d′ξ

∣∣∣∣∣
v=0

=
∫
T∗xX

p(ξ) (u∧(ξ)) d′ξ

=
∫
T∗xX

p(ξ)
(∫

TxX

e−iξ(v)ψ(|v|)τEx,expx v
[u(expx v)] d′v

)
d′ξ

=
∫
TxX×T∗xX

p(ξ)
(
e−iξ(v)ψ(|v|)τEx,expx v

[u(expx v)]
)
d′vd′ξ

=
∫
TxX×T∗xX

e−iξ(v)p(ξ)
(
τEx,expx v

[α(x, expx v)u(expx v)]
)
d′vd′ξ. (2)

Recall roughly that quantization in quantum mechanics attempts to convert functions of po-
sition and momentum (i.e., functions on T ∗xX) into operators. One may think of Op(p) as a
quantization of p, but Op(p) depends on many choices (e.g., the choice of metric, connec-
tions, and α : X ×X → [0, 1]). Apart from these choices, there are other choices one can
make, as is discussed in [46]. For example, if s ∈ [0, 1], let Tx,expx sv : T ∗expx sv

X → T ∗xX
denote parallel translation (with respect to the Levi-Civita connection) for T ∗X along the
geodesic t 7→ expx tv in the reverse direction from expx sv to x. In [46] (but with notation
that differs from ours), an operator Op(p; s) (depending on s) is associated to p via

Op(p; s)(u)x

=
∫
TxX×T∗xX

d′vd′ξ

e−iξ(v)α(x, expx v)τFx,expx sv
p(Tx,expx sv (ξ))τEexpx sv, expx v

u (expx v) .

When s = 0, we get

Op(p; 0)(u)x =
∫
TxX×T∗xX

d′vd′ξ e−iξ(v)α(x, expx v)p(ξ)τEx, expx v
(u (expx v))

which is precisely our Op(p). In cases of interest, the operators Op(p; s) for different s
differ by “lower order” operators which do not affect the index (if defined). Hence, for
simplicity, we only use s = 0. As stated in [46] the choice of s is related to the choice of
operator ordering of monomials in position and momentum variables under quantization.
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The connections ∇E and ∇F pull back via π : T ∗X → X to connections on the
bundles π∗E → T ∗X and π∗F → T ∗X , which we continue to denote by ∇E and ∇F .
The Levi-Civita connection for (X, g) determines a subbundleH of T (T ∗X) consisting of
horizontal subspaces of T (T ∗X), which is complementary to the subbundle V of T (T ∗X)
consisting of vectors which are tangent to the fibers of T ∗X → X . There is a natural
Riemannian metric, say g∗, on T ∗X such that V and H are orthogonal and g∗ equals g on
V and π∗g on H . Using ∇E and ∇F , along with the Levi-Civita connection for g∗, say
∇∗, we may construct a covariant derivative

∇̃ : C∞ (Hom(π∗E, π∗F ))→ C∞ (T ∗ (T ∗X)⊗Hom(π∗E, π∗F )) .

Since∇∗ extends to ⊗kT ∗ (T ∗X), we may “iterate” ∇̃ to obtain

∇̃
k

: C∞ (Hom(π∗E, π∗F ))→ C∞
(
⊗kT ∗ (T ∗X)⊗Hom(π∗E, π∗F )

)
.

Definition 4.11 We say that p ∈ C∞(Hom(π∗E,π∗F ) is a symbol of order m ∈ R if for
any H1, . . . ,HI ∈ C∞(H) with |H1|, . . . , |HI | ≤ 1 and V1, . . . , VJ ∈ C∞(V ), there are
constants CIJ (depending only on I , J and p), such that∣∣∣(∇̃I+Jp) (H1, . . . ,HI , V1, . . . , VJ)

∣∣∣ ≤ CIJ (1 +
∑J

j=1
|Vj |
)m−J

.

Moreover, we require that the m-th order asymptotic symbol of p, namely

σm(p) (ξ) := lim
t→∞

p (tξ)
tm

(for ξ 6= 0)

exist, where the convergence is uniform on S(T ∗X). Then we call Op(p) (see (2)) a
pseudo-differential operator of order m. We denote the set of symbols of order m by
Symbm(E,F ).

Clearly, for m′ > m,

Symbm′(E,F ) ⊃ Symbm(E,F ) ⊃ Symb−∞(E,F ) :=
⋂−∞

m=0
Symbm(E,F ).

For p ∈ Symbm(E,F ), we then have the operator, say Op(p) : C∞(E) → C∞(F ),
given by (2), which extends to a bounded operator Ops(p) : L2

s(E) → L2
s−m(F ), where

for any s ∈ R, L2
s(E) is the s-th Sobolev space of sections of E, namely the completion

of C∞(E) with respect to the norm ‖·‖s defined by

‖u‖2s :=
∫
T∗X

(
1 + |ξ|2

)s
|u∧(ξ)|2 dξ.

Recall that for k ∈ Z+, and s > n/2 + k, there is a compact inclusion L2
s(E) ⊂ Ck(E).

For each s, the linear map

Ops : Symbm(E,F )→ B(L2
s(E), L2

s−m(F ))

into the Banach space B(L2
s(E), L2

s−m(F )) of bounded linear transformations is continu-
ous (see [34], p. 177f). Moreover, for ϕ ∈ Symb−∞(E,F ), Ops(ϕ) is a compact operator
for any s ∈ R, and Ops(ϕ)

(
L2
s(E)

)
⊂ C∞(F ); i.e., Ops(ϕ) is a smoothing operator.
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Definition 4.12 We say that p ∈ Symbm(E,F ), and the corresponding operator Op(p),
are elliptic if for some constant c > 0, p(ξ)−1 exists for |ξ| > c, and for some constant
K > 0∣∣p(ξ)−1

∣∣ ≤ K (1 + |ξ|)−m for all ξ ∈ T ∗X with |ξ| > c.

We set

Ellm(E,F ) := {p ∈ Symbm(E,F ) : p is elliptic} .

For p ∈ Ellm(E,F ), there are q ∈ Symb−m(E,F ), ϕE ∈ Symb−∞(E,E) and
ϕF ∈ Symb−∞(F, F ), such that

Ops−m(q) ◦Ops(p) = IdL2
s(E) + Ops(ϕE) and

Ops(p) ◦Ops−m(q) = IdL2
s−m(F ) + Ops−m(ϕF ).

Since Ops(ϕE) and Ops−m(ϕF ) are compact operators, it follows that Ops(p) is Fred-
holm, and hence we may define

index(Ops(p)) := dim ker(Ops(p))− dim coker(Ops(p)).

Note also that if Ops(p)u ∈ C∞(F ), then

u = Ops−m(q) (Ops(p)u)−Ops(ϕE)u ∈ C∞(E).

Thus, dim ker (Ops(p)) <∞, ker (Ops(p)) ⊂ C∞(E), and ker (Ops(p)) is independent
of s. As a consequence,

index(Ops(p)) = dim ker(Op(p))− dim coker(Op(p))

is independent of s.

5 The Atiyah-Singer Index Theorem

The standard, geometric, elliptic differential operators P : C∞(E)→ C∞(F ) (e.g., see
subsection 4.2) typically depend on the choice of Riemannian metric on X , and Her-
mitian metrics and connections on E and F . Such choices might be called the geo-
metric data defining the operator. As this geometric data varies smoothly, it can be
shown that the operator P k+2m : W k+2m(E) → W k+m(F ) varies continuously in
F
(
W k+2m(E),W k+m(F )

)
and hence index

(
P k+2m

)
is constant. Thus, we expect

indexP to be a topological attribute of X,E and F , such as a combination of the Eu-
ler characteristic and/or other characteristic classes, which is invariant under a change of
the geometric data. Since P is defined in terms of geometric data, one is tempted to try
to compute indexP in terms of this data. The Atiyah-Singer Index Theorem says that
this is not only possible, but in fact indexP is equal to a topological (integer) invariant
known as the topological index of P determined (as described in the next subsection) by
a suitable homotopy class of the principal symbol σ(P ). We denote the topological in-
dex of P by indext [σ(P )]. Succinctly, the Atiyah-Singer Index Theorem (or Formula) is
indexa P = indext [σ(P )], where indexa P = dim KerP − dim CokerP is the usual in-
dex of P as an elliptic operator (possibly pseudo-differential), with the subscript a standing
“analytic”. In the next subsection, there are several equivalent definitions of indext [σ(P )].
The utility and appreciation each definition depends on one’s background.
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5.1 Descriptions of the topological index

First we describe the so-called difference construction. Let (X,Y ) be a compact pair
where Y ⊆ X . Given bundles π0 : E0 → X and π1 : E1 → X and an isomorphism
σ : E0|Y ∼= E1|Y , we construct an element χ (E0, E1;σ) ∈ K (X,Y ). LetX0 = X×{0}
and X1 = X ×{1}, and let Z = X0 ∪Y X1 = X0 ∪X1/[(y, 0) ∼ (y, 1)]; i.e., the disjoint
union of X0 and X1 but with (y, 0) and (y, 1) identified for all y ∈ Y . We define a vector
bundle F over Z by F = E0 ∪ E1/[(e0)y ∼ (σ (e0))y], which is the disjoint union of E0

over X0 and E1 over X1 but with the fibers over (y, 0) and (y, 1) identified via σy for all
y ∈ Y . We have a retraction

ρ : Z → X1, given by ρ (x, i) = ρ (x, 1) for i ∈ {0, 1} .

From the sequence (X1, φ) i→ (Z, φ)
j→ (Z,X1), we obtain an exact sequence

0→ K (Z,X1)
j∗→ K (Z) i∗→ K (X1)→ 0,

and this sequence is split, with ρ∗ : K (X1) → K (Z) serving as a left inverse of i∗. Let
F1 → Z be ρ∗ (E1), namely the pull-back of E1 → X1 via ρ. Note that i∗ ([F ]− [F1]) =
0 since F |X1 = F1|X1 . Thus, there is κ ∈ K (Z,X1) with j∗ (κ) = [F ] − [F1]. Since
Z/X1

∼= X/Y , K (Z,X1) ∼= K (X,Y ), and hence κ corresponds to some element of
K (X,Y ), which by definition is χ (E0, E1;σ) ∈ K (X,Y ). If Y = φ, then we claim that
χ (E0, E1;σ) = [E0]− [E1]. Indeed, for Y = φ,

(F1 → Z) = ρ∗ (E1 → X1) = (E1 → X0) ∪ (E1 → X1) , whereas
(F → Z) = (E0 → X0) ∪ (E1 → X1) .

Consequently,

j∗ (κ) = [F ]− [F1] = [(E0 → X0) ∪ (E1 → X1)]− [(E1 → X0) ∪ (E1 → X1)]
= [(E0 → X0) ∪ (0→ X1)]− [(E1 → X0) ∪ (0→ X1)]
= j∗ ([E0 → X0]− [E1 → X0]) ,

and [E0 → X0] − [E1 → X0] ∈ K (Z,X1) = K (X0 ∪X1, X1) corresponds to [E0] −
[E1] ∈ K (X) ∼= K (X0).
Definition 5.1 (difference element) Given a compact pair (X,Y ), bundles π0 : E0 → X
and π1 : E1 → X , and an isomorphism σ : E0|Y ∼= E1|Y , in the above notation the
difference element χ (E0, E1;σ) ∈ K (X,Y ) is defined by

χ (E0, E1;σ) := (j∗)−1 ([F ]− [F1]) ∈ K (X0 ∪Y X1, X1) ∼= K (X,Y ) ,

where we have identified K (X0 ∪Y X1, X1) with K (X,Y ).
Let X be a compact C∞ n-manifold. Relative to a Riemannian metric for X , we

can consider a unit ball bundle BX := {ξ ∈ T ∗X | |ξ| ≤ 1}, with boundary the sphere
bundle S(X). If σ(P ) : T ∗X → Hom(π∗E, π∗F ) is the symbol of an elliptic op-
erator P : C∞(E) → C∞(F ), then σ(P ) restricts to an isomorphism σ(P )|SX :
π∗E|SX → π∗F |SX . We can then apply the above difference construction to obtain
χ (π∗E, π∗F ;σ(P )|SX) ∈ K (BX,SX). There is an isomorphism

K (T ∗X) := K̃
(

(T ∗X)+
)
∼= K̃ (BX/SX) =: K (BX,SX) ,
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and so we may regard χ (π∗E, π∗F ;σ(P )|SX) ∈ K (T ∗X).
Definition 5.2 If P : C∞(E) → C∞(F ) is an elliptic operator with symbol σ(P ) :
T ∗X → Hom(π∗E, π∗F ), then the symbol class of P is denoted and defined by

[σ(P )] := χ (π∗E, π∗F ;σ(P )|SX) ∈ K (T ∗X) .

After some preliminary work, we will eventually produce an integer from [σ(P )] which
will be the desired indext[σ(P )], the topological index of P .

Let π : V → X be a complex vector bundle, where X is compact. Let Λi (V ) be
the i-th exterior bundle of V over X . The pull-backs π∗Λi (V ) are then bundles over V ,
say πi : π∗Λi (V ) → V . At each v ∈ V , we have a linear map αiv :

(
π∗Λi (V )

)
v
→(

π∗Λi+1 (V )
)
v
, given by αiv (w) = v ∧ w. Since αi+1

v ◦ αiv = 0, we have a complex over
V , namely

0→ π∗Λ0 (V ) α
0

→ π∗Λ1 (V ) α
1

→ · · · α
n−1

→ π∗Λn (V )→ 0,

where n is the fiber dimension of V . If v 6= 0, Im
(
αiv
)

= Ker
(
αi+1
v

)
, and so the complex

is exact over V minus the zero section. Define bundles over V by

π∗Λeven (V ) := ⊕k evenπ
∗Λk (V ) and π∗Λodd (V ) := ⊕k oddπ

∗Λk (V ) .

Relative to a Hermitian structure for V , let BV := {v ∈ V | |v| ≤ 1} and SV :=
{v ∈ V | |v| = 1}. There is an isomorphism over SV , namely(

αe − (αe)∗
)
|SV := ⊕i evenα

i|SV : π∗Λeven (V ) |SV ∼= π∗Λodd (V ) |SV

We mention that the adjoint of αiv ,
(
αi
)∗
v

:
(
π∗Λi+1 (V )

)
v
→
(
π∗Λi (V )

)
v
, is given

by interior multiplication by the Hermitian dual v∗. Applying the difference construction
relative to the compact pair (BV, SV ), we obtain the difference element

λV := χ
(
π∗Λeven (V ) |BV , π∗Λodd (V ) |BV ;

(
αe − (αe)∗

)
|SV
)
∈ K(BV, SV ) ∼= K(V ).

For the proof of the following result, see e.g., [34], Appendix C.
Theorem 5.3 (Thom Isomorphism Theorem in K-Theory) For a complex vector bundle
π : V → X , where X is compact, the homomorphism

ϕ : K(X)→ K(V ), given by ϕ (a) = (π∗a)λV ,

is an isomorphism.

Remark 5.4 To indicate the dependence of ϕ on π : V → X, we use the notation

ϕV→X : K(X)→ K(V ) or simply ϕV .

The analogous result for noncompact X is proven in [32].
Of concern to us, is a special case of this isomorphism which arises as follows. Let X

and Y be manifolds and f : X → Y a smooth, proper embedding. We have f∗ : TX →
TY . While the normal bundle N of X in Y does not have a complex structure, the normal
bundle of TX in TY does.

TY |X = TX ⊕N and T (TY ) |TX = T (TX)⊕ TN
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Thus, the normal bundle of TX in TY is TN . Roughly, the fiber of TN → TX over v ∈
TxX consists of pairs (u, v) of vectors in Nx, where u ∈ Nx is a normal vector to f(X) in
Y at f(x) ∈ Y , and v is a normal vector to f∗ (TxX) in Tf(x)Y at 0f(x) ∈ Tf(x)Y ; thus v
can also be regarded as inNx under the identification of Tf(x)Y with T0f(x)

(
Tf(x)Y

)
. The

complex structure maps (u, v) to (v,−u). Thus, we haveϕTN→TX : K(TX)→ K(TN).
Note that TN can be embedded into TY as an open subset, and this embedding induces
an extension homomorphism h : K(TN) → K(TY ). The composition h ◦ ϕTN→TX
gives us a homomorphism f! := h ◦ ϕTN→TX : K(TX) → K(TY ). In the case where
Y = Rn+m, we have TY = R2(n+m). If i : {0} → Rn+m is the inclusion of the origin,
then i! : K(T {0}) ∼= K(R2(n+m)), and plainly K(T {0}) ∼= Z, since T {0} is just a
point. Then i−1

! ◦ f! is a homomorphism,

indext : K(TX)
f!→ K(R2(n+m))

i−1
!∼= K(T {0}) ∼= Z.

Of course, some work is needed to show that this is well defined (e.g., independent of the
choice of f ); see [34], p.244.
Definition 5.5 For an elliptic operator P : C∞(E) → C∞(F ) with symbol class
[σ(P )] ∈ K (T ∗X), the topological index of P is defined by

indext[σ(P )] := i−1
! f![σ(P )].

For those more familiar with cohomology and characteristic classes than with K-
theory, the following considerations may provide a better way of computing indext[σ(P )].
First we review definitions of relevant characteristic classes. Let E → X be a complex
vector bundle of dimension m over a C∞ n-manifold X . The total Chern class

c(E) = ⊕k≥0ck(E), where ck(E) ∈ H2k(X,Z),

can be written formally as
∏m
i=1(1 + xi) so that ck(E) is the k-th elementary symmetric

polynomial in the xi. The Chern character of E is given by

ch(E) :=
∑m

i=1
exi ∈ H∗(X,Q),

with the understanding that when ck(E) is substituted for the k-th elementary symmetric
polynomial in the xi, when

∑m
i=1 e

xi is expressed in terms of the elementary symmetric
polynomials. Explicitly one computes (where we write ck(E) simply as ck)

ch0 = dimE, ch1 = c1, ch2 = 1
2c

2
1 − c2, ch3 = 1

6

(
3c3 − 3c2c1 + c31

)
,

ch4 = 1
24

(
−4c4 + 4c3c1 + 2c22 − 4c2c21 + c41

)
, . . . .

For two complex bundles E1 and E2 over X , we have

ch(E1 ⊕ E2) = ch(E1) + ch(E2) and ch(E1 ⊗ E2) = ch(E1)ch(E2).

Then E 7→ ch(E) induces a ring homomorphism ch : K(X)→ Heven(X,Q). The Todd
class of E → X is defined in the analogous way by

Td(E) = ⊕k≥0Tdk(E) =
∏m

i=1

xi
1− e−xi

∈ Heven(X,Q).
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One finds Td0 = 1, Td1 = 1
2c1, Td2 = 1

12

(
c2 + c21

)
, Td3 = 1

24c1c2,

Td4 = 1
720

(
−c4 + c3c1 + 3c22 + 4c2c21 − c41

)
, . . . .

Let H∗c (·) denote cohomology with compact supports, and let ch : K∗(TX) →
Heven
c (TX) be the Chern character ring homomorphism. We can now state

Theorem 5.6 (Cohomological formula for topological index) For an elliptic operator
P : C∞(E)→ C∞(F ) with symbol class [σ(P )] ∈ K (T ∗X), the topological index of P
is given by

indext[σ(P )] = (−1)n {ch([σ(P )])Td(TX ⊗ C)} [TX] , (3)

where ch([σ(P )])Td(TX ⊗ C) ∈ H∗c (TX) , and the right side of (3) is evaluation of this
element on the fundamental cycle [TX]; i.e., integration over TX .

Proof For a complex vector bundle π : E → X of complex dimension k, we have Thom
isomorphisms

ϕE : K(X)→ K(E) and ψE : H∗(X)→ H∗+2k
c (E;Z) ∼= H∗+2k(E,E \ {0} ;Z),

in K-theory (see Theorem 5.3) and in cohomology (see [37], §10). By Theorem 5.3,
ϕE : K(X) → K(E) is given by ϕE(u) = π∗(u)λE = π∗(u)ϕE(1). If iE : X → E is
the zero section, with induced map i∗E : K(E)→ K(X), then

(i∗E ◦ ϕE) (u) = i∗E(π∗(u)ϕE(1)) = i∗E (ϕE(1))u

= i∗E (λE)u =
(
[Λeven(E)]− [Λodd(E)]

)
u.

For 1 ∈ H0(X), the Thom class is ψE(1) ∈ H2k(E), and for π∗ : H∗(X) → H∗(E)
induced by π : E → X , we have ψE(u) = π∗(u)ψE(1). For the zero section iE : X → E,
we have i∗E : H∗(E)→ H∗(X), and for u ∈ Hj(X),

(i∗EψE) (u) = (i∗EψE) (u) = i∗E (π∗(u)ψE(1)) = (i∗EψE(1)) · u = χ(E) · u, (4)

where the pull-back i∗EψE(1) of the Thom class is the Euler class of E, namely χ(E) :=
i∗EψE(1) ∈ H2k(X;Z). The diagram

K(X)
ϕE→ K(E)

↓ chX ↓ chE
Heven(X)

ψE→ Heven(E)

does not commute in general, and this leads to the introduction of the Chern character
defect, I (E) := ψ−1

E (chE(ϕE(1))) . We may write chE(ϕE(1)) = ψE(1) ·π∗x for some
x ∈ H∗(X). We then have

χ(E)I (E) = (i∗EψE(1)) · I (E) = (i∗EψE(1)) · ψ−1
E chE(ϕE(1))

= (i∗EψE(1)) · ψ−1
E (ψE(1) · π∗x) = (i∗EψE(1)) · x

= (i∗EψE(1)) · i∗Eπ∗x = i∗E (ψE(1) · π∗x)

= i∗EchE(ϕE(1)) = chX (i∗EϕE(1)) = chX
(
[Λeven(E)]− [Λodd(E)]

)
.
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Thus, formally

ψ−1
E (chE(ϕE(1))) = I (E) =

chX
(
[Λeven(E)]− [Λodd(E)]

)
χ(E)

.

Writing c(E) =
∏k
j=1(1 + xj), we then have

I (E) =
chX

(
[Λeven

C (E)]− [Λodd
C (E)]

)
χ(E)

=
exp

(∑
2p≤k

(∑
j1<j2···<j2p xji

)
−
∑

2q+1≤k

(∑
j1<j2···<j2q+1

xji

))
∏k
j=1 xj

=
∏k

j=1

1− exj
xj

.

Recall that

Td (E) =
∏k

j=1

xj
1− e−xj

, and so

Td(E) =
∏k

j=1

−xj
1− exj

= (−1)k
∏k

j=1

xj
1− exj

= (−1)k I (E)−1 , or

I (E)−1 = (−1)k Td(E).

For ξ ∈ K(X), we have(
ψ−1
E ◦ chE ◦ ϕE

)
(ξ)) = ψ−1

E (chE(ϕE(1)))chX (ξ) = I (E) chX (ξ) .

Indeed,

ψ−1
E chE(ϕE (ξ)) = ψ−1

E chE(ϕE(1) · π∗ξ) = ψ−1
E (chE(ϕE(1)) chE (π∗ξ))

= ψ−1
E (chE(ϕE(1))π∗ (chX (ξ))) = ψ−1

E (chE(ϕE(1))chX (ξ) = I (E) chX (ξ) .

For i : {p0} → Rn+m, we have the normal bundle N0 = Rn+m
p0

→ {p0} and TN0 =
TRn+m = Cn+m → T {p0}. Moreover, there are Thom isomorphisms

i! = ϕ0 : K(T {p0})→ K(TRn+m) and ψ0 : H∗c (T {p0})→ H∗c (TRn+m).

Let u ∈ K(Cn+m) ∼= Z, say u = ϕ0(ξ), for ξ ∈ K (T {p0}) ∼= Z. We have

ch(u)[Cn+m] = ψ0
−1 (ch (u)) = ψ0

−1 (ch (ϕ0(ξ)))

= I
(
CNp0

)
ch (ξ) = 1ξ = ξ = ϕ0

−1 (u) .

Hence, the right-most square in the following diagram commutes:

K(TX)
ϕ→ K(TN) h→ K(TRn+m = Cn+m) ∼= Z

ϕ−1
0→ K(T {p0}) ∼= Z

↓ ch ↓ ch ↓ ch ↓ ch

H∗c (TX)
ψ→ H∗c (TN) k→ H∗c (TRn+m = Cn+m) ∼= Z

ψ−1
0← H∗c (T {p0}) ∼= Z,
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and under the identifications with Z of rings in the right-most square the homomorphisms
are all just identities. The middle square also commutes, where h and k are the exten-
sion homomorphisms. The left-most square does not commute in general, since there is
generally a nontrivial Chern character defect I (TN) in the relation

ψ−1ch(ϕ (ξ)) = I (TN) ch(ξ), ξ ∈ K(TX)

In the midst of the computation of indext(P ) below, we use we use the result I(TN) =
I(TX⊗C)−1, which is seen as follows. From the relation I (E) =

∏k
j=1

1−exj
xj

, we have
I (E1 ⊕ E2) = I (E1) I (E2). Hence, I(TN) = I(TX ⊗ C)−1 follows from the fact
that as complex bundles over TX , we have

(TX ⊗ C)⊕TN ∼= (π∗(TX)⊕ π∗(TX))⊕TN ∼= T (TX)⊕TN = T
(
TRn+m

)
|TX ,

which is trivial. Without further interruption, we obtain

indext(P ) = (i!)
−1 (f! ([σ(P )])) = (ϕ0)−1 ((h ◦ ϕ) ([σ(P )]))

= ch((h ◦ ϕ) ([σ(P )]))[Cn+m] = k (ch(ϕ ([σ(P )])) [Cn+m]

= ch(ϕ ([σ(P )]) k∗[Cn+m] = ch(ϕ ([σ(P )]) [TN ]

= ψ−1ch(ϕ ([σ(P )]) [TX] = (I(TN)ch ([σ(P )])) [TX]

=
(
I(TX ⊗ C)−1ch ([σ(P )])

)
[TX]

= (−1)n
(
Td(TCX ⊗ C)chTX ([σ(P )])

)
[TX]

= (−1)n (chTX ([σ(P )]) Td(TCX ⊗ C)) [TX].

Corollary 5.7 The index of any elliptic differential operator P over an odd dimensional
compact n-manifold X is 0.

Proof Let f : TX → TX be defined by f(v) = −v. Since n is odd, f∗[TX] = −[TX].
Also, since P is a differential operator f∗ (σ(P ))ξ = σ(P )−ξ = (−1)m σ(P )ξ, where
m is the order of P . If m is even f∗ (σ(P )) = σ(P ), while if m is odd, we still have
f∗ (σ(P )) = −σ(P ) is homotopic to σ(P ) via eiπtσ(P ), 0 ≤ t ≤ 1. In either case
f∗ (σ(P )) is homotopic to σ(P ). Thus,

indext[σ(P )] = (−1)n {ch([σ(P )])Td(TX ⊗ C)} [TX]
= − (−1)n {ch([f∗σ(P )])Td(TX ⊗ C)} f∗ [TX] = − indext[σ(P )],

where the last equality is due to the invariance of evaluation under diffeomorphism.

Corollary 5.8 Let X be a compact oriented manifold. For an elliptic operator P :
C∞(E) → C∞(F ) with symbol class [σ(P )] ∈ K (T ∗X), the topological index of P
is given by

indext(P ) = (−1)n(n+1)/2 (
ψ−1
TX (chTX ([σ(P )])) Td(TX ⊗ C)

)
[X] . (5)

If we assume χ(X) 6= 0, then there is the simpler formula

indext(P ) = (−1)n(n+1)/2

(
ch ([E]− [F ])

χ(X)
Td(TX ⊗ C)

)
[X] . (6)
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Proof For a compact oriented manifold X, we have the Thom isomorphism ψTX :
H∗(X)→ H∗(TX), which has the property

u[TX] = (−1)n(n−1)/2 (
ψ−1
TX(u)

)
[X] (7)

for any u ∈ H∗(TX). The (−1)
1
2n(n−1) is explained as follows. Let x1, . . . , xn be pos-

itively oriented local coordinates for X . Then the induced oriented local coordinates for
v1∂x1 + · · · + vn∂xn ∈ TX are x1, . . . , xn, v1, . . . , vn. However, for the orientation
that we chose for TX (even if X is not orientable), the coordinates x1, v1, . . . , xn, vn
are positively oriented. Transforming x1, . . . , xn, v1, . . . , vn to x1, v1, . . . , xn, vn re-
quires (n− 1) + (n− 2) + · · · + 1 = n(n − 1)/2 transpositions. We use (7) with
u = (−1)n {ch([σ(P )])Td(TX ⊗ C)} , noting that n + n(n − 1)/2 = n(n + 1)/2, to
obtain (5). To obtain (6), recall from (4) that if i : X → TX is the zero section, then

χ(TX)·ψ−1
TX(chTX ([σ(P )]) = i∗chTX ([σ(P )]) = chX (i∗[σ(P )]) = chX ([E]− [F ]) .

5.2 On the K-theoretic proof of Atiyah and Singer

Here we provide an outline of theK-theoretic embedding proof of the Atiyah-Singer Index
Formula (Theorem 5.9 below). This proof appeared in [12], after announcement of the
main result in [11] and the exposition [41] of the unpublished proof involving cobordism.
Theorem 5.9 (Atiyah-Singer Index Theorem) Let P : C∞(E) → C∞(F ) be an elliptic
operator (possibly pseudo-differential) where E → X and F → X are complex vector
bundles over the compact n-manifoldX . Let [σ(P )] ∈ K(T ∗X) ∼= K(TX) be the symbol
class of P , as in Definition 5.2. Then

indexa P = indext [σ(P )] .

Here indexa P = dim KerP−dim CokerP is the analytic index of P , and in the notation
preceding Definition 5.5,

indext [σ(P )] := i−1
! f![σ(P )]

is the topological index of P (or its symbol class) which is also given cohomologically by
Theorem 5.6 or Corollary 5.8 when applicable.

Outline of proof. It is not difficult to prove that any u ∈ K(TX) is of the form
[σm(p)] for some p ∈ Ellm(E,F ) ∈ C∞(Hom(π∗E,π∗F )), where π : TX → X and
σm(p) is the m-th order asymptotic symbol of p; indeed, m can be chosen freely; e.g., see
[12, p.492], [34, p.245]). With some work, the analytical index of u ∈ K(TX) is shown
to be well-defined, independent of the choice of p, by

indexa u := indexa Op(p);

e.g., see [12, p.518], [34, p.246]. We define indext u in the same way that indext[σ(P )]
was defined, namely indext u = i−1

! f!u where f : X → Y := Rn+m is a proper embed-
ding. The goal is to show indexa u = indext u for all u ∈ K(TX). To prove this, one
“only” needs to show that indexa(u) = indexa(f!u).

Then indexa(u) = indexa(f!u) = indexa(
(
i!i
−1
!

)
(f!u)) = indexa(i!

(
i−1
! f!u

)
)
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= indexa(i−1
! f!u) = i−1

! f!u = indext(u).

For last two equalities, note that for a singleton {x0}, T{x0} is also a point, and so
K(T{x0}) is identified with Z. The elliptic operator over {x0} (as well as its symbol)
associated with i−1

! f!u ∈ K(T{0}) is just a linear map P : E → F between vector spaces
over {x0} (or T{x0}), and

indexa P = dim KerP − dim CokerP = dimE − dimF = indext P.

Since f! = h ◦ ϕTN→TX is a composition of two maps, the proof that indexa (u) =
indexa(f!u) has two parts, namely

1. indexa (ϕTN→TX (u)) = indexa (u) and
2. indexa (ϕTN→TX (u)) = indexa (h (ϕTN→TX (u))) .

Part 2 follows from the Excision Property and its proof is easier than part 1 (e.g., see [34,
p.248 and 254], [12, p.522]). Part 1 is a consequence of the multiplicative property of
the analytic index with respect to embeddings. We will elucidate this property in the next
subsection. Once this is done, the proof of Part 1 and the is completed by the following

indexa (ϕTN→TX (u)) = indexa ((π∗TNu)λTN ) = indexa (u · i!1)

= indexa
((

indexO(m) i!1
)
· u
)

= indexa (u) ,

in which the notation is yet to be introduced. The multiplicative property is used for the
third equation and indexO(m)(i!1) is the O(m)-equivariant analytic index of the Bott ele-
ment i!1 ∈ K(T ∗Sm) where i is the inclusion of a point in Sm. Since it can be shown that
indexO(m)(i!1) = 1 in the representation ring R(O(m)) (see [12, p.505 and 524]), the last
equality follows.

5.3 The multiplicative property

Consider an embedding f : X → Y of the compact manifold X into some manifold Y
(say Rn′ or Sn

′
). From an elliptic pseudo-differential operator on X , we will construct

an appropriate elliptic pseudo-differential operator, with the same index, on a suitably
compactified tubular neighborhood, say S, of f(X) in Y . In other words, from a symbol

a ∈ Ellm(E,F ) ⊂ C∞(T ∗X,Hom(π∗XE, π
∗
XF )), where πX : T ∗X → X

with associated operator Op(a) : C∞(E) → C∞(F ), we construct suitable complex
vector bundles Ẽ → S and F̃ → S and a symbol

c ∈ Ellm(Ẽ, F̃ ) ⊂ C∞(T ∗S,Hom(π∗SẼ, π
∗
SF̃ )), (8)

with associated operator Op(c) : C∞(Ẽ) → C∞(F̃ ); here πS : T ∗S → S. The
essential ingredient which is needed to produce c is an equivariant K- theory element
b ∈ KO(m)(T ∗Sm), where m = n′ − n and Sm is the unit m-sphere. The choice of
b ∈ KO(m)(T ∗Sm) which yields index Op(c) = index Op(a) is essentially the famous
generating Bott element, but b will be arbitrary here. We begin with a short review of rel-
evant equivariant K-theory for those who desire it. The work of Graeme Segal [43] is an
excellent, authoritative exposition of the foundations of equivariant K-theory.
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Let G be a group which acts to the left on X , via a L : G × X → X . We write
g ·x = Lg(x) = L(g, x). Let π : E → X be a complex vector bundle over X and suppose
that there is a left action ofG onE such that π(g·e) = g·π(e) and e 7→ g·e is linear on each
fiber Ex. Then π : E → X is called a G-vector bundle. As an example, if X is a manifold
andG acts onX smoothly, then the action on TCX := C⊗TX given by v 7→ d(Lg)(v) for
v ∈ TCX makes TCX → X a G-vector bundle. More generally, Λk(TCX) → X is a G-
vector bundle. A morphism from G-vector bundle π1 : E1 → X to G-vector bundle π2 :
E2 → X is a vector bundle morphism (linear on fibers) ϕ : E1 → E2 such that ϕ(g · e) =
g ·ϕ(e). An isomorphism ofG-vector bundles is a morphism which is bijective. The direct
sum ofG-vector bundles is clearly aG-vector bundle and this operation induces an abelian
semi-group structure on the set of isomorphism classes of G-vector bundles. We can then
form the associated abelian group KG(X) via the Grothendieck construction. Moreover,
the tensor product of G-vector bundles yields a G-vector bundle, and this induces a ring
structure on KG(X). For a homogeneous space G/H where H is a closed subgroup of G,
there is a ring isomorphism KG(G/H) ∼= R(H) := the representation ring of H . Recall
that R(H) is the Grothendieck ring obtained from the abelian semi-group of equivalence
classes of representations of H with addition induced by the direct sum. Tensor product
of representations induces a multiplication on R(H) making it a ring. More concisely,
R(H) = KH({point}). As with ordinary K-theory, an element of KG(X) can also be
described as equivalence classes of G-equivariant morphisms E → F of G-bundles which
are isomorphisms outside of a compact support (i.e., morphisms with compact support).

We proceed with the construction of c ∈ Ellm(Ẽ, F̃ ) in (8). Let πP : P → X
be the principal O(m)-bundle of orthonormal frames of the normal bundle N → X for
the embedding f : X → Y , where dimX = n and dimY = n′. We regard a frame
p ∈ Px as a linear isometry p : Rm → Nx, where m = n′ − n and Nx is the fiber of the
normal bundle at x ∈ X . In terms of associated bundles, we have N = P ×O(m) Rm =
(P × Rm) /O(m), where O(m) acts on P × Rm via (p, v) · A := (p ◦ A,A−1v). Note
that O(m) also acts on Rm+1 = Rm × R via A · (v, a) = (A(v), a), and the m-sphere
Sm ⊂ Rm+1 is invariant under this action with two fixed points, the poles (0,±1) ∈ Sm.
Let

S := P ×O(m) S
m and let Q : P × Sm → P ×O(m) S

m = (P × Sm) /O(m)

be the quotient map. We may regard πS : S → X as the m-sphere bundle over X
obtained by compactification of the normal bundle N via adjoining the section at infinity.
Choose a so(m)-valued connection 1-form ω on P ; there is actually a natural ω induced
by f : X → Y and a given Riemannian metric on Y . Then we have an O(m)-invariant
distribution H of horizontal subspaces (i.e., Hp = Kerωp) on P and hence on P × Sm.
By the O(m)-invariance of H, Q∗(H) is a well defined distribution on S. Moreover, since
πS∗Q∗(Hp) = πP∗(Hp) = Tπ(p)X, Q∗(H) is complementary to the vertical distribution
VS of tangent spaces of the fibers of πS : S → X . We denote Q∗(H) by HS . Thus, we
have a splitting

TS = VS ⊕HS = VS ⊕Q∗(H). (9)

We also have T ∗S = Ṽ ∗S ⊕ H̃∗S , where

H̃∗S := {α ∈ T ∗S : α(VS) = 0} and
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Ṽ ∗S := {β ∈ T ∗S : β(HS) = 0} ∼= P ×O(m) T
∗Sm.

In view of the splitting (9), there are identifications Ṽ ∗S ∼= V ∗S := (VS)∗ and H̃∗S ∼= H∗S :=
(HS)∗. Note that O(m) acts on the sphere Sm, and hence on T ∗Sm via pull-back of
covectors. Thus, we may consider KO(m)(T ∗Sm). The projection P × T ∗Sm → T ∗Sm

induces a map KO(m)(T ∗Sm)→ KO(m)(P ×T ∗Sm). Moreover, there is the general fact
that if G acts freely on X , then the projection Q : X → X/G induces an isomorphism
Q∗ : K(X/G) ∼= KG(X) (see [43], p. 133). Thus, we have

KO(m)(T ∗Sm)→ KO(m)(P ×T ∗Sm)
(Q∗)−1

∼=
→

K(P ×O(m) T
∗Sm) = K(V ∗S ). (10)

We define

K(T ∗X)⊗K(V ∗S )→ K(T ∗S), (11)

as follows. If E → T ∗X and F → V ∗S are complex vector bundles, then for α′ ∈ T ∗X
and β′ ∈ V ∗S , we have unique α ∈ H̃∗S and β ∈ Ṽ ∗S such that α(v) = α′ ((πS)∗ (v))
for v in TS, and β|VS = β′ and β(HS) = 0. Then Eα′ ⊗ Fβ′ is the fiber of a bundle
over T ∗S at the point α + β. Thus, we have K(T ∗X) ⊗K(V ∗S ) → K(T ∗S) induced by
[E]⊗ [F ] 7→ [E ⊗ F ]. Using the homomorphisms (10) and (11), we then have

K(T ∗X)⊗KO(m)(T ∗Sm)→ K(T ∗X)⊗K(V ∗S )→ K(T ∗S). (12)

For any representation ρ : O(m) → GL(Cq), we have the associated vector bundle
P ×ρ Cq → X . Let R(O(m)) be the representation ring of O(m). The assignment
ρ 7→ P ×ρ Cq extends to a ring homomorphism R(O(m)) → K (X), which is to say
that K(X) is a R(O(m))-module. Moreover, recall that K (T ∗X) is a K (X)-module via
u · v = (π∗u) v. Thus, ultimately K (T ∗X) is an R(O(m))-module. We are now in a
position to state
Theorem 5.10 (The Multiplicative Property) For v ∈ KO(m)(T ∗Sm) and u ∈
K(T ∗X), we have u · v ∈ K(T ∗S), via (12). Moreover,

indexa (u · v) = indexa
((

indexO(m) v
)
· u
)
,

where
(
indexO(m) v

)
· u ∈ K(T ∗X) makes sense since indexO(m) v ∈ R(O(m)), and as

we have just noted, K(T ∗X) is an R(O(m))-module. In particular, if indexO(m) v = 1 ∈
R(O(m)), then indexa (u · v) = indexa u.

Proofs can be found in [34, p.252] and [12, p.526-9].

5.4 Heat kernel methods for twisted Dirac operators

The classical geometric operators such as the Hirzebruch signature operator, the de Rham
operator, the Dolbeaut operator and even the Yang-Mills operator can all be locally ex-
pressed in terms of chiral halves of twisted Dirac operators. Thus, we will focus on index
theory for such operators. As we will show in the next subsection, the index of any of
these classical operators (and their twists) can then be obtained from the Local Index The-
orem for twisted Dirac operators. This theorem supplies a well-defined n-form on X ,
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whose integral is the index of the twisted Dirac operator. This n-form (or “index den-
sity”) is expressed in terms of forms for characteristic classes which are polynomials in
curvature forms. The Index Theorem thus obtained then becomes a formula that relates a
global invariant quantity, namely the index of an operator, to the integral of a local quantity
involving curvature. This is in the spirit of the Gauss-Bonnet Theorem which can be con-
sidered a special case. We begin with an introduction and/or review of Clifford algebras
and spinors.

Let V be a real vector space with positive-definite inner product 〈·, ·〉.
Definition 5.11 The Clifford algebra Cl (V ) is the real algebra generated by V and R
with the relation

vw + wv = −2 〈v, w〉 , for all v, w ∈ V.

Note that the product of v and w in Cl (V ) is denoted by the plain juxtaposition vw.
Also, v2 := vv = −〈v, v〉 = −‖v‖2, and vw = −wv if 〈v, w〉 = 0.

Let Λ∗ (V ) = ⊕nk=1Λk (V ) be the exterior algebra of V . While Λ∗ (V ) is not isomor-
phic to Cl (V ) as an algebra, there is a linear isomorphism of vector spaces

L : Λ∗ (V ) ∼= Cl (V ) with L (ei1 ∧ · · · ∧ eik) := ei1 · · · eik , (i1 < · · · < ik) ,

where we let {e1, . . . , en} be an orthonormal basis of V . It can be shown that L is O(n)-
equivariant and independent of the choice of orthonormal basis. Moreover via L, the nat-
ural inner product on Λ∗ (V ) gives us an inner product and norm on Cl (V ). There is an
exponential map exp : Cl (V ) → Cl (V ) given by exp (x) =

∑∞
k=0

1
k!x

k, x ∈ Cl (V ) ,
which converges, since

∥∥xk∥∥ ≤ Ck ‖x‖k for some constant C depending on n but not on
x.

We define the bracket (or commutator) of any x, y ∈ Cl (V ) , by [x, y] = xy − yx.
The linear subspace L

(
Λ2 (V )

)
is closed under bracket. Indeed, for A = [aij ] ∈ so (n)

(i.e., A,B anti-symmetric), we have that

c′ : L
(
Λ2 (V )

) ∼= so (n) , given by c′(− 1
4

∑
i,j
aijeiej) := A (13)

is an isomorphism of Lie algebras. We define Spin (n) := exp
(
L
(
Λ2 (V )

))
. The follow-

ing result is not hard to verify:
Proposition 5.12 For g ∈ Spin (n) and v ∈ V = L

(
Λ1 (V )

)
, let

c (g) (v) := gvg−1 ∈ Cl (V ) .

Then c (g) (v) ∈ L
(
Λ1 (V )

)
= V . Also, c (g) ∈ SO (n) := SO (V ) and

c : Spin (n)→ SO (n) .

is a double covering homomorphism (universal for n ≥ 3). Moreover, for c′ defined as in
(13), we have

c (exp a) = exp (c′ (a)) ,

and so c′ is the Lie algebra homomorphism for c.
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Besides the vector representation c : Spin (n)→ SO (n), there are fundamental spinor
representations, which we will describe. Since the index of an elliptic differential operator
on a compact, odd-dimensional manifold is always 0, for simplicity we assume that n is
even, say n = 2m. Then there is a unique (up to equivalence) irreducible representation
(homomorphism of algebras over R)

ρ : Cl2m → End (Σ2m) ,

where End (Σ2m) is the algebra ofC-linear endomorphisms of some complex vector space
Σ2m, the elements of which are called spinors. Here “irreducible” means that Σ2m has no
proper subspace which is invariant under all operators in ρ (Cl2m). In the following we
give an explicit construction of Σ2m and ρ.

Let 〈·, ·〉 be the standard Hermitian inner product on Cm given by 〈z, w〉 =∑m
k=1 zkwk.We identifyCm withRn = R2m, and forw ∈ Cm, we haveC-linear function

w∧ : Λk (Cm)→ Λk+1 (Cm)

given by α 7→ w ∧ α for α ∈ Λk (Cm). Moreover, there is a C-linear function

wx : Λk (Cm)→ Λk−1 (Cm) , defined via

wx(v1 ∧ · · · ∧ vk) :=
k∑
j=1

(−1)j+1 〈vj , w〉 v1 ∧ · · · ∧ v̂j ∧ · · · ∧ vk,

where v̂j means that the factor vj is omitted. While wx is C-linear, the function
Cm → End (Λ∗ (Cm)) given by w 7→ wx is R-linear (but C-conjugate linear).
There is a Hermitian inner product 〈·, ·〉 on Λk (Cm) induced by that on Cm, such that
{ei1 ∧ · · · ∧ eik : i1 < · · · < ik} is an orthonormal basis for Λk (Cm) if e1, . . . , em is an
orthonormal basis for Cm. Relative to this inner product, it is easy to check that wx and
w∧ are adjoints, and to verify
Proposition 5.13 Let ρ1 : Cm → End (Λ∗ (Cm)) be given by

ρ1 (w) (α) := (w ∧ − wx) (α) = w ∧ α− wxα.

Then ρ1 uniquely extends to an R-linear homomorphism

ρ : Cl2m → End (Λ∗ (Cm)) ,

of algebras over R.

Let Cl2m := C ⊗R Cl2m be the complex Clifford algebra. To see that the complex
linear extension of ρ, say ρC : Cl2m → End (Λ∗ (Cm)) , is an isomorphism of algebras
over C, it is convenient to introduce more notation. Let (f1, · · · , fm) be an orthonormal
basis of Cm, then

(e1, · · · , e2m) := (f1, if1, · · · , fm, ifm)

is an oriented, orthonormal basis of R2m, and the complex volume element is

ωC := ime1 · · · e2m ∈ Cl2m;
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this is independent of the choice of oriented orthonormal basis of R2m, and it is easy
to check that ω2

C = 1 and hence ρC (ωC)2 = ρC
(
ω2

C
)

= ρC (1) = Id. Since
ρ1 (w) = w ∧ − wx is the difference between an operator and its adjoint, ρ1 (w) is skew-
adjoint. We define skew-adjoint operators γj := ρC (ej) = ρ (ej) , for j ∈ {1, . . . , 2m}.
In harmony with the physics literature, we set γn+1 = γ2m+1 := γ1 · · · γn, so that
ρC (ωC) = imγ2m+1. One can show that ρC (ωC) is self-adjoint. Since ρC (ωC)2 = Id,
the eigenvalues of ρC (ωC) are ±1. As ρC (ωC) is self-adjoint, the eigenspaces of ρC (ωC),
say

Σ+
2m := (ρC (ωC) + Id) Λ∗ (Cm) and Σ−2m := (ρC (ωC)− Id) Λ∗ (Cm) ,

are orthogonal. One finds ρC (ωC) |Λl(Cm) = (−1)l Id, and so

Σ+
2m = Λeven (Cm) :=

⊕
l even

Λl (Cm) , while

Σ−2m = Λodd (Cm) :=
⊕

l odd
Λl (Cm) .

Using this, we have γj
(
Σ±2m

)
= Σ∓2m, and indeed γj : Σ±2m ∼= Σ∓2m with inverse −γj ,

and so ρ (spin (2m))
(
Σ±2m

)
⊂ Σ±2m. Moreover, for j 6= k,(

γj ◦ γk
)∗ = γ∗k ◦ γ∗j = −γk ◦ −γj = −γj ◦ γk and

Tr
(
γj ◦ γk

)
= −Tr

(
γk ◦ γj

)
= −Tr

(
γj ◦ γk

)
.

Thus, ρ (Spin (2m)) ⊂ SU (Λ∗ (Cm)), since the elements of ρ (spin (2m)) are skew-
adjoint and traceless. In summary, ρ : Spin (2m) → SU (Λ∗ (Cm)) is the orthogonal
direct sum of two special unitary “half-spinor” or “chiral” representations

ρ± : Spin (2m)→ SU
(
Σ±2m

)
.

Definition 5.14 Let

Σ2m := Λ∗ (Cm) and π± := 1
2 (ρC (ωC)± Id) : Σ2m → Σ±2m.

The supertrace of an endomorphism A ∈ End (Σ2m) is

Str (A) := Tr
(
π+ ◦

(
A|Σ+

2m

))
− Tr

(
π− ◦

(
A|Σ−2m

))
= Tr (A ◦ ρC (ωC)) = imTr

(
A ◦ γ2m+1

)
.

The following result is crucial for evaluating the local index density of the twisted Dirac
operator; an easy proof is in [16, p.2056].
Proposition 5.15 For k ∈ {1, . . . , 2m} with j1, j2, . . . , jk distinct, we have

Tr
(
γj1γj2 · · · γjk

)
= 0, and

Str
(
γj1γj2 · · · γjk

)
= im Tr

(
γj1γj2 · · · γjkγ2m+1

)
=
{

0 if k < 2m
(−2i)m εj1···j2m if k = 2m.

The 2n endomorphisms consisting of Id and those γj1γj2 · · · γjk with j1 < j2 < · · · < jk,
k ∈ {1, . . . , 2m}, form a basis of End (Σ2m).
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Corollary 5.16 The representation ρC : Cl2m → End (Σ2m) is irreducible and an iso-
morphism of complex algebras. Moreover, ρ± : Spin (2m)→ End

(
Σ±2m

)
are irreducible,

and since ρ (e1e2 · · · e2m−1e2m) = γ2m+1 = ±i−m on Σ±2m they are inequivalent.

Proposition 5.17 Let R : Cl2m → End (V ) be a finite-dimensional representation. Then
V =

⊕N
k=1Wk whereW1, . . . ,WN of V are invariant subspaces, such thatRk : Cl2m →

End (Wk) defined by Rk (α) = R (α) |Wk
is equivalent to ρC : Cl2m → End (Λ∗ (Cm))

for all k = {1, . . . , N}. In particular, all irreducible representations of Cl2m are equiva-
lent to ρC. Moreover, let

Hom0 (Σ2m, V ) := {F ∈ Hom (Σ2m, V ) : F (ρC (α) (w)) = R (α) (F (w))}

be the subspace of Hom (Σ2m, V ) of Cl2m-equivariant linear maps; note that Cl2m acts
trivially on Hom0 (Σ2m, V ). There is then an isomorphism of Cl2m-modules

Φ : Hom0 (Σ2m, V )⊗ Σ2m
∼= V given by Φ (φ⊗ ψ) := φ (ψ) .

Given what we have done, a direct proof of this is not difficult. Alternatively, it is
known (see [47]) that, up to equivalence, the only irreducible representation of the algebra
End (W ) for any complex or real vector space W is the defining representation, namely
Id : End (W )→ End (W ). Since Cl2m ∼= End (Σ2m), it follows that, up to equivalence,
ρC : Cl2m → End (Σ2m) is the only irreducible representation of Cl2m.
Definition 5.18 Let X be an oriented Riemannian n-manifold (n = 2m even) with met-
ric h, and oriented orthonormal frame bundle FX . Assume that X has a spin structure
P → FX , where P is a principal Spin (n)-bundle and the projection P → FX is a
two-fold cover, equivariant with respect to Spin (n) → SO (n). Furthermore, let E → X
be a Hermitian vector bundle with unitary connection ε. The twisted Dirac operator D
associated with the above data is

D := (1⊗ c) ◦ ∇ : C∞ (E ⊗ Σ (X))→ C∞ (E ⊗ Σ (X)) .

Here, Σ (X) is the spin bundle over X associated to P → FX → X via the spinor
representation Spin (n)→ End (Σn),

c : C∞ (Σ (X)⊗ TX∗)→ C∞ (Σ (X))

is Clifford multiplication, and

∇ : C∞ (E ⊗ Σ (X))→ C∞ (E ⊗ Σ (X)⊗ TX∗)

is the covariant derivative determined by the connection ε and the spinorial lift to P of the
Levi-Civita connection form, say θ, on FX .

Let Σ± (X) denote the ±1 eigenbundles of the complex Clifford volume element in
C∞ (Cl(X)), given at a point x ∈ X by ime1 · · · en, where e1, . . . , en is an oriented,
orthonormal basis of TxX . The Σ± (X) are the so-called chiral halves of Σ (X) =
Σ+ (X)⊕ Σ+ (X). Since

∇
(
C∞

(
E ⊗ Σ± (X)

))
⊆ C∞

(
E ⊗ Σ± (X)⊗ TX∗

)
and

(1⊗ c)
(
C∞

(
E ⊗ Σ± (X)⊗ TX∗

))
⊆ C∞

(
E ⊗ Σ∓ (X)

)
, we have
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D = D+ ⊕D−, where D± : C∞
(
E ⊗ Σ± (X)

)
→ C∞

(
E ⊗ Σ∓ (X)

)
.

The symbol of the first-order differential operator D is computed as follows. For φ ∈
C∞ (X) with φ (x) = 0 and ψ ∈ C∞ (E ⊗ Σ (X)) , we have at x

(1⊗ c) ◦ ∇ (φψ) = (1⊗ c) ◦ ((dφ)ψ + φ∇ψ) = (1⊗ c) ◦ (dφ)ψ
= (1⊗ c (dφ))ψ.

Thus, the symbol σ (D) : T ∗xX → End (Σ (X)) at the covector ξx ∈ T ∗xX is given by

σ (D) (ξx) = 1⊗ c (ξx) ∈ End (Ex ⊗ Σx) .

For ξx 6= 0, σ (D) (ξx) is an isomorphism, since

σ (D) (ξx) ◦ σ (D) (ξx) = 1⊗ c (ξx)2 = − |ξx|
2 I .

Thus, D is an elliptic operator. Moreover, since σ (D+) and σ (D−) are restrictions of
σ (D), it follows that D+ and D− are elliptic. It can be shown that D is formally self-
adjoint, and D+ and D− are formal adjoints of each other (see [34]). We also have a pair
of self-adjoint elliptic operators

D2
+ := D2|C∞

(
E ⊗ Σ+ (X)

)
= D− ◦ D+

D2
− := D2|C∞

(
E ⊗ Σ− (X)

)
= D+ ◦ D−.

For λ ∈ C, let Vλ
(
D2
±
)

:=
{
ψ ∈ C∞ (E ⊗ Σ± (X)) | D2

±ψ = λψ
}

. From the gen-
eral theory of formally self-adjoint, elliptic operators on compact manifolds, we know
that Spec

(
D2
±
)

=
{
λ ∈ C | Vλ

(
D2
±
)
6= {0}

}
consists of the eigenvalues of D2

± and
is a discrete subset of [0,∞), the eigenspaces Vλ

(
D2
±
)

are finite-dimensional, and an
L2 (E ⊗ Σ± (X))-complete orthonormal set of vectors can be selected from the Vλ

(
D2
±
)
.

Note that D+
(
Vλ
(
D2

+

))
⊆ Vλ

(
D2
−
)
, since for ψ ∈ Vλ

(
D2

+

)
,

D2
−
(
D+ψ

)
=
(
D+ ◦ D−

) (
D+ψ

)
= D+

((
D− ◦ D+

)
(ψ)
)

= D+
(
D2

+ (ψ)
)

= D+ (λψ) = λD+ (ψ) ,

and similarly D−
(
Vλ
(
D2
−
))
⊆ Vλ

(
D2

+

)
. For λ 6= 0,

D±|Vλ
(
D2
±
)

: Vλ
(
D2
±
)
→ Vλ

(
D2
∓
)

is an isomorphism, since it has inverse 1
λD
∓. Thus the set of nonzero eigenvalues (and

their multiplicities) of D2
+ coincides with that of D2

−. However, in general

dimV0

(
D2

+

)
−dimV0

(
D2
−
)

= dim Ker
(
D2

+

)
−dim Ker

(
D2
−
)

= index
(
D+
)
6= 0.

Since dimVλ
(
D2

+

)
− dimVλ

(
D2
−
)

= 0 for λ 6= 0, obviously

index
(
D+
)

= dimV0

(
D2

+

)
− dimV0

(
D2
−
)

=
∑

λ∈Spec(D2
+)
e−tλ

(
dimVλ

(
D2

+

)
− dimVλ

(
D2
−
))
.
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This may seem like a very inefficient way to write index (D+), but the point is that the
sum can be expressed as the integral of the supertrace of the heat kernel for the spinorial
heat equation ∂ψ

∂t = −D2ψ, from which the Local Index Theorem (Theorem 5.21 below)
for D+ will eventually follow. However, first the existence of the heat kernel needs to be
established.

Let the positive eigenvalues of D2
± be placed in a sequence 0 < λ1 ≤ λ2 ≤ λ3 ≤

. . . where each eigenvalue is repeated according to its multiplicity. Let u±1 , u
±
2 , . . . be

an L2-orthonormal sequence in C∞ (E ⊗ Σ+ (X)) with D2
±
(
u±j
)

= λju
±
j (i.e., u±j ∈

Vλj
(
D2
±
)
). We let u+

01
, . . . , u+

0n+
be an L2-orthonormal basis of KerD2

+ = KerD+,
and u−01

, . . . , u−0n−
be an L2-orthonormal basis of KerD2

− = KerD−. We can pull back
the bundle E ⊗ Σ± (X) via either of the projections X × X × (0,∞) → X given by
π1 (x, y, t) := x and π2 (x, y, t) := y and take the tensor product of the results to form a
bundle

K± := π∗1
(
E ⊗ Σ± (X)

)
⊗ π∗2

(
E ⊗ Σ± (X)

)
→ X ×X × (0,∞) .

Note that for x ∈ X , the Hermitian inner product 〈 , 〉x on (E ⊗ Σ± (X))x gives
us a conjugate-linear map ψ 7→ ψ∗ (·) := 〈·, ψ〉x from (E ⊗ Σ± (X))x to its dual
(E ⊗ Σ± (X))∗x. Thus, we can (and do) make the identifications

π∗1
(
E ⊗ Σ± (X)

)
⊗ π∗2

(
E ⊗ Σ± (X)

)
∼=
(
π∗1
(
E ⊗ Σ± (X)

))∗ ⊗ π∗2 (E ⊗ Σ± (X)
)

∼= Hom
(
π∗1
(
E ⊗ Σ± (X)

)
, π∗2

(
E ⊗ Σ± (X)

))
.

The full proof of the following Proposition is contained in [27] for readers of sufficient
background.
Proposition 5.19 For t > t0 > 0, the series k′±, defined by

k′± (x, y, t) :=
∞∑
j=1

e−λjtu±j (x)⊗ u±j (y) ,

converges uniformly in Cq(K±|X ×X × (t0,∞)) for all q ≥ 0. Hence k′± ∈ C∞ (K±),
and (for t > 0)

∂

∂t
k′± (x, y, t) = −

∞∑
j=1

λje
−λjtu±j (x)⊗ u±j (y) = −D2

±k
′± (x, y, t) .

Definition 5.20 The positive and negative twisted spinorial heat kernels (or the heat ker-
nels for D2

±) k± ∈ C∞ (K±) are given by

k± (x, y, t) :=
∑n±

i=1
u±0i (x)⊗ u±0i (y) + k′± (x, y, t)

=
∑n±

i=1
u±0i (x)⊗ u±0i (y) +

∑∞

j=1
e−λjtu±j (x)⊗ u±j (y) for t > 0.

The total twisted spinorial heat kernel (or the heat kernel for D2) is

k =
(
k+, k−

)
∈ C∞

(
K+
)
⊕ C∞

(
K−
) ∼= C∞

(
K+ ⊕K−

)
⊆ C∞ (K) ,

where K := K+ ⊕K− = Hom (π∗1 (E ⊗ Σ (X)) , π∗2 (E ⊗ Σ (X))) .
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For any finite dimensional Hermitian vector space (V, 〈·, ·〉) with orthonormal basis
e1, . . . , eN , we have (for v ∈ V )

Tr (v∗ ⊗ v) =
∑N

i=1
〈(v∗ ⊗ v) (ei) , ei〉 =

∑N

i=1
〈v∗ (ei) v, ei〉

=
∑N

i=1
〈〈ei, v〉 v, ei〉 =

∑N

i=1
〈ei, v〉 〈v, ei〉 =

∑N

i=1
|〈ei, v〉|2 = |v|2 .

In particular, k± (x, x, t) ∈ End ((E ⊗ Σ± (X))x) and

Tr
(
k± (x, x, t)

)
=
∑n±

i=1

∣∣u±0i (x)
∣∣2 +

∑∞

j=1
e−λjt

∣∣u±j (x)
∣∣2 .

Since this series converges uniformly and
∥∥u±0i∥∥2,0

=
∥∥u±j ∥∥2,0

= 1, we have∫
X

Tr
(
k± (x, x, t)

)
νx = n± +

∑∞

j=1
e−λjt <∞.

For t > 0, we define the bounded operator e−tD
2
± ∈ End

(
L2 (E ⊗ Σ± (X))

)
by

e−tD
2
±
(
ψ±
)

=
∑n±

i=1

(
u±0i , ψ

±
0

)
u±0i +

∑∞

j=1
e−λjt

(
u±j , ψ

±
0

)
u±j .

Note that e−tD
2
± is of trace class, since

Tr
(
e−tD

2
±

)
= n± +

∑∞

j=1
e−λjt =

∫
X

Tr
(
k± (x, x, t)

)
νx <∞.

Now, we have

index
(
D+
)

= dimV0

(
D2

+

)
− dimV0

(
D2
−
)

= n+ − n− +
∑∞

j=1

(
e−λjt − e−λjt

)
= n+ +

∑∞

j=1
e−λjt −

(
n− +

∑∞

j=1
e−λjt

)
=
∫
X

(
Tr
(
k+ (x, x, t)

)
− Tr

(
k− (x, x, t)

))
νx. (14)

SinceD2 = D2
+⊕D2

−, we also have the operator e−tD
2 ∈ End

(
L2 (E ⊗ Σ (X))

)
, whose

trace is given by

Tr
(
e−tD

2
)

=
∫
X

Tr (k (x, x, t)) νx =
∫
X

(
Tr
(
k+ (x, x, t)

)
+ Tr

(
k− (x, x, t)

))
νx.

The supertrace of k (x, x, t) is defined by

Str (k (x, x, t)) := Tr
(
k+ (x, x, t)

)
− Tr

(
k− (x, x, t)

)
,

and in view of (14), we have

index
(
D+
)

=
∫
X

Str (k (x, x, t)) νx. (15)
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The left side is independent of t and so the right side is also independent of t. The main
task now is to determine the behavior of Str (k (x, x, t)) as t → 0+. We suspect that for
each x ∈ X , as t → 0+, k (x, x, t) and Str (k (x, x, t)) are influenced primarily by the
geometry (e.g., curvature form Ωθ of X with metric h and Levi-Civita connection θ, and
the curvature Ωε of the unitary connection for E) near x, since the heat sources of points
far from x are not felt very strongly at x for small t. Indeed, we have the following Local
Index Formula and we will give an outline a proof after explaining the notation.
Theorem 5.21 (The Local Index Theorem) In the notation of Definitions 5.18 and 5.20,
let D : C∞ (E ⊗ Σ (X)) → C∞ (E ⊗ Σ (X)) be a twisted Dirac operator and let k ∈
C∞ (K) be the heat kernel for D2. If Ωε is the curvature form of the unitary connection ε
for E and Ωθ is the curvature form of the Levi-Civita connection θ for (X,h) with volume
element ν, then

lim
t→0+

Str (k (x, x, t)) =

〈
Tr
(
eiΩ

ε/2π
)
∧ det

(
iΩθ/4π

sinh (iΩθ/4π)

) 1
2

, νx

〉
. (16)

Remark 5.22 As will be explained below, the right side is really the inner product, with
volume form ν at x, of the canonical form ch (E, ε) ` Â (X, θ) (depending on the con-
nections ε for E and the Levi-Civita connection θ for the metric h) which represents
ch (E) ` Â (X). As a consequence, we obtain the Index Theorem for twisted Dirac
operators from the Local Index Formula in Corollary 5.23 below. Thus, the Local Index
Formula is stronger than the Index Theorem for twisted Dirac operators. Indeed, the Local
Index Formula yields the Index Theorem for elliptic operators which are locally expressible
as twisted Dirac operators or direct sums of such.
Corollary 5.23 (Index formula for twisted Dirac operators) For an oriented Riemannian
n-manifold X (n even) with spin structure, and a Hermitian vector bundle E → X
with unitary connection, let D = D+ ⊕ D− be the twisted Dirac operator, with D+ :
C∞ (E ⊗ Σ+ (X))→ C∞ (E ⊗ Σ− (X)). We have

index
(
D+
)

=
(
ch (E) ` Â (X)

)
[X] ,

where ch (E) is the total Chern character class of E and Â (X) is the total Â class of X ,
both defined below. In particular, we obtain:

n = 2⇒ index (D+) = ch1 (E) [X] = c1 (E) [X] and

n = 4⇒


index (D+) =

(
ch (E) ` Â (X)

)
[X]

=
(
− dimE · 1

24p1 (TX) + ch2 (E)
)

[X]
=
(
−dimE

24 p1 (TX) + 1
2c1 (E)2 − c2 (E)

)
[X] .

Proof By (15), (16) and Remark 5.22, we have

index
(
D+
)

=
∫
X

Str (k (x, x, t)) νx =
∫
X

lim
t→0+

Str (k (x, x, t)) νx

=
∫
X

〈ch (E, ε)x ` Â (X, θ)x , νx〉νx = (ch (E) ` Â (X)) [X] .
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We now explain the meaning of the form

Tr
(
eiΩ

ε/2π
)
∧ det

(
iΩθ/4π

sinh (iΩθ/4π)

) 1
2

.

The first part Tr
(
eiΩ

ε/2π
)

is relatively easy. We have (recall 2m = dimX)

eiΩ
ε/2π :=

∞∑
k=0

1
k!

(
i

2π

)k
Ωε ∧ k· · · ∧ Ωε =

m∑
k=0

1
k!

(
i

2π

)k
Ωε ∧ k· · · ∧ Ωε, (17)

where Ωε ∧ k· · · ∧ Ωε ∈ Ω2k (End (E)). Also Tr
(
ikΩε ∧ k· · · ∧ Ωε

)
∈ Ω2k (X) and

Tr
(
eiΩ

ε/2π
)
∈
⊕m

k=1
Ω2k (X) .

This (by one of many equivalent definitions) is a representative of the total Chern char-
acter ch (E) ∈

⊕m
k=1H

2k (X,Q). The curvature Ωθ of the Levi-Civita connection θ
for the metric h has values in the skew-symmetric endomorphisms of TX; i.e., Ωθ ∈
Ω2 (End (TX)). A skew-symmetric endomorphism of R2m, say B ∈ so (n), has pure
imaginary eigenvalues ±irk, where rk ∈ R (1 ≤ k ≤ m). Thus, iB has real eigenval-
ues ±rk. Now z/2

sinh(z/2) is a power series in z with radius of convergence 2π. Thus,
isB/2

sinh(isB/2) is defined for s sufficiently small and has eigenvalues rks/2
sinh(rks/2) each repeated

twice. Hence

det
(

isB/2
sinh (isB/2)

)
=
∏m

k=1

(
rks/2

sinh (rks/2)

)2

and

det
(

isB/2
sinh (isB/2)

) 1
2

=
∏m

k=1

rks/2
sinh (rks/2)

.

The last product is a power series in s of the form

m∏
k=1

rks/2
sinh (rks/2)

=
∞∑
k=0

ak
(
r2
1, . . . , r

2
m

)
s2k,

where the coefficient ak
(
r2
1, . . . , r

2
m

)
is a homogeneous, symmetric polynomial in

r2
1, . . . , r

2
m of degree k. One can always express any such a symmetric polynomial as a

polynomial in the elementary symmetric polynomials σ1, . . . , σm in r2
1, . . . , r

2
m, where

σ1 =
∑m

i=1
r2
i , σ2 =

∑m

i<j
r2
i r

2
j , σ2 =

∑m

i<j<k
r2
i r

2
j r

2
k, . . . .

These in turn may be expressed in terms of SO (n)-invariant polynomials in the entries of
B ∈ so (n) via

det (λI −B) =
m∏
j=1

(λ+ irj) (λ− irj) =
m∏
j=1

(
λ2 + r2

j

)
=

m∑
k=1

σk
(
r2
1, . . . , r

2
m

)
λ2(m−k).
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On the other hand,

det (λI −B) =
m∑
k=1

 1
(2k)!

∑
(i),(j)

δj1···j2ki1···i2kB
i1
j1
· · ·Bi2kj2k

λ2(m−k), and so

σk
(
r2
1, . . . , r

2
m

)
=

1
(2k)!

∑
(i),(j)

δj1···j2ki1···i2kB
i1
j1
· · ·Bi2kj2k ,

where (i) = (i1, · · · , i2k) is an ordered 2k-tuple of distinct elements of {1, . . . , 2m} and
(j) is a permutation of (i) with sign δj1···j2ki1···i2k . If we replace Bij with the 2-form 1

2π

(
Ωθ
)i
j

relative to an orthonormal frame field, we obtain the Pontryagin forms

pk
(
Ωθ
)

:=
1

(2π)2k (2k)!

∑
(i),(j)

δj1···j2ki1···i2k Ωθi1j1 ∧ · · · ∧ Ωθi2kj2k ,

which represent the Pontryagin classes of the SO (n) bundle FX. Note that pk
(
Ωθ
)

is
independent of the choice of framing by the ad-invariance of the polynomials σk. If we
express the ak

(
r2
1, . . . , r

2
m

)
as polynomials, say Âk (σ1, . . . , σk), in the σj (j ≤ k), we

can ultimately write

det
(

isB/2
sinh (isB/2)

) 1
2

=
∞∑
k=0

Âk (σ1, . . . , σk) s2k.

Formally replacing B by 1
2πΩθ, we finally have the reasonable definition

det
(

iΩθ/4π
sinh (iΩθ/4π)

) 1
2

:=
∞∑
k=0

Âk
(
p1

(
Ωθ
)
, . . . , pk

(
Ωθ
))
,

where the pj
(
Ωθ
)

are multiplied via wedge product when evaluating the terms in the sum;
the order of multiplication does not matter since pj

(
Ωθ
)

is of even degree 4j. Also, since
Âk
(
p1

(
Ωθ
)
, . . . , pk

(
Ωθ
))

is a 4k-form, there are only a finite number of nonzero terms
in the infinite sum. Abbreviating pj(Ωθ) simply by pj , one finds

det
(

iΩθ/4π
sinh (iΩθ/4π)

) 1
2

= 1− 1
24
p1 +

1
5760

(
7p2

1 − 4p2

)
− 1

967 680
(
31p3

1 − 44p1p2 + 16p3

)
+ · · · . (18)

This (by one definition) represents the total Â-class of X , denoted by

Â (X) ∈
m⊕
k=1

H2k (X,Q) ,

where actually Â (X) has only nonzero components in H2k (X,Q) when k is even (or
2k ≡ 0 mod 4). In (16) the multi-degree forms (17) and (18) have been wedged, and the
top (2m-degree) component (relative to the volume form) has been harvested.
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We now turn to our outline of the proof of Theorem 5.21. The well-known heat kernel
(or fundamental solution) for the ordinary heat equation ut = ∆u in Euclidean space Rn,
is given by

e (x, y, t) = (4πt)−n/2 exp
(
− |x− y|2 /4t

)
.

Since H (x, y, t) only depends on r = |x− y| and t, it is convenient to write

e (x, y, t) = E (r, t) := (4πt)−n/2 exp
(
−r2/4t

)
.

We do not expect such a simple expression for the heat kernel k = (k+, k−) of Definition
5.20. However, it can be shown that for x, y ∈ X (of even dimension n = 2m) with
r = d(x, y) := Riemannian distance from x to y sufficiently small, we have an asymptotic
expansion as t→ 0+ for k (x, y, t) of the form

k (x, y, t) ∼ HQ (x, y, t) := E (d(x, y), t)
∑Q

j=0
hj (x, y) tj , (19)

for any fixed integer Q > m+ 4, where

hj (x, y) ∈ Hom
(

(E ⊗ Σ (X))x , (E ⊗ Σ (X))y
)
, j ∈ {0, 1, . . . , Q} .

The meaning of k (x, y, t) ∼ HQ (x, y, t) is that for d(x, y) and t sufficiently small,

|k (x, y, t)−HQ (x, y, t)| ≤ CQE (d(x, y), t) tQ+1 ≤ CQtQ−m+1,

where CQ is a constant, independent of (x, y, t). We then have

k (x, x, t) ∼ (4πt)−m
Q∑
j=0

hj (x, x) tj = (4π)−m
Q∑
j=0

hj (x, x) tj−m. (20)

Using (15), i.e.,
∫
X

Str (k (x, x, t)) νx = index (D+) and (20), we deduce that∫
X

Str (hj (x, x)) νx = 0 for j ∈ {0, 1, . . . ,m− 1} , while

(4π)−m
∫
X

Str (hm (x, x)) νx =
∫
X

Str (k (x, x, t)) νx = index
(
D+
)
.

Thus, to prove the Local Index Formula, it suffices to show that

(4π)−m Str (hm (x, x)) =

〈
Tr
(
eiΩ

ε/2π
)
∧ det

(
iΩθ/4π

sinh (iΩθ/4π)

) 1
2

, νx

〉
.

While this may not be the intellectual equivalent of climbing Mount Everest, it is not for
the faint of heart.

We choose a normal coordinate system
(
y1, . . . , yn

)
in a coordinate ball B centered

at the fixed point x ∈ X , so that
(
y1, . . . , yn

)
= 0 at x. The coordinate fields ∂1 :=

∂/∂y1, . . . , ∂n := ∂/∂yn are orthonormal at x, and for any fixed y0 ∈ B with coordinates
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y1

0 , . . . , y
n
0

)
, the curve t 7→ t

(
y1

0 , . . . , y
n
0

)
is a geodesic through x. By parallel translating

the frame (∂1, . . . , ∂n) at x along these radial geodesics, we obtain an orthonormal frame
field (E1, . . . , En) on B which generally does not coincide with (∂1, . . . , ∂n) at points
y ∈ B other than at x. The framing (E1, . . . , En) defines a particularly nice section
B → FX|B and we may lift this to a section B → P |B of the spin structure, which
enables us to view the space C∞ (Σ (X) |B) of spinor fields on B as C∞ (B,Σn), i.e.,
functions on B with values in the fixed spinor representation vector space Σn = Σ+

n ⊕Σ−n .
By similar radial parallel translation (with respect to the connection ε) of an orthonormal
basis of the twisting bundle fiberEx, we can identify C∞ (E|B) with C∞

(
B,CN

)
, where

N = dimC E. The coordinate expressions for the curvatures Ωθ, Ωε and D2 are as simple
as possible in this so-called radial gauge.

With the above identifications, we proceed as follows. For 0 ≤ Q ∈ Z, let ΨQ ∈
C∞

(
B × (0,∞) ,CN ⊗ Σ2m

)
be of the form

ΨQ (y, t) := E (r, t)
∑Q

k=0
Uk (y) tk,

where Uk ∈ C∞
(
B,CN ⊗ Σ2m

)
. If U0 (0) ∈ CN ⊗Σ2m is arbitrarily specified, we seek

a formula for Uk (y), k = 0, . . . , Q, such that(
D2 + ∂t

)
ΨQ (y, t) = E (r, t) tQD2 (UQ) (y) , (21)

where the square D2 of the Dirac operator D can be written (where “·” is Clifford multi-
plication) as

D2ψ = −∆ψ + 1
2

∑
j,k

ΩεjkEj · Ek · ψ + 1
4Sψ,

by virtue of the generalized Lichnerowicz formula (see [34, p. 164]). It is convenient to
define the 0-th order operator F on C∞

(
B,CN ⊗ Σ2m

)
via

F [ψ] := 1
2

∑
j,k

ΩεjkEj · Ek · ψ, so that D2 = −∆ψ +
(
F + 1

4S
)

[ψ] .

The desired formula for the Uk (y) involves the operator A on C∞
(
B,CN ⊗ Σ2m

)
given

by

A [ψ] := −h1/4D2[h−1/4ψ] = h1/4∆[h−1/4ψ]−
(
F + 1

4S
)

[ψ] ,

where h1/4 := (
√

deth)1/2. For s ∈ [0, 1], let

As [ψ] (y) := A [ψ] (sy) .

As is proved in [16], we have
Proposition 5.24 Let U0 (0) ∈ CN ⊗ Σ2m, and let V0 ∈ C∞

(
B,CN ⊗ Σ2m

)
be the

constant function V0 (y) ≡ U0 (0). Then the Uk (y) which satisfy (21) are given by

Uk (y) = h (y)−1/4
Vk (y) , where

Vk (y) =
∫
Ik

∏k−1

i=0
(si)

i (
Ask−1 ◦ · · · ◦As0 [V0]

)
(y) ds0 . . . dsk−1, (22)

and where Ik = {(s0, . . . sk) : si ∈ [0, 1] , i ∈ {0, . . . , k − 1} } .
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Note that U0 (0) ∈ CN ⊗Σ2m may be arbitrarily specified, and once U0 (0) is chosen,
the Um (y) are uniquely determined via (22). Let hk (y) ∈ End

(
CN ⊗ Σ2m

)
be given by

hk (y) (U0 (0)) := Uk (y) (23)

(in particular, h0 (0) = I ∈ End
(
CN ⊗ Σ2m

)
), and

HQ (0, y, t) := E (r, t)
Q∑
k=0

hk (y) tk ∈ C∞
(
B,End

(
CN ⊗ Σ2m

))
.

We may regard HQ (0, y, t) as

HQ (x, y, t) ∈ Hom
(
Ex ⊗ Σ (X)x , Ey ⊗ Σ (X)y

)
,

where we recall that x ∈ X is the point about which we have chosen normal coordinates.
For y sufficiently close to x, we set

HQ (x, y, t) := E (d (x, y) , t)
Q∑
k=0

hk (x, y) tk.

Of course, one expects that HQ (x, y, t) provides the desired asymptotic expansion (19).
We will only state here without proof that

k (x, y, t) ∼ HQ (x, y, t) := E (d (x, y) , t)
∑Q

j=0
hj (x, y) tj

for d (x, y) sufficiently small, where the hj are given in (23).
Using normal coordinates

(
y1, . . . , y2m

)
∈ B (r0, 0) about x ∈ X and the radial

gauge, and selecting V0 ∈ CN ⊗ Σ2m, by Proposition 5.24, we have

hm (x, x) (V0) =
∫
Im

∏m−1

i=0
(si)

i
((
Asm−1 ◦ · · · ◦As0

) [
Ṽ0

])
(0) ds0 . . . dsm−1, (24)

where Ṽ0 ∈ C∞
(
B (r0, 0) ,CN ⊗ Σ2m

)
is the constant extension of V0. Recall that for

ψ ∈ C∞
(
B (r0, 0) ,CN ⊗ Σ2m

)
, we have

As [ψ] (y) := A [ψ] (sy) , where A [ψ] := h1/4∆[h−1/4ψ]−
(
F + 1

4S
)

[ψ] .

While the right side of (24) may seem unwieldy, there is substantial simplification due to
facts that

(
Asm−1 ◦ · · · ◦As0

)
[Ṽ0] (y) is evaluated at y = 0 in (24). Also, if γ1, . . . , γn

denote the so-called gamma matrices for Clifford multiplication by ∂1, . . . , ∂n, only those
terms ofAsm−1◦· · ·◦As0 [Ṽ0] (0) which involve the product γn+1 := γ1 · · · γn will survive
when the supertrace Str (hm (x, x)) is taken. As a consequence, we have the following
simplification contained in [16].
Proposition 5.25 LetRklji (0) = h

(
Ωθ (∂i, ∂j) ∂l, ∂k

)
denote the components of the Rie-

mann curvature tensor of h at x, and let Ωεij (0) := Ωε (∂i, ∂j) at x. Set

θ̃
1

(∂j) := 1
8

∑
k,l,i

Rklji (0) γkγlyi,
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F0 := 1
2

∑
i,j
Fij ⊗ γiγj = 1

2

∑
i,j

Ωεij (0)⊗ γiγj , and

A0 :=
∑

i

(
∂2
i + θ̃

1
(∂i)

2
)
−F0.

For V0 ∈ CN ⊗ Σ2m, define

h0
m (0, 0) (V0) :=

∫
Ik

∏m−1

i=0
(si)

i
((
A0
sm−1

◦ · · · ◦A0
s0

) [
Ṽ0

])
(0) ds0 . . . dsm−1, (25)

where Ṽ0 ∈ C∞
(
B (r0, 0) ,CN ⊗ Σ2m

)
is the constant extension of V0 ∈ CN ⊗ Σ2m.

Then

Str (hm (0, 0)) = Str
(
h0
m (0, 0)

)
.

In other words, in the computation of Str (hm (0, 0)) given by (24), we may replace A by
A0.

This is a substantial simplification, not only in that A0 is a second-order differen-
tial operator with coefficients which are at most quadratic in y, but it also shows that
Str (hm (x, x)) only depends on the curvatures Ωθ and Ωε at the point x. One might
regard the gist of the Index Formula for twisted Dirac operator as exhibiting the global
quantity index (D+) as the integral of a form which may be locally computed. From this
perspective, Proposition 5.25 does the job. Also, knowing in advance that index (D+)
is insensitive to perturbations in h and ε, one suspects that Str (hm (x, x)) νx can be ex-
pressed in terms of the standard forms which represent characteristic classes for TX and
E. The Local Index Formula confirms this. Moreover, for low values of m, say m = 1
or 2 (i.e., for 2 and 4-manifolds), one can directly compute Str

(
h0
m (0, 0)

)
using (25), and

thereby verify Theorem 5.21 and hence obtain Corollary 5.23 rather easily. For readers
who have no use for the Local Index Theorem beyond dimension 4, this is sufficient. It
requires more effort to prove Theorem 5.21 for general m. For lack of space, we cannot go
into the details of this here, but they can be found in [16]. It is well worth mentioning that
the appearance of the sinh function in the Local Index Formula has its roots in Mehler’s
formula for the heat kernel

ea (x, y, t) =
1√

4π sinh(2at)
2a

exp

(
− 1

4 sinh(2at)
2a

(
cosh (2at)

(
x2 + y2

)
− 2xy

))
.

of the generalized 1-dimensional heat problem

ut = uxx − a2x2u, u (x, t) ∈ R, (y, t) ∈ R× (0,∞) ,
u (x, 0) = f (x) ,

where 0 6= a ∈ R is a given constant. A solution of this problem is given by

u (x, t) =
∫ ∞
−∞

ea (x, y, t) f (y) dy,

and this reduces to the usual formula as a→ 0. The nice idea of using Mehler’s formula in
a rigorous derivation of the Local Index Theorem appears to be due to Getzler in [24] and
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[25], although it was at least implicitly involved in earlier heuristic supersymmetric path
integral arguments for the Index Theorem. In the same vein, further simplifications and
details can be found in [15] and [16].

While the Local Index Theorem (Theorem 5.21) is stated for twisted Dirac operators,
the same proof may be applied to obtain the index formulas for an elliptic operator, possibly
on a nonspin manifold, which is only locally of the form of twisted Dirac operator D+.
Indeed, if A is such an operator and k is the heat kernel for A∗A ⊕ AA∗, then from the
spectral resolution of A, we can still deduce from the asymptotic expansion of k that

index (A) = (4π)−m
∫
X

Str (hm (x, x)) νx,

where the supertrace Str is defined in the natural way. The crucial observation is that since
A is locally in the form of a twisted Dirac operator, we can compute Str (hm (x, x)) in
exactly the same way (i.e., locally) as we have done. Since it is not easy to find first-order
elliptic operators of geometrical significance which are not expressible in terms of locally
twisted Dirac operators (or 0-th order perturbations thereof), the Local Index Formula for
twisted Dirac operators is much more comprehensive than it would appear at first glance.

5.5 Standard geometric operators and applications

We state some special cases of the index formula for standard elliptic operators of natural
geometric significance (and their twists), other than the twisted Dirac operator which was
covered in Corollary 5.23. These geometric operators include

the signature operator d+ δ : (1 + ∗) Ω∗ (M)→ (1− ∗) Ω∗ (M) ,

the Euler-Dirac operator d+ δ : Ωeven (M)→ Ωodd (M) , and

the Dolbeult-Dirac operator
√

2
(
∂̄ + ∂̄∗

)
: Ω0,even (M)→ Ω0,odd (M) .

Here, d is exterior derivative, δ is the exterior coderivative (i.e., the formal adjoint d∗

of d), ∗ is the Hodge star operator, and ∂̄ and its adjoint ∂̄∗ are complex analogs of d
and d∗ on complex manifolds, which, along with Ω0,∗ (M), will be defined. The index
formula obtained for the above operators yields the Hirzebruch Signature Theorem, the
Chern-Gauss-Bonnet Theorem, and the Hirzebruch-Riemann-Roch Theorem, respectively.
Each of these is locally a twisted Dirac operator (or a direct sum of such), although space
limitations do not permit us to demonstrate this in each case. Indeed, perhaps the best way
to do this is uniformly is to introduce the notion of a Clifford module bundles (see [34],
Chapter II, §5 and §6). We will just state the final results and introduce the definitions
needed to understand them.

The Hirzebruch Signature Formula.

Let Λk(X)→ X denote the bundle of complex exterior k-covectors over the compact,
orientable C∞ Riemannian manifold X of even dimension n = 2m with metric tensor
g. Let Ωk (X) = C∞

(
Λk(X)

)
denote the space of C∞ sections of Λk(X), namely the

space ofC-valued k-forms onX . We have the exterior derivative d : Ωk (X)→ Ωk+1 (X)
and the codifferential δ : Ωk+1 (X) → Ωk (X) which is the formal adjoint of d. Let
∗k : Λk(X)→ Λn−k(X) be the Hodge star operator and define

τ :=
⊕n

k=0
τk :=

⊕n

k=0
im+k(k−1) ∗k and Λ± (X) := (1± τ) Λ∗

(
(TCX)∗

)
.
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For Ω± (X) = C∞ (Λ± (X)) , we have the Hirzebruch signature operator

(d+ δ)± : Ω± (X)→ Ω∓ (X) .

Let Hm(X)R be the space of R-valued m-forms α with (d+ δ)α = 0. Recall from
Example 4.5 that there is a quadratic form Q : Hm(X)→ R given by

Q(α) =
∫
X

α ∧ α =
∫
X

〈α, ∗mα〉g νg,

and for n ≡ 0 mod 4,

sig (X) := the signature of Q = index (d+ δ)+
.

(i.e., the analytical index of (d+ δ)+). We describe the topological index of (d+ δ)+ as
follows. The total L-class of X is defined by

L (X) =
∏m

j=1

rj
tanh rj

=
∑∞

k=0
Lk
(
σ1

(
r2
1, . . . , r

2
m

)
, . . . , σk

(
r2
1, . . . , r

2
m

))
inH∗ (X;Q), where the elementary symmetric polynomials σi

(
r2
1, . . . , r

2
m

)
are identified

with the Pontryagin classes of TX . In particular,

L0 = 1, L1 (σ1) =
1
3
σ1, L2 (σ1, σ2) =

7σ2 − σ2
1

45

L3 (σ1, σ2, σ3) =
62σ3 − 13σ2σ1 − 2σ3

1

945

L4 (σ1, . . . , σ3) =
381σ4 − 71σ3σ1 − 19σ2

2 + 22σ2σ
2
1 − 3σ4

1

14175
, . . . . (26)

As is proved in [34] (Theorem 13.9, p.256), the topological index of (d+ δ)+ is
L (X) [X] , which is known as the L-genus of X , denoted by L(X). The index formula
then yields
Theorem 5.26 (Hirzebruch Signature Theorem) Let X be a compact, oriented Rieman-
nian 2m-manifold, where m is even. Then

sig (X) = L (X) [X] =: L (X) = L-genus of X .

In terms of the Pontryagin classes pk = pk (TX) , we have

2m = 4 ⇒ sig (X) = 1
3p1 [X]

2m = 8 ⇒ sig (X) = 1
45

(
7p2 − p2

1

)
[X] ,

in particular, and one may extend this using (26).

There is a twisted version of this theorem which we now describe. Let E → X be a
Hermitian vector bundle with a covariant derivative ∇E arising from a unitary connection
1-form ε on the frame bundle U (E). There is an exterior covariant derivative operatorDε :
Ωk (X,E)→ Ωk+1 (X,E) which generalizes d : Ωk (X)→ Ωk+1 (X), but Dε ◦Dε 6= 0
if ε is not flat. Moreover, Dε has a formal adjoint δε : Ωk+1 (X,E) → Ωk (X,E). For
W = Λ∗

((
C2m

)∗)
, the twisted Hirzebruch signature operator is

(d+ δ)E,+ := Dε + δε : Ω+ (X,E)→ Ω− (X,E) , (27)

As is proved in [34] (Theorem 13.9, p.256), we have
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Theorem 5.27 (Twisted Hirzebruch Signature Theorem) Let X be a compact, oriented
Riemannian 2m-manifold, where m is even, and let E → X be a Hermitian vector bundle
with a covariant derivative∇E arising from a unitary connection 1-form ε on U (E). Then
the index of the twisted Hirzebruch signature operator

(d+ δ)E,+ : Ω+ (X,E)→ Ω− (X,E)

(where Ω± (X,E) := C∞ (E ⊗ Λ± (X))) is given by

index
(

(d+ δ)E,+
)

= (ch2 (E) ` L (X)) [X] ,

where ch2 (E) :=
⊕m

j=0 2jchj (E) .

The Gauss-Bonnet-Chern Formula.

Let Λeven
(
C2m

)
= ⊕k evenΛk

(
C2m

)
and Λodd

(
C2m

)
= ⊕k oddΛk

(
C2m

)
. The Eu-

ler operator is

(d+ δ)χ := d+ δ : Ωeven (X)→ Ωodd (X) ,

whose index (according to Hodge Theory) is the Euler characteristic χ (X). Indeed,

χ (X) := dim
(⊕m

k=0
H2k (X)

)
− dim

(⊕m

k=1
H2k−1 (X)

)
= dim

(⊕m

k=0
H2k (X)

)
− dim

(⊕m

k=1
H2k−1 (X)

)
= dim (Ker (d+ δ)χ)− dim

(
Ker ((d+ δ)χ)∗

)
= index ((d+ δ)χ) .

The topological index of (d+ δ)χ is the evaluation, on the fundamental cycle [X], of the
Euler class which is represented by the Gauss-Bonnet form

GB
(
Ωθ
)

= (−1)m Pf
(

1
2πΩθ

)
:=

1
22mπmm!

∑
(i)
εi1···i2mΩθi1i2 ∧ · · · ∧Ωθi2m−1i2m ,

where Ωθij = 1
2

∑
k,lRijklϕ

k ∧ ϕl and the Rijkl denote the components of the Riemann
curvature tensor (for the Levi-Civita connection θ) relative to a local orthonormal frame
field, with conventions such thatRijij is the sectional curvature of the plane dual to ϕi∧ϕj .
GB

(
Ωθ
)

is independent of the choice of local orthonormal framing. For dimX = 2,
GB

(
Ωθ
)

is K dv where K is the Gaussian curvature and dv is the area element. The
index formula for (d+ δ)χ is
Theorem 5.28 (Gauss-Bonnet-Chern Theorem) Let X be a compact, orientable, Rieman-
nian manifold of even dimension n = 2m, and let Hk (X) be the space of harmonic
k-forms on X . Then

index ((d+ δ)χ) =
∑n

k=0
(−1)k dim

(
Hk (X)

)
= GB (TX) [X] =

∫
X

GB
(
Ωθ
)
.
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There is also a twisted version of the Gauss-Bonnet-Chern Theorem. We define the
twisted Euler operator

(d+ δ)E,χ : Ωeven (X,E)→ Ωodd (X,E) := (d+ δ)E |Ωeven(X,E)

as the restriction (d+ δ)E |Ωeven(X,E) of the twisted DeRham-Dirac operator (d+ δ)E

in (27). It happens that the index of the twisted Euler operator is only affected by the
dimension of the twisting bundle E, rather than any actual twisting (i.e., nontriviality) of
E.
Theorem 5.29 (Twisted Gauss-Bonnet-Chern Theorem) Let X be a compact, oriented
Riemannian 2m-manifold, and let E → X be a Hermitian vector bundle with a covariant
derivative∇E arising from a unitary connection 1-form ε on U (E). Then the index of the
twisted Euler operator is given by

index
(

(d+ δ)E,χ
)

= dimE ·GB [TX] [X] = dimE · χ (X) .

The Generalized Yang-Mills Index Theorem

There are two interesting operators of Dirac type from which the signature operator
and the Euler operator can be generated. Moreover these operators are of fundamental
importance in the application of the Index Theorem to gauge theory. We have two decom-
positions (where Λ± (X) := (1± τ) Λ∗

(
(TCX)∗

)
) of Λ (X) := Λ∗

(
(TCX)∗

)
Λ (X) = Λ+ (X)⊕ Λ− (X) and Λ (X) = Λeven (X)⊕ Λodd (X)

By forming the intersections Λeven(odd),± (X) := Λeven(odd) (X) ∩ Λ± (X), we have the
finer decomposition

Λ (X) =
(
Λeven,+ (X)⊕ Λodd,− (X)

)
⊕
(
Λodd,+ (X)⊕ Λeven,− (X)

)
which we abbreviate byW e (X)⊕W o (X) . Consequently, we have two generalized Dirac
operators

DW
e

= d+ δ ∈ End
(
Ωeven,+ (X)⊕ Ωodd,− (X)

)
DW

o

= d+ δ ∈ End
(
Ωodd,+ (X)⊕ Ωeven,− (X)

)
,

where Ωeven(odd),± (X) := C∞
(
Λeven(odd),± (X)

)
. Note that

DW
e+ : Ωeven,+ (X)→ Ωodd,− (X) and

DW
o+ : Ωodd,+ (X)→ Ωeven,− (X) .

The signature operator can be written as

(d+ δ)+ = DW
e+⊕DW

o+ : Ωeven,+ (X)⊕Ωodd,+ (X)→ Ωodd,− (X)⊕Ωeven,− (X) ,

while the Euler operator is

(d+ δ)χ : DW
e+⊕

(
DW

o+
)∗

: Ωeven,+ (X)⊕Ωeven,− (X)→ Ωodd,− (X)⊕Ωodd,+ (X) .
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We can also twist with a Hermitian vector bundle E → X, to obtain the twisted operators

DW
e,E = (d+ δ)E ∈ End

(
Ωeven,+ (E)⊕ Ωodd,− (E)

)
DW

o,E = (d+ δ)E ∈ End
(
Ωodd,+ (E)⊕ Ωeven,− (E)

)
For reasons explained below, we call DW e,E and DW o,E Yang-Mills-Dirac operators.
The following is equivalent to the twisted signature theorem and the twisted Gauss-Bonnet
theorem combined.
Theorem 5.30 (The Yang-Mills-Dirac Index Theorem) LetX be a compact, oriented Rie-
mannian 2m-manifold, where m is even, and let E → X be a Hermitian vector bundle
with a covariant derivative∇E arising from a unitary connection 1-form ε on U (E). Then

index(DW
e,E+) = 1

2 (ch2 (E) ` L (X)) [X] + 1
2 dimE · χ (X) and

index(DW
o,E+) = 1

2 (ch2 (E) ` L (X)) [X]− 1
2 dimE · χ (X) .

Proof Using (d+ δ)E,+ = DW e,E+ ⊕DW o,E+, we have

index((d+ δ)E,+) = index(DW
e,E+) + index(DW

o,E+)

index (d+ δ)E,χ = index(DW
e,E+)− index(DW

o,E+).

The results follow from adding, subtracting and division by 2, since

index((d+ δ)E,+) = (ch2 (E) ` L (X)) [X]

index((d+ δ)E,χ) = dimE · χ (X) ,

by Theorems 5.27 and 5.29.
We now explain the “Yang-Mills-Dirac” nomenclature. Let E = P ×G gC, where

P → X is a principal G-bundle over a compact Riemannian 4-manifold X and gC is the
complexification of the Lie algebra of G. The kernel of the operator

T : Ω1 (E)→ Ω0 (E)⊕ Ω2
− (E) , given by T (α) :=

(
δωα, 1

2 (1− ∗)Dωα
)
,

can be regarded as the formal dimension of tangent space (at the class of the connection
ω) of the manifold of moduli (space of orbits under the action of gauge transformations)
of connections on P with self-dual curvature. The operator T bears a strong resemblance
to the operator

DW
o,E+ : Ωodd,+ (E)→ Ωeven,− (E) ,

which is the restriction of (d+ δ)E := Dω + δω ∈ End (Ω∗ (E)). Indeed, for

π± := 1
2 (1± τ) : Ω∗ (E)→ Ω∗,± (E) ,

we have π− ◦ T = DW o,E ◦ π+. We also have isomorphisms

π+|Ω1(E) : Ω1 (E) ∼= Ωodd,+ (E) ⊂ Ω1 (E)⊕ Ω3 (E) , and

π−|Ω0(E)⊕Ω2
−(E) : Ω0 (E)⊕ Ω2

− (E) ∼= Ωeven,− (E) .
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Thus, using ch2 (E) = dimE + 2ch1 (E) + 4ch2 (E), it follows that

index (T ) = index
(
π−|Ω0(E)

)−1 ◦ DW
o,E ◦ (π−|Ω0(E)⊕Ω2

−(E))

= index(DW
o,E+) = 1

2 (ch2 (E) ` L (X)) [X]− 1
2 dimE · χ (X)

= 1
2 ((dimE + 2ch1 (E) + 4ch2 (E)) ` L (X)) [X]− 1

2 dimE · χ (X)

= 1
2 (4ch2 (E) [X] + dimE · L (X) [X])− 1

2 dimE · χ (X)

= 2ch2 (E) [X]− 1
2 dimE · (χ (X)− sig (X)) ,

in agreement with the computation in the proof of Theorem 6.1 in [7].

The Hirzebruch-Riemann-Roch Formula

Let X be a complex manifold with n = dimX = 2 dimC X = 2m. In other words,
X is a smooth n-manifold, and there is a covering {U} of X and a collection {ϕU} of
coordinate charts ϕU : U → Cm, such that ϕV ◦ ϕ−1

U : ϕU (U ∩ V ) → ϕV (U ∩ V )
is holomorphic (i.e.,

(
ϕV ◦ ϕ−1

U

)
∗ : TϕU (x)Cm → TϕV (p)Cm is complex linear for each

x ∈ U ∩ V ). The tangent spaces TxX then possess a well-defined map Jx ∈ TxX (with
J2
x = − Idx) which corresponds to multiplication by i =

√
−1 under (ϕU )∗ : TxX →

TϕU (x)Cm ∼= Cm (i.e., Jx (X) = (ϕU )−1
∗ (iϕU (X))). The bundle automorphism J ∈

End (TX) is known as the complex structure of the complex manifold X . While it is
tempting to explicitly make TxX a complex vector space by defining iX to be JX for
X ∈ TxX , this ultimately leads to profound confusion, since it is customary (and of great
utility) to consider the complexification of the real vector space TxX , namely

(TCX)x := C⊗ TxX = {V + iW : V,W ∈ TxX} .

of complex dimension 2m. The problem is that multiplication by i in TCX is not the same
as the complex linear extension of J to TCX . In particular while J preserves the real
subspace TxX ⊂ (TCX)x, multiplication by i does not. Thus, we use Jx instead of i for
the complex structure on TxX . Let

ϕU (x) =
(
z1 (x) , . . . , zm (x)

)
=
(
x1 (x) + iy1 (x) , . . . , xm (x) + iym (x)

)
.

We define C-valued, R-linear functionals dzj and dz̄j on TxX via

dzj := dxj + idyj : TxX → C and dz̄j := dxj − idyj : TxX → C

Any R-linear functional on TxX , such as dzk or dz̄k, extends uniquely to a C-linear
functional on (TCX)x, and we use the same symbols to denote these extensions; i.e.,
dzj , dz̄j ∈ (TCX)∗x. The local complex vector fields (local sections of TCX) ∂zk :=
1
2

(
∂xk − i∂yk

)
and ∂z̄k := 1

2

(
∂xk + i∂yk

)
are dual to dzj and dz̄j ∈ (TCX)∗, in the

sense that dzj (∂zk) = δjk, dz̄j (∂z̄k) = δjk and dz̄j (∂zk) = dzj (∂z̄k) = 0. There is
complex-linear extension of Jx to (TCX)x. We denote this extension by the same sym-
bol Jx. Since J2

x = − Id, the eigenvalues of Jx are i and −i, and the eigenspaces of
Jx ∈ End ((TCX)x) are

T 1,0
x X := {V − iJV : V ∈ TxX} and T 0,1

x X := {V + iJV : V ∈ TxX} ,
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respectively. Note that {∂z1 , . . . , ∂zm} and {∂z̄1 , . . . , ∂z̄m} are local framings of
C∞

(
T 1,0
x X

)
and C∞

(
T 0,1
x X

)
, respectively. We set

Λp,0 (TCX
∗)x := the vector space of all anti-symmetric multi-complex-linear

functionals defined on T 1,0
x X ×

p
· · · × T 1,0

x X.

The Λp,0 (TCX
∗)x are the fibers of a complex vector bundle Λp,0 (TCX

∗) → X .
Let Ωp,0 (X) be the space of C∞ sections of Λp,0 (TCX

∗); i.e., Ωp,0 (X) :=
C∞

(
Λp,0 (TCX

∗)
)
. On a coordinate neighborhood U , such a section is of the

form 1
p!

∑
(j) fj1···jpdz

j1 ∧ · · · ∧ dzjp , where the fj1···jp ∈ C∞ (U,C) are anti-
symmetric in j1 · · · jp. Similarly, we may define the bundles Λ0,q (TCX

∗), and the
space Ω0,q (X) := C∞

(
Λ0,q (TCX

∗)
)

of sections which locally are of the form
1
q!

∑
(k) fk1···kqdz̄

k1 ∧ · · · ∧ dz̄kq . More generally, one has the bundles Λp,q (TCX
∗)

whose sections in Ωp,q (X) := C∞ (Λp,q (TCX
∗)) are called forms of bidegree (p, q),

locally of the form

1
p!q!

∑
(j)(k)

fj1···jp;k1···kqdz
j1 ∧ · · · ∧ dzjp ∧ dz̄k1 · · · ∧ dz̄kq .

Note that Ωl (X,C) := C ⊗ Ωl (X,R) ∼=
∑
p+q=l Ω

p,q (X). There is an operator ∂̄ :
Ω0,q (X)→ Ω0,q+1 (X) given locally by

∂̄(
∑

(k)
fk1···kqdz̄

k1∧· · ·∧dz̄kq ) :=
∑

(k)

m∑
k0=1

∂z̄k0 (fk1···kq )dz̄
k0∧dz̄k1∧· · ·∧dz̄kq .

More generally, one analogously defines ∂̄ : Ωp,q (X) → Ωp,q+1 (X), as well as
∂ : Ωp,q (X) → Ωp+1,q (X). While we have given these operators locally, they are in-
dependent of local holomorphic coordinates. The operator ∂ + ∂̄ is the restriction of the
usual exterior derivative on Ωp,q (X) ⊂ Ωp+q (X,C), namely

∂ + ∂̄ = d|Ωp,q(X) : Ωp,q (X)→ Ωp+1,q (X) + Ωp,q+1 (X) .

We have ∂2 = 0, ∂∂̄+∂̄∂ = 0 and ∂̄2 = 0, since 0 = d2 =
(
∂ + ∂̄

)2 = ∂2⊕
(
∂∂̄ + ∂̄∂

)
⊕

∂̄2. In particular, since ∂̄2 = 0, we have a chain complex 0 → Ω0,0 (X) ∂̄→ Ω0,1 (X) ∂̄→
· · · ∂̄→ Ω0,m (X) and Dolbeault cohomology spaces

H0,q (X) :=
Ker

(
∂̄|Ω0,q(X)

)
∂̄ (Ω0,q−1 (X))

.

In order to define harmonic representatives of Dolbeault cohomology classes, we need a
Hermitian metric to define an adjoint ∂̄∗ : Ω0,q+1 (X) → Ω0,q (X), for ∂̄ : Ω0,q (X) →
Ω0,q+1 (X). Suppose that we are given a Riemannian metric h on X , so that for all x ∈ X
and V,W ∈ TxX, we have

h (JV,W ) = −h (V, JW ) , or equivalently h (JV, JW ) = h (V,W ) .
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Such can always found by setting h (V,W ) = h0 (JV, JW ) + h0 (V,W ) for an arbitrary
metric h0. Then hx uniquely extends to a complex bilinear form hC onC⊗RTxX . Define a
Hermitian metricHx (complex linear in first slot and conjugate linear in the second slot) on
C⊗R TxX by H(V,W ) := (hC) (V,W ). There is a conjugate-linear bundle isomorphism
[ : (TCX)x → (TCX)∗x given, for V,W ∈ (TCX)x, by [x (V ) (W ) = H (W,V ). We
have [

(
T 1,0X

)
= Λ1,0 (TX∗) and [

(
T 0,1X

)
= Λ0,1 (TX∗). There is a conjugate-linear

inverse to [, denoted by # : (TCX)∗x → (TCX)x. NowH on (TCX)x induces a Hermitian
inner product (still denoted by H) on Λ1

(
(TCX)∗x

)
, given for α, β ∈ Λ1

(
(TCX)∗x

)
, by

H (α, β) = H (#β,#α), where the switch in the order is due to the conjugate linearity
of #. We then have an induced Hermitian inner product on Λk

(
(TCX)∗x

)
for 1 ≤ k ≤

m, where {ei1 ∧ · · · ∧ eik : i1 < · · · < ik} is an orthonormal basis for Λk
(
(TCX)∗x

)
if

e1, . . . , em is an orthonormal basis of Λ1
(
(TCX)∗x

)
. By restriction, we have Hermitian

inner products on Λp,q
(
(TCX)∗x

)
as well.

Let (·, ·) be the Hermitian L2 inner product on Ω0,q (X) induced by H :

(α, β) :=
∫
X

H (α, β) vh, with ‖α‖ :=
√

(α, α).

We may then speak of the formal adjoint ∂̄∗ : Ωp,q+1 (X)→ Ωp,q (X) of ∂̄ : Ωp,q (X)→
Ωp,q+1 (X), having the property

(
∂̄α, β

)
=
(
α, ∂̄∗β

)
. In order to exhibit a formula for ∂̄∗,

we have a C-linear star operator ∗ : Ωk (X,C)→ Ωn−k (X,C) determined by α ∧ ∗β :=
hC (α, β) vh for α, β ∈ Ωk (X,C) . Since dimR X = 2m is even, ∗2|Ωk(X,C) = (−1)k Id
and the formal adjoint of d : Ωk (X,R)→ Ωk+1 (X,R) is δ := −∗d∗. By the C-linearity
of ∗ and the fact that d is the C-linear extension of ∂ + ∂̄, δ has the C-linear extension

δ = − ∗ d∗ = − ∗
(
∂ + ∂̄

)
∗ = (− ∗ ∂∗)⊕

(
− ∗ ∂̄∗

)
We have ∗Ωp,q (X) = Ωm−q,m−p (X), from which it follows that(
− ∗ ∂̄∗

) (
Ωp+1,q (X)

)
⊆ Ωp,q (X) , while (− ∗ ∂∗)

(
Ωp+1,q (X)

)
⊆ Ωp+1,q−1 (X) .

Thus, for α ∈ Ωp,q (X) and β ∈ Ωp+1,q (X), we have H(dα, β) = H(∂α + ∂̄α, β) =
H(∂α, β), and H(α, δβ) = H(α,− ∗ ∂ ∗ β − ∗∂̄ ∗ β) = H(α,− ∗ ∂̄ ∗ β). Thus,∫

X

H(∂α, β)vh =
∫
X

H(dα, β)vh =
∫
X

hC(dα, β̄)vh =
∫
X

hC(α, δβ̄)vh

=
∫
X

hC(α, δβ)vh =
∫
X

H(α, δβ)vh =
∫
X

H(α,
(
− ∗ ∂̄∗

)
β)vh.

Similarly,
∫
X
H(∂̄α, β)vh =

∫
X
H(α, (− ∗ ∂∗)β)vh. Thus, the formal adjoints of ∂ and

∂̄ are given by ∂∗ = −∗∂̄∗ and ∂̄∗ = −∗∂∗. We define the space of harmonic (0, q)-forms
by

H0,q (X) :=
{
α ∈ Ω0,q (X) :

(
∂̄ + ∂̄∗

)
α = 0

}
.

We omit the standard proof (see [29, p.84]) of
Theorem 5.31 (Hodge Decomposition) There is an orthogonal decomposition

Ω0,q (X) = H0,q (X)⊕ ∂̄
(
Ω0,q−1 (X)

)
⊕ ∂̄∗

(
Ω0,q+1 (X)

)
= H0,q (X)⊕

(
∂̄∂̄∗

) (
Ω0,q (X)

)
⊕
(
∂̄∗∂̄

) (
Ω0,q (X)

)
.



David Bleecker 137

Corollary 5.32 Suppose that ∂̄γ = 0 for some γ ∈ Ω0,q (X). There is a unique α ∈
H0,q (X), such that for some β ∈ Ω0,q−1 (X), γ = α + ∂̄β. In other words, every
cohomology class in H0,q (X) has a unique harmonic representative.

Proof Theorem 5.31 yields a unique α ∈ H0,q (X) such that

γ = α+ ∂̄β + ∂̄∗β′

for some β ∈ Ω0,q−1 (X) and β′ ∈ Ω0,q+1 (X). Now

0 = ∂̄γ = ∂̄α+ ∂̄2β + ∂̄∂̄∗β′ = ∂̄∂̄∗β′

⇒
(
∂̄∂̄∗β′, β′

)
= 0⇒

∥∥∂̄∗β′∥∥2 = 0⇒ ∂̄∗β′ = 0.

Suppose that ∇ is the covariant derivative for the Levi-Civita connection of the Rie-
mannian metric h. It is always possible to choose coordinates about a point x ∈ X such
that the coordinate vector fields have vanishing ∇-derivatives at x. However, it is not nec-
essarily the case that such coordinates can be chosen of the form

(
x1, y1, . . . , xm, ym

)
,

where
(
z1, . . . , zm

)
=
(
x1 + iy1, . . . , xm + iym

)
is a complex-analytic coordinate chart.

If for each x ∈ X such coordinates can be found, then the complex manifold X with Rie-
mannian metric h is a Kähler manifold. While one can take this to be the definition of a
Kähler manifold, usually one of the other equivalent conditions in the following theorem
is taken to be the definition.
Theorem 5.33 Let X be a complex manifold with complex structure J , and Riemannian
metric h, with Levi-Civita covariant derivative∇. The following are equivalent.

I. About each x ∈ X, there is a complex chart
(
x1 + iy1, . . . , xm + iym

)
,

such that ∇ (∂xi) = ∇
(
∂yi
)

= 0 at x.

II.∇J = 0 (i.e., (∇J) (X) = J (∇X)−∇ (J (X)) = 0).

III. The 2-form Kähler 2-form κ ∈ Ω2 (X,R) , given by

κ (X,Y ) := h (X, JY ) , is closed (i.e., dκ = 0).

Note that κ ∈ Ω1,1 (X), since locally

κ (∂zj , ∂z̄k) = hC (J∂zj , ∂z̄k) = hC (i∂zj , ∂z̄k) = i (hC)jk̄ , and

κ (∂z̄j , ∂z̄k) = κ (∂zj , ∂zk) = 0⇒ κ = i
∑

j,k
(hC)jk̄ dz

j ∧ dz̄k.

Until further notice, we assume that X (with Riemannian metric h) is a Kähler manifold.
Then, it turns out that

√
2
(
∂̄ + ∂̄∗

)
: Ω0,even (X) → Ω0,odd (X) , strongly resembles a

standard Dirac operator, just as the bundle Λ0,∗ (X) strongly resembles a spinor bundle
Σ(X), with Λ0,even (X) and Λ0,odd (X) corresponding to Σ+(X) and Σ−(X). However,
a Kähler manifold need not admit a spin structure (e.g., CP 2), and so the analogy cannot
be precise. The underlying problem is that Λ0,∗ (TCX

∗) is associated to the unitary frame
bundle UX with group U(m), instead of the Spin(2m)-bundle P , where P → FX is a
spin structure over the orthonormal frame bundle FX . However, it is the case that for any
coordinate ball B ⊆ X , the bundle Λ0,∗ (TCX

∗) |B is isomorphic to a twist of the spinor
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bundle Σ(B) = P ×Spin(2m) Σ2m (associated to a spin structure P → FX|B) with a line
bundle L such that L ⊗ L ∼= Λ0,m (TCX

∗); i.e., L is a square-root of the canonical line
bundle Λ0,m (TCX

∗) of the complex manifold X . Moreover, under this isomorphism,
√

2
(
∂̄ + ∂̄∗

)even : Ω0,even(B)→ Ω0,odd(B)

is of the form of the standard Dirac operator over B twisted by L, namely

DL+ : C∞(L⊗ Σ+(B))→ C∞(L⊗ Σ−(B)).

While we will not go into the details here, there is a nice treatment of the necessary ma-
chinery (e.g., Spinc structures) in [34, Appendix D] that allows us to apply the Local Index
Theorem (Theorem 5.21) to obtain
Theorem 5.34 (Hirzebruch-Riemann-Roch Theorem) Let X be a compact Kähler mani-
fold. Then

Index
((
∂̄ + ∂̄∗

)
: Ω0,even (X)→ Ω0,odd (X)

)
= Td (TX) [X] .

There is also a twisted version of the Hirzebruch-Riemann-Roch Theorem. LetE → X
be a Hermitian vector bundle with a covariant derivative ∇E arising from a unitary con-
nection 1-form ε on U (E). We have the spaces Ωp,q (X,E) := C∞ (E ⊗ Λp,q (TCX

∗))
of E-valued forms of bidegree (p, q), which are locally of the form (in multi-index nota-
tion) φ = 1

p!q!

∑
(j),(k) f(j)p;(k)q

⊗dz(j)p ∧dz̄(k)q , where f(j)p;(k)q
is a local section of E.

Moreover, there are global operators

∂E : Ωp,q (X,E)→ Ωp+1,q (X,E) and ∂̄E : Ωp,q (X,E)→ Ωp,q+1 (X,E)

determined locally by

∂Eφ =
1
p!q!

∑
h,(j),(k)

∇E∂
zh

(
f(j)p;(k)q

)
dzh ∧ dz(j)p ∧ dz̄(k)q , and

∂̄Eφ =
1
p!q!

∑
h,(j),(k)

∇E∂
z̄h

(
f(j)p;(k)q

)
dz̄h ∧ dz(j)p ∧ dz̄(k)q . (28)

Note that just as ∂̄ + ∂̄∗ was shown to be locally a twisted Dirac operator (twisted locally
by L), ∂̄E + ∂̄E∗ is also locally a twisted Dirac operator (twisted locally by E ⊗ L). As a
consequence, we have
Theorem 5.35 (Twisted Hirzebruch-Riemann-Roch Theorem) LetX be a compact Kähler
manifold and let E → X be a Hermitian vector bundle. Then

Index
(
∂̄E + ∂̄E∗ : Ω0,even (X,E)→ Ω0,odd (X,E)

)
= (ch (E) ` Td (X)) [X] .

There is a version of Theorem 5.35 which applies when E → X is holomorphic. We
say that the complex vector bundle πE : E → X of complex fiber dimension N over the
complex manifold X is holomorphic if E has the structure of a complex manifold, and
about each point x ∈ X there is a neighborhood B and a biholomorphic vector bundle
map φB : π−1

E (B) → B × CN . If E is a holomorphic Hermitian bundle over a Kähler
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manifold and ∇E is the covariant derivative of a complex connection 1-form on GL (E)
which is a Hermitian connection and compatible with the complex structure on E, then
∂̄E defined in (28) satisfies ∂̄E ◦ ∂̄E = 0. By definition, the kernel of ∂̄E consists of the
holomorphic sections of E. We have an exact sequence

Ω0,0 (X,E) ∂̄E→ · · · ∂̄E→ Ω0,q (X,E) ∂̄E→ Ω0,q+1 (X,E) ∂̄E→ · · · ,

along with cohomology groups

Hq (OE) :=
Ker

(
∂̄E |Ω0,q(X,E)

)
∂̄E (Ω0,q−1 (X,E))

.

Hence, by a Hodge theoretic proof strictly analogous to that of Theorem 5.31, when E is
Hermitian and holomorphic we have

Hq (OE) ∼= Hq (E) := Ker
((
∂̄E + ∂̄E ∗

)
|Ω0,q(X,E)

)
.

The following theorem is then immediate.
Theorem 5.36 (Holomorphic Hirzebruch-Riemann-Roch Theorem) Let X be a compact
Kähler manifold and let E → X be a Hermitian holomorphic vector bundle. Then the
holomorphic Euler characteristic of E is given by

χ (E) :=
∑m

q=0
(−1)q dimHq (OE)

= Index
(
∂̄E + ∂̄E∗ : Ω0,even (X,E)→ Ω0,odd (X,E)

)
= (ch (E) ` Td (X)) [X] .

In particular, χ(E), which seems to depend on the holomorphic structure of E, actually
only depends on the topology of E.

6 Generalizations

6.1 The G-equivariant Index Theorem

Let G be a compact Lie group group which acts smoothly to the left on a compact n-
manifold X , via a C∞ map L : G × X → X . We write g · x = Lg(x) = L(g, x). Let
πE : E → X be a C∞ complex vector bundle over X and suppose that there is a left
action of G on E such that for all g ∈ G and e ∈ E, we have that π(g · e) = g · π(e) and
e 7→ g ·e defines a linear map Ex → Eg·x. Then πE : E → X is called aG-vector bundle.
For a section u ∈ C∞(E) and g ∈ G, we have a section g · u ∈ C∞(E) defined by

(g · u) (x) = g ·
(
u(g−1 · x)

)
for x ∈ X.

Let πF : F → X be another G-vector bundle.
Definition 6.1 An operator P : C∞(E) → C∞(F ) is a G-operator if for all g ∈ G, we
have P (g · u) = g · P (u).
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If P is an elliptic (pseudo-) differential G-operator, then KerP and CokerP are pre-
served by the action of G, and hence are representation spaces for G. Recall that R(G)
is the Grothendieck ring obtained from the abelian semi-group of equivalence classes of
finite-dimensional representations of G with addition induced by the direct sum. Tensor
product of representations induces a multiplication on R(G) making it a ring.
Definition 6.2 The index of an elliptic G-operator P : C∞(E)→ C∞(F ) is defined by

indG P = [KerP ]− [CokerP ] ∈ R(G).

Moreover, for g ∈ G, we define

indg P = trace (g : KerP → KerP )− trace (g : CokerP → CokerP ) .

To formulate the G-index Theorem, we need to define the topological index of an el-
liptic G-operator P in terms of its principal symbol, say σ(P ) ∈ C∞ (Hom(π∗E, π∗F )) .
Note that the action of G on X induces an action on T ∗X ∼= TX (via a G-invariant
metric on X). Using the fact that P is a G-operator, σ(P ) defines an element of
[σ(P )] ∈ KG(TX). We proceed along the same lines of the case where G is trivial.
One first selects a G-equivariant embedding f : X → Rn+m where Rn+m is a represen-
tation space for G. The existence of such is a consequence of the Peter-Weyl Theorem
(see [39]). Although it is more difficult to prove (especially if G is nonabelian), we have a
Thom isomorphism ϕTN→TX : KG(TX)→ KG(TN) and an extension homomorphism
h : KG(TN)→ KG(TRn+m). The composition h◦ϕTN→TX gives us a homomorphism

f! := h ◦ ϕTN→TX : KG(TX)→ KG(TRn+m).

Moreover, for i : {0} → Rn+m, we have i−1
! : KG(TRn+m)→ KG({0}) = R(G).

Definition 6.3 For an elliptic G-operator P : C∞(E) → C∞(F ) with symbol class
[σ(P )] ∈ KG (T ∗X), the topological G-index of P is defined by

topG - ind(P ) := i−1
! ◦ f!([σ(P )]) ∈ R(G).

For g ∈ G, the topological g-index of P is defined by

topg - ind(P ) := trace ((topG - ind(P )) (g)) .

The proof of the Index Formula (Theorem 5.9) generalizes (see [12] ) without difficulty
to yield the following
Theorem 6.4 (G-index formula) For an elliptic G-operator P : C∞(E)→ C∞(F ) over
a compact manifold X , we have

indG P = topG - ind(P ).

As whenG is trivial there is a cohomological form of topG-ind(P ). This is particularly
easy to deduce when G acts trivially on X . In that case, there is an isomorphism K(X)⊗
R(G) ∼= KG(X) induced by tensoring bundles over X on which G acts trivially with
product G-bundles X × Vi where Vi is an irreducible G-module (see [43]). Then we have

chG : KG(X)→ H∗(X;C)⊗R(G) given by ch⊗ Id on K(X)⊗R(G) ∼= KG(X),

and we also have (using compact supports) chG : KG(T ∗X)→ H∗(T ∗X;C)⊗R(G).
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Theorem 6.5 For an elliptic differentialG-operator P : C∞(E)→ C∞(F ), arising from
a G-action which is trivial on X , the topological index of P is given by

indG P = topG - ind(P ) = (−1)n {chG([σ(P )])Td(TX ⊗ C)} [TX] ,

where the symbol class [σ(P )] is regarded as in KG (T ∗X). Moreover, for g ∈ G,

indg P = (−1)n {tr (chG([σ(P )])g) Td(TX ⊗ C)} [TX] ,

where tr is the trace of chG([σ(P )])(g) in the R(G) factor of K(X)⊗ R(G) ∼= KG(X),
which results in an element of K(X).

Now suppose that the action of G on X is not trivial. For each g ∈ G, let Xg :=
{x ∈ X : g · x = x } denote the set of fixed points of g. Since there is a metric on X such
that G acts by isometries, it follows that Xg is a union of finitely many compact connected
submanifolds of X , say X1, . . . , Xkg , of possibly different dimensions d1, . . . , dkg . For
k = 1, . . . , kg , let ik : Xk → X be the inclusion and let Nk → Xk be the normal
bundle of Xk in X . We have ik∗ : TXk → TX and the normal bundle of TXk in TX
is TNk → TXk, which recall has a complex structure. We wish to compute indg(P )
as in Definition 6.2, and for this we may assume that G is the cyclic group generated
by g. Note that πk : TNk → TXk is a possibly nontrivial G-bundle. Recall that we
have Thom element λTNk ∈ KG(TNk) which provides the Thom isomorphism ϕk :
KG(TXk) → KG(TNk) via ϕk(a) = π∗k(a)λTNk . Then the extension homomorphism
hk : KG(TNk)→ KG(TX) yields (ik)! := hk ◦ ϕk : KG(TXk)→ KG(TX).
Theorem 6.6 (Atiyah-Segal-Singer Fixed- Point Formula) In the above notation, we have

indg(P ) =
∑kg

k=1
(−1)dk

(
chg((ik∗)

∗ [σ(P )])
chg(λTNk)

Td(TXk ⊗ C)
)

[TXk] ,

where the quotient has meaning in the context of the localization of the ring R(G) at g
since the trace of g in the representation defining λTNk is nonzero.

For a more thorough discussion of the proof, see [10], [34, p.259f] and [44, p.120f].
The references [4], [5], [34, p.259f] and [44, p.120f] also contain the major instances of
Theorem 6.6 obtained by using various standard elliptic operators P .

Elliptic Operator P Corresponding G-Theorem
d+ δ : Ωeven(X)→ Ωodd(X) Lefschetz Fixed-Point Theorem
d+ δ : Ω+(X)→ Ω−(X) G-Signature Theorem
∂ + ∂ : Ω0,even(X)→ Ω0,odd(X) Holomorphic Lefschetz Theorem
D± : C∞ (Σ± (X))→ C∞ (Σ∓ (X)) G-Spin Theorem

6.2 The Atiyah–Patodi–Singer Index Theorem

Let X be a compact, oriented Riemannian manifold with boundary Y = ∂X with
dimX = n = 2m even. Let D : C∞ (X,S) → C∞ (X,S) be a compatible opera-
tor of Dirac type where S → X is a bundle of Clifford modules. Relative to the splitting
S = S+⊕S− into chiral halves, we have the operatorsD+ : C∞ (X,S+)→ C∞ (X,S−)
and D− : C∞ (X,S−) → C∞ (X,S+) which are formal adjoints on sections with sup-
port in X \ Y . We assume that all structures (e.g., Riemannian metric, Clifford module,
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connection) are products on some collared neighborhood N ∼= [−1, 1] × Y of Y . Then
D+|N := D+ : C∞ (N,S+|N)→ C∞ (N,S−|N) has the form

D+|N = σ(∂u + B).

Here u ∈ [−1, 1] is the normal coordinate (i.e., N = {(u, y) | y ∈ Y, u ∈ [−1, 1]}) with
∂u = ∂

∂u the inward normal), σ = c (du) is the (unitary) Clifford multiplication by du
with σ (S+|N) = S−|N , and

B : C∞
(
Y, S+|Y

)
→ C∞

(
Y, S+|Y

)
denotes the canonically associated (elliptic, self-adjoint) Dirac operator over Y , called the
tangential operator. Note that due to the product structure, σ and B do not depend on
u. Let P≥(B) denote the spectral (Atiyah–Patodi–Singer) projection onto the subspace
L+(B) of L2(Y, S+|∂X) spanned by the eigensections corresponding to the nonnegative
eigenvalues of B. Let

C∞
(
X,S+;P≥

)
:=
{
ψ ∈ C∞

(
X,S+

)
| P≥(B) (ψ|Y ) = 0

}
, and

D+
P≥

:= D+|C∞(X,S+;P≥) : C∞
(
X,S+;P≥

)
→ C∞

(
X,S−

)
.

The eta function for B is defined by

ηB (s) :=
∑

λ∈specB−{0}
(signλ)mλ |λ|−s ,

for R (s) sufficiently large, where mλ is the multiplicity of λ. Implicit in the following
result (originating in [8]) is that ηB extends to a meromorphic function on all C, which is
holomorphic at s = 0 so that ηB (0) is finite.
Theorem 6.7 (Atiyah-Patodi-Singer Index Formula) The above operator D+

P≥
has finite

index given by

indexD+
P≥

=
∫
X

(
ch (S, ε) ∧ Ã (X, θ)

)
− m0 + ηB (0)

2
.

where m0 = dim (KerB) , ch (S, ε) ∈ Ω∗ (X,R) is the total Chern character form of the
complex vector bundle S with compatible, unitary connection ε, and Ã (X, θ) ∈ Ω∗ (X,R)
is closely related to the total Â (X, θ) form relative to the Levi-Civita connection θ, namely
Ã (X, θ)4k = 22k−mÂ (X, θ)4k.
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1 Introduction

Global analysis is essentially the global theory of differential equations on manifolds. It
naturally splits into a theory of ordinary (ODEs) and one of partial differential equations
(PDEs). The theory of ordinary differential equations can be embedded into the theory of
dynamical systems. In this contribution, we are concerned with PDEs on manifolds.

As very well known, there are many important PDEs of mathematical physics and ge-
ometry which have been intensively studied by global analysts. We will discuss a selection
of them and exhibit essential approaches of treatment and solving. Clearly, the methods
depend on the equations under consideration, on the choice of functional spaces, the com-
pactness or non-compactness of the underlying manifold, its geometry and topology. On
compact manifolds, one often uses (functional analytic) compactness arguments of Arzela-
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Ascoli type. On open manifolds these are not available, and versions of the continuity
method are a good approach. The intension of our contribution was to present as much
as possible approaches for solving, not to discuss as much as possible PDEs. The latter is
absolutely senseless. Too many important and interesting PDEs exist. Only for the reason
of space, we did not discuss Einstein’s equations, the Yamabe problem, Seiberg-Witten
theory, Melrose’s B-calculus (cf. [87]), B.-W. Schulze’s approach to manifolds with sin-
gularities (cf. [106], [107]) etc. Nevertheless, the theory of solving for these equations is
in principal contained in our contribution.

The contribution is organized as follows. Section 2 and 3 are devoted to linear and
non-linear Sobolev structures and give hence the functional analytic ”frame” for many ap-
proaches. The spectral properties of linearized differential operators play an essential role
in the theory of solutions. Therefore we sketch in sections 4 and 5 the spectral theory of
self-adjoint operators on manifolds. Section 6 is devoted to the heat equation and the heat
kernel and section 7 to the wave equation, Huygens’ principle and the Hamiltonian ap-
proach for the wave equation. Here we already indicate an important approach for solving
PDEs, namely to reformulate it as an ODE on an infinite-dimensional manifold. In section
8 we outline index theory on open manifolds. The continuity method is one of the key
approaches for non-linear PDEs. We present a basic version of it in section 9 and apply
this in the 10th section on Teichmüller theory. Concerning harmonic maps, we present the
heat flow method as established by Eells/Sampson. For more on harmonic maps, we refer
to John Wood’s contribution. In section 12, we discuss some non-linear field equations
and sketch the method of Agricola/Friedrich/Ivanow/Kim. They do not solve these equa-
tions by purely analytical methods – e.g. by deformations – but discuss these equations in
purely geometrical terms and search step by step for geometries which represent a solution
or single out others, respectively. Section 13 is devoted to gauge theory and section 14
contains a reformulation of equations of fluid dynamics as ODE on an infinite-dimensional
manifold. Finally, section 15 is devoted to the spectacular Ricci flow.

For reasons of space, we had to make a rigorous choice. Therefore we apologize to
whom we could not mention.

2 Sobolev spaces

Sobolev spaces or – more general – non-linear Sobolev structures provide the frame for the
solution of PDEs. There are still some other choices of functional spaces possible, but in
this contribution we essentially restrict to the Sobolev case. The theory of Sobolev spaces
for Euclidean bounded C∞-domains and that for closed manifolds are nearly parallel. In
distinction to the compact case, this theory on open manifolds has its own features. We
consider Sobolev spaces on open complete manifolds with Ck-bounded curvature tensor
and – sometimes – with positive injectivity radius. All presented theorems also hold for
compact manifolds since they have bounded geometry of infinite order.

Let (Mn, g) be a smooth Riemannian manifold, T = TM its tangent bundle and
T ∗ = T ∗M its cotangent bundle, Tuv = T⊗u ⊗ T ∗⊗v the bundle of u-contravariant and
v-covariant tensors and Λq = Λq(M) = ΛqT ∗M the qth exterior power. We denote by
Γ(·) = C∞(·) the vector space of smooth sections and by Γc(·) = C∞c (·) the subspace of
smooth sections with compact support. Let Ωq = Ωq(M) = C∞(Λq) denote the smooth
differential forms and Ω∗ =

∑
q≥0

Ωq . By ∇ = ∇g we denote the Levi-Civita connection,
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i. e. the unique metric and torsion-free connection with respect to g. R = Rg denotes
the curvature tensor, R(X,Y )Z = ∇X∇Y Z − ∇Y∇XZ − ∇[X,Y ]Z and K(X,Y ) =
g(R(X,Y )Y,X)/(|X|2 · |Y |2 − g(X,Y )2) the sectional curvature for X and Y linearly
independent.

Assume that (Mn, g) is oriented. If ϕ, ω ∈ C∞c (Λq) = Ωqc then there is a pre-Hilbert
scalar product defined by 〈ϕ,w〉 =

∫
M

ϕi1...iqωi1...iq dvolx(g) =
∫
M

g(ϕ, ω) dvolx(g) =∫
M

(ϕ, ω)x dvolx(g), where |ϕ|2L2
≡ |ϕ|22 = 〈ϕ,ϕ〉 =

∫
M

|ϕ|2g,x dvolx(g). We denote

Ωq,2 ≡ L2(Λq, g) = Ωqc
| |2

.
If ω ∈ Ωq , ω|U =

∑
i1<···iq

ωi1···iqdu
i1 ∧ · · · ∧ duiq , then dω = dqω is defined by

dω|U =
∑

i1<···<iq
(dωi1...iq )∧dui1 ∧· · ·∧duiq . It is known that d2 = dq+1dq = 0, whence

we obtain the de Rham complex

0 −→ Ω0 −→ Ω1 d1−→ · · · −→ Ωq
dq−→ Ωq+1 dq+1−→ · · · −→ Ωn −→ 0.

The map δ = δq+1 : Ωq+1 −→ Ωq is defined as the adjoint to dq w. r. t. 〈 , 〉, i.
e. 〈dϕ, ω〉 = 〈ϕ, δω〉 for ϕ ∈ Ωqc , ω ∈ Ωq+1

c . δq+1 can be expressed as δq+1 =
(−1)n(q+1)+n+1 ∗ dn−(q+1)∗, where ∗ is the Hodge ∗-operator ∗(ei1 ∧ · · · ∧ eiq+1) =
sign

(
1 2 ... n

i1i2...iq+1j1...jq−1

)
ej1 ∧ · · · ∧ ejq−1 , e1, . . . en being an orthonormal cobasis in T ∗xM .

∆ = ∆q = dq−1δq + δq+1dq : Ωq −→ Ωq is the Laplace operator. It is symmetric on
Ωqc ⊂ Ωq,2 ≡ L2(Λq, g) and ≥ 0.

If (E, h,∇) −→ (Mn, g) is a Riemannian or Hermitean fibre bundle with fibre metric
h = h(·, ·) and metric connection ∇ = ∇E = ∇h, then we can similarly define its
curvature R = RE ∈ Ω2(EndE), RE(X,Y )ϕ = ∇X∇Y ϕ − ∇Y∇Xϕ − ∇[X,Y ]ϕ,
where for a vector bundle F −→M , Ωq(F ) = C∞(Λq⊗F ) is the space of q−forms with
values in F . If E is flat, i. e. RE = 0, then we obtain the de Rham complex with values in
EX .

0 −→ Ω0(E) −→ Ω1(E) −→ · · · −→ Ωq(E)
dq−→ Ωq+1(E) −→ · · · −→ Ωn(E) −→ 0

with dEq+1d
E
q = d2 = 0, where dEq (ω ⊗ ϕ) = dqω ⊗ ϕ + (−1)qω ∧ ∇Eϕ. g, h and the

Riemannian measure define a global scalar product by 〈ω ⊗ ϕ, ω′ ⊗ ϕ′〉 =
∫
M

(ω, ω′)g,x ·

(ϕ,ϕ′)h,x dvolx(g), ω⊗ϕ, ω′⊗ϕ′ ∈ Ωqc(E), that extends linearly. Thus there is an adjoint
operator δ = δq+1 = δEq+1 : Ωq+1(E) −→ Ωq(E). ∆q = ∆E

q = dEq−1δ
E
q + δEq+1d

E
q :

Ωq(E) −→ Ωq(E) is the Laplace operator acting on q-forms with values in E. ∆q and
∆E
q satisfy Weitzenboeck formulas. In local coordinates these are

(∆1ω)i = −∇r∇rωi +Rirω
r for q = 1, (2.1)

(∆qω)i1...iq = −∇r∇rωi1...iq +
q∑
a=1

Rriaωi1...r...iq +

+
∑
a<b

Rrsiaibωi1...r...s...iq for n ≥ q ≥ 2. (2.2)

Here Rir = Ric
(
∂
∂ui ,

∂
∂ur

)
etc.
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For ∆E
q there is actually a more general formula which includes (2.1) and (2.2) as

special cases. LetR denote the curvature of the tensor product connection on ΛqT ∗M⊗E.
For Φ ∈ Ωq(E) and an orthonormal basis e1, . . . , en ∈ TxM , v1, . . . , vq ∈ TxM , define

R(Φ)v1, . . . vq ≡ R(Φ)(v1, . . . , vq) =
q∑

k=1

n∑
j=1

R(ej , vk)Φv1,...,vk−1,ej ,vk+1,...,vq (2.3)

Then

∆E
q = ∇∗∇+R.

The proof uses the explicit expressions for dE and δE ,

(dEΦ)v0,...,vq =
q∑

k=0

(−1)k(∇vkΦ)(v0, . . . , v̂k, . . . , vq), (2.4)

(δEΦ)v2,...,vq = −
n∑
j=1

(∇ejΦ)(ej , v2, . . . , vq). (2.5)

Inserting (2.4), (2.5) into ∆E
q = dEq−1δ

E
q + δEq+1d

E
q yields (2.3). An easy calculation

exhibits (2.1), (2.2) as special cases of (2.3) for E = M × R.
We define now Clifford bundles and the generalized Dirac operator. For x ∈ M let

CLx = CL(TxM, gx) be the Clifford algebra at x. CLx could be complexified, depend-
ing on the other bundles and structures under consideration. A Hermitean vector bundle
(E, h,∇E) −→ (Mn, g) is called a bundle of Clifford modules if each fibre Ex is a
Clifford module over (the complexified) algebra CLx with skew-symmetric Clifford mul-
tiplication. The metric connection ∇E is a Clifford connection if it satifies the Leibniz
rule

∇Ex (Y · ϕ) = (∇gxY ) · ϕ+ Y · ∇Ex ϕ, X, Y ∈ TxM, ϕ ∈ X∞(E). (2.6)

Then (E, h,∇E , ·) −→ (Mn, g) is called a Clifford bundle. The composition

D = · ◦ g−1 ◦ ∇ : Γ(E) ∇−→ Γ(T ∗M ⊗ E)
g−1

−→ Γ(TM ⊗ E) ·−→ Γ(E)

is called the generalized Dirac operator D. Set D = D(E, h,∇E , ·, g). If e1, . . . , en ∈
TxM is an orthonormal basis of TxM , then D =

n∑
i=1

ei ·∇ei . D is a first order elliptic and

symmetric operator on C∞c (E) = Γc(E).
Examples 2.1 1) The simplest standard example is (E = Λ∗T ∗M ⊗ C, gΛ∗ ,∇gΛ∗ ) −→
(Mn, g) with Clifford multiplication

X ⊗ ω ∈ TxM ⊗ (Λ∗T ∗ ⊗ C) −→ X · ω = ωx ∧ ω − ixω, (2.7)

where ωx = g(·, X). It is well known that in this case

D = d+ d∗ = d+ δ,

D2 = (d+ δ)2 = ∆ = graded Laplace operator = ∆0 ⊕ · · · ⊕∆n. (2.8)
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Any result concerning generalized Dirac operators D2 is simultaneously a result for
Laplace operators.

If we consider a twisted Clifford structure E ⊗ F , (F, hF ,∇F ) −→ (Mn, g), ∇(e ⊗
f) = (∇Ee)⊗f+e⊗∇F f , X ·E⊗F (e⊗f) = (X ·E e)⊗f , we get a twisted generalized
Dirac operator. In (2.7) above, D2 is then the graded Laplace operator acting on forms
with values in F .

Let ∆E = (∇E)∗∇E be the Bochner-Laplace operator,

(∆Eϕ)(x) = −
n∑
i=1

(∇Eei∇
E
eiϕ)(x),

where e1, . . . , en is an orthonormal basis in TxM satisfying∇ei|x = 0. Then D2 satisfies
a Weitzenboeck formula

D2 = ∆E +R (2.9)

whereRϕ = 1
2

n∑
j=1

ei · ej ·RE(ei · ej)ϕ.

2) If (Mn, g) admits a spin structure, and S is the associated (graded or not) spinor bundle
with fibre metric hS and spin connection ∇S , then (S, hS ,∇S) −→ (Mn, g) is a Clifford
bundle and its generalized Dirac operator is the classical Dirac operator.

Next we will define bounded geometry. Given x ∈ M , the map expx : TxM −→ M ,
expx(X) = c(1), where c(t), 0 ≤ t ≤ 1, is called the geodesic solution of ∇ċċ =
0, c(0) = x, ċ(0) = X , is the exponential map. If it is defined for all x ∈ M and
all X ∈ TxM , (Mn, g) is called complete. According to the Hopf-Rinow theorem this
is equivalent to the completeness of (Mn,distg(·, ·)) as metric space or to the fact that
every bounded set is relatively compact. The number sup{r | expx : Br(0) ⊂ TxM −→
M is a diffeomorphism} is the injectivity radius of (Mn, g) at x, rinj(x). rinj(Mn, g) =
inf
x
rinj(x) is the injectivity radius of (Mn, g). We say (Mn, g) has bounded geometry up

to order k if it satifies the conditions (I) and (Bk(M, g)),

rinj(M, g) > 0 (I)
|∇iR| ≤ Ci, ∀i = 0, . . . , k. (Bk(M, g))

The condition (B∞(M, g)) means |∇iR| ≤ Ci, i = 1, 2, . . . . Every closed Rieman-
nian manifold satifies (I) and (B∞). Examples of open manifolds satifying (I) and (B∞)
are homogeneous spaces or Riemannian coverings of closed manifolds. Greene has proven
in [66] that every open manifold admits a metric g satisfying (I) and (B∞), i. e. bounded
geometry does not affect the topological type. We restrict in most of our considerations to
bounded geometry. The reason for this is the fact that then Sobolev analysis is available,
e. g. embedding theorems, module structure theorems and many invariance properties. If
we give up (I) for instance, then these theorems do not apply. Parts of them still hold by
using weighted Sobolev spaces, but this requires additional effort.

We list some important consequences of (I) and (Bk).
Proposition 2.2 a) (I) implies completeness of (Mn, g).

b) If (Mn, g) satifies (I) and (Bk) and U = {(Uα,Φα)}α is a locally finite cover by
normal charts, then there exist constants Cβ , C ′β , C ′γ , multi-indexed by β, γ, such that

|Dβgij | ≤ Cβ , |Dβgij | ≤ C ′β , for |β| ≤ k (2.10)
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and

|DγΓmij | ≤ C ′γ , |γ| ≤ k − 1, (2.11)

all constants are independent of α.
c) If (E, h,∇E) −→ (Mn, g) is a Riemannian vector bundle satifying (I),

(Bk(M, g)), (Bk(E,∇)), then additionally to (2.10), (2.11) there holds for the connection
coefficients Γµiλ defined by∇ ∂

∂ui
ϕλ = Γµiλϕµ, {ϕµ}µ a local orthonormal frame obtained

by radial parallel translation,

|DβΓµiλ| ≤ Dβ , |β| ≤ k − 1. (2.12)

Proof Under the assumption of (I) any Cauchy sequence (xν)ν in M can be considered,
up to quasi-isometry, as contained in a small closed Euclidean ball, omitting only a finite
number of the xν’s. This proves a). b) and c) are the content of [46].

Proposition 2.3 Assume (Mn, g) satisfies (I) and (B0). There exists ε0 > 0 such that for
any ε ∈]0, ε0[ there is a countable cover of M by geodesic balls Bε(xi),

⋃
i

Bε(xi) = M ,

such that the cover of M by the balls B2ε(xi) with double radius and same centers is still
uniformly locally finite.

We refer to [82] for the proof.
Proposition 2.3 implies the existence of an associated uniform partition of unity.

Proposition 2.4 Assume (Mn, g) open with (I) and (Bk) and r ∈]0, rinj[. For every

0 < ε < r
2 there exists a partition of unity 1 =

∞∑
i=1

ψi on M such that

1) ψi ≥ 0, ψi ∈ C∞c (M), supp ψi ⊂ B2ε(xi), where the sequence {xi}i comes from
proposition 2.3,

2) |Dβ
uψi(u

1, . . . , un)| ≤ Cβ , |β| ≤ k+2, where (u1, . . . , un) are normal coordinates
in B2ε(xi).

We refer to [82], [110] for the proof.
Bounded geometry also ensures a good approximation d̃ for the Riemannian distance

dist(·, ·) = d, d(x, y) = inf{length (c) | c joins x and y}. d itself is only Lipschitz.
Proposition 2.5 Take (Mn, g) with (I) and (Bk). There exists a function d̃ : M ×M −→
[0,∞[ satisfying the following properties.

1) There exists % > 0 s. t.

|d̃(x, y)− d(x, y)| < %

for every x, y ∈M .
2) For every multi-index β, 1 ≤ |β| ≤ k + 1, there exists Cβ > 0, s. t. in normal

coordinates (y1, . . . , yn)

|Dβ
y d̃(x, y)| ≤ Cβ .

Moreover, for every ε > 0 there exists a function d̃ : M ×M −→ [0,∞[ satisfying 1) with
% < ε.
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We refer to [82] for the proof.
Let (E, h,∇h) −→ (Mn, g) be a Riemannian vector bundle. Then the Levi-Civita

connection∇g and∇h define metric connections∇ in all tensor bundles Tuv ⊗E. Denote
smooth sections as above by C∞(Tuv ⊗E), by C∞c (Tuv ⊗E) those with compact support.
In the sequel we shall writeE instead of Tuv ⊗E, keeping in mind thatE can be an arbitrary
vector bundle. Now we define for p ∈ R, 1 ≤ p <∞ and r a non-negative integer

|ϕ|p,r :=

(∫ r∑
i=0

|∇iϕ|px dvolx(g)

)1/p

,

Ω0,p
r (E) ≡ Ωpr(E) = {ϕ ∈ C∞(E) | |ϕ|p,r <∞},

Ω̄0,p,r(E) ≡ Ω̄p,r(E) = completion of Ωpr(E) with respect to | · |p,r,
o

Ω0,p,r(E) ≡
o

Ωp,r(E) = completion of C∞c (E) with respect to | · |p,r and
Ω0,p,r(E) ≡ Ωp,r(E) = {ϕ | ϕ measurable distributional section with |ϕ|p,r <∞}.

Here we use the standard identification of sections of a vector bundle E with E-valued
zero-forms. Ωq,p,r(E) stands for a Sobolev space of q-forms with values in E.

For p = 2, we often use the notations | |2,0 = | |L2 = | |2 = || ||. Furthermore, we
define

b,m|ϕ| :=
m∑
i=0

|∇iϕ|x,

b,mΩ(E) = {ϕ | ϕ Cm-section and b,m|ϕ| <∞}, and
b,m

o

Ω(E) = completion of C∞c (E) with respect to b,m| · |.

b,mΩ(E) equals the completion of

b
mΩ(E) = {ϕ ∈ C∞(E) | b,m|ϕ| <∞}

with respect to b,m| · |.
Denote by b,∞Ω(E) the locally convex space of smooth sections ϕ such that ∇sϕ is

bounded for s = 0, 1, 2, . . . .

Proposition 2.6 The spaces
o

Ωp,r(E), Ω̄p,r(E), Ωp,r(E), b,m
o

Ω(E), b,mΩ(E) are Banach
spaces and there are inclusions

o

Ωp,r(E) ⊆ Ω̄p,r(E) ⊆ Ωp,r(E),
b,m

o

Ω(E) ⊆ b,mΩ(E).

If p = 2, then
o

Ω2,r(E), Ω̄2,r(E), Ω2,r(E) are Hilbert spaces.
o

Ωp,r(E), Ω̄p,r(E), Ωp,r(E) are different from one another in general.
Proposition 2.7 If (Mn, g) satisfies (I) and (Bk), then

o

Ωp,r(E) = Ω̄p,r(E) = Ωp,r(E), 0 ≤ r ≤ k + 2.
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We refer to [45] for the proof.
Embedding theorems are of great importance in non-linear global analysis and even

more the module structure theorem which we present now.
Theorem 2.8 a) Assume r − n

p ≥ s−
n
q , r ≥ s. Let B ⊂ Rn be a Euclidean ball. Then

o

Ωp,r(B × Rn) ↪→
o

Ωq,s(B × Rn)

continuously.
b) If r − n

p > s, s ∈ Z+, then

o

Ωp,r(B × Rn) ↪→ b,s
o

Ω(B × Rn)

continuously.

The global version of a) looks slightly different.
Theorem 2.9 Let (E, h,∇E) −→ (Mn, g) be a Riemannian vector bundle satisfying (I),
(Bk(Mn, g)), (Bk(E,∇)), k ≥ 1.

a) Assume k ≥ r, r − n
p ≥ s−

n
q , r ≥ s, q ≥ p. Then

Ωp,r(E) ↪→ Ωq,s(E) (2.13)

continuously.
b) If r − n

p > s, then

Ωp,r(E) ↪→ b,sΩ(E) (2.14)

continuously.

We refer to [43] for a proof.
Now we come to the module structure theorem.

Theorem 2.10 Let (Ei, hi,∇i) −→ (Mn, g) be vector bundles with (I), (Bk(Mn, g)),
(Bk(Ei,∇i)), i = 1, 2. Assume 0 ≤ r ≤ r1, r2 ≤ k. If r = 0 assume

r − n
p < r1 − n

p1

r − n
p < r2 − n

p2

r − n
p ≤ r1 − n

p1
+ r2 − n

p2
1
p ≤ 1

p1
+ 1

p2

 or


r − n

p ≤ r1 − n
p1

0 < r2 − n
p2

1
p ≤ 1

p1

 or


0 < r1 − n

p1

r − n
p ≤ r2 − n

p2
1
p ≤ 1

p2

 .

If r > 0, assume 1
p ≤

1
p1

+ 1
p2

and
r − n

p < r1 − n
p1

r − n
p < r2 − n

p2

r − n
p ≤ r1 − n

p1
+ r2 − n

p2

 or


r − n

p ≤ r1 − n
p1

r − n
p ≤ r2 − n

p2

r − n
p < r1 − n

p1
+ r2 − n

p2

 .

Then the tensor product of sections defines a continuous bilinear map

Ωp1,r1(E1,∇1)× Ωp2,r2(E2,∇2) −→ Ωp,r(E1 ⊗ E2,∇1 ⊗∇2). (2.15)
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We refer to [43] for the proof.
Corollary 2.11 Assume r = r1 = r2, p = p1 = p2, r > n

p .
(a) If E1 = M × R, E2 = E, then Ωp,r(E) is a Ωp,r(M × R)-module.
(b) If E1 = M × R = E2, then Ωp,r(M × R) is a commutative, associative Banach

algebra.
(c) If E1 = E = E2, then the tensor product of sections defines a continuous map

Ωp,r(E)× Ωp,r(E) −→ Ωp,r(E ⊗ E).

We extend our considerations to weighted Sobolev spaces, of which there are sev-
eral different definitions. We consider here two definitions which coincide in the case of
bounded geometry. Denote by %y = d(y, x) the Riemannian distance between the points
y, x ∈ M . Although %y(x) is not C1 we can achieve differentiability by approximation,
see proposition 2.5.
Lemma 2.12 Assume (Mn, g) with (I) and (Bk). Then there exist a Ck+2-function %̃y
and constants C,C1, . . . , Ck+2, such that

|%y(x)− %̃y(x)| ≤ C (2.16)

and

|∇i%̃y| ≤ Ci, 1 ≤ i ≤ k + 2. (2.17)

We refer to proposition 2.5 or [8], [82] for a proof.
Now we define for ε > 0, y ∈M

Ωp,rε,y(E) := {ϕ ∈ D′(E) | eε%̃yϕ ∈ Ωp,r(E)}.

and

Ω′p,rε,y(E) := {ϕ ∈ D′(E) | |eε%y∇iϕ|p,0 <∞, i = 0, . . . , r}.

Both are Banach spaces endowed with the norms

|ϕ|p,r,ε,y := |eε%̃yϕ|p,r

and

|ϕ|′p,r,ε,y :=

(∫ r∑
i=0

|eε%y∇iϕ|px dvolx(g)

)1/p

,

respectively. Both norms depend on the base point, but different base points give equivalent
norms. The independence of the choice of %̃ (up to equivalence) is expressed by
Proposition 2.13 For r ≤ k, Ωp,rε,y(E) and Ω′p,rε,y(E) are equivalent Banach spaces.

Proposition 2.14 Assume (E, h,∇), (Mn, g) as above, r, s ≤ k. If r− n
p ≥ s−

n
q , r ≥ s,

q ≥ p, ε1 ≥ ε2, then

Ωp,rε1,y(E) ↪→ Ωq,sε2,y(E)

continuously.
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Theorem 2.15 Assume (Ei, hi,∇i), i = 1, 2, (Mn, g) as above, 0 ≤ r1, r2 ≤ r ≤ k,
r − n

p ≤ ri −
n
pi

, r − n
p ≤ (r1 − n

p1
) + (r2 − n

p2
), 1
p ≤

1
p1

+ 1
p2

. Then the tensor product
of sections defines a bilinear map

Ωp1,r1
ε1,y (E1)× Ωp2,r2

ε2,y (E2) −→ Ωp,rε1+ε2,y(E1 ⊗ E2).

Corollary 2.16 Assume (Ei,∇i), (Mn, g), k, ri, r, pi, p as above, ε1 = ε2 = ε. Then the
tensor product of sections defines a continuous map

Ωp1,r1
ε,y (E1)× Ωp2,r2

ε,y (E2) −→ Ωp,rε,y(E1 ⊗ E2).

Corollary 2.17 Assume (Mn, g) with (I) and (Bk), r ≤ k, r > n
p , p ≥ 1, E = M × R.

Then Ωp,rε,y(Mn × R) is an algebra.

Given (E, h,∇E) −→ (Mn, g), for fixed E −→ M , r ≥ 0, p ≥ 1, the Sobolev
space Ωp,r(E) = Ωp,r(E, h,∇E , g,∇g, dvolx(g)) depends on h, ∇ = ∇E and g. More-
over, if we choose another sequence of differential operators with injective symbol, e. g.
D,D2, . . . in case of a Clifford bundle, we should get other Sobolev spaces. Hence two
questions arise, namely

1) the dependence on the choice of h,∇E , g,
2) the dependence on the sequence of differential operators.
We start with the first issue and investigate the dependence upon the metric connection

∇ = ∇E of (E, h). If ∇′ = ∇′E is another metric connection then η = ∇′ − ∇ is a
1-form with values in GE , ∇′ − ∇ ∈ Ω1(G) = Ω(T ∗M ⊗ GE). Here G is the bundle
of the skew-symmetric endomorphisms. ∇ = ∇E induces a connection ∇ = ∇GE in GE

and hence a Sobolev norm |∇′ −∇|∇,p,r = |∇′ −∇|h,∇,g,∇g,p,r.
Theorem 2.18 Assume (E, h,∇E) −→ (Mn, g) with (I), (Bk(M)), (Bk(E,∇E)), k ≥
r > n

p + 1. Let∇′ = ∇′E be a second metric connection with (Bk(E,∇′E)) and suppose

|∇′ −∇|∇,p,r−1 <∞.

Then

Ωp,%(E, h,∇, g) = Ωp,%(E, h,∇′, g), 0 ≤ % ≤ r

as Sobolev spaces.

2.18 can be extended to a more general
Theorem 2.19 Let (E, h,∇) −→ (Mn, g) be a Riemannian vector bundle with (I),
(Bk(Mn, g)), (Bk(E,∇)), k ≥ r > n

p + 1. Suppose h′ is a fibre metric on E with met-
ric connection∇′ and g′ a metric on Mn with (I), (Bk(Mn, g′)), (Bk(E,∇′)) satisfying
C ·h ≤ h′ ≤ D ·h, C1 ·g ≤ g′ ≤ C2 ·g, |∇′−∇|h,∇,g,p,r−1 <∞, |∇g

′
−∇g|g,p,r−1 <∞.

Then

Ωp,%(E, h,∇, g) = Ωp,%(E, h′,∇′, g′), 0 ≤ % ≤ r,

as equivalent Sobolev spaces.

We are left with the dependence on the sequence of differential operators. This can be
answered by the following two theorems.
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Theorem 2.20 Let (Mn, g) be an open Riemannian manifold satisfying (B∞(Mn, g)).
Then

o

Ωq,2,2s(M,∇) =
o

Ωq,2,2s(M,∆), 0 ≤ q ≤ n, s = 0, 1, 2, . . . .

as equivalence of Sobolev spaces.

Here the Ω’s are Sobolev spaces of forms.
Theorem 2.21 Let (E, h,∇, ·) −→ (Mn, g) be a Clifford bundle satisfying (B∞(Mn, g))
and (B∞(E,∇)). If (Mn, g) is complete then

Ω2,r(E,∇) = Ω2,r(E,D), r = 0, 1, 2, . . .

as equivalent Sobolev spaces.

We refer to [43], [100] for the proof.

3 Non-linear Sobolev structures

If there is given a PDE for non-linear objects like metrics, connections or maps, then one
should define Sobolev structures also for such a class of objects. On closed manifolds,
there arises no problem. One simply defines such a structure by means of a finite cover by
charts and grafts the Euclidean definitions. Another cover yields an equivalent structure.
For open manifolds, this is totally wrong. We developed a natural, intrinsic approach by
means of uniform structures which we sketch below and which yields back the classical
compact case.

The key notation is that of a uniform structure. Let X be a set. A filter F on X is a
system of subsets which satisfies

(F1) M ∈ F,M1 ⊇M implies M1 ∈ F.
(F2) M1, . . . ,Mn ∈ F implies M1 ∩ · · · ∩Mn ∈ F.
(F3) ∅ /∈ F.

A system U of subsets ofX×X is called a uniform structure onX if it satisfies (F1), (F2)
and

(U1) Every U ∈ U contains the diagonal ∆ ⊂ X ×X.
(U2) V ∈ U implies V −1 ∈ U.

(U3) If V ∈ U then there exists W ∈ U such that W ◦W ⊂ V.

The sets of U are called neighbourhoods of the uniform structure and (X,U) is called the
uniform space.

B ⊂ P(X ×X) (= sets of all subsets of X ×X) is a basis for a uniquely determined
uniform structure if and only if it satisfies the following conditions:

(B1) If V1, V2 ∈ B then V1 ∩ V2 contains an element of B.

(U ′1) Each V ∈ B contains the diagonal ∆ ⊂ X ×X.
(U ′2) For each V ∈ B there exists V ′ ∈ B such that V ′ ⊆ V −1.

(U ′3) For each V ∈ B there exists W ∈ B such that W ◦W ⊂ V.
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Every uniform structure U induces a topology on X . Let (X,U) be a uniform space.
Then for every x ∈ X , U(x) = {V (x)}V ∈U is the neighbourhood filter for a uniquely
determined topology on X . This topology is called the uniform topology generated by the
uniform structure U. We refer to [105] for the proofs and further informations on uniform
structures. We ask under which conditions U is metrizable. A uniform space (X,U) is
called Hausdorff if U satisfies the condition

(U1H) The intersection of all sets ∈ U is the diagonal ∆ ⊂ X ×X.

Then the uniform space (X,U) is Hausdorff if and only if the corresponding topology on
X is Hausdorff. The following criterion answers the question above.
Proposition 3.1 A uniform space (X,U) is metrizable if and only if (X,U) is Hausdorff
and U has a countable basis B.

We present now some important examples. Let (E, h,∇) −→ (Mn, g) be a Rieman-
nian vector bundle, 1 ≤ p <∞, r > 0, δ > 0. Set

Vδ = {(ϕ,ϕ′) ∈ C∞(E)2 | |ϕ′−ϕ|p,r =

∫
M

r∑
i=0

|∇i(ϕ′ − ϕ)|pα dvolx(g)

 1
2

< δ}.

Then it is evident that B = {Vδ}δ>0 is a basis for a metrizable uniform structure

Up,r(C∞(E)), (C∞(E),Up,r(C∞(E))) is a uniform space. Let (C∞(E)
Up,r

,Up,r) be
the completion. We started with the local metric dϕ(ϕ,ϕ′) = d(ϕ,ϕ′) = |ϕ−ϕ′|p,r in the
dense subspace C∞(E) which can be extended to a complete local metric | · − · |p,r what
is locally equivalent to the existence of a global one.
Lemma 3.2 C∞(E) is locally arcwise connected.

Corollary 3.3 a) In C∞(E)
Up,r

coincide components and arc components.

b) C∞(E)
Up,r

has a representation as a topological sum

C∞(E)
Up,r

=
∑
i∈I

compp,r(ϕi)

c)

compp,r(ϕ) = {ϕ′ ∈ C∞(E)
Up,r

| |ϕ− ϕ′|extp,r <∞} = ϕ+ Ω
p,r

(E,∇),

i.e. each component is an affine Sobolev space.

Corollary 3.4 On a compact manifold there is only one (arc) component, namely

compp,r(0) = Ω
p,r

(E,∇).

We write Ωp,r(C∞(E)) for C∞(E)
Up,r(C∞(E))

.
Remarks 3.5 a) We see for ϕ = 0 that the zero component compp,r(0) coincides with
the Sobolev space Ω

p,r
(E,∇). Insofar our approach yields a generalization of Sobolev

spaces.
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b) It is very easy to see that the index set I is uncountable if (Mn, g) is open. ”Each
growth generalies its component.” On compact manifolds, there is only one growth,
namely no growth, hence there is only one component.

c) Let {Xi}i∈I be a family of disjoint metric spaces, di the metric on Xi. Then there
exists a metric d on the topological sum X =

∑
i∈I

Xi s.t. d induces the uniform structure

on Xi which belongs to di (cf. [105], p. 120). This is the situation in corollary 3.3 and
c).

Let us consider other choices of Vδ . Set Vδ = {(ϕ,ϕ′) ∈ L1,loc(E)2 | |ϕ −
ϕ′|p,r < δ}. In |ϕ − ϕ′|p,r we take distributional derivatives. Then B = {Vδ}δ>0

is a basis for a metrizable uniform structure Up,r(L1,loc(E)) which is already complete,
(L1,loc(E),U

p,r
(L1,loc)) = (L1,loc,U

p,r(L1,loc(E)). The background for complete-
ness is the fact that the Sobolev spaces of distributions are already complete. We write
Ωp,r(L1,loc(E)) for (L1,loc(E),Up,r(L1,loc)) which is a complete uniform space.
Proposition 3.6 a) Ωp,r(L1,loc(E)) is locally arcwise connected.

b) In Ωp,r(L1,loc(E)) coincide components and arc components.
c) Ωp,r(L1,loc(E)) has a representation as a topological sum

Ωp,r(L1,loc(E)) =
∑
j∈J

compp,r(ϕj).

d)

compp,r(ϕ) = {ϕ′ ∈ Ωp,r(L1,loc(E)) | |ϕ− ϕ′|p,r <∞} = ϕ+ Ωp,r(E,∇).

Consider finally

Vδ = {(ϕ,ϕ′) ∈ C∞c (E)2 | |ϕ− ϕ′|p,r < δ}.

We obtain Up,r(C∞c (E)), (C∞c (E)
Up,r

,U
p,r

(C∞c (E))) = Ωp,r(C∞c (E)), locally arcwise
connectedness, a topological sum representation and

compp,r(ϕ) = ϕ+
o

Ωp,r(E,∇).

But Ωp,r(C∞c (E)) consists of one component as the following remark shows.
Remark 3.7 If ϕ ∈ C∞c (E) then in Ωp,r(C∞c (E))

comp(ϕ) = compp,r(0) =
o

Ωp,r(E,∇).

From section 2 follows immediately
Corollary 3.8 If (E, h,∇) −→ (Mn, g) satisfies (I), (Bk(Mn, g)), (Bk(E,∇)) then

Ωp,r(L1,loc(E)) = Ωp,r(C∞(E))

for 0 ≤ r ≤ k + 2.
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Remark 3.9 A long further series of equivalences for uniform spaces can be stated if we
apply all of our invariance properties of Sobolev spaces.

The advantage of this approach is that we can develop e.g. a Sobolev theory of PDEs
without decay conditions for the sections. The classical theory is a theory between the zero
components comp(0). Our framework allows a quite parallel theory as maps between other
components. Clearly ∇ maps compp,r(ϕ) into compp,r−1(ϕ). If A is a differential oper-
ator which maps Ωp,r(E) into Ωp,r−m(F ) then A maps compp,r(ϕ) ⊂ Ωp,r(L1,loc(E))
into compp,r−m(Aϕ) ⊂ Ωp,r−m(L1,loc(F )). A necessary condition for the solvability of
Aϕ = ψ, ϕ ∈ compp,r(ϕ0) to find, ψ ∈ Ωp,r−m(L1,loc(F )) or ∈ Ωp,r−m(C∞(F )) given,
is that Aϕ0 ∈ compp,r−m(ψ) etc. We will here not establish the complete PDE-theory for
this setting. It should appear elsewhere.

A similar setting can be established for the Banach-Hölder theory. Set

Vδ = {(ϕ,ϕ′) ∈ C∞(E)2 | b,m|ϕ− ϕ′| =
m∑
i=0

sup
x
|∇i(ϕ− ϕ′)|x < δ}

and B = {Vδ}δ>0. B is a basis for a metrizable uniform structure b,mU(C∞(E)). Let

(C∞(E)
b,mU

, b,mU) be the completion. Then we get properties absolutely parallel to the
assertions 3.2 – 3.6,

C∞(E)
b,mU

≡ b,mΩ(C∞(E)) =
∑
j∈J

b,mcomp(ϕj),

b,mcomp(ϕ) = {ϕ′ ∈ b,mΩ(C∞(E)) | |ϕ− ϕ′| <∞} = ϕ+ b,mΩ(E,∇).

Similarly

Vδ = {(ϕ,ϕ′) ∈ C∞(E)2 | b,m,α|ϕ− ϕ′| < δ}

and B = {Vδ}δ>0 define b,m,αU(C∞(E)), the completion b,m,αΩ(C∞(E)) =∑
j∈J

b,m,αcomp(ϕj) and

b,m,αcomp(ϕ) = ϕ+ b,m,αΩ(E,∇). (3.1)

Here b,m,α|ϕ| is defined as

b,m|ϕ|+ sup
x,y∈M

sup
c∈G(x,y)

|τ(c)∇mϕ(x)−∇mϕ(y)|
d(x, y)α

,

where G(x, y) = { length minimizing geodesics joining x and y}, τ(c) is parallel transla-
tion along c from π−1(x) to π−1(y) and d(x, y) is the distance from x to y.
Remark 3.10 Our Sobolev embedding theorems from section 2 induce embedding the-
orems for components of corresponding uniform spaces, e.g. if we have (I), (Bk),
r > n

p +m then

Ωp,r(C∞(E)) ⊃ compp,r(ϕ) ↪→ b,mcomp(ϕ) ⊂ b,mΩ(C∞(E)).
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We discuss another example, which is important in Teichmüller theory for open sur-
faces. That is the space of bounded conformal factors, adapted to a Riemannian metric
g.

Let

Pm(g) = {ϕ ∈ C∞(M) | inf
x∈M

ϕ(x) > 0, sup
x∈M

ϕ(x) <∞, |∇iϕ|g,x ≤ Ci, 0 ≤ i ≤ m}.

Set for 1 ≤ p <∞, r ∈ Z+, δ > 0,

Vδ = {(ϕ,ϕ′) ∈ Pm(g)2 | |ϕ−ϕ′|g,p,r :=

(∫ r∑
i=0

|(∇g)i(ϕ− ϕ′)|pg,x dvolx(g)

) 1
2

< δ}.

Then B = {Vδ}δ>0 is a basis for a metrizable uniform structure.
Let Ppm,r(g) the completion,

C1P = {ϕ ∈ C1(M) | inf
x∈M

ϕ(x) > 0, sup
x∈M

ϕ(x) <∞}

and set

Pp,rm (g) = Ppm,r(g) ∩ C1P.

Pp,rm (g) is locally contractible, hence locally arcwise connected and hence components
coincide with arc components. Let

Up,rm (ϕ) = {ϕ′ ∈ Pp,rm (g) | |ϕ− ϕ′|g,p,r <∞}

and denote by comp(ϕ) = compp,rm (ϕ) the component of ϕ in Pp,rm (g). | |g,p,r in (3.1)
means the local extended metric, i.e. it is defined by taking distributional derivatives.
Theorem 3.11 Pp,rm (g) has a representation as topological sum

Pp,rm (g) =
∑
i∈I

comp(ϕi)

and

comp(ϕ) = Up,rm (ϕ).

Remark 3.12 On a compact manifold there is only one component, the component
comp(1).

We come back to this example in section 10 when we discuss Teichmüller theory on
open manifolds.

Let Mn be an open smooth manifold, M = M(M) be the space of all Riemannian
metrics. We want to endow M with a canonical intrinsic topology either in the Cm- or
Sobolev setting, depending on the subsequent investigation.
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Let g ∈M. We define

bU(g) = {g′ ∈M| b|g − g′| := sup
x∈M
|g − g′|g,x <∞, b|g − g′|g′ <∞}.

Then, it is easy to see that bU(g) coincides with the quasi isometry class of g, i.e., g′ ∈
bU(g) if and only if there exist C,C ′ > 0 such that

C · g′ ≤ g ≤ C ′ · g′ (3.2)

holds in the sense of positive definite forms. In particular g′ ∈ bU(g) if and only if
g ∈ bU(g′).

To endowM with canonical topologies we use the language of uniform structures.
Set for m ≥ 1, δ > 0, C(n, δ) = 1 + δ + δ

√
2n(n− 1)

Vδ = {(g, g′) ∈M| g′ ∈ bU(g), C(n, δ)−1 · g ≤ g′ ≤ C(n, δ) · g and

b,m|g − g′|g := b|g − g′|g +
m−1∑
j=0

b|(∇g)j(∇g −∇g
′
)|g < δ}.

Proposition 3.13 The set B = {Vδ}δ>0 is a basis for a metrizable uniform structure on
M.

Denote b
mM = (M, b,mU(M)) and by b,mM the completion. It has been proven by

Salomonsen that b,mM still consists of positive definite elements, which are of class Cm.
Remark 3.14 We endowed by our procedureM with a canonical intrinsic Cm-topology
without choice of a cover or a special g to define the Cm-distance. According to the
definition of the uniform topology, for g ∈ b,mM

{b,mUε}ε>0 = {g′ ∈ b,mM| b|g − g′|g′ <∞, b,m|g − g′|g <∞}

is a neighborhood basis in this topology.
Set

b,mU(g) = {g′ ∈ b,mM| b|g − g′|g′ <∞, b,m|g − g′|g <∞}.

Proposition 3.15 Denote by comp(g) the component of g ∈ b,mM. Then

comp(g) ≡ b,mcomp(g) = b,mU(g).

Theorem 3.16 The space b,mM has a representation as a topological sum

b,mM =
∑
i∈I

b,mU(gi). (3.3)

Remark 3.17 On a compact manifold M, the index set I consists of one element. One
has only one component. On compact manifolds the notion of growth at infinity does not
exist.
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Theorem 3.18 Each component of b,mM is a Banach manifold.

For later use we restrict ourselves additionally to metrics with bounded geometry. Let
(Mn, g) be open. Consider the conditions (I) and (Bk) and

M(I) = {g ∈M| g satisfies(I)},
M(Bk) = {g ∈M| g satisfies(Bk)},
M(I,Bk) = M(I) ∩M(Bk).

Now we want to introduce Sobolev uniform structures into the space of metrics. Let
now k ≥ r > n

p + 1, δ > 0, C(n, δ) = 1 + δ + δ
√

2n(n− 1),

Vδ =
{

(g, g′) ∈M(I,Bk)×M(I,Bk) |

|g − g′|g,p,r =
(∫

(|g − g′|pg,x +
r−1∑
i=0

|(∇g)i(∇g
′
−∇g)|pg,x) dvolx(g)

) 1
p

< δ
}
.

Proposition 3.19 The set {Vδ}δ>0 is a basis for a metrizable uniform structure on
M(I,Bk).

Denote Mp
r(I,Bk) as (M(I,Bk),Up,r(M(I,Bk))) and by Mp,r(I,Bk) the com-

pletion. It was proven by Salomonsen that the completion yields only positive definite
elements, i.e. we still remain in the space of C1 Riemannian metrics.

For g ∈Mp,r(I,Bk)

{Up,rε (g)}ε>0 =
{
{g′ ∈Mp,r(I,Bk) | b|g − g′|g <∞, b|g − g′|g′ <∞,
|g − g′|g,p,r < ε}

}
ε>0

is a neighborhood basis in the uniform topology. There arises a small difficulty. g ∈
Mp,r(I,Bk) must not be smooth and hence |g− g′|g,p,r must not be defined immediately.
But in this case we use the density of M(I,Bk) ⊂ Mp,r(I,Bk) and apply a suitable
approximations procedure (cf. [43]).
Proposition 3.20 The spaceMp,r(I,Bk) is locally contractible.

For the proof we refer to [44], lemma 3.8.
Proposition 3.21 InMp,r(I,Bk) components and arc components coincide.

Set for g ∈Mp,r(I,Bk)

Up,rε (g) = {g′ ∈Mp,r(I,Bk) | b|g − g′|g <∞, b|g − g′|g′ <∞,
|g − g′|g,p,r <∞}.

Proposition 3.22 Denote by comp(g) the component of g ∈Mp,r(I,Bk). Then,

comp(g) ≡ compp,r(g) = Up,r(g).

Theorem 3.23 Let Mn be open, k ≥ r > n
p + 1. ThenMp,r(I,Bk) has a representation

as a topological sum

Mp,r(I,Bk) =
∑
i∈I

Up,r(gi).
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We can reformulate theorems 2.18 and 2.19 as
Proposition 3.24 Let g ∈ M(I,Bk), k ≥ r > n

p + 1, g′ ∈ comp(g) ⊂ Mp,r(I,Bk).
Then

Ωp,r(Tuv , g) = Ωp,r(Tuv , g
′)

as equivalence of Sobolev spaces.

Theorem 3.25 Assume k ≥ r > n
p + 1. Then, each component of the spaceMp,r(I,Bk)

is a Banach manifold and for i = 2 it is a Hilbert manifold.

We introduce now in quite analogous manner uniform structures of connections. Let
(E, h) −→ (Mn, g) be a Riemannian vector bundle. Denote by CE the set of all metric
connections in E and set for m ∈ Z+, δ > 0

Vδ = {(∇,∇′) ∈ C2
E | b,m|∇

′ −∇|∇ < δ},

where, according to our definitions in section 2,

b,m|∇′ −∇|∇ =
m∑
µ=0

sup
x∈M
|∇µ(∇′ −∇)|x ∼ sup

x∈M
0≤µ≤m

|∇µ(∇′ −∇)|x.

Proposition 3.26 B = {Vδ}δ>0 is a basis for a metrizable uniform structure b,mU(CE)
on CE .

Denote bmCE = (CE , b,mU(CE)) and by b,mCE the completion.
Proposition 3.27 a) b,mCE is locally arcwise connected, hence components coincide with
arc components.

b) b,mCE has a representation as topological sum

b,mCE =
∑
i∈I

b,mcomp(∇i).

c) For ∇ ∈ b,mCE
b,mcomp(∇) = {∇′ ∈ b,mCE | b,m|∇′ −∇|∇ <∞} = ∇+ b,1Ω1(gE),

where gE are the skew symmetric endomorphisms of E and the connection in gE is defined
by∇gϕ = [∇E , ϕ].
Remark 3.28 On a compact manifold we have only one component.

Suppose that (Mn, g) satisfies (Bk) and consider the set CE(Bk) = {∇ ∈
CE |(E,∇) satisfies (Bk)}. Restricting b,mU to CE(Bk) yields bmC(Bk) and the completion
b,mCE(Bk).
Proposition 3.29 Suppose m ≥ k + 1.

a) b,mCE(Bk) is locally arcwise connected, hence components coincide with arc com-
ponents.

b) b,mCE(Bk) has a representation as topological sum

b,mCE(Bk) =
∑
j∈J

b,mcomp(∇j).
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c) For ∇ ∈ b,mCE(Bk),

b,mcomp(∇) = {∇′ ∈ b,mCE(Bk)| b,m|∇′ −∇|∇ <∞} = ∇+ b,mΩ1(gE).

Corollary 3.30 If a component b,mcomp(∇) ⊂ b,mCE contains an element of
b,mCE(Bk), m ≥ k + 1, then the whole component b,mcomp(∇) is contained in
b,mCE(Bk) and coincides with the corresponding component in b,mCE(Bk).

Assume now that (Mn, g) satisfies (I) and (Bk), k > n
p + 1 and consider again

CE(Bk). Set for k ≥ r > n
p + 1, δ > 0

Vδ = {(∇,∇′) ∈ C2
E(Bk)||∇′ −∇|∇,p,r < δ},

where

|∇′ −∇|∇,p,r =

(∫ r∑
i=0

|∇i(∇′ −∇)|px dvolx(g)

) 1
p

.

Proposition 3.31 B = {Vδ}δ>0 is a basis for a metrizable uniform structure
Up,r(CE(Bk)).

Denote CpE,r(Bk) = (CE(Bk),Up,r(CE(Bk))) and by Cp,rE (Bk) its completion.

Proposition 3.32 a) Cp,rE (Bk) is locally arcwise connected, hence components coincide
with arc components.

b) Cp,rE (Bk) has a representation as topological sum

Cp,rE (Bk) =
∑
i∈I

compp,r(∇i).

c) For ∇ ∈ CE(Bk),

compp,r(∇) =
{
∇′ ∈ Cp,rE (Bk)||∇′ −∇|∇,p,r <∞

}
= ∇+ Ω1,p,r(gE ,∇).

Finally, we define

C(E,Bk, f, p) = CE(Bk, f, p) = {∇ ∈ CE(Bk)|
∫
|R∇|p dvol <∞} ⊂ CE(Bk).

f, p stands for finite p-action. Restriction of Up,r(CE(Bk)) to CE(Bk, f, p) yields
CpE,r(Bk, f, p) and the completion Cp,rE (Bk, f, p). We describe the structure of
Cp,rE (Bk, f, p), where we suppose as above k ≥ r > n

p + 1.

Proposition 3.33 a) Cp,rE (Bk, f, p) is locally arcwise connected, hence components coin-
cide with arc components.

b) Cp,rE (Bk, f, p) has a representation as a topological sum

Cp,rE (Bk, f, p) =
∑
j∈J

comp(∇j).
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c) For∇ ∈ CE(Bk, f, p),

comp(∇) = {∇′ ∈ Cp,rE (Bk, f, p)||∇′ −∇|∇,p,r <∞} = ∇+ Ω1,p,r(gE ,∇).

Corollary 3.34 If ∇ ∈ Cp,rE (Bk, f, p) then its component in Cp,rE (Bk, f, p) coincides with
its corresponding component in Cp,rE (Bk).

Our last class of examples for non-linear Sobolev structures are manifolds of maps and
diffeomorphism groups.

Let (Mn, g), (Nn′ , h) be open, complete, satisfying (I) and (Bk) and let f ∈
C∞(M,N). Then the differential f∗ = df is a section of T ∗M ⊗ f∗TN . f∗TM is
endowed with the induced connection f∗∇h which is locally given by

Γνiµ = ∂if
α(x)Γh,να,µ(f(x)), ∂i =

∂

∂xi
.

∇g and f∗∇h induce metric connections ∇ in all tensor bundles T qs (M) ⊗ f∗Tuν (N).
Therefore ∇mdf is well defined. Since (I) and (B0) imply the boundedness of the gij ,
gkm, hµν in normal coordinates, the conditions df to be bounded and ∂if to be bounded
are equivalent.

In local coordinates

sup
x∈M
|df |x = sup trg(f∗h) = sup gijhµν∂jfµ∂ifν .

For (Mn, g), (Nn′ , h) of bounded geometry up to order k and m ≤ k we denote by
C∞,m(M,N) the set of all f ∈ C∞(M,N) satisfying

b,m|df | :=
m−1∑
µ=0

sup
x∈M
|∇µdf |x <∞.

Assume (Mn, g), (Nn′ , h) are open, complete, and of bounded geometry up to order
k, r ≤ m ≤ k, 1 < p < ∞, r > n

p + 1. Consider f ∈ C∞,m(M,N). According to
chapter I, theorem 2.9 b) for r > n

p + s

Ωp,r(f∗TN) ↪→ b,sΩ(f∗TN), (3.4)
b,s|Y | ≤ D · |Y |p,r, (3.5)

where |Y |p,r =
(∫ r∑

i=0

|∇iY |p dvol
) 1
p

. Set for δ > 0, δ · D ≤ δN < rinj(N)/2,

1 < p <∞, Vδ = {(f, g) ∈ C∞,m(M,N)× C∞,m(M,N) |∃Y ∈ Ωpr(f
∗TN) such that

g = gY = expY and |Y |p,r < δ}.
Proposition 3.35 B = {Vδ}0<δ<rinj(N)/2D is a basis for uniform structure
Up,r(C∞,m(M,N)).

Up,r(C∞,m(M,N)) is metrizable. Let mΩp,r(M,N) be the completion of
C∞,m(M,N). From now on we assume r = m and denote rΩp,r(M,N) = Ωp,r(M,N).
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Theorem 3.36 Let (Mn, g), (Nn, h) be open, complete, of bounded geometry up to order
k, 1 < p < ∞, r ≤ k, r > n

p + 1. Then each component of Ωp,r(M,N) is a C1+k−r-
Banach manifold, and for p = 2 it is a Hilbert manifold.

Let (Mn, g) be open, complete, oriented, of bounded geometry up to order k, 1 < p <
∞, k > r > n

p + 1. Set

Dp,r(M) =
{
f ∈ Ωp,r(M,M) | f is injective, surjective, preserves

orientation and |λ|min(df) > 0

}
.

Theorem 3.37 Dp,r(M) is open in Ωp,r(M,M), in particular, each component is a
C1+k−r-Banach manifold.

We use the completed Sobolev structures of this section later in the sections 8, 9, 10,
13 and 14.

4 Self-adjoint linear differential operators on manifolds and their
spectral theory

For the sake of clarity, we recall in a few words the basic notations of spectral theory.
Let X = (X, 〈, 〉) be a Hilbert space over C, A : DA −→ X , DA ⊂ X , a densely

defined linear operator. If DA = X and |Ax| ≤ c · |x|, c ∈ R, for all x ∈ X , then A is
bounded and |A| = inf{c | |Ax| ≤ c · |x| for all x ∈ X} is called the operator norm of A,
|A| = |A|X→X . Here |y| = 〈y, y〉

1
2 . L(X,X) shall denote the Banach algebra of bounded

operators A : X −→ X . Similarly one defines |A|X→Y for a bounded A : X −→ Y .
The most important case for us is A : DA −→ X , DA 6= X . But we assume once and
for all that DA ⊂ X be dense. A : DA −→ X is called closed if xi −→ x, xi ∈ DA,
Axi −→ y imply x ∈ DA and Ax = y. This can be reformulated as follows. Let
Γ(A) = {(x,Ax)|x ∈ DA} be the graph of A. Then A is closed if and only if Γ(A) is
closed in the Hilbert space (X×X, 〈, 〉⊕〈, 〉). A fundamental theorem states thatA closed
andDA = X imply A bounded. For later applications we have in mind mainly unbounded
differential operators, DA ⊂ X . Set for x, y ∈ DA 〈x, y〉A := 〈x, y〉+ 〈Ax,Ay〉, |x|A =

〈x, x〉
1
2
A. 〈x, y〉A is a scalar product in DA and | |A a norm. Then A is closed if and

only if (DA, 〈, 〉A) is a Hilbert space, i.e. | |A is complete. We recall that B ⊇ A means
DB ⊇ DA and B|DA = A. A is called closable if there exists a closed B ⊇ A.
Theorem 4.1 If A is closable, then there exists a unique minimal closed extension Ā,
called the closure of A. Furthermore DĀ is the closure of DA with respect to | |A and
Γ(Ā) = Γ(A).

An intrinsic criterion for closability of A goes as follows: A is closable if and only if
xi −→ 0, xi ∈ DA, (Axi)i a Cauchy sequence, imply Axi −→ 0.

Warning. The closure of DA with respect to | |A or the closure of Γ(A) need not
necessarily define a closed operator.

If A : DA −→ X is densely defined (as always assumed) then for every y ∈ X there
exists at most one element y∗ ∈ X such that 〈Ax, y〉 = 〈x, y∗〉 for all x ∈ DA. Then
we define DA∗ = {y ∈ X |∃y∗ ∈ X such that 〈Ax, y〉 = 〈x, y∗〉 for all x ∈ DA} and
A∗y := y∗. DA∗ is a linear space, A∗ is a linear closed operator and is called adjoint to A.
B ⊇ A implies A∗ ⊇ B∗. If A is closable then A∗ = (Ā)∗.
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A special class of closable operators are symmetric operators. A : DA −→ X is called
symmetric (or formally self-adjoint) if 〈Ax, y〉 = 〈x,Ay〉 for all x, y ∈ DA. A is called
self-adjoint if A = A∗. Clearly, a self-adjoint operator is symmetric. The converse is not
necessarily true.
Theorem 4.2 a) If A is symmetric then A is closable and Ā is also symmetric.

b) If B ⊇ A is a symmetric extension of the symmetric operator A then B ⊆ A∗.
c) If A is self-adjoint then A is closed, and there are no non-trivial symmetric exten-

sions.
d) A : DA −→ X is symmetric if and only if 〈Ax, x〉 is real for all x ∈ DA.
e) If DA = X and A is symmetric then A is self-adjoint and bounded.

Theorem 4.3 (Main criterion for self-adjointness.) Let A : DA −→ X be symmetric.
Then the following conditions are equivalent

a) A is self-adjoint.
b) A is closed and ker(A∗ ± i) = {0}.
c) Im (A± i) = X .

Assume A : DA −→ X symmetric. A is called essentially self-adjoint if the closure Ā
is self-adjoint.
Theorem 4.4 Assume A : DA −→ X symmetric. Then the following conditions are
equivalent.

a) A is essentially self-adjoint.
b) ker(A∗ ± i) = {0}.
c) Im (A± i) is dense.

Remark 4.5 Theorems 4.3, 4.4 remain true if we replace i ∈ C by a complex number
λ ∈ C with =λ 6= 0.

We infer from theorem 4.2 that A ⊆ A∗∗ ⊆ A∗ for any symmetric A, and A = A∗∗ ⊆
A∗ for any closed symmetric A. Moreover, we conclude from the definition A = A∗∗ =
A∗ for any self-adjoint operator A. Hence a closed symmetric operator A is self-adjoint if
and only if A∗ is symmetric. A key role in all the proofs is played by the following
Lemma 4.6 Let A : DA −→ X be symmetric, λ ∈ C. Then (A − λ id)∗ = A∗ − λ̄ id,
X = Im (A− λ id)⊕ ker(A∗ − λ̄ id) and |Ax− λx| ≥ |=λ| · |x|, x ∈ DA.

The following criterion due to T. Kato produces many self-adjoint operators via pertur-
bation theory.
Theorem 4.7 Let A : DA −→ X be self-adjoint, B : DB −→ X symmetric, DB ⊇ DA.
Assume for 0 ≤ δ < 1 and c ≥ 0 that

|Bx| ≤ δ|Ax|+ c|x| for all x ∈ DA.

Then A+B, with DA+B = DA, is self-adjoint.

A particular important class of symmetric operators are the semi-bounded ones. A :
DA −→ X is called semi-bounded (or bounded from below) if there exists c ∈ R such
that 〈Ax, x〉 ≥ c · |x|2 for all x ∈ DA. This inequality implies in particular that 〈Ax, x〉 is
real, hence A is symmetric. If A is bounded from below then −A is bounded from above,
〈−Ax, x〉 ≤ −c|x|2 and vice versa. Hence we need to consider only operators bounded
from below. Semi-bounded operators have a particular convenient self-adjoint extension
due to K. O. Friedrichs, the so-called Friedrichs’ extension. Assume 〈Ax, x〉 ≥ c · |x|2,
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choose λ ∈ R such that λ + c > 0 and set 〈x, y〉λ := 〈Ax, y〉 + λ〈x, y〉, |x|λ = 〈x, x〉
1
2
λ .

Let Xλ be the completion of DA with respect to | |λ. Then Xλ becomes a Hilbert space
with respect to the extended scalar product. If µ ∈ R is such that µ+ c > 0 then Xλ, Xµ

are equivalent as Hilbert spaces. For this reason one writes Xλ = XE,A and calls XE,A

the energy space and | |λ an energy norm with respect to A.
Theorem 4.8 Assume A : DA −→ X semi-bounded, 〈Ax, x〉 ≥ c · |x|2. Then AFx :=
A∗x, DAF := XE,A ∩ DA∗ , is a self-adjoint extension of A and 〈AFx, x〉 ≥ c · |x|2,
x ∈ DAF . AF is called Friedrichs’ extension. For the energy space, this equivalence of
Hilbert spaces holds: XE,A = XE,Ā = XE,AF .

From 4.8 one easily infers
Theorem 4.9 Let A : DA −→ X be densely defined and closed. Then A∗A, DA∗A =
{x ∈ DA|Ax ∈ DA∗}, is densely defined and self-adjoint.

The type of the spectrum of generalized Dirac operators on open manifolds sees a con-
siderable part of the underlying geometry and assumptions on the spectral type dis/allow
many analytical constructions. For this reason we list the most important notions of spec-
tral theory.

Let A : DA −→ X be densely defined and closed. Then %(A) = {λ ∈ C| Rλ :=
(A − λid)−1 is defined and belongs to L(X)} is called the resolvent set of A, while
its complement σ(A) := C \ %(A) is called the spectrum of A. %(A) is open, σ(A) is
closed. σp(A) := {λ |∃x ∈ DA, |x| = 1, Ax = λx} is called the point spectrum and
σc,R(A) := {λ|(A − λid)−1 exists but does not belong to L(X)} is called the resolvent
continuous spectrum. Below we define the continuous spectrum σc(A). σc,R(A) and
σc(A) need not coincide. A bounded sequence (xi)i in DA is called a Weyl sequence for
λ if the set {xi|i = 1, 2, . . . } is not pre-compact and lim

i→∞
(Axi − λxi) = 0. σe(A) = {λ |

there exists a Weyl sequence for λ} is called the essential spectrum. Denote σp,f (A) =
{λ ∈ σp(A)|mult(λ) is finite}, where mult(λ) is the multiplicity of λ = dim ker(A−λI).
Theorem 4.10 Let A : DA −→ X be a self-adjoint operator.

a) σ(A) is a subset of the real numbers. Furthermore

|(A− λ id)−1| ≤ 1
|=λ|

for =λ 6= 0.

b) If λ ∈ σc,R(A) then Im (A− λid) is dense in X .
Moreover, there exists a Weyl sequence for λ, so λ ∈ σe(A).
c) λ ∈ σp(A) if and only if Im (A− λid) is a proper subspace of X .
d) λ ∈ σc,R(A) if and only if Im (A− λid) = X and Im (A − λid) is properly

contained in X .
e) If λ1, λ2 ∈ σp(A), λ1 6= λ2, Ax1 = λ1x1, Ax2 = λ2x2, then 〈x1, x2〉 = 0.

Theorem 4.11 Let A : DA −→ X be self-adjoint, λ ∈ C. Then one of the following cases
occurs:

a) Im (A− λid) = X . Then λ ∈ %(A).
b) Im (A − λid) is properly contained in X , Im (A− λid) = X . Then λ ∈ σe(A),

λ /∈ σp,f (A).
c) Im (A− λ id) = Im (A− λ id) is properly contained in X and X 	 Im (A− λ id)

is finite-dimensional. Then λ ∈ σp,f (A) and λ /∈ σe(A).
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d) Im (A−λ id) is properly contained in Im (A− λ id) and Im (A− λ id) is properly
contained in X . If X 	 Im (A− λ id) is finite-dimensional, then λ ∈ σp,f (A) ∩ σe(A).

e) X 	 Im (A− λ id) is infinite-dimensional. Then λ ∈ σe(A) and λ /∈ σp,f (A).

In theorems 4.10, 4.11 the subsets of σ(A) are characterized by the mapping properties
of A− λ id. Other subsets can be defined by restriction of A to certain spectral subspaces
of X . Since A : DA −→ X is self-adjoint, there exists a spectral family {Eµ}µ∈R of
orthogonal projections such that λ ≤ µ implies Eλ ≤ Eµ, lim

µ→∞
Eµx = x, lim

µ→−∞
Eµx =

0 for all x ∈ X , lim
λ→µ+

Eλ = Eµ, and there is a spectral measure dEµ such that

A =

+∞∫
−∞

λ dEλ.

Theorem 4.12 Let A : DA −→ X be self-adjoint, A =
∫
λ dEλ. Then

a) µ ∈ σ(A)⇐⇒ Eµ+ε − Eµ−ε 6= 0 for all ε > 0⇐⇒ Eµ − Eµ− 6= 0.
b) If µ is isolated in σ(A) then µ ∈ σp(A).
c) µ ∈ σe(A) if and only if for every positive ε Im (Eµ+ε − Eµ−ε) is infinite-

dimensional.

Every Borel measurem on R admits a decompositionm = mpp+mc = mpp+mac+
msc, wherempp is a pure point measure, mc = m−mpp is characterized bymc({p}) = 0
for all points p, mac is absolutely continous with respect to the Lebesque measure and
msc is singular with respect to the Lebesgue measure, i.e. msc(S) = 0 for a certain set
S such that R \ S has zero Lebesgue measure. We consider for x ∈ X the positive Borel
measure [a, b] mx−→ 〈E[a,b]x, x〉 and set Xpp = {x ∈ X|mx = mx,pp}, Xac = {x ∈
X|mx = mx,ac}, Xsc = {x ∈ X|mx = mx,sc}, Xc = {x ∈ X|mx = mx,c} and
σpp(A) := σ(A|Xpp), σc(A) := σ(A|Xc), σac(A) = σ(A|Xac), σsc(A) = σ(A|Xsc).
Then σc(A), σac and σsc are called the continuous, the absolutely continuous and the
singular continuous spectra. Finally we define σpd(A) := {λ ∈ σp(A) |mult(λ) < ∞
and λ is an isolated point in σ(A)}, called is the purely discrete spectrum.
Theorem 4.13 Let A : DA −→ X be self-adjoint.

a) X = Xpp ⊕Xac ⊕Xsc.
b) σ(A) = σpd(A) ∪ σe(A), σpd(A) ∩ σe(A) = ∅.
c) σe(A) = σc(A) ∪ σp(A)1 ∪ {λ ∈ σp(A) |mult(λ) =∞}.
d) σc(A) = σac(A) ∪ σsc(A).
e) σ(A) = σpp(A) ∪ σc(A) = σp(A) ∪ σc(A).

Here M1 denotes the set of accumulation points of M .
Remark 4.14 In general, σp(A) ⊂ σpp(A), hence σp(A) ∪ σc(A) ∪ σsc(A) ⊂ σ(A), but
σp(A) = σpp(A). This shows also that in general σc(A) \ (σc(A) ∩ σp(A)) ⊂ σc,R(A).

The main objective of spectral geometry as part of analysis on open manifolds is to
find and describe which components of the decompositions 4.13 for a generalized Dirac
operator A are empty or not.

A special class of self-adjoint operators are those whose spectrum is purely discrete, i.
e. σe(A) = ∅, σ(A) = σpd(A).
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Theorem 4.15 Let A be an operator with a purely discrete spectrum.
a) A is not bounded.
b) The eigenvalues of the operator A can be ordered by their absolute value, tak-

ing into account multiplicities. If {λj}j=1,2,... are the eigenvalues and {xj}j=1,2,... the
corresponding orthonormal eigenvectors then the system {xj}j=1,2,... is complete and
|λj | −→

j→∞
∞,

DA =

x ∈ X ∣∣∣
∞∑
j=1

λ2
j |〈x, xj〉|2 <∞

 and Ax =
∞∑
j=1

λj〈x, xj〉xj .

Theorem 4.16 Let A : DA −→ X be positive-definite (i. e. 〈Ax, x〉 ≥ c|x|2, c > 0,
x ∈ DA), AF the Friedrichs’ extension, XE,A the corresponding energy space and A

1
2 =

∞∫
c

√
λ dEλ, D

A
1
2

= {x ∈ X |
∞∫
c

λ d|Eλx|2 <∞}. Then

D
A

1
2
F

= XE,A and |x|XE,A = |A
1
2
Fx|.

Theorem 4.17 Let A : DA −→ X be positive definite with purely discrete spectrum and
XE,A the corresponding energy space.

a) If 0 < λ1 ≤ λ2 ≤ · · · are the ordered eigenvalues of A (with multiplicities) and
{xj}j=1,2,... is a corresponding system of orthonormal eigenvectors then

XE,A =

x ∈ X ∣∣∣
∞∑
j=1

λj |〈x, xj〉|2 <∞

 .

{xj · λ
1
2
j }j=1,2,... is a complete orthonormal system in XE,A. A

1
2 provides a unitary map-

ping of XE,A onto X .
b) The operators A−1 and A−

1
2 = (A

1
2 )−1 in L(X) are compact. If A−1 is regarded

as mapping of X into XE,A, then it is compact too.

The purely discrete spectrum property of self-adjoint elliptic operators on closed man-
ifolds is an immediate consequence of Rellich’s criterion.
Theorem 4.18 (Rellich’s criterion). A self-adjoint positive-definite operator A has purely
discrete spectrum if and only if the embedding XE,A −→ X is compact.

It is spectral theory’s aim to compute or estimate the spectrum. There are not too many
standard methods available, and the majority is related to the minimax formula.
Theorem 4.19 Let A : DA −→ X be self-adjoint and semi-bounded, A ≥ c · id. Let

λn(A) := sup
x1,...,xn−1

inf
y∈DA,|y|=1

y∈L(x1,...,xn−1)⊥

〈Ay, y〉.

Then for fixed n either



172 Partial differential equations on closed and open manifolds

a) there exists n eigenvalues smaller than the bottom of the essential spectrum (taking
into account their mulitplicity) and λn(A) is the n-th eigenvalue, or

b) λn(A) is the bottom of the essential spectrum. In this case λn = λn+1 = λn+2 =
· · · and there exists n− 1 eigenvalues below λn.

Let A, B be self-adjoint operators in X , X = Xpp(B) ⊕ Xac(B) ⊕ Xsc(B) the
decomposition of X of 4.13 a), Pac(B) : X −→ Xac(B) the projector. Assume that the
so-called wave operators

W±(A,B) := s− lim
t→±∞

e−iAteiBtPac(B)

are defined and that im W±(A,B) = Xac(A). Then W± are called complete. In this case,

AW±(A,B) = W±(A,B)B.

S = W ∗+W− is called the scattering matrix and plays a decisive role in scattering theory.
We obtain

Corollary 4.20 If W+(A,B) exists and is complete, then A|Xac(A) and B|Xac(B) are
unitarily equivalent, so in particular σac(A) = σac(B).

Sufficient criteria for this hypothesis are given by
Theorem 4.21 Let A, B be self-adjoint.

a) If e−tA
2 − e−tB2

is of trace class for one t > 0, then W±(A2, B2) exist and are
complete.

b) If e−tA
2
A − e−tB2

B are of trace class for all t > 0, then W±(A,B) exist and are
complete.

Here A ∈ L(X) is of trace class if tr |A| < ∞, by writing A = U |A|, U a par-

tial isometry, in the polar decomposition and |A|1 := tr |A| =
∞∑
j=1

〈|A|xj , xj〉, with

{x}j=1,2,... an arbitrary complete orthonormal system. If A is of trace class one defines

trA =
∞∑
j=1

〈Axj , xj〉, a convergent series. A ∈ L(X) is called Hilbert-Schmidt operator

if trA∗A <∞. Then |A|2 := (trA∗A)
1
2 .

Theorem 4.22 a) A is of trace class if and only if A = B · C, B and C Hilbert-Schmidt.
Then |A|1 ≤ |B|2 · |C|2.

b) An integral operator with square integrable kernel is Hilbert-Schmidt.

Now we apply these notions to differential operators on manifolds. Their natural initial
domain is C∞c . We ask, under which assumptions are they self-adjoint? The key is given
by
Lemma 4.23 Let A : DA −→ X be a densely defined symmetric operator.

a) If there exists a unitary 1-parameter group Ut s.t. UtDA ⊆ DA, UtA = AUt and
d
dtUtx = iAUtx, x ∈ DA, then every power An, n ≥ 0, is essentially self-adjoint.

b) If A has equal deficiency indices κ± = dim ker(A∗ ± i) and both equations

du

dt
± (iA)∗u = 0, 0 ≤ t <∞,

have a unique solution of the Cauchy problem then A is essentially self-adjoint.
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c) If A is semibounded from above and the Cauchy problem for the equation

du

dt
−A∗u = 0 or

d2u

dt2
−A∗u = 0

has a unique solution then A is essentially self-adjoint.

Proposition 4.24 a) Let (E, h,∇, ·) −→ (Mn, g) be a Clifford bundle, (Mn, g) complete
and D the generalized Dirac operator. Then all powers Dn, n ≥ 0, are essentially self-
adjoint.

b) Let (Mn, g) be complete, ∆ = ∆q be the Laplace operator acting on q-forms
with values in a flat vector bundle E, V = V (x) an endomorphism of ΛqT ∗M ⊗ C,
V (x) ≥ Q(x), 1 ≤ Q(x) ≤ ∞, Q−

1
2 (x) a Lipschitz function on M such that |Q− 1

2 (x)−
Q−

1
2 (y)| ≤ κ·dist(x, y) for all x, y ∈M . If for any piecewise smooth curve γ : [0,∞[−→

M such that lim
t→∞

dist(p, γ(t)) =∞ the integral∫
γ

Q−
1
2 (x) dγ =∞

then the operator H0 = (∆q + V )|C∞c is essentially self-adjoint.

Corollary 4.25 Let (E, h,∇) −→ (Mn, g) be a Riemannian vector bundle, (Mn, g) com-
plete and ∆q the Laplace operator acting on q-forms with values in E. Then (∆q)n,
n = 1, 2, . . . are essentially self-adjoint. In particular this holds for the Laplace operators
acting on ordinary q-forms.

For non-complete manifolds, there exists at least one self-adjoint extension, namely
Friedrichs’ extension. But there can be many others. We will discuss them in section 4.

In any case we denote in the sequel by ∆ = ∆q a self-adjoint extension (which is
unique if (Mn, g) is complete). We start with the simplest decomposition

σ(∆q) = σe(∆q) ∪ σpd(∆q), σe(∆q) ∩ σpd(∆q) = ∅.

If (Mn, g) is closed then σe(∆q) ist empty: We know from theorem 4.18 that σe(∆q) = ∅
if and only if the embedding (L2(Λq))E,∆q ↪→ L2(Λq) ≡ Ωq,2,0 is compact. But
(L2(Λq))E,∆q

= Ωq,2,1 (for (Mn, g) closed) and the compactness of the embedding
Ωq,2,1 ↪→ Ωq,2,0 = L2 is a well known fact and can easily be proven, {Ωq,2,i}i is a Rellich
chain on closed manifolds. For Mn open, the embedding (L2(Λq))E,∆q

↪→ L2(Λq) =
Ω2,q,0 is far from being compact, at least if Mn has ”enough space”. Then there exist se-
quences of sections with ”nearly disjoint” support, bounded together with their derivatives
which have in L2 no convergent subsequence (since the supports are ”nearly disjoint”).
Such sequences often constitute Weyl sequences and converse, i. e. if there is ”enough
space” then should be essential spectrum. We will support this by a series of exact propo-
sitions.
Proposition 4.26 Let (E, h,∇h, ·) −→ (Mn, g) be a Clifford bundle, Mn open and com-
plete, K ⊂ M a compact subset, DF (E|M\K) Friedrichs’ extension of D|C∞c (E|M\K).
Then there hold

σe(D) = σe(DF ) = σe(DF (E|M\K))
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and

σe(D2) = σe(D2
F ) = σe((DF (E|M\K))2).

Corollary 4.27 The essential spectrum of D and D2 remains invariant under compact
perturbations of the topology and the metric. In particular this holds for the Laplace
operators acting on forms with values in a vector bundle.

As for compact manifolds, we can define the Riemannian connected sum for open
Riemannian manifolds, even for Riemannian vector bundles (Ei, hi,∇hi) −→ (Mn

i , gi),
where at the compact glueing domain the metric and connection are not uniquely deter-
mined. Another corollary is then given by
Proposition 4.28 Suppose (Ei, hi,∇hi) −→ (Mn

i , gi), i = 1, . . . , r Riemannian vector
bundles of the same rank, (Mn

i , gi) complete, and let ∆ = ∆q be the Laplace operator
acting on q-forms with values in Ei (resp. E). Then

σe∆q

( r

#
i=1

(Ei −→Mi)
)

=
r⋃
i=1

σe(∆q(Ei −→Mi)).

4.26 can be reformulated as the statement that the essential spectrum for an isolated
end ε is well defined. We denote it by σe(DF (ε)), σe(D2

F (ε)).
Proposition 4.29 If (Mn, g) is complete and has finitely many ends ε1, . . . , εr then

σe(D) =
r⋃
i=1

σe(DF (εi)), σe(D2) =
r⋃
i=1

σe(D2
F (εi)).

Proposition 4.30 Assume the hypothesis of 4.26. Suppose λ ∈ σe(D). Then there exists a
Weyl sequence (ϕν)ν for λ such that for any compact subset K ⊂M

lim
ν→∞

|ϕν |L2(E|K) = 0. (4.1)

For every λ ∈ σe(D2) there exists a Weyl sequence (ϕν)ν satisfying (4.1) and

lim
ν→∞

|Dϕν |L2(E|K) = 0.

4.30 means that w. l. o. g. Weyl sequences should ”leave” (in the sense of theL2-norm)
any compact subset, i. e. there must be ”place enough at infinity”.
Proposition 4.31 Let (E, h,∇, ·) −→ (Mn, g) be a Clifford bundle with (I),
(Br−3(M, g)), (Br−3(E,∇)), r > n

2 + 1 and ∇′ a second Clifford connection satisfying
|∇′ −∇|∇,2,r−1 <∞. Then for D = D(∇) and D′ = D(∇′) there holds

DD = DD′ (4.2)

and

σe(D) = σe(D′). (4.3)
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Corollary 4.32 Assume the hypothesis of 4.31. Then for all i ∈ N

DDi = DD′i (4.4)

and

σe(Di) = σe(D′
i). (4.5)

Remark 4.33 For Ω2,1(E,∇) = Ω2,1(E,D) (B0) would be sufficient which easily fol-
lows from the Weitzenboeck formula, but we need moreover the Sobolev embedding the-
orem for Ω2,r−1, in particular

o

Ω2,r−1 = Ω2,r−1, hence (Br−3). One could try to estimate
||η|x · |ϕ|x|L2 instead of sup

x
|η|x · |ϕ|L2 , i. e. one could try to work without the Sobolev

embedding theorem, but in this case we would need some module structure. Hence an
assumption (Bi), i > 0, seems to be inavoidable in any case.

For the Laplace operator on forms, 4.31 is not immediately applicable since if we
replace for (Mn, g) the Levi-Civita connection ∇g by another metric connection then we
loose many of the standard formulas, i. e. we should consider a change g −→ g′.
Proposition 4.34 Let (Mn, g) be open, complete, with (I) and (Br(Mn, g)), r > n

2 + 1,
g′ another metric satisfying the same conditions and suppose g, g′ quasi isometric and

|g′ − g|g,2,r = (
∫

(|g′ − g|2g,x +
r−1∑
i=0

|(∇g)i −∇g|2g,x) dvolx(g))
1
2 <∞. Then

D∆q(g) = D∆q(g′) as equivalent Hilbert spaces

and

σe(∆q(g)) = σe(∆q(g′)), q = 0, 1, . . . , n.

We state the generalization to forms with values in a vector bundle.
Proposition 4.35 Let (E, h,∇h) −→ (Mn, g) be a Riemannian vector bundle satisfying
(I), (Bk(Mn, g)), (Bk(E,∇)), k ≥ r > n

2 + 1, and let g′ be a second metric, h′ a second
fibre metric with metric connection∇h

′
, g, g′ and h, h′ quasi isometric, respectively,

|g − g′|g,2,r <∞, |h− h′|h,∇h,g,2,r <∞, |∇h −∇h
′
|h,∇h,g,2,r−1 <∞.

(E, h′,∇h
′
) −→ (Mn, g′) also satisfying (I) and (Bk). Then there holds for the Laplace

operators ∆ = ∆q(g, h,∇h), ∆′ = ∆q(g′, h′,∇h
′
) acting on forms with values in E

D∆ = D∆′ as equivalent Hilbert spaces (4.6)

and

σe(∆) = σe(∆′). (4.7)

Proposition 4.36 Let (Mn, g) be open, complete with noncompact isometry group I(M).
Then σ(∆q) contains no eigenvalues of finite multiplicity, 0 ≤ q ≤ n.
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Proof From I(M) noncompact one gets the following. For every x0 ∈ M and for every
r > 0 and Br(x0) there exist a sequence (xi)i≥0 and a sequence (fi)i≥0 of isometries
of M such that fi maps Bi = Br(xi) isometrically onto B0 = Br(x0) and the Br(xi)
are pairwise disjoint. Assume λ ∈ σp(∆q) and mult(λ) = m. Let u be a normalized
eigenform for λ, ∆u = λu, ||u|| = 1. Then also uj = f∗j u is an eigenform, ∆f∗j u =
f∗j ∆u = λf∗j u. Thus one gets a sequence (uj)j at the unit sphere in the eigenspace
which has an accumulation point u∗. Without loss of generality we assume that (uj)j
converges to u∗. We denote ||u∗||2i = ||u∗|Bi ||2 =

∫
Bi

u∗ ∧ ∗u. Then there holds 1 =

||u∗||2 ≥
∑
i

||u∗||2i , in particular ||u∗||i −→
i→∞

0. For every ε > 0 there exists an i0 such

that ||u∗||i < ε
2 for all i ≥ i0. This implies ||uj ||i < ε

2 for all j > j0 and i > i0, in
particular ||uk||k < ε, k > max{i0, j0}. But ||uk||k = ||u|B0 || < ε. ε was arbitrary, u|B0

has to be zero. According to the unique continuation theorem of Aronszajn (cf. [5]) u has
to be zero which contradicts to our assumption. The multiplicity of λ has to be infinite.

Corollary 4.37 For the above manifolds there holds

σ(∆q) = σe(∆q), 0 ≤ q ≤ n.

In particualar, for symmetric spaces of noncompact type the ∆qs don’t have eigenvalues
of finite multiplicity.

These results suggest that if we have ”space enough” then σe should be 6= ∅. But this
philosophy is still to rough as the following example shows. There exists a Dirac operator
D on (Rn, metric) such that σe(D) = ∅.
Corollary 4.38 Let (Mn, g) be open, complete, spin, S −→ M a spinor bundle with
spinor connection coming from lifting the Levi-Civita connection s. t. D is symmetric.
Assume for the scalar curvature τ of (Mn, g)

lim
r→∞

inf{τ(x)|d(x, x0) ≥ r} =∞.

Then the Dirac operator D is an operator with a purely discrete point spectrum.

Let (Mn, g) be closed. Then the spectrum of any self-adjoint elliptic operator is purely
discrete, as we pointed out in section 3. Now the task of spectral geometry consists in the
task to calculate/estimate the spectrum of ∆, D, D2 and to draw conclusions from this.
We refer to the contribution of Peter Gilkey in this volume.

If (Mn, g) is open, then the spectral theory is more difficult. First one wants to de-
termine the spectral type of the Laplace operators ∆q , where the spectral type – roughly
speaking – is the statement which components in the decompositions

σ(∆q) = σpd(∆q) ∪ σe(∆q)
= σpd(∆q) ∪ σc(∆q) ∪ σp(∆q)1 ∪ {λ ∈ σp(∆q) |mult(λ) =∞}
= σpd(∆q) ∪ σac(∆q) ∪ σsc(∆q) ∪ σp(∆q)1 ∪ {λ ∈ σp(∆q) |mult(λ) =∞}

are empty or non-empty, respectively. More desirable it would be even to calculate the
spectrum or some bounds or some of the spectral values. As well known, already for
Euclidean domains this is a rather difficult task. Nevertheless, for some special manifolds
as e. g. hyperbolic space and other symmetric spaces there are complete exact calculations.
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Of particular interest are the bottom of the spectrum, the point spectrum, the essential
spectrum and the spectral value 0. Concerning the spectral type, we refer to many papers
of Donnelly, Dodziuk (e.g. [32], [34], [35]), the author (e.g. [45]), other colleagues and to
[43].

5 The spectral value zero

In many investigations, assumptions and applications, the spectral value zero plays a par-
ticular role. We will discuss this carefully. The background for this is that the spectral
value zero is strongly connected with (reduced and non-reduced) L2-cohomology which
reflects also some topological features. The first natural question would be: Does zero
always belong to at least one σ(∆q), 0 ≤ q ≤ n? The zero in the spectrum conjecture (cf.
[168]) says that the answer will be yes for complete Riemannian manifolds (Mn, g). We
come back to this question after introducing L2-cohomology.

For our calculations in the sequel we need a special class of Sobolev spaces. Consider
Ωq(E), the operators d = dq : Ωq(E) −→ Ωq+1(E) and δ = δq : Ωq(E) −→ Ωq−1(E),
q = 0, . . . , n. Write dq,0 = dq|C∞c , δq,0 = δq|C∞c . For a finite set S of polynomials in d, δ
with constant coefficients we define

Ωq,pS (E) =

{
ϕ ∈ Ωq(E) | |Dϕ|p =

(∫
|Dϕ|px dvolx(g)

) 1
p

<∞ for all D ∈ S

}
and

Ω
q,p,S

(E) = completion of Ωq,pS (E) with respect to | |p,S
|ϕ|p,S = |ϕ|p +

∑
D∈S
|Dϕ|p.

By
o

Ωq,p,S(E) we denote the completion of C∞c (Λq(E)) with respect to | |p,S and by
Ωq,p,S(E) the space of all regular distributions ϕ such that |ϕ|p,S <∞.
Examples 5.1

1) S = {dq,0},
o

Ωq,2,S(E) =
o

Ωq,2,{dq,0}(E) = Ddq,0
,

S = {δq,0},
o

Ωq,2,{δq,0}(E) = Dδq,0
.

2) S = {dq|Ωq,2{d}}, Ωq,2,S(E) = Ddq
,

S = {δ|Ωq,2{δ}}, Ω
q,2,{S}

(E) = Dδq
.

3) S = {∆q} = {dq−1δq + δq+1dq|Ωq,2∆
}, Ωq,2,{∆}(E) = D∆,

S = {∆|C∞c (Λq(E))}, Ω
q,2,S

(E) = D∆q,0
.

4) S = {(1 + ∆)k|C∞c (Λq(E))}, Ωq,2,S(E) =
o

Ωq,2,2k(E,∆).

If S = {d} then we sometimes simply write Ωq,p,d instead of Ωq,p,{d}.
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This section is built up as follows. First we introduce Lp- and several versions of L2-
cohomology and connect this with the spectral value zero. Thereafter we discuss the zero
in the spectrum conjecture and its solution. Finally we present classes of manifolds from
real and complex differential geometry and algebraic geometry for which L2-cohomology
can be calculated or estimated. The methods doing this are really very different. The
first part of this paragraph is devoted to Lp-cohomology. We start with the definition of
Lp-cohomology and remind for 1 ≤ p < ∞ and S a set of polynomials in d and δ with
constant coefficients the Sobolev spaces

Ωq,pS (E),Ω
q,p,S

(E),
o

Ωq,p,S(E),Ωq,p,S(E). (5.1)

For p =∞ we define bΩq{d}(E) = {ϕ |ϕ ∈ Ωq(E) and sup
x
|ϕ|x, sup

x
|dϕ|x <∞} which

is a normed space w. r. t. b|ϕ|d = sup
x
|ϕ|x + sup

x
|dϕ|x. For 1 ≤ p < ∞ the regularized

Lp-cohomology H∗,p{d}(M
n, g) is the cohomology of the complex

0 −→ Ω0,p
{d} −→ Ω1,p

{d} −→ · · · −→ Ωq,p{d} −→ Ωq+1,p
{d} −→ · · · −→ Ωn,p{d} −→ 0, (5.2)

i. e.

Hq,p
{d}(M

n, g) = ker(dq : Ωq,p{d} −→ Ωq+1,p
{d} )/Im (dq−1 : Ωq−1,p

{d} −→ Ωq,p{d}) = Zq,p{d}/B
q,p
{d}.

H∗,p{d} is the cohomology of the complex (Ω∗,p{d}, d). Further we define the reduced regular-

ized Lp-cohomology H
q,p

{d} as

H
q,p

{d} := Zq,p{d}/B
q,p

{d}

and the bounded cohomology bH∗{d} as the cohomology of the complex bΩ∗{d}. All this
can also be done for forms with values in a flat vector bundle E since then at smooth level
d2 = 0. Then we get H∗,p{d}(M,E) etc.

In the sequel we restrict to the case p = 2 mainly. Then we have still other canonical
complexes, e. g.

(Ω∗,2c,{d}, d) = (Ω∗c , d), (5.3)

(
o

Ω∗,2,{d}, d∗,0) = (Ddq,0 , dq,0)q, (5.4)

(Ω
∗,2,{d}

, d∗) = (Ddq , dq)q, (5.5)

(Ω∗,2,{d}, d∗,max) = (Ddq,max, dq,max), (5.6)

where dq,max is the maximal extension of dq , Ddq,max = {ϕ ∈ L2(ΛqT ∗) = Ω∗,2 | dqϕ ∈
L2, where dqϕ is taken in the distributional sense.} First we must see that these are in fact
complexes. For (5.3) this is absolutely clear. It yields the (smooth) cohomology with
compact support. The complex property of (5.4), (5.5) and (5.6) in fact deserves a proof.
We do this for (Ddq , dq). The only point to show is that dqdq−1 is defined and equals

zero. Let ϕ ∈ Ddq−1
, i. e. there exists a sequence (ϕν)ν in Ωq−1,2

{d} , such that (ϕν)ν
is a Cauchy sequence w. r. t. |ϕν |2dq−1

= |ϕν |2L2
+ |dϕν |2L2

and ϕν =⇒
L2

ϕ, dϕν =⇒
L2
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dϕ. (dϕν)ν is a Cauchy sequence w. r. t. |dϕν |2dq = |dq−1ϕν |2L2
+ |dqdq−1ϕν |2L2

=
|dq−1ϕν |2L2

and dqdq−1ϕ = lim
ν→∞

dqdq−1ϕν = 0. Similarly for the complex (Ddq,0 , dq,0)q
and (Ddq,max , dq,max)q . One would expect that the cohomology of the complexes (5.4) –
(5.6) would be distinct. For general elliptic complexes and their distinct closures to Hilbert
complexes this will be in fact the case. But fortunately for the de Rham complex the
situation is better. Cheeger proved in [24] that the inclusion Ω∗,2{d} ⊂ Ω∗,2,{d} is a chain

homotopy equivalence between the complexes (Ddq , dq)q = (Ω∗,2,{d}, d∗) and (Ω∗,2{d}, d∗),
i.e. this inclusion induces an isomorphism

H∗,2{d} = H∗,2,{d} ≡ H∗(Ω∗,2,{d}, d∗) (5.7)

Moreover he shows that dqϕ = η in the distributional sense if and only if ϕ ∈ Ddq and
dq = η. This has as a consequence

H∗,2,dmax := H∗(Dd∗,max , d∗,max) = H∗(Dd∗ , d∗) ≡ H
∗,2,{d}. (5.8)

We draw the conclusion that H∗,2,{d} represents the L2-cohomology of 3 complexes and
hence should be of particular importance.

To explore the relations with the complex (
o

Ω∗,2,{d}, d∗,0) = (Ddq,0
, dq,0) we start with

the following
Lemma 5.2 There holds for all q

dq = δ∗q+1,0, (5.9)

δq+1 = d∗q,0. (5.10)

Proof Suppose that ϕ ∈ Ωq,2{d}. Then for all ψ ∈ Ωq+1
c ,

〈δq+1,0ψ,ϕ〉 = 〈ψ, dqϕ〉,

which implies dq ⊂ δ∗q+1,0, dq ⊆ δ∗q+1,0 = δ∗q+1,0, and, in the same manner, δq+1 ⊆ d∗q,0.
There remains to show δ∗q+1,0 ⊆ dq , i.e. if ϕ ∈ Dδ∗q+1,0

then ϕ ∈ Ddq and dqϕ = δ∗q+1,0ϕ.
We start with a ϕ ∈ Dδ∗q+1,0

of class C1 and show ϕ ∈ Dd: Assume θ ∈ Ωq+1
c , then

〈ϕ, δq+1,0, θ〉 = 〈δ∗q+1,0ϕ, θ〉,

moreover 〈dqϕ, θ〉 is well defined and

〈dqϕ, θ〉 = 〈ϕ, δq+1,0θ〉.

We obtain dqϕ − δ∗q+1,0ϕ = 0 on all compact subsets, which means dqϕ − δ∗q+1,0ϕ ≡ 0,
||δ∗q+1,0ϕ|| <∞, ||dqϕ|| <∞, ϕ ∈ Ddq . Consider now an arbitrary ϕ ∈ Dδ∗q+1,0

. We have
to show that ϕ ∈ Ddq . This would be done if we could show the existence of a sequence
ϕν −→ ϕ, ϕν ∈ Ddq , with dqϕν −→ δ∗q+1,0ϕ. For this we use Friedrich’s mollifiers
(= smoothing operators) Jε (cf. [123]). If ϕ is square integrable then Jεϕ is smooth and
Jεϕ −→

ε→0
ϕ. Furthermore, if ϕ ∈ Dδ∗ then dJεϕ = Jεδ∗ϕ. At the first instance, this

holds for ordinary q-forms α. A very simple computation shows for a local form α × s
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with values in E again dJε(α × s) = Jεδ∗(α × s) (the ∗-operator acts only on the usual
forms). Setting ε = 1

ν , ϕν = J 1
ν
ϕ, we have

ϕν ∈ Ddq , ϕν −→ ϕ, dϕν = dJ 1
ν
ϕ = J 1

ν
δ∗ϕ −→ δ∗ϕ.

Altogether, we obtained dq = δ∗q+1,0. In a similar manner one shows d∗q,0 = δq+1.

Lemma 5.3 The following conditions are equivalent.
a) 〈ϕ, dqψ〉 = 〈δq+1ϕ,ψ〉 for all ϕ ∈ Dδq+1

, ψ ∈ Ddq .

b) dq = δ∗q+1.
c) d∗q = δq+1.
d) δq+1 = δq+1,0.
e) dq = dq,0.

Proof a) means dq ⊆ δ∗q+1, δq+1 ⊆ d∗q . Further δq+1 ⊇ δq+1,0, δ∗q+1 ⊆ δ∗q+1,0 and
δ∗q+1,0 = dq according to (5.9). This yields dq = δ∗q+1, i. e. b). c) follows from b) taking
adjoints. Assume c), then d

∗
q = δq+1 ⊇ δq+1,0 and from (5.9) δq+1,0 = δ∗∗q+1,0 = d

∗
q ,

hence δq+1 = δq+1,0. Assume d). We obtain from (5.9), (5.10) δ∗q+1,0 = dq ⊇ dq,0 =
d∗∗q,0 = δ

∗
q+1, from d) δ

∗
q+1 = δ

∗
q+1,0 = δ∗q+1,0, i. e. dq = dq,0. Finally dq,0 ⊆ δtq+1 ⊆

δ∗q+1, i. e. with dq = dq,0, dq ⊆ δ
∗
q+1 = δ∗q+1, quite similar the second inequality.

As well known, completeness of (Mn, g) is sufficient for each of the conditions in
lemma 5.3, in particular for Stokes’ theorem a).

As partial examples we obtain the following self-adjoint extensions of the Laplace
operator, the Dirichlet Laplace operator

∆D = δ d0 + d0δ

and the Neumann Laplace operator

∆N = δ0d+ d δ0.

Here x ∈ DAB means x ∈ DB and Bx ∈ DA and DA+B = DA ∩ DB . The proof of
the self-adjointness for ∆D, ∆N is quite simple. We use the orthogonal (weak) Hodge
decomposition of Kodaira

Ωq,2 = Hq,2w ⊕ d0Ωq−1
c ⊕ δ0Ωq+1

c (5.11)

where

Hq,2w = {ϕ ∈ Ωq,2 | dϕ = 0, δϕ = 0 in the distributional sense}

is the space of weakly harmonic L2-forms.
Since δ d0 , d0δ are self-adjoint according to (5.11) and von Neumann and

δ d0|d0Ωq−1
c
≡ 0, d0δ|δ0Ωq+1

c ⊕Hq,2
≡ 0, ∆D is the orthogonal sum of two self-adjoint

operators, i. e. self-adjoint. In a similar manner we argue for ∆N using (5.9).
From the definition of ∆D, ∆N it is clear that in the case d0 = d, δ0 = δ the operators

∆D, ∆N coincide with the closure ∆0,

∆0 = δ0δ
∗
0 + d0d

∗
0 (5.12)
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of ∆0 = ∆|Ωqc .
(Dd∗,0 , d∗,0), (Dd∗ , d∗) and (Ddmax , dmax) belong to the class of so called ideal bound-

ary conditions for the de Rham complex (Ω∗c , d∗,0) and are Hilbert complexes. For com-
pleteness, we recall the corresponding notions from [16].

Consider an elliptic complex

0 −→ C∞c (E0) −→ · · · −→ C∞c (Eq) −→ C∞c (Eq+1) −→ · · · −→ C∞c (EN ) −→ 0
(5.13)

of Hermitean vector bundles (Eq, hq) −→ (Mn, g) over (Mn, g) with differentials dq ,
dq+1dq = 0. For each q there are Hilbert spaces Hq = L2(Eq). Each operator dq has a
formal adjoint dtq : C∞c (Eq+1) −→ C∞c (Eq) which is also a differential operator. Hence
each dq has closed extensions which lie between the minimal extension dq,min = dq and
the maximal extension dq,max = (dtq,min)∗. Any choice of closed extensions dq,min ⊂
Dq ⊂ dq,max that produces a Hilbert complex

(D, D) : · · · −→ DDq
Dq−→ DDq+1

Dq+1−→ DDq+2 −→ · · · (5.14)

will be called an ideal boundary condition.
We recall from [16]

Proposition 5.4 Let (C∞c (E), d) be an elliptic complex. Then ideal boundary conditions
exist. For example, if we put Hq = L2(Eq) and Dq = Ddq,min or Dq = Ddq,max , then
(D, D) becomes a Hilbert complex.

In our case (C∞c (Eq), dq)q = (Ωqc , dq,0)q is dtq,0 = δq+1,0, and, according to (5.9),
dq,max = δ∗q+1,0 = dq and dq,min = dq,0. But this special case dq,max = dq holds only for
the de Rham complex. Its proof uses special features of this complex.

If {d̃q}q , dq,0 ⊆ d̃q ⊆ dq,max, 0 ≤ q ≤ n, d̃q+1d̃q = 0, is an ideal boundary
condition for the de Rham complex then we define the corresponding Laplace operator
∆̃q := d̃q−1d̃

∗
q−1 + d̃∗q d̃q = d̃q−1δ̃q + δ̃q+1d̃q where we have set δ̃q := d̃∗q−1. We define

analogously to above

Hq,2,{d̃} := ker d̃q/Im d̃q−1 = Zq,2,{d̃}/Bq,2,{d̃},

H
q,2,{d̃}

:= ker d̃q/Im d̃q−1

andHq,2,{d̃} := ker d̃q ∩ ker δ̃q.

Proposition 5.5 a) There is an orthogonal decomposition

L2(ΛqT ∗) ≡ Ωq,2 = Hq,2,{d̃} ⊕ Im d̃q−1 ⊕ Im δ̃q+1,

b) ∆̃q is self-adjoint,

c) Zq,2,{d̃} = Hq,2,{d̃} ⊕ Im d̃q−1,

d) Hq,2,{d̃} = Hq,2,{d̃} ⊕ Im d̃q−1/Im d̃q−1,

e) Hq,2,{d̃}
= Hq,2,{d̃},

f)Hq,2,{d̃} = ker ∆̃q .
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Proof b) – e) follow immediately from a), hence we start with a). d̃q closed implies ker d̃q
closed. Then

Ωq,2 = (ker d̃q)⊥ ⊕ ker d̃q == (ker d̃q)⊥ ⊕ Im d̃q−1 ⊕ ker d̃q ∩ (Im d̃q−1)⊥ =

= Im δ̃q+1 ⊕ Im d̃q−1 ⊕ ker d̃q ∩ ker δ̃q == Im δ̃q+1 ⊕ Im d̃q−1 ⊕Hq,2,{d̃}.

Clearly Hq,2,{d̃} ⊆ ker ∆̃q . If ϕ ∈ ker ∆̃q then 0 = 〈∆̃qϕ,ϕ〉 = |d̃qϕ|2L2
+ |δ̃qϕ|2L2

,
d̃qϕ = 0, δ̃qϕ = 0, ϕ ∈ Hq,2,{d̃}.

The connection between L2-cohomologyHq,2,{d̃} and the spectrum σ(∆̃q) is given by

Theorem 5.6 Let (Mn, g) be an open Riemannian manifold {d̃q}q an ideal boundary
condition.

a) If 0 ∈ σp(∆̃q) then Hq,2,{d̃} 6= {0}.
b) If 0 ∈ σc,R(∆̃q) then Hq,2,{d̃} 6= {0} or Hq+1,2,{d̃} 6= {0}.
c) If Hq,2,{d̃} 6= {0} then 0 ∈ σ(∆̃q).

Proof If 0 ∈ σp(∆̃q) then there exists 0 6= ϕ ∈ D∆̃q
such that ∆̃qϕ = 0. From propo-

sition 5.5 f) follows d̃qϕ = 0, ϕ is closed. Moreover ϕ /∈ d̃q−1Dd̃q−1
since ker ∆̃q

and d̃q−1Dd̃q−1
are orthogonal. Hence ϕ generates a nontrivial L2-cohomology class

[ϕ] ∈ Hq,2,{d̃}, a) is done.
If 0 ∈ σc,R(∆̃q) then ker ∆̃q = {0}, Im ∆̃q is dense but not closed. Im ∆̃q is closed if

and only if Im d̃q−1 and Im d̃q are closed. Hence under our assumption Im d̃q−1 or Im d̃q

is not closed, Hq,2,{d̃} = ker d̃q/Im d̃q−1 = Im d̃q−1/Im d̃q−1 6= {0} or Hq+1,2,{d̃} =
ker ∆̃q+1 ⊕ Im d̃q/Im d̃q 6= {0}. b) is done.

Assume conversely Hq,2,{d̃} 6= {0}, 0 6= [ϕ] ∈ Hq,2,{d̃}. Then ϕ is closed and
either ϕ ∈ ker ∆̃q or ϕ ∈ Im d̃q−1 \ Im d̃q−1 (after decomposition). If 0 6= ϕ ∈ ker ∆̃q

then 0 ∈ σp(∆̃q) ⊆ σ(∆̃q). Assume for all 0 6= [ϕ] ∈ H2,p,{d̃} and all ψ ∈ [ϕ] that
ψ /∈ ker ∆̃q . Then ker ∆̃q = {0} and 0 /∈ σp(∆̃q). Now we must prove 0 ∈ σc,R(∆̃g).

From ker ∆̃q = 0 follows Im ∆̃q = Ωq,2,0 = L2(Λq). Suppose Im ∆̃q = L2(Λq), i.e.
∆̃q is surjective. Let 0 6= [ϕ] ∈ Hq,2,{d̃}, ϕ ∈ [ϕ]. There exists ψ such that ∆̃qψ = ϕ.
d̃qϕ = 0 implies 0 = d̃q∆̃qψ = d̃q δ̃q+1d̃qψ, 0 = |δ̃q+1d̃qψ|2L2

, δ̃q+1d̃qψ = 0, ϕ =
∆̃qψ = d̃q−1δ̃qψ + δ̃q+1d̃qψ = d̃q−1(δ̃qψ). i. e. ϕ is a coboundary in contradiction to

[ϕ] 6= 0. Hence Im ∆̃q ⊂ L2, Im ∆̃q = L2, i.e. 0 ∈ σc,R(∆̃q).

Special cases of proposition 5.5 and theorem 5.6 are d̃q = dq,0, ∆̃q = ∆q,D or d̃q = dq ,
∆̃q = ∆q,N . If dq,0 = dq , or equivalently if Stokes’ theorem holds, then for d̃q = dq =
dq,0, ∆̃q = ∆q,0 the closure of ∆q|Ωqc and the assertions above hold for ∆q,0. In particular
this holds for complete (Mn, g).

We draw as conclusion that the question 0 ∈ σ(∆q) or not essentially amounts to the
investigation ofL2-cohomology. Moreover, L2-cohomology is of additionally independent
interest since in many interesting cases it is related to combinatorial L2-cohomology or
intersection homology, i. e. to topological features. It is clear that L2-cohomology is an
invariant of the quasi isometry class of g since transition from g to a quasi isometric g′
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produces equivalent L2-norms. We return now to the zero in the spectrum conjecture for
complete manifolds.

Conjecture. For all complete Riemannian manifolds (Mn, g), there holds 0 ∈ σ(∆q)
for some q (between 0 and n).

This conjecture is supported by several facts and examples.
1) For manifolds with finite volume this is true: 0 ∈ σ(∆0), ∆01 = 0, 1 ∈ C∞ ∩ L2;

in particular this holds for closed manifolds.
2) σ(∆q(Rn, gstandard)) = [0,∞[, 0 ≤ q ≤ n.
3)

σ(∆q(Hn
−1)) =


[

(n−1)2

4 ,∞
[

= σe for q = 0, n,

[λ1,∞[= σe, λ1 = min
{

(n−2q+1)2

4 , (n−2q−1)2

4

}
for q 6= 0, n, n2 ,

{0} ∪
[
n
2 ,∞

[
= σe for q = n

2 .

4) 0 ∈ σ(∆i(H2n+1
−1 )), i = n, n+ 1.

If q = n
2 then 0 is an eigenvalue of infinite multiplicity.

There are many further classes of examples which support the conjecture and for a
couple of years nobody has been able to find a counterexample against the conjecture.

It were Michael Farber and Shmuel Weinberger which constructed in 1999 a class of
counterexamples (cf. [56]). In the same year Nigel Higson, John Roe and Thomas Schick
established a simplified class of counterexamples (cf. [76]). We sketch their main steps.

1) According to theorem 5.6, zero will not be in the spectrum of some ∆q if and only
if Hq,2,{d}(Mn, g) = 0, 0 ≤ q ≤ n.

2) Let (Mn, g) be closed and (M̃n, g̃) be an infinite covering. Then Hq,2,{d}(M̃) =
Hq(M ; l2(π)), where l2(π) is the completion of Cπ, π = Deck (M̃ −→ M). In partic-
ular, if π = π1(M), M̃ −→ M the universal covering, then 0 /∈ σ(∆q(M̃)) for all q if
Hq(M ; l2(π)) = 0 for all q.

3) Denote by C∗r (π) the reduced C∗-algebra of π andN (π) the von Neumann algebra.
Higson, Roe and Schick made the following fundamental observation. Suppose Z is a CW-
complex with countably many cells overall and finitely many cells in dimension 0 through
n. The following are equivalent: The homology groups H∗(Z;C∗r (π)) are zero in degrees
zero through n. The homology groups H∗(Z;N (π)) are zero in degrees zero through n.
The homology groups H∗(Z; l2(π)) are zero in degrees zero through n.

4) Let G be a finitely presented group such that Hk(G;C∗r (G))) = 0 for k = 0, 1, 2
and W a finite 2-dimensional CW-complex with π1(W ) = G. Then H0(W ;C∗r (G)) = 0
andH1(W ;C∗r (G)) = 0 since the classifying mapW −→ BG is 2-connected and because
the connectedness assumption on G. H2(W ;C∗r (G)) is finitely generated and stably free.

5) By wedging with finitely many 2-spheres one obtains a finite CW-complex Y with
π1(Y ) = G for which H2(Y ;C∗r (G)) is a free C∗r (G) module.

6) The Hurewicz map h : π2(Y ) ⊗ C∗r (G) −→ H2(Y ;C∗r (G)) is surjective since its
cokernel H2(G;C∗r (G)) = 0. The inclusion Q[G] −→ C∗r (G) induces a map

i : π2(Y )⊗Q[G] −→ π2 ⊗ C∗r (G)

and the inclusion Z[G] −→ C∗r (G) induces

j : π2(Y ) = π2(Y )⊗ Z[G] −→ π2(Y )⊗ C∗r (G).
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7) Main lemma. The image of the composition

h ◦ j : π2(Y ) −→ H2(Y ;C∗r (G))

contains a basis for the free C∗r (G)-module H2(G;C∗r (G)).
8) Choose elements v1, . . . , vd ∈ π2(Y ) such that h ◦ j sends them to a basis for

H2(Y ;C∗r (G)). Each vk is represented by a map S2 −→ Y . Attach be means of this maps
3-cells to Y . Denote the result by X . Then

H∗(X;C∗r (G)) = 0.

9) Embed X into Euclidean space and take the boundary Mn of a regular neighbor-
hood. Then

Hk(Mn;C∗r (G)) = 0

for all k, 0 /∈ σ(∆q(M̃n)), 0 ≤ q ≤ n.
We summarize these steps as

Theorem 5.7 Let G be a finitely presented group and suppose that the homology groups
Hk(G;C∗r (G)) are zero for k = 0, 1, 2. This is equivalent to the vanishing of the (unre-
duced) L2-homology of G in dimensions 0, 1, 2.

Then there is a 3-dimensional finite CW-complex X with π1(X) = G such that
Hk(X;C∗r (G)) = 0 for all k ∈ N- Moreover, for every dimension n ≥ 6 there is a closed
manifold Mn of dimension n and with π1(Mn) = G such that Hk(Mn;C∗r (G)) = 0 for
all k ∈ N.

For the universal covering (M̃n, g̃) then holds 0 /∈ σ(∆q(M̃, g̃)), 0 ≤ q ≤ n. i.e.
(M̃n, g̃) is a counterexample to the zero in the spectrum conjecture.

It would be interesting to produce other complete counterexamples which are not
universal coverings of closed manifolds and nontrivial noncomplete counterexamples.
The following is clear. If Hq,2,{d}(Mn, g) = 0, 0 ≤ q ≤ n, then in particular
inf σe(∆q) = λq,e > 0, 0 /∈ σe(∆q). σe(∆q) remains unchanged under compact per-
turbations. Hence, if after a compact perturbation 0 ∈ σ(∆q) then it must be an eigenvalue
of finite multiplicity, i.e. 0 ∈ σpd(∆q). Ingolf Buttig generated in [19] eigenvalues λ > 0
below the bottom of the essential spectrum by controled perturbations. The question is,
will this be possible also for λ = 0? The answer is yes.

This finishes our preliminary discussion of the zero in the spectrum conjecture.
The most easy case for L2-cohomology would be the case which admits only one ideal

boundary condition, i.e. the case dq,min = dq,0 = dq,max = dq , 0 ≤ q ≤ n, where the
latter equality only holds for the de Rham complex, not for arbitrary elliptic complexes (cf.
[24] , p. 135). Sufficient for this was the completeness of (Mn, g). Consequently, the study
of L2-cohomology splits into basically distinct cases, the complete and incomplete case.
The complete case belongs more to the area of differential geometry and global analysis,
the incomplete case more to algebraic geometry. The generic example for the latter are
projective algebraic varieties V n with singularity set Σ and are manifolds V n \Σ with the
Kähler metric induced from the Fubini-Study metric. Fortunately in this situation, there is
another description of L2-cohomology, given by intersection homology. We come to this
later.
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To submit a certain geometrical/analytical feeling forL2-cohomology, we present some
examples. For the complete case, where we have only one ideal b. c., we write Hq,2 for
Hq,2,{d},Hq,2 etc..

Examples 5.8 a) If (Mn, g) is complete and vol (Mn, g) = ∞ then always H
0,2

=
H0,2 = {0}. In particular, H0,2(Nn−1 × R) = {0} if Nn−1 is closed and we endow
Nn−1 × R with the product metric. Moreover, H

0,2
(Nn−1 × R) = 0 since for any open

manifold H0,2 = H
0,2

.
b) Consider Nn−1 × R with a metric of infinite volume and Ricci curvature Ric ≥ 0.

Then from Ric ≥ 0 we immediately obtain {0} = H
1,2

= H1,2. Consider a C∞ function
h(u, r) = f(r) on M = N ×R such that f(r) = 1

r for |r| ≥ 1. Then ω = f(r)dr ∈ Z1,2.
The most general function ϕ such that dϕ = f(r)dr satisfies for |r| ≥ 1 ϕ(r) = log r+C,
hence ϕ /∈ Ω0,2 = L2 and fdr /∈ B1,2, H1,2 6= {0}. We infer from c) dimH1,2 =∞.

c) If Hq,2 = {0} then either dimHq,2 = 0 or dimHq,2 = ∞. Hence dimHq,2 < ∞
implies automatically Hq,2 = Hq,2.

d) Let (M2, g) be the Poincare disc ({|z| < 1}, ds2 = |dz|2
(1−|z|2)2 ). Then H0,2(M2) =

H2,2(M) = {0} and H1,2(M2) = {ω = adx+ bdy|bx − ay = 0, ax + by = 0,
∫
M2

(a2 +

b2)dxdy < ∞}, which can be identified with the space of square integrable harmonic
functions f(z) = a− ib.

We start with calculations in the complete case. Then

Hq,2(Mn, g) = Hq,2(Mn, g)⊕ Im dq−1/Im dq−1 = ker ∆q ⊕ Im dq−1/Im dq−1.

One approach to calculate Hq,2 would be to calculate each single summand in the direct
sum. Let us start with Hq,2. The classical method to prove the vanishing of Hq,2 is
Bochner’s method which can be extended to open manifolds, and this has been performed
by Dodziuk. Write the formula (2.2) in section 2 as ∆ω = ∇∗∇ω +Rqω. Denote by ( , )
the pointwise scalar product.
Theorem 5.9 Suppose the form ωx −→ (Rqω, ω)x is positive semidefinite for all x ∈M .
Then every L2-harmonic q-form is parallel. If vol (Mn, g) =∞ or (Rqω, ω)x is positive
definite then every L2-harmonic q-form is identically zero.

Proof Let Φr,s be an almost differentiable function on M such that
a) 0 ≤ Φr,s(x) ≤ 1,
b) supp Φr,s = Bs(x0),
c) Φr,s(x) = 1 on Br(x0),
d) lim

r,s→∞
Φr,s = 1,

e) |dΦr,s(x)| = |∇Φr,s(x)| ≤ c
s−r almost everywhere,

and set λR(x) = ΦR,2R. Then λR(x) is Lipschitz, 0 ≤ λR(x) ≤ 1 for every x ∈ M ,
supp λR ⊂ B2R(x0), λR(x) = 1 on BR(x0), lim

R→∞
λR = 1 and |dλR(x)| ≤ C1/R

almost everywhere. Then for any ω ∈ Ωq,2 ∩ C2

〈∆ω, λ2
Rω〉 = 〈λR∇ω, λR∇ω〉+ 〈λR∇ω, 2dλR ⊗ ω〉+ 〈Rqω, λ2

Rω〉. (5.15)

We have the simple estimates

|dλR ⊗ ω|2L2
≤ C2

1

R2
|ω|2L2
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and

|(λR∇ω, 2dλR ⊗ ω)|L1 ≤
1
2
|λR∇ω|2L2

+
2C2

1

R2
|ω|2L2

. (5.16)

If ∆ω = 0 then we infer from (5.15), (5.16)

1
2
|λR∇ω|2L2

+ 〈RqλRω, λRω〉 ≤
2C2

1

R2
|ω|2L2

. (5.17)

Taking lim
R→∞

in (5.17) yields |∇ω|L2 = 0, ω parallel, |ω| constant, ω = 0 if vol (Mn, g) =

0. Moreover, we conclude from (5.17) that 〈Rqω, ω〉 =
∫
M

(Rqω, ω)x dvolx(g) exists and

= 0. Hence ωx = 0 at every x where (Rq·, ·) is positive definite. If such a point x exists
then ωx = 0, ω ≡ 0.

Now the main task is to calculate H∗,2, H∗,2 for as much as possible manifolds. We
refer to [22], [32], [35] and present here for the reasons of space only some classes.
Proposition 5.10 Let (Mn, g) be open, complete, with finite volume and pinched sectional
curvature K, −1 ≤ K ≤ −1 + ε, 0 ≤ ε1.

a) If ε < 1−4q2

(n−1)2 and q < n−1
2 then dimHq,2(M) <∞ and dimHn−q,2(M) <∞.

b) If n = 2m and ε < 2
(2m−1)2+2(m−1)2β(n) then dimHm,2(M2m) <∞.

c) If n = 2, 0 ≤ ε < 1 arbitrary, then dimH1,2(M2) <∞.

For complex manifolds, we mention some very deep results established by Donnelly,
Fefferman and Gromov.
Theorem 5.11 Let (Mn, g) be strictly pseudoconvex in Cn endowed with its Bergman
metric. Then (Mn, g) is a complete Kähler metric of real dimension 2n. Denote byH(p,q),2

the space of L2-harmonic (p, q)-forms. Then

dimH(p,q),2 =
{

0, p+ 1 6= n
∞, p+ q = n

.

The proof essentially uses and sharpens for Hermitean manifolds the estimates of [35],
discussed here in the preceding section. Moreover it uses the fact that the holomorphic
sectional curvatures approach a negative constant near the boundary. We refer to [36] for
the proof.

Gromov proves in [68] that for a compact Kähler hyperbolic manifold Mn the L2-
Hodge numbers h(p,q),2 = dimH(p,q),2 vanish if and only if p + q < n. The vanishing
of dimCH(p,q),2 has been independently proved by Stern, if (Mn, g) is a complete simply
connected Kähler manifold with negatively pinched sectional curvature, −b ≤ K ≤ −a <
0. Gromov’s result immediately implies

signχ(M) = (−1)n

for a compact Kähler manifold Mn of negative curvature and of real dimension 2n, which
is a special case of the Hopf conjecture. Other vanishing theorems for L2-cohomology in
the Kähler case are established by Jost/Kang Zuo in [79].

The vanishing properties of Hq,2 in the case of negative curvature remain valid for
L2-cohomology with coefficients if M is a symmetric space of noncompact type.
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Let G be a connected linear semi-simple Lie group, K a maximal subgroup of G.
Then M = G/K has a G-invariant Riemannian metric such that it is a Riemannian sym-
metric space of negative curvature and homeomorphic to Euclidean space. Let (%,E) be
an irreducible finite dimensional representation of G. This yields a complex of differen-
tial forms with values in the associated vector bundle which we also denote by E. Then
L2-cohomology Hq,2(M ; E) is at least well defined.
Theorem 5.12 Let m = dimM

2 and assume rkG = rkK. Then there holds.
a) Im d is closed and

Hq,2(M ; E) = H
q,2

(M ; E) ∼= Hq,2(M ; E) = (0)

if q 6= m.
b) The G-space Hm,2(M ; E) = Hm,2(M ; E) ∼= Hm,2(M ; E) is the direct sum of the

discrete series representations of G having the same infinitesimal character as (%,E).

We refer to [15] for the proof.
A complete description of H∗,2 for a hyperbolic locally symmetric space Mn =

Hn
−1/Γ is given by Mazzeo and Philipps in [86]. Vanishing theorem for L2-harmonic

forms in the case of positive curvature are established by Escobar/Freire/Min-Oo in [55].
As an application of L2-cohomology in algebraic geometry we present the isomor-

phism between the L2-cohomology H∗,2(X \ Σ) and the dual (IHp
∗ (X))∗ of the inter-

section homology for certain classes of stratified spaces with singularity Σ and a suitable
metric. To formulate a precise theorem, the introduction of some concepts is unavoidable.
Let Xn be a pseudomanifold, i.e. a polyhedron such that there exists a closed subspace Σ
with dim Σ ≤ n− 2 and X \Σ being a dense oriented manifold in X . Let X be a pseudo-
manifold with triangulation T . A stratification of X is a filtration by closed subspaces

Xn = Xn ⊃ Xn−1 ⊃ Xn−2 ⊃ Xn−3 ⊃ · · · ⊃ X1 ⊃ X0

such that for each point p ∈ Xi \Xi−1 there is a filtered space

V = Vn ⊃ Vn−1 ⊃ · · · ⊃ Vi = a point,

and a mapping V ×Bi −→ X which maps Vj×Bi, for each j, PL-homeomorphically onto
a neighborhood of p inXj , whereBi denotes the PL i-ball. In particular,X(i) = Xi/Xi−1

is an i-manifold or is empty. Denote by CT∗ (X;R) = CT∗ (X) the corresponding (to T )
chain complex of all simplicial chains with real coefficients and C∗(X) = lim

~T
CT∗ (X)

the group of all PL geometric chains. Each ξ ∈ Ci(X) has a well defined support |ξ|.
For a perversity p, i.e. a sequence of integers p = (p2, p3, . . . , pn) with p2 = 0 and
pk ≤ pk+1 ≤ pk + 1, we define

ICpi (X) = {ξ ∈ Ci(X)|dim(|ξ|) ∩Xn−k) ≤ i− k + pk,

dim(|∂ξ| ∩Xn−k) ≤ i − 1 − k + pk for all k}.

The i-th intersection homology group IHp
i (X) of X with perversity p and with a fixed

stratification is defined to be the i-th homology group of the chain complex ICp∗(X).
Remark 5.13 Cheeger considers in his paper [24] only the so-called middle perversity
m = (0, 0, 1, 1, 2, 2, . . . , n

2−1 ).
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Theorem 5.14 Let X be a compact pseudomanifold without boundary. Then IHp
∗ (X) is

finitely generated and independent of stratification.

For a sequence c = (c2, . . . , cn) of nonnegative real numbers, a metric g onX(n) is said
to be associated with c if, at a local product representation for a tubular neighbourhood, for
every stratum X(j) the metric g is locally of the kind

gU + dr ⊗ dr + r2cn− j · gs,

where gU is a metric in the base U , dr ⊗ dr is the metric in radial direction and gs is the
induced metric in some fixed sphere of radius r ([92], p. 345).
Lemma 5.15 For any c there exists a metric at X(n) which is associated with c.

For any perversity p ≤ m (i.e. such that pi ≤ mi), a metric g is said to be associated
with p, if g is associated with c = (c2, . . . , cn) and

1
k − 1− 2pk

≤ ck <
1

k − 3− 2pk
if 2pk ≤ k − 3,

1 ≤ ck <∞ if 2pk = k − 2.

Theorem 5.16 LetXn be an n-dimensional compact stratified space with a fixed PL struc-
ture and a stratification X = Xn ⊃ Xn−1 ⊃ · · · ⊃ X0 such that Xn−1 = Xn−2 and
each stratum X(j) of dimension j ≤ n− 2 is diffeomorphic to the disjoint union of ]0, 1[j ,
X(j) =

⋃
α

(]0, 1[j)α. Let p ≤ m be a perversity and g a metric on X(n) associated with p.

Then

H∗,2(X(n), d) ∼= (IHp
q (X))∗

(see [92]).
The interesting examples are projective varieties with singularities. There are many

very deep and beautiful results established e.g. by Hsiang, Saper, Stern, Zucker and others
(cf. [22], [101], [102], [123], [124], [125], [126]).

We mention here as an explicit example related to all the cases above the beautiful
result of Saper and Stern in [101]. Let G be the real points of a semi-simple algebraic
group defined over Q, K a maximal compact subgroup, and D = G/K the associated
symmetric space. Assume that D is Hermitean, that is, a bounded symmetric domain. Let
Γ ⊂ G be an arithmetic subgroup which acts freely on D. The quotient Γ\D has a natural
complete metric induced from the G-invariant metric (or Bergmann metric) on D.

In general D/Γ is not compact, but there is the well known Satake compactification
Γ\D∗ which has the structure of a normal projective algebraic variety. Let E be a metrized
coefficient system on D/Γ arising from a finite dimensional complex representation E of
G with admissible metric.
Theorem 5.17 There is a natural isomorphism

(Γ \D;E) ∼= IH∗(Γ \D∗;E)

between the L2-cohomology of Γ \D and the (middle perversity) intersection cohomology
of Γ \D∗.
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6 The heat equation, the heat kernel and the heat flow

Let (E, h,∇, ·) −→ (Mn, g) be a Clifford bundle, (Mn, g) complete, D = D(E, h,∇, ·)
the associated generalized Dirac operator and consider the initial value problem

∂ϕ

∂t
+D2ϕ = 0, (6.1)

ϕ(·, 0) = ϕ0 (6.2)

for sections ϕ = ϕ(x, t). Here we suppose ϕ(·, t) ∈ Ω0,2,r(E,D) ⊂ L2(E), r > n
2 + 2,

ϕ ∈ C1 with respect to t > 0. According to proposition 4.24, all powers Di are in

L2(E) = H0(E) essentially self-adjoint, Di =
+∞∫
−∞

λidEλ(D).

Denote in the sequel W p,r ≡ Ωp,r(E,∇), Hp,r ≡ Ωp,r(E,D), W 2,r ≡ W r, H2,r ≡
Hr. For k < 0, we define the Sobolev space Hk = Ω0,2,k(E) = Ω2,k(E,D) by duality,
i.e. Hk(E) := (H−k(E))∗.

Lemma 6.1 e−tD
2

maps L2(E) ≡ H0(E)→ Hr(E) for any r > 0 and

|e−tD
2
|L2→Hr ≤ C · t−

r
2 , t ∈]0,∞[, C = C(r).

Proof Insert into e−tD
2

=
∫
e−tλ

2
dEλ the equation

e−tλ
2

=
1√
4πt

+∞∫
−∞

eiλse−
s2
4t ds

and use

sup |λre−tλ
2
| ≤ C · t− r2 .

Corollary 6.2 Let r, s ∈ Z be arbitrary. Then e−tD
2

: Hr(E)→ Hs(E) is continuous.

Proof This follows from 6.1, duality and the semi group property of {e−tD2}t≥0.

Proposition 6.3 The initial value problem (6.1), (6.2) has the unique solution

ϕ(·, t) = e−tD
2
ϕ(·, 0).

Proof Inserting (6.1) into ∂
∂t |ϕ(·, t)|2L2

, we get ∂
∂t |ϕ(·, t)|2L2

= ∂
∂t 〈ϕ(·, t), ϕ(·, t)〉L2

=
−2|Dϕ(·, t)|2L2

, hence |ϕ(·, t)|2L2
≤ |ϕ(·, 0)|2L2

. This proves the uniqueness of the solu-
tion. Set

ϕ(·, t) = e−tD
2
ϕ(·, 0).

Then, according to corollary 6.2, ϕ(·, t) ∈ Ω0,2,r(E,D) = Hr(E) for all r, ϕ(·, t) ∈
C∞.

From the spectral representation we obtain immediately

∂ϕ

∂t
−D2ϕ = −D2ϕ+D2ϕ = 0,
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which provides existence.

Nevertheless, the representation for ϕ(·, t) is in a certain sence of purely theoretical
character since the integral in question practically is not available. Hence one would be
interested in a more explicit representation of e−tD

2
as integral operator.

e−tD
2

has a Schwartz kernel W ∈ Γ(R×M ×M,E � E),

W (x, y, t) = 〈δ(x), e−tD
2
δ(y)〉,

where δ(x) ∈ H−r(E) ⊗ Ex is the map Ψ ∈ Hr(E) → 〈δ(x),Ψ〉 = Ψ(x), r > n
2 . The

main result of this section is the fact that for t > 0,W (x, y, t) is a smooth integral kernel
in L2 with good decay properties if we assume bounded geometry.

Denote by C(x) the best local Sobolev constant of the map Ψ→ Ψ(x), r > n
2 , and by

σ(D2) the spectrum.
Lemma 6.4 a) W (x, y, t) is smooth for t > 0 in all variables.

b) For any T > 0 and sufficiently small ε > 0, there exists C > 0 such that

|W (x, y, t)| ≤ e−(t−ε) inf σ(D2) · C · C(x) · C(y) for all t ∈]T,∞[.

c) Similar estimates hold for (Di
xD

j
yW )(x, y, t).

Proof a) First one shows that W is continuous, which follows from the fact that 〈δ(x), ·〉
is continuous in x and that e−tD

2
δ(y) is continuous in t and y. Then one applies elliptic

regularity.
b) Write |〈δ(x), e−tD

2
δ(y)〉| = |〈(1 +D2)−

r
2 δ(x), (1 +D2)re−tD

2
(1 +D2)

r
2 δ(y)〉|

and estimate.
c) Follows similar by b).

Lemma 6.5 For any ε > 0, T > 0, δ > 0 there exists C > 0 such that for r > 0, x ∈ M ,
T > t > 0:∫

M\Br(x)

|W (x, y, t)|2 dp ≤ C · C(x) · e−
(r−ε)2
(4+δ)t .

A similar estimate holds for Di
xD

j
yW (x, y, t).

We refer to [17] for the proof.
Lemma 6.6 For any ε > 0, T > 0, δ > 0 there exists C > 0 such that for all x, y ∈ M
with dist(x, y) > 2ε, T > t > 0 holds

|W (x, y, t)|2 ≤ C · C(x) · C(y) · e−
(dist(x,y)−ε)2

(4+δ)t .

A similar estimate holds for Di
xD

j
yW (x, y, t).

Again, the proof can be found in [17].
Proposition 6.7 Assume (Mn, g) with (I) and (BK), (E,∇) with (BK), k ≥ r > n

2 + 1.
Then all estimates in 6.4, 6.5, 6.6 hold with uniform constants.

Proof From the assumptions, Hr(E) ∼= W r(E) and supx C(x) = C is the global
Sobolev constant for W r(E), according to theorem 2.9 b).
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Let U ⊂ M be precompact, open, (M+, g+) closed with U ⊂ M+ isometrically and
E+ → M+ a Clifford bundle with E+|U ∼= E|U isometrically. Denote by W+(x, y, t)
the heat kernel of e−tD

+2
.

Lemma 6.8 Assume ε > 0, T > 0, δ > 0. Then there exists C > 0 such that for all
T > t > 0, x, y ∈ U with B2ε(x), B2ε(y) ⊂ U , one has

|W (x, y, t)−W+(x, y, t)| ≤ C · e−
ε2

(4+δ)t

We refer to [17] for the simple proof.
Corollary 6.9 For t → 0+, trW (x, x, t) has the same asymptotic expansion as
trW+(x, x, t).

In many applications, the estimates 6.4 – 6.9 are very helpful to handle e−tD
2
, as we

will see e.g. in section 8.
As we have seen already, the graded Laplace operator (∆0, . . . ,∆n) is a special case of

a generalized Dirac operator. Hence for all e−t∆q , 0 ≤ q ≤ n, hold the estimates 6.4 – 6.9.
Denote by H(x, y, t) = H∆0(x, y, t) the (heat) kernel of et∆0 and let D = D(E, h,∇, ·)
be the generalized Dirac operator associated to (E, h,∇, ·) −→ (Mn, g). Then, according
to (2.9)

D2 = ∆E +R.

Let b := inf
x
b(x), b(x) = min

ψ∈Ex
|ψ|=1

〈ψ,Rψ〉.

Theorem 6.10 There holds

|W (x, y, t)| ≤ e−btH(x, y, t), t > 0, x, y ∈M. (6.3)

(6.3) is called the semigroup domination principle as proved by Donnelly/Li in [34]. It
asserts that estimates for the heat kernel of the Laplace operator acting on functions imply
estimates for the heat kernel of any generalized Dirac operator over (Mn, g). For this
reason, estimates for H∆0(x, y, t) are of particular importance. In the sequel, we mainly
concentrate on ∆ = ∆0. Moreover, the restriction to the case p = 2 seems to be artifical.
We admit 1 < p < ∞ and ask for the existence and properties of the heat semigroup
{e−t∆} in Ω0,p,0(E) ≡ Ω0,p(E) ≡ Lp(E).

The discussion of these problems and their solutions essentially depend on the func-
tional spaces under consideration. We attack the problems for functions, tensors and differ-
ential forms with values in a Riemannian vector bundle E. Let us recall, for the existence
and uniqueness questions, some simple facts from the theory of semigroups. If X is a
Banach space, x ∈ X , x 6= 0, then by the Hahn-Banach theorem there exists an element
x∗ ∈ X∗ such that ||x∗|| = ||x|| and 〈x∗, x〉 = ||x||2. We call such an element a normal-
ized tangent functional. TakingX = Ω0,p(T qr ⊗E),X∗ = Ω0,p′(T qr ⊗E) with 1

p+ 1
p′ = 1,

1 < p < ∞, 0 6= u ∈ X , such a tangent functional can easily explicitely written down as

c|u|p−2 ·u with c = |u|
− p
p′

p . ConsiderA : DA −→ X ,DA ⊂ X being dense. The operator
A is called dissipative if for every x ∈ D there exists a normalized tangent functional such
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that 〈x∗, Ax〉 ≤ 0. The closure of a dissipative operator is dissipative again. If X is a
Hilbert space and A : DA −→ X is symmetric and 〈Ax, x〉 ≤ 0 for all x ∈ D then A is
dissipative.

A C0-semigroup {Tt}t≥0 of bounded linear operators Tt ∈ L(X,X), X being a Ba-
nach space, is called a contraction semigroup if |Tt|op ≤ 1, 0 ≤ t <∞. The infinitesimal
generator of a semigroup {Tt}t≥0 is defined as

A := s− lim
t→0

Tt − I
t

.

Lemma 6.11 A closed, densely defined operator A : DA −→ X is the infinitesimal gen-
erator of a contraction semigroup if and only if A is dissipative and Im (µ − A) = X for
some µ > 0. (cf. [93]).

The key for the existence of the heat semigroup {e−t∆}t≥0 is to establish the condi-
tions of the preceeding lemma. For p = 2, {e−t∆}t≥0 exists by the spectral theorem as
contraction semigroup. The interesting case is the case p 6= 2. We start with the Laplace
operator acting on functions.
Lemma 6.12 The operator −∆ with domain Ω0

c = C∞c resp. Ω0
c(T

r
s ) is dissipative on

Ω0,p resp. Ω0,p(T rs × E) for 1 < p <∞.

The situation becomes much more difficult if we consider the Laplace operator acting
on q-forms with values in E. At a first glance the curvature endomorphism destroys the
estimates of the preceding lemmas. But they still remain valid if we assume R ≥ 0, i.e.
(Ru, u)x ≥ 0 for all x.
Lemma 6.13 Assume in ∆ = ∇∗∇ + R, R ≥ 0, ∆ acting in Ωq(E). Then −∆ with
domain Ωqc(E) is dissipative on Ωq,p(E) = Lp(Λ(E)) for 1 < p < 3.

Lemma 6.14 Suppose 1 < p ≤ r < 3,R ≥ 0 in ∆ = ∇∗∇+R, u ∈ Ωq,p(E) + Ωq,r(E)
and ∆u = µu for µ < 0. Then u identically vanishes.

We give some examples forR ≥ 0.
1) If q = 1, the Ricci curvature on Mn is nonnegative and RE = 0, then according to

the definition of R we have R ≥ 0. For ordinary 1-forms the conditions Ricci curvature
≥ 0 andR ≥ 0 are equivalent.

2) A sufficient condition for q ≥ 1 and ordinary forms (i.e. E the trivial line bundle)
is given by the nonnegativity of the curvature operator Rop. This we will shortly indicate.
R = RM induces a symmetric linear operator Rop : Λ2TM −→ Λ2TM in the space of
bivectors, called the curvature operatorRop and characterized by (Rop(X∧Y ), Z∧W )x =
(R(X,Y )W,Z)x. IfRop ≥ λ then (Ru, u)X ≥ λq(n−q)|u|2x ([63], p. 264), in particular
Rop ≥ 0 impliesR ≥ 0.

3) Of particular interest are those cases where sectional curvature K ≥ 0 implies
Rop ≥ 0 and henceR ≥ 0.

If f : M −→ Rn+2 is an isometric immersion, n = 2k, and Mn is open, complete,
oriented, with sectional curvature K ≥ 0 and at some point x ∈ M K > 0, then there
holdsR ≥ 0 (cf. [10]). A second class is given by manifolds with pure curvature operator.
Mn has pure curvature operator if for each x ∈ M there exists an orthonormal frame
(e1, . . . , en) in TxM such that Rop(ei ∧ ej) = Kij(ei ∧ ej), Kij = sectional curvature of
the plane spanned by ei, ej . For a manifold with sectional curvature≥ 0 and pure curvature
operator there holdsR ≥ 0 (cf.[10]).
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An open manifold which belongs to all three classes is the rotating parabola in R3.
From 6.14 we immediately obtain

Corollary 6.15 If the curvature operator for an open complete manifold (Mn, g) is non-
negative and l < p, r < 3, then ∆u = µu, u ∈ Ωq,p + Ωq,r, and µ < 0 imply u = 0. In
particular, this holds for the examples 1), 2), 3).

Now we come to the heat semigroup {e−t∆}t≥0. For p = 2 the operator e−t∆ is well
defined through the spectral theorem,

e−t∆ =

∞∫
0

e−tλdEλ,

with ∆ acting on functions or tensors with values in E or q-forms with values in E, re-
spectively.

It is, a priori, far from being clear that this semigroup can be defined on Lp and there
has to be strongly continuous or additionally contractive. In general, this is not true, as
an example presented in [114] by Strichartz shows. We start with the simplest case of
functions and follow here [114].
Theorem 6.16 Let {e−t∆}t≥0 be the heat semigroup acting in Ω0,2 = L2 defined by
the spectral theorem. Then there exists a heat kernel H(x, y, t) for e−t∆ satisfying the
following conditions.

1) H(x, y, t) ∈ C∞(M ×M × R+).
2) H(x, y, t) = H(y, x, t).
3)
∫
H(x, y, t) dvoly ≤ 1 for every x and t > 0, such that

e−t∆u(x) =
∫
H(x, y, t)u(y) dvoly, u ∈ L2. (6.4)

4) |e−t∆u|p ≤ |u|p for all t > 0 and u ∈ Ω0,2 ∩ Ω0,p, 1 ≤ p ≤ ∞.
5) |e−t∆u− u|p −→

t→0
0 if 1 ≤ p <∞.

6) ∂
∂te
−t∆u = −∆e−t∆u for all u ∈ Ω0,2 = L2. (6.5)

7) If one defines e−t∆u for u ∈ Ω0,p, 1 ≤ p ≤ ∞, by (6.4), then (6.5) keeps its validity.
8) The semigroup is uniquely determined for 1 < p < ∞ in the following sense: If

{Qt}t≥0 is any strongly continuous contractive semigroup on Ω0,p, 1 < p <∞ such that
{Qt}t≥0 satisfies the heat equation ∂

∂tQtu = −∆Qtu, then Qt = e−t∆.

A fundamental solution of the heat operator ∂
∂t +∆ acting on functions is a continuous

function h : M ×M×]0,∞[−→ R which is C2 with respect to x, C1 with respect to t,
and which satisfies the heat equation(

∂

∂t
+ ∆x

)
h = 0, lim

t→0
h(·, y, t) = δy. (6.6)

Suppose that u : M × [0,∞[−→ R is continous, C2 in x, C1 in t for t > 0. The function
u is called a solution of the Cauchy problem with initial data u0 if

(
∂
∂t + ∆

)
u = 0 on

M×]0,∞[, u(x, 0) = u0(x) on M .
A smooth parametrix for ∆ + ∂

∂t is a real valued function P = P (x, y, t) ∈ C∞(M ×
M×R+) such that lim

t→0
P (x, y, t) = δx and for t→ 0

(
∆x + ∂

∂t

)
P = O(tk) for all k > 0
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(often one requires this for k > n
2 + 2). At this stage, one would ask for the existence of

a fundamental solution, the unique solvability of the Cauchy problem, the existence of
a parametrix and how these are related to the heat kernel for functions above. Essential
results towards this direction were obtained by Dodziuk [23], [33].
Theorem 6.17 Assume that (Mn, g) is complete with Ricci curvature bounded from below.
Then the bounded solutions of the initial-value problem are uniquely determined by their
initial data ([33], p. 183–185).

Theorem 6.18 For an arbitrary Riemannian manifold there exists a smooth fundamental
solution h to the heat operator ∂

∂t + ∆ which satisfies
1) h(x, y, t) ≥ 0, h(x, y, t) = h(y, x, t) for t > 0, x, y ∈M ,
2)
(
∆x + ∂

∂t

)
h = 0,

3)
∫
h(x, z, t)h(z, y, s) dvolz = h(x, y, t+ s) for t, s > 0, x, y ∈M ,

4) h(x, y, t) = sup
K⊂M

hK(x, y, t).

For the proof, one considers an exhaustion K1 ⊂ K2 ⊂ · · · ,
⋃
Ki = M , of M by

compact submanifolds with smooth boundary and the corresponding heat kernels hi =
hD,i(x, y, t) for the heat operator on Ki with Dirichlet boundary value conditions. Then
one can show that lim

i→∞
hi = h exists in an appropriately strong sense and that h(x, y, t)

has the desired properties. The proof of the convergence essentially uses a Harnack type
inequality for parabolic equations. Furthermore, h ≥ 0 is proven by a maximum principle.
For details, we refer to [33].

The following theorem is a corollary to 6.17 and 6.18.
Theorem 6.19 Assume that (Mn, g) is complete with Ricci curvature bounded from below.
Then the heat operator acting on functions has a unique fundamental solution h(x, y, t),
and h(x, y, t) satisfies the conservation law∫

M

h(x, y, t) dvoly ≤ 1.

We come now to the relation between the fundamental solution h(x, y, t) and the heat
kernel H(x, y, t) for complete manifolds.
Theorem 6.20 If (Mn, g) is complete, then h(x, y, t) = H(x, y, t).

We see from the theorems 6.16 and 6.18 that in the complete case any solution u(x, t)
of the Cauchy problem

(
∂
∂t + ∆

)
u(x, t) = 0, u(x, 0) = u0(x) is given by

u(x, t) =
∫
M

h(x, y, t)u0(y) dvoly(g), t > 0.

In [26] the concept of a compactly supported parametrix P for ∂
∂t + ∆ enters into the

proof of existence of the heat kernel, i.e. if x runs through a relatively compact neighbor-
hood U ⊂ M , then the supports of P (x, y, t) are contained in some compact set C ⊂ M .
The existence of such a parametrix can be assured as in [26]. Theorem 6.17 expresses the
uniqueness for the initial-value problem in the class of bounded functions under certain
curvature assumptions. Without these assumptions, the uniqueness fails to hold. There ex-
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ist complete simply connected manifolds of negative sectional curvature tending to minus
infinity sufficiently rapidly such that e−t∆1 6= 1 (cf.[9]).

Nevertheless, passing over to Ω0,p, 1 < p < ∞, the uniqueness statement holds with-
out any curvature assumption if one bounds the growth with respect to t.
Theorem 6.21 Assume that u(x, t) satisfies the heat equation ∂

∂t + ∆u = 0 in M × R+,
u(·, t) ∈ Ω0,p for each t > 0 and |u(·, t)|p ≤ a · ebt for some a, b and some p, 1 < p <∞.
Then there exists a uniquely determined u0 ∈ Ω0,p such that u = e−t∆u0. More generally,
if 1 < p ≤ r < ∞ and u(·, t) ∈ Ω0,p + Ω0,r with |u(·, t)| ≤ a · ebt (| | in the sense
of Ω0,p + Ω0,r), then there exists a uniquely determined u0 ∈ Ω0,p + Ω0,r such that
u = e−t∆u0.

For manifolds with infinite volume, there is a simple consequence concerning the be-
havior of heat equation solutions for t→∞.
Theorem 6.22 Suppose that vol (M) =∞, 1 < p <∞, u0 ∈ Ω0,p = Lp. Then

lim
t→∞

|e−t∆u0|p = 0.

Proof The premise vol (M) = ∞ immediately implies that there are no L2-harmonic
functions. Thus for p = 2, the result follows by the spectral theorem and the fact
that e−tD

2 −→
t→∞

PkerD in the strong operator topology. If p 6= 2, 1 < p < ∞, it

suffices to show the theorem for a dense subset ⊂ Ω0,p since the e−t∆ are uniformly
bounded. Consider 1 < p < 2, u0 ∈ Ω0,2 ∩ Ω0,1, s with 1

p = s
2 + 1−s

1 and use
|e−t∆u0|p ≤ |e−t∆u0|s2 · |e−t∆u0|l−s1 (Riesz’ convexity). The uniform boundedness of
|e−t∆u0|1 implies the result. If 2 < p < ∞, we use an analogous argument replacing | |1
by ∞| |.

Let us add without proof the following result of Yau [120].
Theorem 6.23 Assume that (Mn, g) is (as always here) complete with Ricci curvature
bounded from below. If u0 is continuous, bounded and lim

x→∞
u0(x) = 0, then for every

t > 0

lim
x→∞

e−t∆u0 = 0.

We continue with a few remarks concerning comparison theorems and estimates for
the heat kernel. Denote by Mn

K the simply connected space form of constant curvature K,
i.e. for K > 0 Mn

K = Sn1,K , for K = 0 Mn
0 = Rn, for K < 0 Mn

K = Hn
K . Then for the

injectivity radius rinj there holds

rinj(Mn
K) =

{ π√
K

for K > 0
∞ for K ≤ 0.

If HK,δ(x, y, t) denotes the Dirichlet heat kernel for a ball Bδ(x,K) ⊂ Mn
K with

δ < rinj then there exists a function EK : [0, δ[×]0,∞[−→ R such that HK,δ(x, y, t) =
EK,δ(d(x, y), t) (cf. [23], [26]).

Now we consider an arbitrary noncompact Riemannian manifold (Mn, g), not neces-
sarily complete, a relative compact geodesic ballBδ(x) ⊂Mn with δ < rinj(Mn

K) and the
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Dirichlet heat kernel Hδ(x, y, t) for Bδ(x). Since δ < rinj(M), rinj(Mn
K), it is possible

to transplant the geodesic ball from Mn to Mn
K and inverse.

Theorem 6.24 If the sectional curvature of Bδ(x) is ≤ K, then

Hδ(x, y, t) ≤ EK,δ(d(x, y), t).

If, on the other hand, all Ricci curvatures of Bδ(x) are ≥ (n− 1)K, then

Hδ(x, y, t) ≥ EK,δ.

For the proof we refer to [23], [26].
As a corollary to 6.24, one gets

Theorem 6.25 Suppose that (Mn, g) is complete with Ricci curvature bounded from be-
low by (n − 1)K, HK(x, y, t) = EK(d(x, y), t) being the heat kernel of Mn

K . Then the
heat kernel H(x, y, t) of M obeys

H(x, y, t) ≥ EK(d(x, y), t)

for every (x, y, t) ∈M ×M×]0,∞[.
Theorems 6.24 and 6.25 can be generalized as follows. Denote for x0 ∈ (Mn, g)

and geodesic polar coordinates (u, r) by (u, r) −→ m(u, r) the mean curvature function
at the point (u, r) of ∂Br(x0) with ∂Br(x0) ∩ Cx0 deleted, Cx0 the cut locus of x0. A
Riemannian manifoldM is called an open model if

a) for some point z0 ∈ M and 0 < R ≤ ∞,M is diffeomorphic to BR(z0) by means
of the exponential map expz0 : BR(0) −→ BR(z0) and

b) for all r < R, the mean curvature of the distance sphere ∂Br(z0) is constant on
∂Br(z0), denoted by m(r).

Examples are e.g. rotationally symmetric metrics.
Theorem 6.26 Let M be an open model. Then its heat kernel H(x̃, ỹ, t), x̃, ỹ ∈ M,
depends only on r = d(x̃, ỹ), i.e. H(x̃, ỹ, t) = H(d(x̃, ỹ), t).

Theorem 6.27 Let (Mn, g) be open, complete, Mn an open model and suppose
m(u, r) ≤ m(r), 0 < r ≤ R. Then there holds

HM(d(x, y), t) ≤ HM (x, y, t), x, y ∈M, t > 0.

Equality holds if and only if (Mn, g) is isometric toMn and m(u, r) = m(r) for each r.

We refer to [26] for the proof.
Another estimate from below is given by the following theorem of Li/Yau.

Theorem 6.28 Let (Mn, g) be complete with RicM ≥ 0. Then for all ε > 0, there exists
a constant C(ε) such that

H(x, y, t) ≥ C(ε)−1vol (B√t(x))−1e−d
2(x,y)/(4+ε)t

H(x, y, t) ≥ C(ε)−1vol (B√t(x))−
1
2 vol (B√t(y))−

1
2 e−d

2(x,y)/(4+ε)t,

where C(ε) −→
ε→0
∞.

A general upper bound has been established by Cheng, Li and Yau (cf. [27]).
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Theorem 6.29 Let (Mn, g) be complete. Then, for all β > 1, T > 0 and x ∈ M , there
exists a constant C = C(β, T, x), s.t.∫

M\BR(x)

H(x, y, t)2 dvoly(g) ≤ C · t−n2 e−
R2
2βt

for all t ∈ [0, T ] and R > 0, where C −→
β→0
∞.

Theorem 6.30 Let (Mn, g) be complete with bounded sectional curvature. Then for all
α > 4, T > 0 and x ∈M , there exists a constant C ′ = C ′(α, T, x) s.t.

H(x, y, t) ≤ C ′t−n2 e−
d2(x,y)
αt , t ∈]0, T ], y ∈M.

This is contained in [27].
In the case of order zero bounded geometry Varopoulos established an upper bound

independent of x and y (cf. [119]).
Theorem 6.31 Suppose (Mn, g) satisfies (B0) and (I). Then for all 0 < ε < 0, 1, there
exist constants C1, C2 > 0, s.t.

sup
x,y∈M

H(x, y, t) ≤ min{C1t
− 1

2 +ε, C2t
− 1

2 (log t)1+ε}, t > 1.

In the case of nonnegative Ricci curvature an upper bound is given by the following
theorem of Li/Yau.
Theorem 6.32 Suppose (Mn, g) is complete and has nonnegative Ricci curvature. Then,
for all 0 < ε < 1, there exists a constant C(ε) such that

H(x, y, t) ≤ C(ε)vol (B√t(x))−1e−
d2(x,y)
(4+ε)t , x, y ∈M, t > 0,

where C(ε) −→
ε→0
∞.

An upper bound independent of x, y implies automatically exponentially decay, as it
has been proven by Davies in [30].
Theorem 6.33 If the heat kernel of (Mn, g) satifies

H(x, y, t) ≤ at−n2 , x, y ∈M, t > 0,

for some positive constant a then for all δ > 0 there exists a constant C(δ) > 0, s.t.

H(x, y, t) ≤ C(δ)t−
n
2 e−

d2(x,y)
4(1+δ)t , x, y ∈M, t > 0.

Remark 6.34 The assumption of 6.33 is equivalent to

|f | 2n
n−2
≤ a〈∆f, f〉

for all f ≥ 0, f ∈ C∞c . This latter condition is satisfied in the case Ric ≥ −c, c > 0 and
(I).
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We refer to [67], p. 179 for a proof.
A strong mean to get off-diagonal estimates from on-diagonal estimates is given by

Proposition 6.35 Let (Mn, g) be an arbitrary Riemannian manifold. Suppose h(x, x, t) ≤
f(t). Then

h(x, y, t) ≤ f(t), x, y ∈M.

Proof We have from theorem 6.18

h(x, x, t) =
∫
M

h2(x, z,
t

2
) dvolz(g).

Then the semigroup identity and Schwarz inequality yield

h(x, y, t) =
∫
M

h(x, z,
t

2
)h(z, y,

t

2
) dvoly(g)

≤

∫
M

h2(x, z,
t

2
) dvolz(g)

 1
2
∫
M

h2(y, z,
t

2
) dvoly(g)

 1
2

from where h(x, y, t) ≤
√
h(x, x, t)h(y, y, t) ≤ f(t).

Define for D > 0 the weighted integral of the heat kernel

ED(x, t) =
∫
M

h2(x, z, t)e
d2(x,z)
Dt dvolz(g).

We state without proof (cf. [67])
Theorem 6.36 For any manifold (Mn, g), ED(x, t) is finite for all D > 2, t > 0, x ∈M .
Moreover, ED(x, t) is non-increasing in t.

Lemma 6.37 For any D > 0, all x, y ∈M , t > 0

h(x, y, t) ≤
√
ED(x,

t

2
)ED(y,

t

2
)e−

d2(x,y)
2Dt .

Proof Denote for x, y, z ∈ M , α = d(y, z), β = d(x, z), γ = d(x, y). Then α2 + β2 ≥
1
2γ

2.

h(x, y, t) =
∫
M

h(x, z,
t

2
)h(y, z,

t

2
) dvolz(g)

≤
∫
M

h(x, z,
t

2
)e

β2

Dth(y, z,
t

2
)e

α2
Dt e−

γ2

2Dt dvolz(g)

≤

∫
M

h2(x, z,
t

2
)e

2β2

Dt dvolz(g)

 1
2
∫
M

h2(y, z,
t

2
)e

2α2
Dt dvoly(g)

 1
2

· e−
γ2

2Dt
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=

√
ED(x,

t

2
)ED(y,

t

2
) · e−

d2(x,y)
2Dt .

Theorem 6.38 Suppose for some x ∈M and all t > 0

h(x, x, t) ≤ C

f(t)
,

where f(t) is increasing and f(as)
f(s) ≤ A f(at)

f(t) for all 0 < s < t and some A ≥ 1, a > 1.
Then for all D > 2 and t > 0

ED(x, t) ≤ C ′

f(εt)

for some ε > 0 and C ′ > 0.

We refer to [67] for the proof.
Corollary 6.39 Assume for some x, y ∈M and all t > 0

h(x, x, t) ≤ C

f(t)
, h(y, y, t) ≤ C

g(t)
,

where f and g satisfy the hypotheses of theorem 6.38. Then, for all t > 0, D > 2 and some
ε > 0

h(x, y, t) ≤ C ′√
f(εt)g(εt)

e−
d2(x,y)

2Dt .

This follows immediately from lemma 6.37 and theorem 6.38.
The volume growth and on-diagonal estimates are strongly related as the following

theorem shows.
Theorem 6.40 Suppose (Mn, g) is complete, and that for some x ∈M and all r > 0

vol (B2r(x)) ≤ Cvol (Br(x))

and for all t > 0

H(x, x, t) = h(x, x, t) ≤ C

vol (B√t(x))
.

Then for all t > 0,

h(x, x, t) ≥ c

vol (B√t(x))
,

where c = c(C).

The decay of h(x, y, t) is strongly related with the bottom of the spectrum.
Let Ω ⊂

6=
(Mn, g) be a bounded connected domain, ∆D(Ω) = ∆0,D(Ω) the Dirichlet

Laplacian of Ω. According to theorem 4.18, ∆D(Ω) has purely discrete point spectrum
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0 ≤ λ1 ≤ λ2 ≤ · · · → ∞, the sequence {λk}k obeys Weyl’s asymptotic formula λk(Ω) ∼

cn

(
k

vol (Ω)

) 2
n

for k −→∞ and hD,Ω(x, y, t) has the expression

hD,Ω(x, y, t) =
∞∑
k=1

e−tλk(Ω)ϕk(x)ϕk(y). (6.7)

Moreover, under our assumptions, λ1(Ω) > 0 with mulitplicity 1, i.e. λ2(Ω) > λ1(Ω).
This yields together with (6.7)

hD,Ω(x, y, t) ∼ e−λ1(Ω)ϕ1(x)ϕ1(y) for t −→∞.

If λ0(M) = inf σ(∆0(M)) is the bottom of the spectrum of ∆0(M), it follows immedi-
ately from the Rayleigh-Ritz characterization of λ0(M)

λ0(M) = inf
Ω⊂⊂M

λ1(Ω).

We recall the following estimate from [67].
Theorem 6.41 If D > 2 and λ0(M) > 0 then for t > t0

h(x, y, t) ≤
√
ED(x,

t0
2

)ED(y,
t0
2

)eλ0(M)t0e−λ0(M)t− d
2(x,y)
2Dt . (6.8)

Proposition 6.42 Given x ∈ (Mn, g), ε > 0, there exists c = cx > 0 s.t.

h(x, x, t) ≥ cxe−(λ0(M)+ε)t, t > 0. (6.9)

Proof Choose Ω ⊂⊂ M , x ∈ Ω, s.t. λ1(Ω) ≤ λ0(M) + ε. According to the proof of
theorem 6.18, h(x, x, t) ≥ hD,Ω(x, x, t), and we have

hD,Ω(x, x, t) =
∞∑
k=1

e−λk(Ω)tϕ2
k(x) ≥ e−λ1(Ω)tϕ2

1(x) ≥ e−(λ0(M)+ε)tϕ2
1(x). (6.10)

Corollary 6.43 For all x ∈M

lim
t→∞

log h(x, x, t)
t

= −λ0(M).

This follows immediately from (6.8) and (6.9).
Another asymptotic for t→ 0 or t→∞, respectively, is given by

Theorem 6.44 Let (Mn, g) be complete.
a) There holds lim

t→0
−4t log h(x, y, t) = d2(x, y), x, y ∈M .

b) Assume that (Mn, g) has nonnegative Ricci curvature Ric ≥ 0, and
there exists x0 ∈ M and c > 0 s.t. lim

r→∞
(vol (Br(x0))/rn) = c. Then

lim
t→∞

vol (B√t(x0))h(x, y, t) = vol Rn(B1(0))(4π)−
n
2 , where B1(c) ⊂ Rn.



Jürgen Eichhorn 201

We refer to [27] for the proof of a).
We see from the expansion (6.10) that

hD,Ω(x, x, t) ∼ e−λ1(Ω)tϕ2
1(x) for t→∞.

If one performs a reasonable limit Ω −→ M (e.g. by a controled exhaustion) then
λ1(Ω) −→ λ0(M) and one would expect

h(x, x, t) ∼ e−λ0(M)t for t→∞.

In fact, one can easily deduce from (6.4)

h(x, x, t) ≤ e−λ0(M)(t−t0)h(x, x, t0). (6.11)

This is a good estimate if λ0(M) > 0. If λ0(M) = 0 then it is valueless. But the case
λ0(M) = 0 often appears as we will see soon. Therefore one has to sharpen considerations
and to consider the rate of convergence λ1(Ω) −→

Ω→M
λ0(M). This rate will affect the rate

of convergence.
The key for this will be Faber-Krahn type inequalities

λ1(Ω) ≥ Λ(vol (Ω)),

where Λ is a positive decreasing function on ]0,∞[, called a Faber-Krahn function of M .
For Mn = Rn, Λ(v) = cv−

2
n is a Faber-Krahn function.

Theorem 6.45 Assume that (Mn, g) admits Faber-Krahn function Λ and define f(t) by

t =

f(t)∫
0

dv

vΛ(v)
, (6.12)

where we assume that the integral (6.12) converges at 0. Then for all t > 0, x ∈M , ε > 0

h(x, x, t) ≤ 2ε−1

f((1− ε)t)
.

We refer to [67] for the proof.
There is a localized version of theorem 6.45 with far-reaching consequences.

Theorem 6.46 Suppose that for some x ∈ M and r > 0 the following Faber-Krahn
inequality holds. For any precompact open Ω ⊂ Br(x) there holds with a > 0, n > 0

λ1(Ω) ≥ avol (Ω)−
2
n . (6.13)

Then for any t > 0

h(x, x, t) ≤ Ca−
n
2

(min{t, r2})n2
, C = C(n). (6.14)

We refer to [67] for the proof.
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Corollary 6.47 Suppose for all x ∈M and some r > 0 the Faber-Krahn inequality (6.13),
Ω ⊂ Br(x). Then for any D > 2 and all x, y ∈M , t > 0,

h(x, y, t) ≤ Ca−
n
2

(min{t, r2})n2
e−

d2(x,y)
2Dt , C = C(n,D).

This is a combination of (6.14) and corollary 6.39.
We finish at this point the general estimates for the heat kernel on functions. Let us now

consider the heat operator acting on differential forms or tensors with values in a vector
bundle E.

Some assertions of theorem 6.16 can be carried over to this case. Additional curvature
assumptions provide better and better properties for e−t∆ and {e−t∆}. We refer to [47]
and [115].
Theorem 6.48 Denote by {e−t∆} the heat semigroup acting on Ω0,2(T rs ⊗ E). Then
|e−t∆u|p ≤ |u|p for all u ∈ Ω0,p(T rs ⊗ E) ∩ Ω0,2(T rs ⊗ E) and 1 < p < ∞. Therefore
{e−t∆} extends to a contraction semigroup on Ω0,p(T rs ⊗E), 1 ≤ p ≤ ∞. Further, e−t∆u
satisfies the heat equation ∂

∂te
−t∆u = −∆e−t∆u for u ∈ Ω0,p(T rs ⊗ E), and {e−t∆} is

the unique semigroup exhibiting these properties for 1 < p <∞.

In a similar manner we conclude for q-forms with values in E.
Theorem 6.49 Assume that (Mn, g) is open, complete and that R ≥ 0 for the endomor-
phism R in ∆ = ∇∗∇ + R, acting on q-forms with values in E. If {e−t∆}t≥0 denotes
the heat semigroup on Ωq,p(E), then |e−t∆u|p ≤ |u|p for all u ∈ Ωq,p(E) ∩ Ωq,2(E) and
1 ≤ p ≤ ∞. Therefore {e−t∆}t≥0 extends to a contraction semigroup on these Ωq,p(E).
e−t∆u satisfies the heat equation ∂

∂te
−t∆u = −∆e−t∆u for all u ∈ Ωq,p(E), and {e−t∆t≥0 }

is the unique semigroup with these properties for 1 < p <∞.

We refer to [115] for the proofs of 6.48 and 6.49.
Corollary 6.50 The assertions of 6.49 are valid for the classes 1) – 4) after 6.14.

A simple example is the heat semigroup acting on 1-forms on the rotating parabola.
Theorem 6.48 and 6.49 immediately imply

Theorem 6.51 Assume that (Mn, g) is open, complete (E, h) −→ M a Riemannian vec-
tor bundle, 1 < p < ∞. Then the initial value problem

(
∂
∂t + ∆

)
u = 0 on M×]0,∞[,

u(x, 0) = u0(x) on M is solvable in the following cases:
a) u(·, t) ∈ Ω0,p(T rs ⊗ E) and u0 ∈ Ω0,p(T rs ⊗ E).
b) u(·, t) ∈ Ωq,p(E) and u0 ∈ Ωq,p(E) andR ≥ 0.

The remaining open question is the uniqueness which is partially answered by
Theorem 6.52 Assume that (Mn, g) is open, complete, (E, h) −→ M a Riemannian
vector bundle, 1 < p < ∞, u(x, t) a solution of the (homogeneous) heat equation with
u(·, t) ∈ Ω0,p(T rs ⊗ E) or u(·, t) ∈ Ωq,p(E) and R ≥ 0, respectively. Assume further
|u(·, t)|p ≤ a · ebt. Then there exists a uniquely determined u0 ∈ Ω0,p(T rs ⊗ E) or
u0 ∈ Ωq,p(E), respectively, such that u = e−t∆uo.

Another nice uniqueness theorem has been proved by Dodziuk.
Theorem 6.53 Assume that (Mn, g) is open, complete with Ricci curvature bounded from
below and that Rq ≥ 0 in ∆ = ∇∗∇ + Rq acting on Ωq , q > 0. Then every bounded
solution of the initial value problem of the heat equation in Ωq is uniquely determined by its
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initial values. Moreover, if the initial value vanishes at infinity, then the solution vanishes
at infinity for every t > 0 (cf. [33]).
Remarks 6.54 1) In [84] Lohoue has shown that the contraction semigroup property for
{e−t∆}t≥0 acting on functions implies this property for {e−t∆}t≥0 acting on usual tensors
or differential forms, if e−t∆ has a heat kernel and sufficiently bounded geometry.

2) Strichartz has shown in [110] that on the hyperbolic plane H2
−1 for q = 1,

{e−t∆}t≥0 is not a contraction semigroup on Ω1,p, p 6= 2. This and all the above re-
sults support the hypothesis that some kind of nonnegativity of the curvature should be
connected with the contraction property.

We turn now our attentions to sharper uniformly pointwise estimates of the heat kernel
Hq(x, y, t) on forms and its derivatives. If we consider the heat kernel Hq(x, y, t) as
Schwartz kernel of e−t∆q then it immediately follows from the mapping properties of
e−t∆q and the local Sobolev embedding theorem that Hq(x, y, t) is smooth in all variables
for t > 0. The point are the estimates for the derivatives. We present here the approach
and the results of [20].

Let us give precise defintions. A two-point form Eq with values Eq(x, y, t) ∈
ΛqTxM ⊗ ΛqTyM is called a good global heat kernel, if it satisfies the following con-
ditions:

(H1) Eq(x, y, t) is smooth for t > 0.
(H2)

(
∂
∂t + ∆

)
Eq(x, y, t) = 0, where we apply ∆ acting onEq as a section depending

on y.
(H3) lim

t→0+

∫
M

Eq(x, y, t) ∧ ∗ω0(y) = ω0(x) for all x ∈M and

ω0 ∈ Ωqc , i.e. Eq(x, y, t) −→ δx,y.

(H4) There exist constants C1, C2 > 0, depending on l,m, n, T , such that for all
x, y ∈M , 0 < t < T∣∣∣∣∣

(
∂

∂t

)l
∇m∇nEq(x, y, t)

∣∣∣∣∣ ≤ C1t
−N2 −

m+n
2 −1 exp(−C2

r2(x, y)
t

).

(H5) The heat kernels Eq(x, y, t) and Eq+1(x, y, t) are related by dx(Eq(x, y, t) =
δy(Eq+1(x, y, t).

Here N = dimM .
Theorem 6.55 Let (MN , g) be open, complete, satisfying (I) and (Bk), k > N

2 . Then
there exists a good global heat kernel Eq(x, y, t) satisfying the conditions (H1) – (H5) for
m,n ≤ k + 2, and

(H6) Eq(x, y, t) = Eq(y, x, t) for all x, y ∈M (symmetry),
(H7) Eq(x, y, t+ s) =

∫
M

Eq(x, z, t) ∧ ∗Eq(z, y, s) (semigroup property).

Moreover, Eq is uniquely determined.

We refer to [20], [43] for the rather long and complicated proof.

As it is well known, the existence of a good heat kernel has many good consequences in
global analysis. We do not intend to present all this here, but restrict ourselves to a special
case of applications. For many purposes one is interested to invert the Laplace operator ∆
outside the space of L2-harmonic forms.
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Let H = PH denote the projection onto

Hq,2 = {ω ∈ Ωq,2|dω = δω = 0} = ker ∆

(since (Mn, g) is complete).
Then one is searching for an operator G satisfying

∆Gω = ω −Hω

and, if possible, for a meaningful integral representation of G. This G is called Green’s
operator, its kernel is called Green’s kernel.
Theorem 6.56 Let (Mn, g) be open, complete, and of bounded geometry. Assume further
that inf σe(∆q) = λe > 0, and let be λ0 the smallest spectral value > 0. Then

Gω(x) =

t∫
0

∫
M

Eq(x, y, t) ∧ ∗(ω −Hω)(y) dvoly

is Green’s operator and has the following properties:
a) |Gω|2 ≤ (2λ0)−

1
2 |ω|2 for ω ∈ Ωqc . Hence G can be extended to a bounded linear

operator G : Ωq,2 −→ Ωq,2 ≡ L2(Λq).
b) Gω ∈ Ωq,2,r for arbitrary large r.
c) ω = Hω + dδGω + δdGω is the Hodge decomposition.

Proof A complete proof is given in [19] under the assumption of the existence of a good
heat kernel. This existence we have just now established.

This finishes our short review of the heat equation and the heat kernel. We come back
to other parabolic equations and maximum principles in section 11 and 15.

7 The wave equation, its Hamiltonian approach and completeness

Let (E, h,∇, ·) −→ (Mn, g) be a Clifford bundle, (Mn, g) complete, D = D(E, h,∇, ·)
the associated essentially self-adjoint generalized Dirac operator. We denote also by D the
self-adjoint closure.

Then, for ϕ ∈ Ω0,2,1(E)⊗ Ω0,2,1(R),

∂ϕ

∂t
− iDϕ = 0 (7.1)

ϕ(·, 0) = ϕ0 (7.2)

is the initial value problem for the wave equation.
If ϕ ∈ Ω0,2,2(E)⊗ Ω0,2,1(R) satisfies (7.1), then it satisfies the equation

∂2ϕ

∂t2
+D2ϕ = 0, (7.3)

as follows immediately from ∂
∂t (7.1) and inserting (7.1). Conversely, any nontrivial solu-

tion ϕ of (7.3) satisfying
(
∂ϕ
∂t − iDϕ

) ∣∣
t=0

= 0 produces a solution of (7.1). {eitD}t is
called the wave group, and there holds

|eitDϕ0|L2 = |ϕ0|L2 . (7.4)
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We see immediately from the spectral theorem that

ϕ(·, t) = eitDϕ(·, 0) (7.5)

solves the equations (7.1), (7.2), hence we obtain from (7.4), (7.5) existence and uniqueness
for (7.1), (7.2). As well known, D has finite propagation speed which is expressed by
Proposition 7.1 If ϕ ∈ C∞c (E) then

supp (eitDϕ) ⊂ U|t|(supp ϕ). (7.6)

We refer to [99] for the proof.
e−tD

2
and eiτD are related by the identity

e−tD
2

=
1√
4πt

∫
e−τ

2/4teiτDdτ

which comes from the spectral representation and∫
e−τ

2/4teiτλdτ =
√

4πte−tλ
2
.

As we already mentioned several times, the graded Laplace operator
(∆0, . . . ,∆q, . . . ,∆n) is a special case of a generalized Dirac operator D2,
D = D(Λ∗T ∗M, gΛ∗ ,∇Λ∗ , ·). Hence we get wave equations

∂2

∂t2
ϕ+ ∆qϕ = 0.

Again the most important case is the case q = 0, ϕ = u,

∂2

∂t2
u+ ∆u = 0 (7.7)

with initial conditions

u|t=0 = u0, (7.8)
∂

∂t
u|t=0 = u1. (7.9)

Denote by u[u0, u1] the (unique) solution of (7.7) – (7.8) if it exists. Then we immediately
obtain

u[u0, u1] = u[0, u1] +
∂

∂t
u[0, u0].

Thus, the general Cauchy problem is reduced to the special one

u|t=0 = 0
∂u
∂t

∣∣
t=0

= u1

}
(7.10)
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The existence and uniqueness are classical theorems. We will formulate it in the language
of vector bundles (E,D = ∇E) −→ (Mn, g) over Lorentz manifolds (Mn, g) with sig-
nature (+,−, · · · ,−). Local coordinates are denoted by xa = x1, . . . , xn. The time
coordinate t in (R×M,dt2 − gM ) is now replaced by a time function t = t(x) such that

gab(∇at)(∇bt) > 0.

Here ∇a = ∇g ∂
∂xa

are the Levi-Civita derivatives.

Introduce the world function σ = σ(x, y) of (M, g) as the solution of the differential
equation

gab(∇aσ)(∇bσ) = 2σ

together with the initial conditions

(∇aσ)(x, x) = 0

and

(∇a∇bσ)(x, x) = gab(x).

The solid conoid D(x) is defined by σ(x, y) ≥ 0 and the conoid surface C(x) is defined
by σ(x, y) = 0.

The zero time hypersurface is defined by the spacelike hypersurface

H = {x ∈M |t(x) = 0}.

We set B(x) = D(x) ∩H and S(x) = C(x) ∩H .
Finally the Cauchy problem for the wave equation above is replaced by

L[u] ≡ gabDaDbu+Wu = f

u|H = u0

gab(∇at)(Dbu)|H = u1.

We call a differential operator L Laplace-like if it has the same principal symbol as

∆ = gab∇a∇b.

Now we can give a mathematical formulation of Huygens’ principle. A Laplace-like
hyperbolic operator L is Huygens’ if for every H , x, f , u0, u1 the solution u = u(x)
of Cauchy’s problem taken at x depends only on the data u0, u1 and its derivatives taken
on S(x), but not on the values of u0, u1 in the interior of B(x). That means, if the data
differ only in B(x) \ S(x), then the solution u(x) at x will be the same. This can be made
more precise, using the linearity of L. Huygens’ principle becomes the following peculiar
property of a differential operator L: If the initial data u0, u1 have support in the interior
of B(x), i.e.

supp u0, supp u1 ⊂ B(x) \ S(x),
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then the solution u of the Cauchy problem (with f = 0)

L[u] = 0
u|H = u0

gab(∇at)(Dbu)|H = u1


vanishes at the point x.

There are several theories which give existence, uniqueness, and a construction of a
solution of the above Cauchy problem. Each of them leads to its own criterion for Huygens’
principle. Following the survey article [12], let us mention the following:
• J. Hadamard [69] constructed a solution by means of ”finite parts of divergent inte-

grals”. He found that Huygens’ principle holds for the differential operator L if and only
if n is even, n > 4, and the formal adjoint L∗ to L admits a logarithm-free elementary
solution.
• F. G. Friedländer [59] and P. Günther [71] reformulated the Cauchy problem in terms

of distributions and constructed distributional solutions. Huygens’ principle holds, for
even n ≥ 4, if and only if the fundamental solution of L∗ has its support on the character-
istic conoid surface (and not in the interior of the solid conoid). This is equivalent to the
condition that the ”tail term” to L∗ vanishes.

It is not surprising that all the necessary and sufficient criteria for Huygens’ principle
from different authors turn out to be equivalent. They can all be reduced to one more
explicit condition, which is accessible to evaluations and calculations. We have, in order
to present this condition, to introduce the so-called Hadamard coefficients Hk = Hk(x, y)
(k = 0, 1, 2, . . . to L. These two-point quantities are recursively defined by

gab(∇aσ)DbH0 + µH0 = 0, H0(x, x) = I

gab(∇aσ)DbHk + (µ+ k)Hk = L[Hk−1]0, for k ≥ 1

where

µ =
1
2

(∆σ − n)

and where all differentiations refer to the first argument x. Each Hk = Hk(x, y) behaves
like a section of E with respect to x ∈ M and like a section of the dual bundle E∗ with
respect to y ∈ M . Thus, a diagonal value Hk(x, x) can be interpreted as a section of
EndE. In particular, H0(x, x) = I is required to be a the unit matrix. The differential-
recursion system for the Hadamard coefficients has a remarkable property: it can be shown
that there is a neighbourhood of the diagonal M ×M where solutions Hk = Hk(x, y)
(k = 0, 1, 2, . . . ) exist and are unique.
Theorem 7.2 Huygens’ principle never holds for n = 2 or for odd n ≥ 3. So, let n =
2m + 2 ≥ 4 be even. Huygens’ principle holds for the formal adjoint L∗ of the Laplace-
like hyperbolic operator L if and only if the m-th Hadamard coefficient to L contains the
world function σ = σ(x, y) as a factor, that means there is a regular two-point function
R = R(x, y) such that

Hm(x, y) = σ(x, y)R(x, y). (7.11)
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An explicit or implicit proof of this criterion can be found e.g. in the paper [72]. Notice
that L and its formal adjoint L∗ can easily interchange their roles since L∗∗ = L. The two-
point condition (7.11) implies a sequence of one-point conditions, namely condition for
the Taylor coefficients of Hm with respect to the running point x and the origin y. We
need, in order to present these, elements of a calculus of symmetric differential forms.

A symmetric p-form

u = up = ua1a2...apdx
a1dxa2 . . . dxap

is a special notation for a totally symmetric covariant tensor field of valence p. For instance,
the Riemannian metric g = gabdx

adxb is a symmetric 2-form. The multiplication of
symmetric forms is the tensor multiplication followed by symmetrization. A metric g
defines a trace operator tr by

tru0 = 0
tru1 = 0
tru2 = gabuab
trup = gabuaba3...apdx

a3 . . . dxap for p ≥ 3.


Every p-form up admits a unique decomposition into a part proportional to g and a trace-
free part TSup:

up = g · up−2 + TSup, tr(TSup) = 0,

where ”·” indicates symmetric multiplication. All these facts are naturally generalized to
(EndE)-valued symmetric forms.
Theorem 7.3 Let n = 2m+ 2 ≥ 4 be even. If Huygens’ principle holds for L∗, then

TS(Da1Da2 . . . DapHm)(x, x)dxa1dxa2 . . . dxap = 0 (7.12)

for p = 0, 1, 2, . . . . If, in particular, the objectsM, g and L are analytic, then the condi-
tions (7.12) are not only necessary but also sufficient for Huygens’ principle.

The proof of theorem 7.3 evaluates (7.11) and is based on

(∇a∇bσ)(x, x) = gab(x)
(∇a1∇a2 · · · ∇apσ)(x, x)dxa1dxa2 · · · dxap = 0 for p ≥ 3. (7.13)

Let us explain the left-hand side of (7.12): Covariant derivatives Da1 , Da2 , . . . , Dap with
respect to x are applied to the m-th Hadamard coefficient Hm(x, y), the result is restricted
to the diagonal x = y, finally the symmetric and trace-free part of the resulting p-tensor is
taken.

Standard arguments of the theory of invariants show that the (EndE)-valued tensor
components

(Da1Da2 . . . DapHm)(x, x)

are polynomials in the variables

gab, g
ab, Rabcd,∇c1Rabcd,∇c1∇c2Rabcd, . . .
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Fab, Dc1Fab, Dc1Dc2Fab, . . . (7.14)

where the components of the Riemannian curvatureRabcd and the components of the gauge
field curvature Fab are defined through the Ricci identities

(∇a∇b −∇b∇a)vc = Rabcdv
d

(DaDb −DbDa)u = Fabu

for a 1-form v = vadx
a, va := gabvb and for a section u of E, respectively.

For low values of n and p the condition (7.12) have been made explicit.
Theorem 7.4 Let n = 4. If a differential operator

L = gabDaDb +W

satisfies Huygens’ principle, then

(i) W − R

6
I = 0

(ii) DbFab = 0

(iii) −2
5
BabI = FabcF

c
b + FbcF

c
a −

1
2
gabFcdF

cd.

(7.15)

Here

Wabcd

are the components of the conformal curvature tensor (the definition of which we omit
here) and

Bab = ∇c∇dWabcd −
1
2
RcdWacbd

are the components of the Bach tensor.

A proof of theorem 7.4 was given for the scalar case in [66] and for the vector-bundle
case in [104].
Theorem 7.5 Let n = 6. If a differential operator

L = gabDaDb +W

satisfies Huygens’ principle, then

30gabDaDbC + 6RC +WabcdW
abcdI + 15FabF ab + 90C2 = 0,

where C = W − R
5 I is the so-called Cotton endomorphism to L.

A proof of theorem 7.5 was given for the scalar case in [72] and for the general case in
[104]. The result also appeared earlier in the context of spectral geometry [64], [65].

Note that the formula in theorem 7.4 also admits an interpretation, namely as a nonlin-
ear Higgs equation for C = C(x) with some source terms.
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We finish at this point our short review of Huygens’ principle and refer for further
information to [71] and the excellent survey [12]. The latter was our guide through this
topic.

As we already pointed out in the introduction, one effective method to treat PDEs as
manifolds is to transform them into ODEs on infinite-dimensional manifolds. Our first
example for this will be the wave equation and the Klein-Gordon equation considered as
infinite-dimensional Hamiltonian system.

Let (Mn, g) be complete and consider the manifold (P, ω) = (Ω0,2,1(M, g) ×
Ω0,2,0(M, g)) ≡ Ω0,2,1(M, g) × L2(M, g), ω), where ω((u1, v1), (u2, v2)) = 〈v2, u1〉 −
〈v1, u2〉. Then (P, ω) is an infinite-dimensional symplectic manifold. Consider the Hamil-
tonian

H(u, v) =
1
2

[∫
(v2 + |∇u|2 −m2u2) dvolx(g)

]
and the vector field XH with DXH = Ω0,2,2 × Ω0,2,1,

XH(u, v) = (v,∆u−m2u).

Then XH is densely defined, DXH is a submanifold, and we can apply Stokes’ theorem
since (Mn, g) is complete.
Lemma 7.6 XH is Hamiltonian with respect to H .

Proof We have to show iXHω = dH , i.e.

ω((v,∆u+m2u), (w1, w2)) = dH(w1, w2) (7.16)

for (w1, w2) ∈ Ω. But

ω((v,∆u−m2u), (w1, w2)) =
∫

(w2v + (∆u−m2u) · w1) dvolx(g)

=
∫

(w2v + (∇u,∇w1)−m2uw1) dvolx(g)

dH(u, v)(w1, w2) = D2H(u, v)(w2) +D1H(u, v)(w1)

=
∫

(vw2 + (∇u,∇w1)−m2uw2) dvolx(g),

hence (7.16) is satisfied.
We obtain δH

δv = v, δHδu = ∆u−m2u: The equations of motion are

∂u

∂t
=
δH

δv
= v,

∂v

∂t
= −δH

δu
= −∆u+m2u.

In second order form, we obtain

∂2u

∂t2
u = −∆u+m2u.

We established
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Theorem 7.7 The Klein-Gordon equation

∂2

∂t2
u+ ∆u = m2u (7.17)

can be described as an Hamiltonian system which has a flow.

Proof The existence of a flow follows from the hyperbolic version of the Hille-Yosida
theorem.

The Hamiltonian representation immediately generalizes to the case

H(u, v) =
∫ (

1
2
v2 +

1
2
|∇u|2 − F (u)

)
dvolx(g),

XH(u, v) =
(
δH
δv ,−

δH
δu

)
= (v,∆u− F ′(u)), which yields

∂2u

∂t2
= −∆u+ F ′(u). (7.18)

If we choose F (u) = 1
2m

2u2 + G(u), then we obtain back (7.17) in the case G(u) =
0. Other choices of G(u) appear in the quantum theory of self-interacting reasons. An
important special case is G(u) = α

p+1u
p.

The advantage of the description of a PDE as Hamiltonian system consists in the fact
that

1) one can often relatively easy get existence und uniqueness and
2) one often gets relatively easy integrals of motion.
We finish at this point our brief discussion of the wave equation. Concerning estimates

of the wave kernel and calculation of wave invariants, we refer e.g. to [25], [122].

8 Index theory on open manifolds

As well known, index theory dominated a big part of global analysis from 1962 up to now.
Its facinating and striking achievements in geometry, topology and mathematical physics
support the meaning of global analysis.

But almost all of its achievements concern underlying closed manifolds. This will be
the topic of David Bleeker. We devote this section to the index theory on open manifolds,
presenting here a brief survey and start with an outline of the initial situation.

If X ⊃ DD
D−→ Y is a Fredholm operator, i.e. dim ker D < ∞, ImD closed and

dim coker D = dimY/ImD < ∞, then the analytical index indaD = dim ker D −
dim coker D is well defined. From indaD > 0 one concludes immediately that the so-
lutions of Du = ϕ are not unique, from indaD < 0 one concludes that for certain ϕ the
equation Du = ϕ is not solvable. Moreover, indaD provides in many applications a very
important information about the analysis and geometry in question. It is very well known,
that an elliptic operatorD : C∞(E) −→ C∞(E) is (after completion and extension) Fred-
holm if the underlying manifold is closed. This follows from the existence of a parametrix
P ,

PD − id = K1, DP − id = K2, (Par)
and the fact that integral operators K with C∞-kernels K over closed manifolds are

compact. It is very well known too, that on open manifolds these statements are wrong in
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general. (Par) is still solvable but the Ki are not compact in general. Elliptic operators on
open manifolds are not Fredholm – or one adds additional restricting conditions. Hence a
general index theory valid for all open elliptic situations cannot be established.

There are 3 ways out from this difficult situation.
1) One could ask for special conditions in the open case under which an elliptic D

is still Fredholm, then try to establish an index formula, and finally present applications.
These conditions could be conditions on D, on M and E or a combination of both. In [4]
the author formulates an abstract (and very natural) condition for the Fredholmness of D
and assumes nothing for the geometry. But in all substantial applications this condition
can be assured by conditions for the geometry. The other extreme case is that discussed in
[89], [90], where the authors consider the L2-index theorem for locally symmetric spaces.
Under relatively restricting conditions concerning the geometry and topology at infinity,
Fredholmness and an index theorem is proved in [21].

2) One could generalize the notion of being Fredholm (using other operator algebras)
and then establish a meaningful index theory with applications. The discussion of these
two approaches will be contained in this paragraph.

3) Another approach will be relative index theory which is less restrictive concerning
the geometrical situation (compared with the absolute case) but its outcome are only state-
ments on the relative index, i.e. how much the analytical properties of D differ from those
of an appropriate perturbation D′. This approach will be discussed briefly.

4) For open coverings (M̃, g̃) of closed manifolds (Mn, g) and lifted data there is
an approach which goes back to Atiyah, (cf. [7]). This has been further elaborated by
Cheeger, Gromov and others. The main point is that all considered (Hilbert-) modules are
modules over a von Neumann algebra and one replaces the usual trace by a von Neumann
trace. We will not dwell on this approach since there is a well established highly elaborated
theory. Moreover special features of openess are not discussed. The openess is reflected by
the fact that all modules under consideration are modules over the von Neumann algebra
N (π), π = Deck(M̃ −→M).

We start with the first approach, and with the question which elliptic operators over
open manifolds are Fredholm in the classical sense above. Let (Mn, g) be open, oriented,
complete, (E, h) −→ (Mn, g) be a Hermitean vector bundle with involution τ ∈ End (E),
E = E+ ⊕ E−, D : C∞(E) −→ C∞(E) an essentially self-adjoint first order elliptic
operator satisfying Dτ + τD = 0. We denote D± = D|C∞(E±). Then we can write as
usual

D =
(

0 D−

D+ 0

)
:
C∞(E+)
⊕

C∞(E−)
−→

C∞(E+)
⊕

C∞(E−)
. (8.1)

The (L2−)index indaD is defined as

indaD := indaD+ := dim ker D+−dim coker D+ = dim ker D+−dim ker D−

(8.2)

if these numbers would be defined.
We refer to section 2 for the definition of Ω2,i(E,D). N. Anghel proved in [4] nec-

essary and sufficient criteria for the Fredholmness of D : Ω2,1(E,D) −→ Ω2,0(E,D) =
L2(E).
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Proposition 8.1 The following statements are equivalent
a) D is Fredholm.
b) dim ker D <∞ and there is a constant c > 0 such that

|Dϕ|L2 ≥ c · |ϕ|L2 , ϕ ∈ (kerD)⊥ ∩ Ω2,1(E,D), (8.3)

where (kerD)⊥ ≡ H⊥ is the orthogonal complement ofH = kerD in L2(E).
c) There exists a bounded non-negative operator P : Ω2,2(E,D) −→ L2(E) and

bundle morphism R ∈ C∞(EndE), R positive at infinity, i.e. there exist a compact
K ⊂M and a k > 0 s. t. pointwise on E|M\K , R ≥ k, and such that on Ω2,2(E,D)

D2 = P +R. (8.4)

d) There exist a constant c > 0 and compact K ⊂M such that

|Dϕ|L2 ≥ c · |ϕ|, ϕ ∈ Ω2,1(E,D), supp (ϕ) ∩K = ∅. (8.5)

Example 8.2 A class of examples for proposition 8.1 is given by the generalized Dirac
operator D of a Clifford bundle (E, h,∇i) −→ (Mn, g) over a complete Riemannian
manifold such that at infinity R ≥ c > 0 in I. In particular the Dirac operator of a spin
structure of a complete Riemannian spin manifold (Mn, g) with scalar curvature ≥ c > 0
at infinity provides a class of examples.

We see that, if any of the conditions of proposition 8.1 is satisfied, then indaD ≡
indaD+ is well defined. The main task now is to establish a meaningful index theorem.
This has been performed in [4].
Theorem 8.3 Let (Mn, g) be open, complete, oriented, (E, h, τ) = (E+ ⊕ E−, h) −→
(Mn, g) a Z2-graded Hermitean vector bundle and D : C∞c (E) −→ C∞c (E) first order
elliptic, essentially self-adjoint, compatible with the Z2-grading (i.e. supersymmetric),
Dτ + τD = 0. Let K ⊂M be a compact subset such that 8.1 a) for K is satisfied, and let
f ∈ C∞(M,R) be such that f = 0 on U(K) and f = 1 outside a compact subset. Then
there exist a volume density ω and a contribution Iω such that

indaD
+

=
∫
M

(ω(1− f(x)) dvolx(g) + Iω, (8.6)

where ω has an expression locally depending on D and Iω depends on D and f restricted
to Ω = M \K.

Until now, the differential form ω dvolx(g) is a complete mystery. One would like to
express it by well known canonical terms coming e. g. from the Atiyah-Singer index form
ch σ(D+) ∧ S̃(M), where S̃(M) denotes the Todd genus of M . In fact this can be done
in two steps. The first step is a generalization of the relative index theorem of Gromov /
Lawson (cf. [69]).
Theorem 8.4 Let (Mn

j , gj) be open, oriented, complete. (Ej , τ j) −→ (Mn
j , gj), j = 1, 2,

two Z2-graded Hermitean vector bundles, Dj : C∞c (Ej) −→ C∞c (Ej), j = 1, 2, two
supersymmetric essentially self-adjoint first order elliptic differential operators, Djτ j +
τ jDj = 0, j = 1, 2, and assume that theDj agree outside compact setsK1,K2, i. e. there
are compact setsKj ⊂Mj , an orientation preserving isometry F : M1 \K1 −→M2 \K2
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which is covered by a bundle isometry F̃ : E1|M1\K1 −→ E2|M2\K2 such that onM1 \K1

, F̃ τ1 = τ2F̃ and D1 = F̃−1 ◦D2 ◦ F̃ . Then

indaD+
1 − indaD+

2 =
∫
M1

ch σ(D+
1 ) ∧ S̃(M1)−

∫
M2

ch σ(D+
2 ) ∧ S̃(M2), (8.7)

where the r. h. s. will be explained below.

Proof Choose Kj , j = 1, 2, large enough such that M1 \K1 and M2 \K2 are isometric
as stated above and moreover (8.5) holds. We identify M1 \ K1 and M2 \ K2 and write
M1 \K1 = Ω = M2 \K2. We obtain from theorem 8.3

indaD+
j =

∫
Mj

wj(x)(1− fj(x)) dvolx(g) + IjΩ.

D1|Ω = D2|Ω, f1|Ω = f2|Ω imply ω1|Ω = ω2|Ω and I1
Ω = I2

Ω. Hence

indaD+
1 − indaD+

2 =
∫
M1

ω1(1− f1) dvolx(g)−
∫
M2

ω2(1− f2) dvolx(g)

=
∫
K1

ω1 dvolx(g1)−
∫
K2

ω2 dvolx(g2).

Repeat the glueing procedure from Gromov / Lawson: LetN ⊂ Ω be a closed hypersurface
which decomposes Ω into a bounded and unbounded part, form a Riemannian, bundle and
D-collar along N which finally yields M̃ := M ′1 ∪N (−M ′2) and D̃ on M̃ . According to
the Atiyah-Singer index theorem,

indaD̃+ =
∫
M ′1

ch σ(D+
1 ) ∧ τ(M)−

∫
M ′2

ch σ(D+
2 ) ∧ τ(M) =

=
∫
K1

ch σ(D+
1 ) ∧ τ(M)−

∫
K2

ch σ(D+
2 ) ∧ τ(M).

By means of local parametrices as above we get

indaD̃+ =
∫
M ′1

ω1 dvolx(g1)−
∫
M ′2

ω2 dvolx(g2) =
∫
K1

ω1 dvolx(g1)−
∫
K2

ω2 dvolx(g2),

i. e.∫
K1

ω1 dvolx(g1)−
∫
K2

ω2 dvolx(g2) =
∫
K1

ch σ(D+
1 )∧ τ(M)−

∫
K2

ch σ(D+
2 )∧ τ(M).

If we now define∫
M1

ch σ(D+
1 )∧τ(M)−

∫
M2

ch σ(D+
2 )∧τ(M) :=

∫
K1

ch σ(D+
1 )∧τ(M)−

∫
K2

ch σ(D+
2 )∧τ(M)
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(8.8)

then (8.7) is established. (8.8) is well motivated since D1|Ω = D2|Ω.
As a corollary from theorem 8.4 we obtain the following

Index Theorem 8.5 Let (Mn, g) be open, oriented, complete, (E, h, τ) −→ (Mn, g)
a Z2-graded Hermitean vector bundle, D : C∞c (E) −→ C∞c (E) a first order elliptic
essentially self-adjoint supersymmetric differential operator, Dτ + τD = 0, which shall
be assumed to be Fredholm. Let K ⊂M compact such that (8.5) is satisfied. Then

indaD+ =
∫
K

ch σ(D+) ∧ τ(M) + IΩ, (8.9)

where ch σ(D+)∧τ(M) is the Atiyah-Singer index form and IΩ is a bounded contribution
depending only on D|Ω, Ω = M \K.
Proof Set JΩ := indaD+ −

∫
K

ch σ(D+) ∧ τ(M). Then we infer from (8.7), (8.8) that

JΩ is independent of the local expression of D|K , i. e. depends only on D|Ω.

Remarks 8.6 a) As we already mentioned, Z2-graded Clifford bundles, and associated
generalized Dirac operators D such that D2 = ∆E +R, R ≥ c · id, c > 0, outside some
compact K ⊂ M , yield examples for theorem 8.5. A special case is the Dirac operator
over a Riemannian spin manifold with scalar curvature ≥ c > 0 outside K ⊂M .

b) Much more general perturbations than compact ones will be considered at the end
of this section.

The practical value of theorem 8.5 depends on the concrete situation. (8.9) contains
still the number IΩ which has no canonical expression.

But on the topology and geometry in the formulation of 8.5 nothing has been explicitely
assumed. It is clear, the more we assume on the topology, geometry and the explicit ex-
pression of the operator the more concrete becomes a potential index theorem.

The starting point for such very good tractable cases are two papers of Atiyah, the
paper on the η-invariant [6] and on the index theorem for covering manifolds. Let (Mn, g)
be a compact (oriented) Riemannian manifold with boundary ∂M = N and form the
open manifold X = M ∪N N × [0,∞[ with product metric outside a compact set. If
D : C∞(M,E) −→ C∞(M,F ) is a first order elliptic operator on M which takes in
a collar [0, ε[×N the special form D = σ

(
∂
∂u +A

)
, where ∂

∂u is the inward normal,
σ : E|N −→ F |N a bundle isomorphism and A : C∞(N) −→ C∞(N) is selfadjoint,
then E, F and D extend to X , D : C∞c (E) −→ C∞c (F ). It was proved in [6] that the
(L2-) closure D of D has well defined finite index and

indaD =
∫
X

ωD −
η(0)

2
− 1

2
(h∞(E)− h∞(F )), (8.10)

where ω is the local index form, η(0) the η-invariant of A, h∞(E) the dimension of the
subspace of kerA consisting of limiting values of extended L2-sections ϕ of E satisfying
Dϕ = 0 and h∞(F ) is analogously defined by D∗ψ = 0. h∞(E) − h∞(F ) can be
rewritten as

trS(0) = h∞(E)− h∞(F ),
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where S(λ) is the scattering matrix for the pair D∗D|C∞c (X,E), − ∂2

∂u2 +A2|C∞c (N×R+,E)

which Dirichlet b. c..
If kerA = {0} then

indaD =
∫
ωD −

η(0)
2
. (8.11)

(8.10), (8.11) are very explicit. For the signature operator e. g. very well known formulas
come out.

The next generalization of product ends would be ends with warped product met-
rics, multiply warped product, asymptotically multiply warped product ends and finally
a bounded variation of such ends, all this for Dirac type operators, suitably parametrized.

The other case of a very special class of open manifolds are coverings (M̃, g̃) of a
closed manifold (Mn, g). Let E,F −→ (Mn, g) be Hermitean vector bundles over the
closed manifold (Mn, g). D : C∞(E) −→ C∞(F ) be an elliptic operator, (M̃, g̃) −→
(M, g) a Riemannian covering, D̃ : C∞c (Ẽ) −→ C∞c (F̃ ) the corresponding lifting and
Γ = Deck (M̃n, g̃) −→ (Mn, g). The actions of Γ and D̃ commute. If P : L2(M̃, Ẽ) −→
H is the orthogonal projection onto a closed subspace H ⊂ L2(M̃, Ẽ) then one defines
the Γ-dimension dimΓH ofH as

dimΓH := trΓ P,

where trΓ denotes the von Neumann trace and trΓ P can be any real number ≥ 0 or =∞.
If one takes H = H(D̃) = ker D̃ ⊂ L2(Ẽ), H∗ = H(D̃∗) = ker(D̃∗) ⊂ L2(F̃ ) then

one defines the Γ-index indΓD̃ as

indΓD̃ := dimΓH(D̃)− dimΓH(D̃∗).

Atiyah proves in [7] the following main
Theorem 8.7 Under the assumptions above there holds

indDD = indΓD̃.

It was this theorem which was the orign of the von Neumann analysis as a fastly grow-
ing area in geometry, topology and analysis. Moreover, the proof of theorem 8.3 is strongly
modelled by that of 8.7.

Another very important special case which is related to the case above of coverings
are locally symmetric spaces of finite volume. There is a vast number of profound contri-
butions, e. g. [11], [28], [89], [90], [91]. For reasons of space, we cannot give here an
overview.

There is another approach by Gilles Caron which we briefly present now (cf. [21]).
Let (E, h,∇, ·) −→ (Mn, g) be a Clifford bundle over the complete Riemannian man-

ifold (Mn, g) and D : C∞(E) −→ C∞(E) the associated generalized Dirac operator. D
is called non-parabolic at infinity if there exists a compact set K ⊂ M such that for any
open and relatively compact U ⊂M \K there exists a constant C(U) > 0 such that

C(U)|ϕ|L2(E|U ) ≤ |Dϕ|L2(E|M\K) for all ϕ ∈ C∞c (E|M\K). (8.12)

To exhibit the consequences of (8.12), we establish another characterization of it.
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Proposition 8.8 Let (E, h,∇, ·) −→ (Mn, g) and D as above and let W (E) be a Hilbert
space of sections such that

a) C∞c (E) is dense in W (E) and
b) the injection C∞c (E) ↪→ Ω2,1

loc(E,D) extends continuously to W (E) −→
Ω2,1

loc(E,D).
Then D : W (E) −→ L2(E) is Fredholm if and only if there exist a compact K ⊂ M

and a constant C(K) > 0 such that

C(K) · |ϕ|W ≤ |Dϕ|L2(E|M\K) for all ϕ ∈ C∞c (E|M\K). (8.13)

Remark 8.9 The norm N (·) above is equivalent to the norm

NU(K)(·),NU(K)(ϕ)2 = |ϕ|2L2(E|U(K))
+ |Dϕ|2L2(E). (8.14)

Corollary 8.10 D : C∞(E) −→ C∞(E) is non-parabolic at infinity if and only if there
exists a compact K ⊂M such that the completion of C∞c (E) w. r. t. NK(·),

NK(ϕ)2 = |ϕ|2L2(E|K) + |Dϕ|2L2
(8.15)

yields a spaceW (E) such that the injectionC∞c (E) −→ Ω2,1
loc(E,D) continuously extends

to W (E).

The point now is that we know if D is non-parabolic at infinity then D : W (E) −→
L2(E) is Fredholm. We emphasize, this does not mean L2(E) ⊃ DD

D−→ L2(E) is
Fredholm. We get a weaker Fredholmness, not the desired one. But in certain cases this
can be helpful too.

Suppose again a Z2-grading of E and D, D =
(

0 D−

D+ 0

)
, L2(E) = L2(E+)⊕

L2(E−), W (E) = W (E+) ⊕ W (E−). Following Gilles Carron, we now define the
extended index indeD+ as

indeD+ := dim ker WD+ − dim ker L2D
−

= dim{ϕ ∈W (E+) |D+ϕ = 0} −
−dim{ϕ ∈ L2(E−) |D−ϕ = 0}. (8.16)

If we denote h∞(D+) := dim(kerW D+/ kerL2 D
+) then we can (8.16) rewrite as

indeD+ = h∞(D+)+indL2D
+ = h∞(D+)+dim ker L2D

+−dim ker L2D
−. (8.17)

The most interesting questions now are applications and examples. For D = Gauß-
Bonnet operator there are applications and examples in [22]. For the general case it is not
definitely clear, is non-parabolicity really a practical sufficient criterion for Fredholmness
since in concrete cases it will be very difficult it to establish. In some well known standard
cases which have been presented by Carron and which we will discuss now it is of great
use.
Proposition 8.11 Let D : C∞(E) −→ C∞(E) be a generalized Dirac operator and
assume that outside a compact K ⊂ M the smallest eigenvalue λmin(x) of Rx in D2 =
∇∗∇+R is ≥ 0. Then D is non-parabolic at infinity.
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Proof Let K be as supposed and ϕ ∈ C∞c (E|M\K). Then

|Dϕ|2L2(E|M\K) = 〈D2ϕ,ϕ〉M\K ≥ |∇ϕ|
2
M\K . (8.18)

Moreover |∇ϕ|M\K ≥ |d|ϕ||L2(M\K) by Kato’s inequality. According to [7], there exists
for any bounded U ⊂M a constant C(U) such that

〈(∆0 + χK)u, u〉M ≥ C(U)|u|2L2(U) for all u ∈ C∞c (M).

Hence for u(x) = |ϕ(x)| (which is not necessarily C∞ but the integral estimates remain
true), ϕ ∈ C∞c (E|M\K), ||ϕ|L2(M)| = |ϕ|L2(E), we obtain

|d|ϕ||2L2(M\K) = |d|ϕ||2L2(M) + 〈χk|ϕ|, |ϕ|〉 ≥ C(U)|ϕ|2L2(E|U ), (8.19)

i. e. we infer from (8.18), (8.19) for bounded U ⊃M \K

C(U)|ϕ|L2(E|U ) ≤ |Dϕ|L2(E|M\K), ϕ ∈ C∞c (E|M\K).

For the general understanding of this approach we still add a remark concerning the
samewhat strange norms on C∞c (E) used here. These are

NΦ(ϕ) = |Dϕ|L2 ,

NK(ϕ)2 = |ϕ|2L2(E|K) + |Dϕ|2L2
,

NΦ,∇(ϕ) = |∇ϕ|L2(T∗⊗E),

NK,∇(ϕ)2 = |ϕ|2L2(E|K) + |∇ϕ|2L2
.

All these are norms on C∞c . The only property which is not absolutely evident is N (ϕ) =
0 =⇒ ϕ = 0. Consider NΦ(ϕ) = |Dϕ|L2 . |Dϕ|L2 = 0 implies |D2ϕ|L2 = 0, D2ϕ = 0.
Moreover, outside a compact L ⊂ M , ϕ = 0. Then the unique continuation theorem of
Aronszajn says ϕ ≡ 0. NΦ,∇(ϕ) = 0 implies ϕ parallel. ϕ = 0 outside L, i. e. ϕ ≡ 0.
Quite analogous for the other two norms. It is very easy to see that forK compact with non-
empty interior WN (E) is independent of K. Moreover, for D non-parabolic at infinity,
NK ∼ NΦ. Always NΦ ≤ NK is clear. Conversely, (8.15) implies (after decomposition
of ϕ ∈ C∞c (E)) NK ≤ C · NΦ. Hence in this case we have WNK (E) = WNΦ(E) and
write WNΦ(E) = W0(E). From the definition of the N s it is clear that the elements of

the completion WN (E) = C∞c (E)
N

must not be ∈ L2. This just generates the additional
term h∞ in the extended index and is simultaneously the heart of the whole approach. One
admits a ”non-L2 perturbation” of L2-Fredholmness and tries nevertheless to draw fruitful
conclusions.

We obtain from proposition 8.11
Corollary 8.12 Assume the hypothesis of 8.11. ThenD : W0(E) −→ L2(E) is Fredholm.

Under certain additional assumptions the pointwise condition on λmin(x) ofRx can be
replaced by a (weaker) integral condition. Denote R−(x) = max{0,−λmin(x)}, where
λmin(x) is the smallest eigenvalue ofRx.
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Theorem 8.13 Suppose that for a p > 2 (Mn, g) satisfies the Sobolev inequality

cp(M)

∫
M

|u|
2p
p−2 (x) dvolx(g)


p−2

2

≤
∫
M

|du|2(x) dvolx(g) for all u ∈ C∞c (M)

(8.20)

and ∫
M

|R−|
p
2 (x) dvolx(g) <∞.

Then D : W0(E) −→ L2(E) is Fredholm.

Proof Choose K so large that |R−|L p
2

(M\K) ≤
cp
2 . Then we obtain for ϕ ∈

C∞c (E|M\K), |∇ϕ|M\K ≡ |∇ϕ|L2((T∗⊗E)|M\K)∫
M

|Dϕ|2 dvolxg =
∫
M

|∇ϕ|2 dvolx(g) + 〈Rϕ,ϕ〉 =

=
1
2
|∇ϕ|2M\K +

1
2
|∇ϕ|2M\K + 〈Rϕ,ϕ〉 ≥

≥ 1
2
|∇ϕ|2M\K +

cp
2
|ϕ|L 2p

p−2
−
∫

M\K

|R−|
p
2 · (|ϕ|2)

p
p−2 dvolx(g) ≥

≥ 1
2
|∇ϕ|2M\K +

cp
2
|ϕ|2L 2p

p−2

− |R−|L p
2

(M\K) · |ϕ|2L 2p
p−2

≥

≥ 1
2
|∇ϕ|2L2

≥

≥ 1
2
|d|ϕ||2L2(M\K)

and on 1
2 |d|ϕ||

2
L2(M\K) we apply (8.19).

Another important example are manifolds with a cylindrical end which we already
mentioned. In this case, there is a compact submanifold with boundary K ⊂ M such that
(M \K, g) is isometric to (]0,∞[×∂K, dr2 + g∂K). One assumes that (E, h)|]0,∞[×∂K
also has product structure and D|M\K = ν ·

(
∂
∂r +A

)
, where ν· is the Clifford multipli-

cation with the exterior normal at {γ}×∂K and A is first order elliptic and self-adjoint on
E|∂K .
Proposition 8.14 D is non-parabolic at infinity.

Proof There are two proofs. The first one refers to [6]. According to proposition 2.5 of
[6], there exists on M \K a parametrix Q : L2(E|M\K) −→ Ω2,1

locE|M\K , D) such that
QDϕ = ϕ for all ϕ ∈ C∞c (E|M\K). Hence for C∞c (E|M\K), U ⊃M \K bounded,

|ϕ|L2(E|U ) = |QDϕ|L2(E|U ) ≤ |Q|L2→Ω2,1 · |Dϕ|L2 .



220 Partial differential equations on closed and open manifolds

The other proof is really elementary calculus. For ϕ ∈ C∞c (E|M\K),

|ϕ(r, y)| =
∣∣∣∣ r∫
0

∂ϕ
∂r dr

∣∣∣∣ ≤ √r · ∣∣∣∂ϕ∂r ∣∣∣
L2

. Hence |ϕ|2L2(E|]0,T [×∂K) ≤
T 2

2

∣∣∣∂ϕ∂r ∣∣∣2
L2

≤

T 2

2

(∣∣∣∂ϕ∂r ∣∣∣2
L2

+ |Aϕ|2L2

)
= T 2

2 |Dϕ|
2
L2

.

The authors of [6] define extended L2-sections of E|]0,∞[×∂K as sections ϕ ∈ L2,loc,
ϕ(r, y) = ϕ0(r, y) + ϕ∞(y), ϕ0 ∈ L2, ϕ∞ ∈ kerA.
Proposition 8.15 The extended solutions of Dϕ = 0 are exactly the solutions of Dϕ = 0
in W .

Proof Let {ϕλ}λ∈σ(A) be a complete orthonormal system in L2(E|∂K) consisting of the
eigensections of A. Then we can a solution ϕ of Dϕ = 0 on ]0,∞[×∂K decompose as

ϕ(r, y) =
∑

λ∈σ(A)

cλe
−λrϕλ(y)

and ϕ ∈W if and only if cλ = 0 for λ < 0. In this case

ϕ0(r, y) =
∑

λ∈σ(A)
λ>0

cλe
−λrϕλ(y), ϕ∞(y) =

∑
λ∈σ(A)

c0,iϕ0,i(y).

This proposition can also be reformulated as
Proposition 8.16 Denote by P≤0 or P<0 the spectral projection of A onto the sum of
eigenspaces belonging to eigenvalues ≤ 0 or < 0, respectively. Then

a) ϕ is a solution in W of Dϕ = 0 if and only if

Dϕ = 0 on K

and

P<0ϕ = 0 on ∂K.

b) ϕ is an L2-solution of Dϕ = 0 if and only if

Dϕ = 0 on K

and

P≤0ϕ = 0 on ∂K.

We finish the introductory discussion of the extended index at this point, having in
mind that at this place we did not discuss its calculation, i.e. we did not present an index
formula for the extended index.

As we mentioned at the beginning of this section, elliptic operators on open manifolds
are in general not Fredholm, the classical analytical index is not defined, and the same holds
for the topological index since the corresponding integral in general diverges. To save a
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big part of the classical approach, one restricts to very special cases which we pointed out
in the preceding discussions, i.e. assuming the condition (8.3), or restricting to the locally
symmetric case with finite volume or to manifolds and operators which are non-parabolic
at infinity.

Another fundamental approach is to establish a new concept of Fredholmness and of
the index by associating it with the K-theory of certain operator algebras and its pairing
with cyclic cohomology.

This approach has been elaborated by J. Roe, G. Yu, N. Higson and others (cf. [94],
[95], [96], [97], [98], [121]). The initial point is the general scheme of index theory.

Given a Riemannian manifold (Mn, g), Hermitean vector bundlesE, F −→M and an
elliptic operator D : C∞c (E) −→ C∞c , the general scheme of index theory consists of the
following. One chooses a suitable extension ofD, an operator algebra B, a functorKi(B),
constructs an element IndD ⊂ Ki(B), defines an element ID of cohomological nature,
mainly a differential form, defines pairings 〈ID,m〉, 〈IndD, ξ〉 and sets indtD = 〈ID,m〉,
indaD = 〈IndD, ξ〉 is a pairing with a cyclic cohomology class. This gives a diagram

D −→ IndD ∈ Ki(B)

↓ ↓

ID −→ 〈ID,m〉 = indtD
?= indaD = 〈IndD, ξ〉.

(8.21)

The commutative closure of the diagram by an equality indtD = indaD means the
establishing of an index theorem. In the classical example of (Mn, g) closed, oriented
B = K the algebra of compact operators, I = µ0(D∗D) − µ0(DD∗), where µ0(· · · ) is
the coefficient (= differential form) in the asymptotic expansion of the heat kernel on the
diagonal without t-power, IndD ∈ K0(K) = [PkerD]− [Pcoker D], we obtain the diagram

D −→ IndD ∈ K0(K)

↓ ↓ trace

ID = µ0(D∗D)− µ0(DD∗) −→∫ ∫
ID = indt = indaD.

(8.22)

In the open case, (8.22) does not make sense, and one has to make in (8.21) appropriate
choices. This concerns the

1) choice of the D’s
2) choice of B and i,
3) construction of IndD ∈ Ki(B),
4) choice of ξ ∈ HC∗(B) s.t. 〈IndD, ξ〉 =′′ indaD′′ is well defined,
5) choice of ID and the functional ID −→′′ indtD′′.
Thereafter one has to check the validity of the index theorem, the rigidity of the index

and to present meaningful applications. This program has been performed e.g. in the
papers above and by the author.

Initial point is the K-theory of operator algebras. Concerning this, we refer to the
standard books. Let 0 −→ J −→ A −→ B = A/J −→ 0 be an exact sequence of
Banach algebras, J ⊂ A a closed ideal. Then there is an exact 6-term sequence of K-
groups
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K1(J) −→ K1(A) −→ K1(A/J)

↑ ↓ ∂ (8.23)

K0(A/J) ←− K0(A) ←− K0(J)

If one defines an operator T acting on A to be Fredholm (= J-Fredholm) if πT is
invertible in A/J then πT gives rise to a class [πT ] in K1(A/J) and one could define

IndT := ∂[πT ] ∈ K0(J)

in analogy to (8.22).
At this stage, the decisive stage is the choice of A and J . In the classical compact case,

one takes e.g.
J = algebra of smoothing operators,
A = algebra of pseudo-differential operators,
B = A/J = algebra of complete symbols.
An elliptic operator D is not bounded. For this reason one considers f(D), where

f : R −→ [−1, 1] is an odd continuous function satisfying f(t) −→
t→±∞

±1, a so called

chopping function. Here f(D) is defined e.g. by the Cauchy integral formula and is a
pseudo-differential operator. If the underlying manifold is open then there is no canonical
choice for A and J , and this choice is in fact a rather delicate matter. There are two
conflicting wishes. J must be sufficiently large to contain the operators 1 − f(D)2 so
that IndD ∈ K(J) and J should be sufficiently small to permit some knowledge of its
K-theory.

These choices and corresponding constructions have been performed by J. Roe, G. Yu
in a series of papers. Having in mind the later definition of traces or more general the
pairing with cyclic cohomology, J. Roe considers J as an algebra of bounded smoothing
operators that are ”uniformly nearly local” and generalizes this notion step by step.

In the sequel, we restrict to Clifford bundlesE −→ (Mn, g) satisfying (I), (B∞(M)),
(B∞(E)) and D = associated generalized Dirac operator. An operator A : Ω0,2,k(E) −→
Ω0,2,l(E) is called uniformly nearly local if∫

dist(x,supp u)>R

|(Au)(x)|2dx ≤ F (R)|u|2L2

where F (R) −→
R→∞

0. An operator A : C∞c (E) −→ C∞(E) is called a uniform operator

of order ≤ k if for each r it has a continuous extension from Ω0,2,r(E) −→ Ω0,2,r−k

as a uniformly nearly local operator. Denote the corresponding collection by Uk(E). All
Uk(E) form a filtered algebra U(E) with ideal U−∞(E) =

⋂
k

Uk(E).

Proposition 8.17 Each A ∈ U−∞(E) has a uniformly bounded smooth Schwartz kernel
K(x, y).

The proof is the same as that of
Proposition 8.18 Let f ∈ S(R) (= Schwartz class). Then

f(D) =
1

2π

∫
f̂(t)e−itDdt
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belongs to U−∞(E).

We refer to [94] for the proof.
Consider more generally the space

Sm(R) = {f ∈ C∞(R)| |f (k)(λ)| ≤ ck(1 + |λ|)−k}.

Then S(R) =
⋂
Sm(R), and Sm(R) is a Frechet space with the best ck as semi-norms.

Proposition 8.18 generalizes to
Proposition 8.19 For f ∈ Sm(R), f(D) is (defined by the spectral theorem) an element
of Um(E).

Proof One proves this first for f ∈ S(R) and f(D) = 1
2π

∫
f̂(t)eitDdt and applies

thereafter an approximation technique.
Suppose now E equipped with a grading η and let D be the associated (compatible

with η) generalized Dirac operator.
Proposition 8.20 D is abstractly elliptic between the U(E)-modules given by the eigen-
projections (1 + η)/2 and (1− η)/2.

Proof We must construct a parametrix. Let ω ∈ C∞c (R), ω(x) = 1 in a neighborhood
of zero and set ψ(x) = (1 − ω(x2))/x2. Then ψ ∈ S−2(R), hence ψ(D) ∈ U−2(E),
Dψ(D) ∈ U−1(E). According to 8.18, ω(D2) ∈ U−∞(E) and it commutes with D,
whereas Dψ(D) anticommutes with η. Now the equation

D(Dψ(D)) = D2ψ(D) = 1− ω(D2)

shows that Dψ(D) is a parametrix for D.

Corollary 8.21 D has an index IndD ∈ K0(U−∞(E)).

Proof Consider the sequence 0 −→ U−∞(E) −→ U(E) −→ U(E)/U−∞(E) −→ 0. D
is invertible inU(E)/U−∞(E). ∂ in (6.70) then yields an element IndD ∈ K0(U−∞(E)).

Remark 8.22 J. Roe proves in [94] the simple fact that any Clifford bundle E of bounded
geometry has a good inclusion i : E −→ trivial bundle and one can consider IndD as an
element of K0(U−∞(M)), too.

If we consider 0 −→ J −→ A −→ A/J = B −→ 0, T is A/J invertible (i.e.
abstractly elliptic) then [πT ] ∈ K1(A(/J) = K1(B) and Ind = ∂[πT ] ∈ K0(J) and it
would be desirable to associate to IndT a ”honest number”. This can be in fact performed
(under certain assumptions) in two steps, 1. construction of a trace τ (= element of the 0-
dimensional cyclic cohomology of J) and pairing it with IndD, thus getting a ”dimension
homomorphism” dimτ : K0(J) −→ ground field k. Here a k-linear functional τ : J −→ k
is called a trace if τ(j1j2) = τ(j2j1). If M is a projective B-module and End J(M) the
algebra of B-linear morphisms that map M to M ⊗ J then a trace τ on J can easily
be extended to a trace on End J(M) (representing the latter by matrices) then yielding
dimτ : K0(J) −→ k.
Lemma 8.23 If P is an abstract elliptic operator with parametrix Q then

dimτ (IndP ) = τ(1−QP )2 − τ(1− PQ)2.
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We refer to [94] for the proof.
For practical applications we must now find a trace τ . Suppose (Mn, g) open, oriented,

of bounded geometry. An exhaustion {Mi}i, M1 ⊂ M2 ⊂ · · · ,
⋃
Mi = M by compact

subsets will be called regular if for each r ≥ 0

lim
i→∞

[vol (Pen+(Mi, r))/vol (Pen−(Mi, r))] = 1,

where

Pen+(K, r) = CL(
⋃
x∈K

Br(x)),

Pen−(K, r) = CL(M \ Pen+(M \K, r)).

Examples 8.24 1) (Rn, gst),
2) (M̃, g̃) P−→ (M, g) with M closed and Deck(M̃ −→M) amenable and
3) manifolds with subexponential growth (for all c > 0, e−crvol (Br(x0)) −→

r→∞
0)

admit regular exhaustions.
4) Hyperbolic n-space Hn

−1 does not admit a regular exhaustion.
We call (Mn, g) closed at infinity if for any λ ∈ C0(M) s.t. 0 < c−1 < λ < c, c a

constant, the form λ · dvol generates a nontrivial cohomology class ∈ bHn(M).
A positive continuous linear functional m : bΩn(M) −→ R is called a fundamental

class if 〈m, dvol〉 6= 0 and m ◦ d = 0.
Proposition 8.25 (Mn, g) has a fundamental class if and only if ist is closed at infinity.

This follows immediately from the Hahn-Banach extension theorem.
Examples 8.26 1) Any closed manifold and the (Rn, gst) are closed at infinity,

2) the hyperbolic n-space Hn
−1 is not.

An element m ∈ (bΩn(M))∗ is said to be associated to a regular exhaustion {Mi}i of
(Mn, g) if for each bounded n-form α

lim
i→∞

∣∣∣∣∣∣〈m, α〉 − 1
vol (Mi)

∫
Mi

α

∣∣∣∣∣∣ = 0.

Proposition 8.27 Every regular exhaustion defines such functionals.

Proof Suppose {Mi}i, α be given. Set 〈mi, α〉 := 1
vol Mi

∫
α. Then mi ∈ B1(0) ⊂

(bΩn)∗. According the Banach-Alaoglu theorem, B1(0) is compact in the weak-*-
topology, i.e. the sequence (m)i has a limit point m.

Proposition 8.28 Any m given by 8.27 is a fundamental class.

Let m be a fundamental class associated to regular exhaustion {Mi}i and let A ∈
U−∞(M). Then A has a uniquely determined bounded smoothing kernel KA such that

Au(x) =
∫
KA(x, y)u(y) dvoly(g).

Consider the bounded n-form α(x) = KA(x, x) dvolx(g) and define τ(A) := 〈m, α〉.
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Proposition 8.29 The functional τ defines a trace on U−∞(M).

We refer to [94], [95] for the simple proof.
Remark 8.30 In the same manner, a trace τ on U−∞(E) can be defined by

τ(A) = 〈m, (trxKA(x, x)) dvol〉

where trx means the fibrewise trace.
Suppose as above E −→ M of bounded geometry, η a grading, D the generalized

Dirac operator, {Mi}i a regular exhaustion with associated m and τ . According to lemma
8.23, we get a dimension homomorphism

dimτ : K0(U−∞(M)) −→ R

or

dimτ : K0(U−∞(E)) −→ R,

respectively. There remains the task to compute dimτ (IndD).
Proposition 8.31 If f ∈ S(R+) with f(0) = 1 then

dimτ (IndD) = τ(ηf(D2)). (8.24)

We refer to [94] for the proof which is an easy calculation.
Setting in 8.31 f(λ) = e−tλ, we have the well known asymptotic expansion

K(t, x, x) ∼
t→0+

∑
k≥0

t(k−n)/2bk(x) (8.25)

where the bk are smooth sections of End (E) ⊗ ΛnT ∗M . Combining (8.24) and (8.25),
we obtain

dimτ (IndD+) ∼
∑
k≥0

t(k−n)/2〈m, tr(ηbk)〉. (8.26)

The left hand side of (8.26) is independent of t. Hence on the right hand side can appear
only the term without t-power, i.e. 〈m, tr ηbn〉 ≡ 〈m, ID〉. This yields the index theorem.
Theorem 8.32 Suppose (E, h,∇, η) −→ (Mn, g) is a Z2-graded Clifford bundle satis-
fying (I), (B∞(M)), (B∞(E,∇), admitting a regular exhaustion {Mi}i with associated
fundamental class m. If D is the associated generalized Dirac operator then its index
IndD ∈ K0(U−∞(E)) satisfies the equation

dimτ (IndD) = 〈m, I(D)〉.

It is natural to ask for meanigful applications of (8.26). This means in particular asser-
tions concerning kerD+, kerD−. We rewrite (8.24),

dimτ (IndD) = τ(f(D−D+))− τ(f(D+D−)), (8.27)
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where f ∈ S(R+) with f(0) = 1. If inf σe(D2|(kerD2)⊥) > 0, i.e. one would have a
spectral gap for D above and below zero, then one could choose f with compact support
such that = 1 and f(λ) = 0 for all nonzero eigenvalues of D. In this case, f(D−D+) is
the projection PkerD+ and f(D+D−) is the projection PkerD− , hence

dimτ (IndD) = τ(PkerD+)− τ(PkerD−).

Unfortunately, the existence of such a spectral gap is not equivalent to the existence of
a regular exhaustion, as at least many geometric examples indicate. Hence one has to
argue much more careful. Consider again ft(D−D+) = e−tD

−D+
. This converges for

t → ∞ to PkerD+ in the strong operator topology on L2. If this convergence would hold
in the uniform topology then (8.27) would hold since m is continuous against the uniform
topology. So the presentation of substantial applications amounts to find out a ”thin” area
where one can assure (8.27). Consider the Weitzenboeck formula D2 = ∇∗∇ + R and
R± = R|± eigenspace of η .

A subset L ⊂ M is said to have density 0 if for all ω ∈ bΩn(M) with support ω ⊆ L
there holds 〈m, ω〉 = 0. It has density 1 if M \ L has density zero. L ⊂M is called small
if for all r > 0 Pen+(L, r) has density 0. L is called large if M \ L is small.
Proposition 8.33 Suppose the hypothesis of 8.32.

a) IfR+ ≥ 0 on a large set, then dimτ (Ind) ≤ 0.
b) IfR− ≥ 0 on a large set, then dimτ (Ind) ≥ 0.

We refer to [95] for some special applications to the Gauß-Bonnet, Dirac and Dolbeault
operator. Until now, we only considered traces τ as functionals on K0. In [196], [197] J.
Roe considered much more general algebras and ideals (instead of U(E), U−∞(E)E and
cyclic cocycles. We will not repeat here what is written there but we will only indicate here
the main lines of this further approach.

Let again E −→ M be a graded Clifford bundle with grading operator η, E = E+ ⊕

E−, and generalized Dirac operator D =
(

0 D−
D+ 0

)
. A positive operator b acting on

L2(E) is called locally traceable if for all f ∈ Cc(M) the operator fbf is of trace class.
A general operator is called locally traceable if it is a finite linear combination of positive
locally traceable operators. An operator b is said to have bounded propagation if there
exists r > 0 s.t. for any u ∈ L2(E))

supp (bu) ∪ supp (b∗u) ⊆ {x ∈M |dist(x, supp u) ≤ r}.

The Roe algebra B = BE consists of all locally traceable operators with bounded propa-
gation. Denote by BE the norm closure of B.
Lemma 8.34 If f is chopping function then

f(D)2 − 1 ∈ BE .

f odd implies the decomposition

f(D) =
(

0 f(D)−
f(D)+ 0

)



Jürgen Eichhorn 227

and we see that f(D)− is a parametrix of f(D)+: f(D)+f(D)− − 1 = C−,
f(D)−f(D)+ = C+, where

C =
(
C+ 0
0 C−

)
∈ BE .

Set

L =
(

C+ f(D)− − C+f(D)−
f(D)+ C−

)
∈ BE .

Then L is invertible, and

L−1 =
(

C+ f(D)−(1− C)

f(D)+ −C−

)
∈ BE .

Define the index IndD as

IndD :=
[
L

(
1 0
0 0

)
L−1 −

(
0 0
0 1

)]
=
[(

C2
+ f(D)−C−(1− C)

f(D)+C+ −C2
−

)]
∈ K0(BE).

(8.28)

IndD is independent of f . The motivation for the definition (8.28) comes from operator
K-theory. Let AE be the C∗-algebra of bounded operators acting on L2(E) with bounded
propagation. Then BE is a ∗-ideal of AE . Operator K-theory yields the exact sequence
(6.70), in our case

K1(BE) −→ K1(AE) −→ K1(AE/BE)

↑ ↓ ∂

K0(AE/BE) ←− K0(AE) ←− K0(BE)

Now [f(D)] = [L] in AE/BE and in fact

IndD = ∂[f(D)].

We remark without proof (cf. [121]) the following
Proposition 8.35 IndD is equivalent to the Kasparov module (BE , f(D),Φ) for (C,BE)
by the natural identification of K0(BE) with KK(C,BE).

Now the point is to produce cyclic cocycles. Here comes in a fundamental idea of Roe,
namely to produce cyclic cocycles from coarse cohomology HX∗(M) (cf. [98]).

J. Roe defines in [98] a cyclic character map χ : HX2q(M) −→ HC2q(BE).
Moreover, one has the Connes’ pairing between K0(B) and HCeven(B). Hence any
[ϕ] ∈ HX2q(M) yields a number

IndϕD = 〈χϕ, IndD〉.



228 Partial differential equations on closed and open manifolds

There is a character map c : HXq(M) −→ Hq
c (M) which sends a cocycle ϕ to its

truncation to any penumbra Pen(∆, R) of the multidiagonal ∆ ⊂ M × · · · ×M (q + 1
times).

Now we can state the even index theorem of J. Roe.
Theorem 8.36 Let (M2m, g) be complete, E −→M a graded Clifford bundle and D the
associated graded generalized Dirac operator. If [ϕ] ∈ HX2q(M) then

〈χ[ϕ], IndD〉 =
q!

(2q)!(2πi)q
〈ID ∪ c[ϕ], [M ]〉.

A similar theorem holds in the odd case with IndD ∈ K−1(BE).
Theorem 8.37 Let (M2m−1, g) be complete, E −→ M an (ungraded) Clifford bundle
and D the associated generalized Dirac operator. If [ϕ] ∈ HX2q−1(M) then

〈χ[ϕ], IndD〉 =
q!

(2q − 1)!(2πi)q
〈ID ∪ c[ϕ], [M ]〉.

We refer to [98] for the proof.
We now briefly present our approach to relative index theorems on open manifolds.
Let (Mn, g) be closed, oriented (E, h,∇, ·, τ) −→ (Mn, g) a supersymmetric Clif-

ford bundle with involution τ and D =
(

0 D−

D+ 0

)
the associated generalized Dirac

operator. Then

indaD+ = tr(τe−tD
2
).

Starting with this simple fact, one could attempt to define in the open case a relative index
for a pair of generalized Dirac operators D,D′ by

ind(D,D′) := tr(τ(e−tD
2
− e−tD

′2
)).

With this intention in mind there arise immediately several problems.
1) One has to assure that D,D′ are self-adjoint in the same Hilbert-space.
2) One has to assure that e−tD

2 − e−tD′
2

is of trace class.
3) One has to assure that tr(τ(e−tD

2 − e−tD′
2
)) is independent of t.

4) Finally one has to present substantial applications.
The initial data for a fixed vector bundle E −→ M and different Clifford structures

are (E, h,∇ = ∇h, ·) −→ (Mn, g) and (E, h′,∇′ = ∇h
′
, ·′) −→ (Mn, g′), respectively.

These yield generalized Dirac operators D = D(h,∇, ·, g) and D′ = D(h′,∇′, ·′, g′). D
and D′ act in different Hilbert spaces, i.e. e−tD

2 − e−tD′
2

is not defined. But this can be
repared by two unitary transformations. Denote by D′ already the result after performing
this transformations.

To describe the possibly maximal perturbations (h′,∇′, ·′, g′) of (h,∇, ·, g), we intro-
duce in [52] uniform structures of Clifford structures and defined generalized components.
We indicate here briefly the main definitions. First of all, we restrict to manifolds and
bundles (E, h,∇) −→ (Mn, g) of bounded geometry of order k i.e. we assume

rinj(Mn, g) > 0, (I)
|(∇g)iRg| ≤ Ci, 0 ≤ i ≤ k, (Bk(M, g))
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|∇iRE | ≤ Di, 0 ≤ i ≤ k. (Bk(E,∇))
Then we defined a local Lipschitz-Sobolev distance dp,rL,diff,rel(E1, E2) =

dp,rL,diff,rel((E1, h1,∇h1 , ·1, g1), (E2, h2,∇h2 , ·2, g2)), an associated metrizable uniform
structure and considered generalized components gen compp,rL,diff,rel(E). Roughly speak-
ing, E′ ∈ gen compp,rL,diff,rel(E) means that E|M\K ∼= E′|M ′\K′ as vector bundles by
means of a bounded diffeomorphism, on M \K ∼= M ′ \K ′ h and h′ are quasiisometric, g
and g′ are quasiisometric and the Sobolev distances |h− h′|g,h,∇h,p,r, |∇−∇′|g,h,∇h,p,r,
| · − ·′ |g,h,∇h,p,r, |g − g′|g,p,r are finite.

Denote by CLBN,n(I,Bk) the set of (Clifford-)isometry classes over n-manifolds with
fibre dimension N and with bounded geometry of order k. For E′ ∈ gen comp(E), D and
D′ are defined in different Hilbert spaces. But there is a common Hilbert space H which
contains DD and DD̃′ , (D̃′ is D′ after some unitary transformation) as subspaces. Denote
by P and P ′ the corresponding orthogonal projections. The key for everything is the
following main theorem.
Theorem 8.38 LetE = ((E, h,∇h) −→ (Mn, g)) ∈ CLBN,n(I,Bk), k ≥ r+1 > n+3,
E′ ∈ gen comp1,r+1

L,diff,rel(E) ∩ CLBN,n(I,Bk). Then for t > 0

e−tD
2
P − e−tD̃′

2

P ′ (8.29)

and

e−tD
2
D − e−tD̃′

2

D̃′ (8.30)

are of trace class and their trace norms are uniformly bounded on any t-intervall [a0, a1],
a0 > 0.

We refer to [52], [43] for the proof which occupies 60 pages.
We conclude that after fixing E ∈ CLBN,n(I,Bk), k ≥ r + 1 > n+ 3, we can attach

to any E′ ∈ gen comp1,r+1
L,diff,rel(E) a number-valued invariant, namely

E′ −→ tr(e−tD
2
P − e−tD̃′

2

P ′.

This is a contribution to the classification inside a component but still unsatisfactory
insofar as it

1) could depend on t.
2) will depend on the K ⊂M , K ′ ⊂M ′ in question,
3) is not yet clear the meaning of this invariant.
We are in a much nore comfortable situation if we additionally assume that the Clifford

bundles under consideration are endowed with an involution τ : E −→ E, s.t.

τ2 = 1, τ∗ = τ (8.31)
[τ ,X]+ = 0 for X ∈ TM (8.32)
[∇, τ ] = 0 (8.33)

Then L2((M,E), g, h) = L2(M,E+)⊕ L2(M,E−)

D =
(

0 D−

D+ 0

)
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and D− = (D+)∗. If Mn is compact then as usual

indD := indD+ := dim ker D+ − dim ker D− ≡ tr(τe−tD
2
), (8.34)

where we understand τ as

τ =
(
I 0
0 −I

)
.

For open Mn indD in general is not defined since τe−tD
2

is not of trace class. The
appropriate approach on open manifolds is relative index theory for pairs of operators
D,D′. If D,D′ are selfadjoint in the same Hilbert space and etD

2 − e−tD′
2

would be of
trace class then

ind(D,D′) := tr(τ(e−tD
2
− e−tD

′2
)) (8.35)

makes sense, but at the first glance (8.35) should depend on t.
If we restrict to Clifford bundles E ∈ CLBN,n(I,Bk) with involution τ

then we assume that the maps entering in the definition of comp1,r+1
L,diff,F (E) or

gen comp1,r+1
L,diff,rel(E) are τ -compatible, i.e. after identification of E|M\K and

f∗EE
′|M ′\K holds

[f∗E∇
h′ , τ ] = 0, [f∗·′, τ ]+ = 0. (8.36)

We call E|M\K and E′|M ′\K′ τ -compatible. Then, according to the preceding theorems,

tr(τ(e−tD
2
P − e−tD̃′

2

P ′)) (8.37)

makes sense.
Theorem 8.39 Let ((E, h,∇h) −→ (Mn, g), τ) ∈ CLBN,n(I,Bk) be a graded Clifford
bundle, k ≥ r > n+ 2.

a) If ∇′h ∈ comp1,r(∇) ⊂ C1,r
E (Bk), ∇′ τ -compatible, i.e. [∇′, τ ] = 0 then

tr(τ(e−tD
2
− e−tD

′2
))

is independent of t.
b) If E′ ∈ gen comp1,r+1

L,diff,rel(E) is τ -compatible with E, i.e. [τ ,X·′]+ = 0 for
X ∈ TM and [∇′, τ ] = 0, then

tr(τ(e−tD
2
P − e−tD̃′

2

P ′))

is independent of t.

We denote Q± = D±

Q =
(

0 Q+

Q− 0

)
, H =

(
H+ 0
0 H−

)
=
(
Q−Q+ 0

0 Q+Q−

)
= Q2, (8.38)

Q′
± = D̃′

±
,Q′,H ′ analogous, assuming (8.31) – (8.33) as before and ·′,∇′ τ -compatible.

H,H ′ form by definition a supersymmetric scattering system if the wave operators

W∓(H,H ′) := lim
t→∓∞

eitHe−tH
′
· Pac(H ′) exist and are complete (8.39)
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and

QW∓(H,H ′) = W∓(H,H ′)H ′ on DH′ ∩H′ac(H ′). (8.40)

Here Pac(H ′) denotes the projection on the absolutely continuous subspaceH′ac(H ′) ⊂ H
of H ′.

A well known sufficient criterion for forming a supersymmetric scattering system is
given by
Proposition 8.40 Assume for the graded operators Q,Q′ (= supercharges)

e−tH − e−tH
′

and

e−tHQ− e−tH
′
Q

are for t > 0 of trace class. Then they form a supersymmetric scattering system.

Corollary 8.41 Assume the hypotheses of 8.39. Then D, D̃′ form a supersymmetric scat-
tering system, respectively. In particular, the restriction of D, D′ to their absolutely con-
tinuous spectral subspaces are unitarily equivalent, respectively.

Until now we have seen that under the hypotheses of 8.39

ind(D, D̃′) = tr τ(e−tD
2
P − e−tD̃′

2

P ′) (8.41)

is a well defined number, independent of t > 0 and hence yields an invariant of the pair
(E,E′), still depending on K,K ′. Hence we should sometimes better write

ind(D, D̃′,K,K ′). (8.42)

We want to express in some good cases ind(D, D̃′,K,K ′) by other relevant numbers.
Consider the abstract setting (8.38). If inf σe(H) > 0 then indD := indD+ is well
defined.
Lemma 8.42 If e−tHP − e−tH′P ′ is of trace class for all t > 0 and inf σe(H),

inf σe(H ′) > 0 then

lim
t→∞

tr τ(e−tHP − e−tH
′
P ′) = indQ+ − indQ−. (8.43)

We infer from this
Theorem 8.43 Assume the hypotheses of 8.39 and inf σe(D2) > 0. Then inf σe(D′

2) > 0
and for each t > 0

tr τ(e−tD
2
− e−tD̃′

2

) = indD+ − indD′+. (8.44)

It would be desirable to express ind(D, D̃′,K,K ′) by geometric topological terms. In
particular, this would be nice in the case inf σe(D2) > 0. In the compact case, one sets
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indaD := indaD+ = dim kerD+ − dim ker(D+)∗ = dim kerD+ − dim kerD− =
lim
t→∞

tr τe−tD
2
. On the other hand, for t→ 0+ there exists the well known asymptotic ex-

pansion for the kernel of τe−tD
2
. Its integral at the diagonal yields the trace. If tr τe−tD

2

is independent of t (as in the compact case), we get the index theorem where the integrand
appearing in the L2-trace consists only of the t-free term of the asymptotic expansion.
Here one would like to express things in the asymptotic expansion of the heat kernel of
e−tD

′2
instead of e−tD̃′

2

. For this reason we restrict in the definition of the topologi-
cal index to the case E′ ∈ comp1,r+1

L,diff,F (E) or E′ ∈ comp1,r+1
L,diff,F,rel(E), i.e. we ad-

mit Sobolev perturbation of g,∇h, · but the fibre metric h should remain fixed. Then for
D′ = D(g′, h,∇′h, ·′) in L2((M,E), g, h) the heat kernel of e−t(U

∗D′U)2
= U∗e−tD

′2
U

equals to α(q)−
1
2W ′(t, q, p)α(p)

1
2 . At the diagonal this equals to W ′(t,m,m), i.e.

the asymptotic expansion at the diagonal of the original e−tD
′2

and the transformed to
L2((M,E), g, h) coincide.

Consider

tr τW (t,m,m) ∼
t→0+

t−
n
2 b−n2 (D,m) + · · ·+ b0(D,m) + · · · (8.45)

and

tr τW ′(t,m,m) ∼
t→0+

t−
n
2 b−n2 (D′,m) + · · ·+ b0(D′,m) + · · · . (8.46)

We state without proof
Lemma 8.44

bi(D,m)− bi(D′,m) ∈ L1, −n
2
≤ i ≤ 1. (8.47)

Define for E′ ∈ gen comp1,r+1
L,diff,F (E)

indtop(D,D′) :=
∫
M

b0(D,m)− b0(D′,m). (8.48)

According to (8.47), indtop(D,D′) is well defined.

Theorem 8.45 Assume E′ ∈ gen comp1,r+1
L,diff,F,rel(E)

a) Then

ind(D,D′,K,K ′) =
∫
K

b0(D,m)−
∫
K′

b0(D′,m) + (8.49)

+
∫

M\K=M ′\K′

b0(D,m)− b0(D′,m). (8.50)

b) If E′ ∈ gen comp1,r+1
L,diff,F (E) then

ind(D,D′) = indtop(D,D′). (8.51)
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c) If E′ ∈ gen comp1,r+1
L,diff,F (E) and inf σe(D2) > 0 then

indtop(D,D′) = indaD − indaD′. (8.52)

Proof All this follows from 8.39, the asymptotic expansion, (8.47) and the fact that theL2-
trace of a trace class integral operator equals to the integral over the trace of the kernel.

Remarks 8.46 1) If E′ ∈ gen comp1,r+1
L,diff,rel(E), g and g′, ∇h and ∇′h, · and ·′ coincide

in V = M \ L = M ′ \ L′, L ⊇ K, L′ ⊇ K ′, then we conclude from standard heat kernel
estimates that∫

V

|W (t,m,m)−W ′(t,m,m)| dm ≤ C · e− dt

and obtain

ind(D,D′, L, L′) =
∫
L

bo(D,m)−
∫
L′

b0(D′,m).

This follows immediately from 8.45 a).
2) The point here is that we admit much more general perturbations than in preceding

approaches to prove relative index theorems.
3. inf σe(D2) > 0 is an invariant of gen comp1,r+1

L,diff,F (E). If we fixE, D as reference
point in gen comp1,r+1

L,diff,F (E) then 8.45 c) enables us to calculate the analytical index for
all other D’s in the component from indD and a pure integration.

4) inf σe(D2) > 0 is satisfied e.g. if inD2 = ∇∗∇+R the operatorR satisfies outside
a compact K the condition

R ≥ κ0 · id, κ0 > 0. (8.53)

(8.53) is an invariant of gen comp1,r+1
L,diff,F (E) (with possibly different K, κ0).

It is possible that indD, indD′ are defined even if 0 ∈ σe. For the corresponding
relative index theorem we need the scattering index.

To define the scattering index and in the next section relative ζ-functions, we must
introduce the spectral shift function of Birman/Krein/Yafaev. Let A, A′ be bounded self
adjoint operators, V = A−A′ of trace class, R′(z) = (A′ − z)−1. Then the spectral shift
function

ξ(λ) = ξ(λ,A,A′) := π−1 lim
ε→0

arg det(1 + V R′(λ+ iε))

exists for a.e. λ ∈ R. ξ(λ) is real valued, ∈ L1(R) and

tr(A−A′) =
∫
R

ξ(λ) dλ, |ξ|L1 ≤ |A−A′|1.

If I(A,A′) is the smallest interval containing σ(A) ∪ σ(A′) then ξ(λ) = 0 for λ /∈
I(A,A′).



234 Partial differential equations on closed and open manifolds

Let

G = {f : R −→ R | f ∈ L1 and
∫
R

|f̂(p)|(1 + |p|) dp <∞}.

Then for ϕ ∈ G, ϕ(A)− ϕ(A′) is of trace class and

tr(ϕ(A)− ϕ(A′)) =
∫
R

ϕ′(λ)ξ(λ) dλ.

We state without proof
Lemma 8.47 Let H,H ′ ≥ 0, selfadjoint in H, e−tH − e−tH′ for t > 0 of trace class.
Then there exist a unique function ξ = ξ(λ) = ξ(λ,H,H ′) ∈ L1,loc(R) such that for > 0,
e−tλξ(λ) ∈ L1(R) and the following holds.

a) tr(e−tH − e−tH′) = −t
∞∫
0

e−tλξ(λ) dλ.

b) For every ϕ ∈ G, ϕ(H)− ϕ(H ′) is of trace class and

tr(ϕ(H)− ϕ(H ′)) =
∫
R

ϕ′(λ)ξ(λ) dλ.

c) ξ(λ) = 0 for λ < 0.

We apply this to our case E′ ∈ gen comp1,r+1
L,diff,rel(E). According to 8.38, D and

U∗i∗D′iU form a supersymmetric scattering system, H = D2, H ′ = D̃′
2
. In this case

e2πiξ(λ,H,H′) = detS(λ),

where S = (W+)∗W− =
∫
S(λ) dE′(λ) and H ′ac =

∫
λ dE′(λ).

Let Pd(D), Pd(D̃′) be the projector on the discrete subspace in H, respectively and
Pc = 1− Pd the projector onto the continuous subspace. Moreover we write

D2 =
(
H+ 0
0 H−

)
, D̃′

2
=
(
H ′

+ 0
0 H ′

−

)
.

We make the following additional assumption.

e−tD
2
Pd(D), e−tD̃

′2
Pd(D̃′) are for t > 0 of trace class. (8.54)

Then for t > 0

e−tD
2
Pc(D)− e−t(U

∗i∗D′iU)2
Pc(U∗i∗D′iU)

is of trace class and we can define

ξc(λ,H±, H ′±) := −π lim
ε→0+

arg det[1 + (e−tH
±
Pc(H±)− e−tH

′±
Pc(H ′

±))

(e−tH
′±
Pc(H ′

±)− e−λt − iε)−1]
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According to 8.47 a),

tr(e−tH
±
Pc(H±)− e−tH

′±
Pc(H ′

±)) = −t
∞∫

0

ξc(λ,H±, H ′±)e−tλ dλ.

The assumption (8.54) in particular implies that for the restriction of D and D̃′ to their
discrete subspace the analytical index is well defined and we write inda,d(D, D̃′) =
inda,d(D)− inda,d(D̃′) for it. Set

nc(λ,D, D̃′) := −ξc(λ,H+, H ′
+) + ξc(λ,H−, H ′−). (8.55)

Theorem 8.48 Assume the hypotheses of 8.39 and (8.54).
Then nc(λ,D, D̃′) = nc(D, D̃′) is constant and

ind(D, D̃′)− inda,d(D, D̃′) = nc(D, D̃′).

Proof

ind(D, D̃′) = tr τ(e−tD
2
P − e−tD̃′

2

P ′) =

= tr τe−tD
2
Pd(D)P − tr τe−tD̃

′2
Pd(D̃′)P ′ +

+ tr τ(e−tD
2
Pc(D)− e−tD̃′

2

Pc(D̃′)) =

= inda,d(D, D̃′) + t

∞∫
0

e−tλnc(λ,D, D̃′) dλ.

According to 8.39, ind(D, D̃′) is independent of t. The same holds for inda,d(D, D̃′).

Hence t
∞∫
0

e−tλnc(λ,D, D̃′) dλ is independent of t. This is possible only if

∞∫
0

e−tλnc(λ,D,D′) dλ = 1
t or nc(λ,D, D̃′) is independent of λ.

Corollary 8.49 Assume the hypotheses of 8.45 and additionally
inf σe(D2|(kerD2)⊥) > 0. Then nc(D, D̃′) = 0.

Proof In this case inda,d(D, D̃′) = indD − indD̃′ = ind(D, D̃′), hence nc = 0.
This finishes the outline of our relative index theory.

9 The continuity method for non-linear PDEs on open manifolds

The heart of the continuity method consists in the following. Given a (possibly non-linear)
PDEAu = f , a parametrized deformationAtut = ft of this equation, 0 ≤ t ≤ 1,A1 = A,
u1 = u (which has to be found), f1 = f (assumed to be given) and suppose that a solution
of A0u0 = f0 is given or at least exists. Then one tries to construct a curve {ut}0≤t≤1 of
solutions, by means of linearization and the implicit function theorem. For this, one tries
to show that S = {t ∈ [0, 1]|ut exists} is open and closed in [0,1]. More general, we
consider infinite-dimensional Banach manifoldsM1,M2 and a non-linear map

G :M1 −→M2.
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Letm2 ∈M2 be given (variation ofm2 within a class admitted), one has to findm1 ∈M1

such that G(m1) = m2. To make this more clear, we present two examples.
1) Harmonic maps
Let (Mn, g), (Mn′ , h) be open with (I) and (Bk), k ≥ r > n

2 + 1. Set M1 =
Ωr(M,N),M2 = TΩr(M,N), G :M1 = ΩrK(M,N) −→ TΩr(M,N) =M2 is the
section u −→

G
τ(u) = tension of u = trg∇du, m2 = zero’s of G, i.e. τ(u) = 0. This is a

non-linear PDE for u.
2) Teichmüller theory
(M2, g) open with (I), (B∞), M1 = Ω0,2,r(M2, g) ≡ Ωr, M2 = Ωr−2, G(u) =

∆gu + Kg + eu, m2 = 0, i.e. one has to solve the equation ∆gu + Kg + eu = 0 which
is equivalent to Keu·g = −1. Assume in the sequel that M2 locally has a vector space
structure. This is satisfied e.g. if it is a vector bundle. Then we consider w.l.o.g. the
equation G(m) = 0. If the initial task is G(m) = m2, then consider Gnew, Gnew(m) =
G(m) − m2. The parametrized picture then looks as follows. Given Gt(·) ≡ F (t, ·),
0 ≤ t ≤ 1 such that

a) there exists a solution m0, G0(m0) = F (0,m0) = 0 and
b) G1(·) = F (1, ·) = G(·), the given G.

Examples 9.1 1) Harmonic maps, e.g. M = N , h ∈ comp2,r(g), i.e. m0 = u0 = id :
(M, g) −→ (M, g), {gt}0≤t≤1, g0 = g, g1 = h, Gt(u) = F (t, u) = trg0(∇gtdu) =
τ t(u); or v : (M, g) −→ (N,h0) harmonic, {ht}0≤t≤1 in comp2,r(h), h1 = h, M1 =
compr(v) ⊂ Ωr(M,N), Gt(u) = F (t, u) = trg(∇htu) = τ t(u).

2) Teichmüller theory, (M2, g0), comp2,r(g0), Kg0 ≡ −1, g ∈ comp2,r(g0). gt =

(1 − t)g0 + tg, Gt(u) = F (t, u) = ∆gtu + Kgt + eu
!= 0, F (0, u0 = 0) = 0 =

∆g00 +Kg0 + e0 = 0.
We will now establish a theorem which is in fact convenient in many cases.
Assume in the sequel thatM1 is Riemannian with expm : TmM1 −→ M1 and with

rinj > 0. Hence for dist(m,m′) sufficiently small there exists a unique X ∈ TmM1 such
that expmX = m′.

Set now

S = {t ∈ [0, 1]|∃mt such that F (t,mt) = 0}.

Theorem 9.2 Assume the following hypothesis.
a) There exists a C > 0 such that F (t0,mt0) = 0 implies

|Fm(t0,mt0)−1(Fm(t0,mt0)− Fm(t,mt0))|op ≤ C · |t− t0|,

C independent of t0 ∈ S.
b) There exist δ1 > 0, δ2 > 0, such that for |X| < δ1, |t − t0| < δ2∣∣Fm(t0,mt0)−1(Fm(t,mt0)X − P−XF (t, expX))

∣∣ ≤ 1
8 , δi independent of t0 ∈ S.

c) There exists δ3 > 0, δ3 ≤ min{ 1
4

1
C , δ1}, such that for |t − t0| < δ3∣∣Fm(t0,mt0)−1F (t,mt0)

∣∣ ≤ 1
2δ1, δ3 independent of t0 ∈ S.

Then there exists δ4 > 0, such that [t0− δ4, t0 + δ4]∩ [0, 1] ⊆ S, δ4 independent of t0.

Corollary 9.3 Assume the hypotheses of the theorem. Then there exists a solution m1 ∈
M1 such that G(m1) = F (1,m1) = 0.

Proof of the theorem. Denote ∂F
∂m = Fm and by P−X the parallel transport

from m to m0 along the geodesic expm(−PX), X ∈ Tm0M1. Set g(t,X) =
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Fm(t0,mt0)X − P−XF (t, expX). F (t, expX) = 0 ⇐⇒ P−XF (t, expX) = 0 ⇐⇒
X = Fm(t0,mt0)−1g(t, x) ⇐⇒ TtX = X , where TtX = Fm(t,m0)−1g(t,X).
Hence F (t, expX) = 0 if and only if X is a fixed point of Tt. Set Mt0,δ1 = {X ∈
Tm0M1||X| ≤ δ1}, δ1 from b). We obtain from a) and b) that

|TtX − TtY | = |Fm(t0,mt0)−1(g(t,X)− g(t, Y ))|
= |Fm(t0,mt0)−1(Fm(t0,mt0)X − Fm(t0,mt0)Y )

−P−XF (t, expX)− PY F (t, exp y))|

≤
(
C · |t− t0|+

1
4

)
|X − Y | (9.1)

Moreover

|TtX| = |TtX − 0| ≤ |TtX − Tt0|+ |Tt0− Tt00|

≤
(
C · |t− t0|+

1
4

)
|X|+ |Fm(t0,mt0)−1F (t,mt0)|

≤
(
C · |t− t0|+

1
4

)
|X|+ 1

2
δ1. (9.2)

We obtain from (9.2) that for C · |t − t0| + 1
4 ≤

1
2 , Tt maps Mt0,δ1 into itself and from

(9.1) that Tt is contracting. Choose δ4 so that δ4 ≤ δ2, δ3 and C · δ4 + 1
4 ≤

1
2 . Then for

t ∈ [t0 − δ4, t0 + δ4] ∩ [0, 1], Tt has a unique fixed point in Mt0,δ1 .

Perhaps the assumptions of theorem 9.2 look artificial and even strange. We will
present in the next section a straightforward application of it.
Remark 9.4 It is easy to see that the reduction to the Banach fixed point theorem is equiv-
alent to the proof of the closedness of the set S. The required a-priori-estimates are the
same.

10 Teichmüller theory

The next example of non-linear PDEs on open manifolds is the equation of Teichmüller
theory. We treat it by help of the continuity method, applying all the analytic tools devel-
oped until now and other deep results of Yau. The definition and the study of Teichmüller
spaces for closed or compact surfaces with boundary or surfaces with punctures was a long
time a frequent topic in geometry and analysis. There are many approaches. First we must
mention Ahlfors in [3] and Bers in [13] which rely heavily on the theory of quasiconfor-
mal maps. A more geometric fibre bundle approach has been established by Earle and
Eells in [37], [38]. Finally, an approach which relies on methods of differential geometry
and global analysis has been presented by Fischer and Tromba in [57], [118]. What they
are doing is in a certain sense canonical and at the same time very beautiful. Let M2 be a
closed oriented surface of genus p > 1,M its set of Riemannian metrics,Mr its Sobolev
completion,Mr

−1 the submanifold of metrics g with scalar curvature K(g) ≡ −1,Pr the
completed space of positive conformal factors, Ar the completed space of almost com-
plex structures, Dr+1 as above the completed diffeomorphism group, Dr+1

0 ⊂ Dr+1 the
component of the identity. Then Fischer and Tromba define as Teichmüller space

T r(M2) := Ar/Dr+1
0
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and prove Dr+1
0 -equivariant isomorphisms

Mr/Pr ∼= Ar and Mr
−1
∼=Mr/Pr.

Hence there are three models for the Teichmüller space:

T r = Ar/Dr+1
0
∼= (Mr/Pr)/Dr+1

0
∼=Mr

−1/Dr+1
0 .

The isomorphismMr
−1
∼=Mr/Pr is known as Poincaré’s theorem.

We study Teichmüller spaces for certain open oriented surfaces M2 of infinite genus.
At the beginning it is totally unclear how to define completed spacesMr,Mr

−1, T r, Ar,
Dr+1. A second difficult obstruction is the fact that the used results, e.g. the properness
of the Dr+1-action and the used theorems of elliptic theory, are totally wrong for open
manifolds.

Nevertheless, the general uniformization theorem tells us that there are many complex
= almost complex structures and metrics of curvature−1, i.e. there should be a Teichmüller
space which “counts” these structures. The main question is how to count them, how to
define a Teichmüller space? In this section, we present a canonical and natural approach but
under certain restrictions. We restrict ourselves to open oriented surfaces of the following
kind. Start with a closed oriented surface and form the connected sum with a finite number
of half ladders ]∞1 T

2, where T 2 is the 2-torus. Now we allow the repeated addition of
a finite number of half ladders in such a manner that there arises a surface with at most
countably many ends. Surfaces of the admitted topological type can be built up by Y -pieces
which guarantees the existence of a metric g0 satisfying K(g0) ≡ −1 and rinj(g0) >
0. We exclude metric cusps, but we admit additional metric trumpets, i.e. topological
punctures. We consider the spaceMr(I,Bk), r ≤ k. According to section 3,Mr(I,Bk)
has a representation as topological sum

Mr(I,Bk) =
∑
i∈I

comp(gi)

and for k ≥ r > n
2 + 1 each component comp(gi) is a Hilbert manifold. In section 3 we

defined the completed space of positive conformal factors,

Pr(g) =
∑
i

comp(eui),

and comp(1) ⊂ Pr(g) is an invariant of comp(g). Return now to M2 of the above topo-
logical type. Denote by comp(g)−1 ⊂ comp(g) the subspace of all metrics g′ ∈ comp(g)
such that K(g′) ≡ −1. Then we would define

T r(comp(g)) := comp(g)−1/Dr+1
0

and expect

comp(g)−1
∼= comp(g)/comp(1). (10.1)

But there are simple examples of components comp(g) with comp(g)−1 = ∅. Moreover,
we don’t see any chance to prove (10.1) for arbitrary g. To have comp(g)−1 6= ∅, we
start with a metric g0 ∈ M(I,B∞) with K(g0) ≡ −1. To g0 we attach an almost com-
plex structure J0 = J(g0) := g−1

0 µ(g0), where µ(g0) is the volume form. Then we can
summarize our main results in the following
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Theorem 10.1 Suppose g0 ∈ M(I,B∞),K(g0) ≡ −1, inf σe(∆g0) > 0, r > 3.
Then comp(g0)−1 ⊂ comp(g0) ⊂ M(I,B∞) is a submanifold. There is a Dr+1

0 (g0)
-equivariant isomorphism

comp(g0)−1
∼= comp(g0)/comp(1) ∼= comp(J0). (10.2)

If we define the Teichmüller space T r(comp(g0)) of comp(g0) as

T r(comp(g0)) := comp(J0)/Dr+1
0

then

T r(comp(g0)) ∼= comp(g0)−1/Dr+1
0
∼= (comp(g0)/comp(1))/Dr+1

0 .

The first isomorphism in (10.2) is Poincaré’s theorem for the open case. Its proof
occupies the major part of this section.

Next we indicate the structure of Prm(g).
Theorem 10.2 Under multiplication Prm(g) is a Hilbert-Lie group, r ≤ m.

Sketch of proof. It follows immediately from the definition, the product and quotient
rule and the module structure theorem that Prm(g) is a group. B = {Uδ}δ > 0,

Uδ = {ϕ ∈ Prm(g)| |ϕ− 1|g,r < δ},

is a filter basis centred at 1 ∈ Prm(g) that satisfies all axioms for the neighbourhood filter
of 1 of a topological group. Hence Prm(g) is a topological group (cf. [31]). Finally, Uδ
is homeomorphic to an open ball in Ω2,r(M) for δ > 0 sufficiently small and has the
structure of a local real Lie group. Hence Prm(g) is a Hilbert-Lie group.

Assume as always k ≥ r > n
2 + 1, g ∈ M(I,Bk) and consider comprk+2(1) ⊂

Prk+2(g), comp(g) ⊂Mr(I,Bk).
Proposition 10.3 a) There is a well defined action

comprk+2(1)× comp(g)→ comp(g)
(ϕ′, g′)→ ϕ′ · g′.

b) The action is smooth, free and proper.

Corollary 10.4 a) The orbits comprk+2(1) · g′ ⊂ comp(g) are smooth submanifolds of
comp(g).

b) The quotient space comp(g)/comprk+2(1) is a smooth manifold.
c) The projection π : comp(g)→ comp(g)/comprk+2(1) is a smooth submersion and

has the structure of a principal fibre bundle.

comp(g) has as tangent space at g′ ∈ comp(g), Tg′comp(g) = Ωr(S2T ∗, g′) ∼=
Ωr(S2T ∗, g), where S2T ∗ are the symmetric 2-fold covariant tensors. There is an L2-
orthogonal splitting

Tg′comp(g) = Ωr,c(S2T ∗, g′)⊕ Ωr,T (S2T ∗, g′), (10.3)
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where

Ωr,c(S2T ∗, g′) = {h ∈ Ωr(S2T ∗, g′)|h(x) = p(x) · g′(x), p ∈ Ωr(M, g′}

and

Ωr,T (S2T ∗, g′) = {h ∈ Ωr(S2T ∗, g′) | trg′ h = 0}.

The decomposition (10.3) is given by (see [118] for further details)

h =
1
n

(trg′ h) · g′ +
(
h− 1

n
(trg′ h)g′

)
.

Hence we obtain for [g′] = comprk+2(1) · g′

Tg′′(comprk+2(1) · g′) = Ωr,c(S2T ∗, g′′)

and

T[g′]comp(g)/comprk+2(1) = Ωr,T (S2T ∗, g′).

Now we study the space of hyperbolic metrics for n = 2. We will show that for certain
classes of open surfaces, a suitable metric g0 and the space comp(g0)−1 ⊂ comp(g0) of
constant scalar curvature −1 holds

comp(g0)−1
∼= comp(g0)/comp(1)

where these spaces are manifolds and Dr0(g0)-equivariantly diffeomorphic to a cer-
tain component in the space of almost complex structures. The quotient space
comp−1(g0)/Dr0(g0) will be one of our models for the Teichmüller space.

We consider open surfaces M2. Each such surface has ends. We admit punctures as
ends. If each end is isolated, then M2 has a finite number of ends, each of them is given

by an infinite half ladder ∼=
∞
#
n=1

T 2, where T 2 is the 2-Torus or it is given by a puncture. If

M2 has an infinite number of ends then there exists at least one non-isolated end, i.e. an
end that has no neighbourhood which is not a neighbourhood of another end. This occurs
e.g. if we have repeated branchings of half ladders. In any case, such a surface can be built
up by Y -pieces or so-called trumpets which we explain now. We follow the presentation
given in [18].
Lemma 10.5 Let a, b, c be arbitrary positive real numbers. There exists a right angled
geodesic hexagon in the hyperbolic plane with pairwise non-adjacent sides of length a, b, c.

Next we paste two copies of such a hexagon together along the remaining three sides
to obtain a hyperbolic surface Y with three closed boundary geodesics of length 2a, 2b, 2c.
They determine Y up to isometry (Theorem 3.17 of [18]).

Two different Y -pieces can be glued along their boundary geodesics if they have the
same length. The same holds for two “legs” of same boundary length of one Y -piece. It
is a deep result of hyperbolic geometry that one obtains in this way smooth hyperbolic
surfaces. Moreover, we can perform gluing with an additional twisting (cf. [18]). But
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here we consider gluings without twisting, at least for our starting metric g0. As a well
known matter of fact, any topologically given open surface of the above kind can be built
up by Y -pieces and trumpets and we obtain in this way a hyperbolically metrized surface
(M2, g0). The lengths of all closed boundary geodesics can be chosen in such a manner
(and ≥ a > 0) that rinj(M2, g0) > 0, (cf. [38]) i.e. g0 ∈M(I,B∞).

Given an open surface M2 of the above type, i.e. M2 is the connected sum of a closed
surface with an infinite number of half ladders with possibly infinitely many punctures, fix
in this case a hyperbolic metric g0 ∈M(I,B∞). Later we must impose that these lengths
must grow suitably. Consider P∞(g0) =

⋂
m
Pm(g0), Pr∞(g0) defined by the induced uni-

form structure. It is a very simple fact that comprk(1, g0) ⊂ Prk(g0) and compr∞(1, g0) ⊂
Pr∞(g0) coincide, k ≥ 1. We fix r > 3 and write comp(1) = compr(1, g0). Con-
sider comp(g0) ⊂ Mr(I,B∞). As we already know, comp(1) acts on comp(g0) and
comp(g0)/comp(1) is a Hilbert manifold. Let comp(g0)−1 ⊂ comp(g0) be the subspace
of all metrics g ∈ comp(g0) such that the scalar curvature K(g) equals −1. Since we
assume r > 3 = 2

2 + 2, g is at least of class C2 and K(g) is well defined. Usually, K(g)
denotes the sectional curvature. We use it for scalar curvature (which is twice the sectional
curvature) because of notational convenience.

We wish to show that comp(g0)−1 ⊂ comp(g0) ⊂ Mr(I,B∞) is a smooth sub-
manifold of comp(g0) which is diffeomorphic to comp(g0)/comp(1). This is a rather
deep fact which requires a series of preliminaries and is valid only under an additional
spectral assumption. Let g ∈ comp(g0). Then ∆g maps Ωr = Ω2,r(M,∇g0 , g0) into
Ωr−2 ⊂ L2(M, g0).
Lemma 10.6 ∆g + 1 is surjective.

Proof Consider ∆g + 1 with domain Ωr ⊂ Ωr−2. Then the closure of (Ωr, | |r−2)
with respect to | · |r−2 + |(∆g + 1) · |r−2 is just Ωr, i.e. ∆g + 1 is a closed operator
in the Hilbert space Ωr−2. Moreover, |(∆g + 1)ϕ|r−2 ≥ c · |ϕ|r−2, c = 1, ϕ ∈ Ωr.
Hence (∆g + 1)ϕi → ψ gives ϕi Cauchy and ϕi → ϕ in Ωr−2. ∆g + 1 is closed, hence
(∆g + 1)ϕ = ψ, im(∆g + 1) closed. Finally, the orthogonal complement of im(∆g + 1)
in Ωr−2 is {0} since the adjoint (in Ωr−2) operator to ∆g + 1 has no kernel.

Let h ∈ Tg comp(g0) = Ωr(S2T ∗, g). For h the divergence δgh is defined by
(δgh)j = ∇khjk = gik∇gi hjk. For ω = ωidx

i a 1-form and Xω = ωi ∂
∂xi the corre-

sponding vector field, the divergence δw is defined by δgω := δgXω = 1√
g
∂
∂xi (ω

i√g).
Hence for h ∈ Ωr(S2T ∗, g) the expression δgδgh is well defined. As we already men-
tioned, for r > 3 = 2

2 + 2, g ∈ comp(g0) is at least of class C2 and the scalar curvature
K(g) is well defined.
Lemma 10.7 K(g)− (−1) = K(g)−K(g0) ∈ Ωr−2.

This follows immediately from the topology in comp(g0) and the definition of K(g).

Consider the C∞-map

ψ : comp(g0)→ Ωr−2(M, g0), g → K(g)− (−1).

Then comp(g0)−1 = ψ−1(0).
Theorem 10.8 comp(g0)−1 ⊂ comp(g0) is a smooth submanifold.

Proof It suffices to show, that 0 is a regular value for ψ, i.e. if K(g) = −1 for some
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g then Dψ|g : Tg comp(g0) → Ωr−2(M, g0) is surjective. Hence we have to calculate
Dψ|g(h), h ∈ Tg comp(g0) = Ωr(S2T ∗, g). This has been done in [118],

Dψ|g(h) = ∆g(trgh) + δgδgh+
1
2
trgh. (10.4)

Dψ|g is already surjective if the restriction of Dψ to h of the kind h = λ · g, λ ∈ Ωr(M),
is surjective. Then (10.4) becomes

Dψ|g(λ · g) = ∆gλ+ λ = (∆g + 1)λ,

but ∆g + 1 is surjective according to 10.6.
Next we prepare the proof of Poincaré’s theorem which, roughly spoken, asserts

comp(g0)−1
∼= comp(g0)/comp(1). Denote by σe(∆) the essential spectrum of ∆. Here

we omit the bar in the unique self-adjoint extension ∆̄ which equals the closure. By section
4, we have
Proposition 10.9 σe(∆g0) is an invariant of comp(g0), i.e. for g ∈ comp(g0),

σe(∆g) = σe(∆g0).

Lemma 10.10 Assume inf σe(∆g0) > 0. Then inf σ(∆g) > 0 for all g ∈ comp(g0),
where σ denotes the spectrum.

Proof According to 10.9, inf σe(∆g0) = inf σe(∆g). From g ∈ M(I,B∞), g ∈
comp(g0) ⊂ Mr(I,B∞), r > 3 follows that g satisfies (I) and (B0) which implies
vol (M2, g) = ∞. Hence λ = 0 cannot be an eigenvalue. All other spectral values
between 0 and inf σe(∆g) belong to the purely discrete point spectrum σpd(∆g), i.e.
inf σ(∆g) > 0.

Now we state our main theorem, which is our version of Poincaré’s lemma.
Theorem 10.11 Assume (M2, g0) with g0 smooth, K(g0) ≡ −1,

rinj(M2, g0) > 0, infσe(∆g0) > 0. Let g ∈ comp(g0) ⊂ Mr(I,B∞), r > 3. Then
there exists a unique % ∈ comp(1) ⊂ Pr∞(g0) such that K(% · g) ≡ −1.

Proof Let % = eu. For the existence we have to solve the PDE

∆gu+K(g) + eu = 0. (10.5)

We seek for a solution u ∈ Ωr(M, g0). u ∈ Ωr(M, g0), r > 3 imply eu − 1 ∈ Ωr as we
will see below. (10.5) has a solution according to the general uniformization theorem. But
this theorem does not provide u ∈ Ωr. Therefore we have to sharpen our considerations.
The existence will be established by the implicit function theorem and a version of the
continuity method. Consider gt = (1− t)g0 + tg = g0 + t(g− g0) = g0 + th ∈ comp(g0)
and the map

F : [0, 1]× Ωr → Ωr−2,

(t, u)→ F (t, u) = ∆gtu+K(gt) + eu = ∆gtu+ (K(gt)− (−1)) + eu − 1.

We want to show that there exists a unique u1 ∈ Ωr(M, g0) such that F (1, u1) = 0. For
this we consider the set

S = {t ∈ [0, 1]| There exists ut ∈ Ωr such that F (t, ut) = 0}
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and we want to show S = [0, 1]. We start with S 6= ∅. For t = 0, gt = g0,K(g0) = −1
and u0 ≡ 0 satisfies (10.5). Moreover,

Fu(0, 0) = D2F |(0,0) = ∆g0 + 1

is bijective between Ωr and Ωr−2, as we have already seen. Hence there exist δ > 0, ε > 0
such that for t ∈]0, δ[ there exists a unique ut ∈ Uε(0) ⊂ Ωr with

F (t, ut) = 0.

By the same consideration we can show that S is open in [0, 1]. To conclude S = [0, 1] we
need to show that S is closed. The canonical procedure to prove this would be to prove

(utν )ν is a Cauchy sequence in Ωr, utν → ut0 , (10.6)
∆gt0

ut0 +K(gt0) ∈ eut0 = 0 (10.7)

for any sequence t1 < t2 · · · ∈ S, tν −→ t0.
We prefer a slightly other version of this argument.

Proposition 10.12 There exists a constant δ > 0 independent of t0 such that t0 ∈ S
implies ]t− δ0, t0 + δ[∩[0, 1] ⊂ S.

We will see later that the proof of 10.12 is equivalent to that of (10.6) and (10.7). The
proof of 10.12 is based on careful estimates in the implicit function theorem to which we
now turn our attention. Roughly speaking, the proof goes as follows.

Let t0 ∈ S, ut0 ∈ Ωr,

F (t0, ut0) = ∆gt0
ut0 +K(gt0 ) + eut0 = 0.

Set g(t, u) := Fu(t0, ut0)u− F (t, u). Then F (t, u) = 0 is equivalent to

u = Fu(t0, ut0)−1g(t, u). (10.8)

If we define Ttu := Fu(t0, ut0)−1g(t, u), then we are done if we can find for any t0 ∈ S
a complete metric subspace Mt0,δ1 ⊂ Ωr(M, g0) such that

Tt : Mt0,δ1 →Mt0,δ1 (10.9)

and

Tt is contracting (10.10)

for all t ∈]t0 − δ, t0 + δ[∩[0, 1], δ independent of t0. Indeed, in this case Tt would have a
unique fixed point ut solving F (t, ut) = 0.

We now prepare the construction of Mt0,δ1 and the proof of (10.9), (10.10) by a series
of estimates. First we apply the mean value theorem. From gu(t, v) = Fu(t0, ut0) −
Fu(t, v) follows

|g(t, u)− g(t, v)|r−2 ≤ sup
0<ϑ<1

|gu(t, v + ϑ(u− v))|r−2 · |u− v|r,

|Ttu− Ttv|r ≤ |(∆gt0
+ eut0 )−1|r−2,r ·
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· sup
0<ϑ<1

|(∆gt0
−∆gt) + ((eut0 − ev+ϑ(u−v))·)|r,r−2 · |u− v|r,

where | |i,j denotes the operator norm Ωi(M, g0)→ Ωj(M, g0). We estimate

|(∆gt0
+ (eut0 ·))−1|r−2,r · |∆gt0

−∆gt |r,r−2 (10.11)

and

|(∆gt0
+ (eut0 ·))−1(eut0 ·)|r−2,r · |(1− ev−ut0+ϑ(u−ut0−(v−ut0 ))) · |r,r−2 (10.12)

and start with (10.11). In the sequel, the same letters for constants in different inequalities
can denote different constants. The key property in all following considerations is the
Lipschitz continuity of |∆gt |i,j .
Lemma 10.13 Assume g0, g, t, t0, r as above. Then there exists a constant C =
C(g0, r, |g − g0|g0,r) > 0 such that

|∆gt0
−∆gt |r,r−2 ≤ C · |t0 − t|. (10.13)

The proof is really formidable and we refer to [48] for it.
Now we continue to estimate (10.11) and have to estimate

|(∆gt0
+ (eut0 ·))−1|r−2,r

First we recall that ∆gt is self-adjoint on Ω2(M,∆gt , gt) = Ω2(M,∆g0 , g0) ⊂ L2(M) =
Ω0(M). For u ∈ Ωr, r > 3, the operator v → eu · v is symmetric and bounded on L2.
Hence ∆gt + eu is self-adjoint.
Lemma 10.14 There exists a constant c > 0 such that inf σ(∆gt) ≥ c, 0 ≤ t ≤ 1.

Proof Assume the converse. Then there exists a convergent sequence ti → t∗ in [0, 1] such
that λmin(∆gti

) → 0. Here λmin(∆gti
) is the minimal spectral value of ∆gti

. It is > 0
and either equal to inf σe(∆gt) or an isolated eigenvalue of finite multiplicity. According
to 10.13, ∆gti

→ ∆gt∗ in the generalized sense of [81], IV, § 2.6. Then, according to
[81], V, § 4, remark 4.9, λmin(∆gti

) → λmin(∆gt∗ ), i.e. necessary λmin(∆gt∗ ) = 0, a
contradiction.

Corollary 10.15 For arbitrary t ∈ [0, 1], u ∈ Ωr

inf σ(∆gt + eu) ≥ c,

∆gt + eu =
∫ ∞
c

λdEλ(t, u),

(∆gt + eu)−1 =
∫ ∞
c

λ−1dEλ(t, u),

(∆gt + eu)−1 is a bounded operator on L2 and, according to [81], p. 357, (5.17), the
operator norm of (∆gt + eu)−1 is ≤ 1

c .

We want to prove more and to estimate

((∆gt + eu)−1|r−2,r. (10.14)

First we have to assure that (10.14) makes sense.
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Lemma 10.16 For u ∈ Ωr, r > 3, the map v → eu · v is a bounded map Ωi → Ωi, i ≤ r,
with

|eu|i,i ≤ C(u, i) ≤ C(i) · sup eu · |u|r. (10.15)

Corollary 10.17 The Sobolev spaces based on the operators ∆gt and ∆gt + eu are equiv-
alent for i ≤ r,

Ωi(M2),∆gs , gs) ∼= Ωi(M2,∆g,t + eu), i ≤ r. (10.16)

Remark 10.18 The heart of the estimate for (10.14) consists in proving that the constants
arising in (10.15), (10.16) can be chosen independently of t and u if u solves

F (t, u) ≡ ∆gtu+K(gt) + eu = 0.

Consider Ω2,r = Ωr ⊂ Ω2,2 = Ω2 ⊂ Ω2,0 = Ω0 = L2,Ωr−2 ⊂ L2 and assume r
even.
Lemma 10.19 ∆gt+e

u : Ω2 → Ω0 = L2 induces a bijective morphism between Ωr ⊂ Ω2

and Ωr−2 ⊂ Ω0.

Proof Surely, ∆gt + eu maps Ωr ⊂ Ω2 into Ωr−2 ⊂ Ω0 = L2. This map is injective
according to 10.14. It is surjective: Let v ∈ Ωr−2 ⊂ Ω0. Then (∆gt + eu)−1v ∈ Ω2,
(∆gt + eu)i((∆gt + eu)−1v) = (∆ + eu)i−1v is square integrable i ≤ r

2 . The assertion
now follows from 10.17.

Now we state our main
Proposition 10.20 Assume r > 3 even. Then there exists a constant C = C(g0, g) > 0,
independent of t, such that

|(∆gt + eut)−1|r−2,r ≤ C (10.17)

for any solution ut ∈ Ωr = Ωr(M, g0) of ∆gtut +K(gt) + eut = 0.

We omit the rather long and complicated proof which also uses Yau’s general Schwarz
lemma and refer to [43], [48] for details.
Corollary 10.21 There exists a constant C = C(g, g0) such that

|(∆gt0
+ (eut0 ·))−1|r−2,r · |∆gt0

−∆gt |r,r−2 ≤ C · |t− t0|. (10.18)

The estimate of the first factor of (10.12) is already done,

|(∆gt0
+ (eut0 ·))−1(eut0 ·)|r−2,r ≤ |(∆gt0

+ (eut0 ·))−1|r−2,r · |(eut0 ·)|r−2,r−2.

According to (10.17),

|(∆gt0
+ (eut0 ·))−1|r−2,2 ≤ C1. (10.19)
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The proof of 10.20 contains the estimates |∆ju|0 ≤ Dj , 0 ≤ j ≤ r
2 ,

|(eut0 ·)|r−2,r−2 ≤ C2, (10.20)

i.e.

|(∆gt0
+ (eut0 ·))−1(eut0 ·)|r−2,r ≤ C3, (10.21)

C3 = C3(g, g0) independent of t. The final estimate concerns

|(1− ev−ut0+ϑ(u−ut0−(v−ut0 ))) · |r,r−2, (10.22)

where as usual the point indicates that the corresponding expression acts by multiplication.
We write

1− ev−ut0+ϑ(u−ut0−(v−ut0 )) = −
∞∑
i=1

[v − ut0 + ϑ(u− ut0 − (v − ut0)]i/i!

As above, this series converges in Ωr and for |v−ut0 +ϑ(u−ut0−(v−ut0))|r sufficiently
small |

∑∞
i=1[v − ut0 + ϑ(u− ut0 − (v − ut0))]i/i!|r becomes arbitrarily small.

For any f ∈ Ωr, the operator norm of (f ·) : Ωr → Ωr−2, (f ·)w = f · w, can be
estimated by C(r) · |f |r. This yields
Lemma 10.22 For any ε1 > 0 there exists δ1 > 0 such that

|(1− ev−ut0+ϑ(u−ut0−(v−ut0 ))) · |r,r−2 ≤ ε1

for all u, v with |u− ut0 |r, |v − ut0 |r ≤ δ1.

Proof Given ε1 > 0, there exists δ′1 such that for |v−ut0 +ϑ(u−ut0 − (v−ut0))|r < δ′1

C(r) · |
∞∑
i=1

[v − ut0 + ϑ(u− ut0 − (v − ut0))]i/i!|r ≤ ε1.

Set δ1 = δ′1/4. Then

|v − ut0 + ϑ(u− ut0 − (v − ut0))|r < |v − ut0 |r + |u− ut0 |r + |v − ut0 |r =
= |u− ut0 |r + 2|v − ut0 |r < 2(|u− ut0 |r + |v − ut0 |r) ≤ 4δ1 = δ′1.

Corollary 10.23 There exists δ1 > 0 such that |u− ut0 |r ≤ δ1, |v − ut0 |r ≤ δ1 implies

|(∆ + (eut0 ·))−1(eut0 · |r−2,r · |(1− ev−ut0+ϑ(u−ut0−(v−ut0 )) · |r,r−2 ≤
1
4
. (10.23)

Proof Set in 10.22 ε1 = 1
4 ·

1
C3

, C3 from (10.21).

Corollary 10.24 There exists δ1 > 0 such that for |u− ut0 |r ≤ δ1, |v − ut0 |r ≤ δ1

|Ttu− Ttv|r ≤ (C · |t− t0|+
1
4

)|u− v|r, (10.24)

where C comes from lemma 10.13.
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Proof This follows immediately from (10.11), (10.12), (10.13), (10.23).
If we choose |t0 − t| sufficiently small, then the map Tt would be contractive. But this

does not make sense since until now we did not define a complete metric space on which
Tt acts. This will be the next and last step in our approach. But we will use the inequality
(10.24) in this step.
Proposition 10.25 Suppose ut0 ∈ Ωr, r > 3,∆gt0

ut0 + K(gt0) + eut0 = 0. There exist
δ, δ1 > 0 independent of t0 such that Tt maps Mt0,δ1 = {u ∈ Ωr| |u − ut0 |r ≤ δ1} into
itself for |t− t0| ≤ δ. Moreover Tt is contracting.

Proof We start estimating Ttu− ut0 :

|Ttu− ut0 |r = |Ttu− Tt0ut0 |r ≤ |Ttu− Ttut0 |r + |Ttut0 − Tt0ut0 |r. (10.25)

For |u− ut0 |r ≤ δ1, δ1,

|Ttu− Ttut0 |r ≤ (C · |t− t0|+
1
4

)|u− ut0 |r.

Hence for |t− t0| ≤ δ′, |u− ut0 |r ≤ δ1

(C · |t− t0|+
1
4

) ≤ 1
2

and

|Ttu− Ttut0 |r ≤
1
2
|u− ut0 |r ≤

1
2
δ1. (10.26)

It remains to estimate |Ttut0 − Tt0ut0 |r. But by an easy calculation

Ttut0 − Tt0ut0 = −(∆gt0
+ (eut0 ·))−1((∆gt −∆gt0)ut0 +K(gt)−K(gt0)).

We are done if for |t− t0| ≤ δ′′

|(∆gt0
+ (eut0 ·))−1(∆gt0

−∆gt)ut0 |r < δ1/4. (10.27)

|(∆gt0
+ (eut0 ·))−1(K(gt0)−K(gt))|r < δ1/4. (10.28)

The existence of such a δ′′ follows immediately from 10.13, 10.20, (10.27) and from 10.20
for (10.28). Let now δ = min{δ′, δ′′}. Then we infer from (10.25)-(10.28)

|Ttu− ut0 |r ≤ δ1,

i.e. Tt : Mt0,δ1 →Mt0,δ1 . Tt is contractive according to (10.24) since for |t− t0| ≤ δ

(C · |t− t0|+
1
4

) ≤ 1
2
.

This finishes the existence proof of theorem 10.11 and yields uniqueness in a moving ball
Mt,δ1 , 0 ≤ t ≤ 1. We prove now the uniqueness in all of Ωr = Ω0,2,r.

Fix x0 ∈ M2 and denote by d(x) = d(x, x0) the Riemannian distance. Let u, v ∈
Ωr, r > 3, be solutions of

∆gu+K(g) + eu = 0.
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We obtain u, v, u− v bounded, C2 and

∆g(u− v) = −(eu − ev).

There are two cases.
1) u − v achieves its supremum in U1(x0) = {x|d(x) ≤ 1}. e.g. in x1. Then

∆(u − v)(x1) ≥ 0,−(eu(x1) − ev(x1)) ≥ 0, eu(x1) ≤ ev(x1), (u − v)(x1) ≤ 0 at the
supreme point x1, hence (u− v)(x) ≤ 0 everywhere, u(x) ≤ v(x).

2) Or we apply Yau’s generalized maximum principle: f ∈ C2,

lim sup
d(x)→∞

f(x)− f(x0)
d(x)

≤ 0

and

lim
d(x)→∞
f(x)≥f(x0)

K(x)(f(x)− f(x0))
d(x)

= 0.

Then there are points (xk)k ⊂ M such that lim
k→∞

f(xk) = sup f, lim
k→∞

∇ f(xk) = 0 and

lim sup
k→∞

∆ f(xk) ≥ 0.

In our case f = u− v. Then we have (xk)k such that lim
k→∞

(u− v)(xk) = sup(u− v),

lim
k→∞

∇(u − v)(xk) = 0, lim sup ∆(u − v)(xk) ≥ 0, hence lim sup(ev − eu)(xk) ≥ 0,

lim sup(v − u)(xk) ≥ 0, lim sup(u− v)(xk) ≤ 0, sup(u− v) ≤ 0, u ≤ v everywhere.
Quite similar v ≤ u, i.e. u = v. This finishes uniqueness and the proof of theorem

10.11.
We see, the proof of 10.11 exactly follows the scheme presented in the preceding sec-

tion.
Remark 10.26 A seemingly more direct approach proving S = [0, 1] would amount to
prove the following assertion. Assume t1 < t2 < . . . < t0, tν → t0, ∆gt0

utv + eutν = 0.
Then

a) (utν )ν is a Cauchy sequence with respect to | |r.
b) utν → ut0
c) ∆gt0

ut0 +K(gt0) + eut0 = 0.
But writing down a straightforward approach proving a), c) leads immediately to the

key estimates performed by us.

11 Harmonic maps

Concerning harmonic maps, we have in view the treatment of the corresponding PDE, not
the very interesting class of geometric theorems and examples. Many of them are contained
in the contribution of J. Wood. Eells and Sampson presented in [42] a particular interesting
and beautiful method to solve non-linear PDE, namely to connect this PDE with a heat
flow, a non-linear evolution equation. This method, now is often used, e.g. in gauge theory
and as Ricci flow which we will discuss in section 15.

Let (Mn, g), (Nn′ , h) be Riemannian manifolds, Mn closed. The case Mn open
will be completely discussed in the forthcoming paper [50]. If f ∈ C∞(M,N) then
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df ∈ Γ(T ∗M⊗f∗TN) ≡ C∞(T ∗M⊗f∗TN). ∇g and f∗∇h induce metric connections
∇ in all tensor bundles T qs (M) ⊗ f∗Tuv (N). Therefore ∇mdf is well defined. Let us
introduce the energy density of f ,

e(f) :=
1
2
|df |T∗M⊗f∗TN ,

and the energy E(f),

E(f) :=
∫
M

e(f) dvolx(g).

As well known, the Euler-Lagrange equations for E(·) are

τ(f) := trg∇df = 0. (11.1)

f is called harmonic if τ(f) = 0. Examples are harmonic functions, geodesics and mini-
mal submanifolds.

Now, the most interesting question is the question for the existence. There are many
answers. We present one of them. The criterion for our choice was the proof of the corre-
sponding existence theorem which relies on the heat flow and so exhibits another specific
method to solve non-linear PDEs on manifolds. This proof goes back to Eells/Sampson in
[42].
Theorem 11.1 Suppose (Mn, g), (Nn′ , h) closed, (Nn′ , h) non-positively curved. Then
any continous f0 : M −→ N is homotopic to a harmonic map.

The proof will be performed by means of the heat flow and the idea of this goes back
to Eells/Sampson. Consider the initial value problem

∂

∂t
f(x, t) = τ(f(x, )), (11.2)

f(x, 0) = f0.

The proof of theorem 11.1 consists of 5 steps,
1) the existence of f(x, t) for small t,
2) the existence of f(x, t) for all t,
3) the existence of lim

t→∞
f(x, t) = f(x,∞) = f(x)

4) f(x) is harmonic,
5) f(x) is homotopic to f0.
In the sequel, we always suppose that (N,h) has non-negative curvature. We start with

the first step. Let x ∈ M , f(x) = y ∈ Nn′ , x1, . . . , xn coordinates about x, y1, . . . , yn
′

coordinates about y. First we assume f0 ∈ C2+α(M,N) ≡ b,2+αΩ(M,N), where the
latter can be defined quite analogous to Ωp,r(M,N) in section 3.

In local coordinates (11.2) looks(
∂

∂t
f(x, t)− τf(x, t)

)i
=

∂

∂t
f i −

(
gαβ

∂2f i

∂xα∂xβ
− gαβΓγαβ(g)

∂f i

∂xγ
+ gαβΓijk(h)

∂f j

∂xα
∂fk

∂xβ

)
= 0.

(11.3)
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Taking the linearization of (11.3), we see immediately that (11.2) is a quasi-linear parabolic
system. The linearization has a solution by standard theorems, the implicit function theo-
rem in the Banach category then yields a solution f(x, t) of (11.2) with f(x, 0) = f0 for
0 ≤ t ≤ ε. The same argument yields that

S = {T ∈]0,∞[| (11.2) has a solution for 0 ≤ t ≤ T}

is open.
To accomplish step two, we would be done if the set S would be closed. This requires

a series of lemmas.
Lemma 11.2 Suppose u(x, t) ∈ C2, u ≥ 0

−∆u− ∂

∂t
u ≥ −cu on [0, T ]

and

d

dt

∫
M

u(x) dvolx(g) ≤ 0,

where −∆ = −∇∗∇ ≤ 0. Let 0 < R < min{rinj(M), π2Λ}, Λ =
(max |sectional curvature|) 1

2 . Then

u(x, t) ≤ c(TR−n−2 + T−
n
2 )
∫
M

u(y, 0) dvolx(g).

Furthermore, for any t0 < T , in particular t0 = 0,

u(x, t) ≤ cR−2 sup
y∈M

u(y, t0).

We refer to [80], p. 82–86, for the proof.
Lemma 11.3 If f(x, t) is a solution of (11.2), then

−∆e(f)− ∂

∂t
e(f) = |∇df |2+

1
2
〈dfRicM (eα), dfeα〉−〈RNm(dfeα, dfeβ)dfeβ , dfe− α〉,

where e1, . . . , en ∈ TxM is an orthonormal basis.

This is a simple calculation.
Corollary 11.4 −∆e(f)− ∂

∂te(f) ≥ −ce(f).

Lemma 11.5 If f(x, t) is a solution of (11.2), then E(f(·, t)) is a decreasing function of
t.

Proof
d

dt
E(f(·, t)) =

d

dt

1
2

∫
(df, df) dvolx(g) =

∫ (
∇ ∂

∂t
df, df

)
dvolx(g) =

=
∫ (

d
∂

∂t
f, df

)
dvolx(g) = −

∫ (
∂

∂t
f, τ(f)

)
dvolx(g) = −

∫ ∣∣∣∣ ∂∂tf
∣∣∣∣2 dvolx(g)
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Lemma 11.6 Let f be a solution of (11.2) on [0, T ] and 0 < R < min
{
rinj(M), π1Λ

}
.

Then, for all x ∈M

e(f) ≤ c(TR−n−2 + T−
n
2 )
∫
M

e(f)(y, 0) dvoly(g)

and for every t0 < T , in particular t0 = 0,

e(f)(x, T ) ≤ cR−2 sup
y∈M

e(f)(y, t0).

Proof Set u(x, t) = e(f)(x, t). Then 11.4, 11.5 assure the assumptions of lemma 11.2,
apply 11.2.

We cite a lemma of Hartman (cf. [75]).
Lemma 11.7 Let f(x, t, s) be a smooth family of solutions of (11.2) depending on a pa-
rameter s and having initial values f(x, 0, s) = g(x, s), 0 ≤ s ≤ s0. Then for every
s ∈ [0, s0] there holds

sup
x∈M

gijf(x, t, s)
(
∂f i

∂s
· ∂f

j

∂s

)
is non-increasing in t. Hence also

sup
x∈M,s∈[0,s0]

(
gij
∂f i

∂s
· ∂f

j

∂s

)
is non-increasing in t.

We refer to [80] for the proof.
Corollary 11.8 Suppose the hypotheses of 11.6. Then

sup
x∈M

dist(f(x, t, 0), f(x, t, 1))

is non-increasing in t for t ∈ [0, T ].
Lemma 11.9 Suppose the hypotheses of 11.6. Then for all t ∈ [0, T [ and x ∈M∣∣∣∣∂f(x, t)

∂t

∣∣∣∣ ≤ sup
x∈M

∣∣∣∣ ∂∂tf(x, 0)
∣∣∣∣ .

Proof Set f(x, t, s) = f(x, t+ s) and apply 11.7 at s = 0.

Lemma 11.10 Suppose the hypothesis of 11.6. Then for every α ∈]0, 1[

|f(·, t)|C2+2(M,N) +
∣∣∣∣∂f∂t (·, t)

∣∣∣∣
Cα(M,N)

≤ c, (11.4)

where c depends on α, the initial value g(·) = f(·, 0) and the geometry of M and N .
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Proof (11.2) means in local coordinates

gαβ
∂2f i

∂xα∂xβ
− gαβΓ(g)γαβ

∂f i

∂xγ
= gαβΓ(h)ijk

∂f j

∂xα
∂fk

∂xβ
+
∂f i

∂t
. (11.5)

According to 11.6 – 11.9, for a fixed neighbourhood B%(x) × [t0, t1], f(x, t) will stay
in the given chart and, moreover, the right hand side of (11.5) is bounded. Hence
|f(·, t)|C1+α(M,N) is bounded by elliptic regularity. This implies that the right hand side
of

∂f i

∂t
− gαβ ∂2f i

∂xα∂xβ
+ gαβΓ(g)γαβ

∂f i

∂xγ
= gαβ

∂f j

∂xα
∂fk

∂xβ

is bounded in Cα(M,N) which finally yields (11.4) (cf. theorem 2.2.1 in [80]).

Proposition 11.11 The equation (11.2) has a solution for all t ∈ [0,∞[.
Proof We have seen already that the set S above is non-empty and open. Lemma 11.10
implies the closedness.

This finishes step two.
Lemma 11.12 There exists a sequence tn −→∞ such that lim

n→∞
∂f
∂t (x, tn) = 0 uniformly

in x ∈M .

Proof E(f(·, t)) is always non-negative,
∣∣∣∂f∂t ∣∣∣ has a time independent Cα-bound and ac-

cording to the proof of 11.5,

∂

∂t
E(f(·, t)) = −

∫
M

∣∣∣∣∂f(x, t)
∂t

∣∣∣∣2 dvolx(g).

The C2+α-bounds for f(·, t) in lemma 11.10 imply that (possibly passing to a subse-
quence) f(·, tn) converges for tn → ∞ uniformly to a harmonic map. Put in corollary
11.8

f0(x, 0) = f(x, 0, 0) = f(x, tn),
f0(x, s0) = f(x, 0, ξ0) = f(x).

We infer from the uniform convergence that some f(·, tn) are homotopic to f . The same
holds for all t since f(x, t) is continuous in t. f(x) is harmonic and a time independent
solution of (11.2), hence f(x, t, s0) = f(x) for all t. We apply corollary 11.8 and obtain

dist(f(x, tn + t), f(x)) ≤ d(f(x, tn), f(x)) for all t ≥ 0.

Hence choice of a subsequence is not necessary and lim
t→∞

f(x, t) = f(x) uniformly. We

have accomplished the steps 3 – 5 in the case f0 ∈ C2+α. If f0 is only continuous, that
it is a very simple standard approximation argument that f0 is homotopic to a C2+α-map.
This finishes the proof of theorem 11.1.

Our goal in this section was to present a striking example for the heat flow method. By
the same method one can attack to Yang-Mills equation.
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12 Non-linear field theories

In this section, we present quite another approach to certain non-linear field equation. We
consider those field theories whose field equations are essentially expressed in geometric
notions. Then one searches for those geometries which satisfy the field equations and
singles out the others. In the case of a system, one does this step by step, equation by
equation. Even the underlying manifold (class of manifolds) is not fixed.

This approach has been essentially and very successfully elaborated by Friedrich, Agri-
cola, Ivanov, Kim and others. We refer to [1], [2], [60], [61]. Historically, this kind of ap-
proach is not new. It was a striking break-through as the gauge potential of gauge theory (of
physicists) has been recognized has a connection in a fibre bundle. Then mathematicians
were able to apply the powerful tools of differential geometry. Another similar example
was 1994 Seiberg-Witten theory which we cannot discuss here for reasons of space. We
refer to [51], [85], [88]. In the sequel, we will briefly discuss the Einstein-Dirac equation
on Riemannian spin manifolds and the type II B string theory.

Let (Mn, g) be a Riemannian spin manifold, R(g) its scalar curvature, D = Dg the
Dirac operator acting on spinar fields ψ, and let ε = ±1 and λ ∈ R be two real parameters.
Consider for an arbitrary open, bounded set U the Lagrange functional

W (g, ψ) :=
∫
U

(R(g) + ε{λ(ψ,ψ)− (Dgψ,ψ)}) dvolx(g).

The Euler-Lagrange equations are the Dirac equation

Dgψ = λψ (12.1)

and the Einstein equation

Ric (g)− 1
2
R(g) =

ε

4
T(g,ψ), (12.2)

where the energy-momentum tensor T(g,ψ) is given by

T(g,ψ)(X,Y ) := (X · ∇gY ψ + Y · ∇gXψ,ψ).

R(g) and λ are related by

R = ∓ λ

n− 2
|ψ|2.

ψ is called an Einstein spinor for the eigenvalue λ. By rescaling the spinor field we can
assume that the parameter ε equals±1, i.e. we have finally to consider the nonlinear system

Dψ = λψ, Ric (g)− 1
2
R(g) = ±1

4
Tψ.

Example 12.1 Suppose (Mn, g) carries a Killing spinor ϕ of positive (resp. nega-
tive) Killing number b ∈ R, i.e. ∇Xψ = bX · ψ for all X ∈ TM . Then ψ :=√

4(n− 1)(n− 2)|b|ϕ/|ϕ| is a positive (resp. negative) Einstein spinor for the eigenvalue
λ = −nb. In this case (Mn, g) is an Einstein manifold with Ric = 4(n− 1)b2g.
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Remark 12.2 For any Riemannian surface (M2, g) we have Ric− 1
2Sg = 0. Consequently,

we always assume that the dimension of the manifold is at least 3.
In the sequel, we follow [61].

Definition. Let (Mn, g) bea Riemannian spin manifold whose scalar curvature S does
not vanish at any point. A non-trivial spinor field ψ will be called a weak Killing spinor
(WK-spinor) with WK-number λ ∈ R if ψ is a solution of the first order differential equa-
tion

∇Xψ =
n

2(n− 1)R
dR(X)·ψ+

2λ
(n− 2)R

Ric (X)·ψ− λ

n− 2
X ·ψ+

1
2(n− 1)R

X ·dS·ψ.

Remark 12.3 The notion of a WK-spinor is meaningful even in case that the WK-number λ
is a complex number. In this section we consider only the case that λ 6= 0 is real. However,
the examples of Riemannian spaces Mn with imaginary Killing spinors (see [61]) show
that Riemannian manifolds admitting WK-spinors with imaginary Killing numbers exist.

In case (Mn, g) is Einstein, the above equation reduces to ∇Xψ = −λnX · ψ and
coincides with the Killing equation. Together with the following theorem, this justifies the
name; however, notice that the vector field Vψ(X) =

√
−1〈X · ψ,ψ〉 associated to a WK-

spinor is in general not a Killing vector field. Using the formulaRψ = −
n∑
u=1

Eu·Ric (Eu)·

ψ, one checks easily that every WK-spinor of WK-number λ is an eigenspinor of the
Dirac operator with eigenvalue λ. WK-spinors occur in the limiting case of an eigenvalue
estimate for the Dirac operator and they are closely related to the Einstein spinors, as will
be explained in the next theorem.
Theorem 12.4 Let ψ be a WK-spinor on (Mn, g) of WK-number λ with λR < 0 (resp.

λR > 0). Then |ψ|
2

R is constant onMn and ϕ =
√

(n−2)|R|
|λ||ψ|2 ψ is a positive (resp. negative)

Einstein spinor to the eigenvalue λ, i.e. (12.1) and (12.2) are solved.

For this reason, we ask for the existence of WK-spinors. In the case n = dimM = 3,
the existence of an WK-spinor and an Einstein spinor are equivalent in the following sense.
Theorem 12.5 Suppose that the scalar curvature R of (M3, g) does not vanish at any
point. Then (M3, g) admits a WK-spinor of WK-number λ with λR < 0 (resp. λR > 0)
if and only if (M3, g) admits a positive (resp. negative) Einstein spinor with the same
eigenvalue λ.

Now the procedure of Friedrich/Kim is to single out those Riemannian manifolds which
admit WK-spinors or which don’t admit WK-spinors, respectively. We present some of
their theorems.
Theorem 12.6 Let (Mn, g) be compact with positive scalar curvature R. If |Ric |2 ≥
1
4 (n2 − 5n+ 8)R2 at all points, then (Mn, g) does not admit WK-spinors.

Theorem 12.7 Let (Mn, g) be a conformally flat or Ricci-parallel Riemannian spin man-
ifold with constant scalar curvature R 6= 0 and suppose that it admits a WK-spinor. Then
the following two equations hold at any point of Mn:

a) 4RRic 2 − {n(n− 3)R2 − 4|Ric |2}Ric − (n− 3)R3 id = 0
b) 4|Ric |4 − 4R{tr(Ric 3)} − n(n− 3)R2|Ric |2 + (n− 3)R4 = 0.
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In particular, the Ricci tensor is non-degenerate at any point for n ≥ 4.

As an immediate consequence of the preceding theorem, we shall list some sufficient
conditions for a product manifold not to admit WK-spinors.
Corollary 12.8 Let (Mp, gM ) and (Nq, gN ) be the Riemannian spin manifolds. The prod-
uct manifold (Mp × Nq, gM × gN ) does not admit WK-spinors in any of the following
cases:

a) (Mp, gM ) and (Nq, gN ) are both Einstein and the scalar curvaturesRM ≡ R(gM ),
RN ≡ R(gN ) are positive (p, q ≥ 3).

b) (Mp, gM ) is Einstein with RM > 0 and (N2, gN ) is the 2-dimensional sphere of
constant curvature (p ≥ 3).

c) (M2, gM ) and (N2, gN ) are spheres of constant curvature.
d) (Mp, gM ) is Einstein and (Nq, gN ) is a q-dimensional flat torus (q ≥ 1, p ≥ 3).

Next we present three theorems which contain under certain additional assumption
necessary conditions for the existence of a WK-spinor.
Theorem 12.9 Let (Mn, g) be conformally flat, Ricci parallel and with non-zero scalar
curvature (n ≥ 4). If Mn admits a WK-spinor , then

a) (Mn, g) is Einstein, if R > 0,
b) the equation |Ric |2 = n3−4n2+3n+4

4(n−1) R2 holds if R < 0.

Theorem 12.10 Suppose that (Mp, gM ) as well as (Nq, gN ) are Einstein and that RM 6=
0, RN 6= 0, R = RM + RN 6= 0 (p, q ≥ 3). If the product manifold Mp × Nq admits
WK-spinors, then either (p− 2)RM + pRN = 0 or qRM + (q − 2)RN = 0 holds.

Theorem 12.11 Let (Mp, gM ) be an Einstein space with scalar curvature RM 6= 0 and
(Nq, gN ) be non-Einstein with constant scalar curvatureRN 6= 0 (p, q ≥ 3). Suppose that
RM +RN 6= 0 and Mp ×Nq admits a WK-spinor. Then we have (p− 29RM + pRN =
0.

The following three theorems single out classes of manifolds which do not admit WK-
spinors.
Theorem 12.12 A manifold (Mn, g) of constant curvature R 6= 0 and with a parallel
1-form does not admit WK-spinors (n ≥ 3).

Theorem 12.13 Suppose that the scalar curvature RM of (Mp, gM ) as well as the scalar
curvature RN of (Nq, gN ) are constant and non-zero (p, q ≥ 3). Furthermore, suppose
the scalar curvature R = RM + RN of the product (Mp ×Nq, gM × gN ) is not zero. If
neither (Mp, gM ) or (Nq, gN ) is Einstein, then the product manifold (Mp×Nq, gM×gN )
does not admit WK-spinors.

Theorem 12.14 Suppose the scalar curvature RM of (Mp, gM ), (P ≥ 3) is constant and
non-zero. If the scalar curvature RN of (Nq, gN ) (q ≥ 1) equals identically zero, then the
product manifold (Mp ×Nq, gM × gN does not admit WK-spinors.

But Friedrich/Kim show in [61] that special types of product manifolds admit Einstein
spinors which are not WK-spinors.

Summarizing, we see that (12.1), (12.2) have not been solved by purely analytical
methods, e.g. by deformation of the equations, the continuity method, the heat flow or
something like that, but (12.1), (12.2) have been solved by finding out appropriate ge-
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ometries which offer natural solutions. For this approach, the authors had to reformulate
(12.1), (12.2) and potential geometries such that they can be connected. We completely
suppressed the corresponding (sometimes very hard) calculations and refer to [61].

The second example is the type II B string theory which consists of a Riemannian
manifold, a metric connection ∇ with totally skew-symmetric torsion T and a non-trivial
spinor field ψ, where these objects are related by the equations

Ric∇ = 0, ∇Ψ = 0, , δ(T ) = 0, T ·Ψ = µΨ. (12.3)

Here δ(T ) denotes the divergence. There holds δ∇(T ) = δg(T ) since ∇ is a metric
connection with totally skew-symmetric torsion. µ can be an arbitrary function, but we will
restrict it soon. Again the whole procedure consists in a step-by-step finding geometries
which satisfy one, two, . . . equations of (12.3).
Theorem 12.15 Let (Mn, g,∇, T,Ψ, µ be a solution of

∇Ψ = 0, δ(T ) = 0, T ·Ψ = µΨ

and assume that the spinor field Ψ is non-trivial. Then the function µ is constant.

It is possible to impose for the Ricci tensor the weaker condition

div(R∇) = 0.

Then the last 3 equations of (12.3) imply conditions for div(Ric∇).
Theorem 12.16 Let (Mn, g,∇, T,Ψ, µ be a solution of

∇Ψ = 0, δ(T ) = 0, T ·Ψ = µΨ

and assume that the spinor field Ψ is non-trivial. Then the Riemannian and the ∇-
divergence of the Ricci tensor Ric∇ coincide, divg(Ric∇) = div∇(Ric∇). Moreover,
div(Ric∇) vanishes if and only if δ∇(dT ) ·Ψ = 0 holds.

In the case (Mn, g) compact and µ = 0, we have an overview of the geometries in
question, if n ≤ 8.
Theorem 12.17 Let (Mn, g) be closed and suppose for a non-trivial spinor field Ψ

Ric∇ = 0, ∇Ψ = 0, T ·Ψ = 0.

Then T = 0 and ∇ is the Levi-Civita connection.

A systematic approach to find out the appropriate geometries is contained in [1], [60].
The starting point is the holonomy group of a G-structure. First the authors characterize
all G-structures admitting a G-connection with a totally skew-symmetric torsion tensor T .
Then the authors apply this general method to the subgroup G2 ⊂ SO(7). The next is
to ask for those connections which additionally admit a parallel spinor. One singles out
the classes of geometries without such a spinor and the remaining classes remain under
investigation. The last step is to investigate the validity of Ric∇ = 0.

Start with the group G2 ⊂ SO(2). The group G2 is the isotropy group of the 3-form
in seven variables

ω3 := e1∧e2∧e7+e1∧e3∧e5−e1∧e4∧e6−e2∧e3∧e6−e2∧e4∧e5+e3∧e4∧e7+e5∧e6∧e7.
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The 3-form ω3 corresponds to a real spinor Ψ0 ∈ ∆7 and, therefore, G2 can be defined as
the isotropy group of a non-trivial real spinor.

We consider 7-manifolds.
Theorem 12.18 Let (M7, g, ω3) be a 7-dimensional Riemannian manifold with a nearly
parallel G2-structure (Γ = λ · id). Then there exists a unique affine connection ∇ such
that

∇ω3 = 0 and T is a 3-form.

The torsion tensor is given by the formula 6 · T = (dω3, ∗ω3) · ω3. T is ∇-parallel and
coclosed,∇T = δT = 0.

Corollary 12.19 Let (M7, g, ω3) be a 7-dimensional nearly parallel G2-manifold. Then
the triple (M7, g, T ∗ := 3 · T ) is a solution of the string equations with constant dilation:

Ric gij −
1
4
T ∗imnT

∗
jmn = 0, δg(T ∗) = 0.

A cocalibrated G2-structure is defined by the condition that ω3 is coclosed, δg(ω3) =
0.
Theorem 12.20 Let (M7, g, ω3,∇) be a 7-dimensional compact nearly parallel G2-
manifold and ∇ be the unique G2-connection with totally skew-symmetric torsion. Then
every ∇-harmonic spinor Ψ is ∇-parallel. Moreover, the space of ∇-parallel spinors is
one-dimensional.

We conclude this section with some 5-dimensional examples.
Theorem 12.21 Let (M5, g, ξ, η, ϕ) be a simply connected 5-dimensional Sasakian spin
manifold and consider the unique linear connection∇ with totally skew-symmetric torsion
preserving the Sasakian structure. There exists a ∇-parallel spinor in the subbundle de-
fined by the algebraic equation ξ · Ψ = i · Ψ if and only if the Riemannian Ricci tensor
of M5 has the eigenvalues (6, 6, 6, 6, 4). A ∇-parallel spinor of this algebraic type is an
eigenspinor of the Riemannian Dirac operator, DgΨ = ±3 · Ψ. In case M5 is compact,
any ∇-harmonic spinor Ψ is∇-parallel.

Certain S1-bundles over 4-dimensional Kähler-Einstein manifolds supply examples.
Theorem 12.22 Let (M5, g, ξ, η, ϕ be a 5-dimensional Sasakian spin manifold and con-
sider the unique linear connection ∇ with totally skew-symmetric torsion preserving the
Sasakian structure. If there exists a ∇-parallel spinor in the subbundle defined by the al-
gebraic equation dη ·Ψ = 0, then the Riemannian Ricci tensor of M5 has the eigenvalues
(−2, −2, −2, −2, 4. Any ∇-parallel spinor in this 2-dimensional subbundle satisfies the
equations

∇gξ = 0, ∇gXΨ =
1
2
ϕ(X) · ξ ·Ψ = − i

2
ϕ(X) ·Ψ, dη ·Ψ = 0.

In particular, it is harmonic with respect to the Riemannian connection. Any ∇-harmonic
spinor Ψ on a compact manifold M5 satisfying the algebraic condition dη · Ψ = 0 is
∇-parallel.
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We refer to [1], [2], [60], [61] for the proofs of this section. These papers contain quite
a lot of further interesting results.

13 Gauge theory

Gauge theory brought a striking break-through: the moduli space of solutions of an equa-
tion of mathematical physics on a closed 4-manifold M4 reflects deep topological features
of this M4. An essential step in this approach was the proof that the moduli space was not
empty. This has been established by Taubes in [116], [117]. With other words, he solved
the self-duality equation. His approach consists in two main steps:

1) grafting of the t′ Hooft solution to the M4,
2) taking this grafted solution as the first approximation of a global solution on M4.
We extended in [49] this procedure to open manifolds and present here an outline of

our approach.
First we recall for clarity and completeness very briefly the basic notions of gauge

theory.
Let (Mn, g) be a Riemannian manifold, G a compact Lie group, g its Lie algebra, and

% : G −→ O(EN ) a faithful orthogonal representation. Consider the map Ad : G −→
Aut(G), Ad(a)(g) = a−1ga, its derivative ad and %′ : G −→ o(E) = Lie[O(E)],
%′(a)e = d

dt%[exp(ta)]e|t=0, e ∈ EN . The bundles GP = P ×Ad G, gP = P ×ad g,
E = P ×% EN , OE = P ×% O(EN ) and o = P ×%′ o(E) are associated with P . There
are embeddings i1 : GP −→ OE and i2 : gP −→ oE . Set GE = Im i1, gE = Im i2. Then
GP ∼= GE , gP ∼= gE . Here GE,x denotes the group of all orthogonal transformations
of Ex, and gE,x is the algebra of all skew symmetric endomorphisms of Ex. A bundle
automorphism f : P −→ P over idM with f(u · a) = f(u) · a, u ∈ P , a ∈ G, is called a
gauge transformation. The set of all gauge transformations forms a group, the gauge group
GP . Consider further G̃P = C∞(GP ) and ĜP = {f : P −→ G|f(u · a) = a−1f(u)a}.
Then G ∼= Ĝ ∼= G̃ as groups. The isomorphisms are given by f ∈ G −→ f̃ = [(u, f̂(u))] ∈
GP , where f̂(u) is defined by f(u) = u · f̂(u), and f ∈ GP −→ f̂ ∈ ĜP . A connection
for P or E, respectively, is given by:

1) a smooth field of horizontal subspaces Hu ⊂ TuP , Hu,a = (Ra)∗Hu; or
2) a connection form ω : TP −→ g, R∗aω = ad(a−1)ω, ω(A∗) = A, where A∗ is a

fundamental vector field, A∗uϕ = d
dtϕ[u · exp(tA)]|t=0; or

3) a field of horizontal subspaces in TE, compatible with the representation; or
4) a covariant derivative ∇ω : Ω0(E) −→ Ω1(E), ∇ω(f · e) = df ⊗ e + f · ∇ωe,

where f ∈ C∞(M), e ∈ Ω0(E).
∇ω is a metric connection since E comes from an orthogonal (or unitary) representa-

tion compatible with the connection.
The equivalence 1)←→ 3) is given by the mapping of horizontal curves into horizontal

spaces, 1)←→ 2) by Hu = kerω and 3)←→ 4) by ∇xe = πve∗(X), where πv denotes
the projection onto the vertical subspaces. Locally the description is given as follows. Let
{(Uα, ϕα)}α be an atlas of bundle charts for P (M,G), ϕα : π−1(Uα)

∼=−→ Uα × G,
ϕα(u) = (π(u), hα(u)) and σα : Uα −→ π−1(Uα), σα(x) = u · h−1

α (u) local sections
and ψαβ : Uα ∩ Uβ −→ G, ψαβ(x) = hα(u)hβ(u)−1, u ∈ π−1(x), transition functions.
If θ : TG −→ G is the canonical form, then with ωα = σ∗αω and θαβ = ψ∗αβθ, we obtain
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by differentiation of dβ(x) = σα(x) · ψαβ(x)

ωβ = σ∗βω = ad[ψαβ(x)−1]ωα + θαβ ,

ω = ad(h−1
α )π∗ωα + h∗αθ.

Denote by CP the set of all connections (”gauge potentials”) on P . G acts on CP from
the right by ω · f := f∗ω. In a local chart, f defines local maps fα : Uα −→ G by
f [σα(x)] = σα(x) · fα(x), and σ∗α(ω · f) = σ∗α(f∗ω) = (fσα)∗ω = ad(f−1

α )ωα + f∗αθ,
i.e.

(ω · f)α = ad(f−1
α )ωα + f∗αθ.

Denote by CE the set of all metric connections ∇ω on E. Clearly, CP ∼= CE , since % was
a faithful representation. GE = C∞(GE) acts on CE by ∇(ω·f) = f−1 ◦ ∇ω ◦ f , i.e. on
sections σ,

∇(ω◦f)σ = f−1∇ω(fσ).

Let ω, ω′ ∈ CP . Then ω − ω′ ∈ Ω1(gP ), ∇ω − ∇ω
′
∈ Ω1(gE) and CP ∼= CE is an

affine space with vector space Ω1(gP ) ∼= Ω1(gE). Denote by Dω = πh ◦ d the covariant
differentiation, then Dωω = dω + 1

2 [ω, ω] = Rω ∈ Ω2(gP ) is the curvature of ω, in
physical terminology the field strength of the gauge potential ω. The functional

ω ∈ CP ∼= CE −→ YM(ω) =
1
2

∫
|Rω|2x dvolx(g)

is called the Yang-Mills functional. It is clear, that YM(ω) will most often be∞ on open
manifolds. Therefore, on open manifolds we must restrict an attention to connections with
finite Yang-Mills action. But that we get for bounded geometry still the reasonable space

C2,r
E (Bk, f, 2) =

∑
i∈I

comp2,r(∇i)

is just the content of proposition 3.33. We assume in the sequel (I), (Bk) and restrict to a
component in C2,r

E (Bk, f, 2).
The stationary connections of YM(ω) are called Yang-Mills connections or Yang-

Mills potentials. Define for ω ∈ CP the Laplacian as in I 1 by ∆ω = dωδω + δωdω :
Ωq(gE) −→ Ωq(gE). The important case here is q = 2. The following conditions are
equivalent:

1) ω is a Yang-Mills potential,
2) δωRω = 0,
3) ∆ωRω = 0. (13.1)

This follows immediately from the variation of YM(ω); δωRω = 0 and the Euler
equations, always dωRω = 0, and therefore δωRω = 0 and ∆ωRω = 0 are equivalent.
δωRω = 0 are called the sourceless Yang-Mills equations. Assume now that n = 4. Then
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the Hodge ∗-operator ∗ : Λ2T ∗M −→ Λ2T ∗M , ∗(ei ∧ ej) = sign
(

1234
ijkm

)
ek ∧ em,

satisfies ∗2 = id and induces therefore an orthogonal splitting,

Λ2 = Λ2
+ ⊕ Λ2

−, Ω2(gE) = Ω2
+(gE)⊕ Ω2(gE),

where Λ2
± corresponds to the eigenvalue±1 of ∗. This implies a splittingRω = Rω+ +Rω−,

∗Rω± = ±Rω±, and |Rω|2x = |Rω+|2 + |Rω−|2. The connection ∇ω is called self-dual or
anti-self-dual if Rω− = 0 or Rω+ = 0, respectively. As is well known, the first Pontrjagin
number of E

p1(E) =
1

8π2

∫
M4

(|Rω+|2 − |Rω−|2) dvol

is an integer on compact manifolds and independent of ω. As a result,

4π2|p1(E)| ≤ YM(ω)

with equality if and only if Rω+ = 0 or Rω− = 0, i.e. YM(ω) has an absolute minimum for
self-dual or anti-self-dual ω, and ω is therefore a Yang-Mills connection. Self-dual or anti-
self-dual solutions to (13.1) are called instantons. Until now the main interest in solving
(13.1) has been devoted to instantons.
Remark 13.1 For an oriented four-manifold, (M4, g), the ∗-operator is conformally invari-
ant; in particular, ω is self-dual with respect to g if and only if it is self-dual with respect
to eϕ · g.
Examples 13.2 1) Let G = U(1). Then P −→ M is an electromagnetic bundle. If
(M4, g) is a Lorentz manifold, then

dωRω = 0, δωRω = 0

are Maxwell’s equations.
2) Let %n : U(1) −→ U(1) ⊂ Gl(1,C) be given by %n(z) = zn, z ∈ U(1). The

sections of C∞(P ×%n C) may be considered as wave functions of scalar particles with
charge = n· elementary charge.

3) Probably, the most important case is G = SU(N), % = ad : SU(N) −→
Aut[su(N)]. Every section of C∞[su(N)P ] ≡ Ω0[su(N)P ] is a standard Higgs field.
The Euler equations of the functional

A(ω, ϕ) =
1
2

∫
(|Rω|2 + |∇ωϕ|2 +

λ

4
(|ϕ| −m2)) dvolx(g),

(dω) ∗Rω = [∇ωϕ,ϕ], (dω) ∗ dωϕ =
λ

2
(|ϕ|2 −m2)ϕ

are called Yang-Mills-Higgs equations.
4) Consider M4 = S4, G = SU(2) ∼= Spin(3) ∼= Sp(1) ∼= S3, the quaternions H,

the Hopf bundle P [S4, Sp(1)] = S7 Sp(1)−→ P 1(H) = S4, % : Sp(1) id−→ Sp(1) ⊂ Gl(H)
and the associated quaternion line bundle E. Then −1 = χ(E) = c2(E) = − 1

2p1(E).
Let p = (0, . . . , 0, 1) ∈ S4, x : S4 \ {p} −→ R4 ∼= H the stereographic projection, and
ds2 = 4|dx|2/(1 + |x|2)2 the induced metric on S4 \ {p}. According to the remark above,
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a connection is self-dual with respect to ds2 if and only if it is self-dual with respect to
the Euclidean metric |dx|2. Restricted to S4 \ {p} ∼= R4 ∼= H, the bundle E is trivial,
E ∼= R4 × H −→ R4 ∼= H. Choose as reference connection the flat connection d and
consider for λ > 0 the connection∇λ = d+Aλ, where

Aλ = =
(

x · dx
λ2 + |x|2

)
.

Here we write x ∈ R4 as x = x0 + x1 · i + x2 · j + x3 · k ∈ H. Aλ is an =(H)-valued
= sp(1)-valued one-form. An easy calculation yields

Rλ ≡ R∇
λ

= dAλ + [Aλ, Aλ] =
λ2dx ∧ dx
λ2 + |x|2

,

and Rλ is self-dual. With respect to ds2 above,

|Rλ|2x =
3
2
· λ4

(
1 + |x|2

λ2 + |x|2

)4

.

Moreover, Aλ = (rλ) ∗A1, Rλ = (rλ) ∗R1, where rλ : R4 −→ R4 is defined by

rλ(x) =
1
λ
· x.

Aλ can be extended to the whole of S4. The connection∇λ is called the ’t Hooft solution.

Now we sketch how to attack the main problem-finding solutions of (13.1) on open
manifolds, or a little less, to find instantons and to describe the moduli space.

Clearly the problem is gauge-invariant, since |R(ω·f)|x = |f−1Rωf |x = |Rω|x, i.e.
the Yang-Mills functional is a functional on the orbit space CP /GP . Therefore, for a clear
analytical approach, we must endow the configuration space = orbit space with an appro-
priate structure. This is a longer history. We refer to [49], [53] for details and list up here
only the main steps.

1) Suppose that (Mn, g) and the bundle (P (M,G), ω) have bounded geometry. Then
using formulas of [78], the total space (P, gω = gp,ω = π∗gM + gF ) has bounded geome-
try, where gF (X,Y ) = gg(ω(X), ω(Y )). gω is the Kaluza-Klein metric. The proof of this
fact is presented in [49], p. 3955 – 3958.

2) If ω, ω′ ∈ CP (Bk), k ≥ r > n
p + 1, belong to the same component in Cp,rP (Bk) then

gω, gω′ belong to the same component inM(P )p,r(I,Bk).
3) According to step 1 and 2 and section 3,Dp,r(comp(ω)) := Dp,r(P, comp(gω)) :=

Dp,mr(P, gω) is well defined.
4) Now one can show that

G2,r
P (ω) = {f ∈ D2,r(P, gω)|f covers idM and f(ua) = f(u)a for all u ∈ P and a ∈ G}

is a C1+k−r submanifold of D2,r(P, gω).
5) One defines for k ≥ r > n

2 + 1

G̃2,r
P (ω) = Ω2,r(GP , ω) = {f ∈ Ω2,r(M,GP , ω)|f is a section }
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and shows that G̃2,r
P (ω) is a C1+k−r Hilbert Lie group.

6) Define for k ≥ r > n
2 + 1

Ĝ2,r
P (ω) = {f ∈ Ω2,r(M,GP , ω)|f(u · a) = a−1f(u)a}.

The map G2,r
P (ω) 3 f −→ f ∈ Ĝ2,r

P (ω) is an algebraic isomorphism and one can prove
that it is an isomorphism of C1+k−r Hilbert Lie groups.

7) One can identify G2,r
P (ω), G̃2,r

P (ω) and Ĝ2,r
P (ω) as C1+k−r Hilbert Lie groups. In

[53] p. 273–279 there is another sequence of arguments for this, proving even that G2,r
P (ω)

is a smooth Hilbert Lie group (see step 10).
8) Concerning the action of G2,r+1

P (ω), it is clear that we have an action

comp(f)× comp(ω) −→ comp(f∗ω).

Set

G2,r+1
p,comp(ω)(ω) = {f ∈ G2,r+1

P (ω)|f leaves comp(ω) fixed}.

G2,r+1
p,comp(ω)(ω) is a union of components of G2,r+1

P (ω) and therefore a closed submanifold,
even a closed subgroup, i.e. we have an action

G2,r+1
p,comp(ω)(ω)× comp2,r(ω) −→ comp2,r(ω), (13.2)

in particular this holds for ω ∈ C2,r
P (Bk, 2, f).

9) The action (13.2) is of class Ck+r−1 and closed.
10) If we follow the approach of [53] then the corresponding action is even smooth.

For this we describe the action as left action in the following form

fω := (f−1)∗ω = ω ◦ d(f−1).

In terms of f̂ ∈ Ĝ this means

fω = Ad(f̂)ω + (f̂−1)∗θ,

where θ denotes the Maurer-Cartan form of G. Define

∇ω f̂ := (f̂−1)∗θ ◦ projωh = −dR−1

f̂
◦ f̂ .

Then

fω = ω +∇ω f̂ .

We define a new Ĝ2,r+1
p,comp(ω)(ω) by

Ĝ2,r+1
p,comp(ω)(ω) = {f̂ ∈ Ĝ2,r+1

P (ω)|∇ω f̂ ∈ Ω1,2,r(gP ,∇ω)}

with a topology, roughly spoken, coming from Campell-Hausdorff series. We refer to [53],
p. 273 – 279 for details.

11) This Ĝ2,r+1
p,comp(ω)(ω) acts smoothly and closed on comp2,r(ω).
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12) To establish good properties of the configuration space, one needs the second count-
ability of Ĝ2,r+1

p,comp(ω)(ω) which is in general not satisfied since Ĝ2,r+1
p,comp(ω)(ω) can have

uncountably many components. It is easy to see that each element of the centre of G gen-
erates one component. Therefore we restrict in the sequel ourselves to the subgroup of
Ĝ2,r+1
p,comp(ω)(ω) which consists of the components of Ĝ2,r+1

p,comp(ω)(ω) generated by the centre
ofG if the centre is countable or which equals to the component of the identity if the centre
is uncountable. In the case G = SU(2) the centre consists of two elements, i.e. we get
two components, each of them satisfies second countability. We denote the new subgroup
of Ĝ2,r+1

p,comp(ω)(ω) again by the same symbol.
13) The final step towards the general structure of the configuration space consists in

Theorem 13.3 Assume (Mn, g) open with (I) and (Bk), k − 1 ≥ r > n
2 + 2, ω ∈

C2,r
P (Bk, 2, f) and inf σe(∆ω

0 |(ker ∆ω
0 )⊥ > 0). Then the configuration space

comp2,r(ω)/Ĝ2,r+1
p,comp(ω)(ω)

has the structure of a stratified space. The strata are labelled by the conjugacy classes of
symmetry groups of connections.

We refer to [53], p. 283 – 285 for the proof.
Now we want to show thatM2,r

comp(ω) is nonempty. We restrict our attention to the case
n = 4, G = SU(2). Then the bundle P (M4, SU(2)) is trivial (cf. [112]). Nevertheless
the real L2-Pontrjagin numbers

p1(P, comp(ω)) =
1

8π2

∫
(|Rω+|2 − |Rω−|2) dvol

can be nonzero.
Up to a large degree we imitate Taubes’ existence proof of transplanting the ’t Hooft

solution from S4 to M4 and finding an instanton in the neighborhood of the transplanted
solution. Nice versions of this proof are contained in Taubes’ original paper ([116]), and
in the books by Freed-Uhlenbeck and Lawson ([58] and [83]). The main assumption for
a compact M4 besides simply-connectedness was the positive-definiteness of the intersec-
tion form. This was used in the proof by inferring that there do not exist anti-self-dual
harmonic two-forms. In the noncompact case one had to translate this to the positive-
definiteness of the L2-intersection form

(ϕ,ϕ′) −→
∫
M

ϕ ∧ ϕ′,

ϕ, ϕ′ being L2-harmonic two-forms on (M4, g). But this is not enough. We also need
the condition that the bottom of the essential spectrum outside 0 of the Laplace operator
∆2 = ∆2(M4, g) on two-forms is greater than zero, inf σe(∆2|(ker ∆2)⊥) > 0. More
precisely, it would be sufficient to claim this for the Laplace operator acting on anti-self-
dual two-forms, i.e. we assume that

inf σe(∆2|(ker ∆2)⊥) > 0, •L2 > 0, (13.3)

or somewhat less

inf σe(∆2,−|(ker ∆2,−)⊥) > 0, •L2 > 0.
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An example for the condition inf σe(∆2|(ker ∆2)⊥) > 0 is given by hyperbolic four-space
(M4, g) = H4

−1. In this case the spectrum satisfies σ(∆2) = {0} ∪ [2,∞[, where 0 be-
longs to the point spectrum and has infinite multiplicity. (13.3) has also a combinatorial
formulation concerning as well the spectral gap as the positive definiteness of the intersec-
tion form. These properties are invariants of uniform triangulations with sufficiently small
mesh. We refer to [19].

Fix now p ∈ M4, 2ε < rinj(M4, g), (x1, . . . , x4) geodesic normal coordinates on
B2ε(p) centered at p. Let y : S4 \ {q0} −→ R4 be the stereographic projection and
ϕ ∈ C∞([0,∞[), ϕ = 1 on [0, ε], ϕ > 0 on [0, 2ε[, ϕ ≡ 0 on [2ε,∞[, |dϕ| = 1

ε + 1. ϕ is
a smooth approximation of

ϕ̃(x) =

 1, 0 ≤ x ≤ ε
2ε−x
ε , ε ≤ x ≤ 2ε,

0, x > 2ε
.

In what follows we use only first derivatives of ϕ and work with ϕ = ϕ̃. Define F :
M4 −→ S4, F ≡ {q0} in M4 \ B2ε(p), F = y = x

ϕ(x) in B2ε(p). Consider the Hopf

bundles P0 = S7 SU(2)−→ S4 of instanton number 1, the associated quaternionic line bundle
E0, the ’t Hooft connection∇λ0 = d+Aλ with curvature

Rλ0 =
λ2dy ∧ dy

(λ2 + |y|2)2

and the pull-back P = F ∗P0, E = F ∗E0, ∇λ = F ∗∇λ0 · ∇
λ is flat in M \B2ε(p) and in

B2ε(p):

Rλ =
λ2

λ2ϕ2 + |x|2
(ϕ2dx ∧ dx− 2ϕdϕ ∧ =xdx).

Since dϕ = 0 in Bε(p) and |xdϕ| ≈ 1 in B2ε(p) \Bε(p), we obtain

Rλ =
λ2dx ∧ dx
(λ2 + |x|2)

for |x| ≤ ε

and |Rλ| ≤ C
(

λ
|x|2

)
for ε ≤ |x| ≤ 2ε, c = c(λ).

The instanton number of the induced bundle P and comp(∇λ) ⊂ C(Bk, 2, f) is

p1(P, comp(∇λ)) =
1

8π2

∫
(|R∇

λ

+ |2 − |R∇
λ

− |2) dvolx(g).

According to the properties of normal coordinates, gij(0) = δij , ds2 = |dx|2 + O(|x|2),
for ε very small |gij(x)− δij | ≤ α|x|2, |x| ≤ 2ε, α� 1.

The metric dx2 corresponds to the Euclidean star operator ∗e, and ds2 to the Rieman-
nian star operator ∗. Then | ∗e − ∗ | = α|x|2 for |x| ≤ 2ε. R is ∗e-invariant over B(p),
which implies that

|Rλ − ∗Rλ| ≤ c′ λ2|x|2

(λ2 + |x|2)2
≤ c′, |x| ≤ 2ε.
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In the sequel we choose ε =
√
λ � 1. Assume now that 1 < p < ∞. Then there exist

constants c1 and c2 such that for all λ� 1

|Rλ|p ≤ c1 · λ
4
p−2 , |Rλ−|p ≤ c2 · λ

2
p .

Consider now the operator

P∇ : Ω2,2,4
− (gE ,∇) −→ Ω2,2,2

− (gE ,∇), P∇ := d∇−δ
∇, d∇− := π−d

∇,

where we identify as always ω ←→ ∇(ω) = ∇, dω = d∇, dω− = d∇− etc. This is
a linear, second order elliptic nonnegative operator. For any pair u1, u2 ∈ Ω2,2,4

− (gE),
〈P∇u1, u2〉 = 〈δ∇u1, δ

∇u2〉 = 〈d∇u1, d
∇u2〉 since ∗ui = −ui. Define

µ(∇) := µ1(∇) := inf
u∈Ω2,2,4

− (gE ,∇)

|δ∇u|22
|u|22

,

where here and in the sequel | |p ≡ | |Lp . Replacing Ω2,2,4
− (gE ,∇) by Ω2,2,4

− (M × R) and
P∇ by ∆2,− we infer from assumption (13.3) that there are no L2-harmonic anti-self-dual
two-forms. This implies

µ := inf
u∈Ω2,2,4

− (M×R)

|δu|22
|u|22

> 0. (13.4)

If µ = 0 then we would obtain a Weyl sequence (uν)ν for λ = 0, (∆2,−−0)uν −→ 0, 0 ∈
σe(∆2,−). According to the spectral gap, 0 ∈ σp(∆2,−) which contradicts ker(∆2,−) = 0.

Our first task is to prove a similar inequality for Pλ = P∇
λ

and µ(λ) ≡ µ(∇λ).
Lemma 13.4 More precisely, there exists a constant µ0 > 0 such that for all λ sufficiently
small

µ(λ) ≥ µ0. (13.5)

and c1, c2 such that for λ� 1

|Rλ|p ≤ c1λ
4
p−2 , |Rλ−|p ≤ c2λ

p
2 .

We refer to [49], [83] for the proof.
Now we come to the heart of the existence proof. Fixing a smooth connection ∇ ∈

CP (B4, 2, f), we want to find a connection ∇′ = ∇+ A so that R∇
′

− = 0, i.e. we want to
find A ∈ Ω1,2,4(gE ,∇) satisfying

R∇− + d∇−A+ [A,A]− = 0 (13.6)

(we put the factor 1
2 into the definition of [ , ]). We make the ansatz A = δ∇u, u ∈

Ω2,2,5(gE ,∇), which implies that

d∇−δ
∇u = −R∇− − [δ∇u, δ∇u]−. (13.7)

Equation (13.7) will be solved by an iterative scheme,

d∇−δ
∇Uk = bk, k = 1, 2, 3, . . . , (13.8)
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where b1 = −R∇,

bk = −2

k−2∑
j=1

δ∇Uj , δ
∇Uk−1


−

− [δ∇Uk−1, δ
∇Uk−1]− for k > 1. (13.9)

Considering

um =
m∑
k=1

Uk, (13.10)

we conclude that

d∇−δ
∇um = −R∇− − [δ∇um−1, δ

∇um−1]−. (13.11)

Formally we obtain for m −→ ∞ a solution of (13.7). But this argument has to be made
more precise, i.e. we have to ensure a reasonable convergence for the series.
Remark 13.5 We note that∇ ∈ CP (B4, f) implies thatR∇ ∈ Ω2,p,0(gE ,∇) for all p ≥ 2.

A key role is played by the following theorem, which ensures the solvability of the
starting equation.
Theorem 13.6 Assume that µ(∇) > 0. Then for any smooth b ∈ Ω2,2,2(gE ,∇), there is a
unique smooth solution to the equation

d∇−δ
∇U = b. (13.12)

This solution satisfies, with

β2 =
1

µ(∇)
[1 + µ(∇) + |R∇− |33], (13.13)

the estimates

|δ∇U |2 ≤ c · β · |b|4/3, (13.14)

|δ∇U |2,1 ≤ c[|b|2 + β|b|4/3(1 + |R∇|4)], (13.15)

|δ∇U |4 ≤ c[|b|2 + β|b|4/3(1 + |R∇|4)], (13.16)

where c is a constant depending only on (M4, g). |b|4/3 is well defined, since by assump-
tion b ∈ Ω2,2,2

− (gE ,∇) and according to the Sobolev embedding theorem for manifolds of
bounded geometry.

Set

ε(∇) = |R∇− |2 + β · |R∇− |4/3(1 + |R∇|4). (13.17)

For ε sufficiently small the iterative scheme will work, as the following theorem shows.
Let c be the above constant, ε ≤ min{1/2cβ, 1/2c, 1/2} and ε(∇) ≤ ε5. Then there
exist smooth solutions Uk, k = 1, to the rekursive sequence of equations (13.8) and (13.9),
which satisfy

|δ∇Uk|2 ≤ εk+4(1 + |R∇|4)−1, (13.18)
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|δ∇Uk|2,1 ≤ εk+4, (13.19)

|δ∇Uk|4 ≤ εk+4. (13.20)

We start the proof with k = 1. For k = 1, (13.18) – (13.20) are an immediate consequence
of (13.14) – (13.16). Assume the assertion for k − 1. Then

|bk|1 ≤ 4
k−2∑
j=1

|δ∇Uj |2 · |δ∇Uk−1|2,

(13.21)

|bk|2 ≤ 4
k−2∑
j=1

|δ∇Uj |4 · |δ∇Uk−1|4.

By the induction hypothesis

|bk|1 ≤ 4
(1 + |R∇|4)2

· εk+3
k−2∑
j=1

εj+4 ≤ εk+5

(1 + |R∇|4)2
,

(13.22)
|bk|2 ≤ εk+5.

We infer from Hölder’s inequality that

|bk|4/3 ≤ |bk|
1/2
1 · |bk|1/22 ≤ ε5+k

1 + |R∇|4
, (13.23)

plug that into (13.14) – (13.16) and obtain the desired result.
Now we show that u =

∑
k

Uk sums up to a solution of the self-duality equations.

Assume that ε(∇) ≤ ε5 (ε as above). Then the sequence (um)m = (
m∑
k=1

Uk)m converges

to a smooth solution of (13.7), i.e. ∇̃ = ∇+ δ∇u is self-dual. Moreover,

|∇̃ − ∇|2,1 + |∇̃ − ∇|4 ≤ 2ε(∇). (13.24)

To prove this, we need the following lemma.
Lemma 13.7 There is a constant c > 0, independent of∇, such that if µ(∇) > 0 then

1
cβ(∇)

|ν|2,1 ≤ |δ∇ν|2 ≤ c|ν|2,1 (13.25)

for all ν ∈ Ω2,2,1
− (gE ,∇).

With (13.25) we can replace the good estimate (13.18) for |δUk|2 by an estimate for

|Uk|2, and it is now evident that the sequence (um)m = (
m∑
k=1

Uk)m is Cauchy with respect

to | |2,1. Hence it converges to u = lim
m
um in | |2,1. We still have to show that u satisfies

the required equation and that u ∈ C∞. For this consider the sequence

σm := d∇−δ
∇um + [δ∇um, δ∇um]− +R∇− .
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We know that d∇−δ
∇um −→ d∇−δ

∇u in | |2. Moreover, according to (13.20), δum is
Cauchy in the | |4 norm. By Hölder’s inequality, [δ∇um, δ∇um]− −→ [δ∇u, δ∇u]− with
respect to | |2. By construction of the Uk, σ̃m = d∇−δ

∇um+[δ∇um−1, δ
∇um−1]−+R∇− =

0 for each m. According to |σ̃m − σm|2 = O(εm), we have

d∇−δ
∇u+ [δ∇u, δ∇u−] +R∇− = lim

m
σm = lim σ̃m = 0,

i.e. u is a weak solution to (13.7). Standard elliptic regularity theory now shows that
u ∈ C∞.

Two points are still open, namely (13.25) and the existence of a starting solution U
satisfying (13.14) – (13.16). For the proof of 13.7, see [83] (pp. 82, 83). There is nothing
to add and nothing to change. Consider the equation P∇U = b, P∇ = d∇−δ

∇ = (δ∇)∗δ∇,
a linear self-adjoint elliptic operator which is strictly positive since µ(∇) > 0. Since
(M4, g) and (P,∇) have bounded geometry, there exists a good heat kernel of P∇ and
moreover a good Green’s kernel, because µ(∇) > 0, by theorem 6.55. This implies the
existence ofU . Standard elliptic regularity implies thatU ∈ C∞. For the estimates (13.14)
– (13.16) see [83] (pp. 83, 84).

All in all, we sketched the proof of the following main theorem.
Theorem 13.8 Let (M4, g) be open, oriented, complete with (Bk(M)), (I), k > 3,
inf σe(∆2,−|(ker ∆2,−)⊥) > 0, •L2 > 0, G = SU(2), P = F ∗P0. Then comp(∇λ) ⊂
CP (Bk, f) contains a self-dual connection.

Proof According to (13.5) there is a constant β0 > 0 such that 1/β0 ≤ 1/β(∇λ) for all
λ� 1, and ε(∇λ) ≤ c0 · λ1/2 for some constant c0. Consequently, the hypotheses for the
validity of (13.18) – (13.20) are satisfied for all λ� 1.

Now we want to support theorem 13.8 by
Example 13.9 A first class of examples comes immediately from the compact case. Let
(M4

0 , g0) be a compact oriented Riemannian manifold with boundary ∂M4
0 , H1(∂M4

0 ) =
H2(∂M4

0 ) = 0 and positive definite intersection form. Set (M4, g) = (M4
0 ∪ ∂M4

0 ×
[0,∞[, g), where g|M4

0
= g0 and g|∂M4

0×[1,∞[ = dr2 + g0|M4
0

, i.e. (M4, g) is a
manifold with cylindrical ends. Then inf σe(∆2(M4, g)) = inf σ(∆2(∂M4

0 )) > 0,
H2,2,{d}(M4) = H2,2,{d}(M4) ∼= Im (H2(M4

0 , ∂M
4
0 ) −→ H2(M4

0 )) ∼= H2(M4
0 ) and

the L2-intersection form of M4 is equivalent to that of M4
0 (cf. [6]). Take e.g. a closed

manifold (M
4
, g) with positive intersection form, delete from it small disjoint open discs

B1, . . . , Bs and set M4
0 = M

4 \
s⋃

σ=1
Bσ .

14 Fluid dynamics

As we indicated in the introduction and partially presented in section 7, the transform of
an PDE into an ODE on an infinite-dimensional manifold is one of the standard techniques
in solving PDE’s. A striking example for this approach are several important equations of
fluid dynamics. According to our knowledge, V. J. Arnold was the first who established
such an approach. This has been essentially elaborated by Ebin/Marsden in the seminal
paper [40]. But they restricted themselves to the compact case. Now we are able to extend
their approach to the open case. This is possible since now we have a solid theory of
diffeomorphism groups and their geometry for open manifolds. Such a theory was for
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Ebin/Marsden 1970 not available. To establish such a theory took us a couple of years
and was possible since we developed the theory of completed diffeomorphism groups also
for underlying open manifolds. The key is the identity component of the completed group
D∞,rµ,0 .

From now on we assume p = 2, (Mn, g) with (I) and (Bk), k ≥ m ≥ r > n
2 + 1 and

write Dr ≡ D2,r and Dr0 shall denote the component of the identity, Dr0 = comp(id) ⊂
Dr. Let ω ∈ b,mΩq(M) be a Cm-bounded q-form on M and denote Dr

ω = {f ∈
Dr|f∗ω = ω}. Here we assume r ≤ m ≤ k. Then Drω,0 = Drω ∩ Dr0 is a group.
Assume additionaly that ω is closed. We want to show that Drω,0 is a good submanifold
of Dr0. The most important examples are ω = volume form µ or ω = symplectic form on
a symplectic manifold. It is quite natural and helpful, in particular for integration theory
of Hamiltonian systems, to assume on open symplectic manifolds that ω is adapted to a
metric of bounded geometry by requiring ω ∈ b,mΩ2(M), 2 ≤ m ≤ k. This ensures
the completeness of Hamiltonian vector fields, the transitivity of the flow and hence the
existence of Liouville tori in the case of 1

2dimM independent integrals in involution.
We say ω ∈ b,0Ωq is nondegenerate if for every ϕ ∈ b,0Ωq−1 there exists a unique

C0-vector field X such that

iXω ≡ ω(X, . ) = ϕ( . ). (14.1)

ω is said to be strongly nondegenerate if in addition

inf
x∈M
|ω|2x > 0. (14.2)

There is only a small choice. (14.1) means that X establishes for any x ∈ M an
isomorphism between TxM and Λq−1T ∗xM . Therefore ϕ must be an (n − 1) or 1-form,
q = n or q = 2. Hence, ω must be a volume form µ or symplectic form ω satisfying
(14.2) if we additionally claim the closedness. The generalization in comparison with
Ebin-Marsden, [40] consists in allowing arbitrary volume forms, not only such defined by
a Riemannian metric. The restriction in comparison with Ebin-Marsden [40] consists in
condition (14.2).

We indicate the main steps of our approach and refer to [54] for the proofs.
Theorem 14.1 Assume (Mn, g) with (I) and (Bk), k ≥ m ≥ r > n

2 + 1. Let ω ∈ b,mΩq

be closed and f ∈ Dr
0(Mn, g). Then

f∗ω − ω ∈ dΩq−1,r−1.

Corollary 14.2 Let f ∈ Dr ∩ C∞,r(M,M) and f ′ ∈ comp(f) , ω ∈ b,mΩq closed,
k ≥ m ≥ r > n

2 + 1. Then

(f ′)∗ω − f∗ω ∈ dΩq−1,r−1(f∗∇).

Lemma 14.3 Assume k ≥ m ≥ r > n
2 + 1 and µ ∈ b,mΩn a volume form with

infx∈M |µ|2x > 0. Then Φ : X −→ iXµ defines an isomorphism between Ωr−1(TM)
and Ωq−1,r−1.



270 Partial differential equations on closed and open manifolds

Completely parallel to lemma 14.3, we state
Lemma 14.4 Assume k ≥ m ≥ r > n

2 + 1 and ω ∈ b,mΩ2 a symplectic form with
infx∈M |ω|2x > 0. Then X 7→ iXω establishes an isomorphism between Ωr−1(TM) and
Ω1,r−1.

Let ∆q be the Laplace operator acting on q-forms, σe(∆q) its essential spectrum and
σe(∆q|(ker ∆q)⊥) the essential spectrum of ∆q restricted to the orthogonal complement of
its kernel, and inf σe(∆q|(ker ∆q)⊥) its g.l.b. Now we can state our first main theorem.

Theorem 14.5 Assume (Mn, g) with (I) and (Bk), k ≥ m ≥ r > n
2 + 1 and ω ∈ b,mΩq ,

q = n or q = 2, a closed strongly nondegenerate form with inf σe(∆1|(ker ∆1)⊥) > 0.
Then the group Drω,0 = Dr0 ∩ Drω is a Ck−r+1 submanifold of Dr0.

Proof Consider the map ψ : Dr0 −→ [ω]r−2 := [ω + dΩq−1,r−1], ψ(f) := f∗ω. Accord-
ing to our spectral assumption we have dΩq−1,r−1 = dΩq−1,r−1, where we have taken
the closure in Ωq,r−2, q = 2 or n. Hence, the affine space [ω]r−2 is a smooth Hilbert-
manifold. We conclude from theorem 14.1 that ψ is well defined. Dr0 has differentiabil-
ity class Ck−r+1. A straightforward calculation shows that ψ has differentiability class
Ck−r+1. The map ψ∗,id can easily be calculated

ψ∗,id(X) = lim
t−→0

(exp tX)∗ω − ω
t

= LXω = diXω + iXdω = diXω,

X ∈ TidDr0 = Ωr(TM). We conclude from lemma 14.3, 14.4 that X 7→ iXω maps into
Ωq−1,r and conclude once again from our spectral assumption the closedness of dΩq−1,r

in Ωq,r−2, i.e. the map ψ∗,id : TidDr0 −→ dΩq−1,r−1 = Tω[ω]r−2 is surjective. A simple
shifting argument using TfDr0 = Ωr(f∗TM, f∗∇) and the fact that Ωr(TM) is mapped
homeomorphically to Ωr(f∗TM, f∗∇) by means of f and ψ∗,f (X) = f∗(LX◦f−1ω)
shows that ψ∗ is surjective everywhere, i. e. ψ is a submersion. Hence Drω,0 = ψ−1(0) is
a Ck−r+1-submanifold of Dr0.

We defined for C∞,m(M,N) a uniform structure Up,r. Consider now
C∞,∞(M,N) =

⋂
m C

∞,m(M,N). Then we have an inclusion i : C∞,∞(M,N) →
C∞,m(M,N) and i × i : C∞,∞(M,N) × C∞,∞(M,N) → C∞,m(M,N) ×
C∞,m(M,N) hence a well defined uniform structure U∞,p,r = (i × i)−1Up,r. Af-
ter completion we obtain once again the manifolds of mappings Ω∞,p,r(M,N), where
f ∈ Ω∞,p,r(M,N) if and only if for every ε > 0 there exists an f̃ ∈ C∞,∞(M,N) and a
Y ∈ Ωp,r(f̃∗T ∗N) such that f = expY and |Y |p,r ≤ ε. Moreover, each connected com-
ponent of Ω∞,p,r(M,N) is a Banach manifold and TfΩ∞,p,r(M,N) = Ωp,r(f∗TN). As
above we set

D∞,p,r(M) = {f ∈ Ω∞,p,r(M,M)|f is injective, subjective,
preserves orientation and |λ|min(df) > 0}.

We assume p = 2 and write Ω∞,r(M,N) ≡ Ω∞,2,r(M,N) and D∞,r(M) ≡
D∞,2,r(M). The only difference between our former construction is the fact that the
spaces Ω∞,r and D∞,r are based on maps which are bounded up to arbitrarily high or-
der. For compact manifolds we have C∞(M,N) = C∞,r(M,N) = C∞,∞(M,N),
Ω∞,r(M,N) = Ωr(M,N) and D∞,r(M) = Dr(M) for all r. For open manifolds we
have strong inclusions C∞,∞ ⊂ C∞,r and D∞,∞ ⊂ Dr. It is very easy to construct a dif-
feomorphism f ∈ C∞,1(R,R) such that f 6∈ C∞,2(R,R). This supports the conjecture
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that the inclusion Dr+s ↪→ Dr, s ≥ 1 is not dense. It is very probable that the density fails
as a careful analysis of our example shows. Here we restrict ourselves toD∞,r. This space
has the advantage that D∞,r+s is densely and continuously embedded into D∞,r. This
follows easily from the corresponding properties of Sobolev spaces. Quite analogously we
define the space D∞,rω . The components of the identity have special nice properties:
Lemma 14.6 Assume the conditions for defining Dr and Drω . Then

D∞,r0 = Dr0, D∞,rω,0 = Drω,0.

Most of the interesting diffeomorphism groups are endowed with a natural Riemannian
metric which is usually a weak one. For further applications, it is useful and important to
know the corresponding Riemannian geometry, i.e. the curvature and the geodesics. In
this section, we study the general diffeomorphism groups D∞,r ⊂ Dr and the subgroups
of form preserving diffeomorphisms D∞,rω ⊂ Drω . Later on, we restrict ourselves to the
component of the identity. There are several papers where this geometry already has been
studied. But in all of these papers, only the case of compact manifolds Mn has been
studied. Moreover, serious analytical problems arising in this investigation mostly have
been suppressed. Completions have not been considered. In the noncompact case, one
has to solve these difficulties. Without that, everything becomes wrong. If we start with
Dr, we would have to consider Dr+s with k + 1 − (r + s) >s, s ≥ 2, r > n

2 + 1 in
order to apply some versions of the ω-lemma. Finally, one obtains curvature formulas for
tangent vectors tangent to Dr at f ∈ Dr+s. Then one would like to extend these formulas
to all f ∈ Dr. But this is impossible since it is not yet clear that Dr+s ⊂ Dr is dense.
Therefore, one has, at least at the final stage, to restrict everything toD∞,r+s, D∞,r. Then
we haveD∞,r+s ⊂ D∞,r densely. Moreover, in this case {D∞,∞,D∞,r, r > n

2 +1} is an
ILH-group if k = ∞. In our considerations, we consider a finite tower of this ILH-group.
As a matter of fact, the final formulas e.g. for sectional curvature coincide with those of
the compact case, as it should be.

We present here a rapid, very short presentation. All details would exceed the frame-
work of such a paper. Calculations which are parallel to the compact case are completely
suppressed. Many of them are contained in [111], [112] and [113].

We start by defining the Levi-Civita connection for Dr. Later on, we restrict every-
thing to D∞,r. Let Mn be a manifold. Then a connection is given by a field of horizontal
subspaces of TTM or a covariant derivative ∇ or a connector map K : TTM −→ TM ,
respectively. They are related by ∇XY = K(Y∗(X)) and K = projection onto the ver-
tical subspaces along the horizontal ones. Locally, K can be expressed explicitly by the
Christoffel symbols Γkij . A connectorK can be independently characterized by the follow-
ing properties. K is a map T 2M −→ TM which satisfies the following conditions.

For all X ∈ TM,K : TX(TM) −→ Tπ(X)M is linear.
For all x ∈M,K : T (TxM) −→ TxM is linear.
For all X ∈ TM,HX := kerK|TXTM is horizontal.

Assume now (Mn, g) is open with (I) and (Bk), k > n
2 + 2. Let ∇ denote the Levi-

Civita connection with associated connector map K. The tangent manifold TM can be
endowed with a canonical metric, the so called Sasaki metric given by:

gTM (X,Y ) = gM (π∗X,π∗Y ) + gM (KX,KY ), X, Y ∈ TZTM.
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Lemma 14.7 The Sasaki metric gTM satisfies (I) and (Bk−1).

Proof (Bk−1) follows immediately from [14], p.130, equation (2). We proved in [49] (I)
for principal fiber bundles P (M,G) with respect to the Kaluza-Klein metric

gω(X,Y ) = gM (π∗X,π∗Y ) + 〈ω(X), ω(Y )〉g,

gM with (I) and (Bk), ω with (Bk). A similar proof can also be performed in our case
here.

Corollary 14.8 For k − 2 ≥ r > n
2 + 1

Ωr(M,TM) and Ωr(TM, T 2M),

Ω∞,r(M,TM) and Ω∞,r(M,T 2M)

are well defined.

Proposition 14.9 Assume k − 1 ≥ r > n
2 + 1. Then there exists a Ck−1−r+1 = Ck−r

embedding

ϕ : TΩr(M,M) −→ Ωr(M,TM).

Corollary 14.10 Assume k − 2 ≥ r > n
2 + 1. Then there exists a canonical Ck−1−r-

embedding

ψ : T 2Ωr(M,M) −→ Ωr(M,T 2M).

Remark 14.11 ϕ is not surjective. Let (Mn, g) = (Rn, gRn), TRn = Rn × Rn and e
be the section x ∈ Rn 7→ (x, (1, 0, . . . , 0)) ∈ TxRn. Then e ∈ C∞,r(Rn, TRn), for
arbitrary r, in particular e ∈ Ωr(Rn, TRn). If e ∈ Imϕ then e should be a Sobolev vector
field covering idRn . This is impossible since e is not even square integrable.
Proposition 14.12 TDr is Ck−r-diffeomorphic to

{Xf ∈ Imϕ ⊂ Ωr(M,TM)|Xf covers f ∈ Dr(M)}.

T 2Dr is Ck−r−1-diffeomorphic to

{V ∈ Imψ ⊂ Ωr(M,T 2M)|V covers Xf}.

Proof The assertion follows immediately from the openness ofDr ⊂ Ωr(M,M), TDr ⊂
TΩr(M,M), T 2Dr ⊂ T 2Ωr(M,M).

Remark 14.13 All assertions above remain true if we replace Ωr(M,N) by Ω∞,r(M,N),
and Dr(M) by D∞,r(M).

In the sequel, we identify TDr or T 2Dr with their corresponding images.
Now we would like to define for V ∈ T 2Dr ⊂ Ωr(M,T 2M)

K̄(V ) := K ◦ V

and a covariant derivative ∇̄ by

∇̄X̄ Ȳ := K̄(Ȳx(X̄)).
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But, there arise several serious difficulties. K̄ is defined by left multiplication by
K. To obtain a certain differentiability class of K̄, we should have an ω-lemma. In
the compact case, all considered manifolds are Hilbert manifolds of class C∞, an α -
and ω - lemma are very easily established. Ωr(M,M) is of class Ck−r+1 , Ωr(M,TM)
of class Ck−1−r+1 = Ck−r, and Ωr(M,T 2M) of class Ck−r−1. The same holds for
Ω∞,r(M,M), Ω∞,r(M,TM), and Ω∞,r(M,T 2M), assuming k − 2 ≥ r > n

2 + 1.
Therefore, considering the Cs-property of ωK , ωK(V ) = K ◦V , this does not make sense
if k − r − 1 < s. It does make sense for k − 1− (r + s) > s ≥ 1.
Proposition 14.14 Assume k − 1 − (r + s) > s ≥ 1, r > n

2 + 1. Then K̄(V ) :=
K ◦ V = ωK(V ) is a Cs-map ωK : T 2Dr+s −→ TDr or ωK : T 2D∞,r+s −→ TD∞,r,
respectively.

Corollary 14.15 If k = ∞ then Dr, TDr , and T 2Dr are smooth manifolds and K̄ is an
everywhere defined smooth connection map.

This follows from proposition 14.14 and the fact that the Christoffel symbols and hence
K are bounded of arbitrarily high order.

Now let X̄ ∈ C2(TDr+s) be a C2-vector field. We say X̄ is right invariant if

X̄(f) = X̄(id) ◦ f

for all f ∈ Dr+s. Defining X := X̄(id), we can write X̄(f) = X ◦ f .
Lemma 14.16 Let Xf ∈ TfDr+s = Ωr+s(f∗M). Then Xf ◦ f−1 is a vector field
along idM and Xf ◦ f−1 ∈ Ωr+s(TM). In particular, Xf ◦ f−1 is a C2-vector field if
r + s > n

2 + 2.

We refer to [54] for the simple proof.
Now, we define a weak Riemannian metric on Dr+s, D∞,r+s and establish that ∇̄ is

the corresponding Levi-Civita connection. Set for V,W ∈ TfDr+s = Ωr+s(f∗TM)

〈V,W 〉 = g0(V,W ) =
∫
M

(Vf(x),Wf(x))f(x) dvolx(g) =

=
∫
M

(V,W ) ◦ f(x) dvolx(g). (14.3)

The integral (14.3) converges according to the definition of TfDr+s. Using charts in
Dr+s, it is easy to see that g0 is a weak Cs metric. Remember k − (r + s)− 1 > s.
Remark 14.17 g0 only gives the L2 - topology of each tangent space. To obtain the actual,
i. e. the Sobolev topology, we should work with the corresponding strong Riemannian
metric.

Lemma 14.18 Let X̄, Ȳ , Z̄ be right invariant C1 vector fields on Dr+s. Then

g0(∇̄Z̄X̄, Ȳ ) + g0(∇̄Z̄ Ȳ , X̄) = Z̄g0(X̄, Ȳ ).

This is lemma 11.12 from [39].
Lemma 14.19 Let X̄, Ȳ , Z̄ ∈ C2(TDr+s), f ∈ Dr+s, r > n

2 + 1, s ≥ 2. Then

g0(∇̄Z̄X̄, Ȳ )(f) + g0(∇̄Z̄ Ȳ , X̄)(f) = Z̄g0(X̄, Ȳ )(f). (14.4)

The same holds for D∞,r+s, f ∈ D∞,r+s.



274 Partial differential equations on closed and open manifolds

Proof In [39], equation (14.4) was proved under the assumption that X̄(f) ◦ f−1, Ȳ (f) ◦
f−1, Z̄(f)◦f−1 ∈ C∞(TM). What was really needed there was X̄(f)◦f−1, Ȳ (f)◦f−1

, Z̄(f) ◦ f−1 ∈ C1(TM). But, we conclude from lemma 14.16 above X̄(f) ◦ f−1,
Ȳ (f) ◦ f−1, Z̄(f) ◦ f−1 ∈ C2(TM). Hence, the proof of [39] carries over to our case. It
essentially uses lemma 14.18.

Corollary 14.20 ∇̄ is the Levi-Civita connection for Cs vector fields onD∞,r, r > n
2 +1.

Proof ∇̄ is defined for Cs vector fields onD∞,r+s, r > n
2 +1, s ≥ 2, k−(r+s)−1 > s.

Equation (14.4) shows that under these conditions it is the Levi- Civita connection for such
vector fields and g0 restricted toD∞,r+s. ButD∞,r+s is dense inD∞,r and we can extend
(14.4) to D∞,r.

Remark 14.21 This is the step where we must go from Dr to D∞,r. Dr+s is probably not
dense in Dr and we cannot conclude as in corollary (14.20).
Proposition 14.22 Let V̄0 ∈ TD∞,r, γ̄V̄0

be the geodesic in D∞,r with initial condition
V̄0. Then γ̄V̄0

: I −→ D∞,r is given by the map

t 7→ (x 7→ γV̄0(x)(t)).

where γV̄0(x) is the geodesic in M with initial condition V̄0(x) ∈ TM .

Proof (∇̄ ˙̄γV̄0
˙̄γV̄0

)(t)(x) = K̄(¨̄γV̄0
(t))(x) = K ◦ ¨̄γV̄0

(t)(x) = K(¨̄γV̄0(x)(t)) = 0.

Hence, a curve γ(t) in D∞,r is a geodesic in D∞,r if and only if the associated curve
γ(t)(x) is a geodesic in M for all x ∈M .

Now, we want to study the geometry ofD∞,rω,0 ≡ Drω,0 and start with ω = µ the volume
form of (Mn, g). Then it follows immediately from the proof of theorem 14.5 that

TfD
∞,r
µ,0 = {X|X ◦ f−1 ∈ Ωr(TM), div(X ◦ f−1) = 0}.

For a vector Y denote by Y [ the corresponding 1-form, i.e. if Y = ηi ∂
∂ui then

Y [ = ηidu
i and (Y [)] = Y . Divergence freeness of Y is equivalent to δY [ = 0.

Under our assumption on σe, D∞,rµ,0 = Drµ,0 is a submanifold of D∞,r0 = Dr0. Hence, it is
endowed with an induced weak Riemannian metric. We want to describe explicitly the cor-
responding Levi-Civita connection. Consider the Laplace operator ∆ = δd : Ωr(M) −→
Ωr−2(M). The spectral assumption implies that Im d̄, Im δ̄, and Im ∆̄ are closed. More-
over, ker ∆ ∩ L2 = {0} according to vol(Mn, g) = ∞, and ∆ has a bounded inverse
∆−1.
Proposition 14.23 For V ∈ TidD∞,r0 let Pid(V ) := V − (d∆−1δ(V [))]. Then Pid is the
orthogonal projection Pid : TidD∞,r0 −→ TidD∞,rµ,0 associated to g0.

Proof One has to show

ImPid ⊂ TidD
∞,r,

P 2
id = Pid,

Pid(TidD
∞,r) = TidD

∞,r
µ ,

W ∈ kerPid, V ∈ ImPid implies g0(V,W ) = 0.

These assertions are easy calculations which are performed in the proof of Proposition
11.26 of [39]. They hold under our assumptions also in the noncompact case.
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Proposition 14.24 Assume k − r ≥ 2, 4r > n
2 + 1. Then P is a C2 - morphism of fiber

bundles.

Proof As we have already seen, for k − r ≥ 2, r > n
2 + 1, TD∞,r0 and TD∞,rµ,0 are

manifolds of at least class C2. First, it is clear that Pf is continuous with respect to the Ωr-
topology since Pid has this property and this property is preserved by right multiplication
with f−1 and after that with f . We see immediately thatP 2

f = Pf . Moreover, Pf is the pro-
jection onto TfD∞,rµ,0 with respect to g0 : Let W ∈ (TfD∞,rµ,0 )⊥g0 and X ∈ TD∞,r0 |TD∞,rµ,0

.
Then g0(PfX,W ) = g0(Pid(X ◦ f−1) ◦ f,W ) = g0(Pid(X ◦ f−1) ◦ f ◦ f−1,W ◦ f−1)
= g0(Pid(X ◦ f−1),W ◦ f−1) = 0, according to the fact that W ◦ f−1 ∈ (TidD∞,rµ,0 )⊥g0 .
Now, TD∞,r0 |D∞,rµ,0

/TD∞,rµ,0 is of class k − r since each element of the quotient is of class
k− r and TD∞,rµ,0 is a submanifold of TD∞,r0 . OnD∞,r0 g0 is a weak metric of class k− r.
Hence, the isomorphism (TD∞,rµ,0 )⊥g0 −→ TD∞,r0 |D∞,rµ,0

/TD∞,rµ,0 is of class k − r and
therefore also the projector P associated to the decomposition

TD∞,r0 |D∞,rµ,0
∼= TD∞,rµ,0 ⊕ (TD∞,rµ,0 )⊥g0

is of class k − r.

Proposition 14.25 ∇̃ := P ◦ ∇̄ is the Levi - Civita connection for g0|D∞,rµ,0
.

Proof Let X,Y ∈ C2(TD∞,r+sµ,0 ). Then

∇̃XY − ∇̃YX = P (∇̄XY − ∇̄YX) = P ([X,Y ])

and [X,Y ] ∈ C1(TD∞,r+sµ,0 ) since D∞,r+sµ,0 is a submanifold of D∞,r+s0 . Hence,
P ([X,Y ]) = [X,Y ], and ∇̃XY − ∇̃YX = [X,Y ], i.e. ∇̃ is torsion free. Let
X,Y, Z ∈ C2(TD∞,r+sµ,0 ). We consider them as vector fields on D∞,r+s0 , defined only
on the submanifold D∞,r+sµ,0 . Then, since ∇̄ is the Levi - Civita connection of g0,

Zg0(X,Y ) = g0(∇̄ZX,Y ) + g0(∇̄ZY,X). (14.5)

The components in (TD∞,r+sµ,0 )⊥g0 of ∇̄ZX , ∇̄ZY produce 0 in (14.5) since the second
component of the scalar products on the right hand side of (14.5) belongs to TD∞,r+sµ,0 .
Hence,

Zg0(X,Y ) = g0(P (∇̄ZX), Y ) + g0(P (∇̄ZY ), X).

i. e.

Zg0(X,Y ) = g0(∇̃ZX,Y ) + g0(∇̃ZY,X).

Using density arguments, we extend all formulas from D∞,r+sµ,0 to D∞,rµ,0 .
We come now to our application in hydrodynamics. We recall the Euler equations for

an incompressible, homogeneous fluid without viscosity

∂u

∂t
+∇u(t)u(t) = grad p, (14.6)
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divu(t) = 0, (14.7)

where u = u(x, t) is a time dependent C1 vector field on (Mn, g), ∇ = ∇g , div =
div dvolx(g). Additionally, we assume u(t) ∈ Ωr(TM) for all t, which means that the
fluid moves very slowly at infinity, r > n

2 + 1. u(t) defines a 1-parameter family of
diffeomorphisms ft defined by

dfs
ds
|s=t = u(t) ◦ ft.

The ft remain in the identity component of D∞,rµ , since f0 = id, divu = 0, and µ =
dvolx(g).
Theorem 14.26 Assume (Mn, g) with (I) and (Bk), inf σe(∆1|(ker ∆1)⊥) > 0, k − 2 ≥
r > n

2 + 1. Then u(t) satisfies the Euler equations (14.6) iff {ft}t is a geodesic in D∞,rµ,0 .

Proof Under the above assumptions, the proof is the same as in the compact case. Assume
(14.6) and apply Pid to it. This yields

Pid

(
∂u

∂t

)
+ Pid(∇uu) = 0

and, since divu = 0, Pid

(
∂u
∂t

)
= ∂u

∂t ,

∂u

∂t
= −Pid(∇uu).

We differentiate (14.6) and the equation ft ◦ f−1
t = id, and obtain

d2f

ds2
|s=t = u∗(t) ◦ u(t) ◦ f(t) +

∂u(t)
∂t
◦ f(t) =

= u∗(t) ◦ u(t) ◦ ft − Pid(∇u(t)u(t)) ◦ ft,

where we identify Pid(∇u(t)u(t)) ◦ ft with its horizontal lift in T 2D∞,r−1
µ,0 . Using

Pid(∇u(t)u(t)) ◦ ft = P (∇u(t)u(t) ◦ ft)

and applying K̃ = P ◦ K̄, we obtain

K̃

(
d2f

ds2
|s=t

)
= PK̄[u∗(t) ◦ u(t) ◦ ft − Pid(∇u(t)u(t) ◦ ft)]

= P (∇u(t)u(t) ◦ ft)− P (∇u(t)u(t) ◦ ft) = 0,

i.e. {ft} is a geodesic in D∞,rµ,0 . We omit the converse direction and refer to [41], 187-
188.

Corollary 14.27 Assume (Mn, g) with (I), (Bk), inf σe(∆1|(ker ∆1)⊥) > 0. (These con-
ditions are automatically satisfied if Mn is compact.) Then for small t the Euler equations
(14.6) have a unique solution u ∈ Ωr(TM) if k ≥ r > n

2 + 1.

Proof This follows from the local existence of geodesics in Hilbert manifolds.
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15 The Ricci flow

After Perelman’s spectacular papers on the solution of Thurston’s geometrization conjec-
ture, the Ricci flow is again in the center of the common interest. In the meantime, there
appeared many papers concerning the geometric procedures of surgery and geometric im-
plications. We will not contribute to this. The aim of this short contribution is to discuss
the fundamental analytical questions connected with the Ricci flow. As we already dis-
cussed in section 11, one fundamental approach solving non-linear PDEs is to establish an
appropriate non-linear evolution equation and to perform and to study lim

t→∞
. For harmonic

maps, this has been done first by Eells/Sampson in [42]. Similar approaches have been
established for gauge theory.

The question for a ”natural evolution” of the initial metric g0 on a manifold Mn led R.
Hamilton 1982 to the equation

∂gij
∂t

= −2Rij , (15.1)

where Rij = Rij(g) = Ric (g)ij is the Ricci tensor.
Hamiltion has chosen the right hand side for much the same reason that Einstein intro-

duced the Ricci tensor into his theory of gravitation. He needed a symmetric 2-index tensor
which arises naturally from the metric tensor and its first and second derivatives. The Ricci
tensor is essentially the only possibility. Moreover, one has to choose the negative sign on
the right hand side to obtain a well behaved forward in time equation.
Example 15.1 Let (Mn, g) = (Srr , gstandard) = (Snr , r

2 · gst(Sn1 )), gij = r2 · gij(Sn1 ),
Rij = (n − 1)gij(Sn1 ). If we make the ansatz that the time dependence is contained only
in r = r(t), then (15.1) becomes

d(r2)
dt

= −2(n− 1),

hence r2(t) = r2(0)− 2(n− 1)t, i.e. the sphere Snr collapses to a point in finite time.
This kind of collapsing can be prevented if one restricts to evolution with constant

volume.
Denote by R = R(g) the scalar curvature and by r = r(g) = 1

vol (Mn,g)

∫
M

R dvolx(g)

its mean value. Consider the equation

∂gij
∂t

=
2
n
rgij − 2Rij . (15.2)

Proposition 15.2 If gij(t) solves (15.2) such that vol (Mn, g(t)) < ∞ and R(g(t)) ∈
L1(Mn, g(t)) then vol (Mn, g(t)) is constant.

Proof dvolx(g(t)) =
√

det gij(t), ∂
∂t log(

√
det gij(t)) = 1

2g
ij ∂
∂tgij = r−R, according

to (15.2). On the other hand ∂
∂t log

√
det gij =

∂
∂t

√
det gij√

det gij
. This yields

0 =
∫
M

(r −R) dvolx(g) =
∂

∂t

∫
M

dvolx(g) =
∂

∂t
vol (M, g(t)).



278 Partial differential equations on closed and open manifolds

Corollary 15.3 The assertion of 15.2 holds if Mn is closed.

(15.2) is called the normalized evolution equation. Any solution of (15.1) implies a
solution of (15.2), as expressed by
Proposition 15.4 Let gij(t) be a solution of (15.1). Set

ψ(t)−
n
2 :=

∫
M

dvolx(g(t)),

t̃(t) :=

t∫
0

ψ(ξ)dξ,

g̃ij(t̃) := ψ(t(t̃))gij(t).

Then g̃ij(t̃) satisfies the differential equation

∂g̃ij

∂t̃
=

2
n
r̃(t̃)− 2R̃ij(t̃).

The proof is an easy calculation applying the chain rule.
Now the essential point is an existence theorem for the initial value problem

gij
∂t

= −2Rij , gij |t0 = o
gij . (15.3)

First we restrict to the case Mn closed. If the equation (15.1) would be strictly
parabolic (i.e. its linearization is) than we would get by standard theorems for 0 ≤ t ≤ ε a
unique solution of 15.4. Unfortunately, (15.2) is not strictly parabolic.

Consider an evolution equation

∂f

∂t
= E(f), (15.4)

E(f) a non-linear differential operator of degree 2 in f (15.4) has the linearization

f̃

∂t
= (DE(f))(f̃),

where f̃ is a variation of f .
We say E is (strictly) parabolic if its linearization is (strictly) parabolic around an f .

This is the case if and only if all eigenvalues of σDE(f)ξ have (strictly) positive real parts
when ξ 6= 0.
Lemma 15.5 Let E(gij) = −2Rij . Then

DE(gij)g̃jk = −2R̃jk

= ghi
{
∂2g̃jk
∂xh∂xi

− ∂2g̃hj
∂xi∂xk

− ∂2g̃ik
∂xh∂xj

+
∂2g̃hi
∂xt∂xk

}
+ lower order terms.

(15.5)
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Proof This is an easy calculation.
We obtain from (15.5)

σLDE(gjk)(ξ)g̃jk = ghi
{
ξhξig̃jk − ξiξkg̃hj − ξhξj g̃ik + ξjξkg̃hi

}
.

Choose a coordinate system so that gjk(point) = δjk, ξ1 = 1, ξi = 0 for i 6= 1. Then with
Tjk = g̃jk,

[σLDE(g)(ξ)T ]jk = Tjk for j 6= 1, k 6= 1,
[σLDE(g)(ξ)T ]1k = 0 for k 6= 1,
[σLDE(g)(ξ)T ]11 = T22 + · · ·+ Tnn.

Hence σDE(g)(ξ) is not injective, has an eigenvalue = 0, (15.1) is not strictly parabolic.
There are two explanations for this fact. Consider the equation Rij = 0. The space

of solutions has either zero or infinite dimension since with a solution g also f∗g, f ∈
Diff (M), is a solution. If (15.1) would be parabolic then Rij = 0 would be elliptic with
finite dimensional space of solutions (since Mn is closed). Another explanation comes
from the second Bianchi identity.

Now one has to solve (15.3), having in mind that (15.1) is not strictly parabolic. There
are two existence proofs. One classical, in a certain sense canonical proof by Hamilton as
presented in [74] and the other much shorter by De Turk, first presented in [39]. We give
an outline of Hamilton’s proof.

Consider an evolution equation ∂f
∂t = E(f), E(f) a non-linear differential operator

of order 2 in f , E : C∞(M,U) −→ C∞(M,F ), where F −→ M is a vector bundle,
U ⊂ F open. Let G −→ M be a vector bundle, L(g)h a differential operator of first
order in g and h, g ∈ C∞(M,U), h ∈ C∞(M,F ), L(g)h ∈ C∞(M,G). Suppose
that Q(f) := L(f)E(f) has at most degree 1 in f . Then L(f) is called an integrability
condition for ∂f∂t = E(f).

We calculate the linearizations. Linearization in E yields L(f)DE(f)f̃ , linearization
in L yields DL(f){E(f), f̃}. We get

L(f)DE(f)f̃ +DL(f){E(f), f̃} = DQff̃.

DL(f){E(f), f̃}, DQff̃ have only degree 1 in f̃ , but L(f)DE(f)f̃ is of degree 3 in the
derivations of f̃

σLL(f)(ξ) ◦ σLDE(f)ξ = 0,
ImσLDE(f)(ξ) ⊆ kerσLL(f)(ξ).

Theorem 15.6 Let Mn be closed and

∂f

∂t
= E(f) (15.6)

be an evolution equation with integrability condition L(f), ImσLDE(f)(ξ) ⊆
kerσLL(f)(ξ). Suppose that L(f)E(f) = Q(f) has degree 1 and all the eigenval-
ues of the eigenspaces of σLDE(f)(ξ) in kerσL(f)(ξ) have strictly positive real points.
Then the initial value problem f |t=0 = f0 has a unique smooth solution for a short time
0 ≤ t ≤ ε, where ε may depend on f0.
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Outline of the proof. First consider the equation

∂f

∂t
− E(f) = h, 0 ≤ t ≤ 1, f |t=0 = f0.

Assertion. Then there exists for every f0 sufficiently near to f0 and h sufficiently near
to h a unique solution f ,

∂f

∂t
− E(f) = h, 0 ≤ t ≤ ε, f |t=0 = f0.

The assertion implies theorem 15.6: First one solves the equation ∂f
∂t − E(f), f |t=0 = f0

at t = 0 by a function f (determine the formal Taylor series from the PDE and the initial
condition). Let h = ∂f

∂t − E(f). The formal Taylor series of h vanishes at t = 0. Now
perturb h by h such that h = 0 for 0 ≤ t ≤ ε, ε sufficiently small. We infer from the
assertion that there exists f satisfying ∂f

∂t − E(f) = h, f |t=0 = f0, i.e. f solves the
evolution equation for 0 ≤ t ≤ ε.

One has to prove the assertion. Consider for this the operator E : C∞(M ×
[0, 1], F ) −→ C∞(M × [0, 1], F )× C∞(M,F ),

E(f) =
(
∂

∂t
− E(f), f |t=0

)
.

E has the linearization

DE(f)f̃ =

(
∂f̃

∂t
−DE(f)f̃ , f̃ |t=0

)
.

Aim. To show that the linearized equation ∂f̃
∂t −DE(f)f̃ = h̃, f̃ |t=0 = f̃0 has a unique

solution f̃ , and the solution f̃ is a smooth tame function of h̃ and f̃0. Then, according the
Nash-Moser inverse function theorem, one gets a solution for the non-linearized equation,
i.e. 15.6 is done.

Hence there remains 3 tasks,
1) solution of the linearized problem,
2) proof, that the assumptions of the Nash-Moser theorem are fulfilled,
3) appplication of the Nash-Moser theorem.
For reasons of space we cannot perform these steps which are not too complicated and

we refer to [74].
As we mentioned above, a substantially simpler and shorter existence proof has been

established by DeTurck. We give a brief outline.
Fix a background metric ĝ on M . Then

(∇g −∇ĝ)ijk = Di
jk = Γijk − Γ̂ijk =

1
2

∑
l

gil(gjl;k + gkl;j − gjk;l), (15.7)

where ; = ∇ĝ , and

Rij − R̂ij =
∑
k

{
Dk
ij;k −Dk

ki;j +
∑
l

(Dk
klD

l
ji −Dk

jlD
l
ki)

}
. (15.8)
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Using (15.7), one can calculate the second order terms of (15.8) as

−1
2

∑
k,l

gklgij;kl +
1
2

∑
k,l

gkl(gil;jk + gjl;ik − gkl;ij).

Define the vector field X = X(g) by

Xp(g) = −
∑
i,k,l

gpigkl(gik;l −
1
2
gkl;i

and the elliptic operator F (g) by

Fij(g) =
∑
k,l

gklgij;kl +Qij(g,∇ĝg),

where Q is a quadratic polynomial in the indicated variables. Ric (g) then can be written
as

Ric (g) = Ric (ĝ)− 1
2
F (g)− 1

2
Lxg. (15.9)

Consider now the initial value problem

∂g

∂t
= F (g)− 2Ric (g),

g|t=0 = g0. (15.10)

(15.10) is in fact a quasilinear parabolic equation and we have by standard theorems (as
cited above) a solution for small t. Let Φt : M −→ M be the flow of the vector field
X(t) = X(g(t)) and set g(t) := Φ∗t g(t). Then

∂g

∂t
= Φ∗t

(
∂g

∂t

)
+ Lx(t)g(t)

and, according to (15.9) and (15.10),

Φ∗t

(
∂g

∂t

)
= Φ∗t (−2Ric (g)− Lx(g)) = 2Ric (g)− Lx(g),

i.e.

∂g

∂t
= −2Ric (g(t)).

The reason for the non-parabolicity of ∂g
∂t = −2Ric (g) was the gauge invariance under

Diff (M). Fixing the gauge {Φt}t, reduced the problem to a parabolic problem.
Until now, we restricted to the case Mn closed. In [108], [109] W.-X. Shi extended the

short time existence under certain conditions to open complete manifolds.
Theorem 15.7 Let (Mn, g0) be open, complete, satisfying (B0(g0)), |Rijkl|2 ≤ k0. Then
there exists a constant T (n, k0) > 0 such that the initial value problem

∂gij
∂t

= −2Rij ,
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gij |t=0 = g0,ij

has for 0 ≤ t ≤ T (n, k0) a smooth solution satisfying the following estimates: For any
m ≥ 0 there exists cm = cm(m, k0) such that

sup
x∈M
|∇mRijkl(x, t)|2 ≤

cm
tm
, 0 < t ≤ T (n, k0).

It is well known that under orthogonal transformations the curvature tensor splits into
three components,

Rm = {Rijkl} = W + V + U

where W = {Wijkl} is the Weyl conformal curvature tensor and V = {Vijkl} and U =
{Uijkl} denote the traceless Ricci part and the scalar curvature part, respectively. With
o

Rij = Rij − 1
ngij the explicit expressions are well known.

Set
o

Rm = {
o

Rijkl} = {Rijkl − Uijkl} = V +W .
Theorem 15.8 Let (Mn, g)0 be open, complete, n ≥ 3. For any c1, c2 > 0 and δ > 0 there
exists ε = ε(n, c1, c2, δ) > 0 such that the following holds: If vol g0(Bγ(x)) ≥ c1 · γn

for all x ∈ M and |
o

Rm(g0)|2 ≤ εR2, 0 < R ≤ c2/dist(X0,X)2+δ for all x ∈ M then the
initial value problem

∂gij
∂t

= −2Rij ,

gij |t=0 = g0,ij

has a solution for all t ≥ 0, the metric g(t) converges with respect to the C∞-topology to
a metric g(∞) such that Rm(g(∞)) = {Rijkl(∞)} ≡ 0 on M .

Concerning closed 3-manifolds, the papers of Perelmann contain many striking results,
but their discussion is outside of this contribution.

Our goal was a certain survey on PDEs on manifolds, and we stop here.
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[19] I. Buttig: Spectral approximation by L2 discretization of the Laplace operator on

manifolds of bounded geometry Ann. Global Anal. Geom. 6 (1988) 55-107
[20] I. Buttig, J. Eichhorn: The heat kernel for p–forms on manifolds of bounded geom-

etry Acta Sci. Math. 55 (1991) 33–51
[21] G. Carron: Index theorems for noncompact manifolds J. Reine Angew. Math. 541

(2001) 81–115
[22] G. Carron: L2–cohomology of manifolds with flat ends GAFA 13 (2003) 366–395
[23] I. Chavel: Eigenvalues in Riemannian geometry (New York, Academic Press, 1984)
[24] J. Cheeger: On the Hodge theory of Riemannian pseudomanifolds In: Proc. Symp.

Pure Math. (36, 1980) 91–146
[25] J. Cheeger, M. Gromov, M. Taylor: Finite propagation speed, kernel estimates for

functions of the Laplacian, and geometry of complete Riemannian manifolds J. Diff.
Geom. 17 (1983) 15–53

[26] J. Cheeger, S. T. Yau: A lower bound for the heat kernel Comm. Pure Appl. Math.
34 (1981) 465–480

[27] S. Y. Cheng, P. Li, S. T. Yau: On the upper estimate of the heat kernel of complete
Riemannian manifold Amer. J. Math. 103 (1981) 1021–1063

[28] A. Connes, H. Moscovici: The L2.–index theorem for homogeneous spaces of Lie
groups Ann. Math. 115 (1982) 291–330

[29] D. De Turck: Deforming metrics in direction of their Ricci tensors J. Diff. Geom 18
(1983) 157–162



284 Partial differential equations on closed and open manifolds

[30] E. B. Davies: Explicit constants for Gaussian upper bounds at heat kernels Amer. J.
Math. 109 (1987) 319–334
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1 Introduction

The field of spectral geometry is a vibrant and active one. In these brief notes, we will
sketch some of the recent developments in this area. Our choice is somewhat idiosyncratic
and owing to constraints of space necessarily incomplete. It is impossible to give a com-
plete bibliography for such a survey. We refer Carslaw and Jaeger [41] for a comprehensive
discussion of problems associated with heat flow, to Gilkey [54] and to Melrose [91] for
a discussion of heat equation methods related to the index theorem, to Gilkey [56] and to
Kirsten [84] for a calculation of various heat trace and heat content asymptotic formulas,
to Gordon [66] for a survey of isospectral manifolds, to Grubb [73] for a discussion of
the pseudo-differential calculus relating to boundary problems, and to Seeley [116] for an
introduction to the pseudo-differential calculus. Throughout we shall work with smooth
manifolds and, if present, smooth boundaries. We have also given in each section a few ad-
ditional references to relevant works. The constraints of space have of necessity forced us
to omit many more important references than it was possible to include and we apologize

8 B.V. .
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in advance for that.
We adopt the following notational conventions. Let (M, g) be a compact Riemannian

manifold of dimension m with smooth boundary ∂M . Let Greek indices µ, ν range from
1 to m and index a local system of coordinates x = (x1, ..., xm) on the interior of M .
Expand the metric in the form ds2 = gµνdx

µ◦dxν were gµν := g(∂xµ , ∂xν ) and where we
adopt the Einstein convention of summing over repeated indices. We let gµν be the inverse
matrix. The Riemannian measure is given by dx := g dx1...dxm for g :=

√
det(gµν).

Let ∇ be the Levi-Civita connection. We expand ∇∂xν ∂xµ = Γνµσ∂xσ where Γνµσ

are the Christoffel symbols. The curvature operatorR and corresponding curvature tensor
R are may then be given by R(X,Y ) := ∇X∇Y − ∇Y∇X − ∇[X,Y ] and given by
R(X,Y, Z,W ) := g(R(X,Y )Z,W ).

We shall let Latin indices i, j range from 1 to m and index a local orthonormal frame
{e1, ..., em} for the tangent bundle of M . Let Rijkl be the components of the curvature
tensor relative to this base; the Ricci tensor ρ and the scalar curvature τ are then given by
setting ρij := Rikkj and τ := ρii = Rikki. We shall often have an auxiliary vector bundle
V and an auxiliary connection given on V . We use this connection and the Levi-Civita
connection to covariantly differentiate tensors of all types and we shall let ‘;’ denote the
components of multiple covariant differentiation.

Let dy be the measure of the induced metric on the boundary ∂M . We choose a local
orthonormal frame near the boundary of M so that em is the inward unit normal. We let
indices a, b range from 1 tom−1 and index the induced local frame {e1, ..., em−1} for the
tangent bundle of the boundary. Let Lab := g(∇eaeb, em) denote the second fundamental
form. We sum over indices with the implicit range indicated. Thus the geodesic curvature
κg is given by κg := Laa. We shall let ‘:’ denote multiple tangential covariant differentia-
tion with respect to the Levi-Civita connection of the boundary; the difference between ‘;’
and ‘:’ being, of course, measured by the second fundamental form.

2 The geometry of operators of Laplace and Dirac type

In this section, we shall establish basic definitions, discuss operators of Laplace and of
Dirac type, introduce the DeRham complex, and discuss the Bochner Laplacian and the
Weitzenböch formula; [55] provides a good reference for the material of this section.

Let D be a second order partial differential operator on the space of smooth sections
C∞(V ) of a vector bundle V overM . ExpandD = −{aµν∂xµ∂xν +aσ∂xσ +b}where the
coefficients {aµν , aµ, b} are smooth endomorphisms of V ; we suppress the fiber indices.
We say that D is an operator of Laplace type if aµν = gµν id. A first order operator A
on C∞(V ) is said to be an operator of Dirac type if A2 is an operator of Laplace type.
If we expand A = γν∂xν + γ0, then A is an operator of Dirac type if and only if the
endomorphisms γν satisfy the Clifford commutation relations γνγµ + γµγν = −2gµν id.

Let A be an operator of Dirac type and let ξ = ξνdx
ν be a smooth 1-form on M .

We let γ(ξ) = ξνγ
ν define a Clifford module structure on V ; this is independent of the

particular coordinate system chosen. We can always choose a fiber metric on V so that γ
is skew-adjoint. We can then construct a unitary connection∇ on V so that∇γ = 0. Such
a connection is called compatible. If ∇ is compatible, we expand A = γν∇∂xν + ψA; the
endomorphism ψA is tensorial and does not depend on the particular coordinate system
chosen; it does, of course, depend on the particular compatible connection chosen.
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2.1 The DeRham complex

The prototypical example is given by the exterior algebra. Let C∞(ΛpM) be the space
of smooth p forms. Let d : C∞(ΛpM) → C∞(Λp+1M) be exterior differentiation and
let δ = d∗ be the adjoint operator, interior differentiation. If ξ is a cotangent vector,
let ext(ξ) : ω → ξ ∧ ω denote exterior multiplication, and let int(ξ) be the dual, interior
multiplication. Let γ(ξ) := ext(ξ)−int(ξ) define a Clifford module on the exterior algebra
Λ(M). Since d + δ = γ(dxν)∇∂xν , d + δ is an operator of Diract type. The associated
Laplacian ∆M := (d+ δ)2 = ∆0

M ⊕ ...⊕∆p
M ⊕ ...⊕∆m

M decomposes as the direct sum
of operators of Laplace type ∆p

M on the space of smooth p forms C∞(ΛpM). One has
∆0
M = −g−1∂xµgg

µν∂xν .
It is possible to write the p-form valued Laplacian in an invariant form. Extend the

Levi-Civita connection to act on tensors of all types. Let ∆̃Mω := −gµνω;µν define the
Bochner or reduced Laplacian. Let R give the associated action of the curvature tensor.
The Weitzenböck formula then permits us to express the ordinary Laplacian in terms of the
Bochner Laplacian in the form ∆M = ∆̃M + 1

2γ(dxµ)γ(dxν)Rµν . This formalism can
be applied more generally:
Lemma 2.1 Let D be an operator of Laplace type on a Riemannian manifold. There
exists a unique connection∇ on V and there exists a unique endomorphism E of V so that
Dφ = −φ;ii −Eφ. If we express D locally in the form D = −{gµν∂xν∂xµ + aµ∂xµ + b}
then the connection 1-form ω of ∇ and the endomorphism E are given by

ων = 1
2 (gνµaµ + gσεΓσεν id) and E = b− gνµ (∂xνωµ + ωνωµ − ωσΓνµσ) .

Let V be equipped with an auxiliary fiber metric. Then D is self-adjoint if and only if
∇ is unitary and E is self-adjoint. We note that if D is the Spin Laplacian, then ∇ is the
spin connection on the spinor bundle and the Lichnerowicz formula [86] yields, with our
sign convention, that E = − 1

4τ id where τ is the scalar curvature.

3 Heat trace asymptotics for closed manifolds

Throughout this section, we shall assume that D is an operator of Laplace type on a closed
Riemannian manifold (M, g). We shall discuss the L2 spectral resolution if D is self-
adjoint, define the heat equation, introduce the heat trace and the heat trace asymptotics,
present the leading terms in the heat trace asymptotics, and discuss the form valued Lapla-
cian; [41, 54, 116] are good references for the material of this section and other references
will be cited as needed.

We suppose thatD is self-adjoint. There is then a complete spectral resolution ofD on
L2(V ). This means that we can find a complete orthonormal basis {φn} for L2(V ) where
the φn are smooth sections to V which satisfy the equation Dφn = λnφn. Let ||k denote
the Ck-norm.
Theorem 3.1 Let φ ∈ L2(V ). Expand φ =

∑∞
n=1 cnφn in the L2 sense where one has

cn :=
∫
M

(φ, φn). If φ ∈ C∞(V ), then this series converges in the Ck topology for any
k; φ ∈ C∞(V ) if and only if limn→∞ nkcn < ∞ for any k. The set of eigenvalues
is discrete. Each eigenvalue appears with finite multiplicity and there are only a finite
number of negative eigenvalues. If we enumerate the eigenvalues so that λ1 ≤ λ2 ≤ ...,
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then λn ∼ n2/m as n→∞. There exist constants νk > 0 and Ck > 0 so that one has
norm estimates ||φn||k ≤ Cknνk for all k, n.

This yields the familiar Weyl asymptotic formula [127] giving the eigenvalue growth.
For example, if D = −∂2

θ on the circle, then the eigenvalues grow quadratically since
the associated spectral resolution is given by {n2, 1√

2π
einθ}n∈Z. The L2 expansion of

Theorem 3.1 in this setting then becomes the usual Fourier series expansion for φ and
one has the familiar result that a function on the circle is smooth if and only if its Fourier
coefficients are rapidly decreasing.

Let the initial temperature distribution be given by φ ∈ L2(V ). Impose the classical
time evolution for the subsequent temperature distribution without additional heat input:

(∂t +D)u = 0 for t > 0 and lim
t↓0

u(t, ·) = φ in L2 .

Then u(t, ·) = e−tDφ where e−tD is given by the functional calculus. This operator is
infinitely smoothing; we have u(t, x) =

∫
M
K(t, x, x̃)φ(x̃)dx̃ for a smooth kernel function

K. If D is self-adjoint, let {λn, φn} be a spectral resolution of D. Then

K(t, x, x̃) :=
∑
n

e−tλnφn(x)⊗ φn(x̃) : Vx̃ → Vx .

Theorem 3.1 implies this series converges uniformly in the Ck topology for t ≥ ε > 0.
Let F ∈ C∞(End(V )) be an auxiliary endomorphism used for localizing; F is of-

ten referred to as a smearing endomorphism. The localized heat trace TrL2

{
Fe−tD

}
is

analytic for t > 0. As t ↓ 0, there is a complete asymptotic expansion [117]

TrL2

{
Fe−tD

}
∼
∞∑
n=0

an(F,D)t(n−m)/2 .

The coefficients an(F,D) are the heat trace asymptotics; an(F,D) = 0 if n is odd.
In Section 5 we will consider manifolds with boundary and the corresponding invariants
are non-trivial for n both even and odd. There exist locally computable endomorphisms
eMn (D)(x) of V which are defined for all x ∈M so that

an(F,D) =
∫
M

Tr{FeMn (D)}(x)dx . (3.a)

The invariants eMn (D) are uniquely characterized by Equation (3.a).
We use Lemma 2.1 to express D = D(g,∇, E) where∇ is a uniquely defined connec-

tion on V and where E is a uniquely defined auxiliary endomorphism of V . Let Ωij be the
endomorphism valued components of the curvature defined by the connection∇.
Theorem 3.2 Let F ∈ C∞(End(V )) be a smearing endomorphism.

(1) a0(F,D) = (4π)−m/2
∫
M

Tr{F}dx.

(2) a2(F,D) = (4π)−m/2 1
6

∫
M

Tr{F (6E + τ id)}dx.

(3) a4(F,D) = (4π)−m/2 1
360

∫
M

Tr{F (60E;kk + 60τE + 180E2

+12τ ;kk id +5τ2 id−2|ρ|2 id +2|R|2 id +30ΩijΩij)}dx.
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(4) a6(F,D) =
∫
M

Tr{F (( 18
7! τ ;iijj + 17

7! τ ;kτ ;k − 2
7!ρij;kρij;k −

4
7!ρjk;nρjn;k

+ 9
7!Rijkl;nRijkl;n+ 28

7! ττ ;nn− 8
7!ρjkρjk;nn+ 24

7! ρjkρjn;kn+ 12
7!RijklRijkl;nn

+ 35
9·7!τ

3 − 14
3·7!τ |ρ|

2 + 14
3·7!τ |R|

2 − 208
9·7!ρjkρjnρkn −

64
3·7!ρijρklRikjl

− 16
3·7!ρjkRjnliRknli −

44
9·7!RijknRijlpRknlp −

80
9·7!RijknRilkpRjlnp) id

+ 1
45Ωij;kΩij;k + 1

180Ωij;jΩik;k + 1
60Ωij;kkΩij + 1

60ΩijΩij;kk− 1
30ΩijΩjkΩki

− 1
60RijknΩijΩkn − 1

90ρjkΩjnΩkn + 1
72τΩknΩkn + 1

60E;iijj + 1
12EE;ii

+ 1
12E;iiE + 1

12E;iE;i + 1
6E

3 + 1
30EΩijΩij + 1

60ΩijEΩj + 1
30ΩijΩijE

+ 1
36τE;kk + 1

90ρjkE;jk + 1
30τ ;kE;k − 1

60E;jΩij;i + 1
60Ωij;iE;j + 1

12EEτ

+ 1
30Eτ ;kk + 1

72Eτ
2 − 1

180E|ρ|
2 + 1

180E|R|
2)}dx.

There are formulas available for a8 and a10; we refer to Amsterdamski, Berkin, and
O’Connor[1], to Avramidi [9], and to van de Ven [124] for further details.

There is also information available about the general form of the heat trace asymptotics
an for all values of n; we refer to Avramidi [10] and to Branson et al. [36] for further
details. These formulas play an important role in the compactness results we shall discuss
presently in Theorem 4.6. Let D be an operator of Laplace type on a closed Riemannian
manifold M . Let ∆E = −E;kk. Set εn = (−1)n/{2n+1 · 1 · 3 · ... · (2n+ 1)}.
Theorem 3.3 Let ‘+...’ denote lower order terms.

(1) If n ≥ 1, then a2n(F,D) = εn(4π)−m/2
∫
M

Tr{F (−(8n+ 4)∆n−1E

−2n∆n−1τ id +...}dx.

(2) If n ≥ 3, then a2n(D) = εn(4π)−m/2 Tr{(n2 − n− 1)|∇n−2τ |2 id

+2|∇n−2ρ|2 id +4(2n+ 1)(n− 1)∇n−2τ · ∇n−2E

+2(2n+ 1)∇n−2Ω · ∇n−2Ω +4(2n+ 1)(2n− 1)∇n−2E · ∇n−2E + ...}dx.

We note that Polterovich [109, 110] has introduced a formalism for computing in closed
form the heat trace asymptotics an for all n.

If one specializes these formulas for a0, a2, and a4 to the case in which D is the form
valued Laplacian, one has the following result of Patodi [106]. Introduce constants:

c(m, p) = m!
p!(m−p)! ,

c0(m, p) = c(m, p)− 6c(m− 2, p− 1),
c1(m, p) = 5c(m, p)− 60c(m− 2, p− 1) + 180c(m− 4, p− 2),
c2(m, p) = −2c(m, p) + 180c(m− 2, p− 1)− 720c(m− 4, p− 2),
c3(m, p) = 2c(m, p)− 30c(m− 2, p− 1) + 180c(m− 4, p− 2) .

Theorem 3.4 (1) a0(∆p
M ) = (4π)−m/2c(m, p) Vol(M).

(2) a2(∆p
M ) = (4π)−m/2 1

6c0(m, p)
∫
M
τdx.

(3) a4(∆p
M ) = (4π)−m/2 1

360

∫
M
{c1(m, p)τ2 + c2(m, p)ρ2 + c3(m, p)R2}dx.
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Such formulas play an important role in the study of spectral geometry. There is a
long history involved in computing these invariants. Weyl [127] discovered the leading
term in the asymptotic expansion, a0. Minakshisundaram and Pleijel [93, 94] examined
the asymptotic expansion for the scalar Laplacian in some detail. The a2 and a4 terms in
the asymptotic expansion were investigated by McKean and Singer [90] in the scalar case
and by Patodi [105] for the form valued Laplacian. The a6 term for the scalar Laplacian
was determined by Sakai [111] and the general expression for a2, a4 and a6 for arbitrary
operators of Laplace type was worked out in [53]. As noted above, there are formulas for
a8 and a10. The literature is a vast one and we refer to [54, 56] more details and additional
references.

We now discuss the relationship between the heat trace asyptotics and the eta and zeta
functions in a quite general context. Let P be a positive, self-adjoint elliptic partial differ-
ential operator on a closed Riemannian manifold M . Then e−tP is an infinitely smoothing
operator which is given by a smooth kernel function. Let Q be an auxiliary partial differ-
ential operator. Then TrL2{Qe−tP } is analytic for t > 0 and as t ↓ 0, there is a complete
asymptotic expansion with locally computable coefficients:

TrL2{Qe−tP ) ∼
∞∑
n=0

an(P,Q)t(n−m−ord(Q))/ ord(P )

The generalized zeta function is given by:

ζ(s, P,Q) := TrL2(QP−s) for <(s) >> 0 .

The Mellin transform may be used to relate the zeta function to the heat kernel. Let Γ be
the classical Gamma function. We refer to Seeley [116, 117] for the proof of Assertions
(1) and (2) and to [50] for the proof of Assertion (3) in the following result. Assertion (2)
generalizes eigenvalue growth estimates of Weyl [127] given previously in Theorem 3.1.
Theorem 3.5 (1) If Re(s) >> 0, then ζ(s, P,Q) = Γ(s)−1

∫∞
0
ts−1 TrL2(Qe−tP )dt.

Γ(s)ζ(s, P,Q) has a meromorphic extension to the complex plane with isolated sim-
ple poles at s = (m+ ord(Q)− n)/ ord(P ) for n = 0, 1, ... and

Ress=(m+ord(Q)−n)/ ord(P ) Γ(s)ζ(s, P,Q) = an(P,Q).

(2) The leading heat trace coefficient a0(P ) is non-zero. Let λ1 ≤ ... ≤ λn ≤ ... be the
eigenvalues of P . Then limn→∞ nλ−m/ ord(P )

n = Γ( m
ord(P ) )−1a0(P ).

(3) Let A(t) and B(t) be polynomials of degree a ≥ 0 and b > 0 where B is monic.
There are constants so an(B(P ), A(P )) = Σk≤k(n)c(k, n,m,A,B)ak(P ).

4 Hearing the shape of a drum

Let Spec(D) = {λ1 ≤ λ2 ≤ ...} denote the set of eigenvalues of a self-adjoint operator of
Laplace type, repeated according to multiplicity. One is interested in what geometric and
topological properties of M are reflected by the spectrum. Good references for this section
are [26, 54, 66]; other references will be cited as appropriate.
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One says that M and M̃ are isospectral if Spec(∆0
M ) = Spec(∆0

M̃
); p-isospectral

refers to ∆p. M. Kac [81] in his seminal article raised the question of determining the ge-
ometry, at least in part, of the underlying manifold from the spectrum of the scalar Laplace
operator ∆0

M . It is not possible in general to completely determine the geometry:
Theorem 4.1 (1) Milnor [92]: There exist isospectral non isometric flat tori of dimen-

sion 16.

(2) Vigneras [125]: There exist isospectral non-isometric hyperbolic Riemann surfaces.
Furthermore, if m ≥ 3, there exist isospectral hyperbolic manifolds with different
fundamental groups.

(3) Ikeda [79]: There exist isospectral non-isometric spherical space forms.

(4) Urakawa [123]: There exist regions Ωi in flat space form ≥ 4 which are isospectral
for the Laplacian with both Dirichlet and Neumann boundary conditions but which
are not isometric.

These examples listed above come in finite families. We say that a family of metrics gt
onM is a non-trivial family of isospectral manifolds if (M, gt) and (M, gs) are isospectral
for every s, t, but (M, gt) is not isometric to (M, gs) for s 6= t.
Theorem 4.2 (1) Gordon-Wilson [67]: There exists a non-trivial family of isospectral

metrics on a smooth manifold M which are not conformally equivalent.

(2) Brooks-Gordon [37]: There exists a non-trivial family of isospectral metrics on a
smooth manifold M which are conformally equivalent.

There is a vast literature in the subject. In particular, Sunada [121] gave a general
method for attacking the problem which has been exploited by many authors.

Despite this somewhat discouraging prospect, there are a number of positive results
available. For example Berger [27] and Tanno [122] showed that a sphere or projective
space is characterized by its spectral geometry, at least in low dimensions:
Theorem 4.3 Let Mi and M2 be closed Riemannian manifolds of dimension m ≤ 6
which are isospectral. If M1 has constant sectional curvature c, so does M2.

Patodi [106] showed additional geometrical properties are determined by the form val-
ued Laplacian. The following is an easy consequence of Theorem 3.4.
Theorem 4.4 LetM1 andM2 be closed Riemannian manifolds which are p-isospectral
for p = 0, 1, 2. Then:

(1) If M1 has constant scalar curvature τ = c, then so does M2.

(2) If M1 is Einstein, so is M2.

(3) If M1 has constant sectional curvature c, then so does M2.

For manifolds with boundary, suitable boundary conditions must be imposed. Formulas
that will be discussed presently in Section 5 have been used by Park [104] to show:
Theorem 4.5 LetM1 andM2 be compact Einstein Riemannian manifolds with smooth
boundaries with the same constant scalar curvatures τM1 = τM2 . Also assume thatM1

andM2 are isospectral for both Neumann and Dirichlet boundary conditions. Then:
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(1) IfM1 has totally geodesic boundary, then so doesM2.

(2) IfM1 has minimal boundary, then so doesM2.

(3) IfM1 has totally umbillic boundary, then so doesM2.

(4) IfM1 has strongly totally umbillic boundary, then so doesM2.

There are also a number of compactness results. Theorem 3.3 plays a central role in
the following results:
Theorem 4.6 (1) Osgood, Phillips, and Sarnak [102]: Families of isospectral metrics

on Riemann surfaces are compact modulo gauge equivalence.

(2) Brooks, Perry, and Yang [39] and Chang and Yang [42]: If m = 3, then families of
isospectral metrics within a conformal class are compact modulo gauge equivalence.

(3) Brooks, Perry, and Petersen [38]: Isospectral negative curvature manifolds contain
only a finite number of topological types.

5 Heat trace asymptotics of manifolds with boundary

In previous sections, we have concentrated on closed Riemannian manifolds. Let D be an
operator of Laplace type on a compact Riemannian manifold M with smooth boundary
∂M . Good basic references for the material of this section are [56, 73, 84]. Many authors
have contributed to the material discussed here; we refer in particular to the work of [40,
76, 78, 82, 83, 90, 93, 94, 96, 120, 127].

We impose suitable boundary conditions B to have a well posed problem; B must
satisfy a condition called the strong Lopatenski-Shapiro condition. We shall suppress tech-
nical details for the most part in the interests of simplicity. The boundary conditions we
shall consider have physical underpinnings. Dirichlet boundary conditions correspond to
immersing the boundary in ice water; Neumann boundary conditions correspond to an in-
sulated boundary. Robin boundary conditions are a generalization of Neumann boundary
conditions where the heat flow across the boundary is proportional to the temperature on
the boundary. Transmission boundary conditions arise in the study of heat conduction
problems between closely coupled membranes. Transfer boundary conditions arise in the
study of branes. Both these conditions reflect the heat flow between two inhomogeneous
mediums coupled along a common boundary or brane. Transmission boundary conditions
correspond to having the two components pressed tightly together. By contrast, heat trans-
fer boundary conditions correspond to a loose coupling between the two components. We
refer to Carslaw and Jaeger [41] for further details.

Through out the remainder of this section, we let F ∈ C∞(End(V )) define a localizing
or smearing endomorphism and let B denote a suitable boundary operator; in what follows,
we shall give a number of examples. LetDB be the realization of an operatorD of Laplace
type with respect B; the domain of DB is then the set of all functions φ in a suitable
Schwarz space so that φ satisfies the appropriate boundary conditions, i.e. so that Bφ = 0.
Greiner [68, 69] and Seeley [118, 119] showed that there was a full asymptotic expansion
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as t ↓ 0 of the form:

TrL2{Fe−tDB} ∼
∞∑
n=0

an(F,D,B)t(n−m)/2 .

There are locally computable endomorphisms en(D)(x) defined on the interior and locally
computable endomorphisms e∂Mn,k (D,B)(y) defined on the boundary so that

an(F,D,B) =
∫
M

Tr{FeMn (D)}(x)dx

+
n−1∑
k=0

∫
∂M

Tr{(∇kemF )e∂Mn,k (D,B)}(y)dy .

The invariants eMn (D) and e∂Mn,k (D,B) are uniquely characterized by this identity; the in-
terior invariants eMn (D) are not sensitive to the boundary condition and agree with those
considered previously in Equation (3.a). The remainder of Section 5 is devoted to giving
explicit combinatorial formulas for these invariants.

A function φ satisfies Dirichlet boundary conditions if φ vanishes on ∂M . Thus the
Dirichlet boundary operator is defined by:

Bφ := φ|∂M . (5.a)

Theorem 5.1 [Dirichlet boundary conditions] Let F ∈ C∞(End(V )).

(1) a0(F,D,B) = (4π)−m/2
∫
M

Tr{F}dx.

(2) a1(F,D,B) = −(4π)−(m−1)/2 1
4

∫
∂M

Tr{F}dy.

(3) a2(F,D,B) = (4π)−m/2 1
6

∫
M

Tr{F (6E + τ)}dx+ (4π)−m/2 1
6

∫
∂M

Tr{2FLaa
−3F;m}dy.

(4) a3(F,D,B) = − 1
384 (4π)−(m−1)/2

∫
∂M

Tr{96FE+F (16τ + 8Ramam + 7LaaLbb
−10LabLab)− 30F;mLaa + 24F;mm}dy.

(5) a4(F,D,B) = (4π)−m/2 1
360

∫
M

Tr{F (60E;kk + 60τE + 180E2 + 30Ω2 + 12τ ;kk

+5τ2 − 2|ρ2|+ 2|R2|)}dx+ (4π)−m/2 1
360

∫
∂M

Tr{F (−120E;m + 120ELaa
−18τ ;m + 20τLaa + 4RamamLbb − 12RambmLab + 4RabcbLac + 24Laa:bb

+ 40
21LaaLbbLcc −

88
7 LabLabLcc + 320

21 LabLbcLac) + F;m(−180E − 30τ

− 180
7 LaaLbb + 60

7 LabLab) + 24F;mmLaa − 30F;iim}dy.

Neumann boundary conditions are defined by the operator BNφ := φ;m|∂M ; the asso-
ciated boundary conditions define a perfectly insulated boundary with no heat flow across
the boundary. It is convenient in many applications to consider slightly more general con-
ditions called Robin boundary conditions that permit the heat flow to be proportional to the
temperature. Let S be an auxiliary endomorphism of V over ∂M . The Robin boundary
operator is defined by:

BSφ := (φ;m + Sφ)|∂M . (5.b)



298 Spectral geometry

Theorem 5.2 [Robin boundary conditions] Let F ∈ C∞(End(V )).

(1) a0(F,D,BS) = (4π)−m/2
∫
M

Tr{F}dx.

(2) a1(F,D,BS) = (4π)(1−m)/2 1
4

∫
∂M

Tr{F}dy.

(3) a2(F,D,BS) = (4π)−m/2 1
6

∫
M

Tr{F (6E+ τ)}dx+ (4π)−m/2 1
6

∫
∂M

Tr{F (2Laa
+12S) + 3F;m}dy.

(4) a3(F,D,BS) = (4π)(1−m)/2 1
384

∫
∂M

Tr{F (96E + 16τ + 8Ramam + 13LaaLbb
+2LabLab + 96SLaa + 192S2 +F;m(6Laa + 96S) + 24F;mm}dy.

(5) a4(F,D,BS) = (4π)−m/2 1
360

∫
M

Tr{F (60E;kk+60τE+180E2 +30Ω2 +12τ ;kk

+5τ2 − 2|ρ|2 + 2|R|2)}dx+ (4π)−m/2 1
360

∫
∂M

Tr{F (240E;m + 42τ ;m

+24Laa:bb+120ELaa+20τLaa+4RamamLbb−12RambmLab+4RabcbLac
+ 40

3 LaaLbbLcc + 8LabLabLcc + 32
3 LabLbcLac + 360(SE + ES) + 120Sτ

+144SLaaLbb + 48SLabLab + 480S2Laa + 480S3 + 120S:aa) + F;m(180E

+30τ + 12LaaLbb + 12LabLab + 72SLaa + 240S2) +F;mm(24Laa + 120S)

+30F;iim}dy.

When discussing the Euler characteristic of a manifold with boundary in Section 6
subsequently, it will useful to consider absolute and relative boundary conditions. Let r be
the geodesic distance to the boundary. Near the boundary, decompose a differential form
ω ∈ C∞(Λ(M)) in the form ω = ω1 + dr ∧ ω2 where the ωi are tangential differential
forms. We define the relative boundary operator Br and the absolute boundary operator Ba
for the operator d+ δ by setting:

Br(ω) = ω1|∂M and Ba(ω) = ω2|∂M . (5.c)

There are induced boundary conditions for the associated Laplacian (d + δ)2. They are
defined by the operator B̄r/aφ := Br/aφ⊕ Br/a(d+ δ)φ.

The boundary conditions defined by the operators B̄r/a provide examples of a more
general boundary condition which are called mixed boundary conditions. We can combine
Theorems 5.1 and 5.2 into a single result by using such boundary conditions. We assume
given a decomposition V |∂M = V+ ⊕ V−. Extend the bundles V± to a collared neighbor-
hood of ∂M by parallel translation along the inward unit geodesic rays. Set χ := Π+−Π−.
Let S be an auxiliary endomorphism of V+ over ∂M . The mixed boundary operator may
then be defined by setting

Bχ,Sφ := Π+(φ;m + Sφ)|∂M ⊕Π−φ|∂M . (5.d)

One sets χ = id, Π+ = id, and Π− = 0 to obtain the Robin boundary operator of Equation
(5.b); one sets χ = − id, Π+ = 0, and Π− = id to obtain the Dirichlet boundary operator
of Equation (5.a). The formulas of Theorem 5.1 and Theorem 5.2 then be obtained by this
specialization.
Theorem 5.3 [Mixed boundary conditions] Let F = f id for f ∈ C∞(M). Then:
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(1) a0(F,D,Bχ,S) = (4π)−m/2
∫
M

Tr{F}dx.

(2) a1(F,D,Bχ,S) = (4π)−(m−1)/2 1
4

∫
∂M

Tr{Fχ}dy.

(3) a2(F,D,Bχ,S) = (4π)−m/2 1
6

∫
M

Tr{F (6E + τ)}dx

+(4π)−m/2 1
6

∫
∂M

Tr{2FLaa + 3F;mχ+ 12FS}dy.

(4) a3(F,D,Bχ,S) = (4π)−(m−1)/2 1
384

∫
∂M

Tr{F (96χE + 16χτ + 8χRamam
+[13Π+ − 7Π−]LaaLbb + [2Π+ + 10Π−]LabLab + 96SLaa + 192S2

−12χ:aχ:a) + F;m([6Π+ + 30Π−]Laa + 96S) + 24χF;mm}dy.

(5) a4(F,D,Bχ,S) = (4π)−m/2 1
360

∫
M

Tr{F (60E;kk + 60τE + 180E2

+30Ω2 +12τ ;kk+5τ2−2|ρ|2 +2|R|2)}dx+(4π)−m/2 1
360

∫
M

Tr{F ([240Π+

−120Π−]E;m + [42Π+ − 18Π−]τ ;m + 120ELaa + 24Laa:bb + 20τLaa
+4RamamLbb − 12RambmLab + 4RabcbLac + 720ES + 120Sτ + [ 280

21 Π+

+ 40
21Π−]LaaLbbLcc + [ 168

21 Π+ − 264
21 Π−]LabLabLcc + [ 224

21 Π+ + 320
21 Π−]

×LabLbcLac + 144SLaaLbb + 48SLabLab + 480S2Laa + 480S3 + 120S:aa

+60χχ:aΩam − 12χ:aχ:aLbb − 24χ:aχ:bLab − 120χ:aχ:aS) + F;m(180χE

+30χτ + [ 84
7 Π+ − 180

7 Π−]LaaLbb + 240S2 + [ 84
7 Π+ + 60

7 Π−]LabLab
+72SLaa − 18χ:aχ:a) + F;mm(24Laa + 120S) + 30F;iimχ}dy.

(6) a5(F,D,Bχ,S) = (4π)−(m−1)/2 1
5760

∫
∂M

Tr{F{360χE;mm + 1440E;mS

+720χE2 + 240χE:aa + 240χτE + 48χτ ;ii + 20χτ2 − 8χρijρij
+8χRijklRijkl − 120χρmmE − 20χρmmτ + 480τS2 + 12χτ ;mm

+24χρmm:aa + 15χρmm;mm + 270τ ;mS + 120ρmmS2 + 960SS:aa

+16χRammbρab − 17χρmmρmm − 10χRammbRammb + 2880ES2

+1440S4 + (90Π+ + 450Π−)LaaE;m + ( 111
2 Π+ + 42Π−)Laaτ ;m

+30Π+LabRammb;m + 240LaaS:bb + 420LabS:ab + 390Laa:bS:b

+480Lab:aS:b + 420Laa:bbS + 60Lab:abS + ( 487
16 Π+ + 413

16 Π−)Laa:bLcc:b

+(238Π+ − 58Π−)Lab:aLcc:b + ( 49
4 Π+ + 11

4 Π−)Lab:aLbc:c
+( 535

8 Π+ − 355
8 Π−)Lab:cLab:c + ( 151

4 Π+ + 29
4 Π−)Lab:cLac:b

+(111Π+ − 6Π−)Laa:bbLcc + (−15Π+ + 30Π−)Lab:abLcc
+(− 15

2 Π+ + 75
2 Π−)Lab:acLbc + ( 945

4 Π+ − 285
4 Π−)Laa:bcLbc

+(114Π+ − 54Π−)Lbc:aaLbc + 1440LaaSE + 30LaaSρmm + 240LaaSτ

−60LabρabS + 180LabSRammb + (195Π+ − 105Π−)LaaLbbE

+(30Π+ + 150Π−)LabLabE + ( 195
6 Π+ − 105

6 Π−)LaaLbbτ

+(5Π+ + 25Π−)LabLabτ + (− 275
16 Π+ + 215

16 Π−)LaaLbbρmm
+(− 275

8 Π+ + 215
8 Π−)LabLabρmm + (−Π+ − 14Π−)LccLabρab

+( 109
4 Π+ − 49

4 Π−)LccLabRammb + 16χLabLacρbc
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+( 133
2 Π+ + 47

2 Π−)LabLacRbmmc − 32χLabLcdRacbd
+ 315

2 LccLabLabS + ( 2041
128 Π+ + 65

128Π−)LaaLbbLccLdd
+150LabLbcLacS + ( 417

32 Π+ + 141
32 Π−)LccLddLabLab

+1080LaaLbbS2 + 360LabLabS2 + ( 375
32 Π+ − 777

32 Π−)LabLabLcdLcd
+ 885

4 LaaLbbLccS + (25Π+ − 17
2 Π−)LddLabLbcLac + 2160LaaS3

+( 231
8 Π+ + 327

8 Π−)LabLbcLcdLda − 180E2 + 180χEχE − 120S:aS:a

+720χS:aS:a − 105
4 ΩabΩab + 120χΩabΩab + 105

4 χΩabχΩab − 45ΩamΩam
+180χΩamΩam − 45χΩamχΩam + 360(ΩamχS:a − ΩamS:aχ)

+45χχ:aΩamLcc − 180χ:aχ:bΩab + 90χχ:aχ:bΩab + 90χχ:aΩam;m

+120χχ:aΩab:b+180χχ:aΩbmLab+300χ:aE:a−180χ:aχ:aE−90χχ:aχ:aE

+240χ:aaE−30χ:aχ:aτ−60χ:aχ:bρab+30χ:aχ:bRmabm− 675
32 χ:aχ:aLbbLcc

− 75
4 χ:aχ:bLacLbc − 195

16 χ:aχ:aLcdLcd − 675
8 χ:aχ:bLabLcc − 330χ:aS:aLcc

−300χ:aS:bLab+ 15
4 χ:aχ:aχ:bχ:b+

15
8 χ:aχ:bχ:aχ:b− 15

4 χ:aaχ:bb− 105
2 χ:abχ:ab

−15χ:aχ:aχ:bb− 135
2 χ:bχ:aab}+F;m{( 195

2 Π+−60Π−)τ ;m+240τS−90ρmmS

+270S:aa + (630Π+ − 450Π−)E;m + 1440ES + 720S3 + (90Π+ + 450Π−)

×LaaE+ (− 165
8 Π+− 255

8 Π−)Laaρmm + (15Π+ + 75Π−)Laaτ + 600LaaS2

+( 1215
8 Π+− 315

8 Π−)Laa:bb− 45
4 χLab:ab+(15Π+−30Π−)Labρab+(− 165

4 Π+

+ 465
4 Π−)LabRammb + 705

4 LaaLbbS − 75
2 LabLabS + ( 459

32 Π+ + 495
32 Π−)

×LaaLbbLcc+( 267
16 Π+− 1485

16 Π−)LccLabLab+(−54Π++ 225
2 Π−)LabLbcLac

−210χ:aS:a− 165
16 χ:aχ:aLcc− 405

8 χ:aχ:bLab+135χχ:aΩam}+F;mm{30LaaS

+( 315
16 Π+− 1215

16 Π−)LaaLbb+(− 645
8 Π+ + 945

8 Π−)LabLab+60χτ−90χρmm
+360χE + 360S2 − 30χ:aχ:a}+ F;mmm{180S + (−30Π+ + 105Π−)Laa}
+45χF;mmmm}dy.

We now consider transmission and transfer boundary conditions. Let M+ and M− be
two manifolds which are coupled along a common boundary Σ := ∂M+ = ∂M−. We have
metrics g± and operators D± of Laplace type on M±. We have scalar smearing functions
f± over M±. Transmission boundary conditions arise in the study of heat conduction
problems between closely coupled membranes. We impose the compatibility conditions

g+|Σ = g−|Σ, V+|Σ = V−|Σ = VΣ, f+|Σ = f−|Σ .

No matching condition is assumed on the normal derivatives of f or of g on the interface
Σ. Assume given an impedance matching endomorphism U defined on the hypersurface
Σ. The transmission boundary operator is given by:

BUφ :=
{
φ+|Σ − φ−|Σ

}
⊕

{
∇ν+φ+|Σ +∇ν−φ−|Σ − Uφ+|Σ

}
, (5.e)

ωa := ∇+
a −∇

−
a .

Since the difference of two connections is tensorial, ωa is a well defined endomorphism of
VΣ. The tensor ωa is chiral; it changes sign if the roles of + and − are reversed. On the
other hand, the tensor field U is non-chiral as it is not sensitive to the roles of + and −.



P. Gilkey 301

The following result is due to Gilkey, Kirsten, and Vassilevich [62]; see also related
work by Bordag and Vassilevich [31] and by Moss [95]. Define:

Leven
ab := L+

ab + L−ab, Lodd
ab := L+

ab − L
−
ab,

Feven
;ν := f;ν+ + f;ν− , Fodd

;ν := f;ν+ − f;ν− ,
Feven

;νν := f;ν+ν+ + f;ν−ν− , Fodd
;νν := f;ν+ν+ − f;ν−ν− ,

Eeven := E+ + E−, Eodd := E+ − E−,
Eeven

;ν := E+
;ν+ + E−;ν− , Eodd

;ν := E+
;ν+ − E−;ν− ,

Reven
ijkl := R+

ijkl +R−ijkl, Rodd
ijkl := R+

ijkl −R
−
ijkl

Ωeven
ij := Ω+

ij + Ω−ij , Ωodd
ij := Ω+

ij − Ω−ij .

Theorem 5.4 [Transmission boundary conditions]

(1) a0(f,D,BU ) = (4π)−m/2
∫
M
f Tr(id)dx.

(2) a1(f,D,BU ) = 0.

(3) a2(f,D,BU ) = (4π)−m/2 1
6

∫
M
f Tr{τ id +6E}dx

+(4π)−m/2 1
6

∫
Σ

2f Tr{Leven
aa id−6U}dy.

(4) a3(f,D,BU ) = (4π)(1−m)/2 1
384

∫
Σ

Tr{f [ 3
2L

even
aa Leven

bb + 3Leven
ab Leven

ab ] id

+9Leven
aa Feven

;ν id +48fU2 + 24fωaωa − 24fLeven
aa U − 24Feven

;ν U}dy.

(5) a4(f,D,BU ) = (4π)−m/2 1
360

∫
M
f Tr{60E;kk + 60RijjiE + 180E2

+30ΩijΩij + [12τ ;kk + 5τ2 − 2|ρ|2 + 2|R|2] id}dx
+(4π)−m/2 1

360

∫
Σ

Tr{[−5Rodd
ijjiFodd

;ν + 2Rodd
aνaνFodd

;ν

−5Lodd
aa Leven

bb Fodd
;ν − Lodd

ab Leven
ab Fodd

;ν + 18
7 L

even
ab Leven

ab Feven
;ν

− 12
7 L

even
aa Leven

bb Feven
;ν + 12Leven

aa Feven
;νν ] id +f [−Lodd

ab Lodd
ab Leven

cc

−Leven
ab Lodd

ab Lodd
cc + 2Lodd

ab Lodd
bc Leven

ac + 2Rodd
abcbLodd

ac + 12Reven
ijji;ν

+ 40
21L

even
aa Leven

bb Leven
cc − 4

7L
even
ab Leven

ab Leven
cc + 68

21L
even
ab Leven

bc Leven
ac

+24Leven
aa:bb + 10Reven

ijji Leven
aa + 2Reven

aνaνLeven
aa − 6Reven

aνbνLeven
ab

+2Reven
abcbLeven

ac ] id +18ω2
aFeven

;ν − 30EoddFodd
;ν + 15ULodd

aa Fodd
;ν

−30UFeven
;νν − 9ULeven

aa Feven
;ν + 30U2Feven

;ν + f [12ω2
aLeven

bb

+24ωaωbLeven
ab + 60Eeven

;ν − 60ωaΩoddaν + 60EevenLeven
aa − 60U3

−30UReven
ijji − 180UEeven − 60U:aa − 18ULeven

aa Leven
bb

−6ULeven
ab Leven

ab + 60U2Leven
aa − 60Uω2

a]}dy.

We now examine transfer boundary conditions. As previously, we take structures
(M, g, V,D) = ((M+, g+, V+, D+), (M−, g−, V−, D−)). We now assume the compat-
ibility conditions

∂M+ = ∂M− = Σ and g+|Σ = g−|Σ .
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We no longer assume an identification of V+|Σ with V−|Σ. Let F± be smooth smearing
endomorphisms of V±; there is no assumed relation between F+ and F−. Let Tr± denote
the fiber trace on V±. We suppose given auxiliary impedance matching endomorphisms
S := {S±±} from V± to V±. The transfer boundary operator is defined by setting:

BSφ :=
{(
∇+
ν+

+ S++ S+−
S−+ ∇−ν− + S−−

)(
φ+

φ−

)} ∣∣∣∣
Σ

. (5.f)

We set S+− = S−+ = 0 to introduce the associated decoupled Robin boundary conditions

BR(S++)φ+ := (∇+
ν+

+ S++)φ+|Σ, and

BR(S−−)φ− := (∇−ν− + S−−)φ−|Σ .

Define the correction term an(F,D, S)(y) by means of the identity

an(F,D,BS) =
∫
M

an(F,D)(x)dx+
∫

Σ

an(F+, D+,BR(S++))dy

+
∫

Σ

an(F−, D−,BR(S−−))dy +
∫

Σ

an(F,D, S)(y)dy .

As the interior invariants an(F,D) are discussed in Theorem 3.4 and as the Robin invari-
ants an(F,D,BR(S++)) and an(F,D,BR(S−−)) are discussed in Theorem 5.2, we must
only determine the invariant an(F,D, S) which measures the new interactions that arise
from S+− and S−+. We refer to [63] for the proof of the following result:
Theorem 5.5 [Transfer boundary conditions]

(1) an(F,D,BS)(y) = 0 for n ≤ 2.

(2) a3(F,D,BS)(y) = (4π)(1−m)/2 1
2

{
Tr+(F+S+−S−+) + Tr−(F−S−+S+−)

}
.

(3) a4(F,D,BS)(y) = (4π)−m/2 1
360

{
Tr+{480(F+S++ + S++F+)S+−S−+

+480F+S+−S−−S−+

+(288F+L
+
aa + 192F+L

−
aa + 240F+;ν+)S+−S−+}

+ Tr−{480(F−S−− + S−−F−)S−+S+− + 480F−S−+S++S+−

+(288F−L−aa + 192F−L+
aa + 240F−;ν−)S−+S+−}

}
.

We now take up spectral asymmetry. We refer to [33, 34] for the material of this
section. LetM be a compact Riemannian manifold. LetA be an operator of Dirac type and
let D = A2 be the associated operator of Laplace type. Instead of studying TrL2(e−tD),
we study TrL2(Ae−tD); this provides a measure of the spectral asymmetry of A.

Let ∇ be a compatible connection; this means that ∇γ = 0 and that if there is a fiber
metric on V that ∇ is unitary. Expand A = γν∇∂xν + ψA. If ∂M is non-empty, we
shall use local boundary conditions; we postpone until a subsequent section the question
of spectral boundary conditions. Let {e1, ..., em} be a local orthonormal frame for the
tangent bundle near ∂M which is normalized so em is the inward unit geodesic normal
vector field. Suppose there exists an endomorphism χ of V |∂M so that χ is self-adjoint
and so that

χ2 = 1, χγm + γmχ = 0, and χγa = γaχ for 1 ≤ a ≤ m− 1 .



P. Gilkey 303

Such a χ always exists if M is orientable and if m is even as, for example, one could take
χ = εγ1...γm−1 where ε is a suitable 4th root of unity. There are topological obstructions
to the existence of χ if m is odd; if ∂M is empty, χ plays no role. Let Π±χ := 1

2 (id±χ)
be orthonormal projection on the ±1 eigenspaces of χ. We let Bφ := Π−χφ|∂M . The
associated boundary condition for D := A2 is defined by the operator B1φ := Bφ⊕ BAφ
and is equivalent to a mixed boundary operator Bχ,S where

S = 1
2Π+(γmψA − ψAγm − Laaχ)Π+ .

As t ↓ 0, there is an asymptotic expansion

TrL2(FAe−tA
2
B) ∼

∞∑
n=0

aηn(F,A,B)t(n−m−1)/2 .

These invariants measure the spectral asymmetry of A; aηn(F,A,B) = −aηn(F,−A,B).
Theorem 5.6 Let Wij := Ωij − 1

4Rijklγkγl where Ω is the curvature of∇. Let F = f id
for f ∈ C∞(M).

(1) aη0(f,A,B) = 0.

(2) aη1(f,A,B) = −(4π)−m/2(m− 1)
∫
M
f Tr{ψA}dx.

(3) aη2(f,A,B) = 1
4 (4π)−(m−1)/2

∫
∂M

(2−m)f Tr{ψAχ}dy.

(4) aη3(f,A,B) = − 1
12 (4π)−m/2

∫
M
f
{

Tr{2(m− 1)∇eiψA + 3(4−m)ψAγiψA
+3γjψAγjγiψA};i + (m− 3) Tr{−τψA − 6γiγjWijψA + 6γiψA∇eiψA
+(m− 4)ψ3

A − 3ψ2
AγjψAγj}

}
dx− 1

12 (4π)−m/2
∫
∂M

Tr{6(m− 2)f;mχψA

+f [(6m− 18)χ∇emψA + 2(m− 1)∇emψA + 6χγmγa∇eaψA
+6(2−m)χψALaa+ 2(3−m)ψALaa+ 6(3−m)χγmψ

2
A+ 3γmψAγaψAγa

+3(3−m)χγmψAχψA + 6χγaWam]}dy.

6 Heat trace asymptotics and index theory

We refer to [54] for a more exhaustive treatment; the classical results may be found in
[2, 3, 4, 7, 8]. In this section, we only present a brief introduction to the subject as it relates
to heat trace asymptotics. Let P : C∞(V1) → C∞(V2) be a first order partial differential
operator on a closed Riemannian manifold M . We assume V1 and V2 are equipped with
fiber metrics. We say that the triple C := (P, V1, V2) is an elliptic complex of Dirac type if
the associated second order operators D1 := P ∗P and D2 := PP ∗ are of Laplace type.
One may then define Index(C) := dim ker(D1)− dim ker(D2)

Bott noted that TrL2{e−tD1} − TrL2{e−tD2} = Index(C) was independent of the
parameter t. He then used the asymptotic expansion of the heat equation to obtain a lo-
cal formula for the index in terms of heat trace asymptotics. Following the notation of
Equation (3.a), one may define the heat trace asymptotics of P by setting:

aMn (P )(x) :=
{

Tr{eMn (D1)} − Tr{eMn (D2)}}(x) .

One then has a local formula for the index:
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Theorem 6.1 Let C be an elliptic complex of Dirac type over a closed Riemannian mani-
fold M . Then:∫

M

aMn (P )(x)dx =
{

Index(C) if n = m,
0 if n 6= m.

The critical term aMm (P )(x)dx is often referred to as the index density. The other
terms are in divergence form since they integrate to zero. They need not, however, vanish
identically.

The existence of a local formula for the index implies the index is constant under defor-
mations. It also yields, less trivially, that the index is multiplicative under finite coverings
and additive with respect to connected sums. In the next section, we shall see that the
index of the DeRham complex is the Euler-Poincare characteristic χ(M) of the manifold.
Thus if F → M1 → M2 is a finite covering, then χ(M1) = |F | · χ(M2). Similarly, if
M = M1#M2 is a connected sum, then χ(M) + χ(Sm) = χ(M1) + χ(M2). Analogous
formulas hold for the Hirzebruch signature of a manifold.

We define DeRham complex as follows. Let d : C∞(ΛpM) → C∞(Λp+1M) be
exterior differentiation and let δ : C∞(ΛpM) → C∞(Λp−1M) be the dual, interior mul-
tiplication. We may then define a 2-term elliptic complex of Dirac type:

(d+ δ) : C∞(ΛeM)→ C∞(ΛoM) where (6.a)
Λe(M) := ⊕nΛ2n(M) and Λo(M) := ⊕nΛ2n+1(M) .

Let Rijkl be the curvature tensor. Let m = 2m̄ be even. Let {e1, ..., em} be a local
orthonormal frame for the tangent bundle. We sum over repeated indices to define the
Pfaffian

PFm : =
g(ei1 ∧ ... ∧ eim , ej1 ∧ ... ∧ ejm)

πm̄8m̄m̄!
Ri1i2j1j2 ...Rim−1imjm−1jm .

Set PFm = 0 if m is odd. The following result of Patodi [105] recovers the classical
Gauss-Bonnet theorem of Chern [43]:
Theorem 6.2 Let M be a closed even dimensional Riemannian manifold. Then

(1) aMn (d+ δ)(x) = 0 for n < m.

(2) aMm (d+ δ)(x) = PFm(x).

(3) χ(M) =
∫
M
PFm(x)dx.

One can discuss Gauss-Bonnet theorem for manifolds with boundary similarly. On
the boundary, normalize the orthonormal frame so em is the inward unit normal and let
indices a, b range from 1 to m − 1 and index the induced frame for the tangent bundle
of the boundary. Let Lab be the components of the second fundamental form. Define the
transgression of the Pfaffian by setting:

TPFm : =
∑
k

g(ea1 ∧ ... ∧ eam−1 , eb1 ∧ ... ∧ ebm−1)
πk8kk!(m− 1− 2k)! vol(Sm−1−2k)

× Ra1a2b1b2 ...Ra2k−1a2kb2k−1b2kLa2k+1b2k+1 ...Lam−1bm−1 .
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If we impose absolute boundary conditions as discussed in Equation (5.c) to define the el-
liptic complex, we recover the Chern-Gauss-Bonnet theorem for manifolds with boundary
[44]. Let ∆e

M and ∆o
M denote the Laplacians on the space of smooth differential forms of

even and odd degrees, respectively. Let

a∂Mn (d+ δ)(y) =
{

Tr{e∂Mn (∆e
M ,Ba)} − Tr{e∂Mn (∆0

M ,Ba)}
}

(y) .

Theorem 6.1 extends to this setting to become:∫
M

aMn (d+ δ)(x)dx+
∫
∂M

a∂Mn (d+ δ)(y)dy =
{

0 if n 6= m,
χ(M) if n = m.

Theorem 6.2 then extends to this setting to yield:
Theorem 6.3 (1) a∂M

n (d+ δ)(y) = 0 for n < m.

(2) a∂M
m (d+ δ)(y) = TPFm.

(3) χ(M) =
∫
M
PFm(x)dx+

∫
∂M

TPFm(y)dy.

The local index invariants aMm+2(d + δ)(x) are in divergence form but do not vanish
identically. Set

Φm =
m̄

πm̄8m̄m̄!
{Ri1i2j1k;kRi3i4j3j4 ...Rim−1imjm−1jm};j2

× g(ei1 ∧ ... ∧ eim , ej1 ∧ ... ∧ ejm) .

Theorem 6.4 If M is even, then aMm+2(d+ δ) = 1
12PFm;kk + 1

6Φm.

Spectral boundary conditions plan an important role in index theory. We suppose given
an elliptic complex of Dirac type P : C∞(V1) → C∞(V2). Let γ be the leading symbol
of P . Then(

0 γ∗

γ 0

)
defines a unitary Clifford module structure on V1⊕V2. We may choose a unitary connection
∇ on V1 ⊕ V2 which is compatible with respect to this Clifford module structure and
which respects the splitting and induces connections∇1 and∇2 on the bundles V1 and V2,
respectively. Decompose P = γi∇ei + ψ. Near the boundary, the structures depend on
the normal variable. We set the normal variable xm to zero to define a tangential operator
of Dirac type

B(y) := γm(y, 0)−1 (γa(y, 0)∇ea + ψ(y, 0)) on C∞(V1|∂M ) .

Let B∗ be the adjoint of B on L2(V1|∂M );

B∗ = γm(y, 0)−1γa(y, 0)∇ea + ψ∗B

where ψB := γm(y, 0)−1ψ(y, 0). Let Θ be an auxiliary self-adjoint endomorphism of V1.
We set

A := 1
2 (B +B∗) + Θ on C∞(V1|∂M ),

A# := −γmA(γm)−1 on C∞(V2|∂M ) .
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The leading symbol of A is then given by γTa := γ−1
m γa which is a unitary Clifford mod-

ule structure on V1|∂M . Thus A is a self-adjoint operator of Dirac type on C∞(V1|∂M );
similarly A# is a self-adjoint operator of Dirac type on C∞(V2|∂M ).

Let Π+
A (resp. Π+

A# ) be spectral projection on the eigenspaces of A (resp. A#) corre-
sponding to the positive (resp. non-negative) eigenvalues; there is always a bit of technical
fuss concerning the harmonic eigenspaces that we will ignore as it does not affect the heat
trace asymptotic coefficients that we shall be considering. Introduce the associated spectral
boundary operators by

B1φ1 := Π+
A(φ1|∂M ) for φ1 ∈ C∞(V1),

B2φ2 := Π+
A#(φ2|∂M ) for φ2 ∈ C∞(V2),

BΘφ1 := B1φ1 ⊕ B2(Pφ1) for φ1 ∈ C∞(V1) .

If PB1 , P ∗B2
, and D1,B are the realizations of P , of P ∗, and of D1 with respect to the

boundary conditions B1,B2, and BΘ, respectively, then

(PB1)∗ = P ∗B2
and D1,BΘ = P ∗B1

PB1 .

We will discuss these boundary conditions in further detail in Section 10.
The local index density for the twisted signature and for the twisted spin complex has

been identified using methods of invariance theory; see, for example, the discussion in
Atiyah, Bott, and Patodi [5]. This identification of the local index density has been used to
give a heat equation proof of the Atiyah-Singer index theorem in complete generality and
has led to the proof of the index theorem for manifolds with boundary of Atiyah, Patodi,
and Singer [6]. Unlike the DeRham complex, a salient feature of these complexes is the
necessity to introduce spectral boundary conditions for the twisted signature and twisted
spin complexes – there is a topological obstruction which prevents using local boundary
conditions. The eta invariant plays an essential role in this development. We also refer to
N. Berline, N. Getzler, and M. Vergne [28], to Bismut [30], and to Melrose [91] for other
treatments of the local index theorem.

The Dolbeault complex is a bit different. Patodi [106] showed the heat trace invariants
agreed with the classical Riemann-Roch invariant for a Kaehler manifold; it should be
noted that this is not the case for an arbitrary Hermitian manifold. The Lefschetz fixed
point formulas can also be established using heat equation methods.

7 Heat content asymptotics

We refer to [41, 56] for further details concerning the material of this section; we note that
the asymptotic series for the heat content function is established by van den Berg et al [24]
in a very general setting. Let D be an operator of Laplace type on a smooth vector bundle
V over a smooth Riemannian manifold. Let 〈·, ·〉 denote the natural pairing between V and
the dual bundle Ṽ . Let ρ ∈ C∞(Ṽ ) be the specific heat and let φ ∈ C∞(V ) be the initial
heat temperature distribution of the manifold. Impose suitable boundary conditions B; we
shall denote the dual boundary conditions for the dual operator D̃ on C∞(Ṽ ) by B̃. Let
∇ be the connection determined by D and E the associated endomorphism. Then the dual
connection ∇̃ and the dual endomorphism Ẽ are the connection and the endomorphism
determined by D̃.



P. Gilkey 307

The total heat energy content of the manifold is given by:

β(φ, ρ,D,B)(t) = β(ρ, φ, D̃, B̃)(t) :=
∫
M

〈ρ, e−tDφ〉dx .

As t ↓ 0, there is a complete asymptotic expansion of the form

β(φ, ρ,D,B)(t) ∼
∞∑
n=0

βn(φ, ρ,D,B)tn/2 .

There are local interior invariants βMn and boundary invariants β∂Mn so that

βn(φ, ρ,D,B) =
∫
M

βMn (φ, ρ,D)(x)dx+
∫
∂M

β∂Mn (φ, ρ,D,B)(y)dy .

These invariants are not uniquely characterized by this formula; divergence terms in the
interior can be compensated by corresponding boundary terms.

We now study the heat content asymptotics of the disk Dm in Rm and the hemisphere
Hm in Sm. We let D be the scalar Laplacian, φ = ρ = 1, and impose Dirichlet boundary
conditions to define βn(M) := βn(1, 1,∆0

M ,BD). One has [16, 17] that:
Theorem 7.1 Let Dm be the unit disk in Rm. Then:

(1) β0(Dm) = πm/2

Γ(
(2+m)

2 )
.

(2) β1(Dm) = −4π
(m−1)/2

Γ(
m
2 )

.

(3) β2(Dm) = πm/2

Γ(
m
2 )

(m− 1).

(4) β3(Dm) = −π
(m−1)/2

3Γ(
m
2 )

(m− 1)(m− 3).

(5) β4(Dm) = − πm/2

8Γ(
m
2 )

(m− 1)(m− 3).

(6) β5(Dm) = π(m−1)/2

120Γ(
m
2 )

(m− 1)(m− 3)(m+ 3)(m− 7).

(7) β6(Dm) = πm/2

96Γ(
m
2 )

(m− 1)(m− 3)(m2 − 4m− 9).

(8) β7(Dm) = − π(m−1)/2

3360Γ(
m
2 )

(m− 1)(m− 3)(m4 − 8m3 − 90m2 + 424m+ 633).

Theorem 7.2 Let Hm be the upper hemisphere of the unit sphere Sm. Then

(1) β2k(Hm) = 0 for any m if k > 0.

(2) β2k+1(H3) = 8π1/2

k!(2k−1)(2k+1) .

(3) β2k+1(H5) = π3/222k+3(2−k)
3k!(2k−1)(2k+1) .
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(4) β2k+1(H7) = π5/2

30

{ (67−54k)9k

k!(2k−1)(2k+1) +
∑k
`=0

3·23`

`!(k−`)!(2k−2`+1)

}
.

We now study the heat content asymptotics with Dirichlet boundary conditions. Let
BD be the Dirichlet boundary operator of Equation (5.a). We refer to [16, 19] for the proof
of:
Theorem 7.3 [Dirichlet boundary conditions]

(1) β0(φ, ρ,D,BD) =
∫
M
〈φ, ρ〉dx.

(2) β1(φ, ρ,D,BD) = − 2√
π

∫
∂M
〈φ, ρ〉dy.

(3) β2(φ, ρ,D,BD) = −
∫
M
〈Dφ, ρ〉dx+

∫
∂M
{〈 12Laaφ, ρ〉 − 〈φ, ρ;m〉}dy.

(4) β3(φ, ρ,D,BD) = − 2√
π

∫
∂M
{ 2

3 〈φ;mm, ρ〉+ 2
3 〈φ, ρ;mm〉 − 〈φ:a, ρ:a〉+ 〈Eφ, ρ〉

− 2
3Laa〈φ, ρ〉;m + 〈( 1

12LaaLbb −
1
6LabLab −

1
6Ramma)φ, ρ〉}dy.

(5) β4(φ, ρ,D,BD) = 1
2

∫
M
〈Dφ, D̃ρ〉dx+

∫
∂M
{ 1

2 〈(Dφ);m, ρ〉+ 1
2 〈φ, (D̃ρ);m〉

− 1
4 〈LaaDφ, ρ〉 −

1
4 〈Laaφ, D̃ρ〉+ 〈( 1

8E;m − 1
16LabLabLcc + 1

8LabLacLbc

− 1
16RambmLab + 1

16RabcbLac + 1
32τ ;m + 1

16Lab:ab)φ, ρ〉
− 1

4Lab〈φ:a, ρ:b〉 − 1
8 〈Ωamφ:a, ρ〉+ 1

8 〈Ωamφ, ρ:a〉}dy.

We may compute βn(M) for n ≤ 4 by setting φ = ρ = 1 and E = Ω = 0 in Theorem
7.3. One has a formula [18] for β5(M); β5(φ, ρ,D,BD) is not known in full generality.
Theorem 7.4 β5(M) = − 1

240
√
π

∫
∂M
{8ρmm;mm − 8Laaρmm;m + 16LabRammb;m

−4ρ2
mm+16RammbRammb−4LaaLbbρmm−8LabLabρmm+64LabLacRmbcm

−16LaaLbcRmbcm − 8LabLacRbddc − 8LabLcdRacbd + 4RabcmRabcm
+8RabbmRaccm − 16Laa:bRbccm − 8Lab:cLab:c + LaaLbbLccLdd
−4LaaLbbLcdLcd+4LabLabLcdLcd−24LaaLbcLcdLdb+48LabLbcLcdLda}dy.

The invariants β0(M), β1(M), and β2(M) were computed by van den Berg and
Davies [20] and by van den Berg and Le Gall [21] for domains in Rm. The invariants
β0(M), β1(M), and β2(M) were computed by van den Berg [14] for the upper hemi-
sphere of the unit sphere. The general case where D is an arbitrary operator of Laplace
type and where φ and ρ are arbitrary was studied in [16, 19]. Savo [112, 113, 114, 115] has
given a closed formula for all the heat content asymptotics βk(M) that is combinatorially
quite different in nature from the formulas we have presented here. There is also impor-
tant related work of McAvity [87, 88], of McDonald and Meyers [89], and of Phillips and
Jansons [108].

We now study heat content asymptotics for Robin boundary conditions. Let BS be the
Robin boundary operator of Equation (5.b); the dual boundary condition is then given by
B̃Sρ = BS̃ρ = (ρ;m + S̃ρ)|∂M where, of course, we use the dual connection on Ṽ to
define ρ;m. The following result is proved in [19, 45]:
Theorem 7.5 [Robin boundary conditions]

(1) β0(φ, ρ,D,BS) =
∫
M
〈φ, ρ〉dx.

(2) β1(φ, ρ,D,BS) = 0.
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(3) β2(φ, ρ,D,BS) = −
∫
M
〈Dφ, ρ〉dx+

∫
∂M
〈BSφ, ρ〉dy.

(4) β3(φ, ρ,D,BS) = 2
3 ·

2√
π

∫
∂M
〈BSφ,BS̃ρ〉dy.

(5) β4(φ, ρ,D,BS) = 1
2

∫
M
〈Dφ, D̃ρ〉dx+

∫
∂M
{− 1

2 〈BSφ, D̃ρ〉 −
1
2 〈Dφ,BS̃ρ〉

+〈( 1
2S + 1

4Laa)BSφ,BS̃ρ〉}dy.

(6) β5(φ, ρ,D,BS) = 2√
π

∫
∂M
{− 4

15 (〈BSDφ,BS̃ρ〉+ 〈BSφ,BS̃D̃ρ〉)

− 2
15 〈(BSφ):a, (BS̃ρ):a〉+ 〈( 2

15E + 4
15S

2 + 4
15SLaa + 1

30LaaLbb

+ 1
15LabLab −

1
15Ramam)BSφ,BS̃ρ〉}dy.

(7) β6(φ, ρ,D,BS) = − 1
6

∫
M
〈D2φ, D̃ρ〉dx+

∫
∂M
{ 1

6 〈BSDφ, D̃ρ〉+ 1
6 〈D

2φ, B̃Sρ〉

+ 1
6 〈BSφ, D̃

2ρ〉− 1
6 〈SBSDφ, B̃Sρ〉−

1
6 〈SBSφ, B̃SD̃ρ〉−

1
12 〈LaaBSDφ, B̃Sρ〉

− 1
12 〈LaaBSφ, B̃SD̃ρ〉+ 〈(

1
24E;m + 1

12ELaa + 1
48LabLabLcc + 1

24LabLacLbc

− 1
48RambmLab + 1

48RabcbLac −
1
24RamamLbb + 1

96τ ;m + 1
48Lab:ab

+ 1
12SLaaLbb + 1

12SLabLab−
1
12SRamam + 1

12 (SE+ES) + 1
4S

2Laa + 1
6S

3

+ 1
6S:aa)BSφ, B̃Sρ〉 − 1

12Laa〈(BSφ):b, (B̃Sρ):b〉 − 1
12Lab〈(BSφ):a, (B̃Sρ):b〉

− 1
6 〈S(BSφ):a, (B̃Sρ):a〉 − 1

24 〈Ωam(BSφ):a, B̃Sρ〉

+ 1
24 〈ΩamBSφ, (B̃Sρ):a〉}dy.

We now turn our attention to mixed boundary conditions. We use Equation (5.d) to
defined the mixed boundary operator Bχ,S . The dual boundary operator on Ṽ is given by
B̃χ,Sρ := Π̃+(ρ;m + S̃ρ)|∂M ⊕ Π̃−ρ|∂M . Extend χ to a collared neighborhood of M to
be parallel along the inward normal geodesic rays. Then χ;m = 0. Let φ± := Π±φ and
ρ± := Π±ρ. Since χ;m = 0, φ±;m = Π±(φ;m) and ρ±;m = Π̃±(φ;m). As χ:a need not
vanish in general, we need not have equality between φ±:a and Π±(φ:a) or between ρ±:a

and Π̃±(ρ:a). We refer to [45] for the proof of:
Theorem 7.6 [Mixed boundary conditions]

(1) β0(φ, ρ,D,Bχ,S) =
∫
M
〈φ, ρ〉dx.

(2) β1(φ, ρ,D,Bχ,S) = − 2√
π

∫
∂M
〈φ−, ρ−〉dy.

(3) β2(φ, ρ,D,Bχ,S) = −
∫
M
〈Dφ, ρ〉dx+

∫
∂M
{〈φ+;m + Sφ+, ρ+〉

+〈 12Laaφ−, ρ−〉 − 〈φ−, ρ−;m〉}dy.

(4) β3(φ, ρ,D,Bχ,S) = 2√
π

∫
∂M
{− 2

3 〈φ−;mm, ρ−〉 − 2
3 〈φ−, ρ−;mm〉+ 2

3Laa〈φ−, ρ−〉;m

+〈(− 1
12LaaLbb+

1
6LabLab+

1
6Ramma)φ−, ρ−〉+ 2

3 〈φ+;m+Sφ+, ρ+;m+S̃ρ+〉
−〈Eφ−, ρ−〉+ 〈φ−:a, ρ−:a〉+ 2

3 〈φ+:a, ρ−:a〉+ 2
3 〈φ−:a, ρ+:a〉

− 2
3 〈Eφ−, ρ+〉 − 2

3 〈Eφ+, ρ−〉}dy.

We adopt the notation of Equation (5.e) to define the transmission boundary operator
BU and the tensor ω.



310 Spectral geometry

Theorem 7.7 [Transmission boundary conditions]

(1) β0(φ, ρ,D,BU ) =
∫
M+
〈φ+, ρ+〉dx+ +

∫
M−
〈φ−, ρ−〉dx−.

(2) β1(φ, ρ,D,BU ) = − 1√
π

∫
Σ
〈φ+ − φ−, ρ+ − ρ−〉dy.

(3) β2(φ, ρ,D,BU ) = −
∫
M+
〈D+φ+, ρ+〉dx+ −

∫
M−
〈D−φ−, ρ−〉dx−

+
∫

Σ

{
1
8 (L+

aa + L−aa)(〈φ+, ρ+〉+ 〈φ−, ρ−〉)
− 1

8 (L+
aa+L−aa)(〈φ+, ρ−〉+〈φ−, ρ+〉)+ 1

2 (〈φ+;ν , ρ+〉+〈φ−;νρ−〉+〈φ+;ν , ρ−〉

+〈φ−;ν , ρ+〉)− 1
2 (〈φ+, ρ+;ν〉+ 〈φ−, ρ−;ν〉) + 1

2 (〈φ+, ρ−;ν〉+ 〈φ−, ρ+;ν〉)

− 1
4 (〈Uφ+, ρ+〉+ 〈Uφ−, ρ−〉+ 〈Uφ+, ρ−〉+ 〈Uφ−, ρ+〉)

}
dy.

(4) β3(φ, ρ,D,BU ) = 1
6
√
π

∫
Σ
{4(〈D+φ+, ρ+〉+ 〈φ+, D̃+ρ+〉+ 〈D−φ−, ρ−〉

+〈φ−, D̃−ρ−〉)−4(〈D+φ+, ρ−〉+〈φ+, D̃−ρ−〉+〈D−φ−, ρ+〉+〈φ−, D̃+ρ+〉)
−(〈ωaφ+;a, ρ+〉 − 〈ωaφ−;a, ρ−〉 − 〈ωaφ+, ρ+;a〉+ 〈ωaφ−, ρ−;a〉)
−(〈ωaφ+;a, ρ−〉 − 〈ωaφ−;a, ρ+〉+ 〈ωaφ+, ρ−;a〉 − 〈ωaφ−, ρ+;a〉)
+4(〈φ+;ν , ρ+;ν〉+〈φ−;ν , ρ−;ν〉+〈φ+;ν , ρ−;ν〉+〈φ−;ν , ρ+;ν〉)−2(〈φ+;a, ρ+;a〉
+〈φ−;a, ρ−;a〉) +2(〈φ+;a, ρ−;a〉+ 〈φ−;a, ρ+;a〉)− 2(〈Uφ+;ν , ρ+〉
+〈Uφ+, ρ+;ν〉+〈Uφ−;ν , ρ−〉+〈Uφ−, ρ−;ν〉)−2(〈Uφ−;ν , ρ+〉+〈Uφ−, ρ+;ν〉
+〈Uφ+;ν , ρ−〉+ 〈Uφ+, ρ−;ν〉) + (L−aa − L+

aa)(ν+〈φ+, ρ+〉 − ν−〈φ−, ρ−〉)
+L+

aa(〈φ+;ν , ρ−〉+ 〈φ−, ρ+;ν〉) + L−aa(〈φ−;ν , ρ+〉+ 〈φ+, ρ−;ν〉)
−(L−aa(〈φ+;ν , ρ−〉+ 〈φ−, ρ+;ν〉) + L+

aa(〈φ−;ν , ρ+〉+ 〈φ+, ρ−;ν〉))

+〈ωaωaφ+, ρ+〉+ 〈ωaωaφ−, ρ−〉 − 1
2L

+
aaL

−
bb(〈φ+, ρ+〉+ 〈φ−, ρ−〉)

+ 1
2L

+
aaL

−
bb(〈φ+, ρ−〉+ 〈φ−, ρ+〉) + 1

2 (L+
abL

+
ab〈φ+, ρ+〉+ L−abL

−
ab〈φ−, ρ−〉)

+ 1
2 (L−abL

−
ab〈φ+, ρ+〉+ L+

abL
+
ab〈φ−, ρ−〉)−

1
2 (L+

abL
+
ab + L−abL

−
ab)(〈φ+, ρ−〉

+〈φ−, ρ+〉) + L+
aa〈Uφ+, ρ+〉+ L−aa〈Uφ−, ρ−〉 − L−aa〈Uφ+, ρ+〉

−L+
aa〈Uφ−, ρ−〉+ 〈U2φ+, ρ+〉+ 〈U2φ−, ρ−〉+ 〈U2φ+, ρ−〉+ 〈U2φ−, ρ+〉

+〈E+φ+, ρ+〉+ 〈E−φ−, ρ−〉+ 〈E−φ+, ρ+〉+ 〈E+φ−, ρ−〉
−〈(E++E−)φ+, ρ−〉−〈(E++E−)φ−, ρ+〉+ 1

2 (R+
amma+R−amma)(〈φ+, ρ+〉

+〈φ−, ρ−〉)− 1
2 (R+

amma +R−amma)(〈φ+, ρ−〉+ 〈φ−, ρ+〉)}dy.

We continue our studies by examining the heat content asymptotics for transfer bound-
ary conditions Adopt the Equation (5.f) to define the transfer boundary operator BS. Let
B̃S be the dual boundary operator

B̃Sρ :=

{(
∇̃+

ν+
+ S̃++ S̃−+

S̃+− ∇̃−ν− + S̃−−

)(
ρ+

ρ−

)} ∣∣∣∣
Σ

.

We refer to [57] for the proof of the following result:
Theorem 7.8 [Transfer boundary conditions]
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(1) β0(φ, ρ,D,BS) =
∫
M+
〈φ+, ρ+〉dx+ +

∫
M−
〈φ−, ρ−〉dx−.

(2) β1(φ, ρ,D,BS) = 0.

(3) β2(φ, ρ,D,BS) = −
∫
M+
〈D+φ+, ρ+〉dx+ −

∫
M−
〈D−φ−, ρ−〉dx−

+
∫

Σ
〈BSφ, ρ〉dy.

(4) β3(φ, ρ,D,BS) = 4
3
√
π

∫
Σ
〈BSφ, B̃Sρ〉)dy.

Oblique boundary conditions are of particular interest. LetD be an operator of Laplace
type on a bundle V over M . Let BT be a tangential first order partial differential operator
on V |∂M and let B̃T be the dual operator on Ṽ |∂M . The associated oblique boundary
conditions on V and dual boundary conditions on Ṽ are defined by:

BOφ := (φ;m + BTφ)|∂M and B̃Oρ := (ρ;m + B̃T ρ)|∂M .

Note that we recover Robin boundary conditions by taking BT to be a 0th order operator.
We refer to [59] for the proof of the following result:
Theorem 7.9 [Oblique boundary conditions]

(1) β0(φ, ρ,D,BO) =
∫
M
〈φ, ρ〉dx.

(2) β1(φ, ρ,D,BO) = 0.

(3) β2(φ, ρ,D,BO) = −
∫
M
〈Dφ, ρ〉dx+

∫
∂M
〈BOφ, ρ〉dy.

(4) β3(φ, ρ,D,BO) = 4
3
√
π

∫
∂M
〈BOφ, B̃Oρ〉dy.

(5) β4(φ, ρ,D,BO) = 1
2

∫
M
〈Dφ, D̃ρ〉dx+

∫
∂M
{− 1

2 〈BOφ, D̃ρ〉

− 1
2 〈Dφ, B̃ρ〉+ 〈( 1

2BT + 1
4Laa)BOφ, B̃Oρ〉}dy.

We refer to [24] for further details concerning Zaremba boundary conditions. We as-
sume given a decomposition ∂M = CR ∪ CD as the union of two closed submanifolds
with common smooth boundary CR ∩CD = Σ. Let φ;m denote the covariant derivative of
φ with respect to the inward unit normal on ∂M . Let S be an auxiliary endomorphism of
V |CR . We take Robin boundary conditions on CR and Dirichlet boundary conditions on
CD arising from the boundary operator:

BZφ := (φ;m + Sφ)|{CR−Σ} ⊕ φ|CD .

We refer to related work of Avramidi [11], of Dowker [46, 47], and of Jakobson et al. [80]
concerning the heat trace asymptotics.

There is some additional technical fuss concerned with choosing a boundary condition
on the interface CD ∩CR that we will suppress in the interests of brevity. Instead, we shall
simply give a classical formulation of the problem. Suppose D = ∆ is the Laplacian and
that S = 0. Let W 1,2(M) be the closure of C∞(M) with respect to the Sobolev norm

||φ||21 =
∫
M

{|∇φ|2 + |φ|2}dx.
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Let W 1,2
0,CD

(M) be the closure of the set {φ ∈W 1,2(M) : supp(φ) ∩ CD = ∅}. Let

N(M,CD, λ) = sup(dimEλ) for λ > 0

where the supremum is taken over all subspaces Eλ ⊂W 1,2
0,CD

(M) such that

||∇φ||L2(M) < λ||φ||L2(M), ∀φ ∈ Eλ .

This is the spectral counting function for the Zaremba problem described above.
On Σ, we choose an orthonormal frame so em is the inward unit normal of ∂M in M

and so that em−1 is the inward unit normal of Σ in CD.
Theorem 7.10 [Zaremba boundary conditions] There exist universal constants c1 and c2
so that:

(1) β0(φ, ρ,D,B) =
∫
M
〈φ, ρ〉dx.

(2) β1(φ, ρ,D,B) = − 2√
π

∫
CD
〈φ, ρ〉dy.

(3) β2(φ, ρ,D,B) = −
∫
M
〈Dφ, ρ〉dx+

∫
CR
{〈φ;m + Sφ, ρ〉}dy

+
∫
CD
{ 1

2Laa〈φ, ρ〉 − 〈φ, ρ;m〉}dy − 1
2

∫
Σ
〈φ, ρ〉dz.

(4) β3(φ, ρ,D,B) = 4
3
√
π

∫
CR
〈φ;m + Sφ, ρ;m + S̃ρ〉dy − 2√

π

∫
CD
{ 2

3 〈φ;mm, ρ〉

+ 2
3 〈φ, ρ;mm〉 − 〈φ:a, ρ:a〉+ 〈Eφ, ρ〉 − 2

3Laa〈φ, ρ〉;m + 〈( 1
12LaaLbb

− 1
6LabLab + 1

6Ramam)φ, ρ〉}dy +
∫

Σ
{〈(c1Lm−1,m−1 + ( 1

2c2 + 2
3
√
π

)Luu

+ 1
2
√
π
L̃uu + c2S)φ, ρ〉+ 1

2
√
π
〈φ, ρ〉;m−1 − 2

3
√
π
〈φ, ρ〉;m}dz.

We conclude this section with a brief description of the non-smooth setting. We refer
to van den Berg and Srisatkunarajah [25] for a discussion of the heat content asymptotics
of polygonal regions in the plane. The fractal setting also an important one and we refer to
van den Berg [15], to Fleckinger et al. [51], to Griffith and Lapidus [70], to Lapidus and
Pang [85], and to Neuberger et al. [100] for a discussion of some asymptotic results for
heat problems on the von Koch snowflake.

8 Heat content with source terms

We follow the discussion in [18, 22, 23, 56] throughout this section. Let D be an operator
of Laplace type. Assume ∂M = CD ∪ CR decomposes as a disjoint union of two closed,
possibly empty, disjoint subsets; in contrast to the Zaremba problem, we emphasize that
CD∩CR is empty. LetB be the Dirichlet boundary operator onCD and the Robin boundary
operator on CR. Let φ be the initial temperature of the manifold, let ρ = ρ(x; t) be a
variable specific heat, let p = p(x; t) be an auxiliary smooth internal heat source and let
ψ = ψ(y; t) be the temperature of the boundary. We assume, for the sake of simplicity, that
the underlying geometry is fixed. Let u(x; t) = uφ,p,ψ(x; t) be the subsequent temperature
distribution which is defined by the relations:

(∂t +D)u(x; t) = p(x; t) for t > 0,
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Bu(y; t) = ψ(y; t) for t > 0, y ∈ ∂M,

lim
t↓0

u(·; t) = φ(·) in L2 .

The associated heat content function has a complete asymptotic series as t ↓ 0:

β(φ, ρ,D,B, p, ψ)(t) : =
∫
M

〈uφ,p,ψ(x; t), ρ(x; t)〉dx

∼
∞∑
n=0

βn(φ, ρ,D,B, p, ψ)tn/2 .

Assertions (1)-(4) in the following result are valid for quite general boundary condi-
tions. Assertion (5) refers to the particular problem under consideration. This result when
combined with the results of Theorems 7.3 and 7.4 permits evaluation of this invariant for
n ≤ 4. Assertion (1) reduces to the case ρ is static and Assertion (2) decouples the in-
variants as a sum of 3 different invariants. Assertion (3) evaluates the invariant which is
independent of {p, ψ}, Assertion (4) evaluates invariant which depends on p, and Assertion
(5) evaluates the invariant which depends on ψ.
Theorem 8.1 (1) Expand the specific heat ρ(x; t) ∼

∑
k≥0 t

kρk(x) in a Taylor series.
Then βn(φ, ρ,D,B, p, ψ) =

∑
2k≤n βn−2k(φ, ρk, D,B, p, ψ).

(2) If the specific heat ρ is static, then βn(φ, ρ,D,B, p, ψ) = βn(φ, ρ,D,B, 0, 0)
+βn(0, ρ,D,B, p, 0) + βn(0, ρ,D,B, 0, ψ).

(3) If the specific heat ρ is static, then βn(φ, ρ,D,B, 0, 0) = βn(φ, ρ,D,B).

(4) Let cij :=
∫ 1

0
(1− s)isj/2ds. Expand p(x; t) ∼

∑
k≥0 t

kpk(x) in a Taylor series. If
the specific heat is static, then:

a) β0(0, ρ,D,B, p, 0) = 0.

b) If n > 0, then βn(0, ρ,D,B, p, 0) =
∑

2i+j+2=n cijβj(pi, ρ,D,B).

(5) Expand the boundary source term ψ(x, t) ∼
∑
k≥0 t

kψk(x) in a Taylor series. As-
sume the specific heat ρ is static. Then:

a) β0(0, ρ,D,B, 0, ψ) = 0.

b) β1(0, ρ,D,B, 0, ψ) = 2√
π

∫
CD
〈ψ0, ρ〉dy.

c) β2(0, ρ,D,B, 0, ψ) = −
∫
CD
{〈 12Laaψ0, ρ〉 − 〈ψ0, ρ;m〉}dy −

∫
CR
〈ψ0, ρ〉dy.

d) β3(0, ρ,D,B, 0, ψ) = 2√
π

∫
CD
{ 2

3 〈ψ0, ρ;mm〉+ 1
3 〈ψ0, ρ:aa〉+ 〈 13Eψ, ρ〉

− 2
3Laa〈ψ0, ρ;m〉+ 〈( 1

12LaaLbb −
1
6LabLab −

1
6Ramma)ψ0, ρ〉}dy

− 4
3
√
π

∫
CR
〈ψ0, B̃ρ〉dy + 4

3
√
π

∫
CD
〈ψ1, ρ〉dy.

e) β4(0, ρ,D,B, 0, ψ) = −
∫
CD
{ 1

2 〈ψ0, (D̃ρ);m〉 − 1
4 〈Laaψ0, D̃ρ〉+ 〈( 1

8E;m

− 1
16LabLabLcc + 1

8LabLacLbc −
1
16RambmLab + 1

16RabcbLac
+ 1

32τ ;m + 1
16Lab:ab)ψ0, ρ〉 − 1

4Lab〈ψ0:a, ρ:b〉 − 1
8 〈Ωamψ0:a, ρ〉

+ 1
8 〈Ωamψ0, ρ:a〉+ 1

4Laa〈ψ1, ρ〉 − 1
2 〈ψ1, ρ;m〉}dy

−
∫
CR
{− 1

2 〈ψ0, D̃ρ〉+ 〈( 1
2S + 1

4Laa)ψ0, B̃ρ〉+ 1
2 〈ψ1, ρ〉}dy.



314 Spectral geometry

9 Time dependent phenomena

We refer to [56] for proofs of the assertions in this section and also for a more complete
historical discussion. Let D = {Dt} be a time-dependent family of operators of Laplace
type. We expand D in a Taylor series expansion

Dtu := Du+
∞∑
r=1

tr
{
Gr,iju;ij + Fr,iu;i + Eru

}
.

We use the initial operator D := D0 to define a reference metric g0. Choose local frames
{ei} for the tangent bundle of M and local frames {ea} for the tangent bundle of the
boundary which are orthonormal with respect to the initial metric g0. Use g0 to define
the measures dx on M and dy on ∂M . The metric g0 defines the curvature tensor R
and the second fundamental form L. We also use D to define a background connection
∇0 that we use to multiply covariantly differentiate tensors of all types and to define the
endomorphism E.

As in Section 8, we again assume ∂M = CD ∪ CR decomposes as a disjoint union of
two closed, possibly empty, disjoint subsets. We consider a 1 parameter family B = {Bt}
of boundary operators which we expand formally in a Taylor series

Btφ := φ

∣∣∣∣
CD

⊕

{
φ;m + Sφ+

∑
r>0

tr(Γr,aφ;a + Srφ)

}∣∣∣∣
CR

.

The reason for including a dependence on time in the boundary condition comes, for ex-
ample, by considering the dynamical Casimir effect. Slowly moving boundaries give rise
to such boundary conditions. We let u be the solution of the time-dependent heat equation

(∂t +Dt)u = 0, Btu = 0, lim
t↓0

u(·; t) = φ(·) in L2 .

There is a smooth kernel function so that u(x; t) =
∫
M
K(t, x, x̄,D,B)φ(x̄)dx̄ . The

analogue of the heat trace expansion in this setting and of the heat content asymptotic
expansion are given, respectively, by∫

M

f(x) TrVx

{
K(t, x, x,D,B)

}
dx ∼

∞∑
n=0

an(f,D,B)t(n−m)/2,

∫
M

〈K(t, x, x̄,D,B)φ(x), ρ(x̄)〉dxdx̄ ∼
∞∑
n=0

βn(φ, ρ,D,B)tn/2 .

By assumption, the operators Gr,ij are scalar. The following theorem describes the
additional terms in the heat trace asymptotics which arise from the structures described by
Gr,ij , Fr,i, Er, Γr,a, and Sr given above.
Theorem 9.1 [Varying geometries]

(1) a0(F,D,B) = a0(F,D,B).

(2) a1(F,D,B) = a1(F,D,B).

(3) a2(F,D,B) = a2(F,D,B) + (4π)−m/2 1
6

∫
M

Tr{ 3
2FG1,ii}dx.
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(4) a3(F,D,B) = a3(F,D,B) + (4π)(1−m)/2 1
384

∫
CD

Tr{−24FG1,aa}dy

+(4π)(1−m)/2 1
384

∫
CR

Tr{24FG1,aa}dy.

(5) a4(F,D,B) = a4(F,D,B) + (4π)−m/2 1
360

∫
M

Tr{F ( 45
4 G1,iiG1,jj + 45

2 G1,ijG1,ij

+60G2,ii − 180E1 + 15G1,iiτ − 30G1,ijρij + 90G1,iiE + 60F1,i;i + 15G1,ii;jj

−30G1,ij;ij)}dx+ (4π)−m/2 1
360

∫
CD

Tr{f(30G1,aaLbb − 60G1,mmLbb

+30G1,abLab + 30G1,mm;m − 30G1,aa;m − 30F1,m) + F;m(−45G1,aa

+45G1,mm)}dy + (4π)−m/2 1
360

∫
CR

Tr{F (30G1,aaLbb + 120G1,mmLbb

−150G1,abLab−60G1,mm;m+60G1,aa;m+150F1,m+180SG1,aa−180SG1,mm

+360S1) + F;m(45G1,aa − 45G1,mm)}dy.

Next we study the heat content asymptotics for variable geometries. We have the fol-
lowing formulas for Dirichlet and for Robin boundary conditions. Let B := B0.
Theorem 9.2 [Dirichlet boundary conditions]

(1) βn(φ, ρ,D,B) = βn(φ, ρ,D0,B) for n = 0, 1, 2.

(2) β3(φ, ρ,D,B) = β3(φ, ρ,D0,B) + 1
2
√
π

∫
CD
〈G1,mmφ, ρ〉dy.

(3) β4(φ, ρ,D,B) = β4(φ, ρ,D0,B)− 1
2

∫
M
〈G1,ijφ;ij + F1,iφ;i + E1φ, ρ〉dx

+
∫
CD
{ 7

16 〈G1,mm;mφ, ρ〉 − 9
16Laa〈G1,mmφ, ρ〉 − 5

16 〈F1,mφ, ρ〉

+ 5
16Lab〈G1,abφ, ρ〉 − 5

8 〈G1,amφ:a, ρ〉+ 1
2 〈G1,mmφ, ρ;m〉}dy

+
∫
CR
{− 1

2 〈G1,mmB0φ, ρ〉+ 1
2 〈(S1 + Γa∇ea)φ, ρ〉}dy.

10 Spectral boundary conditions

We adopt the notation used to discuss spectral boundary conditions in Section 6. Let
P : C∞(V1) → C∞(V2) be an elliptic complex of Dirac type. Let D = P ∗P and let BΘ

be the spectral boundary conditions defined by the auxiliary self-adjoint endomorphism Θ
of V1. Let ∇ be a compatible connection. Expand P = γi∇ei + ψ.

We begin by studying the heat trace asymptotics with spectral boundary conditions.
There is an asymptotic series

TrL2(fe−tDBΘ ) ∼
m−1∑
k=0

ak(f,DBΘ ,BΘ)t(k−m)/2 +O(t−1/8) .

Continuing further introduces non-local terms; we refer to Atiyah et al. [6], to Grubb
[71, 72], and to Grubb and Seeley [74, 75] for further details. Define γTa := γ−1

m γa,
ψ̂ := γ−1

m ψ, and β(m) := Γ(m2 )Γ( 1
2 )−1Γ(m+1

2 )−1. We refer to [48] for the proof of the
following result:
Theorem 10.1 [Spectral boundary conditions] Let f ∈ C∞(M). Then:

(1) a0(f,D,BΘ) = (4π)−m/2
∫
M

Tr(f id)dx.
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(2) If m ≥ 2, then a1(f,D,BΘ) = 1
4 [β(m)− 1](4π)−(m−1)/2

∫
∂M

Tr(f id)dy.

(3) If m ≥ 3, then a2(f,D,BΘ) = (4π)−m/2
∫
M

1
6 Tr{f(τ id +6E)}dx

+(4π)−m/2
∫
∂M

Tr{ 1
2 [ψ̂ + ψ̂

∗
]f + 1

3 [1− 3
4πβ(m)]Laaf id

− m−1
2(m−2) [1− 1

2πβ(m)]f;m id}dy.

(4) Ifm ≥ 4, then a3(f,D,BΘ) = (4π)−(m−1)/2
∫
∂M

Tr{ 1
32 (1− β(m)

m−2 )f(ψ̂ψ̂+ ψ̂
∗
ψ̂
∗
)

+ 1
16 (5− 2m+ 7−8m+2m2

m−2 β(m))fψ̂ψ̂
∗
− 1

48 (m−1
m−2β(m)− 1)fτ id

+ 1
32(m−1) (2m− 3− 2m2−6m+5

m−2 β(m))f(γTa ψ̂γ
T
a ψ̂ + γTa ψ̂

∗
γTa ψ̂

∗
)

+ 1
16(m−1) (1 + 3−2m

m−2 β(m))fγTa ψ̂γ
T
a ψ̂
∗

+ 1
48 (1− 4m−10

m−2 β(m))fρmm id

+ 1
48(m+1) ( 17+5m

4 + 23−2m−4m2

m−2 β(m))fLabLab id

+ 1
48(m2−1) (− 17+7m2

8 + 4m3−11m2+5m−1
m−2 β(m))fLaaLbb id

+ 1
8(m−2)β(m)f(ΘΘ + 1

m−1γ
T
aΘγTaΘ)}+ m−1

16(m−3) (2β(m)− 1)f;mm id

+ 1
8(m−3) ( 5m−7

8 − 5m−9
3 β(m))Laaf;m id}dy.

We now study heat content asymptotics with spectral boundary conditions. To simplify
the discussion, we suppose P is formally self-adjoint. We refer to [60, 61] for the proof of:
Theorem 10.2 (1) β0(φ, ρ,D,BΘ) =

∫
M
〈φ, ρ〉dx.

(2) β1(φ, ρ,D,BΘ) = − 2√
π

∫
∂M
〈Π+

Aφ,Π
+
A#ρ〉dy.

(3) β2(φ, ρ,D,BΘ) = −
∫
M
〈Dφ, ρ〉dx+

∫
∂M
{−〈γmΠ+

APφ, ρ〉 − 〈γmΠ+
Aφ, P̃ ρ〉

+ 1
2 〈(Laa +A+ Ã# − γmψP + ψP γm − ψA − ψ̃

#

A)Π+
Aφ,Π

+
A#ρ〉}dy.

11 Operators which are not of Laplace type

We follow Avramidi and Branson [12], Branson et al. [32], Fulling [52], Gusynin [77],
and Ørsted and Pierzchalski [101] to discuss the heat trace asymptotics of non-minimal
operators. Let M be a compact Riemannian manifold with smooth boundary and let B
define either absolute or relative boundary conditions. Let E ∈ C∞(End(ΛpM)) be an
auxiliary endomorphism and let A and B be positive constants. Let

Dp
E := Adδ +Bδd− E on C∞(Λp(M)),

cm,p(A,B) := B−m + (B−m −A−m)
∑
k<p

(−1)k+p

(
m

p

)−1(
m

k

)
.

Theorem 11.1 (1) If E = 0, then an(1, Dp,B) = B(n−m)/2an(1,∆p
M ,B)

+(B(n−m)/2 −A(n−m)/2)
∑
k<p(−1)k+pan(1,∆p

M ,B).

(2) For general E one has:
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a) a0(1, Dp
E ,B) = a0(1, Dp,B).

b) a1(1, Dp
E ,B) = a1(1, Dp,B).

c) a2(1, Dp
E ,B) = a2(1, Dp,B) + (4π)−m/2cm,p(A,B)

∫
M

Tr(E)dx.

We follow the discussion in [56] to study the heat content asymptotics of the non-
minimal operator D := Adδ+Bδd−E on C∞(Λ1(M)). Let φ and ρ be smooth 1 forms;
expand φ = φiei and ρ = ρiei where em is the inward geodesic normal.
Theorem 11.2 (1) Let B define absolute boundary conditions. Then:

a) β0(φ, ρ,D,B) =
∫
M

(φ, ρ)dx.

b) β1(φ, ρ,D,B) = − 2√
π

√
A
∫
∂M

φmρmdy.

c) β2(φ, ρ,D,B) = −
∫
M
{A(δφ, δρ) +B(dφ, dρ)− E(φ, ρ)}dx

+
∫
∂M

A{−φmρa:a − φa:aρm − φm;mρm − φmρm;m

+ 3
2Laaφmρm}dy.

(2) Let B define relative boundary conditions. Then

a) β0(φ, ρ,D,B) =
∫
M

(φ, ρ)dx.

b) β1(φ, ρ,D,B) = − 2√
π

√
B
∫
∂M

φaρady.

c) β2(φ, ρ,D,B) = −
∫
M
{A(δφ, δρ) +B(dφ, dρ)− E(φ, ρ)}dx

+
∫
∂M

B{−φa:aρm − φmρa:a − φa;mρa − φaρa;m

+Labφbρa + 1
2Laaφbρb}dy.

We now turn our attention to fourth order operators. Let M be a closed Riemannian
manifold. Let∇ be a connection on a vector bundle V over a closed Riemannian manifold
M . Set

Γ(m−n2 )−1Γ(m−n4 ) := lim
s→n
{Γ(m−s2 )−1Γ(m−s4 )} .

Theorem 11.3 Let Pu = u;iijj+p2,iju;ij+p1,iu;i+p0 on a closed Riemannian manifold
where p2,ij = p2,ji and where {p2,ij , p1,i, p0} are endomorphism valued. . Then:

(1) a0(1, P ) = 1
2 (4π)−m/2Γ(m2 )−1Γ(m4 )

∫
M

Tr(id)dx.

(2) a2(1, P ) = 1
2 (4π)−m/2Γ(m−2

2 )−1Γ(m−2
4 ) 1

6

∫
M

Tr{τ id + 3
mp2,ii}dx.

(3) a4(1, P ) = 1
2 (4π)−m/2Γ(m2 )−1Γ(m4 ) 1

360

∫
M

Tr{ 90
m+2p2,ijp2,ij + 45

m+2p2,iip2,jj

+(m− 2)(5τ2 id−2|ρ|2 id +2|R|2 id +30ΩijΩij) + 30τp2,ii − 60ρijp2,ij

−360p0}dx.

12 The spectral geometry of Riemannian submersions

We refer to [64] for further details concerning the material of this section; additionally
see Bergery and Bourguignon[13], Besson and Bordoni [29], Goldberg and Ishihara [65]
and Watson [126]. Let π : Z → Y be a smooth map where Z and Y are connected
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closed Riemannian manifolds. We say that π is a submersion if π is surjective and if
π∗ : TzZ → TπzY is surjective for every z ∈ Z.

Submersions are fiber bundles. LetF := π−1(y0) be the fiber over some point y0 ∈ Y .
If O is a contractable open subset of Y , then π−1(O) is homeomorphic to O × F and
under this homeomorphism, π is projection on the first factor. The vertical distribution
V := ker(π∗) is a smooth subbundle of TZ. The horizontal distribution is defined by
H := V⊥. One says that π is a Riemannian submersion if π∗ : Hz → TπzY is an isometry
for every point z in Z.

The fundamental tensors may be introduced as follows. Let π : Z → Y be a Rieman-
nian submersion. We use indices a, b, c to index local orthonormal frames {fa}, {fa},
{Fa}, and {F a} forH,H∗, TY , and T ∗, respectively. We use indices i, j, k to index local
orthonormal frames {ei} and {ei} for V and V∗, respectively. There are two fundamental
tensors which arise naturally in this setting. The unnormalized mean curvature vector θ
and the integrability tensor ω are defined by:

θ := −gZ([ei, fa], ei)fa = ZΓiiafa ∈ C∞(H),
ω := ωabi = 1

2gZ(ei, [fa, fb]) = 1
2 (ZΓabi − ZΓbai) .

Lemma 12.1 Let π : Z → Y be a Riemannian submersion.

(1) The following assertions are equivalent:
a) The fibers of π are minimal. b) π is a harmonic map. c) θ = 0.

(2) The following assertions are equivalent:
a) The distributionH is integrable. b) ω = 0.

(3) Let Θ := π∗θ be the integration of θ along the fiber, and let V (y) be the volume of
the fiber. Then Θ = −dY ln(V ). Thus in particular, if θ = 0, then the fibers have
constant volume.

By naturality π∗dY = dZπ
∗. The intertwining formulas for the coderivatives and for

the Laplacians are more complicated. Let E := ωabi extZ(ei) intZ(fa) intZ(f b) and let
Ξ := intZ(θ) + E .
Lemma 12.2 Let π : Z → Y be a Riemannian submersion. Then δZπ∗ − π∗δY = Ξπ∗

and ∆p
Zπ
∗ − π∗∆p

Y = {ΞdZ + dZΞ}π∗.
One is interested in relating the spectrum on the base to the spectrum on the total space.

The situation is particularly simple if p = 0:
Theorem 12.3 Let π : Z → Y be a Riemannian submersion.

(1) If Φ ∈ E(λ,∆0
Y ) is nontrivial and if π∗Φ ∈ E(µ,∆0

Z), then λ = µ.

(2) The following conditions are equivalent:
a) ∆0

Zπ
∗ = π∗∆0

Y . b) For all λ, π∗E(λ,∆0
Y ) ⊂ E(λ,∆0

Z). c) θ = 0.

Muto [97, 98, 99] has given examples of Riemannian principal S1 bundles where eigen-
values can change. The study of homogeneous space also provides examples. This leads
to the result:
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Theorem 12.4 (1) Let Y be a homogeneous manifold with H2(Y ;R) 6= 0. There exists
a complex line bundle L over Y with associated circle fibration πS : S(L) → Y ,
and there exists a unitary connection L∇ on L so that the curvature F of L∇ is
harmonic and has constant norm ε 6= 0 and so that π∗SF ∈ E(ε,∆2

S).

(2) Let 0 ≤ λ ≤ µ and let p ≥ 2 be given. There exists a principal circle bundle
π : P → Y over some manifold Y , and there exists 0 6= Φ ∈ E(λ,∆p

Y ) so that
π∗Φ ∈ E(µ,∆p

Z).

The case p = 1 is unsettled; it is not known if eigenvalues can change if p = 1. On the
other hand, one can show that eigenvalue can never decrease.
Theorem 12.5 Let π : Z → Y be a Riemannian submersion of closed smooth manifolds.
Let 1 ≤ p ≤ dim(Y ). If 0 6= Φ ∈ E(λ,∆p

Y ) and if π∗Φ ∈ E(µ,∆p
Z), then λ ≤ µ. The

following conditions are equivalent:
a) We have ∆p

Zπ
∗ = π∗∆p

Y .
b) For all λ, we have π∗E(λ,∆p

Y ) ⊂ E(λ,∆p
Z).

c) For all λ, there exists µ = µ(λ) so π∗E(λ,∆p
Y ) ⊂ E(µ,∆p

Z).
d) We have θ = 0 and ω = 0.

Results of Park [103] show this if Neumann boundary conditions are imposed on a
manifolds with boundary, then eigenvalues can decrease.

There are results related to finite Fourier series. We have L2(ΛpM) = ⊕λE(λ,∆p
M ).

Thus if φ is a smooth p-form, we may decompose φ =
∑
λ φλ for φλ ∈ E(λ,∆p

M ).
Let ν(φ) be the number of λ so that φλ 6= 0. We say that φ has finite Fourier series if
ν(φ) < ∞. For example, if M = S1, then φ has finite Fourier series if and only if φ
is a trignometric polynomial. The first assertion in the following result is an immediate
consequence of the Peter-Weyl theorem; the second result follows from [49].
Theorem 12.6 (1) Let π : G→ G/H be a homogeneous space whereG/H is equipped

with a G invariant metric and where G is equipped with a left invariant metric. If
φ is a smooth p-form on G/H with finite Fourier series, then π∗φ has finite Fourier
series on G.

(2) Let 1 ≤ p, 0 < λ, and 2 ≤ µ0 be given. There exists π : G→ G/H and there exists
φ ∈ E(λ,∆p

G/H) so that µG(π∗φ) = ν0.

In general, there is no relation between the heat trace asymptotics on the base, fiber,
and total space of a Riemannian submersion. McKean and Singer [90] have determined
the heat equation asymptotics for the sphere Sn. Let

Z(M, t) :=
(4πt)m/2

Vol(M)
TrL2 e−t∆

0
M ∼

∑
n≥0

(4πt)m/2

Vol(M)
an(∆0

M )tn/2

be the normalized heat trace; with this normalization, Z(M, t) is regular at the origin and
has leading coefficient 1. Their results (see page 63 of McKean and Singer [90]) show that

Z(S1, t) = 1 +O(tk) for any k

Z(S2, t) = et/4
√
πt

∫ 1

0
e−x/t

sin
√
x
dx = 1 + t

3 + t2

15 + ...

Z(S1 × S2, t) = Z(S2, t)Z(S1, t) = 1 + t
3 + t2

15 + ...



320 Spectral geometry

Z(S3, t) = et = 1 + t+ 1
2 t

2 + .... .

The two fibrations π : S1 × S2 → S2 and π : S3 → S2 have base S2 and minimal fibers
S1. However, the heat trace asymptotics are entirely different.

On the other hand, the following result shows that the heat content asymptotics on Z
are determined by the heat content asymptotics of the base and by the volume of the fiber
if θ = 0; Lemma 12.1 shows the volume V of the fiber is independent of the point in
question in this setting.
Theorem 12.7 Let π : Z → Y be a Riemannian submersion of compact manifolds with
smooth boundary. Let ρZ := π∗ρY and let φZ := π∗φY . If θ = 0 and if B = BD or
B = BN , then βn(ρZ , φZ ,∆0

Z ,B) = βn(ρY , φY ,∆0
Y ,B) · V .
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1 Introduction

The Lagrangian formalism is usually based, from the kinematical point of view, on a fiber
bundle with the base manifold and the fibres interpreted as the “space-time” variables and
the field variables respectively. As proved in the literature, the natural object associated
to such a fiber bundle (from the Lagrangian formalism point of view) is the so-called
variational exact sequence [24] - [26]. This sequence contains as distinguished terms the
Lagrange, Euler-Lagrange and Helmholtz-Sonin forms, which are the main ingredients of
the Lagrangian formalism. Using the exactness property one can obtain, beside a intrinsic
geometrical formulation of the Lagrangian formalism, the most general expression of a
variationally trivial Lagrangian and the generic form of a locally variational differential
equation [13] - [14].

However, many interesting physical applications, such as the Minkowski space describ-
ing the relativistic particle, do not have a fiber bundle structure; one says that “there is no
absolute time”. One needs a generalization of this formalism to this more general case.
For first-order Lagrangian systems a generalization of the Lagrangian formalism covering
this case was proposed in [18] and for arbitrary order in particle mechanics in [12] (see
also [11] for a review); the key notion is the so-called Lagrange-Souriau form which is a
special type of Lepage form. For higher-order Lagrangian systems the general construction
of the corresponding Grassmann manifold is more subtle and was performed in [15]. The
idea is to start with the manifold of jets of immersions in the kinematical manifold of the
problem. This manifold is usually called the velocity manifold and physically corresponds
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to parametrised evolutions. There exists a natural action of the so-called differential group
on this manifold which physically corresponds to changing the parametrisation. One con-
siders the submanifold of the regular velocities and takes its factorization to the differential
group. This is exactly the Grassmann manifold associated to the kinematical manifold of
the problem. The main combinatorial difficulty consists in establishing a convenient chart
system on this factor manifold.

After the basic kinematical construction of Lagrangian systems is done one can proceed
to the construction of the corresponding Lagrange, Euler-Lagrange and Helmholtz-Sonin
form [16] and the Poincaré-Cartan form [17]. The expressions from the fibrating case
are no longer well defined geometrical objects so one must find out proper substitutes
for them. The idea is to construct these kind of objects first on the velocity manifold and
impose some homogeneity properties. One discovers that these globally defined objects are
inducing locally defined expressions on the Grassmann manifold which have convenient
transformation properties with respect to a change of charts and formally coincide with the
desired expressions of the usual Lagrangian formalism. In this way one is able to define
on the Grassmann manifold the classes (modulo contact forms) of the Lagrange, Euler-
Lagrange and Helmholtz-Sonin forms; the same is true for the Poincaré-Cartan form.

The paper is organized as follows. In Section 2 we remind the basic construction of
a Grassmann manifold following essentially [15] but also providing some new results and
we will also sketch the proof of the main results. In Section 3 we define the main objects
of the Lagrangian formalism in the non-fibrating case. In Section 4 we give new proofs
for the construction of the Lagrange-Souriau form in the case of first-order Lagrangian
systems. In Section 5 we present some physical applications.

2 Grassmann manifolds

2.1 The manifold of (r, n)-velocities

Let us considerN , n ≥ 1 and r ≥ 0 integers such that n ≤ N , and letX be a smooth man-
ifold of dimension N describing the kinematical degrees of freedom of a certain physical
problem.

We will consider U ⊂ Rn a neighborhood of the point 0 ∈ Rn, x ∈ X and let Γ(0,x)

be the set of smooth immersions γ : U → X such that γ(0) = x. As usual, we consider
on Γ(0,x) the relation “γ ∼ δ” iff there exists a chart (V, ψ) ψ = (xA), A = 1, . . . , N
on X such that the functions ψ ◦ γ, ψ ◦ δ : Rn → RN have the same partial derivatives
up to order r in the point 0. The relation ∼ is a (chart independent) equivalence relation.
By an (r, n)-velocity at a point x ∈ X we mean such an equivalence class of the type
Γ(0,x)/ ∼. The equivalence class of γ will be denoted by jr0γ. The set of (r, n)-velocities
at x is denoted by T r(0,x)(R

n, Y ) ≡ Γ(0,x)/ ∼.
Further, we denote

T rnX =
⋃
x∈X

T r(0,x)(R
n, X),

and define surjective mappings τ r,sn : T rnX → T snX , where 0 < s ≤ r, by τ r,sn (jr0γ) = js0γ
and τ r,0n : T rnX → X , where 1 ≤ r, by τ r,0n (jr0γ) = γ(0).
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In the conditions above let (V, ψ), ψ = (xA), be a chart on X . Then we define
the couple (V rn , ψ

r
n) where V rn = (πr,0n )−1(V ), ψrn = (xA, xAj , · · · , xAj1,j2,...,jr ), where

1 ≤ j1 ≤ j2 ≤ · · · ≤ jr ≤ n, and

xAj1,...,jk(jr0γ) ≡ ∂k

∂tj1 . . . ∂tjk
xA ◦ γ

∣∣∣∣
0

, 0 ≤ k ≤ r. (2.1.1)

Remark 2.1 Let us note that the expressions xAj1,···jk(jr0γ) are defined for all indices
j1, . . . , jr in the set {1, . . . , n} but because of the symmetry property

xAjP (1),...,jP (k)
(jr0γ) = xAj1,...,jk(jr0γ) (k = 2, ..., n) (2.1.2)

for all permutations P ∈ Pk of the numbers 1, . . . , k we consider only the independent
components given by the restrictions 1 ≤ j1 ≤ j2 ≤ · · · ≤ jr ≤ n. Taking this into
account one can use multi-index notations i.e. ψrn = (xAJ ), |J | = 0, ..., r where by
definition xA∅ ≡ x

A. The same comment is true for the partial derivatives ∂
∂xAj1,...,jk

.

The couple (V rn , ψ
r
n) is a chart on T rnX called the associated chart of the chart (V, ψ)

and the set T rnX has a smooth structure defined by the system of charts (V rn , ψ
r
n); moreover

T rnX is a fiber bundle over X with the canonical projection τ r,0. The set T rnY endowed
with the smooth structure defined by the associated charts defined above is called the man-
ifold of (r, n)-velocities over X . The equations of the mapping τ r,sn : T rnX → T snX in
terms of the associated charts are given by xAj1,...,jk ◦ τ

r,s
n (jr0γ) = xAj1,...,jk(jr0γ), where

0 ≤ k ≤ s. These mappings are all submersions.

2.2 Formal derivatives

Like in [2], [3], [13], we consider in the chart (V rn , ψ
r
n) the following differential operators:

∆j1,...,jk
A ≡ r1! . . . rn!

k!
∂

∂xAj1,...,jk
, j1, . . . , jk ∈ {1, . . . , n} (2.2.1)

where rk is the number of times the index k shows up in the sequence j1, . . . jk.
The combinatorial coefficients are chosen in such a way that the following relation is

true:

∆i1,...,ik
A xBj1,...,jl =

{
δBAS+

j1,...,jk
δi1j1 . . . δ

ik
jk

if k = l

0 if k 6= l.
(2.2.2)

Here we use the notations from [11], namely S±j1,...,jk are the symmetrization (for the sign
+) and respectively the antisymmetrization (for the sign −) projector operators defined by

S±j1,...,jkfj1,...,jk ≡
1
k!

∑
P∈Pk

ε±(P )fjP (1),...,jP (k) (2.2.3)

where the sum runs over the permutation group Pk of the numbers 1, . . . , k and

ε+(P ) ≡ 1, ε−(P ) ≡ (−1)|P |, ∀P ∈ Pk;
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here |P | is the signature of the permutation P . In this way we avoid overcounting the
indices. More precisely, for any smooth function on V r, the following formula is true:

df =
r∑

k=0

(∆j1,...,jk
A f)dxAj1,...,jk =

∑
|I|≤r

(∆I
Af)dxAI (2.2.4)

where we have also used the convenient multi-index notation.
We define now in the chart (V rn , ψ

r
n) the formal derivatives by the expressions

Dr
i ≡

r−1∑
k=0

xAi,j1,...,jk∆j1,...,jk
A =

∑
|J|≤r−1

xAiJ∆J
A. (2.2.5)

The last expression uses the multi-index notation; if I and J are two such multi-indices we
mean by IJ the reunion of the two sets I, J. We note that the preceding formula does not
define a vector field on T rnX . When no danger of confusion exists we simplify the notation
putting simply Di = Dr

i . One can easily verify that the following formulas follow directly
from the definition:

Dix
A
j1,...,jk

=

{
xAi,j1,...,jk if k ≤ r − 1
0 if k = r,

(2.2.6)

[
∆j1,...,jk
A , Di

]
= S+

j1,...,jk
δj1i ∆j2,...,jk

A , k = 0, ..., r (2.2.7)

and

[Di, Dj ] = 0. (2.2.8)

The formal derivatives can be used to conveniently express the change of charts on the
velocity manifold induced by a change of charts on X . Let (V, ψ) and (V̄ , ψ̄) two charts
onX such that V ∩V̄ 6= ∅ and let (V r, ψr) and (V̄ r, ψ̄r) the corresponding attached charts
from T rnX. The change of charts on X is F : RN → RN given by: F ≡ ψ̄ ◦ ψ−1. It is
convenient to denote by FA : RN → R the components of F given by FA ≡ x̄A ◦ ψ−1.
We now consider the change of charts on T rnX given by F r ≡ ψ̄

r ◦ (ψr)−1. One notes
that V r ∩ V̄ r 6= ∅; we need the explicit formulas for the components of F r, namely for the
functions

FAj1,...,jk ≡ x̄
A
j1,...,jk

◦ (ψr)−1, j1 ≤ j2 · · · ≤ jk, k = 1, ..., r

defined on the overlap: V r ∩ V r. First one notes the following relation:

Di = Di. (2.2.9)

Indeed, one defines for any immersion γ ∈ Γ(0,x) the map jrγ from Rn into T rnX given
by

xAj1,...,jk ◦ j
rγ(t) ≡ ∂kxA ◦ γ

∂tj1 . . . ∂tjk
(t) 0 ≤ k ≤ r (2.2.10)
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and easily discovers that

(jrγ)∗0
∂

∂ti
= Di = D̄i. (2.2.11)

Using (2.2.9) one easily finds out that the functions FAj1,...,jk are given recursively by the
following relation:

FAjI = DjF
A
I |I| ≤ r − 1; (2.2.12)

(compare with (2.2.6).) This relation can be “solved” explicitly according to
Lemma 2.2 The following formula holds

FAI =
|I|∑
p=1

∑
(I1,...,Ip)

xB1
I1
· · ·xBpIp (∆B1 · · ·∆BpF

A), 1 ≤ |I| ≤ r (2.2.13)

where the second sum denotes summation over all partitions P(I) of the set I and two
partitions are considered identical if they differ only by a permutation of the subsets.

Proof We sketch the proof because the argument will be used repeatedly in this paper. It
is natural to use complete induction on |I|. For I = {j} the formula from the statement
coincides with (2.2.12) for I = ∅. We suppose the formula true for any multi-index I with
|I| = s < r and prove it for the multi-index jI . If we use (2.2.12) we get:

FAjI =
|I|∑
p=1

∑
(I1,...,Ip)

[
p∑
l=1

xB1
I1
· · · (Djx

Bl
Il

) · · ·xBpIp (∆B1 · · ·∆BpF
A)

+xB1
I1
· · ·xBpIp Dj(∆B1 · · ·∆BpF

A)
]

=
|I|∑
p=1

∑
(I1,...,Ip)

[
p∑
l=1

xB1
I1
· · ·xBljIl · · ·x

Bp
Ip

(∆B1 · · ·∆BpF
A)

+xB1
I1
· · ·xBpIp x

Bp+1
j (∆B1 · · ·∆Bp+1F

A)
]
.

We now note that the partitions P(jI) of the set jI can be obtained in two distinct ways:

• by taking a partition (I1, . . . , Ip) ∈ P(I) and adjoining the index j to I1, I2, . . . , Ip;

• by taking a partition (I1, . . . , Ip) ∈ P(I) and constructing the associated partition
(I1, . . . , Ip, j) ∈ P(jI).

We get the two types of contributions in the formula above and this finishes the proof.

Remark 2.3 The combinatorial argument above will be called the partition argument.
Remark 2.4 From the formula derived above it immediately follows that we have:

∆J
BF

A
I = 0, 0 ≤ |I| < |J | ≤ r (2.2.14)

i.e. the functions FAI depend only of the variables xBJ with the restrictions specified above.



332 Lagrangian formalism on Grassmann manifolds

2.3 The differential group

By definition the differential group of order r is the set

Lrn ≡ {jr0α ∈ Jr0,0(Rn,Rn)|α ∈ Diff (Rn)} (2.3.1)

i.e. the group of invertible r-jets with source and target at 0 ∈ Rn. The group multiplica-
tion in Lrn is defined by the jet composition Lrn × Lrn 3 (jr0α, j

r
0β) 7→ jr0(α ◦ β) ∈ Lrn.

The canonical (global) coordinates on Lrn are defined by

aij1,...,jk(jr0α) =
∂kαi

∂tj1 . . . ∂tjk

∣∣∣∣
0

, j1 ≤ j2 ≤ · · · ≤ jk, k = 0, ..., r (2.3.2)

where αi are the components of a representative α of jr0α.
We denote

a ≡ (aij , a
i
j1,j2 , . . . , a

i
j1,...,jk

) = (aiJ)1≤|J|≤r

and notice that one has

det(aij) 6= 0. (2.3.3)

To obtain the composition law for the differential group we need a combinatorial result
following easily by induction with the partition argument:
Lemma 2.5 Let U, V ∈ Rn be open sets, α : U → V and f : V → R smooth functions.
Then the following formula is true:

∂I(f ◦ α) =
|I|∑
p=1

∑
(I1,...,Ip)

(∂I1α
i1) . . . (∂Ipα

ip)(∂i1,...,ipf) ◦ α (2.3.4)

where we have denoted for any multi-index I = {i1, . . . , is}

∂If ≡
∂sf

∂ti1 . . . ∂tis
.

We now have:
Lemma 2.6 The group multiplication in Lrn is expressed in the canonical coordinates by
the equations

(a · b)kI =
|I|∑
p=1

∑
(I1,...,Ip)

bj1I1 . . . b
jp
Ip
akj1,...jp , |I| = 1, . . . r. (2.3.5)

The group Lrn is a Lie group.

Proof (i) We start from the defining formula:

(a · b)kj1,...,jl =
∂lαk ◦ β
∂tj1 . . . ∂tjl

∣∣∣∣
0
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and apply the lemma above. One obtains the composition formula. It is clear that the com-
position formula (2.3.5) is a smooth function. The identity is evidently: e ≡ (δij , 0, . . . , 0)
and it remains to prove that the map a → a−1 is smooth; it follows immediately by in-
duction that (a−1)kI =

(
det(aij)

)−|I| × P kI (a) where P kI is a polynomial in the variables
aiI , |I| = 0, . . . , r.

The manifolds of (r, n)-velocities T rnX admits a (natural) smooth right action of the
differential group Lrn, defined by the jet composition

(x · a)AI ≡ xAI (jr0(γ ◦ α)) (2.3.6)

where the connection between xAI and γ is given by (2.1.1) and the connection between aiI
and α is given by (2.3.2). We determine the chart expression of this action.
Proposition 2.7 The group action (2.3.6) is expressed by the equations

(x · a)A = xA, (x · a)AI =
|I|∑
p=1

∑
(I1,...,Ip)∈P(I)

aj1I1 . . . a
jp
Ip
xAj1,...,jp , |I| ≥ 1 (2.3.7)

and it is smooth.

Proof One applies the definitions (2.1.1) and (2.3.2) together with the lemma 2.5. The
smoothness is obvious from the explicit action formula given above.

The group Lrn has a natural smooth left action on the set of smooth real functions
defined on T rnX , namely for any such function f we have:

(a · f)(x) ≡ f(x · a). (2.3.8)

2.4 Higher order regular velocities

We say that a (r, n)-velocity jr0γ ∈ T rnX is regular, if γ (or any other representative) is an
immersion. If (V, ψ), ψ = (xA), is a chart, and the target γ(0) of an element jr0γ ∈ T rnX
belongs to V , then jr0γ is regular iff there exists a subsequence I ≡ (i1, . . . , in) of the
sequence (1, 2, . . . , n, n+ 1, . . . , n+m) such that

det(xikj ) 6= 0; (2.4.1)

(here xikj is a n× n real matrix.)
The associated charts have the form

(V I,r, ψI,r), ψI,r = (xkI , x
σ
I ), k = 1, . . . , n, σ = 1, . . .m ≡ N −n, |I| ≤ r

where

xkI ≡ x
ik
I , k = 1, . . . n

and σ ∈ {1, . . . , N} − {i1, . . . , in}. The set of regular (r, n)-velocities is an open, Lrn-
invariant subset of T rnX , which is called the manifold of regular (r, n)-velocities, and is
denoted by ImmT rnX .

One can determine a complete system of Lrn-invariants (in the sense of Weyl) of
the action (2.3.7) on ImmT rnX . We consider, for simplicity a chart for which one has
{i1, . . . , in} = {1, . . . , n} and denote xσI ≡ xn+σ

I , σ = 1, . . .m, |I| ≤ r. First we
have:
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Proposition 2.8 Let (xσI , x
i
I) be the coordinates of a point in ImmT rnX . Then

x ≡ (xiI)1≤|I|≤r (2.4.2)

is a element from Lrn . We denote its inverse by

z ≡ (ziI)1≤|I|≤r. (2.4.3)

Then zij is the inverse of the matrix xlp:

zijx
j
p = δip (2.4.4)

and the functions zij1,...,jk , k = 2, . . . r can be determined recursively from the equations:

zij1,...,jk = zpj1Dpz
i
j2,...,jk

, k = 2, . . . , r (2.4.5)

Proof For the first assertion one uses (2.3.3) and (2.4.1). For the relation (2.4.5) one starts
from the definition z · x = e or, in detail

|I|∑
k=1

∑
(I1,...,Ik)

xj1I1 . . . x
jk
Ik
zij1,...,jk =

{
δiI for |I| = 1
0 for |I| = 2, . . . r.

One performs two distinct operations on this relation: (a) we apply the operator Dp;
(b) we make I 7→ Ip. Next one subtracts the two results and uses the partition argument;
the following relation follows:

|I|∑
k=1

∑
(I1,...,Ik)

xj1I1 . . . x
jk
Ik

(Dpz
i
j1,...,jk

− xj0p zij0,...,jk) = 0.

From this relation, we obtain, by induction the formula from the statement.
The formula (2.4.5) suggests the following result:

Proposition 2.9 Let (V, ψ), ψ = (xA), be a chart onX and let (V rn , ψ
r
n) be the associated

chart on ImmT rnX . We define recursively on this chart the following functions

yσ ≡ xσ, yσi1,...,ik = zji1Djy
σ
i2,...,ik

, k = 1, . . . , r; (2.4.6)

(here zji are the first entries of the element z ∈ Lrn.) Then the functions yσi1,...,ik so de-
fined depend smoothly only on xAJ , |J | ≤ k and are completely symmetric in all indices
i1, . . . , ik, k = 1, . . . r.
Proof The first assertion follows immediately by induction. Next, one derives directly
from the formula (2.4.6) that

yσi1,...,ik = zj1i1 z
j2
i2

(
Dj1Dj2y

σ
i3,...,ik

− xpi1,i2z
j
pDjy

σ
i3,...,ik

)
, k = 2, . . . r.

In particular we see that for k = 2 the symmetry property is true. One can proceed now
by induction. If yσi1,...,ik−1

is completely symmetric then the formula above shows that
we have the symmetry property in the indices i1 and i2; moreover the recurrence relation
(2.4.6) shows that we have the symmetry property in the indices i2, . . . , ik. So we obtain
the desired property in all indices.

As a result of the symmetry property just proved we can use the convenient multi-index
notation yσI , |I| ≤ r. Now we have an explicit formula for these functions.
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Proposition 2.10 The functions yσI , 1 ≤ |I| ≤ r are uniquely determined by the recur-
rence relations:

xσI =
|I|∑
p=1

∑
(I1,...,Ip)

xj1I1 . . . x
jp
Ip
yσj1,...,jp . (2.4.7)

Using the notation x ∈ Lrn one can compactly write the relation above as

xσI = (y · x)σI , 1 ≤ |I| ≤ r. (2.4.8)

Proof Goes by induction on |I|. The formula above is obvious for I = {j}. If it is valid
for |I| < r we apply to the relation above the operator dj and use (2.2.6) and the partition
argument. One obtains in this way the formula from the statement for Ij. The unicity also
follows by induction. The last assertion is a consequence of the first formula and of the
expression of the group action (2.3.7).

Let us note that one can “invert” the formulas from the statement. Indeed, (2.4.8) is
equivalent to

yσI = (x · z)σI , 1 ≤ |I| ≤ r (2.4.9)

or explicitly

yσI =
|I|∑
p=1

∑
(I1,...,Ip)

zj1I1 . . . z
jp
Ip
xσj1,...,jp . (2.4.10)

Corollary 2.11 One can use on V r the new coordinates (yσI , x
i
I), |I| ≤ r.

Now we have the following result
Proposition 2.12 The functions yσI , |I| ≤ r are Lrn-invariants with respect to the natu-
ral action (2.3.8).

Proof Let a ∈ Lrn be arbitrary. We start from (2.4.8) and use the associativity of the group
composition law of Lrn; we get:

(x · a)σI = ((y · x) · a)σI = (y · (x · a))σI .

On the other hand if we make in (2.4.8) the substitution x 7→ x · a we get:

(x · a)σI = ((a · y) · (x · a))σI .

(here a · y denotes the action of the differential group on the functions y according to
(2.3.8).)

By comparing the two formulas and using of the unicity statement from the preceding
proposition we get the desired result.

Moreover, we can prove:
Theorem 2.13 The functions yσI , |I| ≤ r are a complete system of invariants in the
sense of Weyl.
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Proof The fact that the functions yσI , |I| ≤ r are functionally independent follows by
reductio ad absurdum. If they would be functionally dependent, then from (2.4.10) it
would follow that the expressions xσI , |I| ≤ r also are functionally dependent. We still
must show that there are no other invariants beside yσI , |I| ≤ r. We proceed as follows.
From corollary 2.11 it follows that one can use on V r the coordinates (yσI , x

i
I), |I| ≤ r.

In these coordinates the action of the group Lrn is:

(y · a)σI = yσI , |I| ≤ r,

(x · a)i = xi, (x · a)iI =
|I|∑
p=1

∑
(I1,...,Ip)

aj1I1 . . . a
jp
Ip
xij1,...,jp , 1 ≤ |I| ≤ r. (2.4.11)

One can prove now by induction that this action is transitive. This shows that the system
of invariants from the statement is complete.

2.5 Higher order Grassmann bundles

The formalism presented above can be implemented in an arbitrary chart system
(V I,r, ψI,r) on ImmT rnX (see the beginning of the preceding subsection). In this con-
text we have the central result [15]:
Theorem 2.14 The set P rnX ≡ ImmT rnX/L

r
n has a unique differential manifold structure

such that the canonical projection ρrn is a submersion. The group action (2.3.7) defines on
ImmT rnX the structure of a right principal Lrn-bundle. A chart system on P rnX adapted
to this fiber bundle structure is formed from couples (W I,r,ΦI,r) where:

W I,r =
{
jr0γ ∈ V r|det(xikj (jr0γ)) 6= 0

}
(2.5.1)

and

ΦI,r = (xiI , y
σ
I ), |I| ≤ r. (2.5.2)

In this case the local expression of the canonical projection is

ρrn(xiI , y
σ
I ) = (xi, yσI ).

Proof We define on ImmT rnX × ImmT rnX the equivalence relation

x ∼ x̄ iff ∃a ∈ Lrn s.t. x̄ = x · a.

To prove the first assertion from the statement is sufficient (according to [7], par.
16.19.3) to prove that the graph of ∼ is a closed submanifold of the product manifold.
We will look for a convenient system of coordinates on ImmT rnX .

The first step is to take x and x̄ such that x ∼ x̄ and to solve the system of equations

x̄ = x · ax,x̄

for the unknown functions ax,x̄ ∈ Lrn.
One easily gets

(ax,x̄)ij = zipx̄
p
j
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and then shows by induction that (ax,x̄)iI are uniquely determined smooth functions of the
variables xiJ , x̄

i
J , |J | ≤ |I| ≤ r.

We now define the (local) smooth functions on ImmT rnX × ImmT rnX:

ΦσI (x, x̄) ≡ x̄σI − (x · ax,x̄)σI , |I| ≤ r.

It is clear that on can take on ImmT rnX × ImmT rnX the (local) coordinates
(xAI ,Φ

σ
I , x̄

i
I), |I| ≤ r; it follows that the graph of ∼ is given by ΦσI = 0, |I| ≤ r

i.e. it is a closed submanifold. To prove the fiber bundle structure it is sufficient to show
(see also [7]) that the action of Lrn is free i.e. x · a = x =⇒ a = e. This fact follows
elementary by induction. Finally, we have remarked before (see the preceding theorem)
that one can take on ImmT rnX the coordinates (yσI , x

i
I), |I| ≤ r with the action given by

(2.4.11). The last assertion about the expression of the canonical projection follows.
A point of P rnX containing a regular (r, n)-velocity jr0γ is called an (r, n)-contact

element, or an r-contact element of an n-dimensional submanifold of X , and is denoted
by [jr0γ]. As in the case of r-jets, the point 0 ∈ Rn (resp. γ(0) ∈ X) is called the source
(resp. the target) of [jr0γ]. The manifold P rn is called the (r, n)-Grassmannian bundle, or
simply a higher order Grassmannian bundle over X .

Besides the quotient projection ρrn : ImmT rnX → P rn we have for every 1 ≤ s ≤ r, the
canonical projection of P rnX onto P snX defined by ρr,sn ([jr0γ]) = [js0γ] and the canonical
projection of P rnX onto X defined by ρrn([jr0γ]) = γ(0).
Remark 2.15 When the manifold X is fibred over a manifold M of dimension n one
can also construct the jet extension JrX (see [24], [13]). One can establish a canonical
isomorphism between P snX and JrX as follows: let x ∈ M,x = γ(m), γ ∈ Γ(m,x); and
φ : Rn → M a (local) diffeomorphism such that φ(0) = m. We can define γ̃ ∈ Γ(0,x)

by the formula γ̃ ≡ γ ◦ φ. One notices that γ̃1 ∼ γ̃2 iff there exists α ∈ Diff (Rn) such
that γ1 = γ2 ◦ α. This means that the map jrnγ 7→ jrγ̃ can be factorized to a map from
P rnX → JrX which is proved to be an isomorphism.

We also note the following result:
Proposition 2.16 The following formula is true

ΦσI =
|I|∑
p=1

∑
(I1,...,Ip)

x̄j1I1 . . . x̄
jp
Ip

(ȳσj1,...,jp − y
σ
j1,...,jp), 1 ≤ |I| ≤ r. (2.5.3)

or, in compact notations

ΦσI = ((ȳ − y) · x̄)σI . (2.5.4)

In particular, the equation

ΦσI = 0, 1 ≤ |I| ≤ r

is equivalent to

ȳσI = yσI , |I| ≤ r.

Proof The proof relies heavily on induction. Firstly, we define on ImmT rnX × ImmT rnX
the expressions

Vi ≡ D̄i − (ax,x̄)ijDj
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(where ax,x̄ have been defined previously) and we prove by induction the following for-
mula:

Vi(ax,x̄)jI = (ax,x̄)jiI , 1 ≤ |I| ≤ r − 1.

Next, one uses this formula to prove by direct computation that

ViΦσI = ΦσiI .

Finally, one uses the preceding formula to prove by induction the formula (2.5.3) from
the statement.

Remark 2.17 The dimension of the factor manifold P rnX is

dimP rnX = m

(
n+ r

n

)
+ n.

Now we try to define on P rnX the analogue of the total differential operators.
Proposition 2.18 Let us consider on the regular velocities manifold ImmT rnX the coor-
dinates (yσI , x

i
I), |I| ≤ r and define the operators

∂̃j1,...jkσ ≡ r1! . . . rn!
k!

∂

∂yσj1,...,jk
(2.5.5)

(where we use the same conventions as in (2.2.1)).
We also define, by analogy to (2.2.5)

d̃ri ≡
∂

∂xi
+
r−1∑
k=0

yσi,j1,...,jk ∂̃
j1,...,jk
σ =

∑
|J|≤r−1

yσiJ ∂̃
J
σ . (2.5.6)

Then the following formula is true

Di =
r−1∑
p=1

xli,j1,...,jk∆j1,...,jk
l + xpi d̃p (2.5.7)

where, as usual, d̃i = d̃ri when no danger of confusion arises.

The proof goes by direct computation. Now we define on P rnX , in the chart ρrn(W I,r)
some operators which are the analogues of (2.5.5) and (2.2.5), namely

∂j1,...jkσ ≡ r1! . . . rn!
k!

∂

∂yσj1,...,jk
(2.5.8)

and

di ≡
∂

∂xi
+
r−1∑
k=0

yσi,j1,...,jk∂
j1,...,jk
σ =

∂

∂xi
+

∑
|J|≤r−1

yσiJ∂
J
σ . (2.5.9)

These operators are also called total derivatives. A formula similar to (2.2.2) is valid;
moreover, if we use (2.2.9) the preceding proposition has the following consequence:
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Proposition 2.19 The following formula is true:

(ρrn)∗(z
j
iDj) = di. (2.5.10)

In particular, we have for any smooth function f on ρrn(W r) the following formula:

Di(f ◦ ρrn) = xji (djf) ◦ ρrn. (2.5.11)

Therefore, if (V, ψ) and (V̄ , ψ̄) are two charts on X such that V ∩ V̄ 6= ∅ and di, d̄i, i =
1, . . . n are the corresponding operators defined on ρrn(V r) and respectively on ρrn(V̄ r),
then we have on ρrn(V r ∩ V̄ r):

Span(d1, . . . , dn) = Span(d̄1, . . . , d̄n). (2.5.12)

Finally we can give the formula for the chart change on P rnX .
Proposition 2.20 In the conditions of the preceding proposition, let (ρrn(V r), (xi, yσ))
and respectively (ρrn(V̄ r), (x̄i, ȳσ)) be the two (overlapping charts); then the change of
charts on ρrn(V r) ∩ ρ(V̄ r) is given by:

ȳσiI = P ji dj ȳ
σ
I , |I| ≤ r − 1 (2.5.13)

where P is the inverse of the matrix Q:

Qlp ≡ dpx̄l, P ji Q
l
j = δli. (2.5.14)

Proof We have from (2.4.6)

x̄ij ȳ
σ
iI = D̄j ȳ

σ
I , |I| ≤ r − 1

with ȳσI functions of x̄AJ . We will consider this relation on the overlap V r ∩ V̄ r such that
ȳσI can be considered as functions of xAJ through the chart transformation formulas. Using
also (2.2.9) one gets:

x̄ij ȳ
σ
iI = Dj ȳ

σ
I . |I| ≤ r − 1

We rewrite this relation in the new coordinates (xi, yσI , x
i
I) (see corollary 2.11) and also

use (2.5.7); as a result one finds out:

zjpx̄
i
j ȳ
σ
iI = d̃pȳ

σ
I , |I| ≤ r − 1.

It remains to prove using also (2.5.7) that

Qjp = zjpx̄
i
j (2.5.15)

and the change transformation formula from the statement follows.
We now note two other properties of the total differential operators di. The first one

follows immediately from (2.5.10) and (2.5.15):

Qji d̄j = di. (2.5.16)
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The second one is the analogue of (2.2.8):

[di, dj ] = 0. (2.5.17)

So, for every multi-index I , the following expression makes sense:

dI ≡
∏
i∈I

di. (2.5.18)

We close this subsection with a result which will be useful later.
Proposition 2.21 The following formula is true on the overlap of two charts:

∂i1,...,ikσ ȳνj1,...,jk = S+
j1,...,jk

P i1j1 . . . P
ik
jk
Qνσ, k = 1, ..., r. (2.5.19)

Here we have defined:

Qσν ≡ ∂ν ȳσ − ȳσi (∂ν x̄i). (2.5.20)

Proof It is done by recurrence. First one proves directly from the definitions that:

∂i1,...,ikσ ȳνj1,...,jk = S+
j1,...,jk

P i1j1 ∂
i2,...,ik
σ ȳνj2,...,jk , k = 2, . . . , r (2.5.21)

and then we obtain by recurrence:

∂i1,...,ikσ ȳνj1,...,jk = S+
j1,...,jk

P i1j1 . . . P
ik−1
jk−1

∂ikσ ȳ
ν
jk
, k = 1, . . . , r. (2.5.22)

Finally one establishes by direct computation that

∂iσ ȳ
ν
j = P ijQ

ν
σ (2.5.23)

and the formula from the statement follows.
As a corollary we have the following fact:

Corollary 2.22 Let us denote by Ωrq(PX), q ≥ 0 the modulus of differential forms of
order q on P rn . Then the subspace

Ωrq,hor(PX) ≡ {α ∈ Ωrq(PX)|i
∂
j1,...,jr
σ

α = 0}

is globally well defined.

Proof One has, according to the chain rule on the overlap of two charts:

∂i1,...,irσ =
(
∂i1,...,irσ ȳνj1,...,jr

)
∂̄i1,...,irν = P i1j1 . . . P

ir
jr
Qνσ∂̄

i1,...,ir
ν

and a similar formula for the corresponding inner contractions. It follows that the
relation

i
∂
j1,...,jr
σ

α = 0

is chart independent.
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2.6 Contact forms on Grassmann manifolds

In this subsection we give some new material about the possibility of defining the contact
forms on the factor manifold P rnX . Fortunately, most of the definitions and properties
from [24]-[26] and [13] can be adapted to this more general situation.

By a contact form on P rnX we mean any form ρ ∈ Ωrq(PX) verifying

[jrγ]∗ ρ = 0 (2.6.1)

for any immersion γ : Rn → X . We denote by Ωrq(c)(PX) the set of contact forms of
degree q ≤ n. Here [jrγ] : Rn → P rn is given by (see def. (2.2.10)) [jrγ] (t) ≡ [jrt γ] .
Now, many results from [13] are practically unchanged. We mention some of them.

If one considers only the contact forms on an open set ρrn(V r) ⊂ P rnX then we em-
phasize this by writing Ωrq(c)(V ). One immediately notes that Ωr0(c) = 0 and that for q > n
any q-form is contact. It is also elementary to see that the set of all contact forms is an ideal,
denoted by C(Ωr), with respect to the operation ∧. Because the operations of pull-back
and of differentiation are commuting this ideal is left invariant by exterior differentiation:

dC(Ωr) ⊂ C(Ωr). (2.6.2)

By elementary computations one finds out that, as in the case of a fiber bundle, for any chart
(V, ψ) on X , every element of the set Ωr1(c)(V ) is a linear combination of the following
expressions:

ωσj1,...,jk ≡ dy
σ
j1,...,jk

− yσi,j1,...,jkdx
i, k = 0, ..., r − 1 (2.6.3)

or, in multi-index notations

ωσJ ≡ dyσJ − yσiJdxi, |J | ≤ r − 1. (2.6.4)

From the definition above it is clear that the linear subspace of the 1-forms on P rnX is
generated by dxi, ωσJ , (|J | ≤ r − 1) and dyσI , |I| = r. For any smooth function on
ρ(V r) we have

df = (dif)dxi +
∑
|J|≤r−1

(∂Jσ f)ωσJ +
∑
|I|=r

(∂Iνf)dyνI . (2.6.5)

We also have the formula

dωσJ = −ωσJi ∧ dxi, |J | ≤ r − 2. (2.6.6)

The structure theorem from [26], [13] stays true, i.e. any ρ ∈ Ωrq(PX), q = 2, ..., n is
contact iff it has the following expression in the associated chart:

ρ =
∑
|J|≤r−1

ωσJ ∧ ΦJσ +
∑
|I|=r−1

dωσI ∧ΨI
σ (2.6.7)

where ΦJσ ∈ Ωrq−1 and ΨI
σ ∈ Ωrq−2 can be arbitrary forms. (We adopt the convention that

Ωrq ≡ 0,∀q < 0).
We will need in the following the transformation formula relevant for change of charts.

It is to be expected that there will be some modifications of the corresponding formula
from the fiber bundle case. Namely, we have by elementary computations



342 Lagrangian formalism on Grassmann manifolds

Proposition 2.23 Let (V, ψ) and (V̄ , ψ̄) two overlapping charts on X and let (W r,Φr),
Φr = (xi, yσI , x

i
I) and (W̄ r, Φ̄r), Φ̄r = (x̄i, ȳσI , x̄

i
I) the corresponding charts on T rnX .

Then the following formulas are true on ρrn(W r ∩ W̄ r):

ω̄σI =
|I|∑
|J|=1

(∂Jν ȳ
σ
I )ωνJ −QσI,νων , 1 ≤ |I| ≤ r − 1. (2.6.8)

and

ω̄σ = Qσνω
ν (2.6.9)

where we have defined:

QσI,ν ≡ ∂ν ȳσI − ȳσjI(∂ν x̄j), 0 ≤ |I| ≤ r − 1. (2.6.10)

Remark 2.24 Let us note that the notations are consistent in the sense that Qσν = Qσ∅,ν
where Qσν is given by the formula (2.5.20)

As a consequence of the preceding proposition we have:
Corollary 2.25 If a q-form has the expression

ρ =
∑

p+s=q−n+1

∑
|J1|,...,|Jp|≤r−1

∑
|I1|,...,|Is|=r−1

ωσ1
J1
· · · ∧ ωσpJp∧

∧ dων1
I1
· · · ∧ dωνsIs ∧ ΦJ1,...,Jp,I1,...,Is

σ1,...,σp,ν1,...,νs (2.6.11)

valid in one chart, then it is valid in any other chart.

This corollary allows us to define for any q = n + 1, ..., dim(JrY ) = m
(
n+r
n

)
a

strongly contact form to be any ρ ∈ Ωrq such that it has in one chart (thereafter in any
other chart) the expression above. For a certain uniformity of notations, we denote these
forms by Ωrq(c). Now it follows that one can define the variational sequence and prove its
exactness as in the fiber bundle case. We also mention the fact that one can define a global
operator on the linear space Ωrq,horX defined at the end of the preceding subsection, at
least in the case r = 2. In fact we have [18]
Proposition 2.26 Let r = 2. Then, the operator locally defined on any differential form
by:

Kα ≡ idj i∂jσ (ωσ ∧ α) (2.6.12)

is globally defined on the subspace Ω2
q,horX .

Proof One works on the overlap of two charts and starts from the definition above trying
to transform everything into the other set of coordinates. It is quite elementary to use
corollary 2.22 to find

Kα ≡ id̄j i∂̄jν (Qνσω
σ ∧ α)

Now one uses (2.5.19) and the transformation formula (2.6.9) for the contact forms to
obtain

Kα = K̄ᾱ.

that it, K is well defined globally.
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2.7 Morphisms of Grassmannian manifolds

Let Xi, i = 1, 2 be two differential manifolds and φ : X1 → X2 a smooth map. We
define the new map jrφ : T rnX1 → T rnX2 according to

jrφ(jr0γ) ≡ jr0φ ◦ γ (2.7.1)

for any immersion γ. If γ is a regular immersion, then one can see that the map jrφ maps
ImmT rn(X1) into ImmT rn(X2) and so, it factorizes to a map Jrφ : P rnX1 → P rnX2 given
by

Jrφ([jr0γ]) ≡ [jr0φ ◦ γ]. (2.7.2)

The map Jrφ is called the extension of order r of the map φ. One can show that the contact
ideal behaves naturally with respect to prolongations i.e.

(Jrφ)∗C(Ωr(PX2)) ⊂ C(Ωr(PX1)). (2.7.3)

The proof follows directly from the definition of a contact form. If ξ is a vector field on
X we define its extension of order r on T rnX and on P rnX the vector fields jrξ and Jrξ
respectively given by the following formulas:

jrξjr0γf ≡
d

dt
f ◦ jretξ(jr0γ)

∣∣∣∣
t=0

(2.7.4)

(for any smooth real function f on T rnX) and

Jrξ ≡ d

dt
Jretξ

∣∣∣∣
t=0

; (2.7.5)

here etξ is, as usual, the flow associated to ξ. One will need the explicit formula of jrξ. If
in the chart (V, ψ) we have

ξ = ξA∆A (2.7.6)

with ξA smooth function, then jrξ has the following expression in the associated chart
(V r, ψr):

jrξ =
∑
|I|≤r

(DJξ
A)∆J

A. (2.7.7)

The proof of this fact follows by direct computation from the definition above. We call
evolutions these type of vector fields on T rnX and denote the set of evolutions by E(T rnX).
As a consequence of (2.7.3), if ξ is a vector field on X , then

LJrξC(Ωr(X)) ⊂ C(Ωr(X)). (2.7.8)

Now, as in [13] we have the following results. Suppose that in local coordinates we have

ξ = ai(x, y)
∂

∂xi
+ bσ(x, y)∂σ (2.7.9)
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with ai and bσ smooth function; then Jrξ must have the following expression in the asso-
ciated chart:

Jrξ = ai
∂

∂xi
+
∑
|J|≤r

bσJ∂
J
σ . (2.7.10)

where

bσJ = dI(bσ−yσj aj)+yσjIa
j , |I| ≤ r−1, bσI = dI(bσ−yσj aj), |I| = r. (2.7.11)

Finally we give the expression of the prolongation Jrφ where φ is a bundle morphism of
the X . If φ has the local expression

φ(xi, yσ) = (f i, Fσ) (2.7.12)

then we must have in the associated chart:

Jrφ(xi, yσ, yσj , ..., y
σ
j1,...,jr ) = (f i, Fσ, Fσj , ..., F

σ
j1,...,jr ) (2.7.13)

where Fσj1,...,jk , j1 ≤ j2 ≤ · · · ≤ jk, k = 1, ..., r are smooth local functions given
recursively by:

FσJi = P li dlF
σ
J |J | ≤ r − 1; (2.7.14)

we also have

∂IνF
σ
J = 0 |I| = r. (2.7.15)

3 The Lagrangian formalism on a Grassmann manifold

3.1 Euler-Lagrange forms

We outline a construction from [2] which is the main combinatorial trick in the study of
globalisation of the Lagrangian formalism. We call any map P : E(T rnX) → Ωs(T snX),
s ≥ r covering the identity map: id : T rnX → T rnX a total differential operator. In local
coordinates such an operator has the following expression: if ξ has the local expression
(2.7.6), then:

P (ξ) =
∑
|I|≤r

(DIξ
A)P IA =

r∑
k=0

(
Dj1 . . . Djkξ

A
)
P j1,...,jkA (3.1.1)

where P j1,...,jkA are differential forms on T snX and Dj = Ds
j .

Then, as in [2] and [13] one has the following combinatorial lemma:
Lemma 3.1 In the conditions above, the following formula is true:

P (ξ) =
∑
|I|≤r

DI(ξAQIA) (3.1.2)



D. R. Grigore 345

where

QIA ≡
∑

|J|≤r−|I|

(−1)|J|
(
|I|+ |J |
|I|

)
DJP

IJ
A (3.1.3)

and one assumes that the action of a formal derivative Dj on a form is realized by through
the Lie derivatives. Moreover, the relation (3.1.2) uniquely determines the forms QIA.

The proof is identical with the one presented in [13]. We also have
Proposition 3.2 In the conditions above one has on the overlap V s ∩ V̄ s the following
formula:

QA = (∆Ax̄
B)Q̄B . (3.1.4)

In particular, there exists a globally defined form, denoted by E(P )(ξ) with the local
expression

E(P )(ξ) = QAξ
A. (3.1.5)

Proof From the formula (3.1.2) we have

P (ξ) = ξAQA +
r∑

k=1

Dj1 . . . Djk

(
ξAQj1,...,jkA

)
So, in the overlap V s ∩ V̄ s we have

ξAQA − ξ̄
A
Q̄A =

r∑
k=1

[
D̄j1 . . . D̄jk

(
ξ̄
A
Q̄j1,...,jkA

)
−Dj1 . . . Djk

(
ξAQj1,...,jkA

)]
.

But because of the relation (2.2.9) we can simplify considerably this formula, namely we
get:

ξAQA − ξ̄
A
Q̄A =

r∑
k=1

Dj1 . . . Djk

(
ξ̄
A
Q̄j1,...,jkA − ξAQj1,...,jkA

)
Now one proves that both sides are zero as in [2], [13] making use of Stokes theorem.

The operator E(P ) defined by (3.1.5) is called the Euler operator associated to the
total differential operator P ; it has the local expression:

E(P )(ξ) = ξAEA(P ) (3.1.6)

where

EA(P ) =
r∑
|I|=0

(−1)|I|DIP
I
A. (3.1.7)

Now one takes L ∈ F(T rn) and constructs the total differential operator PL according to:

PL(ξ) ≡ Lpr(ξ)L. (3.1.8)



346 Lagrangian formalism on Grassmann manifolds

Lemma 3.1 can be applied and immediately gives the following local formula:

PL(ξ) =
r∑
|I|=0

DI

(
ξAEIA(L)

)
(3.1.9)

where

EIA(L) ≡
∑

|J|≤r−|I|

(−1)|J|
(
|I|+ |J |
|I|

)
DJ∆IJ

A L (3.1.10)

are the so-called Lie-Euler operators; the Euler operator associated to PL has the following
expression:

E(PL) = ξAEA(L) (3.1.11)

where

EA(L) ≡
∑
|J|≤r

(−1)|J|DJ∆J
AL (3.1.12)

are the Euler-Lagrange expressions associated to L. The proposition above leads to
Proposition 3.3 If L ∈ F(T rn), then there exists a globally defined 1-form, denoted by
E(L) such that we have in the chart V s, s ≥ 2r:

E(L) = EA(L)dxA. (3.1.13)

Proof By construction QA = EA(L). Now, one has from (3.1.4) :

EA(L) = (∆Ax̄
B)ĒB(L̄). (3.1.14)

Combining with the transformation property dx̄A = (∆Bx̄
A)dxB and obtains that the

formula (3.1.13) has a global meaning.
One calls this form the Euler-Lagrange form associated to L. All the properties of this

form listed in [13] are true in this case also. We insist only on the so-called product rule
for the Euler-Lagrange expressions [1] which will be repeatedly used in the following.
Proposition 3.4 If f and g are smooth functions on V r then one has in V s, s ≥ 2r the
following formula:

EIA(fg) =
∑

|J|≤r−|I|

(
|I|+ |J |
|J |

)[
(DJf)EIJA (g) + (DJg)EIJA (f)

]
, |I| ≤ r. (3.1.15)

The proof goes by direct computation, directly from the definition of the Lie-Euler
operators combined with Leibnitz rule of differentiation of a product. We now come to the
main definition. A smooth real function L on ImmT rn is called a homogeneous Lagrangian
if it verifies the relation:

L(x · a) = det(a)L(x), ∀a ∈ Lrn; (3.1.16)

here by det(a) we mean det(aij). Such an object induces on the factor manifold P rnX an
non-homogeneous object.
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Proposition 3.5 Let L be a homogeneous Lagrangian. Then for every chart (W r,Φr) on
ImmT rnX there exists a smooth real function on ρrn(W r) such that:

L = det(x)L ◦ ρrn (3.1.17)

and conversely, if L is locally defined by this relation, then it verifies (3.1.16).

Proof One chooses in (3.1.16) a = x (see (2.4.2)).
The function L is called the non-homogeneous (local) Lagrangian associated to L. As

a consequence of the connection (3.1.17) we have
Proposition 3.6 Let L a homogeneous Lagrangian and (V, ψ), (V̄ , ψ̄) two overlapping
charts on X . We consider on the associated charts (W r,Φr) and (W̄ r, Φ̄r) the corre-
sponding non-homogeneous Lagrangians L and respectively L̄. Then we have on the over-
lap ρrn(W r ∩ W̄ r) the following formula:

L = J L̄ (3.1.18)

where

J ≡ det(Q) = det(dix̄j). (3.1.19)

Proof One writes (3.1.17) for both charts and gets

L = det(x)L ◦ ρrn = det(x̄)L̄ ◦ ρrn;

as a consequence

L ◦ ρrn = det(x̄z)L̄ ◦ ρrn.

One now uses the relation (2.5.15) and obtains the relation from the statement.
It follows that we have

Theorem 3.7 One can globally define the equivalence class

[λ] ∈ Ωrn(PX)/Ωrn(c)(PX)

such that the local expression of λ is

λ = Lθ0; (3.1.20)

here, as usual

θ0 ≡ dx1 ∧ · · · ∧ dxn. (3.1.21)

Proof One proves immediately that on the overlap of the associated charts from the propo-
sition above one has:

θ̄0 = J θ0 + contact terms. (3.1.22)
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This result must be combined with (3.1.18) to obtain on ρrn(W r ∩ W̄ r):

λ− λ̄ ∈ Ωrn(c)(PX);

this proves the theorem.
It is natural to ask what is the connection between the Euler-Lagrange expression of

the homogeneous and the corresponding non-homogeneous Lagrangian. The answer is
contained in:
Theorem 3.8 Suppose L is a homogeneous Lagrangian defined on ImmT rnX and L is the
associated non-homogeneous Lagrangian. Then the following relations are valid on the
chart W s, s ≥ 2r:

Eσ(L) = det(x)Eσ(L) ◦ ρsn, (3.1.23)

Ej1,...,jkσ (L) = (−1)k det(x)
∑
|I|≥k

(−1)|I|
∑

(I1,...,Ik)

S+
j1,...,jk

zj1I1 . . . z
jk
Ik
EIσ(T ) ◦ ρsn,

(3.1.24)

and

Ep(L) = − det(x)yσpEσ(T ) ◦ ρsn, (3.1.25)

Ejp(T ) = det(x)

zjpL+ yσp
∑
I≤r

zjIE
I
σ(L)

 ◦ ρsn, (3.1.26)

Ej1,...,jkp (L) = (−1)k+1 det(x)yσp
∑
|I|≥k

(−1)|I|
∑

(I1,...,Ik)

S+
j1,...,jk

zj1I1 . . . z
jk
Ik
EIσ(L)◦ρsn.

(3.1.27)

Proof (i) As a general strategy of the proof, we will try to transform the expression of the
total differential operator PL(ξ) in terms of L; we have by definition

PL(ξ) =
∑
|I|≤r

(DIξ
A)∆I

A [det(x)L ◦ ρ] .

Using the chain rule one obtains rather easily from here:

PL(ξ) = det(x)
r∑

k=0

(Dj1 . . . Djkξ
σ)

r∑
l=k

(∂i1,...,ilν L) ◦ ρ (∆j1,...,jk
σ yνi1,...,il)+

det(x)
r∑

k=0

(Dj1 . . . Djkξ
p)

r∑
l=k

(∂i1,...,ilν L) ◦ ρ (∆j1,...,jk
p yνi1,...,il)+

det(x)ξp(∂pL) ◦ ρ+ (Djξ
p)[∆j

p det(x)]L ◦ ρ
(3.1.28)
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We will now consider that the functions ξA depend only of the variables (xi, yσ) i.e. there
exist the smooth real functions ΞA on W r such that

ξA = ΞA ◦ ρ. (3.1.29)

(ii) To compute further the expression above one starts from (2.4.10) and firstly proves
directly:

∆j1,...,jk
σ yνI = δνσS+

j1,...,jk

∑
(I1,...,Ik)

zj1I1 · · · z
jk
Ik
, 1 ≤ k ≤ |I| ≤ r. (3.1.30)

Next one proves
Lemma 3.9 If we have 1 ≤ k ≤ |I| ≤ r then one has:

∆j1,...,jk
p yσI = −S+

j1,...,jk

∑
(I0,...,Ik)

zj1I1 · · · z
jk
Ik
yσpI0 . (3.1.31)

Here we understand that any of the subsets I1, . . . , Ik cannot be the emptyset; on the
contrary, it is allowed to have I0 = ∅.
Proof By induction on |I| starting from |I| = k. For this smallest possible value one uses
(2.4.10). Then one supposes that the formula from the statement is valid for k ≤ |I| < r,
uses the defining recurrence relation (2.4.6) for the invariants and establishes the relation
for iI . The cases k = 1 and k > 1 must be treated separately.

Another auxiliary result is contained in the well known result:
Lemma 3.10 The following formulas are true:

∆i
j det(x) = zij det(x) (3.1.32)

and

Di[zij det(x)] = 0. (3.1.33)

Proof The first result is general i.e. valid for any invertible matrix and it is proved directly
from the definition of the determinant. The second formula is a corollary of the first.

One must use these results together with (2.5.11); we have from (3.1.28) after permut-
ing the two summation signs:

PL(ξ) = det(x)[ξσ(∂σL) ◦ ρ

+
r∑
|I|=1

(∂IσL) ◦ ρ
I∑
k=1

∑
(I1,...,Ik)

zj1I1 · · · z
jk
Ik

(Dj1 . . . Djkξ
σ)

−
∑
|I0|≤r

r−|I0|∑
|I|=1

(
|I|+ |I0|
|I|

)
yσpI0(∂II0σ L) ◦ ρ

I∑
k=1

∑
(I1,...,Ik)

zj1I1 · · · z
jk
Ik

(Dj1 . . . Djkξ
p)

+ ξp(∂pL) ◦ ρ− ξp(djL) ◦ ρ]

+Dj [ξpzjp det(x)L ◦ ρ].

(3.1.34)
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(iii) One can proceed further one must generalise the formula (2.5.11). We have the
following formula

DI(f ◦ ρ) =
I∑
k=1

∑
(I1,...,Ik)

xj1I1 · · ·x
jk
Ik

(dj1 . . . djkf) ◦ ρ (3.1.35)

which can be proved by induction on |I|. This formula can be “inverted” rather easily and
we get:

(dIf) ◦ ρ =
I∑
k=1

∑
(I1,...,Ik)

zj1I1 · · · z
jk
Ik
Dj1 . . . Djk(f ◦ ρ). (3.1.36)

The expression (3.1.34) can be considerably simplified to

PL(ξ) = det(x)[
∑
|I|≤1

(dIΞσ)P Iσ − (dIΞp)P Ip ] ◦ ρ+Dj [ξpzjp det(x)L ◦ ρ] (3.1.37)

where we have defined

P Iσ ≡ ∂IσL; P Ip ≡
∑

|J|≤r−|I|

(
|I|+ |J |
|J |

)
yσpJ∂

IJ
σ L.

(iv) Now it this the time to apply lemma 3.1 and to obtain in this way:

PL(ξ) = det(x)
∑
|I|≤r

[dI(ΞσQIσ − ΞpQIp)] ◦ ρ+Dj [ξpzjp det(x)L ◦ ρ] (3.1.38)

where one gets by some computations the following formulas for the expressions QIA:

QIσ =
∑

|J|≤r−|I|

(−1)|J|
(
|I|+ |J |
|J |

)
dJP

IJ
σ = EIσ(L) (3.1.39)

and

QIp =
∑

|J|≤r−|I|

(−1)|J|
(
|I|+ |J |
|J |

)
dJP

IJ
p = yσpE

I
σ(L). (3.1.40)

(v) We want to compare the expression (3.1.38) with the right hand side of the formula
from lemma 3.1. To do this we need one more combinatorial result valid for any smooth
real function on the chart W r:

det(x)(dIf)◦ρ =
I∑
k=1

(−1)k−|I|Dj1 · · ·Djk

det(x)
∑

(I1,...,Ik)

zj1I1 · · · z
jk
Ik

(f ◦ ρ)

 ,
|I| ≤ r. (3.1.41)
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One proves this formula by induction on |I| and so the final expression for the total differ-
ential operator is

PL(ξ) = det(x)(ΞσQσ − ΞpQIp) ◦ ρ+Dj [ξpzjp det(x)L ◦ ρ]

+
r∑

k=1

(−1)kDj1 · · ·Djk

det(x)
∑
|I|≥k

(−1)|I|

∑
(I1,...,Ik)

zj1I1 · · · z
jk
Ik

(ΞσQIσ − ΞpQIp) ◦ ρ


(3.1.42)

If one uses the unicity statement from lemma 3.1 one obtains the desired formulas.
Immediate consequences of the preceding theorem are

Corollary 3.11 If L is a homogeneous Lagrangian, then the following relations are true
on the manifold T snX, s ≥ 2r :

EA(L)(x · a) = det(a)EA(L)(x), ∀a ∈ Lrn. (3.1.43)

In the conditions of the above theorem we have:

EA(L) ≡ 0⇐⇒ Eσ(L) ≡ 0. (3.1.44)

We also have the analogue of proposition 3.6:
Proposition 3.12 In the condition of the preceding theorem let us consider two over-
lapping charts (V, ψ), (V̄ , ψ̄). Then one has on the overlap of the associated charts:
ρsn(W s ∩ W̄ s) the following relation:

Eσ(L) = JQνσĒν(L̄) (3.1.45)

where the matrix Qνσ has been defined by the formula (2.5.20).

Proof We start from the transformation formula (3.1.14) for A→ σ:

Eσ(L) = (∂σx̄i)Ēi(L̄) + (∂σ ȳν)Ēν(L̄)

and substitute (3.1.23) and (3.1.25). Using (2.5.15) we obtain by elementary computations
the relation from the statement.

Remark 3.13 For a different proof of this result see [28].
Now we have the analogue of theorem 3.7:

Theorem 3.14 If L is a homogeneous Lagrangian on T rn , then one can globally define the
equivalence class

[E(L)] ∈ Ωsn+1(PX)/Ωsn+1(c)(PX)

on P sn, s ≥ 2r such that the local expression of E(L) is

E(L) = Eσ(L)ωσ ∧ θ0. (3.1.46)
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Proof Follows the lines of theorem 3.7 and it is elementary.
We also note the following property:

Proposition 3.15 If L is a homogeneous Lagrangian on T rnX , then the corresponding
Euler-Lagrange form verifies on T snX, s ≥ 2r the following identity:

(js0γ)∗E(L) = 0, ∀γ ∈ ImmT sn. (3.1.47)

Proof By direct computation we get

(js0γ)∗E(L) =
(
EA(L)xAj

)
◦ js0γ dtj .

Now one uses (3.1.23) and (3.1.25) to prove that the expression in the bracket is identically
zero.

We close this subsection with some remarks.
Remark 3.16 If L is a homogeneous Lagrangian, one can expect some homogeneity prop-
erty for the total differential operator associated to it. Indeed, one has for an arbitrary
Lagrangian

PL ◦ φa(ξ) = PL(ξ) ◦ φa (3.1.48)

where φa denotes the right action of the differential group Lrn. As a consequence, one has
for a homogeneous Lagrangian

PL(ξ) ◦ φa = det(a)PL(ξ), ∀a ∈ Lrn. (3.1.49)

3.2 Differential equations on Grassmann manifolds

An element T ∈ Ωsn+1(X) is called a differential equation on T snX . In the chart (V s, ψs)
the differential equation T has the following local expression:

T = TAdxA. (3.2.1)

It is clear that the Euler-Lagrange form defined by (3.1.13) is a differential equation. A
differential equation T is called variational if there exists a Lagrangian L on T rnX, s ≥
2r such that we have T = E(L). If the function L is only locally defined, then such
a differential equation is called locally variational (or, of the Euler-Lagrange type). If
γ : Rn → X is a immersion, then on says that the differential equation T verifies the
differential equation iff we have

(js0γ)∗iZT = 0 (3.2.2)

for any vector field Z on JsnX . In local coordinates we have on V s:

TA ◦ js0γ = 0 (A = 1, ..., N). (3.2.3)

Guided by corollary 3.11 and prop 3.15 we also introduce the following definition. We
say that T is a homogeneous differential equation on ImmT snX if it verifies the following
conditions:

(φa)∗T = det(a)T , ∀a ∈ Lsn (3.2.4)
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and

(js0γ)∗T = 0, ∀γ ∈ ImmT sn. (3.2.5)

Then we have the following result which can be proved by elementary computations sug-
gested by the similar results obtained for a differential equation of the Euler-Lagrange
type.
Theorem 3.17 Let T be a homogeneous differential equation on ImmT snX . Then there
exist some local smooth real functions Tσ in every chart ρsn(W s) such that one has:

Tσ = det(x)Tσ ◦ ρ, Ti = −det(x)yσi Tσ ◦ ρ. (3.2.6)

As a consequence, if (V, ψ), (V̄ , ψ̄) are two overlapping charts on X , then one has on
the intersection ρsn(W s ∩ W̄ s) the following transformation formula:

Tσ = JP νσ T̄ν (3.2.7)

and the class

[T ] ∈ Ωsn+1(PX)/Ωsn+1(c)(PX)

can be properly defined such that we have locally

T = Tσω
σ ∧ θ0. (3.2.8)

One calls T the associated (local) non-homogenous differential equation. We now
prove the existence of the (globally) defined Helmholtz-Sonin form associated to a differ-
ential equation. By analogy with [13] we have the following result
Theorem 3.18 Let T be a differential equation on T snX with the local form given by
(3.2.1). We define the following expressions in any chart V t, t > 2s:

HJAB ≡ ∆J
BTA − (−1)|J|EJA(TB), |J | ≤ s. (3.2.9)

Then there exists a globally defined 2-form, denoted byH(T ) such that in any chart V t we
have:

H(T ) =
∑
|J|≤s

HJABdxBJ ∧ dxA. (3.2.10)

Proof We sketch briefly the argument from [13]. Let ξ be a vector field on X; we define
a (global) 1-formHξ(T ) according to:

Hξ(T ) ≡ Lpr(ξ)T − E
(
ipr(ξ)T

)
(3.2.11)

and the following local expression is obtained:

Hξ(T ) =
∑
|I|≤s

(DIξ
B)HIABdxA. (3.2.12)
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The transformation formula for a change of charts for the expressions dIξB is:

D̄I ξ̄
A =

∑
|J|≤|I|

(
∆J
Bx̄

A
I

)
(DJξ

B), |I| = 0, ..., s. (3.2.13)

Using the transformation formula (3.2.13) one can obtain the transformation formula for
the expressionsHIAB : one has in the overlap V t ∩ V̄ t, t ≥ 2s:

HJDB =
∑
|I|≥|J|

(
∆J
Bx̄

A
I

) (
∆Dx̄

C
)
H̄ICA. (3.2.14)

This transformation formula leads now to the fact thatH(T ) has an invariant meaning.
H(T ) is called the Helmholtz-Sonin form associated to T andHIAB are the Helmholtz-

Sonin expressions associated to T . A well-known corollary of the theorem above is:
Corollary 3.19 The differential equation T is locally variational iffH(T ) = 0 iff

HIAB = 0, ∀A,B = 1, . . . N, ∀|I| ≤ r. (3.2.15)

The proof is identical with the one presented in [13]. The preceding equations are
called the Helmholtz-Sonin equations. As in the preceding subsection, if T is a homo-
geneous differential equation, we have a very precise connection between the Helmholtz-
Sonin expressions of T and of T from theorem 3.17.
Theorem 3.20 Suppose T is a homogeneous equation defined on ImmT snX and Tσ the
components of the associated non-homogeneous equation. Then the following relations
are valid on the chart W t, t ≥ 2s:

Hσν(T ) = det(x)Hσν(T ) ◦ ρtn, (3.2.16)

Hj1,...,jkσν (T ) = det(x)
∑
|I|≥k

∑
(I1,...,Ik)

S+
j1,...,jk

zj1I1 . . . z
jk
Ik
HI
σν(T ) ◦ ρtn,

k = 1, . . . , s. (3.2.17)

Hσp(T ) = − det(x)
∑
I0≤s

yνpI0H
I0
σν(T ) ◦ ρtn, (3.2.18)

Hj1,...,jkσp (T ) = −det(x)
∑
I0≤s

s−|I0|∑
|I|=k

(
|I|+ |I0|
|I|

)
∑

(I1,...,Ik)

S+
j1,...,jk

zj1I1 . . . z
jk
Ik
yνpI0H

II0
σν (T ) ◦ ρtn,

k = 1, . . . , s, (3.2.19)

Hpν(T ) = −det(x)yσpHσν(T ) ◦ ρtn, (3.2.20)

Hj1,...,jkpν (T ) = −det(x)yσp
∑
I0≤s

∑
|I|≥k

∑
(I1,...,Ik)

S+
j1,...,jk

zj1I1 . . . z
jk
Ik
HI
σν(T ) ◦ ρtn,

k = 1, . . . , s (3.2.21)
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and

Hpq(T ) = det(x)yσp
∑
I0≤s

yνqI0H
I0
σν(T ) ◦ ρtn, (3.2.22)

Hj1,...,jkpq (T ) = det(x)yσp
∑
I0≤s

s−|I0|∑
|I|=k

(
|I|+ |I0|
|I|

)
∑

(I1,...,Ik)

S+
j1,...,jk

zj1I1 . . . z
jk
Ik
yνqI0H

II0
σν (T ) ◦ ρtn, k = 1, . . . , s.

(3.2.23)

The proof is tedious but elementary. One must use the formulas derived in theorem
3.8 combined with the derivation property from proposition 3.4 to prove case by case the
formulas from the statement. Occasionally, one must study separately the cases k = 0, 1
and k > 1. In the conditions of the above theorem we have:
Corollary 3.21

HIAB(T ) ≡ 0⇐⇒ Hσν(T ) ≡ 0. (3.2.24)

As it can be expected we have the analogues of propositions 3.6 and 3.12:
Proposition 3.22 In the condition of the preceding theorem let us consider two over-
lapping charts (V, ψ), (V̄ , ψ̄). Then one has on the overlap of the associated charts:
ρtn(W t ∩ W̄ t) the following relations:

Hσν(T ) = JPασ
∑
|J|≤s

[(
∂ν ȳ

β
J

)
− P ij

(
diȳ

β
J

) (
∂ν x̄

j
)]
H̄J
αβ(T̄ ) (3.2.25)

HI
σν(T ) = JPασ

∑
|J|≥|I|

(
∂ν ȳ

β
J

)
H̄J
αβ(T̄ ), ∀I 6= ∅. (3.2.26)

Proof (i) It is convenient to introduce the expression gj1,...,jk , k = 0, . . . , r completely
symmetric in all indices (with the convention g∅ = g) and to use the (3.2.16) and (3.2.17)
to obtain:

det(x)
∑
|I|≤s

(g · z)IHI
σν(T ) ◦ ρ =

s∑
k=0

gj1,...,jkHj1,...,jkσν (T ) =

∑
|I|≤s

gI
∑
|J|≥|I|

(
∆J
σ x̄

A
I

) (
∆ν x̄

C
)
H̄ICA(T̄ )

where use have been made of the transformation formula (3.2.14) for B → σ, D → ν.
If we make here g → g · x we obtain after elementary prelucrations:

det(x)Hσν(T ) ◦ ρ =
∑
|I|≤s

∑
|J|≥|I|

[(∆ν x̄
β
I )(∆σx̄

α)H̄Iαβ(T̄ ) + (∆ν x̄
β
I )(∆σx̄

p)H̄Ipβ(T̄ )

+ (∆ν x̄
q
I)(∆σx̄

α)H̄Iαq(T̄ ) + (∆ν x̄
q
I)(∆σx̄

p)H̄Ipq(T̄ )]



356 Lagrangian formalism on Grassmann manifolds

(3.2.27)

and for k ≥ 1:

det(x)Hj1,...,jk
σν (T ) ◦ ρ =

∑
|J|≥k

∑
(J1,...,Jk)

S+
j1,...,jk

xj1J1
. . . xjkJk∑

|J|≥|I|

[(∆J
ν x̄

β
I )(∆σx̄

α)H̄Iαβ(T̄ ) + (∆J
ν x̄

β
I )(∆σx̄

p)H̄Ipβ(T̄ )

+ (∆J
ν x̄

q
I)(∆σx̄

α)H̄Iαq(T̄ ) + (∆J
ν x̄

q
I)(∆σx̄

p)H̄Ipq(T̄ )]
(3.2.28)

The second relation can be considerably simplified if one uses (2.4.7), more precisely

∂j1,...,jkν xµI = δµν
∑

(I1,...,Ik)

S+
j1,...,jk

xj1I1 . . . x
jk
Ik

; (3.2.29)

the chain rule gives from here

∂j1,...,jkν x̄AI =
|I|∑
|J|=k

(∆J
ν x̄

A
I )

∑
(J1,...,Jk)

S+
j1,...,jk

xj1J1
. . . xjkJk . (3.2.30)

So, the relation (3.2.28) becomes:

det(x)Hj1,...,jk
σν (T ) ◦ ρ =

∑
|I|≥k

{(∂j1,...,jkν x̄βI )[(∆σx̄
α)H̄Iαβ(T̄ ) +

(∆σx̄
p
I)H̄

I
pβ(T̄ )] + (∂j1,...,jkν x̄qI)[(∆σx̄

α)H̄Iαq(T̄ ) + (∆σx̄
p)H̄Ipq(T̄ )]} (3.2.31)

If we compare with (3.2.27) we see that the preceding relation stays true for k = 0 also.
Now we use again the theorem above in the right hand side of the relation just derived and
obtains after some computations (using the relations (3.1.30) and (3.1.31) and the chain
rule) the relations from the statement of the theorem.

Now we have the analogue of theorems 3.7 and 3.14
Theorem 3.23 If T is a homogeneous differential equation on ImmT sn, then one can glob-
ally define the equivalence class

[H(T )] ∈ Ωtn+2(PX)/Ωtn+2(c)(PX)

on P tn, t ≥ 2s such that the local expression of H(T ) is

H(T ) =
∑
|I|≤s

HI
σν(L)ωνI ∧ ωσ ∧ θ0. (3.2.32)

Proof Follows the lines of theorem 3.14 and it is elementary.
As a consequence of the theorems 3.7, 3.14 and 3.23 we can apply the exactness of

the variational sequence and obtain that the expressions of an arbitrary variationally trivial
Lagrangian and of a locally variational differential equation are the same as those from
[14]. For a related analysis see [29] and references quoted there.
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4 Lagrangian formalism on second order Grassmann bundles

4.1 The second order Grassmann bundle

Here we particularize the results obtained in the preceding sections for the case r = 2. The
coordinates on T 2

nX are (xA, xAj , x
A
ij) and with the help of the derivative operators (see

(2.2.1))

∆A ≡
∂

∂xA
, ∆j

A ≡
∂

∂xAj
, ∆ij

A ≡


∂

∂xAij
, for i = j

1
2

∂
∂xAij

, for i 6= j
(4.1.1)

we have for any smooth function f (see (2.2.4)):

df = (∂Af)dxA + (∆A
i f)dxAi + (∆A

ijf)dxAij (4.1.2)

We have the following formulas (see (2.2.2)):

∆Ax
B = δBA , ∆i

Ax
B
j = δBAδ

i
j , ∆ij

Ax
B
lm =

1
2
δBA(δilδ

j
m + δimδ

j
l ) (4.1.3)

and the other derivatives are zero. The formal derivatives (see (2.2.5)) are in this case:

Dr
i ≡ xA∆A + xAij∆

j
A (4.1.4)

and from here we immediately have (see (2.2.6)):

Dix
A = xAi , Dix

A
j = xAij . (4.1.5)

The formulas for the induces change of charts (see (2.2.13)) are in this case:

FAi = xBi ∆BF
A, FAi1,i2 = xBi1,i2∆BF

A + xB1
i1
xB2
i2

∆B1∆B2F
A (4.1.6)

The elements of the differential group are of the form

a = (aji , a
j
i1,i2

), det(aji ) 6= 0 (4.1.7)

with the composition law (see (2.3.5)):

(a · b)ki = bkj a
j
i , (a · b)ki1,i2 = bji1,i2a

k
j + bj1i1 b

j2
i2
akj1,j2 (4.1.8)

and the inverse element given by

a−1 = ((a−1)ji ,−(a−1)jk(a−1)j1i1 (a−1)j2i2a
k
j1,j2). (4.1.9)

The action of this group on T 2
nX is (see (2.3.7)):

(a · x)A = xA, (a · x)Ai = ajix
A
j , (a · x)Ai1,i2 = aji1,i2x

A
j + aj1i1a

j2
i2
xAj1,j2 . (4.1.10)

The expressions for the invariants of this action are (see (2.4.10)):

yσ = xσ, yσi = zji x
σ
j , yσi1,i2 = zj1i1 z

j2
i2

(xσj1,j2 − z
k
py

σ
kx

p
j1,j2

) (4.1.11)
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and they are, together with xi, local coordinates on P 2
nX. The inverse of these formulas

are (see (2.4.7)):

xσ = yσ, xσi = xjiy
σ
j , xσi1,i2 = xj1i1x

j2
i2
yσj1,j2 + yσkx

k
i1,i2 (4.1.12)

On the factor manifold P 2
nX one introduces the derivatives operators (see (2.5.8) and

(2.5.9)):

∂σ ≡
∂

∂yσ
, ∂jσ ≡

∂

∂yσj
, ∂ijσ ≡


∂
∂yσij

, for i = j

1
2

∂
∂yσij

, for i 6= j
(4.1.13)

and

di ≡
∂

∂xi
+ yσi ∂σ + yσij∂

j
σ. (4.1.14)

The formula for the change of charts on P 2
nX is (see (2.5.13)):

ȳσi = P ji dj ȳ
σ, ȳσi1,i2 = P j1i1 P

j2
i2

[
−Pml (dj1dj2 x̄

l)(dmȳσ) + dj1dj2 ȳ
σ
]
. (4.1.15)

Finally, the expressions for the contact forms are (see (2.6.3)):

ωσ ≡ dyσ − yσi dxi, ωσj ≡ dyσj − yσijdxi (4.1.16)

and their transformation for a change of charts is (see (2.6.8) and (2.6.9)):

ω̄σ = Pσν ω
ν , ω̄σi = Pσν P

j
i ω̄

ν
j +

[
∂ν ȳ

σ
i − P lk(∂ν x̄k)(dlȳσi )

]
ων . (4.1.17)

4.2 Lagrangian formalism

Here we give a different approach to the Lagrangian formalism based on a certain (n+ 1)-
form defined on the Grassmann manifold P 2

n [18]. The description of the formalism will
be slightly different and some new material will appear. As in [18], [11], we base our
formalism on the operator K (see prop. 2.26). We define the space of Lagrange-Souriau
forms according to:

Ω2
LS ≡ {α ∈ Ω2

n+1,hor(PX)| dα = 0, Kα = 0, iV1iV2α = 0, ∀Vi ∈ Vert(X)}
(4.2.1)

where Vert(X) is the space of vertical vector fields on P 2
n with respect to the projection

ρ2,1
n . By definition, a Lagrangian system on P 2

n is a couple (E,α) where E is a open sub-
bundle of P 2

n and α is a Lagrange-Souriau form. If γ ∈ ImmT 2
n we say that it verifies the

Euler-Lagrange equations iff

[j2
0γ]∗α = 0. (4.2.2)

It is easy to see that the local expression of a Lagrange-Souriau form is

α =
n∑
k=0

1
k!
F i0,...,ikσ0,...,σk

ωσ0
i0
∧ ωσ1 ∧ · · ·ωσk ∧ θi1,...,ik
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+
n∑
k=0

1
(k + 1)!

Ei1,...,ikσ0,...,σk
ωσ0 ∧ ωσ1 ∧ · · ·ωσk ∧ θi1,...,ik (4.2.3)

where we have defined:

θi1,...,ik ≡
(
n

k

)
εi1,...,indx

ik+1 ∧ · · · ∧ dxin , k = 0, ..., n. (4.2.4)

We can admit, without loosing generality, some (anti)-symmetry properties.

F
i0,iP (1),...,iP (k)
σ0,σQ(1),...,σQ(k) = (−1)|P |+|Q|F i0,i1,...,ikσ0,σ1,...,σk

, ∀P,Q ∈ Pk (4.2.5)

and

E
iP (1),...,iP (k)
σQ(0),...,σQ(k) = (−1)|P |+|Q|Ei1,...,ikσ0,σ1,...,σk

, ∀P ∈ Pk,∀Q ∈ Pk+1. (4.2.6)

The condition

Kα = 0

appearing in the definition (4.2.1) of a Lagrange-Souriau form, has the following local
form (see [11]):

S−i0,...,ikS
−
σ0,...,σk

F i0,...,ikσ0,...,σk
= 0, k = 1, . . . , n (4.2.7)

where S±σ0,...,σk
are defined similarly to (2.2.3). The local form of the Euler-Lagrange

equation (4.2.2) is simply:

Eσ ◦ [j2
0γ] = 0 (4.2.8)

Remark 4.1 For the case n = 1, the 2-form α above appears in [34] and the condition
(4.2.7) is investigated in [20] and [19].

The justification of the terminology for (4.2.8) is contained in the following result:
Proposition 4.2 The expressions Eσ verify the Helmholtz equations (3.2.24).

Proof One writes in detail the closeness condition dα = 0 and find out, in particular, the
following equations:

djE
j
σ0,σ1

+ ∂σ0Eσ1 − ∂σ1Eσ0 = 0, (4.2.9)

dlF
jl
ν,σ − ∂σF jν + ∂jνEσ + Ejν,σ = 0, (4.2.10)

∂jkν Eσ +
1
2
(
F jkν,σ + F kjν,σ

)
= 0, (4.2.11)

F jlσ,ν − F ljν,σ = ∂lνF
j
σ − ∂jσF lν . (4.2.12)

From (4.2.7) we get, in particular:

F jσ = 0 (4.2.13)
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and

F jlν,σ − F jlσ,ν − F ljν,σ + F ljσ,ν = 0. (4.2.14)

We use (4.2.13) in (4.2.10) and get:

dlF
jl
ν,σ + ∂jνEσ + Ejν,σ = 0,

If we substitute the last term of this relation into (4.2.9) and use (4.2.11) we get:

∂σ0Eσ1 − ∂σ1Eσ0 = dj∂
j
σ0
Eσ1 − djdl∂jlσ0

Eσ1 . (4.2.15)

Next, we take the symmetric part in ν, σ of (4.2.10) and obtain:

∂jνEσ + ∂jσEν = −dl
(
F jlν,σ + F jlσ,ν

)
.

One uses here (4.2.14) and next (4.2.12) + (4.2.13) to get:

∂jνEσ + ∂jσEν = 2dl∂jlσ Eν . (4.2.16)

Finally, the antisymmetric part of (4.2.11) in σ, ν is:

∂jkν Eσ = ∂jkσ Eν . (4.2.17)

The equations (4.2.15), (4.2.16) and (4.2.17) are the Helmholtz-Sonin equations for the
expressions Eσ.

We now mention a result derived in [18]:
Proposition 4.3 There exists in every chart a local n-form β on P 1

nX having the local
expression

β =
n∑
k=0

1
k!
Li1,...,ikσ1,...,σk

ωσ1 ∧ · · ·ωσk ∧ θi1,...,ik (4.2.18)

where

Li1,...,ikσ1,...,σk
= S−i1,...,ikS

−
σ1,...,σk

∂i1σ1
. . . ∂ikσkL, k = 0, . . . , n (4.2.19)

such that:

α = d(ρ2,1
n )∗β. (4.2.20)

Remark 4.4 The form β is a generalization of the Poincaré-Cartan form [6], [30]. It had
appeared in the literature in [22], [4], [5], [32]. For other generalizations of the Poincaré-
Cartan form see [31], [21], [9], [8], [10], [33] and [23] where the notion of Lepage is
introduced for such generalizations.

As a consequence we can express the coefficients of the form α given by (4.2.3) in
terms of the smooth function L [11]:

F i0,...,ikσ0,...,σk
= ∂i0σ0

Li1,...,ikσ1,...,σk
− Li0,...,ikσ0,...,σk

, k = 0, . . . , n (4.2.21)
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and

Ei1,...,ikσ0,...,σk
= S−i0,...,ik∂σ0L

i1,...,ik
σ1,...,σk

− di0Li0,...,ikσ0,...,σk
, k = 0, . . . , n. (4.2.22)

In particular, for k = 0 the preceding formula is

Eσ = ∂σL− di∂iσL (4.2.23)

i.e. the Euler-Lagrange operator. This is another justification of the terminology for the
equations (4.2.2) (and (4.2.8).) This shows that the expressions Ei1,...,ikσ0,...,σk

, k = 0, . . . , n
are also some generalizations of the Euler-Lagrange expressions, however, different from
the Lie-Euler expressions introduced in [1] and given by (3.1.10). The coefficients of α
verify some recurrence relations:

Ei1,...,ikσ0,...,σk
= −S−i1,...,ikS

−
σ0,...,σk

(
∂i1σ0

+ dl∂
li1
σ0

)
Ei2,...,ikσ1,...,σk

, k = 1, . . . , n (4.2.24)

and

F i0,...,ikσ0,...,σk
= const× S−σ0,...,σk

S−i0,...,ik∂
i0
σ0
F i1,...,ikσ1,...,σk

, k = 2, . . . , n. (4.2.25)

Proof By exploiting the conditions dα = 0 and Kα = 0 written in local coordinates. Al-
ternatively, one computes the right hand sides of these formulas using (4.2.21) and (4.2.22)
and obtains the left hand sides.

These recurrence relations have an important consequence:
Corollary 4.5 In the conditions above we have

α ≡ 0⇐⇒ Eσ ≡ 0. (4.2.26)

We close this subsection giving the connection between the form α introduced here and
the Lagrange-Souriau form σ introduced in [11], [18]. We have
Proposition 4.6 Let α be a Lagrange-Souriau form. Then there exists a closed (n + 1)-
form σ on P 1

n such that

α = (ρ2,1
n )∗σ. (4.2.27)

Proof One makes explicit the condition

dα = 0

appearing in the definition of a Lagrange-Souriau form (4.2.1) and finds out in particular:

∂jkν F
i0,...,ik
σ0,...,σk

= 0, k = 0, . . . , n (4.2.28)

∂jkν E
i1,...,ik
σ0,...,σk

+
1
2
[
F j,k,i0,...,ikν,σ0,...,σk

+ (j ↔ k)
]

= 0, k = 0, . . . , n. (4.2.29)

It follows that the generic expression of the coefficients Ei1,...,ikσ0,...,σk
is:

Ei1,...,ikσ0,...,σk
= Gi1,...,ikσ0,...,σk

− yνjkF j,k,i1,...,ikν,σ0,...,σk
(4.2.30)
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where Gi1,...,ikσ0,...,σk
have the antisymmetry property (4.2.6) and verify

∂jkν Gi0, . . . , ikσ0,...,σk
= 0, k = 0, . . . , n. (4.2.31)

Substituting (4.2.30) into the expression (4.2.3) one obtains (4.2.27) with

σ =
n∑
k=0

1
k!
F i0,...,ikσ0,...,σk

dyσ0
i0
∧ ωσ1 ∧ · · ·ωσk ∧ θi1,...,ik

+
n∑
k=0

1
(k + 1)!

Gi1,...,ikσ0,...,σk
ωσ0 ∧ ωσ1 ∧ · · ·ωσk ∧ θi1,...,ik . (4.2.32)

This finishes the proof.
The formalism presented in this section can be extended to Grassmann manifolds of

arbitrary order r > 2. Some steps in this direction are contained in [25] and a detailed
analysis is contained in [17].

5 Some applications

The most interesting applications are related to infinite dimensional groups, in particular
the so-called gauge groups. We have in mind especially non-Abelian gauge theories, grav-
itation theory and string theory. The general setting is the following: we have a group of
transformations φξ of the basic manifold X which are parametrised by some set of smooth
functions ξ and act naturally on the set of solutions of some Lagrangian theory; we want
to classify the action functionals which are invariant with respect to these transformations.
We will consider that we are in the conditions of the preceding Section. It can be easily
proved that this condition is equivalent to a more convenient form: if φ̇ ≡ j1φξ is the
extension of the transformation φξ to P 1X then φ̇ are Noetherian symmetries i.e.

(φ̇)∗σ = σ.

This condition will impose severe restrictions on the coefficients F and G from (4.2.32);
for the three cases we consider these restrictions can be completely solved i.e. the most
general form can be obtained. It remains to imppose the closeness condition dσ = 0
and determine the most general form of the (local) Lagrangian following as in proposition
4.2.20. The details can be found in [11] and references quoted there.

5.1 Non-Abelian gauge theories

We consider here only the case of pure gauge fields i.e. no matter fields. In the framework
of the preceding Section we take X = M × V where V = M × Lie(G); here G is a
non-Abelian Lie group and Lie(G) is the associated Lie algebra. If {ea}ra=1 is a basis in
Lie(G) then the coordinates on X are: (xµ, vaν) where vaν are the Yang-Mills potentials.
We take as global coordinates on E = P 1

nX to be (xµ, vaν , vaνµ ).
First we impose Poincaré invariance; the action of P↑+ on X is:

φΛ,a(x, v) = (Λ · x+ a,Λ · v). (5.1.1)
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and we require that φΛ,a are Noetherian symmetries for any (Λ, a) ∈ P↑+. This conditions
translates very easily on conditions on the functions F ...... andG...... from (4.2.32). For Λ = 1
this is equivalent to the x-independence of the functions and for a = 0 to the Lorentz
covariance of these functions.

Let us impose now the condition of gauge invariance in a similar way. The gauge
group Gau(G) consists of smooth maps g : M → G with pointwise multiplication as
composition law. We will consider only gauge transformations in the connected component
of the identity Gau(G)0 of the gauge group. So, we can use only infinitesimal gauge
transformations ξ : M → Lie(G) which act on the set of evolutions as follows:

Φξ(xµ, vaν(x)) = (xµ, vaν(x) + ξb(x)fabcv
cν(x) + (∂νξa)(x)) (5.1.2)

where fabc are the structure constants of Lie(G) defined through

[ea, eb] = f cabec ∀ a, b, c = 1, ..., r. (5.1.3)

The transformation (5.1.2) is induced by the following transformation of X:

φξ(x
µ, vaν) = (xµ, vaν + ξb(x)fabcv

cν + (∂νξa)(x)) (5.1.4)

and we postulate that φξ is a Noetherian symmetry i.e.:

(φ̇ξ)
∗σ = σ. (5.1.5)

It is not very difficult to prove that this gauge invariance implies that the functions F ......
from (4.2.32) depend on the variables (xµ, vaν , vaνµ ). only of the Yang-Mills field strength
which is defined by:

F aµν ≡ vaµν − vaνµ + fabcv
b
µv
c
ν . (5.1.6)

One can easily discover the “Lagrangian” nature of the functions F ...... i.e. one shows
that there exists a F -dependent function LYM such that:

Fµ0,........,µk
a0ν0,...,akνk

=
∂(LYM )µ1,........,µk

a1ν1,...,akνk

∂F a0ν0µ0

− (LYM )µ0,........,µk
a0ν0,...,akνk

(5.1.7)

where:

(LYM )µ1,.........,µk
a1ν1,...,akνk

=
1
k!

∑
σ∈Pk

(−1)|σ|
∂kLYM

∂F a1ν1µσ(1)
...∂F akνkµσ(k)

. (5.1.8)

Here LYM must verify

XbLYM = Pb (5.1.9)

where Xb is the differential operator:

Xb ≡
1
2
fdbcF

c
ρζ

∂

∂F dρζ
. (5.1.10)
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and Pb is a polynomial in F (an “anomaly”) which verifies the consistency condition:

XbPc −XcPb = −fabcPa. (5.1.11)

One can show that in fact, Pb = 0 and this expresses the invariance of LYM with
respect to the adjoint action of G0; also LYM can be chosen strictly Lorentz invariant. All
these facts are of cohomological nature and use of standard results as Whitehead lemmas
is required.

The analysis of the functions G...... from (4.2.32) is greatly simplified if we separate in
σ the contribution of the Yang-Mills Lagrangian LYM that is, we define:

σCS ≡ σ − σLYM . (5.1.12)

In this way, σCS will contain only the functions of the type G...... and the structure
equations following from the closeness of the form σ are giving the generic form:

Gµ1,...,µk,ν0,...,νk
a0,............,ak

(F ) =
m∑
p=k

1
(p− k)!2p−k

C
µ1,...,µp,ν0,...,νp
a0,...............,ap

p∏
i=k+1

F aiµiνi (5.1.13)

where the constants C
µ1,......,µp,ν0,...,νp
a0,................,ap are completely antisymmetric in the upper indices

and completely symmetric in the lower indices and verify:

p∑
i=0

C
µ1,......,µp,ν0,......,νp
a0,...,ai−1,c,ai+1,...,apf

c
bai = 0 (5.1.14)

for all p = 0, ..., n. We have two distinct cases:
(a) n = 2m
In this case we have for any k:

C ...... = 0 ⇐⇒ G...... = 0. (5.1.15)

It follows that in this case:

σ = σLYM (5.1.16)

where LYM is constrained only by invariance with respect to the Poincaré group and with
respect to the coadjoint action of the group G0.

(b) n = 2m+ 1
In this case we have for k < m :

Cµ1,...,µk,ν0,...,νk
a0,................,ak

= 0 (5.1.17)

and:

Cµ1,...,µm,ν0,...,νm
a0,................,am = Ca0,...,amε

µ1,...,µm,ν0,...,νm (5.1.18)

where the tensor C... is completely symmetric in the indices a0, ..., ak and invariant with
respect to the adjoint action of G0.
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The corresponding expression for the Lagrangian is of Chern-Simons type:

LCS(x,A, χ) =
n∑
k=0

1
k!
lµ1,.........,µk
a1ν1,...,akνk

(x, v)
k∏
i=1

vaiνiµi
(5.1.19)

where one can choose:

lµ1,...........,µk
a1ν1,...,akνk

(v) =

1
n− k

1
(m− k)!2m−p

va0ν0Ca0,...,amε
µ1,...,µm

ν0,...,νm

m∏
i=k+1

faibiciv
biνivciµi .

(5.1.20)

So in this case, like in the Abelian case we have:

σ = σLYM + σCS . (5.1.21)

One can find explicit solutions for the Chern-Simons part as follows. Let {ta}ra=1 be
any finite dimensional representation of Lie(G) i.e.

[ta, tb] = f cabtc. (5.1.22)

Then we can take:

Ca0,...,am = Syma0,...,amTr(ta0 ...tam). (5.1.23)

If we impose in addition dilation invariance, we again have two distinct cases:
(a) n = 2m
In this case LYM is a polynomial in F , homogeneous of degree m:

LYM (λ2F ) = λnLYM (F ). (5.1.24)

and we have only the Yang-Mills term.
(b) n = 2m+ 1
In this case:

LYM = 0. (5.1.25)

and we have only the Chern-Simons term.

5.2 Gravitation theory

Gravitation theory can be also analyzed in the general framework used in this paper. We
will not obtain the Hilbert Lagrangian from which Einstein equations are usually derived
because this is a second order Lagrangian. Nevertheless, we will obtain the most general
first-order Lagrangian for the gravitation theory, imposing the invariance with respect to the
general coordinate transformations; this first order Lagrangian is equivalent to the Hilbert
Lagrangian, up to a divergence.

Let M be a differentiable manifold, interpreted as the space-time (or events) manifold.
To construct the basic manifold X for the gravitation theory, we need the tensor bundle
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T 0
2 (M) of covariant tensors of rank (0, 2) on M . If (xµ) µ = 1, ..., n is a local coordinates

system on M , then a local coordinates system on T 0
2 (M) is of the form: (xµ, gαβ) where

gαβ is a symmetric matrix (the components of the metric tensor g ≡ gαβdx
α ⊗ dxβ ∈

T 0
2 (M)).

We take as the basic manifold X , the open subset S ⊆ T 0
2 (M) corresponding to the

Lorentzian metrics i.e. to tensors gαβ which are equivalent to the Minkowski metric Gαβ
up to a change of basis; explicitly ∃A ∈ GL(n,R) such that:

AαγA
β
δ gαβ = Gγδ. (5.2.1)

The dimension of X is N = n(n+3)
2 . The local coordinates on E ≡ P 1

nX will be denoted
by (xµ, gαβ , gαβ,µ) where gαβ,µ will be supposed symmetric in the indices α and β.

We impose the basic condition of invariance with respect to general coordinate trans-
formations as follows. If ξ ∈ Diff (M) let us define Aρµ(x) to be the inverse of the matrix
∂ξµ

∂xν i.e.

∂ξµ

∂xν
(x)Aρµ(x) = δρν . (5.2.2)

The group Diff (M) acts on the set of evolutions as follows:

Φξ(x, gαβ)(x)) = (ξ(x), Aγα(x)Aδβ(x)gγδ ◦ ξ−1(x)). (5.2.3)

Let us define the following action of Diff (M) on X:

φξ(x, gαβ) = (ξ(x), Aγα(x)Aδβ(x)gγδ). (5.2.4)

Then, we postulate that φξ ∈ Diff (X) is a Noetherian symmetry i.e.:

(φ̇ξ)
∗σ = σ. (5.2.5)

We consider for the moment only the group Diff (M)+ of reparametrizations of positive
Jacobian. As before, we translate this condition into equations satisfied by the coefficient
functions F .. and G.... from (4.2.32). It is convenient to consider infinitesimal diffeomor-
phisms of the form

ξµ(x) = xµ + λµ(x) (5.2.6)

with λµ arbitrary functions.
In a familiar way, we start with the analysis of the functions F .... Using standard facts

in invariant theory [33] and taking into account the various symmetry properties one arrives
at an essential simplification, namely

σµ0,...,µk;α0β0,...,αkβk = 0 ∀k > 1 (5.2.7)

and

σµ1,µ2;α1β1,α2β2(gαβ) =
1
2
κ(|det(g)|)1/2×
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[gα1α2(gµ1β1gµ2β2 + gµ1β2gµ2β1) + gβ1β2(gµ1α1gµ2α2 + gµ1α2gµ2α1)

+ gα1β2(gµ1α2gµ2β1 + gµ1β1gµ2α2) + gα2β1(gµ1α1gµ2β2 + gµ1β2gµ2α1)

+ 4gµ1µ2gα1β1gα2β2 − 2gµ1µ2(gα1α2gβ1β2 + gα1β2gα2β1)

− 2gα1β1(gµ1α2gµ2β2 + gµ1β2gµ2α2)− 2gα2β2(gµ1α1gµ2β1 + gµ1β1gµ2α1)].
(5.2.8)

The hardest part is the determination of the functions G.... We get another essential
simplification, namely:

Gµ1,...,µk;α0β0,...,αkβk = 0 ∀k > 2 (5.2.9)

so, we must determine only the expressions Gα0β0 , Gµ1;α0β0,α1β1 , Gµ1µ2;α0β0,α1β1,α2β2 .
We obtain

Gµ1;α0β0,α1β1(gαβ , gαβ,µ) =
1
2
(
Gµ1µ2;α0β0,α1β1,α2β2

+
∂Fµ1µ2;α1β1,α2β2

∂gα0β0

− ∂Fµ1µ2;α0β0,α2β2

∂gα1β1

)
gα2β2,µ2

(5.2.10)

Gα0β0(gαβ , gαβ,µ) =
1
8

(
Gµ1µ2;α0β0,α1β1,α2β2

+
∂Fµ1µ2;α1β1,α2β2

∂gα0β0

− ∂Fµ1µ2;α0β0,α2β2

∂gα1β1

− ∂Fµ1µ2;α0β0,α1β1

∂gα2β2

gα1β1,µ1

)
gα2β2,µ2

+ λ(|det(g)|)1/2gα0β0 (5.2.11)

for some λ ∈ R

Gµ1µ2;α0β0,α1β1,α2β2 =

∂lµ1µ2;α1β1,α2β2

∂gα0β0

− ∂lµ1µ2;α0β0,α2β2

∂gα1β1

+
∂lµ1µ2;α0β0,α1β1

∂gα2β2

(5.2.12)

where we have defined:

lµ1µ2;α1β1,α2β2(gαβ) ≡ 1
2
κ(|det(g)|)1/2[gα1α2

(
gµ1β2gµ2β1 − gµ1β1gµ2β2

)
+ gβ1β2 (gµ1α2gµ2α1 − gµ1α1gµ2α2)

+ gα1β2
(
gµ1α2gµ2β1 − gµ1β1gµ2α2

)
+ gα2β1

(
gµ1β2gµ2α1 − gµ1α1gµ2β2

)
]. (5.2.13)

To make connection with the usual formalism one tries to determine a Lagrangian. It
is not very hard to show that the following expression
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L(x, g, χ) =

κ(|det(g)|)1/2gµ1α2
(
gα1β2gµ2β1 − gα1β1gβ2µ2

)
Γα1β1,µ1

Γα2β2,µ2

+ λ(|det(g)|)1/2 (5.2.14)

where Γ... are the Christoffel symbols:

Γαβ,µ ≡
1
2

(gµα,β + gµβ,α − gαβ,µ) (5.2.15)

produces σ = σL.
We have found out an well-known expression: the first term from this expression gives

the usual Einstein equations (see e.g. [27], $ 93) and the second term is the cosmological
contribution.

One can easily prove that σ determined above admits dilation invariance:

φa(x, g) = (ax, a−2g) ∀a ∈ R+ (5.2.16)

are Noetherian symmetries. Next we note that if ξ ∈ Diff (M) is arbitrary (not necessarily
of positive Jacobian) then we have:

(φ̇ξ)
∗σ = sign

(
∂ξµ

∂xν

)
σ (5.2.17)

and φξ continues to be a symmetry.

5.3 Extended objects

A very interesting case is provided by the so-called extended objects as strings, mem-
branes and, generally, p-branes and we will show that they can be completely studied using
the framework developed above. We take in the general scheme from preceding Section
X ≡ P × M where P is a p-dimensional parameter manifold and M is, as usual, the
n-dimensional Minkowski space. It is natural to suppose that n ≥ p. The coordinates on
X are (τa, Xµ) a = 1, ..., p µ = 0, ..., n − 1. The global coordinates on E ≡ P 1

nX are:
(τa, Xµ, Uµa).

We impose now the reparametrization invariance. If ξ ∈ Diff (P ) then the action of this
reparametrization on X is simply:

φξ(τ ,X) = (ξ(τ), X). (5.3.1)

We will impose the condition that φξ is a Noetherian symmetry for any ξ ∈ Diff (P )+ i.e.
for diffeomorphisms of positive Jacobian:

(φ̇ξ)
∗σ = σ. (5.3.2)

It is not hard to translate this condition into equations on F ...... and G....... Let Aab(τ) be
the inverse matrix of ∂ξa

∂τa i.e.

∂ξb

∂τa
(τ)Abc(τ) = δca. (5.3.3)
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Then we have:

k∏
i=0

Aai
biF a0,...,ak

µ0,...,µk
◦ φ̇ξ = (det(A))F b0,...,bkµ0,...,µk

(5.3.4)

and:

k∏
i=1

Aai
bi

(
Ga1,...,ak
µ0,...,µk

◦ φ̇ξ −
∂Ab

d

∂τ c
UνbF

b,c,a1,...,ak
ν,µ0,...,µk

◦ φ̇ξ

)
= (det(A))Gb1,...,bkµ0,...,µk

(5.3.5)

for k = 0, ..., p
Because ξ ∈ Diff (P )+ we can consider ξ an infinitesimal diffeomorphism i.e.

ξa(τ) = τa + θa(τ) (5.3.6)

with θa arbitrary functions.
In addition we impose Poincaré invariance in the “target” space M . Namely:

φΛ,a(τ ,X) = (τ ,ΛX + a) (5.3.7)

is a Noetherian symmetry for any (Λ, a) ∈ P↑+. This condition translates into the X-
independence of those functions and into their Lorentz covariance as functions of U .

According to the general strategy, we first determine the functions F ...... . One can show
as before that there is a U -dependent smooth function L0 such that:

σa0,...,ak
µ0,...,µk

=
∂(L0)a1,...,ak

µ1,...,µk

∂Uµ0a0

− (L0)a0,...,ak
µ0,...,µk

(5.3.8)

where:

(L0)a0,...,ak
µ0,...,µk

=
1
k!

∑
σ∈Pk

(−1)|σ|
∂kL0

∂Uµ1aσ(1) ...∂U
µkaσ(k)

. (5.3.9)

We exploit now the Lorentz covariance of the functions σ....... Using a cohomology ar-
gument as in previous Subsections one shows that, without modifying σ one can redefine
L0 such that:

L0(ΛµνUνa) = L0(Uµa) ∀Λ ∈ L↑+ (5.3.10)

and

L0(AabUµb) = L0(Uµa) ∀A ∈ GL(p,R)+. (5.3.11)

From these relations one can completely determine L0. We use well-known results
in invariant theory for (pseudo)-orthogonal groups. Because we have admitted from the
beginning that n ≥ p one applies the Gramm trick and shows that the first relation implies
that L0 is a function only of the Lorentz scalars (Ua, Ub) i.e.:

L0(U) = l((Ua, Ub)) (5.3.12)
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where l is a smooth symmetric function of the variables ζab a, b = 1, ..., p. Next, second
relation translates for l into:

l(AacAbdζcd) = l(ζab) ∀A ∈ GL(p,R)+. (5.3.13)

Now it is elementary to find out that l is a smooth function of the variable det(ζ) i.e:

L(ζij) = l0(det(ζ)). (5.3.14)

It remains to consider the caseA = λI ∀λ ∈ R+. This translates into the following
homogeneity property for l0 namely:

l0(λ2x) = λl0(x) ∀λ ∈ R+. (5.3.15)

We can conclude easily that if l0 is defined on the whole real axis then the smoothness
condition forces l0 = 0. On the contrary, if l0 is defined only on one of the the domains:
D+ ≡ {x > 0} or D− ≡ {x < 0} then l0 is of the form:

l0(x) = κ
√
|x| (5.3.16)

for some κ ∈ R.
So, we have two cases:
a) E = J1

pX
In this case:

L0 = 0. (5.3.17)

b) E = {(τ ,X,U)|det(Ua, Ub) > 0} or E = {(τ ,X,U)|det(Ua, Ub) < 0}.
In this case:

L0(τ ,X,U) = κ
√
|det(Ua, Ub)|. (5.3.18)

This completely elucidates the structure of the functions F ...... .
The determination of the functions G...... is very simple. They are of the form:

Ga1,...,ak
µ0,...,µk

=
p∑
l=k

1
(l − k)!

Ca1,...,al
µ0,...,µl

l∏
i=k+1

Uµiai (5.3.19)

whereC ...... are some constants, completely antisymmetric in the upper and also in the lower
indices.

The Lorentz covariance of G...... is the equivalent to the Lorentz invariance of these
tensors and reparametrization invariance is equivalent to the GL(p,R)+-invariance of the
same tensors (in the upper indices).

We have two possibilities:
A) n 6= p+ 1.
In this case:

Cµ0,...,µp = 0 ⇐⇒ Ga1,...,ak
µ0,...,µk

= 0 ∀k = 0, ..., p. (5.3.20)
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So, in this case we get:

σ = σL0 . (5.3.21)

B) n = p+ 1.
In this case:

Cµ0,...,µp = λεµ0,...,µp (5.3.22)

for some λ ∈ R. So, we get for

Ga1,...,ak
µ0,...,µk

(U) = λ
1

(p− k)!
εa1,...,apεµ0,...,µp

p∏
i=k+1

Uµiai . (5.3.23)

These expressions are following from a Chern-Simons Lagrangian:

LCS(X,U) ≡ λ 1
(p+ 1)!

εa1,...,apεµ0,...,µpX
µ0

p∏
i=1

Uµiai . (5.3.24)

So, in this case:

σ = σL0+LCS . (5.3.25)

We note that for p = 1 (particles) we get:

L0(U) = κ
√
‖U‖2 (5.3.26)

i.e. the usual form of the (homogeneous) relativistic Lagrangian. If n = 2 then we pick a
Chern-Simons term:

LCS(X,U) =
λ

2
εµνX

µUν . (5.3.27)

Finally for p = 2 (strings) we get for L0 the well-known Nambu-Goto action:

L0(U) = κ
√
|‖U1‖2‖U2‖2 − (U1, U2)2|. (5.3.28)

If n = 3 the Chern-Simons term is:

LCS(X,U) =
λ

6
εa1,a2εµ0,µ1,µ2

Xµ0Uµ1
a1U

µ2
a2 . (5.3.29)
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1 Motivations

Sobolev spaces are natural and powerful tools in nonlinear analysis and differential geom-
etry. They are of great help in solving partial differential equations. For instance, given Ω
a domain of Rn (n ≥ 1) and f ∈ C1(R), it is classical to consider the problem of finding
a function u ∈ C2(Ω) ∩ C0(Ω) such that

∆u = f ′(u)

in Ω and u = 0 on ∂Ω, where ∆ = −
∑
i ∂ii. Such a function u can be seen as a critical

point of the functional

J(u) :=
1
2

∫
Ω

|∇u|2 dx−
∫

Ω

f(u) dx.

When f has a reasonable growth, for instance of quadratic type, the definition of J(u)
makes sense as soon as u, |∇u| ∈ L2(Ω), which is, roughly speaking, the definition of one
of the most used Sobolev spaces. In several situations Sobolev spaces are naturally asso-
ciated to variational problems. Their definition in the Euclidean context can be extended

8 B.V. .
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to the context of Riemannian manifolds. Sobolev spaces on Rn are well understood. Sur-
prises and subtilities occur in the context of Riemannian manifolds. In the sequel, C de-
notes a positive constant, the value of which might change from line to line, and even in
the same line.

2 Sobolev spaces on manifolds: definition and first properties

Let us start with few lines on the theory of Sobolev spaces in Rn. Classical references on
the subject are the books by Adams [1] and by Mazj’a [57]. Given a function u ∈ L1(Ω)
and given a multi-index α, we define the distributional derivative Dαu of u by

〈Dαu, ϕ〉 := (−1)|α|
∫

Ω

uDαϕdx

for all ϕ ∈ C∞c (Ω). Here, and in what follows, C∞c (X) stands for the set of smooth
functions with compact support in X . A distribution T is said to be in Lp if there exists
f ∈ Lp(Ω) such that 〈T, ϕ〉 =

∫
Ω
fϕ dx. Given k ∈ N, k ≥ 1, and p ≥ 1, we define

W p
k (Ω) := {u ∈ Lp(Ω)/ for any |α| ≤ k, Dαu ∈ Lp(Ω)} .

By definition, W p
k (Ω) is the Sobolev space of order p in integrability and order k in differ-

entiability. The space W p
k (Ω) is a Banach space when endowed with the norm

‖u‖Wp
k (Ω) :=

k∑
i=0

∑
|α|=i

‖Dαu‖Lp(Ω).

Another possibility is to define a Sobolev space Hp
k (Ω) as the completion with respect to

the above norm ‖ · ‖Wp
k (Ω) of the set consisting of the functions u ∈ C∞(Ω) for which

‖u‖Wp
k (Ω) < +∞. By a theorem of Meyers and Serrin [58], for any integer k, and any

p ≥ 1, W p
k (Ω) = Hp

k (Ω). Now we turn our attention to the case of Riemannian manifolds.
Possible references for the material we use in differential and Riemannian geometry are
the books by Chavel [22], Do Carmo [30], Gallot, Hulin and Lafontaine [43], Hebey [46],
Sakai [65], and Spivak [69]. In what follows we let (M, g) be a (smooth) Riemannian
manifold of dimension n ≥ 1. Also, for k ∈ N and p ≥ 1, we define Cpk(M) to be the set of
the u ∈ C∞(M) for which

∫
M
|∇iu|pg dvg < +∞ for all i ∈ {0, ..., k}. Then, mimicking

the above definition of Hp
k (Ω), we define the Sobolev space Hp

k (M, g) as follows.
Definition 2.1 The Sobolev space Hp

k (M, g) is the completion in Lp(M) of Cpk(M) for
the norm

u 7→ ‖u‖Hpk :=
k∑
i=0

‖∇iu‖p.

Here, ‖∇iu‖p is the Lp-norm of the function |∇iu| which, by definition, is the pointwise
norm of the tensor ∇iu with respect to g. The Sobolev space Ḣp

k (M, g) is the completion
of C∞c (M) for the norm ‖ · ‖Hpk in Hp

k (M, g) or, similarly, the closure of C∞c (M) in
Hp
k (M, g).
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In order to make this definition consistent, we need to prove that a Cauchy sequence
for ‖ · ‖Hpk that converges to 0 in Lp(M) is actually converging to 0 for ‖ · ‖Hpk . We prove
this claim for k = 1. The case of arbitrary k ≥ 1 can be treated in a similar way. Let
(ui)i∈N ∈ Cp1 (M) a Cauchy sequence for ‖ · ‖Hp1 . Let x0 ∈M and let ϕ : U ⊂M → Ω ⊂
Rn be a local chart at x0 ∈ U , U compact. Then ui ◦ ϕ−1 ∈ C1

loc(Ω) for all i ∈ N and we
have that ∫

U

|∇ui −∇uj |p dvg

=
∫

Ω

(
gkl∂k(ui ◦ ϕ−1 − uj ◦ ϕ−1)∂l(ui ◦ ϕ−1 − uj ◦ ϕ−1)

)p/2√|g| dx
≥ C

∫
Ω

|∇(ui ◦ ϕ−1)−∇(uj ◦ ϕ−1)|p dx

and we check that (ui◦ϕ−1)i∈N is a Cauchy sequence inW p
1 (Ω). In particular, it converges

in W p
1 (Ω) when i→ +∞. Clearly, (ui ◦ϕ−1)i∈N converges to 0 in Lp(Ω) when i→ +∞

if ui → 0 in Lp(M) when i → +∞. Therefore, ui ◦ ϕ−1 → 0 in W p
1 (Ω). Coming

back to the manifold via the charts, we get that
∫
U
|∇ui|p dvg → 0 and it follows that

for any compact K ⊂ M ,
∫
K
|∇ui|p dvg → 0 when i → +∞. On the other hand, it

follows from the triangle inequality that the sequence of functions (|∇ui|)i∈N is a Cauchy
sequence in Lp(M), and then, it converges to a function f ∈ Lp(M). According to
what we just proved,

∫
K
|f |p dvg = 0 for all K compact. Since M is Riemannian, it is

paracompact, and thus M can be written as a countable union of compact sets. It follows
that

∫
M
|f |p dvg = 0, and then that f ≡ 0. In particular, ui → 0 in Hp

1 (M, g) when
i→ +∞. The claim is proved.

An immediate consequence of the definition, and of the fact thatLp-spaces are reflexive
spaces when p > 1, is the following.
Proposition 2.1 When endowed with the norm ‖ · ‖Hpk , Hp

k (M, g) and Ḣp
k (M, g) are

Banach spaces. They are reflexive spaces when p > 1.

Given a function u ∈ Hp
1 (M, g), it is natural to define its gradient. Let x0 ∈ M and

let ϕ : U ⊂ M → Ω ⊂ Rn be a local chart at x0 ∈ U . If u ∈ Hp
1 (M, g), then

u ◦ ϕ−1 ∈ W p
1 (Ω) and its derivatives are defined almost everywhere. We can then define

∇u(x) by the equation

∇u(x).X = ∂k(u ◦ ϕ−1)ϕ(x)X
k

for almost every x ∈ U and all X ∈ TxM , where the Xk’s are the components of X in the
chart. This definition is independent of the choice of the chart and we defined ∇u(x) for
almost every x ∈M . We have that∫

M

|∇u(x)|p dvg < +∞.

The construction extends to the spaces Hp
k (M, g) for k ≥ 2 since one has explicit expres-

sions for the higher order derivatives∇iv for smooth v.
A natural question on Sobolev spaces is to wonder in which measure the definition

depends on the metric. When M is compact, the dependancy on the metric turns out to be
inexistant.
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Proposition 2.2 Let M be a compact manifold. Let g, g′ be two metrics on M . Then
Hp
k (M, g) = Hp

k (M, g′), and Ḣp
k (M, g) = Ḣp

k (M, g′).

Proof. Given any point x ∈ M , there exists an open neighborhood Ux of x such that
c−1 · g ≤ g′ ≤ c · g in Ux in the sense of bilinear forms. Since M is compact, there is
a finite covering of such neighborhoods, and the Hp

k -norms corresponding to g and g′ are
equivalent. In particular, the two Sobolev spaces coincide.

A simple but important remark is that this proposition does not extend to noncompact
manifolds. For instance we may consider the two Riemannian spaces (Rn, ξ), where ξ is
the standard Euclidean metric, and (Rn, 4(1+|x|2)−2ξ), which corresponds to the standard
sphere after the stereographic projection. It is not difficult to see that

1 ∈ Hp
k

(
Rn,

4
(1 + |x|2)2

ξ

)
and 1 6∈ Hp

k (Rn, ξ) .

Despite the dependancy for noncompact manifolds, we often write Hp
k (M) for Hp

k (M, g)
and Ḣp

k (M) for Hp
k (M, g) when there is no ambiguity. In what follows we mention a few

useful properties of the function space Hp
1 (M).

Proposition 2.3 Let u : M → R be a Lipschitz function with compact support. Then
u ∈ Ḣp

1 (M) for all p ≥ 1.

Proof. LetK be the compact support of u. The notationBδ(x) stands for the ball centered
at x of radius δ. The ball, depending on weither x ∈M or x ∈ Rn, is either a ball in M or
in the Euclidean space. Let N ∈ N, let (xi)i∈{1,...,N} ∈M and δ > 0 be such that

K ⊂
N⋃
i=1

Bδi(xi)

and such that for any i ∈ {1, . . . , N}, there exists a local chart

ϕi : B3δ(xi) ⊂M → B3δ(0).

We let η̃ ∈ C∞(Rn) be such that η̃ ≡ 1 in Bδ(0) and η̃ ≡ 0 in Rn \ B2δ(0). For any
i ∈ {1, ..., N}, we let η̃i = η̃ ◦ ϕi and

ηi =
η̃i∑
j η̃j

in
N⋃
i=1

Bδi(xi).

Clearly
∑
i ηi = 1 in a neighborhood of K, and u =

∑
ηiu makes sense in M . For any

i ∈ {1, . . . , N}, we let vi = (ηiu)◦ϕ−1
i . Clearly, vi has compact support in B2δ(0) and is

Lipschitz continuous. It follows from standard theory of Sobolev spaces in Euclidean space
that vi ∈W p

1 (B2δ(0)), and therefore, since Hp
k (Ω) = W p

k (Ω) for open subsets of Rn, that
vi ∈ Hp

1 (B2δ(0)). Since vi has compact support in B2δ(0), we get that vi ∈ Ḣp
1 (B2δ(0)).

Then, coming back to the initial manifold, we get that ηiu = vi ◦ ϕi ∈ Ḣ
p
1 (B3δ(xi)) ⊂

Ḣp
1 (M). Since u =

∑
ηiu, we it follows that u ∈ Ḣp

1 (M).

In the same spirit, namely by using local charts to come back to the corresponding
result in Rn, we get that the following proposition holds true.
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Proposition 2.4 Let (M, g) be a complete manifold. Let u ∈ Hp
1 (M) and let h : R → R

be a Lipschitz function. Assume that h ◦ u ∈ Lp(M), p ≥ 1. Then h ◦ u ∈ Hp
1 (M) and

|(∇(h ◦ u))|(x) = |h′(u(x))| · |(∇u)|(x)

for almost every x ∈M . In particular, |u| ∈ Hp
1 (M) and

|(∇|u|)|(x) = |(∇u)|(x)

for almost every x ∈M .

Note that this latest assertion is not true for Sobolev spaces of order greater than one. We
easily find examples of functions u ∈ Hp

2 (Rn) such that |u| 6∈ Hp
2 (Rn).

Proof. Let u ∈ Hp
1 (M) and v = h ◦ u. As a preliminary remark, note that v ∈ Lp(M)

is given for free when V olg(M) < +∞, and is equivalent to h(0) = 0 when V olg(M) =
+∞. Given x0 ∈ M and ϕ : U → Ω a local chart at x0 as in the proof of Proposition 2.3
(in particular, Ω is compact), we get that u◦ϕ−1 ∈W p

1 (Ω). It follows from standard theory
of Sobolev spaces in Euclidean space that v ◦ ϕ−1 = h ◦ (u ◦ ϕ−1) ∈ W p

1 (Ω) = Hp
1 (Ω)

and that

∇(v ◦ ϕ−1)(x) = h′(u ◦ ϕ−1(x)) · ∇
(
u ◦ ϕ−1

)
(x)

for almost every x ∈ Ω (note that it follows from Rademacher’s Theorem that a Lipschitz
function is differentiable almost everywhere, so that h′(y) makes sense for almost every
y ∈ R). Coming back to the initial manifold, we get that v ∈ Hp

1 (U) and that

|∇v|(x) = |h′(v(x))| · |∇u|(x) (1)

for almost every x ∈ U . By a covering argument, we get that for any V ⊂ M relatively
compact, then v ∈ Hp

1 (V ) and (1) holds for almost every x ∈ V . Proposition 2.4 is
then proved when v has compact support. Now we consider the general case. We let
η ∈ C∞(R) such that η ≡ 1 on (−∞, 0] and η ≡ 0 on [1,+∞). We let x0 ∈ M and
we let ηi(x) = η(dg(x, x0) − i) for all i ∈ N and all x ∈ M . Since M is complete, we
get that ηi is Lipschitz continuous and has compact support. Then ηi ∈ Ḣq

1 (M) for all
q ≥ 1. Since v ∈ Hp

1 (V ) for all V ⊂⊂M , we get that ηiv ∈ H
p
1 (M) for all i ∈ N. Since

v ∈ Lp(M), it follows from Lebesgue’s convergence theorem that

lim
i→+∞

ηiv = v in Lp(M).

Given i < j, we get that∫
M

|∇(ηiv)−∇(ηjv)|p dvg =
∫
M

|(ηi − ηj)∇v + v∇(ηi − ηj)|p dvg

≤ c

∫
{dg(x,x0)≥i}

(|∇u|p + |v|p) dvg.

It then follows from Lebesgue’s convergence theorem that (ηiv)i∈N is a Cauchy sequence
for the Hp

1 -norm. Since it converges to v in Lp(M), we actually proved that v ∈ Hp
1 (M).
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3 Equality and density issues

Let k ∈ N and p ≥ 1. When the manifold M is compact, it is clear that Cpk(M) =
C∞(M) = C∞c (M). Therefore, Hp

k (M) = Ḣp
k (M) when M is compact. This equality

does not hold for arbitrary domains. Let Ω be an open bounded subset of Rn: we have that

Ḣp
k (Ω) ⊂ Hp

k (Ω) and 1 ∈ Hp
k (Ω) \ Ḣp

k (Ω)

when k ≥ 1. Concerning the whole space Rn, one can write that Hp
k (Rn) = Ḣp

k (Rn) for
all p ≥ 1 and all k ∈ N. When k = 1, and we are dealing with complete manifolds, Aubin
[5] proved the following result.
Theorem 3.1 Let (M, g) be a complete Riemannian manifold and let p ≥ 1. Then
Hp

1 (M) = Ḣp
1 (M).

Proof. Let u ∈ Cp1 (M). We claim that there exists a sequence (ui)i∈N ∈ Ḣp
1 (M) such

that limi→+∞ ui = u in Hp
1 (M). Clearly the theorem is equivalent to this claim. Let

η ∈ C∞(R) such that η(x) = 1 for x ≤ 0 and η(x) = 0 for x ≥ 1. For any i ∈ N, we
let ui(x) = η(dg(x, x0) − i)u(x) for all x ∈ M and all i ∈ N. As easily checked, ui is
Lipschitz continuous and ui has compact support in M (this latest assertion holds since M
is complete). It follows from Proposition 2.3 that ui ∈ Ḣp

1 (M). We get that

‖u− ui‖p =
(∫

M

|η(dg(x, x0)− i)− 1|p|u|p dvg
)1/p

= o(1) (2)

when i→ +∞. Concerning the first order derivative, one gets that

‖∇(u− ui)‖p ≤ C

(∫
M

|η(dg(x, x0)− i)− 1|p|∇u|p dvg
)1/p

+C
(∫

M

|∇(η(dg(x, x0)− i)− 1)|p|u|p dvg
)1/p

.

With Proposition 2.4, we get that

|∇(η(dg(x, x0)− i)− 1)| = |η′(dg(x, x0)− i)| ≤ C1dg(x,x0)≥i

for all x ∈M and all i ∈ N. Since |u|, |∇u| ∈ Lp(M), we get that ‖∇(u− ui)‖p = o(1)
when i→ +∞. This latest result and (2) yield

lim
i→+∞

ui = u in Hp
1 (M),

and the claim is proved. As already mentioned, this proves the theorem.

Concerning the spaces Hp
k (M) and Ḣp

k (M) with k ≥ 2, the above proof does not
work, and the situation is more intricate. Equality results require assumptions on the Ricci
tensor of (M, g). For instance, the following proposition of Hebey [47] holds true.
Proposition 3.1 Let (M, g) be a complete Riemannian manifold with positive injectivity
radius and Ricci curvature bounded from below. Then Ḣ2

2 (M) = H2
2 (M).
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The proof of this proposition uses the existence of harmonic coordinates. We refer to
[47] for more results in this direction. If one wants to avoid geometric assumptions on the
manifold, and get general results as in the Euclidean case, it follows from the results in [47]
that Ḣp

k (M) = Hp
k (M) for any k integer, and any p ≥ 1, when (M, g) is a Riemannian

covering of a compact Riemannian manifolds.

4 Embedding theorems, Part I

In his paper [68], Sobolev proved that a function in Lp with derivatives in Lp is actually
in Lq , for some q > p. The result is now refered to as Sobolev’s theorem. The original
statement concerned Euclidean spaces. However, such an embedding makes sense on a
manifold. The question of the validity of the embedding leads to surprising results when
the manifold is noncompact.
Definition 4.1 Let (M, g) be a manifold. We we say that the the Sobolev embedding
theorem in its first part holds true on (M, g) if for any real numbers 1 ≤ p < q, and
any integers 0 ≤ m < k, we have that Hp

k (M) ⊂ Hq
m(M) and that the embedding is

continuous as soon as 1
q = 1

p −
k−m
n . Assuming that kp < n, we say that the Sobolev

embedding (SHpk (M)) holds true if Hp
k (M) ⊂ Lq(M) and the embedding is continuous as

soon as 1
q = 1

p −
k
n .

By definition, if (E, ‖ · ‖E) and (F, ‖ · ‖F ) are two Banach spaces, and E ⊂ F , we say
that the embedding E ⊂ F is continuous if there exists C > 0 such that

‖u‖F ≤ C‖u‖E

for all u ∈ E. In the sequel, the notation E ⊂ F refers to continuous embeddings. A
general very useful result is that there is an ordering in the embeddings. In particular, all
the Sobolev inequalities can be reduced to the proof of one.
Theorem 4.1 Let (M, g) be a complete manifold of dimension n ≥ 2. Assume that
(SH1

1 (M)) holds true. Then for any real numbers 1 ≤ p < q, and any integers 0 ≤ m < k

such that 1
q = 1

p −
k−m
n , we have that Hp

k (M) ⊂ Hq
m(M). In particular, the Sobolev

embedding theorem in its first part holds true on (M, g).

Proof. We prove the results for k = 1 and the embeddings (SHp1 (M)). We refer to Aubin
[9] for the other cases. We assume that there exists C > 0 such that(∫

M

|u|
n
n−1 dvg

)n−1
n

≤ C
∫
M

(|∇u|+ |u|) dvg (3)

for all u ∈ H1
1 (M). We let u ∈ C∞c (M), and we consider v = |u|

p(n−1)
n−p . It follows from

Proposition 2.3 that v ∈ Hp
1 (M). By Hölder’s inequality we can write that

‖v‖1 =
∫
M

|u|
1
p ·p · |u|(1−

1
p )· pnn−p

≤ ‖u‖p · ‖u‖
n(p−1)
n−p
pn
n−p
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and

‖∇v‖1 =
∫
M

|∇v| dvg =
p(n− 1)
n− p

∫
M

|u|
n(p−1)
n−p |∇u| dvg

≤ p(n− 1)
n− p

‖u‖
n(p−1)
n−p
pn
n−p

· ‖∇u‖p.

We apply (3) to v, and we get that

‖u‖
p(n−1)
n−p
pn
n−p

≤ C‖u‖
n(p−1)
n−p
pn
n−p

· ‖∇u‖p + C‖u‖
n(p−1)
n−p
pn
n−p

· ‖u‖p

and then

‖u‖ pn
n−p
≤ C‖∇u‖p + C‖u‖p

for all u ∈ C∞c (M). By density, this inequality holds for u ∈ Ḣp
1 (M), and then on

Hp
1 (M) by Theorem 3.1.

4.1 Discussion on the exponent

A natural question is: what about the “magical” exponent q > p ? A justification is easy
to give in terms of rescaling arguments. Consider the Euclidean space Rn and assume that
there exists C > 0 such that

‖u‖q ≤ C‖∇ku‖p (4)

for all u ∈ C∞c (Rn). Let u ∈ C∞c (Rn) be nonzero, λ ∈ R be positive, and define
v(x) = u(λx) for all x ∈ Rn. Plugging v into (4), we get that

‖u‖q ≤ Cλk−
n
p+n

q ‖∇ku‖p

Letting λ go to 0 on the one hand, and to +∞ on the other hand, it follows that we need to
have that k − n

p + n
q = 0. In other words 1

q = 1
p −

k
n , and this is the Sobolev exponent.

The following result holds true.
Proposition 4.1 Let (M, g) be a Riemannian manifold of dimension n. Let p ≥ 1 and
k ∈ N such that p < n. Let r > 1 such that 1

r <
1
p −

1
n . Then Hp

1 (M) is not continuously
embedded in Lr(M).

Proof. We argue by contradiction and assume that there is a continuous embedding of
Hp

1 (M) in Lr(M). Then there exists C > 0 such that

‖u‖r ≤ C‖u‖Hp1 (5)

for all u ∈ Hp
1 (M). We let u ∈ C∞c (Rn) \ {0} and R > 0 be such that supp u ⊂ BR(0).

Let x0 ∈M . Given ε > 0, we define

ϕε(x) = ε1−n/pu(ε−1exp−1
x0

(x))
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for dg(x, x0) < ig(x0) and 0 elsewhere, where ig(x0) denotes the injectivity radius at x0.
Clearly ϕε ∈ C∞c (M) for all ε > 0. Working in the exponential chart, one gets that∫

M

|∇ϕε|p dvg =
∫

Rn

(
gij(εx)∂iu∂ju

)p/2√|g|(εx) dx

and ∫
M

|ϕε|s dvg = εn−s
n−p
p

∫
Rn
|u|s
√
|g|(εx) dx

for all s ≥ 1. Letting ε → 0 and plugging these estimates into (5), we get that ‖u‖q =
O
(
εnr(1/p−1/n−1/r)

)
when ε → 0, and then u ≡ 0. A contradiction. This proves the

proposition.

4.2 The Euclidean setting

In the Euclidean setting, things go for the best. The Sobolev embeddings are all valid and
the following fundamental theorem, due to Sobolev [68], holds true.
Theorem 4.2 For any real numbers 1 ≤ p < q, and any integers 0 ≤ m < k such that
1
q = 1

p −
k−m
n , we have that Hp

k (Rn) ⊂ Hq
m(Rn). In particular, given n ≥ 2, k ∈ N, and

p ≥ 1 such that kp < n, the embedding (SHpk (Rn)) holds true and there exists Cn,k,p > 0
such that(∫

Rn
|u|

pn
n−kp

)n−kp
n

≤ Cn,k,p
∫

Rn
|∇ku|p dx

for all u ∈ Hp
k (Rn).

Proof. We present here the very elegant proof by Gagliardo [42] and Nirenberg [62]. Let
u ∈ C∞c (Rn). Any point x ∈ Rn is written x = (x1, ..., xn). We have that

u(x) =
∫ xi

−∞
∂iu(x1, ..., xi−1, t, xi+1, ..., xn) dt

for all x ∈ Rn and all i ∈ {1, ..., n}, and then

|u(x)| ≤
∫

R
|∇u|(..., xi−1, t, xi+1, ...) dt

for all x ∈ Rn and all i ∈ {1, ..., n}. Therefore, we get that

|u(x)|
n
n−1 ≤ Πn

i=1

(∫
R
|∇u|(..., xi−1, t, xi+1, ...) dt

) 1
n−1

for all x ∈ Rn. Integrating with respect to xn ∈ R and using Hölder’s inequality, we get
that ∫

xn∈R
|u(x)|

n
n−1 dxn
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≤
∫
xn∈R

Πn
i=1

(∫
R
|∇u|(..., xi−1, t, xi+1, ...) dt

) 1
n−1

≤
(∫

R
|∇u|(x1, ..., xn−1, t) dt

) 1
n−1

Πn−1
i=1

(∫
(xi,xn)∈R2

|∇u|(x) dxidxn

) 1
n−1

.

With the same method, integrating with respect to xn−1, ..., x1, we get that∫
Rn
|u(x)|

n
n−1 dx ≤ c

(∫
Rn
|∇u| dx

) n
n−1

for all u ∈ C∞c (Rn). Since Rn with the Euclidean metric is obviously a complete mani-
fold, the theorem follows from Theorems 3.1 and 4.1.

4.3 The compact setting

In some sense a compact manifold is just a finite union of small pieces of Rn. From
this, and since Sobolev embeddings are true in Euclidean space, we expect that Sobolev
embeddings are also true on compact manifolds. This is indeed the case and the following
theorem holds true.
Theorem 4.3 Let (M, g) be a compact manifold. For any real numbers 1 ≤ p < q, and
any integers 0 ≤ m < k such that 1

q = 1
p −

k−m
n , we have that Hp

k (Rn) ⊂ Hq
m(Rn). In

particular, the Sobolev embedding theorem in its first part holds true on (M, g).

Proof. It follows from Theorem 4.1 above that it is sufficient to prove that the embedding
(SHpk (M)) holds true for k = p = 1. Since M is compact, it can be covered by a finite
number of charts (Ωm, ϕm)m=1,...,N such that for any m, the components gmij of g in
(Ωm, ϕm) satisfy

1
2
ξij ≤ gmij ≤ 2ξij

in the sense of bilinear forms. Let (ηm) be a smooth partition of unity subordinate to the
covering (Ωm). For any u ∈ C∞(M) and any m, one has that∫

M

|ηmu|
n
n−1 dvg ≤ 2n/2

∫
Rn
|(ηmu) ◦ ϕ−1

m |
n
n−1 dx

and ∫
M

|∇(ηmu)| dvg ≥ 2−(n+1)/2

∫
Rn
|∇((ηmu) ◦ ϕ−1

m )(x)| dx.

Independently, by Theorem 4.2, we have that(∫
Rn
|(ηmu) ◦ ϕ−1

m |
n
n−1 dx

)n−1
n

≤ C
∫

Rn
|∇((ηmu) ◦ ϕ−1

m )(x)| dx

for all m. Therefore, we get that(∫
M

|u|
n
n−1 dvg

)n−1
n

=

(∫
M

|
∑
m

ηmu|
n
n−1 dvg

)n−1
n
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≤
N∑
m=1

(∫
M

|ηmu|
n
n−1 dvg

)n−1
n

≤ C
N∑
m=1

∫
M

|∇(ηmu)| dvg

≤ C

∫
M

|∇u| dvg + C

(
max
M

N∑
i=1

|∇ηm|g

)∫
M

|u| dvg.

Hence, there exists A > 0 such that(∫
M

|u|
n
n−1 dvg

)n−1
n

≤ A
(∫

M

|∇u| dvg +
∫
M

|u| dvg
)

for all u ∈ C∞(M). By density, this inequality holds true for all u ∈ H1
1 (M), and we get

that (SH1
1 (M)) holds true. By Theorem 4.1 the Sobolev embedding theorem in its first part

holds true on (M, g).

In particular, it follows from Theorem 4.3 that the embeddings (SHpk (M)) hold true.
On a compact manifolds, Lq

′
(M) ⊂ Lq(M) when q′ ≤ q. It follows that on compact

manifolds, Hp
k (M) ⊂ Lq′(M) as soon as q′ ≤ np/(n− kp).

4.4 Results in the noncompact setting

A possible model for complete noncompact manifolds is the Euclidean space (Rn, ξ), a
manifold for which all the Sobolev embeddings are valid. The model is misleading. The
picture in terms of Sobolev embeddings turns out be more tricky for arbitrary complete
noncompact manifolds with nontrivial geometries at infinity. In particular, the following
result due to Carron [19] holds true. We refer also to, Chavel [22] for the case k = p = 1.
Proposition 4.2 Let (M, g) be a complete Riemannian manifold of dimension n. We as-
sume that (SHp1 (M)) holds true for some p ≥ 1. Then for any r > 0, there exists v(r) > 0
such that

Volg(Br(x)) ≥ v(r)

for all x ∈M .

The result is actually more precise and we get that there exists a constant c > 0 such
that

Volg(Br(x)) ≥ c inf{1, rn}

for all x ∈M and all r > 0.

Proof. Since (SHp1 (M)) holds true, there exists A > 0 such that

‖u‖q ≤ A‖∇u‖p +A‖u‖p (6)

for all u ∈ Hp
1 (M), where q > 1 is such that 1

q = 1
p −

1
n . We fix x ∈ M and r > 0 and

we define the function u as follows: u(y) = r − dg(x, y) if dg(x, y) ≤ r and u(y) = 0
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elsewhere. SinceM is complete, it follows from Propositions 2.3 and 2.4 that u ∈ Hp
1 (M)

and we have that |∇u|(x) = 1 for a.e. x ∈ M . Plugging u into (6) and using Hölder’s
inequality, we get that

‖u‖q ≤ A|Br(x)|
1
p +A|Br(x)| 1n ‖u‖q, (7)

where we use the notation |Br(x)| = Volg(Br(x)). We distinguish two cases:

Case 1: A|Br(x)| 1n ≥ 1
2 . In this case, we get that

|Br(x)| ≥
(

1
2A

)n
. (8)

Case 2: A|Br(x)| 1n ≤ 1
2 . In this case, (7) yields

‖u‖p ≤ |Br(x)| 1n ‖u‖q ≤ 2A|Br(x)|
1
p+ 1

n . (9)

Moreover, we have that

‖u‖p =
(∫

M

|u|p dvg
)1/p

≥

(∫
Br/2(x)

|u|p dvg

)1/p

=
r

2
|Br/2(x)|

1
p , (10)

and plugging (10) into (9), we get that

r|Br/2(x)|
1
p ≤ 4A|Br(x)|

1
p+ 1

n , (11)

and therefore

|Br(x)| ≥
( r

4A

) np
n+p |Br/2(x)|

n
n+p .

With an induction argument, we get that

|Br(x)| ≥
( r
A

)n(1−θN ) 1
2p
∑N
i=1(i+1)θi

|B2−Nr(x)|θ
N

(12)

for all N ∈ N, where θ := n/(n+ p). Since

lim
r→0

|Br(x)|
rn

= ωn−1,

letting N → +∞ in (12) yields that there exists λ = λ(n, p) > 0 depending only on n, p
such that

|Br(x)| ≥ λ
( r
A

)n
.

By cases 1 and 2 we get that the proposition holds true.

With the above result it is quite easy to construct complete manifolds for which the
Sobolev embeddings are not valid.
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Proposition 4.3 Let M = R × Sn−1 endowed with the warped product metric g(x, θ) =
dx2 + u(x)hθ, where h is the standard metric on Sn−1 and u(x) = e−x

2
for x ∈ R.

Then (M, g) is a complete Riemannian manifold on which none of the Sobolev inequality
(SHp1 (M)) is valid. In particular, there exist complete manifolds of arbitrary dimension
such that none of the Sobolev inequalities (SHp1 (M)) holds true.

Proof. Given y = (x1, θ1), z = (x2, θ2) ∈ M , we have that |x1 − x2| ≤ dg(y, z). This
implies that M is complete. We let y = (x, θ) ∈ M , where x ≥ 1. Then B1(y) ⊂
(x− 1, x+ 1)× Sn−1. Therefore, we get that

Volg(B1(x, θ)) ≤ Volg((x− 1, x+ 1)× Sn−1) ≤ ωn−1e
−n−1

2 (x−1)2
, (13)

where ωn−1 denotes the volume of Sn−1. It follows that for any θ ∈ Sn−1, we have that

lim
x→+∞

Volg(B1(x, θ)) = 0,

and it follows from Proposition 4.2 that none of the Sobolev inequalities (SHp1 (M)) holds
true.

A natural question is to ask about minimal hypothesis to recover the Sobolev inequal-
ities on complete noncompact manifolds. Fairly general results on the question can be
obtained. We mention only the following result due to Varopoulos [73].
Theorem 4.4 Let (M, g) be a complete Riemannian manifold of dimension n. We assume
that the Ricci curvature is bounded from below and that there exists v > 0 such that

Volg(B1(x)) ≥ v

for all x ∈ M . Then for any real numbers 1 ≤ p < q, and any integers 0 ≤ m < k
such that 1

q = 1
p −

k−m
n , we have that Hp

k (M) ⊂ Hq
m(M). In particular, the Sobolev

embedding theorem in its first part holds true on (M, g).

We refer to Coulhon and Saloff-Coste [27] for complementary results. For an exposi-
tion in book form of such results we refer to Hebey [47] and Saloff-Coste [66].

4.5 The Nash inequality

Many inequalities can be derived from the generic Sobolev inequalities. This is the case
for the so-called Gagliardo-Nirenberg inequalities, which we can write as

‖u‖r ≤ C‖∇u‖αq ‖u‖1−αs

for particular values of r, q, s, and α. We restrict ourselves here to one of these inequalities,
refered to as the Nash inequality. The inequality first appeared in the celebrated Nash [61]
when discussing the Hölder regularity of solutions of divergence form of uniformly ellip-
tic equations. The Nash inequality in Euclidean space asserts that there exists a positive
constant A such that for any function u ∈ C∞c (Rn),(∫

Rn
u2dx

)1+ 2
n

≤ A
∫

Rn
|∇u|2dx

(∫
Rn
|u|dx

) 4
n

.
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The inequality has a transcription to Riemannian manifolds. In the case of compact mani-
folds (M, g) the inequality holds with an additional term and we get that(∫

M

u2dvg

)1+ 2
n ≤ A

∫
M

|∇u|2dvg
(∫

M

|u|dvg
) 4
n

+B
(∫

M

|u|dvg
)2+ 4

n

for all u ∈ H2
1 (M), where A and B are positive constant independent of u. We refer the

reader to the original papers by Gagliardo [42] and Nirenberg [62], and to the exhaustive
paper [13] by Bakry, Coulhon, Ledoux, and Saloff-Coste for more material on the subject.

5 Euclidean type inequalities

Let (M, g) be a complete Riemannian n-manifold of infinite volume, and let p ∈ [1, n)
real. We say that the Euclidean-type Sobolev inequality of order p is valid if there exists
Cp > 0 real such that for any u ∈ Hp

1 (M),(∫
M

|u|q dvg
)p/q

≤ Cp
∫
M

|∇u|p dvg , (14)

where 1/q = 1/p − 1/n. We know that such an inequality holds true for the Euclidean
space. In the case of an arbitrary complete Riemannian n-manifold of infinite volume,
similar arguments to the ones used in the proof of Theorem 4.1 give that if (14) holds true
for p = 1, and thus q = n/(n − 1), then it also holds true for all p ∈ [1, n). By Hoffman
and Spruck [51], (14) with p = 1 holds true on any complete simply connected Riemannian
manifold of nonpositive sectional curvature. It follows that for p ∈ [1, n) arbitrary, (14)
holds true on such manifolds. In general, the question of the validity of (14) is closely
related to the nonparabolicity of the manifold. Let (M, g) be a complete, noncompact
Riemannian manifold and let x be some point of M . One can prove that, uniformly with
respect to x, either there exist positive Green functions of pole x, and in particular there
exists a positive minimal Green’s function of pole x, or there does not exist any positive
Green function of pole x. More precisely, let Ω ⊂ M be such that x ∈ Ω and let G be the
solution of ∆gG = δx in Ω, and G = 0 on ∂Ω. Set GΩ

x (y) = G(y) when y ∈ Ω, GΩ
x (y) =

0 otherwise. Obviously, GΩ
x ≤ GΩ′

x if Ω ⊂ Ω′. Set Gx(y) = sup{Ω s.t. x∈Ω}G
Ω
x (y),

y ∈ M . One then has that either Gx(y) = +∞ for all y ∈ M , or Gx(y) < +∞ for all
y ∈ M\{x}. Moreover, the alternative does not depend on x and in case Gx exists, it is
the positive minimal Green function of pole x. When Gx does not exist (is not finite), the
manifold is said to be parabolic; otherwise the manifold is said to be nonparabolic. By
Cheng-Yau [23], one has that if for some x ∈M ,

lim inf
r→+∞

V olg (Br(x))
r2

< +∞

then (M, g) is parabolic. This explains, for instance, why R2 is parabolic while R3 is not.
More results are in Grigor’yan [45] and Varopoulos [74]. Returning to (14), the following
result can be proved.
Theorem 5.1 Let (M, g) be a complete Riemannian n-manifold of infinite volume, n ≥
3. If (M, g) has nonnegative Ricci curvature, then (14) is true if and only if (M, g) is



Emmanuel Hebey and Frédéric Robert 389

nonparabolic and there exists K > 0 such that for any x ∈M and any t > 0,

V olg
({
y ∈M s.t. Gx(y) > t

})
≤ Kt−n/(n−2)

where Gx is the positive minimal Green function of pole x.

We refer to Carron [20], Coulhon-Ledoux [26], and Varopoulos [75] for more details
and complements in this direction.

6 Embedding theorems, Part II

We focus on the case kp > n and refer to the Sobolev embedding theorem in its second
part. In this case, the order of differentiability or the order of integrability is so large that
the Sobolev space can be embedded in Hölder spaces. These results have their origins in
the contributions of Sobolev. Following standard notations, we let Ck(M) be the space
of k times continuously differentiable functions on M . We define CkB(M) the space of
functions u ∈ Ck(M) for which

‖u‖Ck(M) =
k∑
i=1

‖∇iu‖∞

is finite. The norm ‖ · ‖Ck(M) induces a structure of Banach space on the space CkB(M).
Note that in case M is compact, we have that CkB(M) = Ck(M). Given α ∈ [0, 1], we
let C0,α(M) be the space of functions u ∈ C0(M) such that there exists C > 0 such that
|u(x) − u(y)| ≤ Cdg(x, y)α for all x, y ∈ M . In the same spirit, we define C0,α

B (M) to
be the space of functions u ∈ C0,α(M) for which

‖u‖C0,α(M) = ‖u‖C0(M) + sup
x 6=y

|u(x)− u(y)|
dg(x, y)α

is finite. This norm induces a structure of Banach space on C0,α
B (M). Concerning the

spaces Ck,α(M) and Ck,αB (M), where k ≥ 1 and α ∈ [0, 1], a possible definition is the
following: a function u : M → R is in Ck,α(M) if it is in Ck(M) and, given a system
of charts on M , the coordinates of the tensor ∇ku are in C0,α when read via a chart. This
definition is naturally independent of the choice of a C∞ system of charts. However, the
choice of a natural and good norm is a nontrivial question. We refer to [56] for a possible
and natural norm on Ck,α(M).

6.1 The Euclidean case

The results in the Euclidean case can be seen as guidelines for the Riemannian case. The
following result is due to Sobolev [68] and Morrey [59].
Theorem 6.1 Let p > n. Then Hp

1 (Rn) is continuously embedded in C0,α
B (Rn), with

α = 1 − n
p . More precisely, there exists A > 0 such that for any u ∈ Hp

1 (M), we have
that

‖u‖L∞(Rn) ≤ A‖u‖Hp1 (Rn)
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and

|u(x)− u(y)| ≤ A‖∇u‖Lp(Rn)|x− y|α (15)

for a.e. x, y ∈ Rn.

A remark is necessary here. To be precise, the Sobolev theorem asserts that when
u ∈ Hp

1 (Rn), p > n, then u has a representative in C0,α(Rn). Clearly, this representative
is unique, and then, the embedding makes sense. Here, as in Section 4, the Hölder exponent
α = 1− n

p turns out to be natural. Indeed, let p > n and assume that there exists α ∈ (0, 1)
and A > 0 such that (15) holds true for a.e. x ∈ Rn. We choose u ∈ C∞c (Rn) \ {0}, let
λ > 0, and consider the function ũ(x) := u(λx) for all x ∈ Rn. Plugging ũ into (15) and
performing a change of variables, we get that

sup
x 6=y

|u(x)− u(y)|
|x− y|α

≤ C‖∇u‖pλ1−np−α

for all λ > 0. Letting λ→ 0 and λ→ +∞, it follows that we need to have that α = 1− n
p .

Proof. We let u ∈ C∞c (Rn). We let also r > 0, x0, z0 ∈ Rn and Q = z0 + (−r, r)n such
that x0 ∈ Q. Given x ∈ Q, we have that

u(x)−u(x0) =
∫ 1

0

d

dt
(u(tx+ (1− t)x0)) dt =

∫ 1

0

(x−x0)i∂iu(tx+ (1− t)x0) dt

which yields

|u(x)− u(x0)| ≤ c · r
∫ 1

0

|∇u(tx+ (1− t)x0)| dt.

We let ū = Vol(Q)−1
∫
Q
u dx. Integrating the above inequality over Q yields

|ū− u(x0)| ≤ c · r1−n
∫ 1

0

(∫
Q

|∇u(tx+ (1− t)x0)| dx
)
dt

≤ c · r1−n
∫ 1

0

t−n

(∫
t(Q−x0)+x0

|∇u(x)| dx

)
dt

With Hölder’s inequality, and using that t(Q− x0) + x0 ⊂ Q, we get that

|ū− u(x0)| ≤ c · r1−n
∫ 1

0

t−n‖∇u‖Lp(Q)Vol(t(Q− x0) + x0)1− 1
p dt

≤ c · r1−np
∫ 1

0

t−
n
p ‖∇u‖Lp(Q) dt ≤

c

1− n
p

r1−np ‖∇u‖Lp(Q). (16)

We let x, y ∈ Rn. We let r = 2|x − y| and Q = x + (−r, r)n. The above inequality
applied to x0 = x and then to x0 = y yields that

|u(x)− u(y)| ≤ c

1− n
p

r1−np ‖∇u‖Lp(Q) ≤
c

1− n
p

|x− y|1−
n
p ‖∇u‖Lp(Rn).
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Taking r = 1, Q = x + (−1, 1)n and x0 = x, we get with (16) and Hölder’s inequality
that

|u(x)| ≤ 2−n
∫
Q

|u| dx+ C‖∇u‖Lp(Q) ≤ 2−n/p‖u‖Lp(Q) + C‖∇u‖Lp(Q)

≤ C‖u‖Hp1 (Rn),

which yields that

‖u‖L∞(Rn) ≤ C‖u‖Hp1 (Rn).

Coming back to the definition of Hp
1 (Rn), the theorem follows.

In the same spirit, we get that if kp > n, then Hp
k (Rn) is continuously embedded in

L∞(Rn), with embeddings in Hölder spaces Cl,θB (Rn) for particular values of l and θ. A
very good reference on the subject is Adams [1]

6.2 The compact setting

Given a compact Riemannian manifold (M, g), the Sobolev embeddings in their second
part follow from the above Euclidean case. In particular, the following result holds true.
Theorem 6.2 Let (M, g) be a compact Riemannian manifold of dimension n ≥ 1. Let
p ≥ 1 and assume that p > n. Then Hp

1 (M) ⊂ C0,α(M), where α = 1 − n
p . Moreover,

the embedding is continuous.

Proof. Here again, since M is compact, we let (Ωm, ϕm)m=1,...,N as in the proof of The-
orem 4.3, and we consider (ηm) a partition of unity subordinate to the covering (Ωm). We
have that there exists C1, C2 > 0 such that for any m = 1, ..., N and u ∈ C∞(M), we
have that

‖ηmu‖C0,α(M) ≤ C1‖(ηmu) ◦ ϕ−1
m ‖C0,α(Rn)

and

‖(ηmu) ◦ ϕ−1
m ‖Hp1 (Rn) ≤ C2‖ηmu‖Hp1 (M)

where the norms in the right-hand-side of the first inequality and in the left-hand-side in
the second inequality are with respect to the Euclidean space. By Theorem 6.1, we get that
there exists C3 > 0 such that for any m = 1, ..., N and any u ∈ C∞(M),

‖ηmu‖C0,α(M) ≤ C3‖ηmu‖Hp1 (M).

Independently, one clearly has that there exists B > 0 such that for any function u ∈
C∞(M),

N∑
m=1

‖ηmu‖Hp1 (M) ≤ B‖u‖Hp1 (M).
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Hence, for any u ∈ C∞(M), we get that

‖u‖C0,α(M) ≤
N∑
m=1

‖ηmu‖C0,α(M) ≤ BC3‖u‖Hp1 (M).

This ends the proof of the theorem.

Concerning Sobolev spaces of higher order in differentiability, the following result is easy
to get. For Hölder’s analogues of Theorem 6.3 a possible reference is Lee-Parker [56].
Theorem 6.3 Let (M, g) be a compact Riemannian manifold of dimension n ≥ 1. We let
k ∈ N and p ≥ 1. We assume that kp > n. Then, for any m ∈ N such that m < k− n

p , we
have Hp

k (M) ⊂ Cm(M). Moreover, this embedding is continuous.

6.3 The noncompact setting

As for Sobolev embeddings in their first part, the picture turns out to be intricate for com-
plete noncompact manifolds. However, see Coulhon [25], essentially no new difficulties
arise with respect to the embeddings in their first part. For historical references, we refer
to Aubin [6] and Cantor [17]. The following result can be proved following the standard
scheme of going back to Euclidean space by using harmonic coordinates.
Theorem 6.4 Let (M, g) be a complete Riemannian manifold of dimension n with Ricci
curvature bounded from below and with positive injectivity radius. Then for p ≥ 1 and for
λ ≤ 1− n

p , we have that Hp
1 (M) ⊂ C0,λ

B (M), and this embedding is continuous.

Concerning higher order spaces, the following result holds true.
Theorem 6.5 Let (M, g) be a complete Riemannian manifold of dimension n with Ricci
curvature bounded from below and with positive injectivity radius. Given p ≥ 1 and
m < k − n

p , we have that Hp
k (M) ⊂ CmB (M), and the embedding is continuous.

Improvement of these results are in Coulhon [25]. In particular, we can replace the
lower bound on the injectivity radius by the assumption that there exists v > 0 such that
V olg (B1(x)) ≥ v for all x ∈M .

7 Embedding theorems, Part III

We briefly discuss the limit case kp = n. A rough extension of the embeddings of part I
yields that Hp

k (M) should be embedded in Lq(M) for all q ≥ p. Indeed, at least for Rn,
this is true.
Theorem 7.1 Let n ≥ 1, p ≥ 1 and k ∈ N such that kp = n. Then Hp

k (Rn) ↪→ Lq(Rn)
for all q ≥ p. Moreover, all these embeddings are continuous.

The result can be improved on bounded domains of Rn. A first step in this direction goes
back to Trudinger [72] and Moser [60]. In what follows we define ∇̃k by

∇̃ku =
{

∆k/2u if k is odd,
∇∆(k−1)/2u if k is even.

The following result was obtained by Adams [2].
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Theorem 7.2 Let n ≥ 1, k ∈ N and p > 1 such that kp = n. Then there exists a constant
c0 = c0(k, n) such that for any Ω bounded domain of Rn, we have that∫

Ω

eβ|u|
p
p−1

dx ≤ c0(k, n)Volξ(Ω) (17)

for all u ∈ C∞c (Ω) such that ‖∇̃ku‖p = 1 and all β ≤ β0(k, n), where

β0(k, n) =


n

ωn−1

[
πn/22kΓ( k+1

2 )
Γ(n−k+1

2 )

] p
p−1

if k is odd,

n
ωn−1

[
πn/22kΓ( k2 )

Γ(n−k2 )

] p
p−1

if k is even.

Furthermore, if β > β0(k, n), then there exists a smooth u ∈ C∞c (Ω) with ‖∇̃ku‖p ≤ 1
for which the integral in (17) can be made as large as desired. In other words, the constant
β0(k, n) is optimal.

In the theorem, ωn−1 is the volume of Sn−1, the unit (n−1)−sphere inRn and Γ(x) :=∫∞
0
tx−1e−t dt is the Gamma function. Concerning the history of this problem, Trudinger

proved the existence of some β > 0 such that (17) holds true when k = 1, and Moser
computed β0(1, n) for all n ≥ 2. Using local charts, it is possible to get similar inequalities
on compact manifolds. In the two following statements, ū = Volg(M)−1

∫
M
u dvg . Moser

[60] obtained the 2−dimensional result below.
Theorem 7.3 Let (M, g) be a compact Riemannian manifold of dimension 2. Then there
exists C(M) > 0 such that∫

M

eα(u−ū)2
dvg ≤ C(M) (18)

for all α ≤ 4π and all u ∈ H2
1 (M) such that ‖∇u‖2 = 1. Moreover, the constant

4π is optimal in the following sense: if there exists α ∈ R such that (18) holds for all
u ∈ H2

1 (M) such that ‖∇u‖2 = 1, then α ≤ 4π.

This result of Moser was extended to arbitrary dimensions and arbitrary order of inte-
grability by Fontana [41]. In the spirit of the above result of Adams, Fontana proved the
following (one should keep in mind that on a compact Riemannian manifold, ∇̃ku = 0 is
equivalent to u = Cst).
Theorem 7.4 Let (M, g) be a compact Riemannian manifold of dimension n ≥ 2, k ∈ N
and p > 1 such that kp = n. Then there exists a constant c0 = c0(k,M) such that we
have that∫

M

eα|u|
p
p−1

dx ≤ c0(k,M) (19)

for all u ∈ Hp
k (Ω) such that ‖∇̃ku‖p = 1 and all α ≤ β0(k, n), where β0(k, n) is as

in Theorem 7.2. Moreover, the constant β0(k, n) is optimal in the following sense: if

there exists α ∈ R such that (19) holds for all u ∈ Hp
k (M) such that ‖∇̃ku‖p = 1, then

α ≤ β0(k, n).
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The question of the extremals of such inequalities has also been considered by various
authors. We refer to Chang [21], Adimurthi-Druet [3], Struwe [70] and the references
therein. In the case n = kp, there are other useful and interesting functional inequalities,
like Onofri’s inequality. We refer to Chang [21] and Aubin [9] for related results.

8 Compact embeddings

We briefly discuss improvements on the structure of the Sobolev embeddings. More pre-
cisely, we address the question of the compactness of these embeddings. Concerning ter-
minology, we say that an embedding f : X → Y between two metric spaces is compact if
the image of any bounded set of X is relatively compact in Y . In other words if f(B) is
compact for all bounded subsets B in X . This question is of importance, in particular for
the use of variational methods. The first result we state concerns Sobolev embeddings in
their first part.
Theorem 8.1 Let (M, g) be a compact Riemannian manifold of dimension n. We let p ≥ 1
and k ∈ N? be such that kp < n. We let q ≥ 1 and m ∈ N be such that m < k and
1 ≤ q < pn

n−(k−m)p . Then the embedding Hp
k (M) ⊂ Hq

m(M) is compact. In particular,
for p ∈ [1, n) and q ∈ [1, np

n−p ), the embedding Hp
1 (M) ↪→ Lq(M) is compact.

In other words, we have compactness as soon as the exponent is subcritical. A key point
in proving such a result is the characterisation of compact subsets of Lebesgue’s spaces.
Let Ω be an open subset of Rn, p ≥ 1, and X be a bounded subset of Lp(Ω). Then we
characterise the relative compactness of X by the sufficient and necessary condition that
for any ε > 0, there exists a compact subset K ⊂ Ω and there exists 0 < δ < d(K, ∂Ω)
such that∫

Ω\K
|u(x)|pdx < ε and

∫
K

|u(x+ y)− u(x)|pdx < ε

for all u ∈ X and all y such that |y| < δ. An independent important remark on the
above result is that we loose compactness as soon as one reaches the critical exponent.
For instance, the family (ϕε)ε>0 ∈ C∞(M) of the proof of Proposition 4.1 satisfies that
‖ϕε‖Hp1 = O(1) when ε → 0, but no subsequence of (ϕε) converges in L

np
n−p (M). Con-

cerning Sobolev embeddings in their second part, a similar theorem holds true.
Theorem 8.2 Let (M, g) be a compact Riemannian manifold of dimension n. We let p ≥ 1
such that p > n. Then the embedding Hp

1 (M) ⊂ C0,α(M) is compact for all α ∈ (0, 1)
such that α < 1− n

p . In particular, the embedding Hp
1 (M) ⊂ C0(M) is compact.

9 Best constants

We restrict ourselves for the sake of simplicity to the case of compact manifolds. Results in
the case of complete noncompact manifolds can be found in [47]. Let (M, g) be a compact
Riemannian manifold. Then the Sobolev embeddings and inequalities are all valid for M .
In particular, given k, p such that kp < n, the continuity of the embedding of Hp

k (M) into
L

pn
n−pk (M) implies that there exists C > 0 such that

‖u‖ pn
n−pk

≤ C‖u‖Hpk
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for all u ∈ Hp
k (M). In the special case k = 1, we get that for any p < n, there exists

A,B > 0 such that

‖u‖ pn
n−p
≤ A‖∇u‖p +B‖u‖p (I1

p)

for all u ∈ Hp
1 (M). From the pde point of view (see subsection 9.1), such inequalities are

of real interest. In particular, raising (I1
p) to the power p, we get that there exists A,B > 0

such that

‖u‖ppn
n−p
≤ A‖∇u‖pp +B‖∇u‖pp (Ipp )

More generally, raising (I1
p) to the power θ ∈ [1, p], we get that there exists A,B > 0 such

that

‖u‖θpn
n−p
≤ A‖∇u‖θp +B‖∇u‖θp (Iθp )

for all u ∈ Hp
1 (M). Natural questions are to ask for the best possible value of A in (Iθp ),

the best possible value ofB, the validity of sharp inequalities, and the existence of extremal
functions. At this stage we let

Aθ,p(M) = inf
{
A > 0 s.t. there exists B > 0 s.t. (Iθp ) holds for all u ∈ Hp

1 (M)
}

and ask the following questions: What is the value of Aθ,p(M)? Is the best constant
Aθ,p(M) achieved? In other words, is there a constant B > 0 such that

‖u‖θpn
n−p
≤ Aθ,p(M)‖∇u‖θp +B‖u‖θp (Iθp,opt)

for all u ∈ Hp
1 (M)? Clearly, we have that (Iθp,opt) holds true if (Iθ

′

p,opt) holds true for some
θ′ > θ. In particular, (Iθp,opt) holds true for all θ ∈ [1, p] if and only if (Ipp,opt) holds true.

9.1 Applications to pde’s

We let a ∈ C∞(M) and q ∈ (2, 2n
n−2 ]. We assume that ∆g + a is coercive. By coercive

we mean that there exists λ > 0 such that∫
M

(
|∇u|2 + au2

)
dvg ≥ λ

∫
M

u2 dvg

for all u ∈ H2
1 (M). We address the question of the existence of nontrivial functions

u ∈ C∞(M), u > 0, solutions of an equation like

∆gu+ au = uq−1 (20)

in M . Without going into the details, this question is related to the Yamabe problem
of finding conformal metrics with constant scalar curvature on compact manifolds. An
interesting survey paper on the subject is by Lee and Parker [56]. One possibility for
solving the above equation is to consider the associated functional

Iq(u) :=

∫
M

(|∇u|2 + au2) dvg(∫
M
|u|q dvg

)2/q
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for u ∈ H2
1 (M)\{0}, and try to minimize the functional. Positive smooth critical points of

Iq are, up to a scale factor, solutions of (20). When q < 2n
n−2 (we say that q is subcritical),

then the embedding H2
1 (M) ↪→ Lq(M) is compact, and one easily gets the existence of

a minimizer for Iq . The comparison principle and standard elliptic theory yields that the
minimizer is smooth and positive. When q = 2n

n−2 , the situation is more intricate and the
existence of minimizers can be obtained for small energies. More precisely, the following
result of Aubin [8] holds true.
Theorem 9.1 Let (M, g) be a compact Riemannian manifold of dimension n > 2. Let
a ∈ C∞(M) such that ∆g + a is coercive. We assume that

inf
u∈H2

1 (M)\{0}
I 2n
n−2

(u) <
1

A2,2(M)
.

Then there exists u ∈ C∞(M) such that u > 0 and ∆gu+ au = u
n+2
n−2 in M .

As a remark, the large inequality always holds true. As another remark, there are
situations in which there is no solution to equations like (20) when q = 2n

n−2 . The above
Theorem 9.1 is by now classical. We refer to the original reference Aubin [8] for a detailed
proof. If one is interested in p-Laplace critical equations, one also get existence results
similar to the Theorem 9.1. The p-Laplace operator is defined by

∆g,pu = −divg(|∇u|p−2∇u).

As shown by Druet [31], if a ∈ C∞(M) is such that∫
M

(|∇u|p + a|u|p) dvg ≥ λ
∫
M

|u|p dvg

for all u ∈ Hp
1 (M) and some λ > 0 independent of u, and if

inf
u∈Hp1 (M)\{0}

∫
M

(|∇u|p + a|u|p) dvg(∫
M
|u|

np
n−p dvg

)n−p
n

<
1

Ap,p(M)
,

then there exists u ∈ ∩α∈(0,1)C
1,α(M) such that u > 0 and

∆g,pu+ aup−1 = u
np
n−p−1

in the distributional sense. Moreover, the regularity C1,α is sharp. Summarizing, the sharp
constantAp,p(M), and then the inequality (Ipp ), are of particular interest for solving critical
pde’s.

9.2 The value of Aθ,p(M)

We discuss the question of the exact value of the sharp constant Aθ,p(M). To answer this
question, a few definitions are requested. We let

1
K(n, p)

= inf
u∈C∞c (Rn)\{0}

(∫
Rn |∇u|

p dx
) 1
p(∫

Rn |u|
np
n−p

)n−p
np

. (21)
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This constant was computed by Aubin [7], Talenti [71], and Rodemich [64]. One finds that

K(n, 1) =
1
n

(
n

ωn−1

)1/n

and

K(n, p) =
p− 1
n− p

(
n− p
n(p− 1)

) 1
p

(
Γ(n+ 1)

Γ(np )Γ(n+ 1− n
p )ωn−1

) 1
n

for p > 1, where ωn−1 is the volume of the unit (n− 1)-sphere in Rn and

Γ(x) :=
∫ ∞

0

tx−1e−t dt

is the Gamma function. In particular, when p = 2, we get the nice expression

K(n, 2) =

√
4

n(n− 2)ω2/n
n

for all n ≥ 3. The computation of K(n, p) relies on previous work by Bliss [16] where the
value of the sharp constant was computed for radially symmetric functions. The argument
goes as follows. By standard Morse theory, it suffices to prove the sharp inequality for
continuous nonnegative functions u with compact support Ω, Ω being itself smooth, u
being smooth in Ω and such that it has only nondegenerate critical points in Ω. For such an
u, let u? : Rn → R, radially symmetric, nonnegative, and decreasing in |x| be defined by

V olξ ({x ∈ Rn, u?(x) ≥ t}) = V olξ ({x ∈ Rn, u(x) ≥ t})

where ξ stands for the Euclidean metric, and V olξ(X) stands for the Euclidean volume of
X . It is easily seen that u? has compact support and is Lipschitz. Moreover, the co-area
formula gives that for any m ≥ 1,∫

Rn
|∇u|mdx ≥

∫
Rn
|∇u?|mdx and

∫
Rn
|u|mdx =

∫
Rn
|u?|mdx

It follows that it suffices to prove the sharp inequality for decreasing absolutely continuous
radially symmetric functions which equal zero at infinity, and we are back to the Bliss argu-
ment. In particular, the argument provides extremals for (21). When passing to manifolds,
the following result of Aubin [7] can be proved.
Theorem 9.2 Let (M, g) be a compact Riemannian manifold of dimension n, p ∈ [1, n),
and θ ∈ [1, p]. Then we have that Aθ,p(M) = K(n, p)θ.

In particular, it follows from this result that for any ε > 0, there exists Bε > 0 such
that

‖u‖θpn
n−p
≤ (K(n, p)θ + ε)‖∇u‖θp +Bε‖∇u‖θp

for all u ∈ Hp
1 (M).
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Proof. The proof proceeds in two steps. First we claim that Aθ,p(M) ≥ K(n, p)θ. We
prove the claim by contradiction and assume that Aθ,p(M) < K(n, p)θ. In this case, there
exists α < K(n, p)θ and B > 0 such that

‖u‖θpn
n−p
≤ α‖∇u‖θp +B‖∇u‖θp (22)

for all u ∈ Hp
1 (M). Let u ∈ C∞c (Rn). Let x0 ∈M . For any ε > 0, we define

uε(x) = ε−
n−p
p u(ε−1exp−1

x0
(x))

for dg(x, x0) < ig(x0), and uε(x) = 0 elsewhere. Clearly uε ∈ C∞(M) and has compact
support inBRε(x0), where supp u ⊂ BR(0). Working in the local chart exp−1

x0
, we get that∫

M

|uε|
np
n−p dvg =

∫
BRε(0)

ε−n|u|
np
n−p (ε−1x)

√
|g|(x) dx

=
∫
BR(0)

|u|
np
n−p (x)

√
|g|(εx) dx

and that∫
M

|uε|p dvg =
∫
BRε(0)

εp−n|u|p(ε−1x)
√
|g|(x) dx

= εp
∫
BR(0)

|u|p(x)
√
|g|(εx) dx

and ∫
M

|∇uε|p dvg =
∫
BRε(0)

εp−n
(
gij(x)∂i(u(ε−1x))∂j(u(ε−1x))

)p/2√|g|(x) dx

=
∫
BR(0)

(
gij(εx)∂iu∂ju

)p/2√|g|(εx) dx.

Letting ε→ 0 and using that exp−1
x0

is a normal chart at x0, we get that

lim
ε→0
‖uε‖ pn

n−p
= ‖u‖

L
np
n−p (Rn)

, lim
ε→0
‖∇uε‖p = ‖∇u‖Lp(Rn)

and limε→0 ‖uε‖p = 0. Plugging these three limits in (22), it follows that

‖u‖
L

np
n−p (Rn)

≤ α1/θ‖∇u‖Lp(Rn)

for all u ∈ C∞c (Rn). A contradiction with the definition of K(n, p) since α < K(n, p)θ.
This proves the claim. Now we claim that Aθ,p(M) ≤ K(n, p)θ, and more precisely that
for any ε > 0, there exists Bε > 0 such that(∫

M

|u|p
?

dvg

)p/p?
≤ (K(n, p)p + ε)

∫
M

|∇u|p dvg +Bε

∫
M

|u|p dvg (23)

for all u ∈ Hp
1 (M). We just sketch the proof of this result. We let x0 ∈ M and let

δ ∈ (0, ig(x0)). We consider the chart given by the inverse of the exponential map at x0.
We let η > 0. Up to choosing δ small enough, we get that

1
1 + η

δij ≤ gij ≤ (1 + η)δij
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in Bδ(0) in the sense of bilinear forms in the exponential chart. We let u ∈ C∞c (Bδ(x0))
and we let ũ = u ◦ expx0

∈ C∞c (Bδ(0)). We get that∫
M

|u|p
?

dvg =
∫
Bδ(0)

|ũ|q
√
|g| dx ≤ (1 + η)n/2

∫
Rn
|ũ|p

?

dx

and ∫
M

|∇u|p dvg =
∫
Bδ(0)

(
gij∂iũ∂j ũ

)p/2√|g| dx ≥ (1 + η)−(p+n)/2

∫
Rn
|∇ũ|p dx.

With the optimal inequality (21), we get that(∫
M

|u|p
?

dvg

)p/p?
≤ (1 + η)

np
2p?+ p+n

2 K(n, p)p
∫
M

|∇u|p dvg. (24)

Choosing η as small as needed, we then get that for any ε > 0, there exists δx0,ε > 0 such
that (∫

M

|u|p
?

dvg

)p/p?
≤
(
K(n, p)p +

ε

2

)∫
M

|∇u|p dvg

for all u ∈ C∞c (Bδx0,ε
(x0)). The general case now goes as follows: since M is compact,

there exists x1, ..., xN ∈ M such that M ⊂ ∪Ns=1Bδxs,ε(xs). We consider a partition of
unity subordinate to this covering, and we use inequality (24) for the points x1, ..., xN .
Inequality (23) follows. We refer to the original article by Aubin [7] or to Hebey [47]
for an exposition in book form. With (23), and the inequality Aθ,p(M) ≥ K(n, p)θ, the
theorem is proved.

9.3 Attainability of the first best constant

It has been a long standing conjecture to know weither the optimal constant in (Iθp ) is
attained or not. When p = 2, the conjecture was solved by Hebey and Vaugon [49, 50].
Their result states as follows.
Theorem 9.3 Let (M, g) be a compact Riemannian manifold of dimension n ≥ 3. Then
there exists B > 0 such that(∫

M

|u|
2n
n−2 dvg

)n−2
n

≤ K(n, 2)2

∫
M

|∇u|2 dvg +B

∫
M

u2 dvg

for all u ∈ H2
1 (M). In other words, (I2

2,opt) holds true on M .

The geometry of the manifold plays no role in this result.

Proof. We give here a general idea of the proof. For the detailed proof, we refer to the
original papers [49, 50]. The proof relies on intricate blow-up arguments. Let α > 0 be
some positive real number, and for u ∈ H2

1 (M), let

Iα(u) =

∫
M

(
|∇u|2 + αu2

)
dvg(∫

M
|u|

2n
n−2 dvg

)n−2
n

.
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Clearly, Theorem 9.3 is equivalent to the existence of α0 > 0 such that

inf
u∈H2

1 (M)\{0}
Iα0(u) ≥ 1

K(n, 2)2
.

The proof goes by contradiction: we assume that for any α > 0, we have that

inf
u∈H2

1 (M)\{0}
Iα(u) <

1
K(n, 2)2

.

Then it follows from Theorem 9.1 that for any α > 0, there exists uα ∈ C∞(M) and there
exists λα ∈ (0,K(n, 2)−2) such that

∆guα + αuα = λαu
n+2
n−2
α , uα > 0

in M and
∫
M
|uα|

2n
n−2 dvg = 1. Now the idea is to prove that uα does not exist for α large

enough. Here again, the difficulty is due to the critical exponent. It is easy to prove that
uα ⇀ 0 when α→ 0 in the weak sense, but

lim
α→0
‖uα‖H2

1 (M) = K(n, 2)−2.

In the Euclidean setting, a powerful tool for the proof of nonexistence results for such
equations is the Pohozaev identity [63]. Hebey and Vaugon proved that there exist
(xα)α>0 ∈ M and (µα)α>0 ∈ R>0 such that limα→0 µα = 0 and such that there ex-
ists C > 0 such that

uα(x) ≤ C
(

µα
µ2
α + dg(x, xα)2

)n−2
2

(25)

for all x ∈ M and all α > 0. Such type of inequalities have been improved by Druet-
Hebey-Robert [38]. The Euclidean Pohozaev identity asserts that for any u ∈ C2(Ω),
where Ω is a smooth bounded oriented open subset of Rn, we have that∫

Ω

xi∂iu∆ξu dx+
n− 2

2

∫
Ω

u∆ξu dx

=
∫
∂Ω

(
−n− 2

2
u∂νu+

(x, ν)
2
|∇u|2 − xi∂iu∂νu

)
dσ,

where ν denotes the outer normal vector at ∂Ω and dσ is the measure associated to ∂Ω.
Via the exponential chart at xα, one can write ũα = uα ◦ expxα in an open ball of Rn. It
solves

∆gα ũα + αũα = λαũ
n+2
n−2
α ,

where gα = exp?xαg is the pull-back of the metric g. Plugging ũα into the above Pohozaev
identity and estimating carefully the difference gα − ξ of the two metrics, thanks to (25),
one gets a contradiction for α large enough. This proves that the optimal Sobolev inequality
holds true.
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A major difficulty in the above proof is to manage the perturbation gα of the Euclidean
metric. It is interesting to see that managing this small perturbation requires a lot of pde
material. In the general case, where p is arbitrary, the critical value for the exponent hap-
pens to be precisely 2. The following result was proved independently by Druet [32] and
Aubin-Li [11].
Theorem 9.4 Let (M, g) be a compact Riemannian manifold of dimension n ≥ 2. Let
p ∈ (1, n). Assume that θ = p if p ≤ 2 and that θ = 2 if p ≥ 2. Then (Iθp,opt) holds true.

As a remark, it follows from this result that (I1
p,opt) holds true for all p > 1. When

p > 2 and θ > 2, the geometry of the manifold starts playing a role as shown by Druet [33].
In particular, Druet [33] proves that (Ipp,opt) is false if p > 2, n > 3p − 2, and the scalar
curvature of g is positive somewhere. On the other hand, by Aubin-Druet-Hebey [10]
and Druet [33, 35], we can prove that (Ipp,opt) is true if the sectional curvature of (M, g)
is nonpositive and the Cartan-Hadamard conjecture is true, or if the scalar curvature of
(M, g) is negative. When the Ricci curvature of the manifold is nonnegative, geometric
rigidity is attached to (Ipp,opt), as shown by the following result of Druet [33].
Theorem 9.5 Let (M, g) be a compact Riemannian n-manifold of nonnegative Ricci cur-
vature. Assume that (Ipp,opt) is valid on (M, g) for some p with p > 4 and 5p − 4 < n.
Then g is flat, and M is covered by a torus.

Proof. In order to prove the theorem, we claim first that if (M, g) is Ricci flat, but not flat,
and if p > 4 and 5p − 4 < n, then inequality (Ipp,opt) is false on (M, g). Let Wg be the
Weyl curvature of g, and let x0 ∈M be such that Wg(x0) 6≡ 0. For ε > 0, we set

uε =
(
ε+ r

p
p−1

)1−np
ϕ(r)

where r denotes the distance to x0, ϕ is smooth such that 0 ≤ ϕ ≤ 1, ϕ = 1 on
(
− δ2 ,

δ
2

)
,

and ϕ = 0 if r ≥ δ, and δ > 0, δ small, is real. In order to prove the claim, it suffices to
prove that for any α > 0, and for ε small enough, J(uε) < K(n, p)−p, where

J(u) =

∫
M
|∇u|pdvg + α

∫
M
updvg(∫

M
|u|p?dvg

)p/p?
Computing the expansion of J(uε) in terms of ε, we get that

J(uε) ≤
1

K(n, p)p
+

A|Wg(x0)|2

120K(n, p)pn(n+ 2)
ε4 p−1

p + o
(
ε4 p−1

p

)
where

A =
n− p
n

∫∞
0

(
1 + s

p
p−1

)−n
sn+3ds∫∞

0

(
1 + s

p
p−1

)−n
sn−1ds

−

∫∞
0

(
1 + s

p
p−1

)−n
s

p
p−1 +n+3ds∫∞

0

(
1 + s

p
p−1

)−n
s

p
p−1 +n−1ds

As one can easily check, A < 0. It follows that there exists ε > 0 small enough such that

J(uε) <
1

K(n, p)p
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and the above claim is proved. Let now (M, g) be a compact n-dimensional Riemannian
manifold of nonnegative Ricci curvature, and let p be such that p > 4 and 5p − 4 < n.
Assume that (Ipp,opt) is valid on (M, g). By the above mentionned result of Druet that
(Ipp,opt) is false if p > 2, n > 3p − 2, and the scalar curvature is positive somewhere, we
get that g has to be Ricci flat. Then, by the above claim, we get that g is flat. The last
assertion that M is covered by a torus follows from Bieberbach’s Theorem. This proves
the theorem.

More questions on sharp inequalities when priority is given to the sharp constant are to
compute or estimate the corresponding second constant when the sharp inequality is true,
and also to decide whether or not the sharp inequality comes with extremal functions. For
material on these questions we refer to Druet and Hebey [37].

9.4 The second best constant

Similar questions can be asked when priority is given to the second constant. The best
second constant in (Iθp ) isB = V

−θ/n
g , where Vg = Volg(M) is the volume of (M, g). We

say that the sharp form of (Iθp ) with respect to the second constant is valid if there exists
A ∈ R such that for any u ∈ Hp

1 (M),

‖u‖θpn
n−p
≤ A‖∇u‖θp + V −θ/ng ‖u‖θp (Jθp,opt)

It is easily seen that if (Jθp,opt) is valid for some θ0 ∈ [1, p], then (Jθp,opt) is also valid for all
θ ∈ [1, θ0]. Combining results by Bakry [12], Druet (see Hebey [47]), and Hebey [47], it
holds that if p ≤ 2, then (Jθp,opt) is valid for any θ ∈ [1, p], and that if p > 2, then (Jθp,opt)
is valid if and only if θ ≤ 2. When p = 2, (J2

2,opt) holds true, and explicit inequalities can
be found in Ilias [52]. In particular, as shown by Ilias [52], if there exists k > 0 such that
Ricg ≥ (n− 1)kg, one gets that(∫

M

|u|
2n
n−2 dvg

)n−2
n

≤ 4

n(n− 2)kV 2/n
g

∫
M

|∇u|2dvg + V −2/n
g

∫
M

u2dvg

for all u ∈ H2
1 (M). We prove in what follows that (Jpp,opt) is false when p > 2. For that

purpose, let u ∈ C∞(M) be some nonconstant function. For t > 2 real, and ε > 0, we
define

ϕt(ε) =
∫
M

∣∣1 + εu|t dvg

Clearly, one has that

ϕt(ε) = Vg + t

(∫
M

u dvg

)
ε+

t(t− 1)
2

(∫
M

u2 dvg

)
ε2 + o(ε2)

Hence,∫
M

∣∣1 + εu
∣∣p dvg = Vg + p

(∫
M

u dvg

)
ε

+
p(p− 1)

2

(∫
M

u2 dvg

)
ε2 + o(ε2)
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and (∫
M

∣∣1 + εu
∣∣q dvg)p/q = V p/qg + pV

p
q−1
g

(∫
M

u dvg

)
ε

+
p(q − 1)

2
V
p
q−1
g

(∫
M

u2 dvg

)
ε2

+
p(p− q)

2
V
p
q−2
g

(∫
M

u dvg

)2

ε2 + o(ε2)

where q = np/(n− p). Suppose now that (Jpp,opt) is valid. Noting that for p > 2,∫
M

∣∣∇(1 + εu)
∣∣p dvg = o(ε2)

one would get that for any ε > 0,

V p/qg + pV
p
q−1
g

(∫
M

u dvg

)
ε+

p(q − 1)
2

V
p
q−1
g

(∫
M

u2 dvg

)
ε2

+
p(p− q)

2
V
p
q−2
g

(∫
M

u dvg

)2

ε2

≤ V 1− pn
g + pV

− pn
g

(∫
M

u dvg

)
ε+

p(p− 1)
2

V
− pn
g

(∫
M

u2 dvg

)
ε2 + o(ε2)

But pq = 1− p
n so that, as one can easily check, such an inequality implies that

(q − 1)
∫
M

u2 dvg ≤ (q − p) 1
Vg

(∫
M

u dvg

)2

+ (p− 1)
∫
M

u2 dvg

This means again that

Vg

∫
M

u2 dvg ≤
(∫

M

u dvg

)2

which is impossible as soon as u is nonconstant. This ends the proof that (Jpp,opt) is not
valid when p > 2.

9.5 The Nash inequality

The discussion on sharp Sobolev inequalities when priority is given to the first constant
relies on the computation by Aubin and Talenti of the sharp constant in the Euclidean
Sobolev inequality. Sharp constants for Euclidean Gagliardo-Nirenberg inequalities have
been computed by Cordero-Erausquin, Nazaret, and Villani [24] and by Del Pino and Dol-
beault [29]. We refer also to Beckner [14] for a related reference. In the case of the Nash
inequality, the computation of the sharp constant is due to Carlen and Loss [18]. We let

Cn =
(n+ 2)(n+2)/n

22/nnλN1 (B)|B|2/n
, (26)
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where |B| denotes the volume of the unit ball B inRn, and λN1 (B) denotes the first nonzero
Neumann eigenvalue of the Laplacian on radial functions on B. The Carlen and Loss result
[18] states as follows.
Theorem 9.6 For any smooth function u with compact support in Rn,(∫

Rn
u2 dvξ

)1+ 2
n

≤ Cn
(∫

Rn
|∇u|2 dvξ

)(∫
Rn
|u|dvξ

) 4
n

where Cn is as in (26). Moreover, Cn is the sharp constant in the inequality.

Proof. Let us first prove that the inequality of the theorem does hold. It suffices to establish
this inequality for nonnegative, radially symmetric, decreasing functions. Let u be such a
function. For r > 0 arbitrary, let

v(x) =

{
u(x) if |x| ≤ r
0 if |x| > r

and w(x) =

{
0 if |x| ≤ r
u(x) if |x| > r

Clearly, ‖u‖22 = ‖v‖22 + ‖w‖22, and since u is radially decreasing,

w(x) ≤ u(r) ≤ 1
|B|rn

‖v‖1

In particular,

‖w‖22 ≤
1
|B|rn

‖v‖1‖w‖1

Let

v =
1
|B|rn

‖v‖1

be the average of v. One gets from the variational characterization of λN1 that

‖v‖22 =
∫
Br(0)

(
v − v

)2
dx+

∫
Br(0)

v2 dx

≤ 1
λN1
(
Br(0)

) ∫
Br(0)

|∇v|2 dx+
1
|B|rn

‖v‖21

=
r2

λN1 (B)

∫
Br(0)

|∇v|2 dx+
1
|B|rn

‖v‖21

≤ r2

λN1 (B)
‖∇u‖22 +

1
|B|rn

‖v‖21

where Br(0) stands for the Euclidean ball of center 0 and radius r. According to what we
said above, and noting that

‖u‖21 ≥ ‖v‖1
(
‖v‖1 + ‖w‖1

)
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this leads to

‖u‖22 ≤
r2

λN1 (B)
‖∇u‖22 +

1
|B|rn

‖u‖21 (27)

The right-hand side in this inequality is minimized at

rmin =

(
nλN1 (B)

2|B|

)1/(n+2)(
‖u‖1
‖∇u‖2

)2/(n+2)

(28)

As one can easily check, taking r = rmin in (27) gives the inequality of the theorem. To
see that this inequality is sharp, let u0 be some eigenfunction associated to λN1 (B). Set

u(x) =

{
u0(|x|)− u0(1) if |x| ≤ 1
0 if |x| ≥ 1

Clearly, u saturates (27) with r = 1. For such a function, rmin = 1. One then easily gets
from (28) that u also saturates the Nash inequality we just got. This ends the proof of the
theorem.

In addition to Theorem 9.6, Carlen and Loss [18] also determined the cases of equal-
ity in the optimal Nash inequality. As in the above proof, let u0 be some eigenfunction
associated to λN1 (B), and set

u(x) =

{
u0(|x|)− u0(1) if |x| ≤ 1
0 if |x| ≥ 1

Then ũ is an extremum function for the optimal Nash inequality if and only if after a
possible translation, scaling, and normalization, ũ = u. As one can easily check, a striking
feature of this result is that all of the extremals have compact support. Another reference
on the subject, where the asymptotically sharp form with respect to dimension of the Nash
inequality is investigated, is Beckner [15]

10 Explicit sharp inequalities

Explicit sharp inequalities can be given on specific compact and complete manifolds. By
the sharp inequality of second order we refer to the inequality of Theorem 9.3 which states
that there exists B > 0 such that(∫

M

|u|
2n
n−2 dvg

)n−2
n

≤ K(n, 2)2

∫
M

|∇u|2g dvg +B

∫
M

u2 dvg (29)

for all u ∈ H2
1 (M). By the work of Hebey and Vaugon [49, 50] we know that the inequality

holds true on compact manifolds. Still by the work of Hebey and Vaugon [49, 50], the
inequality holds also true on complete Riemannian manifold with positive injectivity radius
and curvature bounded up to the order 1. For such manifolds, in specific cases, sharp
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explicit inequalities can be computed. We quote results from Hebey and Vaugon [48]. In
the case of the projective space Pn(R) we can, for instance, prove that (29) holds true with

B ≤ n+ 2

(n− 2)ω2/n
n

,

where ωn is the volume of the unit sphere Sn. The result extends to other quotients of the
sphere. Similarly, if S1(T )× Sn−1 represents the product of the circle of radius T and the
unit sphere Sn−1, with the standard metric, then we can also prove that (29) holds true with

B ≤ 1 + (n− 2)2T 2

n(n− 2)T 2ω
2/n
n

.

In the case of complete noncompact manifolds, the following inequalities can be proved to
hold. The result is quoted from Hebey [47].
Proposition 10.1 The optimal inequality (29) holds true with

(1) B = − 1

ω
2/n
n

for the hyperbolic space Hn

(2) B = m−n
(m+n)ω

2/(m+n)
m+n

for the product Sm ×Hn, m ≥ 2, n ≥ 2

(3) B = m−n+2

(m+n−2)ω
2/(m+n)
m+n

for the product Pm(R)×Hn, m ≥ 2, n ≥ 2

(4) B = n−1

(n+1)ω
2/(n+1)
n+1

for the product Sn × R, n ≥ 2

(5) B = n+1

(n−1)ω
2/(n+1)
n+1

for the product Pn(R)× R, n ≥ 2

(6) B = − n−1

(n+1)ω
2/(n+1)
n+1

for the product Hn × R, n ≥ 2.

Moreover, at least when the dimension of the manifold is greater than or equal to 4, these
values are the best possible for Hn, Sm ×Hn, Sn × R, and Hn × R.

To these results we should of course add the classical results that (29) holds true with
B = ω

−2/n
n in the case of the sphere Sn, and with B = 0 in the case of the Euclidean

space Rn.

11 The Cartan-Hadamard conjecture

By definition, a Cartan-Hadamard manifold is a complete, simply connected Riemannian
manifold of nonpositive sectional curvature. For such manifolds, by the work of Hoffman
and Spruck, (14) is valid. The Cartan-Hadamard conjecture, a longstanding conjecture
in the mathematical literature, states that for Cartan-Hadamard manifolds, (14) holds true
when p = 1 with the best possible value C1 = K(n, 1). In other words, the Cartan-
Hadamard conjecture states that for Cartan-Hadamard n-dimensional manifolds, the sharp
inequality(∫

M

|u|
n
n−1 dvg

)n−1
n

≤ K(n, 1)
∫
M

|∇u|dvg (30)
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holds true, where K(n, 1) is as in (21). By the work of Federer and Fleming [40], this
is equivalent to saying that for any smooth, bounded domain Ω on a Cartan-Hadamard
n-dimensional manifold (M, g), the sharp isoperimetric inequality

Areag(∂Ω) ≥ 1
K(n, 1)

Volg(Ω)1− 1
n (31)

holds true. The sharp isoperimetric inequality (31) holds true for the Euclidean space in
arbitrary dimension. Moreover, in that case, equality holds if and only if Ω is a ball. In the
2-dimensional case of Euclidean space, we are back to the famous ancient formula which
states that for 2-dimensional domains in the plane, with area A and length L for their
boundary, L2 ≥ 4πA. The equivalence of (30) and (31) is valid for arbitrary complete
manifolds and the following proposition of Federer and Fleming [40] holds true.
Proposition 11.1 The sharp isoperimetric inequality (31) is valid if and only if the sharp
functional inequality (30) is valid.

Proof. We prove that

inf
u∈H1

1 (M)\{0}

∫
M
|∇u|dvg( ∫

M
|u|n/(n−1) dvg

)(n−1)/n
= inf

Ω

Areag(∂Ω)
Volg(Ω)1− 1

n

(32)

As a starting point, consider Ω a smooth bounded domain in (M, g). For sufficiently small
ε > 0, let uε be the function

uε(x) =


1 if x ∈ Ω
1− 1

εdg(x, ∂Ω) if x ∈M\Ω, dg(x, ∂Ω) < ε

0 if x ∈M\Ω, dg(x, ∂Ω) ≥ ε

where dg stands for the distance associated to g. The function uε is Lipschitz for all ε > 0.
Moreover,

lim
ε→0

∫
M

un/(n−1)
ε dvg = Volg(Ω)

and

|∇uε| =

{
1
ε if x ∈M\Ω, dg(x, ∂Ω) < ε

0 otherwise

Hence,

lim
ε→0

∫
M

|∇uε|dvg = lim
ε→0

1
ε

Volg
({
x 6∈ Ω/dg(x, ∂Ω) < ε

})
= Areag(∂Ω)

and one gets that

inf
u

∫
M
|∇u|dvg( ∫

M
|u|n/(n−1) dvg

)(n−1)/n
≤ inf

Ω

Areag(∂Ω)
Volg(Ω)1− 1

n

(33)
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Let us now prove the opposite inequality:

inf
u

∫
M
|∇u|dvg( ∫

M
|u|n/(n−1) dvg

)(n−1)/n
≥ inf

Ω

Areag(∂Ω)
Volg(Ω)1− 1

n

(34)

Given u smooth with compact support in M , let Ω(t) = {x / |u(x)| > t}, and V (t) =
Volg(Ω(t)), for t ∈ Ru, the regular values of u. The proof of (34) is based on the co-area
formula which states that for f ∈ L1(Suppu),∫

M

f |∇u|dvg =
∫ ∞

0

(∫
Σt

f dσ

)
dt

where Σt = |u|−1(t). By the co-area formula,∫
M

|∇u|dvg ≥

(
inf
Ω

Areag(∂Ω)
Volg(Ω)1− 1

n

)∫ ∞
0

V (t)1− 1
n dt

and ∫
M

|u|n/(n−1) dvg =
∫
M

(∫ |u|
0

n

n− 1
t1/(n−1)dt

)
dvg

=
n

n− 1

∫ ∞
0

(∫
Ω(t)

dvg

)
t1/(n−1)dt

=
n

n− 1

∫ ∞
0

t1/(n−1)V (t)dt

In order to prove (34), it suffices then to prove that∫ ∞
0

V (t)1− 1
n dt ≥

(
n

n− 1

∫ ∞
0

t1/(n−1)V (t)dt
)1− 1

n

(35)

To establish (35), set

F (s) =
∫ s

0

V (t)1− 1
n dt , G(s) =

(
n

n− 1

∫ s

0

t1/(n−1)V (t)dt
)1− 1

n

One has that F (0) = G(0), and since V (s) is a decreasing function of s,

G′(s) =
n− 1
n

(
n

n− 1

)1− 1
n
(∫ s

0

t1/(n−1)V (t)dt
)−1/n

s1/(n−1)V (s)

≤
(

n

n− 1

)−1/n(∫ s

0

t1/(n−1) dt

)−1/n

s1/(n−1)V (s)1− 1
n

= V (s)1− 1
n = F ′(s)

Clearly, (35) easily follows. Hence, (34) is true, and then, by combining (33) and (34) we
get that (32) is also true. This proves the proposition.
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The Cartan-Hadamard conjecture is a difficult conjecture which, up to now, has been
proved to be true only for 2-, 3-, and 4-dimensional Cartan-Hadamard manifolds. Such
results are given here without any proof, apart for the 4-dimensional case due to Croke
[28] that we discuss. The 2-dimensional case is due to Weil [76]. The 3-dimensional case
of the conjecture is due to Kleiner [54]. The 4-dimensional case of the conjecture is due to
Croke [28]. In his proof Croke gets an explicit value for the constant which turns out to be
the sharp constant when n = 4. For n ≥ 3, let

C(n) =
ωn−2
n−2

ωn−1
n−1

(∫ π/2

0

cosn/(n−2)(t) sinn−2(t)dt

)n−2

(36)

where ωn denotes the volume of the standard unit sphere (Sn, h) of Rn+1. As one can
easily check, C(4)1/4 = K(4, 1). A combination of Croke [28], Kleiner [54], and Weil
[76] results give the following.
Theorem 11.1 The Cartan-Hadamard conjecture is true in dimensions n = 2, 3, 4. More-
over, if (M, g) is a n-dimensional Cartan-Hadamard manifold of dimension n ≥ 5, then

Areag(∂Ω)
Volg(Ω)1− 1

n

≥ 1
C(n)

1
n

(37)

for all smooth, bounded domain Ω in M , and C(n) is as in (36).

Proof. We restrict ourselves to the proof of Croke [28] that (37) holds true in dimension
n ≥ 3. The main tool in the proof is a formula due to Santalo [67]. Let Ω be a smooth,
bounded domain in M . Every geodesic ray in Ω minimizes length up to the point it hits
the boundary. Let Π : UΩ→ Ω represent the unit sphere bundle with the canonical (local
product) measure. For v ∈ UΩ, let γv be the geodesic with γ′v(0) = v and let ξt(v)
represent the geodesic flow, that is, ξt(v) = γ′v(t). For v ∈ UΩ, we let

l(v) = max
{
t / γv(t) ∈ Ω

}
For x ∈ ∂Ω, we define Nx as the inwardly pointing unit normal vector to ∂Ω at x. In
addition, let Π : U+∂Ω→ ∂Ω be the bundle of inwardly pointing vectors, that is,

U+∂Ω =
{
u ∈ UΩ /Π(u) ∈ ∂Ω, 〈u,NΠ(u)〉 > 0

}
By Santalo’s formula, one has that for all integrable functions f ,∫

UΩ

f(u)du =
∫
U+∂Ω

(∫ l(u)

0

f
(
ξt(u)

)
cos(u)dt

)
du

where cos(u) represents 〈u,NΠ(u)〉, and the measure on U+∂Ω is the local product mea-
sure du where the measure of the fiber is that of the unit upper hemisphere. From this
formula, one gets that

Volg(Ω) =
1

ωn−1

∫
U+∂Ω

l(u) cos(u)du
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Moreover, one can prove that∫
U+∂Ω

l(u)n−1

cos(ant(u))
du ≤ Areag(∂Ω)2

and that∫
U+∂Ω

cos
1

n−2 (ant(u)) cos
n−1
n−2 (u)du ≤ A(n)Areag(∂Ω)

where

A(n) = ωn−2

∫ π
2

0

cosn/(n−2)(t) sinn−2(t)dt

and ant(u) = −γ′u(l(u)). We refer to Croke [28] for such assertions. By Hölder’s inequal-
ity, one has that

Volg(Ω) =
1

ωn−1

∫
U+∂Ω

l(u) cos(u)du

=
1

ωn−1

∫
U+∂Ω

l(u)

cos
1

n−1 (ant(u))
cos

1
n−1 (ant(u)) cos(u)du

≤ 1
ωn−1

(∫
U+∂Ω

l(u)n−1

cos(ant(u))
du

) 1
n−1

×
(∫

U+∂Ω

cos
1

n−2 (ant(u)) cos
n−1
n−2 (u)du

)n−2
n−1

Hence,

Volg(Ω) ≤ 1
ωn−1

Areag(∂Ω)
2

n−1A(n)
n−2
n−1 Areag(∂Ω)

n−2
n−1

and one gets that

Areag(∂Ω)
Volg(Ω)1− 1

n

≥ 1
C(n)

1
n

This proves (37) holds true in dimension n ≥ 3.

Recent advances on the Cartan-Hadamard conjecture have been made by Druet [35]. In
his work, Druet proves the conjecture for small domains under the sole assumption that the
scalar curvature should be negative. Druet’s result is more general. We refer to the original
reference Druet [35] for more information. Related references are by Johnson and Morgan
[53] and Yau [77]. We refer also to Druet [34, 36]. Now, one can ask what happens to
the sharp optimal inequality if we do not ask the manifold to be of nonpositive curvature.
Rigidity holds in that case. The following proposition has been extended by Ledoux [55]
to the entire scale of Sobolev inequalities.
Proposition 11.2 Let (M, g) be a smooth, complete n-dimensional Riemannian manifold
with nonnegative Ricci curvature. Suppose that for any smooth, bounded domain Ω in
M , the sharp isoperimetric inequality (31) holds true. Then (M, g) is isometric to the
Euclidean space (Rn, ξ) of the same dimension.
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Proof. Let V (s) be the volume of Bs(x0) with respect to g, where Bs(x0) stands for the
ball of center x0 and radius s. Then

dV (s)
ds

= Areag (∂Bs(x0))

Setting Ω = Bs(x0) in the isoperimetric inequality, we then get that

1
K(n, 1)

V (s)(n−1)/n ≤ dV (s)
ds

for all s. Integrating yields

V (s) ≥ 1
nnK(n, 1)n

sn

and since K(n, 1) = 1
n (V olξ(B1(0)))−1/n, one gets that for every x0 and for every s,

Volg (Bs(x0)) ≥ Volξ (Bs(0))

where Bs(0) is the ball of center 0 and radius s in the Euclidean space (Rn, ξ). Under the
assumption that (M, g) has nonnegative Ricci curvature, one gets from Gromov’s compar-
ison theorem that for every x0 and every s,

Volg (Bs(x0)) ≤ Volξ (Bs(0))

Hence, for every x0 and every s,

Volg (Bs(x0)) = Volξ (Bs(0))

and one gets from the case of equality in Bishop’s comparison theorem that (M, g) is
isometric to the Euclidean space (Rn, ξ).

As a remark, H1
1 -spaces and isoperimetric inequalities are closely related to BV -

spaces. Possible references on BV -spaces are Ambrosio, Fusco, and Pallara [4], Evans
and Gariepy [39], and Giusti [44].
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[76] A. Weil: Sur les surfaces à courbure négative C. R. Acad. Sci. Paris Sér. I Math. 182
(1926) 4069–4071

[77] S. T. Yau: Isoperimetric constants and the first eigenvalue of a compact manifold
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Introduction

The subject of harmonic maps is vast and has found many applications, and it would re-
quire a very long book to cover all aspects, even superficially. Hence, we have made a
choice; in particular, highlighting the key questions of existence, uniqueness and regular-
ity of harmonic maps between given manifolds. Thus we shall survey some of the main
methods of global analysis for answering these questions.

We first consider relevant aspects of harmonic functions on Euclidean space; then we
give a general introduction to harmonic maps. The core of our work is in Sections 3–6
where we present the analytical methods. We round of the article by describing how twistor
theory and integrable systems can be used to construct many more harmonic maps. On
the way, we mention harmonic morphisms: maps between Riemannian manifolds which
preserve Laplace’s equation; these turn out to be a particular class of harmonic maps and
exhibit some properties dual to those of harmonic maps.

More information on harmonic maps can be found in the following articles and books;
for generalities: [61, 62, 63, 219], analytical aspects: [21, 88, 103, 118, 131, 133, 135,
189, 204, 194], integrable systems methods: [73, 94, 117], applications to complex and
Kähler geometry: [63, 135], harmonic morphisms: [7], and other topics: [64, 231].
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1 Harmonic functions on Euclidean spaces

Harmonic functions on an open domain Ω of Rm are solutions of the Laplace equation

∆f = 0, where ∆ :=
∂2

(∂x1)2
+ · · ·+ ∂2

(∂xm)2

(
(x1, · · · , xm) ∈ Ω

)
. (1)

The operator ∆ is called the Laplace operator or Laplacian after P.-S. Laplace. Equation
(1) and the Poisson equation1 −∆f = g play a fundamental role in mathematical physics:
the Laplacian occurs in Newton’s law of gravitation (the gravitational potential U obeys
the law −∆U = −4πGρ, where ρ is the mass density), electromagnetism (the electric
potential V is a solution of −ε0∆V = ρ, where ρ is the electric charge distribution), fluid

mechanics (the right hand side term in the Navier–Stokes system
∂ui

∂t
+ uj

∂ui

∂xj
+

∂p

∂xi
=

ν∆ui models the effect of the viscosity), and the heat equation
∂f

∂t
= ∆f .

The fundamental solution G = Gm of the Laplacian is the solution of the Poisson
equation −∆G = δ on Rm, where δ is the Dirac mass at the origin, that has the mildest
growth at infinity, i.e. G2(x) = (2π)−1 log(1/r) if m = 2 and Gm(x) = 1/{(m −
2) |Sm−1| rm−2} if2 m ≥ 1 and m 6= 2.

1.1 The Dirichlet principle

The harmonic functions are critical points (also called extremals) of the Dirichlet functional

EΩ(f) :=
1
2

∫
Ω

m∑
α=1

(
∂f

∂xα
(x)
)2
dmx =

1
2

∫
Ω

|dfx|2dmx,

where dmx := dx1 · · · dxm. This comes from the fact that, for any smooth function g with
compact support in Ω, the first variation (δEΩ)f (g) := limε→0{EΩ(f + εg)−EΩ(f)}/ε
reads

(δEΩ)f (g) =
∫

Ω

m∑
α=1

∂f

∂xα
∂g

∂xα
dmx =

∫
Ω

(−∆f)g dmx. (2)

This variational formulation (G. Green, 1833; K.F. Gauss, 1837; W. Thomson, 1847; B.
Riemann, 1853) reveals that the Laplace operator depends on the (canonical) metric on
Rm, since |dfx| is nothing but the Euclidean norm of dfx ∈ (Rm)∗.

This leads to a strategy to solve the Dirichlet problem: given an open bounded subset
Ω of Rm with smooth boundary ∂Ω and a continuous function γ : ∂Ω −→ R, find a
continuous function f : Ω −→ R, smooth in Ω, such that

∆f = 0 in Ω , and f = γ on ∂Ω . (3)

The idea to solve (3), named the Dirichlet principle by Riemann or the direct method of
the calculus of variations, is the following: we consider the class of functions Dγ(Ω) :=

1We prefer to put a minus sign in front of ∆, since the operator −∆ has many positivity properties.
2Here |Sm−1| = 2πm/2/Γ(m/2) is the (m − 1)-dimensional Hausdorff measure of the unit sphere

Sm−1.
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{f ∈ C2(Ω) ∩ C0(Ω)| f = γ on ∂Ω} and we look for a map f ∈ Dγ(Ω) which minimizes
EΩ among all maps in Dγ(Ω). If we can prove the existence of a such a minimizer f in
Dγ(Ω), then by (2), f is a critical point of EΩ and is a solution of the Dirichlet problem
(3). The difficulty was to prove the existence of a minimizer. Riemann was confident that
there was such a minimizer, although K. Weierstrass proved that the method proposed at
that time had a gap and many people had given up with this formal idea. Then D. Hilbert
proposed in 1900 to replace Dγ(Ω) by a larger class and this led to a definitive solution
formulated by H. Weyl in 1940 [223].

1.2 Existence of solutions to the Dirichlet problem

Several methods may be used to solve the Dirichlet problem including the ‘balayage’
method by H. Poincaré [173], and the use of sub- and super-solutions by O. Perron [166],
see [90]. But the variational approach seems to be the most robust one to generalize to
finding harmonic maps between manifolds.

The modern variational proof for the existence of solutions to (3) uses the Sobolev
space W 1,2(Ω): the set of (classes of) functions f in L2(Ω) whose derivatives ∂f/∂xj in
the distribution sense are in L2(Ω). When endowed with the inner product 〈f, g〉W 1,2 :=∫

Ω

(
fg + 〈df, dg〉

)
dmx and norm ||f ||2W 1,2 := 〈f, f〉W 1,2 , the space W 1,2(Ω) is a Hilbert

space. An important technical point is that C∞(Ω) is dense in W 1,2(Ω). Assuming
that the boundary ∂Ω is smooth, there is a unique linear continuous operator defined on
W 1,2(Ω) which extends the trace operator f 7−→ f |∂Ω from C∞(Ω) to C∞(∂Ω). Its
image is the Hilbert space W

1
2 ,2(∂Ω) of (classes of) functions γ in L2(∂Ω) such that∫

∂Ω

∫
∂Ω

(
γ(x)− γ(y)

)2/|x− y|mdµ(x)dµ(y) < +∞, where dµ denotes the measure on
∂Ω. So the Dirichlet problem makes sense if the boundary data γ belongs to W

1
2 ,2(∂Ω),

and if we look for f in W 1,2(Ω). Inspired by the Dirichlet principle we define the class
W 1,2
γ (Ω) := {f ∈ W 1,2(Ω)|u|∂Ω = γ} and we look for a map f ∈ W 1,2

γ (Ω) which
minimizes EΩ: it will be a weak solution of the Dirichlet problem.

The solution of this problem when Ω is bounded comes from the following. First one
chooses a map fγ ∈ W 1,2

γ (Ω), so that ∀f ∈ W 1,2
γ (Ω), f − fγ ∈ W 1,2

0 (Ω). But since Ω
is bounded, functions g in W 1,2

0 (Ω) obey the Poincaré inequality ||g||W 1,2 ≤ CP ||dg||L2 .
This implies the bound ||f ||W 1,2 ≤ ||fγ ||W 1,2 + CP

√
2EΩ(fγ) for any f ∈ W 1,2

γ (Ω). A
consequence is that ||f ||W 1,2 is bounded as soon as EΩ(f) is bounded. Now we are ready
to study a minimizing sequence (fk)k∈N, i.e. a sequence in W 1,2

γ (Ω) such that

lim
k→∞

EΩ(fk) = inf
W 1,2
γ (Ω)

EΩ. (4)

Because EΩ(fk) is obviously bounded, ||fk||W 1,2 is also bounded, so that fk takes val-
ues in a compact subset of W 1,2

γ (Ω) for the weak W 1,2-topology. Hence, because of the
compactness3 of the embedding W 1,2(Ω) ⊂ L2(Ω), we can assume that, after extracting
a subsequence if necessary, there exists f ∈ W 1,2

γ (Ω) such that fk → f weakly in W 1,2,
strongly in L2 and a.e. on Ω. We write fk = f + gk, so that gk → 0 weakly in W 1,2, and
from the identity EΩ(fk) = EΩ(f) + EΩ(gk) +

∫
Ω
〈df, dgk〉 we obtain

lim sup
k→∞

EΩ(fk) = EΩ(f) + lim sup
k→∞

EΩ(gk). (5)

3By the Rellich–Kondrakov theorem, valid here because Ω is bounded.
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Hence lim supk→∞EΩ(fk) ≥ EΩ(f), i.e. EΩ is lower semi-continuous. Comparing (4)
and (5) we obtain

(
EΩ(f)− inf

W 1,2
γ (Ω)

EΩ

)
+ lim sup

k→∞
EΩ(gk) = 0.

Both terms in this equation are non-negative, hence must vanish: this tells us that f is a
minimizer of EΩ in W 1,2

γ (Ω) and a posteriori that gk → 0 strongly in W 1,2, i.e. fk → f

strongly in W 1,2.
Hence we have obtained a weak solution to the Dirichlet problem. It remains to show

that this solution is classical, i.e. that f is smooth in Ω and that, if γ is continuous, then
f is continuous on Ω and agrees with γ on ∂Ω. This is the regularity problem. Several
methods are possible: one may for instance deduce the interior regularity from the identity
f = f ∗ χρ which holds on {x ∈ Ω|B(x, ρ) ⊂ Ω}, where χρ ∈ C∞c (Rm) is rotationally
symmetric, has support in B(0, ρ) and satisfies

∫
Rm χρ = 1 and ∗ denotes the convolution

operator given by f ∗ g(x) =
∫

Rm f(x− y)g(y)dmy. This identity is actually a version of
the mean value property (see the next paragraph) valid for weak solutions.

1.3 The mean value property and the maximum principle

Let f be a harmonic function on an open subset Ω, x0 ∈ Ω and ρ > 0 such thatB(x0, ρ) ⊂
Ω. Stokes’ theorem gives: ∀r ∈ (0, ρ],

∫
∂B(x0,r)

(∂f/∂r) dµ(x) =
∫
B(x0,r)

∆fdmx = 0,
where r = |x − x0|. It implies that −

∫
∂B(x0,r)

f := 1/(|Sm−1| rm−1)
∫
∂B(x0,r)

f dµ(x) is
independent of r. Hence, since f is continuous at x0, we have f(x0) = −

∫
∂B(x0,r)

f . By
averaging further over all spheres ∂B(x0, r) with 0 < r < ρ, one deduces that f(x0) =
−
∫
B(x0,r)

f .
A similar argument works for superharmonic or subharmonic functions: a smooth func-

tion f : Ω −→ R is superharmonic (resp. subharmonic) if and only if −∆f ≥ 0 (resp.
−∆f ≤ 0). Then, if f superharmonic (resp. subharmonic) and B(x0, ρ) ⊂ Ω, we have
f(x0) ≥ −

∫
B(x0,r)

f (resp. f(x0) ≤ −
∫
B(x0,ρ)

f ).
The mean value property implies the maximum and minimum principles: assume that

Ω is open, bounded and connected and that f is harmonic on Ω, continuous on Ω and that
x0 ∈ Ω is an interior(!) point where f is maximal, i.e., ∀x ∈ Ω, f(x) ≤ f(x0). Then we
chooseB(x0, ρ) ⊂ Ω and, by the mean value property, f(x0) = −

∫
B(x0,ρ)

f or, equivalently,∫
B(x0,ρ)

(f(x0) − f(x)) dmx = 0. But since f is maximal at x0 the integrand in this last
integral is non-negative and hence must vanish. Thus f(x) = f(x0) on B(x0, ρ). So we
have shown that (f |Ω)−1(supΩ f) := {x ∈ Ω| f(x) = supΩ f} is open. It is also closed
because f is continuous. Hence since Ω is connected, either (f |Ω)−1(supΩ f) = Ω and
f is constant, or (f |Ω)−1(supΩ f) = ∅, which means that supΩ f is achieved on the
boundary ∂Ω (since Ω is compact). This is the (strong) maximum principle.

One sees that the preceding argument still works if we replace the property f(x0) =
−
∫
B(x0,ρ)

f by f(x0) ≤ −
∫
B(x0,ρ)

f , i.e. if we only assume that f is subharmonic. Similarly
the minimum principle works for superharmonic functions.
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1.4 Uniqueness and minimality

The uniqueness of solutions to the Dirichlet problem can be obtained as a consequence
of the maximum principle: let f1 and f2 be two solutions of the Dirichlet problem and
let f := f2 − f1. Since f1 agrees with f2 on ∂Ω, the trace of f on ∂Ω vanishes. But f
is also harmonic, and hence satisfies the maximum principle: this implies that supΩ f =
sup∂Ω f = 0, so f ≤ 0 on Ω. Similarly, the minimum principle implies f ≥ 0 on Ω.
Hence f = 0, which means that f1 coincides with f2.

A straightforward consequence of this uniqueness result is that any solution f of (3)
actually coincides with the minimizer of EΩ in W 1,2

γ (Ω). One can recover this minimality
property directly from the identity

∀g ∈W 1,2
γ (Ω), EΩ(g) = EΩ(g − f) +

∫
Ω

〈df, dg〉 − EΩ(f).

On using Stokes’ theorem twice, ∆f = 0 and the fact that f |∂Ω = g|∂Ω, we obtain∫
Ω

〈df, dg〉 =
∫

Ω

div(g∇f) =
∫
∂Ω

g
∂f

∂n
=
∫
∂Ω

f
∂f

∂n
=
∫

Ω

div(f∇f) = 2EΩ(f). (6)

Hence EΩ(g) = EΩ(g − f) + EΩ(f), which implies that f minimizes EΩ in W 1,2
γ (Ω).

1.5 Relation with holomorphic functions

In dimension 2, harmonic functions are closely linked with holomorphic functions.
Throughout this article, we shall use the identification R2 ' C, (x, y) 7−→ x + iy and
the operators

∂

∂z
:=

1
2

(
∂

∂x
− i ∂

∂y

)
,

∂

∂z
:=

1
2

(
∂

∂x
+ i

∂

∂y

)
.

If Ω is an open subset of C, recall that a smooth function ϕ : Ω −→ C is holomorphic
(rep. antiholomorphic) if and only if ∂ϕ/∂z = 0 (resp. ∂ϕ/∂z = 0). Then because of the
identity ∂2/∂z∂z = ∂2/∂z∂z = (1/4)∆ it is clear that, if ϕ : Ω −→ C is holomorphic
or antiholomorphic, then Reϕ and Imϕ are harmonic functions. Conversely, if we are
given a harmonic function f : Ω −→ R, then ∂f/∂z is holomorphic. Moreover if Ω is

simply connected the holomorphic function ϕ defined by ϕ(z) = 2
∫ z

z0

∂f

∂z
(ζ) dζ satisfies

∂ϕ

∂z
= 2

∂f

∂z
and f = Reϕ + C, where C ∈ R is a constant. The imaginary part of ϕ

provides us with another harmonic function g := Imϕ, the harmonic conjugate function of
f . Note that some representation formulas for harmonic functions in terms of holomorphic
data have been found in dimension three (E.T. Whitakker [224]) and in dimension four (H.
Bateman and R. Penrose [8, 165]).

2 Harmonic maps between Riemannian manifolds

2.1 Definition

Throughout the rest of this article, M = (M, g) and N = (N , h) will denote smooth
Riemannian manifolds, without boundary unless otherwise indicated, of arbitrary (finite)
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dimensions m and n respectively. We denote their Levi-Civita connnections by g∇ and h∇
respectively. By an (open) domain ofM we mean a non-empty connected open subset of
M; if a domain has compact closure, we shall call that closure a compact domain. We use
the Einstein summation convention where summation over repeated subscript-superscript
pairs is understood.

We define harmonic maps as the solution to a variational problem which generalizes
that in Section 1 as follows. Let φ : (M, g) → (N , h) be a smooth map. Let Ω be a
domain of M with a piecewise C1 boundary ∂Ω. The energy or Dirichlet integral of φ
over Ω is defined by

EΩ(φ) =
1
2

∫
Ω

|dφ|2 ωg . (7)

Here ωg is the volume measure on M defined by the metric g, and |dφ| is the Hilbert–
Schmidt norm of dφ given at each point x ∈M by

|dφx|2 =
m∑
i=1

hφ(x)

(
dφx(ei), dφx(ei)

)
(8)

where {ei} is an orthonormal basis for TxM. In local coordinates (x1, . . . , xm) on M,
(y1, . . . , yn) on N ,

|dφx|2 = gij(x)hαβ(φ(x))φαi φ
β
j and ωg =

√
|g| dx1· · · dxm ; (9)

here φαi denotes the partial derivative ∂φα/∂xi where φα := yα ◦ φ, (gij) denotes the
metric tensor onM with determinant |g| and inverse (gij), and (hαβ) denotes the metric
tensor on N .

By a smooth (one-parameter) variation Φ = {φt} of φ we mean a smooth map Φ :
M × (−ε, ε) → N , Φ(x, t) = φt(x), where ε > 0 and φ0 = φ. We say that it is
supported in Ω if φt = φ ∀ t on the complement of the interior of Ω. A smooth map
φ : (M, g)→ (N , h) is called harmonic if it is a critical point (or extremal) of the energy
integral, i.e., for all compact domains Ω and all smooth one-parameter variations {φt} of
φ supported in Ω, the first variation d

dtEΩ(φt)
∣∣
t=0

is zero. The first variation is given by

(δEΩ)φ(v) :=
d

dt
EΩ(φt)

∣∣∣
t=0

= −
∫
M

〈
τ(φ), v

〉
ωg . (10)

Here v denotes the variation vector field of {φt} defined by v = ∂φt/∂t|t=0 , 〈·, ·〉 denotes
the inner product on φ−1TN induced from the metric onN , and τ(φ) denotes the tension
field of φ defined by

τ(φ) = Tr W∇dφ =
m∑
i=1

W∇dφ(ei, ei) =
m∑
i=1

{φ∇ei(dφ(ei)
)
− dφ(g∇eiei)

}
.(11)

Here φ∇ the pull-back of the Levi-Civita connection onN to the bundle φ−1TN , and W∇
the tensor product connection on the bundle W = T ∗M⊗ φ−1TN induced from these
connections. We see that the tension field is the trace of the second fundamental form of φ
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defined by β(φ) = W∇dφ, more explicitly, β(φ)(X,Y ) = φ∇X
(
dφ(Y )

)
− dφ(g∇XY )

for any vector fields X,Y onM. In local coordinates,

τ(φ)γ = gij

(
∂2φγ

∂xi∂xj
− gΓkij

∂φγ

∂xk
+ hΓγαβ(φ)

∂φα

∂xi
∂φβ

∂xj

)
(12)

= ∆gφ
γ + g(gradφα, gradφβ) hΓγαβ . (13)

Here gΓkij and hΓγαβ denote the Christoffel symbols on (M, g) and (N , h), respectively,
and ∆g denotes the Laplace–Beltrami operator on functions f :M→ R given by

∆gf = Tr W∇df =
m∑
i=1

{
ei
(
ei(f)

)
−
(g∇eiei)f}, (14)

or, in local coordinates,

∆gf =
1√
|g|

∂

∂xi

(√
|g| gij ∂f

∂xj

)
= gij

(
∂2f

∂xi∂xj
− gΓkij

∂f

∂xk

)
. (15)

Note that τ(φ) can be interpreted as the negative of the gradient at φ of the energy
functional E on a suitable space of mappings, i.e., it points in the direction in which E
decreases most rapidly [61, (3.5)]. In local coordinates, the harmonic equation

τ(φ) = 0 (16)

is a semilinear second-order elliptic system of partial differential equations.

2.2 Examples

We list some important examples of harmonic maps. See, for example, [66, 61, 63, 7] for
many more.

1. Constant maps φ : (M, g) → (N , h) and identity maps Id : (M, g) → (M, g)
are clearly always harmonic maps

2. Isometries are harmonic maps. Further, composing a harmonic map with an isome-
try on its domain or codomain preserves harmonicity.

3. Harmonic maps between Euclidean spaces. A smooth map φ : A→ Rn from an
open subset A of Rm is harmonic if and only if each component is a harmonic function, as
discussed in the first Section.

4. Harmonic maps to a Euclidean space. A smooth map φ : (M, g) → Rn is
harmonic if and only if each of its components is a harmonic function on (M, g), as in first
chapter. See [46] for recent references.

5. Harmonic maps to the circle S1 are given by integrating harmonic 1-forms with
integral periods. Hence, when the domainM is compact, there are non-constant harmonic
maps to the circle if and only if the first Betti number ofM is non-zero. In fact, there is a
harmonic map in every homotopy class (see, [7, Example 3.3.8]).
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6. Geodesics. For a smooth curve, i.e. smooth map φ : A → N from an open
subset A of R or from the circle S1, the tension field is just the acceleration vector of
the curve; hence φ is harmonic if and only if it defines a geodesic parametrized lin-
early (i.e., parametrized by a constant multiple of arc length). More generally, a map
φ : M → N is called totally geodesic if it maps linearly parametrized geodesics of M
to linearly parametrized geodesics of N , such maps are characterized by the vanishing of
their second fundamental form. Since (11) exhibits the tension field as the trace of the
second fundamental form, totally geodesic maps are harmonic.

7. Isometric immersions Let φ : (N , h) → (P, k) be an isometric immersion. Then
its second fundamental form β(φ) of φ has values in the normal space and coincides with
the usual second fundamental form A ∈ Γ(S2T ∗N ⊗ NN ) of N as an (immersed) sub-
manifold of P defined on vector fields X , Y onM by A(X,Y ) = − normal component
of h∇XY .4 (Here, by S2T ∗N we denote the symmetrized tensor product of T ∗N with
itself and NN is the normal bundle of N in P .) In particular, the tension field τ(φ) is m
times the mean curvature ofM in N so that φ is harmonic if and only if M is a minimal
submanifold of N .

8. Compositions The composition of two harmonic maps is not, in general, harmonic.
In fact, the tension field of the composition of two smooth maps φ : (M, g)→ (N , h) and
f : (N , h)→ (P, k) is given by

τ(f ◦ φ) = df(τ(φ)) + β(f)(dφ, dφ) = df(τ(φ)) +
m∑
i=1

β(f)(dφ(ei), dφ(ei)) (17)

where {ei} is an orthonormal frame on N . From this we see that if φ is harmonic and f
totally geodesic, then f ◦ φ is harmonic.

9. Maps into submanifolds. Suppose that j : (N , h) → (P, k) is an isometric
immersion. Then, as above, its second fundamental form A has values in the normal space
of N in P and so from the composition law just discussed, φ : (M, g) → (N , h) is
harmonic if and only if τ(j ◦ φ) is normal to M , and this holds if and only if

τ(j ◦ φ) + Tr A(dφ, dφ) = 0. (18)

10. Holomorphic maps. By writing the tension field in complex coordinates, it is
easy to see that holomorphic (or antiholomorphic) maps φ : (M, g, JM) → (N , h, JN )
between Kähler manifolds are harmonic [66].5

11. Maps between surfaces. LetM = (M2, g) be a surface, i.e., two-dimensional
Riemannian manifold. Assume it is oriented and let JM be rotation by +π/2 on each
tangent space. Then (M2, g, JM) defines a complex structure onM so that it becomes a
Riemann surface; this structure is automatically Kähler. LetN be another oriented surface.
Then from the last paragraph, we see that any holomorphic or antiholomorphic map from
M to N is harmonic.

A smooth map φ : (M, g)→ (N , h) between Riemannian manifolds is called weakly
conformal if its differential preserves angles at regular points—points where the differen-
tial is non-zero. Points where the differential is zero are called branch points. In local

4The minus sign is often omitted
5A. Lichnerowicz relaxes the conditions onM and N for which this is true; see, for example, [61] or [7,

Chapter 8].
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coordinates, a smooth map φ is weakly conformal if and only if there exists a function
λ :M→ [0,∞) such that

hαβφ
α
i φ

β
j = λ2gij (19)

Weakly conformal maps between surfaces are locally the same as holomorphic maps and
so weakly conformal maps of surfaces are harmonic.

12. Maps from surfaces. (i) LetM = (M2, g) be a surface and let φ : M→ N be
a smooth map to an arbitrary Riemannian manifold. Then the energy integral (7) is clearly
invariant under conformal changes of the metric, and thus so is harmonicity of φ. To see
this last invariance another way, let (x, y) be conformal local coordinates, i.e., coordinates
on an open set ofM in which g = µ2(dx2 + dy2) for some real-valued function µ. Write
z = x+ iy. Then the harmonic equation reads

φ∇∂/∂z̄
∂φ

∂z
≡ φ∇∂/∂z

∂φ

∂z̄
= 0. (20)

IfM is oriented, then we may take (x, y) to be oriented; the the coordinates z = x + iy
giveM the complex structure of the last paragraph. Hence, harmonicity of a map from a
Riemann surface is well defined.

Alternatively, from (17) we obtain the slightly more general statement that the composi-
tion of a weakly conformal map φ :M→N of surfaces with a harmonic map f : N → P
from a surface to an arbitrary Riemannian manifold is harmonic.

For any smooth map φ : M2 → (N , h) from an oriented surface, define the Hopf
differential by

H = (φ∗h)(2,0) = h
(∂φ
∂z

,
∂φ

∂z

)
dz2

=
1
4

{
h
(∂φ
∂x

,
∂φ

∂x

)
− h
(∂φ
∂y

,
∂φ

∂y

)
+ 2i h

(∂φ
∂x

,
∂φ

∂y

)}
dz2 (21)

Here we use the complex eigenspace decomposition φ∗h = (φ∗h)(2,0) + (φ∗h)(1,1) +
(φ∗h)(0,2) under the action of JM on quadratic forms on TM. Note that (i) if φ is
harmonic, then H is a holomorphic quadratic differential, i.e., a holomorphic section of
⊗2T ∗1,0M ;6 (ii) φ is conformal if and only if H vanishes. It follows that any harmonic map
from the 2-sphere is weakly conformal [144, 88, 117]. Indeed, whenM is the 2-sphere,
⊗2T ∗1,0M has negative degree so that any holomorphic section of it is zero.

13. Minimal branched immersions. For a weakly conformal map from a surface
(M2, g), comparing definitions shows that the tension field is a multiple of its mean
curvature vector, so that a weakly conformal map φ : (M2, g) → (N , h) is har-
monic if and only if its image is minimal at regular points; such maps are called min-
imal branched immersions. In suitable coordinates, the branch points have the form
z 7→

(
zk +O(zk+1), O(zk+1)

)
for some k ∈ {2, 3, . . .} [95].

Note also that the energy of a weakly conformal map φ : (M2, g) → (N , h) from a
compact surface is equal to its area:

A(φ) =
∫
M
|dφ(e1) ∧ dφ(e2)|ωg ({e1, e2} orthonormal frame). (22)

6This is an example of a conservation law, see §3.1 for more details and the generalization to higher dimen-
sions.
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14. Harmonic morphisms are a special sort of harmonic map; we turn to those now.

2.3 Harmonic morphisms

A continuous map φ : (M, g) → (N , h) is called a harmonic morphism if, for every
harmonic function f : V → R defined on an open subset V ofN with φ−1(V ) non-empty,
the composition f ◦ φ is harmonic on φ−1(V ). It follows that φ is smooth, since harmonic
functions have that property, by a classical result of Schwartz [195, Chapter VI, Théorème
XXIX]. Further, since any harmonic function on a real-analytic manifold is real analytic
[168], harmonic morphisms between real-analytic Riemannian manifolds are, in fact, real
analytic.

The subject of harmonic morphisms began with a paper of C. G. J. Jacobi [125], pub-
lished in 1848. Jacobi investigated when complex-valued solutions to Laplace’s equation
on domains of Euclidean 3-space remain solutions under post-composition with holomor-
phic functions in the plane. It follows quickly that such solutions pull back locally defined
harmonic functions to harmonic functions, i.e., are harmonic morphisms. A hundred years
later came the axiomatic formulation of Brelot harmonic space. This is a topological space
endowed with a sheaf of ‘harmonic’ functions characterized by a number of axioms. The
morphisms of such spaces, i.e. mappings which pull back germs of harmonic functions
to germs of harmonic functions, were confusingly called harmonic maps [48]; the term
harmonic morphisms was coined by B. Fuglede [77].

To keep the number of references manageable, in the sequel we shall often refer to the
book [7] which gives a systematic account of the subject, and which may be consulted for
a list of original references.

A smooth map φ : (M, g) → (N , h) is called horizontally (weakly) conformal (or
semiconformal) if, for each p ∈ M, either, (i) dφp = 0, in which case we call p a crit-
ical point, or, (ii) dφp maps the horizontal space Hp = {ker(dφp)}⊥ conformally onto
Tφ(p)N , i.e., dφp is surjective and there exists a number λ(p) 6= 0 such that

h
(
dφp(X), dφp(Y )

)
= λ(p)2 g(X,Y ) (X,Y ∈ Hp) ,

in which case we call p a regular point. On setting λ = 0 at critical points, we obtain a
continuous function λ :M→ [0,∞) called the dilation of φ ; note that λ2 is smooth since
it equals |dφ|2/n. In local coordinates, the condition for horizontal weak conformality is

gijφαi φ
β
j = λ2hαβ . (23)

Note that this condition is dual to condition (19) weak conformality, see also [7]. We have
the following characterization [77, 124]: a smooth map φ :M→N between Riemannian
manifolds is a harmonic morphism if and only if it is both harmonic and horizontally
weakly conformal. This is proved by (i) showing that there is a harmonic function f : N ⊃
V → R with any prescribed (traceless) 2-jet; see [7, §4.2]; (ii) applying the formula (17)
for the tension field of the composition of φwith such harmonic functions f . It follows that
a non-constant harmonic morphism is (i) an open mapping, (ii) a submersion on a dense
open set — in fact the complement of this, the set of critical points, is a polar set.

Regarding the behaviour of a harmonic morphism at a critical point, the symbol, i.e.
the first non-zero term of the Taylor expansion is a harmonic morphism between Eu-
clidean spaces given by homogeneous polynomials; by studying these it follows that (i)
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if dimM < 2 dimN − 2, the harmonic morphism has no critical points, i.e., is submer-
sive; (ii) if dimM = 2 dimN − 2, the symbol is the cone on a Hopf map [7, Theorem
5.7.3]. When dimM = 3 and dimN = 2, locally [7, Proposition 6.1.5], and often
globally [7, Lemma 6.6.3], a harmonic morphism looks like a submersion followed by a
holomorphic map of surfaces; the critical set is the union of geodesics. When dimM = 4
and dimN = 3, critical points are isolated and the harmonic morphism looks like the cone
on the Hopf map S3 → S2 [7, §12.1]. In both these cases, there are global factorization
theorems. In other cases, little is known about the critical points.

The system (16, 23) for a harmonic morphism is, in general, overdetermined, so there
are no general existence results. However, in many cases, we can establish existence or
non-existence as we now detail.

1. When dimN = 1, the equation (23) is automatic, so that a harmonic morphism
is exactly a harmonic map. If N = R, it is thus a harmonic function; for N = S1, see
Example 5 of §2.2.

2. When dimM = dimN = 2, the equation (16) is implied by the equation (23), so
that the harmonic morphisms are precisely the weakly conformal maps; see Example 9 of
§2.2 for a discussion of such maps.

3. When dimN = 2 and dimM is arbitrary, we have a number of special prop-
erties which are dual to those for (weakly conformal) harmonic maps from surfaces: (i)
conformal invariance in the codomain: if we replace the metric on the codomain by a con-
formally equivalent metric, or post-compose the map with a (weakly) conformal map of
surfaces, then it remains a harmonic morphism; (ii) a variational characterization: har-
monic morphisms are the critical points of the energy when both the map and the metric on
the horizontal space are varied, see [7, Corollary 4.3.14]; (iii) a non-constant map is a har-
monic morphism if and only if it is horizontally weakly conformal and, at regular points,
its fibres are minimal [6], i.e., at regular points, the fibres form a conformal foliation by
minimal submanifolds.

4. When dimN = 2 and dimM = 3, ifM has constant curvature, there are many
harmonic morphisms locally given by a sort of Weierstrass formula [7, Chapter 6]. Glob-
ally, there are few, for example, whenM = R3, only orthogonal projection from R3 to R2

followed by a weakly conformal map. IfM does not have constant curvature, the presence
of a harmonic morphism implies some symmetry of the Ricci tensor and, locally, there can
be at most two non-constant harmonic morphisms (up to post-composition with weakly
conformal maps), and, none for most metrics including that of the Lie group Sol. As for
global topological obstructions, a harmonic morphism from a compact 3-manifold gives it
the structure of a Seifert fibre space [7, §10.3].

5. When dimN = 2 and dimM = 4, ifM is Einstein, there is a twistor correspon-
dence between harmonic morphisms to surfaces and Hermitian structures onM. There are
curvature obstructions for the local existence of such Hermitian structures. See [7, Chapter
7].

6. When dimN = 2 andM is a symmetric space, by finding suitably orthogonal
families of complex-valued harmonic functions and composing these with holomorphic
maps, Gudmundsson and collaborators construct harmonic morphisms from many compact
and non-compact classical symmetric spaces [93], see also [7, §8.2].
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7. Riemannian submersions are harmonic, and so are harmonic morphisms, if and
only if their fibres are minimal. The Hopf maps from S3 → S2, S7 → S4, S15 → S8,
S2n+1 → CPn, S4n+3 → HPn are examples of such harmonic morphisms. See also [7,
§4.5].

8. The natural projection of a warped product M = F ×f2 N → N onto its sec-
ond factor is a horizontally conformal map with gradλ vertical, totally geodesic fibres and
integrable horizontal distribution; in particular is a harmonic morphism. The radial pro-
jections Rm \{0} → Sm−1 (m = 2, 3, . . .), given by x 7→ x

/
|x|, are such maps. See also

[7, §12.4].
9. When dimM− dimN = 1, i.e., the map φ : M → N has one-dimensional

fibres, R. Bryant [29] gives the following normal form for the metric g on the domain of
a submersive harmonic morphism φ in terms of the pull-back φ∗h of the metric on the
codomain and the dilation λ of the map, namely,

g = λ−2φ∗h+ λ2n−4θ2

where θ is a connection 1-form; thus locally such a harmonic morphism is a principal
S1-bundle with S1-connection; this holds globally if the fibres are all compact, see [7,
§10.5].

10. It follows that given a Killing field V (or isometric action) on (M, g), there are
locally harmonic morphisms with fibres tangent to V .

By analysing the overdetermined system (16, 23) using exterior differential systems,
Bryant [29] shows that any harmonic morphism with one-dimensional fibres from a space
form is of warped product type or comes from a Killing field (this has been generalized
to Einstein manifolds by R. Pantilie and Pantilie & Wood, see [7, Chapter 12]). It follows
that the only harmonic morphisms from Euclidean spheres with one-dimensional fibres are
the Hopf maps S2n+1 → CPn.

11. There are topological restrictions on the existence of harmonic morphisms, for ex-
ample, since harmonic morphisms preserve the harmonicity of 1-forms, Eells and Lemare
showed that the Betti number of the domain cannot be less than that of the codomain,
see [7, Proposition 4.3.11]. Pantilie and Wood show that the Euler characteristic must
vanish for a harmonic morphism with fibres of dimension one from a compact domain of
dimension not equal to 4. In particular there is no non-constant harmonic morphism from a
sphere S2n (n 6= 2) to a Riemannian manifold of dimension 2n− 1, whatever the metrics.
Further the Pontryagin numbers and the signature vanish, see [7, §12.1].

12. When dimM = 4, the Euler characteristic is even and equals the number of
critical points of the harmonic morphism, so that we cannot rule out the existence of a
harmonic morphism from S4. By Bryant’s result in item 8 above, there is no harmonic
morphism from the Euclidean 4-sphere with one-dimensional fibres; however, there is one
if the metric on S4 is changed by a suitable conformal factor. This map is given by sus-
pending the Hopf map, first finding a suspension which is horizontally conformal, then
changing the metric conformally on the domain to ‘render’ it harmonic. At both stages,
the problem is reduced to solving an ordinary differential equation for the suspension func-
tion with suitable boundary values, and the method applies to find many more harmonic
morphisms, see [7, Chapter 13].

13. Finally note that J.-Y. Chen shows that stable harmonic maps from compact Rie-
mannian manifolds to S2 are all harmonic morphisms. This is shown by calculating the



Frédéric Hélein and John C. Wood 429

second variation and showing that its non-negativity forces the map to be horizontally
weakly conformal, see [7, §8.7].

3 Weakly harmonic maps and Sobolev spaces between manifolds

3.1 Weakly harmonic maps

An extension of the Dirichlet principle or, more generally, the use of variational methods
requires the introduction of a class of distributional maps endowed with a topology which
is sufficiently coarse to ensure the compactness of sequences of maps which we hope will
converge to a solution. On the other hand, the energy functional should be defined on this
class and we should be able to make sense of its Euler–Lagrange equation (16). These two
requirements are somewhat in conflict, and will lead us to model the class of maps on the
Sobolev space W 1,2(M). But that will force us to work with weak solutions of (16), i.e.,
weakly harmonic maps. However, as soon as m := dimM ≥ 2, a map f ∈ W 1,2(M)
is not continuous in general. Hence, even if W 1,2(M,N ) makes sense, there is no reason
for a map φ ∈ W 1,2(M,N ) to take values in any open subset, in general. This makes it
difficult to study φ by using local charts on the target manifold N . Today7 most authors
avoid these difficulties by using the Nash–Moser embedding theorem (see, for example,
[91]) as follows. In the following we shall assume that N is compact. Then there exist
an isometric embbeding j : (N , g) −→ (RN , 〈·, ·〉). And we define (temporarily), for any
open subset Ω ⊂M,

W 1,2
j (Ω,N ) := {u ∈W 1,2(Ω,RN )| u(x) ∈ j(N ) a.e.}. (24)

On this set the energy or Dirichlet functional defined by (7) now reads

EΩ(u) :=
1
2

∫
Ω

gij(x)
〈
∂u

∂xj
,
∂u

∂xi

〉
ωg.

But, if we assume thatM is also compact, then for any two isometric embeddings j1, j2,
the spaces W 1,2

j1
(M,N ) and W 1,2

j2
(M,N ) are homeomorphic and EΩ(j2 ◦ j−1

1 ◦ u) =
EΩ(u). Hence we simply8 write W 1,2(M,N ) := W 1,2

j (M,N ).

Weakly harmonic maps

In order to define weakly harmonic maps as extremals of EM we have to specify which
infinitesimal deformations of a map u ∈ W 1,2(M,N ) we will consider. Consider a
neighbourhood V of N in RN such that the projection map P : V −→ N which
sends each y ∈ V to the nearest point in N is well defined and smooth9. Now let
u ∈ W 1,2(M,N ). For any map v ∈ W 1,2(M,RN ) ∩ L∞(M,RN ) we observe that,

7In his 1948 paper [156], C. B. Morrey had to work without the Nash–Moser theorem which was not yet
proved.

8In the case whereM is not compact, we may not have W 1,2
j1

(M,N ) ' W 1,2
j2

(M,N ) because the L2

norms of j1 ◦φ and j2 ◦φmay be different (indeed, one of the two norms may be bounded whereas the other one
may be infinite). This suggests that perhaps a more satisfactory (but less used) definition ofW 1,2

j (M,N ) would
be: the set of measurable distributions onM with values in RN such that du ∈ L2(M) and u(x) ∈ j(N ) a.e.

9We may use other projection maps, not necessarily Euclidean projections, see [118].
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for ε sufficiently small, u + εv ∈ V , so that uvε := P (u + εv) ∈ W 1,2(M,N ). We set
u̇v0 := limε→0 (uvε − u)/ε = dPu(v) a.e. and

(δEM)u(u̇v0) := lim
ε→0

EM(uε)− EM(u)
ε

.

(What is important in this definition is that ε 7−→ uvε is a differentiable curve into
W 1,2(M,RN ) such that ∀ε, uvε ∈ W 1,2(M,N ), duvε/dε ∈ W 1,2(M,RN ) and uv0 = u.)
And u is weakly harmonic if and only if (δEM)u(u̇v0) = 0 for all v ∈ W 1,2 ∩
L∞(M,RN ). Equivalently u is a solution in the distribution sense of a system of N
coupled scalar elliptic PDEs, i.e. an RN -valued elliptic PDE

∆gu+ gij(x)Au(x)

(
∂u

∂xi
,
∂u

∂xj

)
= 0 (25)

where A ∈ Γ(S2T ∗N ⊗ NN ) is the second fundamental form of the embedding j as in
§2.2 (NN now denotes the normal bundle ofN inRN );10 one can check that this condition
is independent of the embedding j [118]. Indeed, it is just the equation (18).

Example. (N = Sn, the unit sphere) The n-dimensional sphere Sn is the submanifold
{y ∈ Rn+1| |y| = 1}, its metric is the pull-back of the standard Euclidean metric by the
embedding j : Sn −→ Rn+1. The second fundamental form of j is given by Ay(X,Y ) =
〈X,Y 〉y, so that the weakly harmonic maps are the maps in W 1,2(M, Sn) such that

∆gu+ |du|2u = 0 in a distribution sense. (26)

Remarks (i) In (25), ∆gu ∈ W−1,2(M,RN ) is defined in the distribu-
tion sense, the coefficients of Au(x) are in L∞ because N is compact and so
gij(x)Au(x)(∂u/∂xi, ∂u/∂xj) ∈ L1(M,RN ).

(ii) The system (25) is an example of a semilinear elliptic system with a nonlinearity
which is quadratic in the first derivatives, for which a general regularity theory has been
developed (see [143, 229, 121, 83]). This nonlinearity is the reason why most of analyti-
cal properties valid for harmonic functions are lost: existence, regularity, uniqueness and
minimality may fail in general, unless some extra hypotheses are added.

(iii) A difficulty particular to this theory is thatW 1,2(M,N ) is not a C1-manifold. One
can only say that W 1,2(M,N ) is a Banach manifold, which is not separable if m ≥ 2,
and that C0 ∩W 1,2(M,N ) is a closed separable submanifold of W 1,2(M,N ) (see [31]).
Moreover, W 1,2(M,N ) does not have the same topology as C0(M,N ) in general (see
§3.2 and 3.3).

Minimizing maps

A map u ∈ W 1,2(M,N ) is called an energy minimizing map if any map v ∈
W 1,2(M,N ) which coincides with u outside a compact subset K ⊂ M has an energy
greater than or equal to that of u, i.e. EM(v) ≥ EM(u). A weaker notion is that

10An equivalent formula for A is, as follows: if for any y ∈ N , we denote by P⊥y : RN −→ NyN the
orthonormal projection, then A can be defined by Ay(X,Y ) := (DXP

⊥
y )(Y ), ∀X,Y ∈ Γ(TN ), where D is

the (flat) Levi-Civita connection on RN .
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u ∈ W 1,2(M,N ) is called locally energy minimizing if, for any point x ∈ M, there
exists a neighbourhood U ⊂ M of x such that any map v ∈ W 1,2(M,N ) which coin-
cides with u outside a compact subset K ⊂ U has an energy greater than or equal to that
of u.

Stationary maps

The family {uvε | v ∈ W 1,2(M,RN ) ∩ L∞(M,RN )} of infinitesimal deformations used
for the definition of a weakly harmonic map u does not contain some significant deforma-
tions. For example, consider radial projection u� ∈W 1,2(B3, S2) defined by11

u�(x) = x/|x| ; (27)

it seems natural to move the singularity of this map along some smooth path. For example
we let a ∈ C1((−1, 1), B3) parametrize such a path in B3 such that a(0) = 0 and we
consider the family of maps uε ∈W 1,2(B3, S2) defined by uε(x) = (x−a(ε))/|x−a(ε)|.
Then duε/dε is not inW 1,2(B3,R3), and hence we cannot take this infinitesimal variation
of u� into account for weakly harmonic maps. This is the reason for considering a second
type of variation: we let (ϕt)t∈I (where I ⊂ R is some open interval which contains 0) be
a C1 family of smooth diffeomorphisms ϕt :M−→M such that ϕ0 is the identity. Then
for any u ∈ W 1,2(M,N ), (u ◦ ϕt)t∈I is a C1 family of maps in W 1,2(M,N ) such that
u ◦ϕ0 = u. Following [189] we say that u is stationary if (i) u is weakly harmonic, and
(ii) for any family of diffeomorphisms (ϕt)t∈I with ϕ0 = IdM,

lim
t→0

(
EM(u ◦ ϕt)− EM(u)

)/
t = 0. (28)

Note that, without loss of generality, we can assume that the diffeomorphisms ϕt have
the form ϕt = etX , where X is a smooth tangent vector field with compact support on
M. Maps u which satisfies (28) can be characterized by the following local condition
derived by P. Baird and J. Eells, and by A. I. Pluzhnikov independently [6, 170, 118]. Let
us stress temporarily the dependence of the Dirichlet energy on the metric g on M by
writing EM = E(M,g). Then we remark that, by the change of variable x̃ = etX(x) in the
Dirichlet integral, we have:

E(M,g)(u ◦ etX) = E(M,(e−tX)∗g)(u ◦ etX ◦ e−tX) = E(M,(e−tX)∗g)(u),

where (e−tX)∗g is the pull-back of the metric g by e−tX . But we compute:

E(M,(e−tX)∗g)(u) = E(M,g)(u) + t

∫
M

(
LXg

ij
)
Sij(u) ωg + o(t),

where

Sij(u) :=
1
2
|du|2ggij − (u∗h)ij =

1
2
gkl(x)

〈
∂u

∂xk
,
∂u

∂xl

〉
gij −

〈
∂u

∂xi
,
∂u

∂xj

〉
,

where |du|2g = gij(x) 〈∂u/∂xi , ∂u/∂xj〉, is called the stress-energy tensor. If u ∈
W 1,2(M,N ), then its components are in L1(M). Hence condition (28) is equivalent

11For a ∈ Rm and r > 0 we write Bm(a, r) := {x ∈ Rm| |x − a| < r}; also, for brevity write
Bm := Bm(0, 1).
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to the fact that
∫
M
(
LXg

ij
)
Sij(u) ωg = 0, for all smooth tangent vector fields X with

compact support onM. Moreover, since the stress-energy tensor is symmetric we have the
identity

(
2gik∇kXj + LXg

ij
)
Sij(u) = 0, from which we can deduce by an integration

by parts that u satisfies (28) if and only if Sij(u) is covariantly divergence-free, i.e.

∀j, ∇iSij(u) = 0 in the distribution sense(
where Sij(u) := gikSkj(u) and∇i := ∇∂/∂xi

)
. (29)

Remarks (i) If the metric g on M is Euclidean, i.e. if we can write gij = δij in some
coordinate system, then the covariant conservation law (29) becomes a system of m con-
servations laws.

(ii) ifm = 2 then Sij is trace free. Furthermore we can use conformal local coordinates
z = x1 + ix2 onM. Then if we identify Sij with the quadratic form S := Sijdx

idxj , we
easily compute:

−2S = Re
{(∣∣∣ ∂u

∂x1

∣∣∣2 − ∣∣∣ ∂u
∂x2

∣∣∣2 − 2i
〈 ∂u
∂x1

,
∂u

∂x2

〉)
(dz)2

}
= 4H,

whereH is the Hopf differential of u as defined in (21). We note that: (i) u is conformal if
and only ifH or equivalently S vanishes and (ii) the stress-energy tensor is divergence
free, i.e. (29) holds, if and only ifH is holomorphic.

Relationship between the different notions of critical points

It is easy to prove the inclusions:

{minimizing maps} ⊂{locally minimizing maps}
⊂{stationary maps} ⊂{weakly harmonic maps} ;

these inclusions are strict in general. For example, the identity map Id : S3 −→ S3 is
locally minimizing (see §6.2) but not globally minimizing (see §3.3). The map u(2) ∈
W 1,2(B3, S2), defined by u(2)(x) = P−1 ◦ Z2 ◦ P (x/|x|), where P : S2 −→ CP =
C ∪ {∞} = R2 ∪ {∞} defined by

P (y1, y2, y3) = (y1 + iy2)
/

(1 + y3) (30)

is the stereographic projection andZ2(z) = z2 is stationary but not locally minimizing (see
§4.3 and [24]). The map vλ :∈ W 1,2(B3, S2), defined by vλ(x) = P−1 ◦ λ ◦ P (x/|x|),
where λ is the multiplication by some λ ∈ C∗ is weakly harmonic but not stationary if
|λ| 6= 1 (see [118], §1.4). However, smooth harmonic maps are stationary: one can check
by a direct computation that, if u is a map of class C2, (25) implies (29).

3.2 The density of smooth maps in W 1,p(M,N )

In this section and the following, it may clarify the discussion to consider the more general
family of spaces

W 1,p(M,N ) := {u ∈W 1,p(M,RN )| u(x) ∈ N a.e.},
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W 1,p(M) := {u ∈ Lp(M)| du ∈ Lp(M)} and W 1,p(M,RN ) := W 1,p(M) ⊗ RN ,
where 1 ≤ p <∞. An interesting functional on W 1,p(M,N ) is the p-energy

E
(p)
M (u) :=

1
p

∫
M

(
gij(x)

〈
∂u

∂xi
,
∂u

∂xj

〉)p/2
ωg. (31)

For any Riemannian manifoldM of dimension m and for any compact manifoldN of
dimension n, let us define

• H1,p
s (M,N ):= the closure of C1(M,N ) ∩ W 1,p(M,N ) in the strong W 1,p-

topology;

• H1,p
w (M,N ):= the closure of C1(M,N ) ∩W 1,p(M,N ) in the sequential weak12

W 1,p-topology: a map u ∈ W 1,p(M,N ) belongs to H1,p
w (M,N ) if and only if

there exists a sequence (vk)k∈N of maps in C1(M,N ) ∩W 1,p(M,N ) such that vk
converges weakly to u as k →∞.

Note that we have always the inclusions

H1,p
s (M,N ) ⊂ H1,p

w (M,N ) ⊂W 1,p(M,N ). (32)

The easy case m ≤ p. We first observe that, if p > m, the Sobolev embedding the-
orem implies that W 1,p(M,N ) ⊂ C0(M,N ), so that by a standard regularization in
W 1,p(M,RN ) followed by a projection onto N , one can prove easily that H1,p

s (M,N )
is dense in W 1,p(M,N ). This result has been extended in [191] to the critical ex-
ponent p = m, by using the Poincaré inequality:13 −

∫
Bm(x,r)

|ϕ − −
∫
Bm(x,r)

ϕ|m ≤
C
∫
Bm(x,r)

|dϕ|m. In conclusion, if p ∈ [m,∞), all inclusions in (32) are equalities.

The hard case 1 ≤ p < m. One of the more instructive example is radial projec-
tion u� : Bm → Sm−1 given by (27). This map has a point singularity at 0, but is
in W 1,p(Bm, Sm−1) if p < m. We shall see later that u� cannot be approximated by
smooth maps with values in Sm−1 for m − 1 < p < m. Variants of u� are the maps
us� : Bm −→ Sm−s−1, for s ∈ N such that 0 ≤ s ≤ m− 1, defined by us�(x, y) = x/|x|,
for (x, y) ∈ Rm−s × Rs: this map is singular along the s-dimensional subspace x = 0.

Approximation by smooth maps with singularities. The following result by F.
Bethuel [12, 102] shows that the structure of the singularities of the maps us� is some-

12The space H1,p
w (M,N ) plays an important role when using variational methods. For example, if we

minimize the p-energy among smooth maps, the minimizing sequence converges weakly. Hence the weak solution
that we obtain is naturally in H1,p

w (M,N ).
13 Note that similar arguments show that maps such that limr→0 Ex,r(u) = 0 for all x ∈ M can be

approximated by smooth maps (see §4.3 for a definition of Ex,r). This result is a key ingredient in the regularity
theory for harmonic maps by R. Schoen and K. Uhlenbeck [190], see again §4.3. All these results fit in the
framework of a theory of maps into manifolds with vanishing mean oscillation, developed by H. Brezis and
L. Nirenberg [27]: for any locally integrable function f on Rm, for any x ∈ Rm and any r > 0, set fx,r :=
−
∫
Bm(x,r) f , then let ||f ||BMO := supx∈Rm supr>0(−

∫
Bm(x,r) |f−fx,r|

p)1/p, for some p ∈ [1,∞). Then
the space of functions of bounded mean oscillation (BMO) on Rm is the set of locally integrable functions f on
Rm such that ||f ||BMO is bounded, and this definition does not depend on p [128]. The subspace of functions of
vanishing mean oscillation (VMO) on Rm is composed of maps such that limr→0(−

∫
Bm(x,r) |f−fx,r|

p)1/p =

0 for any x ∈ Rm (see [128, 118]).
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how generic. Let

Rp,k(M,N ) : the set of maps u ∈W 1,p(M,N ) such that
∃ Σu ⊂M with u ∈ Ck(M\ Σu,N ), Σu =

⋃r
i=1 Σi,

Σi is a subset of a manifold of dimension m− [p]− 1, ∂Σi is Ck

(note that, if m− 1 ≤ p < m, each Σi is a point). Then

if 1 < p < m, thenRp,k(M,N ) is dense in W 1,p(M,N ). (33)

Moreover, F. B. Hang and F. H. Lin [102] proved that the singular set Σu can be chosen as
the (m− [p]− 1)-skeleton of a smooth rectilinear cell decomposition.

The case of maps into the sphere. The idea of the proof of (33) in the case where
N = Sn and n ≤ p < n + 1 is the following (see also [17, 88]). Let u ∈ W 1,p(M, Sn).
Then by convolution with mollifiers we first produce a sequence of smooth maps (uρ)ρ
which converges strongly to u as ρ → 0, but has values in Bn+1(0, 1). However, for any
ε > 0 the measure of V ερ := u−1

ρ (Bn+1(0, 1 − ε)) tends to 0 as ρ → 0. The main task is
to compose the restriction (uρ)|V ερ of uρ to V ερ with a projection map from Bn+1(0, 1− ε)
to its boundary in order to obtain a map into Bn+1 \Bn+1(0, 1− ε). The naive projection
x 7−→ (1 − ε)x/|x| fails because uρ/|uρ| has infinite W 1,p-norm in general. The trick,
inspired by [107], consists of using a different projection map Πa : x 7−→ (1 − ε)(x −
a)/|x− a|, where a ∈ Bn+1(0, 1

2 ): by averaging over a ∈ Bn+1(0, 1
2 ) and using Fubini’s

theorem one finds that there exists some a such that the W 1,p-norm of (Πa ◦ uρ)|V ερ is
bounded in terms of the W 1,p-norm of (uρ)|V ερ . Moreover, Sard’s theorem ensures that
for a generic a, u−1

ρ (a), i.e. the singular set of Πa ◦ uρ, is a smooth submanifold of
codimension n+ 1 = [p] + 1.

The property (33) shows that questions of density rely on approximating maps in
Rp,k(M,N ) by smooth maps. Again it is instructive to look at the example of the map
u� ∈ W 1,p(Bm, Sm−1): a way to approximate u� is to move the topological singularity
through a path joining the origin 0 to the boundary ∂Bm. Consider such a path (for exam-
ple, [−1, 0]× {0}m−1 ⊂ Rm), then by modifying u� inside a small tube around this path
in such a way that the topological degree on each sphere Sm−1

r := ∂Bm(0, r) cancels, we
obtain a continuous map into the sphere. For instance, for ε > 0 sufficiently small, we
construct a map uε by replacing, for any r ∈ [0, 1], the restriction u�|Sm−1

r
of u� to Sm−1

r

by its left composition with the map T−1
λ(r,ε)◦U ◦Tλ(r,ε) : Sm−1 −→ Sm−1, where U(y) =

(|y1|, y2, · · · , ym) and Tλ(y) = (coshλ+ y1 sinhλ)−1(sinhλ+ y1 coshλ, y2, · · · , ym)
(λ ∈ R) and we choose λ(r, ε) in such a way that uε coincides with u� outside the tubular
neighbourhood of the path of radius ε. Then, inside the small tube, |duε| ≤ (C/ε)|du�| so
that the extra cost in W 1,p-norm of this modification is of order εm−1/εp (note that εm−1

controls the volume of the tube). We see that

(i) if 1 ≤ p < m− 1, this p-energy cost can be as small as we want;
(ii) if p = m− 1, the p-energy cost does not tend to zero as ε→ 0 but is bounded;

(iii) if m− 1 < p < m, the cost tends to∞ as ε→ 0.

These heuristic considerations are behind a series of results proved by F. Bethuel [12] and
summarized in the following table:
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Inclusions H1,p
s (Bm, Sm−1) ⊂ H1,p

w (Bm, Sm−1) ⊂W 1,p(Bm, Sm−1)
1 ≤ p < m− 1 = =
p = m− 1 ( =

m− 1 < p < m = (

In particular, we see that p = m− 1 is another critical exponent: u� can be approximated
by smooth maps weakly in W 1,m−1 but not strongly.

The fact that H1,p
s (Bm, Sm−1) 6= W 1,p(Bm, Sm−1) for m − 1 ≤ p < m can be

checked by using a degree argument. Here is a proof for m = 3 and 2 ≤ p < 3. Let
ωS2 := j∗(y1dy2 ∧ dy3 + y2dy3 ∧ dy1 + y3dy1 ∧ dy2) be the volume form on S2 (j
is the embedding S2 ⊂ R3). Let χ ∈ C∞(B3,R) be a function which depends only on
r = |x|, such that χ(1) = 0 (i.e. χ = 0 on ∂B3) and χ(0) = −1. Assume that there
exists a sequence (uk)k∈N of functions in C2(B3, S2) such that uk → u� strongly in
W 1,2(B3, S2). Then since u∗kωS2 is quadratic in the first derivatives of u,

∫
B3 dχ∧u∗kωS2

converges to
∫
B3 dχ ∧ u∗�ωS2 =

∫ 1

0
4π(dχ/dr)dr = 4π. On the other hand, since uk is

smooth, d (u∗kωS2) = u∗k(dωS2) = 0 and so

0 =
∫
∂B3

χu∗kωS2 =
∫
B3
d (χu∗kωS2) =

∫
B3
dχ ∧ u∗kωS2 .

Hence we also deduce that
∫
B3 dχ ∧ u∗kωS2 → 0, a contradiction. In §5.4 another proof is

given for p = 2.
In fact, a nice characterization of H1,2

s (B3, S2) was given by Bethuel [10] in terms
of the pull-back of the volume form ωS2 on S2: a map u ∈ W 1,2(B3, S2) can be ap-
proximated by smooth maps in the strong W 1,2-topology if and only if d(u∗ωS2) = 0
(see also §5.4 for more results about u∗ωS2 .) This may be generalized to some situations
(see [11]) but not all: indeed it is not clear whether such a cohomological criterion can
be found to recognize maps in H1,3

s (B4, S2) — for example, the singular map defined by
hC
�(x) = HC(x/|x|), where HC : S3 −→ S2 is the Hopf fibration, is in W 1,3(B4, S2)

but not in H1,3
s (B4, S2) — see [110] for more details on this delicate situation.

The role of the topology of M and N . We have seen that, when N = Sn, the
topology of N may cause obstructions to the density of smooth maps in W 1,p(M,N ).
The first general statement in this direction is due to F. Bethuel and X. Zheng [17] and
Bethuel [12] in terms of the [p]-th homotopy group of N ; namely, forM = Bm we have

if 1 < p < m, then H1,p
s (Bm,N ) = W 1,p(Bm,N ) ⇐⇒ π[p](N ) = 0.

However, for an arbitrary manifold M, the condition that π[p](N ) = 0 is not sufficient
to ensure that H1,p

s (M,N ) = W 1,p(M,N ), in general. This was pointed out in [102].
An example is the map v� ∈ W 1,2(RP 4,RP 3) defined by v�[x0 : x1 : x2 : x3 : x4] =
[x1 : x2 : x3 : x4], with a singularity at [1 : 0 : 0 : 0 : 0]; there is no way to remove this
singularity14, so, there is no sequence of smooth maps converging weakly to v� . Hence
H1,2
w (RP 4,RP 3) 6= W 1,2(RP 4,RP 3), although π2(RP 3) = 0. A result due to P. Hajłasz

[96] is valid for an arbitrary manifoldM:

if 1 ≤ p < m, then π1(N ) = · · · = π[p](N ) = 0 =⇒ H1,p
s (M,N ) = W 1,p(M,N ).

14In contrast with the map u� ∈ W 1,2(B4, S3) where the topological singularity can be moved to the
boundary with an arbitrary low energy cost.
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The general result is due to F. B. Hang and F. H. Lin [102] and, in the case where M
has no boundary, is the following. First we say thatM satisfies the k-extension property
with respect to N if, for any CW complex structure (Xj)j∈N on M and for any f ∈
C0(Xk+1,N ), the restriction f |Xk of f on Xk has a continuous extension toM. Then, if
1 < p < m, we have [102]:

H1,p
s (M,N ) = W 1,p(M,N )⇐⇒

{
π[p](N ) = 0 andM satisfies
the [p− 1]-extension property with respect to N .

The case when p is not an integer. The identity between H1,p
s (Bm, Sm−1) and

H1,p
w (Bm, Sm−1) for p 6= m− 1 is actually a particular case of a general phenomenon, as

shown by Bethuel [12]: for any domainM⊂M and for any compact manifold N ,

if p > 1 is not an integer, then H1,p
s (M,N ) = H1,p

w (M,N ).

The case when p is an integer. The question left open is, in cases where
H1,p
s (M,N ) ( W 1,p(M,N ), to characterize the intermediate space H1,p

w (M,N ). A
first answer was given in [12] for maps into the sphere:

if p ∈ N satisfies p < m, then H1,p
s (Bm, Sp) ( H1,p

w (Bm, Sp) = W 1,p(Bm, Sp).

A generalization was proved by P. Hajłasz in [96]:

if p ∈ N satisfies p < m,

then π1(N ) = · · · = πp−1(N ) = 0 =⇒ H1,p
w (M,N ) = W 1,p(M,N ).

And the following further result was obtained by M. R. Pakzad and T. Rivière [162]:

for p = 2, π1(N ) = 0 =⇒ H1,2
w (M,N ) = W 1,2(M,N ).

For more general situations, assuming that M has no boundary, a necessary condition
for a map to be in H1,p

w (M,N ) was found by F. B. Hang and F. H. Lin in [102]: they
proved that if u ∈ H1,p

w (M,N ) then u],[p]−1(h) is extendible toM with respect to N .
The precise definition of u],[p]−1(h) is delicate: roughly speaking, by using ideas of B.
White (see [226, 227] and §3.3), it is possible to define the homotopy class u],[p]−1(h) of
the restriction of a map u ∈ H1,p

w (M,N ) to a generic ([p] − 1)-skeleton of a rectilinear
cell decomposition h of M. Furthermore Hang and Lin in [102] conjectured15 that this
condition is also a sufficient one, i.e., that if u ∈W 1,p(M,N ) and u],[p]−1(h) is extendible
toMwith respect toN , then u ∈ H1,p

w (M,N ). In [101] Hang proved that this conjecture
is true for p = 2.

Note that in the special case p = 1, Hang proved that H1,1
s (M,N ) = H1,1

w (M,N )
[100].

3.3 The topology of W 1,p(M,N )

The motivation for understanding the topology of W 1,p(M,N ) is to adapt the direct
method of the calculus of variations to find a harmonic map in a homotopy class of maps
betweenM and N , i.e., by minimizing the energy in this homotopy class.

15They proved this conjecture for maps inRk,pw (M,N ).
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Some difficulties are illustrated by the following question16 [66]: What is the infimum
of the energy in the homotopy class of the identity map Id : Sm −→ Sm ?

• if m = 1, Id is minimizing and all minimizers in its homotopy class are rotations.
• if m ≥ 3, the infimum of the energy is 0. Indeed, consider, for example, the

family of conformal Möbius maps Tλ : Sm −→ Sm for λ ∈ R defined by
Tλ(y) = (coshλ + y1 sinhλ)−1(sinhλ + y1 coshλ, y2, · · · , ym); for all λ ∈ R,
Tλ is homotopic to the identity (actually T0 equals the identity map) but as λ goes
to +∞, ESm(Tλ) tends to zero and Tλ converges strongly to a constant map.
• the intermediate casem = 2 corresponds to the critical dimension; then all the maps
Tλ have the same energy, are conformal harmonic, and minimize the energy in their
homotopy class, but Tλ converges weakly to a constant map17 as λ → +∞. One
then speaks of a bubbling phenomenon, see §5.3.

Prescribing the action on the first homotopy group. The first positive result in these
directions was in the case m = dimM = 2 and ∂M = ∅ studied by R. Schoen and S.T.
Yau [193]. Let γ be a smooth immersed path inM and u ∈ W 1,2(M,N ); in general the
’restriction’ u ◦ γ of u to γ is not continuous (just in W

1
2 ,2) but one can prove that, if we

change γ to a generic path γ̃ which is homotopic to γ, then u ◦ γ̃ is continuous.

(i) First, we use the following observation18: for any map f ∈W 1,2(S1 × (0, 1),RN ),
the map (θ, s) 7−→ |df(θ, s)|2 is inL1(S1×(0, 1)); hence by using the Fubini–Study
theorem on S1×(0, 1) one deduces that, for a.e. s ∈ (0, 1), the map θ 7−→ |df(θ, s)|2
belongs to L1(S1), so that the restriction of f to S1×{s} is inW 1,2(S1) ⊂ C0(S1).
We apply this result to f = u ◦ Γ, where Γ ∈ C1(S1 × (0, 1),M) parametrizes a
strip composed of parallel paths γs := Γ(·, s) homotopic to the same path γ.

(ii) Second, if s1 < s2 are two values in (0, 1) such that u◦γs1 and u◦γs2 are continuous,
then we can use the existence theorem of Morrey [156] to prove that there exists a
smooth minimizing harmonic map U : S1× (s1, s2) −→ N which agrees with u◦Γ
on ∂S1× (s1, s2) = (S1×{s2})∪ (S1×{s1}). We deduce that u◦γs1 and u◦γs2
are homotopic.

This leads to the definition of the image by u of the homotopy class of γ: it is the homotopy
class of u ◦ γs, where γs is a path in the same homotopy class as γ, which is generic in the
above sense. We can thus define the induced conjugacy class of homorphisms

u]1 : π1(M) −→ π1(N ).

One can check, moreover, that this homomorphism is preserved by weak convergence in
W 1,2(M,N ), i.e., if vk converges weakly to u in W 1,2 when k → +∞, and ∀k ∈ N,
(vk)]1 = v]1 for some v ∈ C0(M,N ), then u]1 = v]1. Eventually this leads to the

16The displayed facts were noticed by C. B. Morrey.
17This is a consequence of the following observations: on the one hand by using the standard compactness

arguments we can extract a subsequence of (vk)k∈N which converges weakly in W 1,2 and a.e. to some limit v,
but on the other hand it is clear that vk converges a.e. (and more precisely pointwise on Sm \{(−1, 0, · · · , 0)})
to (1, 0, · · · , 0), so that v = (1, 0, · · · , 0). Since this argument works for any subsequence the full sequence
(vλ)λ>0 converges weakly to this constant.

18Which itself is the key ingredient of the classical Courant–Lebesgue lemma, see, for example, [88, 3.3.1].
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following existence result of Schoen and Yau [193]: assume that M is surface without
boundary. Then, for any family γ1, · · · , γk of loops in M and for any continuous map
v : M −→ M, there exists a locally energy-minimizing harmonic map in the class of
maps u ∈ W 1,2(M,N ) such that u]1([γi]) = v]1([γi]), ∀i = 1, · · · , k. This result has
been generalized to the case where the dimension ofM is arbitrary by F. Burstall [30] and
B. White [225].

Remarks (i) Note that, if πj(N ) = 0 for j ≥ 2, then the homotopy class of a continuous
map u fromM toN is completely characterized by the induced conjugacy class of homo-
morphisms u]1 : π1(M) −→ π1(N ); thus, when m = 2, the existence result of Schoen
and Yau amounts to minimizing the energy in a given homotopy class of continuous maps
betweenM and N (recall that continuous maps are then dense in W 1,2(M,N ) ).

(ii) The definition of u]1 : π1(M) −→ π1(N ) does not make sense if u ∈
W 1.p(M,N ) for 1 ≤ p < 2. Indeed, as in step (i), we still have that u ◦ γs is con-
tinuous for a generic s, but step (ii) does not work: the homotopy class of u ◦ γs can vary
as s changes (see B. White [227] or J. Rubinstein and P. Sternberg [186]).

Defining the d-homotopy class. For any d ∈ N, we say that two maps u, v ∈
C0(M,N ) are d-homotopic and we write u ∼d v if their restrictions to the d-skeleton
of a triangulation ofM are homotopic. For any map u ∈ C0(M,N ) we thus can define
the d-homotopy class [u]d := {v ∈ C0(M,N )| u ∼d v}. Observe that if u ∼d v then the
induced homomorphisms u]j , v]j : πj(M) −→ πj(N ) coincide for each 1 ≤ j ≤ d,
so that this notion extends the previous one. Actually A.I. Pluzhnikov [171] and B. White
[227] showed that it is possible to define the d-homotopy class of a map u in H1,p

s , H1,p
w

or W 1,p(M,N ) for certain ranges of values of d and p. The following table summarizes
the results proved in [227]. It gives, for each space H1,p

s , H1,p
w or W 1,p, the values of d

for which one can define the d-homotopy class of a map u in this space, and it specifies
natural topologies which preserve this d-homotopy class:

Spaces H1,p
s (M,N ) H1,p

w (M,N ) W 1,p(M,N )
Values of d for which

[u]d makes sense: N ∩ [1, p] N ∩ [1, p) N ∩ [1, p− 1]

Topology which preserves [u]d: strong W 1,p weak W 1,p weak W 1,p

The definition of [u]d for u ∈ H1,p
w (M,N ) when d < p follows from the following result

[171, 226]: if d ∈ N and d < p, then ∀K > 0, ∃ε > 0, such that if u1 and u2 are two
Lipschitz continuous maps such that ||u1||W 1,p , ||u2||W 1,p < K and ||u1 − u2||Lp < ε,
then u1 ∼d u2. Hence one can define the d-homotopy class of a given u ∈ H1,p

w (M,N )
by using any sequence of Lipschitz continuous maps (vk)k∈N which converges weakly
to u in W 1,p and setting [u]d := [vk]d for k large enough. For u ∈ H1,p

s (M,N ), the
previous argument applies also when defining [u]d if d < p; if d = p we must use a further
approximation argument.

In constrast, the definition of [u]d for u ∈ W 1,p(M,N ) and d ≤ p − 1 cannot be
obtained by using approximations by smooth maps, but must be done directly. Here the
idea consists of proving that the restriction of u on a generic d-skeleton is continuous and
that the homotopy class of this restriction is independent of the d-skeleton, following a
strategy similar to the result of Schoen and Yau. The details of the proof are, however,
more involved.
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The k-homotopy type helps to characterize the topology of the spaces H1,p
s and

W 1,p(M,N ), as follows.

Connected components of H1,p
s (M,N ). For any u ∈ H1,p

s (M,N ) denote by
[u]H1,p

s
its connected component in H1,p

s (M,N ) for the strong W 1,p-topology. The
classes [u]H1,p

s
have been characterized by A.I. Pluzhnikov [171] and B. White [226] as

follows: the connected components of H1,p
s (M,N ) are exactly the [p]-homotopy classes

inside H1,p
s (M,N ). In other words, for any u ∈ H1,p

s (M,N ), [u]H1,p
s

= [u][p].
This has the following important consequence: for any smooth map v ∈ C1(M,N ),

the infimum of the p-energy among smooth maps in the homotopy class of v depends
uniquely on the [p]-homotopy type of v. A further result is: for a smooth map v, v ∼[p] C
(where C is a constant map) if and only if the infimum of the p-energy in [v][p] is 0
[171, 226]. Note that the limit of a minimizing sequence of the p-energy in a [p]-homotopy
class [v][p] may not be in [v][p], but only in its closure for the sequential weak topology of
W 1,p in general. See the example withM = N = Sm, v = Id discussed at the beginning
of this section.

Connected components of W 1,p(M,N ). For u ∈ W 1,p(M,N ) denote by [u]W 1,p

its connected component. The study of the connected components of W 1,p(M,N ) was
initiated by H. Brezis and Y. Li [25]. Complete answers were obtained by F. B. Hang and
F. H. Lin [102] as follows:

(i) The connected components of W 1,p(M,N ) are path-connected. This is a conse-
quence of the following: ∀u ∈W 1,p(M,N ), ∃ε > 0 such that ∀v ∈W 1,p(M,N ),
if ||u − v||W 1,p < ε, then there exists U ∈ C0([0, 1],W 1,p(M,N )) such that
U(0, ·) = u and U(1, ·) = v. We write u ∼W 1,p v for this property.

(ii) the connected components of W 1,p(M,N ) are exactly the ([p] − 1)-homotopy
classes inside W 1,p(M,N ), i.e. ∀u, v,∈ W 1,p(M,N ), u ∼W 1,p v if and only if
u ∼[p]−1 v .

(iii) as p varies, the quotient space W 1,p(M,N )/ ∼W 1,p changes only for inte-
ger values of p, i.e. if [p1] = [p2] < p1 < p2 < [p1] + 1, the map
ιp2,p1 : W 1,p2(M,N )/∼W 1,p2−→ W 1,p1(M,N )/∼W 1,p1 induced by the inclu-
sion W 1,p2(M,N ) ⊂W 1,p1(M,N ) is a bijection (this was conjectured in [25]).

Result (ii) has the following corollary: a map u ∈ W 1,p(M,N ) is connected to a smooth
map by a path if and only if u],[p]−1 is extendible toM with respect to N . This implies,
in particular, the results (also proved in [25]):

• if ∀j ∈ N such that 1 ≤ j ≤ [p] − 1 we have πj(N ) = 0, then W 1,p(M,N ) is
path-connected;

• if p < m, then W 1,p(Sm,N ) is path-connected.

Concerning (iii), the change in the number of connected components of W 1,p(M,N )
when p varies can occur in two ways. Indeed, as p decreases, either connected compo-
nents coalesce together — this is, for example, the case for W 1,p(Sm, Sm): this space
has different connected components classified by the topological degree if p ≥ m and is
connected if p < m; or, contradicting a conjecture in [25], new connected components
can appear — this is the case for W 1,p(RP 3,RP 2): for p ∈ (2, 3) connected components
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appear, forming a subset of maps which cannot be connected by a path to a smooth map
(and which hence cannot be approximated by smooth maps), see [21, 102].

The degree. If dimM = dim N , the homotopy classes of maps M −→ N can
sometimes be classified by the topological degree. This is the case if, for instance, M
is connected, oriented19 and without boundary and if N = Sm (by a theorem of H.
Hopf)20. The degree for a map u ∈ C1(M, Sm) is then given by the formula deg u =(
1/|Sm|

) ∫
M det(du)ωM =

(
1/|Sm|

) ∫
Sm

u∗ωSm . We give this formula explicitly for
the case p = 2:

deg u =
1

4π

∫
M
u∗ωS2 =

1
4π

∫
M

〈
u,
∂u

∂x
× ∂u

∂y

〉
dx dy,

where (x, y) are local conformal coordinates on M. This functional, being quadratic in
the first derivatives of u, has the following continuity properties:

(i) it is continuous on C1(M, S2) for the strong and the weak W 1,p topology for all
p > 2, hence for p > 2 we can extend deg on H1,p

s (M, S2) = W 1,p(M, S2) ;
(ii) it is continuous on C1(M, S2) for the strong but not for the weak W 1,p topology

for p = 2, hence since H1,2
s (M, S2) = W 1,2(M, S2) we can extend deg on

W 1,2(M, S2), but this functional is not continuous with respect to the weak
topology;

(iii) it is not continuous on C1(M, S2) for the strong or the weak W 1,p topology for all
p < 2.

In cases (i) and (ii) (p ≥ 2), the degree functional takes integer values and, ∀k ∈ N,
deg−1(k) is a connected component of W 1,p(M, S2) for its strong topology. In case (i),
the continuity for the weak topology follows from the fact that, on the one hand, for a
sequence (uk)k∈N which converges weakly to some u in W 1,p(M, S2), fk := (∂xuk) ×
(∂yuk) converges weakly in Lp/2 to f := (∂xu) × (∂yu), because of a phenomenon of
compensated compactness, based on writing fk = ∂x (uk(∂yuk)) − ∂y (uk(∂xuk)) (see
[159, 211]). On the other hand, by the Rellich–Kondrakov theorem, we can assume that
uk → u strongly in L2p/p−2 and hence in Lp/p−2 =

(
Lp/2

)∗
. It follows that the integral∫

M〈uk, fk〉ωM converges to
∫
M〈u, f〉ωM. This delicate argument breaks down21 for

p = 2: we still have that fk converges in the weak-? topology of L1, but we cannot find,
in general, a subsequence of uk which converges strongly in L∞ (otherwise we would
have an embedding of W 1,2(M) in C0(M) ⊂ L∞(M) !). Indeed, in the case where
M = S2, the family of (degree 1) Möbius maps (Tλ)λ∈R converges weakly to a constant
map in W 1,2(S2, S2) as λ → +∞ (a bubbling phenomenon, see §5.3). Lastly (iii) can
seen by considering the family of maps (ut)t∈[0,1] from S2 to S2 defined by ut(x) =

19IfM is connected, without boundary but not oriented, the homotopy classes are classified by the degree
mod 2.

20But ifM andN are spheres with different dimensions, this is not so, for example, maps from S3 to S2 are
classified according to their Hopf degree, see [110].

21A rich interplay between cohomology and compensated compactness theory occurs here: for any smooth
function ψ ∈ C1(M) and any 2-form β on S2 which is exact, i.e., β = dα for some 1-form α, the functional
u 7−→

∫
M ψ u∗β is continuous for the weak W 1,2 topology because of the relation u∗β = d(u∗α), so that

a compensated compactness argument is possible; however, if β is closed but not exact, this argument does not
work. See [98] for a detailed study of these phenomena.
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(x− ta)/|x− ta|, where a ∈ R3 has |a| = 2; for 1 ≤ p < 2, this defines a continuous path
in W 1,p(S2, S2), which connects the smooth map u� = u0 of degree 1 to the smooth map
u1 of degree 0 (see [27, 21]).

Lastly, in [26] H. Brezis, Y. Li, P. Mironescu and L. Nirenberg defined a notion of
degree for maps u ∈ W 1,p(Sn × Λm−n, Sn), where m ≥ n and Λm−n is an open con-
nected subset of Rm−n, assuming that p ≥ n+ 1 (note that, in the special case m = n, the
condition p ≥ n is enough). In the case n = 1, we recover from this result the conclusions
of [30, 227, 186]. Furthermore, two maps u and v in W 1,p(Sn × Λm−n, Sn) are in the
same connected component if and only if deg f = deg g (see [26, 21]). See [27] for further
results concerning the degree.

3.4 The trace of Sobolev maps

For any domain Ω ⊂ Rm with smooth boundary and for any p ∈ [1,+∞), the trace oper-
ator tr : C1(Ω,RN ) −→ C1(∂Ω,RN ) can be extended to a continuous and surjective oper-
ator tr : W 1,p(Ω,RN ) −→ W 1− 1

p ,p(∂Ω,RN ) :=
{
g ∈ Lp(∂Ω,RN )| ||g||

W
1− 1

p
,p

(∂Ω)
<

+∞
}

if p > 1, where:

||g||
W

1− 1
p
,p

(∂Ω)
:= ||g||Lp(∂Ω) +

(∫
∂Ω

∫
∂Ω

|g(x)− g(y)|p

|x− y|p+m−2
dx dy

)1/p
.

(If p = 1, the image of the trace operator is L1(∂Ω,RN ) .) This definition can be extended
to the case of a manifold M with a smooth boundary, by using local charts to define
W 1− 1

p ,p(∂M,RN ) and the trace operator tr : W 1,p(M,RN ) −→ W 1− 1
p ,p(∂M,RN ).

Similarly the trace tru of a map u ∈W 1,p(M,N ) is always contained in:

W 1− 1
p ,p(∂M,N ) :=

{
g ∈W 1− 1

p ,p(∂M,RN )| g(x) ∈ N , for a.e. x ∈ ∂M
}
.

However, the map tr : W 1,p(M,N ) −→ W 1− 1
p ,p(∂M,N ) is not onto in gen-

eral, i.e., it is not true in general that any map g ∈ W 1− 1
p ,p(∂M,N ) is the

trace of a map in W 1,p(M,N ). Obstructions occur even for continuous maps:
for instance, the trace operator tr : C1(Bm,N ) −→ C1(∂Bm,N ) is onto if and
only if πm−1(N ) = 0. In the following we define T p(∂M,N ) :=

{
g ∈

W 1− 1
p ,p(∂M,N )| ∃u ∈ W 1,p(M,N ) such that u|∂M = g

}
. The question whether

T p(∂M,N ) = W 1− 1
p ,p(∂M,N ) for givenM, N and p is largely open. Here are some

results:

• If p ≥ m, F. Bethuel and F. Demengel [16] proved that T p(∂M,N ) =
W 1− 1

p ,p(∂M,N ) if and only if any continuous map g ∈ C0(∂M,N ) can be
extended to a map u ∈ C0(M,N ).

• For 1 ≤ p < m, R. Hardt and F. H. Lin [107] proved that

if π1(N ) = · · · = π[p]−1(N ) = 0, then T p(∂M,N ) = W 1− 1
p ,p(∂M,N ) .

• Conversely Bethuel and Demengel [16] proved that, if 1 ≤ p < m,
then π[p]−1(N ) = 0 is a necessary condition for having T p(∂M,N ) =
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W 1− 1
p ,p(∂M,N ). Moreover, they proved that, if 1 < p < m, then, for any N

such that πj(N ) 6= 0 for some integer j ≤ [p] − 1, one can construct a manifold
with boundaryM such that T p(∂M,N ) 6= W 1− 1

p ,p(∂M,N ).

Furthermore it is proved in [16] that, in the case where M = Bm and N = S1, if
3 ≤ p < m then T p(∂Bm, S1) 6= W 1− 1

p ,p(∂Bm, S1). For more results on fractional
Sobolev spaces into S1, see the report of P. Mironescu [155] or the papers [20, 183].

4 Regularity

4.1 Regularity of continuous weakly harmonic maps

Note that as soon as we know that a (weakly) harmonic map φ is continuous, then we can
localize its image, i.e. by restricting φ to a sufficiently small ball in M we can assume
that the image of φ is contained in an arbitrary small subset of N with good convexity
properties or with a convenient coordinate system. Thus the main results concern the
higher regularity of continuous weakly harmonic maps. The hard step here is to prove
that the weak solution φ is Lischiptz continuous, i.e. that dφ is bounded a.e.22. This was
proved by O. Ladyzhenskaya, N. Ural’tseva in [143] in a more general context, by using
contributions of C. B. Morrey [157], a proof can be found in [135]. In [189], a proof is
given in the case when the weakly harmonic map is Hölder continuous. Estimates of the
Hölder norms of higher derivatives of φ in terms of |dφ| were obtained by J. Jost and H.
Karcher [136] for harmonic maps with values in a geodesically convex ball: on such balls
they construct and use almost linear functions (which are based on harmonic coordinates,
in which the Hölder norm of Christoffel symbols are bounded in terms of the curvature).

4.2 Regularity results in dimension two

If dimM = 2 and N can be embedded isometrically in some Euclidean space, all
weakly harmonic maps in W 1,2(M,N ) are continuous and hence, by the results of
§4.1, smooth. This was proved first for minimizing maps by C. B. Morrey [156] (see also
[88, p. 304] for an exposition of the original proof of Morrey).

This was extended to conformal weakly harmonic maps by M. Grüter [92] (see
also [133]). Grüter’s proof works also for conformal weak solutions of the H-system
∆gu + A(u)(du, du) = 2H(u)(∂u/∂x1 × ∂u/∂x2) in an oriented 3-dimensional mani-
fold N , where H(u) is a L∞ bounded function on N . Conformal solutions to this prob-
lem parametrize surfaces with prescribed mean curvature H . The proof in [92] uses the
conformality assumption in an essential way. Then R. Schoen [189] proved that all sta-
tionary maps on a surface are smooth. The proof is based on the following trick. Let
u ∈ W 1,2(M,N ) be a stationary map; since the Hopf differential H is holomorphic (see
§3.1), either it vanishes everywhere and then u is conformal and we apply directly the re-
sult of Grüter, or H = h(dz)2 vanishes only at isolated points. If so, outside the zeros of h

22Once we know that dφ ∈ L∞loc, it then follows from (25) that ∆φ ∈ L∞loc, which implies by standard
estimates on the inverse of the Laplacian (see [157], 6.2.5) that φ ∈ W 2,p

loc , for all p < ∞. Hence we deduce
that ∆φ ∈ W 1,p

loc and hence that φ ∈ W 3,p
loc for all p > 0. We can then repeat this argument to show that

φ ∈W r,p
loc , ∀r and so the smoothness of the solution follows (it is called a bootstrap argument).
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we can locally define the harmonic function f(z) := Re
(
2i
∫ z
z0

√
h(ζ)dζ

)
. Then the map

U := (u, f) with values inN ×R is weakly harmonic and conformal and hence is smooth.
Thus u is smooth outside the zeros of h, and hence is smooth everywhere by the result of
J. Sacks and K. Uhlenbeck [188] (see §5.3).

The regularity of weakly harmonic maps on a surface in the general case was proved
by F. Hélein, first in the special case where N = Sn [113], and then in the case where
N is an arbitrary compact Riemannian manifold without boundary [116]. The proof for
N = Sn is simpler and relies on a previous work by H. Wente [221] on the solutions
X ∈W 1,2(B2,R3) on the unit ball23 of R2 of the H-system

∆X = 2H
∂X

∂x
× ∂X

∂y
, (34)

for a constant H 6= 0. Wente proved that any weak solution of this system is continuous
and hence, thanks again to the general theory of quasilinear elliptic systems, smooth. It is
based on the special structure of (34) which reads, for example for the first component of
X , ∆X1 = 2H{X2, X3}, where we introduce the notation

{a, b} :=
∂a

∂x

∂b

∂y
− ∂a

∂y

∂b

∂x
for a, b ∈W 1,2(Ω), where Ω ⊂ R2.

Since {a, b} is quadratic in the first derivatives of a and b, it sits naturally in L1(B2). Also,
we know from the standard theory of singular integrals that, for any function f ∈ L1(B2),
a solution ψ of −∆ψ = f is necessarily in all spaces Lploc(B

2), for 1 ≤ p < ∞, but fails
to be in L∞(B2). Here the key result is that a solution ϕ of the equation −∆ϕ = {a, b}
on B2 is slightly more regular; in particular, we can locally estimate the L∞ norm of ϕ
in terms of ||a||W 1,2 and ||b||W 1,2 . This is due to the special structure of {a, b}, which
is a Jacobian determinant, and is connected to the theory of compensated compactness
[159, 211]. These properties were expressed by H. Brezis and J.-M. Coron [23] as a Wente
inequality,

||ϕ||L∞ + ||dϕ||L2 ≤ C||a||W 1,2 ||a||W 1,2 , (35)

valid for any solution ϕ of −∆ϕ = {a, b} on B2 which satisfies ϕ = 0 on ∂B2. This
inequality was subsequently extended to arbitrary surfaces and the best constants for esti-
mating ||ϕ||L∞ or ||dϕ||L2 were found, see [118]. The point here is that, once we have (35),
we can easily deduce, by approximating by smooth maps, that solutions to−∆ϕ = {a, b}
are continuous. Hence the result of Wente follows.

For harmonic maps the key observation is that a u is weakly harmonic if and only if the
following conservation laws hold

d
(
?(uiduj − ujdui)

)
= 0 ∀ i, j such that 1 ≤ i, j ≤ n+ 1, (36)

where ? is the Hodge operator on B2. This was remarked and exploited for evolution
problems [41, 197]. One can either check (36) directly by using (26) or derive it as a
consequence of Noether’s theorem, due to the invariance of the Dirichlet functional under

23Since the regularity problem is local, and every ball in a Riemannian surface is conformally equivalent to
the Euclidean ball B2, there is no loss of generality in working on B2.
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the action of SO(n+1) onW 1,2(Ω, Sn) [118]. From (36) we deduce that there exist maps
bij ∈ W 1,2(Ω) such that dbij = − ? (uiduj − ujdui). Then we note that ∆bijdx ∧ dy =
d(?(dbij)) = d(uiduj − ujdui) = 2{ui, uj}dx ∧ dy so that, by a Hodge decomposition
of dbij and by using Wente inequality, we can deduce the continuity of u. This was the
approach in [113]. A more direct proof24 is the following: since 2〈u, du〉 = d(|u|2) = 0,
we can rewrite the harmonic map equation (26) as

−∆ui = ui|du|2 =
(
ui
∂uj
∂x
− uj

∂ui

∂x

)
∂uj

∂x
+
(
ui
∂uj
∂y
− uj

∂ui

∂y

)
∂uj

∂y
= {bij , uj} ,

(37)

where, as usual we sum over repeated indices, ui := δiju
j and we have used the relation

dbij = − ? (uiduj − ujdui). Note that an alternative way to write (37) is

d(?dui) + dbij ∧ duj = 0. (38)

We deduce that u is continuous. This method can be extended without difficulty if we
replace the target Sn by any homogeneous manifold N , since then Noether’s theorem
provides us with the conservation laws that we need [114].

In the case where N has no symmetry we need to refine the results on the quantities
{a, b}. In [45] R. Coifman, P.-L. Lions, Y. Meyer and S. Semmes proved that, if a, b ∈
W 1,2(R2) then {a, b} belongs to the generalized Hardy space H1(R2). We do not give
here the various and slightly complicated definitions of the Hardy space H1(Rm), which
was introduced by E. Stein and G. Weiss [206], but just list useful properties of it:

a) H1(Rm) is a strict subspace of L1(Rm);
b) any function ϕ on Ω ⊂ Rm such that ∆ϕ = f on Ω, where f ∈ H1(Rm), belongs

to W 2,1(Ω), i.e. its second partial derivatives are integrable [205];
c) let α ∈ W 1,2(Rm) and β be a closed (in the distribution sense) (m − 1)-form

on Rm with coefficients in L2(Rm); then dα ∧ β = f dx1 ∧ · · · ∧ dxm, where
f belongs toH1(Rm) [45]. In particular, if a, b ∈W 1,2(R2) then {a, b} ∈ H1(R2);

d) by a theorem of C. Fefferman [72],H1(Rm) is the dual space of VMO(Rm) and the
dual space ofH1(Rm) is BMO(Rm) (see footnote 13).

Now we come back to the regularity problem. We now assume that there exists a smooth
section ẽ := (ẽ1, . . . , ẽn) of the bundle F of orthonormal tangent frames on N . Al-
though there are topological obstructions, there are ways to reduce to this situation, see
[118]. For any map u ∈ W 1,2(B2,N ), consider the pull-back bundle u∗F . To any
R ∈ W 1,2(B2, SO(n)) we associate the section e := ẽ ◦ u · R of u∗F defined by
ea := (ẽb ◦u)Rba, and we minimize over all gauge transformationsR ∈W 1,2(B2, SO(n))
the functional F (e) := 1

4

∫
B2

∑
1≤a,b≤n |ωba|2dx1dx2, where ωba := 〈dea, eb〉. It is easy

to show that the infimum is achieved for some harmonic section e of u∗F [118, Lemma
4.1.3]. The Euler–Lagrange equation satisfied by e can be written as a system of conserva-
tion laws (again a consequence of Noether’s theorem):

d
(
?ωba

)
= 0 on Ω and ωba (∂n) = 0 on ∂Ω , (39)

24This was pointed out by P.-L Lions.



Frédéric Hélein and John C. Wood 445

which is satisfied by its Maurer–Cartan form ωba := 〈dea, eb〉. Thanks to (39), we can
construct maps Aba ∈ W 1,2(B2) such that dAba = ?ωba on B2 and Aba = 0 on ∂B2. Then
the key observation is that

∆Aba =
〈
∂ea
∂x

,
∂eb
∂y

〉
−
〈
∂ea
∂y

,
∂eb
∂x

〉
=

N∑
i=1

{eia, eib} , (40)

where (eia(x))1≤i≤N are the coordinates of ea(x) ∈ Tu(x)N ⊂ RN in a fixed orthonormal
basis of RN . Hence the right hand side of (40) coincides locally with some function in
H1(R2), thanks to property c) of Hardy spaces above. Hence by property b), the second
derivatives of Aba are locally integrable. This property implies that the components of dAba
are in the Lorentz space L2,1, a slight improvement on L2 [118]. But since dAba = ?ωba ,
this improvement is valid also for the connection ωba .

Lastly, consider a weakly harmonic map u ∈ W 1,2(B2,N ) and write its Euler–
Lagrange equation (25) in the moving frame e: if we set αa := 〈∂u/∂z, ea〉 and
θab := ωba(∂/∂z), we obtain ∂αa/∂z = θabα

b. In this equation, αa is in L2 whereas,
thanks to the choice of a Coulomb moving frame e, the function θab is in L2,1. This slight
improvement turns out to be enough to conclude that u is Lipschitz continuous.

Recently T. Rivière [184] proved the regularity of all maps u ∈ W 1,2(B2,N ) which
are critical points of the functional F (u) := 1

2

∫
B2 |du|2dxdy +

∫
B2 u

∗ω, where ω is a
C1 differential 2-form on N such that the coefficients of dω are in L∞(N ). This answers
positively conjectures of E. Heinz and S. Hildebrandt. The method provides, in particular,
an alternative proof of the regularity of weakly harmonic maps with values in an arbitrary
manifold without Coulomb moving frames. Instead, it relies on constructing conservation
laws, as for maps into the sphere, but without symmetry. First, let us try to imitate equation
(38) for a weakly harmonic map into an arbitrary compact manifold N . We let A ∈
Γ(S2T ∗N ⊗ NN ) be the second fundamental form of the embedding M ⊂ RN . For
y ∈ N denote by Aijk(y) the components of Ay in a fixed orthonormal basis (ε1, · · · , εN )
of RN , i.e., Ay(X,Y ) = Aijk(y)XjY kεi (X,Y ∈ TyN ). Then we can write the Euler–
Lagrange equation (25) for u as

d(?dui)− (?Aikj(u) duk) ∧ duj = 0.

But since A takes values in the normal bundle, we have
∑N
j=1A

j
ki(u)duj = 0, so that we

can transform the previous equation into

d(?dui)− (?Ωij) ∧ duj = 0 where Ωij := Aikj(u) duk −Ajki(u) duk. (41)

If we compare with (38), which can also be written d(?dui)−(?(uiduj−ujdui))∧duj =
0, we see that (38) is a particular case of (41), where Ωij = uiduj − ujdui. The difference
is that we do not have d(?Ωij) = 0 in general. But both forms are skew-symmetric in (i, j).
And that property is actually enough. The idea is to substitute for ?dui another quantity,
of the form Aij(?du

i), where Aij ∈W 1,2(B2). A computation using (41) shows that

d
(
Aij(?du

j)
)

= − ?
(
dAij −AikΩkj

)
∧ duj .

Hence if we assume that we can find maps A := (Aij)1≤i,j≤N , B := (Bij)1≤i,j≤N ∈
W 1,2(B2,M(N,R)) such that A is invertible with a bounded inverse and

?
(
dAij −AikΩkj

)
= dBij , (42)
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then we obtain an equation similar to (38), i.e.,

d
(
Aij(?du

j)
)

+ dBij ∧ duj = d
(
Aij(?du

j) +Bijdu
j
)

= 0. (43)

Then formulation (43) allows us to prove the continuity of u easily: we use the Hodge
decomposition: Aijdu

j = dDi
j − ?dEij for some functions Di

j , E
i
j ∈ W 1,2(B2), then

we deduce d(?dEij) = −dAij ∧ duj , i.e. −∆Eij = {Aij , uj} from the definition of Eij
and so we obtain d(?dDi

j) = −dBij ∧ duj , i.e. −∆Di
j = {Bij , uj} from (43). Hence,

from properties b) and c) of Hardy spaces, we deduce that the first derivatives of Di
j and

Eij are in the Lorentz space L2,1; since A has a bounded inverse, it follows that the first
derivatives of u are also in L2,1. Thus u is continuous. To complete the proof one needs
to prove the existence of A and B solving (42). For that purpose Rivière adapts a re-
sult of K. Uhlenbeck [217] to first prove the existence of some gauge transformation map
P ∈W 1,2(B2, SO(N)) such that ΩP := P−1dP +P−1ΩP satisfies the Coulomb gauge
condition d(?ΩP ) = 0. This implies, in particular, that P−1dP + P−1ΩP = ?dξ, for
some map ξ ∈ W 1,2(B2, so(N)). Then by putting A := ÃP−1, equation (42) reduces to
dÃ− Ã(?dξ) + (?dB)P = 0, a linear elliptic system in Ã and B, which can be solved by
a fixed point argument.

4.3 Regularity results in dimension greater than two

Preliminary facts

If m := dimM ≥ 3, weakly harmonic maps in W 1,2(M,N ) will not be regular in
general and may even be completely discontinuous as shown by the result of T. Rivière
(see §5.4), unlessN has some convexity properties (see §6.3). But partial regularity results
hold for minimizing or stationary maps. Indeed we are able, in general, to prove that such
maps are smooth outside a closed subset Σ that we will call the singular set. The size
of Σ is estimated in terms of some Hausdorff dimension and corresponding Hausdorff
measure. Fix some s ∈ [0,m]. For any covering of Σ by a countable union of balls
(Bmj )j∈J of radius rj , consider the quantity Hs((Bmj )j∈J ,Σ) := α(s)

∑
j∈J r

s
j , where

α(s) = 2π
s
2 /sΓ( s2 ): this measures approximately the s-dimensional volume of Σ. The

s-dimensional Hausdorff measure of Σ is:

Hs(Σ) := sup
δ>0

inf
rj<δ
Hs
(
(Bmj )j∈J ,Σ

)
(in the infimum, (Bmj )j∈J is such that Σ ⊂ ∪j∈JBmj ).

Then there exists some d ∈ [0,m] such that ∀s ∈ [0, d), Hs(Σ) = 0 and ∀s ∈ (d,m],
Hs(Σ) = +∞. If Hd(Σ) is finite, d is called the Hausdorff dimension of Σ. In the
special case when Σ is a smooth submanifold of dimension k, then d = k and Hd(Σ)
coincides with the d-dimensional volume of Σ.

Furthermore it is useful to analyze the first consequences of the Euler–Lagrange equa-
tion (25) and the conservation law for the stress-energy tensor (29) concerning the regular-
ity of a weak solution u ∈ W 1,2(M,N ). Equation (25) implies that the components of
∆gu are in L1(M), from which one can deduce that the first derivatives of u are locally
in Lp for 1 ≤ p < m/(m− 1), which has no interest. However, the conservation law (29)
immediately provides the following strong improvement to the regularity of u.
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The monotonicity formula. Given a map u ∈ W 1,2(M,N ); to each x ∈ M and
r > 0 such that the geodesic ball B(x, r) is contained inM, we associate the quantity

Ex,r(u) :=
1

rm−2

∫
B(x,r)

|du|2gωg.

Now let B(a, r) ⊂ M be a geodesic ball centred at a and of radius r > 0 such that
the distance from a to its cut locus and to ∂M is greated than r. Then there exist con-
stants C (depending on m) and Λ (depending on a bound of the curvature on B(a, r))
such that, if u ∈ W 1,2(M,N ) satisfies the relation (29), then for all x ∈ B(a, r/2) the
function (0, r/2] 3 ρ 7−→ eCΛρEx,ρ(u) is non-decreasing [231]. If the metric onM is flat
this holds with Λ = 0 and this can be proved by integrating over Bm(x0, r) the relation
(∂/∂xα)

(
(xβ − xβ0 )Sαβ (u)

)
= Sαα(u) = 1

2 (m− 2)|du|2g , a consequence of (29). We then
get an identity from which we derive:

for 0 < r1 < r2, Ex,r2(u)−Ex,r1(u) =
2

rm−2

∫
Bm(x,r2)\Bm(x,r1)

∣∣∣∣∂u∂n
∣∣∣∣2 dmx ≥ 0,

(44)

where ∂u/∂n denotes the normal derivative of u. The monotonicity formula has strong
consequences; for simplicity, we expound these in the case where (M, g) is flat25. First,
elementary geometric reasoning shows that, for γ ∈ (0, 1), Ex0,r(u) controls Ex,γr(u) for
x ∈ Bm(x0, (1−γ)r) and hence, by (44), Ex0,r(u) controlsEx,ρ(u) for x ∈ Bm(x0, (1−
γ)r) and ρ ≤ γr. Then, by a Poincaré–Sobolev inequality:

1
ρm

∫
Bm(r,ρ)

|u−ux,ρ|2 dx ≤ C Ex,ρ(u), with ux,ρ :=
1

|Bm(x, ρ)|

∫
Bm(x,ρ)

u dx,

we deduce a bound on sup
{
ρ−m

∫
Bm(r,ρ)

|u−ux,ρ|2 dx | x ∈ Bm(x0, (1−γ)r), ρ ≤ γr
}

,
i.e., roughly speaking, on the local BMO-norm of u onBm(x0, (1−γ)r). The BMO space
(see footnote 13) contains all the spaces Lp, for 1 ≤ p < ∞, and hence is very close to
L∞. Thus this is an important gain of regularity.

The ε-regularity. Our task is to put together consequences of (25) and (29) in order to
improve the preceding observations. The (continuous) main step in most regularity results
consists of showing that there exists some ε0 > 0 such that for any weak solution u (for a
suitable notion of ‘weak’), ifEa,r(u) < ε0, then, for 0 < σ < ρ such that ρ/r is sufficiently
small and for x ∈M close to a,

Ex,σ(u) ≤ C
(
σ

ρ

)α
Ex,ρ(u) (45)

for some constants C > 0 and α > 0. If this is true, we are in a position to apply the
Dirichlet growth theorem of Morrey (see [157, 83]), which implies that u is Hölder contin-
uous with exponent α/2 in a neighbourhood of a. This method is the reason for the partial
regularity: a covering argument shows that, if Σ := {a ∈ M| limr→0 inf Ea,r(u) ≥ ε0}

25Since in the regularity theory we are interested in the local properties of weak solutions, the effect of the
curvature ofM can be neglected.
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had a non-vanishing (m − 2)-dimensional measure, u would have infinite energy, hence
Hm−2(Σ) = 0 by contradiction. The continuous main step itself can be achieved by prov-
ing a discrete version of it: there exists some ε0 > 0 and some τ ∈ (0, 1) such that, for any
weak solution u (here again we stay vague), if Ex,r(u) < ε0, then

Ex,τr(u) ≤ 1
2
Ex,r(u). (46)

Indeed, by using this result at several scales and concatenating them, one easily deduces
(45).

A first attempt. We now describe in a naive way an attempt to prove the discrete
main step (46). First, we observe that, if u is defined on Bm(a, r), then the map Ta,ru
defined by Ta,ru(x) := u(rx + a) is defined on Bm := Bm(0, 1) and, furthermore,
E0,1(Ta,ru) = Ea,r(u), which shows that one can work without loss of generality with a
map u ∈ W 1,2(Bm,N ). So our aim is to prove that E0,τ (u) ≤ 1

2E0,1(u) for some τ > 0
under some smallness assumption on E0,1(u). We split u = v + w, where v agrees with
u on ∂Bm and is harmonic with values in RN ⊃ N , and w vanishes on ∂Bm and has
∆w = ∆u = −A(u)(du, du). Then, for τ ∈ (0, 1),

E0,τ (u) =
1

τm−2

∫
Bm(0,τ)

|du|2dmx

≤ 2
τm−2

∫
Bm(0,τ)

|dv|2dmx+
2

τm−2

∫
Bm(0,τ)

|dw|2dmx.

We now estimate separately each term on the right hand side. On the one hand, since v is
harmonic, |dv|2 is a subharmonic function (see Section 1) and hence

2
τm−2

∫
Bm(0,τ)

|dv|2dmx ≤ 2
τm−2

τm
∫
Bm(0,1)

|dv|2dmx ≤ 2τ2E0,1(u). (47)

On the other hand, we have∫
Bm(0,τ)

|dw|2dmx ≤
∫
Bm(0,1)

|dw|2dmx

=
∫
∂Bm(0,1)

〈
w,

∂w

∂n

〉
dmx−

∫
Bm(0,1)

〈
w,∆w

〉
dmx,

which implies, since w = 0 on ∂Bm,
2

τm−2

∫
Bm(0,τ)

|dw|2dmx ≤ 2
τm−2

∫
Bm(0,1)

〈
u− v,A(u)(du, du)

〉
dmx. (48)

We see from (47) that, by choosing τ sufficiently small, the contribution of v inE0,τ (u) can
be as small as we want in comparison toE0,1(u). Hence the difficulty in proving (46) lies in
estimating the right-hand side of (48). We may write

∫
Bm(0,1)

〈u−v,A(u)(du, du)〉dmx ≤
C supBm(0,1) |u − v|

∫
Bm(0,1)

|du|2dmx = C supBm(0,1) |u − v|E0,1(u) and, by using
the maximum principle for v we can estimate supBm(0,1) |u − v| in terms of a bound
oscBm(0,1)u := supx,y∈Bm(0,1) |u(x) − u(y)| on the oscillation of u on Bm(0, 1). How-
ever, we have no estimate on these oscillations but only on the mean oscillation, hence
our attempt failed. Anyway, we see that we are in a borderline situation since, again, an
estimate in BMO space is close to an L∞ estimate. The following partial regularity results
can be obtained by filling this gap between BMO and L∞.
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Regularity of minimizing maps in dimension greater than two

For minimizing maps, partial regularity results were obtained by R. Schoen and K. Uhlen-
beck [190] (and also by M. Giaquinta and E. Giusti [84, 85] under the assumption that the
image is contained a a single coordinate chart): let u ∈ W 1,2(M,N ) be a minimizing
weakly harmonic map, then there exists a closed singular set Σ ⊂ M such that u is
Hölder continuous onM\ Σ andHm−3(Σ) <∞. This is proved in two steps:

(i) first, one shows that a minimizing map u is smooth outside a singular set Σ such
thatHm−2(Σ) = 0;

(ii) then, one shows that, near a point x0 ∈ Σ, the minimizing map u behaves asymptot-
ically like a homogeneous map, so that, in particular, the singular set looks asymp-
totically like a cone centred at x0. This forces a reduction of the dimension of Σ.

Step (i) [190, 84] relies on the ideas expounded in the previous paragraph, since a min-
imizing map is automatically stationary. A key observation is that, if we have a local BMO
bound on a stationary map u, then we can approximate u locally by a smooth map u(h)

(where h > 0 is small) with values in RN ⊃ N , and the estimate on the mean oscillation
of u becomes an estimate on the oscillations of u(h). Thus the previous attempt works if
we replace u by u(h) (with suitable adaptations), leading to an estimate of E0,τ (u(h)) in
terms of E0,1(u). Since, again, u has small local mean oscillation, we can compose u(h)

with a projection onto N to get a smooth map uh with values in N which approximates
u, and then deduce an estimate for E0,τ (uh) in terms of E0,1(u). But we are interested
in estimating E0,τ (u), and here we use the fact that u is a minimizer: by a delicate gluing
process we construct a test function Uh which agrees with u on ∂Bm(0, 2τ) and coincides
with uh in Bm(0, τ), and we obtain (46) by comparing the energy of u and the energy of
Uh on suitable balls.

Step (ii) [190, 85] is inspired by a similar work by H. Federer [71]. It is based on the
analysis of a blow-up sequence (uk)k∈N of minimizing maps centred at a point a in the
singular set Σ. Each uk ∈ W 1,2(Bm,N ) is defined by uk(x) := u(a + rkx), for some
decreasing sequence (rk)k∈N which converges to 0. It is not difficult to prove that, after
extraction of a subsequence if necessary, (uk)k∈N converges weakly in W 1,2 to a map
ua ∈ W 1,2(B3,N ), called the tangent map at a. However, one can prove that, actually,
(uk)k∈N converges strongly in W 1,2 to ua and that ua is weakly harmonic26. Hence we
can pass to the limit in (44) and deduce that ∂ua/∂n = 0, i.e., ua is homogeneous.

Remarks (i) A variant of the proof of step (i) has been proposed by S. Luckhaus [151],
with applications to a much larger class of functionals on maps with values in manifolds.
Also, in the special case N = S2, simpler proofs are available: by R. Hardt, D. Kinder-
lehrer and F. H. Lin [105], and by Y. Chen and Lin [42].

(ii) In step (ii) it is not clear a priori whether the tangent map ua at a singularity a
depends on the choice of the blow-up sequence (uk)k∈N . It is actually a deep and difficult
question. L. Simon [198] (see also [199] for simplifications) proved that if N is real
analytic, for any map u ∈ W 1,2(M,N ) which is a minimizer and is singular at a ∈ M,
if the tangent map ua is smooth outside 0, then this tangent map is unique. In constrast, B.
White [228] constructed a harmonic map into a smooth non-analytic Riemannian manifold
with a one-parameter family of tangent maps having an isolated singularity at the same

26ua is actually minimizing, as shown by S. Luckhaus [152].
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point, hence proving that the analyticity assumption in the result of Simon is crucial. See
the survey by Hardt [103] for a discussion of these questions.

Reduction of the singular set. These results can be improved if we assume some
further conditions on N : for instance, if N is non-negatively curved or if the image of
a minimizing map is contained in a geodesically convex ball, then minimizing maps are
smooth (see §6.3). Optimal examples of such convex targets are the compact subsets of
Sn+ := {y ∈ Rn+1| yn+1 > 0}. These examples are close to the borderline case where
the target is Sn+ := {y ∈ Rn+1| yn+1 ≥ 0}, since minimizing maps into Sn+ may not be
smooth (see §6.2). In order to estimate the size of the critical set outside these situations,
one possible approach is to try to classify the minimizing tangent maps u ∈W 1,2(Bm,N ),
i.e. maps of the form u(x) = ψ(x/|x|), where ψ : Sm−1 −→ N . This relies on proving
kinds of Bernstein theorems for minimizing tangent maps into N . These questions have
been investigated by R. Schoen and K. Uhlenbeck [192] and M. Giaquinta and J. Souček
[89] in two cases:

(i) in the limit case, whereN = Sn+: a minimizing map u ∈W 1,2(M, Sn+) is smooth
if n ≤ 6 and has a closed singular set of Hausdorff dimension less or equal to
n− 7 for n ≥ 7 [192, 89]. This is based on results in [120, 126] (see also §6.3).

(ii) beyond the limit case, ifN = Sn: a minimizing map u ∈W 1,2(M, Sn) is smooth
if m := dimM≤ m(n), where m(n) is given by the following table [192]:

n 2 3 4 5 6 7 8 9 [10,∞)
m(n) 2 3 3 3 4 4 5 5 6

See also §6.2. Lastly, extra results on reduction of the singular set were proved for station-
ary maps by F. H. Lin and, in particular, are valid for minimizing maps, see below.

The structure of the singular set. The singular set Σ has a simple structure in di-
mension 3, since then it is composed of isolated point. However, in higher dimensions,
Σ has a positive Hausdorff dimension in general and the analysis of its regularity requires
the use of techniques from geometric measure theory. For maps u in W 1,2(B4, S2) R.
Hardt and F. H. Lin [108] proved that the singular set Σ of a minimizer in W 1,2(B4, S2)
with a smooth trace on ∂B4 is the union of a finite set and of finitely many Hölder conti-
nous closed curves with only finitely many crossings. For more general situations L. Simon
[200] proved that if N is compact and real analytic, for any minimizer u ∈ W 1,2(M,N )
with singular set Σ and any ball B ⊂ M, Σ ∩ B is the union of a finite pairwise disjoint
collection of locally (m− 3)-rectifiable locally compact sets.27 See [103] for a survey; see
also the book of Simon [201].

Minimizing maps from the unit ball B3 to S2. H. Brezis, J.-M. Coron et E. H.
Lieb [24] found further results in the special case M = B3 ⊂ R3 and N = S2. They
prove that a minimizing harmonic map can only have singularities of degree ±1; more
precisely, the only homogeneous minimizing maps B3 3 x 7−→ ψ(x/|x|) ∈ S2 are of
the form ψ(x/|x|) = ±Rx/|x|, where R ∈ SO(3) is a rotation (similar results holds
for N = RP 2). The minimality of the radial projection u�(x) = x/|x| is obtained
by establishing the lower bound EB3(u) ≥ EN3(u�) = 4π for any minimizing map

27More can be said when all Jacobi fields along (i.e., infinitesimal deformations of) the harmonic maps are
integrable, i.e., come from genuine deformations through harmonic maps, see [200, 201, 145].
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u ∈ W 1,2
u� (B3, S2), by using the following idea. By the partial regularity result [190] any

such map u is smooth outside a finite singular set {a1, · · · , ap} with respective degrees
{d1, · · · , dp}. Then, from the local inequality 1

2 |du|
2 ≥ |u∗ωS2 |, which holds a.e., one

deduces that

EB3(u) ≥
∫
B3
|u∗ωS2 | dx1dx2dx3 ≥

∫
B3
dζ∧(u∗ωS2) =

∫
∂B3

ζ u∗ωS2−
∫
B3
ζ d(u∗ωS2)

for all ζ ∈ Lip(Ω) such that |∇ζ|L∞ ≤ 1. But the condition: u = u� on ∂B3 implies
that

∫
∂B3 ζu

∗ωS2 =
∫
∂B3 ζωS2 . Furthermore, by using d(u∗ωS2) =

∑p
i=1 diδai (see also

§5.4 and (53)), we finally get

EB3(u) ≥ sup
ζ∈Lip(Ω),|∇ζ|L∞≤1

(∫
∂B3

ζ ωS2 −
p∑
i=1

di ζ(ai)
)
.

Then the proof can be reduced to an optimization problem on the set of configurations of
the type {(a1, d1), · · · , (ap, dp)}, which can be solved by adapting a theorem of Birkhoff.

Still for the case of minimizing harmonic maps u from B3 to S2, F. Almgren and E.
H. Lieb [4] found a bound on the number N(u) of singularities of u: N(u) is certainly not
bounded in terms of its energy EB3(u), but it is in terms of the energy of its trace on ∂B3.
Indeed, there exists a universal constant C > 0 such that, for any ϕ ∈W 1,2(∂B3, S2),

for any u ∈W 1,2
ϕ (B3, S2) which is a minimizer of EB3 , we have N(u) ≤ CE∂B3(ϕ) .

The precise value of C is not known but examples constructed in [4] show that we must
have C ≥ 1/(4π). It is also shown that a similar result where the energy E∂B3(ϕ) is
replaced by the area covered by ϕ cannot hold.

Minimizers of the relaxed energy. The regularity of the minimizers in W 1,2(B3, S2)
of the functional EλB3 = EB3 + 4λπL (see §5.4) has been investigated by H. Brezis and F.
Bethuel [14] who proved that, if λ ∈ [0, 1), any minimizer of EλB3 is smooth on B3 \ Σ,
where H0(Σ) < ∞, i.e. Σ is a finite collection of points. The case λ = 1 corresponds
to the relaxed energy ErelB3 = EB3 + 4πL, which is harder to deal with: the only partial
regularity result that we know is due to M. Giaquinta, G. Modica and J. Souček [87, 88]
who showed that minimizers of ErelB3 are smooth on B3 \ Σ, where H1(Σ) < ∞. It is a
paradox that the regularity theory for minimizers of the relaxed energy, which was designed
for producing continuous harmonic maps, is less understood than the theory of minimizers
of the standard energy functional.

Minimizers of the p-energy. The previous results have been extended to minimizers
of the p-energy in various cases by S. Luckhaus [151], R. Hardt and F. H. Lin [107], M.
Fuchs [75, 76], and by F. H. Lin in the important paper [148].

Regularity of stationary maps in dimension greater than two

For stationary maps, we have the following partial regularity result: let u ∈ W 1,2(M,N )
be a stationary map; then there exists a closed singular set Σ ⊂ M such that u is
Hölder continuous onM\ Σ and Hm−2(Σ) = 0. This was proved by L. C. Evans [70]
in the case where N = Sn and by F. Bethuel [13] in the general case.
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The proof of Evans [70, 118, 88] is based on the discovery that the attempt expounded
above really works for maps into a sphere Sn. Recall that the difficulty was to estimate
a quantity of the type

∫
B
〈u− v,A(u)(du, du)〉 dmx and that only the mean oscillation of

u−v can be estimated in terms ofE0,1(u). However we can use the same observations as in
dimension two, i.e. write the harmonic map equation in the form d(?dui)+duj∧?(uiduj−
ujdu

i) = 0, and use the conservation law d(?(uiduj−ujdui)) = 0. This implies, by using
the property c) of Hardy spaces, thatAi(u)(du, du)dmx = ui|du|2dmx = duj∧?(uiduj−
ujdu

i) coincides locally with a function in the Hardy space H1(Rm). Thus, by property
d) of Hardy spaces, we can estimate

∫
B

〈
u − v,A(u)(du, du)

〉
dmx as a duality product

between the (local) BMO norm of u− v and the (local) Hardy norm of A(u)(du, du), and
hence complete the proof.

The proof of F. Bethuel [13, 118] uses a Coulomb moving frame (e1, · · · , en) as in
[116]. The strategy is somewhat parallel to the proof of Evans, but the realization is much
more delicate. The idea for estimating |du| on a small ball consists of using a Hodge de-
composition 〈d (ζ(u− u0,1)) , ea〉 = dwa+?dva, where u0,1 := |Bm(a, r)|−1

∫
Bm(a,r)

u

and ζ ∈ C∞c (Bm(a, r)) is a cut-off function. Then both terms in the decomposition
are estimated separately. However, because the system is not as simple as in the case
treated by Evans, we need to replace Morrey’s rescaled energy Ea,r(u) by Ma,r(u) :=
sup
{
ρ1−m ∫

Bm(x,ρ)
|du| | Bm(x, ρ) ⊂ Bm(a, r)

}
(which also controls the local bounded

mean oscillation of u).

Remarks (i) Several variants of the proof by Evans exist: one can avoid the use of the
Fefferman–Stein theorem on the duality between H1 and BMO, as done by S. Chanillo
[40], or even avoid the use of the Hardy space, as done by S.-Y. A. Chang, L. Wang and P.
C. Yang [39].

(ii) Using the conservation laws discovered by T. Rivière in [184], Rivière and M.
Struwe [185] derived a simplified proof of the result of Bethuel, without using Coulomb
moving frames.

Reduction of the singular set. The question of whether Hm−3(Σ) is finite is still
open. The reason is that the blow-up technique used by Schoen and Uhlenbeck does not
work here, since we are not able to prove that, after extracting a subsequence if necessary,
a blow-up sequence uk(x) = u(a + rkx) at a point a converges strongly when rk → 0.
Indeed we can only prove that it converges weakly. This leads to the more general question
of understanding a sequence (vk)k∈N of stationary maps which converges weakly to some
limit v: after extracting a subsequence is necessary, we can assume that the energy density
|dvk|2dmx converges weakly in the sense of Radon measures to a non-negative Radon
measure µ which can be decomposed as µ = |dv|2 +ν; the measure ν detects the defect of
strong convergence, i.e. the sequence converges strongly if and only if ν = 0. By a careful
analysis of such sequences, F. H. Lin [147] proved that the singular support28 Γ of µ is
a rectifiable subset with a finite (m − 2)-dimensional Hausdorff measure. Moreover ν is
supported by Γ and, more precisely, is equal to the (m−2)-dimensional measure supported
by Γ times an Hm−2-measurable density Θ(x). This result is optimal as shown by the
following example: assume that there exists a non-trivial harmonic map φ : S2 −→ N
and, for any λ ∈ R, let uλ ∈ C∞(B2×Bm−2,N ) be defined by uλ(x, y) = φ◦P−1(λx),
where P : S2 −→ R2 is the stereographic projection (30). Then each uλ is stationary

28The singular set Γ also coincides with ∩r>0{x ∈ Bm| lim infk→∞ Ex,r(uk) ≥ ε0}.
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and |duλ|2 dmx converges weakly to a Radon measure ν supported by {0} ×Bm−2 when
λ → +∞. Moreover Lin and Rivière [149] proved that, in the case where N = Sn, for
a.e. point x ∈ Γ (in the sense of (m − 2)-dimensional measure) the density Θ(x) is a
finite sum of energies of harmonic maps from S2 to Sm (this result generalizes the identity
(49) for maps of surfaces) and, in particular, if N = S2, Θ(x) is a integer multiple of
8π. For a general target manifold, a further result by Lin [147] is that, for a given N , any
sequence of weakly converging stationary maps converges strongly (i.e. satisfies ν = 0)
if and only if there is no smooth non-constant harmonic map from S2 to N . Applying
his results to a blow-up sequence of stationary maps, Lin [147] proved that if N does not
carry any harmonic S2, then the singular set Σ of a stationary map with values in N
has Hausdorff dimension s ≤ m − 4. If, furthermore, N is real analytic, then Σ is
s-rectifiable. On the other hand a consequence of the work by Lin and Rivière [149] is
that, for a stationary map u into S2, if lim infk→∞Ex,r(u) < 8π, then u is continuous at
x.

Stationary critical points of the p-energy. A notion similar to the notion of stationary
maps for critical points of the p-energy makes sense, and the previous regularity results has
been extended to this case by L. Mou and P. Yang [158].

5 Existence methods

5.1 Existence of harmonic maps by the direct method

The general strategy for proving existence of harmonic maps consists of choosing a non-
empty class E ⊂ W 1,p(M,N ) of maps which is defined, for example, by some Dirich-
let boundary conditions or some topological constraints, and then to consider a sequence
(uk)k∈N minimizing the energy EM in E . Here we assume for simplicity that M is
compact. One can repeat the arguments given in Section 1 for the solution to the clas-
sical Dirichlet problem: since E is non-empty it contains maps of finite energy and so,
in particular, the minimizing sequence has bounded energy. Thus, there is a subsequence
(ϕ(k))k∈N ⊂ (k)k∈N such that

(
uϕ(k)

)
k∈N converges weakly in W 1,p(M,RN ) to some

map u ∈ W 1,p(M,RN ). An extra task is to check that u(x) ∈ N a.e. This is a con-
sequence of the fact that, because of the Rellich–Kondrakov theorem, the subsequence
(ϕ(k))k∈N converges strongly to u in Lp(M,RN ) for all p < 2m/(m− 2). Hence we
can extract a further subsequence (ϕ1(k))k∈N ⊂ (ϕ(k))k∈N such that

(
uϕ1(k)

)
k∈N con-

verges a.e. onM to u, by a standard result of Lebesgue theory. This implies u(x) ∈ N
a.e. onM. Hence u ∈W 1,2(M,N ). Then two cases can occur:

(i) E is closed with respect to the weak topology of W 1,2(M,N ). Then we know
that u ∈ E and, using the fact that EM is lower semi-continuous for the weak
W 1,2-topology as in the classical case (see §1), we prove that u is actually an energy
minimizing map in E , and so is weakly harmonic. In the special case when M is
two-dimensional, the classical regularity result of C. B. Morrey [156] ensures that u
is smooth. In higher dimensions, the minimizers are only partially regular, as shown
by the regularity theory of R. Schoen and K. Uhlenbeck [190] (see §4.3).

(ii) E is not closed with respect to the weak topology of W 1,2(M,N ). Then no
general argument guarantees that u ∈ E or that u is an energy minimizer.
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5.2 The direct method in a class of maps closed for the weak topology

The class E is closed with respect to the weak topology of W 1,2(M,N ) in the following
situations:

1. E is defined through Dirichlet boundary conditions, because the trace operator
given by tr : W 1,2(M,RN )−→W

1
2 ,2(∂M,RN ) is continuous for the weak topologies29.

The first application was the solution of the Plateau problem for a surface in a Riemannian
manifold by C. B. Morrey [156].

2. E is defined by prescribing the action of maps in W 1,2(M,N ) on π1(M) (see
also §3.3). The first application was the following result by L. Lemaire [144]: let M
and N be two Riemannian manifolds of dimension 2, with ∂N = ∅, and assume
that genusM ≥ 1 and genus N ≥ 1. Then any homotopy class of maps between
M and N contains a minimizing harmonic representative. In the proof of this result,
the fundamental groups π1(M) and π1(N ) are seen as the automorphisms groups of the
universal covers M̃ and Ñ of M and N , respectively. Then, to any homotopy class
represented by a map ϕ : M −→ N , we associate the class of equivariant maps ũ :
M̃ −→ Ñ such that ∀γ ∈ π1(M), ũ ◦ γ = ϕ]1(γ) ◦ ũ, and we minimize the energy
integral over a fundamental domain of M̃ in this class. This result was subsequentely
generalized by R. Schoen and S. T. Yau [193] to the case when the dimension of the target
N is arbitrary, and then to higher dimensions in [30, 225].

3. E is a family of maps which are equivariant with respect to a symmetry group.
This means that we are given a groupGwhich acts by isometries x 7−→ g·x and y 7−→ g·y,
(x ∈M, y ∈ N , g ∈ G) onM andN , respectively, and then E := {u :M−→ N| ∀g ∈
G,∀x ∈ M, u(g · x) = g · u(x)}. That a critical point under such a symmetry constraint
(assuming some extra hypotheses) is also a critical point without the symmetry constraint is
the content of a general principle by R. Palais [163]. For a discrete group this approach was
used, for example, by L. Lemaire [144] to prove the existence of harmonic maps between
a surface M without boundary of genus g ≥ 2 and the sphere S2 which are equivariant
with respect to a finite group spanned by reflections with respect to planes in R3. For
continuous groups, this principle is expounded in [64] and the regularity of equivariant
minimizing maps is studied by A. Gastel [78]. Many applications concern the reduction of
the harmonic map problem to an ODE [55, 64] or to a system in two variables [79, 80], see
§5.5.

4. N is a manifold with non-positive curvature. This improves strongly the behaviour
of minimizing sequences (see §6.3). One instance is the following result [189, Theorem
2.12]: assume that E is a homotopy class of maps between two compact manifoldsM and
N of arbitrary dimensions and that N has non-positive curvature and let v ∈ C3(M,N ).
Then there exists a harmonic map u ∈ C2(M,N ) such that u = v on ∂M and u is
homotopic to v through maps with fixed values on ∂M.

5. E is a class of diffeomorphisms between two Riemannian surfacesM and N : a
result by J. Jost and R. Schoen [137, 131] asserts that if ∂M = ∂N = ∅, ifM andN have
the same genus and if ϕ : M −→ N is a diffeomorphism, then there exists a harmonic
diffeomorphism u homotopic to ϕ which has the least energy among all diffeomorphisms

29Any linear operator between Banach spaces continuous for the strong topologies is continuous for the weak
topologies.
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homotopic to ϕ. Actually, the difficulty here is not to get the existence of the minimizer u,
but rather to prove that u is weakly harmonic, as not all first variations are allowed.

6. The target has non-empty boundary. Again this condition does not cause particu-
lar problems when finding a minimizer, but does when proving that this minimizer satisfies,
at least weakly, the harmonic maps equation, since, as in the previous example, we are not
allowed to use all first variations. However, if B is a HJW-convex ball of N (see §6.3 for
the definition), and if, for example, ∂M 6= ∅ and we fix a Dirichlet boundary condition
with values in B, then S. Hildebrandt, W. Jäger and K.-O. Widman [120] prove the exis-
tence of a minimizing solution ot the Dirichlet problem with values in B which is weakly
harmonic (in particular the image of the minimizing map does not meet ∂B). A variant
of this result was proved by J. Jost [132] in the case dimM = 2: if we fix a boundary
condition with values in a sufficiently small ball B ⊂ N and we minimize the energy with
this Dirichlet boundary condition among those maps with values inN , then the minimizer
takes values in B.

In the results [156] in 1. and [193] in 2., by further minimizing over all Dirichlet
boundary conditions which parametrizes a Jordan curve in N in the case of [156], or the
conformal structures ofM in the case of [193], the minimizing harmonic map becomes a
minimal branched immersion in the sense of §2.2.

5.3 The direct method in a class of maps not closed for the weak topology:
case dimM = 2

This case holds in situations where the definition of E relies partially or completely on the
action of maps u :M −→ N on π2(M) or on the degree of maps between two surfaces.
See also §3.2 and 3.3.

• For example, consider the case when M is the 2-dimensional ball B2 and N any
manifold such that π2(N ) is non-trivial, and choose a smooth map ϕ : B2 −→ N
which is constant on ∂B2 and covers a (non-zero) generator of π2(N ). Then, as
observed in [144], there is no minimizer in the class of maps homotopic to ϕ which
shares the same Dirichlet boundary condition. This is a consequence of the more
general result that any harmonic maps on a ball Bm which agrees with a constant
on the boundary is a constant map, proved30 by L. Lemaire [144] for m = 2.

• J. Eells and J. C. Wood [67] proved that any harmonic map of a given degree d
between two Riemannian surfacesM and N is holomorphic or antiholomorphic if
genusM + |d genus N| > 0. This implies, for example, that there is no harmonic
map of degree ±1 from a 2-torus to a 2-sphere whatever metrics they are given,
since there is no holomorphic map of degree 1 from a torus to CP 1 = S2. Hence in
particular the minimum of the energy among degree 1 (or −1) maps between a torus
and a sphere is not achieved. This last conclusion remains true if we replace the
torus by a higher genus surface, as shown by Lemaire [144] and K. Uhlenbeck inde-
pendently: a minimizing sequence necessarily converges weakly to a constant map.
Furthermore Y. Ge [82] showed that, after extracting a subsequence if necessary, the
energy density of such a sequence concentrates at one point.

30For m ≥ 3 this result was extended by J. C. Wood [230] and by H. Karcher and Wood [141].
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Bubbles

The first general analysis of the situation when dimM = 2 was done by J. Sacks and K.
Uhlenbeck [188] who addressed the question of finding harmonic maps inside a homotopy
class E of maps between a surfaceMwithout boundary and an arbitrary compact manifold
N . One of the reasons why E is not closed with respect to the weak topology, in general,
is the conformal invariance of the Dirichlet energy and of the harmonic maps problem
in two dimensions (see §2.2). For example, when M = S2, the group of conformal
transformations of S2 is the group of homographies

[
a b
c d

]
: z 7−→ (az+ b)/(cz+d) acting

on S2 through the stereographic projection (30). Using the action of this group, it is easy to
produce minimizing sequences in a homotopy class E of maps S2 −→ N whose weak limit
escapes from the homotopy class (see §3.3). This instability of minimizing sequences can
be cured as in [188] by working with the perturbed functionalEαM(u) :=

∫
M(1+|du|2)αµ,

for α > 1 which is not conformally invariant anymore (here µ := ωg/
∫
M ωg is an area

2-form of total integral 1), and then letting α → 1. However a more serious difficulty is
the following: imagine that π2(N ) has at least two generators γ1, γ2 and that, for instance,
we know that there exist minimizing harmonic maps u1, u2 : S2 −→ N where u1 (resp.
u2) is a representative of γ1 (resp. γ2). Then it may happen that there is no minimizer in
the class γ1 + γ2: indeed maps in a minimizing sequence could look asymptotically like a
map covering the image of u1 in a neighbourhood of some point p1 ∈ S2 and the image of
u2 in a neighbourhood of another point p2 ∈ S2 (two bubbles), all the other points of S2

(inside a domain conformally equivalent to a long cylinder) being mapped harmonically to
a geodesic connecting a point of u1(S2) to a point u2(S2) (a neck). Then the limit may be
either u1 or u2 (up to the composition with some conformal map of S2) or a constant map
(mapping S2 to a point of the geodesic), depending how randomly the instability effects
of the conformal group acts. Again by replacing an arbitrary minimizing sequence by a
sequence (uα)α>1 of minimizers of EαM in E we can possibly avoid the instability effects
of the conformal group, but we cannot avoid the possible bubblings, i.e. prevent the limit
u of (uα)α>1 as α→ 1 escaping from E in general.

J. Sacks and K. Uhlenbeck prove the following results [188]. They first establish that,
if α > 1, the functional EαM achieves its minimum in each connected component of
W 1,2α(M,N ) at a smooth map uα which satisfies the (elliptic) Euler–Lagrange equation
of EαM. Then they prove three basic results:

(i) The main estimate. There exists ε > 0 and α0 > 1 such that, for any geodesic
ball B ⊂ M, any map u : B −→ N with E2

B(u) < ε which is a smooth
critical point of EαM for some α ∈ [1, α0), we have a uniform family of estimates
||du||W 1,p(B′) ≤ C(p,B′)||du||L2(B) for any p ∈ (1,∞) and any smaller disk
B′ ⊂ B.

(ii) The removability of isolated singularities for weakly harmonic maps. This
says that, for any map u ∈ W 1,2(M,N ), and any finite family of points
{z1, · · · , zk} ⊂ M such that u is smooth and harmonic onM\{z1, · · · , zk}, there
exists a smooth extension of u toM which is harmonic.

(iii) An energy gap. ∃ε > 0, ∃α0 > 1 such that for any map u ∈ W 1,2(M,N ) which
is a critical point of EαM for some α ∈ [1, α0), if EM(u) < ε, then u is constant.

Note that the proofs of (ii) and (iii) use (i). Thanks to the main estimate and a covering
argument, Sacks and Uhlenbeck prove that a subsequence of the family ofEαM-minimizers



Frédéric Hélein and John C. Wood 457

(uα)α>1 converges to some map u ∈ W 1,2(M,N ) in the weak W 1,2 topology and in
C1(M\{z1, · · · , zk},N ), where {z1, · · · , zk} is a finite collection of points ofM where
possible bubblings occur. Then, by the result of removability of isolated singularities (ii),
we deduce that u extends to a smooth harmonic map. However nothing guarantees that
this map is non-constant. On the other hand, an analysis of the behaviour of uα near the
bubbling points zj reveals that, if |duα| is not bounded in a neighbourhood of zj , then we
can find a subsequence of maps vj,α : B2(0, Rα) −→ N (where limα→1Rα = +∞),
defined by vj,α(x) = uα(expxα(λαx)), where (xα) is a sequence of points ofM which
converges to zj and limα→1 λα = 0, such that for any ball B2(0, R) ⊂ R2, the restriction
of vj,α to B2(0, R) converges in C1(B2(0, R)) to the restriction to B2(0, R) of some
map vj as α → 1, and vj : R2 −→ N is a harmonic map of finite energy. Since R2 is
conformally equivalent to S2 minus a point and thanks again to the removability of isolated
singularities result, we can extend vj to a harmonic map S2 −→ N (moreover we know
that any harmonic map on S2 is conformal, i.e. holomorphic or antiholomorphic, see §2.2).
Hence we can picture the limit of uα as the collection of harmonic maps u : M −→ N
and vj : S2 −→ N , for 1 ≤ j ≤ k, with the extra (lost) information that the image of each
map vj is connected by a geodesic to the point u(zj) (a so-called bubble tree). We have
moreover31:

EM(u) +
k∑
j=1

ES2(vj) = lim
α→1

supE(uα). (49)

By using this analysis and the energy gap property, Sacks and Uhlenbeck deduce the
following results:
• if π2(N ) = 0, or if we minimize in a conjugacy class of homomorphisms
π1(M) −→ π1(N ), the maps uα converge strongly to u, hence u is a minimizer of
the energy in the same class as uα. We thus recover the results of L. Lemaire [144]
or R. Schoen and S. T. Yau [193]. Here the conclusion is achieved by constructing
test maps ûα which coincide with uα away from the bubbling points and with
the weak limit u near the bubbling points: because of the topological hypotheses,
ûα is in the same topological class as uα and hence we can exploit the inequality
Eα(uα) ≤ Eα(ûα).

• if π2(N ) 6= 0, chooseM = S2 and a non-trivial free 2-homotopy class Γ of N , i.e.
a connected component of C1(S2,N ) which does not contain the constant maps.
Then either γ contains a minimizing harmonic map or, for all δ > 0, there
exists non-trivial free 2-homotopy classes Γ1 and Γ2 such that Γ ⊂ Γ1 + Γ2 and
infv∈Γ1 EM(v) + infv∈Γ2 EM(v) < infv∈ΓEM(v) + δ.

• if π2(N ) 6= 0 and M = S2, there exist a set of free homotopy classes Λ =
{Γi| i ∈ I} ⊂ π0C1(S2,N ) which forms a generating set for π2(N ) under the
action32 of π1(N ) such that each Γi ∈ Λ contains a minimizing harmonic map.

Note that the last result implies that there exists a non-trivial harmonic map S2 −→ N
as soon as π2(N ) 6= 0. The second result can be translated into the following: if π2(N ) 6=

31Sacks and Uhlenbeck just proved the inequality ≤ in (49); the equality in (49) was established by J. Jost
[132] and T. H. Parker [164].

32The set π0C1(S2,N ) of free homotopy classes can be identified with the set of orbits of the natural action
of π1(N ) on π2(N ).
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0,M = S2 and Γ is a non-trivial free 2-homotopy class of N , then if there exists δ > 0
such that, for any non-trivial free 2-homotopy classes Γ1 and Γ2 with Γ ⊂ Γ1 + Γ2 we
have

inf
v∈Γ

EM(v) ≤ inf
v∈Γ1

EM(v) + inf
v∈Γ2

EM(v)− δ , (50)

then the minimum of EM is achieved in Γ. This important property is connected with a
similar observation made previously by T. Aubin for the Yamabe problem [5] and with
further subsequent developments like the results by C. Taubes [212] for the Yang–Mills
connections on a 4-dimensional manifold or the concentration compactness principle of
P.-L. Lions [150].

Remarks (i) An alternative analysis with improvements to the understanding of the
bubbling phenomenon have been obtained by J. Jost [130, 131, 133] by using a method
reminiscent of the balayage technique of H. Poincaré.

(ii) Further refinements to the analysis of bubbling were made by T. H. Parker [164] by
using the notion of bubble tree, which was introduced previously by Parker and J. Wolfson
in the study of pseudo-holomorphic curves, and by W. Y. Ding and G. Tian [58]. The heat
flow equation also provides another approach, which was used by M. Struwe to recover the
theory of Sacks and Uhlenbeck (see below).

(iii) The influence of bubbling phenomena is not confined to harmonic maps of sur-
faces, but plays a major role in the existence theory of harmonic maps in higher dimen-
sions, as expounded in §5.4, and in regularity theory (see the results on reduction of the
singular set of stationary maps in §4.3).

Applications of the theory of bubbling

In some cases a precise analysis to decide whether (50) holds is possible: this was done
first by H. Brezis and J.-M. Coron [22] and J. Jost [131] independently. We set M =
B2, the unit ball in R2, and N = S2 and we let γ ∈ T 2(∂B2, S2) := the set of maps
γ : ∂B2 −→ S2 such that there exists u ∈ W 1,2(B2, S2) with u|∂B2 = γ. Then the
class E := W 1,2

γ (B2, S2) := {u ∈ W 1,2(B2, S2)| u|∂B2 = γ} is non-empty and closed
for the weak W 1,2 topology. Hence application of the direct method provides us with a
smooth harmonic map u which minimizes EB2 in E . We now consider the functional on
W 1,2
γ (B2, S2) defined by

Q(u) :=
1

4π

∫
B2

〈
u ,

∂u

∂x
× ∂u

∂y

〉
d2x =

1
4π

∫
B2
u∗ωS2 .

We observe that Q takes discrete values on W 1,2
γ (B2, S2), more precisely: for all u ∈

W 1,2
γ (B2, S2), Q(u) − Q(u) ∈ Z. The geometric interpretation of this is that, if we

consider the map u]u : S2 −→ S2 defined via the identification C∪{∞} ' S2 by setting
u]u = u on B2 and (u]u)(z) = u(z/|z|2) on C \ B2, then Q(u)−Q(u) is the degree of
u]u. Then for any k ∈ Z, the classes Ek := {u ∈ E| Q(u)−Q(u) = k} are the connected
components of E for the strong W 1,2 topology. So they are the free 2-homotopy classes of
S2. But they are not closed for the weak topology; hence it is not clear whether infEkEB2

is achieved. However, one can prove that, if γ is not constant, then there exists some v ∈ E
such that |Q(v) − Q(u)| = 1 and EB2(v) < EB2(u) + 4π. But since the minimum of
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the energy in any non-trivial homotopy class of maps S2 −→ S2 is greater or equal to
4π, this shows that (50) holds, hence it follows that there is a harmonic map u which
minimizes EB2 in its homotopy class, the latter being either E1 or E−1 . Moreover,
as proved in [22], in the case when γ is the restriction of the inverse P−1 : R2 −→ S2

of stereographic projection (30) to ∂B2 ⊂ R2, the constructed solutions u and u (which
here are restrictions to B2 of stereographic projections) are the only miminizers in their
respective class and moreover there are no minimizers in the other classes.

The following generalization was obtained partially by A. Soyeur [203] and later com-
pleted by E. Kuwert [142] and J. Qing [174] independently, see also [88] for an exposition.
We first associate two degrees d− and d+ to the boundary data γ ∈ T 2(∂B2, S2): if γ has
a holomorphic (resp. antiholomorphic) extension u+ (resp. u−) inside B2 with values in
S2 ' CP we let d+ := Q(u+)−Q(u) (resp. d− := Q(u−)−Q(u)), if γ has no holomor-
phic (resp. no antiholomorphic) extension inside B2, set d+ := +∞ (resp. d− := −∞).
Note that we always have d− ≤ d+, with equality if and only if γ is a constant. Then

(i) for k ∈ Z which satisfies k ∈ (−∞, d−) ∪ (d+,∞), the minimum of EB2 is
never achieved in Ek. Furthermore if k ∈ (−∞, d−] ∪ [d+,∞), infEk EB2 =
infEd± EB2 + 4π|k − d±|, where d± = d− if k ≤ d− and d± = d+ if k ≥ d+ (so
that, in particular, (50) does not hold);

(ii) for all k ∈ Z such that d− ≤ k ≤ d+, the minimum of EB2 is achieved in Ek .

Similar results have been obtained by Qing [176] for maps with values in a Kähler mani-
fold.

The heat flow

Observe that, in the method of J. Sacks and K. Uhlenbeck, the family of minimizers
(uα)α>1 of EαM produces particular minimizing sequences for EM as α → 1. One of
the advantages of this is that, not only does it help to balance the instability due to the
action of the conformal group, but it also gives us some control of the tension field (25).
Another natural way to control the tension field for a minimizing sequence is to consider
the heat flow equation:

∂u

∂t
= ∆gu+ gijAu

( ∂u
∂xi

,
∂u

∂xj

)
on [0, T )×M. (51)

The study of this equation was initiated in [66, 1, 99] in the case when the curvature of
the target manifold N is non-positive (see §6.3). If we remove this hypothesis, the first
results33 were obtained by M. Struwe [207], for the case when dimM = 2 and ∂M = ∅:

33Following the result of Struwe [207], further results on the heat flow when dimM ≥ 3 and with no
assumption on the curvature of N were obtained: the first existence results were obtained by Y. M. Chen [41]
for M arbitrary and N = Sn, and by Struwe [208] for M = Rm and N an arbitrary compact manifold.
By putting together their ideas, Chen and Struwe [43] obtained the following existence result: for any map
u0 ∈ W 1,2(M,N ), there exists a weak solution to the heat flow equation defined for all time and with Cauchy
data u0, i.e. coinciding with u0 at t = 0. This solution is regular outside a singular set which has locally finite
m-dimensional Hausdorff measure with respect to the parabolic metric. Then J.-M. Coron and J.-M. Ghidaglia
[50] produced the first examples of weak solutions which blow up at finite time, hence proving that there are no
classical solutions in general and Coron [49] built an example of Cauchy data for which there are infinitely many
weak solutions to the heat flow equation (actually the Cauchy data is a weakly harmonic map). Later on, similar
blow-up and non-uniqueness results were proved for the heat flow on surfaces (see the next paragraph).
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for any u0 ∈ W 1,2(M,N ), there exists a global weak solution u : [0,∞) ×M −→ N
of the heat equation (51) which satisfies the energy decay estimate:

EM(u(T, ·)) +
∫ T

0

∫
M

∣∣∣∂u
∂t

∣∣∣2ωgdt ≤ EM(u0), ∀T > 0 (52)

and which is smooth outside finitely many singular points (tj , xj)1≤j≤k. The solution is
unique in this class. Moreover, at each singularity (tj , xj), a harmonic sphere vj bubbles
off, i.e. there exists a sequence (t`,j , x`,j)`∈N which converges to (tj , xj) (with t`,j <
tj) such that u`,j(x) := u(t`,j , expx`,j (λ`,jx)) converges to vj in W 2,2

loc (R2,N ), where
(λ`,j)`∈N is a sequence of positive numbers such that lim`→∞ λ`,j = 0. The map vj can
then be extended to a smooth harmonic map S2 −→ N . Lastly, there exists a sequence
(T`)`∈N of times such that lim`→∞ T` = ∞ and u(T`, ·) converges weakly in W 1,2 to a
smooth harmonic map u∞ : M −→ N as ` → ∞. This result was extended to the case
when ∂M 6= ∅ by K. C. Chang [37]. These results can be used to recover similar results
to those of Sacks and Uhlenbeck, see for example the last chapter of the book of Struwe
[209].

The question of whether the solutions to the heat flow equation in two dimensions
really develop singularities remained open for some time until K. C. Chang, W. Ding,
R. Ye [38] constructed an example of an initial condition u0 : S2 −→ S2 for which
the heat flow does blow up in finite time. Note that the inequality in the estimate (52)
would be straighforward if the solution were smooth (just multiply the heat equation by
u and integrate). Actually the left-hand side of (52) is smooth outside the blow up times
(tj)1≤j≤k. In [177] J. Qing proved that, at these bubbling points, the discontinuity of
this left-hand side is just equal to minus the sum of the energies of the harmonic spheres vj
which separate, i.e., there is no energy loss in the necks connecting u∞ (the ‘body’ map) to
the vj’s (the ‘bubble’ maps). He further proved that, if at some time t there are p harmonic
spheres vj1 , · · · vjp bubbling off, then λ`,i/λ`,j+λ`,j/λ`,i+ |x`,j−x`,i|2/(λ`,iλ`,j)→∞
as ` → ∞ for i, j ∈ {j1, · · · , jp} such that i 6= j; roughly speaking, this means that each
bubble decouples from the other ones in distance or in scale. The analysis of what is
happening in the necks was further refined in [178, 215]. In [213] P. Topping proved that
if M = N = S2 and if one assumes the hypothesis (H): u∞ and the vj’s are either
all holomorphic or all antiholomorphic, then u(t, ·) converges uniformly in time as t→∞
strongly in Lp(S2,R3) and inW 1,2(S2\{x1, · · · , xk}). The latter result depends strongly
on the fact that the target is S2 (see [213]).

The uniqueness of weak solutions to (51) was proved by A. Freire [74], under the
further assumption that EM(u(t, ·)) is a non-increasing function of t. But, in [214], P.
Topping constructed solutions of the heat flow from a surface to S2 which are different
from Struwe’s solution, hence proving the non-uniqueness of weak solutions to equa-
tion (51), in general. The point, however, is that Topping’s solutions are obtained by
attaching bubbles, i.e. have the reverse behaviour of Struwe’s solutions, so that the energy
EM(u(t, ·)) increases by a jump of 4π each time a bubble is attached.

Lastly, in [215], P. Topping performed a very fine analysis of almost-harmonic maps
from S2 to S2, i.e. maps u ∈ W 1,2(S2, S2) such that the L2 norm of the tension field
τ(u) = ∆S2u + |du|2u is small. Recall that, if τ(u) = 0, then u is harmonic and hence
either holomorphic or antiholomorphic, so that its energy is 4π times its degree in Z. P.
Topping proved that this quantization of the energy remains true for almost-harmonic maps
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and more precisely establishes the estimate: |ES2(u)− 4πk| ≤ C||τ(u)||2L2(S2) (for some
k ∈ Z), for all u in W 1,2(S2, S2) except for some exceptional special cases. This allows
him to recover the same conclusions as in [213] concerning the convergence in time and
the uniqueness of the location of the singularities of the heat flow, but without assuming the
hypothesis (H) above. These results are strong in the sense that an almost-harmonic map
u may have, for example, a holomorphic body with anti-holomorphic bubbles attached,
and then u is not close to a harmonic map in the W 1,2(S2) topology. To deal with such
cases, Topping established an estimate asserting the existence of a repulsive effect between
holomorphic and antiholomorphic components of a bubble tree.

5.4 The direct method in a class of maps not closed for the weak topology:
case dimM≥ 3

Some cases where the class E ⊂ W 1,2(M,N ) chosen for the minimization of EM is
not weakly closed have already been described in §3.3. We will here mainly discuss other
situations, starting from the work of H. Brezis, J.-M. Coron and E. H. Lieb [24].

Prescribing singularities

We begin with an example. Let Ω ⊂ R3 and a ∈ Ω; we will choose a subset E of
C1(Ω \ {a}, S2) ∩W 1,2(Ω, S2). Note that C1(Ω \ {a}, S2) ∩W 1,2(Ω, S2) contains the
map ua defined by ua(x) = (x− a)/|x− a| (which is even weakly harmonic). Moreover,
for each sphere S2

a,r = ∂B3(a, r) centred on a which is contained in Ω, the restriction of
ua to S2

a,r has degree 1. Let us fix

E :=
{
u ∈ C1(Ω \ {a}, S2) ∩W 1,2(Ω, S2) | deg u|S2

a,r
= 1, for S2

a,r ⊂ Ω
}
.

Then, in some sense, the minimization of EΩ in E extends the problem of minimizing the
energy among maps between surfaces of a given degree (see §5.3). Indeed, as shown in
[24], after the extraction of a subsequence if necessary, a minimizing sequence (uk)k∈N of
EΩ in E converges weakly to a constant map c, in all cases except if Ω is a ball centred at
a. If we assume, for simplicity, that there exists an unique line segment [a, b] which joins a
to the nearest point in ∂Ω (i.e., such that b ∈ ∂Ω and d(a, ∂Ω) = |b−a|) then uk converges
strongly to c on Ω \ Vε[a, b], where Vε[a, b] is a neighbourhood of [a, b]. Furthermore, the
restriction of uk to a sphere S2

a,r will be almost constant outside the intersection of S2
a,r

with Vε[a, b], whereas it will almost conformally cover the target S2 on S2
a,r ∩ Vε[a, b].

Hence a line of bubbles separates from uk along [a, b]. Lastly, the infimum of the energy,
infu∈E EΩ(u), is precisely 4π|b−a|, i.e. the area of S2 times the length of the line segment.
A similar situation, arises if we have a dipole as introduced in [24]. Here we assume that

E :=
{
u ∈ C1(Ω \ {p, n}, S2) ∩W 1,2(Ω, S2) | deg u|S2

p,r
= 1,

deg u|S2
n,r

= −1 for S2
p,r, S

2
n,r ⊂ Ω

}
,

where p, n ∈ B3 are two distinct points. Then, a minimizing sequence in the class E
converges to a constant outside a neighbourhood of the line segment [p, n], and its energy
concentrates along [p, n].
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Actually, a more general situation was considered in [24]: let {a1, · · · , ap} ⊂ Ω ⊂ R3

be an arbitrary finite collection of points of Ω ⊂ R3 and d1, · · · , dp ∈ Z. Then set

E :=
{
u ∈ C1(Ω \ {a1, · · · , ap}, S2) ∩W 1,2(Ω, S2) | ∀ i = 1, · · · , p,

deg u|S2
ai,r

= di, for S2
ai,r ⊂ Ω

}
.

In order to describe the behaviour of a minimizing sequence in E we need to define the
notion of a minimal connection as introduced in [24]. For simplicity, we will assume that
Ω = B3 := B3(0, 1) and that the total degree Q :=

∑p
i=1 di is zero. First, call the points

ai such that di > 0 (resp. di < 0) positive (resp. negative) (points ai such that di = 0
do not play any role in the following, hence we can forget about them without loss of
generality). We list the positive points with each ai repeated di times and write this list as
p1, · · · , pκ. Likewise we list the negative points as n1, · · · , nκ′ . Note that κ−κ′ = Q = 0.
A connection C is then a pairing of the two lists (p1, nσ(1)), · · · , (pκ, nσ(κ)), where σ is a
permutation of {1, . . . , κ}. The length of the connection C is L(C) :=

∑κ
i=1 d(pi, nσ(i)).

Lastly, the length of the minimal connection is: L := minC L(C) and a minimal connection
is a connection C (which may not be unique) such that L(C) = L. Then the infimum34

of EB3 on E is 4πL and, if we exclude the case when {a1, · · · , ap} = ∅ or {0}, we have:

• this infimum is never achieved and, after extraction of a subsequence if necessary, a
minimizing sequence (uk)k∈N of EB3 in E converges weakly to a constant map;

• again, after extraction of a subsequence if necessary, lines of bubbles separate from
uk along a minimal connection C. More precisely, the energy density 1

2 |duk|
2 con-

verges weakly in Radon measures to a measure µ supported by a minimal connec-
tion: for all measurable A ⊂ B3, µ(A) = 4πH1(A ∩ C), where H1 is the 1-
dimensional Hausdorff measure (see §4.3 for the definition).

Moreover, the locations and degrees of the singularities of a map u ∈W 1,2(Ω, S2)∩C1(Ω\
{a1, · · · , ap}, S2) can be detected by computing the differential of the 2-form u∗ωS2 (see
§3.2), because of the relation:

d(u∗ωS2) =
( p∑
i=1

diδai

)
dx1 ∧ dx2 ∧ dx3, where δai is the Dirac mass at ai . (53)

Note that the coefficients of u∗ωS2 are in L1(Ω) and equation (53) holds in the distribution
sense, i.e.,

∫
∂B3 ζ(u∗ωS2) −

∫
B3 dζ ∧ u∗ωS2 =

∑p
i=1 diζ(ai), ∀ζ ∈ C∞(Ω). In fact,

the latter relation makes sense even if ζ belongs to the set Lip(Ω) of Lipschitz continuous
functions on Ω. This leads to an alternative (dual) formula35 for the length of the minimal

34An alternative proof of the inequality infu∈E EB3 (u) ≥ 4πL was given by F. Almgren, W. Browder and
E. H. Lieb [3] by using the coarea formula

∫
B3 (J2u)(x)dx1dx2dx3 =

∫
y∈S2 H1(u−1(y))dH2(y), valid for

a smooth map u : B3 −→ S2. HereH2 is the 2-dimensional Hausdorff measure on S2,H1 is the 1-dimensional
Hausdorff measure on a generic fibre u−1(w) of u and (J2u)(x) denotes the 2-dimensional Jacobian of u at
x. Note that the coarea formula has been extended to Sobolev mappings between manifolds by P. Hajłasz [97],
leading to another variant of the proof of the Brezis, Coron and Lieb result.

35Note that Q = 0 implies that
∫
∂B3 u

∗ωS2 = 0, so that the maximum in (54) is finite.
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connection:

L(u) = max
ζ∈Lip(Ω), |∇ζ|L∞≤1

p∑
i=1

diζ(ai)

= max
ζ∈Lip(Ω), |∇ζ|L∞≤1

{∫
∂B3

ζ(u∗ωS2)−
∫
B3
dζ ∧ u∗ωS2

}
.

(54)

But the right-hand side of (54) makes sense for an arbitrary map u ∈ W 1,2
ϕ (B3, S2),

and can be used to extend the definition of L(u) to the whole of W 1,2
ϕ (B3, S2) if the

degree of ϕ is zero. Moreover, it was proved by Bethuel, Brezis and Coron [15] that the
functional L : W 1,2

ϕ (B3, S2) −→ R is continuous for the strong W 1,2 topology. Lastly, a
result of Brezis and P. Mironescu [20, 21] asserts that, for any u ∈W 1,2(B3, S2) such that
u|∂B3 is a smooth map of degree 0, there exist two sequences (p1, p2, . . .) and (n1, n2, . . .)
of points of B3 such that

d(u∗ωS2) = 4π
∞∑
i=1

(δpi − δni) (55)

and
∑∞
i=1 |pi − ni| < ∞. Then L(u) is equal to the infimum of all sums

∑∞
i=1 |pi − ni|

such that (55) holds.
Generalizations. Similar situations occur, for instance, if we work in W 1,n(M, Sn),

where dimM≥ n+1, and we try to minimize the n-energy among maps which are smooth
outside a codimension n+1 submanifold Σ and which have prescribed degree around each
connected componen of Σ. This case was first considered by F. Almgren, W. Browder and
E. H. Lieb [3], who pointed out that the minimal connection has to be replaced by an n-area
minimizing integral current. We refer to [88, Chapter 5] for subsequent developments.

The gap phenomenon

An important and surprising observation was made by R. Hardt and F. H. Lin [106] at about
the same time: we still assume thatM = B3 and N = S2 and we let ϕ : ∂B3 −→ S2

be a smooth map of degree 0. Then C1
ϕ(B3, S2) := {u ∈ C1(B3, S2)| u = ϕ on ∂B3}

is not empty and we may consider its closure H1
ϕ,s(B

3, S2) in the strong W 1,2 topology.
Another natural class is W 1,2

ϕ (B3, S2) := {u ∈ W 1,2(B3, S2)| u = ϕ on ∂B3}. Then it
is proved in [106] that we can choose the boundary conditions ϕ such that:

inf
u∈C1

ϕ(B3,S2)
EB3(u) = inf

u∈H1
ϕ,s(B

3,S2)
EB3(u) > inf

u∈W 1,2
ϕ (B3,S2)

EB3(u) . (56)

This implies that the inclusion H1
s (B3, S2) ⊂W 1,2(B3, S2) is strict, as discussed in §3.2.

The construction of ϕ relies on ideas close to the preceding discussion: imagine that we
fix two dipoles of length ` > 0, i.e. pairs of points (p1, n1) and (p2, n2) with opposite
degrees ±1, such that |p1 − n1| = |p2 − n2| = `. Place the points p1 and n1 very
close to the north pole (0, 0, 1) of ∂B3, with p1 outside B3 but n1 inside B3, specifically,
p1 = (0, 0, 1 + `/2) and n1 = (0, 0, 1− `/2). Similarly, place p2 and n2 very close to the
south pole: p2 = (0, 0,−1 + `/2) and n2 = (0, 0,−1− `/2). This is all embedded in, say,
B3(0, 2). Now consider how a sequence of maps (vk)k∈N in W 1,2(B3(0, 2), S2) which
minimizes EB2(0,2) in the class of maps v such that d(v∗ωS2) = δp1 + δp2 − δn1 − δn2
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would look: vk is almost constant outside neighbourhoods of the line segments [p1, n1]
and [p2, n2], and the restriction of vk to a piece of surface cutting one of these segments
transversally covers S2 almost conformally. Then we take ϕ = (vk)|∂B2 for k large
enough. We observe that

(i) the degree of ϕ is equal to the sum of the degrees of the singularities n1 and p2

enclosed by ∂B3, i.e., 0 ;
(ii) infu∈W 1,2

ϕ (B3,S2)EB3(u) is certainly smaller than EB3(vk), which is of order 4π` ;
(iii) infu∈C1

ϕ(B3,S2)EB3(u) is of order 8π.

Hence, (56) follows by choosing ` sufficiently small. To prove (iii), we estimate the energy
of any map ψ ∈ C1

ϕ(B3, S2) from below as follows. For any h ∈ (−1, 1), consider
the disk Dh which is the intersection of B3 with the plane {x3 = h} and the domain
Hh := B3 ∩ {x3 < h}: its boundary ∂Hh is the union of Dh and the spherical cap Sh :=
(∂B3)∩{x3 ≤ h}. On the one hand, the restriction of ψ to Sh is almost constant except in
a small neighbourhood of the south pole, where ψ|Sh covers almost all of S2 with degree 1,
and on ∂Dh, the map ψ is nearly constant. On the other hand, since ψ is continuous inside
Hh, the degree of its restriction to ∂Hh is 0. These two facts imply that the restriction ψ|Dh
should almost cover S2 with degree−1. Hence

∫
Dh

1
2 |dψ|

2d3x ≥ |
∫
Dh

ψ∗ωS2 | ' 4π. By
integrating this inequality on h ∈ (−1, 1) we obtain (iii).

The relaxed energy

Exploiting the fact that H1
ϕ,w(B3, S2) = W 1,2

ϕ (B3, S2) (see §3.2), i.e. that ∀u ∈
W 1,2
ϕ (B3, S2) there exists a sequence (vk)k∈N of maps in C1

ϕ(B3, S2) which converges
weakly in W 1,2 to u, we can define the relaxed energy ErelΩ on W 1,2

ϕ (B3, S2) by

ErelB3 := inf
{

lim
k→∞

inf
∫
B3
|dvk|2dx1dx2dx3 | vk ∈ C1

ϕ(B3, S2), vk → u weakly in W 1,2
}
.

The following expression for ErelB3 , valid when the degree of ϕ is zero, was given by F.
Bethuel, H. Brezis and J.-M. Coron [15]:

ErelB3 (u) = EB3(u) + 4πL(u),

where L(u) is length of the the minimal connection associated to u defined by (54). A
nice theory was built by M. Giaquinta, G. Modica and J. Souček [88] in order to picture
geometrically the relaxed energy and, more generally many bubbling phenomena36. The
relaxed energy satisfies the properties (i) ∀u ∈ W 1,2

ϕ (B3, S2), ErelB3 (u) ≥ EB3(u), with
equality if u ∈ C1

ϕ(B3, S2); (ii) infu∈W 1,2
ϕ (B3,S2)E

rel
B3 (u) = infu∈C1

ϕ(B3,S2)EB3(u).
Other interesting functionals provided by interpolating between the Dirichlet energy

EB3 and the relaxed energy ErelB3 were considered in [15]: for λ ∈ R consider EλB3(u) =
EB3(u)+4λπL(u). Then first of all, ∀λ ∈ R, the critical points of EλB3 onW 1,2(B3, S2)

36The basic idea is to represent a map u between manifolds by its graph, which, in the case that u is in a
Sobolev space but not continuous, is a Cartesian current, i.e. a current in the sense of geometric measure theory
which satisfies some special conditions. In the enlarged class of Cartesian currents, we can describe precisely
what the weak limit of a minimizing sequence is, keeping track of the necks connecting the bubbles in two
dimensions, or the minimal connection in three dimensions. See [88] for a complete exposition.
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are weakly harmonic. Second, for 0 ≤ λ ≤ 1, EλB3 is lower semi-continuous. This implies
that, for 0 ≤ λ ≤ 1, the direct method can be used successfully in order to minimize EλB3

in, say, W 1,2
ϕ (B3, S2) in order to obtain a family of weakly harmonic maps with the same

boundary conditions (see the §4.3 for partial regularity results). This shows the strong non-
uniqueness of solutions for the Dirichlet problem for harmonic maps in dimensions larger
than three.

Minimizing the energy among continuous maps

In view of properties (i) and (ii) of the relaxed energy functional ErelB3 , it is tempting to use
it in order to answer the following question: given smooth boundary data ϕ : ∂B3 −→ S2

of degree 0, is there a smooth harmonic map B3 −→ S2 extending ϕ ? One strategy might
be to minimize ErelB3 over W 1,2

ϕ (B3, S2): if we think, for example, of boundary data ϕ
leading to a gap phenomenon described before, and we compare the values of the relaxed
energy for the smooth and for the singular maps that we can construct, we realize that
the gain in energy from allowing singularities is exactly cancelled by the cost due to the
length of the minimal connection. But these considerations are only heuristic up to now:
for the moment the question of whether minimizers of the relaxed energy are smooth is
completely open (see §4.3).

On the other hand a direct approach to the problem of minimizing the energy func-
tional EM in a class E of smooth maps in a given homotopy class between two arbitrary
compact manifolds without boundary M and N has been addressed by F. H. Lin [148].
He proved that if (uk)k∈N is a minimizing sequence in E , then, after extracting a sub-
sequence if necessary, uk converges weakly in W 1,2(M,N ) to a weakly harmonic map
u ∈W 1,2(M,N ) and |duk|2dmx converges weakly to the Radon measure µ = |du|2 + ν.
Moreover, u is smooth away from a closed, rectifiable set Σ and Hm−2(Σ) is bounded.
The non-negative Radon measure ν measures the defect of strong convergence: it is the
product of the (m − 2)-dimensional Hausdorff measure supported by Σ times a function
Θ on Σ which is measurable with respect to the (m− 2)-dimensional Hausdorff measure.
Lastly, for almost all x ∈ Σ, Θ(x) is equal to a finite sum of energies of harmonic
non-constant maps from S2 toN , so that he obtain a higher-dimensional analogue of the
results of Sacks and Uhlenbeck discussed in §5.3. Compare also with the results on the
reduction of the singular set of a stationary map by Lin and Rivière presented in §4.3.

Towards completely discontinuous weakly harmonic maps

A notion of relative relaxed energy was introduced by F. Bethuel, H. Brezis and J.-M.
Coron [15] as follows. Again, we fix smooth boundary data ϕ : ∂B3 −→ S2 of degree
zero and we first define our functional onR2,1

ϕ (B3, S2), the set of maps u ∈W 1,2
ϕ (B3, S2)

which are C1 outside a finite number of points (see §3.2). For a pair (u, v) of maps in
R2,1
ϕ (B3, S2) we define the length L(u, v) of the minimal connection of u relative to

v to be the length of the minimal connection connecting the singularities of u and the
singularities of v, where the singularities of v are counted with opposite degrees. By using
the definition of the length of a minimal connection given by the right-hand side of (54),
L(u, v) can be expressed as

L(u, v) = max
ζ∈Lip(Ω), |∇ζ|L∞≤1

∫
∂B3

dζ ∧ (u∗ωS2 − v∗ωS2) . (57)
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Thanks to (57), the functional L : R2,1
ϕ (B3, S2) ×R2,1

ϕ (B3, S2) −→ R can be extended
to a functional L : W 1,2

ϕ (B3, S2) ×W 1,2
ϕ (B3, S2) −→ R. It is shown in [15] that this

functional is continuous on W 1,2
ϕ (B3, S2) × W 1,2

ϕ (B3, S2) and that, for any fixed v ∈
W 1,2
ϕ (B3, S2), the functional

FB3,v(u) := EB3(u) + 4πL(u, v)

is lower semi-continuous on W 1,2
ϕ (B3, S2). Moreover, the critical points of FB3,v are

weakly harmonic. This has turned out to be a powerful tool for constructing singular
weakly harmonic maps.

First, R. Hardt, F. H. Lin and C. Poon [109] constructed weakly harmonic maps with
a finite, but arbitrary, number of prescribed singularities located on a line. In their con-
struction, they first fix a map v ∈ R2,1

ϕ (B3, S2) which is invariant by rotations around
some axis and which has dipoles of singularities along the axis of symmetry. Then they
minimize the relative relaxed energy FB3,v among all maps u ∈ W 1,2

ϕ (B3, S2) which are
also rotationally symmetric, and they show that the singular set of the minimizer is the
same as the singular set of v. This result was improved by F. Rivière [181] who considered
a sequence (vk)k∈N∗ of rotationally symmetric maps in W 1,2

ϕ (B3, S2) having more and
more singularities along the axis of symmetry and the corresponding sequence (uk)k∈N∗

of minimizers for FB3,vk among rotationally symmetric maps in W 1,2
ϕ (B3, S2). He was

able to prove that (uk)k∈N∗ converges to a weakly harmonic map having a line of singu-
larity. Lastly Rivière [182] proved that, for any non-constant map ϕ : ∂B3 −→ S2,
there exists a weakly harmonic map in W 1,2

ϕ (B3, S2) which is discontinuous every-
where in B3. This result rests on the construction of a dipole lemma: for any smooth map
w : B3(a, r) −→ S2 such that dw(a) 6= 0 and for any ρ ∈ (0, r) there exists a pair of
points (p, n) inside B3(a, ρ) and a map w̃ ∈ W 1,2(B3(a, r), S2) which is smooth outside
{p, n}, has a degree 1 singularity at p and a degree −1 singularity at n, coincides with w
in B3(a, r) \B3(a, ρ), and which satisfies

EB3(a,r)(w̃) < EB3(a,r)(w) + 4π|p− n| . (58)

That the inequality in (58) is strict37 is crucial, as in the 2-dimensional theory (see §5.3). A
second main ingredient in the proof of Rivière is the construction of a sequence (vk)k∈N∗ of
maps in R2,1

ϕ (B3, S2) having more and more singularities. Each map vk+1 is constructed
from vk by adding a dipole and using the construction of a dipole lemma in order to control
the extra cost of energy by (58). The sequence (vk)k∈N∗ also converges strongly to some
completely discontinuous map v ∈ W 1,2

ϕ (B3, S2). The last task is then to show that any
minimizer of FB3,v is completely discontinuous.

5.5 Other analytical methods for existence

Morse and Lusternik–Schnirelman theories

A general reference for the ideas in this paragraph is the book of M. Struwe [209]. One
of the first applications of these variational methods, devoted to existence proofs of non-
minimal critical points is the work by G. D. Birkhoff [18] which establishes the existence
of closed geodesics on a surface of genus 0, i.e. the image of a harmonic map of a circle,

37Note that a weaker, non-strict, analogous inequality was already obtained in [10].
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see §2.2. Extensions to higher-dimensional harmonic maps is rather difficult and most of
the known results concern the case m = 2.

In [188] J. Sacks and K. Uhlenbeck addressed the study of both minimizing (see §5.3)
and non-minimizing harmonic maps from a surface without boundary M to a compact
manifold without boundary N . As for minimizing maps, they first establish the existence
of non-minimizing critical points of the functionalEαM (see §5.3) for α > 1, and then study
the behaviour of these critical points when α→ 1. The Morse theory for critical points of
EαM has better properties when α > 1, since this functional then satisfies the Palais–Smale
condition38. Let Ω(M,N ) be the space of base point preserving (continuous) maps from
M to N (i.e. we fix some points x0 ∈ M and y0 ∈ N and we consider maps which send
x0 to y0). First, Sacks and Uhlenbeck proved that if Ω(M,N ) is not contractible, then
there exist non-trivial critical points of EαM betweenM andN . This critical point is non-
minimizing if C0(M,N ) is connected. They noticed that the hypothesis that Ω(M,N ) is
not contractible is satisfied, in particular, if M = S2 and if the universal cover of N is
not contractible, since πk+2(N ) = πk(Ω(S2,N )). Second, they considered a sequence of
maps from S2 toN which are critical points ofEαM for α > 1, and study its convergence as
α → 1. The analysis is similar to the case of minimizing maps, see §5.3. They concluded
that, if the universal cover ofN is not contractible, there exists a non-trivial harmonic
map from S2 to N . These results were extended by J. Jost in [133] using a different
approach. Similar results have been obtained by Jost and Struwe [138], with applications
to the Plateau problem for surfaces of arbitrary genus. See [134] for a survey and the
papers by G. F. Wang [220] and Y. Ge [82] for recent applications to maps on a surface of
genus greater than one with values in S2.

These methods can also be applied on surfaces with boundary to construct non-
minimizing harmonic maps with prescribed Dirichlet boundary condition. An example
is the construction of saddle-point harmonic maps from the unit disc to the sphere Sn for
n ≥ 3 by V. Benci and J.-M. Coron [9]. This was extended to maps from a planar domain
bounded by several disks by W. Y. Ding [54]. Similar results has been obtained by J. Qing
[175] for maps from the unit disc to S2.

Gauss maps of constant mean curvature surfaces

An important motivation for studying harmonic maps into spheres or, more generally, into
a Grassmannian, is the result by E. A. Ruh and J. Vilms [187] on a submanifold Σ of dimen-
sion m immersed in the Euclidean space Rm+p and its Gauss map f : Σ −→ Gm(m+ p)
to the Grassmannian of oriented m-dimensional subspaces of Rm+p; this asserts that the
covariant derivative of the mean curvature vector field is equal to the tension field of its
Gauss map. In particular, an immersion in Rm+p has parallel mean curvature if and only
if its Gauss map is harmonic. Note that, if m = 2 and m + p = 3, then G2(3) ' S2.
The consequences of this fact are numerous39. For example, any construction of a mean
curvature surface in R3 provides us with a harmonic map from that surfaces to S2: con-
stant mean curvature surfaces of genus 1 (tori) were first constructed by H. Wente [222]

38The Palais–Smale condition reads: for any sequence of maps (uk)k∈N such that EαM(uk) is bounded and(
δEαM

)
uk

converges to 0, there is a subsequence which converges strongly, see [209].
39In particular, the structure of the completely integrable system for harmonic maps from a surface to S2 and

for constant mean curvature surfaces in R3 coincide locally, see Chapter 7.
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by using a delicate analysis of the sinh–Gordon equation40, later on N. Kapouleas [139]
constructed higher-genus surfaces. The method here relies on gluing together pieces of
explicitly known constant mean curvature surfaces (actually, segments of Delaunay sur-
faces) to produce, first, an approximate solution and then, by a careful use of a fixed point
theorem, an exact solution near the approximate one. Since the work of Kapouleas, a
huge variety of constructions has been done by following this strategy, see for example
[140, 153].

A recent related result is the construction by P. Collin and H. Rosenberg [47] of a
harmonic diffeomorphism from the plane R2 onto the hyperbolic disc H2. Note that E.
Heinz proved in 1952 that there is no harmonic diffeomorphism from the hyperbolic disc
H2 onto the Euclidean plane R2, and it was conjectured by R. Schoen that symmetrically
there is should be no harmonic diffeomorphism from R2 to H2 — the result of Collin and
Rosenberg contradicts this conjecture. The proof relies on constructing an entire minimal
graph in the product H2 × R which has the same conformal structure as R2. Hence,
the harmonic diffeomorphism is the restriction to this graph of the projection mapping
H2 × R −→ H2.

Ordinary differential equations

Many interesting examples of harmonic maps can be constructed by using reduction tech-
niques. One powerful construction is the join of two eigenmaps of spheres introduced by R.
T. Smith [202]: a map u : Sm −→ Sn is called an eigenmap if and only if it is a harmonic
map with a constant energy density; given two eigenmaps u1 : Sm1 −→ Sn1 and u2 :
Sm2 −→ Sn2 , and a function α : [0, π/2] −→ [0, π/2] such that α(0) = 0 and α(π/2) =
π/2, the α-join of u1 and u2 is the map u1 ∗α u2 −→ Sm1+m2+1 −→ Sn1+n2+1 defined
by (u1 ∗α u2)(x1 sin s , x2 cos s) = (u1(x1) sinα(s) , u2(x2) cosα(s)). The harmonic
map equation on u1 ∗α u2 reduces to an ordinary differential equation for α which can be
solved in many cases [202, 64, 167]. A similar ansatz is the α-Hopf construction [179]
ϕ : Sm1+m2+1 −→ Sn+1 on a harmonic bi-eigenmap f : Sm1 × Sm2 → Sn: ϕ defined
by ϕ(x1 sin s , x2 cos s) = (f(x1, x2) sinα(s) , cosα(s)). This construction leads also to
a family of new examples [64, 56, 57, 81]. Similar reductions to systems of equations in
more variables have been done [79, 80]41.

6 Other analytical properties

6.1 Uniqueness of and restrictions on harmonic maps

Uniqueness of harmonic maps in a given class of maps does not hold in general. The main
case where uniqueness holds, with general methods to prove it, is when the target manifold
satisfies strong convexity properties (see §6.3). An example of a result outside this situation
requires the smallness of the scaled energy Ex,r (see §4.3) for maps from B3 ⊂ R3 to a
compact manifold N : There exist some ε0 > 0 and a constant C = C(N ) such that, for
any boundary data g ∈ W 1,2(∂B3,N ) such that E∂B3(g) < ε0, there is a unique weakly
harmonic map u ∈W 1,2

g (B3,N ) such that supx0∈B3,r>0{r−1
∫
B3(x0,r)∩B3 |du|2d3x} <

40Since the work by Wente, a full classification of constant mean curvature tori has been obtained by using
methods of completely integrable systems, see Chapter 7.

41Harmonic morphisms can also be found by this method, see [7, Chapter 13].
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Cε0. This was proved by M. Struwe [210] by using the regularity techniques for stationary
maps in dimension greater than 2 (see §4.3).

Other restrictions on harmonic maps occur in the case whereM is a surface without
boundary and rely on methods of complex analysis (as in the result of Eells and Wood
[67], see §5.3) or on the use of twistor theory for maps from the 2-sphere and integrable
systems theory for maps from tori (see Chapter 7). See also the non-existence results
for harmonic maps on a manifold with a non-empty boundary which are constant on the
boundary [144, 230, 141] in §5.3.

6.2 Minimality of harmonic maps

A natural question is the following. Consider a weakly harmonic map u ∈ W 1,2(M,N );
then is u an energy minimizer? If the answer is yes, one of the most efficient methods to
prove it is to combine results on existence, regularity and uniqueness. Many such results
are available if N has good convexity properties; these are expounded in §6.3. Here is an
example by R. Schoen and K. Uhlenbeck [192] of a result which can be proved without
these convexity assumptions. Let Sn+ := {y ∈ Sn ⊂ Rn+1| yn+1 > 0} and u : M −→
Sn+ be a smooth harmonic map, then u is an energy minimizer among maps fromM to Sn.
The proof proceeds as follows: let Ω ⊂M be any bounded domain with smooth boundary
and apply the existence theorem of S. Hildebrandt, W. Jäger and K.-O. Widman [120]
which asserts that there exists a smooth least energy map ũ from Ω to Sn+ which agrees
with u in ∂Ω. Then, by the uniqueness result of W. Jäger and H. Kaul [126], we actually
have ũ = u on Ω. Hence, u is energy minimizing among maps with values in Sn+. Now let
v ∈W 1,2(Ω, Sn) be a map which agrees with u on ∂Ω and let v+ :=

(
v1, · · · , vn, |vn+1|

)
.

We observe that v+ ∈ W 1,2(Ω, Sn), v+ agrees with u on ∂Ω and EM(v+) = EM(v).
Actually v+ takes values in the closure Sn+ of Sn+, but it is easy to produce a continuous
family (Rε)ε≤0 of retraction maps Rε : Sn+ −→ Sn+ such that R0 = Id, the image of Rε
is contained in Sn+ if ε > 0, and limε→0EΩ(Rε ◦ v+) = EΩ(v+). Moreover since u(Ω)
is compact in Sn+, we can construct Rε in such a way that Rε ◦ v+ agrees with u on ∂Ω.
Hence, ∀ε > 0, EΩ(Rε ◦ v+) ≥ EΩ(u) which gives EΩ(v) = EΩ(v+) ≥ EΩ(u) on
letting ε → 0; the result follows. By similar reasoning, Jäger and Kaul [127] proved also
that, if u	 ∈ W 1,2(Bm, Sm) is the map defined by u	(x) = (x/|x|, 0), the minimum in
W 1,2
u	 (Bm, Sm) is achieved by (i) a smooth rotationally symmetric diffeomorphism from

Bm to Sm+ if 1 ≤ m ≤ 6, (ii) u	 if 7 ≤ m.

Another favorable circumstance for proving the minimality of a harmonic map is if the
harmonic map is a diffeomorphism. In dimension two the following result was proved by
J.-M. Coron and F. Hélein [52]. Let (M, g) and (N , h) be two Riemannian surfaces, then
any harmonic diffeomorphism u between (M, g) and (N , h) is an energy minimizer among
maps in the same homotopy class and (if ∂M 6= ∅) with the same boundary conditions.
The idea is that, thanks to the Hopf differential of u, one can construct an isometric embed-
ding (N , h) ⊂ (M, h1)× (M, h2) with two natural projections πa : (N , h) −→ (M, ha)
(for a = 1, 2) such that π1 ◦ u is harmonic conformal and hence a minimizer and π2 ◦ u is
harmonic into (M, h2). However the curvature of (M, h2) is non-positive42. Thus π2 ◦ u

42This argument does not work ifM' N ' S2 but in this case any harmonic map is conformal and hence
minimizing.
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is also a minimizer thanks to results in [2, 111] (see §6.3). Moreover u is the unique mini-
mizer if there exists a metric g2 onM of negative curvature which is conformal to g [52].
Coron and Hélein also proved the minimality of some rotationally symmetric harmonic
diffeomorphisms in dimension greater than two. These results were extended by Hélein
[112, 115], by using null Lagrangians43.

Because of the partial regularity theory of R. Schoen and K. Uhlenbeck [190] (see
§4.3), it is important to identify the homogeneous maps u in W 1,2(Bm,N ) which are
minimizing (recall that u is homogeneous if it is of the form u(x) = ψ(x/|x|)), since the
minimizing tangent maps, which model the behaviour of a minimizing map near a singu-
larity, are homogenous. Most known results concern the map us� ∈ W 1,2(Bm, Sm−s−1)
defined by us�(x, y) = x/|x|, for (x, y) ∈ Rm−s × Rs (having an s-dimensional singular
set) and, in particular, radial projection u� := u0

� ∈ W 1,2(Bm, Sm−1): for any m ≥ 3
and for any s ≥ 0, us� is a minimizer. Various proofs exist, depending on the values of
m and s:

• for s = 0 and m ≥ 7 by Jäger and Kaul [127], as a corollary of the previous results
on u	 ;

• for s = 0 and m = 3 by H. Brezis, J.-M. Coron and E. H. Lieb [24] (see §4.3) and
u� is the unique minimizer;

• for s = 0 and m ≥ 3 by F. H. Lin [146];
• for s ≥ 0 and m ≥ 3 by J.-M. Coron and R. Gulliver [51] (the general case).

The method of Lin is very short and uses a comparison of the energy functional EBm(u),
for u ∈ W 1,2

u� (Bm, Sm−1), with another functional F (u) :=
∫
Bm

u∗(dβ) =
∫
Bm

d(u∗β),
where β is the (m−1)-form onBm×R3 defined by β :=

∑
1≤i<j≤m(−1)i+j+1(yidyj−

yjdyi)∧ dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ d̂xj ∧ · · · dxm. Write u∗(dβ) = λ(du) dx1 ∧ · · · ∧ dxm.
First, from the fact that u takes values in Sm−1 a.e., we show that λ(du) ≤ (m− 2)|du|2
a.e., with equality if u = u�. Second, we obtain from Stokes’ theorem,

2(m− 2)EBm(u) ≥
∫
Bm

d(u∗β) =
∫
∂Bm

u∗β

=
∫
∂Bm

u∗�β =
∫
Bm

d(u∗�β) = 2(m − 2)EBm(u�).

The functional
∫
Bm

u∗(dβ) is an example of a null Lagrangian. Lin’s method is simi-
lar to the use of calibrations for minimal surfaces and to the argument used in equation
(6) for harmonic functions. The proof of Coron and Gulliver uses two ingredients: (i) a
representation of the energy of a map u by an integral over the Grassmannian manifold
G3(Rm−s) of 3-planes Y in Rm−s of the energies of πY ◦ u ∈ W 1,2(Bm, S2

Y ), where
πY : Sm−s−1 −→ Sm−s−1∩Y := S2

Y is the natural ‘radial’ projection and (ii) the coarea
formula 44. They also studied the maps hC

� ∈ W 1,2(B4, S2) and hH� ∈ W 1,2(B8, S4)

43The results by Coron and Hélein [52] use methods inspired from the work of Coron and R. Gulliver [51],
whereas the use of null Lagrangians for harmonic maps was introduced by F. H. Lin [146], see below.

44See footnote 34. A similar method was used by Hélein in his thesis for proving: let φ : D → N be a
submersive harmonic morphism with connected fibres from a compact domain of R3 with smooth boundary to a
Riemann surface, then φ is the unique energy minimizer amongst maps with the same boundary values. See also
[52].
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defined by hC
�(x) = HC(x/|x|) and hH�(x) = HH(x/|x|), where HC : S3 → S2 and

HH : S7 → S4 are the complex and quaternionic Hopf fibrations (see §2.3), respectively,
and they proved by similar methods that hC

� and hH� are minimizing.

6.3 Analytic properties according to the geometric structure of N

The target manifold (N , h) has non-positive Riemannian curvature

In this case, the harmonic map problem has many good convexity properties.

Existence. The first existence result was obtained by J. Eells and J. Sampson [66], and
S.I. Al’ber [1] independently through the study of the heat equation ∂φ/∂t = τ(φ) for a
map φ : [0,∞) ×M −→ N , where ∂M = ∅, with the Cauchy condition φ(0, ·) = φ0

where φ0 : M −→ N is a smooth map: ifM and N are compact there always exists a
finite time solution (i.e. defined on [0, T ]×M), but if (N , h) has non-positive curvature,
this solution can be extended for all time. Moreover the solution φ(t, ·) converges45 to a
smooth harmonic map φ when t → +∞, which is homotopic to φ0. When the boundary
∂M is non-empty and a Dirichlet condition φ(t, ·) = g on ∂M is imposed, these results
were extended by R. Hamilton [99]. The existence conclusion can be recovered by us-
ing the Leray–Schauder degree theory [119], the maximum principle [130] or the direct
method (see [216, 189] and §5.2).

Regularity. Weakly harmonic maps into a non-positively curved manifold are smooth
and, moreover, the existence of convex functions onN allows higher regularity estimates:
these are consequences of more general results, see §4.1 and below.

Minimality. The harmonic map φ constructed in [66, 1] or [99] is actually energy
minimizing [2, 111]. This follows by using the first and the second variation formulae for
EM given in [66]; this implies, in particular, the following identity [2]: let φ, φ0 :M−→
N be two smooth maps, and let Φ : [0, 1] ×M −→ N be a geodesic homotopy between
φ0 and φ, i.e. a smooth homotopy such that Φ(0, ·) = φ0 and Φ(1, ·) = φ and, for each
fixed x ∈M, s 7−→ Φ(s, x) is a geodesic; then, if φ0 is harmonic we have

EM(φ)−EM(φ0) =
∫ 1

0

dσ

∫ σ

0

ds

∫
M

{
|∇ ∂

∂s
dφ|2−gij hRαβγδ(φ)

∂φα

∂s
φβi
∂φγ

∂s
φδj

}
ωg.

(59)

Hence if hR is non-positive the right hand side is nonnegative and this implies that any
harmonic map is the minimizer in its homotopy class.

Uniqueness. Actually, each homotopy class contains, in most cases,46 only one har-
monic map: this was shown by P. Hartman [111] and S.I. Al’ber [2] independently and can
be deduced from (59), see also [189]. An alternative method is possible if ∂M 6= ∅: if N
is simply connected47 we can use the squared distance function d2 : N × N −→ [0,∞),
which is a strictly convex function [135], see below.

45Eells and Sampson [66] established that φ(t, ·) subconverges to φ, but Hartman [111] proved that it actually
converges.

46If ∂M = ∅ non uniqueness can occur in two cases: we may have two different constant harmonic maps or
two different harmonic maps which parametrize the same geodesic.

47Then any pair of points p, q ∈ N can be joined by a unique geodesic [135], and so (N , h) is convex.
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Other properties. The Bochner identity for harmonic maps proved in [66],

1
2

∆g|dφ|2 = |∇dφ|2 − gijgkl hRαβγδ(φ)φαi φ
β
kφ

γ
j φ

δ
l + gij gRic(φi, φj) , (60)

is particularly useful if hR is non-positive andM is compact, since it then implies [66]:

−∆g|dφ|2 ≤ C|dφ|2, so, in particular |dφ|2 is subharmonic. (61)

This inequality can be used to prove: (i) Liouville-type theorems [66]; (ii) the compactness
in the Ck-topology of the set HΛ of maps u ∈ C∞(M,N ) such that u is harmonic and
EM(u) < Λ (see [189]).

The target manifold has weaker convexity properties

The case when there exists a convex function on N . Such functions are abundant on
simply connected non-positively curved manifolds, but they also exist on any sufficiently
small geodesic ball in N . The basic observation is that the composition of any harmonic
map with a convex function is subharmonic and hence obeys the maximum principle [124].
For instance, if the squared distance function d2 : N ×N −→ [0,∞) exists and is convex,
we can compose it with a pair (u0, u1) : M −→ N ×N of harmonic maps which agree
on ∂M 6= ∅ to prove the uniqueness result that u1 = u2, see, for example, [135]. Even
more [86], if g : N −→ [0,∞) is bounded and strictly convex, then for any C2 harmonic
map φ :M−→ N , we have

c1|dφ|2 ≤ ∆(g ◦ φ), where c1 > 0. (62)

Use of inequality (62) together with the monotonicity inequality (see §4.3) leads to the
local estimate supB(a,r/2) |dφ|2 ≤ Cr−n

∫
B(a,r)

|dφ|2, see [86, 189]. This can be used as
the starting point for higher order estimates, see [86, 135].

The case when the image of φ is contained in a geodesically convex ball. The
optimal regularity result for weakly harmonic maps with this kind of hypothesis is due to
S. Hildebrandt, W. Jäger and K.-O. Widman [120]. We will say that a domain B ⊂ N is an
HJW-convex ball (after Hildebrandt, Jäger and Widman) if B is a geodesic ballB(p0, R) ⊂
N (where p0 ∈ N ) such that

(i) ∀p ∈ B(p0, R), the cut-locus of p does not intersect B(p0, R);
(ii) R ≤ 2π/

√
κ, where κ > 0 is an upper bound of the Riemannian curvature on

B(p0, R).

Then Hildebrandt, Jäger and Widman proved the existence of a solution to the Dirichlet
problem with values in a HJW-convex ball (see §5.2, f) and §6.2) and that any weakly har-
monic map φ with values in a HJW-convex ball is Hölder continuous [120]. This result
is optimal because of the following example: consider the map u	 ∈ W 1,2(Bm, Sm+ ),
where Sm+ := {y ∈ Sm| ym+1 ≥ 0}, defined by u	(x) = (x/|x|, 0), then, if m ≥ 3 this
maps has finite energy and is weakly harmonic. However u	 is clearly singular, but the
hypothesis (i) of the above theorem is not satisfied.

With exactly the same hypothesis on the target, W. Jäger and H. Kaul in [126] found the
following uniqueness result: assume thatM is connected and ∂M 6= ∅ and let φ1, φ2 :
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M −→ B be two smooth harmonic maps which agree on ∂M; then, if B is a HKW-
convex ball, φ1 = φ2. Again this result is optimal since, on the one hand, for 3 ≤ m,
W 1,2(Bm, Sm+ ) contains the weakly harmonic map u	; on the other hand, for 3 ≤ m ≤ 6,
the minimum in W 1,2

u	 (Bm, Sm+ ) is achieved by a smooth diffeomorphism onto Sm+ , hence
providing us with another harmonic map [127] (see [129] for improvements).

Influence of the topology of N . Beyond more or less local assumptions on the cur-
vature or the convexity of the target manifolds, many existence and regularity results are
improved if one assumes that there is no non-constant harmonic map from S2 to N . This
is related to the bubbling phenomenon which was discussed at length in §5.3 and 5.4.

7 Twistor theory and completely integrable systems

This is a rapid review of the development of the application of twistor theory and integrable
systems to the study of harmonic maps. For further details, see, for example, [63, 94, 117,
73].

7.1 Twistor theory for harmonic maps

The genesis of the twistor theory for harmonic maps can be considered to be the following
well-known result:48 Let φ : M2 → R3 be a conformal immersion from a Riemann
surface (M2, JM). Then its Gauss map γ : M2 → S2 is antiholomorphic if and only if
φ is harmonic (equivalently, minimal).

The result was generalized to Rn by S.-S. Chern [44]. Indeed, let φ : M2 → Rn be
a weakly conformal map. On identifying the Grassmannian Gor

2 (Rn) of oriented 2-planes
in Rn with the complex quadric Qn−2 = {[z1 : · · · : zn] ∈ CPn : z 2

1 + . . . + z 2
n = 0},

its Gauss map γ : M2 → Gor
2 (Rn) = Qn−2 is given by the projective class of ∂φ/∂z̄,

where z is any local complex coordinate onM2. If φ is harmonic, γ is antiholomorphic by
the harmonic equation, see (20). Note further that this antiholomorphicity implies that the
Gauss map of a weakly conformal map extends smoothly across the set of branch points.
Conversely, if γ is antiholomorphic, ∂2φ/∂z∂z̄ is a multiple of the vector ∂φ/∂z̄, which
is tangential; but it is also a multiple of the mean curvature vector which is normal, thus it
must vanish, hence φ is harmonic.

Now let N = Nn be a general Riemannian manifold of dimension n ≥ 2. Let
π : Gor

2 (N ) → N be the Grassmann bundle whose fibre at a point q of Nn is the Grass-
mannian of all oriented 2-dimensional subspaces of TqN . This is an associated bundle of
the frame bundle O(N ) of N . Using the Levi-Civita connection, we may decompose the
tangent bundle of Gor

2 (N ) into vertical and horizontal subbundles: TGor
2 (N ) = H ⊕ V;

we denote the projections onto those subbundles by the same letters. Given any conformal
immersion φ : M2 → Nn, we define its Gauss lift γ : M2 → Gor

2 (N ) by γ(p) = the
image of dφp . Let JV be the complex structure on the Grassmannian fibres of π. Say that
γ is vertically antiholomorphic if

V ◦ dγ ◦ JM = −JV ◦ V ◦ dγ . (63)

48This result is related to the Weierstrass–Enneper representation formula for a conformal parametrization
X : Ω ⊂ C −→ R3 of a minimal surface in R3, which reads X(z) = X(z0) + Re(

∫ z
z0

(i(w2 − 1), w2 +

1, 2iw)(h/2) dζ), where w and h are respectively a meromorphic and a holomorphic function. Indeed, here w
represents the Gauss map through an orientation reversing stereographic projection.



474 Harmonic maps

Then Chern’s result extends to: γ is vertically antiholomorphic if and only if φ is
harmonic. Further, the Gauss lift of a weakly conformal harmonic map extends smoothly
over the branch points.

Maps into 4-dimensional manifolds. Suppose that N = N 4 is an oriented 4-
dimensional Riemannian manifold. Then each w ∈ Gor

2 (N 4) defines an almost Hermitian
structure Jw on Tπ(w)N 4. Further, if φ : M2 → N 4 is a conformal immersion, then for
any p ∈ M2, dφp intertwines JMp and Jγ(p). Equivalently, lift Jw to an almost complex
structure JHw onHw; then γ is horizontally holomorphic in the sense that

H ◦ dγ ◦ JM = JH ◦ H ◦ dγ . (64)

We now define two almost complex structures J1 and J2 on the manifold Gor
2 (N 4) by

setting J1
w (resp. J2

w) equal to JHw on Hw and JVw (resp. −JVw ) on Vw. Then the results
above translate into: the Gauss lift of a smooth immersion is holomorphic with respect to
J2 if and only if the map is conformal and harmonic.

In fact, the projection of a J2-holomorphic map into Gor
2 (N ) is always harmonic.

More generally, let (Z, JZ) be an almost complex manifold. A submersion π : Z → N 4

is called a twistor fibration (for harmonic maps, with twistor space Z) if the projection
π ◦ f of any holomorphic map f from a Riemann surface to (Z, JZ) is harmonic. The
Grassmann bundle provides such a twistor fibration; we now find other twistor fibrations.

The Grassmann bundle Gor
2 (N 4) can be written as the product of two other bundles

as follows. For any even-dimensional Riemannian manifold N 2n, let J(N ) → N be
the bundle of almost Hermitian structures on N . This is an associated bundle of O(N );
indeed J(N ) = O(N ) ×O(2n) J(R2n) where J(R2n) = O(2n)/U(n) is the space of
orthogonal complex structures on R2n. When N is oriented, J(N ) is the disjoint union
of J+(N ) and J−(N ), the bundles of positive and negative almost Hermitian structures
on N 4, respectively. Give these bundles almost complex structures J1 and J2 in the same
way as for Gor

2 (N 4). Then, when N is 4-dimensional, we have a bundle isomorphism
Gor

2 (N 4) → J+(N 4) × J−(N 4) given by w 7→ (J+
w , J

−
w ) where J+

w (resp. J−w ) is the
unique almost Hermitian structure which is rotation by +π/2 on w. This isomorphism
preserves J1, J2 and the horizontal spaces. The Gauss lift of an immersion φ :M2 → N 4

thus decomposes into two twistor lifts ψ± : M2 → J±N 4. Both natural projections
J±N 4 → N are twistor fibrations; in fact we have the following result of J. Eells and
S. Salamon [65]: There is a bijective correspondence between non-constant weakly
conformal harmonic maps φ : M2 → N 4 and non-vertical J2-holomorphic maps
ψ± :M2 → J±N 4 given by setting ψ± equal to the twistor lift of φ. For some related
results in higher dimensions, see [180].

The problem with using this to find harmonic maps is that J2 is never integrable.
However, J1 is integrable if and only if the Riemannian manifold N 4 is anti-selfdual.
Now a J2-holomorphic map M2 → (Z, J2) is also J1-holomorphic if and only if it is
horizontal, i.e., its differential has image in the horizontal subbundle H, and horizontal
holomorphic maps project to harmonic maps which are real isotropic in a sense that we
now explain.

Real isotropic harmonic maps. A map φ :M2 → Nn from a Riemann surface to an
arbitrary Riemannian manifold is called real isotropic if, for any complex coordinate z, all
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the derivatives∇αZ(∂φ/∂z) lie in some isotropic subspace of TC
φ(z)N , i.e.

ηα,β :=
〈
∇αZ(∂φ/∂z),∇βZ(∂φ/∂z)

〉
= 0 for all α, β ∈ {0, 1, 2, . . .}. (65)

Here, Z = ∂/∂z and 〈 , 〉 denotes the inner product on TN extended to TCN by complex
bilinearity. For example, a holomorphic map to a Kähler manifold is real isotropic with the
isotropic subspace being the (1, 0)-tangent space. Now, in an extension to the argument
showing that all harmonic maps from S2 are weakly conformal (see §2.2), we show induc-
tively on k = α + β that the inner products define holomorphic differentials ηα,βdz

k on
S2; since all holomorphic differentials on S2 vanish for topological reasons, all harmonic
maps from S2 to Sn are real isotropic, and hence are obtained as projections of horizontal
holomorphic maps into the twistor space. Such maps are easy to construct from ‘totally
isotropic’ holomorphic maps into CPn giving E. Calabi’s theorem [36], as follows. Say
that a map to a sphere or complex projective space is full if its image does not lie in a
totally geodesic subsphere or projective subspace. Then there is a 2 : 1 correspondence
between full harmonic maps ±φ : S2 → S2n and full totally isotropic holomorphic
maps from S2 to CPn.

For an arbitrary oriented Riemannian manifold N of even dimension 2n greater than
four, J1 is integrable on J±(N ) if and only if N is conformally flat. In order to apply
twistor theory to more general manifolds, we need to find reduced twistor spaces on which
J1 is integrable. To do this, let K ⊂ O(2n) be the holonomy group of N and P → N
the corresponding holonomy bundle given by reducing the structure group of O(N ) to K.
Then J(N ) = P ×K J(R2n). The holonomy group K acts on J(R2n) by conjugation,
decomposing it into orbits Oi ; it thus acts on J(N ), decomposing it into the union of
subbundles associated to P and having fibre one of the orbits Oi . These subbundles are
the candidates for our reduced twistor spaces.

For example, ifN is a generic Kähler n-manifold,K = U(n) and we find that the com-
plex U(n)-orbits of J(N ) can be identified with the Grassmann bundlesGr(T 1,0N )→ N
(r = 0, . . . , n). These are thus twistor fibrations for harmonic maps. Note that, for
0 < r < n, J1 is integrable on Gr(T 1,0N ) if and only if the Bochner tensor of N
vanishes.

Complex isotropic harmonic maps. Horizontal holomorphic maps into the Grass-
mann bundle project to harmonic maps which are complex isotropic in the sense that all the
covariant derivatives ∇αZ(∂1,0φ/∂z) are orthogonal in T ′φ(z)N to all the covariant deriva-
tives ∇α

Z
(∂1,0φ/∂z) with respect to the Hermitian inner product on T ′N . In particular,

when N = CPn, an argument again involving the holomorphicity of differentials con-
structed from the above inner products shows that all harmonic maps from S2 → CPn are
complex isotropic, and so given by such projections. In this case we can explicitly identify
the Grassmann bundles and construct all holomorphic horizontal maps into it from holo-
morphic maps S2 → CPn by considering their iterated derivatives. This leads to the result
[68]: There is a one-to-one correspondence between pairs (f, r) where f is a full holo-
morphic map from S2 to CPn and r ∈ {0, 1, . . . , n} and full harmonic maps from S2

to CPn.

Maps into symmetric spaces. Now let G be a compact Lie group and N 2n = G/K
an irreducible Riemannian symmetric space. Then the natural projection G→ G/K = N
is a reduction of the frame bundle with structure group K. As above, K acts on J(R2n)
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and thence on J(N ) = G×K J(R2n). Any orbit in J(R2n) is of the form K/H for some
closed subgroup H; the corresponding orbit in J(N ) is the subbundle π : G×K K/H ∼=
G/H → G/K where π is the natural projection. This subbundle can alternatively be
thought of an orbit of the action of G on J(N ). F. E. Burstall and J. H. Rawnsley [35]
showed that such an orbit is almost complex manifold on which J1 is integrable if and
only if is contained in the zero set of the Nijenhuis tensor of J1, They go on to prove that,
if N = G/K is an inner symmetric space49 of compact type, that zero set consists of
finitely many orbits of G with each orbit G/H a flag manifold of G and that every flag
manifold of G occurs for some inner symmetric space G/K. Further, any flag manifold
G/H can be written alternatively as GC/P for some suitable parabolic subgroup of the
complexified group GC, and so has a natural complex structure J1. On replacing J1 by
−J1 on the fibres, we obtain a non-integrable almost complex structure J2 and then the
natural projection (G/H, J2) → G/K = N is a twistor fibration for harmonic maps.
Further every harmonic map from S2 to N is the projection of some J2-holomorphic
map into a suitable flag manifold. Moreover Burstall and Rawnsley exhibit holomorphic
differentials;50if these vanish then the J2-holomorphic curve is in fact holomorphic for the
complex structure J1. For the special case of isotropic harmonic maps, see below.

7.2 Loop group formulations

Again let G be a compact Lie group, and let ω be its (left) Maurer–Cartan form; this is a
1-form with values in the Lie algebra g of G which satisfies the Maurer–Cartan equation
dω + 1

2 [ω ∧ ω] = 0 where [ω ∧ ω](X,Y ) = 2[ω(X), ω(Y )] (X,Y ∈ TγG, γ ∈ G). Note
that ω gives an explicit trivialization TG ∼= G×g of the tangent bundle; the Maurer–Cartan
equation expresses the condition that the connection d+ ω on this bundle is flat.

Maps into Lie groups. Now let φ : Mm → G be a smooth map from a Riemannian
manifold to G. Let A be the g-valued 1-form given by the pull-back φ∗ω. Then A rep-
resents the differential dφ; indeed, if G is a matrix group, A = φ−1dφ. Pulling back the
Maurer–Cartan equation shows that A satisfies

dA+
1
2

[A ∧A] = 0. (66)

This equation is an integrability condition: given a g-valued 1-form, we can find a smooth
map φ :M→ G with A = φ−1dφ if and only if (66) is satisfied. Further, it is easy to see
that φ is harmonic if and only if

d∗A = 0 . (67)

Now letM2 be a simply connected Riemann surface and let (U, z) be a complex chart.
Writing A = Azdz + Az̄dz̄ we may add and subtract the equations (66,67) to obtain the
equivalent pair of equations:

∂Az
∂z̄

+
1
2

[Az̄, Az] = 0 ,
∂Az
∂z

+
1
2

[Az, Az̄] = 0 . (68)

49An inner symmetric space is a Riemannian symmetric space whose involution is inner.
50These differentials vanish for harmonic maps from S2 to S2n, CPn and S4 ' HP 1, so that one recovers

the previous classification results for such maps [36, 28, 68].
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We now introduce a parameter λ ∈ S1 := {λ ∈ C∗| |λ| = 1} (called the spectral
parameter), and consider the loop of 1-forms:

Aλ =
1
2

(1− λ−1)Azdz +
1
2

(1− λ)Az̄dz̄ . (69)

K. Uhlenbeck noticed51 [218] that A satisfies the pair (66,67) if and only if

dAλ +
1
2

[Aλ ∧Aλ] = 0 for all λ ∈ S1; (70)

this equation is a zero curvature equation: it says that for each λ, d+Aλ is a flat connection
onM× g. If satisfied, there is a loop of maps Eλ onM satisfying E∗λ(ω) = Aλ, sinceM
is simply connected; equivalently, a map E :M→ ΩG into the (based) loop group of G:
ΩG = {γ : S1 → G | γ(1) = identity of G} (where the loops γ satisfy some regularity
assumption such as C∞).

The map E : M → ΩG is called the extended solution corresponding to φ. Now
suppose that G is a matrix group, i.e., G ⊂ GL(RN ) ⊂ RN×N . It can be written as
Fourier series

E(z) : λ 7−→ Eλ(z) =
∞∑

i=−∞
λiÊi(z) (z ∈M)

for some maps Êi : M → G. If this is a finite series, we say that φ has finite uniton
number. Uhlenbeck showed that all harmonic maps from S2 to the unitary group (and so
to all compact groups) have finite uniton number. She also gave a Bäcklund-type transform
which gives new harmonic maps from old ones by multiplying their extended solution by
a suitable linear factor called uniton, and showed that the extended solution of a harmonic
map φ : S2 → U(n) can be factorized as the product of unitons, so that φ can be obtained
from a constant map by adding a uniton no more than n times. Another proof was given
by G. Segal [196] using a Grassmannian model of U(n). An extension of the factorization
theorem to maps into most other compact groups G was proved by Burstall and Rawnsley
[35].

We can also consider the ‘free’ loop group ΛG = {γ : S1 → G} and we may define
loop groups ΩGC and ΛGC for the complexified group GC in the same way. Let Λ+GC be
the subgroup of loops which extend holomorphically to the disk D2 := {λ ∈ C| |λ| < 1},
i.e., have Fourier coefficients γ̂i zero for negative i. Then, we have an Iwasawa decom-
position ΛGC = ΩG · Λ+GC so that we can write ΩG as ΛGC/Λ+GC; this gives ΩG
a complex structure. Now (69) tells us that the partial derivative Ez̄ lies in Λ+gC which
means that E is holomorphic. Further Ez lies in the subspace of ΛgC where all Fourier
coefficients other than A−1 and A0 are zero; we say that E is superhorizontal. Thus we
can interpret the fibration π : ΩG −→ G given by E 7−→ E|λ=−1 as a twistor fibration,
since any harmonic map fromM toG is the image by π of a holomorphic horizontal curve
in ΩG.

Maps into Riemannian symmetric spaces. We can apply the above to harmonic maps
into symmetric spaces G/K by including G/K by the totally geodesic Cartan embedding
ι : G/K −→ G defined by ι(g · K) = τ(g)g−1, where τ : G −→ G is the Cartan
involution52 such that (Gτ )0 ⊂ K ⊂ Gτ ; hereGτ := {g ∈ G| τ(g) = g} and (Gτ )0 is the

51Uhlenbeck’s discovery was known previously to several physicists, see for example [172].
52τ(g) = sogs

−1
o where so is the point reflection in the base point ofN .
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connected component of Gτ which contains the identity. However, there is an alternative
more geometrical method which we now describe. For any map φ :M −→ G/K choose
a lift f : M −→ G of it and consider its Maurer–Cartan form α = f∗ω ' f−1df .
The Cartan involution τ induces a linear involution on the Lie algebra g ' TIdG that we
denote also by τ . The eigenvalues of τ are ±1 and we have the eigenspace decomposition
g = g0 ⊕ g1, where, for a = 0, 1, ga is the (−1)a-eigenspace. Note that g0 = k is the Lie
algebra of K. Now we can split α = α0 + α1 according to the eigenspace decomposition
of g and further split α1 = α′1 + α′′1 , where α′1 := α1(∂/∂z) dz and α′′1 := α1(∂/∂z) dz.
Then φ :M−→ G/K is harmonic if and only if, for all λ ∈ S1 we have dαλ+(1/2)[αλ∧
αλ] = 0, where

αλ := λ−1α′1 + α0 + λα′′1 for all λ ∈ S1. (71)

This relation allows us to construct a family of maps fλ : M −→ G by integrating the
relation αλ = f∗λω ' f−1

λ dfλ. Each map fλ lifts a harmonic map φλ : M −→ G/K
given by φλ(z) = fλ(z)K, hence (φλ)λ∈S1 is an associated family of harmonic maps.
Alternatively we can view the family F = (fλ)λ∈S1 as a single map fromM to the twisted
loop group ΛGτ := {γ : S1 −→ G| γ(−λ) = τ(γ(λ))} and the family Φ = (φλ)λ∈S1

as a map into (ΛGτ )/K. Given a harmonic map φ, the map Φ is unique if we assume
for instance the extra condition fλ(z0) = Id, for some z0 ∈ M. The representation of a
harmonic map into G/K using twisted loop groups is related to the one using based loop
groups through the relations Eλ = fλf

−1 and ι(φλ) = τ(fλ)f−1
λ = E−λE

−1
λ .

A ‘Weierstrass’ representation. We denote the complexification of ΛGτ by ΛGC
τ . We

also define Λ+GC
τ as the subgroup of loops γ ∈ ΛGC

τ which have a holomorphic extension
(that we still denote by γ) in the disk D2 and, if B ⊂ GC is a solvable Borel subgroup
such that the Iwasawa decomposition GC = G ·B holds, we let Λ+

BG
C
τ be the subgroup

of loops γ ∈ Λ+GC
τ such that γ(0) ∈ B. Now J. Dorfmeister, F. Pedit and H. Y. Wu

[60] proved that an Iwasawa decomposition ΛGC
τ = ΛGτ · Λ+

BG
C
τ holds, so that we can

define a natural fibration πτ : ΛGC
τ −→ ΛGC

τ /Λ
+
BG

C
τ = ΛGτ . They show also that if

H :M −→ ΛGC
τ is a holomorphic curve which satisfies the superhorizontality condition

λH∗ω ' λH−1dH ∈ Λ+gC, then F = πτ ◦ H (i.e., the unique map F into ΛGC
τ such

that H = FB, for some map B : M −→ Λ+
BG

C
τ ) lifts an associated family of harmonic

maps. Conversely Dorfmeister, Pedit and Wu proved that any harmonic map from a simply
connected surface to N arises that way. The superhorizontal holomorphic maps H which
covers a given F are not unique. However we can use another Birkhoff decomposition
ΛGC

τ ⊃ C = Λ−∗ G
C
τ · Λ+GC

τ , where Λ−∗ G
C
τ is the subset of loops γ ∈ ΛGC

τ which have a
holomorphic extension toCP 1\D2 := {λ ∈ C∪{∞}| |λ| ≥ 1} and such that γ(∞) = Id.
Here C is the big cell, a dense subset of the connected component of Id in ΛGC

τ . Further
Dorfmeister, Pedit and Wu showed that for any lift F of an associated family of harmonic
maps into N , there exist finitely many points {a1, · · · , ak} such that F takes values in
C outside {a1, · · · , ak}. We can hence decompose F = F−F+ on M \ {a1, · · · , ak},
where F− (respectively F+) takes values in Λ−∗ G

C
τ (respectively Λ+GC

τ ), and then F−

extends to a meromorphic superhorizontal curve onM with poles at a1, · · · , ak. Then the
Maurer–Cartan form of F−, µ = (F−)∗ω, reads µλ = λ−1ξdz, where ξ :M−→ gC

1 is a
meromorphic potential called the meromorphic potential of F . This provides Weierstrass
data for the harmonic map and is known as the ‘DPW’ method [60].

Pluriharmonic maps. This can be extended to the more general case of ‘plurihar-
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monic’ maps: a smooth map from a complex manifold is called pluriharmonic if its restric-
tion to every complex one-dimensional submanifold is harmonic. Let φ : (M, JM)→ N
be a smooth map from a simply connected complex manifold to a Riemannian sym-
metric space N = G/K. For λ = e−iθ ∈ S1, define an endomorphism of TM by
Rλ = (cos θ)I+(sin θ)J . Extending this by complex-linearity to the complexified tangent
bundle TCM, we have that Rλ = λ−1I on the (1, 0)-tangent bundle T ′M and Rλ = λI
on the (0, 1)-tangent bundle T ′′M. Note that, ifM is a Riemann surface, Rλ is rotation
through θ. J. Dorfmeister and J.-H. Eschenburg [59] show that φ is pluriharmonic if and
only if there is a parallel bundle isometry Rλ : φ∗TN → φ∗λTN preserving the curva-
ture such that Rλ ◦ dφ ◦ Rλ = dφλ for some smooth family of maps φλ (λ ∈ S1), and
that the maps φλ are all pluriharmonic; thus pluriharmonic maps again come in associated
S1-families. Then with similar definitions of superhorizontal and holomorphic to those
above, we obtain the result: there is a one-to-one correspondence between pluriharmonic
maps φ : M → G/K and superhorizontal holomorphic maps Φ : M → ΛσG/K with
φ = π ◦ Φ.

The twistor theory revisited. Twistor theory appears as a special case: a map is called
isotropic if the associated family φλ is trivial, i.e. φλ = φ up to congruence for all λ ∈ S1.
Then, for each z ∈ M, the Rλ(z) are automorphisms of Tφ(z)N , representing these by
elements of G, they define a homomorphism R(z) : S1 → G, λ 7→ Rλ(z). By parallelity
of the Rλ(z) as z varies, these homomorphisms are all conjugate, so that the Rλ define a
map into the congugacy class of a circle subgroup q : S1 → G, λ 7→ qλ with q−1 = so;
this congugacy class is a flag manifold of the form G/Cq where Cq is the centralizer of q,
and the Rλ define a twistor lift into that manifold. Note that Cq is contained in K. Also
a necessary condition for the existence of a circle subgroup q with q−1 = so is that N be
inner, i.e., so lies in the identity component ofK. We thus obtain [69]: Let φ :M→N be
a smooth map into an inner symmetric spaceN = G/K of compact type which is full, i.e.,
does not have image in a totally geodesic proper subspace ofN . Then φ is isotropic if and
only if there is a flag manifold Z = G/H withH ⊂ K and a holomorphic superhorizontal
map Φ :M→ Z such that π ◦ Φ = φ where π : G/H → G/K is the natural projection.
In this setting, pluriharmonic maps into Lie groups G appear naturally by treating G as the
symmetric space G×G/G.

F. Burstall and M. A. Guest [34] take all this much further by showing that to every
extended solution can be associated a homomorphism q : λ 7→ qλ by flowing down the
gradient lines of the energy of loops in G. The extended solution can be recovered from
q by multiplication by a suitable holomorphic map into a loop group. The conditions
(69) translate into conditions on the coefficients of the Fourier series of this map related
to the eigenspace decomposition of Ad qλ. This leads to equations in the meromorphic
parameters which can be solved by successive integrations leading to the theorem: Every
harmonic map S2 → G arises from an extended solution which may be obtained explicitly
by choosing a finite number of rational functions and then performing a finite number of
algebraic operations and integrations. They show how the work of Dorfmeister, Pedit and
Wu [60] fits into this scheme, as well as Uhlenbeck’s factorization.

Finite type solutions. An alternative way of finding harmonic maps into symmet-
ric spaces, especially when the domain is a (2-)torus, is to integrate a pair of commut-
ing Hamiltonian fields on the finite-dimensional subspace Ωdg := {ξ ∈ Ωg| ξλ =
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k=−d ξ̂k(1 − λk)} of the based53 loop algebra Ωg, for some d ∈ N∗. Indeed the

vector fields X1 and X2 defined on Ωdg by X1(ξ) − iX2(ξ) = 2[ξ, 2i(1 − λ)ξ̂d] are
tangent to Ωdg and commute. Thus we can integrate the Lax type equation dξ =
[ξ, 2i(1−λ)ξ̂ddz−2i(1−λ−1)ξ̂−ddz], where ξ : R2 −→ Ωdg (for a formulation of the har-
monic map equations as a Lax pair, see the article by Wood in [73] or [53, 94]). Then, for
any solution of this equation, the loop of 1-formsAλ := 2i(1−λ)ξ̂ddz−2i(1−λ−1)ξ̂−ddz
satisfies the relation (70) and hence provides an extended harmonic map by integrating the
relation E∗λω = Aλ; the resulting harmonic maps are said to be of finite type.

A nontrivial result is that, for all n ∈ N∗, all non-isotropic harmonic maps from
the torus to Sn or CPn are of finite type. This was proved by N. Hitchin [122] for tori
in S3, by U. Pinkall and I. Sterling [169] for constant mean curvature tori in R3 and by
Burstall, D. Ferus, Pedit and Pinkall [33] for non-conformal tori in rank one symmetric
spaces ([122] and [33] propose a different approach, see [123] for a comparison). The case
of conformal but non-isotropic tori in Sn or CPn requires the notion of primitive maps
introduced by Burstall [32], i.e. maps with values in a k-symmetric space fibred over the
target. See [160, 161] for further developments. To each finite type harmonic map of a
torus can be associated a compact Riemann surface called its spectral curve, together with
some data on it called spectral data. This leads to a representation using techniques from
algebraic geometry, done by A. Bobenko [19] for constant mean curvature tori and by I.
McIntosh [154] for harmonic tori in complex projective spaces.

Harmonic maps from a higher genus surfaceM. They can, in principle, be found by
the DPW method by investigating harmonic maps on the universal cover ofM, but this is
hard to implement. Another possible approach investigated by Y. Ohnita and S. Udagawa
[160] is to look for (finite type) pluriharmonic maps on the Jacobian variety J(M) ofM
and compose them with the Abel mapM−→ J(M).
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Frédéric Hélein and John C. Wood 483

[49] J.-M. Coron: Nonuniqueness for the heat flow of harmonic maps Ann. Inst. H.
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1 Introduction

Given a smooth map f : N → P from one manifold to another, it is natural to ask for
a description of the topology of f(N) and f−1(p) for p ∈ P . One can see that for the
topology of a map, generally, we have this option of studying images or preimages.

The theory for the latter is considerably more advanced than the former since Sard’s
Theorem and the Implicit Function Theorem tell us that, usually, the preimage of a smooth
map is a manifold, while experience shows that, in general, the image of a map is singular.
The selection of topics in this survey reveals that this is the case and attempts to redress
the balance by presenting some lesser known results and, more importantly, techniques, in
the study of the topology of images.

The dichotomy between images and preimages is presented in Section 2. Some
fundamental examples such as the simple singularities of functions and the Whitney
umbrella/cross-cap are presented.

The basic building block of the topology of differentiable maps is the Milnor fibre. This
is presented in Section 3. This describes the local change, i.e., within a sufficiently small
ball, of the topology of the singularity as one moves from the critical point to a nearby
non-critical point. That is, from the singular fibre to a nearby non-singular one. Since the
Milnor fibre is, in general, a non-trivial fibration over a circle we have monodromy. This

8 B.V. .



494 Topology of differentiable mappings

is described in Section 4
In his 1978 obituary of Morse in [60], Smale said ‘Morse theory is the single greatest

contribution of American mathematics’ (perhaps not surprisingly as the result formed the
backbone of Smale’s own Fields-medal-winning work on the h-cobordism theory and the
higher dimensional Poincaré Conjecture. However, this obituary did cause discussion due
to its critical nature). Morse Theory is well-known and covered in the highly readable [48]
so it is the generalization to singular spaces, in fact, more properly, stratified spaces by
Goresky and Macpherson that we describe Section 6. Their original intention had been
to generalize the Lefschetz Hyperplane Theorem to the case of their (then) recently in-
vented Intersection Cohomology. In pursuing this they invented Stratified Morse Theory.
This subject is now fairly advanced, one can see by looking through [57] at the level of
sophistication now possible. However, this sophistication is underused and there are many
subjects to which it could be applied that have yet to be explored. The stratification of
spaces is detailed in Section 5 and Stratified Morse Theory in Section 6.

The main result of Morse theory is that one can build up the topology of a manifold
by placing on it a generic function that has non-degenerate singularities. The topology can
then be described by attaching cells of dimension that depend on the index of the second
differential of the the critical points of the map. In the stratified case we have to calculate
the Morse index at a point but also have to take into account how the function behaves
with respect to the space transverse to the stratum containing the point. The local inter-
section of the singular space and a manifold transverse to the stratum is called the normal
slice. To apply Stratified Morse Theory we need to be able to describe the topology of the
Morse function on this space. Unlike the usual Morse index, no very simple number exists
to measure this topology. One method is to use Rectified Homotopical Depth, a concept,
introduced by Grothendieck, which is analogous to the idea of depth from commutative
algebra. In that theory regular rings and complete intersection rings have maximal depth,
i.e., equal to the ring’s dimension, we have that manifolds and local complete intersec-
tions have maximal Rectified Homotopical Depth, i.e., equal to the complex dimension of
the space. Section 7 shows how this notion can be used with Stratified Morse Theory to
describe the topology of certain complex analytic varieties in CPn.

Another interesting and greatly underutilized generalization of Stratified Morse Theory
is given in Section 8. This is a relative version, i.e., for a stratified map f : X → Y between
Whitney stratified sets a stratified Morse function on Y is used to describe the topology of
X .

In the last sections we see a spectral sequence that allows us to deal with the topology
of images. The potential applications of this sequence are quite large.

First, Section 9 gives examples of how images behave and discusses the multiple point
spaces for a map. For a continuous map f : X → Y the kth multiple point space is

Dk(f) = closure{(x1, . . . , xk) ∈ Xk | f(x1) = · · · = f(xk), for xi 6= xj , i 6= j}.

The key here is that the image is very hard to describe, for example, the image of a real
polynomial map may not be a real algebraic set. Now Dk(f) can often be described as
the zero-set of map and hence we can use the theory developed for level sets to produce
a theory for images. Furthermore, Dk(f) has a lot of symmetry since Sk, the group of
permutations on k objects, acts on it, and this is exploited in describing the topology of
the image. In fact, we need to focus on the the alternating homology of Dk(f), that is,
chains on Dk(f) that are anti-invariant under the action of Sk. This alternating homology
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then forms the E1 terms of a spectral sequence for a wide class of finite and proper maps.
This sequence is called the Image Computing Spectral and is described, with examples, in
Section 10.

2 Manifolds and singularities

Suppose that f : Rn → R is a smooth function with n ≥ 1. A fundamental question in
mathematics is ‘What is the topology of the level sets f−1(c) for c ∈ R?’ Whitney showed
the following.
Theorem 2.1 (Whitney [7]) Let X be a closed set in Rn. Then there exists a smooth
function f : Rn → R such that f−1(0) = X .

Due to the wildness of closed sets – consider the pathological examples of the Cantor
set and Hawaiian earrings – this, of course, means that finding a general structure theorem
on the level set of an arbitrary smooth function f is essentially hopeless – and we have not
even considered maps into higher dimensional spaces yet.

So we begin by specializing and look at a fundamental structure theorem for the level
sets of certain smooth maps. First some definitions. Let f : Rn → Rp be a smooth map
where n and p are arbitrary. If the differential at a point x ∈ Rn is surjective, then we say
that f is a submersion at x and say that x is a regular point of f . If all points of f−1(c) are
regular points, then we say that that c is a regular value of f . (This includes the case that c
is not a value of f !)

Then we have the following.
Theorem 2.2 Suppose that c is a regular value of f . Then f−1(c) is a (n−p)-dimensional
submanifold of Rn.

The first remedy for the problem posed by Whitney’s theorem is Sard’s theorem which
says that, in general, the level set is a manifold.
Theorem 2.3 (Sard’s Theorem [56]) The set of non-regular values of f has Lebesgue
measure zero.

Thus for mappings we have that, in general, a fibre is a manifold. For images the
situation is not so good. However, we do have that if we have a map f : Rn → Rp with
n < p and maximal possible rank (i.e., n) at the point x ∈ N , then there is a neighbourhood
U of x that maps into P such that f(U) is a submanifold of P .

These last two theorems can be proved from the Inverse Function Theorem or Implicit
Function Theorem. (These two theorems are in fact equivalent as each can be proved from
the other.)
Theorem 2.4 (Implicit Function Theorem) Suppose that f : Rn+r → Rr is a smooth map
defined on a neighbourhood of (x0, y0) ∈ Rn×Rr with f(x0, y0) = c. If the r× r matrix

∂f1

∂y1
. . .

∂f1

∂yr
...

...
∂fr
∂y1

. . .
∂fr
∂yr


is non-singular at (x0, y0), then there exists a neighbourhood of U of x0 in Rn and V of
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y0 in Rq such that for all x in U there is unique point g(x) in V with f(x, g(x)) = c.
Furthermore, g is smooth.

The preceding can be generalized using the notion of transversality (which we shall
use later in a different context).
Definition 2.5 Let U and V be submanifolds in Rn. Then, U and V are transverse at the
point x ∈ U ∩ V if

TxU + TxV = Rn.

That is, the sum of the tangent spaces of U and V gives the tangent space to Rn. We say
that U and V are transverse if they are transverse for all points in U ∩ V .

If U and V do not intersect, then automatically we say that the spaces are transverse.
The notion of transversality is very important as one would expect that two randomly

chosen submanifolds would be transverse. In fact, if they were not, then using Sard’s
theorem one could perturb them slightly so that we had transversal intersection. Thus
transversality is in some sense ‘generic’.

We can produce a relative version of transversality.
Definition 2.6 Let f : N → P be a smooth map between the manifoldsN and P . Suppose
that C is a smooth submanifold of P . Then, f is said to be transverse to C at the point
x ∈ N if either f(x) /∈ C or the image of the tangent space to N under the differential
dxf is transverse to the tangent space of C at f(x) in P . That is,

dxf(TxN) + Tf(x)C = Tf(a)P.

We say that f is transverse to C if it is transverse to C at all points x ∈ N .
Then we can generalize the structure theorem for level sets.

Theorem 2.7 Suppose that f : N → P is a smooth between manifolds with C a submani-
fold of P . If f is transverse to C, then f−1(C) is a submanifold ofN of codimension equal
to the codimension of C in P .

Singularities of spaces and mappings

Let us look at the case of f : Rn → Rp, where n > 0 and p > 0. Loosely speaking, we
know that if the differential of f has maximal rank at a point then we have a submersion
or immersion; in the former the preimage of the value is a manifold and in the latter the
image is a submanifold. Thus let us turn our attention to the case where the map does not
have maximal rank.
Definition 2.8 We define a singular point of f to be a point x where dxf has less than
maximal rank.
Example 2.9 (i) Let f : Rn → R be given by f(x) = ±x2

1± x2
2± · · · ± x2

n. Then f is
a Morse singularity. It is well-known that Morse proved that a function with a criti-
cal point such that the second differential is non-degenerate (equivalently, the square
matrix of second derivatives is non-singular) is equivalent to such a Morse singular-
ity (up to addition of a constant), see [48]. He also proved that such singularities
are dense and stable – i.e., ‘most’ maps are Morse and they cannot be removed by
perturbation.
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Figure 1: The Whitney Cross-Cap.

This classification has probably the profoundest effect in the theory of topology of
manifolds as it leads to Morse Theory, of which more will be said later.

(ii) Let f : R2 → R3 be given by f(x, y) = (x, xy, y2). This (and its image) is known
as the Whitney cross-cap or Whitney umbrella. See Figure 1. This is also called the
Whitney-Cayley cross-cap since it was known to Cayley. See [3] p217 for references
and a discussion of his work in this area.

The singular set is the origin in R2. The image has singularities – points where the
set is non-manifold – along the Z-axis in R3, and, apart from the origin, these are
transverse crossing of manifolds.

(iii) The image of the Whitney cross cap is of codimension 1 in the codomain. If we
attempt to find a polynomial that defines the image of f as a hypersurface we can
try h : R3 → R given by h(X,Y, Z) = Y 2 − X2Z. However, the image of f is
actually a semi-algebraic set and so the zero-set of this h gives the image of f with
a ‘handle’ that consists of the Z-axis. With this added to the image in Figure 1 one
can see why the map is referred to as an umbrella.

If we work over the complex numbers rather than the reals, then the image and the
zero-set descriptions coincide.

The last example shows the wide variety of behaviour that can occur for the image of
a fairly simple algebraic map. One gets even stranger examples of if one considers images
of smooth maps. For example, we can show that the corner of a cube can be produced from
the image of an infinitely differentiable map.
Example 2.10 Let φ : R2 → R+ be the smooth map given by

φ(x, y) =
{
e−1/x2

forx > 0
0 forx ≤ 0.

Let rj be the map that rotates the plane about the origin through πj/3 radians. Let ψ1 =
φ ◦ r0 + φ ◦ r1, ψ2 = φ ◦ r2 + φ ◦ r3 and ψ3 = φ ◦ r4 + φ ◦ r5.

Then each ψi is a smooth function on the plane that is zero in a region bounded by two
rays from the origin that are 2π/3 radians apart. The interiors of these three regions do not
overlap; the overlaps of the closures correspond to edge points of the corner of the cube.

The image of the map h = (ψ1, ψ2, ψ3) gives the corner of a cube.
Let us look at some more interesting examples, this time of less pathological singular-

ities.
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Example 2.11 (i) The simple singularities, Ak, Dk and Ek of maps f : R2 → R are
defined to be

Ak : xk+1 + y2, for k ≥ 1,
Dk : x2y + yk−1, for k ≥ 4,
E6 : x3 + y4,

E7 : x3 + xy3,

E8 : x3 + y5.

The relation between the notation and that of simple Lie groups is not coincidental.
See, for example, [2] page 99.

(ii) The Whitney cusp is given by f : R2 → R2 is important in the study of maps
between surfaces. It is given by f(x, y) = (x, y3 + xy). It is stable in the sense that
if we perturb the map slightly, then there is some change of coordinates in the source
and target that maps the perturbation back to the Whitney cusp.

The word ‘cusp’ is used in name of the last example because the discriminant of the
map is a cusp.
Definition 2.12 Let f : Rn → Rp be a smooth with n and p arbitrary. Let C be the critical
set of f , i.e., the points of x ∈ Rn such that rank dxf < p.

Then the discriminant of f is f(C), the image of the critical set.
Example 2.13 For the Whitney cusp the discriminant is diffeomorphic to the standard
cusp, i.e., the image of t 7→ (t2, t3), and hence the name for the Whitney cusp.

The discriminant of the map is a very powerful invariant. It is a space which contains a
lot of information concerning the map. In many cases given the discriminant it is possible
to recover the map, see for example, [8] and [11].

3 Milnor fibre

We shall discuss later how classical Morse theory can be used to great effect in describing
the topology of manifolds. For the moment we shall note that the essence of the theory is
that the local behaviour of a function, in particular its singularities, is used to describe the
global behaviour of the topology. In this section we consider the case of complex singular-
ities, a field pioneered by the ancients (i.e., mathematicians pre-1900), but the approach is
more recent and follows on from the seminal work of Milnor [49]. Whilst Milnor’s initial
contribution cannot be underestimated it should be noted that many mathematicians have
contributed to the theory – too many to do justice to in this paper. However, special men-
tion should be made Lê Dũng Tráng, he has perhaps done more than any other to advance
and popularize the theory of the Milnor fibre.

First, it should be noted that, in contrast to the case of real functions, for complex
functions there is no local change in topology as one passes through a critical value. Instead
one has to look at monodromy which is tackled in the next section. In this section we look
at the local description of the fibres near to the singular fibre. The Milnor fibre is a fibre
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nearby to a singular fibre and is considered to be a local object, that is, we intersect with a
neighbourhood.

The Milnor fibre of a complex function on a manifold

Let f : Cn+1 → C be a non-constant complex analytic map such that f(0) = 0 and n ≥ 1.
We shall be interested in f−1(0), particularly at the origin in Cn+1, and f−1(t) where
t > 0 is small and f−1(t) is non-singular.

We restrict ourselves to local behaviour. Let us fix our notation for this. The sphere of
radius ε centered at 0 in Cn+1 is denoted Sε; it bounds the closed ball Bε; the open ball
will be denoted B◦ε .

Our first result is the following:
Theorem 3.1 (Conic structure theorem) There exists ε0 > 0 such that

(i) Sε ∩ f−1(0) is homeomorphic to Sε0 ∩ f−1(0) for all 0 < ε ≤ ε0;

(ii) Cone
(
Sε0 ∩ f−1(0)

)
is homeomorphic to Bε0 ∩ f−1(0).

This Conic Structure Theorem holds for a far wider class of objects than just complex
analytic sets, for example, Whitney stratified sets, a class we shall define later.
Definition 3.2 The space L = Sε ∩ f−1(0) is called the real link of f at 0.

In his original ground-breaking text [49] Milnor showed this (2n − 1)-dimensional
space is (n − 2)-connected. That is, πi(L) = 0 for 0 ≤ i ≤ n − 2. (By convention, π0

is trivial if and only if the space is path-connected). This was later improved by Hamm to
complete intersections as discussed below.

We f has an isolated singularity at 0 if there exists an open neighbourhood U of 0
such that U ∩ f−1(0)\{0} is a manifold. Note that this includes the case that f is in fact
non-singular at 0 – a standard, if perverse, use of terminology.

In the case that f has an isolated singularity, then K is a manifold. This has many
interesting interpretations. For example, if n = 1, then the level set of f is a complex
curve and so K is a knot (in fact a link, hence the name) in the 3-manifold Sε (and hence
in R3 as K does not fill the three manifold). Results relating these knots to analytic curves
and vice versa were given in [49]. A short survey of more recent results can be found in
[67].

If one goes to higher dimensions, then one can produce exotic spheres. Kervaire and
Milnor showed in [34] that there exists manifolds homeomorphic to spheres which are not
diffeomorphic to the standard differentiable structure on the sphere. These are called exotic
spheres. Brieskorn gave the following example in [6].
Example 3.3 Let f : C5 → C be given by

f(x, y, z, t, u) = x2 + y2 + z2 + t3 + u6k−1.

Then, for 1 ≤ k ≤ 28, the link of the origin of f−1(0) is a topological 7-sphere. Further-
more, these give the 28 different types of exotic 7-spheres.

The proof of this involves Smale’s proof of the higher dimensional Poincaré conjecture
and analysis of the monodromy of the singularity.

Thus, the link of a singularity is an interesting space in its own right. There is much to
be investigated about it, particularly for surfaces and for non-isolated singularities.
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Figure 2: Schematic diagram of Milnor fibration

We now turn to the Milnor fibre of a singularity. One of the key results of [49] is
the existence of a fibration connected with a neighbourhood of the singularity. Milnor
originally defined this in a different fashion to the standard one about to be given, which is
due to Lê in [38].
Theorem 3.4 (Milnor Fibration Theorem) Let f : Cn+1 → C be a complex analytic
map and ε is taken small enough so that Sε defines the real link of f . Let D∗δ be the set
{t ∈ C : 0 < |t| < δ}.

Then, f : B◦ε ∩ f−1(D∗δ )→ D∗δ is a smooth locally trivial fibration for 0 < δ << ε.
In fact, f : Bε ∩ f−1(D∗δ ) → D∗δ is locally trivial topological fibration with f :

Sε ∩ f−1(D∗δ )→ D∗δ a subfibration.
Furthermore, if f has an isolated singularity, then this subfibration extends over Dδ =

{t ∈ C : |t| < δ}.
Unsurprisingly, the proof of the first part of this involves the Ehresmann Fibration

Theorem. The second can be proved using the First Thom–Mather Isotopy Lemma which
will be discussed later.
Definition 3.5 The fibre of f : B◦ε ∩ f−1(D∗δ ) → D∗δ is called the Milnor fibre of f and
is denoted by F ◦f , or F ◦ if no confusion will result. The closed fibre is Ff or F . The
boundary of F is denoted ∂F and, as can be seen from the theorem, this is also the fibre of
a fibration.

A schematic picture of the fibrations is given in Figure 2. It should be noted that be-
cause we can collar ∂F inF thatF ◦ andF are homotopically equivalent and are effectively
interchangeable in many theorems.
Example 3.6 (i) Recall that f(x, y, z) = y2 − x2z defines the Whitney Umbrella of

Example 2.9(ii). The Milnor fibre is homotopically equivalent to a sphere, see Ex-
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ample 3.16.

(ii) Let f(x1, x2, . . . , xn, xn−1) = x1x2 . . . xn+1. Then, it is easy to calculate that the
Milnor fibre of f is homotopically equivalent to (S1)n+1.

One of the reasons that the Milnor fibre is such a useful construction is it is a topological
invariant in the following sense.
Definition 3.7 Two functions f and g from Cn+1 to C with f(0) = g(0) = 0 are topolog-
ically equivalent at 0 if there exists a homeomorphism h : U → V , where U, V ⊆ Cn+1

are open sets containing the origin, such that f = g ◦ h.
We have the following crucial theorem.

Theorem 3.8 ([36]) Suppose that f and g are topologically equivalent. Then, their Milnor
fibres are homotopically equivalent.

Since the Milnor fibre is a Stein space, by Hamm [22] (see [17] for a simpler proof), it
has the homotopy type of a CW-complex of real dimension equal to its complex dimension,
i.e., n. This dimension is called the middle dimension. Thus we can place an upper bound
on the non-vanishing of homology. Also, we can place a lower bound on the non-vanishing
of reduced homology groups of the Milnor fibre, and in fact can do this for homotopy
groups.
Proposition 3.9 (Kato-Matsumoto [33]) If the singular set of f at 0 has dimension s, then
Ff is (n− s− 1)-connected.

From Example 3.6(ii) we see that this bound is in some sense sharp. However, the
converse of the theorem is not true and so one would like a more accurate statement. This
has proven difficult to find.

Also, we do not have many general theorems describing the homology groups between
n− s− 2 and n, and so this is an area requiring more research. However, one example of
such a theorem is given by Némethi [51], where some seriously heavy topological work is
employed to the case of compositions of functions, that is to maps f : Cn+1 → C2 defining
complete intersections with an isolated singularity and curve singularities g : C2 → C. Let
us define these.
Example 3.10 Let f : Cn+1 → C2 be such that f−1(0) is of dimension n − 1 and has
an isolated singularity at the origin in Cn+1. Suppose that g : C2 → C defines a reduced
curve singularity. Then h = g ◦ f is called a Generalized Zariski singularity.

In this case, the singular set of h coincides with the fibre of f and so has codimension
1 in the fibre of h. Then, H∗(F,Z) = 0 for ∗ 6= 0, 1, n. See [51], [52] and, for more
recent work, [25].

Isolated singularities and the unreasonable effectiveness of the Milnor
number

An important corollary of Proposition 3.9 was first proved by Milnor.
Corollary 3.11 (Milnor, [49]) If f has an isolated singularity at 0, then Ff has the homo-
topy type of wedge of spheres of dimension n.

Recall that the wedge of two topological spaces is their one point union. Hence, a
wedge of spheres (also known as a bouquet of spheres) is a collection of spheres, each
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member of which has a special point identified to the special point on the other members.
An interesting feature of investigations of the local behaviour of Milnor fibres is the ap-
pearance of many results involving the wedge of spaces. This will be seen more clearly in
Theorem 5.11.
Definition 3.12 The number of the spheres in the wedge is called the Milnor number of f
at 0, and is denoted µ(f).

The Milnor number is a surprisingly effective topological invariant. Probably, one
reason for this is that it can be calculated algebraically with ease: Suppose that coordinates
on Cn+1 are given by x1, x2, . . . , xn+1 and that C{x1, x2, . . . , xn+1} denotes the ring of
convergent power series at 0. Then, Milnor [49] showed that

µ(f) = dimC
C{x1, x2, . . . , xn+1}〈
∂f

∂x1
, . . . ,

∂f

∂xn+1

〉 .
The ideal in the denominator is called the Jacobian ideal of f and the quotient ring is called
the Milnor algebra of f .
Example 3.13 Consider the case of a Morse singularity, i.e.,

f(x1, . . . , xn+1) = x2
1 + · · ·+ x2

n+1 + c.

In this case the Milnor number is easily seen to be equal to 1.
Since we can produce knots via the real link of a singularity this means that we can use

µ as an invariant of knots constructed in this way.
Furthermore, µ(f) is related to the unfolding properties of f . On the space of complex

analytic functions we can place a natural equivalence relation.
Definition 3.14 Two functions f and g are right-equivalent if there exists a biholomor-
phism h : U → V of open sets U and V in Cn+1 such that f = g ◦ h.

The orbit of a function can be referred to as a singularity type since all functions in the
orbit have the same type of singularity.

The codimension of the orbit in the space of all complex analytic functions is µ(f). By
taking a set of functions {αi(x)}µ(f)

i=1 that projects to a basis of the C-vector space of the
Milnor algebra of f we can produce an unfolding of f :

F (x, λ) = f(x) +
µ(f)∑
i=1

λiαi(x).

The idea of this concept is that (up to isomorphism) this family of functions contains all
functions near to f .

Thus, it can be seen that µ is linked closely to the topology of the Milnor fibre and that
it measures how complicated the singularity is by measuring how ‘deep’ within the space
of functions the singularity sits.

New Milnor fibres from old

As usual in mathematics one would like to construct new examples of objects from old
examples in such a way that the properties of the new can be calculated from that of the
old.
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In this vein is the very useful following theorem first investigated by Sebastiani and
Thom and proved in more generality by Sakamoto in [55]. First recall that the join of two
topological spaces X and Y is denoted by X ∗Y and is defined as X × [0, 1]×Y with the
following identifications:

(i) (x, 0, y) ∼ (x′, 0, y) for all x, x′ ∈ X and y ∈ Y ,

(ii) (x, 1, y) ∼ (x, 1, y′) for all x ∈ X and y, y′ ∈ Y .

Proposition 3.15 (Sebastiani-Thom Theorem, [58], [55]) Let f : Cr → C and g : Cs →
C be complex analytic maps with f(0) = g(0) = 0. Define

f ⊕ g : Cr+s → C by (f ⊕ g)(x, y) = f(x) + g(y).

Then,

Ff+g is homotopically equivalent to Ff ∗ Fg.

Consequently, µ(f ⊕ g) = µ(f)µ(g).

There are many generalizations of this theorem to different settings. For example, [45]
shows how to generalise the underlying isomorphism to one in the derived category for
very general singular functions. This paper also includes a number of references to other
results in the area.

The concept of this result has an interesting application in Stratified Morse Theory
when considering the splitting of local Morse data into local Normal and Tangential Morse
Data, see Section 6.
Example 3.16 In the complex setting the Whitney umbrella is the image of f : C2 → C3

be given by f(x, y) = (x, xy, y2). This set is also given as a zero-set using h : C3 → C
defined by h(X,Y, Z) = Y 2 − X2Z. From the Sebastiani-Thom result we can see that
the Milnor fibre of h is the suspension of the Milnor fibre of g(X,Z) = X2Z. Since, g is
homogeneous, its Milnor fibre is given by the solution set ofX2Z = 1 and so can be given
by (

X,
1
X2

)
for X 6= 0.

The fibre is thus homeomorphic to C\{0} which is in turn homotopically equivalent to a
circle. Therefore, the Milnor fibre of the Whitney umbrella is homotopically equivalent to
the suspension of a circle, i.e., a 2-sphere.

Complete intersections

Much of the preceding theory was generalized from functions to maps. Let f : Cn+r → Cr
be a complex analytic map such that f(0) = 0 and, for simplicity, assume that n, r ≥ 1.
Again, we can define the link of f−1(0) as Sε(0) ∩ f−1(0) for small enough ε. Hamm’s
theorem in [21] states that it is at least (n− 2)-connected.

However, as we have no guarantee that a non-constant map will give a fibre of di-
mension n, we restrict to the case that f−1(0) has dimension n (the dimension we would
expect in generic situations) and that it has an isolated singularity at the origin. In this case
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we say that f defines an isolated complete intersection singularity which is traditionally
abbreviated to ICIS.

Again we find a Milnor fibration over the non-critical values in the target. As we
assume that the singularity is isolated, we have a bouquet theorem: The Milnor fibre of an
ICIS is a bouquet of n-spheres. It is quite common to find these bouquet theorems, we will
see a reason for this in Theorem 5.11.

The number of spheres is again called the Milnor number. This is harder to calculate
than the function case as it cannot be described as the quotient of some relatively simple
ideal (or module); it can however be given be calculated quite effectively in low codimen-
sion by an alternating sum of numbers, see [37] or [41] page 76-77. The latter book is the
standard reference for isolated complete intersection singularities.

For an ICIS one can define the Tjurina number as the dimension of the space

τ(f) = dimC
(C{x1, x2, . . . , xn+r})r

{〈f1, f2, . . . , fr〉ei}ri=1 +
〈
∂f

∂x1
, . . . ,

∂f

∂xn+1

〉
where ei is the standard basis, i.e., a column vector with a 1 in position i and 0 elsewhere.
A basis of the space used in the definition of τ can be used to construct an unfolding of f
that has all nearby functions up to K-equivalence. See [66].

In the case of function f : Cn+1 → C with an isolated singularity we see that

τ(f) = dimC
C{x1, x2, . . . , xn+1}〈
f,

∂f

∂x1
, . . . ,

∂f

∂xn+1

〉 .
It is easy to see that in this case that τ(f) ≤ µ(f) with equality if f is quasi-homogeneous.
Theorem 3.17 For an ICIS we have τ ≤ µ with equality if f is quasi-homogeneous.

The proof of this is considerably harder than the function version and relies on Hodge
theory, see [42]. In one respect it is unsatisfactory in that it does not provide much insight
into why the result is true, however, in 20 years no-one has improved upon the proof.

4 Monodromy

The Milnor fibration is a fibration over a punctured disc and so for a moment let us consider
it as a fibration over the circle S1. As this fibration is locally trivial we can consider what
happens to a point x ∈ f−1(t) for any t ∈ S1 as we go round a loop in S1. Executing a
complete loop gives a homeomorphism from F to F , which, in general, is not the identity.
Definition 4.1 The homeomorphism h : F → F is the geometric monodromy of f . The
map induced on homology

h∗ : H∗(F ;Z)→ H∗(F ;Z)

is called the (classical) monodromy operator of f .
We can prove the existence of this map by taking a vector field on S1 and using the

Ehresmann Fibration Theorem to produce a corresponding vector field on the total fibre
space. The geometric monodromy is then given by integrating this vector field.
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Now consider the compact set F and its boundary ∂F . The monodromy can be chosen
to be the identity on the boundary. So there exists a map from the relative pair (F, ∂F ) to
F . Let c be a relative cycle, then, since h is the identity on ∂F , c and h(c) have the same
boundary and thus h(c)− c is a cycle on F .
Definition 4.2 The variation operator of f is the map

var∗ : H∗(F, ∂F ;Z)→ H∗(F ;Z).

Let i : (F, ∅) → (F, ∂F ) be the standard inclusion, then we have a commutative
diagram

H∗(F ;Z) h∗−id−→ H∗(F ;Z)

↓ i∗
var∗
↗ ↓ i∗

H∗(F, ∂F ;Z) h∗−id−→ H∗(F, ∂F ;Z)

This means that we can describe the monodromy through the variation operator:

h∗ = id+ var∗ ◦ i∗

Suppose that f has an isolated singularity, then we know from Corollary 3.11 that the
Milnor Fibre is a wedge of spheres of dimension n and so we can concentrate onHn(F ;Z).
A particular case is that of a quadratic singularity:
Example 4.3 Consider a Morse singularity, f(x1, . . . , xn+1) = x2

1 + · · ·+x2
n+1. We have

seen that µ(f) = 1 and so Hn(F ;Z) ∼= Z. In fact, one can calculate that the Milnor fibre
is diffeomorphic to the tangent bundle of Sn. The construction is given explicitly in [2]
and [41].

In this example we can consider the set Bε(0) ∩ f−1(t) as t → 0. We see that as
Bε(0) ∩ f−1(0) is a cone over its boundary, and hence is contractible, that the homology
‘vanishes’ as t→ 0.
Definition 4.4 The non-trivial homology class in Hn(F ;Z) of Example 4.3 is called the
vanishing cycle of f .

Continuing this example, if we let ∇ denote the non-trivial class of Hn(F, ∂F ;Z) and
∆ be vanishing cycle, then Picard and Lefschetz proved the following.
Theorem 4.5 ([40], [53]) For a Morse singularity we have

var(∇) = (−1)n(n+1)/2∆.

Since this theorem was first proved, the theory of vanishing cycles has been greatly
developed and reframed in terms of a sheaf of vanishing cycles, see [9] for the original
sheaf version and [10] and [57] for more modern exposition.

We can now generalize to more general functions. Suppose that f has an isolated
singularity at 0 ∈ Cn+1. Then for a generic linear function g : Cn+1 → C the function
fλ : Cn+1 → C defined by fλ(x) = f(x) + λg(x) will have only Morse singularities
(with distinct critical values) for 0 6= λ ∈ R.

Fix such a λ. Within the Milnor ball Bε(0) we have a finite number of critical points
of fλ and this number is equal to µ(f), denote the points by p1, . . . , pµ. Let ci = fλ(pi).
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In C we have a disc Dδ = {z ∈ C : |z| ≤ δ}. Over D′ = Dδ\{c1, . . . , cµ} we in fact
have a fibration which has its (open) fibre diffeomorphic to the Milnor fibre of f . (We
use the Ehresmann fibration theorem again!) Basically, each critical point is Morse and
so it will contribute one copy of Z to the homology of the Milnor fibre. Furthermore, the
monodromy of each will determine the monodromy of f .

Let c∗ be a point on the boundary of Dδ . Then, for each loop γ in D′ based at c∗ we
have a monodromy hγ : Hn(F ;Z) → Hn(F ;Z). We get a homomorphism from π1(D′)
to AutHn(F ;Z), the group of automorphisms of Hn(F ;Z).
Definition 4.6 The monodromy group of f is the image of the above homomorphism.

Let ∆i be the vanishing cycle associated to the critical point ci.
Proposition 4.7 The cycles ∆1, . . . ,∆µ form a basis of Hn(F ;Z).

We can now define an intersection pairing on Hn(F ;Z). Suppose that N is an oriented
compact 2n-manifold with boundary ∂N such that the integer homology and cohomology
of N has no torsion.

There exists the Poincaré duality map µ : Hn(N, ∂N) → Hn(N) and we also have
the standard inclusion map i : (N, ∅) → (N, ∂N) which induces a homomorphism from
Hn(N) to Hn(N, ∂N).

By identifying Hn(N) and the dual of Hn(N) we have a pairing

ev( , ) : Hn(N)×Hn(N)→ Z

given by the usual evaluation for a space and its dual.
Thus, we can define the following.

Definition 4.8 The intersection pairing/form is the map 〈 , 〉 : Hn(N) × Hn(N) → Z
given by

〈x, y〉 = ev(µ(i∗(x)), y).

Proposition 4.9 ([2]) We have

〈∆i,∆i〉 =
{

0, n odd,
(−1)n(n−1)/22, n even.

Definition 4.10 The matrix B = (〈∆i,∆j〉)1≤i,j≤µ is called the intersection matrix of f .
From this matrix we can determine much about the monodromy of the singularity. We

can read off results about the classical monodromy operator h∗ and the variation operator
var since we have h∗ = h1h2 · · ·hµ where

hi(x) = x− (−1)n(n−1)/2〈x,∆i〉∆i

for ∆i a basis element. See [2] for details.
We can also describe the monodromy of direct sums of singularities:

Theorem 4.11 For f and g with isolated singularities we can describe the monodromy
and variation operators:

hf⊕g∗ = hf∗ ⊗ hg∗,
varf⊕g∗ = varf∗⊗ varg∗
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The theory in the case of non-isolated singularities is more complicated as one would
expect. A survey can be found in [59]. However, much of the theory carries over to
functions with isolated singularities on singular spaces. Details can be found in [64] and
[65].

5 Stratifications of spaces

When dealing with singular spaces (and maps) one is usually faced with a choice of two
methods. The first and perhaps oldest of these is to find a manifold associated to the
singular space and some map between the two. A study of the manifold and the associated
map will indirectly reveal information about the singular space. This is called the resolution
method. The summit of achievement here is Hironaka’s famous resolution theorem which
relies heavily on algebraic constructions and would take us too far from our interests.

The second method in some sense gets us closer to the singularities but still relies on
using the theory of manifolds. Basically, the space is partitioned into manifold subsets,
(i.e., each manifold constitutes a subset). This is called the stratification method. Different
conditions on how the manifolds meet one another give rise to different types of stratifi-
cation, e.g., Whitney (the most common which we shall describe below), Bekka, Af , and
logarithmic. See [63] for how the various stratifications are related to each another.
Definition 5.1 Let X be a closed subset of a smooth manifold M and let X be decom-
posed into disjoint pieces Si called strata. Then the decomposition is called a Whitney
Stratification if the following conditions are met.

(i) Each stratum is a locally closed smooth submanifold of M .

(ii) Si ∩ Closure(Sj) 6= ∅ if and only if Si ⊆ Closure(Sj) for strata Si, Sj i 6= j; this
is called the frontier condition and we write Si < Sj .

(iii) Whitney Condition (a): If xi ∈ Sa is a sequence of points converging to y ∈ Sb and
Txi(Sa) converges to a plane τ (all this considered in the appropriate Grassmannian),
then Ty(Sb) ⊆ τ .

(iv) Whitney Condition (b): If xi ∈ Sa converges to y ∈ Sb, yi ∈ Sb also converges to
y, li denotes the secant line between xi and yi, and li converges to l, then l ⊆ τ .

Note that (b)⇒(a). The condition (a) is stated explicitly since it is a condition that
many stratifications satisfy and is thus very useful. If X is a closed subanalytic subset of
an analytic manifold, then X can be Whitney stratified, hence complex varieties, semi-
analytic spaces, etc., can be Whitney stratified.

In Figure 3 we can see that we can stratify the space by taking the z-axis as a stratum.
However, this is not a Whitney stratification. The singular point that is not a transverse
crossing has to be a stratum. To see this consider a family of horizontal lines as in the
figure. This will converge to a line perpendicular to the z-axis so violates the (b) condition.

A Whitney stratified space can be triangulated (see [16]) and is locally topologically
trivial along the strata. Also, one has a conic structure theorem like Theorem 3.1: For any
point x and a small enough sphere Sε centred at x, the cone of X ∩ Sε is homeomorphic
to X ∩Bε.



508 Topology of differentiable mappings

Figure 3: A space to Whitney stratify

The local topological triviality and the conic structure theorem both follow from the
First Thom-Mather Isotopy Lemma. Perhaps, the most important lemmas in the applica-
tions of stratification theory are the Thom-Mather Isotopy Lemmas. The first concerns
spaces and can be considered a direct generalization of the Ehresmann Fibration Theorem.
Recall that the idea of the latter is that, at a non-critical value, a map on a manifold is in
fact a fibration. The First Thom-Mather Isotopy Lemma essentially requires that the map
is submersion on all the strata to produce a stratum preserving homeomorphism. Thus, it
is very useful in proving that various spaces are homeomorphic.

The second lemma allows us to fibre certain mappings: it gives sufficient conditions for
maps in a family of maps over Rp to be topologically right-left equivalent to one another.
(Two maps f : Rn → Rp and g : Rn → Rp are topologically right-left equivalent if there
exist homeomorphisms h : Rn → Rn and k : Rp → Rp such that f ◦ h = k ◦ g.)

Proof of both lemmas for Whitney spaces can be found in [15] and in the unpublished
manuscript [46]. For Bekka (also known as (c)-regular) stratifications they are proved in
[5]. We now outline the basic idea of proof. In differential topology we can find homeo-
morphisms by integrating vector fields on manifolds. For stratified spaces we find condi-
tions so that we can define vector fields on the strata that when integrated give the required
homeomorphisms. The surprising fact is that the vector fields do not have to be continuous
when considered as a whole on the Whitney space. The method is very technical and the
proof of the theorem occupies about a quarter of [15]. The original - unpublished - version
is still readable, see [46]. More modern versions with some extra generalizations can be
found in [54] and [63].
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First Thom-Mather Isotopy Lemma

Suppose M and P are analytic manifolds. Let X ⊆M be a Whitney stratified subset.
Definition 5.2 A map f : X → P is a stratified submersion if f |A is a submersion for all
strata A in X .
Theorem 5.3 (Thom-Mather First Isotopy Lemma) Let f : X → P be a proper stratified
submersion. Then f is a locally trivial fibration such that the homeomorphisms are stratum
preserving.

As an application we can prove a Milnor fibration type theorem, first proved by Lê in
[39]. We need a definition from there which clarifies what we mean by a function on a
singular space having a singularity.
Definition 5.4 Suppose that f : X → C is a complex analytic function with a Whitney
stratification S and that X can be locally embedded in Cn at x ∈ X for some n.

We say that f has an isolated stratified singularity at x if there exists ε > 0 such that
f |B◦ε (x) ∩ (A\{x}) → C is a submersion for all A ∈ S where B◦ε (x) is an open ball in
Cn of radius ε centred at x.

We can now produce the general Milnor fibration set-up for singular spaces.
Proposition 5.5 ([39]) Suppose X is a complex analytic space and f : X → C has an
isolated stratified singularity at x ∈ f−1(0). Then, there exists an embedding of X into
Cn and real numbers ε and δ such that the map

φ : Bε(x) ∩X ∩ f−1(D∗δ )→ D∗δ

induced by f is a locally trivial fibration over the punctured disc D∗δ = {y ∈ C : 0 <
|y| < δ}\{0}. Here Bε(x) is a small open or closed ball about x of radius ε in Cn. In the
closed case we produce a fibration on the boundary of Bε(x) ∩X ∩ f−1(D∗δ ) as well.

The fibration is sometimes referred to as the Milnor fibration. Just as in the case of a
function on a complex manifold, often the distinction between the open and closed version
of the fibres is blurred since the two spaces are homotopically equivalent.

The complex link

In the case where f is a general (complex) linear function, one gets the complex link of x.
This is a very powerful space which contains a lot about the behaviour of the set X near to
x.
Definition 5.6 Let x be a point of X ⊆ Cn a complex analytic set. Then, for a suitably
generic linear function L : Cn → C the complex link of x is

Lx = Bε(x) ∩X ∩ L−1(t)

where t 6= 0 and ε are sufficiently small.
Now take a manifold N transverse to the stratum A containing x such that N ∩X =

{x}.
Definition 5.7 The complex link of x in the set X ∩ N is called the complex link of the
stratum A and is denoted LA.
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As one might imagine the topological type of LA does not depend on the choice of
x ∈ A and the choices of ε and t when these are small.

For complex spaces, the complex link of strata turns out to be the fundamental building
blocks of the space and analysis of them is vital to the use of Stratified Morse Theory in
Section 6.

Few results are known that describe the complex link of strata in general settings. The
following is very useful and quite general. This was proved by Lê following Hamm’s work
for the similar situation of real links.
Theorem 5.8 Suppose that X is defined at x in Cn by r equations. Then, the complex link
of the stratum containing x is (n− r − 2)-connected.

Corollary 5.9 Suppose that X is a local complete intersection at x, i.e., the num-
ber of defining equations equals the codimension in Cn of X at x, then the complex
link of the stratum A is homotopically equivalent to a wedge of spheres of dimension
dimX − dimA− 1.

There are further examples.
Examples 5.10 (i) Suppose that f : N → P is a complex analytic map between com-

plex manifolds such that dimN < dimP and that f is stable everywhere (see [66])
and the corank of the differential is less than or equal to 1 at all points in N . (In this
case we say that f has corank 1 even though we include the case that the corank may
be zero.)

We can stratify the image by stable type and this is the canonical Whitney stratifica-
tion, see [14]. Then the complex link of a stratum A in the image is homotopically
equivalent to a single sphere of dimension k dimN − (k − 1) dimP − dimA − 1
where k is determined precisely by the stable type of the germ at any point ofA. See
[29].

(ii) Let F : C2 → C4 be defined by F (x, t) = (x2, x3 + tx, tx3, t). The image of this
map has an isolated singularity at the origin of C4 and is defined in C4 by no fewer
than four equations, so it is not a complete intersection. The link L of the origin is
homeomorphic to the image of the map ft(x) = F (x, t) for any t 6= 0. Since, for
t 6= 0, ft is a proper injective immersion the image is homeomorphic to C2, which
is contractible.

(iii) Suppose that Xn is the complex analytic set in the set of 2 × n matrices given by
the matrices of rank 1. Then Xn is n + 1 dimensional, embedded in C2n and has
an isolated singularity: the matrix of rank zero. The set Xn can be seen to be an
analytic set in C2n via taking all the 2 × 2 minors of the following matrix, where
coordinates on C2n are given by zi,[

z1 z2 . . . zn
zn+1 zn+2 . . . z2n

]
.

Using this description it is possible to calculate that the complex link of the origin is
homeomorphic to CPn.

We have seen that wedge-of-spheres theorems occur regularly for Milnor fibres and we
will see in the next section that complex links are the building blocks of complex analytic
spaces. We now show a general theorem that describes the Milnor fibre on a singular space
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in terms of a wedge of suspensions of complex links, see [61]. Hence in the case where the
complex links are wedges of spheres, for example, X is a complete intersection, we can
deduce the Milnor fibre is a wedge of spheres.

First recall that the suspension of a topological space Z, denoted ΣZ is the join of Z
and two disjoint points. The repetition of this process is denoted ΣkZ, where Σ1(Z) =
ΣZ.
Theorem 5.11 (General wedge theorem, [61]) Let X be a complex analytic space with a
Whitney stratification such that f : X → C has an isolated stratified singularity.

Then Ff is homotopically equivalent to∨
A

∨
µA(f)

ΣdimC ALA

where A runs all over all strata A such that x ∈ A, the closure of A, and µA(f) is the
number of copies to be taken (which depends on f ).

This then encompasses many of the theorems we have met. For example, ifX = Cn+1

and f has an isolated singularity, then the complex links are empty and Σn+1∅ = Sn

(because Σ∅ = S0). Thus, we recover the original Milnor fibre theorem, Corollary 3.11.

Second Thom-Mather Isotopy Lemma

The second isotopy lemma is a relative version of the first, rather than using it to fibre a
singular space, we fibre a map between two singular spaces.

Suppose M , N and P are analytic manifolds. Let X ⊆ M and Y ⊆ N be Whitney
stratified subsets.
Definition 5.12 Suppose X and Y are Whitney stratified spaces in the analytic manifolds
M and N and f : X → Y is the restriction of a smooth map F : M → N . Then, the map
is called stratified if f is proper and if for any stratum A ⊆ Y the preimage f−1(A) is a
union of strata and f takes these strata submersively to A.

IfX and Y are complex analytic and f is complex analytic, then it is possible to stratify
X and Y into complex analytic strata so that f is stratified. See [17] I.1.7.

Just as it was necessary to impose further conditions on the strata of the space to get
the First Isotopy Lemma we need to impose another important condition on the map for
the Second. This is the Thom Af condition:
Definition 5.13 Let f : X → Y be a stratified map. Then f is a ThomAf map if for every
pair of strata B < A we have the following.

(i) f |A and f |B have constant rank.

(ii) A is Thom regular over B: If ai ∈ A is a sequence of points converging to b ∈ B
such that ker dai(f |A) converges to a plane T then ker db(f |B) ⊆ T .

This condition is important in its own right. The definition of (c)-regularity (or Bekka
stratifications) involves the Thom condition, see [5]. It is generally thought that this type of
stratification, which includes Whitney stratifications, is the ‘correct’ type of stratification
for the study of maps between spaces.
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Theorem 5.14 (Thom-Mather Second Isotopy Lemma) Let F : X → Y be a proper Thom
AF map and let f : Y → P be a proper stratified submersion. Then F : X → Y is locally
topologically trivial over P .

That is, for every point p ∈ P there exists a neighbourhood V of p, such that for every
q ∈ V , F : (f ◦ F )−1(q) → f−1(q) and F : (f ◦ F )−1(p) → f−1(p) are topologically
right-left equivalent by stratum preserving homeomorphisms.

The Thom-Mather Isotopy Lemmas are important ingredients in the study of the topo-
logical stability of maps, see [15], and for more recent progress and a highly detailed
exposition see [12].

6 Stratified Morse theory

Classical Morse theory

Morse theory has a long history, going back before it even acquired that name. It is fairly
obvious that given a topological space X and a continuous map f : X → R then we can
study the topology of X by seeing how it changes as we take the preimages under f of the
set (−∞, a]. Let Xa = f−1([−∞, a]); we can define a critical value v of f to be one such
that Xv−ε is not homeomorphic to Xv+ε, for any small ε. The idea is to find a suitable
f so that, for instance, we have a finite number of critical values and can find out what
happens as we pass them.

Of course such a situation is too general and we have to restrict to situations where X
has some extra structure, for instance a nonsingular projective complex algebraic curve.
According to Fulton in [13] Riemann had the following theorem: Suppose f : X → CP1

is a meromorphic function on a smooth projective curve with n sheets and w simple branch
points, then the genus g of X is given by w = 2g + 2n− 2.

Various generalizations were given until Morse eventually arrived at the following the-
orem:
Theorem 6.1 Suppose f : X → R is a ‘sufficiently general’ C∞ function on the compact
real manifold X . Then the topology of Xa changes only when we pass a critical value,
which in this case is the image of a point where the differential of f is zero. Furthermore
Xv+ε is homotopically equivalent to Xv−ε with a cell attached and the dimension of this
cell is equal to the dimension of the space upon which the Hessian of f is negative definite
(this is called the index of f ).

This is a truly great result, its effectiveness in the 20th Century can be seen in Smale’s
work on h-cobordism and the higher dimensional Poincaré conjecture, René Thom’s work,
Bott periodicity, etc. Classical Morse theory was explained very well in Milnor’s classic
book [48] and so I shall not explain it further here.

A stratified version

Now, we can easily ask if such a theory is possible for singular spaces rather than mani-
folds. Goresky and Macpherson answered this positively with their Stratified Morse The-
ory.

The idea here is that we stratify our singular space into manifolds and put a function
on the space so that function is a Morse function on the manifolds and so that the func-
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Figure 4: A stratified space from Goresky and MacPherson [17].

Figure 5: Stratification of torus with critical points.

tion behaves in a non-degenerate way with respect to how the manifolds meet each other.
Then just as in Morse Theory we can describe how the topology of the singular space
changes as we pass through critical points. The most developed method of stratification
is Whitney stratification and, in fact, Goresky and Macpherson’s original work was only
for these stratifications but work of King, [35], and of Hamm, [23], allows us to use other
stratifications, such as (c)-regular.

Let’s see with an example how Stratified Morse Theory allows us to build up the topol-
ogy of a space from simple building blocks. This example is taken from the introduction
of [17]. The example used in illustrating Classical Morse theory is the torus with a height
function. It is well known that part of the homology of the torus is generated by two cir-
cles. So to change the topology and make the space singular we can collapse one circle
to a point and glue a 2-cell to the other as shown in Figure 4. The stratification is shown
in Figure 5. The Morse function will be the height function h which gives the critical
points p1, . . . , p5 labelled. Note that the stratum of dimension zero is needed otherwise the
stratification would not satisfy the Whitney (b) condition.
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Figure 6: Product structure of the local Morse data.

As the height increases we can see that the topology of the space changes as we pass
the critical values of h restricted to the various strata. Furthermore the change in topology
depends only upon a small enough neighbourhood of the critical point. The space we
attach to Xv−ε to get Xv+ε is called the Morse data.

The fact that is probably not obvious is that the Morse data is a product of two spaces.
If we restrict our attention to the stratum containing the critical point then by classical
Morse theory we add a cell to the manifold to get the new space. However, due to the
Whitney conditions, along the stratum the neighbourhood is a product. Thus one can see
that the Morse data should be a product of the classical Morse data and a space associated
to a slice transverse to the stratum. Figure 6 shows the product structure of the Morse data
for our example.

Morse functions

As in any Morse type theory we have to decide which functions are suitable and how com-
mon they are. Clearly the functions should satisfy the usual properties of Morse functions
from classical theory: nondegenerate critical points with non-coincident critical values
when restricted to the manifolds. The extra condition, (like most in stratification theory)
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relates to what is occurring in the normal direction to the manifold containing the critical
point. First we need a definition:
Definition 6.2 Suppose X is a Whitney stratified space in the smooth manifold M and p
is point in the stratum A of X . Then Q ⊆ TpM is a generalized tangent space at p to
X if Q is the limit of tangent planes for a sequence of points converging to p. Hence, for
example, TpA is a generalized tangent space.
Definition 6.3 A Morse function f on the Whitney stratified set X ⊂M is a function that
is the restriction of a smooth function F on M such that

(i) f = F |X is proper;

(ii) for each stratum A of X the critical points of f |A are nondegenerate and the critical
values are distinct;

(iii) for every critical point p ∈ A and for every generalized tangent plane Q at p,
dF (Q) 6= 0 except if Q = Tp(A).

Under mild restrictions there is a plentiful supply of Morse functions on a particular
space.
Theorem 6.4 SupposeX is a Whitney stratified subanalytic subset of the analytic manifold
M . Then the functions F : M → R that restrict to stratified Morse functions on X form
an open and dense subset of the space of smooth functions. If M = Rn, then the function
given by restriction to X of the distance from a generic point in M is an example of a
stratified Morse function.

Morse data

Suppose X is a Whitney stratified space in the analytic manifold M and f : X → R is a
stratified Morse function with a critical p ∈ A, with critical value v, where A is a stratum
of dimension n. Let N be a submanifold of M transverse to A with N ∩ A = {p} and let
B be a small enough ball in M centred at p.

Define Tangential Morse Data, TMD, to be the space

TMD = (Dλ ×Dn−λ, Sλ−1 ×Dn−λ)

where λ is the classical Morse index of f |A at p, Dλ is a disc of dimension λ and Sλ−1 its
boundary.

Define Normal Morse Data, NMD, to be the space

NMD = (X ∩B ∩N) ∩ (f−1([v − ε, v + ε]), f−1(v − ε)).

The space X ∩B ∩N ∩ f−1(v − ε) is called the halflink of f at p and is denoted l−.
Define the Morse data to be the space MD = TMD×NMD where

(A,B)× (C,D) = (A×D,A×D ∪B × C).

Recall that Xa = {x ∈ X : x ∈ f−1((−∞, a]).
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Theorem 6.5 (Fundamental Theorem of Stratified Morse Theory) With the above condi-
tions

Xv+ε ' Xv−ε ∪MD

where the union of a space with a pair is taken to mean the attachment of the first space
via the second.

Thus the Morse data for f is a product of the Tangential and Normal Morse Data.
The proof of the main theorem of Stratified Morse Theory, (the Morse Data of a func-

tion is a product of the Morse data for the stratum and the Morse data for the normal slice),
occupies a large part of Goresky and MacPherson’s book [17]. In effect they used repeated
application of the First Thom-Mather Isotopy Lemma which has been disguised in a more
useful (for their purposes) technique called Moving the Wall.

In subsequent years the proof has been simplified and generalized to stratified spaces
other than Whitney, first by King in [35] and then by Hamm in [23] (which dealt with some
of the weaknesses in [35]).

The method employed arises from the ‘direct sum’ idea in creating new singularities
(see New Milnor fibres from old in Section 3). One can define the Morse data of an arbitrary
continuous function as the pair X ∩B ∩ f−1([v− ε, v+ ε], v− ε) where B is a small ball
around a critical point, v is the critical value and ε is a small number.

King’s idea is that if we have a two functions fi : Xi → R, i = 1, 2, where the
functions and spaces are restricted to ‘good’ categories (Whitney stratified spaces and
stratified Morse functions form a good category), then the Morse data for the function
f1 ⊕ f2 : X1 ×X2 → R given by (f1 ⊕ f2)(x1, x2) = f1(x1) + f2(x2) is homeomorphic
to the product of the Morse data for f1 and f2. The idea then is to show that for a strati-
fied Morse function on the Whitney stratified space X we can ‘split the function over’ the
product of the stratum and a normal slice.

This process can be exemplified using classical Morse theory. The main theorem arises
from the Morse lemma: at a critical point of a Morse function f there is a choice of local
coordinates such that

f(x1, . . . , xn) =
k∑
i

x2
i −

n∑
k+1

x2
i .

The Morse data for g(x1, . . . , xk) =
∑k
i x

2
i and h(xk+1, . . . , xn) = −

∑n
k+1 x

2
i are

(Dk, ∅) and (Dn−k, Sn−k−1) respectively. Since f = g + h the Morse data for f is
homeomorphic to

(Dk ×Dn−k, Dn−k × ∅ ∪Dk × Sn−k−1).

This is equal to

(Dk ×Dn−k, Dk × Sn−k−1).

Thus we recover the classical Morse Theory result.

The complex analytic setting

In obtaining the Morse data in the stratified case there are two objects to describe: the
tangential data and the normal data. Finding the tangential data is merely the determination
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of a number: the number of negative eigenvalues of the Hessian. The normal data is more
difficult to work out; it depends on the singularities of X and the function f .

Even if X is a (stratified) manifold this can prove problematic. However, for complex
manifolds the Morse indices of the standard distance function are bounded above by the
complex dimension rather than just the real dimension. In a similar way the normal data
becomes simpler for complex analytic spaces. In fact, homotopically speaking, the normal
Morse data does not depend on the function and hence to determine it we can investigate
the normal data for a linear function on X . Better than that, the data is homeomorphic
to a product of an interval and the intersection of X with a generic linear complex form.
In other words, the complex link of the stratum! This allows us to prove theorems using
induction as the complex link is a complex space of dimension one lower than X.

The main theorem for Stratified Morse Theory on a complex analytic space is the fol-
lowing.
Theorem 6.6 Suppose that f is any stratified Morse function on X . Then the normal
Morse data does not depend on the function. Furthermore, NMD ' (Cone(L),L).

It should be noted that up to homotopy the above spaces do not depend on any choices
involved, eg the choice of ε, metric on M , normal slice, etc.

7 Rectified homotopical depth

We now give a simple introduction to the notion of rectified homotopical depth (abbr. rhd).
Rectified homotopical depth was introduced by Grothendieck in [20] to measure the failure
of the Lefschetz hyperplane section theorem for singular spaces. The original theorem is
the following.
Theorem 7.1 (Lefschetz Hyperplane theorem) Suppose that X ⊆ CPm is a non-singular
projective algebraic variety andH a hyperplane. Then πi(X,X∩H) = 0 for i < dim(X).

Lefschetz said this ‘planted the harpoon of algebraic topology into the body of the
whale of algebraic geometry’, see [40] page 13.

Our interest in rhd arises from the fact that measuring the rhd for a complex analytic
space tells us something about its Normal Morse data, (which as we have said, is indepen-
dent of the Morse function). We shall see that if we replace the manifold X by a singular
space, then we can replace dim(X) in the theorem with rhd(X).

Let X be a complex analytic space with stratification S. For any stratum A in S let LA
denote the real link of A and let LA denote the complex link. In our set up rhd keeps track
of the vanishing of homotopy groups for these spaces.

We actually define the rectified homotopical depth of X , denoted rhd(X) using the
following proposition.
Proposition 7.2 The following are equivalent:

(i) rhd(X) ≥ n,

(ii) πi(Cone(LA), LA) = 0 for i < n− dimC A for all strata A ∈ S,

(iii) πi(Cone(LA),LA) = 0 for i < n− dimC A for all strata A ∈ S.

Thus the rhd of X is the largest number for which the second two statements hold. It
is independent of the stratification chosen for the space, see [24].
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The number rhd(X) is bounded above by the dimension of X because both types
of link of the largest stratum are equal to the empty set and Cone(∅) is defined to be a
point. Thus π0(Cone(∅), ∅) = π0(point, ∅) 6= 0. In particular, if X is non-singular, then
rhd(X) = dimC(X).

Similarly we can define rectified homological depth, rHd(X;Z) by replacing the rela-
tive homotopy groups in the definition by relative homology groups. It is also possible to
make a definition of rectified homological depth, rHd(X;G), for any coefficient group G.

We have the following lemma:
Lemma 7.3 For a field F ,

rhd(X) ≤ rHd(X;Z) ≤ rHd(X;F ) ≤ dimC X.

The first relation is proved by using Hurewicz’s theorem. The second by the universal
coefficient theorem. As above the last relation is simple.
Theorem 7.4 Let f : X → R be a stratified Morse function with a critical point at p in
the stratum A with critical value v. Let Xb = f−1([−∞, b]). Let λ be the Morse index at
p and ε a sufficiently small number, then

(i) πi(Xv+ε, Xv−ε) = 0 for i < (λ− dimC A) + rhd(X),

(ii) Hi(Xv+ε, Xv−ε) = 0 for i < (λ− dimC A) + rHd(X).

The second is easier to prove. Using excision we get

Hi(Xv+ε, Xv+ε) ∼= Hi(NMD, ∂NMD).

But (NMD, ∂NMD) is equal to the product (Dλ, ∂Dλ)× (Cone(LA),LA). The product
theorem for homology gives the vanishing of homology that is required.

For (i) more advanced and less well known techniques need to be used but the spirit is
the same. One can construct a proof using [17] II.4.

An important theorem, which is essentially a local Lefschetz type theorem, was proved
by Hamm and Lê. See [24] 3.2.1.
Theorem 7.5 Suppose that X is a complex analytic space and Y is a subspace defined set
theoretically by no more than r equations, then

rhd(Y ) ≥ rhd(X)− r.

The proof actually follows from reasoning similar to the proof of Theorem 5.8.
As a corollary of this we are able to find the rhd of a very large class of complex

analytic spaces.
Corollary 7.6 Suppose that X is a local complete intersection. Then rhd(X) = dimC X .

Grothendieck’s original intention for rectified homotopical depth was that is was anal-
ogous to the notion of depth from commutative algebra. For example, one can see that for
regular rings and complete intersection rings that depth equals the dimension of the ring.
For rectified homotopical depth we have that manifolds (equivalent to regular rings in the
analogy) and local complete intersections have rhd(X) = dimX .

Rings with maximal depth are called Cohen–Macaulay and have many interesting prop-
erties. Similarly, spaces with maximal rectified homotopical depth has good properties -
since, almost by definition, their complex links are wedges of spheres in middle dimension.
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An interesting unexplored topic is the analogy with Gorenstein rings. To some extent
this was tackled in Goresky and MacPherson’s original work on Poincaré duality for sin-
gular spaces but it would be good to pursue the analogy further from the perspective of
rectified homotopical depth.
Example 7.7 An example of a space that does not have rhd(X) = dimC X: Let X =
C2 ∪ C2 be two copies of C2 in C4 that intersect transversally at the origin. Stratify X
by taking the origin as one stratum and the complement of the origin in X as the other.
It is obvious that the complex link of the origin, L, is a disjoint union of two discs. Thus
π0(Cone(L),L) = 0 but π1(Cone(L),L) 6= 0. Therefore rhd(X) = 1 < dimC X = 2.

Another theorem of interest concerns the notion of perverse sheaves, see [4] for the def-
inition. Let C•X [dimC X] denote the sheaf complex that has the constant sheaf of complex
numbers in the dimC X position and zero in other degrees.
Theorem 7.8 ([24]) We have: rHd(X;Q) = dimC X if and only if C•X [dimC X] is per-
verse in the sense of Bernstein-Beilensen-Deligne.

The final theorem of this section shows how rhd can be used to give a Lefschetz the-
orem. The proof is a simple example of the type of technique used in proving Lefschetz
type theorems.
Theorem 7.9 Let X be a complex projective variety in CPN . Suppose H is a hyperplane
in CPN that does not contain all of X , then

πi(X,X ∩H) = 0 for i < rhd(X −H).

We give a proof here since almost all Lefschetz type theorems can be proved using the
outline of this proof. Proof Identify CPN −H with CN . For a generic point p in CN the
function φ(z) = ||z − p||2 is a stratified Morse function on X ∩ CN . This function has a
finite number of critical points and the Morse index for a critical point on the stratum A is
not greater than dimC A. For some large enough R all critical point of φ are contained in
the set φ−1([0, R]). We consider the Morse function −φ on the set X ∩ CN . The Morse
indices are bounded below by 2 dimC A−dimC A = dimC A. LetXa = (−φ)−1(−∞, a).
By passing through all critical points of −φ we build up X from X−R using stratified
Morse theory. The critical points of φ all lie outside X ∩ H and thus the connectivity of
the complex link of the stratum depends only on rhd(X −H) and not rhd(X).

By Theorem 7.4 we get πi(Xv+ε, Xv−ε) = 0 for i < (λ − dimC A + rhd(X −H))
for any critical value v, where λ is the Morse index of the critical point. As λ ≥ dimC A,
the pair is therefore (rhd(X −H) − 1)-connected. So (X,X−R) is (rhd(X −H) − 1)-
connected.

X can be triangulated with X ∩H being a subtriangulation. Thus there exists a neigh-
bourhood U of X ∩H that retracts onto X ∩H . For some R′ > R the space X−R′ is a
subset of U and since the interval [−R′,−R] contains no critical points for−φ, by Thom’s
First Isotopy Lemma, X−R retracts onto X−R′ . Thus in the chain of inclusions,

X ∩H ⊆ X−R′ ⊆ U ⊆ X−R

the composition of any two inclusions induces an isomorphism on homotopy groups. This
implies that the natural map π∗(X∩H)→ π∗(X−R) is an isomorphism. By examining the
long exact sequence arising from the triple (X,X−R, X∩H) we arrive at πi(X,X∩H) =
0 for i < rhd(X −H) as stated.
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This theorem also exemplifies the flavour of proofs using Stratified Morse Theory.
Essentially the process involves taking a stratified Morse function and using it to build up
one space from another. Something about the function allows us to bound the indices from
above or below and the rhd hypothesis allows us to say something about the connectivity
of the normal Morse data. Thus we get a theorem involving rhd which in effect tells us
nothing practical until we ‘attack’ with an example where we have calculated the rhd. For
example, we have the following.
Corollary 7.10 ([48] Theorem 7.4.) Suppose that X ∩ H contains the singular locus of
X . Then

πi(X,X ∩H) = 0 for i < dimC X.

Since X −H is nonsingular we have rhd(X −H) = dimC(X −H) = dimC X and
we can apply the theorem. We also have the following.
Corollary 7.11 Suppose that X is a local complete intersection. Then

πi(X,X ∩H) = 0 for i < dimC X.

Since X −H is a local complete intersection by Theorem 7.5 we have rhd(X −H) =
dimC(X −H) = dimC X . This of course includes the case that X is non-singular.

Once the overall method of proof has been grasped it is possible to generalize to other
cases where the space is not in CPn. Here one also has to estimate the Morse index and
this is usually done by using the concept of q-convexity. See [17], [22] and [57].

8 Relative stratified Morse theory

Suppose X ⊆ M ′ and Z ⊆ M are closed Whitney stratified subsets of smooth manifolds
and that π : X → Z is a proper surjective stratified map, i.e., π is the restriction of
π′ : M ′ → M , a smooth map such that π maps strata of X submersively to strata of Z.
This is not an unnatural set up for ifX and Z are complex analytic spaces and π is a proper
complex analytic map, then there exist stratifications of X and Z such that π becomes a
stratified map. (See [17] page 43.) Let f : Z → R be a stratified Morse function with a
critical point at p.

The idea of relative stratified Morse theory is to build up the space X using the maps f
and π. The composition f ◦π is not a Morse function and approximating f ◦π by a Morse
function may not viable since we could lose estimates on the Morse indices.

Nevertheless, this set up is amenable to study. For if the interval [a, b] contains no
critical value of f , then Xa is homeomorphic in a stratum preserving way to Xb. This
is not too difficult to prove as it relies upon stratification techniques and the First Thom-
Mather Isotopy Lemma. The important result is the following:
Theorem 8.1 Let l− = π−1(Z ∩ N ∩ Bε(p)) ∩ f−1(−ε). There exists a map φ : l− →
π−1(p), see [17] page 117. If λ is the Morse index of f at the critical point p, then Xb has
the homotopy type of Xa with the attachment of the pair

(Dλ, ∂Dλ)× (cyl(l− → π−1(p)), π−1(l−))

where cyl denotes the mapping cylinder of φ and Dλ is the standard disc of dimension λ.
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The proof is given in [17].
Thus we see that the tangential Morse data does not depend on π and our main difficulty

with the set up is to calculate the ‘relative’ Morse data.
If Z is complex analytic, then l− is less complicated because it is homotopically equiv-

alent to the preimage of the complex link of the stratum containing p.
If X is also complex analytic and π is a finite complex analytic map then the structure

of the mapping cylinder becomes simpler. It is the disjoint union of cones over the spaces
involved.

There are many as yet unexplored situations where relative Stratified Morse Theory
can be applied. In [17] various relative versions of the Lefschetz Hyperplane are proved.
Another application is given in [26]. The set up there is the following for the case G =
Sk, the group of permutations on k objects. Suppose G is a finite group acting upon the
complex analytic space X . The map π : X → X/G is a finite surjective complex analytic
map which we can stratify. This map is then a ThomAπ map. The relative Morse data will
inherit a G action since we can lift a vector field giving a homeomorphism on X/G to a
G-equivariant vector field on X . (We can lift the vector fields as π is a Thom Aπ map and
these fields are G-invariant). Thus Xb is G-homotopically equivalent to the union of Xa

and the relative Morse data.
Furthermore, if M is a real manifold intersecting the strata of X/G transversally, then

we can lift vector fields on (X/G) ∩M to G-equivariant vector fields on X ∩ π−1(M).

9 Topology of images and multiple point spaces

Through most of this article our concern has been with the topology of fibres. The Implicit
Function Theorem, Sard’s Lemma and the Morse Lemma effectively tell us that the topol-
ogy of fibres is, in some sense, easy to deal with: Most fibres are non-singular and most
singular functions have isolated quadratic singularities.

But what about the topology of images? This is considerably harder to deal with. Let
us first consider one of the main difficulties. This is the realisation that singularities are
common for images. Consider the Whitney cross-cap of Example 2.9(ii). This is a stable
map - a small perturbation will produce an equivalent singularity under local diffeomor-
phisms of the source and target - and so this is a perfectly natural object. However, the
image has non-isolated singularities. In the case of critical points of functions or maps
we had the possibility of taking a nearby fibre which was non-singular. We do not have
this possibility for the Whitney umbrella. There is no natural nearby non-singular image.
Furthermore, to make matters worse, the umbrella is the image of an algebraic map, but
the image itself is not algebraic in the real case - it is semi-algebraic.

To show that progress can be made in describing the topology of the image of a map
consider the following. Suppose that we consider a smooth map f : N → P , from a
closed surface N , (i.e., non-singular, compact and without boundary), to a 3-manifold P ,
such that the only singularities of f are the stable. The singularities that occur are the
Whitney cross cap or the transverse crossing of 2 or 3 sheets. In the latter case, these are
called triple points and will be isolated just as the cross caps are isolated.
Theorem 9.1 (Izumiya-Marar [32]) Suppose that f : N → P is a stable mapping from a
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Figure 7: Steiner’s Roman Surface.

closed surface to a 3-manifold. Then

χ(f(N)) = χ(N) +
C(f)

2
+ T (f),

where χ(X) denotes the Euler characteristic of the space X , C(f) is the number of cross
caps and T (f) is the number of triple points.

This has been generalized in a number of directions, see [28]. The point is that we look
at significant features of the map.
Example 9.2 Steiner’s Roman surface: Suppose that f is the map f : RP2 → R3 given
by f([x : y : z]) = [xy : xz : yz : x2 + y2 + z2], (since x = y = z = 0 is impossible we
have [a : b : c : 0] /∈ f(RP2) so the target of the map is indeed R3). See [1] p40 for more
information.

The map f is smooth and has stable singularities, with 6 cross caps and 1 triple point.
See Figure 7. Note that three of the cross caps are hidden from view.

Here

χ(R) = χ(RP2) + C(f)/2 + T (f) = 1 + (6/2) + 1 = 5.

From the figure it is possible to see that the space is homotopically equivalent to a wedge
of four 2-spheres.

This examples shows how we have to be careful. We have to look at the singularities
of the maps rather than the singularities of the image. One can have a non-stable map
such that the singularities of the image are locally homeomorphic to the singularities of
the image of a stable map. For example, Steiner’s Roman surface can also be given as the
image of a map from S2 to R3. The triple point is formed by four corners of a cube (see
Example 2.10) coming together. In this case

χ(S2) + C(f)/2 + T (f) = 2 + (6/2) + 1 = 6

if we count the C and T by what the singularities of the image look like.
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Multiple point spaces

We shall assume now that our maps are finite and proper, i.e., each point in the target
has a finite number of preimages and the preimage of a compact set is compact); for the
moment we shall not assume smoothness of the map, and hence will have a continuous
map f : X → Y .

There are many ways of defining multiple point spaces for a finite and proper map.
For example, one can define the double point set as the set of points in X where f is not
injective. That is, the closure of the set x ∈ X such that there exists y 6= x such that
f(x) = f(y). Alternatively, some authors define the double point set as the image of this
set.

We take a third alternative which has a number of advantages. The double point space
of a map f is the closure in X2(= X ×X) of the set of pairs (x, y), with x 6= y, such that
f(x) = f(y). This first advantage of this is that often this space is, in some vague sense,
less singular than that which the other definitions give. The second advantage, though this
may not appear so useful at first sight, is that this space has more symmetry – the group of
permutation on 2 objects acts on X2 by permutation of copies.

We can generalize this so that the kth multiple point space of a map is the closure of
the set of k-tuples of pairwise distinct points having the same image:
Definition 9.3 Let f : X → Y be a finite map of topological spaces. Then, the kth

multiple point space of f , denoted Dk(f), is defined to be

Dk(f) := closure{(x1, . . . , xk) ∈ Xk | f(x1) = · · · = f(xk) forxi 6= xj , i 6= j}.

Just as in the case of the double point set these sets are considerably simpler than the
sets in the target formed by counting the number of preimages, the former may be non-
singular in contrast to the highly singular latter. In effect, the multiple point spaces act as
a resolution of the image.

There exist maps εi,k;Dk(f) → Dk−1(f) induced from the natural maps ε̃i,k :
Xk → Xk−1 given by dropping the ith coordinate from Xk. There also exists maps
εk : Dk(f)→ Y given by εk(x1, . . . , xk) = f(x1).

We will now officially define the multiple point spaces in the image that we have men-
tioned above.
Definition 9.4 The kth image multiple point space, denoted Mk(f), is the space
εk(Dk(f)).

As stated earlier, the spaces Mk(f) can be highly singular compared to Dk(f), in the
sense that Dk(f) could be non-singular but Mk(f) could have non-isolated singularities.
Example 9.5 Let f : R2 → R3 be the Whitney umbrella f(x, y) = (x, xy, y2). Then,

D2(f) = closure{(x1, y1, x2, y2) ∈ R2 × R2 | (x1, x1y1, y
2
1) = (x2, x2y2, y

2
2);

(x1, y1) 6= (x2, y2)}
= {(0, y1, 0,−y1) ∈ R4}.

From this we can see that D2(f) is a manifold – in fact, a line – and that M2(f) is not a
manifold (although one could count it as a manifold with boundary).

Also, we can see clearly that S2 acts on D2(f).
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Morin described stable map germs f : (Rn, 0) → (Rp, 0) where n < p and f has
corank 1. He stated that f is equivalent to a map of the form,

(x1, . . . , xs, u1, . . . , ul−2, w1,1, w1,2, . . . , wp−n+2,l, y)

7→ (x, u, w, yl +
l−2∑
i=1

uiy
i,
l−1∑
i=1

w1,iy
i, . . . ,

l−1∑
i=1

wp−n+2,iy
i),

where l is the multiplicity of the germ.
Mather proved in [47] that stable multi-germ maps are constructed from stable mono-

germs with these mono-germs meeting transversally. Thus we have an explicit description
of a map f : N → P if it is such that dimN < dimP and is stable and corank 1. (Recall
that a map is corank 1 if at each point the differential has corank at most 1. That is, the
map could in theory, in this case, be an immersion at a point.)

From this explicit description we can produce a large number of examples via the
following theorem.
Theorem 9.6 ([43]) Suppose that f : N → P is such that dimN < dimP and that the
singularities of f are stable and corank 1. Then, Dk(f) is non-singular.

The proof of this is given in [43]. Furthermore, they give a method for calculating
local defining equations for Dk(f) using determinants. A simpler proof of the theorem
(and one that holds in the smooth case as well) is to reduce to the problem of normal forms
for the singularities considered. This is possible since, for a multi-germ f , if there is a
local change of coordinates in source and target to produce f ′, then Dk(f) and Dk(f ′) are
locally diffeomorphic.

Now, as discussed, corank 1 multi-germs have been classified by Morin, [50], for
mono-germs, and Mather, [47], for multi-germs. Using Morin’s description for mono-
germs and the Marar-Mond description for defining equations it is straightforward to cal-
culate that Dk(f) is non-singular. In the case of multi-germs, we observe from Mather’s
classification that the multi-germ occurs as the trivial unfolding of a some stable mono-
germ. Thus since we know the multiple point space is non-singular at the mono-germ it
must be in some neighbourhood.

In fact, it is possible to prove a converse: If f is corank 1 and the kth multiple point
spaces are non-singular of dimension k dimN − (k − 1) dimP − 1 for all k, then f is
stable.

For corank 2 stable maps, unfortunately, D2(f) can be singular (and probably is so in
general).

Marar and Mond have a stronger result in [43] involving the restriction of D̃k(f) to
fixed point sets of the action of Sk on Cn−1 × Ck. Also, they deal with the case of
isolated instabilities. Here they show that the Dk(f) can have isolated singularities, which
furthermore are complete intersections. It is this which is key to later results: For isolated
instabilities the multiple point spaces are isolated complete intersection singularities and
hence we if we perturb the instability to produce a stable map, then the ICIS are perturbed
to their Milnor fibres (as the multiple point spaces of a stable map are non-singular by the
above).

It is easy to see that given a map we can associate lots of invariants to it by taking
invariants of the multiple point spaces.
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10 The image computing spectral sequence

Alternating homology of a complex

As stated earlier the multiple point spaces act as resolution of the image. However, since
the triple point space is the double point space of the natural map D2(f) to X given by
projection, it is obvious that if we use the homology of the multiple point spaces to give
us the homology of the image that we get too much information. It turns out that we need
to look at the alternating homology of the multiple point spaces. This is where we exploit
the symmetry of the multiple point spaces. The group, Sk, of permutations on k objects
acts naturally on Dk(f) by permutation of copies of Xk. The alternating homology is the
homology of the subcomplex of chains that alternate, i.e., are anti-symmetric with respect
to Sk.

Let us put the details to this. Denote by sign the natural sign representation for Sk. The
space Z ⊂ Xk is called Sk-cellular if it is Sk-homotopy equivalent to a cellular complex.
That is, there is a homotopy equivalence (respecting the action) to a complex of cells upon
which Sk acts cellularly. (This latter means that cells go to cells and if a point of a cell is
fixed by an element of Sk, then the whole cell is fixed by the element.) Whitney stratified
spaces for which the strata are Sk-invariant can be triangulated to respect the action and
hence have a cellular action.
Definition 10.1 Let

AltZ =
∑
σ∈Sk

sign(σ)σ.

We define alternating homology by applying this operator.
Definition 10.2 The alternating chain complex of Z, Calt∗ (Z;Z) is defined to be the fol-
lowing subcomplex of the cellular chain complex, Cn(Z;Z), of Z,

Caltn (Z;Z) := AltZ Cn(Z;Z).

The elements of Caltn (Z;Z) are called alternating or alternated chains.
There is an alternative way to define or a useful way to calculate Caltn (Z;Z):

Caltn (Z;Z) ∼= {c ∈ Cn(Z;Z) | σc = sign(σ)c for all σ ∈ Sk}.

Now we just need to apply the homology functor to this subcomplex to get alternating
homology.
Definition 10.3 The alternating homology of Z, denoted Halt

∗ (Z;Z), is defined to be the
homology of Calt∗ (Z;Z).

Note that in [18] Halt
i (Z;Z) denotes the alternating part of integral homology. How-

ever, our notation is more in keeping with traditional notation in homology.
If we wish to define alternating homology over general coefficients then we may do so

in the usual way by tensoring Calt∗ (Z;Z) by the coefficient group.
Example 10.4 Suppose T = S1 × S1 denotes the standard torus. Then S2 acts on T by
permutation of the copies of S1. Let Z be the points (z, z + π) ∈ T , then Z is just a
circle with antipodal action. We can give Z a cellular structure by choosing two antipodal
points p1 and p2 as 0-cells and then the complement of these points will form two 1-cells,
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e1 and e2, upon which S2 acts by permutation and whose orientation we induce from an
orientation of the circle. Then σ(e1) = e2 and σ(e2) = e1, where σ is the non-trivial
element of S2.

The group Calt0 (Z;Z) is generated by c0 = p1 − p2 and Calt0 (Z;Z) is generated by
c1 = e1 − e2. The boundary of c1 is −p1 + p2 − p1 + p2 = −2(p1 − p2). Therefore c1 is
not a cycle and 2(p1 − p2) is a boundary, hence

Halt
0 (Z;Z) = Z2,

Halt
1 (Z;Z) = 0.

An alternating homology group is not a subgroup of ordinary homology as the example
shows: Halt

0 (D2(f);Z) = Z2 is not a subgroup of H0(D2(f);Z) = Z.
Our fundamental example for alternating homology is Dk(f) ⊂ Xk. Suppose that, for

k > 1, the Sk-action on Dk(f) is cellular. Then we can define alternating homology for
Dk(f).
Example 10.5 Let f : B2 → RP2 be the quotient map that maps the unit disc B2 to
real projective space by antipodally identifying points on the boundary of the disc. Then
D2(f) ⊂ B2 × B2 is just the circle in Example 10.4 and so Halt

0 (D2(f);Z) has the
alternating homology of that example. The set D3(f) is empty.

Let Dk(f)g denotes the fixed point set in Dk(f) of the element g ∈ Sk, and let
χalt(Dk(f)) =

∑
i(−1)idimQ AltHi(X;Q) denote the alternating Euler characteristic.

Lemma 10.6 ([31]) Assume that Sk induces a cellular action on Dk(f). Then,

χalt(Dk(f)) =
1
k!

∑
g∈Sk

sign(g)χ(Dk(f)g),

provided that each χ(Dk(f)g) is defined.

A similar theorem is stated in section 3 of [19] in the case that each Dk(f)g is the
Milnor fibre of an isolated complete intersection singularity, however, their result as stated
is false.

This result is very useful for low dimensional cases for calculating the homology of an
image since, as we shall see in a moment, that the Euler characteristic of the image is the
alternating sum of the alternating Euler characteristics of the multiple point spaces.
Example 10.7 Let us see in a simple example how the alternating homology of multiple
point spaces arises in the computation of the homology of an image.

Consider a map f : M → P such thatD3(f) = ∅. Then, there is a homeomorphism of
D2(f) onto its image under the natural projection map D2(f) to M . We can see that there
is a surjective map C∗(M) to C∗(f(M)). The kernel of this is the complex of alternating
chains.

Figure 8 shows an example where two hemispheres are glued along their edges to
produce a sphere. One can see that in this case there is an inclusion of the double point set
into M . Here the double point set is two circles and these can given an orientation arising
from the equator in the circle. At the level of chains we can see that the symmetric chain
maps to the chain given by the equator. Hence the alternating chains must be in the kernel
of the map C∗(M) to C∗(f(M)).
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Figure 8: Example of spaces used in the short exact sequence

Thus, in general, we get a short exact sequence of complexes:

0→ Calt∗ (D2(f))→ C∗(M)→ C∗(f(M))→ 0,

and this naturally leads to a long exact sequence:

· · · → Halt
i (D2(f))→ Hi(M)→ Hi(f(M))→ Halt

i−1(D2(f))→ . . .

So we have a long exact sequence that relates the homology of the image to the source and
its double point space.

The spectral sequence

We saw that for maps with (at worst) double points we had a long exact sequence relating
the homology of the image to the homology of the domain and the alternating homology
of the double point space. It should therefore come as no surprise that to generalize the
relation arising from this long exact sequence we need a spectral sequence.

In this section we describe such a spectral sequence that relates the homology of the
image to the alternating homology of the multiple point spaces.
Theorem 10.8 Suppose f : X → Y is a finite and proper continuous map, such that
Dk(f) has the Sk-homotopy type of an Sk-cellular complex for all k > 1 and Mk(f)
has the homotopy type of a cellular complex for all k > 1. Then there exists a spectral
sequence

E1
p,q = Halt

q (Dp+1(f);Z) =⇒ Hp+q+1(f(X);Z).

The differential is the naturally induced map

ε1,k∗ : Halt
i (Dk(f);Z)→ Halt

i (Dk−1(f);Z).

The proof of this is given in [30].
Example 10.9 We have already calculated the alternating homology of the multiple point
spaces for the map f : B2 → RP2 of Example 10.5. The image computing spectral
sequence for f is given below.
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Halt
2 0 0 0

Halt
1 0 0 0

Halt
0 Z Z2 0

B2 D2(f) D3(f)

All the differentials of this sequence must be trivial and so the sequence collapses at E1

and since there are no extension difficulties we can read off the homology of the image of
f , i.e., the real projective plane.
Example 10.10 We can use the sequence to prove Theorem 9.1 of Izumiya and Marar

We can triangulate f(N) with the cross caps and triples among the vertices and so
that the image of D2 is a subcomplex. Since f is proper and finite we can pull back the
triangulation of f(N) to give one for N . Thus we have a finite, proper, surjective map of
CW–complexes and so we can apply the image computing spectral sequence.

The alternating homology of D1 is just the ordinary homology of N and as there are
no quadruple points the alternating homology of Dk is trivial for k > 3.

The triple point setD3 is just six copies of the triple points of the source and we can see
that these form alternating zero chains, one for each triple point. So Halt

i (D3) = ZT (f)

for i = 0 and zero otherwise.
Each normal crossing of two sheets has a cross cap at each end or is a circle and so we

can pair the cross caps. The two sheeted normal crossings meet at triple points. This means
thatD2 hasC(f) points in the diagonal from which come two 1-cells which permute under
the action of S2 on D2. So any particular 1-cell will join a pair of cross caps and if any
two 1-cells cross then they cross at a triple point. The only other parts of D2 are µ pairs of
circles.

This allows us to calculate the alternating homology of D2. We have

Halt
i (D2) =

 ZC(f)/2 ⊕ Zµ, for i = 1,
Zµ, for i = 0,
0, otherwise.

We can work out the Euler characteristic of the limit of a spectral sequence from the
Euler characteristic of any level, (provided of course that the terms are finitely generated).
So,

χ(f(N)) = χ(Ep,q∞ )
= χ(Ep,q1 )
= χalt(D1)− χalt(D2) + χalt(D3)
= χalt(D1)− [µ− (µ+ C(f)/2)] + T (f)
= χ(N) + C(f)/2 + T (f),

where χalt means the Euler characteristic of the alternating homology.
It should be remarked that if we can work out how the spectral sequence collapses

and there are no extension problems then it may give more information than just the Euler
characteristic.
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Final remarks

The image computing spectral sequence has not been sufficiently applied and there are
many unexplored areas in which it could be used. Consider the case of the quotient space
given by the action of a finite groupG on a setX . The quotient map π : X → X/G is finite
and in many important case will be continuous. The sequence has not been investigated in
this case, not even to see the relation with the classic theorems on quotients of spaces.
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Introduction

In the first section we consider Hilbert’s fifth problem concerning Lie’s theory of transfor-
mation groups. In his fifth problem Hilbert asks the following. Given a continuous action
of a locally euclidean groupG on a locally euclidean spaceM , can one choose coordinates
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in G and M so that the action is real analytic? We discuss the affirmative solutions given
in Theorems 1.1 and 1.2, and also present known counterexamples to the general question
posed by Hilbert. Theorem 1.1 is the celebrated result from 1952, due to Gleason, Mont-
gomery and Zippin, which says that every locally euclidean group is a Lie group. Theorem
1.2 is a more recent result, due to the author, which says that every Cartan (thus in partic-
ular, every proper) Cs differentiable action, 1 ≤ s ≤ ∞, of a Lie group G is equivalent to
a real analytic action.

In the remaining part of the article, Sections 2–18, we give a complete, and to a very
large extent selfcontained, proof of Theorem 1.2. This tour brings us into many different
topics within the theory of transformation groups, as the above list of contents shows.

1 Hilbert’s fifth problem

At the Second International Congress of Mathematicians in Paris 1900, Hilbert posed
twenty-three mathematical problems, which have had a great impact on mathematical re-
search ever since then up to the present day, see [14]. Of these problems the fifth problem is
concerned with Lie’s theory of transformation groups, and in a second part of the problem
with what Hilbert calls “infinite groups,” which are not groups in the modern use of the
term. The questions in this second part of the fifth problem concern functional equations
and difference equations, and have for example connections with the work of N. H. Abel.
These questions lie completely outside the theory of transformation groups, and we shall
not discuss them here any further.

Recall that a topological transformation group consists of a topological group G and
a topological space X , together with a continuous action of the group G on X , i.e., a
continuous map

Φ: G×X → X, (g, x) 7→ gx, (1)

with the following two properties,

i) ex = x, for all x ∈ X , where e is the identity element in G, and

ii) g(g′x) = (gg′)x, for all g, g′ ∈ G, and all x ∈ X .

We shall in this article automatically assume that all given topological spaces are Hausdorff
spaces. By an m-dimensional topological manifold we mean a topological space M such
that each point in M has an open neighborhood which is homeomorphic to an open subset
of Rm.

A Lie group G is a topological group G, which at the same time is a real analytic
manifold, and the multiplication µ : G×G→ G, (g, g′) 7→ gg′, and ι : G→ G, g 7→ g−1,
are real analytic maps.

In the case when G is a Lie group and M is a Ct differentiable manifold, 1 ≤ t ≤ ω,
and we are given an action Φ: G ×M → M of G on M that is a Ct differentiable map,
we speak of a Ct differentiable transformation group. We also say in this case that M
is a Ct differentiable G-manifold, 1 ≤ t ≤ ω. (Here 1 ≤ t ≤ ω, means that t is a
positive integer 1 ≤ t < ∞, or that t = ∞ or t = ω, where ω stands for real analytic.)
When t = ∞ we also speak of a smooth transformation group, or we say that M is a
smooth G-manifold. In the case when t = ω, i.e., when M is a real analytic manifold
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and the action Φ: G ×M → M of G on M is real analytic, we speak of a real analytic
transformation group, or we say thatM is a real analyticG-manifold. In complete analogy
with the definition of a Lie group, one should call a real analytic transformation group a
Lie transformation group.

In his fifth problem Hilbert asks the following. LetG be a locally euclidean topological
group, and let M be a locally euclidean topological space (i.e., G is a topological group
which at the same time is a topological manifold, and M is a topological manifold) and
suppose that we are given a continuous action

Φ: G×M →M (2)

of G on M . Is it then always possible to choose the local coordinates in G and M in such
a way that the action Φ becomes real analytic? In other words, is it possible to give the
topological manifolds G and M real analytic structures so that Φ is real analytic?

In his discussion of the fifth problem Hilbert also expresses the possibility that some
assumption of differentiability is actually unavoidable for a positive answer to the question
in (2). Hilbert mentions the theorem, announced by Lie [31] but first proved by F. Schur
[51], which says that any transitive C2 differentiable transformation group can be made
real analytic by means of suitable coordinate changes. This result is often considered to be
the origin of Hilbert’s fifth problem, see for example [50], p. 177-178.

Let us first discuss the special case of Hilbert’s question where M = G. In this case
the question is whether we can give G a real analytic structure so that the multiplication

µ : G×G→ G (3)

is real analytic.
In this special case the answer to Hilbert’s question is always yes. This affirmative

answer is obtained by combining the result in Gleason [11] with the result in Montgomery-
Zippin [38], and we can express the combined result as follows.
Theorem 1.1 Every locally euclidean group is a Lie group.

We say that a topological group G has no small subgroups if there exists a neighbor-
hood of the identity element which contains no other subgroup than the trivial subgroup
{e}. It is easy to see from the structure of one-parameter subgroups of a Lie group that
a Lie group has no small subgroups, see [8], p. 193. Gleason proves in [11] that every
finite-dimensional, locally compact topological group G that has no small subgroups is a
Lie group. In [38] Montgomery and Zippin prove, by inductively using the above result of
Gleason, that a locally connected, finite-dimensional, locally compact topological group
has no small subgroups. Since a locally euclidean topological group is clearly both locally
connected, locally compact, and finite-dimensional, we see that [11] and [38] together
prove Theorem 1.1. The work by Gleason was further extended by Yamabe [56], [57],
who proved, without any assumption of finite-dimensionality, that every locally compact
topological group which has no small subgroups is a Lie group.

The formulation “is a Lie group” in Theorem 1.1 above is due to the fact that if a locally
euclidean topological group G can be given a real analytic structure such that G is a Lie
group, then the real analytic structure on G is uniquely determined. This is a consequence
of the well-known result, which says that every continuous homomorphism between two
Lie groups is real analytic, see Theorem 2.3 and Corollary 2.4.
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Theorem 1.1 is sometimes regarded as the solution of Hilbert’s fifth problem, but as we
have noted Hilbert’s question is more general and is concerned with transformation groups.
Compare also with the remark by Montgomery in [37], p. 185. We refer to Montgomery
[36], p. 442-443 for some interesting speculation, made in 1950, concerning the possible
answers to Hilbert’s general question in (2). An authoritative and very good discussion of
the state in 1955 of Hilbert’s fifth problem is given by Montgomery and Zippin in [40],
Section 2.15.

Before the result in Theorem 1.1 was proved by Gleason, Montgomery and Zippin,
the result had been known in some special cases. It follows by von Neumann [43] that
Theorem 1.1 holds when G is compact. For commutative groups Theorem 1.1 was proved
by Pontryagin [49], Theorem 44, and for solvable groups by Chevalley [7] and Mal’cev
[32]. Iwasawa in his famous paper [24] also proved Theorem 1.1 for solvable groups, and
in addition established many other far reaching results.

Let us here also mention that it is proved in Pontryagin [49], Chapter IX, that each Cr

differentiable group, r ≥ 3, is a Lie group, and that G. Birkhoff proved in [3] that each C1

differentiable group is a Lie group.
Let us now return to Hilbert’s general question whether it is possible to give G and M

real analytic structures such that the group action in (2) becomes real analytic. We have
already seen in Theorem 1.1 that a locally euclidean group G can always be given a real
analytic structure so that it becomes a Lie group, and that such a real analytic structure on
G is uniquely determined. Hence we can now assume that G is a Lie group, and that M
is a topological manifold on which G acts by a continuous action Φ as in (2), and we are
asking if M can be given a real analytic structure such that Φ becomes real analytic.

In [1] Bing constructs a continuous action of Z2 on R3 that cannot be Cr differentiable
for any r ≥ 1, and hence in particular it cannot be real analytic. If one in Bing’s example
instead considers the action to be on the one-point compactification S3 of R3, one obtains
a continuous action of Z2 on S3, with the property that the fixed point set is an Alexander
horned sphere in S3. (An Alexander horned sphere is an imbedded, not locally flat, 2-
sphere Σ2 in S3.) Montgomery and Zippin [39] modified the example of Bing to give an
example of a continuous action of the circle S1 on R4 that cannot be Cr differentiable for
any r ≥ 1, and hence in particular it cannot be real analytic.

In both these examples, in [1] and [39], the action is not locally smooth, in the sense
of [5], Section IV.1. (Some authors use the term locally linear action, instead of locally
smooth action.) But there also exist continuous locally smooth actions that cannot be made
smooth, and hence not either real analytic. For example, there exists a 12-dimensional,
compact smoothable manifold M , which admits a locally smooth effective action of S1,
but which does not admit a non-trivial smooth action of S1 in any of the smooth structures
on M , see [5], Corollary VI.9.6. Thus we see that the answer to the general question in
(2) is no in the case of continuous actions. One may in fact point out that the answer
to the general question in (2) is no even for the trivial group G = {e}, since there exist
topological manifolds that do not have any smooth structure, and hence also no real analytic
structure. The first example of such a manifold was given by Kervaire [27].

In [40], p. 70, the following easy example of a smooth, i.e., a C∞ differentiable, action
that cannot be real analytic is given. The group is the group of reals R, and it acts on the
plane by the map

Φ: R× R2 → R2,
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where Φ(t, reiϕ) = eiα(r)t · reiϕ, for all t ∈ R and all reiϕ ∈ R2, r ≥ 0 and ϕ ∈ R. Here

α : R→ R

is a C∞ differentiable function such that

α(x) = 0, for all x ≤ 1,

α(x) = 1, for all x ≥ 2.

Clearly Φ is a C∞ differentiable map, and Φ is an action of the group of reals R on R2.
Note that for 0 ≤ r ≤ 1 we have that

Φ(t, reiϕ) = reiϕ, for all t ∈ R.

For r ≥ 2 we have that

Φ(t, reiϕ) = eit · reiϕ, for all t ∈ R.

Thus the action is the trivial action in the unit disk, and outside the open disk with radius 2
the action of R is by standard rotation in the plane.

The above action of R on R2 cannot be real analytic, in any real analytic structure on
R2. This is because the action is the trivial action in the open unit disk D̊2, and thus, if the
action was real analytic, it would have to be the trivial action in the whole plane, which is
not the case.

If G is a compact Lie group the above kind of phenomena cannot occur. It is proved in
Matumoto and Shiota [34], Theorem 1.3, that if G is a compact Lie group then every Cs

differentiable action, 1 ≤ s ≤ ∞, of G on a second countable Cs differentiable manifold
can be made into a real analytic action. The technique of the proof in [34] is the same as
in Palais [46], which in turn is an equivariant version of Whitney’s proof [55] of the fact
that every second countable Cs smooth manifold can be given a real analytic structure,
compatible with the given Cs differentiable structure, 1 ≤ s ≤ ∞.

How about the general case with actions of an arbitrary Lie group G? We saw in
the elementary example above that there exist smooth actions, that is C∞ differentiable
actions, that cannot be real analytic. However we were able to prove the following, see
[16].
Theorem 1.2 Let G be a Lie group which acts on a Cs differentiable manifold M by a Cs

differentiable Cartan action, 1 ≤ s ≤ ∞. Then there exists a real analytic structure β on
M , compatible with the given Cs differentiable structure on M , such that the action of G
on Mβ is real analytic.

In Theorem 1.2 the manifold M is not assumed to be paracompact. But we wish to
emphasize that this great generality is in no way a main point of the result. The chief
interest of Theorem 1.2 is of course when M is paracompact or second countable.

An action of a Lie group G, on any locally compact Hausdorff space X , is said to be
Cartan if each point x in X has a compact neighborhood A such that

G[A] = {g ∈ G | gA ∩A 6= ∅}

is a compact subset of G. We also say in this case that X is a Cartan G-space. This
terminology was introduced by Palais in [45].
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The notion of a Cartan action is a generalization of the more widely known notion of
a proper action. We recall that an action of G on a locally compact space X is proper if
G[A] is a compact subset of G for any compact subset A of X . There exist smooth actions
of Lie groups that are Cartan but not proper, and such actions have non-Hausdorff orbit
spaces, see Example 4.10 and cf. Corollary 4.16.

When G is a discrete group the notion of a proper action coincides with the classical
notion of a properly discontinuous action. Thus Theorem 1.2 in particular holds in the case
of properly discontinuous actions of any discrete group G. (The reader should note that in
the literature the meaning of the term “properly discontinuous” varies. For example, some
authors use the term “properly discontinuous action” to mean a Cartan action of a discrete
group G. But as far as the result in Theorem 1.2 is concerned this difference in the use of
terminology does not cause any problems here, since Theorem 1.2 in any case holds for
Cartan actions.)

Theorem 1.2 answers Hilbert’s question concerning which group actions can be made
real analytic. Furthermore the answer is best possible since, as we have seen above, there
exist differentiable, in fact C∞ differentiable, non-Cartan actions of Lie groups that cannot
be made real analytic.

Concerning the proof of Theorem 1.2 we note the following. In Theorem 1.2 the group
G is assumed to be an arbitrary Lie group, that is we are not restricting our attention
to actions of linear Lie groups. (See Birkhoff [2] for the first example of a connected
Lie group which is not a linear Lie group.) Hence one cannot in general, even if M is
assumed to be second countable, imbed theG-manifoldM as aG-invariant subset of some
finite-dimensional linear representation space for G. Therefore it is not possible to prove
Theorem 1.2, even if we assume that M is second countable, by using some equivariant
version of Whitney’s method [55], as was done in the case when G is compact in [34].
Instead we use a maximality argument, involving the use of Zorn’s lemma, for the global
part of the proof of Theorem 1.2. This argument is analogous to the one used by W. Koch
and D. Puppe in [28], in a non-equivariant situation. However the main work goes into the
part of the proof which deals with questions of a more local nature. An important role in the
technical part of the proof of Theorem 1.2 is played by a result concerning approximations
of Cs slices, 1 ≤ s ≤ ∞, see Lemma 17.1.

In [16] we gave Theorem 1.2 in the smooth case, i.e., in the C∞ case. We should
also here remark that Lemma 2.3 in [16], given for the strong C∞ topology, is not correct
as stated. This mistake was pointed out to me by Sarah Packman (a graduate student at
Berkeley) [44]. The best way to correct this mistake is to simply replace Lemma 2.3 in [16]
by its valid very-strong C∞ topology version, see Lemma 8.1 in [21] and Lemma 12.1 in
the present article. As a consequence of this change one also needs to make another change
in [16]. Theorem 1.2 in [34], cf. Theorem 2.1 in [16], cannot anymore be used, one needs a
corresponding result for the very-strong C∞ topology. Such a result is proved in Theorem
7.2 in [21], see Theorem 16.6 in the present article. After these two replacements the proof
of the C∞ case of Theorem 1.2 given in [16] requires no further changes, and is correct as
it stands. We gave this correction to [16] the first time in [18], see also [20] and [21].
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2 Lie groups and manifolds

By an m-dimensional topological manifold M we mean a topological Hausdorff space
M such that each point x ∈ M has an open neighborhood U which is homeomorphic
to an open subset of Rm , m ≥ 0. Thus we do not automatically make any assumption
concerning paracompactness or second countability of M , we will always mention such
assumptions separately. Every second countable topological manifold is paracompact, but
the converge does not hold in general. For example, an uncountable disjoint topological
union of real lines is a paracompact 1-dimensional manifold, but it is not second count-
able. The relation between second countable and paracompact manifolds is given by the
following well known result.
Proposition 2.1 A topological manifold M , with or without boundary, is paracompact if
and only if each connected component of M is second countable.

Proof Follows by Théorème 3 and Corollaire in [9], and Theorem 5 in Chapter I, §9, no.
10 in [4].

By a Ct differentiable manifold M , where 1 ≤ t ≤ ω, we mean a topological manifold
M together with a Ct differentiable structure α on M . A Ct differentiable structure α
on M is, by definition, a maximal Ct differentiable atlas α on M , 1 ≤ t ≤ ω. In this
terminology “Cω differentiable” means “real analytic”. Thus a real analytic manifold M
is a topological manifold M together with a real analytic structure α on M , and a real
analytic structure on M is by definition a maximal real analytic atlas on M .

We use the exact analogue of the above definition to define the notion of a Ct differ-
entiable manifold M with boundary, 1 ≤ t ≤ ω. In this way we have now defined the
notion of a Ct differentiable manifold M , with or without boundary, 1 ≤ t ≤ ω. In order
to shorten the terminology we will in the following drop the word “differentiable”, and for
example speak about a Ct manifold M , with or without boundary, 1 ≤ t ≤ ω. Suppose
that Mβ = (M,β) is a Ct manifold, where 1 ≤ t ≤ ω, and let 1 ≤ s < t. The Ct structure
β is, by definition, a maximal Ct atlas on the topological manifold M . Since 1 ≤ s < t we
have in particular that β is a Cs atlas on M . Therefore β uniquely determines a maximal
Cs atlas α on M . Thus Mα = (M,α) is a Cs manifold, and we call Mα the Cs manifold
determined by the Ct manifold Mβ , 1 ≤ s < t ≤ ω. We have that β ⊂ α and we also say
that the Ct structure β is compatible with the Cs structure α.

We say that a Cs manifold Mα, where 1 ≤ s ≤ ∞, is equivalent to a real analytic
manifold, if there is a real analytic manifold Nδ and a Cs diffeomorphism f : Mα → Nδ,
i.e., f is a Cs diffeomorphism between Mα and the Cs manifold Nγ determined by the
real analytic manifold Nδ . Now the Cs structure induced from Nγ through f equals α,
i.e., f∗(γ) = α. Let us denote f∗(δ) = β. Then β is a real analytic structure on M , and
since δ ⊂ γ we have that f∗(δ) ⊂ f∗(γ), that is β ⊂ α. This shows that the real analytic
structure β on M is compatible with the given Cs structure α on M .

Thus we have seen that a Cs manifold Mα = (M,α), 1 ≤ s ≤ ∞, is equivalent to a
real analytic manifold, if and only if, there exists a real analytic structure β on M that is
compatible with the given Cs structure α on M .

A topological group G is a Lie group, if G is a real analytic manifold and both the
multiplication µ : G×G→ G , (g, g′) 7→ gg′, and the inverse map ι : G→ G , g 7→ g−1,
are real analytic maps. Here below we record two fundamental results about Lie groups.
Theorem 2.2 Suppose H is a closed subgroup of a Lie group G. Then H is a Lie group.
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Proof See e.g. Theorem II.2.3 in [13].
We will use Theorem 2.2 freely, without referring to it.
Theorem 2.3 Let γ : G→ G′ be a continuous homomorphism between Lie groups. Then
γ is real analytic.

Proof See e.g. Theorem II.2.6 in [13].
We already referred to Theorem 2.3 in Section 1, more precisely we used:
Corollary 2.4 Let G be a topological group, and suppose that there exist real analytic
structures α1 and α2 on G such that G1 = (G1, α1) and G2 = (G,α2) are Lie groups.
Then α1 = α2, and thus G1 = G2.

Proof By Theorem 2.3 the maps id : G1 → G2, g 7→ g, and id : G2 → G1, g 7→ g, are
real analytic. Hence the claim follows.

Proposition 2.5 Let G be a Lie group. Then G is paracompact.

Proof See, e.g. Remark on page 88 in [13].

3 Group actions

Definition 3.1 Let G be a topological group and let X be a topological space. An action
of G on X is a (continuous!) map

Φ : G×X → X , (g, x) 7→ gx,

such that:

(a) ex = x, for all x ∈ X , where e is the identity element in G, and

(b) g(g′x) = (gg′)x, for all g, g′ ∈ G and all x ∈ X

By a G-space X we mean a topological space X together with an action of G on X . It
follows directly by Definition 3.1 that if X is a G-space, then the map g : X → X , x 7→
gx, is a homeomorphism of X , for each g ∈ G.

Thus we may think of a G-space X as a topological space X together with a group of
homeomorphisms of X , but one should keep in mind that the precise definition of a G-
space is based upon Definition 3.1. We say that the action ofG onX is effective if the only
element g ∈ G, which acts as the identity homeomorphism id : X → X , is the identity
element e ∈ G, i.e., if gx = x, for all x ∈ X , then g = e.

Let x ∈ X , where X is a G-space. The set

Gx = {gx ∈ X
∣∣ g ∈ G}

is called theG–orbit of x inX , or simply the orbit of x. Observe that the set of allG–orbits
in X is a partition of X , and we denote the set of G–orbits by X/G. Furthermore we let
π : X → X/G , x 7→ Gx, be the natural projection onto X/G. The topology on X/G is
the quotient topology from π : X → X/G, i.e., a subset V ⊂ X/G is defined to be open
in X/G if and only if π−1(V ) is open in X . Suppose U is an open subset of X . Then
π−1(π(U)) =

⋃
g∈G gU is open in X , as a union of open subsets, and hence we have,

by the definition of the quotient topology, that π(U) is open in X/G. Thus we see that
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the natural projection π : X → X/G is an open (and continuous!) map. If J ⊂ G and
A ⊂ X , we denote

JA = {ga
∣∣ g ∈ J and a ∈ A},

and we say that A is G–invariant if GA = A.
Suppose X is a G-space, and let x ∈ X . We denote

Gx = {g ∈ G
∣∣ gx = x}.

Then Gx is a closed subgroup of G, and it is called the isotropy subgroup of G at x ∈ X .
If g ∈ G then

Ggx = gGxg
−1.

Thus we see that the isotropy subgroups at points on the some G-orbit are conjugate, in G,
to each other. By a G-isotropy type we mean a conjugacy class [K] of a compact subgroup
K of G. If X is a G-space, we say that the G-isotropy type [K] occurs in X , if there exists
x ∈ X such that [Gx] = [K].

We say that a map f : X → Y is G-equivariant, if f(gx) = gf(x), for each g ∈ G
and every x ∈ X . Note that if f : X → Y is a G-equivariant map between G-spaces, and
x ∈ X , then

Gx ⊂ Gf(x).

Proposition 3.2 Let X be a K-space, where K is a compact group. Then the action
Φ : K × X → X , (k, x) 7→ kx, is a closed map. In particular KA is closed in X , for
every closed subset A of X .

Proof See e.g. Theorem I.1.2 in [5].

Corollary 3.3 LetX be aG-space, and let x ∈ X be such thatGx is compact. SupposeW
is any open neighborhood of x in X . Then there exists a Gx-invariant open neighborhood
V of x in X , such that V ⊂W .

Proof Proof. The set A = X −W is closed in X and K = Gx is a compact subgroup of
G. It follows by Proposition 3.2 that KA is closed in X . Now x 6∈ KA = Gx(X −W ),
and hence V = X −KA is a K-invariant open neighborhood of x in X , and V ⊂W .

Proposition 3.4 Let X be a K-space, where K is a compact group. Then the orbit space
X/K is Hausdorff, and the natural projection π : X → X/K is both a closed map and a
proper map.

Proof See e.g. [5], Theorem I.3.1.
Now suppose thatG is a Lie group and letM be a Ct manifold, where 1 ≤ t ≤ ω. A Ct

differentiable action, or in short, a Ct action, of G on M , is an action, as in Definition 3.1,
where the action map Φ: G ×M → M is a Ct map, 1 ≤ t ≤ ω. Note that since G is a
real analytic manifold, i.e., a Cω manifold, and M is a Ct manifold, 1 ≤ t ≤ ω, it follows
that the product G ×M is a Ct manifold, 1 ≤ t ≤ ω. A Ct G-manifold M , 1 ≤ t ≤ ω,
consists of a Ct manifold M together with a Ct action of G on M , 1 ≤ t ≤ ω.

Let Mβ be a Ct G-manifold, where 1 ≤ t ≤ ω. Suppose that 1 ≤ s < t, and let Mα

be the Cs manifold determined by Mβ , see Section 2. Then Mα is a Cs G-manifold. This
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is clear because β is a Cs atlas, although not a maximal one, on M , and since β ⊂ α it
follows that Φ: G×Mα →Mα , (g, x) 7→ gx, is a Cs map.

The problem we are faced with, and which we solve in Theorem 1.2, concerns the
opposite direction to the above, and t = ω. That is given a Cs G-manifold Mα, where
1 ≤ s < ω and Φ: G×Mα →Mα , (g, x) 7→ gx, denotes the given Cs action, does there
exist a real analytic structure β on M such that:

(a) The real analytic structure β is compatible with the given Cs structure α, i.e., β ⊂ α.

(b) The action Φ: G×Mβ →Mβ , (g, x) 7→ gx, is a real analytic map.

We say that a Cs G-manifold Mα = (M,α), where 1 ≤ s ≤ ∞, is equivalent to a real
analytic G-manifold, or that the Cs action (of G on Mα) is equivalent to a real analytic
action, if there exist a real analyticG-manifoldNδ and aG-equivariant Cs diffeomorphism
f : Mα → Nδ . Let Nγ denote the Cs manifold determined by the real analytic manifold
Nδ , see Section 2. Then f∗(γ) = α. We define β = f∗(δ). Then β is a real analytic
structure on M , and β ⊂ α since δ ⊂ γ and f∗(γ) = α. Thus the real analytic structure β
onM is compatible with the given Cs structure α onM . Let Ψ: G×Nδ → Nδ denote the
real analytic action of G on Nδ , and let Φ: G×Mβ →Mβ , (g, x) 7→ gx, be the action of
G on Mβ . Since f : Mα → Nδ is aG-equivariant map it follows that Ψ◦ (id×f) = f ◦Φ.
Since f : Mβ → Nδ is a real analytic isomorphism and Ψ is real analytic it now follows
that Φ: G×Mβ →Mβ is real analytic.

Thus we have seen that a Cs G-manifold Mα, where 1 ≤ s ≤ ∞, is equivalent to a
real analytic G-manifold, if and only if, there exists a real analytic structure β on M , such
that conditions (a) and (b) above hold.

Let Gl(n,R) denote the general linear group of all non-singular (n×n)-matrices with
entries in R. (Alternatively the reader may wish to think of Gl(n,R) as the group of all
linear automorphisms of the vector space Rn.) Then Gl(n,R) is a Lie group, and the
natural action of Gl(n,R) on Rn,

Φ : Gl(n,Rn)× Rn → Rn , (T, x)→ Tx,

is real analytic. Here Tx denotes matrix multiplication (or, if the reader prefers the second
interpretation of Gl(n,R), the value of the linear automorphism T at x.)

Now let G be a Lie group, and let θ : G → Gl(n,R) be a linear representation of G,
that is θ is a continuous homomorphism from G into Gl(n,R). Since both G and Gl(n,R)
are Lie groups it now follows that θ : G→ Gl(n,R) is a real analytic homomorphism. We
denote the representation space for G corresponding to the linear representation θ : G →
Gl(n,R) by Rn(θ). That is Rn(θ) is a notation for the vector space Rn on which G acts
by

Θ : G× Rn → Rn , (g, x) 7→ gx = θ(g)x.

Since the homomorphism θ : G → Gl(n,R) is real analytic, it follows that the action Θ
is real analytic. For each g ∈ G, the map g : Rn → Rn , x 7→ gx = θ(g)x, is a linear
automorphism of Rn.

Let θ, ψ : G → Gl(n;R) be two linear representations of G. We say that θ and ψ are
equivalent if there exists T ∈ Gl(n;R) such that

ψ(g) = Tθ(g)T−1, for all g ∈ G.
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In this case the linear isomorphism T : Rn(θ) → Rn(ψ), x 7→ T (x), is a G-equivariant
map, since T (gx) = T (θ(g)x) = (Tθ(g)T−1T )(x) = (ψ(g)T )(x) = ψ(g)(T (x)) =
gT (x). Thus the linear representation spaces Rn(θ) and Rn(ψ) are G-equivariantly, lin-
early, isomorphic.
Theorem 3.5 Each linear representation θ : K → Gl(n,R) of a compact group K is
equivalent to an orthogonal representation ψ : K → O(n) ↪→ Gl(n,R).

Proof See e.g. [5], Theorem 0.3.5.
Now suppose that K is a compact Lie group, and let ψ : K → O(n) be an orthogonal

representation of K. Then the corresponding action Ψ : K × Rn(ψ)→ Rn(ψ) restrics to
give an induced real analytic action of K on the unit sphere Sn−1 and on the unit disk Dn,
and we denote the corresponding K-spaces by Sn−1(ψ) and Dn(ψ). Then Sn−1(ψ) is a
real analytic K-manifold, and Dn(ψ) is a real analytic K-manifold with boundary.
Theorem 3.6 Let K be a compact Lie group and let Rn(θ) be a linear representation
space for K. Then the number of K-isotropy types occurring in Rn(θ) is finite.

Proof See e.g. [26], Corollary 4.25.

4 Cartan and proper actions of Lie groups

By aG-spaceX we in this section mean a locally compact spaceX together with an action
of G on X , where G is a Lie group, or equally well any locally compact group. Given a
G-space X and any two subsets A and B of X we define

G[B,A] = {g ∈ G
∣∣ gA ∩B 6= ∅}. (i)

Furthermore we denote

G[A] = G[A,A]. (ii)

We have that

G[A,B] = G[B,A]−1. (iii)

If A0 ⊂ A and B0 ⊂ B, then

G[B0, A0] ⊂ G[B,A]. (iv)

If {Ai}i∈Λ and {Bi}i∈Λ are families of subsets of X , then

G[B,
⋃
i∈Λ

Ai] =
⋃
i∈Λ

G[B,Ai] and G[
⋃
i∈Λ

Bi, A] =
⋃
i∈Λ

G[Bi, A]. (v)

Let g0 ∈ G, then we obtain by direct verification that

G[g0B,A] = g0G[B,A] and G[B, g0A] = G[B,A]g−1
0 . (vi)

More generally, if J is a subset of G, then

G[JB,A] = JG[B,A], and G[B, JA] = G[B,A]J−1. (vii)
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Lemma 4.1 Let X and Y be G-spaces and f : X → Y a surjective G-map. If B ⊂ Y we
have that

G[B] = G[f−1(B)].

Proof Direct verification.

Lemma 4.2 Let X be a G-space, and let A be a compact and B a closed subset of X .
Then G[B,A] is closed in G. Therefore also G[A,B] = G[B,A]−1 is closed in G.

Proof We show that G−G[B,A] is open in G. Let g ∈ G−G[B,A]. Then gA∩B = ∅,
i.e., gA ⊂ X −B. Since A is compact, and the action map G×X → X , (g, x) 7→ gx, is
continuous, and X −B is open in X , there exists an open neighborhood U of g in G, such
that

UA ⊂ X −B. (1)

Now U ⊂ G−G[B,A], since if h ∈ U then hA ⊂ X − B by (1), i.e., hA ∩ B = ∅, and
hence h ∈ G−G[B,A]. Thus G−G[B,A] is open in G.

Definition 4.3 Let X be a G-space. We say that the action of G on X is Cartan, or that X
is a Cartan G-space, if each point x ∈ X has a compact neighborhood V such that G[V ]
is compact.

Note that if X is a Cartan G-space, then the isotropy subgroup Gx at x ∈ X is a
compact subgroup of G, for every x ∈ X .

Now consider G itself as a G-space, where the group G acts on G by multiplication
from the left. If A ⊂ G, then one obtains directly that

G[A] = AA−1. (viii)

Let H be a closed subgroup of G, where we let G be any locally compact group. Then
the homogeneous space G/H is Hausdorff, see e.g. [40], Theorem on p. 27. Moreover
G/H is locally compact, since G is locally compact and the natural projection π : G →
G/H , g 7→ gH , is an open map. Thus the homogeneous space G/H , with the natural
action of G given by G × G/H → G/H , (g′, gH) 7→ g′gH , is a G-space. If B ⊂ G/H
we have that

G[B] = π−1(B)(π−1(B))−1, (ix)

which is easy to see directly, or alternatively (ix) follows by Lemma 4.1 and (viii).
Note that the G-space G/H is Cartan if and only if H is a compact subgroup of G.

The isotropy subgroup of G at eH equals H , so in order for G/H to be a Cartan G-space,
it is necessary that H is compact. Now assume that H is compact and let B be a compact
subset ofG/H . Then π−1(B) is compact, see Proposition 3.4, and hence it follows by (ix)
that G[B] is compact.

We give the proof of Lemma 4.4 below under the assumption that G is any locally
compact group and X is any locally compact space. If one in addition assumes that both G
and X are first countable, for example if G is a Lie group and X is a topological manifold,
one can use ordinary sequences instead of the more general notion of a net.
Lemma 4.4 Suppose X is a Cartan G-space, and let x ∈ X . Then ϕx : G → X , g 7→
gx, is a closed map.
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Proof Let J be a closed subset ofG. Our claim is that Jx is closed inX . Suppose y ∈ Jx,
and let gαx ∈ Jx, where gα ∈ J , α ∈ Λ, be a net in Jx, such that lim

α
gαx = y. Choose a

compact neighborhood V of y, such that G[V ] is compact. We can assume that gαx ∈ V ,
for all α ∈ Λ. Let α0 ∈ Λ be fixed. Then the identity (gαg−1

α0
)(gα0x) = gαx shows that

gαg
−1
α0
∈ G[V ], for all α ∈ Λ. Since G[V ] is compact a subnet of the net gαg−1

α0
, α ∈ Λ,

converges to a point in G, say to g. By abuse of notation we may assume that the net
gαg
−1
α0

, α ∈ Λ, converges to g, i.e., that lim
α
gαg
−1
α0

= g. Then lim
α
gα = ggα0 = g. Since

gα ∈ J , for all α ∈ Λ, and J is closed, we have that g ∈ J . Now y = lim
α
gαx = gx ∈ Jx,

which proves our claim.

Corollary 4.5 Suppose X is a Cartan G-space, and let x ∈ X . Then the orbit Gx is
closed in X , and ϕx : G/Gx → Gx , gGx 7→ gx, is a G-equivariant homeomorphism.

Proof Clearly ϕx is a G-equivariant bijection. The natural projection π : G →
G/Gx , g 7→ gGx, is an open map, and hence a quotient map. Since ϕx ◦ π = ϕx, and ϕx
is continuous, it follows that ϕx is continuous. Since ϕx is a closed map, by Lemma 4.4,
it follows that also ϕx is a closed map. Thus ϕx is a homeomorphism.
It follows by Corollary 4.5 that if X is a Cartan G-space, then each point in the orbit space
X/G is closed in X/G, i.e., X/G is a T1 space.
Lemma 4.6 Let X be a Cartan G-space, and let x ∈ X . Suppose U is an open neigh-
borhood of Gx in G. Then there exists an open neighborhood V of x in X , such that
G[V ] ⊂ U . Furthermore V may be chosen to be Gx-invariant.

Proof We have that x 6∈ (G−U)x, and by Lemma 4.4 the set (G−U)x is closed inX . Let
A be a compact neighborhood of x inX , such thatG[A] is compact andA∩(G−U)x = ∅.
Then

Q = G[A] ∩ (G− U)

is a compact subset of G. Furthermore Qx ⊂ (G − U)x ⊂ X − A. Since Q is compact,
and the action map Φ : G ×X → X, (g, x) 7→ gx, is continuous, and X − A is open in
X , there exists an open neighborhood V of x in X , such that

QV ⊂ X −A. (1)

Moreover we can choose V so that x ∈ V ⊂ A.
We claim that G[V ] ⊂ U . Suppose G[V ] 6⊂ U , and let g ∈ G[V ] ∩ (G − U). Now

G[V ] ⊂ G[A], since V ⊂ A, and hence g ∈ G[A] ∩ (G − U) = Q. Thus (1) gives us
gV ⊂ QV ⊂ X − A ⊂ X − V. Therefore gV ∩ V = ∅, which is a contradiction since
g ∈ G[V ]. Hence our claim that G[V ] ⊂ U holds. Since the isotropy subgroup Gx is
compact, the last claim in Lemma 4.6 follows by Corollary 3.3.

It follows directly by Definitions 4.7 (a), (b) and (c) below, that if X is a proper G-
space in sense of Koszul, Palais or Borel, then X is in particular a Cartan G-space. By
Corollary 4.9 these three notions of a proper G-space are equivalent. Hence we can use
anyone of the three definitions below as the definition of a proper G-space. (This author
prefers to take a proper G-space to mean a Borel proper G-space.)
Definition 4.7 (a) Let X be a G-space. We say that the action of G on X is Koszul proper,
or that X is a Koszul proper G-space, if for any two points x and y in X , there exist
compact neighborhoods V and W , of x and y, respectively, such that G[W,V ] is compact.
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Definition 4.7 (b) Let X be a G-space. We say that the action of G on X is Palais proper,
or that X is a Palais proper G-space, if for each point x in X there exists a compact
neighborhood V0 of x in X , such that every y ∈ X has a compact neighborhood W for
which G[W,V0] is compact.
Definition 4.7 (c) Let X be a G-space. We say that the action of G on X is Borel proper,
or that X is a Borel proper G-space, if for each compact subset A of X the set G[A] is
compact.
Lemma 4.8 Every Koszul proper G-space X is a Borel proper G-space.

Proof Let X be a Koszul proper G-space, and let A and B be compact subsets of X . We
shall show that G[B,A] is compact. Let x ∈ A and y ∈ B. We choose compact neigh-
borhoods V (x; y) and W (y;x), of x and y, respectively such that G[W (y;x), V (x; y)] is
compact. The interior of the sets W (y;x), y ∈ B, form an open covering of the compact
set B, and hence a finite number of the sets W (y;x), y ∈ B, say W (yj ;x), 1 ≤ j ≤ q,
cover B. Thus B ⊂

⋃q
j=1W (yj ;x).

Let V (x; yj) denote the compact neighborhood of x, which corresponds to the compact
neighborhood W (yj ;x) of yj , 1 ≤ j ≤ q. Then V (x;B) =

⋂q
j=1 V (x; yj) is a compact

neighborhood of x in X . Now G[B, V (x;B)] is compact since the set G[B, V (x;B)] is
closed in G, by Lemma 4.2, and

G[B, V (x;B)] ⊂ G[
q⋃
j=1

W (yj ;x), V (x;B)]

=
q⋃
j=1

G[W (yj ;x), V (x,B)] ⊂
q⋃
j=1

G[W (yj ;x), V (x; yj)].

Here the last union is a compact set, since it is a finite union of compact sets.
Thus we have shown that each point x ∈ A has a compact neighborhood V (x;B), in

X , such that G[B, V (x;B)] is compact. Now the interior of the sets V (x;B), x ∈ A,
form an open covering of A, and since A is compact it follows that a finite number of the
sets V (x;B), x ∈ A, say V (xi;B) , 1 ≤ i ≤ p, cover A. Thus A ⊂

⋃p
i=1 V (xi;B).

Since G[B,A] is closed in G, by Lemma 4.2, and

G[B,A] ⊂ G[B,
p⋃
i=1

V (xi;B) ⊂
p⋃
i=1

G[B, V (xi;B)],

it follows that G[B,A] is compact. In particular G[A] = G[A,A] is compact, for any
compact subset A of X , and thus X is a Borel proper G-space.

Corollary 4.9 Let X be a G-space. Then the following are equivalent:

(a) X is a Koszul proper G-space.

(b) X is a Palais proper G-space.

(c) X is a Borel proper G-space.

Proof The fact that (a) implies (c) is given by Lemma 4.8. Suppose that (c) holds, and
let x ∈ X . Choose a compact neighborhood V0 of x in X . If y ∈ X , we let W be any
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compact neighborhood of y in X . Then G[W,V0] ⊂ G[V0 ∪W,V0 ∪W ] = G[V0 ∪W ].
Now G[W,V0] is closed in G, by Lemma 4.2, and G[V0 ∪W ] is compact, since V0 ∪W
is a compact subset of X and X is a Borel proper G-space. Hence G[W,V0] is compact.
This shows that X is Palais proper, and thus (c) implies (b). The fact that (b) implies (a) is
immediate from the definitions.

A good example of a CartanG-spaceX , which is not a properG-space is the following
one, see [30], Section I.1.
Example 4.10 Define an action of R on R2 − {0} by, (t, (x, y)) 7→ (etx, e−ty), for all
t ∈ R and (x, y) ∈ R2 − {0}. This action is a C∞ action, and it is Cartan but not
proper. The orbit space of this action is not Hausdorff, for example the orbits of the points
(1, 0) and (0, 1) are two different points in the orbit space which do not have disjoint
neighborhoods. If one restricts this action to the integers Z one obtains an action of Z on
R2 − {0}, which is Cartan but not proper.
Lemma 4.11 Let X be a Cartan G-space and let x ∈ X . Then there exists a G-invariant
open neighborhood V ∗ of x in X , such that V ∗ is a proper G-space.

Proof Let V be an open neighborhood of x inX , such that V = A is compact andG[A] is
compact. Then V ∗ = GV is an open subset of X , and hence V ∗ is locally compact. Thus
V ∗ is a G-space, and we claim that V ∗ is a proper G-space. By Corollary 4.9 it is enough
to prove that V ∗ is a Koszul proper G-space. Let x, y ∈ V ∗ = GV . Then x = ga and
y = g′b, where g, g′ ∈ G and a, b ∈ V . Now gV and g′V are open neighborhoods of x and
y, respectively, in V ∗, and hence also inX . SinceX is locally compact there exist compact
neighborhoods W and W ′ of x and y, respectively, in V ∗, such that x ∈ W ⊂ gV , and
y ∈W ′ ⊂ g′V . Now

G[W ′,W ] ⊂ G[g′V, gV ] = g′G[V, V ]g−1 = g′G[V ]g−1 ⊂ g′G[A]g−1. (1)

Since G[W ′,W ] is closed in G, by Lemma 4.2, and g′G[A]g−1 is compact, it follows by
(1) that G[W ′,W ] is compact.

Lemma 4.12 Suppose X is a Cartan G-space such that X/G is Hausdorff. Then X is a
proper G-space.

Proof By Corollary 4.9 it is enough to verify that X is Koszul proper. Let x, y ∈ X , and
assume first that x and y belong to the same orbit, i.e., y = gx, for some g ∈ G. Let V
be a compact neighborhood of x in X such that G[V ] is compact. Then gV is a compact
neighborhood of y, and G[gV, V ] = gG[V, V ] = gG[V ] is compact.

Now assume that π(x) 6= π(y) ∈ X/G, and let V ∗ and W ∗ be disjoint open neighbor-
hoods of π(x) and π(y), respectively, in X/G. Then π−1(V ∗) and π−1(W ∗) are disjoint
G-invariant open neighborhoods of x and y, respectively. Let V and W be compact neigh-
borhoods of x and y, respectively, such that V ⊂ π−1(V ∗) and W ⊂ π−1(W ∗). Then
G[W,V ] ⊂ G[π−1(W ∗), π−1(V ∗)] = ∅.

Proposition 4.13 Let X be a G-space. Then the following are equivalent:

(a) Φ : G×X → X , (g, x) 7→ gx, is a Borel proper action.

(b) Φ∗ : G×X → X ×X , (g, x) 7→ (gx, x), is a proper map.

(c) The restriction Φ| : G×A→ X is a proper map, for each compact subset A of X .
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Proof Let A ⊂ X . A direct verification gives us the equality G[A] = p(Φ∗−1(A × A)),
where p : G×X → G denotes the projection. Using this equality we see that (a) and (b)
are equivalent. Similarly we have for any A ⊂ X and B ⊂ X that (Φ|(G× A))−1(B) =
Φ∗−1(B ×A), and using this we see that (b) and (c) are equivalent.

Corollary 4.14 Let X be a proper G-space. Suppose that J is a closed subset of G and A
is a compact subset of X . Then JA = {gx | g ∈ J , x ∈ A} is a closed subset of X . In
particular GA is closed in X .

Proof By Corollary 4.9 we may use “a proper G-space” to mean “a Borel proper G-
space”. Hence it follows by Proposition 4.13 that the restriction Φ| : G × A → X is a
proper map, and therefore also a closed map, since X is locally compact. (It is easy to
see that if f : Y → X is a proper map and X is compactly generated, then f is a closed
map, cf. e.g. Corollary in [47]. Furthermore every locally compact space X is compactly
generated, see [52], 2.2.) Thus JA = Φ(J ×A) is closed in X .

Corollary 4.15 Let X be a proper G-space. Then X/G is Hausdorff.

Proof Let x, y ∈ X/G, where x 6= y. Choose x, y ∈ X such that π(x) = x and π(y) = y,
where π : X → X/G is the natural projection. Then Gx ∩ Gy = ∅, and Gx and Gy are
closed subsets of X , by Corollary 4.14. Let A be a compact neighborhood of x such that
A ∩ Gy = ∅. Then GA is closed in X , by Corollary 4.14, and GA ∩ Gy = ∅ since
A∩Gy = ∅. Now π(A◦) = π(GA◦) and π(X −GA) are disjoint open neighborhoods of
x and y, respectively, in X/G.

Corollary 4.16 Let X be G-space. Then the following are equivalent:

(i) X is a Cartan G-space and X/G is Hausdorff.

(ii) X is a proper G-space.

Proof The fact that (i) implies (ii) is given by Lemma 4.12. As we already pointed out
before Definitions 4.7 (a)–(c), it follows directly from the definitions that every proper
G-space is a Cartan G-space. Hence the fact that (ii) implies (i) now follows by Corol-
lary 4.15.

Notes Lemma 4.6 is Proposition 1.1.6 in [45] and our proof is basically the same as, but
somewhat simpler than, in [45]. Definition 4.7 (a) is from [30], Definition 4.7 (b) is Defini-
tion 1.2.2 in [45], and Definition 4.7 (c) occurs in Theorem 1.2.9 in [45]. Proposition 4.13
is taken from [19], Proposition 1.4. Concerning Corollary 4.16, compare with Theorem
1.2.9 in [45].

5 Non-paracompact Cartan G-manifolds

We prove in Theorem 5.1 that in a Cartan G-manifold M , every point has a paracompact
G-invariant open neighborhood and thus M is locally a paracompact Cartan G-manifold.
In fact it then follows by Lemma 4.11 that M is locally a paracompact proper G-manifold,
see Addendum 5.2.
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Let us here first note that if A and B are connected subsets of a G-space X , then the
set

B ∪G[B,A]A = B ∪
⋃

g∈G[B,A]

gA (i)

is connected since B is connected and each gA is connected, and gA ∩ B 6= ∅ for all
g ∈ G[B,A].
Theorem 5.1 Let M be a Cartan G-manifold, where G is a Lie group, and let x0 ∈ M .
Then there exists a paracompact G-invariant open neighborhood V ∗ of x0 in M .

Proof Since M is a Cartan G-manifold there exists an open neighborhood V of x0 in
M , such that V is homeomorphic to Rm, A = V is compact, and G[A] is a compact
subset of G. Since V is homeomorphic to Rm it follows that V is connected and second
countable. We claim that V ∗ = GV is paracompact. It is enough to prove that each
connected component of V ∗ is second countable, see Proposition 2.1.

Let W be the connected component of V ∗ which contains V . It is easy to see that each
connected component of V ∗ is of the form g′W , for some g′ ∈ G. Hence it is enough to
prove that W is second countable.

Let us denote J = G[V ] = G[V, V ]. Then J2 = J · J = JG[V ] = JG[V, V ] =
G[JV, V ], and by induction, i.e., by repeated use of the identity G[JB,A] = JG[B,A],
see (vii) in Section 4, we obtain that

Jn+1 = G[JnV, V ], for all n ≥ 0, where J0 = {e}. (1)

We claim that the sets

JnV, n ≥ 0 (2)

are connected. Assume by induction that JnV is connected. Since e ∈ J it follows that
JnV ⊂ Jn+1V , and hence, by using (1), we obtain that

Jn+1V = JnV ∪ Jn+1V = JnV ∪G[JnV, V ]V,

and this set is connected by (i). This proves that the sets in (2) are connected, and thus

V∞ =
⋃
n≥0

JnV

is an open and connected subset of V ∗, and V ⊂ V∞. We shall prove that V∞ is closed
in V ∗, and therefore V∞ is a connected component of V ∗, and hence V∞ = W , since
V ⊂ V∞.

In order to see that V∞ is closed in V ∗ = GV , let y ∈ V∞∩V ∗. Since y ∈ V ∗ = GV
we have that y = gx, for some g ∈ G and some x ∈ V . Now gV is an open neighborhood
of gx = y in M , and hence gV ∩ V∞ 6= ∅, since y ∈ V∞. Therefore gV ∩ JkV 6= ∅ , for
some k ≥ 0, and hence g ∈ G[JkV, V ] = Jk+1 , where the equality is given by (1). Thus
y = gx ∈ Jk+1V ⊂ V∞. We have shown that V

∞ ∩ V ∗ ⊂ V∞ ∩ V ∗, and hence V∞ is
closed in V ∗. Thus we conclude that V∞ = W .

We can now deduce that W is second countable in the following way. Since G[V ] ⊂
G[A] and G[A] is compact it follows that J = G[V ] lies in a subset P0 of G which is a
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finite union of connected components of G. It then follows that J∞ =
⋃
n≥0

Jn lies in a

subset P of G which is the union of at most a countable number of connected components
of G. Since each connected component of G is second countable, see Propositions 2.1
and 2.5, it follows that P is second countable.

The product space P × V is second countable, since both P and V are, and the map
P × V → PV , (g, x) 7→ gx, is an open map onto PV . Consequently PV is second
countable. Since W = V∞ =

⋃
n≥0

JnV = (
⋃
n≥0

Jn)V = J∞V ⊂ PV , it now follows

that W is second countable.

Addendum 5.2 In Theorem 5.1 the paracompact G-invariant open neighborhood V ∗ of
x in M may in be chosen such that the action of G on V ∗ is proper.

Proof Let the notation be the same as in the proof of Theorem 5.1. Since the open neigh-
borhood V of x in M is such that A = V is compact and G[A] is a compact subset of G it
follows, by the proof of Lemma 4.11, that the action of G on V ∗ = GV is proper.

In connection with Theorem 5.1 we may add the following two remarks.
Remark 5.3 Suppose that X is a second-countable Cartan G-space. We claim that G
can have at most a countable number of connected components, i.e., that G is second-
countable. This is seen as follows. Let x ∈ X , then α : G/Gx → Gx, gGx 7→ gx,
is a homeomorphism, see Corollary 4.5. Since X is second-countable it follows that Gx
is second-countable and hence G/Gx is second-countable. Thus G/Gx has at most a
countable number of connected components, and since Gx is compact it follows from this
that G has at most a countable number of connected components.
Remark 5.4 Suppose that M is a paracompact Cartan G-manifold, and let M1 be a con-
nected component of M . Then M1 is a second-countable manifold. Let us denote
G1 = {g ∈ G | gM1 = M1}. Then G1 is a subgroup of G and G0 ⊂ G1, where G0

denotes the connected component of G containing the identity element e ∈ G, and more-
over G1 is a union of connected components of G. It follows by Remark 5.3 that G1 has at
most a countable number of connected components. Furthermore the action of G on GM1

is completely determined by the action of G1 on M1, and the set of components of GM1

is in a natural one-to-one correspondence with G/G1.
Notes Theorem 5.1 is Proposition 1.3 in [16].

6 Homogeneous spaces of Lie groups

We begin with the following fundamental and well known result.
Theorem 6.1 Let G be a Lie group and H a closed subgroup of G. Then there exists a
unique real analytic structure on G/H , making G/H into a real analytic manifold, for
which the natural action Φ : G × G/H → G/H , (g′, gH) 7→ g′gH , of G on G/H , is
real analytic.

Proof See e.g. [13], Theorem II.4.2.
We will always consider G/H as a real analytic manifold with the real analytic struc-

ture given by Theorem 6.1. The natural projection π : G→ G/H , g 7→ gH , is then a real
analytic map. Furthermore we have the following well known result.
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Lemma 6.2 Let G be a Lie group and H a closed subgroup of G. Then each point gH ∈
G/H has an open neighborhood U so that there exists a real analytic cross section σ :
U → G of the projection π : G→ G/H , i.e., we have that π ◦ σ = idU .

Proof See e.g. [8], §V in Chapter IV, or [13], Lemma II.4.1.

Lemma 6.3 Let G be a Lie group, and let K be a compact subgroup of G. Then there
exist a K-invariant open neighborhood U of eK in G/K and a real analytic cross section

σ : U → G, (1)

for which σ(eK) = e, and which is a K-equivariant map in the sense that

σ(ku) = kσ(u)k−1, for every k ∈ K and every u ∈ U. (2)

Furthermore U can be chosen so that there exists a K-equivariant real analytic isomor-
phism

h : Rd(τ)→ U, (3)

where Rd(τ) denotes an orthogonal representation space for K. In particular the number
of K-isotropy types in U is finite.

Proof The compact Lie group K acts on the homogeneous space G/K by the action
K×G/K → G/K, (k, gK) 7→ kgK. Since this action is induced by the natural action of
G on G/K, it is real analytic. The point eK ∈ G/K is a fixed point, and hence we know
by Corollary 3.3 that there exist arbitrarily small K-invariant open neighborhoods of eK
in G/K.

Let K act on G by conjugation, i.e., by K ×G → G , (k, g) 7→ k ∗ g = kgk−1. The
natural projection π : G → G/K is a real analytic submersion, and π is a K-equivariant
map, since π(k ∗ g) = π(kgk−1) = π(kg) = kπ(g), for all k ∈ K and g ∈ G. The points
e ∈ G and π(e) = eK ∈ G/K are fixed points of K, and hence the tangent spaces Te(G)
and TeK(G/K) at e ∈ G and eK ∈ G/K, respectively, are finite-dimensional linear rep-
resentation spaces forK and we may assume that they are orthogonal representation spaces
since K is compact, see Theorem 3.5. The differential d(π)e : Te(G) → TeK(G/K), of
π at e ∈ G, is a K-equivariant surjective linear map.

The tangent space Te(K) to K at e ∈ K is a K-invariant linear subspace of Te(G).
Let L be the orthogonal complement to Te(K) in Te(G). Then L is a K-invariant linear
subspace of Te(G) and Te(G) = Te(K) ⊕ L. Furthermore dim L = d = dim G −
dim K = dim G/K, and the restriction of the differential d(π)e| : L → Te(G/K) is
a K-equivariant linear isomorphism. Using the exponential map at e ∈ G one constructs
an d-dimensional K-invariant real analytic submanifold V ∗ of G, such that e ∈ V ∗ and
Te(V ∗) = L. Then π| : V ∗ → G/K is a K-equivariant real analytic map and the
differential d(π|V ∗)e : Te(V ∗) → Te(G/K) is a K-equivariant linear isomorphism.
It now follows, using the real analytic inverse function theorem (see e.g. [42], Theorem
2.2.10), that there exists aK-invariant open neighborhood V of e in V ∗ such that π| : V →
π(V ) is a K-equivariant real analytic isomorphism onto a K-invariant open neighborhood
U = π(V ) of eK in G/K. Then

σ = (π|V )−1 : U → V ↪→ G
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is a K-equivariant real analytic cross section over U , of the projection π : G→ G/K, and
σ(eK) = e.

By using the exponential map at eK ∈ G/K we obtain arbitrarily small K-invariant
open neighborhoods of eK in G/K, which are K-equivariantly and real analytically iso-
morphic to an open disk, of some small radius, in an orthogonal representation space
Rd(τ) ∼= TeK(G/K) for K. Here τ : K → O(d) denotes an orthogonal representa-
tion of K and Rd(τ) denotes the corresponding orthogonal representation space for K.
Thus it follows that we can always choose the K-invariant open neighborhood U in (1)
such that there exists a K-equivariant real analytic isomorphism h : Rd(τ)→ U , as in (3).
In particular we have in this case that the number of K-isotropy types occurring in U is
finite, see Theorem 3.6.

Notes All results described in Section 6 are well-known. Our exposition follows the one
in [16], Section 3.

7 Twisted products

Let G be a Lie group and H a closed subgroup of G. Suppose N is a Ct H-manifold,
where 1 ≤ t ≤ ω. We consider the space G×N as an H-space, where H acts on G×N
by the (left) action H× (G×N)→ G×N, (h, (g, x)) 7→ (gh−1, hx). The orbit space of
thisH-space is denoted byG×HN , and is called the twisted product, ofG andN overH .
Let Π : G ×N → G ×H N be the natural projection, and denote Π(g, x) = [g, x]. Thus
[gh, x] = [g, hx], for all h ∈ H . There is a canonical action of G on G ×H N given by
g′[g, x] = [g′g, x]. We shall here below show that the space G×H N can, in a natural way,
be given the structure of a Ct manifold, and that the canonical action of G on G×H N is
a Ct action, 1 ≤ t ≤ ω.

The map

q : G×H N → G/H, [g, x] 7→ gH, (i)

is clearly a well-defined G-equivariant map.
Lemma 7.1 Let the notation be as above. Then the map q : G×H N → G/H , [g, x] 7→
gH , is a locally trivial projection, with fiber N .

Proof Let gH ∈ G/H . We choose an open neighborhood U of gH in G/H such that
there exists a real analytic cross section σ : U → G, see Lemma 6.2. Then we have a
commutative diagram

U ×N θ //

p1
""FF

FF
FF

FF
F q−1(U)

q|
||xx

xx
xx

xx
x

U

(1)

where θ(u, x) = [σ(u), x], and p1 denotes projection onto the first factor. Furthermore θ
is a homeomorphism, with inverse given by [g, x] 7→ (π(g), σ(π(g))−1gx). Observe that
σ(π(g))−1g ∈ H , since π(σ(π(g))) = π(g). Here π : G → G/H, g 7→ gH , denotes the
natural projection.
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Proposition 7.2 Let H be a closed subgroup of a Lie group G, and let N be a Ct H-
manifold, where 1 ≤ t ≤ ω. Then G ×H N has a Ct manifold structure, 1 ≤ t ≤ ω.
Furthermore the projection map q : G×H N → G/H , [g, x] 7→ gH , is a G-equivariant
Ct map, and the map i : N → G ×H N, x 7→ [e, x], is an H-equivariant closed Ct

imbedding, 1 ≤ t ≤ ω.

Proof Let σ : U → G be a real analytic cross section as in Lemma 7.1. Now suppose
σ′ : U ′ → G is another real analytic cross section over an open subset U ′ of G/H , and
let θ′ : U ′ × N → q−1(U ′), (u′, x) 7→ [σ′(u′), x], be the corresponding trivialization
over U ′ of the projection q in (i). Assume U ∩ U ′ 6= ∅. Then the transition function
τθ′,θ = (θ′−1 ◦ θ)|((U ∩U ′)×N), from the trivialization θ to the trivilization θ′, is given
by

τθ′,θ : (U ∩ U ′)×N → (U ∩ U ′)×N, (u, x) 7→ (u, σ′(u)−1σ(u)x).

Thus we see that the transition functions τθ′,θ are Ct diffeomorphisms, 1 ≤ t ≤ ω. Hence
it follows that there exists a Ct structure on G×H N , making G×H N into a Ct manifold,
such that each trivialization map θ : U × N → q−1(U), (u, x) 7→ [σ(u), x], as in (1) in
Lemma 7.1, is a Ct diffeomorphism from U×N onto the open subset q−1(U) ofG×HN .

The facts that the projection q : G×H N → G/H, [g, x] 7→ gH, is a Ct map, in fact a
Ct submersion, and that i : N → G×HN , x 7→ [e, x], is a Ct immersion, 1 ≤ t ≤ ω, are
direct consequences of the above description of the Ct structure on G ×H N . Moreover
the image i(N) is closed in G ×H N , and it is not difficult to see that i : N → i(N)
is a homeomorphism. Thus i : N → G ×H N, x 7→ [e, x], is a closed Ct imbedding,
1 ≤ t ≤ ω. Clearly q is a G-equivariant map, and i is an H-equivariant map.

Proposition 7.3 Let H , G, N , and t be as in Proposition 7.2. Then the canonical action,

Φ : G× (G×H N)→ G×H N, (g′, [g, x]) 7→ [g′g, x], (1)

of G on G×H N is a Ct action, 1 ≤ t ≤ ω.

Proof Let (g′0, [g0, x0]) ∈ G × (G ×H N), then q([g0, x0]) = g0H ∈ G/H . Now recall
that the action G×G/H → G/H, (g′, gH) 7→ g′gH , of G on G/H , is real analytic, see
Theorem 6.1. Let U1 be an open neighborhood of g′0g0H in G/H such that there exists a
real analytic cross section σ1 : U1 → G. Next we choose an open neighborhood V of g′0 in
G and an open neighborhood U of g0H in G/H such that V U ⊂ U1, and such that there
exists a real analytic cross section σ : U → G. Now V × q−1(U) is an open neighborhood
of (g′0, [g0, x0]) in G× (G×H N) and Φ(V × q−1(U)) ⊂ q−1(U1). Furthermore we have
the commutative diagram

V × q−1(U)
Φ| // q−1(U1)

V × U ×N

id×θ ∼=

OO

Ψ // U1 ×N

∼= θ1

OO
(2)

Here the trivializations θ : U × N → q−1(U), (u, x) 7→ [σ(u), x], and θ1 : U1 × N →
q−1(U1), (u, x) 7→ [σ1(u), x], corresponding to the cross sections σ and σ1, respectively,
are Ct diffeomorphisms, 1 ≤ t ≤ ω. The map Ψ is given by

Ψ(g, u, x) = (gu, σ1(gu)−1gσ(u)x), for all (g, u, x) ∈ V × U ×N,
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and thus we see that Ψ is a Ct map. Hence it follows that Φ| in (2) is a Ct map, and thus
we have proved that Φ in (1) is a Ct map, 1 ≤ t ≤ ω.

Lemma 7.4 Let G be a Lie group and H a closed subgroup of G. Suppose M is a Ct

G-manifold and N is a Ct H-manifold, where 1 ≤ t ≤ ω. Let f : N → M be an
H-equivariant Ct map. Then

µ(f) : G×H N →M, [g, x] 7→ gf(x),

is a G-equivariant Ct map, 1 ≤ t ≤ ω.

Proof It is easy to see that µ(f) is a well-defined G-equivariant map. Now let [g0, x0] ∈
G ×H N , and choose an open neighborhood U of q([g0, x0]) = g0H in G/H , such that
there is a real analytic cross section σ : U → G. Then q−1(U) is an open neighborhood of
[g0, x0] inG×HN and θ : U×N → q−1(U), (u, x) 7→ [σ(u), x], is a Ct diffeomorphism,
1 ≤ t ≤ ω. The composite map (µ(f)|)◦θ : U×N →M is given by (u, x) 7→ σ(u)f(x),
and hence it is a Ct map. Since θ is a Ct diffeomorphism it follows that µ(f)| : q−1(U)→
M is a Ct map, 1 ≤ t ≤ ω, and this proves our claim.

Corollary 7.5 Let H be a closed subgroup of a Lie group G. Suppose that N and P are
Ct H-manifolds, and let f : N → P be a H-equivariant Ct map, where 1 ≤ t ≤ ω. Then

id×Hf : G×H N → G×H P , [g, x] 7→ [g, f(x)]

is a G-equivariant Ct map, 1 ≤ t ≤ ω.

Proof By Propositions 7.2 and 7.3 the twisted products G×H N and G×H P are Ct G-
manifolds, 1 ≤ t ≤ ω. The H-equivariant map i : P → G×H P , y 7→ [e, y], is a closed
Ct imbedding, 1 ≤ t ≤ ω, by Proposition 7.2. Thus i◦ f : N → G×H P , x 7→ [e, f(x)],
is an H-equivariant Ct map. By Lemma 7.4 the map µ(i ◦ f) : G ×H N → G ×H P is
a G-equivariant Ct map. Now µ(i ◦ f) = id×Hf , since µ(i ◦ f)([g, x]) = g(i ◦ f)(x) =
g[e, f(x)] = [g, f(x)] = (id×Hf)([g, x]), and this completes the proof.

Corollary 7.6 Let the notation be as in Corollary 7.5 above, and suppose that f : N → P
is an H-equivariant Ct diffeomorphism, where 1 ≤ t ≤ ω. Then

id×Hf : G×H N → G×H P , [g, x] 7→ [g, f(x)],

is a G-equivariant Ct diffeomorphism, 1 ≤ t ≤ ω.

Remark 7.7 Suppose that K is a compact subgroup of G. By Lemma 6.3 there ex-
ist a K-invariant open neighborhood U of eK in G/K and a real analytic cross sec-
tion σ : U → G, with σ(eK) = e, which is a K-equivariant map in the sense that
σ(ku) = kσ(u)k−1, for every k ∈ K and every u ∈ U. In this case the corresponding
trivialization

θ : U ×N → q−1(U), (u, x) 7→ [σ(u), x], (1)

is in addition a K-equivariant map. Here K acts diagonally on U × N , and the fact
that θ is a K-equivariant map is seen by θ(k(u, x)) = θ(ku, kx) = [σ(ku), kx] =
[kσ(u)k−1, kx] = [kσ(u), x] = k[σ(u), x] = kθ(u, x). �

Notes Everything presented here in Section 7 is well-known. Our exposition mainly fol-
lows the one in [16], Section 4.
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8 Slices

Definition 8.1 Let M be a Ct G-manifold, where G is a Lie group and 1 ≤ t ≤ ω, and let
H be a closed subgroup of G. We say that an H-invariant Ct submanifold S of M is a Ct

H-slice in M , if GS is open in M , and the map

µ : G×H S → GS, [g, x]→ gx,

is a G-equivariant Ct diffeomorphism, 1 ≤ t ≤ ω. We call GS the tube corresponding to
the H-slice S.

By a Ct presentation of a Ct H-slice S in M , we mean a Ct H-manifold P together
with an H-equivariant Ct imbedding, 1 ≤ t ≤ ω,

j : P →M, (i)

such that j(P ) = S. Then j : P → S is an H-equivariant Ct-diffeomorphism, and hence
(id×Hj) : G ×H P → G ×H S is a G-equivariant Ct diffeomorphism by Corollary 7.6.
Thus

µ(j) = µ ◦ (id×H j) : G×H P → GS

is a G-equivariant Ct diffeomorphism, 1 ≤ t ≤ ω.
Suppose that z ∈ M . By a Ct slice at z in M we mean a Ct Gz-slice S in M , such

that z ∈ S. In this case GS is a G-invariant open neighborhood of the orbit Gz in M , and
GS is called a G-tube about Gz. A Ct slice S at z in M is said to be linear if S has a Ct

presentation of the form

j : Rq(ρ)
∼=−→ S ⊂M, (ii)

where j(0) = z. Here Rq(ρ) denotes a linear representation space for H .
Lemma 8.2 Let M, G, H and t be as in Definition 8.1, and suppose S is a Ct H-slice in
M . Then there exists a G-equivariant Ct map p : GS → G/H such that p−1(eH) = S.

Proof By assumption GS is open in M , and µ : G ×H S → GS, [g, x] 7→ gx, is a G-
equivariant Ct diffeomorphism, 1 ≤ t ≤ ω. Furthermore the natural projection q : G ×H
S → G/H , [g, x] 7→ gH , is a G-equivariant Ct map, see Proposition 7.2. Hence the
composite map p = q ◦ µ−1 : GS → G/H , is a G-equivariant Ct map, and p(gx) = gH ,
for every x ∈ S and every g ∈ G. Clearly p−1(eH) = S.

Definition 8.3 Let M, G, H and t be as in Definition 8.1. An H-invariant Ct

submanifold S of M is said to be a Ct near H-slice in M , if there exist an open neigh-
borhood U of eH in G/H and a real analytic cross section σ : U → G, with σ(eH) = e,
such that σ(U)S is open in M and

γ : U × S → σ(U)S, (u, x) 7→ σ(u)x,

is a Ct diffeomorphism, 1 ≤ t ≤ ω.
The notions, a presentation of a Ct near H-slice, a Ct near slice at z ∈ M , and a

linear Ct near slice at z ∈ M , are defined in complete analogy with the corresponding
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notions for Ct slices, 1 ≤ t ≤ ω. For example the assertion that S is a linear Ct near slice
at z ∈ M , means that S is a Ct near Gz-slice in M , such that z ∈ S, and there exists a
Gz-equivariant Ct diffeomorphism j : Rq(ρ)→ S, as in (ii). In this case

γ(j) = γ ◦ (id×j) : U × Rq(ρ)→ σ(U)S , (u, a) 7→ σ(u)j(a),

is a Ct diffeomorphism, 1 ≤ t ≤ ω.
Remark 8.4 Let the notation be as above, and suppose that S is a Ct near H-slice in M .
Then the set GS is open in M , since GS = Gσ(U)S =

⋃
g∈G gσ(U)S is a union of open

subsets of M . �

Remark 8.5 Let the notation be as in Definition 8.3. Suppose S is a Ct near H-slice in M ,
and let g0H ∈ G/H . Then we can find an open neighborhood U0 of g0H in G/H and a
real analytic cross section σ0 : U0 → G, such that σ0(U0)S is open in M and

γ0 : U0 × S → σ0(U0)S, (u′, x) 7→ σ0(u′)x,

is a Ct diffeomorphism, 1 ≤ t ≤ ω. We choose U0 = g0U and let σ0 : U0 → G,
u′ 7→ g0σ(g−1

0 u′). Then γ0 = g0 ◦ γ ◦ (g−1
0 × id) : U0 × S → σ0(U0)S = g0σ(U)S, is

as required.
Remark 8.6 Suppose σ : U → G and σ′ : U → G are two real analytic cross sections
over an open subset U of G/H , and let γ : U × S → σ(U)S , (u, x) 7→ σ(u)x, and
γ′ : U × S → σ′(U)S, (u, x) 7→ σ′(u)x. Then κ(u) = σ(u)−1σ′(u) ∈ H , for every
u ∈ U , and κ : U → H is real analytic. Thus σ′(U)S = (σ · κ)(U)S = σ(U)κ(U)S =
σ(U)S, and furthermore γ′ = γ ◦ κ∗, where κ∗ : U × S → U × S, (u, x) 7→ (u, κ(u)x).
Hence σ′(U)S is open in M if and only if σ(U)S is, and γ′ is a Ct diffeomorphism if and
only if γ is, 1 ≤ t ≤ ω. In particular the definition of a Ct near slice in Definition 8.3 is
independent of the choice of the real analytic section σ : U → G.
Lemma 8.7 Let M, G, H and t be as in Definition 8.1, and let S be a Ct H-slice in M .
Suppose σ : U → G is a real analytic cross section over an open subset U of G/H . Then
σ(U)S is open in M and

γ : U × S → σ(U)S, (u, x) 7→ σ(u)x, (1)

is a Ct diffeomorphism. Thus every Ct H-slice S in M , is a Ct near H-slice in M .

Proof As we saw in Section 7 (see Lemma 7.1 and Proposition 7.2) the cross section σ
gives rise to a Ct diffeomorphism θ : U × S → q−1(U), (u, x) 7→ [σ(u), x], where
q : G ×H S → G/H , [g, x] 7→ gH . Let µ be as in Definition 8.1. Then (µ ◦ θ)(u, x) =
µ([σ(u), x]) = σ(u)x = γ(u, x), for all (u, x) ∈ U × S. Hence σ(U)S = γ(U × S) =
µ(q−1(U)), and γ = µ ◦ θ : U × S → σ(U)S. Since µ : G×H S → GS , [g, x] 7→ gx, is
a Ct diffeomorphism it follows that σ(U)S is open in GS, and hence also open in M , and
that γ = µ ◦ θ : U × S → σ(U)S is a Ct diffeomorphism.

Remark 8.8 LetM be a Ct G-manifold, whereG is a Lie group and 1 ≤ t ≤ ω. Suppose S
is a Ct near K-slice in M , where K is a compact subgroup of G, and let j : P → S ↪→M
be a Ct presentation of S, i.e., P is a Ct K-manifold and j : P → M is a K-equivariant
Ct imbedding with j(P ) = S. In this case, when K is compact, we may in Definition 8.3
take the open neighborhood U , of eK in G/K, to be K-invariant, and the real analytic
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cross section σ : U → G, with σ(eK) = e, to be a K-equivariant map, see Corollary 3.3,
Lemma 6.3 and Remark 8.6. We then have that the Ct diffeomorphism

γ(j) : U × P → σ(U)S, (u, x) 7→ σ(u)j(x),

is a K-equivariant map, where K acts diagonally on U × P . This holds since
γ(j)(k(u, x)) = γ(j)(ku, kx) = σ(ku)j(kx) = kσ(u)k−1kj(x) = kσ(u)j(x) =
kγ(j)(u, x), for every k ∈ K and every (u, x) ∈ U × S. Thus W = σ(U)S is a K-
invariant open neighborhood of S in M , and W is called a K-invariant product neighbor-
hood of S inM . We call theK-equivariant Ct diffeomorphism γ(j) : U ×P → σ(U)S =
W , a K-equivariant Ct presentation of W , 1 ≤ t ≤ ω.
Remark 8.9 Let the notation be as in Remark 8.8. Suppose S is a linear Ct near slice
at z ∈ M , where Gz = K is compact, and let j : Rq(ρ) → S be a Ct presentation of
S. We may choose the K-invariant open neighborhood U of eK in G/K, such that there
is a K-equivariant real analytic isomorphism h : Rd(τ) → U , where Rd(τ) denotes an
orthogonal representation space for K, see Lemma 6.3. Then

γ̂(j) = γ(j) ◦ (h× id) : Rd(τ)× Rq(ρ)→W, (b, a) 7→ σ(h(b))j(a), (1)

is a K-equivariant Ct diffeomorphism. Since Rd(τ) × Rq(ρ) = Rd+q(τ ⊕ ρ), and the
number of K-isotropy types occurring in a linear representation space for K is finite, see
Theorem 3.6, it follows that the number of K-isotropy types occurring in W is finite.
Lemma 8.10 Let M be a Ct G-manifold, where G is a Lie group and 1 ≤ t ≤ ω, and let
H be a closed subgroup of G. Then the following assertions are equivalent:

(a) S is a Ct H-slice in M .

(b) S is a Ct near H-slice in M and gS ∩ S = ∅, for all g ∈ G−H .

(c) S is a Ct near H-slice in M and there exists a G-equivariant map p : GS → G/H
such that p−1(eH) = S.

Proof Suppose that (a) holds. Then it follows directly by Definition 8.1 that gS ∩ S = ∅,
for all g ∈ G−H . Furthermore we have by Lemma 8.7 that S is a Ct near H-slice in M .
Thus (a) implies (b).

Now assume that (b) holds. We shall show that (a) holds. By Remark 8.4 the set GS is
open in M , and our claim is that

µ : G×H S → GS, [g, x] 7→ gx (1)

is a G-equivariant Ct diffeomorphism, 1 ≤ t ≤ ω. We know by Lemma 7.4 that µ is a
G-equivariant Ct map. The fact that gS ∩ S = ∅, for all g ∈ G − H , implies that µ is
injective, and hence µ in (1) is a bijective map. Therefore it is enough to prove that µ is a
local Ct diffeomorphism. Let [g0, x0] ∈ G×H S, then q([g0, x0]) = g0H ∈ G/H , where
q : G×H S → G/H , [g, x] 7→ gH . By Remark 8.5 we find an open neighborhood U0 of
g0H in G/H and a real analytic cross section σ0 : U0 → G such that σ0(U0)S is open in
M and

γ0 : U0 × S → σ0(U0)S, (u, x) 7→ σ0(u)x,
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is a Ct diffeomorphism. Now q−1(U0) is an open neighborhood of [g0, x0] in G×H S and

θ0 : U0 × S → q−1(U0), (u, x) 7→ [σ0(u), x],

is a Ct diffeomorphism, see Lemma 7.1 and Proposition 7.2. Since γ0 and θ0 are Ct

diffeomorphisms and γ0 = (µ|) ◦ θ0 it follows that µ| : q−1(U0) → σ0(U0)S is a Ct

diffeomorphism, 1 ≤ t ≤ ω. Thus (b) implies (a).
The fact that (a) implies (c) follows by Lemmas 8.2 and 8.7. Clearly (c) implies (b).

This completes the proof.

Proposition 8.11 Let M be a Ct Cartan G-manifold, where G is a Lie group and 1 ≤ t ≤
ω, and let z ∈ M . Suppose S∗ is a Ct near slice at z. Then there exists a Ct slice S at z.
Moreover we can choose S to be a Gz-invariant open neighborhood of z in S∗. If S∗ is a
linear Ct near slice at z, we can choose S to be a linear Ct slice at z ∈M .

Proof The isotropy subgroup Gz = K at z ∈ M is a compact subgroup of G. We
let U be an open neighborhood of eK in G/K for which there is a real analytic cross
section σ : U → G, with σ(eK) = e, such that σ(U)S∗ is open in M and γ : U × S∗ →
σ(U)S∗, (u, x) 7→ σ(u)x, is a Ct diffeomorphism, 1 ≤ t ≤ ω. Let π : G→ G/K denote
the natural projection. By Lemma 4.6 there exists a K-invariant open neighborhood V of
z in M , such that G[V ] ⊂ π−1(U). We define

S = V ∩ S∗, (1)

and claim that S is a Ct K-slice at z in M .
Since S is aK-invariant open subset of S∗ it follows directly by Definition 8.3 that S is

a Ct nearK-slice at z inM . Hence it is enough, by Lemma 8.10, to show that gS∩S = ∅,
for all g ∈ G−K. Suppose that gS∩S 6= ∅, where g ∈ G, and let x1, x2 ∈ S be such that
gx1 = x2. Then g ∈ G[S] ⊂ G[V ] ⊂ π−1(U), and hence π(g) ∈ U . Thus g = σ(π(g))k,
for some k ∈ K. Now γ(π(g), kx1) = σ(π(g))(kx1) = gk−1kx1 = gx1 = x2 and
γ(eK, x2) = σ(eK)x2 = ex2 = x2. Since γ is an injective map it follows that π(g) =
eK, and hence g ∈ K.

Suppose S∗ is a linear Ct near slice at z ∈M , and let j : Rq(ρ)→ S∗ be a presentation
of S∗, where j(0) = z and Rq(ρ) is an orthogonal representation for K = Gz . Let S
denote the Ct slice at z ∈ M constructed above, i.e., S is as in (1). Then j−1(S) is a
K-invariant open neighborhood of the origin in Rq(ρ). Hence there exists ε > 0, such that
D̊q
ε(ρ) ⊂ j−1(S). Then S′ = j(D̊q

ε(ρ)) is a linear Ct slice at z ∈ M . Moreover S′ is a
K-invariant open neighborhood of z in S∗.

Proposition 8.12 LetM be a paracompact Cs CartanG-manifold, whereG is a Lie group
and 1 ≤ s ≤ ∞, and let x ∈M . Then there exists a linear Cs near slice S at x in M .

Proof See [29], p. 139. Compare also with [45], Lemma in Section 2.2 and Proposition
2.2.1.

Theorem 8.13 (The Cs slice theorem) Let M be a Cs Cartan G-manifold, where G is a
Lie group and 1 ≤ s ≤ ∞, and let x ∈M . Then there exists a linear Ct slice S at x in M .

Proof By Theorem 5.1 there exists a paracompactG-invariant open neighborhood V ∗ of x
in M . Thus V ∗ is a paracompact Cs Cartan G-manifold, and x ∈ V ∗. By Proposition 8.12
there exists a linear Cs near slice S∗ at x in V ∗. Since V ∗ is an open and G-invariant
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subset of M it follows that S∗ is a linear Cs near slice at x in M . Hence we have by
Proposition 8.11 that there exists a linear Cs slice at x in M .

Notes The exposition here in Section 8 follows the one in [16], Section 5. In [45], Palais
uses the assertion in Lemma 8.10 (c) as the definition of a Ct H-slice in M . Thus
Lemma 8.10 shows that the definition by Palais is equivalent to the one we use, i.e., the
one in Definition 8.1. The definition of a near slice at a point x, is in the topological case,
given in Definition 2.1.6 in [45]. Proposition 8.11 corresponds to Proposition 2.1.7 in [45].

9 The strong Cr topologies, 1 ≤ r <∞, and the very-strong C∞

topology

Suppose U is an open subset of Rm, or of Rm# = {x = (x1, . . . , xm) ∈ Rm
∣∣ xm ≥ 0},

and let f : U → Rn be a Cr map, where 1 ≤ r <∞, and let A ⊂ U . Then we define

‖f‖rA = sup
{
|Dαfj(a)|

∣∣ a ∈ A, 1 ≤ j ≤ n, 0 ≤ |α| ≤ r
}
.

Here fj : U → R denotes the j:th component function of f , 1 ≤ j ≤ n, and α =
(α1, . . . , αm) is an m-tuple of non-negative integers, and

Dαfj(a) =
∂|α|fj(a)

∂xα1
1 . . . ∂xαmm

, for each a ∈ A,

where |α| = α1 + . . .+ αm.
Now suppose that M and N are Cr manifolds, with or without boundary, where 1 ≤

r < ∞. By Cr(M,N) we denote the set of all Cr maps from M to N , 1 ≤ r < ∞.
Suppose that f ∈ Cr(M,N), and let (U,ϕ) be a chart in M , B a compact subset of U ,
and (V, ψ) a chart in N , such that f(B) ⊂ V . We then define, for each ε > 0,

N r(f ;B, (U,ϕ), (V, ψ), ε)

= {h ∈ Cr(M,N)
∣∣ h(B) ⊂ V and ‖ψ ◦ h ◦ ϕ−1 − ψ ◦ f ◦ ϕ−1‖rϕ(B) < ε}.

(i)

Note that here ψ ◦ h ◦ϕ−1 −ψ ◦ f ◦ϕ−1 : ϕ(f−1(V )∩ h−1(V )∩U)→ Rn is a Cr map,
and that ϕ(B) ⊂ ϕ(f−1(V ) ∩ h−1(V ) ∩ U). We call a set N r(f ;B, (U,ϕ), (V, ψ), ε) as
in (i) an elementary Cr neighborhood of f in Cr(M,N), 1 ≤ r <∞.

In the case when N = Rn, and the chart (V, ψ) equals (Rn, id), we instead of the
full notationN r(f ;B, (U,ϕ), (Rn, id), ε) use the simpler notationN r(f ;B, (U,ϕ), ε). If
furthermore U is an open subset ofRm, or of the halfspaceRm# , and the chart (U,ϕ) equals
(U, id), we denote N r(f ;B, (U, id), ε) by N r(f ;B, ε). Thus

N r(f ;B, ε) = {h ∈ Cr(U,Rn)
∣∣ ‖h− f‖rB < ε},

where B ⊂ U ⊂ Rm, and B is compact.

In this article N r(f ;B, (U,ϕ), (V, ψ), ε) will always denote a set of the form in (i).

Let f ∈ Cr(M,N), where 1 ≤ r <∞, and M and N are paracompact Cr manifolds,
with or without boundary. By a basic strong Cr neighborhood of f in Cr(M,N), we mean
a set of the form

Ur =
⋂
i∈Λ

N r(f ;Bi, (Ui, ϕi), (Vi, ψi), εi), (ii)
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where the family {Bi}i∈Λ is locally finite in M . It is easy to see, compare with
Lemma 9.4, that the family of all basic strong Cr neighborhoods of f in Cr(M,N), for all
f ∈ Cr(M,N), is a basis for a topology on Cr(M,N). This topology is called the strong
Cr topology on Cr(M,N). Let us temporarily denote Cr(M,N) with the strong Cr topol-
ogy by CrS(M,N). In the definition of the strong Cr topology some authors require that
the family {Ui}i∈Λ is locally finite, see e.g. [15], Section 2.1. However, this definition and
the one given above are equivalent, see Lemma 1.1 in [22].

Now let 1 ≤ s ≤ ∞, and assume that 1 ≤ r < ∞ is such that r ≤ s. Suppose M and
N are paracompact Cs manifolds, with or without boundary, and let f ∈ Cs(M,N). Then
we define

N s,r(f ;B, (U,ϕ), (V, ψ), ε) = Cs(M,N) ∩N r(f ;B, (U,ϕ), (V, ψ), ε). (iii)

Occasionally we will use the shorter notation N s,r = Cs(M,N) ∩ N r instead of the
complete form in (iii). We call a set N s,r(f ;B, (U,ϕ), (V, ψ), ε) as in (iii) an elementary
Cr neighborhood of f in Cs(M,N). Then we define a basic strong Cr neighborhood of f
in Cs(M,N) to be a set of the form

Us,r =
⋂
i∈Λ

N s,r(f ;Bi, (Ui, ϕi), (V, ψi), εi), (iv)

where the family {Bi}i∈Λ is locally finite in M . We define the strong Cr topology on
Cs(M,N) to be the topology which as a basis has the family of all sets of the form (iv),
for all f ∈ Cs(M,N). We shall temporarily denote the set Cs(M,N) with the strong Cr

topology by Cs,rS (M,N), where 1 ≤ s ≤ ∞, 1 ≤ r <∞ and r ≤ s.
Since N s,r = Cs(M,N) ∩ N r, by the definition in (iii), we also have that Us,r =

Cs(M,N) ∩ Ur, where Us,r is as in (iv) and Ur is as in (ii). Thus we see that the strong
Cr topology on Cs(M,N) is nothing but the relative topology that Cs(M,N) obtains as
a subset of the space CrS(M,N). Thus we have, as topological spaces,

Cs,rS (M,N) = Cs(M,N) ∩ CrS(M,N).

Suppose that M and N are paracompact C∞ manifolds, with or without boundary. Let
us here, for comparison only, mention a topology on C∞(M,N) that we will not use, it is
inadequate for our purposes. It is the strong C∞ topology on C∞(M,N), introduced by
Mather in [33], Section 2. The strong C∞ topology on C∞(M,N) has as a basis the union
of all strong Cr topologies on C∞(M,N), 1 ≤ r < ∞. See also [15], Section 2.1. We
use the notation C∞S (M,N) for C∞(M,N) with the strong C∞ topology.
Remark 9.1 Let 1 ≤ r < s ≤ ∞, and suppose that M and N are paracompact Cs mani-
folds, with or without boundary, and let f ∈ Cs(M,N). When we defined an elementary
Cr neighborhoodN s,r(f ;B, (U,ϕ), (V, ψ), ε) of f is Cs(M,N), see (iii) and (i), we con-
sidered M and N as Cr manifolds and used Cr charts (U,ϕ) and (V, ψ) in M and N ,
respectively, 1 ≤ r < s ≤ ∞. Since M and N are Cs manifolds it would also be natural
to instead only use charts (Ũ , ϕ̃) and (Ṽ , ψ̃) in M and N , respectively, that are Cs charts.
The version of an elementary Cr neighborhood of f in Cs(M,N) that one obtains in this
way we could denote by

N s,r
s (f ;B, (Ũ , ϕ̃), (Ṽ , ψ̃), ε)
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and use the notation Us,rs to denote a corresponding form of a basic strong Cr neighbor-
hood of f in Cs(M,N). It is not difficult to see that the topology on Cs(M,N), which
has all sets of the form Us,rs as a basis, equals the topology on Cs(M,N), which has
all sets of the form Us,r, given in (iv), as a basis, i.e., equals the strong Cr topology on
Cs(M,N), 1 ≤ r < s ≤ ∞.

We now note that

N s,r+1
s (f ;B, (Ũ , ϕ̃), (Ṽ , ψ̃), ε) ⊂ N s,r

s (f ;B, (Ũ , ϕ̃), (Ṽ , ψ̃), ε),

for 1 ≤ r < s ≤ ∞. Therefore a set of the form Us,rs is open in the corresponding Us,r+1
s ,

and hence it follows by the above that the identity map

id : Cs,r+1
S (M,N)→ Cs,rS (M,N)

is continuous. Starting with s = r + 1 < ∞ we obtain that the identity map on the set
Cs(M,N) gives us a sequence of continuous maps

CsS(M,N) = Cs,sS (M,N)→ Cs,s−1
S (M,N)→ . . .→ Cs,1S (M,N).

For s =∞ we obtain an infinite sequence of continuous maps

. . .→ C∞,r+1
S (M,N)→ C∞,rS (M,N)→ C∞,r−1

S (M,N)→ . . .→ C∞,1S (M,N)

and

C∞S (M,N)→ C∞,rS (M,N), for all 1 ≤ r <∞.

In the case when r is finite, and M and N are paracompact Cr manifolds, with or
without boundary, it is clear that the strong Cr topology is the right topology to use on
Cr(M,N).

However, one should note that, in the case when M and N are paracompact C∞ mani-
folds, with or without boundary, the strong C∞ topology on C∞(M,N) has some serious
drawbacks. For example a key lemma, the glueing lemma, that is Lemma 12.1 is this arti-
cle, does not hold for s = ∞ if one uses the strong C∞ topology, but it holds if one uses
the very-strong C∞ topology defined below. Cf. Lemma 2.2.8 in [15], which holds and is
given only in the Cr case, where 1 ≤ r < ∞, since the topology used in [15], in the C∞

case, is the strong C∞ topology. Mather [33] calls the strong C∞ topology the Whitney
C∞ topology, but this choice of terminology is not well founded. In fact du Plessis and
Wall, see [48], p. 59, propose that the strong C∞ topology on C∞(M,N) be named the
Mather topology. It is only in the case when r is finite that the strong Cr topology should
be named the Whitney Cr topology. One should also note that the strong C∞ topology on
C∞(M,N) is not really a genuine C∞ topology, since it is completely determined by the
strong Cr topologies on C∞(M,N), for all finite r.

There is however a genuine C∞ topology on C∞(M,N), namely the very-strong C∞

topology. This topology was introduced by Cerf in [6], Definition I.4.3.1. We give the
definition of the very-strong C∞ on C∞(M,N), in Definition 9.2 below, in a slightly
different way than Cerf does. Cerf does not give this topology any special name, but it
is named the ‘very strong topology’ by du Plessis and Wall, see [48], p. 59. We will
temporarily denote C∞(M,N) with the very-strong C∞ topology by C∞vS(M,N).
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The very-strong C∞ topology is the right topology to use on C∞(M,N). It does give
the means to express a classical result by Whitney, concerning approximation of C∞ maps
by real analytic maps, Lemma 6 in [54], see Lemma 13.1 (a) in this article. The result
by Whitney involves approximation of partial derivatives of increasingly high order as
one moves out towards infinity. This phenomenon is captured by the very-strong C∞

topology, but not by the strong C∞ topology. This is the reason why the strong C∞

topology on C∞(M,N) should not be called the Whitney C∞ topology, it is the very-
strong C∞ topology on C∞(M,N) that deserves to be called the Whitney C∞ topology.
We shall however in this article avoid terminology like “Mather topology” and “Whitney
topology” in order to avoid any misunderstandings. We will use the terminology “strong
Cr topology”, 1 ≤ r <∞, “strong C∞ topology” and “very-strong C∞ topology”.

We shall now define the very-strong C∞ topology on C∞(M,N). Suppose f ∈
C∞(M,N), where M and N are paracompact C∞ manifolds, with or without bound-
ary. By a basic very-strong C∞ neighborhood of f in C∞(M,N) we mean a set of the
form

U∞,∞ =
⋂
i∈Λ

N∞,ri(f ;Bi, (Ui, ϕ), (V, ψi), εi), (v)

where 1 ≤ ri <∞, i ∈ Λ, and the family {Bi}i∈Λ is locally finite in M . By Lemma 9.4
below the family of all basic very-strong C∞ neighborhoods of f in C∞(M,N), for all
f ∈ C∞(M,N), is a basis for a topology on C∞(M,N). Thus we can give the following
definition.
Definition 9.2 Let M and N be paracompact C∞ manifolds, with or without boundary.
The very-strong C∞ topology on C∞(M,N) is the topology which as a basis has the family
of all basic very-strong C∞ neighborhoods of f in C∞(M,N),for all f ∈ C∞(M,N).

In (v) it may very well be that

sup {ri | i ∈ Λ} =∞, (vi)

and this fact is the crucial point here. The fact that (vi) is allowed to hold makes the very-
strong C∞ topology on C∞(M,N) to differ from the strong C∞ topology on C∞(M,N).
Temporarily we denote C∞(M,N) with the very-strong C∞ topology by C∞vS(M,N).

Note that the very-strong C∞ topology on C∞(M,N) is at least as fine as the strong
C∞ topology on C∞(M,N). Thus the identity map on the set C∞(M,N) gives us a
continuous map

id : C∞vS(M,N)→ C∞S (M,N). (vii)

Let us now give the promised Lemma 9.4. We begin with the following fact.
Lemma 9.3 Let N = N∞,r(f ;B, (U,ϕ), (V, ψ), ε) be an elementary Cr neighborhood
of f ∈ C∞(M,N), and let f0 ∈ N . Then there exists ε0 > 0 such that if we set N0 =
N∞,r(f0;B, (U,ϕ), (V, ψ), ε0), then N0 ⊂ N .

Proof We have that d = ‖ψ ◦ f0 ◦ϕ−1−ψ ◦ f ◦ϕ‖rϕ(B) < ε, and by choosing ε0 = ε− d
the claim follows.

Lemma 9.4 Let f, f ′ ∈ C∞(M,N)´, and suppose that U and U ′ are basic very-strong C∞

neighborhoods of f and f ′ respectively, in C∞(M,N). If f0 ∈ U ∩ U ′, then there exists a
basic very-strong C∞ neighborhood U0 of f0 in C∞(M,N), such that U0 ⊂ U ∩ U ′.
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Proof Here U =
⋂
i∈ΛNi and U ′ =

⋂
j∈ΓN ′j , where each Ni = N∞,ri(f ;Bi, (Ui, ϕi),

(Vi, ψi), εi) is an elementary Cri neighborhood of f in C∞(M,N), 1 ≤ ri < ∞, i ∈ Λ,
and each N ′j = N∞,sj (f ′;B′j , (U ′j , ϕ′j), (V ′j , ψ

′
j), ε

′
j) is an elementary Csj neighborhood

of f ′ in C∞(M,N), 1 ≤ sj < ∞, j ∈ Γ, and the families {Bi}i∈Λ and {B′j}j∈Γ are
locally finite in M . By Lemma 9.2 there exists for each i ∈ Λ an ε0,i > 0 such thatN0,i =
N∞,ri(f0;Bi, (Ui, ϕi), (Vi, ψi), ε0,i) ⊂ Ni, and also for each j ∈ Γ an ε′0,j > 0 such that
N ′0,j = N∞,sj (f0;B′j , (U

′
j , ϕ
′
j), (V

′
j , ψ

′
j), ε

′
0,j) ⊂ N ′j . Since the family {Bi, B′j}i∈Λ,j∈Γ

is locally finite in M , it follows that N0 =
⋂
i∈ΛN0,i ∩

⋂
j∈ΓN ′0,j is a basic very-strong

C∞ neighborhood of f0 in C∞(M,N), and we have that U0 ⊂ U ∩ U ′.
The following easy lemma will be used later on in the paper.

Lemma 9.5 Let M and N be paracompact Cs manifolds, with or without boundary, 1 ≤
s ≤ ∞, and let W be an open subset of N . Then the set Cs(M,W ) is open in CsS(M,N),
for 1 ≤ s <∞, and in C∞vS(M,N), for s =∞.

Proof Let f ∈ Cs(M,W ). We choose a locally finite family {Bi}i∈Λ of compact subsets
of M such that:

(a)
⋃
i∈ΛBi = M ,

(b) Bi ⊂ Ui, where (Ui, ϕi) is a chart in M, i ∈ Λ,

(c) f(Bi) ⊂ Vi ⊂W , where (Vi, ψi) is a chart in N, i ∈ Λ.

Let εi > 0 be arbitrary, e.g., εi = ∞, i ∈ Λ. Then U∗ =⋂
i∈ΛN s,1(f ;Bi, (Ui, ϕi), (Vi, ψi), εi) is a basic strong C1 neighborhood of f in

Cs(M,N). Furthermore U∗ ⊂ Cs(M,W ), since if f ′ ∈ U∗, then f ′(M) =⋃
i∈Λ f

′(Bi) ⊂
⋃
i∈Λ Vi ⊂ W . Thus Cs(M,W ) is open in Cs,1S (M,N), and hence also

in CsS(M,N), for 1 ≤ s ≤ ∞, see Remark 9.1. By (vii) it now follows that C∞(M,W ) is
open in C∞vS(M,N).

Notes Our exposition here in Section 9 follows the one we gave, for the very-strong C∞

topology, in Section 1 of [21]. We have here simply also included the presentation of the
strong Cr topologies, 1 ≤ r <∞, into the same pattern.

10 Continuity of induced maps in the strong Cr topologies,
1 ≤ r <∞, and in the very-strong C∞ topology

CONVENTION: From now on we will denote Cr(M,N) with the strong Cr topology,
1 ≤ r < ∞, simply by Cr(M,N), instead of by CrS(M,N). Likewise we denote
Cs(M,N) with the strong Cr topology, where 1 ≤ r < s ≤ ∞, by Cs,r(M,N), in-
stead of Cs,rS (M,N). Furthermore we denote C∞(M,N) with the very–strong topology
by C∞(M,N), instead of C∞vS(M,N).

The purpose of this section is to establish the continuity results, for induced maps
between function spaces, given in Propositions 10.4 and 10.5. We use Lemma 10.1 below
to prove Proposition 10.4, and Lemma 10.3 is used in the proof of Proposition 10.5.
Lemma 10.1 Suppose that M , N and P are Cs manifolds, with or without boundary,
where 1 ≤ s ≤ ∞. Let 1 ≤ r < ∞ be such that r ≤ s. Let w : N → P be a
Cs map. Suppose f ∈ Cs(M,N), and let P = N s,r(w ◦ f ;B, (U,ϕ), (W, ξ), ε) be an
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elementary Cr neighborhood of w∗(f) = w ◦ f in Cs(M,P ). Then there exist finitely
many elementary Cr neighborhoods Mj = N s,r(f ;Bj , (Uj , ϕj), (Vj , ψj), εj) of f in
Cs(M,N), 1 ≤ j ≤ q, such that w∗(

⋂q
j=1Mj) ⊂ P .

Proof It follows directly by the definitions given in Section 9 that it is enough to prove
Lemma 10.1 in the case when s = r, and 1 ≤ r < ∞. We shall anyhow give a formal
proof of this fact, so we show here that Lemma 10.1 follows from Lemma 10.1* below.
After that we prove the version given in Lemma 10.1*.

Thus let us assume that Lemma 10.1* holds. We have that P = Cs(M,P ) ∩ P ′,
where P ′ = N r(w ◦ f ;B, (U,ϕ), (W, ξ), ε) is an elementary Cr neighborhood of
w∗(f) = w ◦ f in Cr(M,P ). By Lemma 10.1* there then exist finitely many elemen-
tary Cr neighborhoodsM′j = N r(f ;Bj , (Uj , ϕj), (Vj , ψj), εj) of f in Cr(M,N), 1 ≤
j ≤ q, such that w∗(

⋂q
j=1M′j) ⊂ P ′. Now, for each 1 ≤ j ≤ q, the set

Mj = Cs(M,N) ∩ M′j is an elementary Cr neighborhood of f in Cs(M,N), and
w∗(
⋂q
j=1Mj) = w∗(

⋂q
j=1(Cs(M,N) ∩ M′j)) = w∗(Cs(M,N) ∩ (

⋂q
j=1M′j)) ⊂

Cs(M,P ) ∩ w∗(
⋂q
j=1M′j) ⊂ Cs(M,P ) ∩ P ′ = P .

Lemma 10.1* Let M,N and P be Cr manifolds, with or without boundary,
and let w : N → P be a Cr map, where 1 ≤ r < ∞. Suppose
f ∈ Cr(M,N), and let P = N r(w ◦ f ;B, (U,ϕ), (W, ξ), ε) be an ele-
mentary Cr neighborhood of w∗(f) = w ◦ f in Cr(M,P ). Then there ex-
ist finitely many elementary Cr neighborhoods Mj = N r(f ;Bj , (U,ϕ), (Vj , ψj),
εj) of f in Cr(M,N), 1 ≤ j ≤ q, such that w∗(

⋂q
j=1Mj) ⊂ P .

Proof Since B is compact, and B ⊂ U and (w ◦ f)(B) ⊂ W , we can find finitely many
compact subsets Bj of B and charts (V ′j , ψ

′
j) in N, 1 ≤ j ≤ q, such that

(a) B =
⋃q
j=1Bj ,

(b) f(Bj) ⊂ Vj ⊂ V j ⊂ V ′j ⊂ w−1(W ), where Vj is open in N , and V j is compact.

We denote ψj = ψ′j | Vj , 1 ≤ j ≤ q. Since ψ′j(V j) is compact and ψ(Vj) ⊂ ψ′j(V j), it
follows that ‖ξ ◦ w ◦ (ψj)−1‖rψj(Vj) <∞, for each 1 ≤ j ≤ q. Hence there exists εj > 0
such that if h : M → N is a Cr map, with h(Bj) ⊂ Vj , and

‖ψj ◦ h ◦ ϕ−1 − ψj ◦ f ◦ ϕ−1‖rϕ(Bj)
< εj

then ‖(ξ ◦ w ◦ ψ−1
j )(ψj ◦ h ◦ ϕ−1)− (ξ ◦ w ◦ ψ−1

j )(ψj ◦ f ◦ ϕ−1)‖rϕ(Bj)
< ε, i.e., then

‖ξ ◦ w ◦ h ◦ ϕ−1 − ξ ◦ w ◦ f ◦ ϕ−1‖rϕ(Bj)
< ε, 1 ≤ j ≤ q. (1)

We then define

Mj = N r(f ;Bj , (U,ϕ), (Vj , ψj), εj), 1 ≤ j ≤ q.

Now suppose h ∈
⋂q
j=1Mj . Then (w ◦ h)(B) ⊂W , and by (1) we have that

‖ξ ◦ w ◦ h ◦ ϕ−1 − ξ ◦ w ◦ f ◦ ϕ−1‖rϕ(B) < ε.

Hence w∗(h) = w ◦ h ∈ N r(w ◦ f ;B, (U,ϕ), (W, ξ), ε) = P .
If we take N = P and w = idN in Lemma 10.1, we see that the proof of Lemma10.1

proves the following.
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Remark 10.2 Suppose M and N are Cs manifolds, with or without boundary, where
1 ≤ s ≤ ∞. Let 1 ≤ r < ∞ be such that r ≤ s. Suppose f ∈ Cs(M,N) and let
M = N s,r(f ;B, (U,ϕ), (V, ψ), ε) be an elementary Cr neighborhood of f in Cs(M,N).
Suppose we are given Cr charts (Vj , ψj) and (V ′j , ψ

′
j), where ψj = ψ′j

∣∣Vj , in N and
compact subsets Bj of B, 1 ≤ j ≤ q, such that

(a) B =
⋃q
j=1Bj ,

(b) f(Bj) ⊂ Vj ⊂ V j ⊂ V ′j ⊂ V , and V j is compact, 1 ≤ j ≤ q.

Then there exist εj > 0, 1 ≤ j ≤ q, so that ifMj = N s,r(f ;Bj , (U,ϕ), (Vj , ψj), εj),
then

⋂q
j=1Mj ⊂M.

Lemma 10.3 Let M,N and P be Cs manifolds, with or without boundary, where 1 ≤
s ≤ ∞, and let 1 ≤ r < ∞ be such that r ≤ s. Let v : M → N be a Cs map.
Let f ∈ Cs(N,P ), and let P = N s,r(f ◦ v;B, (U,ϕ), (W, ξ), ε) be an elementary Cr

neighborhood of v∗(f) = f ◦ v in Cs(M,P ). Then there exist finitely many elementary
Cr neighborhoods Nj = N s,r(f ;Dj , (Vj , ψj), (W, ξ), εj) of f in Cs(N,P ), 1 ≤ j ≤ q,
such that v∗(

⋂q
j=1Nj) ⊂ P .

Proof In the same way as in Lemma 10.1 we see that it is enough to prove Lemma 10.3 in
the case when s = r, and 1 ≤ r <∞. So let s = r, and assume that 1 ≤ r <∞.

Since v(B) is compact we can find finitely many compact subsets Dj of v(B), and
charts (Vj , ψj) in N, 1 ≤ j ≤ q, such that

(a)
⋃q
j=1Dj = v(B),

(b) Dj ⊂ Vj , 1 ≤ j ≤ q.

Let us denote Bj = B ∩ v−1(Dj), 1 ≤ j ≤ q. Then each Bj is compact,
⋃q
j=1Bj = B

and v(Bj) = Dj . For each 1 ≤ j ≤ q we have that ‖ψj ◦v◦ϕ−1‖rϕ(Bj)
<∞, since ϕ(Bj)

is compact, and hence there exists εj > 0 such that the following holds. If h : N → P is a
Cr map with h(Dj) ⊂W and

‖ξ ◦ h ◦ ψ−1
j − ξ ◦ f ◦ ψ

−1
j ‖rψj(Dj) < εj ,

then ‖(ξ ◦ h ◦ ψ−1
j − ξ ◦ f ◦ ψ

−1
j )(ψj ◦ v ◦ ϕ−1)‖rϕ(Bj)

< ε, 1 ≤ j ≤ q, i.e., then

‖ξ ◦ h ◦ v ◦ ϕ−1 − ξ ◦ f ◦ v ◦ ϕ−1‖ϕ(Bj) < ε, 1 ≤ j ≤ q. (1)

We define

Nj = N r(f ;Dj , (Vj , ψj), (W, ξ), εj), 1 ≤ j ≤ q.

If h ∈
⋂q
j=1Nj , then (h ◦ v)(B) ⊂W and by (1) we have

‖ξ ◦ h ◦ v ◦ ϕ−1 − ξ ◦ f ◦ v ◦ ϕ−1‖rϕ(B) < ε.

Hence v∗(h) = h ◦ v ∈ N r(f ◦ v;B, (U,ϕ), (W, ξ), ε) = P .
In Propositions 10.4 and 10.5 below K denotes a compact Lie group. However, since

the role of the group K, with respect to the claims in Propositions 10.4 and 10.5, is com-
pletely formal, K could equally well be any Lie group, or in fact any topological group.
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Proposition 10.4 Let M , N and P be paracompact Cs K-manifolds, with or without
boundary, and let w : N → P be a K-equivariant Cs map, where 1 ≤ s ≤ ∞. Then the
induced map

w∗ : Cs,K(M,N)→ Cs,K(M,P ), f 7→ w ◦ f,

is continuous, 1 ≤ s ≤ ∞.

Proof Since the function space Cs,K(M,N), of all K-equivariant Cs maps from M to
N , has the relative topology from Cs(M,N), and similarly for Cs,K(M,P ), it is enough
to prove the result when K = {e}. We shall first give the proof in the case s =∞. Recall
that the topology on C∞(·, ·) is the very-strong C∞ topology.

Suppose f ∈ C∞(M,N), and letW =
⋂
i∈ΛPi be a basic very-strong C∞ neighbor-

hood ofw∗(f) = w◦f in C∞(M,P ). Each Pi = N∞,ri(w◦f ;Bi, (Ui, ϕi), (Wi, ζi), εi),
is an elementary Cri neighborhood of w ◦ f in C∞(M,P ), where 1 ≤ ri < ∞,
i ∈ Λ. Furthermore the family {Bi}i∈Λ is locally finite in M . By Lemma 10.1
there exist for each Pi, i ∈ Λ, finitely many elementary Cri neighborhoods Mi,j =
N∞,ri(f ;Bi,j , (Ui, ϕi), (Vi,j , ψi,j), εi,j) of f in C∞(M,N), 1 ≤ j ≤ q(i), such that

w∗(
⋂q(i)
j=1Mi,j) ⊂ Pi. Furthermore we have, see the proof of Lemma 10.1*, that⋃q(i)

j=1Bi,j = Bi, for each i ∈ Λ. Thus the family {Bi,j | i ∈ Λ, 1 ≤ j ≤ q(i)} is locally fi-

nite inM , and hence U =
⋂
i∈Λ

⋂q(i)
j=1Mi,j is a basic very-strong C∞ neighborhood of f in

C∞(M,N). Furthermore we have that w∗(U) ⊂
⋂
i∈Λw∗(

⋂q(i)
j=1Mi,j) ⊂

⋂
i∈ΛPi = W .

This completes the proof in the case when s =∞.
In the case when 1 ≤ s < ∞, the proof is completely similar. In this case we simply

have that ri = s, for all i ∈ Λ.

Proposition 10.5 Let M,N and P be paracompact Cs K-manifolds, with or without
boundary, where 1 ≤ s ≤ ∞. Suppose that v : M → N is a K-equivariant proper
Cs map. Then the induced map

v∗ : Cs,K(N,P )→ Cs,K(M,P ), f 7→ f ◦ v,

is continuous, 1 ≤ s ≤ ∞.

Proof As in Proposition 10.4 it is enough to prove the result for K = {e}. We begin by
proving the proposition in the case s = ∞. Recall that the topology on C∞(·, ·) is the
very-strong C∞ topology.

Let f ∈ C∞(N,P ), and suppose W =
⋂
i∈Λ Pi is any basic very-strong C∞

neighborhood of v∗(f) = f ◦ v in C∞(M,P ). Here each Pi = N∞,ri(f ◦
v;Bi, (Ui, ϕi), (Wi, ξi), εi) is an elementary Cri neighborhood of f ◦ v in C∞(M,P ),
and 1 ≤ ri < ∞, i ∈ Λ. Furthermore the family {Bi}i∈Λ is locally finite in M . By
Lemma 10.3 there exist for each Pi, i ∈ Λ, finitely many elementary Cri neighbor-
hoods Ni,j = N ri(f ;Di,j , (Vi,j , ψi.j), (Wi, ξi), εi) of f in C∞(N,P ), 1 ≤ j ≤ q(i),

such that v∗(
⋂q(i)
j=1Ni,j ⊂ Pi. Furthermore we have, by the proof of Lemma 10.3, that⋃q(i)

j=1Di,j = v(Bi), for each i ∈ Λ. Since {Bi}i∈Λ is locally finite in M and the map
v : M → N is proper it follows that the family {v(Bi)}i∈Λ is locally finite inN . Hence the
family {Di,j | i ∈ Λ, 1 ≤ j ≤ q(i)} is locally finite inN . Therefore V =

⋂
i∈Λ

⋂q(i)
j=1Ni,j

is a basic very-strong C∞ neighborhood of f in C∞(N,P ). Furthermore we have that
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v∗(V) ⊂
⋂
i∈Λ v

∗(
⋂q(i)
j=1Ni.j) ⊂

⋂
i∈Λ Pi = W . This completes the proof in the case

s = ∞. In the case when 1 ≤ s < ∞, the proof is completely similar. We have in this
case that ri = s, for all i ∈ Λ.

Remark 10.6 Proposition 10.4 and 10.5 also hold in the real analytic case, for the simple
reason that the topology on Cω(·, ·) is the relative topology from C∞(·, ·) equipped with
the very-strong C∞ topology. This is why we have chosen to not include the Cω case in the
formulations of Propositions 10.4 and 10.5, and the same applies for analogous situations
later on in the article.
Remark 10.7 Let M and N be paracompact Cs manifolds, where 1 ≤ s ≤ ∞, and let
Mi, i ∈ Γ, and Nj , j ∈ Λ, be the connected components of M and N , respectively.
Then M equals the topological union of the manifolds Mi, i ∈ Γ, which we denote by
M =

∐
i∈ΓMi, and similarly N =

∐
j∈ΛNj . If f ∈ Cs(M,N), 1 ≤ s ≤ ∞, then we

denote f (i) = f | : Mi → N, i ∈ Γ. This gives us a canonical bijection

D : Cs(M,N)→
∏
i∈Γ

Cs(Mi, N) , f 7→ (f (i))i∈Γ (1)

It is an immediate consequence of the definitions of the topology on Cs(·, ·), 1 ≤ s ≤ ∞,
that both D and its inverse are continuous. Thus D in (1) is a homeomorphism and we may
use it to identify the two sides in (1).

Now suppose that i ∈ Γ is fixed, and let f̃ ∈ Cs(Mi, N), 1 ≤ s ≤ ∞. Since f̃(Mi)
is connected there exists a unique j = f̃(i) ∈ Λ, such that f̃(Mi) ⊂ Nf̃(i). Since each
Nj , is open in N it follows, see Lemma 9.5, that each Cs(Mi, Nj), j ∈ Λ, is open in
Cs(Mi, N), and hence each Cs(Mi, Nj), j ∈ Λ, is both open and closed in Cs(Mi, N).
Therefore the natural bijection

E : Cs(Mi, N)→
∐
j∈Λ

Cs(Mi, Nj), (2)

where E(f̃ : Mi → N) = f̃ : Mi → Nf̃(i), is a homeorphism. Note that both Mi and Nj
in Cs(Mi, Nj), in (2), are second countable, see Theorem 2.1.
Remark 10.8 Let M and N be paracompact Cs K-manifolds, where K is a compact
Lie group and 1 ≤ s ≤ ∞. By a K-component of M we mean a set Mµ of the form
Mµ = KMi, where Mi is a connected component of M . Since K is compact each
K-component Mµ of M is a finite union of connected components of M , and hence
Mµ is second countable. If Mµ , µ ∈ Θ, are the K-components of M , we have that
M =

∐
µ∈ΘMµ. Similarly we have that N =

∐
ν∈ΩNν , where Nν , ν ∈ Ω, are the

K-components of N .
Completely analogously to the case in Remark 10.7, we obtain a canonical homeomor-

phism

D : Cs(M,N)→
∏
µ∈Θ

Cs(Mµ, N), f 7→ (f (µ))µ∈Θ,

where f (µ) = f | : Mµ → N, µ ∈ Θ. Since every Mµ, µ ∈ Θ, is a Cs K-manifold the
homeomorphism D induces a homeomorphism

D : Cs,K(M,N)→
∏
µ∈Θ

Cs,K(Mµ, N), f 7→ (f (µ))µ∈Θ. (1)
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Now suppose that µ ∈ Θ is fixed, and let f̃ ∈ Cs,K(Mµ, N), 1 ≤ s ≤ ∞. Then
f̃(Mµ) = f̃(KMi) = Kf̃(Mi) ⊂ KNf̃(i), for some i ∈ Γ, and KNf̃(i) = Nf̃(µ) is a

K-component of N . Thus we see that for µ ∈ Θ there exists a unique ν = f̃(µ) ∈ Ω,
such that f̃(Mµ) ⊂ Nf̃(µ). Analogously to the case in (2) in Remark 10.8 we obtain a
homeomorphism

E : Cs,K(Mµ, N)→
∐
ν∈Ω

Cs,K(Mµ, Nν), (2)

where E(f̃ : Mµ → N) = f̃ : Mµ → Nf̃(µ). In Cs,K(Mµ, Nν), in (2), both Mµ and Nν
are second countable Cs K-manifolds.
Notes The proofs of Lemmas 10.1 and 10.3, and Propositions 10.4 and 10.5 follow the
ones we gave, for the very-strong C∞ topology, in [21], Section 2.

11 The product theorem

By the product theorem we mean the result in Proposition 11.1 below. Using the product
theorem and also Proposition 10.5 we prove Corollary 11.2, which will be important for us
later on in the paper. Corollary 11.2 is used in the proof of Theorem 15.4 and in the proof
of Lemma 17.1.
Proposition 11.1 Let M,N1 and N2 be paracompact Cs K-manifolds, with or without
boundary, where 1 ≤ s ≤ ∞, and suppose that either ∂N1 = ∅ or ∂N2 = ∅. Let
qj : N1 ×N2 → Nj , j = 1, 2, denote the projection maps. Then the natural bijection

ι : Cs,K(M,N1 ×N2)→ Cs,K(M,N1)× Cs,K(M,N2), f 7→ (q1 ◦ f, q2 ◦ f),

is a homeomorphism, 1 ≤ s ≤ ∞.

Proof Since Cs,K(M,N1 × N2) has the relative topology from Cs(M,N1 × N2), and
since the cartesian product topology on Cs,K(M,N1)× Cs,K(M,N2) equals the relative
topology from the product Cs(M,N1)× Cs(M,N2), it is enough to give the proof in the
case when K = {e}.

First we give the proof in the case s = ∞. It follows by Proposition 10.4 that
ι is continuous. The fact that ι−1 is continuous is seen as follows. Let (f1, f2) ∈
C∞(M,N1) × C∞(M,N2), and denote ι−1(f1, f2) = f . Let V =

⋂
i∈ΛNi be any

basic very-strong C∞ neighborhood of f in C∞(M,N1 × N2). Here each Ni =
N∞,ri(f ;Bi, (Ui, ϕi), (Vi, ψi), εi), i ∈ Λ, is an elementary Cri neighborhood of f in
C∞(M,N1 × N2), where 1 ≤ ri < ∞, i ∈ Λ, and the family {Bi}i∈Λ is locally finite
in M . It follows by Remark 10.2 that we may assume that each Ni, i ∈ Λ, is of the form
where the chart in N1 × N2 is a product chart. That is, we can assume that each Ni is of
the form

Ni = N∞,ri(f ;Bi, (Ui, ϕi), (V
(1)
i × V (2)

i , ψ
(1)
i × ψ

(2)
i ), εi), i ∈ Λ. (1)

It is readily seen that if Ni is as in (1), and we set

N (j)
i = N∞,ri(fj ;Bi, (Ui, ϕi), (V

(j)
i , ψ

(j)
i ), εi), j = 1, 2,
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then ι−1(N (1)
i ×N (2)

i ) ⊂ Ni, i ∈ Λ. Now U (j) =
⋂
i∈ΛN

(j)
i is a basic very-strong C∞

neighborhood of fj = qj ◦ f in C∞(M,Nj), j = 1, 2. Furthermore ι−1(U (1) × U (2)) ⊂⋂
i∈ΛNi = V . This proves that ι−1 is continuous. This completes the proof in the case

when s = ∞. In the case when s is finite the proof is completely similar. In this case we
simply have that ri = s, for all i ∈ Λ.

Corollary 11.2 Suppose that M and N are paracompact Cs K-manifolds, and let Q be a
compact Cs K-manifold, with or without boundary, 1 ≤ s ≤ ∞. Then the map

χ : Cs,K(M,N)→ Cs,K(Q×M,Q×N), f 7→ id× f,

is continuous, 1 ≤ s ≤ ∞.

Proof It follows by Proposition 11.1 that it is enough to prove that the maps

Cs,K(M,N)→ Cs,K(Q×M,Q), f 7→ q1 ◦ (id× f) (1)

and

Cs,K(M,N)→ Cs,K(Q×M,N), f 7→ q2 ◦ (id× f) (2)

are continuous. Here q1 : Q×N → Q and q2 : Q×N → N denote the projection maps.
The map in (1) is the constant map from Cs,K(M,N) onto the element p1 ∈ Cs,K(Q ×
M,Q), where p1 : Q×M → Q is the projection, and hence (1) is continuous.

Observe that q2 ◦ (id × f) = f ◦ p2, where p2 : Q × M → M is the projection.
Thus the map in (2) equals the map p∗2 : Cs,K(M,N) → Cs,K(Q ×M,N), f 7→ f ◦ p2.
Since Q is compact, the projection p2 is a proper map, and hence p∗2 is continuous by
Proposition 10.5.

Notes The exposition here in Section 11 follows the one, given for the very-strong C∞

topology, in Section 3 in [21].

12 The equivariant glueing lemma

Lemma 12.1 Let f : M → N be a K-equivariant Cs map between Cs K-manifolds,
where 1 ≤ s ≤ ∞, and let U be a K-invariant open subset of M . Then there exists an
open neighborhood N of f |U in Cs,K(U,N) such that the following holds: If h ∈ N and
we define E(h) : M → N by

E(h)(x) =

{
h(x), x ∈ U

f(x), x ∈M − U,

then E(h) is a K-equivariant Cs map, 1 ≤ s ≤ ∞. Furthermore E : N →
Cs,K(M,N), h 7→ E(h), is continuous.

Proof It is clear that it is enough to prove the lemma in the case when K = {e}, and this
is given in [6], I.4.3.4.4, for s = ∞. If 1 ≤ s < ∞, the topology on Cs(·, ·) is the strong
Cs topology, and one can for example refer to Lemma 2.2.8 in [15].
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13 Whitney approximation

The following two basic results were proved by H. Whitney in 1932-33.
Lemma 13.1 (a) (H. Whitney) Let U be an open subset of Rm, and let U1, U2, . . . be open
subsets of U (some of which may be empty) such that Uq is compact and Uq ⊂ Uq+1 for
all q ≥ 1, and

⋃∞
q=1 Uq = U . Then if f : U → Rn is a C∞ map, and ε1 ≥ ε2 ≥ . . . are

given positive real numbers, and r1 ≤ r2 ≤ . . . are given positive integers, there is real
analytic map h : U → Rn such that, for each 1 ≤ j ≤ n, we have that

|Dα(h− f)j(x)| < εq, for all x ∈ U − Uq,

and all α = (α1, . . . , αm) with |α| ≤ rq, q = 1, 2, . . . . (Here (h− f)j : U → R, denotes
the j:th component of the map h− f : U → Rn.)
Proof See [54], Lemma 6. In [54] the formulation of this result is given in the case when
rq = q, for q ≥ 1. The above form of the result is an immediate consequence of this
one.

Lemma 13.1 (b) (H. Whitney) Let U be an open subset of Rm, and let U1, U2 be open
subsets of U (some of which may be empty) such that Uq is compact and Uq ⊂ Uq+1, for
all q ≥ 1, and

⋃∞
q=1 Uq = U . Let f : U → Rn be a Cr map, where 1 ≤ r < ∞, and

let ε1 ≥ ε2 ≥ . . . be given positive real numbers. Then there exists a real analytic map
h : U → Rn such that, for each 1 ≤ j ≤ n, we have that

|Dα(h− f)j(x)| < εq , for all x ∈ U − Uq , q ≥ 1,

and all α = (α1, . . . , αm), with |α| ≤ r.

Proof See [54], Lemma 6.
We begin by showing that Lemmas 13.1(a) and (b) give us the following result.
Proposition 13.2 Let U be an open subset of Rm. Then the set Cω(U,Rn) is dense in
Cs(U,Rn), where 1 ≤ s ≤ ∞. (Recall that in the case s =∞, the topology on C∞(U,Rn)
is the very-strong C∞ topology.)

Proof Let us first give the proof in the case s =∞. Suppose f ∈ C∞(U,Rn) and let U =⋂
i∈ΛN∞,ri(f ;Bi, εi) be any basic very-strong C∞ neighborhood of f in C∞(U,Rn).

Here 1 ≤ ri <∞, and εi > 0, i ∈ Λ, and each Bi, i ∈ Λ, is a non-empty compact subset
of U , and the family {Bi}i∈Λ is locally finite in U .

First we choose bounded open subsets ∅ = U1, U2, . . . of U such that

(a)
⋃∞
q=1 Uq = U ,

(b) Uq ⊂ Uq+1, q = 1, 2, . . . .

Next we define subsets Λq of Λ, q ≥ 1, in the following way. We set

Λq = {i ∈ Λ | Bi ∩ Uq+1 6= ∅}, q = 1, 2, . . . .

Clearly Λ1 ⊂ Λ2 ⊂ · · · ⊂ Λq ⊂ Λq+1 ⊂ · · · , and
⋃∞
q=1 Λq = Λ. Since Uq+1 is a compact

subset of U and the family {Bi}i∈Λ is locally finite in U , it follows that Bi ∩ Uq+1 6= ∅,
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and hence also Bi ∩ Uq+1 6= ∅, for only finitely many i ∈ Λ. Thus each Λq is a finite set.
We define

rq = max {ri | i ∈ Λq}, q = 1, 2, . . . ,
εq = min {εi | i ∈ Λq}, q = 1, 2, . . . .

(1)

Then r1 ≤ r2 ≤ . . ., and ε1 ≥ ε2 ≥ . . . .
By Lemma 13.1(a) there exists a real analytic map h : U → Rn such that, for each

1 ≤ j ≤ n,

|Dα(h− f)j(x)| < εq, for all x ∈ U − Uq, (2)

and all α = (α1, . . . , αm) with |α| ≤ rq, q = 1, 2, . . . .
Now consider a fixed compact set Bi, i ∈ Λ. We let q(i) be the least integer for which

i ∈ Λq(i). Thus

i ∈ Λq(i) − Λq(i)−1,

where Λ0 = ∅. Since i 6∈ Λq(i)−1 we have that

Bi ⊂ U − Uq(i). (3)

For any i ∈ Λ have that i ∈ Λq(i), and hence we have by (1) that

rq(i) ≥ ri, and εq(i) ≤ εi, for every i ∈ Λ.

It now follows by (2) and (3) that, for each 1 ≤ j ≤ n,

|Dα(h− f)j(x)| < εq(i) ≤ εi, for all x ∈ Bi,

and all α = (α1, . . . , αm) with |α| ≤ rq(i), and hence in particular for all α with
|α| ≤ ri, i ∈ Λ. Thus we have that

‖h− f‖riBi < εi, i ∈ Λ.

Hence h ∈
⋂
i∈ΛN∞,ri(f ;Bi, εi) = U . Now h ∈ U ∩ Cω(U,Rn), and this proves that

the set Cω(U,Rn) is dense in C∞(U,Rn).
In the case when 1 ≤ s < ∞, the proof is entirely similar to the above one, and uses

Lemma 13.1(b). In fact it is conceptually simpler in this case, since we then have that
ri = s, for all i ∈ Λ.

We will need the following deep result, the Grauert-Morrey imbedding theorem, con-
cerning the existence of real analytic imbeddings of real analytic manifolds into euclidean
space.
Theorem 13.3 Let M be a second countable real analytic manifold. Then there exists a
real analytic closed imbedding h : M → Ru, into some euclidean space Ru.

Proof See Theorem 3 in [12]. In the case whenM is compact, this was proved in [41].
Using Proposition 13.2 and Theorem 13.3 we prove the following.
Theorem 13.4 Let M be a paracompact real analytic manifold. Then the set Cω(M,Rn)
is dense in the space Cs(M,Rn), 1 ≤ s ≤ ∞.
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Proof It follows by Remark 10.7 that is suffices to prove Theorem 13.4 in the case when
M is connected. In this case M is second countable, see Proposition 2.1, and hence we
may, by the Grauert-Morrey imbedding theorem, Theorem 13.3 above, consider M as a
real analytic closed submanifold of some euclidean space Ru. Let i : M ↪→ Ru denote the
inclusion. Now, let 1 ≤ s ≤ ∞. By Proposition 10.5 the induced map

i∗ : Cs(Ru,Rn)→ Cs(M,Rn), f 7→ f |M,

is continuous. Furthermore i∗ is surjective, since each Cs map f ′ : M → Rn can be
extended to a Cs map f : Ru → Rn, see e.g. [43], Proposition 2.5.14.

Let U be a non-empty open subset of Cs(M,Rn). Then (i∗)−1(U) is a non-empty
open subset of Cs(Ru,Rn), and hence we have by Proposition 13.2 that there exists a real
analytic map h : Ru → Rn such that h ∈ (i∗)−1(U). Then h ◦ i = h| : M → Rn is real
analytic, and thus h ◦ i = i∗(h) ∈ U ∩ Cω(M,Rn).

Notes The C∞ case of Theorem 13.4 is Proposition 4.3 in [21], and our exposition here in
Section 13 follows the one in Section 4 in [21].

14 Haar integrals of Cs maps, 1 ≤ s ≤ ∞, and of real analytic maps

We will freely use the basic properties of the Haar integral for a compact group, see e.g.
Theorem 0.3.1 in [5]. For an elementary proof of the existence and uniqueness of the Haar
integral for compact groups, due to von Neumann, we refer to [49].

Let K be a compact Lie group and let M be any Ct manifold, where 1 ≤ t ≤ ω.
Suppose

ζ : K ×M → R (i)

is a real-valued Ct map, 1 ≤ t ≤ ω. Then we define

Â(ζ) : M → R (ii)

by

Â(ζ)(x) =
∫
K

ζ(k, x)dk, for each x ∈M.

Here the integral is the Haar integral. For the fact that Â(ζ) : M → R is continuous, see
e.g. [5], Proposition 0.3.2. We will need to know that if ζ : K×M → R is a Ct map, where
1 ≤ t ≤ ω, then Â(ζ) : M → R is also a Ct map. This result is given in Proposition 14.4.
Let us first record two standard results, given in Lemmas 14.1 and 14.2 below.
Lemma 14.1 Let K be a compact Lie group, and let U be an open subset of Rm, m ≥ 1.
Suppose ζ : K×U → R is a real-valued Cs map, where 1 ≤ s ≤ ∞. Then Â(ζ) : U → R
is a Cs map, 1 ≤ s ≤ ∞.

Proof See e.g. [5], Theorem 0.3.3.

Lemma 14.2 Let U be an open subset of Rm, m ≥ 1, and let f : U → R be a real-valued
C∞ map. Then f is real analytic if and only if for each compact subset B of U there exists
a constant Q > 0, such that |Dαf(x)| ≤ Q|α|+1α!, for every x ∈ B and all m-tuples
α = (α1, . . . , αm). (Here |α| = α1 + · · ·+ αm, and α! = α1!α2! · · ·αm!·)
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Proof See [42], Proposition 1.1.14.
We can now prove the following.
Lemma 14.3 Let K be a compact Lie group, and let U be an open subset of Rm, m ≥ 1.
Suppose ζ : K × U → R is a real analytic real-valued map. Then Â(ζ) : U → R is real
analytic.

Proof We know by Lemma 14.1 that Â(ζ) : U → R is a C∞ map. Thus it only remains to
verify that the condition in Lemma 14.2 holds. Let B be any compact subset of U . Since
the Lie group K is compact we can find finitely many charts (Vj , ψj) in K and compact
subsets Ej ⊂ Vj , 1 ≤ j ≤ q, such that

⋃q
j=1Ej = K. Now ψj(Vj) × U is an open

subset of Rl+m, where l = dimK, and ζ ◦ (ψ−1
j × id) : ψj(Vj)×U → R is a real analytic

real-valued map, 1 ≤ j ≤ q. Since ψj(Ej) × B is compact there exists, by Lemma 14.2,
for each 1 ≤ j ≤ q, a constant Qj > 0, such that∣∣Dγζ(ψ−1

j (y), x)
∣∣ ≤ Q|γ|+1

j γ!

for every (y, x) ∈ ψj(Ej)×B, and all (l +m)-tuples γ = (β1, . . . , βl, α1, . . . , αm). By
taking Q = max {Qj |1 ≤ j ≤ q}, and choosing β1 = · · · = βl = 0 we see that

|Dαζ(k, x)| ≤ Q|α|+1α!

for every k ∈
⋃q
j=1Ej = K, and every x ∈ B, and allm-tuples α = (α1, . . . , αm). Since

DαÂ(ζ)(x) = Dα

∫
K

ζ(k, x)dk =
∫
K

Dαζ(k, x)dk

it now follows that∣∣∣DαÂ(ζ)(x)
∣∣∣ =

∣∣∣∣∫
K

Dαζ(k, x)dk
∣∣∣∣ ≤ ∫

K

|Dαζ(k, x)| dk ≤
∫
K

Q|α|+1α!dk = Q|α|+1α!

for every x ∈ B, and all m-tuples α = (α1, . . . , αm). Hence we have, by Lemma 14.2,
that Â(ζ) : U → R is real analytic.

Proposition 14.4 Let K be a compact Lie group, and let M be any Ct manifold, where
1 ≤ t ≤ ω. If ζ : K × M → R is a Ct map, then Â(ζ) : M → R is also a Ct map,
1 ≤ t ≤ ω.

Proof Suppose (U,ϕ) is a chart in the Ct manifold M , 1 ≤ t ≤ ω. We need to show that
Â(ζ) ◦ ϕ−1 : ϕ(U)→ R is a Ct map, 1 ≤ t ≤ ω. Now

(Â(ζ) ◦ ϕ−1)(x) =
∫
K

ζ(k, ϕ−1(x))dk

=
∫
K

(ζ ◦ (id×ϕ−1))(k, x)dk = Â(ζ ◦ (id×ϕ−1))(x)

for every x ∈ ϕ(U). Thus Â(ζ) ◦ ϕ−1 = Â(ζ ◦ (id ◦ϕ−1)) : ϕ(U) → R, and since
ζ ◦(id×ϕ−1) : K×ϕ(U)→ R is a Ct map, 1 ≤ t ≤ ω, our claim follows by Lemma 14.1
or 14.3.
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Next suppose that we are given a Ct map

ζ : K ×M → Rn, (iii)

where n ≥ 1 and 1 ≤ t ≤ ω. We define

Â(ζ) : M → Rn (iv)

by

Â(ζ)(x) =
∫
K

ζ(k, x)dk , for each x ∈M.

Here the integral is the Haar integral, obtained by integrating each coordinate function
of ζ. That is if ζ(k, x) = (ζ1(k, x), . . . , ζn(k, x)), for every (k, x) ∈ K × M , then
Â(ζ)(x) = (Â(ζ1)(x), . . . , Â(ζn)(x)). Thus we have, by applying Proposition 14.4 to
each coordinate function of ζ : K ×M → Rn, that the following holds.
Corollary 14.5 Let K be a compact Lie group, and let M be any Ct manifold, where
1 ≤ t ≤ ω. Suppose ζ : K ×M → Rn is a Ct map, 1 ≤ t ≤ ω. Then Â(ζ) : M → Rn is
also a Ct map, 1 ≤ t ≤ ω. That is we have a map of sets

Â : Ct(K ×M,Rn)→ Ct(M,Rn) , ζ 7→ Â(ζ),

for each compact Lie group K and any Ct manifold M , where 1 ≤ t ≤ ω.

We call the map Â in Corollary 14.5 the outer averaging map.
Let us now consider the situation, where K is a compact Lie group and M is a Ct

K-manifold, where 1 ≤ t ≤ ω. We denote the given Ct action of K on M by

Φ: K ×M →M, (k, x) 7→ kx. (v)

Suppose furthermore that Rn(θ) is a linear representation space for K, and let

Θ: K × Rn(θ)→ Rn(θ), (k, y) 7→ θ(k)y = ky, (vi)

denote the corresponding action of K on Rn(θ). Note that Θ is a real analytic action.
Now suppose

f : M → Rn(θ) (vii)

is any Ct map, where 1 ≤ t ≤ ω. We define

A(f) : M → Rn(θ) (viii)

by

A(f)(x) =
∫
K

θ(k−1)f(kx)dk =
∫
K

k−1f(kx)dk, x ∈M.

Proposition 14.6 Let M be a Ct K-manifold, where K is a compact Lie group and
1 ≤ t ≤ ω, and letRn(θ) be a linear representation space forK. Suppose f : M → Rn(θ)
is any Ct map, 1 ≤ t ≤ ω. Then A(f) : M → Rn(θ) is a K-equivariant Ct map,
1 ≤ t ≤ ω. Furthermore A(f) = f , if f is K-equivariant. In short we have a retraction
map, of sets,

A: Ct(M,Rn(θ))→ Ct,K(M,Rn(θ)), f 7→ A(f), 1 ≤ t ≤ ω.
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Proof We define f(Φ,Θ) to be the composite map

f(Φ,Θ) = Θ ◦ (ι× id) ◦ (id×f) ◦ Φ∆ : K ×M → Rn(θ).

Here Φ∆ : K ×M → K ×M, (k, x) 7→ (k,Φ(k, x)) = (k, kx), where Φ is as in (v).
Furthermore Θ is as in (vi), and ι : K → K , k 7→ k−1,. Since the action Φ : K×M →M
is a Ct map, it follows that Φ∆ is a Ct map, 1 ≤ t ≤ ω. The maps ι and Θ are both real
analytic. Thus we see that if f : M → Rn(θ) is a Ct map, then f(Φ,Θ) : K ×M → Rn(θ)
is also a Ct map, 1 ≤ t ≤ ω. Since f(Φ,Θ)(k, x) = k−1f(kx), for all (k, x) ∈ K ×M , we
have that

A(f) = Â(fΦ,Θ) : M → Rn(θ), (1)

and hence A(f) is a Ct map, 1 ≤ t ≤ ω, by Corollary 14.5. Furthermore A(f) : M →
Rn(θ) is K-equivariant, since if k′ ∈ K is fixed, then

A(f)(k′x) =
∫
K

k−1f(kk′x)dk =
∫
K

k′(kk′)−1f(kk′x)dk

= k′
∫
K

(kk′)−1f(kk′x)dk = k′
∫
K

k−1f(kx)dk = k′A(f)(x),

for all x ∈M . Thus we have now shown that if f ∈ Ct(M,Rn(θ)), then

A(f) = Â(fΦ,Θ) ∈ Ct,K(M,Rn(θ)), (2)

1 ≤ t ≤ ω. It only remains to show that A(f)
∣∣Ct,K(M,Rn(θ)) = id. Suppose that

f : M → Rn(θ) is K-equivariant. Then, for all x ∈M ,

A(f)(x) =
∫
K

k−1f(kx)dk =
∫
K

k−1kf(x)dk =
∫
K

f(x)dk = f(x)
∫
K

1dk = f(x).

This completes the proof.
We call the map A in Proposition 14.6 the inner averaging map.

Notes The exposition in Section 14 follows to some extent the one in [21], Section 5. For
the real analytic part of Proposition 14.6, see Theorem 1.16 in [25].

15 Continuity of the averaging maps in the strong Cr topologies,
1 ≤ r <∞, and in the very-strong C∞ topology

Let K be a compact Lie group, and let M be a paracompact Ct manifold, 1 ≤ t ≤ ω. By
Corollary 14.5 we know that the outer averaging map Â gives us a map of sets

Â : Ct(K ×M,Rn)→ Ct(M,Rn), ζ 7→ Â(ζ)

1 ≤ t ≤ ω. We shall now prove that Â is continuous, see Corollary 15.3. That is,
Â is continuous in the strong Ct topology, for 1 ≤ t < ∞, and for t = ∞ we prove
that Â is continuous in the very-strong C∞ topology. Since the topology on Cω(·, ·) is
the relative topology from C∞(·, ·), equipped with the very-strong C∞ topology, there is
nothing further to prove in the Cω case, it follows directly from the C∞ case. We begin
with the following lemma.
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Lemma 15.1 Let M be a Cs manifold, where 1 ≤ s ≤ ∞, and let 1 ≤ r < ∞ be
such that r ≤ s. Let K be a compact Lie group. Suppose ζ ∈ Cs(K ×M,R), and let
P = N s,r(Â(ζ);B, (U,ϕ), ε) be any elementary Cr neighborhood of Â(ζ) in Cs(M,R).
Then there exist finitely many elementary Cr neighborhoodsNj = N s,r(ζ;Ej ×B, (Vj ×
U,ψj × ϕ), ε) of ζ in Cs(K ×M,R), 1 ≤ j ≤ q, such that Â(

⋂q
j=1Nj) ⊂ P .

Proof In the same way as in Lemma 10.1 we see that it is enough to prove Lemma 15.1 in
the case when s = r, and 1 ≤ r <∞. So let s = r, and assume that 1 ≤ r <∞.

SinceK is compact we can find finitely many charts (Vj , ψj) inK and compact subsets
Ej of Vj , 1 ≤ j ≤ q, such that

⋃q
j=1Ej = K. We set

Nj = N r(ζ;Ej ×B, (Vj × U,ψj × ϕ), ε), 1 ≤ j ≤ q.

If η ∈ Nj , where 1 ≤ j ≤ q, then

|Dγ(η − ζ)(ψ−1
j (y), ϕ−1(x))| < ε,

for every (y, x) ∈ ψj(Ej)× ϕ(B) ⊂ ψj(Vj)× ϕ(U) ⊂ Rl × Rm, and all (l +m)-tuples
γ = (β1, . . . , βl, α1, . . . , αm), with |γ| ≤ r. Here l = dimK and m = dimM . In
particular

|Dα(η − ζ)(k, ϕ−1(x))| < ε, (1)

for each k ∈ Ej , and every x ∈ ϕ(B), and everym-tuple α = (α1, . . . , αm), with |α| ≤ r.
If η ∈

⋂q
j=1Nj , then (1) holds for all k ∈

⋃q
j=1Ej = K, and every x ∈ ϕ(B),

and m-tuple α with |α| ≤ r. Thus if η ∈
⋂q
j=1Nj then, for every x ∈ ϕ(B) and every

α = (α1, . . . , αm) with |α| ≤ r, the following holds,∣∣∣Dα(Â(η)− Â(ζ))(ϕ−1(x))
∣∣∣ =

∣∣∣∣Dα

∫
K

(η − ζ)(k, ϕ−1(x))dk
∣∣∣∣

=
∣∣∣∣∫
K

Dα(η − ζ)(k, ϕ−1(x))dk
∣∣∣∣ ≤ ∫

K

∣∣Dα(η − ζ)(k, ϕ−1(x))dk
∣∣ < ∫

K

εdk = ε

Thus Â(η) ∈ N r(Â(ζ);B, (U,ϕ), ε) = P , and this completes the proof.

Proposition 15.2 Let M be a paracompact Cs manifold, where 1 ≤ s ≤ ∞, and let K
be a compact Lie group. Then the map Â : Cs(K ×M,R) → Cs(M,R), ζ 7→ Â(ζ), is
continuous, 1 ≤ s ≤ ∞.

Proof We shall first give the proof in the case s = ∞. Let ζ ∈ C∞(K ×M,R) and let
W =

⋂
i∈Λ Pi be any basic very-strong C∞ neighborhood of Â(ζ) in C∞(M,R). Here

each Pi = N∞,ri(Â(ζ);Bi, (Ui, ϕi), εi), i ∈ Λ, is an elementary Cri neighborhood of
Â(ζ) in C∞(M,R), where 1 ≤ ri < ∞, for i ∈ Λ, and the family {Bi}i∈Λ is locally
finite in M . By Lemma 15.1 we find for each Pi, i ∈ Λ, finitely many elementary Cri

neighborhoodsNi,j of ζ in C∞(K ×M,R), 1 ≤ j ≤ q(i), such that Â(
⋂q(i)
j=1Ni,j) ⊂ Pi.

Here Ni,j = N∞,ri(ζ;Ej × Bi, (Vj × Ui, ψj × ϕi), εi), i ∈ Λ, 1 ≤ j ≤ q(i), and⋃q(i)
j=1Ej = K. Now the family {Ej × Bi | 1 ≤ j ≤ q(i), i ∈ Λ} is locally finite in

K ×M , and hence V =
⋂
i∈Λ

⋂q(i)
j=1Ni,j is a basic very-strong C∞ neighborhood of ζ in

C∞(K ×M,R). Furthermore we have that Â(V) ⊂
⋂
i∈Λ Â(

⋂q(i)
j=1Ni,j) ⊂

⋂
i∈Λ Pi =
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W . This completes the proof in the case when s = ∞. In the case when 1 ≤ s < ∞, the
proof is completely similar. In this case we have that ri = s, for all i ∈ Λ.

Corollary 15.3 Let M and K be as in Proposition 15.2, and let n ≥ 1. Then the map
Â : Cs(K ×M,Rn)→ Cs(M,Rn), is continuous, 1 ≤ s ≤ ∞.

Proof Follows from Proposition 15.2, by applying the product theorem, Proposition 11.1,
to both Cs(K ×M,Rn) and Cs(M,Rn).

Now suppose that M is a paracompact Ct K-manifold, where K is compact Lie group
and 1 ≤ t ≤ ω, and let Rn(θ) be a linear representation space for K. We know, by
Proposition 14.6, that the inner averaging map A gives us a retraction map, of sets,

A : Ct(M,Rn(θ))→ Ct,K(M,Rn(θ)) , f 7→ A(f),

where 1 ≤ t ≤ ω. We shall prove that A is continuous, see Theorem 15.4. That is, A is
continuous in the strong Ct topology for 1 ≤ t <∞, and in the very-strong C∞ topology
for t = ∞. In the case t = ω the topology on Cω(·, ·) is the relative topology from
C∞(·, ·), so there is nothing further to prove in this case.
Theorem 15.4 LetM be a paracompact Cs K-manifold, whereK is a compact Lie group
and 1 ≤ s ≤ ∞, and let Rn(θ) be a linear representation space for K. Then the map

A: Cs(M,Rn(θ))→ Cs,K(M,Rn(θ)), f 7→ A(f),

is continuous, 1 ≤ s ≤ ∞.
Proof By (2) in the proof of Proposition 14.6, we know that if f ∈ Cs(M,Rn(θ)), 1 ≤
s ≤ ∞, then

A(f) = Â(fΦ,Θ) ∈ Cs,K(M,Rn(θ)).

Here f(Φ,Θ) = Θ ◦ (ι× id) ◦ (id × f) ◦ Φ4 : K ×M → Rn(θ), where

Φ4 : K ×M → K ×M, (k, x) 7→ (k, kx),

ι : K → K , k 7→ k−1,

Θ: K × Rn(θ)→ Rn(θ), (k, y) 7→ ky.

Hence the map A : Cs(M,Rn(θ)) → Cs,K(M,Rn(θ)) ↪→ Cs(M,Rn(θ)) equals the
composite map

Cs(M,Rn(θ))
χ−→ Cs(K ×M,K × Rn(θ))

Φ∗4−→ Cs(K ×M,K × Rn(θ))

(ι×id)∗−→ Cs(K ×M,K × Rn(θ)) Θ∗−→ Cs(K ×M,Rn(θ)) Â−→ Cs(M,Rn(θ))

Here χ(f) = id × f , and χ is continuous by Corollary 11.2. The map Φ∆ is easily seen
to be proper, and hence Φ∗4 is continuous by Proposition 10.5. Furthermore (ι× id)∗ and
Θ∗ are continuous by Proposition 10.4, and Â is continuous by Corollary 15.3.
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Theorem 15.5 Let M be a paracompact real analytic K-manifold, where K is a com-
pact Lie group, and let Rn(θ) be a linear representation space for K. Then the set
Cω,K(M,Rn(θ)) is dense in the space Cs,K(M,Rn(θ)), 1 ≤ s ≤ ∞.

Proof Let U be a non-empty, open subset of Cs,K(M,Rn(θ)), where 1 ≤ s ≤ ∞. By
Theorem 15.4 we know that A−1(U) is an open subset of Cs(M,Rn(θ)), and since A is
surjective A−1(U) is non-empty. Hence we have by Theorem 13.4 that there exists a real
analytic map f : M → Rn(θ), such that f ∈ A−1(U). Since f : M → Rn(θ) is real
analytic, we have Proposition 14.6 that A(f) : M → Rn(θ) is real analytic K-equivariant
map. Thus A(f) ∈ U ∩ Cω,K(M,Rn(θ)), and this completes the proof.

Notes The C∞ cases, i.e., the very-strong C∞ topology cases, of Theorems 15.4 and 15.5
equal Theorem 6.4 and Proposition 7.1, respectively, in [21].

16 Approximation of K-equivariant Cs maps, 1 ≤ s ≤ ∞, by
K-equivariant real analytic maps, in the strong Cs topologies,
1 ≤ s <∞, and in the very-strong C∞ topology

As in previous sections we shall also in this section use K to denote a compact Lie group.
We will use the K-equivariant C∞ imbedding result, Proposition 16.1 below in the proof
of Theorem 16.3. Proposition 16.1 also holds in the Cr cases, 1 ≤ r < ∞, but we have
chosen to give it here only in the C∞ case for two reasons. First of all we only need the
C∞ case, and the other reason is that we do not know of any good reference for the Cr

cases, 1 ≤ r <∞, when M is non-compact.
Proposition 16.1 Let M be a second countable C∞ K-manifold, where K is a compact
Lie group, and assume that the number of K-isotropy types in M is finite. Then there exist
a linear representation space Rv(λ) for K and a K-equivariant closed C∞ imbedding
j : M → Rv(λ).
Proof See [53], §1.

Proposition 16.2 Let M be a paracompact Cs K-manifold, with or without boundary,
and let N be a paracompact Cs K-manifold, 1 ≤ s ≤ ∞. Then the set Imbs,Kc (M,N), of
all K-equivariant closed Cs imbeddings of M into N , is an open subset of Cs,K(M,N).
Proof It is a standard and well-known result that the set Imbsc(M,N), of all closed Cs

imbeddings of M into N , is open in Cs(M,N), with the strong Cs topology, 1 ≤ s ≤ ∞,
see e.g. [15], Corollary 2.1.6. In the case when s = ∞ the very-strong C∞ topology
on C∞(M,N) is at least as fine as the strong C∞ topology on C∞(M,N)), see (vii) in
Section 9. Hence Imbs,Kc (M,N) = Imbsc(M,N)∩Cs,K(M,N) is open in Cs,K(M,N),
1 ≤ s ≤ ∞. (Recall our CONVENTION in Section 10.)

Theorem 16.3 Let M be a second countable real analytic K-manifold, where K is a
compact Lie group, and assume that the number of K-isotropy types in M is finite. Then
there exist a linear representation space Rv(λ) for K and a K-equivariant real analytic
closed imbedding h : M → Rv(λ).

Proof By Proposition 16.1 there exist a linear representation space Rv(λ) and
aK-equivariant closed C∞-imbedding j : M → Rv(λ). We have by Proposition 16.2 that
Imb∞,Kc (M,Rv(λ)) is an open subset of C∞,K(M,Rv(λ)), and it is non-empty since
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j ∈ Imb∞,Kc (M,Rv(λ)). Hence there exists, by Theorem 15.5, a K-equivariant real ana-
lytic map h : M → Rv(λ), such that h ∈ Imb∞,Kc (M,Rv(λ)). Thus h : M → Rv(λ) is a
K-equivariant real analytic closed imbedding.

Theorem 16.4 Let M be a paracompact real analytic K-manifold, where K is a compact
Lie group. Then M has a K-invariant real analytic Riemannian metric.

Proof Suppose M0 is a second countable real analytic manifold. By the Grauert-Morrey
imbedding theorem, see Theorem 13.3, we may consider M0 as a real analytic closed
submanifold of some euclidean space Ru. Hence the standard Riemannian metric on Ru
induces a real analytic Riemannian metric on M0.

Now let M be a paracompact real analytic K-manifold. Then each connected compo-
nent Mi of M , i ∈ Λ, is a second countable real analytic manifold, see Proposition 2.1.
Thus each Mi , i ∈ Λ, has a real analytic Riemannian metric, by the above, and this gives
M a real analytic Riemannian metric

Ξ: TM ⊕ TM → R

Here TM denotes the tangent bundle of M . The Whitney sum TM ⊕ TM is a real
analyticK-manifold, and Ξ is a real analytic map, such that for each x ∈M the restriction
Ξ
∣∣ : TxM ⊕ TxM → R is an inner product on the tangent space TxM . Now let

A(Ξ) : TM ⊕ TM → R

be as in Section 14. That is, for each (a, b) ∈ TM ⊕ TM , we have that

A(Ξ)(a, b) =
∫
K

Ξ(ka, kb)dk.

By Proposition 14.6 we know that A(Ξ): TM ⊕ TM → R is a K-invariant real analytic
map, and it is straightforward to verify that for each x ∈M the restriction A(Ξ)

∣∣ : TxM ⊕
TxM → R is an inner product on TxM . Thus A(Ξ): TM ⊕ TM → R is a K-invariant
real analytic Riemannian metric on M .
Theorem 16.4 is used in the proof of Theorem 16.5 below.
Theorem 16.5 Let K be a compact Lie group, and let M be a paracompact real analytic
K-manifold and N a K-invariant real analytic closed submanifold of M . Then there
exist a K-invariant open neighborhood V of N in M , and a K-equivariant real analytic
retraction p : V → N .

Proof See e.g. Theorem I in [23], where this is proved in a more general situation than we
here have.

Theorem 16.6 Let M and N be paracompact real analytic K-manifolds, where K is a
compact Lie group, and assume that the number of K-isotropy types in N is finite. Then
the set Cω,K(M,N) is dense in the space Cs,K(M,N), 1 ≤ s ≤ ∞.

Proof It follows by Remark 10.8 that it is enough to prove Theorem 16.6 in the case when
M and N are second countable. In this case we may, by Theorem 16.3, consider N as
a K-invariant real analytic closed submanifold of some linear representation space Rv(λ)
for K. By Theorem 16.5 we find a K-invariant open neighborhood V of N in Rv(λ) and
a K-equivariant real analytic retraction p : V → N . By Proposition 10.4 the induced map

p∗ : Cs,K(M,V )→ Cs,K(M,N), f 7→ p ◦ f,
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is continuous, for each 1 ≤ s ≤ ∞, and moreover p∗ is surjective.
Let U be a non-empty open subset of Cs,K(M,N). Then p−1

∗ (U) is a non-empty set,
and it is open in Cs,K(M,V ), and hence also open in Cs,K(M,Rv(λ)), see Lemma 9.5.
By Theorem 15.5 there exists a real analytic K-equivariant map f : M → Rv(λ) such that
f ∈ p−1

∗ (U). Then f : M → V ⊂ Rv(λ), and p ◦ f : M → N is a K-equivariant real
analytic map. Now p ◦ f = p∗(f) ∈ U ∩ Cω,K(M,N), and this completes the proof.

Notes Theorem 7.2 in [21] is the very-strong C∞ topology case of Theorem 16.6. A strong
C∞ topology version of Theorem 16.6 is proved in Theorem 1.2 in [34]. For Theorem 16.4,
see Theorem 1.17 in [25].

17 Approximation of Cs K-slices, 1 ≤ s ≤ ∞

In Lemma 17.1 belowG denotes a Lie group andK is a compact subgroup ofG. ByU∗ we
denote a K-invariant open neighborhood of eK in G/K such that there is a K-equivariant
real analytic cross section

σ : U∗ → G

with σ(eK) = e. Thus σ(ku) = kσ(u)k−1, for every k ∈ K and each u ∈ U∗. Moreover
we choose U∗ such that there is a K-equivariant real analytic isomorphism

h : Rd(τ)→ U∗,

where Rd(τ) is an orthogonal representation space for K, see Lemma 6.3.
Lemma 17.1 here below is Lemma 4.1 in [17]. It is a Cs, 1 ≤ s ≤ ∞, version of

the corresponding Lemma 6.1 in [16], which is given only in C∞ case. The proof of
Lemma 17.1, although a more general result, is somewhat shorter than that of Lemma 6.1
in [16].
Lemma 17.1 Let the notation be as above, and let M be a paracompact Cs G-manifold,
and let P be a paracompact connected Cs K-manifold, where 1 ≤ s ≤ ∞. Suppose
i : P → M is a K-equivariant Cs imbedding such that i(P ) = S is a Cs K-slice in M ,
1 ≤ s ≤ ∞. Then there exist K-invariant open neighborhoods U and U1 of eK in G/K,
where U ⊂ U1 ⊂ U∗, such that if we denote W = σ(U)S then the following holds. There
exists an open neighborhood W of i : P → W in Cs,K(P,W ) such that if j ∈ W then
j : P →W is a K-equivariant Cs imbedding, 1 ≤ s ≤ ∞, with the following properties:

(a) S′ = j(P ) is a Cs K-slice in M ,

(b) GS′ = GS,

(c) W = σ(U)S ⊂ σ(U1)S′ .

Proof Let σ : U∗ → G and h : Rd(τ) → U∗ be as above. If we let K act diagonally on
U∗×P , then γ(i) : U∗×P → GS, (u, x) 7→ σ(u)i(x), is aK-equivariant Cs-imbedding,
and its image σ(U∗)S = W ∗ is a K-invariant open subset of GS, see Remark 8.8. We set

U1 = h(D̊d(τ)) .
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Here D̊d(τ) denotes the open unit disk in the orthogonal representation space Rd(τ) for
K, and Dd(τ) denotes the corresponding closed unit disk. Then U1 is a K-invariant open
neighborhood of eK in G/K, and U1 = h(Dd(τ)) is a K-invariant real analytic compact
manifold with boundary. We note that

γ(i) : U1 × P → GS, (u, x) 7→ σ(u)i(x) (1)

is a closed imbedding into GS.
Let π : G → G/K denote the natural projection. Then π−1(U1) is an open neighbor-

hood of K in G, and hence there exists, by Lemma 4.6, a K-invariant open neighborhood
U of eK in G/K such that G[U ] ⊂ π−1(U1). By using (ix) in Section 4 we obtain that

G[U ] = π−1(U)(π−1(U))−1 ⊂ π−1(U1) . (2)

Clearly we may choose U so that U = h(D̊d
ε(τ)), where 0 < ε < 1, and then

U ⊂ U ⊂ U1 ⊂ U1 ⊂ U∗ ⊂ G/K . (3)

We set

W = σ(U)S, and W1 = σ(U1)S .

Then σ(U)S = W and σ(U1)S = W 1, where the closures W and W 1 are taken in GS,
and

S ⊂W ⊂W ⊂W1 ⊂W 1 ⊂W ∗ ⊂ GS .

Let p : GS → G/K be the G-equivariant Cs-smooth map onto G/K determined by the
Cs K-slice S, i.e., p−1(eK) = S, see Lemma 8.2. Then W = σ(U)S = p−1(U), and
hence G[W ] = G[U ], by Lemma 4.1. Thus we have by (2) that

G[W ] ⊂ π−1(U1) . (4)

Since U1 is compact the map χ : Cs,K(P,W )→ Cs,K(U1×P,U1×W ), j 7→ id×j,
is continuous, by Corollary 11.2. TheK-equivariant Cs map η : U1×W → GS, (u, y) 7→
σ(u)y, induces a continuous map η∗ : Cs,K(U1×P,U1×W )→ Cs,K(U1×P,GS), see
Proposition 10.4, and hence

Γ = η∗ ◦ χ : Cs,K(P,W )→ Cs,K(U1 × P,GS) , j 7→ η ◦ (id× j) ,

is continuous. If j ∈ Cs,K(P,W ) then Γ(j)(u, x) = σ(u)j(x), for all (u, x) ∈ U1 × P .
In particular we have that Γ(i) = γ(i) : U1 × P → GS, where γ(i) is as in (1), and hence
Γ(i) is a closed imbedding, i.e.,

Γ(i) ∈ Imbs,Kc (U1 × P,GS) .

Next we observe that the restriction map

res : Imbs,Kc (U1 × P,GS)→ Imbs,Kc (∂U1 × P,GS), h 7→ h| ,

is continuous. This follows by Proposition 10.5, since the inclusion map incl : ∂U1×P →
U1 × P is proper, and res = (incl)∗. By (3) we have that ∂U1 ⊂ G/K − U , and hence
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Γ(i)(∂U1 × P ) ⊂ GS −W . By Lemma 9.5 we can find an open neighborhood N1 of
Γ(i)| in Cs,K(∂U1 × P,GS) such that if h′ ∈ N1 then Im(h′) ∩W = ∅. We set

M1 = (res)−1(N1) .

Then M1 is open in Imbs,Kc (U1 × P,GS), and hence also in Cs,K(U1 × P,GS), by
Theorem 16.2. Thus

W = Γ−1(M1)

is an open neighborhood of i in Cs,K(P,W ).
If j ∈ W then Γ(j) : U1 × P → GS is a K-equivariant Cs closed imbedding, with

the additional property that Γ(j)(∂U1 × P ) ∩ W = ∅. Hence Γ(j)(U1 × P ) ∩ W =
Γ(j)(U1 × P ) ∩W and therefore also

Γ(j)(U1 × P ) ∩W = Γ(j)(U1 × P ) ∩W .

This shows that Γ(j)(U1 × P ) ∩ W is closed in W . Furthermore Γ(j)(U1 × P ) is an
open set, for example by invariance of domain (see e.g. [10], Theorem XI. 3.11), and thus
Γ(j)(U1 × P ) ∩W is both open and closed in W . Since W = σ(U)i(P ) is connected it
follows that Γ(j)(U1 × P ) ∩W = W . Therefore W ⊂ Γ(j)(U1 × P ), that is

W ⊂ σ(U1)j(P ) .

Thus GS ⊂ GW ⊂ Gσ(U1)j(P ) = Gj(P ) ⊂ GS, and hence

GS = Gj(P ) .

Thus we have shown that if j ∈ W then S′ = j(P ) satisfies (b) and (c), and
hence it only remains to show that j(P ) is a Cs K-slice in M . We already know that
Γ(j) : U1 × P → σ(U1)j(P ), (u, x) 7→ σ(u)j(x), is a K-equivariant Cs diffeomorphism
onto σ(U1)j(P ). Thus j(P ) is a Cs near K-slice in M , and hence it is enough to show
that

gj(P ) ∩ j(P ) = ∅ , for all g ∈ G−K , (5)

see Lemma 8.10. Suppose g ∈ G is such that gj(P ) ∩ j(P ) 6= ∅. Since j(P ) ⊂ W it fol-
lows that gW ∩W 6= ∅, and hence g ∈ G[W ]. Thus (4) implies that g ∈ π−1(U1). There-
fore π(g) ∈ U1, and g = σ(π(g))k, for some k ∈ K. Now gj(P ) = σ(π(g))kj(P ) =
σ(π(g))j(P ) = Γ(j)({π(g)} × P ). Since Γ(j) : U1 × P → GS is injective we have that
Γ(j)({u}×P ) is disjoint from Γ(j)({eK}×P ) = j(P ), for all u ∈ U1, except u = eK.
Thus we see that gj(P ) ∩ j(P ) 6= ∅ implies that π(g) = eK, and hence g ∈ K. This
proves that (5) holds, and completes the proof of the lemma.

18 Proof of the main theorem

We are now ready to give the proof of the main theorem, Theorem 1.2. The proof is prac-
tically the same as the proof of Theorem 7.1 in [16], but we have now included all cases
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1 ≤ s ≤ ∞, whereas in [16] the proof is given in the smooth, i.e., in the C∞ case. Com-
pared with the proof in [16] there are however two changes in the proof. We now, correctly,
use the glueing lemma, Lemma 12.1, in its very-strong C∞ topology form. Furthermore
we now need to employ, in the C∞ case, a result for the very-strong C∞ topology concern-
ing approximation of K-equivariant C∞ maps by K-equivariant real analytic maps, where
K denotes a compact Lie group, see Theorem 7.2 in [21], Theorem 16.6 in the present
article.
Theorem 18.1 Let M be a Cartan Cs G-manifold, where G is any Lie group and 1 ≤
s ≤ ∞. Then there exists a real analytic structure β on M , compatible with the given Cs

structure on M , such that the action of G on Mβ is real analytic.

Proof We define B to be the family of all pairs (B, β), where B is a non-empty
G-invariant open subset of M and β is a real analytic structure on B, compatible with
the given Cs structure on B, such that the action of G on Bβ = (B, β) is real analytic.

Let us first show that the family B is non-empty. This is seen as follows. Let x0 ∈ M
and denote Gx0 = K0. Then K0 is a compact subgroup of G. By the slice theorem,
Theorem 8.13, there exists a G-equivariant Cs diffeomorphism

µ0 : G×K0 Rq0(ρ0)→ GS0,

where B0 = GS0 is a G-invariant open neighborhood of x0 in M , and Rq0(ρ0) denotes
a linear representation space for K0. As we saw in Section 7, Propositions 7.2 and 7.3,
the twisted product G ×K0 Rq0(ρ0) is a real analytic G-manifold, and we give B0 the
real analytic structure β0 induced from G ×K0 Rq0(ρ0) through µ−1

0 . Since µ0 is a Cs

diffeomorphism it follows that β0 is compatible with the Cs structure on B0. Since the
action ofG onG×K0 Rq0(ρ0) is real analytic and since µ0 isG-equivariant, it follows that
the action of G on (B0)β0

is real analytic. Thus (B0, β0) ∈ B, and we have shown that B
is non-empty.

We define an order in B by setting

(B1, β1) ≤ (B2, β2)

if and only if:

(i) B1 ⊂ B2.

(ii) The real analytic structure β1 on B1 is the one induced from the real analytic struc-
ture β2 on B2.

Now suppose C is a chain in B, i.e., if (B1, β1) and (B2, β2) belong to C then either
(B1, β1) ≤ (B2, β2) or (B2, β2) ≤ (B1, β1). Let C1 denote the family of all B occurring
as the first coordinate of a pair in C, and let C2 be the family of all β occurring as the second
coordinate of a pair in C. Using this notation we define

B∗ =
⋃
B∈C1

B, and β′ =
⋃
β∈C2

β.

ThenB∗ is a non-emptyG-invariant open subset ofM , and β′ is a real analytic atlas onB∗,
compatible with the Cs structure on B∗. Let β∗ = 〈β′〉 be the real analytic structure, i.e.,
the maximal real analytic atlas, on B∗ generated by β′. Then the real analytic structure
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β∗ on B∗ has the property that for each (B, β) ∈ C the real analytic structure that β∗

induces on B equals β. It can now easily be seen that the action of G on B∗β∗ is real
analytic. For if x ∈ B∗, then there exists an open neighborhood U of x in B∗ with U is
compact and U ⊂ B∗. Since U is compact it follows that there exists (B, β) ∈ C, such
that U ⊂ U ⊂ B. Now GU ⊂ B and the real analytic structure on GU induced from
Bβ equals the one induced from B∗β∗ . Since the action of G on Bβ is real analytic it now
follows that the action of G on (GU)β∗ is real analytic, and hence we have shown that the
action of G on B∗β∗ is real analytic. Thus (B∗, β∗) ∈ B, and furthermore we have that

(B, β) ≤ (B∗, β∗), for all (B, β) ∈ C.

This shows that (B∗, β∗) is an upper bound for C in B. Hence we obtain by Zorn’s lemma
that there exists a maximal element (B, β) in B. We claim that B = M .

Suppose the contrary and assume that B ( M . If B is closed in M , then M − B
is a non-empty G-invariant open subset of M . In this case we could, as in the beginning
of the proof, find a non-empty G-invariant open subset B0, where B0 ⊂ M − B, such
that B0 has a real analytic structure β0, compatible with the Cs structure on B0, and the
action of G on (B0)β0

is real analytic. Now β∪̇β0 is a real analytic atlas on B∪̇B0,
which is compatible with the Cs structure on B∪̇B0, and we let 〈β∪̇β0〉 denote the real
analytic structure determined by β∪̇β0. Then 〈β∪̇β0〉 is compatible with the Cs structure
on B∪̇B0, and it is also clear that the action of G on (B∪̇B0, 〈β∪̇β0〉) is real analytic.
Thus (B∪̇B0, 〈β∪̇β0〉) ∈ B and (B, β) < (B∪̇B0, 〈β∪̇β0)〉, which contradicts the fact
that (B, β) is a maximal element in B. Thus B is not closed in M , and hence B −B 6= ∅.

Let x ∈ B − B, and denote Gx = K. By the Cs slice theorem, 1 ≤ s ≤ ∞,
Theorem 8.13, there exists a linear Cs slice S at x in M , and we let

i : Rq(ρ)
∼=−→ S ⊂M

be a K-equivariant Cs imbedding into M such that i(Rq(ρ)) = S, and i(0) = x. Here
Rq(ρ) denotes a linear representation space for K. Then GS is open in M and

µ(i) : G×K Rq(ρ)
∼=−→ GS, [g, x] 7→ gi(x), (1)

is a G-equivariant Cs diffeomorphism.
We now choose a K-invariant product neighborhood W of S in M , cf. Remark 8.8,

and an open neighborhoodW of

i : Rq(ρ)→W (2)

in Cs,K(Rq(ρ),W ), such that Lemma 17.1 holds for W and W . Furthermore we may
assume that the number of K-isotropy types occurring in W is finite, see Remark 8.9.

Since x ∈ B −B and GS is an open neighborhood of x in M it follows that

GS ∩B 6= ∅, and GS ∩ (M −B) 6= ∅. (3)

Furthermore we have that G(S ∩ B) = GS ∩ B, since B in a G-invariant set, and hence
S ∩ B 6= ∅. Thus we see that S ∩ B is a non-empty K-invariant open subset of S, and
therefore

V = i−1(S ∩B)
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is a non-empty K-invariant open subset of Rq(ρ), and i(V ) = S ∩B ⊂W ∩B.
The fact that V is a K-invariant open subset of Rq(ρ) implies in particular that V is a

real analytic K-manifold. Furthermore, also W ∩ Bβ is a real analytic K-manifold, since
W ∩Bβ is aK-invariant open subset of the real analyticG-manifoldBβ . We now consider
the K-equivariant Cs imbedding

i|V : V →W ∩Bβ .

By Lemma 12.1 there exists an open neighborhoodN of i|V in Cs,K(V,W ∩Bβ) such
that we obtain a continuous map

E : N → Cs,K(Rq(ρ),W )

by defining for each h ∈ N ,

E(h)(x) =

h(x), x ∈ V

i(x), x ∈ Rq(ρ)− V.
(4)

Observe that E(i|V ) = i. Since E is continuous, andW is an open neighborhood of i in
Cs,K(Rq(ρ),W ), there exists an open neighborhood N1 of i|V in N such that

E(N1) ⊂ W. (5)

The number of K-isotropy types occurring in W is finite and hence the same holds for
W ∩Bβ . By Theorem 16.6 there exists

h1 ∈ N1 ∩ Cω,K(V,Bβ ∩W ), (6)

that is, there exists a K-equivariant real analytic map

h1 : V →W ∩Bβ

such that h1 ∈ N1. We now define

j = E(h1) : Rq(ρ)→W. (7)

Then we have by (5) and (6) that j ∈ W . By the choice ofW , Lemma 17.1 holds forW
and hence j is a K-equivariant Cs imbedding such that

j(Rq(ρ)) = S′

is a Cs K-slice in M and GS′ = GS. (In fact j(0) = x, so S′ is a Cs slice at x ∈ M .)
Hence

µ(j) : G×K Rq(ρ)
∼=−→ GS′ = GS, [g, x] 7→ gj(x), (8)

is a G-equivariant Cs diffeomorphism.
We claim that the restriction

µ(j)| : G×K V → GS ∩Bβ (9)
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is a G-equivariant real analytic isomorphism. First of all we claim that µ(j)(G ×K V ) =
GS ∩ B. It follows directly from the definition (4) that the maps j = E(h1) in (7) and
i in (2) agree on the set Rq(ρ) − V . Hence the maps µ(j) in (8) and µ(i) in (1) agree
on G ×K (Rq(ρ) − V ). Since im(µ(j)) = GS′ = GS = im(µ(i)), and both µ(j) and
µ(i) are bijective maps it now follows that µ(j)(G×K V ) = µ(i)(G×K V ) = Gi(V ) =
G(S ∩B) = GS ∩B. Thus we see that µ(j)| in (9) is a G-equivariant Cs diffeomorphism
onto GS ∩ Bβ . Since j|V = h1 : V → W ∩ Bβ ⊂ Bβ is a K-equivariant real analytic
map it follows by Lemma 7.4 that µ(j)| in (9) is a real analytic map. It now follows by the
real analytic inverse function theorem (see e.g. Theorem 2.2.10 in [42]) that (µ(j)|)−1 is
real analytic. This proves that µ(j)| in (9) is a G-equivariant real analytic isomorphism.

Let us now denote GS = B1. Then B1 is a G-invariant open subset of M . We
give B1 the real analytic structure β1 induced from G ×K Rq(ρ) through µ(j)−1, i.e.,
the real analytic structure β1 for which µ(j) : G ×K Rq(ρ) → (B1)β1

is a real analytic
isomorphism. Since µ(j) in (8) is a Cs diffeomorphism it follows that the real analytic
structure β1 is compatible with the Cs structure on B1. Since µ(j) is G-equivarint and the
action of G on G ×K Rq(ρ) is real analytic it follows that the action of G on (B1)β1

is
real analytic. The fact that µ(j)| in (9) is a real analytic isomorphism onto the open subset
B1∩Bβ ofBβ implies that the real analytic structure onB1∩B induced from (B1)β1

is the
same as the one induced from Bβ . Hence β ∪ β1 is a real analytic atlas on B ∪B1, which
is compatible with the Cs structure on B∪B1, and we let 〈β∪β1〉 denote the real analytic
structure determined by β ∪ β1. It is clear that the action of G on (B ∪ B1, 〈β ∪ β1〉) is
a real analytic, and thus (B ∪ B1, 〈β ∪ β1〉) ∈ B. Furthermore we have by the latter part
of (3) that B ( B ∪ B1, and hence (B, β) < (B ∪ B1, 〈β ∪ β1〉), but this contradicts the
maximality of (B, β). Thus B = M .
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FIN-00014 University of Helsinki, Finland

E-mail: soren.illman@helsinki.fi



This page intentionally left blank



Handbook of Global Analysis 591
Demeter Krupka and David Saunders
c© 2008 Elsevier B.V. All rights reserved.

Exterior differential systems

Niky Kamran

Contents

1 Introduction
2 Exterior differential systems
3 Basic existence theorems for integral manifolds of C∞ systems
4 Involutive analytic systems and the Cartan-Kähler Theorem
5 Prolongation and the Cartan-Kuranishi Theorem
6 A Cartan-Kähler Theorem for C∞ Pfaffian systems
7 Characteristic cohomology
8 Topological obstructions
9 Applications to second-order scalar hyperbolic partial differential equations in the plane

10 Some applications to differential geometry

1 Introduction

The modern theory of exterior differential systems was founded by Elie Cartan, who gave
a masterful account of the subject in his treatise ”Les systèmes différentiels extérieurs et
leurs applications géométriques”, [20], published in 1945. The monograph by Kähler
”Einführung in die Theorie der Systeme von Differentialgleichungen”, [33], published in
1937, was also a major milestone in the development of the subject. More recently, the
subject has undergone a remarkable revival, fuelled in part by the publication in 1991 of
a major research treatise on the subject of exterior differential systems by Bryant, Chern,
Gardner, Goldschmidt and Griffiths, [7]. Since its publication, this book has rightly be-
come the standard reference on the subject.

The theory of exterior differential systems gives a geometric and coordinate-free ap-
proach to the formulation and solution of differential equations. In the framework of ex-
terior differential systems, differential equations are replaced by differential ideals in the
exterior algebra of differential forms on a manifold, and the solutions of differential equa-
tions correspond to integral manifolds of these ideals. Exterior differential systems are thus
very well suited to the study of the differential systems that arise in differential geometry
and in mechanics, particularly in geometric control theory. Important classical examples
of problems that have been treated with great success using exterior differential systems
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include the local isometric embedding problems in Riemannian geometry, nearly all the
classical deformation and classification problems for submanifolds, the local equivalence
problem for G-structures ( also known as the Cartan equivalence problem ), and the study
of sub-Riemannian structures and their invariants. The theory of exterior differential sys-
tems has a rich algebraic content, stemming from the systematic use of exterior algebra and
representation theory in the geometric formulation of systems of differential equations as
differential ideals. The analytic cornerstones of the subject are the Frobenius Theorem and
the Cartan-Kähler Theorem, which are themselves consequences of the fundamental exis-
tence and uniqueness theorems for systems of ordinary differential equations on the one
hand and the Cauchy-Kovalevskaia Theorem on the other. This means in particular that
the Cartan-Kähler Theorem, which is the most general existence theorem that is currently
available for exterior differential systems will in general only hold for systems of class Cω .
It is fair to say that in spite of the remarkable successes which have been achieved on some
specific problems in the smooth category, in particular on the isometric embedding prob-
lem, [13], on systems of hyperbolic type, [48], the analytic aspects of the theory are still in
need of development, so that a completely general version of the Cartan-Kähler Theorem
holding for systems of class C∞ is still waiting to be discovered.

It is of course impossible to cover all the different aspects the vast and beautiful sub-
ject of exterior differential systems in the context of the present article. What we have
attempted to do is to present as many of the main concepts and results as possible in a
self-contained manner. No proofs are given, but the most important existence theorems are
illustrated by means of examples ranging from the elementary to the more sophisticated, so
as to enable the reader to see how these theorems are to be applied in concrete situations.
Bibliographical indications are also given to the main recent developments on each of the
themes covered in the text.

Our paper is organized as follows. In Section 2, we introduce the basic notions of ex-
terior differential systems, Pfaffian systems and integral manifolds, that we illustrate on a
few very simple examples. Section 3 is devoted to the basic existence theorems for integral
manifolds of systems of class C∞, including the Frobenius and Darboux Theorems. These
are essentially normal form theorems in which the expression and degree of generality of
the integral manifolds of the given system are manifest. In Section 4, we consider the gen-
eral problem of the existence of integral manifolds of exterior differential systems of class
Cω , and we define the class of involutive systems, for which the Cartan-Kähler Theorem is
shown to imply the existence of integral manifolds tangent to sufficiently generic integral
elements, called ordinary integral elements. Section 5 is devoted to the notion of prolon-
gation and to the Cartan-Kuranishi Theorem. The prolongation of an exterior differential
system is the system obtained by adding to the system its differential consequences, and
the Cartan-Kuranishi Theorem asserts that after finitely many prolongations, a sufficiently
generic system of class Cω becomes either involutive, in which case it admits integral
manifolds by virtue of the Cartan-Kähler Theorem, or has no integral manifolds. In Sec-
tion 6, we present a version of the Cartan-Kähler Theorem due to Yang, [48], that applies
to a class of involutive systems of class C∞ whose characteristic variety satisfies a certain
hyperbolicity condition. Section 7 gives an introduction to the characteristic cohomology
theory for exterior differential systems developed by Bryant and Griffiths, [8], [9]. The
caracteristic cohomology classes of a differential system correspond to its conservation
laws and contain a lot of information about its integrability properties. In Section 8, we
give a brief introduction to the classical topological obstructions in terms of characteristic
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classes to the global existence on a compact manifold of Pfaffian systems which are either
completely integrable or of Goursat type. Section 9 illustrates how the existence Theorems
of Section 3 can be applied to the study of normal forms of second-order scalar hyperbolic
partial differential equations in the plane. In Section 10, we present a couple of geomet-
ric applications of the Cartan-Kähler Theorem and the involutivity test to two problems
of classical local differential geometry, one having to do with submanifolds of projective
space whose pencil of second fundamental forms can be simultaneously diagonalized, and
the other with the existence of orthogonal local coordinates for 3-dimensional Riemannian
metrics.

We conclude this section by remarking that there is a rich and very well developed
theory of over-determined systems of partial differential equations, due to Spencer, [43],
and developed by his students and collaborators, including Goldschmidt and Kumpera,
which we will not consider in this article. The monograph [7] gives an account of the main
results of the Spencer school. Likewise, Lie and Vessiot developed a geometric theory of
differential equations based on the study of vector field systems. We refer the reader to the
treatise by Stormark, [44], for an excellent account of Lie’s theory and its developments.

2 Exterior differential systems

In this section, we introduce the concept of an exterior differential system, which we illus-
trate on a few examples. Unless otherwise specified, all the manifolds, maps and associated
geometric structures such as bundles, differential forms, vector fields, etc... are assumed to
be of class C∞ and of constant rank.
Definition 2.1 An exterior differential system on an n-dimensional manifold Mn is a dif-
ferentially closed ideal I in the ring Ω∗(Mn) of exterior differential forms on Mn.

The exterior differential systems considered in this paper will always be finitely gener-
ated. We shall use the notation

I = {ω1, . . . , ωq} ,

to denote the algebraic ideal generated by q linearly independent differential forms
ω1, . . . , ωq in Ω∗(Mn).
Definition 2.2 A Pfaffian system on an n-dimensional manifold Mn is an exterior differ-
ential system I whose generators as a differential ideal are all 1-forms, that is a system I
of the form

I = {θ1, . . . , θs, dθ1, . . . , dθs} ,

where θ1, . . . , θs are linearly independent 1-forms on Mn. The integer s is called the rank
of I.

The sub-bundle of T ∗Mn generated by θ1, . . . , θs will be denoted by I , and we will
allow for a slight abuse of notation by using the same letter I to denote the C∞(Mn;R)-
module of sections of I .
Definition 2.3 A p-dimensional integral manifold of an exterior differential system I is
an immersion f : Wp →Mn such that

f∗ω = 0 for all ω ∈ I.
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We now illustrate the notion of integral manifold by means of a few examples.
Example 2.4 On R3 with coordinates (x, y, z) consider the Pfaffian system

I = { dx+ dy, dz + 2ydy} .

The curves (x,−x + c1,−x2 + c2), where c1, c2 are arbitrary real constants are 1-
dimensional integral manifolds of I. The integral manifolds of I thus depend on two
arbitrary real constants.
Example 2.5 We work on R2n+1 with coordinates (x, u1, . . . , un, p1, . . . , pn), and con-
sider the Pfaffian system

I = { dui − pidx, dpi ∧ dx, 1 ≤ i ≤ n} .

This Pfaffian system admits all the curves (x(t), u1(t), . . . , un(t), p1(t), . . . , pn(t)) such
that

uit − pixt = 0 ,

as 1-dimensional integral manifolds. The integral manifolds of I thus depend on n arbi-
trary C∞ functions of one variable.
Example 2.6 On M4 defined as R4 with coordinates (x, y, z, u) minus the locus y(x +
y2) = 0, consider the Pfaffian system I = {ω, dω}, where

ω = (x+ y2)y2dz − y(yz + u2(x+ y2)2)dx+ (u2x(x+ y2)2 − 2y3z)dy.

The Pfaffian system I admits all the submanifolds of M4 of the form

z

x+ y2
= f(

x

y
), u2 = f ′(

x

y
),

as integral manifolds. The integral manifolds of I thus depend on one arbitrary C∞ func-
tions of one variable.
Example 2.7 We consider the non-Pfaffian system

I = {
n∑
i=1

dpi ∧ dxi } ,

on R2n, with coordinates ( x1, . . . , xn, p1, . . . , pn ). The submanifolds ( x1, . . . , xn, p1 =
∂f
∂x1 , . . . , pn = ∂f

∂xn ) are integral manifolds of I of dimension n for any choice of a C∞

function f of n variables.
Example 2.8 OnR8 with coordinates (x, y, u, p, q, r, s, t), we consider the Pfaffian system

I = {θ1, θ2, θ3, dθ1, dθ2, dθ3, dF} ,

where

θ1 = du− pdx− qdy , θ2 = dp− rdx− sdy , θ3 = dq − sdx− tdy ,

and F : R8 → R is a smooth function such that (Fr, Fs, Ft) 6= (0, 0, 0). The surfaces

( x(w, z), y(w, z), u(w, z), p(w, z), q(w, z), r(w, z), s(w, z), t(w, z) ) ,
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such that

F ( x(w, z), y(w, z), u(w, z), p(w, z), q(w, z), r(w, z), s(w, z), t(w, z) ) = 0 ,

and

uw − pxw − qyw = 0 , uz − pxz − qyz = 0 ,
uw − pxw − qyw = 0 , uz − pxz − qyz = 0 ,
uw − pxw − qyw = 0 , uz − pxz − qyz = 0 .

Note that if∣∣∣∣ ∂(x, y)
∂(w, z)

∣∣∣∣ 6= 0 ,

then the integral surfaces of I can be locally parametrized as graphs of the form

( x, y, u(x, y), p(x, y), q(x, y), r(x, y), s(x, y), t(x, y) ) , (1)

with

p = ux , q = uy , r = uxx , s = uxy , t = uyy ,

and u(x, y) will be a solution of the second-order partial differential equation

F (x, y, u, ux, uy, uxx, uxy, uyy) = 0 . (2)

We remark that one could have equivalently considered on the hypersurface M7 of R8 the
Pfaffian system

IF = {i∗θ1, i∗θ2, i∗θ3, i∗dθ1, i∗dθ2, i∗dθ3} ,

obtained by pulling-back under the inclusion map i : M7 → R8 the generators of I to M7.
The integral manifolds of the form (1) will also correspond to solutions of the second-order
partial differential equation (2).

3 Basic existence theorems for integral manifolds of C∞ systems

The simple examples presented at the end of the preceding section show that an exterior
differential system may admit integral manifolds depending on arbitrary constants or ar-
bitrary functions, or even both. It is therefore natural to ask if there exist theorems that
make it possible to determine a-priori whether an exterior differential system will admit
any integral manifolds at all, and if so to predict their degree of generality. Our purpose in
this section and and the next section is to review a number of classical results which aim
to answer these questions.

The analytical cornerstones of the classical theory of exterior differential systems are
the existence, uniqueness and smooth dependence on the initial data theorems for C∞

systems of first-order ordinary differential equations, and the Cauchy-Kowalewskaia exis-
tence and uniqueness theorem for the non-characteristic Cauchy problem for Cω systems
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of partial differential equations. Accordingly, we will consider the C∞ and Cω cases sepa-
rately, and devote the present section to an overview of the classical existence theorems for
exterior differential systems of class C∞, leaving the Cω case for the next section. So we
will assume throughout this section that all the manifolds, maps and associated geometric
structures such as bundles, differential forms, vector fields, etc... are of class C∞.

It is important to remark that the differential systems to which the C∞ theorems are
applicable are rather special, even though they are often of great interest in geometric appli-
cations. Most of these theorems are actually normal form results depending only numerical
invariants, in which the expression of the local integral manifolds and their degree of gen-
erality is manifest. As one would expect, these types normal form results apply only to
systems which are “flat” in a well-defined geometric sense.

We begin with Frobenius theorem, which is the simplest, but nevertheless the most
important existence theorem for integral manifolds of Pfaffian systems.
Theorem 3.1 Let

I = {θ1, . . . , θs, dθ1, . . . , dθs} ,

be a Pfaffian system of rank s on an n-manifold Mn and suppose that

dθa ∧ θ1 ∧ · · · ∧ θs = 0, 1 ≤ a ≤ s . (3)

Then for every x ∈ Mn, there exists a coordinate neighborhood U with x ∈ U and local
coordinates (u1, . . . , un) in which I is given by

I = {du1, . . . , dus} .

It follows from this theorem that the local integral manifolds of I are given by the
joint level sets u1 = c1, . . . , u

s = cs, where c1, . . . cs are real constants. Pfaffian systems
satisfying the Frobenius condition (3) are often referred to as being completely integrable,
and the functions u1, . . . , us are referred to as first integrals of I. Example 2.4 is an
example of a completely integrable Pfaffian system.

Even though the definition we have just given of complete integrability is a global one,
Theorem 3.1 is local in nature. This is due in part to the fact that the existence theorems
for solutions of ordinary and partial differential equations that underlie the proof of the
Frobenius theorem are themselves local results. It is therefore natural to ask whether the
local integral manifolds defined in Theorem 3.1 can be “glued” together to give rise to
maximal integral submanifolds. The Frobenius theorem has a global version that shows
this to be true. We now briefly recall the statement of this result, [22], [47].
Definition 3.2 A maximal integral manifold of a Pfaffian system I is a connected integral
manifold whose image in not a proper subset of any other connected integral manifold of
I.

The global Frobenius Theorem is now as follows:
Theorem 3.3 Let I be a completely integrable Pfaffian system of rank s on an n-manifold
Mn. Then through any x ∈ Mn there passes a unique maximal connected integral man-
ifold Ws of Mn, and every other connected integral manifold of I passing through x is
contained in Ws.
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There is a simple but nevertheless very important invariant structure that gives a coarse
measure of the degree to which a Pfaffian system may fail to be completely integrable.
This invariant is called the derived flag, and is defined as follows. Let

I = {θ1, . . . , θs, dθ1, . . . , dθs} ,

be a Pfaffian system and let

I = {θ1, . . . , θs} ⊂ Ω1(Mn) ,

denote the corresponding C∞(Mn;R)-module of sections of T ∗Mn. Let {I} denote the
ideal generated by I in the algebra Ω∗(Mn) of C∞ differential forms on Mn. The exterior
differential

d : I → Ω2(Mn) ,

induces a map

δ : I → Ω2(Mn)/({I} ∩ Ω2(Mn)) .

We define the first derived system I(1) of I to be the kernel of δ,

I(1) = ker δ .

So, I will satisfy the Frobenius condition (3) if and only if

I(1) = I .

The derived flag of I is the flag of C∞(Mn;R)-modules corresponding to the higher de-
rived systems of I , that is,

· · · ⊂ I(k) ⊂ I(k−1) ⊂ · · · ⊂ I(1) ⊂ I ,

where

I(k) = (I(k−1))(1) .

The string of codimensions of the elements of the derived flag of a Pfaffian system I is
a numerical invariant, called the type of a Pfaffian system. We letN be the smallest integer
such that

I(N+1) = I(N) ,

and define the integers Pa, 0 ≤ a ≤ N + 1, by

P0 = dim I(N), PN−i = dim I(i)/I(i+1), PN+1 = n− dim I .

The type of I is then defined as the (N + 2)-tuple (P0, . . . , PN+1). The type of a Pfaffian
system is not arbitrary. We have, [25]:
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Proposition 3.4 Let I be Pfaffian system of type (P0, . . . , PN+1) on an n-manifold Mn.
Then for all −1 ≤ i ≤ N − 1, we have

PN−i−1 ≤ PN−i(PN−i+1 + · · ·+ PN+1) +
(
PN−i

2

)
.

The local Frobenius theorem ( Theorem 3.1 ) says that the generators of a completely
integrable Pfaffian system of rank s can be locally chosen as the differentials of s function-
ally independent local coordinate functions. For exterior differential systems which are not
completely integrable Pfaffian systems, the question remains of knowing if generators can
be expressed in terms of a minimal set of local coordinates and their differentials. There
is a classical construction, which we now review, that provides such a set of coordinates.
We let Char(I) denote the C∞(Mn;R)-module of Cauchy characteristic vector fields of
I, defined by

Char(I) = {X ∈ Γ(TMn) |X ∈ I⊥, X c dI ⊂ I} .

Definition 3.5 The Cartan system of I is defined as the Pfaffian system generated as a
differential ideal by the 1-forms that annihilate all Cauchy characteristic vector fields. The
class of an exterior differential system is by definition the rank of its Cartan system.

We have:
Proposition 3.6 The Cartan system C(I) of any exterior differential system I is a com-
pletely integrable Pfaffian system.

The following retraction theorem shows that the first integrals of the Cartan system
C(I) provide a minimal set of local coordinates with which one can express the generators
of I.
Theorem 3.7 Let I be an exterior differential system of class r and let {w1, . . . , wr} de-
note a set of local first integrals of the Cartan system C(I). Then this set can be completed
to a local coordinate chart (w1, . . . , wr, yr+1, . . . , yn) in which I is generated by 1-forms
expressible in terms of w1, . . . , wr and their differentials.

Going back to the examples of Section 2, we see that Example 2.4 is a completely
integrable Pfaffian system of rank two and therefore of class two, whereas Example 2.6 is
a Pfaffian system which is not completely integrable, of class three.

The simplest class of Pfaffian systems which are not completely integrable are the
Darboux systems, which are at the source of contact geometry:
Theorem 3.8 Let

I = {ω, dω} ,

be a Pfaffian system on Mn. Suppose that for some integer r ≥ 0 we have

(dω)r ∧ ω 6= 0, (dω)r+1 ∧ ω = 0 , (4)

on Mn. Then for every x ∈ Mn, there exists a coordinate neighborhood U with x ∈ U
and local coordinates (x1, . . . , xr, z, p1, . . . , pr, u2r+2, . . . , un) such that

I = {dz −
r∑
i=1

pidx
i,

r∑
i=1

dpi ∧ dxi} .
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The integral manifolds of I are locally parametrized by one arbitrary C∞ function of
one variable. If I satisfies (4), then the derived flag of the corresponding C∞(Mn;R)-
module I is given by

I = {ω}, I(1) = {0} .

Example 2.6 is a Darboux system.
We now state the Goursat normal form theorem, which is an extension of the preceding

result:
Theorem 3.9 Let

I = {ω1, . . . , ωr, dω1, . . . dωr} ,

be a Pfaffian system on Mn. Suppose that there exist 1-forms α and π, where α and π are
not congruent to zero modulo I, such that,

dω1 ≡ ω2 ∧ π, mod {ω1} ,
dω2 ≡ ω3 ∧ π, mod {ω1, ω2} ,

...

dωr−1 ≡ ωr ∧ π, mod {ω1, . . . , ωr−1} ,
dωr ≡ α ∧ π, mod {ω1, . . . ωr} .

Then there exist local coordinates (x, y, y1, . . . , yr) such that

I = {dy − y1dx, . . . , dyr−1 − yrdx, dy1 ∧ dx, . . . , dyr ∧ dx} .

The integral manifolds of a Goursat system are thus locally parametrized by one arbi-
trary C∞ function of one variable.

An interesting application of the Goursat normal form arises in Cartan’s proof, [18],
of Hilbert’s theorem [30] on the non-existence of parametric solutions of finite rank for
the Hilbert-Cartan equation. Recall [35] that an under-determined ordinary differential
equation

v′ = F (x, u, v, u′, u′′) , (5)

is said to admit parametric solutions of finite rank if its solutions are of the form

x = X(t, w(t), w′(t), . . . , w(r)(t)) ,

u = U(t, w(t), w′(t), . . . , w(r)(t)) ,

v = V (t, w(t), w′(t), . . . , w(r)(t)) ,

where w(t) is an arbitrary C∞ function. The Hilbert-Cartan equation is given by

v′ = (u′′)2 , (6)

and Hilbert’s theorem asserts that (6) does not admit parametric solutions of finite rank.
Cartan’s proof of Hilbert’s result proceeds as follows. For a Goursat system I, we have

I = {ω1, . . . , ωr} ,
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I(1) = {ω1, . . . , ωr−1} ,
...

I(r−1) = {ω1} ,
I(r) = {0} ,

so that the sequence of dimensions of the elements of the derived flag of I is given by

dim I(k) = r − k, 0 ≤ k ≤ r .

Now, if the equation (5) is to admit parametric solutions of finite rank, then we must have
r = 3 and the Pfaffian system I corresponding to

I = {du− u′dx, du′ − u′′dx, dv − Fdx} ,

must be a Goursat system with r = 3. It is easy to calculate the derived flag of I: we have

I(1) = {du− u′dx, dv − ∂F

∂u′′
du′ − (F − u′′ ∂F

∂u′′
)dx} ,

and dim I(2) = 1 if and only if

∂2F

(∂u′′)2
= 0 .

The Hilbert-Cartan equation does not satisfy this condition, it follows that it does not admit
parametric solutions of finite rank. On the other hand, the ordinary differential equation

v′ = umu′′ ,

admits the parametric solutions of finite rank given by, [16],

x(t) = −2tf ′′(t)− f ′(t) ,

y(t) = [(m+ 1)2t3(f ′′(t))2]
1

m+1 ,

z(t) = (m− 1)t2f ′′(t)−mtf ′(t) +mf(t) .

4 Involutive analytic systems and the Cartan-Kähler Theorem

The theorems reviewed in Section 3 can be thought of as normal form results for exterior
differential systems, in which the expression of the local integral manifolds is manifest.
These theorems therefore apply only to very special systems, and it is natural to expect that
a general existence theorem should exist which will be applicable to a much wider class
of systems, for which one would not expect that a normal form would be readily available
on the basis of the behavior of a few simple invariants. Such a general theorem does
indeed exist, and is known as the Cartan-Kähler Theorem. This existence theorem applies
to the general class of exterior differential systems which are in involution. The proof of
the Cartan-Kähler Theorem involves successive applications of the Cauchy-Kovalevskaia
theorem, and consequently all the manifolds and differential systems considered in this
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Section will be assumed to be of class Cω . Our objective here is to present the statement
of this very important theorem, and to show how it can be applied in a few simple concrete
situations. Section 10 will contain more examples. In Section 6, we will present a version
of the Cartan-Kähler Theorem which applies to a special class exterior differential systems
of class C∞.

We begin with some elementary algebraic preliminaries. Let V be an n-dimensional
real vector space. The pairing < ., . > between V and V ∗ induces a pairing between
the exterior algebras

∧
(V ) and

∧
(V ∗); namely, if {e1, . . . , en} denotes a basis of V and

{e∗1, . . . , e∗n} denotes the dual basis of V ∗, then the pairing between the exterior algebras
is defined by

< v, φ >=
1
p !

∑
1≤i1...ip≤n

vi1...ipφi1...ip ,

for

v =
1
p !

∑
1≤i1...ip≤n

vi1...ipei1 ∧ · · · ∧ eip , φ =
1
p !

∑
1≤i1...ip≤n

φi1...ipe
∗i1 ∧ · · · ∧ e∗ip ,

and

< v, φ >= 0 ,

for v ∈
∧p(V ) and φ ∈

∧q(V ∗), with p 6= q. To a k-dimensional subspace W ⊂ V with
basis {v1, . . . , vk}, we associate the decomposable k-vector vW = v1∧· · ·∧vk ∈

∧k(V ).
We havew ∈W if and only ifw∧vW = 0, so that vW can be thought of as representing the
subspace W and it is easily verified that any two k-vectors representing the same subspace
are non-zero multiples of each other. We denote by [W ] ∈ P(

∧k(V )) the equivalence
class of any k-vector representing W .

It follows from Definition 2.3 that an immersion h : Wm →Mn is an integral manifold
of an exterior differential system I on an n-manifold Mn if and only if

< h∗TuWm, ω >= 0 ,

for all u ∈Wm and ω ∈ I. This suggests the following definition:
Definition 4.1 Let x ∈ Mn and let Ep ⊂ TxMn denote a p-dimensional subspace of the
tangent space to Mn at x. The pair (x,Ep) is a called a p-dimensional integral element of
I if < Ep, ω|x >= 0 for all ω ∈ I.

There is of course no reason for an integral element based at a given point to be tangent
to an integral manifold passing through that point. The purpose of the Cartan-Kähler the-
orem is precisely to give necessary and sufficient conditions under which this will be the
case.

The construction of integral manifolds of maximal dimension is done by building up
the integral manifolds one dimension at a time, by successive applications of the Cauchy-
Kovalevskaia Theorem. We thus introduce the notion of the polar space of an integral
element, which describes all the higher dimensional integral elements containing a given
integral element.
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Definition 4.2 The polar space H(Ep) of an integral element (x,Ep) of an exterior dif-
ferential system I is the set of tangent vectors v ∈ TxMn such that

< [Ep] ∧ v, ω|x >= 0 ,

for all ω ∈ I.
The polar space of H(Ep) is thus a subspace of TxMn, containing Ep,

Ep ⊆ H(Ep) ,

and we can write

dimH(Ep) = p+ 1 + σp+1 ,

where σp+1 ≥ −1. Consider now the Grassmann bundle π : Gp(Mn) → Mn, whose
fiber at x ∈ Mn is the Grassmann manifold of p-dimensional subspaces of TxMn, and let
Vp(I) ⊂ Gp(Mn) denote the variety of p-dimensional integral elements of I. We will
be interested in flags of integral elements which are in general position in the Grassmann
bundle. These flags will be nested in those integral elements of maximal dimension, called
ordinary, to which the Cartan-Kähler Theorem will apply.
Definition 4.3 An integral element (x,Ep) of an exterior differential system I is said to
be Kähler-regular if there exist s independent p-forms β1, . . . , βs such that Vp(I) is given
in a neighborhood of (x,Ep) by the equations

< [Ep], β1 >= 0 , . . . , < [Ep], β1 >= 0 ,

and the rank of the polar equations of a p-dimensional integral element is constant in a
neighborhood of (x,Ep).

The concept of an exterior differential systems does not single out a set of independent
variables. However, one is led in many applications to introduce a transversality condition
which restricts the set of integral manifolds under consideration ( see Section 10 for exam-
ples where such transversality conditions arise in geometrical applications ). This leads to
the following definition:
Definition 4.4 An exterior differential system with independence condition on a manifold
Mn is an exterior differential system I endowed with a decomposable p-form Ω which is
not congruent to zero modulo I. The integral elements and manifolds of dimension p on
which Ω 6= 0 are said to be admissible.

We are now ready to define the notion of an ordinary integral element of an exterior
differential system with independence condition.
Definition 4.5 An admissible integral element (x,Ep) of an exterior differential system
with independence condition (I,Ω) is said to be ordinary if there exists a flag

E0 ⊂ E1 ⊂ E2 ⊂ · · · ⊂ Ep−1 ⊂ Ep ,

such that each pair (x,Ei), 1 ≤ i ≤ p− 1, is Kähler-regular.
We can now define the concept of an exterior differential system in involution:

Definition 4.6 An exterior differential system with independence condition (I,Ω) is said
to be in involution if there exists an ordinary integral element (x,Ep) through each x ∈
Mn.
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It is helpful to illustrate the concepts that we have just introduced by means of an
elementary example.
Example 4.7 This example comes from [7]. We work in R5 and consider the differential
ideal I generated by the 1-forms

ω1 = dx1 + (x3 − x4x5)dx4 , ω2 = dx2 + (x3 + x4x5)dx5 ,

so that

I = {ω1, ω2, dω1 = ω3 ∧ dx4, dω2 = ω3 ∧ dx5}

with

ω3 = dx3 + x5dx4 − x4dx5 .

The 1-dimensional integral elements (x,E1) of I are all the 1-dimensional subspaces
E1 ⊂ Kx of the 3-plane field K defined by

Kx = {X ∈ TxR5 |ω1(X) = ω2(X) = 0} .

In other words, V1(I) = P(K), the projectivization of K. Furthermore, we have a unique
2-dimensional integral element (x,E2) through every x ∈ R5, defined by

E2 = {X ∈ TxR5 |ω1(X) = ω2(X) = ω3(X) = 0} ,

which implies that the integral elements (x,E2) are of maximal dimension and that
V2(I) ' R5. We now endow I with the independence condition Ω = dx4 ∧ dx5, and
determine the regular integral elements of (I,Ω). Every 2-plane in G2(R5,Ω) has a basis
{X4, X5} of the form

X4 =
∂

∂x4
+ p1

4

∂

∂x1
+ p2

4

∂

∂x2
+ p3

4

∂

∂x3
,

X5 =
∂

∂x5
+ p1

5

∂

∂x1
+ p2

5

∂

∂x2
+ p3

5

∂

∂x3
.

An element (x, [X4∧X5]) ∈ G2(R5,Ω) will be an admissible integral element if and only
if

p1
5 = p2

4 = p1
4 − x3 + x4x5 = p2

5 + x3 + x4x5 = p3
5 − x4 = p3

4 − x5 = 0 . (7)

This shows that all the integral elements defined by (7) are Kähler-regular. It is easily
verified that they are also ordinary.

We are now ready to state the Cartan-Kähler Theorem, which is the fundamental exis-
tence theorem for integral manifolds of analytic exterior differential systems.
Theorem 4.8 If (I,Ω) is in involution and (x,Ep) is an ordinary integral element, then
there exists an admissible integral manifold Wp ⊂Mn through x, such that TxWp = Ep.

It is thus very important to have a criterion to determine if a given exterior differential
system with independence condition is in involution. Such a criterion is provided by E.
Cartan’s involutivity test.
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Theorem 4.9 Let I be an exterior differential system on Mn, and let

E0 ⊂ E1 ⊂ E2 ⊂ · · · ⊂ Ep−1 ⊂ Ep ,

be a flag of integral elements of I, based at x ∈ M . Let ck, 1 ≤ k ≤ n − 1 denote the
codimension of H(Ek) in TxM . Then the codimension cEp of Vp(I) in Gp(Mn) at Ep
satisfies the following bound,

cEp ≤
p−1∑
i=0

ci . (8)

Moreover, (x,Ep) is ordinary if and only if it has a neighborhood U in Gp(Mn) such that
Vp(I) is a smooth manifold of codimension

c =
p−1∑
i=0

ci , (9)

in U

In practice, it may be quite difficult to check whether an exterior differential system is
in involution. There is however an important class of Pfaffian systems, called quasi-linear,
for which the involutivity criterion of Theorem 4.9 can be verified by means of a linear-
algebraic test. Quasi-linear systems are defined as follows. Consider a Pfaffian system
with independence condition (I,Ω), where

I = {θ1, . . . , θs, dθ1, . . . , dθs},
Ω = ω1 ∧ · · · ∧ ωp ,

and let π1, . . . , πl, l = n − s − p, be 1-forms such that θ1 ∧ · · · ∧ θs ∧ ω1 ∧ · · · ∧ ωp ∧
· · · ∧ π1 ∧ · · · ∧ πl 6= 0. We have, for 1 ≤ i ≤ s,

dθi ≡
l∑

α=1

p∑
b=1

Aiαbπ
α∧ωb+1

2

p∑
a,b=1

Biabω
a∧ωb+1

2

l∑
α,β=1

Ciαβπ
α∧πβ mod θ1, . . . , θs .

Definition 4.10 A Pfaffian system with independence condition (I,Ω) is said to be quasi-
linear if

Ciαβ = 0, 1 ≤ i ≤ s, 1 ≤ α, β ≤ l.

It is important to observe that if (I,Ω) is quasi-linear, then Vp(I,Ω) is an affine bundle
overMn. As a consequence of this, the determination of the involutivity conditions is much
easier than in the general case. The admissible integral elements (x,Ep) are of the form

(πα −
p∑
b=1

tαb ω
b)|Ep = 0 ,

where 1 ≤ α ≤ l, and the polar equations of Ep are given by

l∑
α=1

(Aiαbt
α
c −Aiαctαb ) +Bibc = 0 , (10)
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where 1 ≤ b, c ≤ p and 1 ≤ i ≤ s. We denote the dimension of the set of solutions of the
linear system (10) by d. Define the reduced characters s′1, . . . , s

′
r, r ≤ p of (I,Ω) by

s′1 + · · ·+ s′r = max
v1...vr∈Rl

rk


∑l
α=1 v

α
1A

i
αb

...∑l
α=1 v

α
r A

i
αb

 (11)

The involutivity test and criterion given in Theorems 8 and 9 take the following form:
Theorem 4.11 We have

d ≤
p∑
i=1

is′i ,

with equality if and only if the system (I,Ω) is in involution. If s′q = k 6= 0 with q
maximal, then the admissible local integral manifolds are parametrized by k Cω functions
of q variables.

We now illustrate Theorem 4.11 on the following example, taken from [6].
Example 4.12 We consider a scalar partial differential equation

F (xi, u,
∂u

∂xi
,
∂2u

∂xi∂xj
) = 0, 1 ≤ i, j ≤ p , (12)

where F is assumed to be Cω in all its arguments. We apply the Cartan-Kähler theorem
to show that the local solutions of the partial differential equation (12) are parametrized
by two analytic functions of p − 1 variables. To the partial differential equation (12),
we associate on R

p(p+5)
2 +1, with local coordinates (xi, u, ui, uij = uji), 1 ≤ i, j ≤ p,

an exterior differential system with independence condition (I,Ω), by letting I be the
differential ideal generated by

F (xi, u, ui, uij) = 0, θ0 = du−
p∑
i=1

dxi,

θi = dui −
n∑
j=1

uijdx
j , 1 ≤ i ≤ p ,

where we assume that

det(
∂F

∂uij
)|F=0 6= 0 , (13)

and the independence condition Ω be defined by

Ω = dx1 ∧ · · · ∧ dxp .

The structure equations of (I,Ω) are given by

dF = 0, dθ0 ≡ 0, dθi ≡
n∑
j=1

πij ∧ dxj , mod θ0 . . . θp , (14)
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where πij = −duij . In order to compute the reduced characters of (I,Ω), it is convenient
to exploit the non-degeneracy condition (13) to put the above structure equations in normal
form. If we perform a change of coframe according to

ω̄i =
p∑
j=1

aij dx
j , θ̄i =

p∑
j=1

(a−1) j
i θj ,

we obtain the following transformation law for the 1-forms πij ,

π̄ij = −
p∑

k,l=1

dukl a
k
ia
l
j .

Using the rank condition (13), we can therefore choose (aij) in such a way as to have

p∑
i,j=1

∂F

∂uij
(a−1) k

i (a−1) lj = δijεi ,

where ε2
i = 1. The structure equation dF = 0 now becomes

p∑
i=1

εiπ̄ii +
p∑
k=1

bkω̄
k ≡ 0, mod θ̄0 . . . θ̄p ,

for some functions bk, 1 ≤ k ≤ p. We now let

¯̄πii = π̄ii + εibiω̄i, ¯̄πij = π̄ij , 1 ≤ i 6= j ≤ p .

Dropping bars, the structure equations (14) become

dθ0 ≡ 0, dθi ≡
p∑
j=1

πij ∧ ωj , mod θ0, . . . , θp ,

where

p∑
i=1

εiπii ≡ 0, πij ≡ πji, mod θ0, . . . , θp , (15)

where 1 ≤ i, j ≤ p. We are now ready to compute the reduced characters of (I,Ω) using
(11). We have

s′1 = p, s′2 = p− 1, . . . , s′p−1 = 2, s′p = 0 ,

where the final drop from 2 to 0 is due to the trace condition (15). We thus have

p∑
i=1

is′i =
p(p+ 1)(p+ 2)

6
− p .
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On the other hand, an element (x,Ep) of the Grassmann bundle will be an admissible
integral element of (I,Ω) if and only if

θ0|Ep = 0 , θi|Ep = 0 , (πij −
p∑
k=1

lijkω
k)|Ep = 0 ,

where for 1 ≤ i, j, k ≤ p, and where we have

lijk = ljik = likj ,

p∑
i=1

εiliik = 0 .

The dimension of the solution space of the polar equations of (x,Ep) is thus given by(
p+ 2
p− 1

)
− p =

p(p+ 1)(p+ 2)
6

− p ,

and the system is in involution, with top character s′p−1 = 2. The local Cω solutions are
thus parametrized by 2 arbitrary functions of p− 1 variables, as claimed.

5 Prolongation and the Cartan-Kuranishi Theorem

Roughly speaking, the prolongations of a differential system are the differential systems
obtained by adjoining to the original differential system its differential consequences. The
concept of prolongation tower, which will be defined below, gives an abstract formulation
of the operation of prolongation. A general conjecture of Elie Cartan, [20], proved by
Kuranishi, [36], for a wide class of differential systems, states that an analytic differential
system either becomes involutive after finitely many prolongations, or has no solutions.
This result is known as the Cartan-Kuranishi Theorem. The proof of Cartan’s conjecture
has been given under a different set of hypotheses in the treatise [7]. Our purpose in this
section is to review some of the basic aspects of the prolongation theorem. We assume that
all the manifolds and differential systems under consideration are of class Cω .

The prolongation tower of an exterior differential system with independence condition
(I,Ω) on an n-dimensional manifold M is defined as follows. Let f : Wp → M be
an immersion and let f∗ : Wp → Gp(M) denote the map into the Grassmann bundle
of p-planes in TM determined by f . The Grassmann bundle Gp(M) is endowed with a
canonical exterior differential system C(1) defined by the property that f∗∗C(1) = 0 for any
immersion f : Wp →M . Using affine fiber coordinates (xi, uα, uαi ), 1 ≤ i ≤ p, 1 ≤ α ≤
n, on the Grassmann bundle Gp(M) , the system C(1) is defined as the differential ideal
generated the 1-forms

θα = duα −
p∑
i=1

uαi dx
i . (16)

We choose a component Vp(I) of the sub-variety of Gp(M) defined by the p-dimensional
admissible integral elements of I and assume Vp(I) to be Cω manifold.
Definition 5.1 The first prolongation of I is the exterior differential system I(1) defined
by

I(1) = C(1)|Vp(I) .
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For notational simplicity, we use the notationM1 to denote the Vp(I). We also assume
that the map π1,0 : (M (1), I(1)) → (M, I) is a Cω submersion. The prolongation tower
of I is then defined by induction,

· · · πk+1,k

−−−−→ (M (k), I(k)) πk,k−1

−−−−→ · · · π2,1

−−−−→ (M (1), I(1)) π1,0

−−−−→ (M, I) .

The infinite prolongation (M (∞), I∞) of (M, I) is then defined as the inverse limit of this
tower.

M (∞) := lim←−M
(k), I(∞) =

⋃
k≥0

I(k) .

We now present a statement of the prolongation theorem as given in [7]:
Theorem 5.2 There exists an integer k such that for all l ≥ k, each of the systems
(I(l),Ω(l)) is involutive. Furthermore, if M (k) is empty for some k ≥ 1, then (I,Ω)
has no n-dimensional integral manifolds.

6 A Cartan-Kähler Theorem for C∞ Pfaffian systems

Our objective in this Section is to present the C∞ Cartan-Kähler Theorem which was
obtained by Yang, [48]. A geometric application of this theorem will be presented in
Section 10.

We begin with some algebraic preliminaries, the purpose of which is to define the
concept of an hyperbolic determined involutive symbol. Let B, V and W be real vector
spaces of dimensions t, n and s respectively.
Definition 6.1 A symbol is a surjective homomorphism σ : W ⊗ V ∗ → B∗.

We consider now the flag variety F(V ), whose elements are the complete flags

V1 ⊂ . . . ⊂ Vk ⊂ . . . ⊂ Vn ' V , dimVk = k , 1 ≤ k ≤ n .

By using for 1 ≤ k ≤ n the short exact sequence

0 −−−−→ V ⊥k −−−−→ V ∗
πk−−−−→ V ∗k −−−−→ 0 ,

we can define for 1 ≤ k ≤ n the symbols σk by requiring the following sequence

0 −−−−→ 1⊗ πk(A) −−−−→ W ⊗ V ∗k
σk−−−−→ B∗/σ(W ⊗ V ⊥k ) −−−−→ 0 ,

where

A = kerσ ,

to be exact.
For any symbol σ, we define a string of reduced Cartan characters s′1, . . . , s

′
n by

s′k = S′k − S′k−1 , (17)

where

Sk = dimπk(A) , for 1 ≤ k ≤ n− 1 , Sn = dimA , (18)
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and

S′k = max
F

Sk . (19)

The first prolongation σ(1) of a symbol σ is then defined as the map σ(1) : W ⊗ S2V ∗ →
B ⊗ V ∗ given by

σ(1) = σ ⊗ 1W⊗S2V ∗ .

If we denote by A(1) the kernel of σ(1), then it can be shown [48] that

dimA =
n∑
i=1

s′i , dimA(1) ≤
n∑
i=1

is′i .

This leads to define the notion of an involutive symbol.
Definition 6.2 A symbol σ is said to be involutive if

dimA(1) =
n∑
i=1

is′i .

In order to define the concept of hyperbolicity of a symbol, we introduce the very
important notion of characteristic variety of a symbol. We let VC,WC and BC denote the
complexifications of V,W and B respcetively, and P(VC) denote the complex projective
space associated to VC. For fixed ξ ∈ V ∗ \ {0}, we define σξ to be the map from W
to B∗ which maps w ∈ W to σ(w ⊗ ξ). The characteristic variety Θσ of a symbol σ
is the subvariety of P(V ∗C ) defined by the vanishing of all s by s minors of the matrix
representing σξ in any choice of bases for VC,WC and BC. Hyperbolicity will first be
defined for determined symbols. A symbol σ : W ⊗ V ∗ → B∗ is said to be determined if
dimW = dimB and Θσ 6= P(V ∗C ).
Definition 6.3 A determined symbol σ is said to be hyperbolic if there exists a hyperplane
H ⊂ V and a smooth map r : PH∗ → GL(W ) such that

PH⊥C ∩Θσ = ∅ , (20)

and the map

r(π[τ ])σ−1
τ σξr(πξ)−1 , (21)

is diagonal, where π : PV ∗C /PH⊥ → PH∗ is the canonical projection, where [τ ] ∈ PH⊥
and where ξ ∈ PV ∗C /PH⊥.

A hyperplane H satisfying the conditions (20) and (21) will be called space-like. Fi-
nallly, we are ready to define what it means for a symbol to be involutive hyperbolic.
Definition 6.4 A symbol σ : W ⊗ V ∗ → B∗ is said to be involutive hyperbolic if it is
involutive in the sense of Definition 6.2, and if there exists a flag

V1 ⊂ . . . ⊂ Vk ⊂ . . . ⊂ Vn ' V , dimVk = k , 1 ≤ k ≤ n ,

and decompositions

σ = ⊕ni=1σi , B∗ = ⊕ni=1Wi ,

such that each map πj ◦ σk ◦ πj : Wj ⊗ V ∗k →Wj is a determined hyperbolic symbol for
which Vk is a space-like hyperplane.
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This concludes the algebraic content of this section. We now turn our attention to
differential systems of class C∞. ( Throughout this section, all the manifolds, bundles,
maps and other geometric structures are assumed to be of class C∞.) Let π : E → M
be a fibered manifold with fibers diffeomorphic to an s-dimensional manifold F , and let
B denote a vector bundle over an n-manifold M , of rank t. A quasi-linear differential
operator is a map

P : J1E → π∗1B
∗ ,

which is a bundle map over E. The first prolongation of P is an affine bundle map

p1P : J2E → π∗2J
1B∗ ,

such that

p1P (x, (j2u)(x)) = j1[P (x, (j1u)(x))] .

The local coordinate expressions of P and p1P are easily determined. We have,

p1P(x,u) = P(x,u) + P
(1)
(x,u)

where

P(x,u) =
n∑
i=1

ai(x, u)pi + b(x, u) ,

and

P
(1)
(x,u) =

n∑
i,j=1

s∑
α=1

[aipij +
∂ai

∂uα
pαj + (

∂ai

∂xj
pi +

∂b

∂xj
)]dxj ,

and where we have used the identifications

J1
xB
∗ ' B∗x ⊕B∗x ⊗ T ∗xM ,

J2
(x,u)E ' TuEx ⊗ T ∗xM ⊕ TuEx ⊗ S2T ∗xM .

Given (f,
∑n
i=1 fidx

i) ∈ im p1P , we define

S(x,u)(f) = P−1
(x,u)(f) ,

p1S(x,u)(f,
n∑
i=1

fidx
i) = (p1P )−1(f,

n∑
i=1

fidx
i) .

One shows [48] that

dimS(x,u)(f) =
n∑
i=1

s′i(x, u) ,

and that the projection π2
1 : J2E → J1E induces a map g : p1S(x,u)(f,

∑n
i=1 fidx

i) →
S(x,u)(f) whose fibers are affine subspaces F such that

dimF ≤
n∑
i=1

is′i(x, u) .
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Definition 6.5 A quasi-linear differential operator P : J1E → π∗1B
∗ is said to be involu-

tive if the characters s′i(x, u) are constant in E and the map g is surjective with fibers of
maximal dimension,

dimF =
n∑
i=1

is′i(x, u) .

Quasi-linear differential operators which are involutive hyperbolic are now defined as
follows:
Definition 6.6 A quasi-linear differential operator P : J1E → π∗1B

∗ is said to be invo-
lutive hyperbolic if its symbol σ(x,u) : TuEx ⊗ T ∗xM → B∗x is an involutive hyperbolic
symbol for all (x, u) ∈ E, and if the corresponding splittings and diagonalizing maps can
be chosen to vary smoothly with (x, u) ∈ E.

We now have the following local existence theorem on the local solvability of involutive
hyperbolic quasi-linear differential operators.
Theorem 6.7 Let P : J1E → π∗1B

∗ be an involutive hyperbolic quasi-linear differential
operator, and let f be a C∞ section of B∗ such that for all (x, u) ∈ E, we have

(j1f)(x) ∈ p1P (J1
(x,u)E) .

Then there exist C∞ solutions of the partial differential equation

Pu = f ,

in a sufficiently small neighborhood of any x0 ∈M .

We now show how Theorem 6.7 can be used to obtain a Cartan-Kähler for a certain
class ofC∞ quasi-linear Pfaffian systems. Recall that a Pfaffian system with independence
condition (I,Ω), where

I = {θ1, . . . , θs, dθ1, . . . , dθs},
Ω = ω1 ∧ . . . ∧ ωp,

is quasi-linear if

dθi ≡
l∑

α=1

p∑
b=1

Aiαbπ
α ∧ ωb +

1
2

p∑
a,b=1

Biabω
a ∧ ωb mod θ1, . . . , θs

where π1, . . . , πl, l = n−s−p, are 1-forms such that θ1∧· · ·∧θs∧ω1∧· · ·∧ωp∧· · ·∧
π1 ∧ · · · ∧ πl 6= 0. The symbol of a quasi-linear Pfaffian system is now defined as follows.
Let W ∗ denote the sub-bundle of T ∗M spanned by θ1, . . . , θs, V ∗ denote the sub-bundle
of T ∗M spanned by ω1, . . . , ωp and let B∗ be the quotient bundle defined by

B∗ = W ⊗ V ∗/A ,

whereA denotes the image inW⊗V ∗ of the homomorphism defined by (Aiαb). ( All maps
are assumed to be of constant rank.) The symbol σ of the Pfaffian system (I,Ω) is defined
as the quotient map σ : W ⊗ V ∗ → B∗. It is easily verified that the reduced characters of
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the Pfaffian system (I,Ω) are equal to the reduced characters of its symbol, defined by (17),
(18) and (19). A quasi-linear Pfaffian systems with independence condition (I,Ω) is now
said to be involutive hyperbolic if its symbol is involutive hyperbolic. The Cartan-Kähler
Theorem for quasi-linear Pfaffian systems with independence condition is as follows [48]:
Theorem 6.8 A C∞ quasi-linear Pfaffian systems with independence condition (I,Ω)
on a C∞ manifold has admissible integral manifolds if it has an involutive hyperbolic
prolongation.

7 Characteristic cohomology

The characteristic cohomology theory for exterior differential systems is a powerful gen-
eralization of the classical theory of conservation laws for partial differential equations. It
was defined in a foundational paper by Bryant and Griffiths, [8], and studied in detail in a
number of other papers, including [9], [10], [11], [23], [46]. The work of Vinogradov [45]
on the C-spectral sequence can be thought of as a precursor of this theory, but it is Bryant
and Griffiths who discovered the general formulation of this cohomology theory in the con-
text of exterior differential systems, making full use of the local invariants provided by the
method of equivalence of Cartan, [26], to perform a refined analysis of this cohomology
for various classes of differential systems. Our purpose in this section is to present some of
the basic definitions of the theory, and some general vanishing theorems for characteristic
cohomology of certain general classes of differential systems. More precise theorems on
the structure of the characteristic cohomology for specific classes of differential systems
will be presented in Section 9.

Recall from Section 5 that to any given exterior differential system I on a manifold
M , one can associate a prolongation tower and an infinite prolongation (M (∞), I(∞)). On
M (∞), we define a differential complex (Ī(∞)∗, d̄), where

Ī(∞)∗ := Ω∗(M (∞))/I(∞), d̄ := d mod I(∞) .

Definition 7.1 The characteristic cohomology H̄∗(I) of I is defined as the cohomology
of the differential complex (Ī(∞)∗, d̄).

Consider first the case where I is the empty exterior differential system on M whose
integral manifolds are all the immersions from a manifoldW intoM . The manifoldsM (k)

appearing in the prolongation tower are the sets of all k-jets of immersions of W into M
and the exterior differential system I(∞) endowed with d̄ can be roughly thought of as a
generalization to the context of exterior differential systems of the filtered complex asso-
ciated by vertical grading to the tautological variational bi-complex of a fibered manifold,
[45]. Similarly, the differential complex (Ī(∞)∗, d̄) associated to an exterior diffferential
system can be viewed generalization of the filtered complex associated to the constrained
variational bi-complex of a partial differential equation R(∞) ⊂ J∞(E). One should
therefore expect that there will be some general vanishing theorems for the characteristic
cohomology which will correspond to the generalized Poincaré Lemmas which hold true
for the variational bi-complex. This is indeed the case, [8]:
Theorem 7.2 For the empty exterior differential system on M , we have

H̄q = 0 , 0 < q < n .
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We also have vanishing theorems which depend on the fairly ”coarse” data provided
by the characters of a general involutive Pfaffian system with independence condition [8]:
Theorem 7.3 Let (I,Ω) be an involutive Pfaffian system with independence condition
exterior differential system, with reduced characters s′i satisfying

s′0 = s′1 = · · · = s′p−l−1 = 0,

where p denotes the dimension of the admissible integral manifolds of maximal dimension.
Then we have

H̄q(I(∞)) = 0, 0 < q < p− l.

For l = 1, one recovers Vinogradov’s ”two line” theorem, [45]. We should point out
that V. Itskov, [31], has developed an equivariant version of the characteristic cohomology
theory for exterior differential systems with symmetry.

Beyond these general vanishing theorems, there are a number of more specific theorems
dealing with the characteristic cohomology of exterior differential systems associated to
differential equations, [9], [10], [11], [12], [23], [46]. A very attractive theme in these
works is that properties such as the existence of equations with infinitely many non-trivial
conservation laws ( corresponding to non-zero cohomology classes in their characteristic
cohomology ) can be detected through the behavior of local invariants computed by means
of Cartan’s method of equivalence [26].

8 Topological obstructions

Even though the results reviewed in the preceding sections were stated for differential sys-
tems defined on manifolds, they are still largely local in nature. It is therefore natural
to ask whether there are topological obstructions the global existence of exterior differ-
ential systems of a given kind. This is a broad and difficult question, which touches on
several important research areas, notably the classification of foliated, contact and sym-
plectic manifolds. Our goal in this section is to review some of the elementary classical
results concerning the topological obstructions the existence of completely integrable Pfaf-
fian systems, or certain special Pfaffian systems of codimension two. These obstructions
are obtained through the classical tool provided by Chern-Weil theory, [22].

The topological implications of the global existence of completely integrable systems
were brought to light by Bott, [3], in the context of his work on foliations. It is indeed
a remarkable fact that the existence of a globally defined completely integrable system
on a compact manifold puts topological restrictions expressible in terms of the vanishing
of certain Pontrjagin classes in the cohomology ring of Mn. An n-dimensional manifold
Mn admitting an (n − r)-dimensional foliation F will by definition be endowed with a
completely integrable Pfaffian system I of dimension r. The tangent space to the leaf
Ln−r of F through a point x of Mn is given by

TxLn−r = I⊥x .

Bott’s vanishing theorem, [3], reads as follows:
Theorem 8.1 If I is an r-dimensional completely integrable Pfaffian system on a compact
n-manifold Mn, then

pk(I) = 0, for all k > 2r . (22)
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Equivalently, the vanishing condition (22) can be stated in terms of the quotient bundle
TMn/I

⊥ as

pk(TMn/I
⊥) = 0, for all k > 2r .

A proof of Theorem 8.1 is given by Chern in [21]. One first observes that the existence of
a globally defined sub-bundle I of T ∗Mn gives rise to a reduction of the coframe bundle
of Mn to a sub-bundle whose structure group G consists of block-triangular matrices. One
then defines an adapted connection taking values in the differential ideal I. Its curvature
2-form Ω will also take values in I and therefore any polynomial of degree l > n− k in Ω
will be identically zero.

It is natural to ask if obstructions similar to the ones given in Bott’s Theorem exist for
Pfaffian systems which are not completely integrable. A result of this type was obtained
by Buemi [15].
Theorem 8.2 If I is an r-dimensional Pfaffian system of type (1, . . . , 1, 2) on a compact
(r + 2)-manifold Mr+2, then

pk(Mr+2) = 0, for all k ≥ 0 .

The method of proof of Theorem 8.2 is similar to the one we sketched for Theorem 8.1,
the point being that in the case of Theorem 8.2, the structure group reduces to a discrete
group of diagonal matrices with diagonal entries being equal to ±1.
Example 8.3 It is important to observe that the vanishing Theorem 8.2 is not merely a
consequence of the fact that Mn+2 admits a 2-plane field whose annihilator splits into
a direct sum of line bundles. This is nicely illustrated by the following example, [15].
Consider the complex surface M4 = S2 ×M2, where M2 is a Riemann surface of genus
2. The Euler characteristic χ(M) is equal to −4 and the index I(M4) of the intersection
form of M equals 0. If we blow up M at four distinct points, we obtain a complex surface
M̃4 with χ(M̃4) = 0 and I(M̃4) 6= 0. By the Hirzebruch signature formula, it follows
that p1(M̃4) 6= 0. Since χ(M̃4) = 0, we know that M̃ will admit a non-vanishing vector
field X . Using the complex structure J of M̃4, we obtain another vector field Y = J(X),
such that X ∧ Y 6= 0. Choose now a Riemannian metric on M̃4 and let E be the 2-plane
field orthogonal to D relative to this metric. The annihilator of the distribution E in T ∗M̃4

is a sub-bundle which is isomorphic to D and therefore splits into a direct sum of two line
bundles. Yet, we have p1(M̃4) 6= 0.

It is a remarkable fact that similar topological obstructions can be obtained for any
Pfaffian system, just based on its class. Martinet [39] proved the following:
Theorem 8.4 If I is a Pfaffian system of class less or equal than r on a compact n-manifold
Mn, then

pk(Mn) = 0, for all k > 2r .

9 Applications to second-order scalar hyperbolic partial differential
equations in the plane

In this section, we present some more applications of the existence and normal form results
of Section 3 to local normal form results, specifically to the case of the contact geometry
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of hyperbolic second-order partial differential equations in the plane. These results are
elementary in nature since they do not call on a complete knowledge of the local invariants
of this class of systems. The results of this section are taken from [27]. We refer the reader
to [10], [11], [1], [28] for further results on hyperbolic systems, including the computation
of the characteristic cohomology and a study of Darboux integrability.

Recall from Example 2.8 that to any second-order partial differential equation

F (x, y, u, ux, uy, uxx, uxy, uyy) = 0 , (23)

one associates the Pfaffian system

I = { θ1, θ2, θ3, dθ1, dθ2, dθ3, dF} ,

where

θ1 = du− pdx− qdy , θ2 = dp− rdx− sdy , θ3 = dq − sdx− tdy ,

We assume the partial differential equation (23) to be hyperbolic, meaning that

FuxxFuyy −
1
4
F 2
uxy < 0 , (24)

on the locus F = 0 of R8. The existence theorems of Section 3 can be applied to recover
some classical normal form results for equations of the form (23) under the pseudo-group
of contact transformations. Instead of working onR8, we work instead on the subsetM7 of
R8 defined by (23), which we assume to be a C∞ hypersurface, and consider the Pfaffian
system generated by the pull-backs of the 1-forms θ1, θ2, θ3 to M7. We will commit a
slight abuse of notation and also denote this Pfaffian system by I. We first recall from [27]
that a local coframe can be chosen on M7 so that the structure equations of I take a simple
form:
Proposition 9.1 Locally, there exists a coframe (ω1, π2, π3, ω6, ω7) on M7 such that I =
{ω1, π2, π3} and

dω1 ≡ 0 , dπ2 ≡ ω4 ∧ ω5 , dπ3 ≡ ω6 ∧ ω7 ,

where the congruences are modulo {ω1, π2, π3}.
The Pfaffian subsystems M1 = {ω1, π2} and M2 = {ω1, π3} are invariants of the

contact geometry of (23) arising from the hyperbolicity condition (24). The following
result gives a characterization of Monge-Ampère equations, [27]:
Proposition 9.2 A hyperbolic equation

F (x, y, u, ux, uy, uxx, uxy, uyy) = 0 ,

is equivalent to a hyperbolic equation of Monge-Ampère form

a(uxxuyy − u2
xy) + buxx + 2cuxy + duyy = 0 ,

where a, b, c, d are functions of (x, y, u, ux, uy), if and only ifM1 andM2 are both of class
six.
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We define the Mi-characteristic systems C(I, dMi) of I by

C(I, dMi) = Char(I, dMi)⊥ , i = 1, 2 ,

where

Char(I, dMi) = {X ∈ Γ(TM7) |X ∈ I⊥ , XcdMi ⊂ I} .

One can obtain some interesting normal form results for hyperbolic Monge-Ampère equa-
tions based on the derived flag structure of the characteristic systems C(I, dMi) , i = 1, 2.
The following result, due in its original form to Lie, [38], gives a characterization of the
contact orbit of the wave equation uxy = 0.
Theorem 9.3 A hyperbolic equation

F (x, y, u, ux, uy, uxx, uxy, uyy) = 0 ,

is contact equivalent to the wave equation

uxy = 0 ,

if and only if each of the Mi-characteristic systems is of class six and has a completely
integrable second derived system, that is

C(I, dM1)(2) = C(I, dM1)(3) , C(I, dM2)(2) = C(I, dM2)(3) .

A proof of Lie’s theorem based on the constructive proof of Theorem 3.8 is given in
[27].
Corollary 9.4 A hyperbolic equation

uxy = f(x, y, u, ux, uy) = 0 ,

is contact equivalent to the wave equation uxy = 0 if and only if f satisfies

fuxux = 0 , −fuxfuy + fuxuy − fu + uxfuxu + fuxy = 0 ,

and

fuyuy = 0 , −fuxfuy + fuxuy − fu + uyfuyu + fuyy = 0 .

10 Some applications to differential geometry

The theory of exterior differential systems has numerous applications to classical differen-
tial geometry, many of which were beautifully presented by Cartan himself in [20]. The
book [32] also contains a number of very nice elementary geometrical examples. There
are of course very sophisticated and important applications of exterior differential systems
in differential geometry, most notably to the rigidity of isometric embeddings, exceptional
holonomy, [4], Bochner-Kähler metrics, [5], minimal submanifolds, [37], calibrated sub-
manifolds, [41] and pseudoholomorphic curves, [40]. We will not consider these topics
here, and focus instead on a few classical examples, which will serve to illustrate how the
Cartan-Kähler theorem and the involutivity test can be applied in concrete situations.
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10.1 Cartan submanifolds

The first class of examples we will consider are the class of Cartan submanifolds:
Definition 10.1 A Riemannian manifold (Mn, g) isometrically immersed in P2n is said
to be a Cartan submanifold if the second-order osculating space of Mn is everywhere 2n-
dimensional, and if near every point x ∈ Mn there exist local coordinates (x1, . . . , xn)
such that the net of coordinate curves is conjugate.

This means that if X : U ⊂ Rn → R2n is the local coordinate expression of such an
immersion, then

Xij =
n∑
k=1

ΓkijXk +
n∑
α=1

ΩαijNα, 1 ≤ i, j ≤ n ,

where the Nα are normal vector fields, and where

Ωαij = 0, 1 ≤ i 6= j ≤ n, 1 ≤ α ≤ n .

Cartan submanifolds are at the basis of the higher-dimensional generalization of the trans-
formation theory of Laplace for linear hyperbolic second-order equations, [34]. We now
give two examples of Cartan submanifolds.
Example 10.2 The Clifford torus Tn ⊂ R2n, given by

X(x1, . . . , xn) = (cosx1, sinx1, . . . , cosxn, sinxn) ,

is a Cartan submanifold.
Example 10.3 Let c3, . . . , cn be real numbers such that

n∑
j=3

c2j < 1, cj 6= 0 ,

and let

λ := (1−
n∑
j=3

c2j )
1
2 ,

and let r and µ be non-zero real numbers such that r2 = µ2 + 1. The toroidal submanifold
of S2n−1 ⊂ R2n given by, [42],

X = (λf0, λf1, λf2 cosx2, λf2 sinx2, c3 cosx3, c3 sinx3, . . . , cn cosxn, cn sinxn) ,

where

0 < x1 <
π

2µ
, 0 < xj < 2π, 2 ≤ j ≤ n ,

and

f0 =
µ

r
sin rx1 cosµx1 − cos rx1 sinµx1 ,
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f1 =
µ

r
cos rx1 cosµx1 − sin rx1 sinµx1 ,

f2 = −1
r

cosµx1 ,

is a Cartan submanifold.
A very natural question is to determine the degree of generality of the set of Cartan

submanifolds, given the dimension of the ambient space. This question was studied by
Elie Cartan, [19] by means of the Cartan-Kähler theorem and the involutivity test for exte-
rior differential systems. We now state Cartan’s theorem for submanifolds of P2n(R) and
sketch its proof.
Theorem 10.4 Locally, the set of Cartan submanifolds X : U ⊂ Rn → P2n of class Cω

is parametrized by n(n− 1) functions of 2 variables.

Proof. We now sketch the proof. The starting point is given by the structure equations for
the bundle of projective frames in P2n, which are given by

dA = ω00A + ω1A1 + · · ·+ ω2nA2n,

dAi = ωi0A + ωi1A1 + · · ·+ ωi2nA2n,

dωi = ω00 ∧ ωi +
2n∑
j=1

ωj ∧ ωji,

dωij = ωi0 ∧ ωj +
2n∑
k=1

ωik ∧ ωkj ,

where 1 ≤ i, j ≤ 2n. The projective frame (A,A1, . . . ,A2n) to X, can be chosen in such
a way that at every point of the image of X, we have

ωn+1 = · · · = ω2n = 0 , ωiα =
n∑
j=1

Ωα−nij ωj ,

where 1 ≤ i ≤ n, n+ 1 ≤ α ≤ 2n, and

Ωα−nij = Ωα−nji .

We now consider the pencil of quadratic differential forms

Ω =
2n∑

α=n+1

λαΩα ,

where

Ωα =
n∑
i=1

ωi ⊗ ωiα =
n∑

i,j=1

Ωα−nij ωi ⊗ ωj , n+ 1 ≤ α ≤ 2n .

We are going to construct an exterior differential system on the the bundle of projective
frames, whose integral manifolds will correspond to the immersions X such that

Ω =
n∑
i=1

νi ω
2
i . (25)
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The projective frame (A,A1, . . . ,A2n) can be adapted further, in such a way that the
condition (25) reduces to

Ωn+i = ω2
i ,

and the problem thus reduces to constructing the integral manifolds of the Pfaffian system
with independence condition on the bundle of projective frames generated by the 1-forms

ωα, n+ 1 ≤ α ≤ 2n,
ωi,n+i − ωi, 1 ≤ i ≤ n,
ωj,n+i, 1 ≤ i 6= j ≤ n,

with independence condition given by ω1 ∧ · · · ∧ ωn. One verifies that this system is in
involution, with reduced Cartan characters given by

s′1 = 0, s′2 = n(n− 1), s′2+l = 0.

The conclusion follows by applying Cartan’s involutivity test, [20], [7].

10.2 Orthogonal coordinates for Riemannian metrics

It is a classical theorem of Darboux that given a three-dimensional Riemannian metric
of class Cω , one can for any point find an open coordinate neighborhood in which the
metric is diagonal. Cartan’s treatise [20] gives a proof of this result using the Cartan-
Kähler Theorem. We show how this is done, following the presentation of [7]. We let
(Mn, g) be a Riemannian manifold consider on the orthonormal frame bundle F(Mn) a
coframe ωi , ωij , 1 ≤ i, j,≤ n satisfying the structure equations defining the Levi-Civitá
connection and the Riemann curvature of g,

dωi = −
n∑
j=1

ωij ∧ ωj ,

dωij = −
n∑
k=1

ωik ∧ ωkj +
1
2
Rijklωk ∧ ωl .

On F(Mn), we consider the exterior differential system with independence condition
(I,Ω), where I is the differential ideal generated by the three 3-forms

ωi ∧ dωi , 1 ≤ i ≤ 3 ,

with independence condition given by

Ω = ω1 ∧ . . . ∧ ωn .

Every admissible integral manifoldW of (I,Ω) is locally a section s of π : F(Mn)→Mn

such that the 1-forms ηi = s∗ωi satisfy

ηi ∧ dηi = 0 , 1 ≤ i ≤ 3 .
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By the Frobenius theorem 3.1, any such a section will give rise in its domain of definition
to local coordinates (u1, . . . , un) in which

ds2 =
n∑
i=1

hi(u1, . . . , un) (dui)2 ,

that is an orthogonal local coordinate system. The following theorem asserts that such
sections always exist when n = 3:
Theorem 10.5 Let (M3, g) be a three-dimensional Riemannian metric of class Cω. For
any x ∈ M3, there exists an open coordinate neighborhood with local coordinates
(u1, . . . , u3) in which the metric is diagonal, that is

ds2 =
3∑
i=1

hi(u1, u2, u3) (dui)2 .

Using the structure equations, it is easy to characterize admissible the n-dimensional
integral elements of (I,Ω). We have,
Lemma 10.6 An n-dimensional subspace E of TzF(Mn) defines an admissible n-
dimensional integral element of (I,Ω) based at z ∈ F(Mn) if an only if it its annihilator
is given by equations of the form

ωij + lijωi − ljiωj = 0 1 ≤ i 6= j ≤ n ,

where lij , 1 ≤ i 6= j ≤ n, are n2 − n arbitrary real constants.

It follows that the set of admissible integral elements of (I,Ω) based at z ∈ F(Mn)
is an analytic manifold of dimension n2 − n. Therefore Vn(I,Ω) is an analytic manifold
whose dimension is given by

dimVn(I,Ω) =
n(n+ 1)

2
+ n2 − n =

1
2

(3n2 − n) .

The codimension c of Vn(I,Ω) in the Grassmann bundle Gn(F(Mn)) is thus given by

c =
1
2

((n− 2)(n− 1)n) . (26)

Lemma 10.7 The system (I,Ω) is in involution for n = 3.

Proof. Again, we sketch the proof. By Theorem 4.8, it suffices to show that there exists a
flag

{0} ⊂ E1 ⊂ E2 ⊂ E3 ,

which is ordinary, and by Theorem 4.9 and (26), this is equivalent to showing that the sum
of the codimensions (c0, c1, c2) satisfies the equality stated in the involutivity criterion (9),
that is,

c0 + c1 + c2 = 3 ,
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or simply that c2 = 3, since I does not contain any forms of degree less than 3. This is
easily done by choosing E2 to be a 2-plane on which

ω2 ∧ ω3 6= 0 , ω21 ∧ ω3 6= 0 , ω12 ∧ ω2 6= 0 .

On the other hand, it is not too hard to see that (I,Ω) does not contain any ordinary
integral elements for n ≥ 4. Indeed, if we consider a flag

E0 ⊂ E1 ⊂ E2 ⊂ · · · ⊂ Ep−1 ⊂ Ep ,

we have c0 = c1 = 0 and we obtain the bounds

c2 ≤ n ck ≤
1
2
n(n− 1) ,

on the codimensions, so that

n−1∑
i=0

ci ≤
1
2
n(n2 − 4n+ 5).

But we have

codimV(I,Ω) =
1
2
n(n2 − 3n+ 2)

so that the inequality (8) is always strict for n ≥ 4, as claimed. We conclude by remarking
that Theorem 10.5 is also valid for C∞ metrics, [24].
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[19] E. Cartan: Sur les variétés à courbure constante d’un espace euclidien ou non-
euclidien Bull. Soc. Math. France 77 (1919) 125–160
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Preface

Having in mind the methods of algebraic geometry, A. Weil introduced an infinitely near
point on a smooth manifold M as an algebra homomorphism of the algebra C∞(M,R) of
smooth functions on M into a local algebra A, [23]. Nowadays A is called Weil algebra
and the space TAM of the corresponding near points on M is said to be a Weil bundle.
About 1985, it was deduced that the product preserving bundle functors on the category
of all smooth manifolds Mf are just the Weil functors, see [14] or Section 2.6 below.
This result clarified that Weil bundles should be a good instrument for differential geom-
etry. In this connection, the so-called covariant approach to Weil bundles was developed,
[14]. Under this approach, TAM is interpreted as a generalization of the bundle T rkM of
(k, r)-velocities introduced by C. Ehresmann in the framework of his jet theory. So the
iteration T sl T

r
k of two classical velocities functors is the simplest new example of a Weil

functor. In 1999, the fiber product preserving bundle functors on the category FMm of
fibered manifolds with m-dimensional bases and fibered manifold morphisms with local
diffeomorphisms as base maps were also described in terms of Weil algebras, [15]. This
clarified that even these functors can be viewed as a reasonable generalization of various
types of jet bundles.

In this paper we treat systematically the covariant approach and we present the most
interesting geometric results deduced in this way. We aim to differential geometry and
its applications in analysis and mathematical physics. So we start with a rather detailed
presentation of the algebraic properties of Weil algebras in Section 1. In particular, every
Weil algebra of width k and order r is expressed as a factor algebra of the algebra Drk of
r-jets of smooth functions on Rk at 0. Our definition of Weil bundle TAM in Section 2
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is of “practical” character: if A is a Weil (k, r)-algebra, then TAM can be viewed as a
certain factor space of the velocities bundle T rkM . An important theoretical result reads
that the natural transformations TA1M → TA2M of two Weil bundles are in bijection with
algebra homomorphisms µ : A1 → A2. Under our approach, each µ can be interpreted as
a kind of reparametrization. Even this is suitable for applications. In 2.11 we construct a
canonical exchange isomorphism κAM : TATM → TTAM that can be used for a simple
construction of flow prolongations of vector fields. In 2.16 we clarify that the product
preserving bundle functors on the category FM of all fibered manifolds are in bijection
with the Weil algebra homomorphisms. The simplest example of these functors are the
fiber velocities bundles described in 2.17.

Section 3 is devoted to concrete geometric problems related with TA-prolongations.
First we deduce that each a ∈ A determines a tensor field of type (1, 1) on TAM . Then
we discuss TA-prolongations of Lie groups, their actions, principal and associated bundles.
Next we show that TA-prolongation preserves the Frölicher-Nijenhuis bracket of tangent
valued forms. That is why we use the tangent valued forms as one of the approaches to
connections in 3.11. In particular, this yields a general formula for the curvature of the
TA-induced connection and implies some interesting properties of an original concept of
a-torsion, a ∈ A. We also discuss a few examples demostrating that the use of the algebra
multiplication is very convenient for concrete evaluations.

In Section 4 we study a fiber product preserving bundle functor F on the category
FMm. The basic examples are the r-th jet prolongation, the r-th vertical jet prolonga-
tion, the vertical Weil functor and their iterations. The iteration of jet functors leads to
nonholonomic jets, whose composition is described in 4.2. The construction of product
fibered manifolds is a functor i :Mfm ×Mf → FMm, whereMfm is the category of
m-dimensional manifolds and local diffeomorphisms. If F is of base order r, then F ◦ i is
characterized by a Weil algebraA and a group homomorphismH : Grm → AutA of the r-
th jet group in dimensionm into the group of all algebra automorphisms ofA. Theorem 4.7
reads that the original functor F is identified with a triple (A,H, t), where t : Drm → A is
an equivariant algebra homomorphism. For every fibered manifold Y →M , m = dimM ,
FY is expressed in the form of a fiber bundle associated to the r-th order frame bundle of
M . Then we describe the natural transformations and iterations of such functors. In 4.11
we introduce the general concept of r-th order jet functor as a suitable subfunctor of the
nonholonomic one and we characterize it in terms of Weil algebras.

Section 5 is devoted to some applications of Theorem 4.7. In 5.2 we introduce an anal-
ogy ψFY of the flow natural exchange κAM from the manifold case, but the construction of
ψFY is much more sophisticated. Then we show how ψFY can be applied to F -prolongations
of projectable tangent valued forms, the connections being a special case. In 5.7 we gen-
eralize the classical theory of jet prolongations of associated fiber bundles to the case of
arbitrary F . We find remarkable that F -prolongation of Lie groupoids, studied in 5.8, is
essentially based on the expression of FY in the form of an associated bundle from 4.7.
Finally, we outline in 5.10 how our velocity-like approach to Weil bundles can be modified
to the functional bundle of all smooth maps between the individual fibers of two fibered
manifolds over the same base.

Except Section 5.10, we consider the classical smooth manifolds and maps, i.e. all
manifolds are finite dimensional and smooth means C∞-differentiable. All manifolds are
assumed to be Hausdorff and separable, [14]. A bundle functor F on the category Mf
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of all smooth manifolds and all smooth maps transforms every manifold M into a fibered
manifold πM : FM →M and every map f : M1 →M2 into a fibered manifold morphism
Ff : FM1 → FM2 over f . Further, F is assumed to have the localization property: if
iU : U ↪→ M is the injection of an open subset, then FU = π−1

M (U) ⊂ FM and FiU is
the injection of π−1

M (U), [14]. We shall consider the bundle functors also on the following
categories:
Mfm ⊂Mf - m-dimensional manifolds and local diffeomorphisms,
FM - all fibered manifolds and their morphisms,
FMm ⊂ FM - fibered manifolds with m-dimensional bases and local diffeomor-

phisms as base maps.
The author acknowledges M. Doupovec, M. Kureš and P. Vašı́k for reading the

manuscript and for several useful comments.
The preparation of this part of the book was supported by the Ministry of Education of

Czech Republic under the Research Project MSM 0021622409 and by the Grant Agency
of Czech Republic under the Grant 201/05/0523.

1 Weil algebras

1.1 Algebras

An algebra is a vector space V together with a bilinear map f : V × V → V , which is
called algebra multiplication. We write f(x, y) = xy. The bilinearity of f implies

ox = o , xo = o , x ∈ V, o = the zero vector of V .

Let (V , f ) be another algebra. An algebra homomorphism µ : (V, f)→ (V , f) is a linear
map µ : V → V preserving the multiplications. In what follows all algebras are assumed
to be both commutative and associative.

An ideal I ⊂ V is a linear subspace such that

xa ∈ I for all x ∈ I, a ∈ V .

For every subset S ⊂ V , we denote by 〈S〉 the ideal generated by S, i.e. the smallest
ideal in V containing S. The factor vector space V/I is an algebra with respect to the
multiplication

(a+ I) (b+ I) = ab+ I .

On the other hand, the kernel of every algebra homomorphism is an ideal.
An element a ∈ V is said to be nilpotent, if an = o for some integer n. It is easy to see

that the set N of all nilpotent elements of V is an ideal.
A unit of V is an element e 6= o satisfying ex = x for all x ∈ V . If the unit exists, it

is unique. An algebra with unit is said to be unital. The unit defines an injection R ↪→ V ,
c 7→ ce. In this case, we write R ⊂ V and we identify e with 1 ∈ R and the zero vector o
with 0 ∈ R. The homomorphisms of unital algebras V → V are assumed to transform the
unit of V into the unit of V .
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1.2 Weil algebras

The following concept was called local algebra in the original paper by A. Weil, [23].
Definition A Weil algebra A is a finite dimensional, commutative, associative and unital
algebra of the form

A = R×N ,

where N is the ideal of all nilpotent elements of A.
In particular, R is a trivial Weil algebra with N = 0. Let A = R×N be another Weil

algebra and µ : A → A be a homomorphism. Then the restriction and corestriction of µ
to R ⊂ A and R ⊂ A is the identity and µ transforms N into N . The zero homomor-
phism O : A → A maps N into 0 ∈ A. We write Hom(A,A) for the set of all algebra
homomorphisms of A into A. An ideal I ⊂ A is assumed to be different from A, so that
I ⊂ N .

1.3 The width and the order

In general, for a linear subspace W ⊂ V we define

Wn = {a1 . . . an + · · ·+ b1 . . . bn; a1, . . . , an, . . . , b1, . . . , bn ∈W} ,

i.e. the elements of Wn are finite sums of the products of n elements of W .
Since A = R×N is finite dimensional, there exists an integer r such that Nr+1 = 0.

The smallest r with this property is called the order ordA of A. (A. Weil used the term
“depth”, [23].) On the other hand, the dimension wA of the vector space N/N2 is said to
be the width ofA. A Weil algebra of width k and order r will be called Weil (k, r)-algebra.

Every algebra homomorphism µ : A→ A induces a linear map

µ̃ : N/N2 → N/N
2
, µ̃(a+N2) = µ(a) +N

2
. (1)

Clearly, if B is another Weil algebra and ν : A → B is an algebra homomorphism, then
ν̃ ◦ µ = ν̃ ◦ µ̃.

1.4 The algebra Drk
Let R[x1, . . . , xk] be the algebra of all polynomials in k undetermined. The simplest ex-
ample of a Weil algebra is

Drk = R[x1, . . . , xk]/〈x1, . . . , xk〉r+1 . (2)

As a vector space, Drk is the set of all polynomials of degree at most r in k undetermined
with the standard addition and multiplication by real scalars. The product of P , Q ∈ Drk
is the “truncated” one: we multiply P and Q as polynomials and we neglect the terms of
degree higher than r. Clearly, ord(Drk) = r and w(Drk) = k.

We shall writeNr
k for the nilpotent part ofDrk. The elements ofNr

k are the polynomials
without absolute term.

In particular, D1
1 is the classical algebra D of dual (or Study) numbers. Its elements can

be written as a+ be, a, b ∈ R, with e satisfying e2 = 0.
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1.5 A as a factor algebra

The following assertion gives a rather concrete description of Weil algebras.
Proposition Every Weil algebra A of order ≤ r and of width k is a factor algebra of Drk.

Proof Choose a1, . . . , ak ∈ N such that

a1 +N2, . . . , ak +N2 (3)

is a basis of the vector space N/N2. Define π : Drk → A, π(P ) = P (a1, . . . , ak). First
we deduce that π is a homomorphism, i.e. (PQ)(a1, . . . , ak)
= P (a1, . . . , ak)Q(a1, . . . , ak). Indeed, PQ on the left hand side is the product in Drk,
while P (a1, . . . , ak)Q(a1, . . . , ak) on the right hand side is the standard product of poly-
nomials in a1, . . . , ak. But the condition Nr+1 = 0 suppresses the terms of degree > r.

It remains to show that π is surjective. Since (3) is a basis, for every a ∈ N we have

a+N2 = c1(a1 +N2) + · · ·+ ck(ak +N2) , c1, . . . , ck ∈ R ,

i.e. a− c1a1 − · · · − ckak = n1 ∈ N2. One verifies directly that the elements aiaj +N3

generate linearly N2/N3, so that there exist cij ∈ R such that

n1 =
k∑

i,j=1

cijaiaj + n2 , n2 ∈ N3 .

In the (l − 1)-st step of such procedure, we obtain

nl−1 =
k∑

i1,...,il=1

ci1...ilai1 . . . ail + nl , nl ∈ N l+1 .

But Nr+1 = 0, so that after r steps we have

a =
k∑
i=1

ciai + · · ·+
k∑

i1,...,ir=1

ci1...irai1 . . . air .

The c’s determine a polynomial P ∈ Nr
k satisfying a = P (a1, . . . , ak).

This proof yields directly the following assertion. Every Weil (k, r)-algebra A is a
factor algebra

A = R[x1, . . . , xk]/I , (4)

where I is an ideal satisfying 〈x1, . . . , xk〉2 ⊃ I ⊃ 〈x1, . . . , xk〉r+1 with minimal r. We
write π : R[x1, . . . , xk]→ A for the factor projection.

1.6 Reparametrizations

We shall use heavily the following interpretation ofDrk in terms of jets. By (2), the elements
of Drk are r-jets of functions on Rk at 0, i.e. Drk = Jr0 (Rk,R). The addition in Drk, the
multiplication by reals and the multiplication in Drk are expressed by the formulae

jr0γ + jr0δ = jr0(γ + δ) , cjr0γ = jr0(cγ) , (jr0γ)(jr0δ) = jr0(γδ) ,
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γ, δ : Rk → R, c ∈ R.
We denote the composition of jets by the same symbol ◦ as the composition of maps.
Every r-jet X ∈ Jr0 (Rl,Rk)0 induces an algebra homomorphism Drk → Drl by

Y → Y ◦X , Y ∈ Drk = Jr0 (Rk,R) . (5)

Geometrically, (5) is a reparametrization of the elements of Drk.
Proposition We have Hom(Drk,Drl ) = Jr0 (Rl,Rk)0.

Proof Let µ : Drk → Drl be an algebra homomorphism. Then µ(xi) = Pi ∈ Nr
l for every

i = 1, . . . , k. Hence P = (P1, . . . , Pk) is a k-tuple of polynomials of degree at most r
without the absolute term in l undetermined. This defines an r-jet P ∈ Jr0 (Rl,Rk)0. By
the definition of jet composition, µ(Y ) = Y ◦ P for all Y ∈ Drk.

1.7 Supplement to Proposition 1.5

Now we can prove
Proposition Let A be a Weil (k, r)-algebra and π, % : Drk → A be two surjective algebra
homomorphisms. Then there is an algebra isomorphism σ : Drk → Drk satisfying π = %◦σ.

Proof Write ai = π(xi) and choose some Pi ∈ Drk satisfying %(Pi) = ai. Consider the
homomorphism σ : Drk → Drk transforming xi into Pi. Then %

(
σ(xi)

)
= π(xi), so that

π = % ◦ σ. Consider the induced maps π̃, %̃ : Nr
k/(N

r
k )2 → N/N2, σ̃ : Nr

k/(N
r
k )2 →

Nr
k/(N

r
k )2 from 1.3. Both π̃ and %̃ are linear isomorphisms by the dimension argument,

so σ̃ is too. But σ is determined by a reparametrization Y 7→ Y ◦X . One verifies directly
that the invertibility of σ̃ is equivalent to the fact that the linear map corresponding to
the underlying 1-jet of X is invertible. Hence X is an invertible r-jet, so that σ is an
isomorphism.

1.8 Algebra homomorphisms

Let A and B be two Weil algebras with k = wA, l = wB, r = max(ordA, ordB)
and µ : A → B be an algebra homomorphism. Consider two surjective homomorphisms
π : Drk → A and % : Drl → B. Analogously to 1.7, one deduces there is an algebra
homomorphism σ : Drk → Drl such that the following diagram commutes

Drk
σ //

π

��

Drl
%

��
A

µ // B

(6)

An element X ∈ Jr0 (Rl,Rk)0 such that (6) with σ = X commutes will be called µ-
admissible.

Let A be expressed by (4) and Ph(x1, . . . , xk) be some generators of ideal I , h =
1, . . . , s. To determine all algebra homomorphisms A→ B, we first consider an arbitrary
k-tuple bi of elements in the nilpotent part of B to be the images of π(xi). Then the
rule bi = µ

(
π(xi)

)
generates an algebra homomorphism µ : A → B, if and only if

Ph(b1, . . . , bk) = 0 for all h. An example can be found in 1.12 below.
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1.9 Automorphisms

The group AutA of all algebra automorphisms of A is a closed subgroup in the group
GL(A) of all linear automorphisms of A, so a Lie group. By 1.6, the group Aut (Drk)
coincides with the jet group Grk = inv Jr0 (Rk,Rk)0 of all invertible r-jets of Rk into Rk
with source and target 0.

A derivation of A is a linear map f : A → A satisfying f(a1a2) = f(a1)a2 +
a1f(a2) for all a1, a2 ∈ A. According to the general theory, the Lie algebra AutA of
AutA coincides with the Lie algebra DerA of all derivations of A.

1.10 Sums

For two Weil algebras A = R×NA, B = R×NB , the vector space

A⊕B = R×NA ×NB
is also a Weil algebra with respect to the multiplication

(c1, a1, b1)(c2, a2, b2) = (c1c2, c1a2 + c2a1 + a1a2, c1b2 + c2b1 + b1b2) ,

ci ∈ R, ai ∈ NA, bi ∈ NB , i = 1, 2. One can say that A⊕B is the sum of A and B.
If A is expressed by (4) and B analogously by

R[y1, . . . , yl]/J , (7)

then 〈I, J, xiyp〉, i = 1, . . . , k, p = 1, . . . , l is an ideal in R[x1, . . . , xk, y1, . . . , yl] and we
have

A⊕B = R[x1, . . . , yl]/〈I, J, xiyp〉 .

In particular, this implies

w(A⊕B) = wA+ wB , ord(A⊕B) = max(ordA, ordB) .

1.11 Tensor products

In general, the tensor product V1⊗V2 of two algebras (V1, f1) and (V2, f2) is also an alge-
bra, whose multiplication f is the tensor product of f1 and f2. Thus, for the decomposable
tensors v1 ⊗ v2, v1 ⊗ v2, we have

f(v1 ⊗ v2, v1 ⊗ v2) = f1(v1, v1)⊗ f2(v2, v2) .

In the case of two Weil algebras A = R×NA, B = R×NB , A⊗B is also a Weil algebra
with the nilpotent part NA ×NB ×NA ⊗NB . If A is expressed by (4) and B by (7), then
〈I, J〉 is an ideal in R[x1, . . . , xk, y1, . . . , yl] and we have

A⊗B = R[x1, . . . , yl]/〈I, J〉 .

In particular, this implies,

w(A⊗B) = wA+ wB , ord(A⊗B) = ordA+ ordB .

For instance, D⊗ D is of the form

R[x, y]/〈x2, y2〉 .
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1.12 Example

We determine all algebra homomorphisms µ : D⊗ D→ D⊗ D. Write

µ(x) = c1x+ c2y + c3xy , µ(y) = c4x+ c5y + c6xy .

The conditions
(
µ(x)

)2 = 0 and
(
µ(y)

)2 = 0 imply c1c2 = 0 and c4c5 = 0. By 1.8, all
algebra homomorphisms D⊗ D→ D⊗ D form the following 4 four-parameter families

c1 = 0 = c4 , c2 = 0 = c4 , c1 = 0 = c5 , c2 = 0 = c5

with arbitrary c3 and c6.

2 Weil bundles

2.1 A-velocities

Having in mind the applications in concrete differential geometric problems, we introduce
Weil bundles by using the concept of A-velocity. This generalizes the classical concept of
(k, r)-velocity by C. Ehresmann. We recall that the construction of (k, r)-velocities is a
bundle functor T rk onMf defined by

T rkM = Jr0 (Rk,M) , T rk f(jr0γ) = jr0(f ◦ γ) , γ : Rk →M

for every manifold M and every smooth map f : M → N .
Consider a Weil (k, r)-algebraA together with an algebra homomorphism π : Drk → A

from 1.5. By 1.7, π is determined up to an isomorphism Drk → Drk, so that the following
definition is independent of π. Let M be a manifold.
Definition Two maps γ, δ : Rk → M are said to determine the same A-velocity jAγ =
jAδ, if for every smooth function ϕ : M → R

π(jr0(ϕ ◦ γ)) = π(jr0(ϕ ◦ δ)) .

Proposition Let γi(t1, . . . , tk) or δi(t1, . . . , tk) be the coordinate expressions of γ or δ.
Then jAγ = jAδ if and only if jAγi = jAδi for all i = 1, . . . ,dimM .

Proof The kernel of π is an ideal I in Drk. So jAγi = jAδi means

jr0δ
i = jr0γ

i + jr0ε
i , jr0ε

i ∈ I .

Since our assertion depends on jrxϕ only, we may assume ϕ is a polynomial of degree r.
This is a sum of monomials cxi1 . . . xil . The value of each monomial at jr0γ

i + jr0ε
i is

c(jr0γ
i1 + jr0ε

i1) . . . (jr0γ
il + jr0ε

il) = cjr0γ
i1 . . . jr0γ

il + a term in I .
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2.2 Weil functors

Proposition 2.1 implies

TAR = π(Drk) = A and TARm = Am .

So TAM → M is a fibered manifold that is said to be a Weil bundle. For a smooth map
f : M → N , we define

TAf : TAM → TAN by TAf(jAγ) = jA(f ◦ γ) .

Using the same argument as in the proof of Proposition 2.1, one verifies that this is a correct
definition. Hence we obtain a bundle functor TA on Mf called Weil functor. Clearly,
TDrk = T rk , so that TD is the tangent functor T . Our construction yields a surjective map
πM : T rkM → TAM such that the following diagram commutes for every f : M → N

T rkM
T rk f //

πM

��

T rkN

πN

��
TAM

TAf // TAN

(8)

A section M → TAM is said to be an A-field on M .

2.3 Remarks

Definition 2.1 is a modification of what is called the covariant approach to Weil functors
in [14]. Let Ek be the algebra of germs of smooth functions on Rk at 0. By (4), A can be
viewed as a factor algebra A = Ek/I, where I is the ideal determined by I in Ek. Then
two maps γ, δ : Rk → M satisfy jAγ = jAδ, if and only if ϕ ◦ γ − ϕ ◦ δ ∈ I for every
germ ϕ of smooth function on M at x = γ(0) = δ(0).

The original ideas by A. Weil, [23], were inspired by the algebraic geometry. So
his approach is of contravariant character. All smooth functions on M form an algebra
C∞(M,R) with respect to the pointwise multiplication. Weil defined a so-called infinitely
near point of type A on M as an algebra homomorphism

C∞(M,R)→ A .

We show that the set of all algebra homomorphisms Hom(C∞(M,R), A) is canonically
isomorphic to TAM .

For every f ∈ C∞(M,R) and every jAγ ∈ TAM , we define

(jAγ)(f) = jA(f ◦ γ) ∈ A . (9)

This is an algebra homomorphism. Indeed, (jAγ)(f1 + f2) = jA(f1 ◦ γ + f2 ◦ γ) and
(jAγ)(f1f2) = jA((f1◦γ)(f2◦γ)). Since our operations behave well with respect to local-
ization, it suffices to consider the case M = Rm, so that TARm = Am. Then Proposition
2.1 implies that (9) establishes a bijection between TARm and Hom(C∞(Rm,R), A).

We also remark that some motivation for the covariant approach came from the so-
called synthetic differential geometry, which was developed within the framework of the
theory of categories, [8].
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2.4 The coordinate expression of TAf

Write TAx f : TAx M → TAf(x)N for the restricted and corestricted map. The map TAx f
depends on jrxf only. Indeed, (8) is a commutative diagram with surjective columns, where
the top row depends on jrxf only.

Using (8), we deduce the coordinate expression of TAf in the case of f : Rm → Rn
with the components

yp = fp(xi) , i = 1, . . . ,m, p = 1, . . . , n . (10)

Hence TAf : Am → An. First consider the map T rk f : T rkRm → T rkRn. This is
determined by the Taylor expansions of order r of the components fp

fp(xi) +
∑
|α|≤r

1
α!
Dαf

p(xi)zα , (zi) ∈ Rm ,

where α = (α1, . . . , αm) denotes a multiindex of range m and zα = (z1)α1 . . . (zm)αm .
Write xi + ni for the i-th component in Am, ni ∈ NA, and bp for the p-th component in
An. If we express T rk f : (Drk)m → (Drk)n in the algebra form and use the homomorphism
π : Drk → A, we obtain the following expression of TAf

bp = fp(xi) +
∑
|α|≤r

1
α!
Dαf

p(xi)nα , (11)

where nα = (n1)α1 . . . (nm)αm with the multiplication in A.
In particular, if f : Rm → R is a real valued function, then (11) with no superscript p

expresses the A-valued function TAf : TARm → A. We shall need an explicit formula
in the simplest case A = D. Write xi1 for the additional coordinates on TRm. Then the
coordinate form of Tf : TRm → D is

f(xi) + e
(
∂f
∂xi x

i
1

)
. (12)

2.5 Example

Consider the iterated tangent functor TT . The elements of its Weil algebra D ⊗ D =
R[t, τ ]/〈t2, τ2〉 are of the form x + ut + vτ + wtτ . The corresponding coordinates on
TTRm = (D ⊗ D)m are xi, ui, vi, wi. From the classical point of view, xi are the
“original” coordinates on Rm, the role of the “first order” coordinates ui and vi is more or
less symmetric and wi appear clearly to be the “second order” coordinates.

Further, consider the map (10) and write yp + upt + vpτ + wptτ for p-th component
of (D⊗ D)n. Since t2 = 0 = τ2, (11) implies

yp + upt+ vpτ + wptτ = fp + ∂fp

∂xi (uit+ viτ + witτ) + ∂2fp

∂xi∂xj u
ivjtτ .

Passing to the individual components, we obtain the standard coordinate expression of
TTf .
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2.6 Product preserving bundle functors

Consider the product M
p1←− M × N p2−→ N of two manifolds together with the product

projections. A bundle functor F onMf is said to be product preserving, if F (M ×N) =
FM × FN . More precisely, this means that

FM
Fp1←−− F (M ×N)

Fp2−−→ FN

is also a product. Clearly, every Weil functor TA preserves products.
The converse assertion is a fundamental theoretical result. Let F be a product preserv-

ing bundle functor on Mf . Write pt for one point set and ix : pt → M for the map
ix(pt) = x, x ∈ M . Since F preserves products, we have F (pt) = pt. A natural in-
jection νM : M → FM is defined by νM (x) = Fix(pt). Applying F to the addition
a : R× R→ R and the multiplication m : R× R→ R of reals, we obtain

Fa : FR× FR→ FR , Fm : FR× FR→ FR .

One verifies easily that FR with the addition Fa and the multiplication by real scalars
ca = Fm

(
νR(c), a

)
, c ∈ R, a ∈ FR, is a vector space. The proof of the following

assertion can be found in [14].
Theorem FR is a Weil algebra with respect to the multiplication Fm and F coincides
with the Weil functor TFR.

A simple example of a bundle functor on Mf that does not preserve products is

the second tensor power
2⊗
T of the tangent functor T . Indeed, dim

2⊗
T (M × N) >

dim
2⊗
TM + dim

2⊗
TN provided dimM > 0 and dimN > 0.

2.7 Natural transformations

Let t : TA → TB be a natural transformation of functors TA and TB . If we apply t to the
addition and the multiplication of reals, we obtain two commutative diagrams of the form

A×A

tR

��
tR

��

// A

tR

��
B ×B // B

This implies easily that tR : A→ B is an algebra homomorphism.
The converse assertion is also true. Every algebra homomorphism µ : A→ B induces

a natural transformation (denoted by the same symbol) µ : TA → TB as follows. Every
X ∈ Jr0 (Rl,Rk)0 = Hom(Drk,Drl ) defines a natural transformation XM : T rkM → T rl M
by the reparametrization Y → Y ◦ X , Y ∈ T rkM . For a general µ, we may consider
the situation from (6) with σ = X . Taking into account that πM and %M are surjective,
we deduce by (6) that there is a unique map µM : TAM → TBM making the following
diagram commutative

T rkM

πM

��

XM // T rl M

%M

��
TAM

µM // TBM

(13)
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Moreover, for every f : M → N the following diagram commutes

T rkM

XM

��

πM

##HH
HH

HH
HH

H
T rk f // T rkN

πN{{wwwwwwww

XN

��

TAM
TAf //

µM

��

TAN

µN

��
TBM

TBf // TBN

T rl M

%M

;;vvvvvvvvv T rl f // T rl N

%N

ccGGGGGGGG

The inner square yields that µM form a natural transformation TA → TB . Diagram (13)
implies that there exists a map µ : Rl → Rk such that µM : TAM → TBM is of the form

µM (jAγ) = jB(γ ◦ µ) , γ : Rk →M . (14)

Thus we have proved
Proposition The natural transformations TA → TB are in bijection with the algebra
homomorphisms µ : A→ B. IfwA = k andwB = l, then there exists a map µ : Rl → Rk
such that µM is of the form (14).

In other words, even in the case of an arbitrary algebra homomorphism µ : A → B,
the natural transformation µM is determined by a reparametrization. The admissibility of
µ in the sense of 1.8 depends on jAµ only.

For example, the natural transformations TT → TT , that correspond to the algebra
homomorphisms D ⊗ D → D ⊗ D from 1.12, can be immediately expressed in this way.
Each of them can be easily interpreted as a geometric construction on the iterated tangent
bundle.

2.8 Multilinear maps

For every vector space V , the vector space structure on TAV is defined by

jAγ + jAδ = jA(γ + δ), cjAγ = jA(cγ) , c ∈ R ,

with pointwise addition and scalar multiplication on the right-hand sides. Consider the
map ⊗ : V ×A→ TAV ,

⊗(v, jAϕ(t1, . . . , tk)) = jA(ϕ(t1, . . . , tk)v) , v ∈ V, ϕ : Rk → R . (15)

In coordinates, we have V = Rm, TAV = Am and (15) is of the form(
(v1, . . . , vn), a

)
7−→ (v1a, . . . , vna) , vi ∈ R, a ∈ A , i = 1, . . . , n .

This implies TAV = V ⊗A. In particular, ifA = D, then V ⊗D = V ×V and TV = V ×V
is the classical expression of the tangent bundle of a vector space.
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Consider another vector space W and a linear map f : V →W . Then

TAf(v ⊗ a) = TAf(jA(ϕv)) = jA(ϕf(v)) = f(v)⊗ a .

One verifies directly that TAf : TAV → TAW is also a linear map. Hence TAf =
f ⊗ idA.
Proposition Let f : V1 × · · · × Vl → W be a multilinear map. Then TAf : V1 ⊗ A ×
· · · × Vl ⊗A→W ⊗A is also multilinear and

TAf(v1 ⊗ a1, . . . , vl ⊗ al) = f(v1, . . . , vl)⊗ a1 . . . al ,

where the product a1 . . . al is in A.

Proof The multilinearity of f implies

TAf(jA(ϕ1v1), . . . , jA(ϕlvl)) = jA((ϕ1 . . . ϕl)f(v1, . . . , vl))

with the pointwise product ϕ1(t1, . . . , tk) . . . ϕl(t1, . . . , tk) in R.

Corollary If (V, f) is an algebra, then TAV = V ⊗ A is also an algebra with the multi-
plication determined by

TAf(v1 ⊗ a1, v2 ⊗ a2) = f(v1, v2)⊗ a1a2 .

2.9 Natural transformations on vector spaces

For every vector space V and every algebra homomorphism µ : A→ B,

µV : TAV = V ⊗A→ V ⊗B = TBV

is defined by the reparametrization (14), so that µV is a linear map. Applying µV to (15),
we obtain µV (v ⊗ a) = v ⊗ µ(a). Hence we have

µV = idV ⊗µ : V ⊗A→ V ⊗B .

2.10 The iteration

By 2.6, the Weil functors coincide with the product preserving bundle functors on Mf .
Since the iteration TATB of two Weil functors preserves products as well, this must also
be a Weil functor.
Proposition We have TATB = TB⊗A.

Proof The Weil algebra of TATB is (TATB)(R) = TA(TBR) = TAB = B ⊗A.
We know that every algebra homomorphism induces a natural transformation. In particular,
the exchange isomorphism of the tensor product ex : B⊗A→ A⊗B induces an exchange
natural equivalence

exM : TATBM → TBTAM .

Geometrically, exM can be constructed as follows. Let t ∈ Rk and τ ∈ Rl. So every
Z ∈ TA(TBM) is of the form

Z = jA
(
t 7→ jB(τ 7→ δ(t, τ))

)
,
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where δ : Rk × Rl →M . Then

exM (Z) = jB
(
τ 7→ jA(t 7→ δ(t, τ))

)
.

If we write πAM : TAM →M for the bundle projection, then we have

TAπBM = πBTAM ◦ exM , TBπAM ◦ exM = πATBM . (16)

In the special case A = Drk, B = Dsl , which is important for applications, the natural
exchange isomorphism exM : T rkT

s
l M → T sl T

r
kM can be expressed in the jet form

exM
(
jr0(t 7→ js0(τ 7→ δ(t, τ)))

)
= js0

(
τ 7→ jr0(t 7→ δ(t, τ))

)
.

In the case k = l = r = s = 1, we evaluated all algebra homomorphisms D ⊗
D → D ⊗ D in 1.12. Clearly, the exchange isomorphism ex, that determines the well
known canonical involution TTM → TTM , corresponds to the values c2 = c4 = 1,
c1 = c3 = c5 = c6 = 0.

2.11 The flow natural exchange

In the case of arbitrary A and TB = T , we obtain a canonical exchange isomorphism

κAM : TATM → TTAM .

This map is said to be flow natural because of the following important property.
In general, letF be a bundle functor on the categoryMfm ofm-dimensional manifolds

and local diffeomorphisms. The flow prolongation of a vector field X : M → TM is a
vector field FX : FM → T (FM) defined as follows. The flow FlX is locally a one-
parameter family of diffeomorphisms FlXt : M → M , t ∈ R. We construct F (FlXt ) :
FM → FM for every t and we set

FX = ∂
∂t

∣∣
0
F (FlXt ) : FM → TFM .

In the case of a Weil functor TA, beside T AX : TAM → TTAM we can consider the
functorial prolongation TAX : TAM → TATM of the map X .
Proposition We have T AX = κAM ◦ TAX .

Proof Let x = ϕ(x, t) be the flow of X , x ∈M , t ∈ R. Hence X(x) = ∂
∂t

∣∣
0
ϕ(x, t). For

u = jAγ(τ) ∈ TAM , consider ϕ(γ(τ), t) : Rk × R→M . Then
∂
∂t

∣∣
0
jAϕ(γ(τ), t) = ∂

∂t

∣∣
0
(TAFlXt )(u) = (T AX)(u) .

Of course, ∂
∂t

∣∣
0

is identified with the first order jet with respect to t. If we exchange the
order of jA and ∂

∂t

∣∣
0
, we obtain

jA
(
∂
∂t

∣∣
0
ϕ(γ(τ), t)

)
= jA(X ◦ γ) = (TAX)(u) .

So the concrete evaluation of T AX for a vector field X = Xi(x1, . . . , xm)∂/∂xi is
also based on 2.4. For example, if TA = T is the tangent functor, then (12) implies

T X = Xi ∂
∂xi +

(
∂Xi

∂xj x
j
1

)
∂
∂xi1

.
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2.12 Fiber products

If F and G are two product preserving bundle functors on Mf , then the bundle functor
F ⊕G onMf defined by (F ⊕G)(M) = FM ×M GM and (F ⊕G)(f) = Ff ×f Gf
also preserves products.
Proposition We have TA ⊕ TB = TA⊕B .

Proof TAR or TBR is the product fibered manifold R × NA → R or R × NB → R,
respectively. Hence (TA ⊕ TB)(R) = R × NA × NB → R. One verifies easily that the
induced multiplication is that one from 1.10.

2.13 Underlying functors

An interesting feature of the theory of Weil bundles is that every r-th order Weil functor
TA induces the underlying k-th order functors for all k ≤ r = ordA.

Clearly, Nk+1
A is an ideal in A. Write πk : A→ A/Nk+1

A for the factor projection.

Definition The factor algebra Ak = A/Nk+1
A is called the underlying Weil algebra of

order k. The Weil functor TAk is said to be the underlying k-th order functor of TA.
So (πk)M : TAM → TAkM is a surjective natural transformation. The following

lemma is a direct consequence of µ(NA) ⊂ NB .
Lemma For every algebra homomorphism µ : A→ B, we have µ(Nk

A) ⊂ Nk
B .

So µ factorizes through an underlying algebra homomorphism µk : Ak → Bk. From
the geometric point of view, every natural transformation t : TA → TB is projectable over
a natural transformation tk : TAk → TBk for all k ≤ r.

For example, the underlying first order functor of the iterated tangent functor TT is
T ⊕ T .

In [9], the following result is deduced.
Proposition TAM → TAr−1M is an affine bundle, whose associated vector bundle is the
pullback of TM ⊗Nr over TAr−1M .

In the special case of T rk , we obtain the classical result that T rkM → T r−1
k M is

an affine bundle, whose associated vector bundle is the pullback of TM ⊗ SrRk∗ over
T r−1
k M .

2.14 Regular A-velocities

Consider the vector space VA = NA/N
2
A. One finds easily that the underlying Weil algebra

of the first order isA1 = R×VA with the zero multiplication in VA. This implies TA1M =
TM ⊗ VA.
Definition An A-velocity X ∈ TAx M is called regular, if the linear map V ∗A → TxM
determined by π1(X) ∈ TxM ⊗ VA is injective.

In the classical case of X ∈ (T rkM)x, π1(X) ∈ T 1
kM is identified with a k-tuple of

vectors in TxM and X is regular, if and only if these vectors are linearly independent.
In general, one verifies easily that an A-velocity jAγ is regular, if and only if γ is an
immersion at 0 ∈ Rk.
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2.15 Contact A-elements

We recall that a contact (k, r)-element on a manifold M , as introduced by Ehresmann, is
defined as a set Z ◦Grk, where Z is a regular (k, r)-velocity on M , [14]. The space of all
such elements is a fiber bundle Kr

kM over M .
This idea can be directly extended to A-velocities.

Definition A contact A-element on a manifold M is the set (AutA)(Z), where Z is a
regular A-velocity on M .

All contact A-elements on M form a fiber bundle KAM → M . We remark that the
contact A-elements are studied from an algebraic point view in [22].

2.16 Product preserving bundle functors on FM
It is remarkable that the product preserving bundle functors on fibered manifolds can be
also characterized in terms of Weil algebras. The following assertion was deduced by W.
Mikulski, [20].
Proposition The product preserving bundle functors on FM are in bijection with the
algebra homomorphisms µ : A→ B.

On one hand, µ induces two bundle functors TA, TB on Mf and a natural trans-
formation µ : TA → TB . For every fibered manifold p : Y → M , we have
TBp : TBY → TBM . Taking into account the map µM : TAM → TBM , we con-
struct the induced bundle

TµY = µ∗MT
BY ,

which can be also denoted by TµY = TAM ×TBM TBY . For every FM-morphism
f : Y → Y over f : M → M , we have TBf : TBY → TBY , TAf : TAM → TAM
and we construct the induced map

Tµf := TAf ×TBf TBf : TµY → TµY .

This defines a bundle functor Tµ on FM. Clearly, Tµ preserves products.
Conversely, let F be a product preserving bundle functor on FM. Write ptM : M →

pt for the unique map of M into one point set. There are two canonical injections i1, i2 :
Mf → FM of manifolds into fibered manifolds defined by i1M = (idM : M → M),
i1f = (f, f), i2M = (ptM : M → pt), i2f = (f, idpt) and a natural transformation
t : i1 → i2, tM = (idM , ptM ) : i1M → i2M . Applying F , we obtain two bundle
functors F ◦ i1 and F ◦ i2 onMf and a natural transformation F ◦ t : F ◦ i1 → F ◦ i2.
By 2.6 and 2.7, there is a Weil algebra homomorphism µ : A→ B such that F ◦ i1 = TA,
F ◦ i2 = TB and F ◦ t = µ. Then F = Tµ. (A rather simple proof can be found in [5].)

Further, if ν : C → D is another Weil algebra homomorphism, then the natural trans-
formations Tµ → T ν are in bijection with the pairs of Weil algebra homomorphisms
ϕ : A → C, ψ : B → D satisfying ψ ◦ µ = ν ◦ ϕ. Moreover, the iteration T νTµ

corresponds to the tensor product µ⊗ ν : A⊗ C → B ⊗D.

2.17 Fiber velocities

The simplest examples of product preserving bundle functors on FM are the fiber veloc-
ities bundles, which generalize the classical bundles of (k, r)-velocities. Their definition
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is based on the idea of (q, s, r)-jet of FM-morphisms, s ≥ q ≤ r. Consider two fibered
manifolds p : Y →M and p : Y →M .
Definition We say that two FM-morphisms f, g : Y → Y with the base maps f, g :
M →M determine the same (q, s, r)-jet jq,s,ry f = jq,s,ry g at y ∈ Y , s ≥ q ≤ r, if

jqyf = jqyg , jsy(f | Yx) = jsy(g | Yx) , jrxf = jrxg , x = p(y) .

We write Jq,s,r(Y, Y ) for the bundle of all (q, s, r)-jets of Y into Y . The composition of
FM-morphisms defines the composition of (q, s, r)-jets. The base maps induce a canon-
ical projection Jq,s,r(Y, Y )→ Jr(M,M), where Jr(M,M) denotes the classical bundle
of r-jets of M into M .

Write Rk,l for the product fibered manifold Rk × Rl → Rk. We introduce the bundle
of fiber velocities of dimension (k, l) and order (q, s, r) on a fibered manifold Y by

T q,s,rk,l Y = Jq,s,r0,0 (Rk,l, Y ) .

For every FM-morphism f : Y → Y , T q,s,rk,l f : T q,s,rk,l Y → T q,s,rk,l Y is defined by the
jet composition. Clearly, T q,s,rk,l is a product preserving bundle functor on FM of order
(q, s, r).

Let m = dimM and m + n = dimY . Then P q,s,rY = inv Jq,s,r0,0 (Rm,n, Y ) is a
principal bundle over Y with structure group Gq,s,rm,n = inv Jq,s,r0,0 (Rm,n,Rm,n)0,0, which
is called (q, s, r)-th order frame bundle of Y .

3 On the geometry of TA-prolongations

3.1 Natural tensor fields of type (1, 1)

Every a ∈ A defines a natural tensor field L(a)M of type (1, 1) on TAM for every man-
ifold M as follows. The multiplication of the tangent vectors of M by reals is a map
σM : R×TM → TM . Applying TA, we obtain TAσM : A×TATM → TATM . Then
we construct

T AσM := (κAM )−1 ◦ TAσM ◦ (idA×κAM ) : A× TTAM → TTAM

and define L(a)M = T AσM (a,−). Since the multiplication in A is induced by the multi-
plication of reals, we have

L(a1)M ◦ L(a2)M = L(a1a2)M .

Clearly, L(1)M = idTTAM . The naturality of L(a) means TTAf ◦ L(a)M = L(a)N ◦
TTAf for every map f : M → N .

To find the coordinate expression of L(a), we take M = Rm. Then TTARm =
Am ×Am and our definition implies directly

L(a)Rm(b1, . . . , bm, c1, . . . , cm) = (b1, . . . , bm, ac1, . . . , acm), a, bi, ci ∈ A.

In the case of the tangent functor, i.e. A = D = {a+ be}, the map L(e)M : TTM →
V TM is frequently used in analytical mechanics.
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3.2 Natural vector fields

Every element D of the Lie algebra AutA = DerA is of the form

D = d
dt

∣∣
0
γ , γ : R→ AutA .

The natural transformations γM (t) : TAM → TAM determine a vertical vector field DM

on TAM ,

DM (y) = ∂
∂t

∣∣
0
γ(t)M (y) , y ∈ TAM .

For example, in the case A = D we obtain the classical Liouville vector field on TM and
its constant multiples.

We find worth mentioning one of the oldest geometric results deduced by the technique
of Weil algebras. The problem was to determine all natural operators transforming every
vector field X on a manifold M into a vector field on TAM . In [14] it is proved that every
such operator is of the form

X 7→ L(a)M ◦ T AX +DM

for all a ∈ A and D ∈ Der A, T AX being the flow prolongation of X . This general result
was new even in the case of (k, r)-velocities.

3.3 TA-prolongation of functions and vector fields

Every function f : M → R induces a vector valued function TAf : TAM → A. Every
vector field Z on TAM determines the Lie derivative Z(TAf) : TAM → A of this vector
valued function. Given a ∈ A, we define aTAf : TAM → A by multiplying in A. We
shall shorten L(a)M ◦ Z to L(a)Z.

We start with some simple formulae, [2]. For every vector field X on M , we have

T AX(aTAf) = aTA(Xf) ,
(
L(a)T AX

)
TAf = aTA(Xf) .

For the bracket of vector fields, we have[
L(a1)T AX1, L(a2)T AX2

]
= L(a1a2)T A

(
[X1, X2]

)
.

3.4 TA-prolongation of Lie groups

The following assertions are easy to verify.
Let G be a Lie group with composition ϕ : G × G → G and g = LieG be its Lie

algebra. Then TAϕ : TAG × TAG → TAG is also a Lie group and TAg = g ⊗ A is its
Lie algebra. The bracket in TAg is the TA-prolongation of the bracket in g. Using 2.8, we
obtain

[v1 ⊗ a1, v2 ⊗ a2]g⊗A = [v1, v2]g ⊗ a1a2 ,

v1, v2 ∈ g, a1, a2 ∈ A, the product a1a2 being in A. This formula is powerful even in
the case of (k, r)-velocities, in which Lie (T rkG) = g ⊗ Drk. For example, in the case of
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the tangent functor T we obtain immediately the well known expression for the bracket of
Lie(TG) = g× g[

(v1, v1), (v2, v2)
]

=
(
[v1, v2], [v1, v2] + [v1, v2]

)
.

If expG : g→ G is the exponential map of G, then the exponential map of TAG is

expTAG = TA(expG) : TAg→ TAG .

The Maurer-Cartan form ωG : TG → g of G induces the Maurer-Cartan form ωTAG :
TTAG→ TAg by

ωTAG = TAωG ◦ (κAG)−1 .

For a group homomorphism h : G1 → G2, TAh : TAG1 → TAG2 is also a group
homomorphism. If χ : g1 → g2 is the induced Lie algebra homomorphism, then TAχ =
χ⊗ idA : TAg1 → TAg2 is the Lie algebra homomorphism determined by TAh.

For every Weil algebra homomorphism µ : A → B, the natural transformation µG :
TAG → TBG is a group homomorphism. The induced Lie algebra homomorphism is
idg⊗µ : g⊗A→ g⊗B.

3.5 TA-prolongation of actions

Let l : G ×M → M be a left action of G on a manifold M . One verifies directly that
TAl : TAG × TAM → TAM is a left action of TAG on TAM . For every algebra
homomorphism µ : A → B, the natural transformations µG : TAG → TBG and µM :
TAM → TBM form a morphism of actions.

The infinitesimal action λ : g×M → TM of l is defined by

λ = T l ◦ (iG × 0M ) ,

where iG : g → TG is the canonical injection and 0M : M → TM is the zero section.
We write λ(v) = λ(v,−) : M → TM for the fundamental vector field on M determined
by v ∈ g. One finds easily that the infinitesimal action of TAl, which will be denoted by
T Aλ : TAg× TAM → TTAM , is of the form

T Aλ = κAM ◦ TAλ .

Every v ⊗ a ∈ g ⊗ A defines the fundamental vector field (T Aλ)(v ⊗ a) on TAM .
On the other hand, λ(v) is a vector field on M and we can construct its flow prolongation
T A
(
λ(v)

)
. The proof of the following assertion, which relates the previous concept in an

interesting way, can be found in [10].
Proposition We have

(T Aλ)(v ⊗ a) = L(a)M ◦ T A
(
λ(v)

)
.

3.6 The linear case

Consider the case M = V is a vector space. Then TV = V × V and the first component
of λ : g× V → V × V is the product projection g× V → V . The second component will
be denoted by

λ : g× V → V .
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Since TAV = V ⊗ A is also a vector space, we have TATV = V ⊗ A × V ⊗ A and
TTAV = V ⊗A×V ⊗A. Under these identifications, κAV is the identity of V ⊗A×V ⊗A.

For the infinitesimal action T Aλ : TAg× TAV → TTAV , we have

T Aλ : TAg× TAV → TAV .

Then our previous results yield
Proposition We have

T Aλ = TAλ : TAg× TAV → TAV .

In particular, let l be a linear action of G on V , so that λ is the classical representation
of Lie algebra g on V . Hence λ is a bilinear map. By 2.8, T Aλ is of the form

T Aλ(v ⊗ a1, z ⊗ a2) = λ(v, z)⊗ a1a2 ,

v ∈ g, z ∈ V , the product a1a2 being in A.

3.7 Vector bundles

For a vector bundle p : E → M , TAp : TAE → TAM is also a vector bundle. If
X1, X2 ∈ TAE satisfy TAp(X1) = TAp(X2), we may write X1 = jAϕ1, X2 = jAϕ2

with p ◦ ϕ1 = p ◦ ϕ2, so that ϕ1(u) and ϕ2(u) are in the same fiber of E → M for all
u ∈ Rk. Then we define X1 + X2 by jA

(
ϕ1(u) + ϕ2(u)

)
. Similarly, c

(
jAϕ(u)

)
=

jA
(
cϕ(u)

)
, c ∈ R. Further, if p : E → M is another vector bundle and f : E → E is a

linear morphism over f : M → M , then TAf : TAE → TAE is a linear morphism over
TAf : TAM → TAM .

3.8 Principal and associated bundles

Let P (M,G) be a principal bundle with structure group G and projection p : P → M .
Write %P : P × G → P for the right action of G on P . Then TAp : TAP → TAM is a
principal bundle with structure group TAG and %TAP = TA%P : TAP × TAG→ TAP .

Consider a fiber bundle E = P [S, l] associated to P with respect to an action l :
G× S → S of G on the standard fiber S and write q : E → M for the bundle projection.
Then TAq : TAE → TAM is an associated bundle TAE = TAP [TAS, TAl].

For every fibered manifold Y →M , the vertical Weil bundle V AY is the union

V AY =
⋃
x∈M

TA(Yx) , V AY ⊂ TAY

of the Weil bundles of the individual fibers of Y . Clearly, V AP is a principal bundle
V AP (M,TAG) and V AE is an associated bundle V AE = V AP [TAS, TAl].

3.9 Tensor fields of type (1, k)

A tensor field C of type (1, k) on a manifold M can be considered as a map

C : TM×M · · · ×M︸ ︷︷ ︸
k-times

TM → TM .
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Applying functor TA, we obtain

TAC : TATM ×TAM · · · ×TAM TATM → TATM .

Using the canonical exchange κAM , we construct

T AC = κAM ◦ TAC ◦
(
(κAM )−1 × · · · × (κAM )−1

)
.

This is a tensor field of type (1, k) on TAM , which is called the complete lift ofC to TAM .
In the special case k = 0, C is a vector field on M and T AC is its flow prolongation, see
2.11.

For every k vector fields X1, . . . , Xk on M , C(X1, . . . , Xk) is also a vector field. The
following assertion is deduced in [7].
Proposition For every a1, . . . , ak ∈ A, we have

T AC
(
L(a1)T AX1, . . . , L(ak)T AXk

)
= L(a1 . . . ak)T A

(
C(X1, . . . , Xk)

)
.

3.10 The Frölicher-Nijenhuis bracket

An antisymmetric tensor field P of type (1, k) on M is said to be a tangent valued k-form
on M . The Frölicher-Nijenhuis bracket is an important geometric operation on the tangent
valued forms, see e.g. [14]. IfQ is another tangent valued l-form onM , then the Frölicher-
Nijenhuis bracket [P,Q] is a tangent valued (k + l)-form on M . A tangent valued 0-form
is a vector field. If both P and Q are tangent valued 0-forms, then [P,Q] coincides with
the classical bracket of vector fields.

The identity of TM can be interpreted as a tangent valued 1-form on M . For every P ,
we have[

idTM , P
]

= 0 . (17)

Given a tangent valued form S on TAM and a ∈ A, L(a)M ◦S =: L(a)S is a tangent
valued form on TAM , too.
Theorem For every tangent valued k-form P , every tangent valued l-form Q on M and
every a1, a2 ∈ A, we have[

L(a1)T AP,L(a2)T AQ
]

= L(a1a2)T A
(
[P,Q]

)
.

The proof is based on a formula by M. Modugno and P. W. Michor that expresses [P,Q]
in terms of the bracket of vector fields, [2].

For a1 = a2 = 1 we obtain
Corollary The TA-prolongation of tangent valued forms commutes with the Frölicher-
Nijenhuis bracket.

3.11 Connections

The first jet prolongation J1Y of a fibered manifold p : Y → M is the bundle of 1-jets
of local sections of Y . The elements of J1Y are identified with the m-dimensional linear
subspaces in TY complementary to the vertical tangent space, m = dimM . Hence a
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connection on an arbitrary fibered manifold Y can be interpreted as a section Γ : Y →
J1Y .

The projection TyY → VyY in the direction of Γ(y), y ∈ Y , defines the connection
form ωΓ : TY → V Y ⊂ TY . Clearly, ωΓ is a tangent valued 1-form on TY satisfying
ωΓ(X) = X for all X ∈ V Y . If we denote by iV Y : V Y → TY the injection, this can be
expressed by

ωΓ ◦ iV Y = iV Y . (18)

Conversely, if ω is a tangent valued 1-form on Y satisfying ω(TY ) ⊂ V Y and (18), then
the kernels of ω determine a unique connection Γ = Ker ω such that ωΓ = ω.

The curvature CΓ of Γ can be identified with the Frölicher-Nijenhuis bracket, see [14],

CΓ =
1
2
[
ωΓ, ωΓ

]
.

The TA-prolongation T AωΓ of ωΓ is a tangent valued 1-form on TAY . Taking into
account κAY (TAV Y ) = V (TAY → TAM), one verifies easily

T AωΓ ◦ iV (TAY→TAM) = iV (TAY→TAM) .

Hence there is a unique connection T AΓ on TAY → TAM such that T A(ωΓ) = ωT AΓ.
It will be called the TA-prolongation of Γ.

Corollary 3.10 yields a formula for the curvature CT AΓ = 1
2

[
ωT AΓ, ωT AΓ

]
.

Proposition We have CT AΓ = T A(CΓ).

3.12 Vector valued forms

Let V be a vector space. A V -valued k-form ω on M can be interpreted as a map

ω : TM ×M · · · ×M TM → V .

Applying TA and using κAM , we obtain

T Aω : TTAM ×TAM · · · ×TAM TTAM → TAV ,

which is a V ⊗ A-valued k-form on TAM . Taking into account 3.3, one finds easily that
this operation commutes with the exterior differentiation, i.e.

T A(dω) = d(T Aω) .

We describe the coordinate form of T Aω. Let M = Rm, V = Rn and

yp = fpi1...ik(x1, . . . , xm) dxi1 ∧ · · · ∧ dxik

be the coordinate expression of ω. We have TTARm = Am×Am and we write ai, dai for
the corresponding algebra coordinates. The coordinate formula for TAfpi1...ik is described
in 2.4. Then 2.8 implies that T Aω is of the form(

TAfpi1...ik
)
dai1 ∧ · · · ∧ daik
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with all products in A.
For example, consider the tangent functor T and n = 1, k = 2, so that

ω = fi1i2(x1, . . . , xm) dxi1 ∧ dxi2 .

Using (12), we obtain

T ω =
(
fi1i2 + e

∂fi1i2
∂xi xi1

)
(dxi1 + edxi11 ) ∧ (dxi2 + edxi21 )

= fi1i2dx
i1 ∧ dxi2

+ e
((

∂fi1i2
∂xi xi1

)
dxi1 ∧ dxi2 + fi1i2(dxi1 ∧ dxi21 + dxi11 ∧ dxi2)

)
In coordinates, a tangent valued k-form P looks like a vector valued k-form. So the

procedure of finding the coordinate expression of T AP is the same.

3.13 Connections in the lifting form

Taking into account the projection TyY → Γ(y) in the direction of VyY , we can interpret
Γ as the lifting map (denoted by the same symbol)

Γ : Y ×M TM → TY .

Conversely, let Φ : Y ×M TM → TY be a map linear in TM and such that πY ◦Φ = pr1,
Tp ◦ Φ = pr2, where πY : TY → Y is the bundle projection. Then there is a unique
connection Γ on Y such that Φ is its lifting map.

The lifting map of T AΓ is

T AΓ := κAY ◦
(
TAΓ ◦ (idTAY ×TAM (κAM )−1)

)
,

where TAΓ : TAY ×TAM TATM → TATY .
The algebra multiplication enables us to evaluate the equations of T AΓ in the following

simple way, [3]. If we have the product bundle Rm × Rn → Rm with the canonical
coordinates xi, yp, then the equations of Γ are

dyp = F pi (x, y) dxi . (19)

The Weil bundle TA(Rm×Rn)→ TARm isAm×An → Am with the algebra coordinates
ai, bp. Then T A(dxi) = dai and T A(dyp) = dbp are the additional coordinates on
TTA(Rm × Rm). Applying TA to (19), we obtain the equations of T AΓ in the form

dbp = (TAF pi ) dai ,

where theA-valued functions TAF pi can be evaluated by (11) and the products on the right
hand side are in A.

For example, consider the tangent functor T . By (12),

TF pi = F pi + e
(
∂Fpi
∂xj x

j
1 + ∂Fpi

∂yq y
q
1

)
and we have dai = dxi + edxi1, dbp = dyp + edyp1 . Then

(dyp + edyp1) =
(
F pi + e

(
∂Fpi
∂xj x

j
1 + ∂Fpi

∂yq y
q
1

))
(dxi + edxi1)
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implies that the equations of T Γ are (19) and

dyp1 =
(
∂Fpi
∂xj x

j
1 + ∂Fpi

∂yq y
q
1

)
dxi + F pi dx

i
1 .

Of course, the aim of this simplest example is to illustrate the procedure. The power of the
Weil algebra technique appears properly if we consider a more complicated algebra A.

3.14 Curvature in the lifting form

Consider Γ in the lifting form. The Γ-lift of a vector field X on M is a projectable vector
field ΓX on Y defined by ΓX = Γ(−, X). Then the curvature CΓ is identified with a
morphism

CΓ : Y ×M TM ×M TM → V Y (20)

defined as follows. Two vectors ξ1, ξ2 ∈ Tp(y)M are extended into some vector fields X1,
X2 on M and

CΓ(y, ξ1, ξ2) = [ΓX1,ΓX2](y)− Γ
(
[X1, X2]

)
(y) .

Using the lifting form of Γ, we construct

TACΓ : TAY ×TAM TATM ×TAM TATM → TAV Y .

Then we have the following characterization of the curvature of T AΓ.
Proposition If CΓ is in the form (20), then

CT AΓ = κAY ◦ TACΓ ◦
(

idTAY ×TAM (κAM )−1 ×TAM (κAM )−1
)
.

3.15 Principal and linear connections

Connections in the sense of 3.11 represent a generalization of the classical concept of
connection. In the classical theories, connections are studied on principal bundles and are
assumed to be right-invariant. Nowadays, a right-invariant connection on P is said to be
principal. Similarly, if E → M is a vector bundle, so that J1E → M is also a vector
bundle, a connection Γ : E → J1E is said to be linear, if Γ is a linear morphism.

Consider a connection Γ on a principal bundle P (M,G). Each fiber of V P → P is
identified with g in the standard way. Hence the connection form ωΓ of Γ can be interpreted
as a 1-form on P with values in the vector space g. If Γ is principal, then ωΓ : TP → g is
the classical connection form of Γ. One deduces easily
Proposition If Γ is a principal connection on P with connection form ωΓ : TP → g, then
T AΓ is a principal connection on TAP → TAM with connection form ωT AΓ = T A(ωΓ).

Analogously, let Γ be a linear connection on a vector bundle E → M . Then the
induced connection T AΓ on TAE → TAM is also linear.

3.16 a-torsions

The Frölicher-Nijenhuis bracket can be applied in the theory of torsions of connections on
a Weil bundle TAM . This was pointed out in [17]. We present the basic ideas in a slightly
more general setting.
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For every a ∈ A, L(a)M is a natural tangent valued 1-form on TAM . Consider a
natural fibered manifold TAM → Q. (For example, Q is M or one of the underlying
Weil bundles from 2.13. In the case of a fibered manifold Y → M , we can consider
TAY → TAM .) Then every connection Γ on TAM → Q can be viewed as a tangent
valued 1-form ωΓ on TAM .
Definition The Frölicher-Nijenhuis bracket

[
L(a)M , ωΓ

]
is called a-torsion of Γ.

SinceL(1)M = idTTAM and [id, ωΓ] = 0 by (17), only the elements from the nilpotent
part of A are interesting.

We have to explain how our definition generalizes the classical notion of torsion. The
Weil algebra of the tangent functor T isDwith one-dimensional nilpotent part generated by
e, see 1.4. Let Γ be a classical linear connection on TM → M . Using simple evaluation,
one deduced that

[
L(e)M , ωΓ

]
is the classical torsion of Γ.

Consider the TA-prolongation T AΓ of a connection Γ on Y → M . Then T AΓ is
torsion free in the following sense.
Proposition We have

[
L(a)Y , ωT AΓ

]
= 0 for all a ∈ A.

Proof We have L(a)Y = L(a) ◦ idTTAY . Hence Theorem 3.10 and (17) imply[
L(a)Y , ωT AΓ

]
= L(a)T A

(
[idTY , ωΓ]

)
= 0.

3.17 Some further structures

The first paper dealing systematically with TA-prolongation of various geometric struc-
tures is by A. Morimoto, [21]. Beside some subjects we already mentioned, he studied
TA-prolongation of almost complex structures and the prolongation of a classical linear
connection on M into a classical linear connection on TAM .

Even the paper [7] by J. Gancarzewicz, W. Mikulski and Z. Pogoda is devoted, beside
the general theory, to TA-prolongation of further geometric structures. Main attention is
paid to Riemannian and pseudo-Riemannian metrics, symplectic and almost symplectic
structures, almost tangent structures and Kählerian structures.

3.18 Remark

All results of this paper are valid for an arbitrary Weil algebra. However, we have to
point out that there are further geometric problems, in which certain special kinds of Weil
algebras are specified. We mention solely a paper by M. Kureš and W. Mikulski, [19], on
the natural operators transforming vector fields from a manifold M into vector fields on
the bundle KAM of contact A-elements introduced in 2.15. In [19], the best results are
deduced for homogeneous Weil algebras. We recall that an ideal I ⊂ R[x1, . . . , xk] is said
to be homogeneous, if P ∈ I implies that all homogeneous components of polynomial P
are also in I . A Weil algebra is called homogeneous, if it can be expressed in the form
R[x1, . . . , xk]/I with a homogeneous ideal I . Clearly, all algebras Drk and their tensor
products are homogeneous. Examples of nonhomogeneous Weil algebras are constructed
in [19].
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4 Fiber product preserving bundle functors

4.1 Jet functors

There are 3 bundle functors, whose construction is based on the concept of r-jet only.
For every two manifolds M and N , Jr(M,N) is the bundle of all r-jets of M into N .

Let f : M → M be a local diffeomorphism and g : N → N be a map. Then the induced
map Jr(f, g) : Jr(M,N)→ Jr(M,N) is defined by

Jr(f, g)(X) = (jryg) ◦X ◦ (jrxf)−1 ,

where x or y is the source or the target of X ∈ Jr(M,N). Hence Jr is a bundle functor
defined on the product categoryMfm ×Mf , m = dimM .

For every fibered manifold p : Y → M , JrY is the bundle of r-jets of local sections
of Y . If p : Y → M is another fibered manifold and f : Y → Y is an FM-morphism
such that the base map f : M → M is a local diffeomorphism, then the map Jr(f, f) :
Jr(M,Y ) → Jr(M,Y ) transforms JrY into JrY . The restricted and corestricted map
Jrf : JrY → JrY is called the r-th jet prolongation of f . Hence Jr is a functor on
the category FMm. In concrete problems, it is always clear which functor Jr is under
consideration and we have no intention to change this convention. But in this theoretical
section we have to distinguish. So, in this section we shall write Jrh in the case of FMm.

The r-th vertical jet prolongation JrvY , which is used e.g. in the theory of higher order
absolute differentiation, is defined by

JrvY =
⋃
x∈M

Jrx(M,Yx) .

The restriction and corestriction of Jr(f, f) defines Jrvf : JrvY → JrvY . Hence Jrv is a
bundle functor on FMm. In this context, we also say that JrhY is the r-th horizontal jet
prolongation of Y .

The construction of product fibered manifolds is a functor i :Mfm ×Mf → FMm,
i(M ×N) = (M ×N →M) and i(f × g) is f × g with the base map f . We have

Jrh(M ×N) = Jr(M,N) = Jrv (M ×N)

and both functors Jrh ◦ i and Jrv ◦ i coincide with Jr.

4.2 Nonholonomic jets

The r-th nonholonomic prolongation J̃rhY of a fibered manifold Y is defined by the itera-
tion

J̃rhY = J1
h(J̃r−1

h Y →M) ,

J̃1
hY = J1

hY . For every f : Y → Y in FMm, the iteration determines

J̃rhf = J1
h(J̃r−1

h f) : J̃rhY → J̃rhY .

Hence J̃rh is a bundle functor on FMm. The canonical inclusion JrhY ↪→ J̃rhY is defined
by the iteration jrxs 7→ j1

x(u 7→ jr−1
u s) for every local section s of Y , u ∈M .
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The restriction J̃rh ◦ i yields a functor J̃r onMfm ×Mf . The space

J̃r(M,N) = J̃rh(M ×N →M)

is the bundle of nonholonomic r-jets of manifold M into manifold N defined by Ehres-
mann. The elements of Jr(M,N) ⊂ J̃r(M,N) are also said to be holonomic r-jets.
Let Q be a third manifold. Ehresmann introduced the composition of nonholonomic r-
jets by the following induction. For r = 1, we have the composition of 1-jets. Write
β : J̃r−1(M,N) → N for the canonical projection. Let X = j1

xs(u) ∈ J̃rx(M,N)y ,
u ∈M , and Z = j1

yσ ∈ J̃ry (N,Q)z , y = β
(
s(x)

)
. Then

Z ◦X := j1
x

(
σ
(
β(s(u))

)
◦ s(u)

)
∈ J̃rx(M,Q)z (21)

with the composition of nonholonomic (r − 1)-jets on the right hand side. If X and Z are
holonomic r-jets, then (21) coincides with the classical composition. The composition of
nonholonomic r-jets is associative.

The r-th vertical nonholonomic prolongation of Y is defined by

J̃rvY =
⋃
x∈M

J̃rx(M,Yx) .

Even this is a bundle functor on FMm. Similarly to the holonomic case, we have J̃rh ◦ i =
J̃r = J̃rv ◦ i.

4.3 Bundle functors in the product case

We start with some properties of bundle functors on Mf ×Mf that are needed for the
main subject of this section. First we introduce some notation.

Let F be a bundle functor onMf ×Mf . We write Fx(M,N) or Fx(M,N)y for the
submanifold of all elements of F (M,N) over x ∈ M or (x, y) ∈ M × N , respectively.
For g : M → M and f : N → N , we write Fx(g, f) : Fx(M,N) → Fg(x)(M,N) and
Fx(g, f)y : Fx(M,N)y → Fg(x)(M,N)f(y) for the restricted and corestricted maps.
Definition We say that F preserves products in the second factor, if F (M,N1 × N2) =
F (M,N1) ×M F (M,N2). We say that F has order r in the first factor, if for every
g, g : M →M and f : N → N , jrxg = jrxg implies

Fx(g, f) = Fx(g, f) : Fx(M,N)→ Fg(x)(M,N) .

Clearly, if F has order r in the standard sense, i.e. jrx,y(g, f) = jrx,y(g, f) implies
Fx(g, f)y = Fx(g, f)y , then F has order r in the first factor.

4.4 The case ofMfm ×Mf

Let F be a bundle functor onMfm×Mf that preserves products in the second factor. We
define an associated bundle functor GF onMf by GF (N) = F0(Rm, N) and GF (f) =
F0(idRm , f) : GFN → GFN . Clearly, GF preserves products, so that GF = TA for a
Weil algebra A.
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Assume further that F has order r in the first factor. For X ∈ Grm, X = jr0γ and every
manifold N , we set

HF (X)N = F0(γ, idN ) : GFN → GFN .

Since the following diagram commutes

(Rm, N)
(idRm ,f) //

(γ,idN )

��

(Rm, N)

(γ,idN )

��
(Rm, N)

(idRm ,f) // (Rm, N)

each HF (X) is a natural equivalence TA → TA. By 2.7, HF (X) corresponds to an
element of AutA. Clearly, HF : Grm → AutA is a group homomorphism.

Conversely, consider a Weil algebraA and a group homomorphismH : Grm → AutA.
For every manifold N , we have the induced left action HN of Grm on TAN , so that we
can construct the associated bundle P rM [TAN,HN ] =: (A,H)(M,N) for every m-
dimensional manifold M . We underline that the elements of P rM [TAN,HN ] are the
equivalence classes

{u, Z} , u ∈ P rM, Z ∈ TAN .

For every local diffeomorphism g : M → M , we have the induced morphism P rg :
P rM → P rM of principal bundles and every map f : N → N induces a Grm-equivariant
map TAf : TAN → TAN . So we can construct the morphism of associated bundles
(A,H)(g, f) := P rg[TAf ] : P rM [TAN,HN ] → P rM [TAN,HN ]. Clearly, (A,H) is
a functor. Thus, we have proved
Proposition The above construction establishes a bijection between the bundle functors
onMfm ×Mf that preserve products in the second factor and have order r in the first
factor and the pairs (A,H) of a Weil algebra A and a group homomorphism H : Grm →
AutA.

In particular, if M = Rm, then P rRm = Rm × Grm and the associated bundle
(A,H)(Rm, N) is identified with Rm × TAN . Given f : N → N , we have

(A,H)(idRm , f) = idRm ×TAf : Rm × TAN → Rm × TAN .

If F = (A,H) is another bundle functor onMfm ×Mf of order r in the first factor,
then the natural transformations τ : F → F are in bijection with the equivariant algebra
homomorphisms µ : A → A, i.e. µ

(
H(X)(a)

)
= H(X)

(
µ(a)

)
for all a ∈ A and

X ∈ Grm. We have

τM,N = (idP rM , µN ) : P rM [TAN,HN ]→ P rM [TAN,HN ] .

In the case M = Rm, τRm,N = idRm ×µN : Rm × TAN → Rm × TAN .
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4.5 The algebra D̃rm
We describe the functor J̃r in this way. The space T̃ rmN := J̃r0 (Rm, N) is called bundle of
nonholonomic (m, r)-velocities on N . Using the translations on Rm, one identifies T̃ rmN
with the iteration T 1

m

(
. . .︸︷︷︸

r-times

(T 1
mN) . . .

)
. Since the Weil algebra of T 1

m is D1
m, 2.10 implies

that the Weil algebra D̃rm of J̃r is D1
m⊗ . . .⊗︸ ︷︷ ︸

r-times

D1
m. The action of Grm = inv Jr0 (Rm,Rm)0

on D̃rm is given by the composition of nonholonomic jets.

4.6 The base order of F

Let F be a bundle functor on FM. The definition of the order of F is based on the
concept of (q, s, r)-jet, see 2.17. We say that F is of order (q, s, r), s ≥ q ≤ r, if for every
FM-morphism f : Y → Y , the restriction Ff | FyY depends on jq,s,ry f only, y ∈ Y .

The integer r is called the base order of F .

4.7 The main result

Let F be a fiber product preserving bundle (in short: f.p.p.b.) functor on FMm, i.e.
F (Y1 ×M Y2) = FY1 ×M FY2 for every two fibered manifolds Y1 and Y2 over the same
baseM , dimM = m. Its restriction F ◦i toMfm×Mf preserves products in the second
factor. In [15], it is deduced that F has finite order. The base order r of F coincides with
the order of F ◦ i in the second factor. By 4.4, F ◦ i = (A,H), so that F (M × N) =
P rM [TAN,HN ].

Further, F determines a natural transformation t̃Y : JrhY → FY . Every element
X ∈ JrhY is of the form jrxs. We interpret the local section s of Y as a local FMm-
morphism s̃ of the trivial fibered morphism idM : M →M (denoted by i1M in 2.16) into
Y and we set

t̃Y (X) = (F s̃)(x) ∈ FY . (22)

In the product case Y = Rm×N , we have Jrh(Rm×N) = Rm×T rmN and F (Rm×N) =
Rm × TAN . Write

tN : T rmN → TAN

for the restricted and corestricted map over 0 ∈ Rm. This is a natural transformation, so
that it corresponds to an algebra homomorphism t : Drm → A. By naturality of t̃, t is a
Grm-equivariant algebra homomorphism, i.e.

t(X ◦ g) = H(g)
(
t(X)

)
, X ∈ Drm, g ∈ Grm .

The inclusion Y ↪→M × Y , y 7→
(
p(x), y

)
is a base preserving morphism. Applying

F , we obtain an inclusion

FY ↪→ F (M × Y ) = P rM [TAY,HY ] .
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Since P rM ⊂ T rmM , t defines a natural map (denoted by the same symbol) tM : P rM →
TAM . According to [15], FY is the space of all equivalence classes {u, Z} satisfying
tM (u) = TAp(Z), u ∈ P rM , Z ∈ TAY .

Conversely, such a triple (A,H, t) defines a bundle functor F = (A,H, t) on FMm

by

FY =
{
{u, Z};u ∈ P rM,Z ∈ TAY, tM (u) = TAp(Z)

}
. (23)

For an FMm-morphism f : Y → Y over f : M →M, (A,H)(f, f) = P rf [TAf ] maps
FY into FY and Ff is its restriction and corestriction. This implies
Theorem The f.p.p.b. functors of base order r on FMm are in bijection with the triples
(A,H, t), where A is a Weil algebra, H : Grm → AutA is a group homomorphism and
t : Drm → A is an equivariant algebra homomorphism. The natural transformations
(A,H, t) → (A,H, t) are in bijection with the equivariant algebra homomorphisms µ :
A→ A satisfying t = µ ◦ t.

The second assertion follows from the fact that t = µ ◦ t implies that the natural
transformation (A,H)→ (A,H) maps (A,H, t)(Y ) into (A,H, t)(Y ).

If we use the inclusions JrhY ⊂ P rM [T rmY ] and FY ⊂ P rM [TAY ], then the map
t̃Y : JrhY → FY is of the form

t̃Y
(
{u,X}

)
=
{
u, tY (X)

}
. (24)

4.8 The basic examples

The simplest examples of f.p.p.b. functors onFMm are Jrh, Jrv and V A. So every iteration
of these functors is also a f.p.p.b. functor on FMm.

By 1.9, AutDrm = Grm. Write C for the corresponding action of Grm on Drm. One
finds easily Jrh = (Drm, C, idDrm) and Jrv = (Drm, C,O), where O : Drm → Drm is the zero
homomorphism. Functor V A has base order 0. In this case, G0

m = {e} is the one element
group, D0

m = R and H maps e into idR.

4.9 The iteration

Let E = (B,K, u) be another f.p.p.b. functor on FMm of base order s, so that K :
Gsm → AutB and u : Dsm → B. The composition F ◦E preserves fiber products as well.
In [6], the following expression F ◦E = (C,L, v) is deduced. Clearly, the Weil algebra is
C = B ⊗A.

Then we construct the group homomorphism L : Gr+sm → Aut(B ⊗ A). Write ιr,sm :
Gr+sm → T rmG

s
m for the map

jr+s0 γ 7→ js0
(
y 7→ jr0(γ ◦ τy)

)
, y ∈ Rm ,

where τy is the translation on Rm transforming 0 into y. For every g ∈ Gr+sm , we denote
by βr(g) ∈ Grm the underlying r-jet. We interpret K or L as a map K : Gsm ×B → B or
L : Gr+sm × TAB → TAB, respectively. Then TAK : TAGsm × TAB → TAB. By 3.4,
t induces a group homomorphism tGsm : T rmG

s
m → TAGsm. According to [6], we have

L(g, Z) = H
(
βr(g)

)
B

(
TAK(tGsm(ιr+sm (g)), Z)

)
, Z ∈ TAB .
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To find the algebra homomorphism v : Dr+sm → B ⊗ A, we consider the injection
ir,sm : Dr+sm → T rmDsm,

jr+s0 γ 7→ jr0
(
y 7→ js0(γ ◦ τγ(y))

)
, y ∈ Rm .

Then we construct T rmu : T rmDsm → T rmB and tB : T rmB → TAB. By [6], we have

v = tB ◦ T rmu ◦ ir,sm .

4.10 Applications

We present two simple geometric applications of 4.9. Consider the vertical Weil functor
V B in the role of E. The base order of both iterations V BF and FV B is r. In the first
or the second case, the action of Grm on A⊗ B or B ⊗ A is H ⊗ idB or idB ⊗H and the
algebra homomorphism Drm → A⊗B or Drm → B⊗A is t⊗ idB or idB ⊗ t, respectively.
Hence the exchange algebra homomorphism ex : A ⊗ B → B ⊗ A is equivariant and
satisfies ex ◦ (t⊗ idB) = idB ⊗ t. Thus ex determines a canonical natural equivalence

κB,FY : V B(FY )→ F (V BY ) . (25)

The special case F = Jrh and V B = V is heavily used e.g. in the variational calculus on
fibered manifolds.

Another result, which is proved in [6], clarifies certain “rigidity” properties of jet func-
tors.
Proposition The only natural transformation JrhJ

s
h → JrhJ

s
h is the identity.

In particular, for r = s = 1 we obtain that there is no natural exchange map J̃2
hY →

J̃2
hY .

4.11 The general concept of jet functor

Several special kinds of nonholonomic r-jets are known. Ehresmann himself defined the
r-th semiholonomic jet prolongation J

r

hY of a fibered manifold Y → M by induction
starting with J

1

hY = J1
hY . Then J

r

hY is the space of 1-jets j1
xs, where s is a local section

of J
r−1

h Y → M satisfying s(x) = j1
x(βr−1 ◦ s), βr−1 : J

r−1

h Y → J
r−2

h Y being the
canonical projection. Clearly, we have JrhY ⊂ J

r

hY . In the product case, J
r

h(M ×N) =:
J
r
(M,N) is the bundle of semiholonomic r-jets of M into N . The composition of two

semiholonomic r-jets in the sense of 4.2 is a semiholonomic r-jet as well. We can also
construct the r-th vertical semiholonomic jet prolongation of Y by

J
r

vY =
⋃
x∈M

J
r

x(M,Yx) .

Using the viewpoint of Weil bundles, we introduced the general concept of r-th order
jet functor, [11]. This is a bundle functor G onMfm ×Mf satisfying

Jr ⊂ G ⊂ J̃r

and preserving products in the second factor. By 4.4, for the corresponding Weil algebra A
we have Drm ⊂ A ⊂ D̃rm, so that there is a canonical action CA of Grm on A. Conversely,
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every Weil algebra A with this property defines an r-th order jet functor G. Using 4.7, we
can construct its horizontal version Gh = (A,CA, i), where i : Dm → A is the above
injection, and the vertical version Gv = (A,CA,O), where O : Drm → A is the zero
homomorphism. We have Jrh ⊂ Gh ⊂ J̃rh and Jrv ⊂ Gv ⊂ J̃rh.

4.12 Remark

The f.p.p.b. functors were studied on the category FMm because of the relations to jet
bundles. Of course, one can be also interested in the f.p.p.b. functors on the whole category
FM. Even these functors can be characterized in terms of Weil algebras. The first results
on this subject are presented in a recent paper [16].

5 Some applications

5.1 F -prolongation of vector bundles

Consider a fibered manifold p : C →M and a Lie groupK. We say that C is a group bun-
dle of typeK, if each fiber is a Lie group and for every x ∈M there exists a neighbourhood
U such that p−1(U) = U ×K. The group compositions form a base preserving morphism
ν : C ×M C → C. For every f.p.p.b. functor F = (A,H, t), Fν : FC ×M FC → FC
endows FC → M with the structure of group bundle of type TAK. If C → M is an-
other group bundle, an FM-morphism f : C → C is called group bundle morphism, if
its restriction to each fiber is a group homomorphism. If f : C → C is a group bundle
morphism with local diffeomorphism as base map, then Ff : FC → FC is also a group
bundle morphism.

In particular, if E → M is a vector bundle, then FE is a bundle of Abelian groups.
The multiplication of the elements of E by reals can be interpreted as a base preserving
morphism σ : (M × R)×M E → E. By 4.7, F (M × R) = P rM [A,H]. Hence

Fσ : P rM [A,H]×M FE → FE .

But R ⊂ A is an H-invariant subspace, so that M × R is a subbundle of P rM [A,H].
This defines the multiplication by reals on FE and one verifies easily that FE → M is a
vector bundle, too. Clearly, the bundle projection FE → E is a linear morphism. Further,
if E → M is another vector bundle and f : E → E is a linear morphism with local
diffeomorphism as base map, then Ff : FE → FE is also a linear morphism.

5.2 The flow natural map

In the case of a f.p.p.b. functor F = (A,H, t) on FMm, we have the following analogy
of the flow natural exchange map from 2.11. First consider a vector field ξ on M . Its flow
prolongation Prξ is a right-invariant vector field on r-th order frame bundle P rM , whose
value at every u ∈ P rxM depends on jrxξ only. This defines a map i : P rM ×M JrTM →
TP rM .

For a fibered manifold p : Y → M , we shall consider TY as a fibered manifold
TY → M . Then Tp : TY → TM is a base preserving morphism that induces FTp :
FTY → FTM . Taking into account the natural transformation t̃TM : JrTM → FTM
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from 4.7, we construct the fiber product

JrTM ×FTM FTY . (26)

By 4.7, we have FTY ⊂ P rM [TATY ]. Consider (X, {u, Z}) from (26), X ∈ JrxTM ,
u ∈ P rxM , Z ∈ TATY . Write i(u,X) = (∂/∂t)0γ(t), γ : R → P rM . By (26),
κAY (Z) ∈ TTAY can be expressed as (∂/∂t)0ζ(t), where ζ : R → TAY satisfies
tM
(
γ(t)

)
= TAp

(
ζ(t)

)
for all t. So {γ(t), ζ(t)} is a curve on FY and we define

ψFY
(
X, {u, Z}

)
= ∂

∂t

∣∣
0

{
γ(t), ζ(t)

}
.

By right-invariancy, this is independent of the choice of u. Hence we obtain a map

ψFY : JrTM ×FTM FTY → TFY .

By 5.1, FTY is a vector bundle over FY ×M FTM and one finds easily that ψFY is linear
in both JrTM and FTY .

A projectable vector field η on Y over ξ on M can be interpreted as a base preserving
morphism η : Y → TY . Then we construct the functorial prolongation Fη : FY → FTY
as well as the r-th jet prolongation jrξ : M → JrTM . The values of jrξ ×idM Fη are in
(26). The proof of the following assertion can be found in [10].
Proposition The flow prolongation Fη of η satisfies

Fη = ψFY ◦ (jrξ ×idM Fη) .

It is useful to introduce also a modified map

ψ̃
F

Y : JrTM ×FTM FTY → JrTM ×TM TFY ,

ψ̃
F

Y

(
X, {u, Z}

)
=
(
X,ψFY (X, {u, Z})

)
.

One finds easily that ψ̃
F

Y is a diffeomorphism.
In the case F = Jr, we have FTM = JrTM , so that

ψJ
r

Y : JrTY → TJrY .

This map was constructed in another way by L. Mangiarotti and M. Modugno.
We present a local expression of ψFY . We take Y = Rm × V , where we may assume

V is a vector space. The group homomorphism H : Grm → AutA induces a Lie algebra
homomorphism h : grm → Der A. We have JrTRm = TRm × grm. Since t̃TRm maps grm
into (NA)m, it is

JrTRm ×FTRm FT (Rm × V ) = TRm × grm × V ⊗A× V ⊗A .

On the other hand, TF (Rm × V ) = TRm × V ⊗ A × V ⊗ A. For z ∈ TRm, u ∈ grm,
v ⊗ a ∈ V ⊗A and w ∈ V ⊗A, one finds

ψFRm×V (z, u, v ⊗ a,w) =
(
z, v ⊗ a,w + v ⊗ h(u)(a)

)
. (27)

Even in the classical case F = Jr, this formula is convenient for evaluating J rη.



658 Weil bundles as generalized jet spaces

5.3 F -prolongation of connections

The flow natural map ψFY can be used for constructing the F -prolongation of projectable
tangent valued forms on Y . However, in this situation we need an auxiliary linear r-th
order connection on the base M , i.e. a linear base preserving morphism

Λ : TM → JrTM

satisfying β ◦ Λ = idTM . This fact is well known from the theory of connections, [14].
Let F be an arbitrary bundle functor on the category of local isomorphisms of fibered
manifolds of base order r and Γ be a connection on Y . The flow prolongation of the lifted
vector field ΓX depends on the r-jets of vector field X : M → TM . This defines a map

FΓ : FY ×M JrTM → TFY .

If we add Λ to the second factor, we obtain the lifting map FY ×M TM → TFY of a
connection F(Γ,Λ) on FY , which is called the F -prolongation of Γ with respect to Λ.

5.4 Tangent valued forms

For the sake of simplicity, we consider a projectable tangent valued 1-formQ : TY → TY
over Q : TM → TM , that means Tp ◦Q = Q ◦ Tp. We have to interpret both Q and Q
as base preserving morphisms over M . Then we construct the induced map

JrQ×FQ FQ : JrTM ×FTM FTY → JrTM ×FTM FTY .

Consider the following diagram

JrTM ×FTM FTY
JrQ×FQFQ //

ψ̃
F

Y

��

JrTM ×FTM FTY

ψFY
��

JrTM ×TM TFY // TFY

Since ψ̃
F

Y is invertible, the bottom arrow defines

FQ = ψFY ◦ (JrQ×FQ FQ) ◦ (ψ̃
F

Y )−1 : JrTM ×TM TFY → TFY .

Then 5.2 implies the following property of FQ.
Proposition Let η be a projectable vector field on Y over ξ on M . Then

F
(
Q(η)

)
= FQ ◦ (jrξ ×idTM Fη) .

Definition For every linear r-th order connection Λ : TM → JrTM , the tangent valued
1-form on FY

F(Q,Λ) := FQ ◦ (Λ×idTM idTFY ) : TFY → TFY

is called the F -prolongation of Q with respect to Λ.
For a projectable tangent valued k-form Q on Y , we construct a projectable tangent

valued k-form F(Q,Λ) on FY in the same way.
We remark that ψF can be applied in an interesting way for constructing the

F -prolongations of Lie algebroids and their actions, [12].
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5.5 Remarks

If ωΓ is the connection form of a connection Γ on Y , see 3.11, then F(ωΓ,Λ) is the
connection form of the connection F(Γ,Λ).

However, finding the curvature of F(Γ,Λ) is a much more complicated problem than
in 3.11. This can be illustrated on some special cases discussed in detail in [4].

In general, the F -prolongation of tangent valued forms with respect to Λ does not
preserve the Frölicher-Nijenhuis bracket. Some very special cases, in which this bracket is
preserved, are characterized in [4].

5.6 Weak principal bundles

First we recall the basic properties of r-th jet prolongations of associated bundles, which
were clarified already by Ehresmann. Consider a fiber bundle E = P [S, l] associated to a
principal bundle P (M,G). By 3.4, Grm acts on T rmG by group isomorphisms. Hence we
can construct the semidirect group product

W r
mG = Grm o T rmG .

Then W rP := (P rM ×M JrP ) → M is a principal bundle with structure group W r
mG.

(More details will be given in 5.7 in a more general setting.) W rP is called the r-th
principal prolongation of principal bundle P , [14].

An action l : G× S → S induces an action W r
ml : W r

mG× T rmS → T rmS,

W r
ml
(
(g,X), Z

)
=
(
T rml(X,Z)

)
◦ g−1 ,

g ∈ Grm, X ∈ T rmG, Z ∈ T rmS. Then JrE has a canonical structure of associated bundle

JrE = W rP [T rmS,W
r
ml] .

Some geometric properties of JrP can be described by using the following concept.
Consider a group bundle C →M .
Definition A fibered manifold Q → M is called a weak principal bundle with structure
group bundle C → M , if we are given a base preserving morphism %Q : Q ×M C → Q
such that each group Cx acts simply transitively on the right on Qx.

The principal bundle is a weak principal bundle, the group bundle of which is a product
M ×K.

By 4.7, we have Jr(M × G) = P rM [T rmG]. This is a group bundle of type T rmG.
Applying Jr to %P : P ×M (M ×G)→ P , we obtain

Jr%P : JrP ×M P rM [T rmG]→ JrP .

This defines a weak principal bundle structure on JrP .

5.7 Principal F -prolongations

Consider the general case F = (A,H, t). Applying F to %Q, we obtain

%FQ := F%Q : FQ×M FC → FQ .
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This endows FQ→M with the structure of a weak principal bundle with structure group
bundle FC →M .

The construction of W rP from 5.6 can be extended to the general case. By 3.4, the
action HG of Grm on TAG is by group homomorphisms. Hence we can construct the
semidirect group product WA

HG = Grm o TAG with the composition

(g1, X1)(g2, X2) =
(
g1 ◦ g2, T

Aϕ
(
HG(g−1

2 )(X1), X2

))
,

where ϕ is the group composition of G. For an action l : G× S → S, we define

WA
H l : WA

HG× TAS → TAS , WA
H l
(
(g,X), Z

)
= HS(g)

(
TAl(X,Z)

)
,

g ∈ Grm, X ∈ TAG, Z ∈ TAS. This is an action, too. Clearly,

F (M ×G) = P rM [TAG,HG]

is a group bundle of type TAG. We have

F%P : FP ×M P rM [TAG,HG]→ FP .

We introduce WFP = P rM ×M FP and we define an action of WA
HG on WFP by

(u, Z)(g,X) =
(
u ◦ g, F%P

(
Z, {u ◦ g,X})

)
(28)

with u ∈ P rxM , Z ∈ FxP , g ∈ Grm, X ∈ TAG, so that {u ◦ g,X} ∈ P rM [TAG,HG].
One verifies directly
Proposition WFP (M,WA

HG) is a principal bundle. For an associated bundle E =
P [S, l], FE is an associated bundle WFP [TAS,WA

H l].
We say that WFP is the principal F -prolongation of principal bundle P . In the case

F = Jr, we have W JrP = W rP .
Remark In [13], a more general construction of a principal bundle from a weak principal
bundle and a suitable group bundle is discussed. Then a construction of the Lie algebroid
of the principal bundle in question in terms of an action of a Lie algebroid on a Lie alge-
bra bundle by derivations is described. In particular, the Lie algebroid of WFP can be
determined in this way.

5.8 Lie groupoids

It is interesting that the description of FY as a subset of P rM [TAY ], deduced in 4.7, is
unavoidable for constructing the F -prolongations of Lie groupoids.

In the algebraic sense, a groupoid is a category in which all elements are invertible.
We write a or b for the right or left unit map (also called source or target), respectively.

A smooth groupoid Φ
a //
b

//M is a groupoid such that Φ and M are manifolds, both

a, b : Φ→M are surjective submersions and the partial composition law

ϕ : Φa ×M Φb → Φ , Φa := (Φ a−→M) , Φb := (Φ b−→M)
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as well as the unit injection e : M → Φ are smooth maps. The product groupoid is of the
form

M ×G×M ,

where M is a manifold, G is a Lie group, a = pr3, b = pr1, e(x) = (x, eG, x), where eG
is the unit of G, and

ϕ
(
(x3, g2, x2)(x2, g1, x1)

)
= (x3, g2g1, x1) ,

the product g2g1 being in G. A smooth groupoid is called a Lie groupoid, if it is locally
isomorphic to the product one.

For every Lie groupoid Φ and every x ∈M ,

Φx := {θ ∈ Φ, aθ = x}

is a principal bundle, whose structure group Gx is the isotropy group of Φ over x. Con-
versely, if P (M,G) is a principal bundle, then the space of all equivalence classes

PP−1 = P × P/ ∼ , (v, u) ∼ (vg, ug) , u, v ∈ P, g ∈ G ,

is a Lie groupoid over M with respect to the composition {w, v}{v, u} = {w, u}. We say
that PP−1 is the gauge groupoid of P .

One verifies easily that for every Lie groupoid Φ
a //
b

//M , TAΦ
TAa //

TAb

//TAM is also a

Lie groupoid with partial composition law TAϕ and unit injection TAe : TAM → TAΦ.
If Φ = PP−1, then TAΦ = TAP (TAP )−1, where TAP → TAM is the principal bundle
from 3.8.

However, in the case F = (A,H, t) we cannot apply F to ϕ, for ϕ is not an FMm-
morphism. But we can consider the F -prolongation of Φ a−→ M . We write π : F (Φa) →
Φa for the bundle projection and a = a ◦ π, b = b ◦ π : FΦa → M . Further consider the

groupoid ΠrM
α //
β

//M of all invertible r-jets ofM intoM . Hence (a, b) : FΦa →M×

M and (α, β) : ΠrM →M ×M , so that we can construct the fiber product ΠrM ×M×M
FΦa.
Definition The F -prolongation of a Lie groupoid Φ is the subset

FΦ ⊂ ΠrM ×M×M FΦa (29)

of all pairs (v ◦ u−1, {u, Z}) satisfying tMv = TAb(Z).
Hence the elements of FΦ are the equivalence classes, with respect to the action of

Grm,

{v, Z, u} satisfying TAa(Z) = tMu , T
Ab(Z) = tMv ,

u, v ∈ P rM , Z ∈ TAΦ. Given another {w,Z, v} ∈ FΦ, we define the composition ∗ by

{w,Z, v} ∗ {v, Z, u} = {w, TAϕ(Z,Z), u} . (30)

Write ã, b̃ : FΦ → M for the projections determined by (29). Define ẽ : M → FΦ by
ẽ(x) = {u, jAê(x), u}, where ̂ denotes the constant map of Rk into e(x). Then one
verifies directly
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Proposition FΦ
ã //

b̃

//M with the partial composition law (30) and the unit injection ẽ

is a Lie groupoid over M .

For a principal bundle P , we have F(PP−1) = (WFP )(WFP )−1, where WFP is
the principal bundle from 5.7.

5.9 F -prolongation of actions

An action of a Lie groupoid Φ on a fibered manifold p : Y →M is a map ψ : Φa×M Y →
Y such that

p
(
ψ(θ, y)

)
= b(θ) , ψ

(
ϕ(θ2, θ1), y

)
= ψ

(
θ2, ψ(θ1, y)

)
, ψ
(
e(x), y

)
= y .

Every left group action l : G × S → S induces an action of M × G ×M on the product
fibered manifold M × S →M by

ψ
(
(x2, g, x1), (x1, s)

)
=
(
x2, l(g, s)

)
.

In the principal bundle form, M × S is a fiber bundle associated to M ×G.
If ψ : Φa ×M Y → Y is an action of Φ on Y , then TAψ : (TAΦ)T

Aa ×TAM TAY →
TAY is an action of TAΦ on TAY → TAM . In the case F = (A,H, t), we have
FY ⊂ P rM [TAY ] and we define Fψ : (FΦ)ã ×M FY → FY by

Fψ
(
{v, Z, u}, {u,Q}

)
=
{
v, TAψ(Z,Q)

}
,

u, v ∈ P rM , Z ∈ TAΦ, Q ∈ TAY .
Analogously to 5.8, one verifies directly

Proposition Fψ is an action of FΦ on FY →M .

In the case Φ = PP−1, we obtain the associated bundle structure on FY described in
5.7.

5.10 Remark

The theory of Weil bundles can be extended to some infinite dimensional spaces. The basic
information can be found in [18]. We describe the case of a rather simple functional bundle
and we present one more advanced result.

Two fibered manifolds p1 : Y1 → M , p2 : Y2 → M over the same base define an
infinite dimensional bundle⋃

x∈M
C∞(Y1x, Y2x) =: F(Y1, Y2) π−−→M

of all smooth maps between the individual fibers over the same base point. This is a smooth
space in the sense of Frölicher. We describe the basic ideas of this theory only. Given a
manifold Q, a map f : Q → F(Y1, Y2) is said to be smooth in the sense of Frölicher, if
f = π ◦ f : Q→M is smooth, so that we can construct the pullback

f∗Y1 =
{

(q, y) ∈ Q× Y1, π
(
f(q)

)
= p1(y)

}
,
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and the associated map

f̃ : f∗Y1 → Y2 , f̃(q, y) = f(q)(y)

is also smooth.
Write TAXYi = (TApi)−1(X), X ∈ TAM , i = 1, 2. Consider two maps f, g : Rk →

F(Y1, Y2) that are smooth in the sense of Frölicher and satisfy jA(π◦f) = jA(π◦g) = X .
Then we can construct a map jAf : TAXY1 → TAXY2,

(jAf)
(
jA
(
γ(u)

))
= jA

(
f(u)

(
γ(u)

))
, u ∈ Rk ,

and the same for g. If the maps jAf and jAg coincide, we say that f and g deter-
mine the same A-velocity on F(Y1, Y2). This defines an infinite dimensional bundle
TAF(Y1, Y2) → TAM . Since each algebra homomorphism µ : A → B can be inter-
preted as a reparametrization, we have an induced map

µF(Y1,Y2) : TAF(Y1, Y2)→ TBF(Y1, Y2) .

There are no flows in this situation. However, if X : F(Y1, Y2) → TF(Y1, Y2) is a
vector field that is differentiable in the sense of Frölicher, then the formula

T AX := κAF(Y1,Y2) ◦ T
AX

defines a vector field on TAF(Y1, Y2). The proof of the fact that this operation preserves
the bracket of vector fields is heavily based on the Weil algebra technique, [1].

Further, if F is a f.p.p.b. functor on FMm, then the decomposition F = (A,H, t)
enables us to construct an infinite dimensional bundle FF(Y1, Y2) → M analogously to
4.7, [1]. The r-jet prolongation JrF(Y1, Y2) can be also interpreted in a direct geometric
way. A section s : M → F(Y1, Y2) smooth in the sense of Frölicher is identified with a
base-preserving morphism Y1 → Y2. Then JrF(Y1, Y2) is the space of all fiber r-jets jrxs,
x ∈M , introduced in [14].
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Distributions, vector distributions, and
immersions of manifolds in Euclidean
spaces1
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1 Introduction

The term distribution has two different usages in global analysis. In one of them (see
Sections 2 and 3), distributions are sometimes also called Schwartzian distributions; a
popular example is Dirac’s delta function.

In the other usage (see Section 4), a k-dimensional smooth distribution on a smooth
manifold M is a smooth assignment of a k-dimensional subspace of the tangent vector
space T (M)p to each point p ∈ M ; “smooth” means of class C∞ here and elsewhere in
this text. A distribution in the latter sense defines a smooth k-dimensional subbundle of
the tangent bundle T (M), and vice versa. We shall call it – to make a clear distinction –
a k-dimensional vector distribution. We shall concentrate on general (mainly existence)
results on vector distributions and on the following question, known as the vector field
problem: When does the tangent bundle of a smooth finite-dimensional manifold admit a
trivial subbundle of a given dimension? There are also interesting and important results
on completely integrable distributions, i.e., on foliations; but we restrict ourselves to just
a passing mention of them: they are covered in a recent handbook-survey by R. Barre and
A. El Kacimi Alaoui [15].

Finally, a generalized version of the above question reads: When does a given vector
bundle over a smooth manifold admit a trivial subbundle of a given dimension? Hirsch

1The author was supported in part by two grants of VEGA (Slovakia).

8 B.V. .
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and Smale’s theory provides a bridge between this question and immersions of manifolds
in Euclidean spaces (see Section 5).

However different the three topics announced in the title seem, they have much in
common. Indeed, on the one hand, Schwartzian distributions play an important rôle in
Atiyah and Singer’s proof, published in [13], of their index formula (for the formula, see D.
Bleecker’s contribution in this Handbook). On the other hand, as we shall see in Sections
4 and 5, the index formula itself implies results on vector distributions and immersions of
manifolds in Euclidean spaces. So the Atiyah-Singer index formula is a kind of node at
which the three topics mentioned in the title are joined. In Section 5, we shall also show
some interplay between vector distributions, immersions, and the Lyusternik-Shnirel’man
category.

We adopt the following convention: Unless specified otherwise, we shall use the word
“manifold” to mean a smooth, Hausdorff, paracompact, connected, finite-dimensional
manifold without boundary, equipped with a smooth Riemannian metric whenever needed.
In particular, if such a manifold is compact, we call it closed. Maps between manifolds will
be smooth, all maps between topological spaces will be continuous. We do not distinguish
between diffeomorphic manifolds. Finally, C denotes the complex numbers, R the reals,
Q the rational numbers, Z the integers, and Zp the integers modulo the prime number p.

We remark that some of the concepts and questions considered here in the smooth
context also have their Cr-analogues for r 6= ∞ (but their behaviour may or may not be
analogous!).

By no means is this text comprehensive. We apologize in advance for omission of
many names, considerable ideas and important contributions.

We thank Martin Čadek, Michael Kunzinger, Tibor Macko, Jim Stasheff, and (last but
not least) Peter Zvengrowski for their comments.

2 Distributions on Euclidean spaces

2.1 Preliminaries

Unless stated differently, U denotes an open subset of Rn. If 1 ≤ p < ∞, then Lp(U)
(briefly Lp) denotes the standard Lebesgue space of (equivalence classes of) measurable
functions f (on U ) such that |f |p is integrable; L∞(U) is the vector space of (equivalence
classes of) functions measurable and essentially bounded on U . Let E(U) be the set of
all smooth functions U → C. With the usual point-wise addition and point-wise multipli-
cation by scalars, E(U) is a vector space. With a suitable topology (usually defined by a
family of semi-norms), E(U) becomes a Fréchet space (i.e., a complete, metrizable, locally
convex topological vector space).

For non-negative integers α1, . . . , αn, let α = (α1, . . . , αn) denote a multi-index of
order |α| = α1 + · · · + αn. Let Dα

x = Dα1
1 . . . Dαn

n be differentiation operators, where
D
αj
j = ( 1

i
∂
∂xj

)αj . The factor 1
i (where i ∈ C is the imaginary unit) is included just for

convenience, to simplify some formulae (e.g., for Fourier transformations). We note that
D

(0,...,0)
x f(x) = f(x). We define a subset D(U) ⊂ E(U) by

D(U) = {f ∈ E(U); supp(f) is compact},

where for any function g on U , supp(g), the support of g, is the closure in U of {x ∈
U ; g(x) 6= 0}. With a suitable topology (which is not the subspace topology), D(U)
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becomes a locally convex nonmetrizable space; but for any compact K ⊂ U , the set
D(K), consisting of elements in D(U) with support contained in K, is a Fréchet space.
In D(U), a sequence {hi} converges to the zero-function 0 (we write limi→∞ hi = 0) if
there exists some compact K0 ⊂ U such that supp(hi) ⊂ K0 for every i, and for each α,
the sequence {Dαhi} converges uniformly to 0.

In general, if V is a (complex) locally convex topological vector space and V ′ its topo-
logical dual, we denote by 〈 , 〉 : V ′ × V → C the bilinear dual pairing. The vector space
V ′ can be equipped with several topologies, but for our purposes it suffices to consider
two of them: the (weak) w∗-topology or the (strong) s∗-topology (see, e.g., Chap. 4 in
K. Yosida, Functional analysis, Springer 1965). In the sequel, topological duals of locally
convex topological vector spaces will be mostly (tacitly) taken with the w∗-topology; in
many cases, the w∗-topology and the s∗-topology are equivalent, but in some cases, it is
important to take the s∗-topology.

2.2 The definition of distributions, examples, and historical remarks

Distributions, in the sense of Schwartz, or Schwartzian distributions, on U are defined
to be elements of the topological dual vector space (D(U))′, briefly denoted by D′(U).
The elements of D(U) are then called test functions for the distributions from D′(U).
Sometimes, the elements of D′(U) are referred to as distributions over the test space D(U).
If we do not wish to emphasize U , we write just D instead of D(U), and D′ instead of
D′(U). More precisely, we defined here complex distributions. Real distributions will not
be considered here.

For a distribution s ∈ D′, its value at f ∈ D will be written, using the dual pairing, as
〈s, f〉; but sometimes we may write it simply s(f). A linear functional s : D(U)→ C is a
distribution on U if it is continuous, that is, if limi→∞ hi = 0 implies limi→∞ s(hi) = 0.

To give examples, denote by L
p
loc(U) (briefly L

p
loc) the space of locally Lp-functions

on U , i.e., of functions f such that ϕf ∈ Lp(U) for each ϕ ∈ D(U). Let f ∈ L1
loc(U).

Then we associate with f a distribution Tf , defined by

〈Tf , u〉 =
∫
U

f(x)u(x)dx,

for all u ∈ D(U). It can be proved that Tf = Tg if and only if f and g coincide almost
everywhere. Therefore the distribution Tf is frequently identified with the function f (one
often writes just f instead of Tf ), and in this sense, distributions are generalizations of
(locally integrable) functions.

The need for generalizations of functions (and their derivatives) had arisen since the
end of the 1920’s. For instance, P. Dirac and other physicists, in their works on quan-
tum mechanics, were successfully using (see [112]) a “function”(later known as the Dirac
delta-function) which was mathematically impossible. Indeed, they required, e.g., the fol-
lowing properties: δ(x) = 0 for x 6= 0, δ(0) = ∞, and

∫∞
−∞ δ(x)dx = 1. In addition to

this, in the framework of Heaviside’s symbolic calculus, invented in the theory of electrical
circuits, the Heaviside function y : R → R, defined by y(x) = 0 for x ≤ 0, y(x) = 1
for x > 0, should have had the Dirac delta-function as its first derivative: y′(x) = δ(x).
But there were also purely mathematical works (mainly on partial differential equations)
for which the standard notions of functions and derivatives appeared to be too narrow. So
it was, for instance, about 1932, with the finite parts of divergent integrals, applied by J.
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Hadamard in his works on the fundamental solutions of the wave equation. From others
who encountered similar problems with functions (and also tried to solve them in some
way) in the 1930’s - 1940’s, we mention S. Bochner, T. Carleman, A. Beurling, J. Leray,
K. Friedrichs, C. Morrey, and – last but not least – S. L. Sobolev. The latter, in 1936
(in Mat. Sb. 1), introduced and successfully applied generalized derivatives and general-
ized solutions of differential equations in his study of the Cauchy problem for hyperbolic
equations.

A short time after World War II, L. Schwartz ([112], [113]) started to present a new,
systematic basis for the whole variety of the generalized functions that had appeared in
the meantime. The definition of distributions, test functions, and test spaces above is due
to him. It is interesting that his idea was in a sense anticipated by A. Weil in his book
L’intégration dans les groupes topologiques et ses applications, Hermann 1940. Indeed, in
Weil’s approach to integration on locally compact groups, Radon measures on a group G
are considered as continuous linear functionals on the space of those continuous functions
on G vanishing on the complement of some compact subset.

Thanks to Schwartz’s theory of distributions, many old problems or discrepancies dis-
appeared. So, e.g., the problematic “Dirac’s function” was converted into the rigorous
Dirac’s distribution δ on R defined by

〈δ, f〉 = f(0)

for every f ∈ D(R). The same is also an example of a “pure” distribution, because it is not
(associated with) a function. At the same time (see, e.g., [59, 4.1.5]), for any distribution
s ∈ D′(U) there is a sequence of smooth functions on U converging to s (with the w∗-
topology on D′(U)).

Schwartz’s distributions turned out to be suitable for describing distributions of vari-
ous material quantities. This explains why Schwartz, perhaps also influenced by the fact
that, in the beginning, physicists were more accepting of his ideas than mathematicians,
preferred the term distributions (although some other mathematicians have continued call-
ing them “generalized functions”). In the subsequent years, the theory of distributions was
further developed in many directions. It has found many applications in differential equa-
tions ([59]), pseudodifferential operators ([13]), representations of Lie groups ([35]), in
mathematical physics (see, e.g., books by Y. Choquet-Bruhat, C. DeWitt-Morette, and M.
Dillard-Bleick or by V. S. Vladimirov), but also in engineering. In the 1950’s, G. de Rham
([106]) inspired by Schwartz’s approach, developed his theory of currents on manifolds,
and used it to prove that the de Rham cohomology groups and the singular cohomology
groups (for manifolds) are isomorphic. The notion of currents includes, as special cases,
both the notion of differentiable forms and the notion of singular chains. Schwartz’s dis-
tributions can also be defined on manifolds; they are in fact a special class of de Rham’s
currents, or still from another point of view, a special class of generalized sections of vector
bundles (see 3.2).

There are also other important types of generalizations of the notion of function, e.g.,
Sato’s hyperfunctions (see M. Morimoto, An introduction to Sato’s hyperfunctions, Amer-
ican Mathematical Society (1993)). The following subsections, until the end of Section 2,
will be devoted to some of the basic properties of Schwartzian distributions on open sub-
sets of Euclidean space, as a kind of preparation for passing to distributions on manifolds.
A detailed and far-reaching exposition of the theory of distributions on Euclidean spaces
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can be found, e.g., in L. Hörmander’s book [59] (having also a chapter on hyperfunctions);
a recent brief source is [99].

2.3 Local properties of distributions

Let U ′ be an open subset of an open subset U ⊂ Rn. For every f ∈ D(U ′), we have
its obvious smooth extension f̃ ∈ D(U): f̃(x) = f(x) if x ∈ U ′, and f̃(x) = 0 if
x ∈ U \ U ′. Then for every distribution s ∈ D′(U) one defines its restriction sU ′ to U ′

by putting 〈sU ′ , f〉 = 〈s, f̃〉, for every f ∈ D(U ′). Two distributions s, t ∈ D′(U) are
defined to be equal on U ′ if sU ′ = tU ′ . Then s, t ∈ D′(U) are equal if each point in U has
a neighbourhood, where s and t are equal.

The following is sometimes called the gluing principle for distributions. Given an
open covering {Ui; i ∈ I} (where I is some set) of U and a set of distributions {si ∈
D′(Ui); i ∈ I} such that si and sj coincide in Ui ∩ Uj for any i, j ∈ I , then there is
a unique distribution s ∈ D′(U) such that s coincides with si on Ui for each i. This
implies that for each distribution s ∈ D′(U) there exists an open (in U ) subset Us ⊂ U
which is largest, with respect to set inclusion, with the property that s vanishes on it (in
the sense that 〈s, f〉 = 0 for each function f ∈ D(Us)). The complement, U \ Us, is
defined to be the support of the distribution s; we denote it by supp(s). For instance, we
have supp(δ) = {0}. For any distribution Tf associated with a continuous function f ,
supp(Tf ) is the same as supp(f).

Similarly, one can define the singular support of a distribution s ∈ D′(U). Let V be an
open subset of U . Let V0 be the largest open subset in U such that sV0 is a smooth function
on V0. Then the complement U \ V0 is defined to be the singular support of s; we denote
it by singsupp(s). For instance, we have singsupp(δ) = {0}.

2.4 Spaces of distributions pertinent to various test spaces

For a given problem (e.g., on partial differential equations), it may be necessary to work
with a proper subset of the distributions from D′(U). Indeed, it might be better to choose
a test space different from D(U), hence to consider the topological dual to some other
topological vector space.

So for instance, if we extend the test space from D(U) to E(U), then the topological
dual, (E(U))′, which we denote by E′(U), may be considered as a set of distributions.
Indeed ([59, 2.3.1]), E′(U) can be identified with the set of all distributions in D′(U) with
compact support.

To mention another important example, let S(Rn) be the Schwartz space of (rapidly de-
creasing) smooth functions f : Rn → C such that pα,β(f) = supx∈Rn |xβDαf(x)| < ∞
for all multi-indices α and β, where xβ = x

β1
1 · · ·x

βn
n . The semi-norms pα,β define a

topology on S(Rn), converting it into a Fréchet space. The space S(Rn) can be continu-
ously injected into Lp(Rn) for all p; we shall consider it as a subset of Lp(Rn) (note that
it is dense if 1 ≤ p <∞).

The topological dual, (S(Rn))′, will be denoted by S′(Rn). The space S′(Rn) can
be interpreted as a subspace of D′(Rn); its elements are known as slowly increasing or
tempered distributions. One has (see [59, p. 164]) Lp(Rn) ⊂ S′(Rn) for all p. We can
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write

D(Rn) ⊂ S(Rn) ⊂ E(Rn), E′(Rn) ⊂ S′(Rn) ⊂ D′(Rn).

2.5 Derivatives of distributions

If f is a smooth function on U , then (using integration by parts) we obtain 〈TDαf , u〉 =
(−1)|α|〈Tf , Dαu〉 for any u ∈ D(U). Motivated by this, for any s ∈ D′(U), we define
Dαs : D(U)→ C by

(Dαs)(u) = (−1)|α|〈s,Dαu〉,

u ∈ D(U). It is readily seen that Dαs ∈ D′(U); Dαs is called the derivative (of order
|α|) of the distribution s. The map Dα : D′(U)→ D′(U) is continuous.

On the one hand, using this definition, one can calculate any derivatives of those lo-
cally integrable functions (interpreted as distributions) which were not differentiable in the
standard sense. On the other hand, the distributional derivatives of smooth functions can
be seen to coincide with the usual partial derivatives. Thanks to the definition given above,
each distribution can be considered infinitely differentiable (in the generalized sense). If f
is a locally integrable function (on some U ) and if, for some α, the distributional derivative
Dαf coincides with Tg (see 2.2) for some locally integrable function g on U , then Dαf is
a generalized derivative of function type. For example, for the Heaviside function y (see
2.1) we immediately obtain D(1)y = δ, hence a rigorous form of what Dirac and other
physicists were using in Heaviside’s symbolic calculus in the 1920’s. At the same time,
since the Dirac distribution δ ∈ D′(R) is not associated with a function (see 2.2), D(1)y
is not a generalized derivative of function type. The space S′(Rn) is closed with respect to
differentiation ([59, p. 164]).

2.6 Products and Colombeau’s algebras

There is no problem with defining the product fs = sf for s ∈ D′(U) and f smooth
on U : one puts (fs)(u) = 〈s, fu〉, u ∈ D(U). Then fs ∈ D′(U). Additionally ([59, p.
164]), S′(Rn) is closed with respect to products with polynomials or functions from S(Rn).
However, as shown by Schwartz [114], there are difficulties with extending this product,
if it should have reasonable properties (e.g., associativity), to arbitrary distributions. For
products of distributions under certain restrictions see, e.g., [59, 8.2], [97].

A radical step was undertaken by J.-F. Colombeau in the early 1980’s. To give a mean-
ing to any finite product of distributions, he constructed a commutative and associative
algebra of “new generalized functions”, for any open subset U ⊂ Rn. There are various
versions of the original construction, so that one may speak about various Colombeau’s
algebras (see [25]). The simplified or special Colombeau algebra G(Rn) presented in [25]
can be defined in simple terms. Indeed, letM(Rn) (M comes from “moderate”) be the
algebra of all nets (fε)ε>0 of smooth functions Rn → C such that for every compact
K ⊂ Rn and for any α there exist a non-negative integer N , a real κ > 0, and a real c > 0
such that

supx∈K |Dα
xfε(x)| ≤ c · ε−N
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whenever 0 < ε < κ. Let N (Rn) (N comes from “negligible”) be the ideal inM(Rn)
consisting of (fε)ε>0 such that for every compact K ⊂ Rn, for any α, and for any non-
negative integer N there exist κ > 0 and c > 0 such that

supx∈K |Dα
xfε(x)| ≤ c · εN

whenever 0 < ε < κ. Then the Colombeau algebra G(Rn) is the quotient G(Rn) =
M(Rn)/N (Rn).

For G(Rn) it is true that every element of G(Rn) admits partial differentiation to any or-
der, the set of Schwartzian distributions on Rn, D′(Rn), is contained (linearly embedded)
in G(Rn), the algebra of smooth functions, E(Rn), is a subalgebra of G(Rn), and every
function in G(Rn) admits values at points (but these are generalized numbers). In addition
to this, G(Rn) is an algebra which is closed under partial differentiation. In an analogous
way, one can describe the Colombeau algebra G(U) for any open subset U ⊂ Rn. As ap-
plications, Colombeau used his construction for explaining some heuristic formulae from
physics (dealing with the Hamiltonian and Lagrangian densities). He also has shown that
in G(U), partial differential equations may have new solutions.

Various modifications and applications (in particular, to nonlinear problems) of
Colombeau’s theory have also been studied, or other nonlinear theories have been sug-
gested, by several authors (J. Aragona, V. Boie, Yu. V. Egorov, M. Kunzinger, M. Ober-
guggenberger, S. Pilipović, E. Rosinger, V. M. Shelkovich, R. Steinbauer, to name at least
some). Now we come back to the framework of the linear Schwartzian distribution theory
(later, in the final part of 3.2, we again shall include a remark on Colombeau’s theory).

2.7 Behaviour of distributions under diffeomorphisms

Let Ux and Vy be open subsets of Rn; x = (x1, . . . , xn) is a generic variable point in
Ux, and y = (y1, . . . , yn) is a generic variable point in Vy . Let ϕ : Ux → Vy be a
diffeomorphism. So we have a (smooth) coordinate change,

x1 = (ϕ−1)1(y1, . . . , yn), . . . , xn = (ϕ−1)n(y1, . . . , yn).

We denote by J(ϕ−1) the determinant of the Jacobian matrix d(ϕ−1). For g ∈ L1
loc(Vy),

we define ϕ∗(g) on Ux by

ϕ∗(g)(x) = g ◦ ϕ(x).

At the same time, for f ∈ L1
loc(Ux) we define ϕ#(f) on Vy by

ϕ#(f)(y) = |J(ϕ−1)(y)|(ϕ−1)∗(f)(y).

One readily sees that ϕ∗ : L1
loc(Vy) → L1

loc(Ux) is a linear isomorphism, and it restricts
to linear isomorphisms ϕ∗ : E(Vy) → E(Ux), ϕ∗ : D(Vy) → D(Ux). Similarly, ϕ# :
L1

loc(Ux) → L1
loc(Vy) is a linear isomorphism, and it restricts to linear isomorphisms

ϕ# : E(Ux)→ E(Vy), ϕ# : D(Ux)→ D(Vy).
The operator ϕ# acts “covariantly” on standardly interpreted functions, while the op-

erator ϕ∗ acts “contravariantly” on functions usually interpreted as distributions (hence on
objects dual to standard functions). Indeed, for any g ∈ L1

loc(Vy) we have the associated
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distribution Tg ∈ D′(Vy). So we obtain (recall, from 2.2, that we may identify functions
and the associated distributions) that

〈ϕ∗(Tg), f〉 = 〈Tg, ϕ#(f)〉

for all f ∈ D(Ux). It is then natural to use this as a pattern for defining

ϕ∗ : D′(Vy)→ D′(Ux), 〈ϕ∗(s), f〉 = 〈s, ϕ#(f)〉,

for all f ∈ D(Ux); this map is continuous (in the w∗-topology). The distribution ϕ∗(s) is
sometimes called the pullback of the distribution s by ϕ. Of course, if we have diffeomor-
phisms ϕ : Ux → Vy and ψ : Vy →Wz , then (ψ ◦ ϕ)∗ = ϕ∗ ◦ ψ∗.

2.8 The Schwartz kernel theorem

Let U ⊂ Rn and V ⊂ Rm be open sets; now we equip D′(V ) with the s∗-topology.
Let L(D(U),D′(V )) denote the space of continuous linear operators D(U) → D′(V ),
with the topology of uniform convergence on bounded sets. The following is known as
the Schwartz kernel theorem (see [59, 5.2]): Every distribution k ∈ D′(V × U) defines a
continuous linear operator Λk ∈ L(D(U),D′(V )) by

Λk(u)(v) = 〈k, v ⊗ u〉,

u ∈ D(U), v ∈ D(V ), where v⊗u : V ×U → C, (v⊗u)(y, x) = v(y)u(x). Conversely,
every Λ ∈ L(D(U),D′(V )) can be expressed as Λk for some distribution k ∈ D′(V ×U).
In addition to this, the map

D′(V × U)→ L(D(U),D′(V )), k 7→ Λk,

is bijective.
The dual pairing 〈 , 〉 : D′(V × U) ×D(V × U)→C is sometimes written using the

integral sign (see 3.1). Using this convention, one may write

Λk(u)(v) = 〈k, v ⊗ u〉

as

Λk(u)(v) =
∫
k · v ⊗ u dxdy.

This converts – of course, in general just optically – Λk into an integral operator, and that
is why the distribution k ∈ D′(V ×U) is called a generalized or Schwartz kernel, and why
the above theorem is called the kernel theorem.

2.9 Fourier transforms of distributions

In 2.4, we introduced tempered distributions. They behave nicely with respect to the
Fourier transform which is useful, e.g., for dealing with pseudodifferential operators (see
Bleecker’s contribution in this Handbook).
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For f ∈ L1(Rnx), the Fourier transform is defined by

Ff(ξ) =
∫
e−ix·ξf(x)dx,

where x = (x1, . . . , xn) ∈ Rnx , ξ = (ξ1, . . . , ξn) ∈ Rnξ , and x · ξ is the inner product
of (the vector) x and (the covector) ξ: x · ξ = x1ξ1 + · · · + xnξn. We shall also write
f̂(ξ), or simply f̂ , instead of Ff(ξ). The inverse Fourier transform F−1g of a function
g ∈ L1(Rnξ ) is given by

F−1g(x) = (2π)−n
∫
eix·ξg(ξ)dξ.

Fourier transforms of functions from the Schwartz space S(Rn) (which is dense in
L1(Rn)) have remarkable properties. For instance, using integration by parts, one readily
verifies that if u ∈ S(Rn), then one has the following nice formula, enabling one to convert
problems about differential operators into algebraic problems:

F(Dαu) = ξαFu.

Note that this formula would be more complicated if the factor 1
i in the definition of Dαk

k

had not been included (see 2.1). Another useful formula is

F((−1)|α|xαu) = DαFu.

One of the basic facts about the Fourier transform is the following theorem ([59, 7.1.5]):
The Fourier transformation F : S(Rnx) → S(Rnξ ) is a linear topological isomorphism, its
inverse being the inverse Fourier transformation F−1.

By the Parseval-Plancherel theorem, the operator F : S(Rnx) → S(Rnξ ) can be contin-
uously extended to an isomorphism

F : L2(Rnx)→ L2(Rnξ )

such that for all f, g ∈ L2(Rn) we have that

(f, g) = (2π)−n(f̂ , ĝ);

here the inner product (f, g) is defined to be∫
f(x)g(x)dx.

From the Fourier transforms on S(Rn), we pass to the Fourier transforms on the space
of tempered distributions (see 2.4). For u ∈ L1(Rn) ⊂ S′(Rnx) (identifying u with Tu),
one readily obtains that

〈û, v〉 = 〈u, v̂〉,

v ∈ S(Rn). This motivates one to define

〈F(s), u〉 = 〈s,F(u)〉,

s ∈ S′(Rnx), u ∈ S(Rnξ ). Then (see [59, 7.1.9]) F(s) = ŝ is in S′(Rnξ ), and the Fourier
transformation defines an isomorphism, F : S′(Rnx)→ S′(Rnξ ). As one readily calculates,
we have F(Dks) = ξkFs, s ∈ S′(Rn), k = 1, . . . , n.
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3 Distributions and related concepts on manifolds

3.1 Preliminaries

Here and elsewhere in this text, manifolds will mostly be denoted by M , N or similarly.
Frequently, when we wish to emphasize or recall that, e.g., N is of dimension d, we use
the “more detailed” notation Nd.

In this section, M will always denote a manifold of dimension n. A smooth structure
on M is given by a fixed maximal atlas (see [57]) of local coordinate systems (or charts)
{(Uα, ϕα)}α∈A, where Uα (covering M ) are open subsets and each ϕα is a homeomor-
phism from Uα to an open subset ϕα(Uα) ⊂ Rn. Then for any α, β ∈ A the mapping
ϕα ◦ ϕ−1

β : ϕβ(Uα ∩ Uβ)→ ϕα(Uα ∩ Uβ) is a diffeomorphism. If U is an open subset of
M , we shall denote (similarly to the Euclidean case) by E(U) the set of all smooth func-
tions U → C. The subset of those f ∈ E(U) having compact support will be denoted by
D(U). For any map g on U such that the meaning of g(x) 6= 0 is well defined (e.g., g may
be a function or a section of a vector bundle), the support of g is defined to be the closure
of the set {x ∈ U ; g(x) 6= 0}.

If α = (E, π,B) is a vector bundle with the total space E, projection π and base space
B, we refer to it as α or as E, and the fibre over a point x ∈ B is denoted by αx or by Ex.
If U is a subset of B, the restriction of E over U will be denoted by π−1(U), by E|U , or
by α|U . The expressions “vector bundle of dimension k”, “vector bundle of rank k”, and
“k-plane bundle” for k ≥ 2 or “line bundle” for k = 1 are used as synonymous. If α is
a vector bundle of dimension k, we sometimes denote it by αk, to indicate its dimension.
All vector bundles over M will be (supposed) finite dimensional.

We shall work with the category of smooth complex (alternatively: real) vector bun-
dles; it will be denoted by VB(F) (where F = C or F = R; see the paragraph after the next
for the definition of a vector bundle morphism). We note that each vector bundle of class
Cr over a C∞-manifold has a C∞-structure compatible with its Cr-structure, and this
C∞-structure is unique up to a C∞-isomorphism. For this and other Cp-to-Cq questions
in the category VB(F) see, e.g., [57]. Useful sources of information on vector bundles are
also, e.g., [122], [60], [98], [94].

For any smooth k-plane bundle (E, π,B) we can find an open covering of B by coor-
dinate neighbourhoods Vi (where (Vi, ψi) belongs to an atlas of the smooth structure on
B) such that ϕi : π−1(Vi) → Vi × Fk is a trivialization of E over Vi, and the composi-
tion (ψi × id) ◦ϕi is a fibre-preserving diffeomorphism between π−1(Vi) and the product
bundle ψi(Vi)× Fk.

In the category VB(F), a morphism from (F, π, Y ) to (E, π′, X) is a pair of smooth
maps (f, f̄) : (F, Y ) → (E,X) such that π′ ◦ f = f̄ ◦ π, and f restricts for each y ∈ Y
to a linear map f|Fy : Fy → Ef̄(y). Such a pair (f, f̄) is called a vector bundle morphism
from F to E. We may also speak of a vector bundle morphism f from F to E, and
write it simply as f : F → E, because the map f̄ is completely determined by f (via
f̄(π(u)) = π′(f(u))). In this category, the composition of morphisms is given simply
by the usual composition of maps. For each smooth manifold X , we have a subcategory
X-VB(F): its objects are the smooth F-vector bundles over X , and its morphisms from
(F, π,X) to (E, π′, X) are the vector bundle morphisms (f, f̄) : (F,X) → (E,X) such
that f̄ = idX ; we shall refer to them briefly asX-morphisms. In particular, if there is anX-
isomorphism between two F-vector bundles over X , then we say that they are isomorphic.



Július Korbaš 675

We often do not distinguish between isomorphic vector bundles. Any F-vector bundle over
X isomorphic to the product bundle X × Fk will be denoted by εk, and will be called a
trivial k-dimensional vector bundle over X .

For any (complex or real) vector bundle α = (E, π,M), we denote by Γ(M,E)
(briefly: Γ(E) or Γ(α)) the topological vector space of all smooth sections of E (that
is, of smooth maps s : M → E such that π ◦ s = idM ). Similarly, Γc(M,E) (briefly:
Γc(E) or Γc(α)) will be the space of the smooth sections of E with compact support. Re-
call that if f : N → M is a smooth map and s ∈ Γ(M,E), then we have the pullback
bundle f∗(E) over N and the induced section t ∈ Γ(N, f∗(E)), t(y) = (y, s ◦ f(y)). In
particular, if N is a subspace of M and f : N → M is the inclusion, then f∗(E) is the
restriction of the vector bundle E to N , denoted by EN (or similarly), and the section t
of EN is then the restriction of the section s to N , denoted by s|N . We note that if E is a
complex line bundle over Rn, then E is of course trivial, and the spaces Γ(E) and Γc(E)
coincide with E(Rn) and D(Rn), respectively.

3.2 Generalized sections, distributions, and distributional densities

Let T (M)p be the tangent space to M at p ∈ M . The union of all the spaces T (M)p
can be converted, in a natural way, into a smooth manifold, T (M), called the tangent
manifold of M . The manifold T (M) becomes the total space of a vector bundle called
the tangent bundle of M ; the fibre over p ∈ M is T (M)p. The tangent bundle T (M) is
trivial over any Uα, if (Uα, ϕα) is a local coordinate system. The corresponding transition
functions are gα,β : Uα ∩ Uβ → GL(n,R), gα,β(p) = d(ϕα ◦ ϕ−1

β )(ϕβ(p)); the latter
is the Jacobian matrix, at the point ϕβ(p), of the diffeomorphism ϕα ◦ ϕ−1

β (see 2.7). At
the same time, transition functions determining the cotangent bundle T ∗(M) are lα,β :
Uα ∩ Uβ → GL(n,R), lα,β(p) = d∗(ϕα ◦ ϕ−1

β )(ϕβ(p)), where the latter is the transpose
of the inverse matrix to d(ϕα ◦ ϕ−1

β )(ϕβ(p)). Of course, the cotangent bundle of M is the
dual vector bundle to the tangent bundle of M .

Now we denote by Ω(M) (briefly Ω) the complexification of the real line bundle ΩR
over M determined by transition functions hα,β : Uα ∩ Uβ → GL(1,R), hα,β(p) =
|J(ϕα ◦ ϕ−1

β )(ϕβ(p))|−1; here (as in 2.7) J(ϕα ◦ ϕ−1
β ) is the determinant of the Jacobian

matrix d(ϕα ◦ϕ−1
β ). The vector bundle Ω = ΩR ⊗C is known as the complex line bundle

of densities on M (see [134, Chap. VII] or L. Loomis, S. Sternberg, Advanced calculus,
Jones and Bartlett Publ. 1990). [Note that in the real theory, ΩR is the real line bundle of
densities.] The fibre of Ω over a point p consists of functions f : Λn(T (M)p) \ {0} → C
such that f(kv) = |k|f(v) for all k ∈ R \ {0} and all v ∈ Λn(T (M)p) \ {0}; here
Λn(T (M)p) is the nth exterior power of T (M)p. Smooth sections of Ω are called smooth
densities onM ; Γ(Ω) is the space of all smooth densities, and Γc(Ω) is the space of smooth
densities with compact support on M .

For a given local coordinate system (Uα, ϕα), let Xi : Uα → R be the ith coordinate
function, Xi = ri ◦ϕ, where ri : Rn → R, ri(x1, . . . , xn) = xi. Then ∂

∂X1
∧ · · · ∧ ∂

∂Xn
is

a non-vanishing section of Λn(T (M)) restricted over Uα. A smooth section of Ω restricted
over Uα is always of the form g(x)|dX|, where g is a smooth complex-valued function on
Uα, and |dX| = |dX1 . . . dXn| has the value |k| on k ∂∂X1

∧ · · · ∧ ∂
∂Xn

. Using standard
means (among them, a suitable partition of unity), one readily shows that elements of
Γc(Ω) can be integrated on M , in an invariant manner ([134, Chap. VII]).
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Let E be a complex vector bundle over M , and let E∗ be the dual vector bundle; the
fibre E∗x over x ∈M is the dual complex vector space to the fibre Ex. Let

( , ) : Ex × (E∗x ⊗ Ωx)→ Ωx

denote the obvious pairing. Given s ∈ Γ(E) and t ∈ Γ(E∗ ⊗ Ω), we define a smooth
section ω of the line bundle Ω by

ω(p) = (s(p), t(p)).

So we obtain a bilinear map Γc(E)×Γ(E∗⊗Ω)→ Γ(Ω) which, when composed with the
integration operator, yields a (separately continuous) bilinear map ϕ : Γc(E) × Γ(E∗ ⊗
Ω) → C. Then we have an obvious linear map ϕ̃ : Γ(E∗ ⊗ Ω) → Γc(E)′ (defined by
ϕ̃(u)(v) = ϕ(v, u)). Taking E∗ ⊗ Ω in the rôle of E and identifying (E∗ ⊗ Ω)∗ ⊗ Ω
with E (note that we can canonically identify E∗∗ with E; in addition to this, for any line
bundle L, the tensor product L∗ ⊗ L is canonically isomorphic to the trivial line bundle),
we obtain a linear map

Γ(E)→ (Γc(E∗ ⊗ Ω))′.

This map is injective and its image is dense in (Γc(E∗ ⊗ Ω))′. So it is natural to call
elements of (Γc(E∗ ⊗ Ω))′ generalized sections of E; note that they are also called dis-
tributional sections of E (see [13]), or E-valued distributions. The space of generalized
sections of E over M is denoted by D′(M,E), or just D′(E) (if M is clear from the
context). Similarly, elements of (Γ(E∗ ⊗ Ω))′ are defined to be generalized sections (or
distributional sections) ofE with compact support. The space of such generalized sections
is denoted by E′(M,E), or just E′(E).

We remark that, for a suitable complex vector bundle E, complex de Rham currents on
M (see 2.1) can also be defined as elements of D′(M,E). For a real vector bundle V over
M , one can introduce a set of generalized sections, D′(M,V ), in an analogous way to the
complex case. Again, for a suitable V , the elements of D′(M,V ) are the de Rham real
currents basically treated in [106]; for their recent applications see [51], [52].

Now we extend the notion of distributions to manifolds. We define a distribution u
on M to be a family u = {uα}α∈A of distributions uα ∈ D′(ϕα(Uα)) such that, for all
α, β ∈ A,

uβ = (ϕα ◦ ϕ−1
β )∗(uα);

(for the right-hand side, see 2.7). Using the gluing principle (see 2.3), one verifies (cf. [59,
6.3]) that for defining a distribution on M , in a unique way, it suffices to give a family
{uα} of distributions uα ∈ D′(ϕα(Uα)), where the family {(Uα, ϕα)} is just an atlas of
local coordinate systems on M , if the condition

uβ = (ϕα ◦ ϕ−1
β )∗(uα)

is fulfilled for any (Uα, ϕα), (Uβ , ϕβ) from that atlas. The set of all distributions onM can
be identified with the space of all generalized sections of the trivial complex line bundle
M × C over M , hence with the space (Γc(Ω))′ = D′(M,M × C) which we denote by
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D′(M). [In the terminology of Guillemin and Sternberg [48], the elements of D′(M) are
called generalized functions on M .] We observe that there is an algebraic isomorphism

D′(M,E) ∼= D′(M)⊗ Γ(M,E)

of modules over the ring of smooth functions onM . This justifies the terminology in which
the elements of D′(M,E) are called sections with distributional coefficients. In particu-
lar, a (complex) current on M can be represented, with respect to every local coordinate
system, as a (C-valued) differential form on M with distributions as coefficients. We also
note that distributions on M can be identified with de Rham currents of a certain type.

We define distributional densities on M to be continuous linear functionals (or forms)
on the space D(M) (with a suitable topology) of all smooth C-valued functions with com-
pact support onM . The space of distributional densities onM will be denoted by D′dd(M).
Any smooth density ω on M (hence ω ∈ Γ(Ω(M))) can be considered as a distributional
density on M . Indeed, it defines a continuous linear functional ω on D(M) by

〈ω, u〉 =
∫
M

u · ω

(note that then u · ω is a smooth density with compact support, hence can be invariantly
integrated on M ). [For this reason, and also because we can identify D′dd(M) with the
space of generalized sections of Ω, (Γc(Ω∗ ⊗ Ω))′ = D′(Ω), distributional densities are
sometimes also called generalized densities; cf. [48].]

If f : M → N is a smooth map, then we have a continuous linear map f∗ : E(N) →
E(M), f∗(u) = u ◦ f. Now if f : M → N is a proper smooth map (that is, the pre-image
of each compact subset is compact), and s ∈ D′dd(M), then one defines a distributional
density f∗(s) ∈ D′dd(N) by

〈f∗(s), u〉 = 〈s, f∗(u)〉.

The support supp(s) of s ∈ D′dd(M) is defined by: x /∈ supp(s) if there exists
a neighbourhood U of x such that 〈s, v〉 = 0 if supp(v) ⊂ U . If s ∈ D′dd(M) is a
distributional density with compact support, then it defines a linear functional on the space
E(M), by

〈s, v〉 = 〈s, ϕ · v〉,

for v ∈ E(M), where ϕ : M → R is a smooth function with compact support such that
ϕ(p) = 1 for every p from some open neighbourhood of supp(s) (the definition does
not depend on the choice of ϕ). With this pairing between distributional densities with
compact support and smooth functions on M , if s is a distributional density with compact
support and if f : M → N is any smooth map, then again

〈f∗(s), u〉 = 〈s, f∗(u)〉

defines f∗(s) as a distributional density (even if f is not a proper map). The subspace in
D′dd(M) consisting of distributions with compact support is denoted by E′dd(M).

We write the pairing between s ∈ D′(Ω) = D′dd(M) and f ∈ D(M) as 〈s, f〉. Some-
times, mainly in applications to physics, the same is written (perhaps more suggestively)
as ∫

M

f · s.
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The latter is really an integral only if s is a smooth density, hence if we have s ∈ Γ(Ω).
If E is a complex vector bundle over M , we can identify

D′(E∗ ⊗ Ω) = (Γc(E∗∗ ⊗ Ω∗ ⊗ Ω))′ = (Γc(E))′.

We write the corresponding pairing between s ∈ D′(E∗ ⊗ Ω) and f ∈ Γc(E) again, as in
the case of generalized densities, as 〈s, f〉. Sometimes (again, mainly in physics oriented
literature) the notation∫

M

f · s

is also used; of course, the integral appears here, in general, just formally.
We remark that the Colombeau algebras of “new generalized functions” (see 2.6) can

also be defined on smooth manifolds. About 2001, the problem of constructing a theory
in which the embedding of the distributions (hence the embedding of (Γc(Ω))′ = D′(M))
commutes with smooth local coordinate changes has been solved by M. Grosser, E. Farkas,
M. Kunzinger, R. Steinbauer, and J. Vickers. The solution, together with other interesting
material (also on concepts presented in this subsection), can be found in the book [47]. In
[83], the authors employ generalized tensor analysis in the sense of Colombeau’s construc-
tion in order to introduce a nonlinear distributional pseudo-Riemannian geometry. They
also give applications to general relativity and compare some of their concepts with those
presented by J. Marsden in [88]. On the Colombeau algebras on manifolds, the reader can
also consult, e.g., publications by H. Balasin, J.-F. Colombeau, R. Hermann, J. Jelı́nek.

Now we come back to generalized sections of vector bundles as introduced earlier in
this subsection.

3.3 Some properties of generalized sections of vector bundles

If M = Rn, then both distributional densities and distributions on M can be identified
with the Schwartz distributions on Rn (in the sense of 2.2). At the same time, generalized
sections of vector bundles are generalizations of both distributional densities and distribu-
tions.

Before commenting on some properties of generalized sections, we recall a category
of smooth vector bundles described, e.g., by Guillemin and Sternberg [48, App. II]. Its
objects are again (as in the category VB(F)) smooth complex (alternatively: real) vector
bundles. A morphism from (F, πF , Y ) to (E, πE , X) is any pair (f, r), where f : Y → X
is a smooth map and r is a smooth section of the vector bundle Hom(f∗(E), F ). In
the latter, f∗(E) is the induced vector bundle, hence we can identify f∗(E)y with Ef(y)

for any y ∈ Y , and the fibre of Hom(f∗(E), F ) over y ∈ Y is then Hom(Ef(y), Fy),
hence the vector space of linear maps Ef(y) → Fy . (Note that any smooth section of
Hom(f∗(E), F ) defines a smooth Y -morphism from f∗(E) to F .) We shall call (f, r) a
smooth sectional vector bundle morphism (briefly: sectional morphism) from F to E; we
shall write (f, r) : (F, πF , Y ) → (E, πE , X) (or briefly (f, r) : F → E). To describe
the composition law ◦ for morphisms, let us have, in addition to (f, r), a smooth sectional
morphism (g, s) from (G, πG, Z) to (F, πF , Y ). Then we put (g, s)◦(f, r) = (f ◦g, r◦s),
where g and f compose in the standard way, while the smooth section

r ◦ s : Z → Hom((f ◦ g)∗(E), G)
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is defined by

(r ◦ s)(z) = s(z) ◦ r(g(z)),

for z ∈ Z. We denote this category by sectVB(F), where F = R or F = C; we shall call it a
sectional category of smooth F-vector bundles. We observe that this is in fact the opposite
category to the category described in 7.2.6 of N. Bourbaki, Éléments de mathématique,
Fasc. XXXIII, Hermann 1967.

For example, it is clear that (idX , r) : (F, πF , X)→ (E, πE , X) is a smooth sectional
vector bundle morphism precisely when r defines a smooth X-morphism from E to F . To
give another example, let f : X → Y be a smooth map, and let df : T (X) → T (Y ) be
its differential (or tangent map). Then df is a smooth vector bundle morphism from T (X)
to T (Y ). At the same time, let df∗(x) : T ∗(Y )f(x) → T ∗(X)x be the dual of the linear
map dfx : T (X)x → T (Y )f(x). Then df∗ : X → Hom(f∗(T ∗(Y )), T ∗(X)) is a smooth
section, and the pair (f, df∗) is a smooth sectional vector bundle morphism from T ∗(X)
to T ∗(Y ), hence an example of a morphism in the category sectVB(R)).

Now if X and Y are closed manifolds and (f, r) : (E, πE , X) → (F, πF , Y ) is a
smooth sectional morphism from E to F , then we have a linear map, (f, r)∗ : Γ(Y, F )→
Γ(X,E), defined by (f, r)∗(u)(x) = r(x)(u(f(x)), x ∈ X . Using the pairing mentioned
in 3.2, we obtain a linear map,

(f, r)∗ : D′(E∗ ⊗ Ω(X))→ D′(F ∗ ⊗ Ω(Y )),

defined (for s ∈ Γ(F )) by

〈(f, r)∗(ω), s〉 = 〈ω, (f, r)∗(s)〉.

So if (f, r) : E → F is a smooth sectional morphism, then smooth sections of F pull
back, and generalized sections of E∗ ⊗ Ω(X) push forward.

Many other results on generalized sections (e.g., constructions of pullbacks of gen-
eralized sections under submersions, that is, under smooth maps f : X → Y such that
dfx : T (X)x → T (Y )f(x) is surjective for each x ∈ X), together with interesting applica-
tions, can be found in [48].

3.4 The wave front sets

An important rôle in the theory of generalized sections and in applications is played by
wave fronts introduced by L. Hörmander in 1971; for instance, they have been used in
micro-local analysis. The latter is sometimes called a geometric theory of distributions; it
is an analysis on the cotangent bundle, applied, e.g., to the study of systems of differential
and integral equations.

Let U ⊂ Rn be open, and let s ∈ D′(U). We define the wave front set WF (s) ⊂
U × (Rn \ {0}) of s in the following way. A point (x0, ξ0) ∈ U × (Rn \ {0}) does not
lie in WF (s) (and s is considered to be smooth in a neighbourhood of the point (x0, ξ0))
if there is a function f ∈ D(U), equal to 1 in a neighbourhood of x0, and an open conic
neighbourhood Γ0 of ξ0 (hence Γ0 ⊂ Rn is an open neighbourhood of ξ0, and if ξ ∈ Γ0,
then also ρξ ∈ Γ0 for all ρ > 0) such that for every N ≥ 0 there exists a constant CN ≥ 0
such that

|(f̂ s)(ξ)| ≤ CN (1 + |ξ|)−N ,
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ξ ∈ Γ0. Here (see 2.9) (f̂ s)(ξ) = 〈s(x), f(x)e−ix·ξ〉 is the Fourier transform of fs. The
set WF (s) is closed and conic in U × (Rn \ {0}) (that is, (x, ξ) ∈ WF (s) implies that
(x, tξ) ∈WF (s) for all t > 0).

If M is a manifold and s is a generalized section of a smooth vector bundle F over
M , then WF (s) is defined similarly to above (using local coordinates). Then WF (s) is a
well-defined conic subset of T ∗(M) \ {0} (the cotangent bundle minus the zero section).
The wave front set WF (s) may contain a better piece of information on the singularities
of s than singsupp(s). (As in the Euclidean situation, the latter is the singular support of s,
hence a closed subset of M defined by the following: p ∈ M does not lie in singsupp(s)
if there is some smooth function ϕ with compact support such that ϕ(p) 6= 0 and ϕ · s ∈
Γ(F ).) Indeed, if π : T ∗(M) \ {0} → M is the canonical projection, then we have
π(WF (s)) = singsupp(s). For further properties of wave fronts see [59], [48].

3.5 The Schwartz kernel theorem on manifolds

To simplify matters, in this subsection, all manifolds will be (supposed) closed. For any
smooth complex vector bundle we choose a smooth Hermitian metric.

Let E and F be smooth complex vector bundles over a manifold M . Let P : Γ(E)→
Γ(F ) ⊂ D′(F ) be a continuous linear operator. Its Schwartz kernel kP (see 2.8) is a
generalized section, kP ∈ D′(M ×M,F ⊗̂(E∗⊗Ω)) = (Γ(F ∗⊗̂E))′, where F ⊗̂E is the
external tensor product of F and E. If v ∈ Γ(F ∗) and u ∈ Γ(E), then the value of kP on
the section v ⊗ u is given by

〈kP , v ⊗ u〉 = 〈v, P (u)〉.

Let L(Γ(E),D′(F )) denote the space of continuous linear operators Γ(E) → D′(F )
with the topology of uniform convergence on bounded sets. The Schwartz kernel theorem
affirms that the map

L(Γ(E),D′(F ))→ D′(M ×M,F ⊗̂(E∗ ⊗ Ω)), P 7→ kP ,

is a bijection.
Using the Schwartz kernel, one introduces smoothing linear operators: a linear opera-

tor P : Γ(E)→ Γ(F ) is said to be smoothing if the Schwartz kernel kP is smooth, hence if
kP ∈ Γ(M×M,F ⊗̂(E∗⊗Ω)). Smoothing operators play an important rôle in Atiyah and
Singer’s proof of their index theorem (on the theorem, see Bleecker’s contribution in this
Handbook) published in 1968 ([13]). At the same time, the Atiyah-Singer index theorem
implies results on vector distributions, and also on immersions of manifolds in Euclidean
spaces, as we shall indicate in Sections 4 and 5.

4 Vector distributions or plane fields on manifolds

4.1 Preliminaries

Let M be a manifold. A smooth vector field s on M is a smooth section of the tangent
bundle T (M), hence s ∈ Γ(T (M)). More generally, a smooth vector field on an open
subset U of M is an element of Γ(T (M)|U ). Vector fields v1, . . . , vt on U are said to be
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independent on U if their values v1(x), . . . , vt(x) ∈ T (M)x are linearly independent for
each x ∈ U . In the sequel, all vector fields will be (supposed to be) smooth.

On the dual side, we denote by Ep(M) the set of all differential p-forms (i.e., the set
of all smooth sections of ΛpT ∗(M), the pth exterior power of the cotangent bundle of
M ) on the manifold M , and by E∗(M) we denote the set of all differential forms on M .
Let f : M → N be a smooth map, and let x ∈ M . Then we have the differential df :
T (M)x → T (N)f(x). Its dual, the codifferential, we denote now by (df)∗ : T ∗(N)f(x) →
T ∗(M)x. The same notation is used for the induced algebra-homomorphism, (df)∗ :
ΛT ∗(N)f(x) → ΛT ∗(M)x. If ω ∈ E∗(N), then we pull ω back to a form on M defined
by x 7→ (df)∗(ω(f(x))). So we obtain a map E∗(N) → E∗(M); again, we denote it
by (df)∗, so that we have ((df)∗(ω))(x) = (df)∗(ω(f(x))). If U ⊂ M is open, then a
p-form on U is an element of Γ(U,ΛpT ∗(M)|U ); a collection ω1, . . . , ωt of 1-forms on
U is called independent on U if ω1(x), . . . , ωt(x) ∈ T ∗(M)x are linearly independent for
each x ∈M . In the sequel, all differential forms will be (supposed to be) smooth.

We say ([136, 2.28]) that an ideal I ⊂ E∗(M) is locally generated by t independent
1-forms if for each x ∈ M there exists an open neighbourhood N of x and a collection of
independent 1-forms ν1, . . . , νt on N satisfying the following two conditions:

(i) If ω ∈ I, then its restriction to N , ω|N , belongs to the ideal in E∗(N) generated by
ν1, . . . , νt.

(ii) If ω ∈ E∗(M), and if there is a cover of M by sets N (as above) such that for each N
in the cover, ω|N belongs to the ideal generated by ν1, . . . , νt, then ω ∈ I.

4.2 Vector distributions and codistributions

We say that M has a vector distribution (in other words: plane field) η of dimension k
(0 < k < n) if, for each x ∈ M , η(x) is a k-dimensional subspace (briefly: k-plane)
in the tangent vector space T (M)x. Instead of the long expression “vector distribution of
dimension k” (or “plane field of dimension k”), we shall mostly just say “k-distribution”
(or “k-plane field”). Note that some authors use the term “differential system of rank k” to
refer to a k-distribution.

The k-distribution η on M is smooth if for each x ∈ M there is a neighbourhood
U ⊂M with vector fields v1, . . . , vk on U such that v1(y), . . . , vk(y) form a basis of η(y)
for each y ∈ U . In the sequel, all k-distributions (k-plane fields) are to be smooth. More
precisely, k-distributions in our sense are sometimes called regular distributions.

Given any vector bundle αa over M and given a positive integer b, b < a, we have the
associated Grassmann fibre bundle (Gb(α), p,M). The fibre ofGb(α) over a point x ∈M
is the Grassmann manifold Gb(αx) ∼= Gb(Ra) of all b-dimensional vector subspaces in
αx ∼= Ra. By definition, an element g ∈ Gb(α) is a b-dimensional subspace of αp(g) =
(p∗(α))g . So we have, over the manifold Gb(α), two canonical vector bundles: γ ⊂ p∗(α)
of dimension b, and its complementary (a− b)-dimensional vector bundle γ⊥ = p∗(α)/γ.
We note a useful fact: the vector bundle along the fibres ([17, §7]) for the fibre bundle
(Gb(α), p,M) can be identified with Hom(γ, γ⊥), and so for the tangent bundle of the
total space we have

T (Gb(α)) ∼= p∗(T (M))⊕Hom(γ, γ⊥).
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A k-distribution η on a manifold M is nothing but a (smooth) section of the Grass-
mann bundle Gk(T (M)), hence a (smooth) map η : M → Gk(T (M)) such that
η(x) ∈ Gk(T (M)x) for each x ∈M .

A k-distribution η on M defines a k-dimensional vector subbundle η̃ of T (M) such
that the fibre, η̃x, for each x ∈ M , is η(x). And vice versa, so that there is no need in
distinguishing between k-distributions and k-dimensional vector subbundles of T (M). If
T (M) has a trivial k-dimensional subbundle, we call the latter a trivial k-distribution on
M . We shall show in 4.16-4.19 that the property of having a trivial distribution on M is
very strong.

It is natural to say that ηk over Mn (k < n) defines or determines a k-distribution on
M if η is isomorphic to a vector subbundle of T (M) or, equivalently, if there is a vector
bundle monomorphism (hence a smooth vector bundle morphism whose restriction to each
fibre is a linear map of rank k) η → T (M). Of course, each k-distribution is defined by a
vector bundle monomorphism.

For any k-distribution η on Mn there is a complementary (n− k)-distribution κ, such
that η ⊕ κ = T (M). The bundle κ is called the normal distribution to the k-distribution
η, and we can say that T (M) splits, as a Whitney sum of η and κ. In general, we say
that a vector bundle splits if it can be expressed as a Whitney sum of a finite number of its
subbundles, in a nontrivial way.

For example, if p : Mn → N t is a smooth fibre bundle, then T (M) = p∗(T (N)) ⊕
ηn−t, where ηn−t is the vector bundle along the fibres. So then η is an (n− t)-distribution
on M , and p∗(T (N)) is the corresponding normal distribution. It is easy to give nontriv-
ial specific examples of this type. Indeed, for fixed positive integers n1, . . . , nq (q ≥ 2), a
flag of type (n1, . . . , nq) is defined to be a q-tuple (S1, . . . , Sq) of mutually orthogonal sub-
spaces inRn, where n = n1 +· · ·+nq and dim(Si) = ni. The set F (n1, . . . , nq) of all the
flags of type (n1, . . . , nq) may be identified with a quotient space of the orthogonal group,
O(n)/O(n1)×· · ·×O(nq). This makesF (n1, . . . , nq) into a closed manifold known as the
flag manifold of type (n1, . . . , nq). In particular, F (n1, n2) is (up to the obvious diffeomor-
phism) the Grassmann manifoldGn1(Rn1+n2). By sending (S1, . . . , Sq) ∈ F (n1, . . . , nq)
to (S1, . . . , St, St+1⊕ . . .⊕Sq) ∈ F (n1, . . . , nt, nt+1 + . . .+nq), for a fixed t, we obtain
a smooth fibre bundle projection F (n1, . . . , nq) → F (n1, . . . , nt, nt+1 + . . . + nq); the
fibre is F (nt+1, . . . , nq). By varying the value of t, following the general pattern described
before, we can produce various distributions on the flag manifold F (n1, . . . , nq).

To give an example of another type, let us suppose that a manifold Mn admits k vec-
tor fields, say v1, . . . , vk, independent on M . Whenever needed, this assumption can be
replaced (thanks to the Gram-Schmidt orthonormalization) with the requirement that the
set {v1, . . . , vk} be orthonormal, or that the ordered set (v1, . . . , vk) be an orthonormal
k-frame in the sense that (v1(x), . . . , vk(x)) should be an orthonormal k-frame in T (M)x
for each x ∈ M . Of course, v1, . . . , vk span a trivial k-plane subbundle of T (M), hence
they define a trivial k-distribution on M . The question of when M admits k vector fields
independent on M (for a given number k) is one of the possible formulations of the vector
field problem (we shall focus on it in 4.16-4.19). For instance, if M is open (i.e., noncom-
pact), then (using obstruction theory, [122]) one readily proves the existence of a nowhere
vanishing vector field on M , so we have then a trivial 1-distribution on M . For closed
manifolds, H. Hopf proved, around 1925, that such a manifold M has a nowhere vanishing
vector field precisely when its Euler-Poincaré characteristic χ(M) is zero.

Of course, in general, not all distributions on a manifold are trivial. E.g., the Klein
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bottle K (recall that χ(K) = 0) has a trivial 1-distribution, but the corresponding normal
1-distribution is nontrivial (T (K) cannot be trivial, because K is nonorientable).

Dually to distributions, we can consider codistributions. We say that M has a vector
codistribution (or covector distribution) ξ of dimension k if, for each x ∈ M , ξ(x) is a
k-dimensional subspace in the cotangent vector space T ∗(M)x. Instead of the long expres-
sion “vector codistribution of dimension k”, we shall mostly say just “k-codistribution”. A
k-codistribution ξ on M is smooth if for each x ∈ M there is a neighbourhood U ⊂ M
with 1-forms ω1, . . . , ωk on U such that ω1(y), . . . , ωk(y) form a basis of ξ(y) for each
y ∈ U . We consider only smooth k-codistributions. It is clear that a k-codistribution is
nothing but a smooth section of the Grassmann bundle Gk(T ∗(Mn)).

Let ηk be a vector bundle over Mn defining a k-distribution on Mn. So there is a
vector bundle monomorphism i : η → T (M) or, equivalently, there is a vector bundle
epimorphism between the dual bundles, i∗ : T ∗(M)→ η∗. The kernel, Ker(i∗), is then an
(n − k)-dimensional vector subbundle of the cotangent bundle T ∗(M). We call Ker(i∗)
the (n − k)-codistribution on M , associated to the k-distribution η. There is a bijective
correspondence between k-distributions and associated (n− k)-codistributions on M .

4.3 Integrability of distributions and the Deahna-Clebsch-Frobenius theorem

Let N be a submanifold in M realized by an injective immersion ι : N → M ; or briefly,
let (N, ι) be a submanifold in M . If x is a point in M , we say that the submanifold (N, ι)
passes through x if x = ι(n) for some n ∈ N . Let η be a k-distribution on M ; to avoid
ambiguity, from now on (if not specified differently) we shall understand η as a subbundle
η = (E, p,M) of T (M); let i : E → T (M) be the inclusion, i(v) = v. We say that η
is involutive if for each two sections s, t ∈ Γ(η) (in other words, for every pair of vector
fields s, t lying in η), their Lie bracket [s, t] also is in Γ(η). In addition to this, we define
(N, ι) to be an integral manifold of the k-distribution η if dι(T (N)n) = ηι(n) for each
n ∈ N . A k-distribution η on M is defined to be completely integrable if an integral
manifold of η passes through each point of M .

The following is a necessary and sufficient condition for complete integrability (e.g.,
[136]); we call it the Deahna-Clebsch-Frobenius theorem. A k-distribution η on Mn is
completely integrable if and only if η is involutive. If η is involutive, then for each x ∈M
there exists a (cubic) local coordinate system (U,ϕ) centred at x, with coordinate functions
X1, . . . , Xn such that the slices Xi = constant (i = k + 1, . . . , n) are integral manifolds
of η. In addition to this, if (N, ι) is a connected integral manifold of η such that ι(N) ⊂ U ,
then ι(N) lies in one of these slices.

This theorem is frequently attributed exclusively to F. Frobenius; he published a proof
of the core of it (in a Euclidean version) in 1877. But as remarked by J. Milnor in his MIT-
lectures “Foliations and foliated vector bundles” in 1969, “as Frobenius himself pointed
out, the theorem in question had been proved a decade earlier by A.Clebsch. In fact a
recognizable version had been proved already in 1840, by F. Deahna”.

A maximal integral manifold (N, ι) of a distribution η on a manifold M is defined to
be a connected integral manifold of η such that there does not exist a connected integral
manifold (N1, ι1) of η with ι(N) being a proper subset of ι1(N1).

A completely integrable distribution is also called a foliation and the maximal con-
nected integral manifolds are called leaves. The leaves of a foliation (if it exists) on M
give a partition of M . More precisely, we have the following theorem which we refer to as
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the Frobenius theorem; see [136, 1.64]. Let η be an involutive k-distribution on Mn. Let
x ∈ M . Then through x there passes a unique maximal connected integral manifold of η,
and every connected integral manifold of η passing through x is contained in the maximal
one.

As already mentioned in the Introduction, we are not going to deal with foliations in a
systematic way, although they present a highly interesting and important topic; we refer to
[15] and to the references cited therein. Nevertheless, occasionally, we also shall mention
facts related to foliations.

4.4 Vector distributions vs. ideals locally generated by independent 1-forms

Following Warner [136], we give yet another version of the Deahna-Clebsch-Frobenius
theorem and also of the Frobenius theorem, in terms of differential forms and differential
ideals, in the spirit of É. Cartan. We need some preparation.

For a differential q-form ω ∈ Eq(M) and x ∈ M , ω(x) ∈ ΛqT ∗(M)x can be
considered ([136, 2.18]) as an alternating multilinear function on T (M)x. Given a k-
distribution η on Mn, ω ∈ Eq(M) is said to annihilate η if for each x ∈ M we have
ω(x)(v1, . . . , vq) = 0 for each v1, . . . , vq ∈ ηx. A differential form ω ∈ E∗(M) is
defined to annihilate η if each of the homogeneous components of ω annihilates η. We put

Φ(η) = {ω ∈ E∗(M);ω annihilates η}.

The assignment η 7→ Φ(η) defines a bijective correspondence between k-distributions
on Mn and ideals in E∗(M) locally generated by n − k independent 1-forms. More
precisely, one can prove the following theorem (see [136, 2.28]). Let η be a k-distribution
on Mn. Then Φ(η) is an ideal in E∗(M) locally generated by n− k independent 1-forms
and, conversely, if I is an ideal inE∗(M) locally generated by n−k independent 1-forms,
then there exists a unique k-distribution η on M for which Φ(η) = I.

We shall have a closer look at the second part of this theorem. Let I ⊂ E∗(M) be an
ideal locally generated by n− k independent 1-forms. Let x ∈M , and let the independent
1-forms ν1, . . . , νn−k generate I on a neighbourhood N of x. We define

ηx = {v ∈ T (M)x; ν1(x)(v) = 0, . . . , νn−k(x)(v) = 0},

hence the annihilator of ηx is the subspace [ν1(x), . . . , νn−k(x)] in T ∗(M)x spanned by
ν1(x), . . . , νn−k(x). Then

⋃
x∈M ηx is the (total space of the) desired k-distribution η on

M such that Φ(η) = I.
It is quite instructive to look at

{v ∈ T (M)x; ν1(x)(v) = 0, . . . , νn−k(x)(v) = 0}

from a different point of view. Let i : η → T (M) be the inclusion realizing η as a subbun-
dle of T (M). Then clearly the subspace [ν1(x), . . . , νn−k(x)] in T ∗(M)x is nothing but
Ker(i∗)x, hence ν1(x), . . . , νn−k(x) span the fibre (over x) of the (n− k)-codistribution
associated to the k-distribution η on M .

4.5 Pfaffian systems and historical remarks

In the literature on differential equations, a system of equations

ν1 = 0, . . . , νn−k = 0,
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where ν1, . . . , νn−k are 1-forms defined and independent on an open subset U in Rn (or in
an n-dimensional manifold), is sometimes called a system of total differential equations; it
is also called a Pfaffian system. A solution to such a system is a k-dimensional submanifold
S ⊂ U such that (in our terminology) the forms ν1, . . . , νn−k annihilate T (S). J. Pfaff
started to study systems now bearing his name as early as 1814.

We have the following version of the Deahna-Clebsch-Frobenius theorem [136, 2.30]):
A distribution η onM is involutive if and only if the ideal Φ(η) is a differential ideal (hence
if d(Φ(η)) ⊂ Φ(η), where d denotes exterior differentiation).

One can define integral manifolds for ideals of differential forms. An integral manifold
of an ideal I ⊂ E∗(M) is defined to be a submanifold (N, ι) in M such that (dι)∗(ω) =
0 for every ω ∈ I. A maximal integral manifold (N, ι) of an ideal I is defined to be
a connected integral manifold of I such that there does not exist a connected integral
manifold (N1, ι1) of I with ι(N) being a proper subset of ι1(N1).

Now the Frobenius theorem, in terms of differential ideals, is the following (see [136,
2.32]). Let I ⊂ E∗(Mn) be a differential ideal locally generated by n − k independent
1-forms. Let x ∈M . Then there exists a unique maximal, connected, integral manifold of
I passing through x, and this integral manifold is of dimension k.

In view of what we said above, it is clear that, for any x ∈ M , the maximal connected
integral manifold of I passing through x is defined by a Pfaffian system. The problem of
describing the maximal connected integral manifolds for all x ∈ M is known as the Pfaff
problem.

The term “distribution” was introduced by C. Chevalley in his book Theory of Lie
groups, Princeton Univ. Press 1946. In the 1940’s further influential works of C. Ehres-
mann and G. Reeb appear, and the theory of foliations emerges on the scene. Nevertheless,
studies of various problems on distributions, under other names, are much older: they
date back to the 19th century. Among them, the studies by Deahna, É. Cartan, Clebsch,
Frobenius, Grassmann and others of Pfaffian systems in Euclidean spaces were very im-
portant. From this line of development it becomes clear why k-distributions are also called
k-dimensional Pfaffian structures.

Vector distributions appear in various areas of mathematics. For some of their applica-
tions, the reader may consult, e.g., R. Abraham, J. Marsden, and T. Ratiu’s [1], P. Griffiths’s
[43], V. Gershkovich and A. Vershik’s [36], O. Krupková’s [82], R. Bryant, P. Griffiths, and
D. Grossman’s [20]. For more applications, see e.g. works by J. Adachi, M. Zhitomirskij,
W. Respondek, W. Pasillas-Lépine, I. Zelenko, D. Krupka, B. Dubrov, B. Komrakov, O.
Gil-Medrano, J. C. González-Dávila, L. Vanhecke, P. Mormul, W. Krynski, B. Jakubczyk,
G. Cairns, P. Molino, M. de León, J. Marı́n-Solano, J. C. Marrero, M. Castrillón López,
J. Muñoz Masqué, A. Weinstein, R. Montgomery. We shall mainly concentrate on the
existence question for vector distributions.

4.6 On the existence question for vector distributions

For a given k, one naturally wishes to have some necessary and some sufficient (or bet-
ter, if possible, some necessary and sufficient) conditions for manifolds to possess k-
distributions. For instance, a sufficient condition for a manifold to possess a completely
integrable 1-distribution (hence to possess a 1-dimensional smooth foliation) is that the
manifold be open. This is implied by obstruction theory and the fact that each open n-
dimensional manifold is homotopy equivalent to a CW-complex of dimension n−1. From
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now on, we concentrate on closed manifolds.
Recall (e.g., [94]) that two smooth closed n-dimensional manifolds M and N are

cobordant if there is a smooth compact (n+ 1)-dimensional manifold such that its bound-
ary is (diffeomorphic to) the disjoint union of M and N . For a vector bundle α over M ,
let wi(α) ∈ Hi(M ;Z2) be the ith Stiefel-Whitney characteristic class of α, and for a
manifold M , let wi(M) be wi(T (M)). For a manifold Mn and non-negative integers
r1, . . . , rn such that r1 + 2r2 + · · ·+ nrn = n, the value

〈w1(M)r1 · · ·wn(M)rn , [M ]〉,

where [M ] ∈ Hn(M ;Z2) is the mod 2 fundamental class of M , is the Stiefel-Whitney
number wr11 · · ·wrnn [M ] of M . Cobordism is an equivalence relation, the cobordism
classes of n-dimensional closed manifolds form an additive group, the unoriented cobor-
dism groupNn. As is well known, Mn and Nn represent the same class inNn if and only
if all their Stiefel-Whitney numbers coincide. So we can speak about the Stiefel-Whitney
numbers wr11 · · ·wrnn (a) of a class a ∈ Nn.

When we look at the existence question for vector distributions up to cobordism, the
answer is quite simple. Indeed, by R. Stong [123]: A class a ∈ Nn is represented by a
manifold Mn having a k-distribution (k ≤ n) if and only if either

(a) k is even, or

(b) k is odd and wn(a) is zero.

In contrast to this, the original question (without considering manifolds up to cobor-
dism or some other nontrivial equivalence relation) has no complete general answer. In
the sequel, we shall have in mind precisely the original question. In attempts to solve it,
several approaches appeared; we shall mention some of them later, presenting also some
of the results achieved. Nevertheless, already now, before entering a more detailed ex-
position, we should mention an approach in which the Schwartzian distributions come in
an interplay with the vector distributions. Indeed, in the 1960’s-1970’s, M. Atiyah and
his collaborators developed an approach to the existence question of k-distributions based
on the index theory of elliptic differential operators (see Bleecker’s contribution in this
Handbook). Basically, they observed that certain invariants of a manifold (e.g., the Euler-
Poincaré characteristic) are indices of elliptic operators, and the existence of k-distributions
implies that these operators have some properties, implying corresponding results for the
indices. So, for instance Atiyah ([11]) proved the following necessary condition for ori-
ented 2-distributions on oriented manifolds. Let Mn be a smooth closed connected ori-
ented manifold, and let n ≡ 0 (mod 4). Let σ(M) denote the signature of M (see, e.g.,
[94, §19]). If M has an oriented 2-distribution, then χ(M) is even and χ(M) ≡ σ(M)
(mod 4). For the question of the existence of trivial k-distributions, Atiyah and his col-
laborators were able to derive still deeper results by employing the Atiyah-Singer index
theorem (recall that in one of its proofs Atiyah and Singer made use of the Schwartzian
distributions). We come to such results in some detail later. Now we shall consider the
existence question for various values of k.
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4.7 The existence of 1-distributions

In 1973, U. Koschorke proved the following criterion ([76, 2.1, 2.2]). Let Mn be a closed
and connected manifold, and let ξ be a line bundle over M . Then ξ is isomorphic to a
subbundle of T (M) if and only if the Euler-Poincaré characteristic χ(M) of M vanishes,
when n is even, resp. if and only if

〈
n∑
i=0

w1(ξ)n−iwi(M), [M ]〉 = 0,

when n is odd.
As a consequence, we readily see that a closed connected manifold M has a 1-

distribution if and only if χ(M) = 0. We also can say thatM has a 1-dimensional foliation
if and only if χ(M) = 0; it is true that each 1-distribution is completely integrable.

4.8 Generalized k-distributions with k ≥ 2

Passing to k-distributions with k ≥ 2, we take a more general point of view (cf. [128],
[79]). Let ξq and ηk be (real) vector bundles over a CW-complex X , with k < q. We
say that η is a k-distribution in ξ if η is isomorphic to a subbundle of ξ or equivalently, if
there is a (smooth) vector bundle monomorphism η → ξ. In particular, to say that η is a
k-distribution in T (M) is the same as to say (in our earlier terminology) that η defines a
k-distribution on M . Another particular case: since the vector bundle T (M)⊕ εt (t ≥ 1)
is the stable tangent bundle of M , it is natural to say that ηk defines a stable k-distribution
on M if η ⊕ εt is a (k + t)-distribution in T (M) ⊕ εt (that is, if there is a vector bundle
monomorphism η⊕ εt → T (M)⊕ εt). Note (consult, e.g., [60, Part II, Chap. 8, Theorem
1.5] if needed) that this definition does not depend on t if t ≥ 1; this explains the word
“stable”. Let M be a manifold. If a k-distribution η is defined at all but the points of some
subset S ⊂ M , then S is called the singularity of η. If S is finite (resp. infinite), then we
say that η is a k-distribution with a finite (resp. infinite) singularity on M . We observe
that if η is a k-dimensional vector bundle over a closed, smooth, connected manifold Mn

such that η ⊕ ε1 is a subbundle in T (M) ⊕ ε1, then η|M(n−1)
(where M(t) denotes the

t-skeleton of M ) is a subbundle of T (M)|M(n−1)
and, as a consequence, we obviously

obtain a k-distribution with a finite singularity on M . In other words, if there exists a
stable k-distribution on M , then there is a k-distribution with a finite singularity on M .

4.9 Obstructions to removing finite singularities and obstructions to liftings

There are two main approaches to the study of the existence question for k-distributions
with k ≥ 2. In the first, one takes a k-distribution with a singularity as a “starting point”;
it is then needed to characterize (calculable) obstructions to removing the singularity. In
the second, one tries to solve certain lifting problems (in fibrations) which are equivalent
to the existence question for k-distributions; it is then needed to characterize (calculable)
obstructions. But there is no sharp border line between the two points of view; on the
contrary, there are instances where they naturally complement each other.

We first restrict ourselves to oriented k-distributions on oriented manifolds. Of
course, one has an oriented k-distribution on an oriented manifold Mn (0 < k < n)
if and only if there exists a section of the associated fibre bundle G̃k(T (M)) over M .
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The fibre of G̃k(T (M)) over a point x ∈ M is the oriented Grassmann manifold
G̃k(T (M)x) ∼= G̃k(Rn) of oriented k-dimensional vector subspaces in the oriented tan-
gent space T (M)x. Suppose that we have an oriented k-distribution η with a finite singu-
larity S = {p1, . . . , pt} onM . Then we take a triangulation onMn such that each singular
point pi lies in the interior of an n-simplex σi, and each σi contains at most one point of
S. Since each n-simplex σi is contractible, the restriction TM |σi is trivial and we can, for
each i, choose an orientation preserving trivialization isomorphism TM |σi ∼= σi×Rn; this
isomorphism can be chosen so that it is compatible with the standard metric on σi × Rn.
The boundary σ̇i is an oriented (n− 1)-sphere. Clearly x 7→ ηx, for any x ∈ Sn−1 ∼= σ̇i,
defines an element oi of the homotopy group πn−1(G̃k(Rn)). The element oi is the local
obstruction to eliminating the singularity at pi ∈ S (see [120, Ch. 1, §3, Theorem 12]).
One can then define a global obstruction to deforming η into a k-distribution on M as the
sum

t∑
i=1

oi ∈ πn−1(G̃k(Rn));

we denote it by O(η). [We remark that O(η) is also called (see, e.g., [131]) the index of
η; but we do not call it so here, to avoid confusion with the index of an elliptic operator.]
One readily verifies that, by Poincaré duality, O(η) corresponds to the Steenrod obstruction
class ([122, Ch. III]) in Hn(M ;πn−1(G̃k(Rn))). Therefore O(η) is zero precisely when
there is a k-distribution onM (without any singularity) which agrees with η on the (n−2)-
skeleton of M .

The global obstruction O(η) is independent of the triangulation and other choices made
above. But, in general, it can be changed, if we reverse the orientation on M . Of course,
the information hidden in it becomes “visible” and useful only when we are able to find a
“readable” expression for it, in terms of computable invariants (characteristic classes etc.).

The obstruction O(η) is straightforwardly associated with the question: Does Mn ad-
mit an oriented k-distribution? Yet it is useful to modify the direct existence question
slightly, to the following indirect one ([128], [131]): Given an oriented vector bundle ηk

over an oriented (smooth, closed, connected) manifoldMn, is η a k-distribution in T (M)?
More generally, let ξq and ηk be oriented vector bundles over a CW-complex X , with

k < q. Let BSO(m) (m ≥ 1) denote the classifying space for oriented m-dimensional
vector bundles, and let γm denote the canonical classifyingm-plane bundle overBSO(m).
Obviously, ξ and η (more precisely, their classifying maps) determine a map (ξ, η) : X →
BSO(q)×BSO(k). Additionally, the pair of vector bundles (γq−k×γk, ε0×γk) defines
a map

πq,k : BSO(q − k)×BSO(k)→ BSO(q)×BSO(k),

where ε0 denotes the trivial 0-dimensional vector bundle over BSO(q − k). One readily
verifies that η is a k-distribution in ξ if and only if there is a map ζ : X → BSO(q − k)
such that (ζ, η) lifts the map (ξ, η), up to homotopy, toBSO(q−k)×BSO(k) or, in other
words, makes the following diagram homotopy-commutative:

BSO(q − k)×BSO(k)

πq,k

��
X

(ξ,η) //

(ζ,η)
44

BSO(q)×BSO(k).
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As is well known (see, e.g., [120, Chap. II, §8, Theorem 9]), (BSO(q − k) ×
BSO(k), πq,k, BSO(q)×BSO(k)) can be regarded as a fibration, having as fibre ([128])
the Stiefel manifold Vq,k = SO(q)/SO(q − k) of orthonormal k-frames in Rq . In princi-
ple, to see whether such a “lift” (ζ, η) exists, one can use the Postnikov resolution of πq,k
or some suitable modification.

The manifold Vq,k is (q − k − 1)-connected. So a standard procedure (apply, e.g.,
[122, 29.2] and [120, Chap. 7, §6, Theorem 17]) leads to a map (ζ ′, η′) : X(q−k) →
BSO(q − k) × BSO(k) (where X(t) denotes the t-dimensional skeleton of X) such that
the following diagram commutes up to homotopy:

BSO(q − k)×BSO(k)

πq,k

��
X(q−k)

(ξ,η) //

(ζ′, η′)
44

BSO(q)×BSO(k).

This means that η|X(q−k)
is a k-distribution in ξ|X(q−k)

. Then (see [128]) η|X(q−k+1)
is a

k-distribution in ξ|X(q−k+1)
if and only if

wq−k+1(ξ − η) = 0, for q − k odd ,

β∗wq−k(ξ − η) = 0, for q − k even .

Here wi(ξ − η) ∈ Hi(X;Z2) denotes the ith Stiefel-Whitney class of the virtual vector
bundle ξ − η, and β∗ : Hi(X;Z2) → Hi+1(X;Z) is the Bockstein homomorphism
associated with the short exact sequence

0→ Z→ Z→ Z2 → 0.

In particular, we have the following theorem (Thomas [128]). Let Mn be an orientable
smooth closed connected manifold and let ηk be an oriented vector bundle over M , 1 <
k < n. Then η is a k-distribution over the (n− k + 1)-skeleton of M if and only if

wn−k+1(T (M)− η) = 0, for n− k odd ,

β∗wn−k(T (M)− η) = 0, for n− k even .

4.10 Oriented 2-distributions on orientable even-dimensional manifolds

By Thomas [131], if Mn (n ≥ 4) is an orientable smooth closed connected manifold with
n even, and if η is an oriented 2-plane bundle over M , then β∗wn−2(T (M) − η) = 0.
By the above theorem, η gives a 2-distribution on M(n−1), and obviously extends to a
2-distribution with a finite singularity on M . So with each oriented 2-dimensional vector
bundle η over an oriented even-dimensional smooth, closed, connected manifoldM2t (t ≥
2) we can associate the global obstruction

O(η) ∈ π2t−1(G̃2(R2t)) ∼= π2t−1(V2t,2).

The knowledge of the homotopy groups of the Stiefel manifolds implies that O(η) is an
element of the group Z ⊕ Z if t = 2, and it is an element of Z ⊕ Z2 if t ≥ 3. Hence
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in the latter case, one can speak of the components of O(η) as the Z-obstruction and the
Z2-obstruction.

In 1958, F. Hirzebruch and H. Hopf ([58]) found all possible pairs of integers which
can occur as the global obstruction for some oriented 2-distribution with a finite singularity
on an orientable 4-manifold. Following Y. Matsushita [89], we describe a refined version
of the corresponding necessary and sufficient condition for the existence of oriented 2-
distributions. Let M4 be an oriented smooth closed manifold, and let H denote the free
abelian group

H2(M ;Z)/Torsion subgroup .

The orientation of M gives an isomorphism H4(M ;Z) ∼= Z, and thanks to Poincaré du-
ality we have a symmetric nonsingular bilinear form µM : H ⊗H → Z, called the inter-
section form of M . [Recall that the signature of µM is nothing but the signature σ(M).]
The following theorem in [89] the author attributes to O. Saeki (the 0-form is considered
as a special case of the positive definite forms). Let M4 be an oriented closed manifold.
If the intersection form µM is indefinite, then M admits an oriented 2-distribution if and
only if σ(M) + χ(M) ≡ 0 (mod 4) and σ(M) − χ(M) ≡ 0 (mod 4). If µM is def-
inite (either positive or negative), then M admits an oriented 2-distribution if and only if
σ(M) + χ(M) ≡ 0 (mod 4), σ(M)− χ(M) ≡ 0 (mod 4), and |σ(M)|+ χ(M) ≥ 0.

For orientable M2t with t ≥ 3, the known results on global obstructions of oriented
2-distributions with finite singularities are not so complete as for orientable 4-dimensional
manifolds. Note that an oriented vector bundle η2 over M is completely determined by its
Euler class e(η) ∈ H2(M ;Z). Following Thomas [129], for an oriented manifold M2t

and u ∈ H2(M ;Z), we define

θ(u) =
∑

i,j≥0;i+j=t−1

w2j(M) · ui ∈ H2t−2(M ;Z2).

For any u ∈ Hp(M ;Z) and v ∈ Hq(M ;Z) such that p + q = 2t, we define Γ(u, v) ∈ Z
by

Γ(u, v) = 〈u · v, [M ]〉,

where [M ] ∈ H2t(M ;Z) is the orientation class of M . Then Thomas (using suitable
Postnikov resolutions) characterized in ([129, 1.2]) those integers that can arise as the Z-
obstruction of an oriented 2-distribution with a finite singularity. Let M2t (t ≥ 3) be a
smooth closed connected oriented manifold, and let u ∈ H2(M ;Z). Then the following
integers, and only these, occur as the Z-obstruction of oriented 2-distributions on M with
finite singularities, and with Euler class u:

χ(M)− Γ(u, v),

where v runs over all classes in H2t−2(M ;Z) such that v mod 2 = θ(u).
In general, E. Thomas did not calculate the Z2-obstruction of an oriented 2-distribution

with finite singularities on M2t. However, he has shown in [129] that if dim(M) ≡ 2
(mod 4), and if e(η) mod 2 = 0, then the Z2-obstruction for η is zero, and he has proved
the following result. Let M4t+2 (t ≥ 1) be a smooth closed connected oriented manifold,
and let u ∈ H2(M ;Z). Then there exists an oriented 2-distribution onM , with Euler class
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2u, if and only if there exists a cohomology class v ∈ H4t(M ;Z) such that v mod 2 =
w4t(M), and 2Γ(u, v) = χ(M). For dim(M) ≡ 0 (mod 4), the Z2-obstruction was
computed later by Atiyah and Dupont [12, 6.1]; they applied the index theory for elliptic
operators and Real K-theory (also called KR-theory; it is defined for locally compact
Hausdorff spaces with involution, also called Real spaces). More precisely, writing n in
the form 4t−s, they define homomorphisms θs : πn−1(Vn,k)→ KRs(RP k+s−1,RP s−1)
which turn out to be isomorphisms for k ≤ 3 ≤ n − k (here and elsewhere, RP q is real
projective q-space). They prove: LetMn be a smooth closed connected oriented manifold,
and let n ≥ 8, n = 4t. Then for an oriented 2-distribution with a finite singularity on M
the Z2-obstruction is 1

2 (χ(M)− (−1)tσ(M)) mod 2.
Crabb and Steer in [28], by a detailed study of the image under θ of global obstructions,

extended some results of Atiyah and Dupont [12]. In particular, they proved: Let Mn be
a smooth closed connected oriented manifold with n (n ≥ 6) even. Then M admits a
spin 2-distribution (that is, an orientable 2-plane subbundle of T (M) such that its second
Stiefel-Whitney class is zero) if and only if the Bockstein operation onwn−2(M) vanishes,
χ(M) ≡ 0 (mod q) and, when m ≡ 0 (mod 4), σ(M) ≡ χ(M) (mod 4). Here q is the
integer:

0 if rank(H2(M ;Z)) = 0,

4 if rank(H2(M ;Z)) 6= 0 and wn−2(M) ∈ Hn−2(M ;Z2) is the reduction mod 2 of a
torsion element in Hn−2(M ;Z),

2 otherwise.

For oriented 2-distributions on 8-dimensional spin manifolds, see also [21].

4.11 2-distributions on nonorientable even-dimensional manifolds

Let M be a closed connected manifold. Each element x of the cohomology group
H1(M ;Z2) (which can be identified with the set of homotopy classes of maps M →
RP∞) induces a homomorphism of fundamental groups, π1(x) : π1(M) → Z2 =
{−1, 1} = Aut(Z). In the sequel, Zx will denote the x-twisted (or local) integer coeffi-
cients given by π1(x) (if needed, consult, e.g., Sec. 3.H in A. Hatcher, Algebraic topology,
Cambridge University Press 2002).

Using obstruction theory (Postnikov resolutions) with twisted integer coefficients
Zw1(M) (see also [101]), M.H.P.L. Mello in [91] proves the following. Suppose thatMn is
a smooth closed connected nonorientable manifold and η is a 2-dimensional vector bundle
over M .

(i) When n (n ≥ 6) is even and η is oriented, then η defines a 2-distribution on Mn if and
only if the twisted Bockstein operation on wn−2(T (M)− η) vanishes and there is a
class x ∈ Hn−2(M ;Zw1(M)) such that the cup product of x and the Euler class of
η equals the twisted Euler class of T (M) and wn−2(T (M)− η) = x mod 2.

(ii) When n ≡ 0 (mod 4) (n ≥ 8) and η is nonorientable such that w1(η) = w1(M),
then η defines a 2-distribution on M if and only if β∗wn−2(T (M) − η) = 0 and
there is a cohomology class x ∈ Hn−2(M ;Z) such that the cup product of x and
the w1(M)-twisted Euler class of η equals the twisted Euler class of T (M) and
wn−2(T (M)− η) = x mod 2.
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(iii) When n ≡ 2 (mod 4) (n ≥ 6) and η is nonorientable such that w1(η) = w1(M),
then η defines a 2-distribution on M if the following conditions are satisfied:
β∗wn−2(T (M) − η) = 0, there exists a class x ∈ Hn−2(M ;Z) such that the cup
product of x and the w1(M)-twisted Euler class of η equals the twisted Euler class
of T (M), wn−2(T (M)− η) = x mod 2 and, in addition to this, there exists a co-
homology class v ∈ Hn−2(M ;Z) such that the cup product of the mod 2 reduction
of v with w2

1(M) + w2(η) is nonzero.

4.12 2-distributions on odd-dimensional manifolds

If n ≡ 3 (mod 4) and Mn is a smooth closed orientable connected manifold, then there
are three vector fields independent on Mn, hence there is a trivial oriented 3-distribution –
clearly also a trivial oriented 2-distribution – on M . In addition to this, Thomas in [128]
proves (using Postnikov decompositions) that if u ∈ H2(M ;Z), thenM has an oriented 2-
distribution with Euler class u if and only if

∑
i,j≥0;2i+j=n−1 wj(M)·ui ∈ Hn−1(M ;Z2)

vanishes.
So we are left with the case n ≡ 1 (mod 4). For any odd-dimensional manifold

M2k+1, one has its Kervaire mod 2 semi-characteristic

χ̂(M) = (
k∑
i=0

dim(Hi(M ;Z2))) (mod 2).

Thomas [128] proves: Let Mn be an orientable smooth closed connected manifold such
that n ≡ 1 (mod 4) and n ≥ 5. Suppose that w2(M) = 0 (as a consequence, M admits
a spin structure). Then M has an oriented 2-distribution with Euler class 2v for each
v ∈ H2(M ;Z) if and only if wn−1(M) = 0 and χ̂(M) = 0.

For a smooth closed connected manifold M of odd dimension we define the real Ker-
vaire semi-characteristic R(M) by R(M) =

∑
j dimR H

2j(M ;R) (mod 2). In [14],
Atiyah and Singer show that R(M) has an analytical interpretation when dim(M) ≡ 1
(mod 4): R(M) is then the dimension modulo 2 of the kernel of a certain real elliptic
skew-adjoint operator. Using this and Real K-theory, then Atiyah and Dupont [12, The-
orem 7.2] calculated the global obstruction for any oriented 2-distribution with a finite
singularity on any orientable manifold Mn with n ≡ 1 (mod 4), n ≥ 5. Their result
is the following. Let Mn be a smooth closed connected oriented manifold with n ≡ 1
(mod 4), n ≥ 5. Then for any oriented 2-distribution with a finite singularity on M the
global obstruction is the semi-characteristic R(M).

Now we pass to 2-distributions on nonorientable odd-dimensional manifolds. Atiyah
and Dupont also derived results on 2-distributions on nonorientable manifolds Mn such
that n ≡ 1 (mod 4) and w2

1(M) = 0; see [12, §7] for details. Mello in [91] proves
the following sufficient condition. Suppose that Mn is a smooth closed connected
nonorientable manifold with n (n ≥ 5) odd and η is a 2-plane bundle over M . Sup-
pose that w2

1(M) + w2
1(η) + w1(η)w1(M) + w2(η) 6= 0 for n ≡ 3 (mod 4) or

w2
1(M) +w2

1(η) +w1(η)w1(M) 6= 0 for n ≡ 1 (mod 4). Then η defines a 2-distribution
on M if and only if wn−1(T (M)− η) = 0.



Július Korbaš 693

4.13 k-distributions with k ≥ 3

Results available for 3-distributions cover just some of the possible situations; they are
certainly much less complete than those for k ≤ 2.

For orientable even-dimensional manifolds, one can transform the existence problem
for oriented k-distributions into another (in general difficult) problem. More precisely, one
says that a stable vector bundle (α) has geometric dimension≤ t if there is a t-dimensional
vector bundle stably equivalent to α. For n even and k < n odd, by Thomas [128, 5.1], an
oriented vector bundle η defines an oriented k-distribution on an oriented manifold Mn if
and only if χ(M) = 0 and the geometric dimension of the virtual bundle T (M) − η is at
most n−k. Using this, Thomas derived [128, Theorem 1.5]: LetMn with n ≡ 2 (mod 4)
(n ≥ 6) be an orientable manifold such that wn−2(M) = 0 and χ(M) = 0. Then every
3-dimensional spin vector bundle over M defines a 3-distribution on M .

Atiyah in [11, Theorem 4.1] gives a sufficient condition: Let M4q+1 (q ≥ 1) be a
smooth closed oriented connected manifold. If M admits a k-distribution with k ≡ 2
(mod 4), then R(M) = 0.

Also Crabb and Steer in [28] have several results on (stable) k-distributions with k = 3.
Among other papers discussing conditions for k-distributions, we mention at least [81].

4.14 Obstructions to removing infinite singularities

We now do not require either k-distributions or manifolds to be orientable. Let Mn be a
smooth, closed, connected manifold, and let η be a k-plane bundle over M . We shall ap-
proach the question of whether η defines a k-distribution on M , hence whether there exists
a vector bundle monomorphism η → T (M), using a singularity approach, developed in
the 1970’s, mainly by U. Koschorke and H. Salomonsen. Some related considerations and
results can also be found in papers by J.-P. Dax, A. Hatcher and F. Quinn.

Let ηk and βb be smooth real vector bundles over a manifoldMn (possibly with bound-
ary). Let u : η → β be a smooth vector bundle homomorphism, and let su denote the cor-
responding section of the homomorphism bundle Hom(η, β). Following Koschorke [77,
Definition 1.4], we call u a (t − 1)-morphism if for all x ∈ M the rank of ux : ηx → βx
is at least t− 1. Equivalently, u is a (t− 1)-morphism if the section su goes into

W t−1(η, β) =
⋃
x∈M

W t−1(ηx, βx),

where W t−1(ηx, βx) denotes the set of all linear maps ηx → βx of rank at least t − 1;
W t−1(η, β) is an open subset in Hom(η, β). A (t − 1)-morphism u is called a non-
degenerate (t− 1)-morphism if su : M → Hom(η, β) is transverse to

At−1(η, β) =
⋃
x∈M

At−1(ηx, βx),

where At−1(ηx, βx) denotes the set of all linear maps ηx → βx of rank t− 1; At−1(η, β)
is a closed smooth submanifold in W t−1(η, β).

Standard results on transversality imply the following density property. If we have a
(t − 1)-morphism u : η → β, a closed subspace L ⊂ M where su is already transverse
to At−1(η, β), and a neighbourhood V of su(M) in W t−1(η, β), then there exists a non-
degenerate (t − 1)-morphism u′ with u′|L = u|L and su′(M) ⊂ V , and such that u and
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u′ are (linearly) homotopic through (t − 1)-morphisms. There exists a non-degenerate 0-
morphism u : η → β, for any η and β, but in general it is not true that for any η and β
(over any Mn) there exists a k-morphism if k ≥ 1. Indeed (see [71]), over the Grassmann
manifold Gk(Rk+m) there is no 1-morphism γ → γ⊥ if k or m is even; and if both k and
m are odd, then there is a 1-morphism, but no 2-morphism.

Now let Mn be a smooth closed connected manifold. If we have a monomorphism
u : ηk → T (M), then we have the induced monomorphism p∗(u) : p∗(η) → p∗(T (M))
over the (total space of the) projectification (also called projectivization) bundle P (η) =
G1(η) (see 4.2). Indeed, for each g ∈ P (η), we have p∗(u)g = up(g). Of course, since the
canonical line bundle γ over P (η) is contained in p∗(η), we also have a monomorphism
γ → p∗(T (M)).

Naturally, we would like to find an obstruction to the existence of monomorphisms
γ → p∗(T (M)), which also is an obstruction to the existence of monomorphisms u :
ηk → T (Mn). Let us take a non-degenerate 0-morphism v : γ → p∗(T (M)). So
sv(x) : γx → p∗(T (M))x is a monomorphism for all x ∈ P (η) \ S, where

S = {x ∈ P (η); rank(vx) = 0} = s−1
v (A0(γ, p∗(T (M)))).

Of course, from another point of view, v(γ) defines a 1-distribution in p∗(T (M)) with
the singularity S. It turns out (recall that we have now k ≥ 2) that if the singularity S
is nonempty (which we shall suppose because otherwise v simply would be a monomor-
phism), then it is “huge”. Indeed, by elementary transversality theory (see, e.g., [57, Ch. 1,
Theorem 3.3]), the codimension of the closed submanifold S in the (n+k−1)-dimensional
manifold P (η) is the same as the codimension of the (n+k−1)-dimensional submanifold
A0(γ, p∗(T (M))) in the (n+k−1+n)-dimensional manifold Hom(γ, p∗(T (M))), hence
we have dim(S) = k − 1. So S may be a union of circles, or a surface etc., depending on
how big is k. Of course, v is a monomorphism over P (η) \ S.

The apparent disadvantage – that the singularity S is far from finite – converts into an
advantage. Indeed, let g : S ↪→ P (η) be the inclusion. The normal bundle of S in P (η)
(see [77, 1.6]) is canonically isomorphic to the pullback g∗(Hom(γ, p∗(T (M)))), and so
we have an isomorphism

T (S)⊕ g∗(Hom(γ, p∗(T (M)))) ∼= g∗(T (P (η))),

hence

T (S)⊕ g∗(Hom(γ, p∗(T (M)))) ∼= g∗(p∗(T (M))⊕Hom(γ, γ⊥)).

By adding the trivial line bundle Hom(γ, γ) ∼= ε1 to both sides, using the fact that γ⊕γ⊥ =
p∗(η), we obtain the isomorphism

ḡ : T (S)⊕ g∗(Hom(γ, p∗(T (M))))⊕ ε1 ∼= g∗(Hom(γ, p∗(η))⊕ p∗(T (M))).

In other words, the stable normal bundle of S in P (η) can be expressed as a pullback of
the virtual vector bundle

Φ = Hom(γ, p∗(T (M)))−Hom(γ, p∗(η))− p∗(T (M))

over the manifold P (η).
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As a result, we obtain a well defined (i.e., independent of the choice of the non-
degenerate 0-morphism γ → p∗(T (M))) class ω(η, T (M)) = [P (η), g, ḡ] in the normal
bordism group Ωk−1(P (η); Φ). The element ω(η, T (M)) is an obstruction to the existence
of vector bundle monomorphisms γ → p∗(T (M)) and, consequently, also vector bundle
monomorphisms η → T (M) or, in other words, to η defining a k-distribution on M . Sim-
ilarly (see [79]), one can obtain an obstruction, ωst(η, T (M)) ∈ Ωk−1(RP∞ × M ; Φ)
(where RP∞ = infinite dimensional real projective space) to η defining a stable k-
distribution on M .

4.15 An example in the metastable range of dimensions

In the metastable range of dimensions, the obstructions ω and ωst contain complete in-
formation. More precisely, Koschorke ([77, 3.7], [79, Theorem 1]) proved the following
theorem. Let η be a k-dimensional vector bundle over a smooth, closed, connected mani-
fold Mn. Suppose that 2k < n. Then η defines a k-distribution or a stable k-distribution
on M if and only if ω(η, T (M)) = 0 or ωst(η, T (M)) = 0, respectively.

Of course, even if 2k < n, one highly nontrivial requirement remains: to be able
to decide, in any particular case, whether the obstruction ω(η, T (M)) (or ωst(η, T (M)))
vanishes. A substantial step towards this end is expressing the obstruction in terms of better
known, and more easily calculable, invariants. As shown by Koschorke [79], this is, at least
sometimes, manageable. Indeed, it is possible to pass from the obstruction ω(η, T (M)),
e.g., to the following result (a particular case of [79, Corollary 9]). Let Mn be a smooth
closed connected manifold, with 6 < n ≡ 2 (mod 4), and let η3 be a vector bundle over
M . Assume that the cohomology class w1(M)w2

1(η) + w1(M)w2(η) + w1(η)w2(η) +
w3(η) ∈ H3(M ;Z2) is nonzero. Then a vector bundle η defines a 3-distribution on M
if and only if the Stiefel-Whitney classes wn(T (M) − η) and wn−2(T (M) − η), and the
twisted Euler class e(M) ∈ Hn(M ;Zw1(M)) all vanish. For 3-distributions, see also [92].

We remark that, given a vector bundle ηk over a manifold M , the singularity ap-
proach can also be effective in counting the number of homotopy classes of vector bundle
monomorphisms ηk → T (M) when such monomorphisms exist; examples can be found
in [79].

4.16 The vector field problem, alias the existence question for trivial vector
distributions, and its historical background

Now we specialize to the question of when a manifold admits a trivial vector distribution.
As we shall see it is an important (and also very difficult) problem, not only as part of the
general existence question for vector distributions, but also in its own right.

Let Mn be a smooth closed connected manifold, and let αq be a real (smooth) vector
bundle over M . Of course, without loss of generality we may (and we shall) assume that
α is equipped with a Euclidean metric. Given an open subset U ⊂M , we say that sections
s1, . . . , st ∈ Γ(α) are independent on U if their values s1(x), . . . , st(x) ∈ αx are linearly
independent for each x ∈ U . [This extends the definition given for vector fields in the
beginning of 4.1.] As is well known, there are t continuous sections of α|U independent
on U if and only if there are t smooth sections of α|U independent on U .

Clearly, t sections of α|U that are independent on U span a trivial t-dimensional sub-
bundle, hence they determine a trivial t-distribution in α|U . Then the span of α, denoted
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by span(α), is naturally defined to be the largest number of sections of α independent on
M . The presence of the Euclidean metric on α implies that we have span(α) ≥ k if an
only if α = εk ⊕ η for some vector bundle η. In other words, we have span(α) ≥ k if and
only if α admits a trivial k-distribution εk (and also its complementary (q−k)-distribution
κq−k), hence if and only if there is a vector bundle monomorphism εk → α (and the
complementary monomorphism κq−k → α).

In particular, we define span(M) = span(T (M)). So to have span(M) ≥ k is the
same as to have a trivial k-distribution and the corresponding, in general nontrivial, normal
(n − k)-distribution on M . Of course, equivalently, we have span(M) ≥ k if and only if
there exists a vector bundle monomorphism εk → T (M).

Recall that the Lyusternik-Shnirel’man category, cat(X), of a topological space X is
(according to one of the two most used conventions), the least integer k (or∞) such thatX
can be covered by k open subsets which are contractible in X . So, e.g., for the sphere Sn

we have cat(Sn) = 2. For a vector bundle α over a closed manifold M (in particular, for
the tangent bundle T (M)), the span of α (in particular, the span of M ) and the Lyusternik-
Shnirel’man category of M impose certain limitations on splittings of α (in particular,
on vector distributions on M ). Indeed, by Korbaš and Szűcs [73, Theorem 1.1], if α
is a vector bundle over a closed manifold M , k ≥ cat(M), and α splits nontrivially as
α ∼= α1 ⊕ · · · ⊕ αk, then we have

1 ≤ min{dim(αi); i = 1, . . . , k} ≤ span(α).

Other formulations of the vector field problem (already briefly mentioned in 4.2) are,
e.g., the following.

(VFP1) Find span(Mn) for a given manifold M . In other words, find the maximum k
(0 ≤ k ≤ n) such that M admits a trivial k-distribution. Equivalently, find the
maximum k such that there exists a vector bundle monomorphism εk → T (M).

(VFP2) For a given k, characterize in terms of computable invariants (characteristic
classes, characteristic numbers, etc.) all those manifolds M , for which span(M) ≥
k, hence those M admitting a trivial k-distribution.

If span(Mn) ≥ k for some k ≥ 1, hence if we have a trivial k-distribution on M
then, of course, we have a positive answer to the existence question of p-distributions (and
also (n − p)-distributions) with p ≤ k on M . This is also interesting in the framework
of foliation theory. Indeed, for instance, as proved by W. Thurston ([133, Corollary 1])
in 1974, every trivial k-distribution (k ≥ 2) on a closed manifold M is homotopic to the
normal distribution of a smooth foliation of M .

Results on the vector field problem also turn out to be useful in the theory of singular-
ities of smooth maps. Indeed, as proved by Y. Ando [3], if span(Mn) ≥ p − 1 for some
p such that n ≥ p ≥ 2, then there exists a fold map M → Rp (recall that a fold map is a
smooth map having only fold singularities). In addition to this, O. Saeki showed ([109])
that if n− p+ 1 is odd and there exists a fold map M → Rp, then span(T (M)⊕ ε1) ≥ p
(whence M admits a stable trivial (p− 1)-distribution).

Recall ([69, IV.4.11-12], [72]) that a vector bundle α is a p-Clifford module if there exist
vector bundle automorphisms ei : α −→ α, i = 1, . . . , p, such that e2

i = −id and eiej +
ejei = 0 for i 6= j. The vector field problem is also related to the question of whether
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or not the tangent bundle of a given orientable even-dimensional closed manifold Mn is a
p-Clifford module for some p ≥ 1. Indeed, to ask the question for p = 1 is the same as
to ask if Mn admits an almost complex structure. It is clear that if the answer is positive
and span(M) ≥ 1, then we also have span(M) ≥ 2 (so if span(M) = 1, then we
immediately know thatM does not admit any almost complex structure). But it is also true
(as an obvious special case of the author’s [72, Theorem 3.2]) that if the tangent bundle of
M is a p-Clifford module and span(M) ≥ 1, then span(M) ≥ p+ 1.

For basic information on relations between the vector field problem and generalized
vector field problem (find span(tξp) for any t, where ξp is the Hopf line bundle over
RP p), we refer to [75, pp. 92-93]. Since the 1960’s, when the generalized vector field
problem was posed by M. Atiyah, R. Bott, and A. Shapiro (in their seminal paper on
Clifford modules, published in Topology in 1964), many authors published results on it.
We name at least some: S. Gitler, K. Y. Lam, D. Davis, M. Mahowald, S. Feder, W.
Iberkleid, T. Yoshida, T. Kobayashi.

The span is also an interesting geometric characteristic of a manifold. In particular, if
span(Mn) = n, then M admits a global parallel motion (in the obvious sense), and is
therefore called parallelizable. For example, each Lie group is parallelizable (use the right
multiplication to move a basis chosen for the tangent space at the identity element to obtain
a basis for the tangent space at any point). Relations of the vector field problem to further
areas (immersions, the Lyusternik-Shnirel’man category) will be shown in 5.10.

The vector field problem has a long history (see, e.g., [74], [75], [131]; here we give
just a brief outline). Indeed, already in the 1880’s H. Poincaré, in his works on curves de-
fined by differential equations, studied singularities of vector fields. Among other results,
he found that each vector field on the 2-dimensional sphere S2 has somewhere a zero-
point. Then, about 1910, L. E. J. Brouwer and J. Hadamard (independently) showed that
span(S2t) = 0 and span(S2t+1) ≥ 1 for any t ≥ 0. Around 1920, by independent works
of A. Hurwitz and J. Radon, it became known that, expressing any n as (2a + 1) · 2c+4d,
with a, c, d ≥ 0, c ≤ 3, we have span(Sn−1) ≥ %(n) − 1, where %(n) = 2c + 8d. The
integer %(n) is often referred to as the Hurwitz-Radon number. Around 1925 H. Hopf an-
swered the question of when a closed smooth connected manifold M has span(M) ≥ 1,
namely if and only if χ(M) = 0 (as we already have mentioned in 4.2). For an orientable
manifold Mn, we have span(M) ≥ n − 1 if and only if span(M) ≥ n, and of course no
non-orientable manifold can be parallelizable. So for closed manifolds of dimension ≤ 2,
the vector field problem had a clear solution. About 10 years after the Hopf theorem, E.
Stiefel proved that any orientable 3-dimensional manifold is parallelizable.

In 1958, M. Kervaire and J. Milnor, using results of R. Bott on the stable homotopy
of the classical groups, solved the parallelizability question for spheres: only S1, S3, and
S7 are parallelizable. This immediately also solves the parallelizability question for real
projective spaces: onlyRP 1,RP 3, andRP 7 are parallelizable. Finally, in the early 1960’s,
the vector field problem for spheres was also completely solved: J. F. Adams in [2], using
operations in K-theory, showed that the Hurwitz-Radon lower bound is also an upper
bound. As a consequence, span(Sn−1) = %(n) − 1 for each n ≥ 2. One can then show
that also span(RPn−1) = %(n) − 1 for each n ≥ 2. So, by the latter, we have a trivial
(%(n)−1)-distribution on RPn−1. As proved by H. Glover, W. Homer, and R. Stong [41],
its complementary (normal) distribution does not split, and if we have any distributions
η1, . . . , ηt onRPn−1 such that TRPn−1 = η1⊕· · ·⊕ηt, then max{dim(ηi)} ≥ n−%(n).

Then in 1964, W. Sutherland proved that the Stiefel manifold Vn,r for r ≥ 2 is always
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parallelizable; later on others, e.g., D. Handel, K. Y. Lam, L. Smith (for r ≥ 3) or P.
Zvengrowski (for r ≥ 2) gave other, more elementary proofs.

The spheres have many interesting properties. One of them is that T (Sn)⊕ε1 = εn+1.
Manifolds Mn such that TMn ⊕ ε1 = εn+1 are called stably parallelizable (or also π-
manifolds). For these, the vector field problem was solved by G. Bredon and A. Kosinski
in 1966. We remark that a great deal of interesting information on parallelizable or stably
parallelizable manifolds can be found in M. Gromov’s book [46].

Now let us look at the situation for those manifolds which are not necessarily stably
parallelizable. If we are interested in concrete manifolds, then briefly said: apart from
the trivial cases with χ(M) 6= 0 (hence span(M) = 0) and apart from what we already
mentioned, in the 1960’s and in the early 1970’s remarkable results were achieved on
spherical space forms Sn/G, where G is a finite subgroup of O(n + 1), acting freely
on Sn. They can be found in papers by J. Becker, T. Yoshida, or also in the book by
N. Mahammed, R. Piccinini, and U. Suter, Some applications of topological K-theory,
North-Holland 1980.

The main research activity in the late 1960’s and the early 1970’s was concentrated on
attempts to find theorems similar to the Hopf theorem, this time for two or more every-
where independent vector fields (i.e., (VFP2) for k ≥ 2). In this context, several methods
were developed which can be roughly characterized as adjustments or refinements of the
methods used for studies of the general existence question for vector distributions.

4.17 Results on the vector field problem obtained by removing finite
singularities

From what we have said above and the fact that the Gram-Schmidt orthonormalization
process is continuous, it is clear that we have a trivial smooth k-distribution (spanned
by an orthonormal k-frame (v1, . . . , vk) of smooth vector fields) if and only if there ex-
ists a smooth section of the associated Stiefel fibre bundle Vk(T (M)) over M . The fibre
Vk(T (M))x over x ∈M is the Stiefel manifold Vk(T (M)x) ∼= Vn,k. To simplify matters,
let us suppose that Mn is oriented and we have a trivial smooth k-distribution κ with a
finite singularity S = {p1, . . . , pt} on M . Hence, equivalently, we have an orthonormal
k-frame (v1, . . . , vk) of smooth vector fields on M \ S. Similarly to 4.9, we now take a
triangulation on Mn such that each pi lies in the interior of an n-simplex σi, and each σi
contains at most one point of S. For each i, we choose an orientation preserving trivializa-
tion T (M)|σi ∼= σi × Rn in such a way that it is compatible with the standard metric on
σi×Rn. The assignment x 7→ (v1(x), . . . , vk(x)) ∈ Vn,k, for any x ∈ Sn−1 ∼= σ̇i, defines
an element ōi ∈ πn−1(Vn,k), called the index of κ, or of (v1, . . . , vk), at pi ∈ S. As we
know, ōi is zero precisely when it is possible, in a small neighbourhood of pi, to deform
κ, or the fields v1, . . . , vk, so that the singularity disappears. Then as a global obstruction
one takes Ō(κ) = Ō(v1, . . . , vk) =

∑t
i=1 ōi ∈ πn−1(Vn,k). This is independent of the

triangulation but, in general, it can be changed, if we reverse the orientation on M . Ob-
struction theory (Ō(v1, . . . , vk) corresponds to the Steenrod obstruction cohomology class,
by Poincaré duality) implies that Ō(κ) = Ō(v1, . . . , vk) = 0 if and only if there are k vec-
tor fields ṽ1, . . . , ṽk independent on M so that (ṽ1, . . . , ṽk)|M(n−2)

= (v1, . . . , vk)|M(n−2)

hence if and only if there exists an oriented trivial k-distribution κ̃ on M such that
κ̃|M(n−2)

= κ|M(n−2)
.

For example, if M is (k − 1)-connected, then (by obstruction theory; recall that Vn,k
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is (n − k − 1)-connected) there exists an orthonormal k-frame of vector fields with a
finite singularity on M ; let us denote it by (v1, . . . , vk). In this situation, Ō(v1, . . . , vk)
is a primary obstruction, hence independent of the choice of (v1, . . . , vk). So in this case
the global obstruction depends only on the manifold M . In such a case, we can define
Ōk(M) = Ō(v1, . . . , vk), and then we have

span(M) ≥ k if and only if Ōk(M) = 0.

In particular, this applies when k = 1 andM is connected. Then it turns out that Ō1(M) =
χ(M), and we obtain the Hopf theorem already mentioned above.

In general, if M is not (k − 1)-connected, but still has a k-field (v1, . . . , vk) with a
finite singularity, then Ō(v1, . . . , vk) can depend on (v1, . . . , vk), and so our interest in
global obstructions can lead us to a dead end. Nevertheless, even in such situations, the
dead end is not always inevitable. Indeed, for instance (see [6]), for an oriented manifold
M and an orthonormal 2-frame (v1, v2) of vector fields with a finite singularity onM , we a
priori do not know if Ō(v1, v2) depends or does not depend on (v1, v2). However, in 1958,
Hirzebruch and Hopf [58](see also [89]) for 4-dimensional and, in the 1960’s, M. Atiyah,
D. Frank, and E. Thomas, for higher dimensional oriented manifolds, have shown that
this global obstruction depends really only on M (for orientable manifolds of dimension
congruent to 0 mod 4, a definite choice of orientation is made once and for all).

In calculations of global obstructions, another interpretation of the vector field problem
frequently plays a rôle. To outline it, we recall that we have a natural map (which can be
considered as a fibration with fibre Vn,k) π : BO(n − k) → BO(n), such that π∗(γn) ∼=
γn−k ⊕ εk, where BO(t) is the classifying space for t-dimensional vector bundles and
γt is the classifying vector bundle. Let f : M → BO(n) be a classifying map of the
tangent bundle T (M). Then basic properties of classifying spaces and classifying maps
of vector bundles readily imply that the existence of a trivial k-distribution on Mn (hence
span(M) ≥ k) is equivalent to the existence of a map f̄ : M → BO(n − k) (called a
homotopy lift of f ) such that the maps π ◦ f̄ and f are homotopic (π ◦ f̄ ' f ). Of course,
if M is orientable, we can use here BSO(t) instead of BO(t). So the vector field problem
can be understood also as a lifting problem (up to homotopy), and can be attacked, e.g., by
means of modified Postnikov resolutions of the fibration π : BO(n − k) → BO(n) (or
π̃ : BSO(n− k)→ BSO(n), if M is orientable). The modified Postnikov resolutions (or
towers; see [87]) have been used in many successful calculations of global obstructions for
trivial k-distributions with finite singularities. From the rich literature, we mention at least
[131], [103], [96], [22].

As a combination of various results, we obtain the following table (Table 1) of neces-
sary and sufficient conditions for span(M) ≥ 2 if Mn (n ≥ 4) is closed and oriented. In
this and in other similar tables, conditions are stated in the form “condition (reference to
proof)”.

In addition to this ([58]), an oriented closed smooth manifoldM4 has span at least three
(equivalently: M4 is parallelizable) if and only if χ(M) = 0, w2(M) = 0 and σ(M) = 0.

Also for oriented closed n-dimensional manifolds with n = 5, 6, 7, in addition to
the information contained in the table, quite complete results on the vector field problem
are known. E.g., we have the following (see mainly E. Thomas, Vector fields on low
dimensional manifolds, Math. Z., 1968).

n = 5: Suppose that M5 is oriented, H4(M5;Z) has no element of order 2, w4(M) = 0,



700 Distributions and immersions of manifolds in Euclidean spaces

M oriented, Necessary and sufficient conditions for span(M) ≥ 2
dim(M) = n

n = 4t+ 1, t ≥ 1 wn−1(M) = 0 and R(M) = 0 ([12])
n = 4t+ 2, t ≥ 2 χ(M) = 0 ([129])
n = 4t+ 3, t ≥ 1 none ([131])
n = 4t, t ≥ 1 χ(M) = 0 and σ(M) ≡ 0 (mod 4) ([12], for t = 1 [89])

Table 1: M oriented, span(M) ≥ 2

and R(M) = 0. Then span(M) ≥ 3 if and only if there is a class x ∈ H2(M ;Z)
such that x2 = p1(M) and x mod 2 = w2(M). Suppose that for an oriented man-
ifold N5 the group H4(N ;Z) has no element of order 2. Then N is parallelizable if
and only if w2(N) = 0, p1(N) = 0, and χ̂(N) = 0.

n = 6: Suppose that M6 is oriented and χ(M6) = 0. Then span(M) ≥ 3 if and only
if w2

2(M) = 0. If H4(M ;Z) has no element of order 2, then span(M) ≥ 4 if and
only if there is some x ∈ H2(M ;Z) such that x2 = p1(M) (the first Pontrjagin
class) and x mod 2 = w2(M). Suppose that N6 is an oriented manifold such that
χ(N) = 0 and H4(N ;Z) has no element of order 2. Then N is parallelizable if and
only if w2(N) = 0 and p1(N) = 0.

n = 7: Suppose that M7 is oriented. Then span(M) ≥ 3. If H4(M ;Z) has no element
of order 2 and w2(M) = 0, then span(M) ≥ 4. If H4(M ;Z) has no element of
order 2, then span(M) ≥ 5 if and only if there is some x ∈ H2(M ;Z) such that
x2 = p1(M) and x mod 2 = w2(M). If H4(M ;Z) has no element of order 2,
then M is parallelizable if and only if w2(M) = 0 and p1(M) = 0.

For trivial 3-distributions with finite singularities, nearly definitive results were
achieved by Atiyah and Dupont ([12], [34]) and by Crabb and Steer [28]. The global
invariants of manifolds which appear in their generalizations of the Hopf theorem are
combinations of the Euler characteristic χ, the signature σ and the real Kervaire semi-
characteristicR. But χ(M) is the analytical index of an elliptic differential operator on the
manifold M , σ(M) has a similar interpretation, and R(M) is a certain mod 2 index of a
skew-adjoint elliptic operator. The basic idea is to pass from elliptic differential operators
to their symbols which lie in certain K-groups. Then the Atiyah-Singer index theorem
makes it possible to express χ, σ or R in terms of K-theory from these symbols. If we
have a trivial k-distribution η with a finite singularity S = {p1, . . . , pm} on a closed man-
ifold Mn, then the symbols of the operators mentioned above are divisible by some 2ν on
M \ S. So one may expect to obtain relative K-theory characteristic classes modulo 2ν

for the pair (X,X−∪i{pi}). Then for each i we get a local characteristic number modulo
2ν , which is some function of the local obstruction. At the same time, the sum of these
local characteristic numbers modulo 2ν gives the global index of the original operator,
and this can then imply a result on the global obstruction for η. Of course, K-theory in-
formation is converted into information on global obstructions using the homomorphisms
θs : πn−1(Vn,k)→ KRs(RP k+s−1,RP s−1) already mentioned in 4.10 (recall that these
are isomorphisms if k ≤ 3 ≤ n− k).
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Dupont in [34] extended the results achieved in [12]. More precisely, he studied ob-
structions for trivial 3-distributions, using means similar to those used by Atiyah and him-
self for trivial 2-distributions in [12]. Combining various results (see mainly [34]), one ob-
tains the following table (Table 2) of necessary and sufficient conditions for span(Mn) ≥ 3
(n ≥ 7). In this, the closed manifold Mn is supposed to be oriented. For Mn with
n = 4t+1 it is additionally assumed that the homology groupH1(M ;Z) has no 2-torsion;
for such manifolds, Lt(p1(M), . . . , pt(M)) ∈ H4t(M ;Q) denotes the tth Hirzebruch
polynomial in the Pontrjagin classes p1(M), . . . , pt(M).

M oriented, Necessary and sufficient conditions for span(M) ≥ 3
dim(M) = n

n = 4t+ 1, t ≥ 2 Assume that H1(M ;Z) has no 2-torsion.
β∗wn−3(M) = 0, R(M) = 0,
and Lt(p1(M), . . . , pt(M)) mod 4 = 0 ([34])

n = 4t+ 2, t ≥ 2 χ(M) = 0 and wn−2(M) = 0 ([12])
n = 4t+ 3, t ≥ 1 none ([12])
n = 4t, t ≥ 2 χ(M) = 0, wn−2(M) = 0, and σ(M) ≡ 0 (mod 8) ([12])

Table 2: M oriented, span(M) ≥ 3

We remark that a similar (slightly more extensive) table was compiled by D. Randall
in [105].

Also, for trivial k-distributions with finite singularities on a nonorientable manifold,
one can study the question of when they can be deformed to k-distributions (for details, see
[77, §16], [105], [91]). From recent results based on the singularity approach, we mention
at least the paper [22]. N. S. Cardim, M.H.P.L. Mello, D. Randall, and M.O.M. Silva use
the intrinsic join product to express the global obstruction for a trivial k-distribution with
a finite singularity defined on the total space of a smooth fibre bundle as the product of
the obstructions for trivial k-distributions with finite singularities given on the fibre and
the base space. They calculate global obstructions for trivial k-distributions with finite
singularities on a smooth closed manifold Mn in terms of generators of the homotopy
groups πn−1(Vn,k) for 2 ≤ k ≤ 4 in situations where the obstructions depend only on
the oriented homotopy type of Mn. As applications, the authors prove several sufficient
conditions for the existence of trivial 2-distributions or 4-distributions.

4.18 Results on the vector field problem achieved by other approaches

In [33, II.6], J.-P. Dax defined and studied for any vector bundle αr over a finite CW-
complex X a normal cobordism Euler class of αr, cobeul(αr) ∈ Ωr(X; (α)). Here
Ωr(X; (α)) is a normal cobordism group (this abelian group can be identified with a limit
of certain homotopy groups; see [33, II.1]) of the space X , in dimension r, with coeffi-
cients in the stable vector bundle (α) represented by αr. The class cobeul(αr) is the only
obstruction to span(αr) ≥ 1 if dim(X) ≤ 2r − 3. Similarly, obstructions to the existence
of a nowhere vanishing section of a vector bundle were also studied, e.g., by Hatcher and
Quinn [53, 4.3] or Crabb [26, 2.4], [27].

Now let ξp be the Hopf line bundle over RP p. Combining (particular cases of) results
due to Dax (see [74, p. 6]), we obtain the following criterion: Let us suppose that 1 ≤
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k < 1
2n. Then a smooth closed connected manifold Mn has its span at least k if and only

if cobeul(T (M)⊗̂ξk−1) = 0 ∈ Ωn(M × RP k−1; (T (M)⊗̂ξk−1)). So, in the metastable
range 1 ≤ k < 1

2n, the vector field problem can also be interpreted as a task to find
necessary and sufficient conditions for cobeul(T (M)⊗̂ξk−1) = 0, in terms of computable
invariants. It seems that Dax did not work on finding such invariants. But recall (see 4.15)
that Koschorke’s ω(εk, T (M)), in the range 1 ≤ k < 1

2n, also is a complete obstruction to
span(M) ≥ k. Koschorke’s approach, based on a thorough study of ω(εk, T (M)), really
leads to expressing it in terms of better known invariants, at least for k ≤ 4.

Besides obtaining new theorems on the vector field problem, this approach frequently
enables one to prove again or to improve results obtained earlier in a different way. For
instance, here is one of Koschorke’s theorems ([77, 14.12]) which - under the assumption
of orientability – was previously derived by Atiyah and Dupont in [12]: Let Mn be a
smooth closed connected manifold (orientable or not), n > 6, n ≡ 2 (mod 4). Then
span(M) ≥ 3 if and only if χ(M) = 0 and wn−2(M) = 0.

From Randall’s [104] and [105], we have the following tables (Tables 3 and 4) of
necessary and sufficient conditions for span(Mn) ≥ 2 and span(Mn) ≥ 3 if Mn is
closed and nonorientable.

There are also several results on trivial 4-distributions. We give just one of them, as
an example ([77, 15.18]). Let Mn be a closed connected orientable smooth manifold,
n = 4t+ 1, t ≥ 2. Assume that the Steenrod square homomorphism Sq1 : H1(M ;Z2)→
H2(M ;Z2) is injective and its image does not containw2(M). Supposing, in addition, that
wn−1(M) = 0, wn−3(M) = 0 and Sq2 : H2(M ;Z2)→ H4(M ;Z2) is injective, then we
have span(M) ≥ 4 if and only if the real Kervaire semicharacteristic R(M) vanishes.

Only few theorems on the existence of trivial k-distributions for k ≥ 5 have been found
up to now. For instance, there are several results for k = 7, 8, 9, mostly achieved by T.
B. Ng, mainly by using modified Postnikov resolutions. Roughly, they apply to manifolds
satisfying some connectivity conditions, with dimension restricted by certain congruences
(see, e.g., Ng’s paper published in Topology Appl. in 1994).

H. Glover and G. Mislin in [40] observe that the work by W. Sutherland (Proc. London
Math. Soc. in 1965), R. Benlian and J. Wagoner (C. R. Acad. Sci. Paris Sér. A-B in 1967),
and J. Dupont (Math. Scandinavica in 1970) implies that if Mn and Nn are homotopy
equivalent closed connected smooth manifolds and if k < n

2 , then M admits a trivial k-
distribution if and only if N does. In [40], they generalize this result using the techniques
of localization, at the prime 2, of homotopy types. The existence of trivial k-distributions

M nonorientable, Necessary and sufficient conditions for span(M) ≥ 2
dim(M) = n

n = 3 w2
1(M) = 0 ([104])

n = 4t+ 1, t ≥ 1 wn−1(M) = 0 if w2
1(M) 6= 0 ([77])

n = 4t+ 1, t ≥ 1 wn−1(M) = 0 and R(M) = 0 if w2
1(M) = 0 ([12])

n = 4t+ 3, t ≥ 1 wn−1(M) = 0 if w2
1(M) 6= 0 ([77])

n = 4t+ 3, t ≥ 1 none if w2
1(M) = 0 ([104])

n = 2t, t ≥ 2 χ(M) = 0 and β∗wn−2(M) = 0 ([77], [101], [104])

Table 3: M nonorientable, span(M) ≥ 2
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M nonorientable, Necessary and sufficient conditions for span(M) ≥ 3
dim(M) = n

n = 4 χ(M) = 0 and w2(M) = 0 ([105])
n = 5 Assume that H1(M ;Zw1(M)) has no 2-torsion

and w2
1(M) = 0. There is a class z ∈ H2(M ;Zw1(M))

such that z2 = p1(M) and z mod 2 = w2(M),
and R(M) = 0 ([105])

n = 4t+ 2, t ≥ 2 χ(M) = 0 and wn−2(M) = 0 ([77])
n = 4t+ 3, t ≥ 1 β∗wn−3(M) = 0 ([105])
n = 4t, t ≥ 2 Assume w2

1(M) generates the kernel of
G : w1(M)H1(M ;Z2)→ H3(M ;Z2) given by
G(w1(M)y) = w2

1(M)y + w1(M)y2.
χ(M) = 0 and wn−2(M) = 0 ([105])

n = 4t+ 1, t ≥ 2 Assume that w2
1(M) = 0 and w1(M) generates the

kernel of g : H1(M ;Z2)→ H2(M ;Z2)
given by g(y) = y2 + w1(M)y.
β∗wn−3(M) = 0, wn−1(M) = 0, and R(M) = 0 ([77])

n = 4t+ 1, t ≥ 2 Assume w1(M) generates the kernel of g
given above and w2

1(M) is not in the image of g.
β∗wn−3(M) = 0 and wn−1(M) = 0 ([77])

Table 4: M nonorientable, span(M) ≥ 3

on Mn has also been studied using cobordism theory and the twisted signatures, e.g., by
M. Bendersky (Math. Z. in 1989). For more references, see [74].

We have already considered parallelizability versus stable parallelizability. More gen-
erally, besides the span of a manifold one can define its stable span (in such a way that if a
manifold Mn has its stable span n, then it is stably parallelizable). We define

stable span(M) = span(TM ⊕ εr)− r = span(TM ⊕ ε1)− 1 (r ≥ 1).

Of course, we have stable span(Mn) ≥ k if and only if the manifold M admits a triv-
ial stable k-distribution, hence if and only if the geometric dimension of T (M) does not
exceed n− k (we remark that there are still other equivalent characterizations).

There can be a big difference between span(M) and stable span(M) (e.g.,
span(S2) = 0, while stable span(S2) = 2), but these two numbers also can coincide.
For instance, if Mn is a smooth closed connected manifold with n even and χ(M) = 0,
then stable span(M) = span(M) (while span(M) = 0 if χ(M) 6= 0). For more results
of this type, see [77, §20]. So another way of attacking the vector field problem is to look
for the stable span and then to try to show that it is in fact the span.

One can try to understand the relation between stable span and span also using a homo-
topy method. Let us suppose that the manifold M is odd-dimensional (if dim M is even,
the matter is clear). Then by a special case of a theorem of I. James and E. Thomas [63],
there are one or two isomorphism classes of n-dimensional vector bundles over M , which
are stably isomorphic to the tangent bundle T (M). If there are two, W. Sutherland [125]
defines for any n-plane bundle α stably equivalent to T (M) a number bβ(α) ∈ Z2, called
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the Browder-Dupont invariant; bβ distinguishes between those two classes of n-plane bun-
dles stably isomorphic to T (M), and bβ(T (M)) = χ̂2(M). We observe that the task of
computing bβ(α) is in general very difficult.

A basic fact, needed when one starts to think about the problem of stable span, is ([74,
2.2]) that stable span(M) is positive if and only if the Euler-Poincaré characteristic χ(M)
is even. Of course, we always have the inequality

stable span(M) ≥ span(M).

There are various sources of upper bounds for the stable span, hence also for the span.
Among them historically the first (but certainly not old-fashioned) are characteristic classes
(see [94]). For instance, if the Stiefel-Whitney class wt(Mn) ∈ Ht(M ;Z2) does not
vanish, then we know that stable span(M) ≤ n − t. For applications of this see, e.g.,
[70], [74], [75] (and several papers cited therein).

The following theorem (a possible source of upper bounds for the stable span) is due to
K. H. Mayer [90] (see also [74]); he derived it using the Atiyah-Singer index formula.
Let Mn be an oriented closed connected smooth manifold with n ≡ 0 (mod 4). If
stable span(M) ≥ r, then the signature σ(M) is divisible by br, where br+8 = 16 · br
and br is given by the following table.

r 1 2 3 4 5 6 7 8
br 2 4 8 16 16 16 16 32

For other general results on the existence of (stable) distributions, implied by the Atiyah-
Singer index theorem see, e.g., [11] or B. Lawson and M.-L. Michelsohn’s [85], [86].
Interesting theorems on (stable) distributions can also be found (or derived from) [28],
[27]. In [66], B. Junod and U. Suter use the Atiyah γ-operations in KU-theory to prove
results on the vector field problem for product manifolds. There are also results on the
vector field problem in equivariant contexts (e.g., K. Komiya, Proc. Japan Acad., Ser. A in
1978, U. Namboodiri, Trans. Amer. Math. Soc. in 1983, M. Obiedat, Topology Appl. in
2006).

4.19 On the vector field problem on specific manifolds after 1975

After 1975, much work was dedicated to showing that parallelizability (or even stable
parallelizability) is very rare among the frequently occurring families of manifolds in ge-
ometry and topology. We now briefly comment on some of this work.

As proved by T. Yoshida in 1975 ([141]) among the real Grassmann manifoldsGk(Rn),
only the following are parallelizable: G2(R1) = RP 1, RP 3 = G1(R4) = G3(R4), and
RP 7 = G1(R8) = G7(R8). None of the others is even stably parallelizable. Somewhat
later (see [74], [75]) different proofs were given by Hiller and Stong, Bartı́k and Korbaš,
Trew and Zvengrowski.

Among the oriented Grassmann manifolds, only S1 = G̃1(R2), S3 = G̃1(R4) =
G̃3(R4), S7 = G̃1(R8) = G̃7(R8), and G̃3(R6) are parallelizable. Of the remaining ones
only G̃2(R4) is stably parallelizable. This theorem was first stated and partially proved by
I. Miatello and R. Miatello [93], and completely proved in the dissertation of P. Sankaran
(University of Calgary, 1985). In [93], the authors also proved the following wider result:
For q > 2 the oriented flag manifold F̃ (n1, . . . , nq) = SO(n1 + · · ·+nq)/SO(n1)×· · ·×
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SO(nq), where without loss of generality we assume n1 ≥ n2 ≥ . . . , is parallelizable if
and only if n1 = n2 = · · · = 1, or n1 = n2 = · · · = 3, or {n1, n2, . . . } = {3, 1}, or
{n1, n2, . . . } = {2, 1} with at least two ni equal to one in the latter case. Of the rest only
F̃ (2, . . . , 2) and F̃ (2, . . . , 2, 1) are stably parallelizable.

For results on the parallelizability question for the partially oriented flag manifolds
O(n1 + · · ·+ ns)/SO(n1)× · · · × SO(nr)×O(nr+1)× · · · ×O(ns), see Sankaran and
Zvengowski’s [111].

The (stable) parallelizability problem for the flag manifolds F (n1, . . . , nq) (see 4.1)
was first solved by Korbaš ([70]). Somewhat later, another proof was given by Sankaran
and Zvengrowski. The result is that for q > 2 only the flag manifold F (1, 1, . . . , 1) is
parallelizable, and the other manifolds F (n1, . . . , nq) are not stably parallelizable.

In 1986, E. Antoniano, S. Gitler, J. Ucci, and P. Zvengrowski in [5] almost completely
(with only one exception) solved the parallelizability question for the projective Stiefel
manifold Xn,k, obtained from the ordinary Stiefel manifold Vn,k (k < n) by identifying
each (v1, . . . , vk) ∈ Vn,k with (−v1, . . . ,−vk). Their result is that Xn,k is parallelizable
if (n, k) equals (n, n − 1), (2m, 2m − 2), (16, 8), and if n = 2, 4, or 8, and none of
the remaining ones are stably parallelizable, with the possible exception of the undecided
X12,8.

The complex projective Stiefel manifold PWn,k is obtained from the complex Stiefel
manifold Wn,k of orthonormal k-frames in Cn by identifying any frame (v1, . . . , vk) with
the frame (zv1, . . . , zvk) for any z in the circle U(1). In 2000, L. Astey, S. Gitler, E.
Micha, and G. Pastor ([8]) settled the question of parallelizability of the manifolds PWn,k

in the following way: If k < n − 1, then PWn,k is not stably parallelizable; PWn,n−1 is
parallelizable, except PW2,1 = S2; and PWn,n (that is, the projective unitary group) is
parallelizable. In 2003, Astey, Micha, and Pastor also solved the parallelizability question
for generalized complex projective Stiefel manifolds (for the result, see [7]). Paralleliz-
ability is a rare phenomenon also for many other families of manifolds; see W. Singhof
[116], Singhof and Wemmer [117].

For further results on the span of concrete frequently used (families of) manifolds,
we refer to [74], [75], [142]. Recent papers by D. Ajayi and S. Ilori (2002) and the author
(2004) bring new estimates of the span or complete solutions of the span-problem for some
families of the flag manifolds O(n)/O(1) × O(1) × O(n − 2). Many authors also have
achieved interesting results on the geometric dimension of vector bundles over concrete
manifolds, mainly over real projective spaces (e.g., S. Gitler, M. Mahowald, J. F. Adams,
D. Davis, K. Y. Lam, D. Randall, M. Bendersky).

4.20 Remarks on complex vector distributions

In the above, we have restricted our exposition to real subbundles of tangent bundles or
more general vector bundles. But it is also of much interest to study complex vector dis-
tributions, hence complex subbundles of complex vector bundles. For instance, in 1967,
Thomas [130] defined the complex span of a complex vector bundle to be its maximum
number of everywhere complex linearly independent sections of it. In particular, the com-
plex span of an almost complex manifold M2n is defined to be the complex span of the
complex n-dimensional vector bundle whose underlying real bundle is (isomorphic to) the
tangent bundle T (M). Of course, then the real span of M is at least twice the complex
span. As an example, we quote [130, Corollary 1.6]: Let M2n (n ≥ 6) be a smooth
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closed connected almost complex manifold, with an almost complex structure ω, and sup-
pose that M is 3-connected. Then the complex span of M is at least three if and only if
χ(M) = 0 and the Chern class cn−2(ω) ∈ H2n−4(M ;Z) is zero. In 1999, Koschorke in
[80], for two complex vector bundles α and β over a closed connected smooth manifold
Mn considered the problem of comparing complex and real monomorphisms from α to
β. Two such monomorphisms are considered as equal if they are regularly homotopic.
Using the singularity approach, he shows that the existence and classification results in the
complex and in the real setting are related by transition homomorphisms of normal bor-
dism groups; these homomorphisms fit into a long exact sequence of Gysin type. Under
suitable conditions, explicit calculations, giving results in terms of characteristic classes,
are possible. For example, if dimR(α) = 2, dimR(β) = n, and M is nonorientable, then
Koschorke proves that the following statements are equivalent: (a) there exists a complex
monomorphism u : α → β; (b) there exists a real monomorphism u : α → β; and (c)
the Stiefel-Whitney class wn(β − α) =

∑
i≥0 w2(α)iwn−2i(β) vanishes. Recently H.

Jacobowitz and G. Mendoza (see [61], [62]) studied smooth complex subbundles of the
complexification of the tangent bundle of a smooth manifold. They mainly concentrate on
properties of interest in the theory of partial differential equations.

5 Immersions and embeddings of manifolds in Euclidean spaces

5.1 Preliminaries

A smooth map f : N t → Mn (t ≤ n) is an immersion, if the map f is regular, i.e., if
the differential at y, df : Ny → Mf(y), is injective for each y ∈ N . For any immersion
f : N t → Mn (where N is closed, M is supposed to be a Riemannian manifold and
it need not be closed), the pullback of the tangent bundle f∗(T (M)) splits as a Whitney
sum of two subbundles. More precisely, we have f∗(T (M)) ∼= T (N) ⊕ νf ; the vector
bundle νf is called the normal bundle of the immersion f . In particular, for an immersion
g : N t → Rn we have εn ∼= T (N)⊕νg . So in the reducedKO-group ([69]), νg represents
the (additive) inverse to the element represented by T (N). As a consequence, the stable
equivalence class of the normal bundle νg , denoted by (νg), depends just on N , and is
the same for all immersions N t → Rn. We speak about this stable equivalence class,
but sometimes also about any of its representatives, as the stable normal bundle of (any)
immersion N t → Rn.

Of course, basic properties of the Stiefel-Whitney characteristic classes (which also
depend just on stable equivalence classes of vector bundles) immediately imply that a nec-
essary condition for the existence of an immersion of N t in Rn is that the dual (also called
normal) Stiefel-Whitney classes w̄i(N) vanish for all i > n− t. Another necessary condi-
tion is provided by the Atiyah γ-operations in KO-theory ([10]).

An immersion is allowed to have self-intersections; at the same time, any immersion
is locally injective. If f is an injective immersion which maps N homeomorphically onto
f(N) (with the topology on f(N) induced from M ), then f is called an embedding. Note
that if N is compact, then each injective immersion N → M is an embedding. If there is
an embedding of a closed manifold N t in Rn, then also a tubular neighbourhood of N can
be embedded in Rn. Using this, one can show that a necessary condition for the existence
of an embedding of N t in Rn is that the dual Stiefel-Whitney classes w̄i(N) vanish for all
i ≥ n− t (e.g., [60, Ch. 17, 10.2]).
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A smooth manifold N is a submanifold of a smooth manifold M if there is an injective
immersion ι : N → M . Formally, one speaks about the submanifold (N, ι); if ι is an
embedding, then we call N (more precisely, the pair (N, ι)) an embedded submanifold in
M . A well known example: there is an immersion of the Klein bottle in R3, but there is no
embedding of this surface in R3, hence it cannot be realized as a submanifold in R3.

Roughly speaking, it is easier to study immersions, characterized by just a local prop-
erty (of having the differential injective at each point), than to study embeddings, char-
acterized not only by a local property (the same as for immersions), but also by a global
property (of being homeomorphisms onto the image).

5.2 First results on local isometric immersions : Janet, Cartan

If (N t, h) and (Mn, g) are smooth Riemannian manifolds (with h a Riemannian metric
on N and g a Riemannian metric on M ), then a smooth map f : N → M is defined to
be isometric in y ∈ N if h(u, v) = g(df(u), df(v)) for each u, v ∈ T (N)y . One readily
verifies that then df : T (N)y → T (M)f(y) is injective. So a map f : N → M that is
isometric in each point of N is an immersion, and we call it an isometric immersion of N
in M . If f : N →M is an injective isometric immersion which is also a homeomorphism
onto f(N) (with the subspace topology), then f is called an isometric embedding. If a
small neighbourhood of each point of N can be isometrically immersed (alternatively:
embedded) in M , then we say that N can be locally isometrically immersed (alternatively:
embedded) in M .

The interest in immersions and embeddings of manifolds in Euclidean spaces seems to
have appeared first in Riemannian geometry. Indeed, already in the 1870’s, in attempts to
better understand the intrinsic geometry of Riemannian manifolds, L. Schläfli conjectured
that any n-dimensional Riemannian manifold (M, g) with g of class Cω can be locally
isometrically Cω-embedded in Euclidean n(n+1)

2 -space.
In 1926, M. Janet published (in Ann. Sci. Polon. Math.) a proof of Schläfli’s con-

jecture. It turned out later that the proof had gaps; it was rectified by C. Burstin (Mat.
Sbornik in 1931). In his reaction to Janet’s paper, É. Cartan in 1927 (in Ann. Sci. Polon.
Math.) presented another proof of the conjecture, then transformed into the first general
embedding theorem in Riemannian geometry (note that in some special situations, there
were some older results, e.g., those proved by D. Hilbert).

In the proof Cartan used his theory of differential forms and Pfaffian systems (see 4.5).
One can see here an interplay between vector distributions and local isometric immersions
(or embeddings). The idea behind this is to obtain maps by looking for their graphs. This
is based on the following result (see [136, 2.34]). Let N t and Mn be smooth manifolds.
Let π1 : N ×M → N and π2 : N ×M → M be the canonical projections. Suppose
that there exists a basis {ω1, . . . , ωn} for the 1-forms on M (i.e., {ω1(x), . . . , ωn(x)} is a
basis of the cotangent space, T ∗(M)x, for each x ∈M ).

(a) If f : N → M is a smooth map, then its graph (i.e., the submanifold (N, g) of
N ×M , where g(y) = (y, f(y)) for each y ∈ N ) is an integral manifold of the ideal
in E∗(N ×M) generated by the 1-forms

(dπ1)∗(df)∗(ω1)− (dπ2)∗(ω1), . . . , (dπ1)∗(df)∗(ωn)− (dπ2)∗(ωn).
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(b) Suppose that α1, . . . , αn are 1-forms onN such that the ideal inE∗(N×M) generated
by the forms

(dπ1)∗(α1)− (dπ2)∗(ω1), . . . , (dπ1)∗(αn)− (dπ2)∗(ωn)

is a differential ideal. Then, for any (y0, x0) ∈ N×M , there exists a neighbourhood
U of y0 and a smooth map g : U →M such that g(y0) = x0 and such that

(dg)∗(ω1) = α1|U , . . . , (dg)∗(ωn) = αn|U .

In addition to this, ifU is any connected open set containing y0 for which there exists
a smooth map g : U →M such that g(y0) = x0 and such that

(dg)∗(ω1) = α1|U , . . . , (dg)∗(ωn) = αn|U ,

then there exists precisely one such map on U .

For instance, when M = Rn, then it is easy to find a basis {ω1, . . . , ωn} for the 1-forms
on M . If M = Rn and all the requirements from (b) can be satisfied, for some forms
α1, . . . , αn, in such a way that α1(y), . . . , αn(y) generate T ∗(N)y for each y ∈ U , then
of course (dg)∗ : T ∗(M)g(y) → T ∗(U)y is an epimorphism, hence g : U → Rn is an
immersion.

5.3 Whitney’s global immersions and embeddings

In 1936, H. Whitney, in the introduction to [138] writes (we use our notation but closely
follow his words) that a differentiable manifold is generally defined in one of two ways: as
a point set with neighbourhoods homeomorphic with Euclidean space Rn, coordinates in
overlapping neighbourhoods being related by a differentiable transformation, or as a sub-
set of Rn, defined near each point by expressing some of the coordinates in terms of the
others by differentiable functions. Thanks to this paper by Whitney, it became known that
the first definition (apparently more abstract, appearing since the 1930’s in works by O.
Veblen and J. H. C. Whitehead, P. S. Alexandroff and H. Hopf, J. Alexander) is no more
general than the second (apparently more “palpable”, introduced in 1895 by H. Poincaré
in Analysis situs; see J. Dieudonné’s book A history of algebraic and differential topology,
Birkhäuser 1989). Indeed, Whitney proves there that any smooth Hausdorff manifold Mn

with a countable base for its topology can be considered as an embedded submanifold in
R2n+1; in addition to this, there is a smooth immersion M → R2n. We restrict ourselves
here to the C∞-context, but Whitney’s result is more general; he also proves there a theo-
rem about approximating smooth maps M → R2n+1 by embeddings. Later, in [139], he
presented still better general embedding and immersion dimensions by proving that every
smooth Hausdorff manifold Mn with a countable basis embeds in R2n if n ≥ 1 (but the
approximation property mentioned above cannot be transferred to this case), and immerses
in R2n−1 if n ≥ 2. In general, these dimensions cannot be improved, because, e.g., RP 2r

cannot be immersed in R2r+1−2 and cannot be embedded in R2r+1−1 (for immersions, see
[94, 4.8]; for embeddings, take the Klein bottle). But with added information or further
assumptions, e.g., on n or on properties of manifolds, one can try to find better (that is
lower) or even optimal (in the obvious sense) immersion or embedding dimensions, hence
some Whitney-like immersion or embedding theorems, under more specific conditions.
This really became the aim of much effort in the subsequent years.
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5.4 Global isometric immersions: Nash, Kuiper et al.

J. Nash in 1954 for q ≥ n + 2 and N. Kuiper in 1955 for q ≥ n + 1 proved that any
smooth immersion f0 : Mn → Rq admits a C1 homotopy of immersions ft : M → Rq
(t ∈ I , where I = [0, 1] is the closed unit interval between 0 and 1) to an isometric
immersion f1 : M → Rq . The first result on global isometric embeddings, showing
that also in the realm of smooth Riemannian manifolds, “abstractly” defined manifolds are
not more general than those defined as submanifolds of Euclidean spaces, came quite a
few years after the local result of Janet and Cartan or after Whitney’s results. Indeed, in
1956, J. Nash ([95]) proved that every compact Riemannian Ct-manifold (3 ≤ t ≤ ∞)
of dimension n can be isometrically Ct-embedded in Euclidean n(3n+11)

2 -space and every
non-compact Riemannian Ct-manifold (3 ≤ t ≤ ∞) of dimension n can be isometrically
Ct-embedded in Euclidean n(n+1)(3n+11)

2 -space. One of the main steps in Nash’s proof
was a certain perturbation problem. To solve it, he invented an unprecedented procedure,
based on a hard implicit function theorem, which later, so to say, started to live its own
life. Indeed, in the 1960-1980’s, the procedure was improved by several authors (among
them, J. Moser, L. Hörmander, L. Nirenberg, R. Hamilton, H. Jacobowitz, J. Schwartz,
E. Zehnder) and developed into what is known as Nash-Moser’s theory in the context of
differential operators and non-linear systems of partial differential equations (see [46]).

Nash’s embedding dimension mentioned above has subsequently been improved. M.
Gromov (see [46, 3.1.1]) proves that every (closed or open) Riemannian Ct-manifold with
2 < t ≤ ∞ admits an isometricCt-embedding inRn2+10n+3, and for t > 4, the dimension
of the ambient space can be reduced to (n+2)(n+3)

2 . In 1987, quite surprisingly, M. Günther
[49] shows that Nash’s complicated procedure was in fact not necessary for solving the
perturbation problem mentioned above. Günther then (Math. Nachr. 144 (1989)), using his
method, also lowered Nash’s embedding dimension: he proved that any C∞ Riemannian
metric on Mn can be induced by a C∞-embedding of the manifold M into Rq with

q = max(
n(n+ 5)

2
, 5 +

n(n+ 3)
2

).

There are many questions (freeness of immersions; classes of differentiability of man-
ifolds versus classes of differentiability of isometric immersions etc.) which we could not
touch here. For them, the reader may wish to consult, besides Gromov’s book and other
works already cited in this subsection, also, e.g., [45], [4], [18], [29], [115]. Several re-
sults relating isometric immersions to vector distributions (and other interesting results) are
presented by Z. Z. Tang in [126]. For instance, he proves that if an oriented smooth Rie-
mannian manifold Mn with positive scalar curvature can be isometrically C∞-immersed
in Rn+2, then M is stably parallelizable. From many others working recently on isometric
immersions or embeddings, we mention, e.g., Yu. A. Aminov, J. Cieslinski, M. Dajczer,
R. Tojeiro, H. Tanabe, M. Pakzad, A. Savo, U. Lumiste, S. Mardare.

5.5 Hirsch and Smale’s immersion theory

As an additional reading to the material of this subsection, we recommend, mainly for
the developments in immersion and embedding theory until 1973, S. Gitler’s [37] and D.
Spring’s [121].
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In 1959, the papers by S. Smale [118] and M. Hirsch [56] (the second building on the
results of the first) brought a new point of view to the study of immersions. In these papers,
Smale for the immersions of spheres in Euclidean spaces and Hirsch for immersions of
closed smooth manifolds in smooth manifolds, reduced the existence and classification
questions for immersions of manifolds to problems in homotopy theory. To explain what
is meant by this, we first introduce some notations and definitions.

Two immersions f, g : N t → Mn are defined to be regularly homotopic (recall
that immersions are regular maps, hence the name) if, roughly speaking, there is a ho-
motopy F : N × I → M (called then a regular homotopy) from f to g through
(smooth) immersions. More precisely, it is required here that F (x, 0) = f(x) and
F (x, 1) = g(x) for all x ∈ N , that the map Ft : N → M defined by Ft(x) = F (x, t)
be an immersion for each t ∈ I , and that the map F̃ : T (N) × I → T (M) defined
by F̃ ((x, v), t) = (Ft(x), d(Ft)x(v)) be continuous (here x ∈ N , v ∈ T (N)x, and
d(Ft) : T (N) → T (M) is the differential of the smooth map Ft). Let Imm(N,M)
be the space of immersions from N to M (with the C∞ topology; see [57, Ch. 2]), and
let Mono(T (N), T (M)) be the space of vector bundle monomorphisms T (N) → T (M)
with the compact-open topology. Recall that a (continuous) map f : X → Y between the
topological spacesX and Y is a weak homotopy equivalence if f induces a one-to-one cor-
respondence between the path components of X and those of Y , and also an isomorphism
between the ith homotopy group of X and the ith homotopy group of Y for each i ≥ 1.
Note that a point in the space Imm(N,M) is nothing but an immersion N → M , and a
path in Imm(N,M) is a regular homotopy.

Now we can state a fundamental theorem, which we shall call the Hirsch-Smale theo-
rem: If t < n, then the map

D : Imm(N t,Mn)→ Mono(T (N), T (M)),

mapping each g ∈ Imm(N,M) to its differential, is a weak homotopy equivalence.
We remark that this is not the original formulation from [56]; it was found later by

Hirsch and Palais (see Smale’s survey [119, 3.12]). An analogous result was proved by A.
Phillips in [100] for submersions Up →W q (p ≥ q) if Up is an open manifold (hence this
extends the Hirsch-Smale theorem also to the case t = n if U is open; the latter case was
also proved by Hirsch in 1961).

As a consequence of the Hirsch-Smale theorem, the existence of an immersion N t →
Mn (t < n) is equivalent to the existence of a vector bundle monomorphism T (N) →
T (M). In addition, two immersions N t → Mn (t < n) are regularly homotopic if
and only if their differentials are homotopic through vector bundle monomorphisms from
T (N) to T (M).

Now let us take Mn = Rn; of course, the tangent bundle of Rn is trivial. Then the
Hirsch-Smale theorem readily implies the following vector bundle criterion for the exis-
tence of immersions of a smooth closed manifold N t in Euclidean spaces: N t immerses
in Rn (t < n) if and only if there exists a vector bundle κn−t such that the Whitney sum
T (N) ⊕ κn−t is a trivial vector bundle. By this theorem, e.g., we immediately know that
any stably parallelizable (closed) manifold of dimension n immerses in Rn+1 (we note
that every open n-dimensional parallelizable manifold can be immersed in Rn, as shown
by Hirsch in 1959). A surprising consequence of the Hirsch-Smale theorem and the fact
that the second homotopy group π2(V3,2) = π2(SO(3)) is trivial is that the sphere S2 can
be turned inside out in the sense that the usual embedding of S2 in R3, defined by x 7→ x,
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is regularly homotopic to the embedding defined by x 7→ −x. This was found by Smale;
for a generalization, see U. Kaiser [67].

Supposing that n > t, if a manifold N t can be immersed in Rn, then of course, it can
also be immersed in Rn+s, and the geometric dimension (see 4.13) of the stable normal
bundle of the latter immersion does not exceed n−t. By what we said above (using stability
properties of vector bundles; see [60, Part II, Ch. 8, Theorem 1.5]), one sees that also the
converse is true. Indeed, supposing that n > t, if there is an immersion N t → Rn+s and
if the corresponding stable normal bundle can be represented by an (n − t)-dimensional
vector bundle, then N immerses in Rn. In particular, if n > t and we have an immersion
N t → Rn+s with the normal bundle νn+s−t having a trivial s-distribution, hence such
that span(νn+s−t) ≥ s (or, equivalently, if the associated Stiefel fibre bundle Vs(ν), with
fibre isomorphic to Vn+s−t,s, has a section), then we have an immersion N t → Rn. Here
we see a close relation between immersions of manifolds in Euclidean spaces on the one
hand, and vector distributions (in vector bundles) on the other.

Summarizing, we can look at immersions of manifolds in Euclidean spaces in the fol-
lowing way. Given a (closed) manifold N t, we know from Whitney’s results, that it im-
merses in R2t−1 (t ≥ 2); let (ν) be the stable normal bundle of such immersions. The
question of whether or not N t also immerses in some Rn with t < n < 2t − 1 reduces,
thanks to Hirsch-Smale theory, to the question of whether or not the geometric dimension
of (ν) is less than or equal to n − t. As we have seen in Sec. 4, the latter question can
be attacked by obstruction theory in its various forms, including the theory of (modified)
Postnikov resolutions (see, e.g., [87]) or the theory of obstructions obtained by the sin-
gularity approach (see, e.g., [77] and the references cited therein), and in general is very
difficult. From the same point of view it is clear that results on homotopy classification
of sections of Stiefel bundles associated to vector bundles (like Vs(ν) above) may imply
results on classification of immersions under the equivalence relation of regular homotopy.
Indeed, some results in this direction can be found, e.g., in [64], [65]. There are also other
types of classification results for immersions; see, e.g., Haefliger and Hirsch’s paper pub-
lished in 1962 in the Annals of Mathematics, where among other important results they
show that the classification of immersions N t → Mn in the stable range of dimensions,
2n > 3t+ 1, is independent of the differentiable structures on the closed manifolds N and
M . Somewhat later, in 1974, H. Glover and G. Mislin [38] proved for simple manifolds
(hence such that the fundamental group operates trivially on all the homotopy groups) the
following strong result in the same direction. Let M and N be smooth, closed, connected,
orientable, simple manifolds of dimension n whose 2-localizations are homotopy equiva-
lent. Suppose that M immerses in Rn+k for some k ≥ [n/2] + 1. Then N immerses in
Rn+2[k/2]+1.

5.6 Homotopy methods in embedding theory: Haefliger et al.

Once Hirsch-Smale theory of immersions was created, the theory of embeddings did not
have to wait too long for its own “homotopization”, although less complete than for immer-
sions. Indeed, already in the early 1960’s, A. Haefliger, extending results of A. Shapiro and
W. T. Wu, succeeded, in the stable range, in reducing also the existence and classification
questions for embeddings to homotopy problems. We need some definitions. An isotopy
is defined to be a regular homotopy which at each “time” t (t ∈ I) is an embedding. Two
embeddings f, g : N t →M are called isotopic if there is an isotopy F : N×I →M from
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f = F0 to g = F1. Haefliger, in [54], [55], presented several new results on embedding
smooth manifolds in other smooth manifolds (then in later papers he added more). In par-
ticular, he reduced the classification of smooth embeddings N t → Rn to the classification
of sections of a suitable fibre bundle, under the condition 2n > 3t+ 3. More precisely, let
∆ = {(x, y) ∈ N × N ;x = y} be the diagonal for the closed manifold N t. The group
Z2 acts on N × N \ ∆ (we have (−1)(x, y) = (y, x)) without fixed points. Let N∗ be
the orbit space of this action. Let E → N∗ denote the fibre bundle, with fibre the sphere
Sn−1, associated to the principal Z2-bundle N ×N −∆→ N∗; here the action of Z2 on
Sn−1 is defined by the antipodal map a : Sn−1 → Sn−1, a(x) = −x. Haefliger’s theorem
then says that the (smooth) isotopy classes of smooth embeddings N t → Rn are in a bi-
jective correspondence with the homotopy classes of sections of the fibre bundle E → N∗,
if 2n > 3t + 3. [The correspondence is via sending any embedding f : N t → Rn to the
Z2-equivariant map f̃ : N × N \ ∆ → Sn−1, f̃(x, y) = f(x)−f(y)

||f(x)−f(y)|| ; such equivariant
maps canonically correspond to sections of E → N∗.]

Let πk(C∞(N t,Mn),Emb(N,M), f0) (briefly πk) (k ≥ 1) be the kth relative ho-
motopy group if k ≥ 2 or just the kth relative homotopy set if k = 1, where M and N
are smooth manifolds, M is supposed to be closed, C∞(N t,Mn) is the space (with the
C∞-topology) of all smooth maps N → M , Emb(N,M) is its subspace of embeddings,
and f0 : N →M is an embedding. Although π0(C∞(N t,Mn),Emb(N,M), f0) (briefly
π0) is not defined, we agree to write symbolically π0(C∞(N t,Mn),Emb(N,M), f0) =
0 (briefly π0 = 0) to mean that every path component of C∞(N t,Mn) intersects
Emb(N,M) or, equivalently, that each map N → M is homotopic to an embedding.
About 1972, J.-P. Dax, inspired by Haefliger’s results and methods, studies in [33], in a
profound and extensive way, πk for k ≥ 0, generalizing some previously known theo-
rems (due to Whitney, Haefliger et al.) and also obtaining completely new information
for k ≥ 2. He improved methods for elimination of double points of immersions (pre-
viously used, in simpler forms, also by Whitney and Haefliger) and reduced the study
of πk(C∞(N t,Mn),Emb(N,M), f0) to the study of certain normal bordism or normal
cobordism groups. Similar ideas also appear in Hatcher and Quinn’s [53].

In the early 1960’s, another approach to embeddings has been developed, mainly in the
works of W. Browder, J. Levine, and S. P. Novikov. They used surgery for constructing
embeddings of one manifold in another; further substantial contributions are due to A. Cas-
son, D. Sullivan, C. T. C. Wall. On the foundations of the theory and on later developments
and ramifications, the reader can consult M. Cencelj, D. Repovš, and A. Skopenkov’s and
T. Goodwillie, J. Klein, and M. Weiss’s recent surveys [23] and [42], respectively.

5.7 Gromov’s h-principle

About 1969, a major reform in the immersion theory (and also in other areas, e.g., in
the theory of submersions, symplectic and contact geometry, non-linear partial differential
equations etc.) was initiated by M. Gromov. The main tool of this reform, which enables
one to bring apparently unrelated results on the same platform, is called the homotopy
principle, briefly h-principle.

To explain what is meant by the h-principle, we need some preparation. Following
Gromov [46, 1.1.1], consider a smooth fibration p : X → N . Let, for r ≥ 0, X(r) be the
space of r-jets (of germs) of smooth sections of p (we identify X(0) = X). In particular,
the space X(1) consists of the linear maps between tangent spaces, L : T (N)p(x) →
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T (X)x for all x ∈ X , such that dp ◦ L = id. We have natural projections pr : X(r) → N
and psr : X(s) → X(r) for s > r ≥ 0. Let the r-jet of a Cr-section f : N → X be denoted
by Jrf : N → X(r). A section g : N → X(r) is called holonomic if g = Jrf for some
Cr-section f : N → X (if such a section f exists, then it is unique).

Now a differential relation imposed on sections is a generalization (to smooth fibra-
tions) of differential equations or inequalities. More precisely, an rth order differential
relation imposed on sections f : N → X is a subsetR ⊂ X(r). A Cr-section f : N → X
is said to satisfy (or to be a solution of) the relation R if the r-jet of f , Jrf : N → X(r),
maps N into R. Hence solutions of R can be naturally identified with holonomic sec-
tions N → R ⊂ X(r). We say that the relation R satisfies the h-principle (or that the
h-principle holds for obtaining solutions of R) if every continuous section N → R is
homotopic through sections N → R to a holonomic section N → R.

In particular, if X is a trivial fibration, X = N ×M → N , (a, b) 7→ a, then sections
N → X correspond to maps N → M . So, quite naturally, instead of the h-principle for
sections N → X , we speak about the h-principle for maps N →M .

For example, let us take the trivial fibre bundle X = N × M → N , (a, b) 7→ a,
where N t and Mn are C1-manifolds. The jet space X(1) consists then (after the obvious
identifications) of all linear maps T (N)a → T (M)b for all (a, b) ∈ N ×M . Further, in
the rôle of R, we define the immersion relation I ⊂ X(1), fibred over X = N ×M by
the projection p1 : X(1) → X , by the requirement that the fibre Ix over x = (a, b) ∈
X = N ×M should consist of those linear maps belonging to X(1)

x which are injective,
hence of injective linear maps T (N)a → T (M)b. Now sections N → I correspond to
vector bundle monomorphisms T (N) → T (M), and a section g : N → I ⊂ X(1) is
holonomic if and only if there exists some f : N → M such that g = df . In other
words, holonomic sections g : N → I ⊂ X(1) are differentials df : T (N) → T (M) of
immersions f : N →M .

Now it is clear that the Hirsch-Smale theorem can be stated as follows: If t < n,
then every vector bundle monomorphism T (N) → T (M) is homotopic, through vector
bundle monomorphisms, to a vector bundle homomorphism which is the differential of an
immersion N → M . In other words, if t < n, then every section N → I is homotopic,
through sections N → I, to a holonomic section N → I. So the Hirsch-Smale theorem is
the same as to say that if t < n, then the immersion relation I satisfies (in other wording:
immersions N →M satisfy) the h-principle.

In 1969, Gromov [44] presented his method of convex integration of differential re-
lations (see also [46, 2.4]) as one of several known methods for proving the h-principle.
Other such methods are mainly the method of removal of singularities, the covering ho-
motopy method used in Gromov’s doctoral dissertation supervised by V. A. Rokhlin, the
method of continuous sheaves, and the method of inversions of differential operators. In
particular, in this way one obtains new proofs of the Hirsch-Smale theorem, but also, e.g.,
of the results on isometric immersions obtained by Nash or Kuiper. So the h-principle
became really a common platform for many results which before appeared unrelated.

In addition to bringing new proofs of known theorems, the studies of the h-principle
have also lead to many new results, not only on immersions, and not only in global analysis
or geometry. Details on relevant methods and results can be found in [46], in original
articles (by Gromov, Eliashberg, Mishachev, du Plessis, and others), and also in several
recent books on the h-principle, e.g., by D. Spring (1998) or by Y. Eliashberg and N.
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Mishachev (2002).
In 1974, E. Bierstone [16] derived an equivariant version of Gromov’s theory (as pre-

sented in [44]). Some of Bierstone’s assumptions were then weakened by S. Izumiya
(Manuscripta Math. in 1979). In 1998, M. Datta and A. Mukherjee [30] studied the open
extension theorem of Gromov ([46, p. 86]) in an equivariant setting (G-manifolds, where
G is a compact Lie group, G-invariant relations etc.). As applications, they obtained a gen-
eralization of the transversality theorem of Gromov [46, p. 87] and an equivariant version
of the Hirsch-Smale immersion theorem.

5.8 A category theory approach

There is also a categorial reformulation of the (extended) Hirsch-Smale theorem. Roughly,
supposing that N t and Mn are smooth manifolds (without boundary) such that t < n
(or also t = n, but then N must be open), let O be the poset of open subsets of N ,
ordered by inclusion. Of course, O is a category, with just one morphism U → V
if U ⊂ V and with no morphism if U 6⊂ V . Then the spaces Imm(N t,Mn) and
Mono(T (N), T (M)) are just the values E(N) and F (N), respectively, if E and F are
contravariant functors from O to the category of spaces defined by E(U) = Imm(U,M)
and F (U) = Mono(T (U), T (M)), respectively. By identifying any immersion with its
differential (which is then a vector bundle monomorphism between the corresponding tan-
gent bundles), we obtain an obvious inclusion E(U) ⊂ F (U) for any open U ⊂ N . Now
a categorial reformulation of the Hirsch-Smale theorem reads: The functors E and F are
excisive (or, in Goodwillie’s calculus terminology: they are polynomial of degree at most
one). For ideas and results in this area see, e.g., [137], [42].

5.9 Rourke and Sanderson’s compression theorem

About 1999, C. Rourke and B. Sanderson presented a new approach to immersion theory.
It is based on their new compression theorem: Let N t and Mn be smooth manifolds; let
N be closed. Suppose that n > t and N is embedded in M × R and equipped with a
normal vector field. Then the vector field can be made parallel to the given R direction by
an isotopy ofM and normal field inM×R. Hence,N can be isotoped to a position, where
it projects by the obvious projection (in other words, it is “compressed”) to an immersion
in M .

The Rourke-Sanderson compression theorem is related to Gromov’s theorem on di-
rected embeddings ([46, 2.4.5 (C’)]), implies a constructive proof of the Hirsch-Smale
theorem on immersions (helps to “visualize” them), and has also other interesting applica-
tions; see [107], [108].

5.10 Various general results on immersions and embeddings

Hirsch and Smale’s theory combined with Whitney’s theorems and obstruction theory
(used for obtaining information on the geometric dimension of the stable normal bundle,
as already mentioned above) became the most effective tools for deriving new results on
immersions of manifolds in Euclidean spaces. For instance, in 1964, M. Mahowald [87],
using modified Postnikov resolutions (or towers) and also results due to W. Massey, F. Pe-
terson, A. Haefliger, and M. Hirsch, proves the following theorem: Let Mn (n > 4) be a
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closed orientable manifold. If n is even, thenMn immerses in R2n−2 if and only if the cup
product of the dual Stiefel-Whitney classes, w̄2(M)w̄n−2(M), vanishes; if n is odd, then
Mn immerses in R2n−2. Or, using higher order cohomology operations for calculating k-
invariants in Postnikov resolutions for the stable normal bundle of a manifold, D. Randall
proves in [102] that a spin manifold Mn immerses in R2n−3 for n ≡ 0 (mod 4) and n not
a power of 2, and several other theorems on immersions of orientable manifolds.

For nonorientable manifolds, it was not rare that neither the classical (Steenrod) ob-
struction theory nor Postnikov-resolution approaches worked well. Fortunately, in the
1980’s the situation changed, thanks to bordism-obstructions which turned out to produce
interesting results also on nonorientable manifolds. In [78], Koschorke gave a detailed
adjustment of his bordism-obstruction theory ([77]; see also our Sec. 4) to immersion the-
ory, and illustrated it with many concrete calculations. His student C. Olk (Dissertation,
University of Siegen 1980), in this framework, derived several results on immersions of
a smooth closed manifold Mn, not necessarily orientable, in R2n−k, k = 2, 3, 4, 5. A
sample result, for k = 2: Suppose that Mn is a smooth closed manifold, n ≥ 5. If n 6≡ 0
(mod 4), then M immerses in R2n−2. If n ≡ 0 (mod 4) and M is orientable, then Olk’s
criterion is the same as that of Mahowald (mentioned above). If n ≡ 0 (mod 4) and M is
nonorientable, then M immerses in R2n−2 if and only if the dual twisted integer Stiefel-
Whitney class W̄n−1(M) vanishes. The bordism-obstructions turned out to be effective
also in classification of immersions. Indeed, U. Kaiser and B. H. Li in [68] gave an enu-
meration of homotopy classes of vector bundle monomorphisms αn → β2n−2 for vector
bundles αn and β2n−2 over a smooth closed manifold Mn (n ≥ 6). In particular, they
enumerated immersions Mn → R2n−2 for all n ≥ 6.

Similarly to studying immersions ofMn inR2n−k with low values of k, there appeared
several papers considering immersions (especially up to cobordism) with values of k close
to n. The previous efforts in this direction – by A. Liulevicius, R. L. Brown, S. Kikuchi,
for k = n − 1 or k = n − 2 – are summarized, and some of them also improved, by R.
Stong in [124]. He also derives new necessary conditions for immersing Mn in Rn+3. We
cite at least a sample result: If Mn is oriented, immerses in Rn+3, and n is even and larger
than 4, then Mn is an unoriented boundary. The lowest dimension of Euclidean space in
which all n-dimensional orientable manifolds are immersible up to unoriented cobordism
was determined by I. Takata in [127].

About 1960, W. Massey proved that, for any smooth closed manifold Mn, the dual
Stiefel-Whitney classes w̄i(M) vanish for i > n − α(n), where α(n) is the number of
ones in the dyadic expansion of n. [This result is best possible, because if n = 2j1 +
2j2 + · · · + 2js (j1 < j2 < · · · < js), then one readily verifies that w̄n−α(n)(RP 2j1 ×
· · · × RP 2js ) does not vanish.] So any smooth closed manifold Mn (n ≥ 2) fulfils
the Stiefel-Whitney necessary condition (see the beginning of Sec. 5) for the existence
of an immersion M → R2n−α(n). The claim that each smooth closed manifold Mn

(n ≥ 2) immerses in R2n−α(n) became known as the immersion conjecture. E. Brown and
F. Peterson developed, in their papers published in 1964-1979, a program with the aim of
proving this conjecture, but they did not complete it. In the meantime, in 1971, R. L. Brown
[19] proved the conjecture up to cobordism, which made it even more attractive. More
precisely, he proved that every smooth closed manifold Mn is cobordant to a manifold
immersing in R2n−α(n) and embedding in R2n−α(n)+1. Then in 1985, R. Cohen in [24]
presented his completion of the Brown-Peterson program.
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We say that a closed manifoldMn has immersion codimension k if it immerses inRn+k

but does not inRn+k−1. The embedding codimension ofMn is defined analogously. Since
the 1960’s, much effort was devoted to optimizing immersion or embedding dimensions,
hence to improving upper bounds for the immersion or embedding codimensions. Much
work was also dedicated to the study of cobordism groups of immersions and embeddings
(see, e.g., papers by R. Wells, G. Pastor, A. Szűcs), to the study of geometric and topologi-
cal properties of multiple points of immersions of manifolds in Euclidean spaces (see, e.g.,
papers by U. Koschorke, F. Ronga, P. Eccles, A. Szűcs, N. Boudriga, S. Zarati), or to the
study of various immersion (or embedding) related questions (see, e.g., papers by C. Biasi,
W. Motta, O. Saeki, A. Szűcs, M. Takase, K. Sakuma, T. Yasui).

In the 1970’s there also appeared several new existence theorems on embeddings. For
instance, in 1974, Glover and Homer present an immersion-to-embedding result (obtained
using homotopy localization methods) in [39]. In 1976, E. Thomas in [132], summarizes
the knowledge on embeddings of a smooth closed manifold Mn in R2n−1 as follows. By
Whitney, every Mn embeds in R2n; a combination of results due to Haefliger, Hirsch,
Massey, Peterson, and Rigdon (for precise data, see [132]) implies that every orientable
Mn embeds in R2n−1 (n > 4); if n is not a power of two, then every Mn embeds in
R2n−1; finally, for n a power of two (n > 4), a nonorientable Mn embeds in R2n−1 if
an only if the dual Stiefel-Whitney class w̄n−1 ∈ Hn−1(M ;Z2) is zero. Thomas then
derives, using the embedding theory of Haefliger [55]), two sets of sufficient conditions
for embedding an n-dimensional manifold in R2n−2. We cite at least one of them: Let
Mn (n ≥ 7) be an orientable smooth closed manifold with w̄n−3+i(M) = 0 for i ≥ 0. If
either w3(M) 6= 0, or w2(M) 6= 0 and the homology group H1(M ;Z) has no 2-torsion,
then M embeds in R2n−2.

For a smooth closed manifold M , let [M ⊂ Rm] denote the set of isotopy classes
of embeddings M → Rm. T. Yasui in [140] first summarizes known results on the set
[Mn ⊂ R2n+i], where i = 1, 2, 3 (for instance, by Whitney [138], [Mn ⊂ R2n+2] is just
a 1-element set if n ≥ 1). Then he generalizes a result due to Haefliger, by identifying
the set [Mn ⊂ R2n−1] with a set obtained from the cohomology groups of M using
cohomology operations and characteristic classes, under weaker restrictions on M than
those posed by Haefliger. Yasui studied such “enumerations of embeddings” in a series of
papers, but he also attacked other embedding related questions, e.g., the question of when
a map is homotopic to an embedding. For a recent result of this type see [84].

An important rôle in the study of immersions and embeddings has also been played
by necessary conditions; they mainly serve as a source of nonimmersion or nonembedding
results (essential, when one tries to optimize immersion or embedding dimensions). We
already have mentioned some of such necessary conditions (vanishing of certain Stiefel-
Whitney classes or Atiyah’s γ-operations). Now we shall add more. We first recall some
notions (they can be found in [9]; see also [69]).

Let M2n be a smooth closed connected oriented even-dimensional manifold, and let
pi = pi(M) ∈ H4i(M ;Z) be the ith Pontrjagin class of M . Recall (see, e.g., [17,
§23]) that the total Atiyah-Hirzebruch class Â(M) is defined to be

∑∞
j=0 Âj(p1, . . . , pj),

where {Aj}j is the multiplicative sequence of polynomials associated with the power se-
ries ( 1

2

√
t)/ sinh( 1

2

√
t). For each d ∈ H2(M ;Q) and each z ∈ H∗(M ;Q), we define

Â(M,d, z) to be the rational number obtained by evaluating the top-dimensional com-
ponent of zedÂ(M) on the fundamental homology class [M ]. Further we denote by
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i∗ : KO(M) → K(M) the homomorphism from the real K-ring to its complex counter-
part defined by complexification. Let ch : K(M)→ Heven(M ;Q) be the Chern character
(which is a ring homomorphism). We denote the image ch(K(M)) by ch(M), and the im-
age ch(i∗(KO(M)) by chO(M). Any class in ch(M) can be written as z =

∑
i zi with

zi ∈ H2i(M ;Q). We define (for any t ∈ Q) z(t) =
∑
i t
izi. Then, for each d ∈ H2(M ;Z)

and z ∈ ch(M), Â(M,d/2, z(t)) is a polynomial in t, with rational coefficients, of degree
less than or equal to n, and is called the Hilbert polynomial for M (and the fixed classes d
and z); we shall denote it by H(t). [For a motivation of the name of this polynomial, see
[9].] If dmod 2 = w2(M), then H(t) is an integer for each t ∈ Z.

Now we can state the following theorem, due to Atiyah, Hirzebruch, and Mayer ([9],
[90]), giving some necessary conditions for immersions or embeddings. Let M2n be a
smooth, closed, connected, oriented manifold.

(i) If M2n can be immersed in R2n+2s or in R2n+2s+1, then 2n+sH( 1
2 ) ∈ Z. If M2n can

be embedded in R2n+2s, then 2n+s−1H( 1
2 ) ∈ Z.

(ii) Assume that n = 2m, d = 0, and z ∈ chO(M). If M2n immerses in R4m+2s and
2m + s ≡ 1, 2, 3 (mod 4) or if M2n immerses in R4m+2s+1 and 2m + s ≡ 1, 2
(mod 4), then 22m+s−1H( 1

2 ) ∈ Z. If M embeds in R4m+2s and 2m + s ≡ 2
(mod 4), then 22m+s−2H( 1

2 ) ∈ Z.

We remark that Mayer’s proof uses the Atiyah-Singer index theorem. Similar necessary
conditions, also based on methods involving indices of elliptic operators, were published
by H. Lawson and M.-L. Michelsohn ([85], [86]).

In the studies of the corresponding problems, inequalities of Korbaš and Szűcs [73,
Proposition 3.8], interrelating immersions of closed manifolds in Euclidean spaces, trivial
vector distributions (the vector field problem), and the Lyusternik-Shnirel’man category,
may also be useful. We have in mind the following theorem. Let Mn be a smooth closed
manifold which is not stably parallelizable, let s be its stable span and k its immersion
codimension. Then we have

k 5 (n− s)(cat(Mn)− 1) and n− s 5 k(cat(Mn)− 1).

We remark that the second inequality cannot be improved in general, because it is an
equality for M = RP 2.

5.11 Remarks on immersions and embeddings of specific manifolds

The projective spaces (not only real, but also complex and quaternionic) are a natural fam-
ily of manifolds for testing general immersion or embedding theorems, but there are also
special approaches invented and working just for them. Results in this area are due to, e.g.,
H. Whitney, H. Hopf, S. S. Chern, W. T. Wu, J. Milnor, D. Epstein, R. Schwarzenberger, M.
Ginsburg, J. Levine, S. Feder, B. Sanderson, R. J. Milgram, J. Adem, S. Gitler, I. James,
J. Adams, M. Mahowald, R. Bruner, M. Bendersky, B. Steer, P. Baum, W. Browder, F.
Nussbaum, D. Davis, A. Berrick, D. Randall, M. Crabb, N. Singh, V. Zelov. In 1998, D.
Davis in [31] presented a survey of the embedding problem for real projective spaces, and
he also added a new result. For the present state of solving the immersion and embedding
problem for projective spaces, we recommend to see [32].
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For other families of specific manifolds, some results on immersions and embeddings
in Euclidean spaces are also known for Dold manifolds (J. Ucci, T. Fukuda, C. Yoshioka,
C. Olk), lens spaces (A. Berrick, J. González, T. Shimkus), real, complex or quaternionic
Grassmann manifolds (H. Hiller, R. Stong, S. Hoggar, S. Ilori, V. Oproiu, V. Bartı́k, J.
Korbaš, N. Paryjas, T. Sugawara, M. Markl, Z. Z. Tang, K. H. Mayer, K. Monks), more
general real or complex flag manifolds (K. Y. Lam, R. Stong, J. Tornehave, M. Walgen-
bach, A. Conde, M. Percia Mendes), for real, complex or quaternionic Stiefel manifolds or
projective Stiefel manifolds (H. Scheerer, N. Barufatti, D. Hacon, K. Y. Lam, P. Sankaran,
P. Zvengrowski) or other homogeneous spaces (E. Rees, H. Scheerer).
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tion de Fourier et applications mathématiques et physiques Annales de l’université
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Introduction

In this paper we present an overview of geometric and algebraic methods in the study of
differential equations. The latter are considered as co-filtered submanifolds in the spaces
of jets, possibly with singularities. Investigation of singularities is a very subtle question,
so that we will be mainly assuming regularity.

Jets are formal substitutions to actual derivatives and certain geometric structure retains
this meaning, namely the Cartan distribution. Thus geometry enters differential equations.
Differential-geometric methods, in particular connections and curvatures, are our basic
tools.

Since differential operators form a module, (differential) algebra is also an essential
component in the study of differential equations. This algebra is non-commutative, but the
associated graded object is commutative, and so commutative algebra plays a central role
in the investigation.

Thus we get the main ingredients and the theory is based on the interplay between
them. Our exposition will center around compatibility theory, followed by formal/local
(and only eventually global) integrability. So we are mainly interested in the cases, when
the number of independent variables is at least two. Therefore we consider systems of
partial differential equations (PDEs) and discuss methods of investigation of their compat-
ibility, solvability or integrability.

Part of the theory is trivial for ODEs, but some methods are useful for establishing
exact solutions, discovering general solutions and analysis of their singularities also for
this case.

The exposition is brief and we don’t prove or try to explain the results in details.
The reader is referred to the cited papers/books. We have not covered some important

8 B.V. .
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topics, like transformation theory, equivalence problem, complete integrability, integro-
differential equations etc. However our short panorama of the general theory of differ-
ential equations should help in understanding the modern progress and a possible future
development.

1 Geometry of jet spaces

1.1 Jet spaces

Let us fix a smooth manifold E of dimension m + n and consider submanifolds in E of
the fixed codimension m. We say that two such submanifolds N1 and N2 are k-equivalent
at a point a ∈ N1 ∩ N2 if they are tangent (classically ”have contact”) of order k ≥ 0 at
this point.

Denote by [N ]ka the k-equivalence class of a submanifold N ⊂ E at the point a ∈
N . This class is called k-jet1 of N at a. Let Jka (E,m) be the space of all k-jets of all
submanifolds of codimension m at the point a and let Jk(E,m) = ∪a∈EJka (E,m) be the
space of all k-jets.

The reductions k-jets to l-jets [N ]ka 7→ [N ]la gives rise to the natural projections πk,l :
Jk(E,m) → J l(E,m) for all k > l ≥ 0. The jet spaces carry a structure of smooth
manifolds and the projections πk,l are smooth bundles.

For small values of k these bundles have a simple description. Thus J0(E,m) = E
and J1(E,m) = Grn(TE) is the Grassman bundle over E.

For each submanifold N ⊂ E of codimN = m there is the natural embedding jk :
N → Jk(E,m), N 3 a 7→ [N ]ka ∈ Jk(E,m) and πk,l ◦ jk = jl. The submanifolds
jk(N) ⊂ Jk(E,m) are called the k-jet extensions of N .

Let π : Eπ →M be a rank m bundle over an n-dimensional manifold. Local sections
s ∈ C∞loc(π) are submanifolds of the total space Eπ of codimension m that are transversal
to the fibres of the projection π. Let [s]kx denote k-jet of the submanifold s(M) at the point
a = s(x), which is also called k-jet of the section s at x.

Denote by Jkx (π) ⊂ ∪a∈π−1(x)J
k
a (Eπ,m) the space of all k-jets of the local sections

at the point x ∈ M and by Jk(π) ⊂ Jk(Eπ,m) the space of all k-jets. Jk(π) is an open
dense subset of the latter space and thus the projections πk,l : Jkπ → J lπ form smooth
fiber bundles for all k > l.

Projection to the base will be denoted by πk : Jkπ → M . Then local sections s ∈
C∞loc(M) have k-jet extensions jk(s) ∈ C∞loc(πk) defined as jk(s)(x) = [s]kx. Points of Jkπ
will be also denoted by xk and then their projections are: πk,l(xk) = xl, πk(xk) = x.

If we assume π is a smooth vector bundle (without loss of generality for our purposes
we’ll be doing it in the sequel), then πk,l are vector bundles and the following sequences
are exact:

0→ SkT ∗ ⊗ π → Jk(π)
πk,k−1−→ Jk−1(π)→ 0,

where T ∗ = T ∗M is the cotangent bundle of M .

1The notion of jet was introduced by Ehresmann [17], though was essentially in use already in S.Lie’s time
[61].
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Smooth maps f : M → N can be identified with sections sf of the trivial bundle
π : E = M ×N →M and k-jets of maps [f ]kx are k-jets of these sections. We denote the
space of all k-jets of maps f by Jk(M,N).

For small values of k we have: J0(M,N) = M × N and J1
(x,y)(M,N) =

Hom(TxM,TyN).
For N = R we denote Jk(M,R) = Jk(M). In this case J1(M) = T ∗M × R. In

the dual case J1(R,M) = TM × R. The spaces Jk(R,M) are manifolds of ”higher
velocities”.

1.2 Differential groups and affine structures

Let us denote by Gk
x,y the subset of k-jets of local diffeomorphisms in Jk(x,y)(M,M). Then

composition of diffeomorphisms defines the group structure on Gk
x,x. This Lie group is

called a complete differential group of order k (this construction is a basic example of
groupoid and is fundamental for the notion of pseudogroups, see §4.5). The group G1

x,x is
the linear group GL(TxM).

From §1.1 we deduce the group epimorphisms πk,l : Gk
x,x → Gl

x,x for l < k and
exact sequences of groups for k ≥ 2:

0→ SkT ∗x ⊗ Tx → Gk
x,x

πk,k−1−→ Gk−1
x,x → 1.

In other words, groups Gk
x,x are extensions of the general linear group GL(TxM) by

means of abelian groups SkT ∗x ⊗ Tx, k > 1.
The differential groups Gk

x,x(M) act naturally on the jet spaces:

Gk
x,x(M)× Jkx (M,m)→ Jkx (M,m), [F ]kx × [N ]kx 7→ [F (N)]kx.

The kernel SkT ∗x ⊗ Tx of the projection Gk
x,x → Gk−1

x,x is the abelian group, which
acts transitively on the fibre F (xk−1) = π−1

k,k−1(xk−1), xk−1 = [N ]k−1
x , of the projection

πk,k−1 : Jkx (M,m)→ Jk−1
x (M,m). Therefore, the fibre F (xk−1) is an affine space. The

associated vector space for the fibre is

SkT ∗xN ⊗ νx(N),

where νx(N) = TxM/TxN is the normal space to N at the point x ∈ N .
Thus, the bundle πk,k−1 : Jk(M,m) → Jk−1(M,m) has a canonical affine structure

for k ≥ 2. Moreover, each local diffeomorphism F : M → M has the natural lifts to
local diffeomorphisms F (k) : Jk(M,m) → Jk(M,m), [N ]kx 7→ [F (N)]kF (x) preserving
the affine structures.

For a vector bundle π : Eπ → M the affine structure in the fibers of Jkπ → Jk−1π
coincides with the structure induced by the vector bundle structure. If π is a fiber bundle,
the preceding construction provides the affine structure. This gives rise to the following
construction.

Let M ⊂ E be a submanifold of codimension m and U ⊃ M be its neighborhood,
which is transversally foliated, so that the projection along the fibers π : U → M can
be identified with the normal bundle. We can denote U = Eπ . Then the embedding
κ : Eπ ⊂ E induces the embedding κ(k) : Jk(π) ↪→ Jk(E,m) with M (k) being the zero
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section. The image is an open neighborhood and the affine structure on Jk(π)→ Jk−1(π)
induces the affine structure on Jk(E,m) → Jk−1(E,m), so that both projections agree
and are denoted by the same symbol πk,k−1. These neighborhoods Jk(π) ↪→ Jk(E,m)
together with the maps κ(k) are called affine charts.
Remark 1 Usage of affine charts in general jet-spaces is the exact analog of independence
condition in exterior differential systems. Most of the theory works for spaces Jk(E,m),
though for simplicity we will often restrict to the case of jets of sections Jkπ.

1.3 Cartan distribution

In addition to the affine structure on the co-filtration πk,k−1 : Jk(E,m) → Jk−1(E,m),
the space Jk(E,m) bears an additional structure, which allows to distinguish submanifolds
jk(N) ⊂ Jk(E,m), N ⊂ E, among all submanifolds in E of dimension n = dimN . To
describe it denote

L(xk+1) = Txk [jk(N)] ⊂ TxkJk(π), xk+1 = [N ]k+1
x

(this subspace does not depend on a particular choice of N , but only on xk+1). Define the
Cartan distribution on the space Jk(E,m) by the formula:

Ck(xk) = span{L(xk+1) : xk+1 ∈ π−1
k+1,k(xk)} = (dπk,k−1)−1L(xk).

Submanifolds of the form N (k) are clearly integral manifolds of the Cartan distri-
butions such that πk,0 : N (k) → E are embeddings. The inverse is also true: if
W ⊂ Jk(E,m) is an integral submanifold of dimension n of the Cartan distribution
such that πk,0 : W → E is an embedding, then W = N (k) for the submanifold
N = πk,0(W ) ⊂ E. In other words, the Cartan distribution gives a geometrical de-
scription for the jet-extensions.

In a similar way one can construct the Cartan distributions for the jet spaces Jk(π).
Moreover, any affine chart κ(k) : Jk(π) → Jk(E,m) sends the Cartan distribution on
Jk(π) to the Cartan distribution on Jk(E,m). By using this observation we can restrict
ourselves to Cartan distributions on the jet-spaces of sections.

For the case Jkπ, there is a description of the Cartan distribution in terms of differential
forms. Namely, let us denote by Ωr0(Jkπ) the module of πk-horizontal forms, that is, such
differential r-forms ω that iXω = 0 for any πk-vertical vector field X: dπk(X) = 0.

These forms can be clearly identified with non-linear differential operators2

diffk(π,ΛrT ∗M) acting from sections of π to differential r-forms on the manifold M .
Indeed the space of such non-linear operators is nothing else than the space of smooth
maps C∞(Jkπ,ΛrT ∗M).

The composition with the exterior differential d : Ωr(M) → Ωr+1(M) generates the
total differential d̂ : Ωr0(Jkπ) → Ωr+1

0 (Jk+1π). The total differential is a differentiation
of degree 1 and it satisfies the property d̂ 2 = 0.

Hence any function f ∈ C∞(Jk−1π) defines two differential forms on the jet-space
Jk(π): d̂f ∈ Ω1

0(Jkπ) and d(π∗k,k−1f) = π∗k,k−1(df) ∈ Ω1(Jkπ). Both of them coincide
on k-jet prolongations jk(s). Their difference:

U(f) = d(π∗k,k−1f)− d̂f ∈ Ω1(Jkπ)

2These will be treated in §2.4. We introduce here only a minor part of the theory.
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is called the Cartan form associated with function f ∈ C∞(Jk−1π).
The annihilator of the Cartan distribution on Jkπ is generated by the Cartan forms:

Ann Ck(xk) = span{U(f)xk : f ∈ C∞(Jk−1π)}.
As an example consider the case m = 1, k = 1. Then the Cartan distribution on

J1(E, 1) is the classical contact structure on the space of contact elements. It is known
that it cannot be defined by one differential 1-form. On the other hand, for the affine
chart J1(M) = T ∗M × R the Cartan distribution (=the standard contact structure) can
be defined by one Cartan form U(u) = du − p dq, where u : J1(M) → R is the natural
projection and p dq is the Liouville form on T ∗M .

1.4 Lie transformations

Any local diffeomorphism F : E → E has prolongations F (k) : Jk(E,m)→ Jk(E,m),
[N ]kx 7→ [F (N)]kF (x), and they satisfy: (F ◦ G)(k) = F (k) ◦ G(k), πk,k−1 ◦ F (k) =
F (k−1)◦πk,k−1. Moreover, by the construction, the diffeomorphisms F (k) are symmetries
of the Cartan distribution, i.e. they preserve Ck.

For m = 1 the Cartan distribution on the 1-jet space J1(E, 1) defines the contact
structure, and not all contact diffeomorphisms have the form F (1), where F : E → E.
Let φ : J1(E, 1) → J1(E, 1) be a contact local diffeomorphism and let xk = [N ]kx. We
can consider this point as (k − 1)-jet of an integral manifold N (1) at the point x1 = [N ]1x.
Then φ(N (1)) is an integral manifold of the contact structure, and it has the form N

(1)
φ for

some submanifold Nφ ⊂ E if π1,0 : φ(N (1))→ E is an embedding.
Denote by Σφ ⊂ J1(E, 1) the set of points x1, where the last condition is not sat-

isfied. Then, for the points xk ∈ Jk(E, 1), such that projections x1 = πk,1(xk) be-
long to the compliment Σcφ, we can define the lift φ(k−1) : Jk(E, 1) → Jk(E, 1),

[N ]kx 7→ [φ(N (1))](k−1)
φ(x1) . As before we get:

(φ ◦ ψ)(k−1) = φ(k−1) ◦ ψ(k−1), πk,k−1 ◦ φ(k−1) = φ(k−2) ◦ πk,k−1.

Diffeomorphisms F : E → E are also called point transformations. So the local diffeo-
morphisms F (k) and φ(k−1) are called prolongations of the point transformation F or the
contact transformation φ respectively.

A local diffeomorphism of Jk(E,m) preserving the Cartan distribution is called a Lie
transformation. The following theorem is known as Lie-Backlund theorem on prolonga-
tions, see [40].
Theorem 1 Any Lie transformation of Jk(E,m) is the prolongation of

m ≥ 2 : Local point transformation F : E → E,

m = 1 : Local contact diffeomorphism φ : J1(E, 1)→ J1(E, 1).

In the same way one can construct prolongations of vector fields on E and contact vec-
tor fields on J1(E, 1) to Jk(E,m) or Jk(E, 1) respectively and the prolongations preserve
the Cartan distribution. A vector field on Jk(E,m), which preserves the Cartan distribu-
tion, is called a Lie vector field. The Lie-Backlund theorem claims that Lie vector fields
are prolongations of vector fields on E if m ≥ 2 or contact vector fields on J1(E, 1) if
m = 1.

The same statements hold for E = Eπ , when the jet-space is Jkπ.
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Remark 2 Prolongations F (k) of the point transformations preserve the affine structure
for any k ≥ 2, i.e. starting from the 2nd jets. The prolongations φ(k) of the contact
transformations also preserve the affine structure for k ≥ 2, but this means starting from
the 3rd jets.

Let us briefly introduce here systems of PDEs3. Such a system of pure order k is
represented as a smooth subbundle E ⊂ Jk(π). It is possible to use more general jet-
spaces Jk(E,m); exteriour differential systems concern the case k = 1. Scalar PDEs
correspond to the trivial bundle Eπ = M × R and E ⊂ Jk(M).

Solutions of E on an open set UM ⊂ M are sections s ∈ C∞(loc)(π) such that
jk(s)(UM ) ⊂ E . Generalized solutions are n-dimensional integral manifolds Wn of the
Cartan distribution such that W ⊂ E (in this form there’s no difference with equations in
the general jet-space Jk(E,m) ⊃ E). If πk,0 : W → M is not an embedding, we call
such solution multi-valued or singular.

Another description of generalized solutions are n-dimensional integral manifolds of
the induced Cartan distribution CE = Ck ∩TE . Then internal Lie transformations (finite or
infinitesimal) are (local) diffeomorphisms of E that are symmetries of CE (they transform
generalized solutions to generalized solutions [62, 63]).

In general there exist higher internal Lie transformations, which are not prolongations
from lower-order jets. But for certain type of systems E we have the exact analog of Lie-
Backlund theorem, see [40].

1.5 Calculations

A coordinate system (xi, uj) on Eπ , subordinated to the bundle structure, induces coordi-
nates (xi, pjσ) on Jkπ, where multiindex σ = (i1, . . . , in) has length |σ| = i1+· · ·+in ≤ k

and pjσ
(

[s]kx
)

=
∂|σ|sj

∂xσ
(x).

For a vector field X ∈ D(M) the operator of total derivative along X isDX = iX ◦ d̂ :
C∞(Jkπ) → C∞(Jk+1π) (this is just a post-composition of a differential operator with
Lie derivative along X) and it has the following expression. Let X =

∑
ξi∂xi . Then

DX =
∑
ξiDi, where the basis total derivation operator Di = D∂xi is given by infinite

series

Di = ∂xi +
∑

pσ+1i∂pσ .

If in the above sum we restrict |σ| < k we get vector fields D(k)
i on Jkπ. In terms of them

the Cartan distribution on JkM is given by

Ck = 〈D(k)
i , ∂pσ 〉1≤i≤n,|σ|=k .

To write it via differential forms note that the operator of total derivative equals d̂ =∑
Di ⊗ dxi. Thus for f ∈ C∞(Jk−1π) we get expression for the Cartan forms U(f) =∑
i,j;|σ|<k

(
(∂pjσf) dpjσ + (∂xif −Dif) dxi

)
.

In particular, the differential forms ωjσ = U(pjσ) = dpjσ −
∑
pjσ+1i

dxi span the annu-
lator of the Cartan distribution, i.e. Ck = Ker{ωjσ}0≤|σ|<k.

3Main definitions come only in §2.3,§3.4 after development of algebraic machinery.
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Finally let us express in coordinates Lie infinitesimal transformations.
Vector field X =

∑
i a
i(x, u) ∂xi +

∑
j b
j(x, u) ∂uj on E = J0π (point transforma-

tion) prolongs to

X(k) =
∑
i

ai(x, u)D(k+1)
i +

∑
j;|σ|≤k

Dσ(ϕj) ∂pjσ , (1)

where ϕj = bj −
∑n
i=1 a

ipji are components of the so-called generating function ϕ =
(ϕ1, . . . , ϕr). Though the coefficients of (1) depend seemingly on the (k+ 1)-jets, the Lie
field belongs in fact to D(Jkπ).

A contact vector field X(1) = Xϕ on J1π is determined by generating scalar-valued
function ϕ = ϕ(xi, u, pi) via the formula

X(1) =
∑
i

[
D(1)
i (ϕ) ∂pi − ∂pi(ϕ)D(1)

i

]
+ ϕ∂u.

The prolongation of this field to Jkπ is given by the formula similar to (1):

X(k) = −
∑
i

∂pi(ϕ)D(k+1)
i +

∑
|σ|≤k

Dσ(ϕ) ∂pσ . (2)

Again this is a vector field on Jkπ, coinciding with Xϕ for k = 1.

1.6 Integral Grassmanians

Denote

I0(xk) = {L(xk+1) : xk+1 ∈ F (xk)} ⊂ Grn(TxkJ
k)

the Grassmanian of all tangent planes to jet-sections through xk. The letter I indicates that
this can be represented as the space of integral elements. Consider for simplicity the space
of jets of sections of a vector bundle π.

The mapC∞(Jk−1π) 3 f 7→ dU(f)|C(xk) ∈ Λ2(C∗(xk)) is a derivation and therefore
defines a linear map Ωxk : T ∗xk−1

(Jk−1π) → Λ2(C∗(xk)). Since the latter vanishes on
Im(dπ∗k−1,k−2) it descends to the linear map

Ωxk : Sk−1Tx ⊗ π∗x → Λ2C(xk)∗,

which is called the metasymplectic structure on the Cartan distribution. We treat Ωxk as a
2-form on C(xk) with values in F (xk−2) ' Sk−1T ∗x ⊗ πx.

Remark that for the trivial rank 1 bundle π = 1 and k = 1 the metasymplectic structure
Ωx1 on J1(M) coincides with the symplectic structure on the Cartan distribution induced
by the contact structure.

Call a subspace L ⊂ C(xk) integral if Ωxk |L = 0. Then I(xk) consists of all integral
n-dimensional spaces for Ωxk and I(xk) ⊃ I0(xk). Denote

Il(xk) = {L ∈ I(xk) : dim (πk)∗(L) = n− l} = {L : dim Ker((πk)∗|L) = l}.
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Elements I0 (xk) are called regular; they correspond to tangent spaces of the usual smooth
solutions (jet-extensions of sections). The others are tangent spaces of singular (multi-
valued) solutions.

The difference dim I0(xk)−dim Il(xk) depends on m, k, l only. We denote this num-
ber by cm,k,l and call formal codimension of Il(xk). Usually this number is negative. The
only cases when m ≤ 4 and c > 0 are listed in the following tables:

m
‖
1

k�
l 1 2 3 4

1 1 3 6 10
2 1 2 1 -4
3 1 1 -6 -29
4 1 0 -15 -48
5 1 -1 -26 -124

m
‖
2

k�
l 1 2 3 4

1 1 2 3 4
2 1 0 -7 -24
3 1 -2 -21 -74

m
‖
3

k�
l 1 2 3 4

1 1 1 0 -2
2 1 -2 -15 -44

m
‖
4

k�
l 1 2 3

1 1 0 -3
2 1 -4 -23

These tables show that the regular cell I0(xk), as a rule, has smaller dimension than
I(xk). Indeed c ≥ 0 iff l = 1 or l = 2 & km ≤ 4 or l > 2 & k + m ≤ 4. This means
that most elements of I(xk) are not tangent planes to multi-valued jet-extensions jks with
singularities of projection on the set of measure zero.

To avoid paradoxical integral planes we introduce the notion of R-Grassmanian and
R-spaces. By R-Grassmanian RI(xk) we mean the closure of the regular cell I0(xk) in
I(xk). Its elements are called R-spaces.

When RI(xk) 6= I(xk) (which is often the case by the above mentioned dimensional
reasons), then there are integral manifolds, which represent singular solutions such that
”all small deformations in the class of integral manifolds” have singularities too!

This leads to the notion of anR-manifold, which is an n-dimensional integral manifold
N of the Cartan distribution with all tangent spaces TxkN , xk ∈ N , being R-spaces. For
a more detailed description of R-spaces and R-manifolds based on the associated Jordan
algebra structures consult [65].
Remark 3 This discussion makes important distinction between exterior differential sys-
tems and systems of PDEs embedded in jets. While with the first approach a system is
given just as a subbundle in a Grassmanian, the second case keeps algebraic structures
visible, in particular structure of integral manifolds is graspable and stratification of singu-
larities is prescribed.

Notice that cm,k,l = l2−mk
(
l+k−1
k+1

)
([65]). Since

(
l+k−1
k+1

)
∼ 1

(k+1)! l
k+1, we observe

that only for k = 1, m ≤ 2 the formal codimensions of Il are non-negative for all l. These
numbers are c1,1,l = l(l−1)

2 and c2,1,l = l.
For k = m = 1 we have Legendrian Grassmanian I(x1) ⊂ Grn(Tx1J

1(E, 1)). Its
restriction to the affine chart Ĩ(x1) ⊂ Grn(Tx1(T ∗M × R)) induces via projection the
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Lagrangian Grassmanian LG(a) ⊂ Grn(Ta(T ∗M)), a = (x, p).
The case k = 1, m = 2 includes complex Grassmanians. All other integral Grassma-

nians are singular (with regard to the stratum I0(xk)).
The topological structure of integral Grassmanians is important in investigation of sin-

gularities of solutions.
Theorem 2 [65]. The cohomology ring H∗(I(xk),Z2) is isomorphic to the polynomial
ring Z2[wk1 , . . . , w

k
n] up to dimension n, where wk1 , . . . , w

k
n are Stiefel-Whitney classes of

the tautological bundle over I(xk).

For a system of differential equations E of order k its integral Grassmanian is
IE(xk) = I(xk) ∩ Grn(TxkE). In other words, if CE is the Cartan structure on E and
ΩE = Ωxk |TxkE ∈ Λ2C∗E ⊗ F (xk−2) is the restriction of the metasymplectic structure,
then IE(xk) coincides with the space of all integral n-dimensional planes for ΩE .

Note that the tangent spaces to solutions of the system are integral spaces. Thus de-
scription of integral Grassmanians of systems of PDEs is important for investigation of
solutions (remark that fixation of the subbundle IE(xk) is essentially the starting point in
EDS approach). We shall return to this problem in §3.7.

2 Algebra of differential operators

2.1 Linear differential operators

Denote by 1 the trivial one-dimensional bundle over M . Let Ak = Diffk(1,1) be the
C∞(M)-module of scalar linear differential operators of order ≤ k andA = ∪kAk be the
corresponding filtered algebra, Ak ◦ Al ⊂ Ak+l.

Notice that the associated graded algebra gr(A) = ⊕Ak+1/Ak is the symmetric power
of the tangent bundle:

gr(A) = ST = ⊕iSiT, where T = TxM.

Consider two linear vector bundles π and ν. Denote by Diff(π, ν) = ∪k Diffk(π, ν)
the filtered module of all linear differential operators from C∞(π) to C∞(ν). We have the
natural pairing

Diffk(ρ, ν)×Diff l(π, ρ)→ Diffk+l(π, ν)

given by the composition of differential operators.
In particular, Diff(π,1) is a filtered left A-module, Diff(1, π) is a filtered right A-

module and they have an A-valued A-linear pairing

∆ ∈ Diff l(π,1), ∇ ∈ Diffk(1, π) 7→ 〈∆,∇〉 = ∆ ◦ ∇ ∈ Ak+l,

with 〈θ ◦∆,∇〉 = θ ◦ 〈∆,∇〉, 〈∆,∇ ◦ θ〉 = 〈∆,∇〉 ◦ θ for θ ∈ A.
Each linear differential operator ∆ : C∞(π) → C∞(ν) of order l induces a right

A-homomorphism φ∆ : Diff(1, π)→ Diff(1, ν) by the formula:

Diffk(1, π) 3 ∇ 7→ ∆ ◦ ∇ ∈ Diffk+l(1, ν).

Its 〈 , 〉-dual is a left A-homomorphism φ∆ : Diff(ν,1)→ Diff(π,1) given by

Diffk(ν,1) 3 � 7→ � ◦∆ ∈ Diffk+l(π,1).
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Denoting by J k(π) = C∞(πk) the space of (non-holonomic) sections of the jet-
bundle we have:

Diffk(π, ν) = HomC∞(M)(J k(π), C∞(ν)), (3)

and differential operators ∆ of order k are in bijective correspondence with morphisms
ψ∆ : Jk(π) → ν via the formula ∆ = ψ∆ ◦ jk, where jk : C∞(π) → J k(π) is the
jet-section operator.

The prolongation ψ∆
l : Jk+l(π) → J l(ν) of ψ∆ = ψ∆

0 is conjugated to the A-
homomorphism φ∆ : Diff l(ν,1) → Diffk+l(π,1) via isomorphism (3). This makes a
geometric interpretation of the differential operator ∆ as the bundle morphism.

Similarly one can interpret the A-homomorphism φ∆ : Diff l(1, π) → Diffk+l(1, ν),
see [40]. More generally lift of the operator ∆, obtained via post-composition, is ∆̂ :
Diff l(ξ, π)→ Diffk+l(ξ, ν).

2.2 Prolongations, linear PDEs and formal integrability

A system E of PDEs of order k associated to an operator ∆ ∈ Diffk(π, ν) is, by definition,
the subbundle Ek = Ker(ψ∆) ⊂ Jk(π). Its prolongation is Ek+l = E(l)

k = Ker(ψ∆
l ) ⊂

Jk+l(π).
If ν = r · 1 is the trivial bundle of rank ν = r, we can identify ∆ = (∆1, . . . ,∆r)

to be a collection of scalar operators. Then the system Ek+l is given by the equations
Dσ ◦ ∆j [u(x)] = 0, where 1 ≤ j ≤ r, σ = (i1, . . . , in) is a multi-index of length
|σ| =

∑
is ≤ l and Dσ = Di11 · · · Dinn .

Points of Ek can be identified as k-jet solutions (not k-jets of solutions!) of the system
∆ = 0 and the points of Ek+l are (k + l)-jet solutions of the l-prolonged system. Formal
solutions are points of E∞ = lim←−Ei.

Not all the points from Ek can be prolonged to (k + l)-jet solutions, but only those
from πk+l,k(Ek+l) ⊂ Ek. Investigation of these as well as formal solutions can be carried
successively in l and we arrive to
Definition 1 System E is formally integrable if Ei are smooth manifolds and the maps
πi+1,i : Ei+1 → Ei are vector bundles.

Define the dual E∗ = Cokerφ∆ as the collection of spaces E∗i given by the exact
sequence:

Diffk(ν,1)
φ∆
k−→ Diffk+l(π,1)→ E∗k+l → 0.

We endow the dual E∗ with natural maps π∗i+1,i : E∗i → E∗i+1. But it becomes anA-module
only when these maps are injective.

However in general we can define the inductive limit E∆ = lim−→E
∗
i . It is a filtered

left A-module. Thus we can consider the system as a module over differential operators
(D-module).

The dual E∆ = Ker(φ∆) ⊂ Diff(1, π) is a right A-module and we have the pairing
E∆ ×E∆ → A. For formally-integrable systems this pairing is non-degenerate, as follows
from the following statement:
Proposition 3 A system E = Ker(ψ∆) is formally integrable iff E∗i are projective
C∞(M)-modules and the maps π∗i+1,i : E∗i → E∗i+1 are injective.
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Proof The projectivity condition is equivalent to regularity (constancy of rank of the pro-
jection πi+1,i), while invjectivity of π∗i+1,i is equivalent to surjectivity of πi+1,i.

If we have several differential operators ∆i ∈ Diff(π, νi) of different orders ki, 1 ≤
i ≤ t, then their sum is no longer a differential operator of pure order ∆ = (∆1, . . . ,∆t) :
C∞(π) → C∞(ν), ν = ⊕νi. Thus φ∆ is not an A-morphism, unless we put certain
weights to the graded components νi.

Namely if we introduce weight k−1
i for the operator ∆i (equivalently to the bundle νi),

then the operator ∆ becomes an A-homomorphism of degree 1. This allows to treat for-
mally the systems of different orders via the same algebraic machinery as for the systems
of pure order k. Geometric approach will be explained in the next section.

The prolongation theory wholly transforms for systems of PDEs E of different orders.
In particular for formally integrable systems we have left A-module E∗. It is not a bi-
module, but one can investigate sub-algebras S ⊂ A, which act on E∗ from the right. It
will be clear from §4.4 that they correspond to symmetries of the system E .

2.3 Symbols, characteristics and non-linear PDEs

Consider symbolic analogs of the above modules (we will write sometimes T = TxM
for brevity). Since ST ⊗ π∗ = ⊕SiT ⊗ π∗ is the graded module associated to the fil-
trated C∞(M)-module Diff(π,1) = ∪Diffi(π,1), the bundle morphism φ∆ produces the
graded homomorphisms, called symbols of our differential operator ∆:

σ∆ : ST ⊗ ν∗ → ST ⊗ π∗.

The value σ∆,x of σ∆ at x ∈M is a homomorphism of ST -modules.
The ST -moduleM∆ = Coker(σ∆,x) is called the symbolic module at the point x ∈

M ([28]). Its annihilator is called the characteristic ideal I(∆) = ⊕Iq , where Iq are
homogeneous components. The set of covectors p ∈ T ∗ \ {0} annihilated by I(∆) is the
characteristic variety Charaff(∆). We will consider projectivization of this conical affine
variety Charx(∆) ⊂ PT ∗.

It is often convenient to work over complex numbers. If we complexify the symbolic
module, we get the complex characteristic variety

CharC
x(∆) = {p ∈ PCT ∗ | f(p q) = 0∀f ∈ Iq,∀q}.

Proposition 4 [23, 88]. For p ∈ T ∗xM \ {0} let m(p) = ⊕i>0S
iT ⊂ ST be the maximal

ideal of homogeneous polynomials vanishing at p. Then covector p is characteristic iff the
localization (M∆)m(p) 6= 0.

The set of localizations (M∆)m(p) 6= 0 for characteristic covectors p form the charac-
teristic sheaf K over the characteristic variety CharC

x(∆).
The above definitions work for systems E of different order PDEs if we impose the

weight-convention of the previous section. However it will be convenient to interpret this
case geometrically and such approach works well even in non-linear situation.

A system of PDEs of pure order k is represented as a smooth subbundle Ek ⊂ Jk(π),
non-linear case corresponds to fiber-bundles (in regular situation; in general the fibers
π−1
k,k−1(∗) ∩ Ek are not diffeomorphic and Ek is just a submanifold in Jkπ). Prolonga-

tions are defined by the formula

E(1)
k ={xk+1 = [s]k+1

x ∈Jk+1π : Txk [jks(M)] ⊂ TxkE}.
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Higher prolongations can be defined successively in regular case, but in general E(l)
k equals

the set of all points xk+l = [s]k+l
x ∈Jk+lπ with the property that jks(M) is tangent to E

at xk with order ≥ l.
To cover the case of several equations of different orders we modify the usual def-

inition. By a differential equation/system of maximal order k we mean a sequence
E = {Ei}−1≤i≤k of submanifolds Ei ⊂ J i(π) with E−1 = M , E0 = J0M = Eπ such that
for all 0 < i ≤ k the following conditions hold:

(a) πEi,i−1 : Ei → Ei−1 are smooth fiber bundles.

(b) The first prolongations E(1)
i−1 are smooth subbundles of πi and Ei ⊆ E(1)

i−1.

Consider a point xk ∈ Ek with xi = πk,i(xk) for i < k and x = x−1. It determines
the collection of symbols gi(xk) ⊂ SiT ∗xM ⊗ Nx0 , where Nx0 = Tx0

[
π−1(x)

]
, by the

formula

gi(xk) = Txi
[
π−1
i,i−1(xi−1)

]
∩ TxiEi ⊂ SiT ∗xM ⊗Nx0 for i ≤ k.

For i > k the symbolic spaces gi are defined as symbols of the prolongations Ei = E(i−k)
k ,

and they still depend on the point xk ∈ Ek.
In this situation g∗(xk) = ⊕g∗i is a graded module over the algebra R = STxM of

homogeneous polynomials on the cotangent space T ∗xM . It is called the symbolic module
of E at the point xk and for systems of linear PDEs E = Ker(∆) this coincides with the
previously defined moduleM∆.

The characteristic ideal is defined by Ixk(E) = ann(g∗) ⊂ R (in the symbolic context
denoted by I(g)). The characteristic variety is the (projectivized/complexified) set of non-
zero covectors v ∈ T ∗ such that for every i there exists a vector w ∈ N \ {0} with
vi ⊗ w ∈ gi. If the system is of maximal order k, it is sufficient for this definition to
take i = k only. We denote it by CharC

xk
(E) ⊂ PCT ∗xM (variants: Char ⊂ PT ∗xM ,

CharC
aff ⊂ CT ∗xM etc).

Denote by diff(π, ν) the space of all non-linear differential operators (linear included)
between sections of bundles π and ν. Let F ∈ diff(π, ν) determine the system E . Then its
symbol at xk ∈ Ek resolves the symbolic module g∗(xk):

· · · → STxM ⊗ ν∗x
σF (xk)−→ STxM ⊗ π∗x → g∗(xk)→ 0.

Here we use the weight convention in order to make the symbol map σF (xk) into R-
homomorphism. Its value at covector p ∈ CharC

xk
(E) is the fiber of the characteristic

sheaf: Kp = Coker
[
σF (xk)(p)

]
.

Precise form of the above free resolution in various cases allows to investigate the sys-
tem E in details. In particular, results of §3.6 are based on the Buchsbaum-Rim resolution
[6].

Working with symbolic modules we inherit various concepts from commutative algebra
(consult e.g. [16]). Some of them are of primary importance for PDEs. For instance

dimR g∗ = dimC CharC
aff(E) = dimC CharC(E) + 1

is the Chevalley dimension of g∗ = g∗(xk).
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System E is called a Cohen-Macaulay system if the corresponding symbolic module g∗

is Cohen-Macaulay, i.e. depth g∗ = dim g∗ (see [5]). Other notions like grade and height
turns to be important in applications to differential equations as well ([46]).

Castlnuovo-Mumford regularity of g∗ is closely related to the notion of involutivity
(we’ll give definition via Spencer δ-cohomology in §3.2). It is instructive to notice that,
even though quasi-regular sequences are basic for both classes, involutive systems exhibit
quite unlike properties compared to Cohen-Macaulay systems (some apparent duality is
shown in [51]).

2.4 Non-linear differential operators

Let F = C∞(J∞π) be the filtered algebra of smooth functions depending on finite jets of
π, i.e. F = ∪iFi with Fi = C∞(J iπ).

Denote FEi = C∞(Ei). The projections πi+1,i : Ei+1 → Ei induce the maps π∗i+1,i :
FEi → FEi+1, so that we can form the space FE = ∪FEi , the points of which are infinite
sequences (fi, fi+1, . . . ) with fi ∈ FEi and π∗i+1,i(fi) = fi+1. This FE is a C∞(M)-
algebra. If the system E is not formally integrable, the set of infinite sequences can be
void, and the algebra FE can be trivial. To detect formal integrability, we investigate the
finite level jets algebras FEi via the following algebraic approach.

Let E be defined by a collection F = (F1, . . . , Fr) ∈ diff(π, ν) of non-linear scalar
differential operators of orders k1, . . . , kr (can be repeated). Post-composition of our dif-
ferential operator F : C∞(π) → C∞(ν) with other non-linear differential operators �
(composition from the left �̂ ◦F ) gives the following exact sequence of C∞(M)-modules

diff(ν,1) F−→ diff(π,1)→ FE → 0. (4)

Denote Jt(F ) = 〈�̂i ◦ Fi
∣∣ ord�i + ki ≤ t, 1 ≤ i ≤ r〉 ⊂ difft(π,1) the submodule

generated by F1, . . . , Fr and their total derivatives up to order t. Then

FEi = diffi(π,1)/Ji(F1, . . . , Fr). (5)

It is important that the terms of (4) are modules over the algebra of scalar C-differential
operators C Diff(1,1), which are total derivative operators and have the following form
in local coordinates [40]: ∆ =

∑
fσDσ , with fσ ∈ C∞(J∞(M)). We can identify

C Diff(1,1) = ∪F1
i ⊗ Diffj(1,1) with the twisted tensor product of the algebras F1 =

C∞(J∞(M)) and Diff(1,1) over the action

∆̂ : F1
i → F1

i+j for ∆ ∈ Diffj(1,1).

This C Diff(1,1) is a non-commutative C∞(M)-algebra. We need a more general F-
module of C-differential operators C Diff(π,1) = ∪C Diffi(π,1), where

C Diffi(π,1) = Fi ⊗C∞(M) Diffi(π,1).

Remark that C Diff(π,1) is a filtered C Diff(1,1)-module.
Define now the filtered FE -module C DiffE(π,1) with C DiffEi (π,1) = FEi ⊗

Diffi(π,1). Since the module Diff(π,1) is projective and we can identify diff(π,1) with
F, we have from (5) the following exact sequence

0→ Ji(F )⊗Diffi(π,1)→ C Diffi(π,1)→ C DiffEi (π,1)→ 0. (6)
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Similar modules can be defined for the vector bundle ν and they determine the FE -
module E∗ = ∪E∗i by the following sequence:

C DiffEi (ν,1) `F−→ C DiffEi+k(π,1)→ E∗i+k → 0, (7)

where ` : diff(π, ν)→ F⊗C∞(M) Diff(π, ν) is the operator of universal linearization [40],
`F = `(F ) (described in the next section).

This sequence is not exact in the usual sense, but it becomes exact in the following
one. The space to the left is an FEi -module, the middle term is an FEi+k-module. The image
`F (C DiffEi (ν,1)) is an FEi -module, but we generate by it an FEi+k-submodule in the middle
term. With this understanding of the image the term E∗i+k of (7) is an FEi+k-module and the
sequence is exact. In other words

E∗s = C DiffEs (π,1)/(FEs · Im `F ).

Sequences (7) are nested (i.e. their union is filtered) and so we have the sequence

E∗s−1 → E∗s → Fg∗s → 0, (8)

which becomes exact if we treat the image of the first arrow as the corresponding generated
FEs -module. Thus Fg∗s is an FEs -module with support on Es and its value at a point xs ∈ Es
is dual to the s-symbol of the system E :

(Fg∗s )xs = g∗s (xs); gs(xs) = Ker[Txsπs,s−1 : TxsEs → Txs−1Es−1].

In general non-linear situation Definition 1 should be changed to
Definition 2 System E is formally integrable if the maps πi+1,i : Ei+1 → Ei are submer-
sions.
Proposition 5 A system E is formally integrable iff the modules Fg∗s are projective and
the maps π∗i+1,i : E∗i → E∗i+1 are injective.

Note that whenever prolongations Ek+l exist and k is the maximal order, the fibers of
the projections πt,s : Et → Es carry natural affine structures for t > s ≥ k.

2.5 Linearizations and evolutionary differentiations

Consider a non-linear differential operator F ∈ diffk(π, ν) and two sections s, h ∈ C∞(π)
(we assume π to be a vector bundle, though it’s not essential). Define

`F,s(h) = d
dtF (s+ th)|t=0

This operator is linear in h and depends on its k-jets, so we have

`F,s ∈ HomC∞(M)(J k(π), C∞(ν)) = Diffk(π, ν).

Moreover value of this operator at x ∈ M depends on k-jet of s, so that `F,s =
jk(s)∗(`F ). We will also denote `F,xk = `F,s for xk = [s]kx. This dependence is however
non-linear and we get `F ∈ F⊗C∞(M) Diff(π, ν).

In such a form this operator generalizes to the case of different orders.
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Definition 3 Operator ` : diff(π, ν)→ C Diff(π, ν) = F⊗C∞(M) Diff(π, ν) is called the
operator of linearization (universal linearization in [40]).

It is instructive to note that whenever the evolutionary PDE (t being an extra variable)

∂tu = G(u), G ∈ diff(π, π), u ∈ C∞(π),

with initial condition u(0) = s is solvable, then for each xk = [s]kx we get: `F,xk(G) =
d
dtF

(
u(t)

)
|t=0 for (any if non-unique) solution u(t).

In canonical coordinates (trivializing ν) linearization of F = (F1, . . . , Fr) is `F =
`(F ) = (`(F1), . . . , `(Fr)) with

`(Fi) =
∑

(∂pjσFi) · D
[j]
σ ,

where D[j]
σ denotes the operator Dσ applied to the j-th component of the section from

C∞(π).
Recall that F is an algebra of functions on J∞π with usual multiplication and diff(π, ν)

is a lef F-module: Fi · diffk(π, ν) ⊂ diffmax{i,k}(π, ν). With respect to this structure the
operator of linearization satisfies the Leibniz rule:

`H·F = `H · F +H · `F , H ∈ diff(π,1), F ∈ diff(π, ν). (9)

Since `F is a derivation in F , we can introduce the operator �G by the formula

� ν
G(F ) = `F (G), F ∈ diff(π, ν), G ∈ diff(π, π).

Definition 4 The operator � ν
G : diff(π, ν) → diff(π, ν) is called the evolutionary differ-

entiation corresponding to G ∈ diff(π, π).
In canonical coordinates with G = (G1, . . . , Gm) the i-th component of the evolution-

ary differentiation equals

� ν
G; i =

∑
(DσGj) · ∂pjσ

[i],

where ∂pjσ
[i] denotes the operator ∂pjσ applied to the i-th component of the section from

C∞(ν).
As a consequence of (9) evolutionary differentiations satisfy the Leibniz rule:

� ν
G(H · F ) = � ν

G(H) · F +H · � ν
G(F ), H ∈ diff(π,1), F ∈ diff(π, ν). (10)

Moreover since linear differential operators commute with d
dt , we get:

K̂ ◦ � ν
G = � ξ

G ◦ K̂, ∀K ∈ Diff(ν, ξ). (11)

Proposition 6 [40]. R-linear maps satisfying (10) and (11) are evolutionary differentia-
tions and only they.

Corollary 7 The space Ev(π, ν) = {� ν
G : G ∈ diff(π, π)} for fixed vector bundles π, ν is

a Lie algebra with respect to the commutator.
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Consider the surjective R-linear map

� π : diff(π, π)→ Ev(π, π), G 7→ � π
G. (12)

It is injective because � π
G(Id) = G, and so can be used to introduce Lie algebra structure

on diff(π, π), with respect to which (12) is an anti-isomorphism of Lie algebras:

� π
{F,G} = [� π

G,�
π
F ], F,G ∈ diff(π, π).

Definition 5 The bracket {F,G} is called the higher Jacobi bracket.
This bracket generalizes the Lagrange-Jacobi bracket from classical mechanics and

contact geometry as well as Poisson bracket from symplectic geometry. It coincides with
the commutator for linear differential operators.

We can calculate {F,G} = � π
G(F ) − � π

F (G) = `F (G) − `G(F ). In canonical coor-
dinates the bracket writes:

{F,G}i =
∑(
Dσ(Gj) · ∂pjσFi −Dσ(Fj) · ∂pjσGi

)
.

2.6 Brackets and multi-brackets of differential operators

Let π = m · 1 be the trivial bundle of rank m. Then linearization of the operator F ∈
diff(π,1) can be written in components: `(F ) = (`1(F ), . . . , `m(F )).

Multi-bracket of (m+ 1) differential operators Fi on π is another differential operator
on π, given by the formula [46]:

{F1, . . . , Fm+1} =
1
m!

∑
α∈Sm,β∈Sm+1

(−1)α (−1)β `α(1)(Fβ(1))◦ . . .◦`α(m)(Fβ(m))
(
Fβ(m+1)

)
.

When m = 1 we obtain the higher Jacobi bracket.
For linear vector differential operators ∇i : m · C∞loc(M) → C∞loc(M), represented as

rows (∇1
i , . . . ,∇

m
i ) of scalar linear differential operators, the multi-bracket has the form:

{∇1, . . . ,∇m+1} =
m+1∑
k=1

(−1)k−1 Ndet[∇ji ]
1≤j≤m
i 6=k ◦ ∇k,

where Ndet is a version of non-commutative determinant [46].
If we interchange Ndet and ∇k in the above formula, we obtain the opposite multi-

bracket {F1, . . . , Fm+1}† (taking another representative for Ndet).
Theorem 8 [52]. Let Fi ∈ diff(π,1) be vector differential operators, 1 ≤ i ≤ m+2, and
let Fk,i denote component i of Fk and {· · · }i the ith component of the multi-bracket. Then
the multi-bracket and the opposite multi-bracket are related by the following identities
(check means absence of the argument) for any 1 ≤ i ≤ m:

m+2∑
k=1

(−1)k
[
`{F1,...,F̌k,...,Fm+2}†i

Fk − `Fk,i{F1, . . . , F̌k, . . . , Fm+2}
]

= 0.
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For m = 1 this formula becomes the standard Jacobi identity. In this case Fi ∈
diff(1,1) are scalar differential operators, multi-bracket becomes the higher Jacobi bracket
{F,G} and we get:∑

cyclic

(
`F {G,H} − `{G,H}F

)
=
∑
cyclic

{F, {G,H}} = 0.

Thus the multi-bracket identities could be considered as generalized Jacobi identities
(but neither in the sense of Nambu, generalized Poisson, nor as SH-algebras [76, 70]). We
called them non-commutative Plücker identities in [52], because their symbolic analogs
are precisely the standard Plücker formulas. Symbolic counterpart of the above identities
can be interpreted as multi-version of the integrability of characteristics ([29, 52]).

Finally we give a coordinate representation of the introduced multi-bracket. As in the
classical contact geometry there is a variety of brackets (see more in [55]). The following
is the multi-bracket analog of the Mayer bracket:

[F1, . . . , Fm+1] =
1
m!

∑
σ∈Sm+1

ν∈Sm

sgn(σ)
sgn(ν)

∑
1≤i≤m

|τ i|=kσ(i)

m∏
j=1

∂Fσ(j)

∂p
ν(j)
τj

Dτ1+···+τmFσ(m+1),

where Fi ∈ diffki(m · 1,1). For m = 1 this gives Mayer brackets instead of Jacobi
brackets [43]. We have ([52]):
Proposition 9 Restrictions of the two multi-brackets to the system E = {F1 = · · · =
Fm+1 = 0} coincide:

{F1, . . . , Fm+1} ≡ [F1, . . . , Fm+1] modJk1+···+km+1−1(F1, . . . , Fm+1).

3 Formal theory of PDEs

3.1 Symbolic systems

Consider vector spaces T of dimension n and N of dimension m (usually over the field R,
but also possible over C). The symmetric power ST ∗ = ⊕i≥0S

iT ∗ can be identified with
the space of polynomials on T .

Spencer δ-complex is the graded de Rham complex of N -valued differential forms on
T with polynomial coefficients:

0→ SkT ∗ ⊗N δ→ Sk−1T ∗ ⊗N ⊗ T ∗ δ→ · · · δ→ Sk−nT ∗ ⊗N ⊗ ΛnT ∗ → 0,

where SiT ∗ = 0 for i < 0. By Poincaré lemma δ-complex is exact.
For a linear subspace h ⊂ SkT ∗ ⊗N its first prolongation is

h(1) = {p ∈ Sk+1T ∗ ⊗N | δp ∈ h⊗ T ∗}

Higher prolongations are defined inductively and satisfy (h(k))(l) = h(k+l).
Definition 6 Symbolic system is a sequence of subspaces gk ⊂ SkT ∗ ⊗ N such that
gk+1 ⊂ g(1)

k , k ≥ 0.
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If E is a system of PDEs of maximal order k and xk ∈ Ek, then the symbols of E ,
namely {gi(xk)} form a symbolic system.

We usually assume g0 = N (if g0 $ N one can shrink N ). With every such a system
we associate its Spencer δ-complex of order k:

0→ gk
δ→ gk−1 ⊗ T ∗

δ→ gk−2 ⊗ Λ2T ∗ → · · · δ→ gk−n ⊗ ΛnT ∗ → 0.

The cohomology group at the term gi ⊗ΛjT ∗ is denoted by Hi,j(g) and is called Spencer
δ-cohomology.

When g is the symbolic system corresponding to a system of PDEs we denote the
cohomology by Hi,j(E ;xk) and often omit reference to the point.

Another way to deal with the system g
i
↪→ ST ∗ ⊗N is to consider its dual g∗ = ⊕g∗k,

which is an epimorphic image of ST ⊗ N∗ via the map i∗. The last space is naturally an
ST -module and we can try to carry the module structure to g∗ by the formula w · i∗(υ) =
i∗(w ·υ), w ∈ ST , υ ∈ ST ⊗N∗. Correctness of this operation has the following obvious
meaning:
Proposition 10 System g ⊂ ST ∗ ⊗N is symbolic iff g∗ is an ST -module.

Orders of the system is the following set:

ord(g) = {k ∈ Z+ | gk 6= g
(1)
k−1}.

Multiplicity of an order k is m(k) = dim g
(1)
k−1/gk and this equals to the dimension of the

Spencer δ-cohomology group Hk−1,1(g).
Hilbert basis theorem implies finiteness of the set of orders.

Definition 7 Call formal codimension of a symbolic system g the number of elements in
ord(g) counted with multiplicities. In other words

codim(g) =
∞∑
k=1

dimHk−1,1(g).

3.2 Spencer δ-cohomology

Let us show how to calculate the Spencer δ-cohomology in some important cases. Denote
m = dimN , r = codim(g) and U = Rr. Then minimal resolution of the symbolic
module starts as follows:

· · · → ST ⊗ U∗ −→ ST ⊗N∗ → g∗ → 0.

Definition 8 Call a symbolic system g generalized complete intersection if the symbolic
module satisfies: depth ann(g∗) ≥ r −m+ 1.

This condition will be interpreted for systems of PDEs in §3.6. It is a condition of
general position for module g∗ in the range m < r < m+ n.

Any generalized complete intersection g is a Cohen-Macaulay system. By standard
theorems from commutative algebra we have in fact equality for depth in the definition
above.
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Theorem 11 [52]. If g is a generalized complete intersection, then the only non-zero
Spencer δ-cohomology are given by the formula:

H∗,j(g) =

 N for j = 0,
U for j = 1,
Sj−2N∗ ⊗ Λm+j−1U for 2 ≤ j ≤ r + 1−m ≤ n.

In this formula we suppressed bi-grading. If g corresponds to a system E of different
orders PDEs, then H∗,j is a sum of different cohomology spaces. They can be specified
as follows (if there’re several equal Hi,j in the sum below, we count only one and the rest
contributes to the growth of dimension):

H∗,0(g) = H0,0(g), H∗,1(g) =
⊕

i∈ord(g)

Hi−1,1(g),

H∗,2(g) =
⊕

i1,...,im+1∈ord(g)

Hi1+···+im+1−2,2(g),

H∗,3(g) =
⊕

i1,...,im+2∈ord(g)

Hi1+···+im+2−3,3(g) etc . . .

One of the most important techniques in calculating Spencer δ-cohomology of a sym-
bolic system g comes from commutative algebra, because theyR-dualize to Koszul homol-
ogy of the symbolic module g∗ ([88]). In particular, homology calculus can be equivalently
represented by calculating free resolvents of g∗, see [26].

However Spencer δ-cohomology are related to certain constructions specific to PDEs,
which we are going to describe.

Having a symbolic system g = {gl ⊂ SlT ∗ ⊗N} and a subspace V ∗ ⊂ T ∗ we define
another system g̃ = {gl ∩ SlV ∗ ⊗N} ⊂ SV ∗ ⊗N . This is a symbolic system, called the
V ∗-reduction.

It is important that such g̃ are precisely the symbolic systems corresponding to sym-
metry reductions, with respect to Lie group actions [2].
Theorem 12 [44]. Let g be a Cohen-Macaulay symbolic system and a subspace V ∗ ⊂ T ∗
be transversal to the characteristic variety of g:

codim(CharC(g) ∩ PCV ∗) = codim CharC(g).

Then Spencer δ-cohomology of the system g and its V ∗-reduction g̃ are isomorphic:

Hi,j(g) ' Hi,j(g̃).

Another important transformation is related to solving Cauchy problem for general
PDEs. Let W ⊂ T . The following exact sequence allows to project along the subspace
V ∗ = ann(W ):

0→ V ∗ ↪→ T ∗ →W ∗ → 0

Applying this projection to the symbolic system g we get a new symbolic system ḡk ⊂
SkW ∗ ⊗N , called W -restriction.

In order to describe the result we need to introduce some concepts.
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The first is involutivity. With every symbolic system g ⊂ ST ∗ ⊗N and any k ≥ 0 we
can relate the symbolic system g|k〉, which is generated by all differential corollaries of the
system deduced from the order k:

g
|k〉
i =

{
SiT ∗ ⊗N, for i < k;
g

(i−k)
k , for i ≥ k.

Note that g is a system of pure order k if and only if g = g|k〉. In this case classical
Cartan definition of involutivity can be equivalently expressed via vanishing of Spencer
δ-cohomology (see Serre’s letter in [28]):

Hi,j(g) = 0 ∀i 6= k − 1.

For a system of different orders we have:
Definition 9 A system g is involutive if all systems g|k〉 are involutive.

The number of conditions in this definition is not infinite, since only k ∈ ord(g) are
essential. This general involutivity can still be expressed via vanishing of δ-cohomology
for systems g|k〉, but not for the system g ([51]).

Let us denote

Υi,j =
⊕
r>0

SrV ∗ ⊗ δ(Si+1−rW ∗ ⊗Λj−1W ∗)⊗N, Θi,j =
⊕
q>0

Υi,q ⊗Λj−qV ∗,

where δ is the Spencer operator. Let also Πi,j = δ(Si+1V ∗ ⊗N ⊗ Λj−1V ∗).
Call a subspace V ∗ ⊂ T ∗ strongly non-characteristic for a symbolic system g if gk ∩

V ∗ · Sk−1T ∗ ⊗N = 0 for k = rmin(g) the minimal order of the system.
Theorem 13 [51]. Let V ∗ be a strongly non-characteristic subspace for a symbolic system
g. If g is involutive, then its W -restriction ḡ is also involutive.

Moreover the Spencer δ-cohomology of g and ḡ are related by the formula:

Hi,j(g) '
⊕
q>0

Hi,q(ḡ)⊗ Λj−qV ∗ ⊕ δi+1
rmin(g)

· [Θi,j ⊕Πi,j ]⊕ δi0δ
j
0 ·H0,0(ḡ),

where δts is the Kronecker symbol.
If ḡ is an involutive system of pure order k = rmin(ḡ) = rmax(ḡ), then g is also an

involutive system of pure order k and the above formula holds.

The first two parts of this theorem generalize previous results of pure first order by
Quillen and Guillemin, see [31].

3.3 Geometric structures

These are given by specification of a Lie group G in light of Klein’s Erlangen program
[39], though prolongations usually make this into infinite-dimensional Lie pseudo-group,
see [28, 86, 94] and also §4.5. Not going much into details, we consider calculation of
Spencer δ-cohomology and restrict, for simplicity, to the first order structures.

They correspond to G-structures, discussed in [89]. More general cases are studied in
[30, 64]. Thus g = g|1〉 is generated in order 1 with subspace g1 = g ⊂ gl(n) being a
matrix Lie algebra, corresponding to G.
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Respective system of PDEs describes equivalence of a geometric structure, governed
by a Lie group G, to the standard flat model. PDEs describing automorphism groups can
be investigated similarly.

As we shall see in the next section, the group H∗,2(g) plays an important role in in-
vestigation of formal integrability. For geometric structures this is the space of curva-
tures/torsions. We shall illustrate this with three examples:

(a) Almost complex geometry: g = gl(n2 ,C). It is given by a tensor J ∈ C∞(T ∗M ⊗
TM), J2 = −1;

(b) Riemannian geometry: g = so(n). It is given by a tensor q ∈ C∞(S2T ∗M), q > 0;

(c) Almost symplectic geometry: g = sp(n2 ). It is given by a tensor ω ∈ C∞(Λ2T ∗M),
ωn 6= 0.

In all three cases T = TxM = N and there is a linear structure J , q or ω respectively on
T .

In the first case (T, J) is a complex space and we can identify g1 = T ∗ ⊗C T . The
prolongations are gi = SiCT

∗⊗CT (all tensor products overC). The only non-zero Spencer
δ-cohomology are:

H0,k(g) = ΛkC̄T
∗ ⊗C̄ T,

which is the space of all skew-symmetric k-linear C-antilinear T -valued forms on T . The
system is involutive.

In the second system identification T
q
' T ∗ yields g1 = Λ2T ∗. Since g2 = T ∗ ⊗

Λ2T ∗ ∩ S2T ∗ ⊗ T ∗ = 0, prolongations vanish g1+i = 0 and the system is of finite type.
The only non-zero Spencer δ-cohomology are:

H0,k(g) = ΛkT ∗ ⊗ T, H1,k = Ker(δ : Λ2T ∗ ⊗ ΛkT ∗ → T ∗ ⊗ Λk+1T ∗).

Thus g is not involutive. We can rewrite the cohomology in bi-grade (1, 2) as H1,2(g) =
Ker(S2Λ2T ∗ → Λ4T ∗). Note that H0,2 is the space of torsions and H1,2 the space of
curvature tensors.

In the last case we identify T
ω' T ∗ and then get g1 = S2T ∗. Therefore prolongations

gi = Si+1T ∗ and the system is of infinite type. The only non-zero Spencer δ-cohomology
are:

H0,k(g) = Λk+1T ∗.

The system is involutive.

3.4 Cartan connection and Weyl tensor

We define regular system of PDEs E of maximal order k as a submanifold Ek ⊂ Jkπ

co-filtered by El, with E(1)
i ⊃ Ei+1 and πi : Ei+1 → Ei being a bundle map, such that the

symbolic system and the Spencer δ-cohomology form graded bundles over it. We define
orders ord(E) of the system and its formal codimension codim(E) as these quantities for
the symbolic system.
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Cartan distribution on Ek is CEk = Ck ∩ TEk. Cartan connection on Ek is a horizontal
subdistribution in it, i.e. a smooth family H(xk) ⊂ CEk(xk), xk ∈ Ek, such that dπk :
H(xk) → TxM is an isomorphism. A Cartan connection yields the splitting CEk(xk) '
H(xk)⊕ gk(xk) of the Cartan distribution into horizontal and vertical components.

Given a distribution Π on a manifold its first derived differential system ∂Π is generated
by the commutators of its sections. In the regular case it is a distribution and one gets the
effective normal bundle ν = ∂Π/Π. The curvature of Π is the vector-valued 2-form
ΞΠ ∈ Λ2Π∗ ⊗ ν given by the formula:

ΞΠ(ξ, η) = [ξ, η] mod Π, ξ, η ∈ C∞(Π)

(it is straightforward to check that ΞΠ is a tensor).
The metasymplectic structure Ωk on Jk(π) is the curvature of the Cartan distribu-

tion [64, 48]. At a point xk it is a 2-form on Ck(xk) with values in the vector space
Fk−1(xk−1) = Txk−1

[
π−1
k−1,k−2(xk−2)

]
' Sk−1T ∗xM ⊗Nx.

To describe it fix a point xk+1 ∈ Jk+1(π) over xk and decompose Ck(xk) =
L(xk+1) ⊕ Fk(xk). Then Ωk(ξ, η) = 0 if both ξ, η belong simultaneously either to
L(xk+1) or to Fk(xk). But if ξ ∈ L(xk+1) corresponds to X = dπk(ξ) ∈ TxM and
η ∈ Fk(xk) corresponds to θ ∈ SkT ∗xM ⊗Nx, then the value of Ωk(ξ, η) equals

Ωk(X, θ) = δXθ ∈ Sk−1T ∗xM ⊗Nx,

where δX = iX◦δ is the differentiation alongX . The introduced structure does not depend
on the point xk+1 determining the splitting because the subspace L(xk+1) is Ωk-isotropic.

Restriction of the metasymplectic structure Ωk ∈ Fk−1 ⊗ Λ2C∗k to the equation is the
tensor ΩEk ∈ gk−1 ⊗ Λ2C∗Ek . Given a Cartan connection H we define its curvature at xk
to be ΩEk |H(xk) ∈ gk−1 ⊗ Λ2T ∗xM . Considered as an element of the Spencer complex it
is δ-closed and change of the Cartan connection effects in a shift by a δ-exact element.

The Weyl tensor Wk(E ;xk) of the PDEs system E is the δ-cohomology class
[ΩEk |H(xk)] ∈ Hk−1,2(E ;xk) ([64]). ForG-structures it coincides with the classical struc-
tural function [89]. For more general geometric structures it equals torsion/curvature tensor
[30].

Prolongation Ek+1 = E(1)
k is called regular if πk+1,k : Ek+1 → Ek is a bundle map. For

regular systems a necessary and sufficient condition for regularity of the first prolongation
is vanishing of the Weyl tensor: Wk(E) = 0.

This gives the following criterion of formal integrability:
Theorem 14 Let E = {El}kl=0 be a regular system of maximal order k. Then the system is
formally integrable iff Wi(E) = 0 for all i ≥ k.

Note that the number of conditions is indeed finite due to Poincaré δ-lemma: starting
from some number i0 all groups Hi,2(E) = 0 for i > i0 (see a bound for i0 in [90]). This
in fact was an original sufficient (cf. to necessary and sufficient in the above statement)
criterion of formal integrability in [23, 88]: If all second cohomology groups Hi,2 vanish,
i ≥ k, then the regular system is formally integrable.

Tensor Wk(E) plays a central role in equivalence problems [48]. Calculating Weyl
tensor is a complicated issue, see e.g. [43, 44, 45], where it was calculated for complete
intersection systems of PDEs. Let us perform calculation for the examples from §3.3.
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(1) In this case W1 = NJ is the Nijenhuis tensor of the almost complex structure
J . Its vanishing gives integrability condition of almost complex structure. The space
H0,2(g) = Λ2

C̄T
∗ ⊗C̄ T is the space of Nijenhuis tensors.

(2) Here Cartan connection is a linear connection∇, preserving q. Tensor W1 = T∇ ∈
H0,2 is the torsion and its vanishing leads us to Levi-Civita connection∇q . The next Weyl
tensor is the Riemannian curvature Rq ∈ H1,2 and its vanishing yields flatness of the
metric q.

(3) Curvature is W1 = dω ∈ H0,2. Thus integrability W1 = 0 gives us symplectic
structure ω.
Remark 4 Looking at these examples we observe that searching for involutivity is some-
times superfluous: All three geometries are equally important and from the point of view
of getting solutions one just studies formal integrability, which usually occurs at smaller
number of prolongations than involutivity.

Let us finish by mentioning without calculations thatWk(E) equals the conformal Weyl
tensor for the conformal Lie algebra g = co(n) and the Weyl projective tensor for the
projective Lie algebra g = sl(n+ 1). Whence the name.

3.5 Compatibility and solvability

Investigation of overdetermined systems of PDEs begins with checking compatibility con-
ditions. Riquier-Janet theory makes finding compatibility conditions algorithmic.

With Riquier approach [85] one expresses certain higher order derivatives via others
(i.e. bring equations to the orthonomic form), differentiate PDEs and substitute the ex-
pressed quantities. If new equations arise, the system is called active, otherwise passive.
In modern language we talk of formal integrability. Riquier’s test on passivity allows to
disclose the compatibility conditions.

Janet monomials [37] (and also Thomas’s [97]) allow to check compatibility via cross
differentiations of respective equations, which is determined by their differential mono-
mials in certain ordering. To a large extent this can be seen as an origin of computer
differential algebra (Gröbner bases etc).

Being algorithmic, these approaches are heavily calculational and so good luck in gen-
erators in E and coordinates in jet spaces plays a major role. On the contrary Cartan’s
theory [10] has a geometric base (Vessiot’s dual approach [100] is of the same flavor) and
so coupled with Spencer’s homological technique [87] allows to calculate compatibility
conditions in a visibly minimal number of steps.
Remark 5 Original Cartan’s approach aims though to involutivity, not just to formal inte-
grability, cf. Remark 4. In this respect Riquier-Janet theory is more economic.

Using the machinery of the previous section we can describe one step prolongation as
follows. Assume E is a regular system of PDEs of maximal order k, which includes com-
patibility to order k. ThenWk(E) ∈ Hk−1,2(E) is precisely the obstruction to prolongation
to (k + 1)-st jets.

The number of compatibility conditions is dimHk−1,2(E) (this quantity is constant
along E due to regularity) and they are just components of the Weyl tensor Wk(E). These
latter are certain differential equations of ord ≤ k.

If Wk(E) = 0, the system can be prolonged to level (k+ 1) and we get a system Ek+1,
with projections πk+1,k : Ek+1 → Ek being a vector bundle, so that we get new regular
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system and can continue prolongations. By Hilbert’s theorem Hi,2(E) = 0 starting from
some number i0. Then there’s no more obstructions to compatibility and the system is
formally integrable.

If the Weyl tensor is non-zero, we disclose new equations in the system E , which are
differential corollaries of ord ≤ k, and so we change the system by adding them. The new
system is

Ẽ = E ∩ πk+1,k(E(1)
k ) = {xk ∈ Ek : Wk(E ;xk) = 0}.

We restart investigation of formal integrability with this new system of equations. This
approach is called prolongation-projection method.

The following statement, known as Cartan-Kuranishi theorem, states that we do not
continue forever:
Theorem 15 After a finite number of prolongations-projections system E will be trans-
formed into a formally integrable system Ē ⊂ E .

This statement was formulated by Cartan in [10] without precise conditions. It was
proved by Kuranishi [56] under suitable regularity assumptions (see also [73]), but essen-
tially the proof was published long before by the Russian school [84, 21].

With regularity assumptions we remove points, where the ranks of symbol bundles/δ-
cohomology drop, together with their projections and prolongations. One hopes that most
points will survive, so that the above theorem holds at a generic point.

While in general this is not known, it holds in some good situations. In algebraic case
the result is due to Pommaret [82] and in analytic case due to Malgrange [72].

Note that we started with regular systems E of maximal order k, though one should
start from E1. Arriving to El one can either add compatibility conditions or new equations
of the system of order l + 1. In the latter case the projection πl+1,l : El+1 → El is a fiber
bundle (in regular case). The prolongation-projection method can be generalized to this
situation and Theorem 15 holds in the same range of assumptions.

As a result of the method we get a minimal formally integrable sub-system Ē ⊂ E . If
it is non-empty the system E is called (formally) solvable. Indeed all (formal) solutions of
E coincide with these of Ē . This alternative E.Cartan [10] characterized as follows: ”after
a finite number of prolongations the system becomes involutive or contradictory”.

3.6 Formal integrability via multi-brackets and Massey product

Though Weyl tensors Wk(E) are precisely compatibility conditions, it is important to have
a good calculational formula for the latter, at least for some classes of PDEs. The following
is a wide class of systems, important in applications.

Let E ⊂ Jk(π) be a regular system of maximal order k, consisting of r = codim(E)
differential equations on m = rank(π) unknown functions.
Definition 10 System E is of generalized complete intersection type if

(a) m ≤ r < n+m;

(b) The characteristic variety has dimC CharC
xk

(E) = n+m−r−2 at each point xk ∈ E
(we assume dim ∅ = −1);
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(c) The characteristic sheaf K over CharC
xk

(E) ⊂ PCT ∗ has fibers of dimension 1 ev-
erywhere.

If E is a generalized complete intersection in this sense, then its symbolic system g is a
generalized complete intersection in the sense of definition 8.

Note that vanishing of the multi-brackets due to the system is a necessary condition for
formal integrability, because they belong to differential ideal of the system.
Theorem 16 [46, 52]. Consider a system of PDEs

E =
{
Fi

(
x1, . . . , xn, u1, . . . , um,

∂|σ|uj

∂xσ

)
= 0 : 1 ≤ i ≤ r

}
, ord(Fi) = ki.

If E is a system of generalized complete intersection type, then it is formally integrable if
and only if the multi-brackets vanish due to the system:

{Fi1 , . . . , Fim+1} modJki1+···+kim+1−1(F1, . . . , Fr) = 0.

In particular, we get the following compatibility criterion for scalar PDEs:
Corollary 17 Let E = {F1[u] = 0, . . . , Fr[u] = 0} be a scalar system of complete inter-
section type, i.e. r ≤ n and codimC CharC(E) = r. Then formal integrability expresses
via Mayer-Jacobi brackets as follows:

{Fi, Fj} = 0 modJki+kj−1(F1, . . . , Fr), ∀ 1 ≤ i < j ≤ r.

This criterion is effective in the study of not only compatibility, but also solvability
of systems of PDEs. Examples of applications are [22, 52]. Moreover, since differential
syzygy is provided explicitly, it is more effective than the method of differential Gröbner
basis or its modifications [41].

Let now describe a sketch of the general idea how to investigate systems of PDEs
E = {F1[u1, . . . , um] = 0, . . . , Fr[u1, . . . , um] = 0} for compatibility.

Take a pair of equations Fi and Fj , i < j. Even though the system {Fi = 0, Fj = 0}
is underdetermined (for m > 1) it can possess compatibility conditions Θij = 0 of order
tij (this actually means that after a change of coordinates this pair of PDEs will involve
only one dependent function; but rigorously can be expressed only via non-vanishing sec-
ond Spencer δ-cohomology). We denote ΘEij = Θij modJtij (F1, . . . , Fr). Thus we get
compatibility conditions ΘEij = 0 of orders τ ij ≤ tij .

Then we look to triples Fi, Fj , Fh with i < j < h, get in a similar way compatibility
conditions ΘEijh = 0 of orders τ ijh and so forth. In general we get ”generalized s-brackets”
ΘEi1...is of orders τ i1...is for all 2 ≤ s ≤ r (see [43] §3.2 for an example of 3-bracket in the
case n = k = 2, m = 1, r = 3).

The formula of the operator ΘEi1...is and the number τ i1...is (i1 < · · · < is) strongly de-
pends on the type of the system and varies with the type of characteristic variety/symbolic
module. For each type of normal form or singularity one gets own formulas. In the range
m ≤ r < m + n the generic condition is that all generalized s-brackets for s ≤ m are
void and the first obstruction to formal integrability are (m+ 1) multi-brackets. Theorem
16 states that this will be the only set of compatibility conditions.
Remark 6 Important case of an overdetermined system with r = m constitute Einstein-
Hilbert field equations [18]. They possess compatibility conditions, which hold identically,
implying formal integrability of the system.
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Note that the idea of calculating successively 2-product for a pair, then 3-product for
a triple (in the case it vanishes for all sub-pairs) etc is very similar to Massey products in
topology and algebra. Resembling situation is observed in deformation theory of module
structures4.

We note however that in the context of PDEs the situation is governed by order. We
examine the set {τ ij , τ ijh, . . . , τ1...r} (some numbers can be omitted if respective ΘEi1...is
are void) and take the minimal order. These compatibility conditions are investigated first.
Being non-zero, they are added to E and one considers a new system Ẽ (which can be sim-
pler with lower order compatibility conditions, cf. §3.5). If these compatibility conditions
are satisfied, we take the next ones and so on. The procedure is finite in the same sense as
in Cartan-Kuranishi prolongation-projection theorem.

3.7 Integral Grassmanians revisited

A system of PDEs E ⊂ J1(E,m) is said to be determined if codim E = m and
codimC CharC(E) = 1. We usually represent such systems as the kernel of a (non-linear)
operator F : C∞(π)→ C∞(ν) with rankπ = rank ν = m.

In this section we restrict to the case k = 1 of first order equations. Let w1
i be Stiefel-

Whitney classes of the tautological vector bundle over the Grassmanian I(x1), as before.
Theorem 18 [65]. Let E ⊂ J1(E,m) be a determined system such that the characteristic
variety CharC

x1
(E) does not belong to a hyperplane for any x1 ∈ E . Then the embed-

ding IE(x1) ↪→ I(x1) induces an isomorphism of cohomology with Z2-coefficients up to
dimension n in all cases except the following:

(a) m = 2, n ≥ 3. Then H∗(IE(x1),Z2) is isomorphic to the algebra
Z2[w1

1, . . . , w
1
n, Un−1,SqUn−1] up to dimension n, whereUn−1 has dimension n−1

and Sq is the Steenrod square.

(b) m = 3, n = 2. Then H∗(IE(x1),Z2) is isomorphic to the algebra
Z2[w1

1, w
1
2, ρ1, . . . , ρr] up to dimension 2, where dimensions of ρi equal 2 and r

is a number of components of CharC(E , x1) with the fibers of the kernel sheaf K of
dimension 1.

(c) m = n = 2. Then IE(x1) is diffeomorphic to the torus S1 × S1 in hyperbolic case
or to the complex projective line CP1 in elliptic case.

This yields calculation of cohomology of integral Grassmanians for determined sys-
tems. Underdetermined systems can be treated similarly.

Finding cohomology of IE(xk) in general overdetermined case seems to be a hopeless
problem. However in many cases they stabilize after a sufficient number of prolongations.
This constitutes a topological version of the Cartan-Kuranishi theorem:
Theorem 19 [65]. Let E be a system of differential equations of pure first order E1 ⊂
J1(E,m). Suppose that it is formally integrable and characteristically regular and such
that the characteristic variety CharC

x1
(E) does not belong to a hyperplane for any x1 ∈ E1.

Assume also that dimC CharC(E) > 0. Then the embeddings IEl(xl) ↪→ I(xl) induce an
isomorphism in cohomology with Z2-coefficients up to dimension n for sufficiently large
values of l.

4We thank A. Laudal for a fruitful discussion on this topic.



Boris Kruglikov and Valentin Lychagin 751

Let Ik(E,m) =
⋃
I(xk) be the total space of all integral Grassmanians. Then any

integral n-dimensional manifold L ⊂ Jk(E,m) defines a tangential map tL : L →
Ik(E,m), where tL : L 3 xk 7−→ TxkL ∈ I(xk). Each cohomology class κ ∈
H l(Ik(E,m),Z2) gives rise to a characteristic class κ(L) = t∗L(κ) on integral manifolds
L. By Theorem 2 H∗(Ik(E,m),Z2), considered as an algebra over H∗(Jk(E,m),Z2),
is generated by the Stiefel-Whitney classes wk1 , . . . , w

k
n of the tautological bundle over

Ik(E,m) up to dimension n. Moreover since the bundle J l(E,m) → J l−1(E,m)
is affine for l > 1 and for l = 1 is the standard Grassmanian bundle, we get that
H∗(Jk(E,m),Z2) = H∗(J1(E,m),Z2), considered as an algebra over H∗(E,Z2),
is generated by the Stiefel-Whitney classes w1, . . . , wn of the tautological bundle over
J1(E,m), provided that π1(E) = 0.

Let Ek ⊂ Jk(E,m) be a formally integrable system of PDEs of maximal order k
and IEk+l =

⋃
IEk+l(xk+l) ⊂ Ik+l(E,m) be a total space of all integral Grassmanians

associated with l-th prolongation Ek+l = E(l)
k . If the differential equation satisfies the

conditions of Theorem 19, then for a sufficiently large l the cohomology H∗(IEk+l,Z2),
considered as an algebra over H∗(Ek+l,Z2), is generated by the Stiefel-Whitney classes
wk1 , . . . , w

k
n of the tautological vector bundle up to dimension n. On the other hand all

bundles πk+l,k+l−1 : Ek+l → Ek+l−1 are affine for l > 0 and hence H∗(Ek+l,Z2) =
H∗(Ek,Z2).

By a Cauchy data we mean an (n−1)-dimensional integral manifold Γ ⊂ Ek+l together
with a section γ : Γ → IEk+l such that Txk+lΓ ⊂ γ(xk+l) for all xk+l ∈ Γ. A solution
of the Cauchy problem is an integral n-dimensional submanifold L ⊂ Ek+l with boundary
such that Γ = ∂L. Each cohomology class θ ∈ Hn−1(IEk+l,Z2) defines a characteristic
number θ(Γ) = 〈γ∗θ,Γ〉.
Theorem 20 If the Cauchy problem (Γ, γ) has a solution, then the characteristic numbers
θ(Γ) vanish for all θ ∈ Hn−1(IEk+l,Z2).

4 Local and global aspects

4.1 Existence theorems

System of PDEs E is called locally/globally integrable, if for its infinite prolongation E∞
and any admissible jet x∞ ∈ E∞ there exists a local/global smooth solution s ∈ C∞(π)
with [s]∞x = x∞ (this clearly can be generalized to more general spaces Jk(E;m) of jets).

If the system E is of finite type and formally integrable, then it is locally integrable.
Indeed, the Cartan distribution CEk for k so large that gk = 0 has rank n and is integrable
by the Frobenius theorem. Its local integral leaves are solutions of the system E .

For infinite type systems, dim gk 9 0, formal integrability does not imply local inte-
grability in general, some additional conditions should be assumed. One sufficient condi-
tion for existence of local solutions is analyticity as Cartan-Kähler theorem claims [38]:
Theorem 21 Let a system E be analytic, regular and formally integrable. Then it is locally
integrable, i.e. any admissible jet x∞ ∈ E∞ is the jet of a local analytic solution.

This theorem is a generalization of Cauchy-Kovalevskaya theorem [80]. Other gener-
alizations are known, see [19]. In particular we should mention Ovsyannikov’s theorem,



752 Geometry of differential equations

according to which for a system E , written in the orthonomic form

∂kiui

∂tki
= Fi(t, x, u,Dσu), i = 1, . . . ,m

(Fi does not contain derivatives of order higher than ki and it is free of ∂kit u
i) it is enough

to require analyticity only in x = (x1, . . . , xn−1) and u,Dσu, and also continuity in t in
order to get solution to the Cauchy initial value problem

∂lui

∂tl
(0, x) = U il (x), l = 0, . . . , ki − 1, i = 1, . . . ,m. (13)

Notice that the solution to a formally integrable system E in general form of Theo-
rem 21 is given by a sequence of solutions of Cauchy problems, see [38, 7]. The initial
value problem is specified similar to (13), with prescribed collection of sp functions of p
arguments, . . . , s0 constants, where si are Cartan characters [10], see also §4.3. Thus one
can, in principle, slightly relax analyticity conditions of Theorem 21 via Ovsyannikov’s
approach.

Also note that according to Holmgren’s theorem ([80]) a local solution to the
Cauchy problem for a formally integrable analytic system E is unique even if the (non-
characteristic) initial data is only smooth. In general smooth case formal integrability
implies local integrability only in certain cases.

One of such cases is when the system E is purely hyperbolic, i.e. when complex charac-
teristics complexify the real ones: CharC(E) = (Char(E))C. In other words any real plane
of complimentary dimension in PCT ∗ intersects Char(E) in deg CharC(E) real different
points.

More general case is represented by involutive hyperbolic systems, which are given by
the condition that on each step of Cartan-Kähler method the arising determined systems
are hyperbolic (these systems are non-unique, see [101] for the precise definition) on the
symbolic level.
Theorem 22 [101]. If an involutive hyperbolic system E is formally integrable and the
Cauchy data is non-characteristic, there exists a local solution. In particular, if not all
covectors are characteristic for E , then there is a local solution through almost any admis-
sible jet x∞ ∈ E∞.

In particular one can solve locally the Cauchy problem for the second order hyperbolic
quasi-linear systems of the type arising in general relativity [12].

Another important example constitute purely elliptic systems, i.e. such E that the real
characteristic variety is empty: Char(E) = ∅.

A system E = {Fi(x, u,Dσu) = fi(x)} (independent and dependent variables x, u
are multi-dimensional) is said to be of analytic type if locally near any point xk ∈ Ek the
(non-linear in general) differential operator F = (Fi)ri=1 is analytic in a certain chart (but
the charts may overlap smoothly and f = (fi)ri=1 is just smooth).
Theorem 23 [87, 71]. Elliptic formally integrable system E of analytic type is locally
integrable.

Spencer conjectured [88] that any formally integrable elliptic system is locally inte-
grable5, but this was not proved in the full generality.

5In fact, we cannot prescribe the value of jet of the solution, and so it’s better to talk here of local solvability
from the next section.
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A certain progress was due to the works of MacKichan [74, 75] and Sweeney [91].
They studied solvability of the Neumann problem and related this to the δ-estimate on a
linear operator ∆: For any large k in

0→ gk+1
δ−→ gk ⊗ T ∗

δ−→ gk−1 ⊗ Λ2T ∗ and any ξ ∈ gk ⊗ T ∗ ∩Ker δ∗

(operator δ∗ is conjugated to δ with respect to some Hermitian metrics on T ∗, π, ν), we
have ‖δξ‖ ≥ k√

2
‖ξ‖. Their results imply (see [88], also [95]):

Theorem 24 Let E = Ker ∆ be a formally integrable system, with not all covectors being
characteristic. Suppose that the operator ∆ satisfies the δ-estimate. Then the system E is
locally integrable.

4.2 Local solvability

E is called solvable if we can guarantee existence of a local/global solution. Obviously one
should first carry prolongation-projection method to get a maximal formally integrable
system Ē ⊂ E (this is usually called bringing E to an involutive form, compare though
with Remark 4), so we can assume that already E fulfills compatibility conditions.

In light of Cartan-Kähler theorem one would like to specify an admissible jet of so-
lution. It is possible for hyperbolic systems and their generalizations (see Theorem 22),
but not for all systems. However even the problem of finding some solution can be non-
solvable.

Consider at first smooth linear differential operators. Let us restrict to C-scalar PDEs,
i.e. differential operators ∆ = ∆1 + i∆2 : C∞(M ;C) → C∞(M ;C) of order k (∆i are
real, so one can think of determined real system E with rankπ = 2, but it is of special
type: codim Char(E) = 2).

The first example of operator of this type such that the corresponding PDE ∆(u) = f
not locally solvable for some smooth f ∈ C∞(M ;C), was constructed by H. Levi [60]6.

This example was later generalized by Hörmander, Grushin and others. In fact,
Hörmander found a necessary condition of solvability for principal type operators. Us-
ing the bracket approach of §3.6 we can formulate it as follows. Let E be the above PDE
written as the real system {∆1(u) = f1,∆2(u) = f2} (∆1 = Re ∆, ∆2 = Im ∆ and
similar for f ) and let σs denote the symbol of order s. Then local solvability of a system
E implies

σ2k−1

(
{∆1(u),∆2(u)}mod E

)
= 0. (14)

Hörmander formulated his condition differently [35]. Namely denote H = σk(∆1),
F = σk(∆2). Then the Poisson bracket {H,F} vanishes on Σ = Charaff(E) = {H =
0, F = 0} ⊂ T ∗M . In other words, whenever Σ is a submanifold, it is involutive7.

The condition that the operator ∆ has a principal type means that the Hamiltonian
vector field XH on {H = 0} is not tangent to the fibers of the projection T ∗M →M (it is

6His ∆ was a very nice analytic operator of order 1, namely Cauchy-Riemann operator on the boundary of
the pseudo-convex set {|z1|2 + 2 Im z2 < 0} ⊂ C2.

7Note that for real problems, when F = 0 and Im(u) = 0 this condition is void. Indeed linear determined
PDEs of principal type with real (nonconstant) coefficients in the principal part are locally solvable [34] (this also
follows from Theorem 25).
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possible to multiply ∆ by a function a ∈ C∞(M ;C), so that a particular choice of H and
F is not essential, but the condition involves linear combinations of dH and dF ).

Trajectory of the vector field XH are called bi-characteristics and considered on the
invariant manifold {H = 0} they are called null bi-characteristics.

Note that even when Σ is not a submanifold, condition (14) can be reformulated as
follows

Along null bi-characteristics XH function F vanishes to at least 2nd order.

This condition was refined by Nirenberg-Treves to the following condition:

Along null bi-characteristics XH function F does not change its sign. (P)

If Σ is a submanifold in T ∗M and dH, dF are independent on its normal bundle, this con-
dition is equivalent to (14). In general it strictly includes (implies) Hörmander condition.
Indeed if order of zero for F along null bi-characteristics is finite, it should be even.

It turns out that this new condition is not only necessary, but also sufficient for solvabil-
ity ([77] with the condition of order k = 1 or base dimension n = 2 or that the principal
part is analytic; [4] in general):
Theorem 25 If ∆ is of principal type and satisfies condition (P), then for any smooth f
linear PDE ∆(u) = f is locally solvable.

This theorem was generalized to pseudo-differential operators (see [59] for important
partial cases and review; [15] in general), with condition (P) being changed to a similar
condition (Ψ). In such a form it is sometimes possible to give a sufficient condition for
global solvability (see loc.cit).

In the second paper [77] Nirenberg and Treves gave a vector version (determined sys-
tem of special type with rankR(π) = 2m) of the above theorem:
Theorem 26 If ∆ = ∆1 + i∆2 ∈ Diffk(m · 1C,m · 1C) is a complex smooth operator of
principal type and the homogeneous HamiltonianH+ iF = det[σ∆] of ordermk satisfies
condition (P), then the system of linear PDEs ∆(u) = f is locally solvable for any smooth
vector-valued function f ∈ C∞(M ;Cm).

Note however that the principal type condition of [77] is formulated so that multiple
characteristics are excluded (this is equivalent to the claim thatK is a 1-dimensional bundle
over CharC(E)), though in some cases this condition can be relaxed.

For general systems the solvability question is still open and one can be tempted to
approach it via successive sequence of determined systems, like in Cartan-Kähler theorem
(see Guillemin’s normal forms in [31, 7]).
Remark 7 The solutions obtained via the above methods are usually distributions, though
in some cases they can be proved to be smooth by using elliptic regularity or Sobolev’s em-
bedding theorem [35, 80]. The methods can be generalized to weakly non-linear situations,
but for strongly non-linear PDEs effects of multi-valued solutions require new insight [58].

Finally let us consider an important case of evolutionary PDEs ut = L[u], where L
is a non-linear differential operator involving only Dx differentiations, in the splitting of
base coordinates R× U = {(t, x)}. The Cauchy problem for such systems is often posed
on the characteristic submanifold Σn−1 = {t = 0}, which contradicts the approach of
Cartan-Kähler theorem.
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Nevertheless in many cases it is possible to show that the solution exists. For instance,
consider the system ∂tu = Au + F (t, x, u) with A being a determined linear differential
operator on the spaceW of smooth vector-functions of x and F can be non-linear (usually
of lower order). If the homogeneous linear system ∂tu = Au is solvable and eAt is a semi-
group (on a certain Banach completion ofW), then provided that F is Lipschitz onW , we
can guarantee existence of a local solution to the initial value problem u(0, x) = u0(x) (in
fact weak solutions; strong solutions are guaranteed ifW can be chosen a reflexive Banach
space [93]).

This scheme works well for differential operators A with constant coefficients. More-
over, global solvability can be achieved. Consider, for instance a non-autonomous reaction-
diffusion equation

∂tu = a∆u− f(t, u) + g(t, x),

where x ∈ U b Rn−1, a ∈ Gl+(Rm) is a positive constant matrix, ∆ the Laplace operator
and the functions f, g belong to certain Hölder spaces. The boundary behavior is governed
by Dirichlet or Neumann or periodic conditions. Then provided that function f has a
limited growth behavior at infinity (see [11] for details) the initial problem u(0, x) = u0(x)
for this system is globally solvable.

Similar schemes (with characteristic Cauchy problems) work also for PDEs involv-
ing higher derivatives in t, for example damped hyperbolic equation [11]. This allows to
consider evolutionary PDEs as dynamical systems. In fact, bracket approach for compati-
bility and generalized Lagrange-Charpit method of §4.4 allows to establish and investigate
finite-dimensional sub-dynamics, see [42, 67].

4.3 Dimension of the solutions space

In his study of systems E of PDEs [10] (interpreted as exterior differential systems) Cartan
constructed a sequence of numbers si, which are basic for his involutivity test. These
numbers depend on the flag of subspaces one chooses for investigation of the system and
so have no invariant meaning.

The classical formulation is that a general solution depends on sp functions of p vari-
ables, sp−1 functions of (p− 1) variables, . . . , s1 functions of 1 variable and s0 constants
(we adopt here the notations from [7]; in Cartan’s notations [10] we should rather write sp,
sp + sp−1, sp + sp−1 + sp−2 etc). However as Cartan notices just after the formulation
[10], this statement has only a calculational meaning.

Nevertheless two numbers are absolute invariants and play an important role. These
are Cartan genre, i.e. the maximal number p such that sp 6= 0, but sp+1 = 0, and Cartan
integer σ = sp. As a result of Cartan’s test a general solution depends on σ functions of
p variables (and some number of functions of lower number of variables, but this number
can vary depending on a way we parametrize the solutions).

Here in analytical category a general solution is a local analytic solution obtained as a
result of application of Cartan-Kähler theorem and thus being parametrized by the Cauchy
data. In smooth category one needs a condition to ensure existence of solutions with any
admissible jet, see §4.1-4.2.

In general we can calculate these numbers in formal category. We call p functional
dimension and σ functional rank of the solutions space Sol(E) [47]. These numbers can
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be computed via the characteristic variety. If the characteristic sheaf K over CharC(E) has
fibers of dimension k, then

p = dim CharC(E) + 1, σ = k · deg CharC(E).

The first formula is a part of Hilbert-Serre theorem ([33]), while the second is more compli-
cated. Actually Cartan integer σ was calculated in [7] in general situation and the formula
is as follows.

Let CharC(g) = ∪εΣε be the decomposition of the characteristic variety into irre-
ducible components and dε = dimKx for a generic point x ∈ Σε. Then

σ =
∑

dε · deg Σε.

The clue to this formula is commutative algebra. Namely Hilbert polynomial ([33]) of
the symbolic module g∗ equals

PE(z) = σzp + . . .

A powerful method to calculate the Hilbert polynomial is resolution of a module. In our
case a resolution of the symbolic module g∗ exists and it can be expressed via the Spencer
δ-cohomology. Indeed, the Spencer cohomology of the symbolic system g is R-dual to the
Koszul homology of the module g∗ and for algebraic situation this resolution was found in
[26].

This yields the following formulae [47]. Let(
z+k
k

)
=

1
k!

(z + 1) · (z + 2) · · · (z + k).

Denote Sj(k1, . . . , kn) =
∑

i1<···<ij
ki1 · · · kij the j-th symmetric polynomial and let also

sni =
(n− i)!
n!

Si(1, . . . , n)

Thus

sn0 = 1, sn1 =
n+ 1

2
, sn2 =

(n+ 1)(3n+ 2)
4 · 3!

, sn3 =
n(n+ 1)2

2 · 4!
,

sn4 =
(n+ 1)(15n3 + 15n2 − 10n− 8)

48 · 5!
etc.

If we decompose

(
z+n
n

)
=

n∑
i=0

sni
zn−i

(n− i)!
,

then we get the expression for the Hilbert polynomial

PE(z) =
∑
i,j,q

(−1)ihq,isnj
(z − q − i)n−j

(n− j)!
=

n∑
k=0

bk
zn−k

(n− k)!
,
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where

bk =
k∑
j=0

∑
q,i

(−1)i+j+khq,isnj
(q + i)k−j

(k − j)!
.

Let us compute these dimensional characteristics p, σ for two important classes of
PDEs.

If E is an involutive systems, then Hi,j(E) = 0 for i /∈ ord(E)− 1, (i, j) 6= (0, 0), and
the above formula becomes more comprehensible.

Let us restrict for simplicity to the case of systems of PDEs E of pure first order. Then

PE(z) = h0,0
(
z+n
n

)
− h0,1

(
z+n+1
n+1

)
+ h0,2

(
z+n+2
n+2

)
− . . .

= b1
zn−1

(n− 1)!
+ b2

zn−2

(n− 2)!
+ · · · + b0.

Vanishing of the first coefficient b0 = 0 is equivalent to vanishing of Euler characteristic
for the Spencer δ-complex, χ =

∑
i(−1)ih0,i = 0, and this is equivalent to the claim that

not all the covectors from CT ∗ \ 0 are characteristic for the system g.
The other numbers bi are given by the above general formulas, though now they essen-

tially simplify. For instance

b1 = n+1
2 b0 −

∑
(−1)ih0,ii =

∑
(−1)i+1i · h0,i.

If codim CharC(E) = n − p > 1, then b1 = 0 and in fact then bi = 0 for i < n − p,
but bn−p = σ.

Theorem 27 [47]. If codim CharC(E) = n − p, then the functional rank of the system
equals

σ =
∑
i

(−1)ih0,i (−i)n−p

(n− p)!
.

One can extend the above formula for general involutive system and thus compute the
functional dimension and functional rank of the solutions space (some interesting calcula-
tions can be found in classical works [37, 10]).

Consider also an important partial case of Cohen-Macaulay systems:
Theorem 28 [52]. Let E be a formally integrable system of generalized complete inter-
section type with orders k1, . . . , kr. Then the space SolE has formal functional dimension
and rank equal respectively

p = m+ n− r − 1, σ = Sr−m+1(k1, . . . , kr).

4.4 Integrability methods

Most classical methods for integration of PDEs are related to symmetries ([61, 24, 20]).
A symmetry of a system E is a Lie transformation of Jkπ, resp. Jk(E,m), that pre-

serves E (k is the maximal order of E). Internal symmetry is a structural diffeomorphism
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of E , i.e. a diffeomorphism of Ek (not necessary inducing diffeomorphisms of El for l ≤ k)
that preserves the Cartan distributions CEk . In many important cases, the systems E are
rigid [40], in which case internal and external symmetries coincide.

In practice the group (in fact, pseudo-group, see the next section) of symmetries
Sym(E) is difficult to calculate and it is much easier to work with the corresponding Lie
algebra of infinitesimal symmetries ([62, 63]). These are Lie vector fieldsXϕ on the space8

Jkπ, which are tangent to E .
The generating function ϕ has order 0 or 1 in the classical case (point or contact trans-

formations). Equation for ϕ to be a symmetry of a system E = {Fα = 0} can be written
in the form (for some differential operators Qα):

Xϕ(Fα)|E = 0 ⇔ `Fαϕ =
∑

QαFα.

Notice that when the system is scalar, i.e. π = 1, and degFα = kα, degϕ = κ, then the
defining equations can be written in the form

{Fα, ϕ} = 0 modJkα+κ−1(E). (15)

When ϕ ∈ Fi, i > 1, the field Xϕ does not define a flow on any finite jet-space, but
rather on J∞(π). If this flow leaves E∞ invariant, then ϕ (orXϕ) is called higher symmetry
([40]). Denoting by `EF the restriction `F |E∞ we obtain the defining equations of higher
symmetries:

ϕ ∈ sym(E) ⇔ `EFα(ϕ) = 0.

Here sym(E) = DC(E∞)/CD(E∞) is the quotient of the Lie algebraDC of all symmetries
of the Cartan distribution CE on E∞ by the space CD of trivial symmetries, tangent to the
distribution CE .

Conservation laws ωψ with generating function ψ are obtained from the dual equation

(`EFα)∗(ψ) = 0,

where ∆∗ is the formally dual to an operator ∆.
Remark 8 Both symmetries and conservation laws enter variational bi-complex or equiva-
lently C-spectral sequence for the system E , see [99, 92, 53, 1] and references therein.

Notice that classical (point and contact) symmetries as well as classical conservation
laws are widely used to find classes of exact solutions and partially integrate the system,
see [13, 78]. In fact, almost all known exact methods are based on the idea of symmetry or
intermediate integral [25, 20].

Due to Corollary 17 this also holds for higher symmetries/conservation laws. Indeed if
G = 〈ϕ1, . . . , ϕs〉 ⊂ sym(E) is a Lie subalgebra of symmetries of a compatible system E ,
then the joint system Ẽ = E ∩{ϕ1 = 0, . . . , ϕs = 0}, provided that regularity assumptions
are satisfied (this includes certain non-degeneracy condition), is compatible too.

Classical Lagrange-Charpit method [24, 27] for first order PDEs consists in a special
type overdetermination of the given system E , so that the new system is again compatible9.

8We take the affine chart to have formulas (2) representing Xϕ.
9This stays in contrast with the method of differential ansatz, where the additional equations are imposed

with only condition that the joint system is solvable.
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Generalized Lagrange-Charpit method [45] works for any system of PDEs and it also
consists in overdetermination to a compatible system.

For systems of scalar PDEs it is often more convenient to impose additional equations
Fr+1, . . . , Fr+s to the system E = {F1 = 0, . . . , Fr = 0}, so that the joint system Ẽ =
{F1 = 0, . . . , Fr+s = 0} is of complete intersection type. Then if E is compatible, the
compatibility of the sub-system Ẽ ⊂ E can be expressed as follows (see Corollary 17):

{Fi, Fj} = 0 mod Jki+kj−1(Ẽ) for 1 ≤ i ≤ r + s, r < j ≤ r + s.

Note that (15) is a particular case of these equations. For a system of vector PDEs
(rankπ > 1) the corresponding situation, when the compatibility condition writes ef-
fectively, should be the generalized complete intersection (see Theorem 16), and then the
conditions of generalized Lagrange-Charpit method can be written via multi-brackets.

Let us remark that intermediate integrals are partial cases of this approach (we called
additional PDEs Fr+1 = 0, . . . , Fr+s = 0 auxiliary integrals in [44]). More generally,
most integrability schemes (Lax pairs, Sato theory, commuting hierarchies etc) are closely
related to compatibility criteria.

For instance, Backlund transformations [83, 36] can be treated as follows. Let E1 =
{F1 = 0, . . . , Fr = 0} ⊂ J∞(π1) be a compatible system. Extend π1 ↪→ π = π1 ⊕ π2

and let us impose new PDEs {Fr+1 = 0, . . . , Fr+s = 0}, which are not auxiliary integrals
in the sense that the joint system Ẽ = {F1 = 0, . . . , Fr+s = 0} is not compatible. If
the compatibility conditions modulo the system E1 are reduced to a compatible system
E2 ⊂ J∞(π2), then any solution of E1 gives (families of) solutions of E2.

For the sin-Gordon equation uxy = sinu the additional equations are vx = sinw,
wy = sin v, u = v+w and we get E2 = E1 forw = u−v; here π1 = 1 (fiber coordinate u)
and π2 = 1 (fiber coordinate w).

Finally consider the classical Darboux method of integrability [14, 25, 3]. It is applied
to hyperbolic second-order PDEs F = 0 on the plane (if quasi-linear, then local point
transformation brings it to the form uxy = f(x, y, u, ux, uy); in general denote the char-
acteristic fields by X,Y ), which by a sequence of Laplace transformations reduce to the
trivial PDE uxy = 0.

In this case the equation possesses a closed form general solution depending on two
arbitrary functions of 1 variable. They are obtained via a pair of intermediate integrals
I1 = 0, I2 = 0, such that the system {F = 0, I1 = 0} is compatible and has one common
characteristic X , while the system {F = 0, I2 = 0} is compatible and has one common
characteristic Y . All three equations are compatible as well (and this system is already free
of characteristics, i.e. of finite type).

For Liouville equation uxy = eu the pair of second order intermediate integrals is
I1 = uxx − 1

2u
2
x = f(x) and I2 = uyy − 1

2u
2
y = g(y), i.e. we have Dy(I1) = 0 and

Dx(I2) = 0 on E .
Thus Darboux method can be treated as a particular case of generalized Lagrange-

Charpit method, but in this case we relax the condition of complete intersection (for overde-
termined system in dimension two this yields CharC(E) = ∅) to possibility of common
characteristics (in this case criterion of Theorem 16 fails and compatibility conditions be-
come of lower orders and simpler).
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4.5 Pseudogroups and differential invariants

Let a group G act on the manifold E by diffeomorphisms. Its action lifts naturally to the
jet-space Jk(E,m). An important modification of this situation is when G acts by contact
transformations on J1(E, 1).

A general G-representation via Lie transformations is a prolongation of one of these
by the Lie-Backlund theorem, see §1.4. We also investigate group actions on differential
equations E . We again require that the group acts by symmetries of CE , but now they need
not to be external, and if the system is not rigid (§4.4), they may not to be prolongation of
point of contact symmetries.

It is often assumed that G is a Lie group, because then one can exploit the formulas of
§1.5 to lift transformations to the higher jets, without usage of the inverse function theorem.

A function I is called a differential invariant of order k with respect to the action of G,
if it is constant on the orbits Gk · xk ⊂ Jk(E,m) of the lifted action. For connected Lie
groups this writes simpler: X̂(I) = 0, X ∈ g, where g = Lie(G) is the corresponding Lie
algebra.

Denote by Ik the algebra of differential invariants of order ≤ k. Then I = ∪Ik is
a filtered algebra, with the associated graded algebra O = ⊕Ok called the algebra of
covariants ([49]). The latter plays an important role in setting a Spencer-type calculus for
pseudo-groups ([50]).

Similar to invariant functions there are defined invariant (multi-) vector fields, invariant
differential forms, various invariant tensors, differential operators on jet-spaces etc.

Invariant differentiations play a special role in producing other differential invariants.
Levi-Civita connection is one of the most known examples. Tresse derivatives are the very
general class of such operations and they are defined as follows.

Suppose we have n = dimE−m differential invariants f1, . . . , fn on Ek ⊂ Jk(E,m).
Provided πk+1,k(Ek+1) = Ek we define the differential operator

∂̂i : C∞(Ek)→ C∞(E ′k+1),

where E ′k+1 is the open set of points xk+1 ∈ Ek+1 with

df1 ∧ . . . ∧ dfn|L(xk+1) 6= 0. (16)

We require that {fi}ni=1 are such that E ′k+1 is dense in Ek+1. For the trivial equation
Ei = J i(E,m) this is always the case. But if the equation E is proper, this is a requirement
of ”general position” for it. Given condition (16) we write:

df |L(xk+1) =
n∑
i=1

∂̂i(f)(xk+1) dfi|L(xk+1),

which defines the function ∂̂i(f) uniquely at all the points xk+1 ∈ E ′k+1. This yields an
invariant differentiation ∂̂i = ∂̂/∂̂fi : Ik → Ik+1. The expressions ∂̂i(f) = ∂̂f/∂̂fi are
called Tresse derivatives of f with respect to fi ([50]).

For affine charts Jk(π) ⊂ Jk(E,m) this definition coincides with the classical one
([98, 96, 78]). Consider some examples of calculations of scalar differential invariants10.

10Some of these facts are contained in classical textbooks. We obtained the formulas thanks to the wonderful
Mapple-11 package DiffGeom by I.Anderson.
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(1) Diffeomorphisms of the projective line.
1a. Left SL2-action. For a diffeomorphism f : RP1 → RP1 and g ∈ SL2(R) define

the left action by g(f) = g ◦ f . The corresponding Lie algebra g = sl(2) is generated
by the vector fields

〈
∂u, u∂u, u

2∂u
〉

on J0(R). The algebra I of differential invariants is
generated by x, the Schwartz derivative

j3 =
2p1p3 − 3p2

2

2p2
1

and all total derivatives Dkx(j3), k > 0.

1b. Right SL2-action. The right action of G = SL2(R) on RP1 is defined by the
formula: g(f) = f ◦ g−1. The corresponding Lie algebra g = sl(2) is generated by
the vector fields

〈
∂x, x∂x, x

2∂x
〉

on J0(R). The algebra I of differential invariants is
generated by u, the inverse Schwartz derivative

J3 =
2p1p3 − 3p2

2

2p4
1

and the Tresse derivatives
∂̂k

∂̂uk
(J3), k > 0.

(2) Curves in the classical plane geometries.
2a. Metric plane. The Lie algebra of plane motions m2 is generated by the vector fields

〈∂x, ∂u, x∂u − u∂x〉 on the plane R2 = J0(R). There is an m2-invariant differentiation
(metric arc)

∇ =
1√
p2

1 + 1
d

dx
,

and the algebra of m2-differential invariants is generated by the curvature

κ2 =
p2

(p2
1 + 1)3/2

and the derivatives ∇rκ2, r > 0.

2b. Conformal plane. The Lie algebra of plane conformal transformations co2 is gener-
ated by the vector fields 〈∂x, ∂u, x∂u − u∂x, x∂x + u∂u〉 on the plane R2 = J0(R). There
is a co2-invariant differentiation (conformal arc)

∇ =
p2

1 + 1
p2

d

dx
,

and the algebra of co2-differential invariants is generated by the conformal curvature

κ3 =
p2

1p3 + p3 − 3p1p
2
2

p2
2

and the derivatives ∇rκ3, r > 0.

2c. Symplectic plane. The Lie algebra of plane symplectic transformations sp2 is
generated by the vector fields 〈∂x, ∂u, x∂u, u∂x, x∂x − u∂u〉 on the plane R2 = J0(R).
There is an sp2-invariant differentiation (symplectic arc)

∇ =
1

3
√
p2

d

dx
,

and the algebra of sp2-differential invariants is generated by the symplectic curvature

κ4 =
3p2p4 − 5p2

3

3p8/3
2

and the derivatives ∇rκ4, r > 0.
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2d. Affine plane. The Lie algebra of plane affine transformations a2 is generated by
the vector fields 〈∂x, ∂u, x∂u, u∂x, x∂x, u∂u〉 on the plane R2 = J0(R). There is an a2-
invariant differentiation (affine arc)

∇ =
p2√

3p2p4 − 5p2
3

d

dx
,

and the algebra of a2-differential invariants is generated by the affine curvature

κ5 =
9p2

2p5 + 40p3
3 − 45p2p3p4

9(3p2p4 − 5p2
3)3/2

and the derivatives ∇rκ5, r > 0.

2e. Projective Plane. The Lie algebra of plane projective transformations sl3 is gener-
ated by the vector fields 〈∂x, ∂u, x∂u, u∂x, x∂x, u∂u, x2∂x + xu∂u, xu∂x + u2∂u〉 on the
plane R2 = J0(R).

There are two relative differential invariants:

Θ3 =
−9p2

2p5 + 45p2p3p4 − 40p3
3

54p3
2

, Θ8 = 6Θ3
d2Θ3

dx2
− 7

(dΘ3

dx

)2

of degrees 3 and 8, and of orders 5 and 7 respectively. There is also an sl3-invariant
differentiation (projective arc, or Study invariant differentiation)

∇ =
1

3
√

Θ3

d

dx
,

and the algebra of sl3-differential invariants is generated by the projective curvature

κ7 =
Θ3

8

Θ8
3

and the derivatives ∇rκ7, r > 0.

Pseudogroups are infinite-dimensional Lie groups, which can be obtained by integrat-
ing Lie equations [9, 17, 57, 86, 55]. Differential invariants and Tresse derivatives are
defined for them in the same manner.
Theorem 29 Algebra I of differential invariants of pseudogroup G action is finitely gen-
erated by algebraic operations and Tresse derivatives.

This theorem (with a proper assumption of regularity) was formulated and sketched by
A. Tresse [98], though important partial cases were considered before by S. Lie [61] (see
also [32]). The proof for (finite-dimensional) Lie groups was given by Ovsiannikov [79],
for pseudogroups acting on jet-spaces by Kumpera [54]. The general case of pseudogroups
G acting on systems of PDEs E was completed in [50].

Similar to Cartan-Kuranishi theorem one hopes that generic points of E are regular.
This is possible to show in good (algebraic/analytic) situations.

Pseudogroups constitute a special class of Lie equations. With general approach of
[50] one does not require their local integrability from the beginning. It is important that
passage from formal integrability to the local one is easier for pseudogroups compared to
general systems of PDEs. For instance, formally integrable transitive flat pseudogroups are
locally integrable [8, 81].

Pseudogroups are basic for solution of equivalence problem. Pseudogroups are also
fundamental for establishing special symmetric solutions of PDEs, they can be used to
multiply transversal solutions and in some cases (if the pseudogroup is big enough) to
integrate PDEs [79, 40, 13, 78, 92, 2, 58].
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4.6 Spencer D-cohomology

The Spencer differential

D : J k(π)⊗ Ωl(M)→ J k−1(π)⊗ Ωl+1(M)

is uniquely defined by the following conditions:

(i) D is R-linear and satisfies the Leibniz rule:

D(θ ⊗ ω) = D(θ) ∧ ω + πk,k−1(θ)⊗ dω, θ ∈ J k(π), ω ∈ Ωl(M).

(ii) The following sequence is exact:

0→ C∞(π)
jk→ J k(π) D→ J k−1(π)⊗ Ω1(M).

The latter operator can be described as follows. Let x ∈M , v ∈ TxM , θ ∈ J k(π) and
xk = θ(x) ∈ π−1

k (x). Since θ̃ = πk,k−1(θ) ∈ C∞(πk−1), the value Dvθ = iv ◦D(θ) ∈
Jk−1
x π equals ρv

k−1 ◦ (jk−1θ̃)∗(v), where

ρv
k−1 : Txk−1(Jk−1π) ' L(xk)⊕ Jk−1

x π → Jk−1
x π

is the projection to the second component (the splitting depends only on xk). ThusD(θ) =
0 if and only if θ̃(M) is an integral manifold of the Cartan distribution on Jk−1(π) and
therefore has the form jk−1(s), which yields θ = jk(s) for some s ∈ C∞(π).

The above geometric description implies that the Spencer operator D is natural, D ◦
πk+1,k = πk,k−1 ◦ D. Moreover let α : Eα → Mα and β : Eβ → Mβ be two vector
bundles and Ψ : α→ β be a morphism over a smooth map ψ : Mα →Mβ , ψ ◦α = β ◦Ψ,
such that Ψx : α−1(x) → β−1(ψ(x)) are linear isomorphisms for all x ∈ M . Then Ψ
generates a map of sections: Ψ∗ : C∞(β)→ C∞(α), where Ψ∗(h)(x) = Ψ−1

x

(
h(ψ(x))

)
.

This in turn generates a map of k-jets: Ψ∗k : J k(β) → J k(α) and Ψ∗k ◦ jk = jk ◦ Ψ∗.
Then naturality of D means that

D ◦Ψ∗k ⊗ ψ
∗ = Ψ∗k−1 ⊗ ψ

∗ ◦D.

The above properties of the Spencer differential yield D2 = 0. Hence the following
sequence is a complex:

0→ C∞(π)
jk→ J k(π) D→ J k−1(π)⊗Ω1(M) D→ · · · D→ J k−n(π)⊗Ωn(M)→ 0.

It is called the first (naive) Spencer complex.
Let E = {Ek ⊂ Jkπ} be a system of linear PDEs. Assume that E is formally integrable.

Then the 1-st Spencer complex can be restricted to E , meaning that D : Ek → Ek−1 ⊗
Ω1(M), where Ek = C∞(πk|Ek) denotes the space of sections (non-holonomic solutions
of Ek). The resulting complex

0→ Ek
D−→ Ek−1 ⊗ Ω1(M) D−→ · · · D−→ Ek−n ⊗ Ωn(M)→ 0 (17)

is called the first Spencer complex associated with the system E .
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The exact sequences 0 → gk → Ek → Ek−1 → 0 induce the exact sequences of the
Spencer complexes and this together with δ-lemma shows that the cohomology of the 1st

Spencer complex are stabilizing for sufficiently large k. The stable cohomology are called
Spencer D-cohomology of E and they are denoted by Hi

D(E), i = 0, 1, . . . , n.
Remark that H0

D(E) = Sol(E) is the space of global smooth solutions of E . Other
cohomology group Hi

D(E) describe the solutions spaces of the systems of PDEs corre-
sponding to the place i of the Spencer complex and H∗D(E) is a module over the de Rham
cohomology of the base H∗(M).

Due to the summands gk the first complex is not formally exact (=exact on the level
of formal series). The construction of the second (sophisticated) Spencer complex amends
this feature. This 2nd complex is defined as follows.

Pick a vector bundle morphism Θ : Ek → Ek+1 that is right-inverse to the projection
πk+1,k: πk+1,k ◦ Θ = id. Let DΘ = D ◦ Θ : Ek ⊗ Ωi(M) → Ek ⊗ Ωi+1(M). Another
right-inverse Θ′ : Ek → Ek+1 gives:

DΘ −DΘ′ : Ek ⊗ Ωi(M)→ δ(gk+1 ⊗ Ωi(M)).

Therefore for the quotient Cik = Ek ⊗ ΛiT ∗M/δ(gk+1 ⊗ Λi−1T ∗M) the factor-operators
(denoted by the same letter D) are well-defined and they constitute the factor complex

0→ C0
k

D−→ C1
k−1

D−→ · · · D−→ Cnk−n → 0,

which is called the 2nd Spencer complex. Its cohomology stabilize for sufficiently large
k and coincide with stable cohomology of the 1st Spencer complex. Moreover the second
Spencer D-complex is formally exact [88].

Another approach to the Spencer D-cohomology is via the compatibility complex. Let
∆1 : C∞(π1)→ C∞(π2) be a differential operator. Denote by ∆2 : C∞(π2)→ C∞(π3)
its compatibility operator, i.e. ∆2 ◦ ∆1 = 0 and Im[ψ∆1

∞ : J∞(π1) → J∞(π2)] =
Ker[ψ∆2

∞ : J∞(π2)→ J∞(π3)].
Denoting ∆3 the compatibility operator for the operator ∆2 and so on we get the com-

patibility complex

C∞(π1) ∆1−→ C∞(π2) ∆2−→ C∞(π3) ∆3−→ · · · .

Existence of such complexes was proved by Kuranishi (also Goldschmidt, see [88] and
references therein) whenever E = Ker(∆1) is formally integrable. Moreover any two
such formally exact complexes are homotopically equivalent. Hence the 2nd Spencer D-
complex provides us with an explicit construction of such a complex.

However the SpencerD-complexes are not necessary minimal in the sense that ranks of
the bundles πi can be reduced. Important method for constructing minimal compatibility
complexes comes from resolutions in commutative algebra. In such a form they can even
be generalized to the non-linear situation. For (non-linear) systems of generalized complete
intersection type the compatibility complexes were constructed in [52].
Remark 9 Since cohomology of a compatibility complex equalH∗D(E), this gives a way to
calculate non-linear Spencer D-cohomology. To define the non-linear version of Spencer
D-complex one can use the machinery of §2.4.
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4.7 Calculations of Spencer cohomology

Consider some examples.

(a) If E = Ker
[
∆ : C∞(π)→ C∞(π)

]
is a determined system of PDEs, CharC(∆) 6=

PCT ∗, then

H0
D(E) = Ker(∆) = Sol(E), H1

D(E) = Coker(∆) ' Ker(∆∗).

(b) Spencer D-cohomology of a system E of PDEs, defined by the de Rham differential
d : C∞(M) → Ω1(M), coincide with the de Rham’s cohomology of the base
manifold: H∗D(E) = H∗dR(M).

(c) Let ∇ : C∞(π) → C∞(π) ⊗ Ω1(M) be a flat connection. Then the Spencer
cohomology of the corresponding system E coincide with the de Rham cohomology
of M with coefficients in π: H∗D(E) = H∗∇(π).

(d) LetM be a complex manifold and π a holomorphic vector bundle over it. Denote by
Ωp,q(π) the (p, q)-forms on M with values in π. Then the Spencer D-cohomology
of the Cauchy-Riemann equation given by the operator ∂̄ : Ωp,0(π) → Ωp,1(π) are
the Dolbeault cohomology H∗

∂̄
(M,Ωp(π)).

(e) Let E be a formally integrable system of finite type. Then πk+1,k : Ek+1 → Ek are
isomorphisms for large k. Thus the Spencer differential D : Ek ' Ek+1 → Ek ⊗
Ω1(M) defines a flat (Cartan) connection∇ in the vector bundle πk and the Spencer
cohomology equal the de Rham cohomology of this connection: H∗D(E) = H∗∇(Ek).

Finally consider the calculations of Spencer cohomology using the technique of spec-
tral sequences. We will investigate a formally integrable system E = {Ek ⊂ Jkπ} of linear
PDEs of maximal order l in a bundle π : E →M .

Assume that the base manifold M is itself a total space of a fibre bundle κ : M → B.
We say that κ is a noncharacteristic bundle if all fibres Fb = κ−1(b), b ∈ B, are strongly
noncharacteristic for E in the sense of §3.2.

A vector field X on M is said to be vertical if κ∗(X) = 0. A differential form
θ ∈ Ei ⊗ Ωr(M) is called q-horizontal if X1 ∧ · · · ∧Xq+1cθ = 0 for any vertical vector
fields X1, . . . , Xq+1 on M . Denote by Ei ⊗ Ωrq(M) the module of q-horizontal elements
with Ei-values.

Let Fp,q = El−p−q ⊗ Ωp+qq (M). Then {Fp,q} gives a filtration of Spencer complex
(17) and D(Fp,q) ⊂ Fp,q+1. Denote by {Ep,qr , dp,qr : Ep,qr → Ep+r,q−r+1

r } the spectral
sequence associated with this filtration.

In order to describe the spectral sequence we assume that κ is a noncharacteristic
bundle and consider the restriction π̄b : Eb → Fb of the bundle π to a fibre Fb. Denote the
respective restrictions of πi : Ei → M to Fb by Ei;b (cf. §3.2 for restrictions of symbolic
systems). They satisfy the condition Ei+1;b ⊂ Ei (1)

;b . Due to Cartan-Kuranishi prolongation

theorem there exists a number i0 such that Ei+1;b ⊂ Ei (1)
;b for i ≥ i0.

We call system E(b) = {Ei;b ⊂ J i(π̄b)} the restriction of E to the fibreFb. By Theorem
13 involutivity of E implies involutivity of E = E(b) for all b ∈ B (in fact, the theorem
concerns only symbolic levels, while the claim involves restrictions of the Weyl tensors).
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Similar, E is formally integrable provided that E is formally integrable (but for the needs
of Spencer D-cohomology we can restrict to systems E |i〉 for i ≥ i0).

The following theorem is a generalization of the classical Leray-Serre theorem into the
context of Spencer cohomology.
Theorem 30 [66, 69]. Let E be a formally integrable system of linear PDEs on a bundle
π over M and let κ : M → B be a noncharacteristic bundle. Assume that the Spencer
D-cohomology H∗D

(
E(b)

)
form a smooth vector bundle over B. Then the above spectral

sequence Ep,qr converges to the Spencer D-cohomology H∗D(E) and the first terms of it
equal:

(0) Ep,q0 = Fp,q/Fp+1,q−1 ' El−p−q⊗C∞(M) [Ωq(κ)⊗C∞(B)Ωp(B)], where Ωq(κ) =
Ωq(M)/Ωqq−1(M) is a module of totally vertical q-forms;

(a) Ep,q1 'H
q
D(E)⊗ Ωp(B), the differential d0,q

1 : Hq
D(E)→ Hq

D(E)⊗ Ω1(B) is a flat
connection∇ on the bundle of Spencer cohomology Hq

D(E);

(b) Ep,q2 ' Ep,q2 = Hp
∇
(
B,Hq

D(E)
)
, i.e. the usual∇-de Rham cohomology with coeffi-

cients in the sheaf of sections of Spencer D-cohomology.

Assuming that the Spencer cohomology Hq
D(E) are finite dimensional we define the

Euler characteristic χ(E) as

χ(E) =
n∑
i=0

(−1)i dimHi(E).

Then the above theorem shows that χ(E) = χ(E) ·χB , where χB is the Euler characteristic
of B.
Remark 10 Borel theorem on computation of cohomology of homogeneous spaces to-
gether with Leray-Serre spectral sequence constitute the base for computations of de
Rham cohomology of smooth manifolds. Borel theorem was generalized to the context
of Spencer cohomology in [68], when the symmetry group was assumed compact.

Note that δ-estimate from §4.1 guarantees local exactness of the Spencer complex ([91,
74, 75], Theorem 24 is a partial case). Thus Spencer D-cohomology is the cohomology of
the base M with coefficients in the sheaf Solloc(E).

Finite-dimensionality of H∗(E) can be guaranteed if the system E is elliptic and the
manifoldM is compact. Another situations is the generalization of the above construction,
when the manifold M is foliated (not necessary fibered) and the leaves wind over the
manifold densely.

Finally we remark that vanishing of the Spencer cohomologyHq
D(E) = 0 means global

solvability of the PDEs corresponding to the operator D at the q-th place of the Spencer
complex, provided that compatibility conditions are satisfied.
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1 Introduction

The purpose of this paper is to present foundations of the theory of global, higher order
variational functionals for sections of fibred manifolds, and to review recent general de-
velopments in this field. We discuss basic concepts as well as new local and global results
obtained during a few last decades.

Connected with the progress in analysis on smooth manifolds, the classical concepts
like a Lagrangian, a variation, the Euler-Lagrange expressions, a symmetry transforma-
tion, etc., have been extended to manifolds. New methods based on a natural use of dif-
ferential forms, disributions, vector and tensor fields, jets, and on algebraic topology, have
been developed. Many new variational functionals and variational principles in physics
have been investigated.

The contents and structure of the presented theory differ in many aspects from the clas-
sical approach (compare e.g. with Gianessi and Maugeri [21], and Giaquinta and Hilde-
brandt [22]). Main innovations consist in the use of differential and integral calculus on
manifolds, needed for understanding of global structure of integral variational functionals.
The corresponding concepts, in particular, the calculus of differential forms and their Lie
derivatives, are recalled in Section 2 and Section 3. Further on, in Sections 4, 5, and 6 we
give fundamental definitions, and discuss properties of global variational functionals; key
concepts are the Lagrangian (Lagrange form), variation, and Euler-Lagrange form, whose
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components in a fibred chart define the Euler-Lagrange equations. We discuss general
properties of the Euler-Lagrange mapping, that assigns to a Lagrangian its Euler-Lagrange
form (variational triviality of Lagrangians, and variationality of source equations - the top-
ics closely related with the inverse problem of the calculus of variations). Next we present,
within the global context of fibred manifolds, the theory of Emmy Noether on invariant
variational functionals. Last part of this work is devoted to some selected open questions.

Our basic references are Goldshmidt and Sternberg [23] (the Cartan form, vector
valued Euler-Lagrange form, Hamilton theory, the Hamilton-Jacobi equation), Krupka
[41], [50] (first variation for higher order functionals, Lepage forms, structure of con-
tact forms and horizontalization, the Euler-Lagrange form, invariance), Garcı́a [19]
(Poincaré-Cartan form, connections and invariant variational operations, vector-valued
Euler-Lagrange form), Trautman [92], [93] (invariant variational functionals, Noether the-
ory), and Dedecker [15] (geometric concepts in the calculus of variations on grassmanni-
ans, regularity).

Later, many other authors contributed to different parts of the theory; for extensive
literature on all these topics, and many others, we refer to the works of Grigore, Helein
and Wood, Krupková and Prince, Saunders, and Vitolo, published in this book. We do
not consider in this paper several specific questions such as variational problems for sub-
manifolds (see e.g. Grigore [29], Grigore and Krupka [30], D. Krupka and M. Krupka
[57]), properties of the variational theory over 1-dimensional base manifolds (the higher
order mechanics), the theory of harmonic mappings, and minimal submanifolds, varia-
tional aspects of the theory of differential equations, variational principles in physics, and
the variational bicomplex theory.

Throughout this article, the following standard notations and conventions are applied.
R is the field of real numbers, and Rn is the n-dimensional Euclidean space of ordered
n-tuples of real numbers. All manifolds are real and finite-dimensional, and all mappings
belong to the categoryC∞. We freely use the symbolsD andDi, and ∂/∂xi for the deriva-
tive of a mapping, and partial derivatives, respectively. As usual in analysis on manifolds,
TX is the tangent bundle of a manifold X , and Tf is the tangent mapping of a map-
ping f between two manifolds; iξ and ∂ξ denote the contraction, and the Lie derivative of
differential forms by a vector field ξ on X , respectively.

Standard concepts applied in higher order global analysis and geometry are used with-
out special notice. Y denotes a fixed fibred manifold with base X and projection π, and
n = dimX , m = dimY − n. For any positive integer r, JrY denotes the r-jet prolon-
gation of Y , and πr,s : JrY → JsY , πr : JrY → X are the canonical jet projections;
we set J0Y = 0. If W is a set in Y , we denote W r = (πr,0)−1(W ). An element of the
set JrY , i.e., the r-jet of a section γ of Y at a point x ∈ X , is denoted Jrxγ; the r-jet
prolongation of γ is the mapping x → Jrγ(x) = Jrxγ. For any open set W ⊂ Y , the
ring of functions on W r is denoted by Ωr0W , and the Ωr0W -module of k-forms on W r is
denoted by ΩrkW . Ωrk,XW (Ωrk,YW ) is a submodule of ΩrkW formed by πr-horizontal
(πr,0-horizontal) forms. ΩrW is the exterior algebra of forms on W r.

Every fibred chart on Y , usually denoted by (V, ψ), ψ = (xi, yσ), where 1 ≤ i ≤ n,
1 ≤ σ ≤ m, induces the associated charts on JrY , and X , denoted by (V r, ψr), ψr =
(xi, yσ, yσj1 , y

σ
j1j2

, . . . , yσj1j2...jr ), where V r = (πr,0)−1(V ), and (U,ϕ), ϕ = (xi), where
U = π(V ). Sometimes we use multi-index notation for charts, and write ψr = (xi, yσJ ).
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We set

ω0 = dx1 ∧ dx2 ∧ . . . ∧ dxn,

ωi = i∂/∂xiω0 = (−1)i−1dx1 ∧ dx2 ∧ . . . ∧ dxi−1 ∧ dxi+1 ∧ . . . ∧ dxn,

ωi1i2...ik−1ik = i∂/∂xikωi1i2...ik−1 , 1 ≤ k ≤ n.

δij are the components of the Kronecker symbol, and εi1i2...in stands for the components
of the Levi-Civita (alternating) symbol. We also use a specific notation for the alterna-
tion operator applied to a given set of indices {i1, i2, . . . , ip}; we denote this operator by
Alt(i1i2 . . . ip). Then we have ωi1i2...in = εi1i2...in , and

dxk ∧ ωi1i2...ip+1 = (p+ 1)δkip+1
ωi1i2...ip Alt(i1i2 . . . ip+1),

ωi1i2...ik =
1

(n− k)!
εi1i2...iksk+1sk+2...sndx

sk+1 ∧ dxsk+2 ∧ . . . ∧ dxsn .

Analogously, the symmetrization operator in the set of indices {i1, i2, . . . , ip} is denoted
by Sym(i1i2 . . . ip).

In general, formal computations in this article, as well as the proofs, are shortened to a
minimum.

2 Prolongations of fibred manifolds

The aim of this introductory section is to recall basic concepts of the theory of jet pro-
longations of fibred manifolds, needed for understanding of the geometric structure of the
calculus of variations on fibred manifolds.

2.1 Fibred manifolds

Recall that a section of the fibred manifold Y is a mapping γ : W → Y , where W ⊂ X is
an open set, such that π ◦ γ = idW . γ is a section if and only if for every point x0 ∈ W
there exists a fibred chart (V, ψ), ψ = (ui, yσ), at γ(x0) ∈ W such that the associated
chart (U,ϕ), ϕ = (xi), satisfies γ(U) ⊂ W . In these charts, γ has equations of the form
ui ◦ γ = xi, yσ ◦ γ = fσ(xi).

Let Y1 (Y2) be a fibred manifold with baseX1 (X2) and projection π1 (π2). A mapping
α : Y1 → Y2 is called a morphism of Y1 into Y2, if there exists a mapping α0 : X1 → X2

such that π2 ◦ α = α0 ◦ π1. If α0 exists it is unique, and is called the projection of the
morphism α. A morphism of fibred manifolds α : Y1 → Y2, which is a diffeomorphism, is
called an isomorphism. The projection of an isomorphism of fibred manifolds is a diffeo-
morphism of their bases.

Let Y be a fibred manifold with base X and projection π. Let V be an open set in
Y , considered as a fibred manifold over the open set π(V ) in X . A morphism of fibred
manifolds α : V → Y is called a local automorphism of Y , if α(V ) is an open set in Y
and α is an isomorphism of V and α(V ) over the projection of α.

A morphism of fibred manifolds α : Y1 → Y2 is expressed in two fibred charts
(V1, ψ1), ψ1 = (xi1, y

σ
1 ), and (V2, ψ2), ψ2 = (xi2, y

σ
2 ), on Y1 and Y2, respectively, by
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equations of the form

xi2 = f i(xj1), yσ2 = gσ(xj1, y
ν
1 ). (1)

A tangent vector ξ ∈ TY is said to be π-vertical, or simply vertical, if Tπ · ξ = 0.
A differential p-form ρ on Y is said to be π-horizontal, or simply horizontal, if for each
point y ∈ Y , the contraction iξρ(y) of ρ(y) vanishes whenever ξ is a π-vertical vector
from the tangent space TyY . A vector field ξ on Y is said to be π-projectable, or simply
projectable, if there exists a vector field ζ on X such that

Tπ · ξ = ζ ◦ π. (2)

If ζ exists, it is unique, and is called the π-projection of ξ.
If αt is the local one-parameter group of ξ, then it is easily seen that ξ is π-projectable

if and only if each point y ∈ Y has a neighborhood V such that αt is defined on V for all
sufficiently small t and is an isomorphism of Y .

In a fibred chart (V, ψ), ψ = (xi, yσ), a π-projectable vector field ξ is expressed by

ξ = ξi
∂

∂xi
+ Ξσ

∂

∂yσ
, (3)

where ξi = ξi(xj), Ξσ = Ξσ(xj , yν).
Let U ∈ Rn be an open set, let W ∈ Rm be an open ball with centre at the origin, and

let ζ : U → U×W be the zero section. We define a mapping χ from the set [0, 1]×U×W
to U ×W by

χ(s, (xi, yσ)) = (xi, syσ). (4)

Then

χ∗dxi = dxi, χ∗dyσ = yσds+ sdyσ. (5)

For any k-form ρ on U ×W , where k ≥ 1, consider the pull-back χ∗ρ, which is a k-form
on [0, 1]× U ×W . Obviously, there exists a unique decomposition

χ∗ρ = ds ∧ ρ(0)(s) + ρ′(s) (6)

such that the k-forms ρ(0)(s) and ρ′(s) do not contain ds. Note that by (5), ρ′(s) arises
from ρ by replacing each factor dyσ by sdyσ , and by replacing each coefficient f in ρ by
f ◦ χ; the factors dxi remain unchanged. Thus, ρ′(s) obeys

ρ′(1) = ρ, ρ′(0) = π∗ζ∗ρ. (7)

Define

Iρ =
∫
ρ(0)(s), (8)

where the integral on the right-hand side means integration of the coefficients in the form
ρ(0)(s) over s from 0 to 1. If f : U ×W → R is a function, we define

If = 0. (9)

The mapping ρ→ Iρ is called the fibred homotopy operator.
The proofs of the following two results are standard.
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Lemma 1 For any differential k-form ρ on U ×W ,

ρ = Idρ+ dIρ+ π∗ζ∗ρ. (10)

Theorem 1 (The Volterra-Poincaré lemma) Let U ⊂ Rn be an open set, V ⊂ Rm an open
ball with centre 0, ρ a differential form on U × V . If dρ = 0, then there exists a form η on
U × V such that

ρ = dη + π∗ζ∗ρ. (11)

2.2 Prolongations

Let Y be a fibred manifold with base X and projection π, and let n = dimX , m =
dimY − n. We denote by JrY , where r ≥ 0, the r-jet prolongation of Y , and by πr,s :
JrY → JsY , πr : JrY → X the canonical jet projections. An element of the set JrY ,
i.e., the r-jet of a section γ of Y at a point x ∈ X , is denoted Jrxγ; the r-jet prolongation
of γ is the mapping x → Jrγ(x) = Jrxγ. Recall that any fibred chart (V, ψ), ψ =
(xi, yσ), on Y , where 1 ≤ i ≤ n, 1 ≤ σ ≤ m, induces the associated charts (V r, ψr),
ψr = (xi, yσ, yσj1 , y

σ
j1j2

, . . . , yσj1j2...jr ), on JrY , and (U,ϕ), ϕ = (xi), on X; here V r =
(πr,0)−1(V ), and U = π(V ). If W ⊂ Y is an open set, we denote W r = (πr,0)−1(W ).

Clearly, the concepts of verticality of vectors and horizontality of forms apply to the
canonical jet projections of JrY . For any open set W ⊂ Y , the ring of functions on
W r is denoted Ωr0W , and the Ωr0W -module of k-forms on W r is denoted ΩrkW . Ωrk,XW
(Ωrk,YW ) is a submodule of ΩrkW formed by πr-horizontal (πr,0-horizontal) forms. ΩrW
is the exterior algebra of forms on W r.

We introduce an exterior algebra morphism related to the structure of the jet prolonga-
tions of a fibred manifold. Let ρ be a differential k-form on W r, 0 ≤ k ≤ n. There exists
one and only one πr+1-horizontal k-form hρ on W r+1 such that Jrγ∗ρ = Jr+1γ∗hρ for
all sections γ of W . The existence of hρ follows from the definition of the pull-back of
forms. If k = 0 and f is a function, then at any point Jr+1

x γ ∈ (πr+1,r)−1(W ),

hf(Jr+1
x γ) = f(Jrxγ). (1)

If k ≥ 1, then for any Jr+1
x γ ∈ (πr+1,r)−1(W ), and any tangent vectors ξ1, ξ2, . . . , ξk ∈

TJrY at Jr+1
x γ,

hρ(Jr+1
x γ)(ξ1, ξ2, . . . , ξk)

= ρ(Jrxγ)(TxJrγ · Tπr+1 · ξ1, TxJ
rγ · Tπr+1 · ξ2, . . . , TxJ

rγ · Tπr+1 · ξk).
(2)

If k = 0, uniqueness is evident. If 1 ≤ k ≤ n, we use a fibred chart (V, ψ), ψ = (xi, yσ),
and express hρ as ρi1i2...ikdx

i1 ∧ dxi2 ∧ . . . ∧ dxik ; then the condition Jr+1γ∗hρ = 0 for
all γ implies ρi1i2...ik = 0. If k > 0, then hρ = 0 identically. Thus, since hρ always exists
and is unique, (1) and (2) may serve as definitions of hρ.

The mapping ΩrkW 3 ρ → hρ ∈ Ωr+1
k W is called the π-horizontalization, or simply

the horizontalization. The form hρ is the horizontal component of ρ.
We wish to show that the horizontalization can be considered as a morphism of exterior

algebras, induced locally by horizontalizations of functions and their exterior derivatives.
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Theorem 2 Let W be an open set in the fibred manifold Y . Then the horizontalization
ΩrW 3 ρ → hρ ∈ Ωr+1W is a unique R-linear, exterior-product-preserving mapping
such that for any function f : W r → R, and any fibred chart (V, ψ), ψ = (xi, yσ), in W ,

hf = f ◦ πr+1,r, h(df) = dif · dxi, (3)

where

dif =
∂f

∂xi
+

r∑
k=0

∑
j1≤j2≤...≤jk

∂f

∂yσj1j2...jk
yσj1j2...jki. (4)

The proof that h (1), (2) has the desired properties is standard. To prove uniqueness,
note that (3) and (4) imply hdxi = dxi and hdyσj1j2...jk = yσj1j2...jkidx

i. Now it is easy
to check that any two mappings h1, h2, satisfying the assumptions of Theorem 2, which
agree on functions and their exterior derivative, coincide.

The function dif : V r+1 → R is called the i-th formal derivative of f with respect
to the fibred chart (V, ψ). Note that formal derivatives (4) are components of an invariant
object, the horizontal component of the exterior derivative of a function.

In the following lemma, we list elementary properties of formal derivatives; the formal
derivative operator with respect to a fibred chart (V̄ , ψ̄), ψ̄ = (x̄i, ȳσ), is denoted by d̄i.
Lemma 2 Let (V, ψ), ψ = (xi, yσ), be a fibred chart on Y .

(a) The coordinate functions yνj1j2...jk satisfy

diy
ν
j1j2...jk

= yνj1j2...jki. (5)

(b) If (V̄ , ψ̄), ψ̄ = (x̄i, ȳσ), is another chart on Y such that V ∩ V̄ 6= ∅, then for every
function f : V r ∩ V̄ r → R,

d̄if = dif
∂xj

∂x̄i
. (6)

(c) For any two functions f, g : V r → R,

di(f · g) = g · dif + f · dig. (7)

(d) For every function f : V r → R, and every section γ : U → Y ,

dif ◦ Jr+1γ =
∂(f ◦ Jrγ)

∂x̄i
. (8)

Remark 1 By (5), ȳσj1j2...jk = d̄jk ȳ
σ
j1j2...jk−1

. Thus, applying (6) to coordinates, we ob-
tain the following prolongation formula for coordinate transformations in prolongations of
fibred manifolds

ȳσj1j2...jk = diȳ
σ
j1j2...jk−1

∂xi

∂x̄jk
. (9)
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We introduce a vector bundle morphism acting on tangent spaces to the jet prolon-
gations of a fibred manifold. Let r ≥ 0 be an integer. One can assign to every tan-
gent vector ξ ∈ TJr+1Y at a point Jr+1

x γ ∈ Jr+1Y a tangent vector hξ ∈ TJrY at
Jrxγ = πr+1,r(Jr+1

x γ) ∈ JrY by

hξ = TxJ
rγ ◦ Tπr+1 · ξ. (10)

The mapping h : TJr+1Y → TJrY defined by this formula is a vector bundle morphism
over the jet projection πr+1,r; we call h the π-horizontalization, or simply the horizontal-
ization.

It follows from the definition that the tangent vector hξ is πr+1-horizontal; we some-
times call hξ the horizontal component of ξ. A tangent vector ξ is a πr+1-vertical vector
if and only if hξ = 0.

Using a complementary construction, one can assign to every tangent vector ξ ∈
TJr+1Y at a point Jr+1

x γ ∈ Jr+1Y a tangent vector pξ ∈ TJrY at Jrxγ by

pξ = Tπr+1,r · ξ − hξ. (11)

We call pξ the contact component of ξ. It is immediate that pξ is a πr-vertical vector, and
ξ is πr+1,r-vertical if and only if hξ = 0, pξ = 0.

Let ξ ∈ TJr+1Y be a tangent vector at a point Jr+1
x γ ∈ Jr+1Y , and let (V, ψ),

ψ = (xi, yσ), be a fibred chart at the point y = γ(x) ∈ V . If ξ has an expression

ξ = ξi
∂

∂xi
+
r+1∑
k=0

∑
j1≤j2≤...≤jk

Ξσj1j2...jk
∂

∂yσj1j2...jk
, (12)

then

hξ = ξi

 ∂

∂xi
+

r∑
k=0

∑
j1≤j2≤...≤jk

yσj1j2...jki
∂

∂yσj1j2...jk

 , (13)

and by definition,

pξ =
r∑

k=0

∑
j1≤j2≤...≤jk

(
Ξσj1j2...jk − y

σ
j1j2...jki

ξi
) ∂

∂yσj1j2...jk
. (14)

Let α : V → Y be a local automorphism of Y , U = π(V ), and α0 : U → X the
projection of α. Let V r = (πr,0)−1(V ). We define a local automorphism Jrα : V r →
JrY of JrY by

Jrα(Jrxγ) = Jrα0(x)(αγα
−1
0 ). (15)

Jrα is called the r-jet prolongation, or just an r-prolongation of α. Note that for every
section γ defined on an open subset of U , with values in V , (15) implies

Jrα ◦ Jrγ ◦ α−1
0 = Jr(αγα−1

0 ), (16)

and vice versa. In particular, this formula shows that the r-jet prolongations of local auto-
morphisms carry sections of Y into sections of JrY .
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Lemma 3 (a) For any s, 0 ≤ s ≤ r,

πr ◦ Jrα = α0 ◦ πr, πr,s ◦ Jrα = Jsα ◦ πr,s. (17)

(b) If two isomorphisms α and β of Y are composable, then

Jrα ◦ Jrβ = Jr(α ◦ β). (18)

(c) For any isomorphism α of Y , and any differential form ρ on JrY ,

Jr+1α∗hρ = hJrα∗ρ. (19)

All these assertions are easy consequences of definitions.
Remark 2 We describe the r-jet prolongation of a isomorphism in terms of fibred charts.
Suppose that in two fibred charts on Y , (V, ψ), ψ = (xi, yσ), and (V̄ , ψ̄), ψ̄ = (x̄i, ȳσ),
α : V → Y is expressed by equations x̄i = f i(xj), ȳσ = gσ(xi, yν). Since for every
Jrxγ ∈ V r, the transformed point Jrα(Jrxγ) has the coordinates

x̄i ◦ Jrα(Jrxγ) = x̄i ◦ α0(x),

ȳσ ◦ Jrα(Jrxγ) = ȳσ ◦ α(γ(x)),

ȳσj1j2...jk ◦ J
rα(Jrxγ) = Dj1Dj2 . . . Djk(ȳσαγα−1

0 )(α0(x)),

(20)

we easily obtain a recurrent formula. If, for example, k = 2, we get

x̄i = f i(xj),

ȳσ = gσ(xi, yν),

ȳσj1 = dk1g
σ(xi, yν) · ∂x

k1

∂x̄j1
,

ȳσj1j2 = dk1dk2g
σ(xi, yν) · ∂x

k1

∂x̄j1
∂xk2

∂x̄j2
+ dk1g

σ(xi, yν) · ∂2xk1

∂x̄j1∂x̄j2
.

(21)

If the transformation equations for l < k are already given in the form

ȳσj1j2...jl = gσj1j2...jl(x
i, yν , yνi1 , y

ν
i1i2 , . . . , y

ν
i1i2...il

), (22)

then the chart expression of Jrα is defined by (21), (22), and

ȳσj1j2...jk = dig
σ
j1j2...jk−1

(xi, yν , yνi1 , y
ν
i1i2 , . . . , y

ν
i1i2...ik−1

) · ∂x
i

∂x̄jk
, 1 ≤ k ≤ r. (23)

Note that these transformation formulae are polynomial in yνi1 , yνi1i2 , . . ., yνi1i2...ir .

Let Ξ be π-projectable vector field on Y , ξ its π-projection, αt the local one-parameter
group of Ξ, and Jrαt the r-jet prolongation of αt. We define for each point Jrxγ belonging
to the domain of Jrαt

JrΞ(Jrxγ) =
(
d

dt
Jrαt(Jrxγ)

)
0

. (24)
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Then JrΞ is a vector field on JrY , called r-jet prolongation of Ξ. It follows from the
definition that JrΞ is πr-projectable (πr,s-projectable for any s, 0 ≤ s ≤ r) and its πr-
projection (πr,s-projection) is ξ (JsΞ).

The following lemma describes the local structure of the jet prolongations of pro-
jectable vector fields; its proof is based on the use of the chain rule.
Lemma 4 Let Ξ be a π-projectable vector field on Y , (V, ψ), ψ = (xi, yσ), a fibred chart
on Y , and let Ξ be expressed by

Ξ = ξi
∂

∂xi
+ Ξσ

∂

∂yσ
. (25)

Then JrΞ is expressed with respect to the associated chart (V r, ψr) by

JrΞ = ξi
∂

∂xi
+

r∑
k=0

∑
j1≤j2≤...≤jk

Ξσj1j2...jk
∂

∂yσj1j2...jk
, (26)

where the components Ξσj1j2...jk are determined by the recurrent formula

Ξσj1j2...jk = djkΞσj1j2...jk−1
− yσj1j2...jk−1i

∂ξi

∂xjk
. (27)

In the following lemma we discuss the Lie bracket operation on r-jet prolongations of
projectable vector fields, and the Lie derivatives of forms by these vector fields.
Lemma 5 (a) Let Ξ1 and Ξ2 be two π-projectable vector fields. Then the Lie bracket
[Ξ1,Ξ2] is also π-projectable, and

Jr[Ξ1,Ξ2] = [JrΞ1, J
rΞ2]. (28)

(b) For any π-projectable vector field Ξ, and any differential form ρ on JrY ,

∂Jr+1Ξhρ = h∂JrΞρ. (29)

To prove (a), we first prove (28) for r = 1 in fibred charts. Then we assume that
(28)holds for some r. Using the fibred manifold of non-holonomic jets J1JrY , i.e., the
1-jet prolongation of πr : JrY → X , we obtain J1[JrΞ1, J

rΞ2] = [J1JrΞ1, J
1JrΞ2].

Finally, we prove that J1Jr−1Ξ1 ◦ ι = Tι · JrΞ1, J1Jr−1Ξ2 ◦ ι = Tι · JrΞ2, and
Tι · (Jr[Ξ1,Ξ2]− [JrΞ1, J

rΞ2]) = 0, where ι is the canonical injection JrY 3 Jrxγ →
J1
xJ

r−1γ ∈ J1Jr−1Y . (b) follows from Lemma 3.

Now we consider restrictions of jet prolongations of projectable vector fields to jet
prolongations of section.
Lemma 6 Let Ξ1 and Ξ2 be two π-projectable vector fields, and suppose that Ξ1 ◦ γ =
Ξ2 ◦ γ for a section γ of Y . Then

JrΞ1 ◦ Jrγ = JrΞ2 ◦ Jrγ. (30)

To prove Lemma 6, we use the notation of Lemma 4, and write Ξ1, Ξ2 in a fibred chart;
we get for their components, ξi1 = ξi2, Ξσ1 ◦ γ = Ξσ2 ◦ γ. Then from Lemma 2, (d),

diΞσ1 (J1
xγ) = diΞσ1 ◦ J1γ(x) =

∂(Ξσ1 ◦ γ)
∂xi

=
∂(Ξσ2 ◦ γ)
∂xi

= diΞσ2 (J1
xγ). (31)
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Therefore, by Lemma 4, J1Ξ1 = J1Ξ2. Now we proceed by induction, using Lemma 2
and Lemma 4 again.
Remark 3 Some authors call the forms ωσJ the Cartan forms (usually in the context of vec-
tor bundles); diffeomorphisms, preserving the Cartan forms are called Lie transformations,
and the vector fields whose local one-parameter groups consist of Lie transformations, are
called Lie fields (cf. Krasilschik [38]).

3 Differential forms on prolongations of fibred manifolds

Our principal aim in this section is to develop a canonical decomposition theory of differen-
tial forms on jet prolongations of fibred manifolds; the tools inducing the decompositions
are the canonical jet projections. The proofs are based on the trace decomposition theory
(Krupka [52]).

3.1 The first canonical decomposition

Consider the horizontalization h : TJr+1Y → TJrY , introduced in Section 2. h induces
a decomposition of each of the modules of q-forms ΩrqW , where q ≥ 1, as follows. Let
ρ ∈ ΩrqW be a form, and let ξ1, ξ2, . . . , ξq be tangent vectors to Jr+1Y at a point Jr+1

x γ ∈
W r+1. We write for each i = 1, 2, . . . , q,

Tπr+1,r · ξi = hξi + pξi, (1)

and substitute these vectors in the pull-back (πr+1,r)∗ρ of ρ. Since

(πr+1,r)∗ρ(Jr+1
x γ)(ξ1, ξ2, . . . , ξq)

= ρ(Jrxγ)(Tπr+1,r · ξ1, Tπ
r+1,r · ξ2, . . . , Tπ

r+1,r · ξq),
(2)

collecting together all terms homogeneous of degree q − k in horizontal components hξ1,
hξ2, . . ., hξq of the vectors ξ1, ξ2, . . . , ξq where k = 0, 1, 2, . . . , q, we obtain a q-form pkρ
on W r+1, defined by

pkρ(Jr+1
x γ)(ξ1, ξ2, . . . , ξq) =

∑
j1<j2<...<jk

∑
jk+1<jk+2<...<jq

εj1j2...jkjk+1jk+2...jq

·ρ(Jrxγ)(pξj1 , pξj2 , . . . , pξjk , hξjk+1
, . . . , hξjq ),

(3)

or equivalently, by

pkρ(Jr+1
x γ)(ξ1, ξ2, . . . , ξq) =

1
k!(q − k)!

εj1j2...jkjk+1jk+2...jq

·ρ(Jrxγ)(pξj1 , pξj2 , . . . , pξjk , hξjk+1
, . . . , hξjq )

(4)

(summation through all values of the indices j1, j2, . . . , jk, jk+1, jk+2, . . . , jq). The form
pkρ is called the k-contact component of the form ρ.

If (πr+1,r)∗ρ = pkρ or, which is the same, if pjρ = 0 for all j 6= k; then the integer k
is called the degree of contactness of the form ρ. The degree of contactness of the q-form
ρ = 0 is equal to k for every k = 0, 1, 2, . . . , q. We say that ρ is of degree of contactness
≥ k, if hρ = 0, p1ρ = 0, . . . ,pk−1ρ = 0.
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It is convenient to write

hρ = p0ρ, pρ =
q∑
i=1

piρ, (5)

and extend the definition of h and p to functions. If f : W r → R is a function, we define

hf = (πr+1,r)∗f, pf = 0. (6)

Now if q ≥ 0 and ρ ∈ ΩrqW is a q-form, we call the form hρ (pρ) the horizontal (contact)
component of ρ. Clearly, (πr+1,r)∗ρ = hρ+ pρ, i.e.,

(πr+1,r)∗ρ = hρ+ pρ =
q∑
i=0

piρ. (7)

This formula is referred to as the first canonical decomposition of the form ρ (note however,
the decomposition concerns rather (πr+1,r)∗ρ than ρ itself).

If q ≥ 1, the form hρ is πr+1-horizontal. Moreover, hρ coincides with the hori-
zontal component of ρ; the mapping ΩrqW 3 ρ → hρ ∈ Ωr+1

q W coincides with the
π-horizontalization.

For every positive integer k, the mapping pk : ΩrW → Ωr+1W satisfies pk(ρ, η) =
pkρ+ pkη, pk(fη) = (f ◦ πr+1,r) · pkη for every ρ, η, and f ; pk is not a homomorphism
of exterior algebras.

3.2 Contact forms

For every non-negative integer q, we define in this subsection a submodule of contact q-
forms in the module ΩrqW . We first introduce contact q-forms for q = 0, 1, 2, . . . , n, and
then extend the definition to arbitary integers q ≥ n+ 1.

Let q ≤ n. Then we say that a form ρ, defined on W r, is contact, if hρ = 0. From this
definition it follows that a function f is contact if and only if f = 0.
Remark 1 If q > n, then

hρ = 0, p1ρ = 0, p2ρ = 0, . . . , pq−n−1ρ = 0 (1)

identically.
Lemma 1 Let W be an open set in Y , and let ρ ∈ ΩrqW be a form such that 1 ≤ q ≤ n.

(a) ρ is contact if and only if

Jrγ∗ρ = 0 (2)

for every differentiable section γ of Y defined on an open subset of π(W ).
(b) ρ is πr-horizontal if and only if

pρ = 0. (3)

We now discuss examples of contact 1-forms. Let (V, ψ), ψ = (xi, yσ), be a fibred
chart on Y . For every k, 0 ≤ k ≤ r − 1, we define differential 1-forms on V r ⊂ JrY by

ωσj1j2...jk = dyσj1j2...jk − y
σ
j1j2...jkj

dxj . (4)
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We can also use a multi-index notation, and write ωσJ = dyσJ − yσJjdxj for the form (4),
with J = (j1j2 . . . jk) and Jj = (j1j2 . . . jkj). It immediately follows from Lemma 1, (a)
that the 1-forms (4) are contact.

In the following theorem we summarize basic properties of the forms (4). We define a
section δ of JrY to be holonomic, if there exists a section γ such that δ = J1γ.
Theorem 1 (a) If (V, ψ), ψ = (xi, yσ), is a fibred chart on Y , then the forms

dxi, ωσJ , dyσI , (5)

where 0 ≤ |J | ≤ r − 1, and |I| = r, define a basis of linear forms on the set V r.
(b) If (V, ψ), ψ = (xi, yσ), and (V̄ , ψ̄), ψ̄ = (x̄i, ȳσ), are two fibred charts on Y such

that V ∩ V̄ 6= ∅, then

ω̄σJ =
∑
|I|≤|J|

∂ȳσJ
∂yνI

ωνI . (6)

(c) A section δ : U → J1Y is holonomic if and only if for any fibred chart (V, ψ),
ψ = (xi, yσ), such that π(V ) ⊂ U ,

δ∗ωσJ = 0 (7)

for all σ and J such that 1 ≤ σ ≤ m and 0 ≤ |J | ≤ r − 1.
(d) If q ≤ n− 1, the forms dωσJ are contact.

Formula (6) can be obtained by a direct calculation; we have

ω̄σJ =
∂ȳσJ
∂xj

dxj +
∑
|I|≤|J|

∂ȳσJ
∂yνI

dyνI − d̄j ȳσJ
∂x̄j

∂xk
dxk =

∑
|I|≤|J|

∂ȳσJ
∂yνI

ωνI . (8)

Condition (c) can be used as a holonomization condition.
The following observations are immediate consequences of Theorem 1.

Corollary 1 The forms dωσI obey the transformation laws

dω̄σJ =
∑
|I|≤|J|

(
d
∂ȳσJ
∂yνI
∧ ωνI +

∂ȳσJ
∂yνI
∧ dωνI

)
. (9)

Corollary 2 Let q be an integer, p = q, q − 1, q − 2, . . . ,max(q − n, 0), let k and l be
any non-negative integers such that k + l = p, and 2k + l ≤ q. Then the q=forms in the
module ΩrqW , locally generated by the forms

ωσ1
J1
∧ ωσ2

J2
∧ . . . ∧ ωσlJl ∧ ω

ν1
L1
∧ ων2

L2
∧ . . . ∧ ωνk−2

Lk−2

∧dωνk−1
Lk−1

∧ dωνkLk ∧ dx
ik+l+3 ∧ dxik+l+4 . . . ∧ dxiq

(10)

constitute a submodule of the module ΩrqW .

We list some computation rules for the contact forms (4).
Lemma 2 The following formulas hold

d(ωσj1j2...jk ∧ ωi1i2) = ωσj1j2...jki1 ∧ ωi2 − ω
σ
j1j2...jki2

∧ ωi1 , (11)
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ωσj1j2...jk ∧ ωi = ωσj1j2...jk ∧ ωi Sym(j1j2 . . . jki)

+
1

k + 1
d(ωσj2j3...jk ∧ ωj1i + ωσj1j3...jk ∧ ωj2i

+ωσj1j2j4...jk ∧ ωj3i + . . .+ ωσj1j2...jk−1
∧ ωjki),

(12)

and

ωσj1j2...jk ∧ dx
i1 ∧ dxi2 ∧ . . . ∧ dxin

= −nδi1j1dω
σ
j2j3...jk

∧ dxi2 ∧ dxi3 ∧ . . . ∧ dxin

Sym(j1j2 . . . jk) Alt(i1i2 . . . in).

(13)

Let now n+1 ≤ q ≤ dim JrY ; we define contact q-forms on induction. Let ρ ∈ ΩrqW
be a form. Since hρ = 0, p1ρ = 0, . . . , pq−n−1ρ = 0, the first canonical decomposition
of ρ has the form (πr+1,r)∗ρ = pq−nρ+ pq−n+1ρ+ . . .+ pqρ. ρ is said to be contact, if
for every point y0 ∈W there exists a fibred chart (V, ψ), ψ = (xi, yσ), at y0 and a contact
(q − 1)-form ρ′, defined on V r, such that

pq−n(ρ− dρ′) = 0. (14)

Contact forms define an Abelian subgroup Θr
qW of the Abelian group ΩrqW .

Remark 2 A q-form η such that pq−nη = 0 is characterized by the property that, in a
chart expression, the coefficient at the local volume element on X , dx1 ∧ dx2 ∧ . . .∧ dxn,
vanishes. Therefore, only products dxi1 ∧ dxi2 ∧ . . . ∧ dxik with 0 ≤ k ≤ n − 1 may
appear in the chart expression of η.
Lemma 3 Let n+ 1 ≤ q ≤ dim JrY .

(a) A form ρ ∈ ΩrqW is contact if and only if for every point y0 ∈ W there exists a
fibred chart (V, ψ), ψ = (xi, yσ), at y0, a contact (q − 1)-form ρ′, and a q-form ρ0 on V r

of order of contactness > q − n such that

ρ = ρ0 + dρ′. (15)

(b) The exterior derivative of a contact q-form is a contact (q + 1)-form.

Assertion (a) is a simple restatement of the definition, and (b) follows from formula
(15).
Remark 3 Let ρ ∈ ΩrqW be a form such that q ≤ n− 1. Since

(πr+2,r+1)∗hdρ = hdhρ, (16)

condition hρ = 0 implies hdρ = 0; in particular, if ρ is contact, then dρ is also contact.
On the other hand, if q ≥ n, we have

(πr+2,r+1)∗pq−n+1dρ = pq−n+1dpq−nρ+ pq−n+1dpq−n+1ρ, (17)

so it is not true, in general, that the condition pq−nρ = 0 implies pq−n+1dρ = 0. Note,
however, that by the definition of the Abelian groups Θr

qW , the exterior derivative of a
contact q-form is again a contact q-form.
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Theorem 2 LetW be an open set in Y , q ≥ 1 an integer, ρ ∈ ΩrqW a form, and let (V, ψ),
ψ = (xi, yσ), be a fibred chart on Y such that V ⊂ W . Assume that on V r, ρ has a chart
expression

ρ =
q∑
s=0

1
s!(q − s)!

AI1I2...Isσ1σ2...σsis+1is+2...iq
dyσ1
I1
∧ dyσ2

I2
∧ . . . ∧ dyσsIs

∧dxis+1 ∧ dxis+2 ∧ . . . ∧ dxiq .

(18)

Then the k-contact component pkρ of ρ has on V r+1 a chart expression

pkρ =
1

k!(q − k)!
BI1I2...Ikσ1σ2...σkik+1ik+2...iq

ωσ1
I1
∧ ωσ2

I2
∧ . . . ∧ ωσkIk

∧dxik+1 ∧ dxik+2 ∧ . . . ∧ dxiq ,
(19)

where

BI1I2...Ikσ1σ2...σkik+1ik+2...isis+1...iq
=

q∑
s=k

(
q − k
q − s

)
A
I1I2...IkIk+1Ik+2...Is
σ1σ2...σkσk+1σk+2...σsis+1is+2...iq

·yσk+1
Ik+1ik+1

y
σk+2
Ik+2ik+2

. . . yσsIsis Alt(ik+1ik+2 . . . isis+1 . . . iq).

(20)

Formula (20) can be derived by computing the value pkρ(Jr+1
x γ)(ξ1, ξ2, . . . , ξq) at

a point Jr+1
x γ ∈ V r+1 on tangent vectors ξ1, ξ2, . . . , ξq to Jr+1Y at this point, with ρ

expressed by (18).

3.3 The second canonical decomposition

We say that a form η is generated by a finite family of forms µλ, if η is expressible as
η = ηλ ∧ µλ for some forms ηλ; note that we do not require in this definition µλ to be
1-forms, or k-forms for a fixed integer k.

We now give three fundamental theorems on the structure of differential forms on jet
prolongations of fibred manifolds. Their proofs rely on algebraic operations, described by
the trace decomposition theory, and go outside the scope of this article.
Theorem 3 Let (V, ψ), ψ = (xi, yσ), be a fibred chart on Y , ρ ∈ ΩrqV a q-form. ρ has a
unique expression

ρ = ρ0 + ρ′ (1)

such that ρ0 is generated by contact 1-forms ωνJ with |J | ≤ r− 1 and contact 2-forms dωνI
with |I| = r − 1, and

ρ′ = Ai1i2...iqdx
i1 ∧ dxi2 ∧ . . . ∧ dxiq

+AI1σ1i2i3...iq
dyσ1
I1
∧ dxi2 ∧ dxi3 ∧ . . . ∧ dxiq

+AI1I2σ1σ2i3i4...iq
dyσ1
I1
∧ dyσ2

I2
∧ dxi3 ∧ dxi4 ∧ . . . ∧ dxiq

+ . . .+A
I1I2...Iq−1
σ1σ2...σq−1iq

dyσ1
I1
∧ dyσ2

I2
∧ . . . ∧ dyσq−1

Iq−1
∧ dxiq

+AI1I2...Iqσ1σ2...σqdy
σ1
I1
∧ dyσ2

I2
∧ . . . ∧ dyσqIq ,

(2)
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where the multi-indices I1, I2, . . . , Iq−1 are of length r, and all the coefficientsAI1σ1i2i3...iq
,

AI1I2σ1σ2i3i4...iq
, . . . , AI1I2...Iq−1

σ1σ2...σq−1iq
are traceless.

The decomposition (1) is called the canonical decomposition, associated with the chart
(V, ψ), or the second canonical decomposition of ρ.
Remark 4 It is easily seen that the decomposition (1) is not invariant.

If J and I are multi-indices such that |J | ≤ r − 2 and |I| ≤ r − 1, then

dωσJ = −dyσJj ∧ dxj = −ωσJj ∧ dxj , dωσI = −dyσIj ∧ dxj . (3)

In particular, the contact 2-forms dωσJ with |J | ≤ r − 2, are expressible as linear
combinations of the contact 1-forms ωσJ . On the other hand, the contact 2-forms dωσI ,
where |I| = r − 1, are not expressible as linear combinations of the contact forms ωσJ .

The following is the structure theorem for contact q-forms with 1 ≤ q ≤ n.
Theorem 5 Let W ⊂ Y be an open set, ρ ∈ ΩrqW a form, and let (V, ψ), ψ = (xi, yσ),
be a fibred chart such that V ⊂W .

(a) Let q = 1. Then ρ is π-contact if and only if

ρ = ΦJσω
σ
J (4)

for some functions ΦJσ : V r → R, where |J | ≤ r − 1.
(b) Let 2 ≤ q ≤ n. Then ρ is π-contact if and only if

ρ = ωσJ ∧ ΦJσ + dωσI ∧ΨI
σ, (5)

where ΦJσ (ΨI
σ) are some (q−1)-forms ((q−2)-forms) on V r, and |J | ≤ r−1, |I| = r−1.

We now turn to the case of q-forms such that q ≥ n + 1. We find a formula for forms
ρ, satisfying pq−nρ = 0; this gives us, together with the definition, a characterization of
contact forms.
Theorem 6 Let W ⊂ Y be an open set, q an integer such that n + 1 ≤ q ≤ dim JrY ,
ρ ∈ ΩrqW a form, and let (V, ψ), ψ = (xi, yσ), be a fibred chart such that V ⊂ W . Then
ρ satisfies pq−nρ = 0 if and only if

ρ =
∑

q−n+1≤p+s
p+2s≤q

ωσ1
J1
∧ ωσ2

J2
∧ . . . ∧ ωσpJp

∧dων1
I1
∧ dων2

I2
∧ . . . ∧ dωνsIs ∧ ΦJ1J2...JpI1I2...Is

σ1σ2...σpν1ν2...νs ,

(6)

where |J1|, |J2|, . . . , |Jp| ≤ r − 1, |I1|, |I2|, . . . , |Is| = r − 1, and ΦJ1J2...JpI1I2...Is
σ1σ2...σpν1ν2...νs are

some (q − p− 2s)-forms on V r.

Note that the summation in expression (6) can also be expressed as

ρ =
∑

0≤p≤q

∑
q−p−n+1≤s≤1/2(q−p)

ωσ1
J1
∧ ωσ2

J2
∧ . . . ∧ ωσpJp

∧dων1
I1
∧ dων2

I2
∧ . . . ∧ dωνsIs ∧ ΦJ1J2...JpI1I2...Is

σ1σ2...σpν1ν2...νs .

(7)
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3.4 Contact components and geometric operations

Now we study the differential-geometric operations on forms, such as the wedge product
∧, the exterior derivative d, the contraction iζ of a form by a vector ζ, and the Lie derivative
∂ξ by a vector field ξ. The following formulas are immediate consequences of definitions.
Theorem 7 Let ρ and η be two differential forms on JrY , Jr+1

x γ ∈ Jr+1Y a point, ζ a
tangent vector at this point, and ξ a π-projectable vector field on Y . Then

pk(ρ ∧ η) =
∑
i+j=k

piρ ∧ pjη, (1)

iζpkρ(Jr+1
x γ) = pk−1ipζρ(Jr+1

x γ) + pkihζρ(Jr+1
x γ), (2)

pk(Jrα∗ρ) = Jr+1α∗pkρ, (3)

pk(∂Jrξρ) = ∂Jr+1ξpkρ, (4)

(πr+2,r+1)∗pkdρ = pkdpk−1ρ+ pkdpkρ. (5)

Remark 5 If k = 0, then (1) reduces to the condition h(ρ∧ η) = hρ∧ hη, stating that h is
an exterior algebra morphism.
Remark 6 If ζ is a πr+1-vertical, πr+1,r-projectable vector field, with πr+1,r-projection
ζ0, then pζ = ζ0, and

iζpkρ = pk−1iζ0
ρ. (6)

3.5 Fibred homotopy operators

In this subsection we specify and refine the concept of a fibred homotopy operator, intro-
duced in Subsection 2.1 for differential forms on fibred manifolds.

Let U ⊂ Rn be an open set, let W ⊂ Rm be an open ball with centre at the origin,
and denote V = U × W . We consider V as a fibred manifold over U with the first
Cartesian projection π : V → U , and denote by V s the s-jet prolongation of V ; explicitly,
V s = Js(U ×W ), that is,

V s = U ×W × L(Rn,Rm)× L2
sym(Rn,Rm)× . . .× Lssym(Rn,Rm), (1)

where Lksym(Rn,Rm) is the vector space of k-linear, symmetric mappings from Rn to Rm.
The Cartesian coordinates on V , and the associated jet coordinates on V s, are denoted by
xi, yσ , and xi, yσ , yσj1 , yσj1j2 , . . . , yσj1j2...js , respectively. We denote by ζs : U → V s the
zero section.

We have a mapping χs, from the set [0, 1]× V s to V s, given by

χs(t, (x
i, yσ, yσj1 , y

σ
j1j2 , . . . , y

σ
j1j2...js)) = (xi, tyσ, tyσj1 , ty

σ
j1j2 , . . . , ty

σ
j1j2...js). (2)

χs defines the fibred homotopy operator Is, assigning to a k-form ρ on V s, where k ≥ 1,
a (k − 1)-form Isρ on V s, such that

ρ = Isdρ+ dIsρ+ (πs)∗ζ∗ρ. (3)
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Recall that by definition,

Isρ =
∫
Is,0ρ (4)

(integration through t from 0 to 1), where Is,0ρ is defined by the decomposition

χ∗sρ = dt ∧ Is,0ρ+ I ′sρ (5)

such that the k-forms Is,0ρ and I ′sρ do not contain dt.
Lemma 4 (a) The mapping χs satisfies

χ∗sdx
i = dxi, χ∗sdy

σ
J = yσJdt+ tdyσJ , 0 ≤ |J | ≤ s,

χ∗sω
σ
J = yσJdt+ tωσJ , 0 ≤ |J | ≤ s− 1.

(6)

(b) Let q ≥ 1 and let ρ ∈ ΩrqV be a q-form. Then for every k, 1 ≤ k ≤ q,

Is+1pkρ = pk−1Isρ. (7)

Remark 8 The fibred homotopy operator χs, defined by (2), corresponds with the projec-
tion πs,0 : V s → V . Note, however, that one can also consider different fibred homotopies,
associated with the projection πs,r : V s → V r,

χ(t, (xi, yσ, yσj1 , y
σ
j1j2 , . . . , y

σ
j1j2...jr , y

σ
j1j2...jr+1

, . . . , yσj1j2...js))

= (xi, yσ, yσj1 , y
σ
j1j2 , . . . , y

σ
j1j2...jr , ty

σ
j1j2...jr+1

, . . . , tyσj1j2...js).
(8)

As a consequence of Lemma 2 we show that every closed contact form ρ on JrY can
locally be expressed as ρ = dη for some contact form η.
Lemma 5 Let 1 ≤ q ≤ n, and let ρ be a contact q-form on JrY . Then the following two
conditions are equivalent:

(a) p1dρ = 0.
(b) In any fibred chart, ρ has a chart expression

ρ = ρ0 + dη, (9)

where the order of contactness of ρ0 is ≥ 2 and η is a contact form.

The proof is based on the second canonical decomposition theorem.

We can now easily conclude that the following assertion holds.
Theorem 8 Let q be a positive integer, and let ρ ∈ ΩrqW be a contact q-form. The
following conditions are equivalent:

(a) dρ = 0.
(b) For every point y0 ∈W there exists a fibred chart (V, ψ), ψ = (xi, yσ), at y0, such

that V ⊂W , and a contact (q − 1)-form µ, defined on V r, such that ρ = dµ.
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4 Lagrange structures

Throughout this section, Y is a fibred manifold with orientable base manifold X , and
projection π. However, orientability of X is not an essential assumption; replacing dif-
ferential forms by odd base differential forms, one can also develop the variational theory
for non-orientable bases X (cf. Krupka [47], Krupka and Musilová [61]). Variational
functionals, defined on fibred manifolds over non-orientable bases, appear in the general
relativity theory.

4.1 Variational functionals

Let W be an open set in Y . A Lagrangian for Y is a πr-horizontal n-form λ on a subset
W r ⊂ JrY . The number r is called the order of λ. In a fibred chart (V, ψ), ψ = (xi, yσ),
on Y , λ has an expression

λ = Lω0, (1)

where L : V r → R is the component of λ with respect to (V, ψ). L is called the Lagrange
function associated with λ and (V, ψ). A pair (Y, λ), where λ is a Lagrangian for Y , is
called a Lagrange structure.

Let W ⊂ Y be an open set, and let λ ∈ Ωrn,XW be a Lagrangian of order r for π. Let
Ω ⊂ π(W ) be a compact, n-dimensional submanifold of X with boundary ∂X (a piece
of X). Denote by ΓΩ,W (π) the set of smooth sections of π over Ω, such that γ(Ω) ⊂ W .
Then for any section γ ∈ ΓΩ,W (π) of Y , the pull-back Jrγ∗λ is an n-form on an open
subset of the n-dimensional base manifold X , which can be integrated over Ω. Thus, λ
defines a real function ΓΩ,W (π) 3 γ → λΩ(γ) ∈ R by

λΩ(γ) =
∫
Ω

Jrγ∗λ. (2)

λΩ is called the variational functional over Ω, associated with λ; sometimes λΩ is also
called the action function, associated with λ.

The subject of the variational analysis on fibred manifolds is to study the behaviour
of variational functionals on set of sections ΓΩ,W (π), or on subsets of this set, defined by
some additional conditions (constraints). Sometimes the integration domain Ω is not fixed,
but is arbitrary. Then formula (2) defines a family of variational functionals labelled by Ω.

Every n-form ρ ∈ Ωr−1
n W defines a Lagrangian of order r for Y , namely the La-

grangian λ = hρ, the horizontal component of ρ. This Lagrangian is said to be asso-
ciated with ρ. Recall that hρ is a unique πr-horizontal form on W r ⊂ JrY such that
Jr−1γ∗ρ = Jrγ∗hρ for all sections γ of Y defined on U = π(W ). In particular, the
variational functional λΩ is expressible in the form

λΩ(γ) =
∫
Ω

Jrγ∗hρ =
∫
Ω

Jr−1γ∗ρ. (3)

4.2 Variational derivatives

Let U be an open subset of X , let γ : U → Y be a section. Let ξ be a π-projectable vector
field on an open set W ⊂ Y such that γ(U) ⊂ W . If αt is the local 1-parameter group of
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ξ, and α(0)t its π-projection, then

γt = αtγα
−1
(0)t (1)

is a 1-parameter family of sections of Y , depending smoothly on the parameter t. Indeed,
since παt = α(0)tπ, we have

πγt(x) = παtγα
−1
(0)t(x) = α(0)tπγα

−1
(0)t(x)

= α(0)tα
−1
(0)t(x) = x

(2)

on the domain of γt. The family γt is called the variation, or deformation, of the section
γ, induced by the vector field ξ.

Let U ⊂ X be an open set, and let γ : U → Y be a section. Recall that a vector field
along γ is a mapping Ξ : U → TY such that for every point x ∈ U , Ξ(x) ∈ Tγ(x)Y . The
formula

ξ0 = Tπ · Ξ (3)

then defines a vector field ξ0 on U , called the π-projection of Ξ.
The following theorem says that every vector field along a section can be extended to

a π-projectable vector field. Moreover, the notion of the r-jet prolongation can be general-
ized to vector fields along sections.
Theorem 1 Let γ be a section of Y defined on an open set U , Ξ a vector field along γ.

(a) There exists a π-projectable vector field ξ, defined on a neighbourhood of the set
γ(U) ⊂ Y , such that for each x ∈ U ,

ξ(γ(x)) = Ξ(x). (4)

(b) Any two π-projectable vector fields ξ1, ξ2, defined on a neighbourhood of γ(U),
such that ξ1(γ(x)) = ξ2(γ(x)) = Ξ(x) for all x ∈ U , satisfy

Jrξ1(Jrxγ) = Jrξ2(Jrxγ). (5)

Assertion (a) can be proved by means of a partition of unity, (b) follows from the
structure of prolonged local automorphism of a fibred manifold.

A π-projectable vector field ξ , satisfying condition (a) of Theorem 1, is called a π-
projectable extension of Ξ. Using (b) we may define

JrΞ(Jrxγ) = Jrξ(Jrxγ) (6)

for any π-projectable extension ξ of Ξ. Then JrΞ is a vector field along the r-jet prolon-
gation Jrγ of γ; we call this vector field the r-jet prolongation of Ξ.

Variations of sections induce the corresponding changes (variations) of the values of
variational functionals. Let λ ∈ ΩrnW be a Lagrangian of order r, Ω ⊂ π(W ) a piece of
X . Choose an element γ ∈ ΓΩ,W (π) and a π-projectable vector field ξ onW , and consider
the variation of γ, induced by ξ (see formula (1)). Since the domain of γt contains Ω for
all sufficiently small t, the value of the variational functional ΓΩ,W (π) 3 γ → λΩ(γ) ∈ R
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at γt is defined, and we get a real-valued function, defined on a neighbourhood (−ε, ε) of
the point 0 ∈ R,

(−ε, ε) 3 t→ λα(0)t(Ω)(αtγα−1
(0)t) =

∫
α(0)t(Ω)

(Jr(αtγα−1
(0)t))

∗λ ∈ R. (7)

It is easily seen that this function is smooth. Since

Jr(αtγα−1
(0)t)

∗λ =
(
α−1

(0)t

)∗
Jrγ∗Jrα∗tλ, (8)

where Jrαt is the local 1-parameter group of the r-jet prolongation Jrξ of the vector field
ξ, we have, using properties of the pull-back operation and the theorem on transformation
of the integration domain,∫

α(0)t(Ω)

(Jr(αtγα−1
(0)t))

∗λ =
∫
Ω

Jrγ∗(Jrαt)∗λ. (9)

Thus, since Ω is compact, differentiability of (7) follows from the theorem on differentia-
tion of an integral, depending upon a parameter.

Differentiating (7) at t = 0 one obtains, using (9) and the definition of the Lie deriva-
tive, (

d

dt
λα(0)t(Ω)(αtγα−1

(0)t)
)

0

=
∫
Ω

Jrγ∗∂Jrξλ. (10)

Note that this expression can be written as

(∂Jrξλ)Ω(γ) =
∫
Ω

Jrγ∗∂Jrξλ. (11)

The number (11) is called the variation of the integral variational functional λΩ at the point
γ, induced by the vector field ξ.

This formula shows that the function ΓΩ,W (π) 3 γ → (∂Jrξλ)Ω(γ) ∈ R is the varia-
tional functional (over Ω), associated with the Lagrangian ∂Jrξλ. We call this function the
variational derivative, or the first variation of the variational functional λΩ by the vector
field ξ.

Formula (11) admits a direct generalization. If ζ is another π-projectable vector field on
W , then the second variational derivative, or the second variation, of the variational func-
tion λΩ by the vector fields ξ and ζ, is the mapping ΓΩ,W (π) 3 γ → (∂Jrζ∂Jrξλ)Ω(γ) ∈
R, defined by the formula

(∂Jrζ∂Jrξλ)Ω(γ) =
∫
Ω

Jrγ∗∂Jrζ∂Jrξλ. (12)

It is now obvious how higher-order variational derivatives are defined.
A section γ ∈ ΓΩ,W (π) is called a stable point of the variational functional λΩ with

respect to its variation ξ, if

(∂Jrξλ)Ω(γ) = 0. (13)
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In practice, one usually requires that a section be a stable point with respect to a family of
its variations, defined by the problem considered.

If ρ is an n-form on Jr−1Y and λ = hρ is the associated Lagrangian, then the variation
of the integral variational functional λΩ at a point γ, induced by the vector field ξ, satisfies∫

Ω

Jrγ∗∂Jrξhρ =
∫
Ω

Jr−1γ∗∂Jr−1ξρ. (14)

In particular,

(∂Jrξhρ)Ω = (h∂Jr−1ξρ)Ω. (15)

4.3 Lepage forms

We introduce in this subsection a class of n-forms ρ on JrY by imposing certain conditions
on the exterior derivative dρ. We need three lemmas.
Lemma 1 Let π : Y → X be a fibred manifold, and let ζ be a vector field on X . There
exists a π-projectable vector field ξ on Y whose π-projection is ζ.

One can construct ξ from ζ with the help of an atlas, consisting of fibred chart, and a
subordinate partition of unity.

Let s ≥ 0 be an integer, let ρ ∈ ΩsnW be a form. The pull-back (πs+1,s)∗ρ has an
expression

(πs+1,s)∗ρ = f0ω0 +
s∑

k=0

f i,j1j2...jkσ ωσj1j2...jk ∧ ωi + η, (1)

where the order of contactness of η is ≥ 2. We show that the symmetric component of the
coefficient f js+1,j1j2...js

σ in this expression is always determined by f0.
Lemma 2 The coefficients in the chart expression (1) satisfy

f js+1,j1j2...js
σ =

∂f0

∂yσj1j2...jsjs+1

+ f̃ js+1,j1j2...js
σ , (2)

where

f̃ js+1,j1j2...js
σ = 0 Sym(j1j2 . . . jsjs+1). (3)

To prove (2), note that the form d(πs+1,s)∗ρ has an expression

(πs+1,s)∗dρ = df0 ∧ ω0 +
s∑

k=0

df i,j1j2...jkσ ∧ ωσj1j2...jk ∧ ωi

+
s∑

k=0

f i,j1j2...jkσ dωσj1j2...jk ∧ ωi + dη.

(4)

Since d(πs+1,s)∗ρ = (πs+1,s)∗dρ is πs+1,s-projectable, the coefficient at the forms
dyσj1j2...jsjs+1

∧ ω0 on the right should vanish identically. But all terms containing these
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forms are

∂f0

∂yσj1j2...js+1

dyσj1j2...jsjs+1
∧ ω0 − f i,j1j2...jsσ dyσj1j2...jsl ∧ dx

l ∧ ωi

=

(
∂f0

∂yσj1j2...js+1

− f js+1,j1j2...js
σ

)
dyσj1j2...jsjs+1

∧ ω0,

(5)

proving (2).
Lemma 3 Let W ⊂ Y be an open set, and let ρ ∈ ΩsnW . The following three conditions
are equivalent:

(a) p1dρ is a πs+1,0-horizontal (n+ 1)-form.
(b) For each πs,0-vertical vector field ξ on W s,

hiξdρ = 0. (6)

(c) (πs+1,s)∗ρ has a chart expression (1), where

∂f0

∂yσj1j2...jk
− dpfp,j1j2...jkσ − f jk,j1j2...jk−1

σ = 0 Sym(j1j2 . . . jk),

1 ≤ k ≤ s,

∂f0

∂yσj1j2...js+1

− f js+1,j1j2...js
σ = 0 Sym(j1j2 . . . js+1).

(7)

To prove Lemma 3, we proceed in two steps.
1. Let ξ be a vector field on W s, and let Ξ be a vector field on W s+1 such that

Tπs+1,s · Ξ = ξ ◦ πs+1,s (Lemma 1). Then iΞ(πs+1,s)∗dρ = (πs+1,s)∗iξdρ, and the
forms on both sides can be canonically decomposed into their contact components. We
have

iΞp1dρ+ iΞp2dρ+ . . .+ iΞpn+1dρ = hiξdρ+ p1iξdρ+ . . .+ pniξdρ. (8)

Comparing the horizontal components on both sides we get

hiΞp1dρ = (πs+2,s+1)∗hiξdρ. (9)

Let p1dρ be πs+1,0-horizontal. Thus, if ξ is πs,0-vertical, then Ξ is πs+1,0-vertical, and
we get hiΞp1dρ = (πs+2,s+1)∗hiξdρ = 0, which implies, by injectivity of the mapping
(πs+2,s+1)∗, that hiξdρ = 0. Conversely, let hiξdρ = 0 for each πs,0-vertical vector field
ξ. Then by (9), hiΞp1dρ = iΞp1dρ = 0 for all πs+1,s-projectable, πs+1,0-vertical vector
fields Ξ. If in a fibred chart,

Ξ =
s+1∑
k=1

Ξσj1j2...jk
∂

∂yσj1j2...jk
, p1dρ =

s∑
k=0

Aj1j2...jkσ ωσj1j2...jk ∧ ω0, (10)

we get

Aj1j2...jkσ = 0, 1 ≤ k ≤ s, (11)
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proving πs+1,0-horizontality of p1dρ. Thus, conditions (a) and (b) are equivalent.
2. Express (πs+1,s)∗ρ in a fibred chart by (1). Then

p1dρ =
(
∂f0

∂yσ
− dpfpσ

)
ωσ ∧ ω0

+
s∑

k=1

(
∂f0

∂yσj1j2...jk
− dpfp,j1j2...jkσ − f jk,j1j2...jk−1

σ

)
ωσj1j2...jk ∧ ω0

+

(
∂f0

∂yσj1j2...js+1

− f js+1,j1j2...js
σ

)
ωσj1j2...jsjs+1

∧ ω0.

(12)

Since the last term vanishes identically (Lemma 2), we get

p1dρ =
(
∂f0

∂yσ
− dpfpσ

)
ωσ ∧ ω0

+
s∑

k=1

(
∂f0

∂yσj1j2...jk
− dpfp,j1j2...jkσ − f jk,j1j2...jk−1

σ

)
ωσj1j2...jk ∧ ω0.

(13)

This formula proves equivalence of conditions (a) and (c).

Any form ρ ∈ ΩsnW satisfying equivalent conditions of Lemma 3 is called a Lepage
form.

The following basic theorem describes the structure of Lepage forms.
Theorem 2 Let W ⊂ Y be an open set. A form ρ ∈ ΩsnW is a Lepage form if and only
if for any fibred chart (V, ψ), ψ = (xi, yσ), on Y such that V ⊂ W , (πs+1,s)∗ρ has an
expression

(πs+1,s)∗ρ = Θ + dµ+ η, (14)

where

Θ = f0ω0 +
s∑

k=0

(
s−k∑
l=0

(−1)ldp1dp2 . . . dpl
∂f0

∂yσj1j2...jkp1p2...pli

)
ωσj1j2...jk ∧ ωi, (15)

f0 is a function, defined by the chart expression hρ = f0ω0 , µ is a contact (n− 1)-form,
and the order of contactness of η is ≥ 2.

We prove Theorem 2 in four steps.
1. Decomposing the systems of functions fp,j1j2...jkσ (1) into their symmetric and

complementary parts, we have

fp,j1j2...jkσ = F p,j1j2...jkσ +Gp,j1j2...jkσ , (16)

where

F p,j1j2...jkσ = fp,j1j2...jkσ Sym(pj1j2 . . . jk),

Gp,j1j2...jkσ = 0 Sym(pj1j2 . . . jk), 1 ≤ k ≤ s.
(17)
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The function Gp,j1j2...jkσ is the sum of k terms corresponding to symmetries of Young
schemes with one row (of k elements) and one column (of two elements).

Then by (7),

F jk,j1j2...jk−1
σ =

∂f0

∂yσj1j2...jk
− dpF p,j1j2...jkσ − dpGp,j1j2...jkσ ,

1 ≤ k ≤ s,

F js+1,j1j2...js
σ =

∂f0

∂yσj1j2...js+1

,

(18)

and we obtain

F jk,j1j2...jk−1
σ =

∂f0

∂yσj1j2...jk
− dp1

∂f0

∂yσj1j2...jkp1

+ dp2dp1

∂f0

∂yσj1j2...jkp1p2

− . . .+ (−1)s−kdps−k . . . dp2dp1

∂f0

∂yσj1j2...jkp1p2...ps−k

−(−1)s−kdp1dp2 . . . dps−k+1F
ps−k+1,j1j2...jkp1p2...ps−k
σ

−(−1)s−kdp1dp2 . . . dps−k+1G
ps−k+1,j1j2...jkp1p2...ps−k
σ

+ . . .− dp1dp2dp3G
p3,j1j2...jkp1p2
σ

+dp1dp2G
p2,j1j2...jkp1
σ − dp1G

p1,j1j2...jk
σ , 1 ≤ k ≤ s.

(19)

Now we apply the identity

∂f0

∂yσj1j2...js+1

− f js+1,j1j2...js
σ = 0 Sym(j1j2 . . . js+1) (20)

(Lemma 2). We get

F jk,j1j2...jk−1
σ =

s−k+1∑
l=0

(−1)ldp1dp2 . . . dpl
∂f0

∂yσj1j2...jkp1p2...pl

+
s−k+1∑
l=1

(−1)ldp1dp2 . . . dplG
pl,j1j2...jkp1p2...pl−1
σ , 1 ≤ k ≤ s,

(21)

and

F js+1,j1j2...js
σ =

∂f0

∂yσj1j2...js+1

, (22)

i.e.,

F i,j1j2...jkσ =
s−k∑
l=0

(−1)ldp1dp2 . . . dpl
∂f0

∂yσj1j2...jkip1p2...pl

+
s−k∑
l=1

(−1)ldp1dp2 . . . dplG
pl,j1j2...jkip1p2...pl−1
σ , 0 ≤ k ≤ s− 1.

(23)
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These formulas determine the coefficients in the chart expression (1) of (πs+1,s)∗ρ. By
(16) and (20),

(πs+1,s)∗ρ = f0ω0

+
s∑

k=0

(
s−k∑
l=0

(−1)ldp1dp2 . . . dpl
∂f0

∂yσj1j2...jkp1p2...pli

)
ωσj1j2...jk ∧ ωi

+
s−1∑
k=0

(
s−k∑
l=1

(−1)ldp1dp2 . . . dplG
pl,j1j2...jkip1p2...pl−1
σ

)
ωσj1j2...jk ∧ ωi

+
s∑

k=1

1
k!
Gi,j1j2...jkσ ωσj1j2...jk ∧ ωi + η.

(24)

Thus,

(πs+1,s)∗ρ = Θ + ν + η, (25)

where

Θ = f0ω0 +
s∑

k=0

(
s−k∑
l=0

(−1)ldp1dp2 . . . dpl
∂f0

∂yσj1j2...jkp1p2...pli

)
ωσj1j2...jk ∧ ωi, (26)

and

ν =
s∑

k=1

Gi,j1j2...jkσ ωσj1j2...jk ∧ ωi

+
s−1∑
k=0

(
s−k∑
l=1

(−1)ldp1dp2 . . . dplG
pl,j1j2...jkip1p2...pl−1
σ

)
ωσj1j2...jk ∧ ωi,

(27)

and the order of contactness of η is ≥ 2. Writing ν in a more explicit way, we finally have

ν =
s∑
l=1

(−1)ldp1dp2 . . . dplG
pl,ip1p2...pl−1
σ ωσ ∧ ωi

+
s−1∑
k=1

(
Gi,j1j2...jkσ +

s−k∑
l=1

(−1)ldp1dp2 . . . dplG
pl,j1j2...jkip1p2...pl−1
σ

)
ωσj1j2...jk ∧ ωi

+Gi,j1j2...jsσ ωσj1j2...js ∧ ωi.
(28)

2. We wish to show by the method of undetermined coefficients that there exists a
contact (n− 1)-form µ such that p1dµ = ν. Note that

dxkωij = δkjωi − δ
k
i ωj . (29)

Consider an (n− 1)-form

µ =
1
2

s∑
k=0

Hi1i2,j1j2...jk
σ ωσj1j2...jk ∧ ωi1i2 , (30)
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and compute p1dµ. We get

p1dµ = −1
2
dpH

i1i2
σ ωσ ∧ dxp ∧ ωi1i2

−1
2

s∑
k=1

(
dpH

i1i2,j1j2...jk
σ +Hi1i2,j1j2...jk−1

σ δjkp
)
ωσj1j2...jk ∧ dx

p ∧ ωi1i2

−1
2
Hi1i2,j1j2...js
σ ωσj1j2...jsp ∧ dx

p ∧ ωi1i2 ,

(31)

and using (29),

p1dµ = dpH
pi
σ ω

σ ∧ ωi

+
s∑

k=1

(dpHpi,j1j2...jk
σ +Hjki,j1j2...jk−1

σ )ωσj1j2...jk ∧ ωi

+Hpi,j1j2...js
σ ωσj1j2...jsp ∧ ωi.

(32)

This expression should now be compared with (28).
3. To determine the system of functions Hi1i2,j1j2...jk

σ , 1 ≤ k ≤ s, it is sufficient to
find independent components of its Young decomposition in the superscripts. Using exist-
ing index symmetries, one may easily verify that the independent components correspond
with Young diagrams of two groups:

(1) the diagrams with (k + 1) columns and 2 rows

. . .

(1 diagram), and
(2) the diagrams with k columns and 3 rows

. . .

(k diagrams). The contributions of other diagrams vanish identically. Explicitly, a system
Hi1i2,j1j2...jk
σ , antisymmetric in i1, i2, and symmetric in j1, j2, . . . , jk, has a decomposi-

tion

Hi1i2,j1j2...jk
σ =

k + 1
k + 2

((1)Hi1i2,j1j2...jk
σ −(1) Hi2i1,j1j2...jk

σ )

+
3

k + 2
((2)Hi1i2,j1j2...jk

σ +(2) Hi1i2,j2j1j3...jk
σ

+ . . .+(2) Hi1i2,jkj2j3...jk−1j1
σ ),

(33)
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where

(1)Hi1i2,j1j2...jk
σ = Hi1i2,j1j2...jk

σ Sym(i2j1j2 . . . jk),

(2)Hi1i2,j1j2...jk
σ = Hi1i2,j1j2...jk

σ Alt(i1i2j1).
(34)

These definitions include the corresponding symmetrization coefficients. Note that if
(2)Hi1i2,j1j2...jk

σ = 0, then the decomposition (33) reduces to

Hi1i2,j1j2...jk
σ =

k + 1
k + 2

((1)Hi1i2,j1j2...jk
σ −(1) Hi2i1,j1j2...jk

σ ). (35)

4. Comparing the corresponding coefficients in (28) and (32), we obtain

Hjs+1i,j1j2...js
σ = 0 Sym(j1j2 . . . jsjs+1), k = s+ 1,

−dpHpi,j1j2...js
σ −Hjsi,j1j2...js−1

σ

= Gi,j1j2...jsσ Sym(j1j2 . . . js), k = s,

−dpHpi,j1j2...js−1
σ −Hjs−1i,j1j2...js−2

σ = −dp1G
p1,j1j2...js−1i
σ

+Gi,j1j2...js−1
σ Sym(j1j2 . . . js−1), k = s− 1,

−dpHpi,j1j2...jk
σ −Hjki,j1j2...jk−1

σ

=
s−k∑
l=1

(−1)ldp1dp2 . . . dplG
p1,j1j2...jkip1p2...pl−1
σ

+Gi,j1j2...jkσ Sym(j1j2 . . . jk), 1 ≤ k ≤ s− 1,

−dpHpi,j1
σ −Hj1i

σ

=
s−1∑
l=1

(−1)ldp1dp2 . . . dplG
pl,j1ip1p2...pl−1
σ +Gi,j1σ , k = 1,

−dpHpi
σ =

s∑
l=1

(−1)ldp1dp2 . . . dplG
pl,ip1p2...pl−1
σ , k = 0.

(36)

We wish to solve these equations. The first equation (1)Hpi,j1j2...js
σ = 0 implies that also

(1)Hip,j1j2...js
σ = 0. Therefore, (1)Hpi,j1j2...js

σ is the sum of components of type (2), which
are not determined by this equation. We choose (2)Hpi,j1j2...js

σ = 0, which implies

Hpi,j1j2...js
σ = 0. (37)

Then the second equation has the form

(1)Hijs,j1j2...js−1
σ = Gi,j1j2...jsσ . (38)

Consequently,

(1)Hjsi,j1j2...js−1
σ = Gjs,j1j2...js−1i

σ . (39)
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Again we may choose (2)H
jsi,j1j2...js−1
σ = 0 which implies, by (35),

Hijs,j1j2...js−1
σ =

s

s+ 1
(Gi,j1j2...jsσ −Gjs,j1j2...js−1i

σ ). (40)

Consider the third equation (36). Using (40), we get

(1)Hijs−1,j1j2...js−2
σ = Gi,j1j2...js−1

σ − 1
s+ 1

dpG
p,j1j2...js−1i
σ − s

s+ 1
dpG

i,j1j2...js−1p
σ .

(41)

Thus,

(1)Hi1i2,j1j2...js−2
σ = Gi1,j1j2...js−2i2

σ − 1
s+ 1

dpG
p,j1j2...js−2i2i1
σ

− s

s+ 1
dpG

i1,j1j2...js−2i2p
σ ,

(1)Hi2i1,j1j2...js−2
σ = Gi2,j1j2...js−2i1

σ − 1
s+ 1

dpG
p,j1j2...js−2i1i2
σ

− s

s+ 1
dpG

i2,j1j2...js−2i1p
σ .

(42)

Finally,

Hi1i2,j1j2...js−2
σ =

s− 1
s

(Gi1,j1j2...js−2i2
σ −Gi2,j1j2...js−2i1

σ )

+
s− 1
s+ 1

dp(Gi2,j1j2...js−2i1p
σ −Gi1,j1j2...js−2i2p

σ ).
(43)

Summarizing, we get

Hpi,j1j2...js
σ = 0,

Hijs,j1j2...js−1
σ =

s

s+ 1
(Gi,j1j2...jsσ −Gjs,j1j2...js−1i

σ ),

Hi1i2,j1j2...js−2
σ =

s− 1
s

(Gi1,j1j2...js−2i2
σ −Gi2,j1j2...js−2i1

σ )

+
s− 1
s+ 1

dp(Gi2,j1j2...js−2i1p
σ −Gi1,j1j2...js−2i2p

σ ).

(44)

We use these formulas to state an induction hypothesis. We suppose that equation (36)
with k − 1 = s− r has a solution defined by

1
s− r + 1

Hi1i2,j1j2...js−r
σ =

r−1∑
m=0

(−1)m

s− r + 2 +m

·dp1dp2 . . . dpm(Gi1,j1j2...js−ri2p1p2...pm
σ −Gi2,j1j2...js−ri1p1p2...pm

σ ).

(45)

We obtain on induction that this formula holds for all r.
If r = s , (45) gives

Hi1i2
σ =

s−1∑
m=0

(−1)m

m+ 2
dp1dp2 . . . dpm(Gi1,i2p1p2...pm

σ −Gi2,i1p1p2...pm
σ ). (46)
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Finally, consider the last equation (36). It can be proved by a direct computation that
this equation is satisfied identically.

Therefore, we have found a solution µ of the equation p1dµ = ν , and the proof is
complete.
Remark 2 The last formula (36) can also be obtained from the previous one by differenti-
ation.

The n-form Θ defined by (15), is called the principal component of the Lepage form
ρ with respect to the fibred chart (V, ψ). It can be shown that the splitting (14) ρ of is not
coordinate independent.
Theorem 3 Let ρ be a Lepage form expressed as in Theorem 2. Then the form (πs+1,s)∗dρ
has an expression

(πs+1,s)∗dρ = E + F, (47)

where E is a 1-contact, πs+1,0-horizontal (n + 1)-form, and F is a form whose order of
contactness is ≥ 2. E has the chart expression

E =

(
∂f0

∂yσ
−
s+1∑
l=1

(−1)ldp1dp2 . . . dpl
∂f0

∂yσp1p2...pl

)
ωσ ∧ ω0. (48)

Indeed, E = p1dρ, and F = p2dρ + p3dρ + . . . + pn+1dρ. By (14), E = p1dΘ. We
can express Θ as in (13). Since Θ is a Lepage form, we have

p1dρ =
(
∂f0

∂yσ
− dpfpσ

)
ωσ ∧ ω0, (49)

where by (15),

f iσ =
s∑
l=0

(−1)ldp1dp2 . . . dpl
∂f0

∂yσp1p2...pli

. (50)

Remark 3 Clearly, hρ = hΘ = f0ω0; thus, the horizontal component f0ω0 of the principal
component Θ of ρ is exactly the Lagrangian, associated with ρ. Both forms Θ and E
depend only on hρ. For each πs,0-projectable vector field ξ, the n-form hiξdρ depends on
the πs,0-projection of ξ only.

One can determine the chart expression f0ω0 of hρ explicitly by means of the second
canonical decomposition of the form ρ. We get

f0 = εi1i2...in(Ai1i2...in +AI1σ1i2i3...in
yσ1
I1i1

+AI1I2σ1σ2i3i4...in
yσ1
I1i1

yσ2
I2i2

+ . . .+A
I1I2...In−1
σ1σ2...σn−1in

yσ1
I1i1

yσ2
I2i2

. . . y
σn−1
In−1in−1

+AI1I2...Inσ1σ2...σny
σ1
I1i1

yσ2
I2i2

. . . yσnInin).

(51)
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4.4 Lepage equivalents of a Lagrangian

Let W be an open set in Y , and let ΩnW be the direct limit of the sets ΩsnW with re-
spect to the canonical injections ΩsnW 3 η → (πs+1,s)∗η ∈ Ωs+1

n W . ΩnW consists of
equivalence classes of points of the set

⋃
ΩsnW , which have a common successor. Let

ρ ∈ ΩrnW , η ∈ ΩsnW . The binary relation “ρ ∼ η if there exists a positive integer q such
that (πq,r+1)∗hρ = (πq,s+1)∗hη” is an equivalence on the set ΩnW . Thus, equivalent
n-forms have the same associated Lagrangians, and define the same variational functional.

Let λ be a Lagrangian of order r for Y . A Lepage form ρ ∈ ΩsnW , equivalent with λ,
is said to be a Lepage equivalent of λ.
Theorem 4 Let W ⊂ Y be an open set, and let λ ∈ ΩrnW be a Lagrangian of order r,
(V, ψ), ψ = (xi, yσ), a fibred chart on Y such that V ⊂W . Let λ be expressed by

λ = Lω0. (1)

A Lepage form ρ ∈ ΩsnW is a Lepage equivalent of λ if and only the principal component
Θ of ρ has an expression

Θ = Lω0 +
r−1∑
k=0

(
r−1−k∑
l=0

(−1)ldp1dp2 . . . dpl
∂L

∂yσj1j2...jkp1p2...pli

)
ωσj1j2...jk ∧ωi. (2)

Θ is defined on W 2r−1.

By definition, the horizontal component of a Lepage equivalent of a Lagrangian is
equal to the Lagrangian. Thus, Theorem 4 is a direct consequence of the definition of a
Lepage equivalent, and of Theorem 3.
Remark 4 For example, the principal Lepage equivalent of a Lagrangian of order 3 is given
by

Θ = Lω0 +

(
∂L
∂yσi
− dp1

∂L
∂yσp1i

+ dp1dp2

∂L
∂yσp1p2i

)
ωσ ∧ ωi

+

(
∂L
∂yσj1i

− dp1

∂L
∂yσj1p1i

)
ωσj1 ∧ ωi +

∂L
∂yσj1j2i

ωσj1j2 ∧ ωi.
(3)

Corollary 1 If ρ is a Lepage equivalent of a Lagrangian λ = Lω0 of order r, then

p1dρ = Eσ(L)ωσ ∧ ω0, (4)

where

Eσ(L) =
r∑
l=0

(−1)ldp1dp2 . . . dpl
∂L

∂yσp1p2...pl

. (5)

For any Lepage equivalent ρ of a Lagrangian λ, the form p1dρ depends only on λ, and
is called the Euler-Lagrange form associated with λ. We denote

p1dρ = Eλ. (6)
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The components Eσ(L) of Eλ, defined by (4), are called the Euler-Lagrange expres-
sions. Obviously, Eλ belongs to the set Ω2r

n+1,YW . The mapping Ωrn,XW 3 λ → Eλ ∈
Ω2r
n+1,YW , assigning to a Lagrangian λ the associated Euler-Lagrange form Eλ is called

the Euler-Lagrange mapping.
A basic question is the existence of Lepage equivalents. Note that if (V, ψ) is a fibred

chart, then for every Lagrangian λ, defined on V r, Θ is a Lepage equivalent of λ, defined
on V 2r−1. Thus, the existence problem means the global existence.
Theorem 5 Every Lagrangian of order r has a Lepage equivalent of order 2r − 1, which
is π2r−1,r−1-horizontal.

Let λ ∈ Ωrn,XY be a Lagrangian. To prove Theorem 5, we associate to any atlas
{(Vι, ψι)}, ι ∈ I , on Y , consisted of fibred charts, and to a partition of unity {χι}, sub-
ordinate to the covering {Vι} of Y , a family of Lagrangians χιλ, whose support satisfies
suppχιλ ⊂ V rι . We define a Lepage equivalent ρι of χιλ by formula (2) on V 2r−1, and
the zero form outside V 2r−1. The n-form ρ =

∑
ρι, defined on J2r−1Y , is a Lepage

equivalent of λ.

4.5 The first variation formula

Let λ ∈ ΩrnW be a Lagrangian of order r, Ω a piece of X . Consider the variational
functional ΓΩ,W (π) 3 γ → λΩ(γ) ∈ R, and its variational derivative by a π-projectable
vector field ξ on W ,

(∂Jrξλ)Ω(γ) =
∫
Ω

Jrγ∗∂Jrξλ. (1)

Our aim now will be to find an appropriate expression for the integral on the right. We are
looking for a decomposition of the n-form ∂Jrξλ into two terms, such that the first one
would depend only on ξ, and the second one only on the values of Jrξ on the boundary
∂Ω of Ω, not on the values of ξ inside Ω.
Theorem 6 Let λ ∈ ΩrnW be a Lagrangian, ρ ∈ ΩsnW a Lepage equivalent of λ, ξ a
π-projectable vector field on W .

(a) The Lie derivative ∂Jrξλ can be expressed by the formula

∂Jrξλ = hiJsξdρ+ hdiJsξρ. (2)

(b) For any section γ of Y ,

Jrγ∗∂Jrξλ = Jsγ∗iJsξdρ+ dJsγ∗iJsξρ. (3)

(c) For every piece Ω of X and every section γ of Y defined on Ω,∫
Ω

Jrγ∗∂Jrξλ =
∫
Ω

Jsγ∗iJsξdρ+
∫
∂Ω

Jsγ∗iJsξρ. (4)

For the proof of this theorem, we need properties of Lepage equivalents of λ, the hori-
zontalization morphism h, and the Stokes’ formula for integration of differential forms.

We call formula (2) (and also (3)) the infinitesimal first variation formula. Formula (4)
is called the integral first variation formula.
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Remark 5 The forms hiJrξdρ and Jrγ∗iJrξdρ depend on the Lagrangian λ = hρ only,
while the remaining terms on the right-hand side of formulas (2), (3), and (4) depend on
the choice of the Lepage equivalent ρ.
Remark 6 Theorem 6 can be used to obtain the corresponding formulae for higher varia-
tional derivatives (cf. 4.3).

4.6 Extremals

Let U ⊂ X be an open set, γ : U → Y a section, and Ξ : U → TY a vector field along
γ. The support of Ξ is the set suppΞ = cl{x ∈ U |Ξ(x) 6= 0} (here cl means closure). We
know that each smooth vector field Ξ along γ can be smoothly prolonged to a π-projectable
vector field ξ defined on a neighbourhood V of the set γ(U) ⊂ Y . ξ satisfies

ξ ◦ γ = Ξ. (1)

Let Ω ⊂ X be a piece ofX ,W ⊂ Y an open set, and let ΓΩ,W (π) be the set of sections
γ : U → Y such that Ω ⊂ U and γ(Ω) ⊂ W . Let λ ∈ Ωrn,XW be a Lagrangian. We say
that a section γ ∈ ΓΩ,W (π) is an extremal of the variational functional ΓΩ,W (π) 3 γ →
λΩ(γ) ∈ R, or an extremal of the Lagrangian λ on Ω, if for all π-projectable vector fields
ξ, such that supp(ξ ◦ γ) ⊂ Ω,∫

Ω

Jrγ∗∂Jrξλ = 0. (2)

γ is called an extremal of the Lagrange structure (Y, λ), or simply an extremal, if it is
an extremal of the variational functional λΩ for every Ω in the domain of definition of γ.
Thus, roughly speaking, the extremals are those sections γ for which the values λΩ(γ) are
not sensitive to small compact deformations of γ inside Ω.

In the following necessary and sufficient conditions for a section to be an extremal, we
use the Euler-Lagrange form Eλ, associated with a Lagrangian λ, and the components of
the Euler-Lagrange form Eσ(L).
Theorem 7 Let λ ∈ Ωrn,XW be a Lagrangian, Eλ the Euler-Lagrange form associated
with λ, γ : U → Y a section of Y , Ω ⊂ U a piece of X , and ρ a Lepage equivalent of λ,
defined on W s. The following conditions are equivalent:

(a) γ is an extremal on Ω.
(b) For every π-vertical vector field ξ defined on a neighbourhood of γ(U), such that

supp(ξ ◦ γ) ⊂ Ω,

Jsγ∗iJsξdρ = 0. (3)

(c) For every fibred chart (V, ψ), ψ = (xi, yσ), such that V ⊂W , γ satisfies the system
of partial differential equations

Eσ(L) ◦ J2rγ = 0, 1 ≤ σ ≤ m. (4)

(d) The Euler-Lagrange form associated with λ vanishes along J2rγ, i.e.,

Eλ ◦ J2rγ = 0. (5)
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Main steps of the proof copy classical considerations. By Theorem 6 (c), for any piece
Ω of X and any π-projectable vector field ξ such that supp(ξ ◦ γ) ⊂ Ω,∫

Ω

Jrγ∗∂Jrξλ =
∫
Ω

Jsγ∗iJsξdρ, (6)

because the vector field Jsξ vanishes over the boundary ∂Ω. Then∫
Ω

Jsγ∗iJsξdρ =
∫
Ω

Js+1γ∗(πs+1,s)∗iJsξdρ =
∫
Ω

Js+1γ∗iJs+1ξp1dρ, (7)

where p1dρ = Eλ is the Euler-Lagrange form.
If Ω is contained in a coordinate neighbourhood, the support supp(ξ ◦ γ) ⊂ Ω lies in

the same coordinate neighbourhood. Writing ξ = ξi · ∂/∂xi + Ξσ · ∂/∂yσ and p1dρ =
Eσ(L)ωσ ∧ ω0, we obtain

hiξp1dρ = Eσ(L)(Ξσ − yσj ξ
j)ω0, (8)

and

Jsγ∗iJsξdρ = Eσ(L) ◦ Js+1γ ·
(

Ξσ ◦ γ − ∂(yσ ◦ γ)
∂xj

ξj
)
ω0. (9)

Now supposing that Jsγ∗iJsξdρ 6= 0 for some π-vertical variation ξ, the first variation
formula∫

Ω

Jsγ∗iJsξdρ =
∫
Ω

Eσ(L) ◦ Js+1γ ·
(

Ξσ ◦ γ − ∂(yσ ◦ γ)
∂xj

ξj
)
ω0 (10)

with sufficiently small Ω would give us a contradiction∫
Ω

Jrγ∗∂Jrξλ 6= 0. (11)

Thus, (a) implies (b). The same formulas can be used to complete the proof.

Theorem 7 reduces the problem of finding extremals of variational functionals to the
problem of solving the Euler-Lagrange differential equations (4). Properties of these non-
linear equations depend on the Lagrangian; their global structure is defined by condition
(3). This condition says that a section γ is an extremal if and only if its jet prolongation
of order 2r is an integral mapping of an ideal of forms generated by the family of n-forms
iJsξdρ (here the vector field ξ is arbitrary). Expressing these forms in a chart as a linear
combination of the components of the vector field J2rξ, we get local generators of this
ideal.
Remark 7 In particular, if the base manifold X is 1-dimensional, the local generators of
the forms iJsξdρ are 1-forms, and we get an ideal defining a distribution on the manifold
JsY ; the jet prolongations of extremals are then integral mappings of this distribution.
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5 The structure of the Euler-Lagrange mapping

We consider in this section general properties of the Euler-Lagrange mapping Ωrn,XW 3
λ→ Eλ ∈ Ω2r

n+1,YW , introduced in subsection 4.4. The Euler-Lagrange mapping is obvi-
ously a morphism of Abelian groups. Our aim is to characterize transformation properties
of the Euler-Lagrange mapping with respect to local automorphisms of underlying fibred
manifold, and its kernel and image.

An essential tool we need is the Veinberg-Tonti lagrantian (see e.g. Tonti [91]), that
appears here, however, in connection with the fibred homotopy operator, and the Volterra-
Poincaré lemma for forms on fibred manifolds. We also need some results on solutions of
formal divergence equations.

5.1 The Euler-Lagrange mapping and the fibred automorphisms

Let W be an open subset of the base manifold X , let λ be a Lagrangian of order r for
Y , defined on W r , and let Eλ be the Euler-Lagrange form of λ; Eλ is defined on the
set W 2r ⊂ J2rY . Recall that if in a fibred chart (V, ψ),ψ = (xi, yσ), on Y , λ has an
expression

λ = Lω0, (1)

then

Eλ = Eσ(L)ωσ ∧ ω0, (2)

where Eσ(L) are the Euler-Lagrange expressions, defined by

Eσ(L) =
r∑
l=0

(−1)ldp1dp2 . . . dpl
∂L

∂yσp1p2...pl

. (3)

The mapping Ωrn,XW 3 λ→ Eλ ∈ Ω2r
n+1,YW is the Euler-Lagrange mapping.

Theorem 1 Let λ ∈ ΩrnW be a Lagrangian.
(a) Let W1 be an open subsets of Y, and let α : W1 → W be an isomorphism of fibred

manifolds over X . Then

EJrα∗λ = J2rα∗Eλ. (4)

(b) For every π-projectable vector field Ξ on W ,

E∂JrΞλ = ∂J2rΞEλ. (5)

The proof is based on the properties of Lepage forms. Let ρ be any Lepage form, and
consider the associated Lagrangian λ = hρ. If λ is defined on W r ⊂ JrY , then we may
suppose that ρ is defined on W 2r−1 ⊂ J2rY . Then, the Euler-Lagrange form, associated
with λ, is Eλ = p1dρ. Since the mapping J2r−1α commutes the mapping p1 and preserves
the contact forms, we have

p1dJ
2r−1α∗ρ = p1J

2r−1α∗dρ = J2rα∗p1dρ. (6)

In particular, if ρ is a Lepage form, also J2r−1α∗ρ is a Lepage form. Then by definition of
the Euler-Lagrange form, expression (5) is equal to EhJ2r−1α∗ρ. But J2r−1α commutes
the the horizontalization h; thus, (5) proves assertion (a). Assertion (b) is an immediate
consequence of (a).



D. Krupka 807

5.2 Formal divergence equations

In this subsection we show that the Euler-Lagrange expressions characterize integrabil-
ity conditions of a class of formal differential equations, the formal divergence equations
(Krupka [51]). Essential parts of the proofs are based on the trace decompositon theory,
and on an analysis of symmetries of tensors by means of the Young projectors.

Let U ⊂ Rn be an open set, let W ⊂ Rm be an open ball with centre at the origin, and
denote V = U ×W . We consider V as a fibred manifold over U with the first Cartesian
projection π : V → U . V s denotes the s-jet prolongation of V ; explicitly,

V s = U ×W × L(Rn,Rm)× L2
sym(Rn,Rm)× . . .× Lssym(Rn,Rm), (1)

where Lksym(Rn,Rm) is the vector space of k-linear, symmetric mappings from Rn to Rm.
The Cartesian coordinates on V , and the associated jet coordinates on V s, are denoted by
xi, yσ , and xi, yσ , yσj1 , yσj1j2 , . . . , yσj1j2...js , respectively.

Let f : V r → R be a differentiable function. Our aim is to find solutions g =
(g1, g2, . . . , gn) of the formal divergence equation

dig
i = f, (2)

whose components gi are differentiable real-valued functions on V s, where s is a positive
integer. Since the formal divergence digi is defined by

dig
i =

∂gi

∂xi
+
∂gi

∂yσ
yσi +

∂gi

∂yσi1
yσi1i +

∂gi

∂yσi1i2
yσi1i2i + . . .+

∂gi

∂yσi1i2...ir
yσi1i2...iri, (3)

equation (2) is a first order partial differential equation. From this expression we immedi-
ately see that every solution g = gi , defined on V s , such that s ≥ r + 1 , satisfies

∂gi1

∂yσi2i3...is+1

+
∂gi2

∂yσi1i3i4...is+1

+ . . .+
∂gis

∂yσi1i2...is−1is+1

+
∂gis+1

∂yσi1i2...is
= 0. (4)

We shall use our standard notation. We denote ω0 = dx1∧dx2∧. . .∧dxn, ωi = i∂/∂xiω0,
and ωσj1j2...jk = dyσj1j2...jk − y

σ
j1j2...jkl

dxl as before. h and pk are the π-horizontalization,
and the k-contact mappings.

For any smooth function f : V r → R we define an n-form λf on V r and a system of
functions Eσ(f) : V 2r → R by λf = fω0, and

Eσ(f) =
∂f

∂yσ
− di1

∂f

∂yσi1
+ di1di2

∂f

∂yσi1i2
− di1di2di3

∂f

∂yσi1i2i3
+ . . .

+(−1)r−1di1di2 . . . dir−1

∂f

∂yσi1i2...ir−1

+ (−1)rdi1di2 . . . dir
∂f

∂yσi1i2...ir
.

(5)

λf is a Lagrangian, and the (n+1)-formEf = Eσ(f)ωσ∧ω0 is the Euler-Lagrange form
associated with λf .

Let us consider a πr-horizontal (n− 1)-form η on V r, expressed as

η = giωi =
1

(n− 1)!
hj2j3...jndx

j2 ∧ dxj3 ∧ . . . ∧ dxjn . (6)
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Since

ωi =
1

(n− 1)!
εij2j3...jndx

j2 ∧ dxj3 ∧ . . . ∧ dxjn (7)

we have the transformation formulas

hj2j3...jn = εij2j3...jng
i, gk =

1
(n− 1)!

εkj2j3...jnhj2j3...jn . (8)

In the following two lemmas we denote by Alt and Sym the alternation and symmetrization
in the corresponding indices.
Lemma 1 The functions gi and hj1j2...jn−1 satisfy

1
r + 1

εil2l3...ln

(
∂gi

∂yσk1k2...kr

+
∂gk1

∂yσik2k3...kr

+
∂gk2

∂yσk1ik3k4...kr

+ · · ·+ ∂gkr

∂yσk1k2...kr−1i

)

=
∂hl2l3...ln
∂yσk1k2...kr

− r(n− 1)
r + 1

∂hil3l4...ln
∂yσik2k3...kr

δk1
l2

Alt(l2l3 . . . ln) Sym(k1k2 . . . kr).

(9)

We say that a πr-horizontal form η, defined on V r, has a projectable extension, or,
according to Haková and Krupková [31], is pertinent, if there exists a form µ on V r−1

such that η = hµ.
Let us consider a form η, expressed in two bases of (n− 1)-forms by (6).

Lemma 2 Let η be a πr-horizontal (n− 1)-form on V r. The following two conditions are
equivalent:

(a) η has a πr,r−1-projectable extension.
(b) The components hi1i2...in−1 satisfy

∂hi1i2...in−1

∂yσj1j2...jr
− r(n− 1)

r + 1
∂hsi2i3...in−1

∂yσsj2j3...jr
δj1i1 = 0

Sym(j1j2 . . . jr) Alt(i1i2 . . . in−1).

(10)

(c) The components gi satisfy condition (4).

A slightly different version of the following assertion has already been presented.
Lemma 3 For any function f : V r → R, there exists an n-form Θ, defined on V 2r−1,
such that (a) λ = hΘ , and (b) the form p1dΘ is ωσ-generated.

We can take for Θ the principal Lepage equivalent

Θf = fω0 +
s∑

k=0

(
s−k∑
l=0

(−1)ldp1dp2 . . . dpl
∂f

∂yσj1j2...jkp1p2...pli

)
ωσj1j2...jk ∧ ωi, (11)

of the Lagrangian λ = fω0.
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We prove two theorems, describing solutions of the formal divergence equation (2). By
a solution of this equation we mean any system of functions g = gi , defined on V s for
some non-negative integer s, satisfying this equation.
Lemma 4 If the formal divergence equation (2) has a solution defined on V s and s ≥ r+1,
then it has a solution defined on V s−1.

Theorem 2 Let f : V r → R be a function. The following two conditions are equivalent:
(a) The formal divergence equation has a solution, defined on V r.
(b) The function f satisfies

Eσ(f) = 0. (12)

We give basic steps of the proof. Suppose that the formal divergence equation (2) has
a solution g = gi. Differentiating digi, we get the formulas

∂dig
i

∂yσ
= di

∂gi

∂yσ
, (13)

and for every k = 1, 2, . . . , r,

∂dig
i

∂yσi1i2...ik
= di

∂gi

∂yσi1i2...ik

+
1
k

(
∂gi1

∂yσi2i3...ik
+

∂gi2

∂yσi1i3...ik
+

∂gi3

∂yσi2i1i4...ik
+ . . .+

∂gik

∂yσi2i3...ik−1i1

)
.

(14)

Using these formulas, we can compute the Euler-Lagrange expressionsEσ(f) = Eσ(digi)
in several steps. After r − 1 steps

Eσ(digi) = (−1)rdi1di2 . . . dirdi
∂gi

∂yσi1i2...ir
. (15)

But since f is defined on V r, the solution g of equation (2) necessarily satisfies

∂gi

∂yσi1i2...ir
+

∂gi1

∂yσii2i3...ir
+

∂gi2

∂yσi1ii3i4...ir

+ . . .+
∂gir−1

∂yσi1i2...ir−2iir

+
∂gir

∂yσi1i2...ir−1i

= 0.

(16)

Applying this formula in (15) we see that condition (b) is satisfied.
Conversely, suppose that condition (b) is satisfied. We want to show that there exist

functions gi : V r → R such that digi = f , or, in an explicit form,

∂gi

∂xi
+
∂gj1

∂yσ
yσj1 +

∂gj2

∂yσj1
yσj1j2 + . . .+

∂gjr

∂yσj1j2...jr−1

yσj1j2...jr−1jr = f. (17)

As a consequence of (12), these functions satisfy

∂gi1

∂yσi2i3...ir+1

+
∂gi2

∂yσi1i3i4...ir+1

+
∂gi3

∂yσi2i1i4i5...ir+1

+ . . .+
∂gir

∂yσi2i3...ir−1i1ir+1

+
∂gir+1

∂yσi2i3...ir−1iri1

= 0.

(18)
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Let I be the fibred homotopy operator for differential forms on V 2r, associated with
the projection π : V → U . We have

Θf = IdΘf + dIΘf + Θ0 = Ip1dΘf + Ip2dΘf + dIΘf + Θ0, (19)

where Θ0 is an n-form, projectable on U . In this formula, p1dΘf = 0 by hypothesis, and
we may suppose that Θ0 = dϑ0 (on U ). Moreover hΘf = hd(IΘf + ϑ0)fω0. Defining
functions gi on V s, where s ≤ 2r, by the condition h(IΘf + ϑ0) = giωi, we see we have
constructed a solution of the formal divergence equation digi = f . Explicitly,

∂gi

∂xi
+
∂gj1

∂yσ
yσj1 +

∂gj2

∂yσj1
yσj1j2 + . . .+

∂gjs+1

∂yσj1j2...js
yσj1j2...jsjs+1

= f. (20)

Note, however, that in general, we have not yet proved that the formal divergence equation
has a solution defined on V r. If s ≤ r, formula (20) shows that condition (a) holds. If
s ≥ r+ 1, we apply Lemma 4 several times, and obtain a solution of equation (20) defined
on V r. This concludes the proof of assertion (b).

Condition (12) Eσ(f) = 0 is called the integrability condition for the formal diver-
gence equation (2).

Combining Theorem 2 and Lemma 2, we can easily describe solutions of the formal
divergence equations digi = f as some differential forms.
Theorem 3 Let f : V r → R be a function such that Eσ(f) = 0, let g = gi be a system of
functions, defined on V r, and let η = giωi. Then the following conditions are equivalent:

(a) The system g = gi is a solution of the formal divergence equation (2).
(b) There exists a projectable extension µ of the form η such that

hdµ = fω0. (21)

5.3 The kernel of the Euler-Lagrange mapping

Consider the Euler-Lagrange mapping Ωrn,XW 3 λ→ Eλ ∈ Ω2r
n+1,YW . The domain and

the range of this mapping have the structure of Abelian groups (and real vector spaces),
and the Euler-Lagrange mapping is a morphism of these Abelian groups. In this subsection
we characterize the kernel of this morphism. We shall say that a Lagrangian λ ∈ Ωrn,XW
is null, or trivial, if Eλ = 0.
Theorem 4 Let λ ∈ Ωrn,XW be a Lagrangian of order r. The following three conditions
are equivalent:

(a) λ is trivial.
(b) For every point y ∈W there exists a fibred chart (V, ψ), ψ = (xi, yσ), at y and an

(n− 1)-form µy ∈ Ωr−1
n−1V such that

λ = hdµy. (1)

(c) For every point y ∈ W there exists a fibred chart (V, ψ), ψ = (xi, yσ), at y
with the following properties: If λ = Lω0 on V r in this chart, then there exist functions
f i : V r → R such that

∂f i

∂yσj1j2...jr
+

∂f j1

∂yσij2j3...jr
+

∂f j2

∂yσj1ij3...jr
+ . . .+

∂f jr

∂yσj1j2...jr−1i

= 0, (2)
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and

L = dif
i. (3)

The following are main steps of the proof.
1. Suppose that we have a trivial Lagrangian λ; then Eλ = 0. If in a fibred chart

(V, ψ), ψ = (xi, yσ), at a point y ∈W , λ = Lω0, then by hypothesis, the Euler-Lagrange
expressionsEσ(L) = 0 vanish. Consequently, by Theorem 3, λ = hdµy for some (n−1)-
form µy on V r−1, proving formula (1).

2. Let y be a point of W , let (V, ψ), ψ = (xi, yσ), be a fibred chart at y, and let
µy ∈ Ωr−1

n−1V be a form satisfying condition (1). Let λ = Lω0 in this chart. Using the first
canonical decomposition of forms, we can easily derive the formula

(πr+2,r+1)∗(hdµy + p1dµy + p2dµy + . . .+ pn−1dµy + pndµy)

= (πr+2,r+1)∗(dhµy + dp1µy + dp2µy + . . .+ dpn−1µy).
(4)

In particular, comparing horizontal components, (πr+2,r+1)∗hdµy = hdhµy . By hypoth-
esis, the left-hand side is equal to Lω0, and writing hµy as f iωi, the right-hand side is
dif

iω0. Consequently, the Lagrange function L can be written as, L = dif
i, and by

projectability,

∂f i

∂yσj1j2...jr
+

∂f j1

∂yσij2j3...jr
+

∂f j2

∂yσj1ij3...jr
+ . . .+

∂f jr

∂yσj1j2...jr−1i

= 0. (5)

3. Suppose that condition (c) is satisfied; then the formal divergence equation (3) has
a solution, defined on V r, and by Theorem 2, Eσ(L) = 0. Thus, the Lagrangian λ is
trivial.

For Lagrangians of the first order we have a stronger result.
Corollary 1 A first order Lagrangian λ ∈ Ω1

n,XW is trivial if and only if there exists an
n-form η ∈ Ω0

n−1W such that

λ = hη (6)

and

dη = 0. (7)

Indeed, we set ηy = dµy in Theorem 4. Then hηy = λ, and since the horizontalization
mapping h is in this case injective, there exists a form η ∈ Ω0

n−1W such that the restriction
of η to the domain of definition of ηy coincides with ηy . On this domain, dη = dηy =
ddηy = 0.

5.4 The image of the Euler-Lagrange mapping

A 1-contact, πs,0-horizontal form ε ∈ Ωsn+1,YW is called a source form (Takens [90]).
From the definition it follows that in a fibred chart (V, ψ), ψ = (xi, yσ), ε has an expression

ε = εσω
σ ∧ ω0, (1)



812 Global variational theory in fibred spaces

where the components depend on the jet coordinates xi, yσ , yσj1 , yσj1j2 , . . . , yσj1j2...js . We
say that a source form ε is variational, if ε = Eλ for some Lagrangian λ ∈ Ωrn,XW . ε
is said to be locally variational, if there are an open covering {Vι}ι∈I of Y and a family
{λι}ι∈I of Lagrangians λι ∈ Ωrn,XVι such that for every ι ∈ I ,

ε|Vι = λι. (2)

We wish to study the image set Ωsn+1,YW of the Euler-Lagrange mapping Ωrn,XW 3
λ → Eλ ∈ Ω2r

n+1,YW , consisting of variational forms, and a larger subset of the set
Ωsn+1,YW , consisting of locally variational forms.
Theorem 5 A source form ε ∈ Ωsn+1,YW is locally variational if and only if there exists
a form F ∈ Ωsn+1W of order of contactness ≥ 2 such that d(ε+ F ) = 0.

Indeed, if ε = Eλ for some Lagrangian λ, we choose a Lepage equivalent ρ of λ and
define F to be p2dρ + p2dρ + . . . + pn+1dρ. Then by the first canonical decomposition,
(πr+1,r)∗dρ = Eλ + F . Conversely, if d(ε + F ) = 0, then every form ρ such that
ε + F = dρ, is a Lepage form. Then ε = p1dρ, so ε is a locally variational form whose
Lagrangian is hρ.

One can derive from Theorem 5 another criterion of local variationality of in fibred
charts.

Let ε be a source form, defined on W s, and let (V, ψ), ψ = (xi, yσ), be a fibred chart
on Y , such that V ⊂ W , and the set ψ(W ) is star-shaped. Denote by I the corresponding
fibred homotopy operator. Then Iε is a πs-horizontal form on V s, that is, a Lagrangian of
order s for Y . We denote λε = Iε, and call λε the Veinberg-Tonti Lagrangian, associated
with the source form ε.

Recall that Iε is defined by the fibred homotopy χs : [0, 1] × V s → V s, where
χs(t, (xi, yσ, yσj1 , y

σ
j1j2

, . . . , yσj1j2...js)) = (xi, tyσ, tyσj1 , ty
σ
j1j2

, . . . , tyσj1j2...js). Since the
fibred homotopy satisfies χ∗sε = (εσ ◦ χs)(tωσ + yσdt) ∧ ω0, we have, integrating the
coefficient in this expression at dt,

λε = Lεω0, (3)

where

Lε = yσ
∫
εσ ◦ χs · dt. (4)

We find the chart expressions for the principal Lepage equivalent Θλε , and for the
Euler-Lagrange form Eε of the Veinberg-Tonti Lagrangian λε; these forms are defined by

Θε = Lεω0 +
s−1∑
k=0

f j1j2...jkiσ ωσj1j2...jk ∧ ωi, (5)

where for every k = 0, 1, 2, . . . , s− 1,

f j1j2...jkiσ =
s−k−1∑
l=0

(−1)ldp1dp2 . . . dpl
∂Lε

∂yσj1j2...jkp1p2...pli

, (6)

and

Eε = Eσ(Lε)ωσ ∧ ω0, (7)
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where

Eσ(Lε) =
s∑
l=0

(−1)ldp1dp2 . . . dpl
∂Lε

∂yσp1p2...pl

. (8)

We need two formulas for the formal derivative operator di. Note a specific summation
convention adapted in the following Lemma.
Lemma 5 (a) For every function f on V p

di(f ◦ χp) = dif ◦ χp+1. (9)

(b) For every function f on V s and a collection of functions gp1p2...pk on V s, symmetric
in all superscripts,

dp1dp2 . . . dpk(f · gp1p2...pk)

=
s∑
i=0

(
k

i

)
dp1dp2 . . . dpif · dpi+1dpi+2 . . . dpkg

p1p2...pipi+1pi+2...pk .
(10)

Assertion (a) is an easy consequence of definitions, and formula (10) can be obtained
on induction.
Lemma 6 The Euler-Lagrange expressions of the Veinberg-Tonti Lagrangian λε of a
source form ε = εσω

σ ∧ ω0 are

Eσ(Lε) = εσ −
s∑

k=0

yνq1q2...qk

∫
Hq1q2...qk
σν (ε) ◦ χ2s · tdt, (11)

where

Hq1q2...qk
σν (ε) =

∂εσ
∂yνq1q2...qk

− (−1)k
∂εν

∂yσq1q2...qk

−
s∑

l=k+1

(−1)l
(
l

k

)
dpk+1dpk+2 . . . dpl

∂εν
∂yσq1q2...qkpk+1pk+2...pl

.

(12)

To prove Lemma 6, we find a formula for the difference εσ − Eσ(Lε). Consider the
Euler-Lagrange form (7). We have

∂Lε
∂yσ

=
∫
εσ ◦ χs · dt+ yν

∫
∂εν
∂yσ
◦ χs · tdt, (13)

and, by Lemma 5, for every l, 1 ≤ l ≤ s,

dpl . . . dp2dp1

∂Lε
∂yνp1p2...pl

= dpl . . . dp2dp1

(
yν
∫

∂εν
∂yσp1p2...pl

◦ χs · tdt
)

=
l∑
i=0

(
l

i

)
yνp1p2...pi ·

∫
dpi+1dpi+2 . . . dpl

∂εν
∂yσp1p2...pipi+1pi+2...pl

◦ χs+l−i · tdt.
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(14)

Then by (7), (13), and (14),

Eσ(Lε) =
∫
εσ ◦ χs · dt+ yν

∫
∂εν
∂yσ
◦ χs · tdt

+
s∑
l=1

(−1)l
l∑
i=0

(
l

i

)
yνp1p2...pi

·
∫
dpi+1dpi+2 . . . dpl

∂εν
∂yσp1p2...pipi+1pi+2...pl

◦ χs+l−i · tdt.

(15)

On the other hand, εσ can be expressed as

εσ =
l∑
i=0

∫
∂εσ

∂yνp1p2...pi

◦ χs · yνp1p2...pi · tdt+
∫
εσ ◦ χs · dt, (16)

hence

εσ − Eσ(Lε) =
∫
∂εσ
∂yν
◦ χs · yν · tdt− yν

∫
∂εν
∂yσ
◦ χs · tdt

−
s∑
l=1

(−1)l
(
l

0

)
yν ·

∫
dpl . . . dp2dp1

∂εν
∂yσp1p2...pl

◦ χs+l · tdt

+
s∑
i=1

∫
∂εσ

∂yνp1p2...pi

◦ χs · yνp1p2...pi · tdt

−
s∑
l=1

(−1)l
l∑
i=1

(
l

i

)
yνp1p2...pi

·
∫
dpi+1dpi+2 . . . dpl

∂εν
∂yσp1p2...pipi+1pi+2...pl

◦ χs+l−i · tdt.

(17)

Changing summations, the double sum becomes

s∑
l=1

(−1)l
l∑
i=1

(
l

i

)
yνp1p2...pi

·
∫
dpi+1dpi+2 . . . dpl

∂εν
∂yσp1p2...pipi+1pi+2...pl

◦ χs+l−i · tdt

=
s∑
i=1

(−1)iyνp1p2...pi ·
∫

∂εν
∂yσp1p2...pi

◦ χs · tdt

+
s∑
i=1

(−1)l
s∑

l=i+1

(
l

i

)
yνp1p2...pi

·
∫
dpi+1dpi+2 . . . dpl

∂εν
∂yσp1p2...pipi+1pi+2...pl

◦ χs+l−i · tdt,

(18)
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and returning to (17) we get formula (11) of Lemma 6.
We call the functions (12) the Helmholtz expressions, associated with the source form

ε. These functions appeared for the first time in Aldersley [1].
Remark 1 If, for example, s = 3, we get

Hσν(ε) =
∂εσ
∂yν
− ∂εν
∂yσ

+ dp1

∂εν
∂yσp1

− dp1dp2

∂εν
∂yσp1p2

+ dp1dp2dp3

∂εν
∂yσp1p2p3

,

Hp1
σν(ε) =

∂εσ
∂yνp1

+
∂εν
∂yσp1

− 2dp2

∂εν
∂yσp1p2

+ 3dp2dp3

∂εν
∂yσp1p2p3

,

Hp1p2
σν (ε) =

∂εσ
∂yνp1p2

− ∂εν
∂yσp1p2

+ 3dp3

∂εν
∂yσp1p2p3

,

Hp1p2p3
σν (ε) =

∂εσ
∂yνp1p2p3

+
∂εν

∂yσp1p2p3

.

Suppose we have a locally variational source form ε. Then for every point y of Y there
exist a fibred chart (V, ψ), ψ = (xi, yσ), at y, an integer r and a Lagrangian λ of order r
on V r, λ = Lω0, such that

εσ =
r∑
l=0

(−1)ldp1dp2 . . . dpl
∂L

∂yσp1p2...pl

. (19)

The source form ε can be considered as defined on W 2r, and the Helmholtz expressions
Hp1p2...pk
σν (ε) (12) for s = 2r are

Hq1q2...qk
σν (ε) =

∂εσ
∂yνq1q2...qk

− (−1)k
∂εν

∂yσq1q2...qk

−
2r∑

l=k+1

(−1)l
(
l

k

)
dpk+1dpk+2 . . . dpl

∂εν
∂yσq1q2...qkpk+1pk+2...pl

.

(20)

where k = 0, 1, 2, . . . , 2r.
Lemma 7 Every locally variational source form ε = εσω

σ ∧ ω0 on W 2r satisfies

Hq1q2...qk
σν (ε) = 0 (21)

for all k = 0, 1, 2, . . . , 2r.

For the proof, we can apply Theorem 5 (Krupková [66]). We can also use Veinberg-
Tonti Lagrangians, and Theorem 1 on the properties of the Euler-Lagrange mapping
with respect to automorphisms of the underlying fibred manifold (Krupka, Anderson and
Duchamp [2], Krupka [45]). Some other proofs are provided by the variational sequence
theory (Krbek and Musilová [39], Krupka [55]).
Remark 2 Suppose that s = 3 (cf. Remark 1). Then conditions (21)

Hσν(ε) = 0, Hp1
σν(ε) = 0, Hp1p2

σν (ε) = 0, Hp1p2p3
σν (ε) = 0

can be verified, using (19), by a straightforward computation.
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We set, using the Helmholtz expressions (12),

Hε =
1
2

s∑
i=0

Hj1j2...ji
νσ (ε)ωσj1j2...ji ∧ ω

ν ∧ ω0. (22)

Hε is the (global) Helmholtz form (Anderson Duchamp [2], Krupka [45], [48], Krbek and
Musilová [39]).

Summarizing our discussion, we have the following result.
Theorem 6 A source form ε is locally variational if and only if Hε = 0.

Sufficiency follows from Lemma 6, and necessity from Lemma 7.

6 Invariant variational principles

Let X be any manifold, W an open set in X , and let α : W → Y be a smooth mappings.
Recall that a differential form η, defined on a neighbourhood of the set α(W ) in X , is said
to be invariant with respect to α, if α∗η = η on the set W ∩ α(W ); we also say in this
case that α is an invariance transformation of η. A vector field, whose local one-parameter
group consists of invariance transformations of η, is said to be a generator of invariance
transformations of η. In this section we apply these definitions to local automorphisms of
a fibred manifold Y . We study properties of integral variational functionals on Y , whose
Lagrangians, or Euler-Lagrange forms, are invariant with respect to one-parameter families
of local automorphisms.

6.1 Invariant variational functionals

Let λ be a Lagrangian of order r for Y , let α : W → Y be a local automorphism of Y ,
and let Jrα : W r → JrY be the r-jet prolongation of α. We say that α is an invariance
transformation of the Lagrangian λ if Jrα∗λ = λ. A generator of invariance transforma-
tions of λ is a π-projectable vector field on Y whose local one-parameter group consists
of invariance transformations of λ. A variational functional, whose Lagrangian is invariant
with respect to α, is said to be invariant with respect to α.
Lemma 1 Let λ be a Lagrangian of order r for Y .

(a) A π-projectable vector field Ξ on Y generates invariance transformations of λ if
and only if

∂JrΞλ = 0. (1)

(b) Generators of invariance transformations of λ constitute a subalgebra of the alge-
bra of vector fields on JrY .

Equation (1), called the Noether equation, represents a relation between λ and the
vector field Ξ. Given λ, we can use this equation to determine generators of invariance
transformations. Conversely, given a collection of π-projectable vector fields Ξ, one can
apply the corresponding Noether equations to determine invariant Lagrangians λ.

The following is known as the (first) theorem of Emmy Noether.
Theorem 1 Let λ be a Lagrangian, ρ a Lepage equivalent of λ, defined on JsY , and let γ
be an extremal. Then for every generator Ξ of invariance transformations of λ,

dJsγ∗iJsΞρ = 0. (2)
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The proof is based on the first variation formula, and is trivial. Indeed, we have

Jrγ∗∂JrΞλ = Jsγ∗iJsΞdρ+ dJsγ∗iJsΞρ, (3)

and since the left-hand side vanishes, by invariance, and the first summand on the righ-hand
side also vanishes, because γ is an extremal, we get (2) as required.

Note that (global) condition (2) can also be written in a different way, by means
of locally defined principal Lepage equivalents Θλ of the Lagrangian λ. From the
structure theorem on Lepage forms we know that, locally, ρ = Θλ + dν + µ, where
ν is a contact form, and µ is a contact form of order of contactness ≥ 2. Then
dJsγ∗iJsΞρ = dJsγ∗(iJsΞΘλ + iJsΞdν + iJsΞµ). But the form iJsΞµ is contact; more-
over, iJsΞdν = ∂JsΞν − diJsΞν, from which we deduce that

Jsγ∗iJsΞµ = 0, dJsγ∗iJsΞdν = dJsγ∗∂JsΞν − dJsγ∗diJsΞν = 0. (4)

Consequently, under the hypothesis of Theorem 1, condition

dJsγ∗iJsΞΘλ = 0 (5)

is satisfied over coordinate neighbourhoods of fibred charts on Y .

6.2 Invariant Euler-Lagrange forms

Let α : W → Y be a local automorphism of Y , and let ε be a source form on JsY . We
say that α is an invariance transformation of ε, if Jsα∗ε = ε. A generator of invariance
transformations of ε is a π-projectable vector field on Y whose local one-parameter group
consists of invariance transformations of ε.
Lemma 2 Let ε be a source form of order s for Y .

(a) A π-projectable vector field Ξ on Y generates invariance transformations of ε if
and only if

∂JsΞε = 0. (1)

(b) Generators of invariance transformations of ε constitute a subalgebra of the alge-
bra of vector fields on JsY .

Equation (1) is a geometric version of what is known as the Noether-Bessel-Hagen
equation for variational source forms.

Let λ be a Lagrangian of order r for Y , and let Eλ be the Euler-Lagrange form of λ.
Combining Lemma 2 with the identity

J2rα∗Eλ = EJrα∗λ, (2)

where α is any local automorphism of Y , we easily obtain the following assertion.
Lemma 3 Let λ be a Lagrangian of order r.

(a) Every invariance transformation of λ is an invariance transformation of the Euler-
Lagrange form Eλ.

(b) For every invariance transformation α of Eλ, the Lagrangian λ− Jrα∗λ is varia-
tionally trivial.
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We can generalize the Noether’s theorem to invariance transformations of the Euler-
Lagrange form. However, since the proof is based on the theorem on the kernel of the
Euler-Lagrange mapping, the assertion we obtain is of local character. We denote by Θλ

the principal Lepage equivalent of λ.
Theorem 2 Let λ be a Lagrangian of order r, let γ be an extremal, and let Ξ be a generator
of invariance transformations of the Euler-Lagrange formEλ. Then for every point y0 ∈ Y
there exists a fibred chart (V, ψ) at y0 and an (n− 1)-form η, defined on V r−1, such that

dJ2r−1γ∗(iJ2r−1ΞΘλ + η) = 0 (3)

on U = π(V ).

Indeed, under the hypothesis of Theorem 2, from the formula ∂J2rΞEλ = E∂JrΞλ

we obtain E∂JrΞλ = 0, thus, the Lagrangian ∂JrΞλ belongs to the kernel of the Euler-
Lagrange mapping. Thus, ∂JrΞλ = hdη over sufficiently small open sets V in Y such that
(V, ψ) is a fibred chart. Then, however, from the infinitesimal first variation formula over
V ,

Jrγ∗∂JrΞλ = J2r−1γ∗iJ2r−1ΞdΘλ + dJ2r−1γ∗iJ2r−1ΞΘλ, (4)

reduces to

Jrγ∗hdη = dJ2r−1γ∗iJ2r−1ΞΘλ. (5)

Since Jrγ∗hdη = Jrγ∗dη = dJrγ∗η, this proves formula (3).
Remark 1 If r = 1 in Theorem 2, then the principal Lepage equivalent Θλ is globally
well-defined. Moreover, it follows from the properties of the Euler-Lagrange mapping that
the form η may be taken as a globally well-defined form on Y .

6.3 Jacobi vector fields

Let λ be a Lagrangian of order r for Y , and let γ be an extremal of λ; thus, we suppose
that γ satisfies the Euler-Lagrange equations

Eλ ◦ J2rγ = 0. (1)

Let α : W → Y be a local automorphism of Y with projection α0, and let Jrα : W r →
JrY be the r-jet prolongation of α. We say that α is a symmetry of γ, if the section αγα−1

0

is also a solution of the Euler-Lagrange equations, i.e.,

Eλ ◦ J2r(αγα−1
0 ) = 0. (2)

We say that a π-projectable vector field generates symmetries of γ, if its local one-
parameter group consists of symmetries of γ; we also say in this case that Ξ is a Jacobi
vector field along γ.

The following lemma can be proved by means of differential-geometric operations with
the Euler-Lagrange form.
Lemma 4 An invariance transformation of the Euler-Lagrange form Eλ is a symmetry of
every extremal γ.



D. Krupka 819

Let γ be any section of Y , let α be an invariance transformation. To prove Lemma 4,
we need two simple observations. First, neglecting the details on the domains of definition,
we have, for every point Jsxγ, belonging to the domain Jsα, Jsα(Jsxγ) = Jsα0(x)(αγα

−1
0 ).

Then, (Jsα ◦ Jsγ)(x) = (Js(αγα−1
0 ) ◦ α0)(x), and we have on the domain of αγα−1

0

Jsα ◦ Jsγ ◦ α−1
0 = Js(αγα−1

0 ). (3)

Second, let s be the order of the Euler-Lagrange form Eλ. Then for any π-projectable
vector field Z,

Js(αγα−1
0 )∗iJsZEλ = (α−1

0 )∗(Jsγ)∗(Jsα)∗iJsZEλ. (4)

But for every point Jsxδ from the domain of the form (4) and all tangent vectors
ξ1, ξ2, . . . , ξn at this point,

(Jsα)∗iJsZEλ(Jsxδ)(ξ1, ξ2, . . . , ξn)

= Eλ(Jsα(Jsxδ))(J
sZ, TJsα · ξ1, TJ

sα · ξ2, . . . , TJ
sα · ξn)

= Eλ(Jsα(Jsxδ))(TJ
sα · TJsα−1 · JsZ, TJsα · ξ1, TJ

sα · ξ2, . . . , TJ
sα · ξn)

= (Jsα)∗Eλ(Jsxδ))(TJ
sα−1 · JsZ, ξ1, ξ2, . . . , ξn)

= iTJsα−1·JsZ(Jsα)∗Eλ(Jsxδ))(ξ1, ξ2, . . . , ξn).
(5)

But TJsα−1 · JsZ = Js(Tα−1 · Z ◦ α), so we have

(Jsα)∗iJsZEλ = iJs(Tα−1·Z◦α)(Jsα)∗Eλ. (6)

We use formulas (4) and (6) to prove Lemma 4. Let now γ be an extremal, and let
(Jsα)∗Eλ = Eλ . Then

Js(αγα−1
0 )∗iJsZEλ = (α−1

0 )∗(Jsγ)∗(Jsα)∗iJsZEλ

= (α−1
0 )∗(Jsγ)∗iJs(Tα−1·Z◦α)Eλ = 0,

(7)

because γ is an extremal.
Theorem 3 Let λ be a Lagrangian of order r, let s be the order of the Euler-Lagrange form
Eλ, and let γ be an extremal. Then a π-projectable vector field Ξ generates symmetries of
γ if and only if

E∂JrΞλ ◦ J
sγ = 0. (8)

We prove necessity. Let x be a point, belonging to the domain of γ, let αt be the
local one-parameter group of Ξ, and let α0,t be the projection of αt. Choose some vectors
ξ0, ξ1, ξ2, . . . , ξn at the point Jsxγ. Then

E(Jrαt)∗λ(Jsxγ)(ξ0, ξ1, ξ2, . . . , ξn) = (Jsαt)∗Eλ(Jsxγ)(ξ0, ξ1, ξ2, . . . , ξn)

= Eλ(Jsαt(Jsxγ))(TJsαt · ξ0, TJ
sαt · ξ1, TJ

sαt · ξ2, . . . , TJ
sαt · ξn).

(9)
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By continuity, the point x has a neighbourhood U such that the real function

(t, x)→ Eλ(Jsαt(Jsxγ))(TJsαt · ξ0, TJ
sαt · ξ1, TJ

sαt · ξ2, . . . , TJ
sαt · ξn) (10)

is defined on the set (−ε, ε)× U for some ε > 0.
Suppose that Ξ generates symmetries of γ. Then Eλ ◦ Jsαt ◦ Jsγ ◦ α−1

0,t = 0
on (−ε, ε) × U , that is, Eλ ◦ Jsαt ◦ Jsγ = 0. Consequently, since the restric-
tion of the tangent mapping TJsαt to the point Jsxγ is a linear isomorphism, we have
E(Jrαt)∗λ(Jsxγ)(ξ0, ξ1, ξ2, . . . , ξn) = 0, i.e., E(Jrαt)∗λ ◦ Jsγ = 0, proving (8).

Conversely, from (8) we find that E(Jrαt)∗λ(Jsxγ) = Eλ(Jsxγ). But γ is an extremal,
so we have E(Jrαt)∗λ(Jsxγ) = 0.

7 Remarks

We present in this last part of the work some complements and comments on general theory
of integral variational functionals in fibred spaces.

7.1 Examples of Lepage forms, generalizations

The concept of a Lepage form unifies several known examples of forms, used in the first
order calculus of variations of multiple integrals, with different properties; the most well-
known are the Cartan form, the Poincaré-Cartan form, the Carathéodory form, and the so
called fundamental form (see Betounes [5], Crampin and Saunders [14], Dedecker [15],
Garcı́a [19], Goldschmidt and Sternberg [23], Gotay [25], Horak and Kolář [33], Krupka
[41], [42], [45], Olver [79], Rund [82], Saunders [86], Shadwick [87], Sniatycki [88]).
For a second order Lepage form, which can be considered as a direct generalization of the
Cartan form, we refer to Krupka [50]. Lepage equivalents of a fixed Lagrangian define the
same variational functional, the Euler-Lagrange form, as well as the Noether currents; they
lead to different Hamilton equations.

Some authors studied possibilities to extend properties of Lepage forms to differential
forms of higher degree (Krupka and Sedenková [62], Krupková [65], [67], with the idea to
use them in the theory the inverse problem of the calculus of variations, or for computation
of classes in the variational sequence theory.

Let Y be a fibred manifold of dimension n + m, with n-dimensional base X and
projection π. We discuss known examples of Lepage forms in the following three cases:

(a) n = 1, m and r arbitrary (higher order fibred mechanics),
(b) r = 1, n and m arbitrary (first order field theory),
(c) r = 2, n and m arbitrary (second order field theory).

(a) Higher order fibred mechanics For n = 1 we usually denote a fibred chart
on Y by (V, ψ), ψ = (t, qσ), and the associated chart on JrY by (V r, ψr), ψr =
(t, qσ(0), q

σ
(1), . . . , q

σ
(r)), and ωσ(k) = dqσ(k) − qσ(k+1)dt, 0 ≤ k ≤ r − 1. For r = 1 we

write qσ(0) = qσ , qσ(1) = q̇σ , and ωσ = ωσ(0). The formal derivative with respect to t is
denoted by d/dt.
Lemma 1 Every Lagrangian λ ∈ Ω1

1,XW has a unique Lepage equivalent Θλ. If λ is
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expressed in a fibred chart by λ = Ldt, then

Θλ = Ldt+
∂L
∂q̇σ

ωσ. (1)

The form Θλ is called the Cartan equivalent of λ, or just the Cartan form. Introducing
the function

H = −L+
∂L
∂q̇σ

q̇σ, (2)

we can write Θλ in the Hamiltonian form

Θλ = −Hdt+
∂L
∂q̇σ

dqσ. (3)

The form Θλ (1) was first considered by Cartan; expression (3), with ∂L/∂q̇σ replaced by
independent coordinates pσ , goes back to Whitaker.
Lemma 2 Every Lagrangian λ ∈ Ωr1,XW has a unique Lepage equivalent Θλ. If λ is
expressed in a fibred chart by λ = Ldt, then Θλ is defined by

Θλ = Ldt+
r−1∑
k=0

(
r−k−1∑
l=0

(−1)l
dl

dtl
∂L

∂qσ(k+1+l)

)
ωσ(k). (4)

The Lepage equivalent Θλ is of order 2r − 1.

(b) First order field theory Now the positive integer n = dimX is arbitrary.
Lemma 3 Every Lagrangian λ ∈ Ω1

n,XW has a unique Lepage equivalent Θλ ∈ Ω1
n,YW

whose order of contactness is ≤ 1. If λ is expressed in a fibred chart by λ = Lω0, then

Θλ = Lω0 +
∂L
∂yσi

ωσ ∧ ωi. (5)

The form Θλ (5) was considered by different authors (see e.g. Sniatycki, Goldschmidt
and Sternberg, Krupka, Garcı́a and Perez-Rendon; following Garcı́a [19], we call Θλ the
Poincaré-Cartan equivalent of the Lagrangian λ, or just the Poincaré-Cartan form.

Let ρ be an n-form on Y . Since dρ is defined on Y , ρ is always a Lepage form,
and is a Lepage equivalent of the Lagrangian of order 1, λ = hρ ∈ Ω1

n,XW . Since
the horizontalization Ω0

nW 3 ρ → hρ ∈ Ω1
n,XW is in this case an injection, for any

Lagrangian λ in the image of h one can reconstruct the preimage of λ, which is indeed
unique.
Lemma 4 Let ρ be an n-form on Y , and let hρ = Lω0. Then (π1,0)∗ρ can be written as

(π1,0)∗ρ = Lω0 +
n∑
k=0

1
k!(n− k)!

1
k!

∂kL
∂yσ1

j1
∂yσ2

j2
. . . ∂yσkjk

εj1j2...jkik+1ik+2...in

·ωσ1 ∧ ωσ2 ∧ . . . ∧ ωσk ∧ dxik+1 ∧ dxik+2 ∧ . . . ∧ dxin ,

(6)

and is a Lepage equivalent of hρ.
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Formula (6) gives us an expression for the inverse mapping of the horizontalization
Ω0
nW 3 ρ → hρ ∈ Ω1

n,XW . In particular, formula (6) shows that a Lagrangian λ ∈
Ωrn,XW may have a Lepage equivalent belonging to the module Ωr−1

n W . We extend the
inverse mapping of the horizontalisation h, given by (6), to the whole set Ω1

n,XW of the
first order Lagrangians. We define a Lepage equivalent Zλ of any Lagrangian λ = Lω0 by
formula (6); Zλ is defined on V 1, and is called the fundamental Lepage equivalent of the
Lagrangian.

Since each term in the fundamental Lepage equivalent Zλ (6) is invariant, restricting
the summation to terms of order of contactness ≤ p, we get again a Lepage equivalent of
λ.

Distinguished properties of the fundamental Lepage equivalent Zλ are summarized in
the following Lemma. Let Eλ be the Euler-Lagrange form of λ.
Lemma 5 The mapping λ→ Zλ of Ω1

n,XW into Ω1
nW has the following properties:

(a) If ρ ∈ Ω0
nW , then Zhρ = (π1,0)∗ρ.

(b) Zλ is π1,0-projectable if and only if Eλ is π2,1-projectable.
(c) Zλ is closed if and only if Eλ = 0.
(d) For any automorphism α : W → Y , J1α∗Zλ = ZJ1α∗λ.

From Lemma 5 we easily deduce that for every π-projectable vector field ξ, the fun-
damental Lepage form Zλ satisfies ∂J1ξZλ = Z∂J1ξλ

, and the Poincaré-Cartan form Θλ

satisfies J1α∗Θλ = ΘJ1α∗λ and ∂J1ξΘλ = Θ∂J1ξλ
; the Euler-Lagrange form Eλ satisfies

∂J2ξEλ = E∂J1ξλ
. Finally, for a first order Lagrangian λ ∈ Ω1

n,XW , the Euler-Lagrange
form Eλ vanishes if and only if there exists an n-form ρ ∈ Ω0

nW such that λ = hρ and
dρ = 0.

Another example is provided by the following. Let λ ∈ Ω1
n,XW be a nowhere zero

first order Lagrangian. Then the n-form

ρ =
1
Ln−1

(
Ldx1 − ∂L

∂yσ1
1

ωσ1

)
∧
(
Ldx2 − ∂L

∂yσ2
2

ωσ2

)
∧ . . . ∧

(
Ldxn − ∂L

∂yσnn
ωσn

)
,

(7)

where L is defined by the chart expression λ = Lω0, is a Lepage equivalent of λ. This
form is called Carathéodory form.

(c) Lepage equivalents of second order Lagrangians It can be easily seen by check-
ing invariance that for second order Lagrangians, the principal Lepage equivalent is glob-
ally well-defined. This proves the following lemma.
Lemma 6 Let W ⊂ Y be an open set, and let λ ∈ Ω2

n,XW be a Lagrangian of order 2.
There exists a Lepage equivalent Θλ ∈ Ω2r−1

n W of λ such that for any fibred chart (V, ψ),
ψ = (xi, yσ), such that V ⊂W , λ = Lω0, and

Θλ = Lω0 +

(
∂L
∂yσj
− dp

∂L

∂yσpi

)
ωσ ∧ ωj +

∂L
∂yσij

ωσi ∧ ωj . (8)
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7.2 Variational sequence

The variational sequence is a main tool, which can serve to discover new information about
the local structure of different variational concepts and constructions, and to characterize
differences between local and global properties of these concepts. A typical problem which
should be considered in this context, is the structure of variationality conditions (Helmholtz
form), and the local and global inverse problems of the calculus of variations.

Research in this direction originated from different sources; one of the most significant
was, in the author’s opinion, the work of Th. Lepage, indicating that there should be a
close correspondence between the exterior derivative of differential forms on one side, and
the Euler-Lagrange mapping of the calculus of variations on the other side. A conclusion,
derived from this approach, was the theory of Lepage forms (Krupka [41], [50]); in par-
ticular, it was shown that the Euler-Lagrange mapping can be globally interpreted as an
assignment, sending an n-form (the Lagrangian) to an (n + 1)-form (the Euler-Lagrange
form). These studies, supported by the ideas of the variational bicomplex theory (cf. An-
derson and Duchamp [2], Dedecker and Tulczyjew [16], Takens [90], Tulczyjew [94],
Vinogradov [95], Vinogradov, Krasilschik and Lychagin [96]), gave rise to the concept of
a finite order (cohomological) exact sequence of forms, the variational sequence, in which
the Euler-Lagrange mapping is included as one arrow (Krupka [55]). We are not concerned
with the variational bicomplex theory here (for this topic see Vitolo [98]).

For further results in this field we refer to Anderson and Thompson [4], Brajerčı́k
and Krupka [6], [8], Dedecker and Tulczyjew [16], Francaviglia, Palese and Vitolo [18],
Grassi [27], Grigore [29], Kolář and Vitolo [37], Krbek and Musilová ([39], [40]), Krupka
[45], [48], [54], Krupka and Sedenková [62], Krupka, Krupková, Prince, Sarlet [58], [59],
Krupková [68], Musilová [76], Pommaret [80], Stefanek [89], and Vitolo [97].

Let Ωr0,c = {0}, and let Ωrk,c be the sheaf of contact k-forms on JrY . We set

Θr
k = Ωrk,c + dΩrk−1,c, (1)

where dΩrk−1,c is the image sheaf of Ωrk−1,c by the exterior derivative d. It can be shown
that we get an exact sequence of soft sheaves 0 → Θr

1 → Θr
2 → Θr

3 → . . ., where
the morphisms are the exterior derivative, i.e., a subsequence of the De Rham sequence
0→ R→ Ωr0 → Ωr1 → Ωr2 → Ωr3 → . . .. The quotient sequence

0→ R→ Ωr0 → Ωr1/Θ
r
1 → Ωr2/Θ

r
2 → Ωr3/Θ

r
3 → . . . (2)

which is also exact, is called the r-th order variational sequence on Y . We denote the
quotient mappings in (2) by Ek : Ωrk/Θ

r
k → Ωrk+1/Θ

r
k+1. The following is a basic

property of this sequence.
Theorem 1 The variational sequence is an acyclic resolution of the constant sheaf R over
Y .

Denote (2) symbolically as 0 → R → Vr. Let Γ(Y,Vr) be the cochain complex
0 → Γ(Y,R) → Γ(Y,Ωr0) → Γ(Y,Ωr1) → Γ(Y,Ωr2) → . . . of global sections of (2).
We get as a corollary to the abstract De Rham theorem the following identification of the
cohomology groups Hk(Γ(Y,Vr)) of this complex with the De Rham cohomology groups
of the manifold Y

Hk(Γ(Y,Vr)) = HkY. (3)
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Now we discuss some consequences of the theory of variational sequences. To under-
stand the meaning of the cohomology groups (3), one should compute the classes entering
the quotient spaces in (2). Note that the quotient spaces Ωrk/Θ

r
k are determined up to

an isomorphism. Thus, the classes admit various equivalent characterizations. A simple
analysis shows that the elements of Ωrn/Θ

r
n can be identified, in fibred charts, with some

n-forms Lω0, i.e., with some Lagrangians for Y. The elements of Ωrn+1/Θ
r
n+1 can be

identified with (n+ 1)-forms εσωσ ∧ ω0, i.e., with source forms. More precisely, we have
the following result.
Theorem 2 The sheaf Ωrn/Θ

r
n is isomorphic with a subsheaf of the sheaf of Lagrangians

Ωr+1
n,X , Ωrn+1/Θ

r
n+1 is isomorphic with a subsheaf of the sheaf of source forms Ω2r+1

n+1,Y ,
and the quotient mapping En : Ωrn/Θ

r
n → Ωrn+1/Θ

r
n+1 is the Euler-Lagrange mapping.

Now it is clear what kind of results are described by the variational sequence. Assume
that a Lagrangian λ = [ρ] satisfies En(λ) = 0. Then by exactness of (2), there always
exists a class [η] such that En−1([η]) = [ρ] = [dη]. This means that, locally, ρ decomposes
into the sum of a closed form and a contact form. Condition

En(λ) = 0 (4)

is the local variational triviality condition, and may be explicitly expressed with the help
of (3). If in addition, HnY = {0}, (3) says that η may be chosen globally defined on
JrY . The local variational triviality condition strongly determines the structure of the
Lagrangians whose Euler-Lagrange forms vanish identically.

Analogously, assume that we have a source form ε = [ρ] which satisfies the local
variationality condition

En+1(ε) = 0. (5)

Then there exists a class [η] such that En([η]) = [ρ] = [dη]. Thus, locally, ρ can be ex-
pressed as the sum of a closed form and a contact form. If in addition, Hn+1Y = {0}, (3)
guarantees that η may be chosen globally defined on JrY . The local variationality condi-
tion strongly determines the structure of such source forms, which can, at least locally, be
treated as the Euler-Lagrange forms of suitable Lagrangians.

If ε is a source form, then En+1(ε) = [dε] is the Helmholtz form and En+1 is the
Helmholtz mapping. In the well-known sense, the vanishing of the Helmholtz form is a
necessary and sufficient condition for existence of (local) Lagrangians for ε (the Helmholtz
conditions).

7.3 Fibered mechanics: Local and global triviality, local and global
variationality

In this subsection, we discuss differences between local and global variational triviality
of Lagrangians, and local and global variationality of source forms for some examples of
fibred manifolds Y over 1-dimensional bases X (higher order fibred mechanics). Recall
that these concepts are defined by the Euler-Lagrange mapping Ωrn,XW 3 λ → E1(λ) ∈
Ω2r
n+1,YW , where W runs through open subsets of Y .

A Lagrangian λ ∈ Ωr1Y is locally variationally trivial if and only if E1(λ) = 0. If λ is
locally variationally trivial and H1Y = 0, then λ is globally variationally trivial. A source
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form ε ∈ Ωsn+1,YW is locally variational if and only if E2(λ) = 0, (in the notation of 7.2).
If ε is locally variational and H2Y = 0, then ε is globally variational.

Consider simple examples (Anderson and Duchamp [2], Krupka [54]). Denote byQ =
Rm, Sm, T,M,K the realm-dimensional Euclidean space, them-dimensional sphere, the
2-dimensional torus S1 × S1, the Möbius strip, and the Klein bottle, respectively. Then
H0Q = R, and

HiRm, 1 ≤ i ≤ m,

H1S1 = R, HiSm = 0, HmSm = R, m ≥ 2, 1 ≤ i ≤ m− 1,

H1T = R⊕ R, H2T = R,

H1M = R, H2M = 0,

H1K = R, H2K = 0.

(1)

Since dimX = 1, if we restrict ourselves to connected base manifolds, we have essen-
tially two possibilities: (a) X = R, and (b) X = S1.

(a) LetX = R. Assume that Y = R×Q. Then by the Künneth formula,H1(R×Q) =
H1Q. Thus if Q = Rm, or Q = Sm, m ≥ 2, then local variational triviality always
implies global variational triviality. Analogously, H2(R×Q) = H2Q. Thus if Q = Rm,
or Q = Sm, m 6= 2, or Q = M , Q = K, local variationality automatically implies global
variationality. If Y is a vector bundle over R, then local variational triviality implies global
variational triviality.

(b) LetX = S1. Assume that Y = S1×Q. Then H1(S1×Q) = H1Q⊕H0Q. Since
H0Q is always nontrivial, H1(S1 × Q) 6= 0, and in this case local variational triviality
does not imply global variational triviality. Therefore, one should examine every case
independently. Similarly,H2(S1×Q) = H2Q⊕H1Q, and ifQ = Rm, orQ = Sm, where
m ≥ 3, then local variationality always implies global variationality. If we consider M
(K) as a fibered manifold over S1 with fiber R (S1), then in both cases, local variationality
implies global variationality. If Y is a vector bundle over S1, then local variationality
implies global variationality.

7.4 Regularity and generalizations of the Hamilton theory

The theory of Hamilton equations for Hamilton extremals, presented below, has some spe-
cific features: (a) It is a theory of Lagrangian type, there is no dual concept of a Hamil-
tonian (such a concept arises locally), (b) the theory extends the Euler-Lagrange theory in
the sense that every solution of the associated Euler-Lagrange equations is a Hamilton ex-
tremal, (c) no additional assumption, such as existence of a distinguished time coordinate,
is imposed, and (d) in classical mechanics, where the Lagrangian satisfies the standard
regularity condition (regularity of the Hessian matrix), the theory gives the well-known
Hamilton theory.

First motivation for this geometric theory has been formulated by Dedecker [15] whose
understanding of regularity was much weider than the classical one. The classical concept
was considered on fibred manifolds by Goldschmidt and Sternberg [23], and generalized
by Krupka and Stepanková [63], and Garcı́a and Munoz [20] (see also Gotay [24], Horak
and Kolář [33], Kolář [35], Krupka and Musilová [60], Shadwick [87]); Krupka [46], [49]
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and Krupka and Stepanková [62] interpreted the classical regularity condition locally, and
introduced adapted Legendre coordinates instead of a global Legendre morphism. For a
new, wider concept, extending regularity from Lagrangians to source forms, we refer to
Krupková [65] - [68].

We know that every form ρ ∈ ΩrnW defines a Lagrangian hρ ∈ Ωr+1
n,XW , the corre-

sponding variational functional, and the Euler-Lagrange form Ehρ. ρ also defines another
variational functional

ΓΩ(JrW ) 3 δ → ρΩ(δ) =
∫
Ω

δ∗ρ ∈ R, (1)

whose domain are sections of JrY . Note that the sections in the set ΓΩ(JrW ) are not, in
general, holonomic, i.e., are not necessarily of the form δ = Jrγ.

To be more precise, consider JrY as fibred over X by the projection πr. Then pro-
longing JrY we get the 1-jet prolongation J1JrY of the fibred manifold JrY , and the
associated horizontalization, denoted h̃, defined by

h̃f = f ◦ (πr)1,0, h̃dxi = dxi, h̃dyσj1j2...jp = yσj1j2...jp,kdx
k, 0 ≤ p ≤ r. (2)

Note that in this formula the associated coordinates on J1JrY are denoted by
xi, yσj1j2...jp,k where 0 ≤ p ≤ r. Correspondingly, let Λ = h̃ρ be the Lagrangian; we
call Λ the extended Lagrangian. Clearly, Λ is a (πr)1-horizontal form on J1JrY . We set

Hρ = EΛ, (3)

and call Hρ the Hamilton form of ρ. Thus, the Hamilton form is defined to be the Euler-
Lagrange form of the extended Lagrangian. The corresponding Euler-Lagrange equations
are called the Hamilton equations, and their solutions δ are called the Hamilton extremals.

As an illustration of this general scheme, consider the case n = 1, r = 1 (first or-
der fibred mechanics). Denote by (t, qσ, q̇σ) some fibred coordinates on J1Y , and by
(t, qσ, q̇σ, qσ1 , q̇

σ
1 ) the associated coordinates on J1J1Y . Assume that we have a first order

Lagrangian λ ∈ Ω1
1,XW , λ = Ldt, and consider the Cartan form Θ = Ldt+(∂L/∂q̇σ)ωσ .

Then λ = hΘ and Λ = h̃Θ = L̃dt, where

L̃ = L+
∂L
∂q̇σ

(qσ1 − q̇σ), (4)

and

HΘ =
(
∂L
∂qσ

+
∂2L

∂qσ∂q̇ν
(qν1 − q̇ν)− d

dt

∂L
∂q̇σ

)
dqσ ∧ dt

− ∂2L
∂q̇σ∂q̇ν

(qν1 − q̇ν)dq̇σ ∧ dt.
(5)

If λ is regular, i.e., if

det
(

∂2L
∂q̇σ∂q̇ν

)
6= 0, (6)
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then HΘ can be computed in the Legendre coordinates pσ = ∂L/∂q̇σ . Denoting H =
−L+ pσ q̇

σ , we get

HΘ = −
(
∂H
∂qσ

+
dpσ
dt

)
dqσ ∧ dt+

(
− ∂H
∂pσ

+
dqσ

dt

)
dpσ ∧ dt. (7)

The coefficients in HΘ are exactly the left-hand sides of the well-known Hamilton equa-
tions.

It is interesting that an analogous situation arises for the second order Hilbert La-
grangian of the general relativity theory. Let X be any n-dimensional manifold (space-
time), Y = MetX the fibred manifold of regular tensors of degree (0, 2) overX , λ = Lω0,
where L = R

√
|det(gij)|, andR is the scalar curvature invariant (considered as a function

on J2MetX). For any coordinates (xi) on X , we have the associated coordinates (xi, gij)
on MetX , and (xi, gjk, gij,k, gij,kl) on J2MetX . We can compute the principal Lepage
equivalent Θλ. It is easily seen that Θλ is a global n-form on J1MetX defined by

Θλ =
√
|det(gij)|gip(ΓjipΓ

k
jk − ΓjikΓkjp)ω0

+
√
g (gjpgiq − gpqgij)(dgpq,j + Γkpqdgjk) ∧ ωi

(8)

(cf. 7.1, Lemma 6). The corresponding Hamilton form (3) that is a global form on
J1J1MetX , can be derived by a routine calculation. One can check that the Lepage
form (8) satisfies a regularity condition (different from the standard one for quadratic
Lagrangians); on the basis of this new regularity, one may also obtain the correspond-
ing Legendre transformation, and the Hamilton equations (see [63]) for the metric field
g = gjkdx

j⊗dxk, equivalent with the Euler-Lagrange equation of the Hilbert Lagrangian,
i.e., with the vacuum Einstein equations.

In this context, general structure and properties of the Hamilton equations in field the-
ory have not been understood yet.

7.5 The inverse problem: First order field theory and variational
energy-momentum tensors

In this subsection, we present a solution of the equation En+2(τ) = 0 for the first order
source forms τ in field theory (Haková and Krupková [31], Krupka [53]). For higher order
forms only partial results are known (Krupková [65], [66]).

The results on the structure of variational first order source forms can be applied to
energy-momentum tensors, known in the general relativity, and field theory. One should
distinguish between (a) Noether type energy-momentum tensors, that arises when the un-
derlying variational functionals are invariant with respect to a given Lie group, and (b) vari-
ational energy-momentum tensors, connected with variationality of the underlying source
forms (of field equations). For different aspect of the geometric theory, we refer to Fernan-
des, Garcı́a, and Rodrigo [17], Gotay and Marsden [26].

Assume that we have a source form on J1Y , τ = τσω
σ ∧ ω0. Recall that τ is said to

be variational, if it coincides with the Euler-Lagrange form of a Lagrangian for Y . Local
variationality is equivalent with the Helmholtz conditions

∂τσ
∂yνj

+
∂τν
∂yσj

= 0,
∂τσ
∂yν
− ∂τν
∂yσ

+ dj
∂τν
∂yσj

= 0. (1)
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One can prove equivalence of the following four conditions: (a) τ is locally variational,
(b) there exists a unique (n + 1)-form α on Y such that τ = p1α, and dα = 0, (c) there
exists an n-form η on Y such that τ = Eλ, and λ = hη, (4) τ is (globally) variational.

In any fibred chart, variationality of τ is equivalent to the existence of functions
Aσ1σ2...σk,ik+1ik+2...in , 0 ≤ k ≤ n, defined on V , such that

τ =

(
−

n∑
k=1

1
(k − 1)!

∂Aνσ2...σk,ik+1ik+2...in

∂xi1
yσ2
i2
yσ3
i3
. . . yσkik

+
n∑
k=1

1
(k − 1)!

(
−
∂Aνσ2...σk,ik+1ik+2...in

∂yσ1
+
∂Aσ1σ2...σk,ik+1ik+2...in

∂yν

)

·yσ1
i1
yσ2
i2
. . . yσkik

)
ων ∧ dxi1 ∧ dxi2 ∧ . . . ∧ dxin .

(2)

If τ is variational, then τ has a first order Lagrangian, where

L =
(
Ai1i2...in +

1
1!
Aσ1,i2i3...iny

σ1
i1

+
1
2!
Aσ1σ2,i3i4...iny

σ1
i1
yσ2
i2

+ . . .+
1

(n− 1)!
Aσ1σ2...σn−1,iny

σ1
i1
yσ2
i2
. . . y

σn−1
in−1

+
1
n!
Aσ1σ2...σny

σ1
i1
yσ2
i2
. . . yσnin

)
εi1i2...in ,

(3)

and the coefficients Ai1i2...in , Aσ1,i2i3...in , Aσ1σ2,i3i4...in , . . . , Aσ1σ2...σn−1,in , Aσ1σ2...σn

depend on xi, yσ only. α is given by

α = τσω
σ ∧ ω0 +

n∑
k=1

1
k!(k + 1)!

∂kτσ
∂yν1

j1
∂yν2

j2
. . . ∂yνkjk

ωσ ∧ ων1

∧ων2 ∧ . . . ∧ ωνk ∧ ωj1j2...jk ,
(4)

where ωj1j2...jk = i∂/∂xjkωj1j2...jk−1 .
Note that conditions (1) can be applied to the problem of finding variational energy

momentum tensors, known from the general relativity theory. We say that a source form τ
is an energy-momentum tensor for a source form ε, if the source form ε− τ is variational.

Consequently, with necessary changes in the notation, the general structure of first
order variational energy momentum tensors for the vacuum Einstein equations is described
by formula (2).

7.6 Invariance: Natural variational principles, principal bundles

We briefly discuss in this subsection geometric structure of variational functionals, which
are known as invariant with respect to diffeomorphisms, and generalizations of these vari-
ational functionals.

Such variational functionals arise when the underlying fibred manifolds belong to a
given category, and a given Lagrangian defines a variational functional for each object
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of this category (not for a fixed fibred manifold only). We call Lagrangians of this kind
natural.

To make this scheme more precise, one needs the concepts of a category, covariant
functor between two categories, natural transformation, differential invariant, natural bun-
dle, etc.; for generalities on jets, categories of fibre bundles, and their jet prolongations,
differential invariants and natural bundles, we refer to Kolář, Michor, and Slovák [36],
Krupka and Janyska [56], D. Krupka, M. Krupka [57], Nijenhuis [77], and Saunders [85].

The most common examples of a covariant functor are the tangent functor T , assigning
to a manifold X its tangent bundle TX , and to a morphism f : X1 → X2 of manifolds
the tangent mapping Tf : TX1 → TX2, and the tensor functors, derived from T .

Historically, one of the well-known examples of a natural Lagrangian is the Hilbert
Lagrangian for the Einstein equations (that is, the scalar curvature function on a pseu-
doriemannian manifold, considered as a Lagrangian on an appropriate jet bundle). Many
others can be found in classical sources (see e.g. Lovelock [70], [71], Rund [83], Rund and
Lovelock [84]). A differential geometric discussion of several examples based on jets can
be found in Horak and Krupka [34], [44], P. Musilová and Krupka [74], P. Musilová and
J. Musilová [75], and Novotný [78]. The theory as presented below follows the approach,
explained in Krupka [43], [47], [50], and Krupka and Trautman [64].

Denote by Dn the category of smooth manifolds and their diffeomorphisms, and by
PBn(G) the cateory of principal bundles over n-dimensional manifolds, with structure
group G; the morphisms in PBn(G) are considered to be homomorphisms of principal
bundles, whose projections belong to the category Dn. Fibre bundles, associated with ob-
jects of the categoryPBn(G), and homomorphisms of these fibre bundles, form a category,
denoted by FBn(G).

Suppose that we have a covariant functor τ : Dn → PBn(G) (a lifting functor, or
just a lifting). τ assigns to every n-dimensional manifold X and every diffeomorphism
f : U → X , where U is an open set inX , a morphism of fibred manifolds τf : τU → τX ,
commuting with the projection of τX . Let Q be a manifold, endowed with a left action
of the Lie group G. Q defines the fibre bundle with fibre Q, associated with τX , whose
type fibre is Q, and a morphism of fibre bundles τQf : τQU → τQX , commuting with the
projection of τQX . We get a covariant functor τQ : Dn → FBn(G), called a Q-lifting
from the category Dn to the category FBn(G), associated with τ , or simply a lifting.

We introduce an important example, the higher order frame lifting. By the r-th differ-
ential group Lrn of Rn we mean the Lie group of invertible r-jets with source and target at
the origin 0 ∈ Rn; by an r-frame at a point x ∈ X we mean an invertible r-jet with source
0 ∈ Rn and target x. The set FrX of all r-frames has a natural structure of a principal
bundle with structure group Lrn. Every diffeomorphism α : U → X , where U is an open
set in X , defines, by means of composition of diffeomorphisms, a morphism of principal
bundles Frα : FrU → FrX; the correspondence X → FrX , α → Frα is a covariant
functor from the category Dn to PBn(Lrn), called the r-frame lifting (F1X is the bundle
of linear frames, and F = F1 is the standard frame lifting).

Let Q be a space of tensors on the vector space Rn; elements of Q are called tensors
of type Q over Rn. Q is endowed with the tensor action (g, p) → g · p of the general
linear group Gln(R). The Q-lifting is the correspondence, assigning to an n-dimensional
manifold X the tensor bundle τQX of tensors of type Q over X , and to any isomorphism
f of manifolds the corresponding isomorphism τQf of tensor bundles. Let T rnQ be the set



830 Global variational theory in fibred spaces

of r-jets with source at 0 ∈ Rn and target in Q. Then the mapping

Lr+1
n × T rnQ 3 (Jr+1

0 α, Jrxζ)→ Jr+1
0 α · Jrxζ = Jr0 ((Dα · ζ) ◦ α−1) ∈ T rnQ (1)

is a left action of the group Lr+1
n on T rnQ (Krupka [43]). Computing the (r+ 1)-jet on the

right-hand side in components, one can easily see that this formula represents, formally,
the transformation rules for components of tensors of type Q and their derivatives up to
order r.
Lemma 1 (a) Formula (1) defines on the r-jet prolongation JrτQX the structure of a fibre
bundle with fibre T rnQ, associated with the principal bundle Fr+1X .

(b) The correspondence X → JrτQX , f → JrτQf is a covariant functor from the
category Dn to FBn(Lr+1

n ).

The functor JrτQ is called the r-jet prolongation of the lifting τQ.
Let λ be a Lagrangian of order r for τQX . We say that λ is natural, if for every

diffeomorphism α : U → X , αQ is an invariance transformation of λ, i.e.,

(JrαQ)∗λ = λ (2)

on the corresponding open set. We are now in a position to prove the following result, a ver-
sion of the second theorem of Emmy Noether, stating that the Euler-Lagrange expressions
of a natural Lagrangian λ and the currents iJrτQξΘλ satisfy certain equations.
Theorem 1 Let X be an n-dimensional manifold, and let λ be a natural Lagrangian of
order r on JrτQX . Let ρ be a Lepage equivalent of λ. Then for every section γ and every
vector field ξ on X

J2rγ∗iJ2rτQξEλ + dJ2r−1γ∗iJ2r−1τQξΘλ = 0. (3)

In particular, each extremal γ satisfies the conservation laws

dJ2r−1γ∗iJ2r−1τQξΘλ = 0. (4)

Indeed, let ξ be any vector field on X , and let αξt be the local one-parameter group of
ξ. Applying τQ to αξt , we get invariance transformations JrτQα

ξ
t of λ, and a generator τξ

of the one-parameter group αξt . Then by definition, the Lie derivative ∂τξλ vanishes, so
the infinitesimal first variation formula

∂τξλ = iτξdΘλ + diτξΘλ (5)

for these vector fields reduces to iJ2r−1τQξdΘλ + diJ2r−1τQξΘλ = 0, that is, to (4).
Note that Lemma 1 as well as Theorem 1 can be easily formulated for liftings JrτQ,

where Q is an arbitrary manifold, endowed with an action of the general linear group, or,
more generally, with an action of any differential group Lsn (Krupka [43], [47]). In partic-
ular, the same assertions are valid for variational functionals, whose underlying spaces are
frame bundles.

For various aspects of the theory of variational functionals on frame bundles and gen-
eral principal bundles, invariant with respect to the structure group, we refer to Brajerčı́k,
Krupka [7], [9], Castrillon Lopez and Munoz Masque [10], Castrillon Lopez, Munoz
Masque and Ratiu [11], Cendra, Ibort and Marsden [12], [13], Munoz Masque and Rosado
Maria [72], [73], and Prieto [81].
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[37] I. Kolář and R. Vitolo: On the Helmholtz operator for Euler morphisms Math. Proc.
Camb. Phil. Soc. 135 (2003) 277–290

[38] J. Krasilschik: Geometry of differential equations: A concise introduction Acta
Appl. Math. 72 (2002)

[39] M. Krbek and J. Musilová: Representation of the variational sequence by forms
Acta Applicandae Mathematicae 88 (2005) 177–199

[40] M. Krbek and J. Musilová: Representation of the variational sequence Rep. Math.
Phys. 51 (2003) 251–258

[41] D. Krupka: A geometric theory of ordinary first order variational problems in fibered
manifolds, I. Critical sections J. Math. Anal. Appl. 49 (1975) 180–206;
II. Invariance J. Math. Anal. Appl. 49 (1975) 469–476

[42] D. Krupka: A map associated to the Lepagean forms of the calculus of variations in
fibered manifolds Czech. Math. J. 27 (1977) 114–118

[43] D. Krupka: A setting for generally invariant Lagrangian structures in tensor bundles
Bull. Acad. Polon. Sci. , Ser. Math. Astronom. Phys. 22 (1974) 967–972

[44] D. Krupka: A theory for generally invariant Lagrangians for the metric fields I In-
ternat. J. Theoret. Phys. 17 (1978) 359–368;
II Internat. J. Theoret. Phys. 15 (1976) 949–959

[45] D. Krupka: Lepagean forms in higher order variational theory In: Modern Devel-
opments in Analytical Mechanics, Proc. IUTAM-ISIMM Sympos., Turin, June 1982
(Academy of Sciences of Turin, 1983) 197–238

[46] D. Krupka: On the higher order Hamilton theory in fibered spaces In: Proc. Conf. on
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[61] D. Krupka and J. Musilová: Calculus of Odd Base Forms on Differential Mani-
folds (Folia Fac. Sci. Nat. Univ. Purk. Brunensis, Physica 24, Brno, Czechoslovakia,
1983)
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1 Introduction

Second order ordinary differential equations on finite dimensional manifolds appear in
a wide variety of applications in mathematics, physics and engineering. In differential
geometry they describe the autoparallel curves of a linear connection, the geodesics of the
metric in Riemann and Finsler geometries and the integral curves of the Reeb field on a
contact manifold. In the calculus of variations they are the Euler-Lagrange equations in the
single independent variable case. In classical mechanics they are Newton’s equations of
motion and the Euler-Lagrange equations of a mechanical Lagrangian. In general relativity
and its variants they describe worldlines of free particles. In classical electrodynamics they
describe the paths of charged particles.

The first observation to be made here is that the calculus of variations puts up an um-
brella over many of these cases, bringing with it the manifest benefits of the integrability
theorems of Noether, Liouville, and Jacobi. In the case of the autoparallel curves of a
linear connection, there is an obvious inverse problem: “are these curves the geodesics of
some metric?” (This question has both Riemannian and Finslerian versions.) When this
is true additional, geometric benefits flow. Clearly, we should generally ask “ when are
the solutions of a system second order ordinary differential equations those of a system of
Euler-Lagrange equations (on the same manifold)?”

8 B.V. .
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A second observation, or rather reservation, arises: just how important is the existence
of a variational principle for a system of these equations? This question is indicated by
the fact that, at least locally, every regular system of n second order ordinary differen-
tial equations on an n dimensional manifold M provides a Reeb field on R×TM . On
the other hand the variationality of such a system is not even a universal local property.
Since the classical integrability theorems are available for Reeb fields, why bother with
variationality?

To answer this rhetorical question we remark that variational equations play a funda-
mental role, not only in physics but also in the theory of differential equations alone. Es-
sentially, for regular Lagrangians they have a fundamental alternative-Hamilton equations-
that are first order equations, equivalent with the Euler-Lagrange equations, appearing as
equations for integral curves of a vector field on a prolongation of the configuration man-
ifold (“phase space”). And, of course, all the known integration methods for variational
equations in classical mechanics based on symmetries and first integrals (the Noether and
Liouville theorems), as well as the powerful Hamilton-Jacobi integration method, bene-
fit from this representation. They can be used to solve differential equations once a La-
grangian is known. Next, the existence of a Lagrangian is of high importance in physics:
in particular, without a Lagrangian there is no quantisation.

The restriction of the use of the classical Hamilton and Hamilton-Jacobi theory to the
class of regular Lagrangians was a motivation for Dirac to start to study singular differential
equations, that is, such that cannot be put into the normal form

ẍa = fa(t, x, ẋ).

Surprisingly, it turns out that singular equations have unexpected properties: even in the
smooth case the Cauchy initial problem may have more solutions or no solution at all, and,
as a significant complication, integration methods so useful for solving regular equations,
cannot be applied, or their use may produce incorrect results.

Conversely, motivations and ideas coming from the calculus of variations and physics
recently resulted in a systematic study, based on differential geometry and global analysis,
of general, not necessarily regular, second and higher order differential equations. As
a benefit one obtains a setting for a general geometric theory of differential equations
where the class of variational equations appears as a special case, and many results and
techniques, known only within the variational calculus are extended and generalised to
differential equations in general. In this setting, of course, the question of whether the
given equations come from a Lagrangian, or more generally, are equivalent with some
variational equations, plays a crucial role.

In this article we deal with the geometry of second order ordinary differential equations
(SODEs) and its intimate relationship to the corresponding inverse problem in the calculus
of variations which we spelt out above. While yet there is no complete solution to the
inverse problem in general, there have been significant advances since the seminal papers
of Helmholtz [47] in 1887 and Douglas [30] in 1941: Helmholtz finding conditions for
variationality of a system of SODEs in “covariant form”,

Bab(t, x, ẋ)ẍb +Aa(t, x, ẋ) = 0,

and Douglas solving the n = 2 “contravariant” case (that concerns regular equations in
normal form). But more importantly, the underlying geometry of both generic and varia-
tional SODEs has developed enormously, bringing deeper understanding to the many areas
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of application in which SODEs appear. We leave the reader to decide whether the search
for variationality is a fruitful one.

2 Second-order differential equations on fibred manifolds

The study of second and higher-order differential equations on manifolds needs to con-
sider jet bundles as appropriate underlying spaces. Systems of differential equations on
manifolds and their solutions then can be modelled by global objects defined on mani-
folds of jets and studied by tools of global analysis and differential geometry. We shall be
interested in systems of second-order ordinary differential equations whose solutions are
curves in a smooth manifold M . In this case, it is appropriate to consider the fibred mani-
fold R ×M → R, whose sections are graphs of curves into M , and its jet prolongations.
We start with a short exposition of the concepts of fibred spaces, jets of mappings, and
jet fields and jet connections going back to Ehresmann [31, 32, 33], and the calculus of
horizontal and contact forms in fibred manifolds due to Krupka [58, 62]; for more details
the reader can consult e.g. [82, 129].

For a global representation of systems of second-order differential equations we use
dynamical forms (that are certain 2-forms on the second jet bundle). Regular equations then
are described either by regular second-order dynamical forms or by semisprays (second-
order vector fields). The core of this section is a study of exterior differential systems
related with second order differential equations, and geometric classification of general
systems of SODEs, due to Krupková [74, 77, 78, 79, 82, 84, 87].

2.1 Fibred manifolds and their jet prolongations

Let M be a manifold of dimension m, and consider the projection π0 : R ×M → R. π0

is an example of a fibred manifold over R. For every point t0 ∈ R the fibre π−1
0 (t0) is

diffeomorphic to M . In this context, M is called configuration space, and the total space
R ×M of the fibred manifold π0 is called extended configuration space. On R ×M we
shall always consider local coordinates of the form (t, xa), where t is the global coordinate
on R and (xa), 1 ≤ a ≤ m, are local coordinates on M .

If c : R → M is a curve in M defined on an open interval I ⊂ R, we denote by γ its
graph, i.e. γ(t) = (t, c(t)). Since π0 ◦γ = idI , γ is a (local) section of the fibred manifold
π0.

Let s ≥ 1 be an integer. Two sections γ1, γ2 of π0, defined on an open set I ⊂ R, are
called s-equivalent at a point t0 ∈ I , if γ1(t0) = x = γ2(t0), and if there is a chart (t, xa)
around x such that the derivatives of the components γa1 , γa2 of these sections at the point
t0 coincide up to the order s, i.e., if

dkγa1
dt

(t0) =
dkγa2
dt

(t0), 1 ≤ k ≤ s,

for every a = 1, . . . ,m. The equivalence class containing a section γ is called the s-jet of
γ at t0 and is denoted by Jst0γ. The union of all s-jets at all points of R is a manifold of
dimension 1 + m(s + 1), denoted by Jsπ0 and called the s-jet prolongation of the fibred
manifold π0. For our case when π0 : R ×M → R it can be shown that Jsπ0 as a fibred
manifold overR identifies withR×T sM → R, where T sM is the manifold of s-velocities
in the sense of Ehresmann; in particular, T 1M = TM .
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One has a family of natural fibred projections from Jsπ0 onto R and Jkπ0, 0 ≤ k ≤
s− 1, denoted by πs and πs,k, respectively. Here, for the sake of simplicity, we have used
the notation J0π0 = R×M that will be used later when appropriate.

In what follows, the first jet prolongation of the extended configuration space R ×M
will play a crucial role. We denote E = R× TM and call it evolution space.

Every section γ of π0 naturally prolongs to a section Jsγ of πs defined by

Jsγ(t) = Jst γ, ∀t ∈ I,

and called the s-jet prolongation of γ. A general section of πs, however, need not be of
this form; we say that a section δ of the fibred manifold πs is holonomic if δ = Jsγ for a
section γ of π0. If γ(t) = (t, c(t)), then Jsγ(t) = (t, c(t), ċ(t), c̈(t), . . . , c(s)(t)).

If (t, xa) are local coordinates on R × M , we denote the associated coordinates on
R× TM by (t, xa, ẋa) or (t, xa, ua), and the corresponding coordinates on R× T 2M by
(t, xa, ẋa, ẍa). For a general s we also write (t, xak), 0 ≤ k ≤ s.

2.2 Calculus on jet bundles

On fibred manifolds and their jet prolongations there arise many specific geometric objects,
such as vector fields, differential forms, distributions, etc., which are adapted to the fibred
and prolongation structures.

A vector field X on Jsπ0 is called πs-vertical if Tπs.X = 0, and πs-projectable
if there exists a vector field X0 on the base R such that Tπs.X = X0 ◦ πs. Note that
considering a vertical vector field on the extended configuration space R×M corresponds
to considering a “time-dependent” vector field on M , while a (non-vertical) projectable
vector field on the extended configuration space does not have a counterpart on M .

In local coordinates, projectable vector fields have their ∂/∂t component dependent on
t only, and vertical vector fields have this component equal to zero.

Local flows of projectable vector fields transfer sections into sections; consequently,
π0-projectable vector fields on the extended configuration space can be naturally pro-
longed to vector fields on Jsπ0. The procedure is as follows: Let X be a π0-projectable
vector field, X0 its projection, and denote {φu} and {φ0u}) the corresponding local one-
parameter groups. For every u, the mapping φu is an isomorphism of the fibred manifold
π0, i.e. π0 ◦ φu = φ0u ◦ π0. Then for every section γ, the composition γ̄ = φu ◦ γ ◦ φ

−1
0u

is again a section and we can define the s-jet prolongation of φu by

Jsφu(Jst γ) = Jsφ0u(t)(φuγφ
−1
0u ).

Then Jsφ is a local flow corresponding to a vector field on Jsπ0, denoted by JsX and
called the s-jet-prolongation of X . The vector field JsX is both πs-projectable and πs,k-
projectable for 0 ≤ k < s, and its πs-projection, (resp. πs,k-projection) is X0 (resp. X ,
resp. JkX , 1 ≤ k ≤ s− 1). In local coordinates, where

X = X0(t)
∂

∂t
+Xa(t, x)

∂

∂xa
,

we have

JsX = X0(t)
∂

∂t
+Xa(t, x)

∂

∂xa
+

s∑
k=1

Xa
k

∂

∂xak
,
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where the functions Xa
k are defined by the recurrence formula

Xa
k =

dXa
k−1

dt
− xak

dX0

dt
, 1 ≤ k ≤ s. (1)

By a distribution on Jsπ0 we mean a mapping D assigning to every point z = Jst γ ∈
Jsπ0 a vector subspaceD(z) of TzJsπ0. The dimension ofD(z) is then called rank of the
distribution D at z. We say that D has constant rank if the function z → dimD(z) is con-
stant. A distribution of a constant rank on Jsπ0 is thus a subbundle of the tangent bundle
over Jsπ0. The rank of a distribution is a lower semi-continuous function. Consequently,
a distribution of constant rank is smooth (i.e. is spanned by smooth vector fields) if and
only if its annihilator is smooth (i.e. is spanned by smooth differential 1-forms), however,
a distribution of nonconstant rank with continuous annihilator is not continuous (and vice
versa).

A distribution on Jsπ0 is called vertical if it is spanned by πs-vertical vector fields,
and weakly horizontal if it is complementary to a vertical distribution. The rank of a
weakly horizontal distribution is ≥ 1 at each point, and may be non-constant. The πs-
vertical bundle over Jsπ0 is then called the maximal vertical distribution; by a horizontal
distribution we understand a distribution that is complementary to the maximal vertical
distribution. By definition, horizontal distributions have constant rank equal to one.

Given a distribution on Jsπ0, we shall deal with integral mappings that are sections
of the fibred manifold πs, and speak about integral sections. An integral section may be
holonomic or not.

For differential forms on jet bundles the properties of horizontality and different kinds
of contactness are fundamental. The following concepts have been introduced and system-
atically studied by D. Krupka since the early 1970′s [58, 59, 62, 63].

Let
∧q(Jsπ0), q ≥ 0, denote the module of q-forms on Jsπ0 over the ring of functions

(for q = 0 we have smooth functions on Jsπ0).
A form η ∈

∧q(Jsπ0) is called πs-horizontal if iXη = 0 for every πs-vertical vector
field X on Jsπ0. A form η ∈

∧q(Jsπ0) is called πs,k-horizontal, 0 ≤ k < s, if iXη = 0
for every πs,k-vertical vector fieldX on Jsπ0. The module of πs-horizontal (resp. of πs,k-
horizontal) q-forms on Jsπ0 is a submodule of

∧q(Jsπ0) and is denoted by
∧q

R(Jsπ0)
(resp.

∧q
Jkπ0

(Jsπ0)). In our situation we get from the definition that η is πs-horizontal
if and only if in coordinates it is represented by η = f dt, where f = f(t, xa, · · · , xas);
similarly, a πs,k-horizontal q-form η is expressed by means of dt, dxa, · · · , dxak only (with
the components dependent on all the t, xa, · · ·xas ).

Let η ∈
∧q(Jsπ0). There is a unique horizonal form hη ∈

∧q(Js+1π0) such that for
every section γ of π0,

Jsγ∗η = Js+1γ∗hη.

The mapping h :
∧q(Jsπ0) →

∧q(Js+1π0) is a homomorphism of the exterior algebras
and is called horizontalisation operator. For q = 0, 1 this definition gives

hf = f ◦ πs+1,s

hdt = dt, hdxa = ẋadt, hdẋa = ẍadt, · · · , hdxas = xas+1dt,

h df =
df

dt
dt ,

df

dt
=

∂f

∂t
+

∂f

∂xa
ẋa +

∂f

∂ẋa
ẍa + · · ·+ ∂f

∂xas
xas+1.
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For the sake of brevity of notations we shall also write

d̄f

dt
=
df

dt
− ∂f

∂xas
xas+1 =

∂f

∂t
+

∂f

∂xa
ẋa +

∂f

∂ẋa
ẍa + · · ·+ ∂f

∂xas−1

xas ,

and call it the “cut” total derivative.
Let now s ≥ 1. A form η ∈

∧q(Jsπ0) is called contact if

Jsγ∗ η = 0

for every section γ of π0. Obviously, η is contact iff hη = 0. On our fibred manifolds
every q-form for q ≥ 2 is contact. A function f is contact iff f = 0. Contact forms form a
closed ideal in the exterior algebra on Jsπ0 locally generated by the 1-forms

ωa = dxa − ẋadt, ω̇a = dẋa − ẍadt, · · · , ωas−1 = dxas−1 − xasdt, (2)

and their exterior derivatives.
Every vector field on Jrπ0 that is a prolongation of a vector field from R×M (i.e., of

the form JrX) is a symmetry of the contact ideal on Jrπ0, i.e. transfers contact forms into
contact forms. A symmetry of the contact ideal, however, need not be a prolongation of a
projectable vector field on R×M [67, 68].

Let q ≥ 1, and let η ∈
∧q(Jsπ0) be a contact form. We say that η is one-contact if for

every πs-vertical vector field X on Jsπ0 the (q − 1)-form iXη is πs-horizontal; we say
that η is k-contact, 2 ≤ k ≤ q, if iXη is (k − 1)-contact. The following theorem due to
Krupka [62] describes the structure of differential forms on fibred manifolds.
Theorem 2.1 (Krupka 1983) Every q-form η on Jsπ0, s ≥ 0, admits the unique decom-
position

π∗s+1,s η = hη + p1η + · · ·+ pqη

where piη is a i-contact q-form on Js+1π0, 1 ≤ i ≤ q.

The form piη is called the i-contact part of η. In view of the above theorem we shall
consider operators pi :

∧q(Jsπ0)→
∧q(Js+1π0), 1 ≤ i ≤ q, assigning to every form its

i-contact part. Since we consider the base manifold one-dimensional, we have piη = 0 for
i < q − 1. A contact q-form is called strongly contact if π∗s+1,s η = pqη.

Contact 1-forms on Jsπ0 annihilate a distribution of constant corankms, called contact
or Cartan distribution and denoted by Cπs . This distribution is not completely integrable.
It is equivalently spanned by m+ 1 vector fields

∂

∂t
+
s−1∑
j=0

xbj+1

∂

∂xbj
,

∂

∂xas
.

The contact distribution is important in distinguishing holonomic sections among all sec-
tions of πs: A section δ of πs is holonomic (i.e. δ = Jsγ for a section γ of π0) if and only
if δ is an integral section of the contact distribution on Jsπ0.

πs-horizontal subdistributions of the contact distribution Cπs are called semispray dis-
tributions. Accordingly, vector fields spanning semispray distributions, i.e., vector fields
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belonging to the contact distribution that are everywhere non-vertical are called semis-
prays. In local coordinates every semispray takes the form

g
( ∂
∂t

+
s−1∑
j=0

xaj+1

∂

∂xaj
+ fa

∂

∂xas

)
,

where g and fa are functions of (t, xi, . . . , xis), g 6= 0 at each point of Jsπ0. In this way
holonomic sections are characterised as integral sections of semisprays.

A semispray distribution on Jsπ0 defines a splitting of the tangent bundle TJsπ0 into
a direct sum of the horizontal and πs-vertical subbundles. In this way, certain (nonlinear)
connections are related to semispray distributions.

A general setting for many constructions connected with differential equations in jet
bundles requires the concepts of a jet field and jet connection (i.e. a nonlinear connection
on a fibred manifold), introduced in 1950 by Ehresmann [31, 33] and further developed
by Mangiarotti, Modugno, Saunders, Vondra and others [93, 102, 129, 130, 153]. In our
exposition, the concept of a semispray connection will play an important role.

A second-order semispray connection on the fibred manifold π0 is a (local) section w
of the projection π2,1 : R × T 2M → R × TM . In coordinates the definition π2,1 ◦ w =
idR×TM of a semispray connection w takes the form

t ◦ w = t, xa ◦ w = xa, ẋa ◦ w = ẋa, ẍa ◦ w = fa.

The functions fa(t, xi, ẋi) are called components of the connection w. Note that under
coordinate transformations they transform like the coordinates ẍa.

A (local) section γ of π0 is called a geodesic (or a path) of a semispray connection w
if it satisfies the equation

w ◦ J1γ = J2γ.

In coordinates this turns out to be a system of m = dimM second order ordinary differ-
ential equations

ẍa = fa(t, xi, ẋi), 1 ≤ i ≤ m,

for (the components of) sections of π0, that is, of curves R→M .
As mentioned above, a second order semispray connection w is related with a semis-

pray distribution on R× TM ; the distribution is spanned by the (global) semispray

Γ =
∂

∂t
+ ẋa

∂

∂xa
+ fa

∂

∂ẋa
,

or annihilated by 2m (local) one-forms

ωa = dxa − ẋadt, ω̇aΓ = dẋa − fadt.

Note that geodesics of the connection w are integral curves of the semispray Γ.
Remark 2.2 Contact 1-forms (2) can be completed to a basis of linear forms that is well
adapted to the fibred structure. In what follows, we shall often use for a local expression
of forms on E = R × TM the adapted basis (dt, ωa, dẋa) instead of the canonical basis
(dt, dxa, dẋa), and similarly, for forms on R × T 2M , the adapted basis (dt, ωa, ω̇a, dẍa)
instead of (dt, dxa, dẋa, dẍa).
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2.3 Dynamical forms

Systems of ordinary differential equations on fibred manifolds can be represented by so-
called dynamical forms and their associated exterior differential systems (EDS), generated
by a distribution on the evolution space. The integration problem and the structure of so-
lutions, however, are in general complicated: the distribution is annihilated by a system of
smooth 1-forms and may be of nonconstant rank, i.e. spanned by non-continuous vector
fields. Moreover, if it happens to have a constant rank, it often is not completely integrable.
Hence Frobenius or Sussmann-Viflyantsev theorems [137, 147, 148] cannot be used to
obtain integrability conditions, and standard integration methods cannot be applied. On
the other hand, a natural classification of SODEs on the basis of properties of their associ-
ated EDS appears. This is a tool to study the structure of solutions, as well as to obtain
integration techniques for singular SODEs.

As above, we consider a fibred manifold π0 : R × M → R, endowed with local
coordinates adapted to the product structure, and the jet prolongations of π0. We shall
follow techniques and results by Krupková (see a series of papers [71, 72, 74, 83, 87] and
the book [82] for more details and also for higher than second-order equations).

Let ε be a 2-form on R × T 2M . ε is called dynamical form if it is 1-contact and
horizontal with respect to the projection onto R×M (π2,0-horizontal).

The above conditions mean that in local coordinates (with respect to the canonical and
adapted basis, respectively) a second-order dynamical form reads

ε = Eadx
a ∧ dt = Eaω

a ∧ dt,

where the components Ea are allowed to depend upon t, xi, ẋi, ẍi.
A section γ of π0 is called path of a dynamical form ε ∈

∧2(R× T 2M) if

ε ◦ J2γ = 0. (3)

Equation (3) is referred to as equation of paths of ε; in coordinates it becomes the following
system ofm second-order ODEs form components γi = xi◦γ of sections of π0 : R×M →
R:

Ea(t, xi, ẋi, ẍi) ◦ J2γ = 0, 1 ≤ a ≤ m. (4)

To simplify the notation, from now on we will write

Ea(t, xi, ẋi, ẍi) = 0. (5)

It is worth noting that the above equations represent a very general class of ODEs: in
particular, they need not admit a normal (vector field) form

ẍa = fa(t, xi, ẋi). (6)

The study of geometric structures related with equations of paths of dynamical forms
will be our next goal. The key to the analysis of these equations is a relation between
dynamical forms and exterior differential systems.

Let W ⊂ R × T 2M be an open set and ϕ a 2-contact form on W . For a dynamical
form ε ∈

∧2(R× T 2M) put

α = ε|W + ϕ,
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and consider the exterior differential system onW , generated by the system ∆0
ϕ of 1-forms

iXα, where X runs over π2-vertical vector fields on W. (7)

The characteristic distribution of this exterior differential system (i.e. the annihilator of
∆0
ϕ) is called a dynamical distribution of ε and denoted by ∆ϕ. The following proposition

holds:
Proposition 2.3 Let ε be a dynamical form on R × T 2M . Then for any 2-contact form
ϕ ∈

∧2(W ), paths of ε in W coincide with holonomic integral sections of the exterior
differential system defined by ∆0

ϕ, i.e. with holonomic integral sections of the dynamical
distribution ∆ϕ. This means that equations

ε ◦ J2γ = 0

on W are equivalent with the equations

J2γ∗iX(ε+ ϕ) = 0, for every π2-vertical vector field X on W.

In view of the above proposition we can pose the Cauchy initial problem as a problem
of finding all holonomic integral sections of an associated EDS, passing through a given
point x ∈ R× T 2M .

In the sequel we shall exclusively deal with equations that admit representation by
first-order EDS.

We call a dynamical form ε ∈
∧2(R × T 2M) pertinent with respect to R × TM , if

around every point in J2(R × T 2M) there is an open set W and a 2-contact 2-form ϕ
defined on W such that the 2-form α = ε|W +ϕ is π2,1-projectable. We denote by [α] the
family of all such “local extensions” of ε and call it the Lepage class of ε.

Pertinent dynamical forms can be easily described in local coordinates:
Proposition 2.4 A dynamical form ε ∈

∧2(R×T 2M) is pertinent with respect toR×TM
if and only if its components Ea are affine functions in the variables ẍi:

Ea = Aa(t, x, ẋ) +Bab(t, x, ẋ)ẍb. (8)

Then the elements of the Lepage class [α] of ε take the form

α = Eaω
a ∧ dt+ Fabω

a ∧ ωb +Babω
a ∧ ω̇b

= Aaω
a ∧ dt+ Fabω

a ∧ ωb +Babω
a ∧ dẋb,

where Fab(t, x, ẋ) are arbitrary functions, skew-symmetric in the indices a, b.

Note that

ε = p1α,

ϕ = p2α = Fabω
a ∧ ωb +Babω

a ∧ ω̇b,

and that α ∈
∧2(U) belongs to the Lepage class [α] of a pertinent dynamical form ε if and

only if

α = ωa ∧ (Aadt+Babdẋ
b) + F,

where F is a 2-contact 2-form on U ⊂ R× TM .
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Remark 2.5 The Lepage class [α] of ε contains distinguished representatives

αε = Aaω
a ∧ dt+

1
4

(∂Aa
∂ẋb

− ∂Ab
∂ẋa

)
ωa ∧ ωb +Babω

a ∧ dẋb, (9)

completely determined by the dynamical form ε, each defined on the domain of the coor-
dinates (t, xi, ẋi). In general, these 2-forms are only local: they do not give rise to a global
2-form on the evolution space. However, as we shall see later, for an important class of
equations, the so-called semi-variational equations, the above local representatives “unify”
into a global 2-form on the evolution space R× TM .

For the dynamical distribution ∆ϕ (defined on U = π2,1(W ) ⊂ R× TM ) we now get

∆ϕ = annih{iXα, X runs over π1-vertical vector fields on U}
= annih{Aadt+ 2Fabωb +Babdẋ

b, Babω
b}.

This means that at each point of U , rank ∆ϕ ≥ 1.
Let Cπ1 be the contact distribution on R× TM . If ∆ϕ is a dynamical distribution of ε

defined on U , consider the distribution ∆ϕ ∩ Cπ1 . We can see that for every x ∈ R× TM
the vector space (∆ϕ ∩ Cπ1)(x) is the same for all ϕ defined in a neighbourhood of x, that
is, the local distributions define a unique global distribution. It is denoted Dε and called
evolution distribution of ε. We have

Dε = annih{Aadt+Babdẋ
b, ωa}, (10)

so that rankDε ≥ 1, and the rank may be nonconstant on the evolution space.
Paths of pertinent dynamical forms are solutions of the system of m SODEs

Bab(t, xi, ẋi) ẍb +Aa(t, xi, ẋi) = 0, (11)

and are characterised as follows:
Proposition 2.6 Let ε ∈

∧2(R × T 2M) be a dynamical form, pertinent with respect to
R× TM .

(1) Prolongations of paths of ε coincide with integral sections of the evolution distribu-
tion Dε.

(2) If α = ε+ϕ is a projectable extension of ε defined on an open subset U ⊂ R×TM
then holonomic integral sections of the dynamical distribution ∆ϕ coincide with
prolongations of paths of ε in U .

Corollary 2.7 Given a (R × TM)-pertinent dynamical form ε and (any) its projectable
extension α on an open set U ⊂ R× TM , equations for paths of ε (3) have the following
equivalent coordinate-free representations:

(1) J1γ∗iXα = 0 for every π1-vertical vector field X on U .

(2) J1γ∗iXα = 0 for every vector field X on U .

(3) Solutions of (3) in U coincide with holonomic integral sections of the characteristic
vector fields of the 2-form α, i.e. vector fields X that are solutions of the equation

iXα = 0.

Note that equation iXα = 0 may have solutions X that are not continuous and are not
semisprays.
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2.4 Geometric classification of SODEs

The Cauchy initial problem for equations (11) means finding all integral sections of the
distribution Dε passing through a given point in the evolution space. If the Cauchy prob-
lem is solved around every point, one can get the family of all maximal one-dimensional
submanifolds in R × TM , that are images of integral sections Dε; for brevity we speak
about the global dynamical picture for the given SODEs.

It is clear that for a concrete system of equations the dynamical picture may be com-
plicated and hard to find. A first step is to classify the evolution distributions.

We introduce the matrices

B = (Bab), (B|A) = (Bab Aa)

where 1 ≤ a, b,≤ m, and the indices a and b number rows and columns, respectively.
Given an (R × TM)-pertinent dynamical form ε ∈

∧2(R × T 2M), its evolution
distribution Dε has the following properties [72, 74, 77]
Proposition 2.8 rankDε = 1 if and only if the matrix B is regular. In this case, Dε is
spanned by the following global semispray:

Γ =
∂

∂t
+ ẋa

∂

∂xa
−BabAb

∂

∂ẋa
,

where (Bab) = B−1, and the equations for paths of ε (11) have an equivalent normal form

ẍa = −BabAb. (12)

Dε is the horizontal distribution of the global semispray connection w : R × TM →
R× T 2M that is a unique solution of the equation

w∗ε = 0. (13)

Proposition 2.9 Let x ∈ R× TM be a point. The following conditions are equivalent:

(1) Dε is weakly horizontal at x.

(2) In a neighbourhood of x there is a semispray X such that X(x) ∈ Dε (x).

(3) rankB(x) = rank (B|A)(x).

Proposition 2.10 Let x ∈ R× TM be a point. The following conditions are equivalent:

(1) In a neighbourhood of x there exist semisprays X1, . . . , Xr such that the vectors
X1(x), . . . , Xr(x) are linearly independent and span Dε(x).

(2) rankB(x) = rank (B|A)(x) = m+ 1− r.

Since the rank of Dε need not be constant, the above semisprays need not be continu-
ous.

Note that from the transformation properties of the components Ea of ε it is clear
that the rank of the matrices B and (B|A) is invariant with respect to the change of local
coordinates (on M , as we consider throughout, or of fibred coordinates on the total space
for more general fibred manifolds).
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Put

P = {x ∈ R× TM | rankB(x) = rank (B|A)(x)} ⊂ R× TM

P can be regarded as the set of admissible initial conditions for the SODEs (11). One
should notice that it need not be a submanifold of the evolution space. Its complement, i.e.
(R× TM)− P then has the meaning of constraints on the motion and will be referred to
as the set of primary semispray constraints.
Remark 2.11 The constraints in R×TM defined above are entirely related with the given
SODEs, and as such are of “internal” origin. They should be distinguished from “exter-
nal constraints” given as additional restrictions on the evolution space, e.g. as a fixed
submanifold in R × TM , with no reference to concrete equations (cf. holonomic and
non-holonomic constraints in classical mechanics). Equations on manifolds with external
constraints will not be studied in this work.

We have the following distinguished classes of dynamical forms [77, 84]:
Definition 2.12 We say that a pertinent dynamical form ε ∈

∧2(R× T 2M), respectively,
a system of SODEs (11)

(1) is regular if rankDε = 1,

(2) is weakly regular if Dε is weakly horizontal and its rank is locally constant,

(3) has primary semispray constraints if P 6= R× TM .

Now we are prepared to discuss the integration problem for SODEs (11). To solve
the Cauchy problem at an initial point x ∈ R × TM one has to find integral sections of
the distribution Dε passing through x. Alternatively, by Corollary 2.7, there is another
possibility based on solving the equation iXα = 0. In both cases, however, the integration
problem has the following steps:

(1) Find all (local) vector fields passing through x that belong to the distribution Dε,
respectively, satisfy the characteristic equation iXα = 0.

(2) Find integral sections of these vector fields.

(3) Exclude nonholonomic solutions (in case of Dε the procedure terminates at the sec-
ond step).

The concrete application and result of the procedure essentially depend on which class
of equations is considered.

Regular equations are the most simple and most frequently studied class of SODEs. As
we have seen, they can be represented equivalently either in the “covariant form” (11) or
in “contravariant” (normal) form (12). Solutions are integral sections of a semispray: this
means that the dynamical picture is a one-dimensional horizontal foliation of the evolution
space (at each point the Cauchy problem has a unique maximal solution). In the language
of physics, any choice of initial conditions determines a unique global path in the evolu-
tion space; this property is called Newtonian determinism. For regular equations powerful
integration methods are available, based on symmetries of the evolution distribution (for
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more details see eg. [92, 107]). Regular equations, however, have many specific properties
that require individual attention. We shall postpone this study to the next sections.

Weakly regular equations have no primary semispray constraints so that all points in
the evolution space are admissible initial conditions. By propositions 2.8 and 2.10 the
evolution distribution is locally spanned by r semisprays. If r > 1 (the equations are not
regular), this distribution is not completely integrable. As a result, the structure of solutions
is complicated and is certainly not a straightforward generalisation of the one-dimensional
foliation corresponding to regular equations (in particular, it is typically non-deterministic).

For integration of weakly regular equations one can utilise dynamical distributions ∆ϕ

better than the evolution distribution Dε. In particular, if α = ε + ϕ is a projectable
extension of ε on U ⊂ R × TM then as we have seen, integral sections of the evolution
distribution coincide with holonomic integral sections of the dynamical distribution ∆ϕ.
In this sense, ∆ϕ is an “enveloping” distribution for Dε. The point is that the distribution
∆ϕ may be much easier thanDε and its integration using known methods may be possible.

We say that α is semiregular if ∆ϕ is weakly horizontal, of locally constant rank and
completely integrable. Since for weakly regular equations Dε is a weakly horizontal sub-
distribution of ∆ϕ in U , the weak horizontality condition is automatically satisfied for any
ϕ.

Let α be a semiregular projectable extension of ε on U . Then, as proved in [77, 84],
the dynamical distribution ∆ϕ is the characteristic distribution of the 2-form α and Dε is
its subdistribution spanned by semisprays. Thus, solutions of weakly regular equations in
U are integral sections of semisprays X that are solutions of the equation

iXα = 0,

i.e. integral curves of semisprays X that satisfy

iXα = 0, Tπ1.X =
∂

∂t
.

Note that for weakly regular equations the equation iXα = 0 with semiregular α always
has solutions that are not semisprays.

Since the distribution ∆ϕ is completely integrable, its maximal integral manifolds de-
fine a foliation of the evolution space (we assume that ε is not regular, hence the dimension
of the foliation is > 1). Every integral section of ∆ϕ is an embedding of an open inter-
val into a leaf of this foliation, and conversely, every section of π1 lying on a leaf is an
integral section of ∆ϕ. One can use some of the known integration methods to find the
leaves explicitly (see e.g. [92, 107] for Lie methods based on symmetries of distributions
or [75, 113] for a method based on a generalised Liouville theorem); solutions of the given
SODEs in U are then holonomic sections of the leaves of the foliation.

Equations with primary constraints are the most complicated class of SODEs to study.
Obtaining the dynamical picture requires application of the so-called geometric constraint
algorithm [77]. Without going into details this means studying solutions of the given
SODEs in the subset P: one has to investigate the evolution distribution – or, better a
dynamical distribution ∆ϕ – restricted to certain subsets of P that are submanifolds in
R × TM . For a detailed exposition and examples of applications of this algorithm we
refer to [82] and [84]. A typical dynamical picture that is obtained is non-deterministic:
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there are points in the evolution space where there is no solution, as well as points (initial
conditions) admitting a bunch of solutions passing through this point.

The name of the procedure refers to the “constraint algorithm” developed by Dirac as
a heuristic technique to obtain Hamilton equations for singular Lagrangians in mechan-
ics [29], and later explained within presymplectic geometry [38, 39, 40] and generalised
to singular higher-order, time-dependent Lagrangians [27]. In [77, 84] the constraint algo-
rithm has been revisited and further generalised to become a method of solving singular
ODEs (integration of distributions of nonconstant rank that are annihilated by smooth 1-
forms).
Remark 2.13 If α = ε+ ϕ is a (local) projectable extension of ε we can consider, instead
of the dynamical distribution ∆ϕ, the characteristic distribution of the 2-form α, that is
the distribution

χϕ = span{X ∈ X(U) | iXα = 0} = annih{iXα | X ∈ X(U)}
= annih{Aadt+ 2Fabωb +Babdẋ

b, Babω
b, Abω

b}.

χϕ is a subdistribution of ∆ϕ, its rank ≥ 1, and

rankα = corankχϕ. (14)

It can be proved [74] (see also [77, 82, 84]) that the distributions ∆ϕ and χϕ have the same
integral sections, and that they coincide in all points where they are weakly horizontal.
Hence, at the points where they are distinct there is no solution of the given SODEs (such
points are non-admissible initial conditions).

3 Variational structures in the theory of SODEs

In this section we shall be interested in SODEs arising as Euler-Lagrange equations of a
variational functional. We recall the way in which the global first order variational formula
for Lagrangian systems on fibred manifolds is obtained, and related important differential
forms determined by a Lagrangian: the Cartan form and the Euler-Lagrange form. The
Euler-Lagrange form appears as a global dynamical form representing Euler-Lagrange
equations. The Euler-Lagrange mapping, assigning to a Lagrangian its Euler-Lagrange
form then becomes one of the morphisms in an exact sequence of sheaves over a fibred
manifold, called the variational sequence. Equipped with this material one can then study
local and global problems in the calculus of variations, as well as explore various varia-
tional structures in the study of general differential equations. Our exposition of the main
concepts of the calculus of variations in jet bundles is very brief and we refer the inter-
ested reader to the articles in this book by Krupka [66] and Vitolo [152], devoted to these
topics, and Grigore [45] for discussion of applications in physics. Our main aim is then
the exposition of the so-called inverse problem of the calculus of variations in covariant
formulation, i.e. the question on the local and global existence of a Lagrangian for dy-
namical forms. Thus the reader can find in this section necessary and sufficient conditons
for variationality of equations for paths of a dynamical form (5), their geometric meaning,
and theorems on structure of variational equations. These theorems then lead to a gener-
alisation of Riemannian and Finsler metric structures on manifolds, and have interesting
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physical consequences in classification of variational forces on manifolds with generalised
metrics.

As above, we consider a fibred manifold π0 : R ×M → R, and its jet prolongations,
and denote by (t, xa), 1 ≤ a ≤ m, local coordinates on R ×M adapted to the product
structure.

3.1 The first variation formula

A Lagrangian of order r on π0, where r ≥ 1, is defined to be a horizontal 1-form λ on
Jrπ0. This means that

λ = Ldt,

where L is a function on Jrπ0.
In what follows, we shall mostly consider first-order Lagrangians; in this case L is a

function of the variables (t, xa, ẋa).
Let Ω = [a, b] ⊂ R, a < b, be an interval, and denote by SΩ(π0) the set of sections of

π0 the domain of which is a neighbourhood of Ω. The function

SΩ(π0) 3 γ →
∫

Ω

J1γ∗λ ∈ R (15)

is called the action function of the Lagrangian λ over Ω.
Consider now a section γ ∈ SΩ(π0). If X is a projectable vector field on R×M with

projection X0, and {φu}, resp. {φ0u} are the corresponding local one-parameter groups,
we get a one-parameter family of sections, γu = φuγφ

−1
0u , defined in a neighborhood of

φ0u(Ω), and called deformation of the section γ induced by X . The arising function

SΩ(π0) 3 γ →

(
d

du

∫
φ0u(Ω)

J1γ∗u λ

)
u=0

=
∫

Ω

J1γ∗ L
J1X

λ ∈ R (16)

is called the first variation of the action function of λ over Ω, induced by X . Note that it is
simply the action of the Lagrangian L

J1X
λ over Ω.

The above integral has to be decomposed in an invariant way into a sum of two terms:
the first one representing equations for extremal sections (i.e., equations for paths of a
dynamical form) and a boundary term. Taking into account proposition 2.3, 2.6 and remark
2.13 we can see that the decomposition of the Lie derivative of λ to iJ1Xdλ+diJ1Xλ is not
appropriate, since p1dλ is not a dynamical form. We note, however, that the action does
not change if to λ a contact form is added. Moreover, since prolongations of projectable
vector fields are symmetries of the contact ideal, such a change of the action has no effect
to the variation of the action. Finally, the requirement on the first term means that the
contact addition η to λ must be such that p1d(λ + η) is a dynamical form. The following
theorem solves the problem of existence (and uniqueness) of η:
Theorem 3.1 (Krupka 1973) Given a first-order Lagrangian λ there is a unique 1-form
θλ on J1π0 such that

(1) λ = hθλ,

(2) p1dθλ is a dynamical form.
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θλ is called the Cartan form, or the Lepage equivalent of λ [58]. In local coordinates,
with respect to the adapted and canonical basis, respectively, θλ reads

θλ = Ldt+
∂L

∂ẋa
ωa =

(
L− ∂L

∂ẋa
ẋa
)
dt+

∂L

∂ẋa
dxa. (17)

We put

H = −L+
∂L

∂ẋa
ẋa, pa =

∂L

∂ẋa
,

and call these functions the Hamiltonian and momenta related with the (first order) La-
grangian λ.

The dynamical form

ελ = p1dθλ (18)

is then called the Euler-Lagrange form of λ [58]. We have ελ = Ea(L)ωa ∧ dt, where the
components, called Euler-Lagrange expressions, take the form

Ea(L) =
∂L

∂xa
− d

dt

∂L

∂ẋa
. (19)

We can see that the 2-form dθλ is a projectable extension of the Euler-Lagrange form ελ,
i.e., it belongs to the Lepage class [α] of ελ, and it is a global and closed representative of
this class.

With help of the Cartan form the first variation of the action of λ is invariantly decom-
posed as follows [58]:∫

Ω

J1γ∗ L
J1X

λ =
∫

Ω

J1γ∗iJ1Xdθλ +
∫
∂Ω

J1γ∗iJ1Xθλ. (20)

This formula is called the integral first variation formula. Its differential expression, i.e.

L
J1X

λ = hiJ1Xdθλ + hdiJ1Xθλ (21)

is then referred to as the infinitesimal first variation formula.

A section γ of π0 is called an extremal of λ on Ω if the first variation of the action of
λ on Ω vanishes for every vertical vector field X on R ×M with the support in π−1

0 (Ω)
(such a vector field X is often called a fixed-endpoints variation). γ is called extremal of λ
if is an extremal on every interval Ω = [a, b] ⊂ R, a < b.

Equations for extremals of a Lagrangian λ are called Euler-Lagrange equations. It can
be proved that they are precisely equations of paths of the Euler-Lagrange form ελ.

3.2 Locally variational forms: the inverse problem in covariant formulation

Given a first-order Lagrangian, its Cartan form is also of order one and the Euler-Lagrange
form is at most of order two. In the higher-order situation, however, if λ is of order r then
θλ is of order at most 2r − 1 and ελ is of order 2r; it may be, however projectable onto
some lower jet prolongation of π0.
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The mapping

E : λ→ ελ,

from the sheaf of Lagrangians of order r to the sheaf of dynamical forms of order 2r,
assigning to a Lagrangian its Euler-Lagrange form, is called Euler-Lagrange mapping.

One of the crucial problems in the calculus of variations is to analyse the kernel and
the image of the Euler-Lagrange mapping.

Lagrangians belonging to the kernel of the Euler-Lagrange mapping are called null
Lagrangians. By this definition, λ is a null Lagrangian if its Euler-Lagrange form vanishes,
i.e., ελ = 0.

It is clear that for Lagrangians that differ by a null Lagrangian the Euler-Lagrange
forms are equal (up to a possible jet projection, since the Lagrangians may have different
orders). We call such Lagrangians equivalent.

A dynamical form ε is called locally variational if it belongs to the image of the Euler-
Lagrange mapping. A dynamical form ε on Jsπ0 is called globally variational if there is
r ≥ 1 and a Lagrangian λ on Jrπ0 such that ε = ελ (possibly up to a jet projection). We
stress that a locally variational form need not be globally variational.

In this section we shall investigate conditions of local variationality (existence of local
Lagrangians) for global dynamical forms on J2π0. This problem is referred to as the local
inverse problem of the calculus of variations for dynamical forms, or, the inverse problem
of the calculus of variations for SODEs in covariant formulation.

We will leave aside the global inverse variational problem (conditions for the existence
of a global Lagrangian) for now and return to it in the next section.

We have a fundamental theorem that connects locally variational forms (variational
SODEs) with closed 2-forms (see [135, 71, 83] for the proof).
Theorem 3.2 Let ε ∈

∧2(R× T 2M) be a dynamical form, ε = Eaω
a ∧ dt its expression

in a local adapted chart, and

Ea(t, xi, ẋi, ẍi) = 0

the corresponding system of equations for paths. The following conditions are equivalent:

(1) ε is locally variational.

(2) ε is pertinent with respect to R × TM and the Lepage class [α] of ε has a global
closed representative.

(3) There is a 2-contact 2-form ϕ on R×T 2M such that ε+ϕ is closed and projectable
onto R× TM .

(4) There is a closed 2-form α on R× TM such that ε = p1α.

(5) There is a 2-form α on R× TM such that ε = p1α and p2dα = 0.

(6) The functions Ea, 1 ≤ a ≤ m, satisfy the following identities:

∂Ea
∂ẍb

− ∂Eb
∂ẍa

= 0,
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∂Ea
∂ẋb

+
∂Eb
∂ẋa

− 2
d

dt

∂Eb
∂ẍa

= 0, (22)

∂Ea
∂xb

− ∂Eb
∂xa

+
d

dt

∂Eb
∂ẋa

− d2

dt2
∂Eb
∂ẍa

= 0.

(7) λ = Ldt, where

L = xa
∫ 1

0

Ea(t, uxi, uẋi, uẍi)du (23)

is a local Lagrangian for ε.

To a locally variational form ε the form mentioned in (2)-(5) is unique (denoted by αε).
In coordinates,

αε = Eaω
a ∧ dt+

1
4

(∂Ea
∂ẋb

− ∂Eb
∂ẋa

)
ωa ∧ ωb +

1
2

(∂Ea
∂ẍb

+
∂Eb
∂ẍa

)
ωa ∧ ω̇b. (24)

Necessary and sufficient conditions of local variationality (22) are called Helmholtz
conditions, a Lagrangian given by formula (23) is called Tonti Lagrangian, and the 2-form
αε is called Lepage 2-form, or more precisely, Lepage equivalent of ε. Since every locally
variational form is pertinent, we can write Ea = Aa +Babẍ

b and express αε by means of
Aa and Bab. Then we obtain for αε precisely the formula (9) in remark 2.5.

The result that locally variational forms are in one-to-one correspondence with closed
2-forms was proved in [21] for regular SODEs and in [55, 71, 135] for general higher
order ODEs (see also [72] for the regular case). An analogous result holds for first-order
PDEs, as proved in [46]. In [62] and [85] a theorem of this kind was proved for higher
order PDEs (in this case, the correspondence between locally variational forms and closed
(n+ 1)-forms is no longer one-to-one). We shall meet versions of this theorem for regular
SODEs in normal form separately in section 6.

The Helmholtz conditions may be written in different equivalent forms. At the first
sight we notice the following one:

∂Ea
∂ẍb

− ∂Eb
∂ẍa

= 0,

∂Ea
∂ẋb

+
∂Eb
∂ẋa

− d

dt

(∂Ea
∂ẍb

+
∂Eb
∂ẍa

)
= 0, (25)

∂Ea
∂xb

− ∂Eb
∂xa

− 1
2
d

dt

(∂Ea
∂ẋb

− ∂Eb
∂ẋa

)
= 0.

If we rewrite the Helmholtz conditions in terms of the first-order functions Aa, Bab, we
get the following identities

Bab = Bba,

∂Bab
∂ẋc

=
∂Bac
∂ẋb

,

∂Aa
∂ẋb

+
∂Ab
∂ẋa

− 2
d̄Bab
dt

= 0, (26)

∂Aa
∂xb

− ∂Ab
∂xa

− 1
2
d̄

dt

(∂Aa
∂ẋb

− ∂Ab
∂ẋa

)
= 0
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(where d̄/dt stands for the “cut” total derivative), and

∂Bac
∂xb

− ∂Bbc
∂xa

− 1
2
∂

∂ẋc

(∂Aa
∂ẋb

− ∂Ab
∂ẋa

)
= 0. (27)

It is known, however, that this last identity is a consequence of the former ones (see
e.g. [118, 73]). Thus Helmholtz conditions (26) are equivalent with (22).

The uniqueness of the Lepage equivalent αε gives relation to Cartan forms of individual
Lagrangians [71]:
Proposition 3.3 Let ε be a locally variational form onR×T 2M , αε its Lepage equivalent.
Then for every (possibly local) Lagrangian of order r for ε, the 2-form dθλ is projectable
onto an open subset U ⊂ R× TM and

αε|U = dθλ.

Since this also means that ελ = 0 ⇔ αε = 0 ⇔ dθλ = 0 ⇔ θλ = (locally) df ⇔
λ = hdf, i.e. L = df/dt, we immediately learn the local structure of null Lagrangians.
The same result will be obtained once more in the next section by completely different
methods.

The relation between locally variational forms and closed 2-forms expressed by propo-
sition 3.3 is a key to the solution of the problem of construction of a Lagrangian to a locally
variational form: indeed, if ε is locally variational then ε = p1α where dα = 0, so that
a Lagrangian is obtained, by applying Poincaré Lemma, as the horizontal part of the one
form ρ = Bα (B is the standard homotopy operator). The contact structure, however, ad-
mits the introduction of another homotopy operator, denoted byA, that is more convenient,
since it is adapted to the canonical decomposition of forms into contact components [62].
A has the following properties: given η ∈

∧q
J1π0

(J2π0), q ≥ 2, it holds

η = Adη + dAη

Apkη = pk−1Aη, k = q − 1, q.

Applying A to the Lepage equivalent αε of a locally variational form ε, we get Aαε =
Aε+Aϕ, where

λ = Aε =
(
xa
∫ 1

0

(Ea ◦ χ)du
)
dt

is a horizontal form, hence a Lagrangian for ε; here the mapping χ : [0, 1] ×W → W is
defined by χ(u, t, xi, ẋi, ẍi) = (t, uxi, uẋi, uẍi), where W ⊂ R×T 2M is an appropriate
open set. This is the way how the formula (23) for the Tonti Lagrangian appears.

Notice that the Tonti Lagrangian is a second order Lagrangian for ε. It has been proved,
however, in [146] that every higher order Lagrangian for ε is locally equivalent with a first
order Lagrangian.

A similar assertion holds also for higher-order locally variational forms in mechanics
(i.e. for higher-order variational ordinary differential equations). However, in field theory
(partial differential equations) reduction criteria are yet not known.
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3.3 The Krupka variational sequence

In his papers [63, 64], Krupka introduced an exact sequence of sheaves, the variational se-
quence, in which the Euler-Lagrange mapping appears as a sequence morphism. By means
of this sequence information about the local and global structure of the Euler-Lagrange
mapping is obtained. As a surprising result, new, non-classical objects important for the
calculus of variations and the theory of differential equations appear, and their local and
global properties are described. We will mention only a few concepts in the simplest situa-
tion of first-order jet bundles over R, especially the Helmholtz mapping and the Helmholtz
form that are essential for the study of the inverse variational problem, and for investigation
of SODEs on manifolds with variational metrics.

Compared with the variational bicomplex theory of Anderson, Dedecker, Takens, Tul-
czyjev, Vinogradov, and others [4, 5, 6, 24, 138, 149, 150, 151], the variational sequence
is well-adapted to study finite-order problems. For more about variational sequences and
variational bicomplexes the reader is referred to the above mentioned papers as well as
to the survey paper by Vitolo in this book [152], to the Notes at the end of Chapter 5 of
Olver’s book [107] and the first chapter of Anderson and Thompson [7].

As above, consider a fibred manifold π0 : R ×M → R and its jet prolongations. Let
Ωq be the sheaf q-forms on J1π0, Ω0,c = {0}, and Ωq,c the sheaf of strongly contact q-
forms on J1π0. Set Θq = Ωq,c + dΩq−1,c where dΩq−1,c is the image sheaf of Ωq−1,c by
the exterior derivative d. It can be shown that one gets an exact sequence of soft sheaves

0→ Θ1 → Θ2 → Θ3 → · · · ,

where the morphisms are the exterior derivative, i.e., a subsequence of the De Rham se-
quence

0→ R→ Ω0 → Ω1 → Ω2 → Ω3 → · · · .

The quotient sequence

0→ R→ Ω0 → Ω1/Θ1 → Ω2/Θ2 → Ω3/Θ3 → · · ·

which is also exact, is called the first-order variational sequence on π0 [63]. Note that
elements of Ωq/Θq are not forms, but classes of (local) first-order q-forms. We denote by
[ρ]v an element of Ωq/Θq , that is the (variational) class of ρ ∈ Ωq . The quotient mappings
are denoted by

Eq : Ωq/Θq → Ωq+1/Θq+1.

As proved by Krupka in 1990, the variational sequence is an acyclic resolution of the
constant sheaf R over the total space of the fibred manifold π0, i.e. R×M in our situation.
Hence, due to the abstract De Rham theorem, we get the identification of the cohomology
groups of the cochain complex of global sections of the variational sequence with the De
Rham cohomology groups HqM of the manifold M .

The quotient sheaves Ωq/Θq are determined up to natural isomorphisms of Abelian
groups. Thus the classes in Ωq/Θq admit various equivalent characterisations. A simple
analysis shows that the sections of the quotient sheaf Ω1/Θ1 can be identified with some
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horizontal forms λ = Ldt, i.e., with some Lagrangians; more precisely, with those (gen-
erally second-order) Lagrangians that arise by horizontalisation from first-order 1-forms.
Elements of Ω2/Θ2 can be identified with some dynamical forms ε = Eaω

a ∧ dt (that
arise from first-order 2-forms by applying the operator p1 and the factorisation by Θ2). We
say that Lagrangians, respectively, dynamical forms are source forms [138] for the quotient
sheaf Ω1/Θ1, respectively, Ω2/Θ2. The quotient mapping

E1 : Ω1/Θ1 → Ω2/Θ2

in this representation of the sheaves coincides with the Euler-Lagrange mapping, that is,
on source forms, E1(λ) = ελ.

In general, source forms for the quotient sheaves Ωq/Θq are (q − 1)-contact q-forms
arising by applying to q-forms the so-called interior Euler–Lagrange operator I [4, 5, 70].

The mapping

E2 : Ω2/Θ2 → Ω3/Θ3

is called the Helmholtz mapping. In the source forms representation, the image of a dy-
namical form is a source 3-form,

E2(ε) = Hε, (28)

called the Helmholtz form of ε [63]. In coordinates where ε = Eaω
a∧dt we get (see [65])

Hε =
1
2

(∂Ea
∂xb

− ∂Eb
∂xa

− 1
2
d

dt

(∂Ea
∂ẋb

− ∂Eb
∂ẋa

))
ωb ∧ ωa ∧ dt

+
1
2

(∂Ea
∂ẋb

+
∂Eb
∂ẋa

− d

dt

(∂Ea
∂ẍb

+
∂Eb
∂ẍa

))
ω̇b ∧ ωa ∧ dt

+
1
2

(∂Ea
∂ẍb

− ∂Eb
∂ẍa

)
ω̈b ∧ ωa ∧ dt.

The condition E2(ε) = Hε = 0 for the elements of the quotient sheaves reads
E2([η]v) = 0, and by exactness of the variational sequence means that there exists a class
[ρ]v ∈ Ω1/Θ1 such that [η]v = [dρ]v. The source form λ = hρ for [ρ]v is then a (local)
Lagrangian for ε, i.e. on the domain of λ, ε = ελ. Indeed, the conditions for the compo-
nents of the Helmholtz form to vanish are the Helmholtz conditions for local variationality
of dynamical forms. If in addition, H2M = {0}, ρ may be chosen globally defined on
R× TM , hence λ = hρ is a global Lagrangian for ε.

Summarizing we can see that the following assertions are true:
Theorem 3.4 (Krupka 1990) A dynamical form ε is locally variational if and only ifHε =
0. If H2M = {0} then every locally variational dynamical form is globally variational.

Similarly, the condition E1(λ) = ελ = 0 (that is λ is locally a null Lagrangian) in terms
of elements of the quotient sheaves reads E1([ρ]v) = 0. By exactness of the variational
sequence there exists f ∈ Ω0 such that [ρ]v = [df ]v (note that for functions, [f ]v = f ),
that is, λ = hdf . If in addition, H1M = {0}, f may be chosen globally defined. If λ is a
first-order Lagrangian then f must be a function on R×M (df/dt depends upon (t, xi, ẋi)
iff ∂f/∂ẋa = 0, 1 ≤ a ≤ m).

From λ = hdf we see that df is the Cartan form of the Lagrangian hdf , i.e. df = θλ.
Hence, from the Poincaré Lemma, f = Bθλ, where B is the standard homotopy operator.

As a result, a theorem on null Lagrangians appears [63]:
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Theorem 3.5 A Lagrangian λ is locally null (i.e. ελ = 0) if and only if in a neighbourhood
U of every point x ∈ R×M there is a function f such that λ = hdf over U .

If H1M = 0 then every Lagrangian that is locally null is globally null, and takes the
form λ = hdf where f is a function on R×M .

It holds f = Bθλ, up to an additive constant, where B is the standard Poincaré homo-
topy operator.

The condition λ = hdf in coordinates reads L = df/dt. If regarded as an equation
for f it is called the total derivative equation (total divergence equation for n independent
variables, n > 1).
Corollary 3.6 The total derivative equation

df

dt
= F (t, xi, ẋi)

is integrable if and only if F satisfies the following conditions:

∂2F

∂ẋa ∂ẋb
= 0,

∂F

∂xa
− d

dt

∂F

∂ẋa
= 0.

If we denote F = g + haẋ
a, the solution is (up to an additive constant)

f = B
(
F dt+

∂F

∂ẋa
ωa
)

= B(g dt+ hadx
a)

= t

∫ 1

0

g(τt, τxi) dτ + xa
∫ 1

0

ha(τt, τxi)dτ.

We have seen that the classes in the variational sequence can be represented by source
forms. A different but also important representation is realised by so-called Lepage forms.
We already met Lepage 1-forms in the context of the first variation formula and Lepage 2-
forms as global closed extensions of locally variational forms. The concept is generalised
as follows: [70] A q-form η, q ≥ 1, is called Lepage q-form if pqdη is a source form for
Ωq/Θq . If η is a Lepage q-form such that σ = pq−1η is a source form, we say that η is a
Lepage equivalent of the source form σ.

Apparently, given a Lagrangian λ (source 1-form) its Lepage equivalent is the Cartan
form θλ. For a locally variational dynamical form ε, the Lepage equivalent is the closed
form αε (24), since p1α = ε and p2dα is the zero source form. Lepage equivalents of
general dynamical forms are characterised as follows:
Theorem 3.7 Every dynamical form ε on R × T 2M has a unique global second-order
Lepage equivalent αε.

In coordinates,

αE = Eaω
a ∧ dt+

1
4

(∂Ea
∂ẋb

− ∂Eb
∂ẋa

)
ωa ∧ ωb +

1
2

(∂Ea
∂ẍb

+
∂Eb
∂ẍa

)
ωa ∧ ω̇b.

If ε is pertinent, we get the formula

αε = (Aa +Babẍ
b)ωa ∧ dt+

1
4

(∂Aa
∂ẋb

− ∂Ab
∂ẋa

+
(∂Bac
∂ẋb

− ∂Bbc
∂ẋa

)
ẍc
)
ωa ∧ ωb

+
1
2

(
Bab +Bba

)
ωa ∧ ω̇b.
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We call ε semi-variational if the Lepage equivalent αε is projectable onto R× TM . This
is the case if and only if

Bab = Bba,
∂Bac
∂ẋb

=
∂Bbc
∂ẋa

, (29)

hence αε takes the form (9) in remark 2.5.

3.4 The structure of variational and semi-variational SODEs

We shall show that every second-order locally variational form gives rise to a geometrical
structure on the manifold M , generalising the metric structure of Riemannian and Finsler
geometry. The variational morphisms and variational metric structures which appear can
be studied separately: this concerns a generalised “kinetic energy” Lagrangian, the asso-
ciated (nonlinear) metric connection, curvature, geodesics, and related topics, such as, for
example, metrisability of semispray connections and relations with variationality. On the
other hand, one can study various objects on manifolds endowed with a variational mor-
phism (generalised metric). This gives us structure results for second order equations and
particularly Lagrangians, a different formulation of the inverse variational problem as a
question on variational forces, etc. The material in this section was developed in a series
of papers [73, 76, 86], and the book [82] by Krupková, opening an area for geometry and
physics that waits to be explored.

The starting point is the idea that Helmholtz conditions (26) can be viewed as equations
for unknown functions Aa, and as such solved, providing insight into the structure of
variational equations and their Lagrangians.
Theorem 3.8 (Krupková 1987) Let U ⊂ R be an open interval, and W ⊂ Rm an open
ball in the centre in the origin. Let ε be a dynamical form on J2(U ×W ), ε = Eaω

a ∧ dt.
Consider the mapping

χ̄ : [0, 1]× J1(U ×W )→ J1(U ×W )

defined by

χ̄(v, t, xa, ẋa) = (t, xa, vẋa).

The following conditions are equivalent:

(1) ε is variational.

(2) It holds

Ea = Aa +Babẍ
b

where Bab are functions on J1(U × V ) satisfying

Bab = Bba,
∂Bac
∂ẋb

=
∂Bbc
∂ẋa

,

and

Aa = Γabcẋbẋc + Γab0ẋb + αabẋ
b + βa,
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where

Γabc =
1
2

∫ 1

0

(∂Bab
∂xc

+
∂Bac
∂xb

− 2
∂Bbc
∂xa

)
◦ χ̄ dv +

∫ 1

0

∂Bbc
∂xa

◦ χ̄ v dv ,

(30)

Γab0 =
∫ 1

0

∂Bab
∂t
◦ χ̄ dv,

and αab, βa are arbitrary functions satisfying the conditions

αab = −αba,
∂αab
∂xc

+
∂αca
∂xb

+
∂αbc
∂xa

= 0,
∂βa
∂xb
− ∂βb
∂xa

=
∂αab
∂t

. (31)

Corollary 3.9 Given a locally variational form on R × T 2M then its components have
the following structure:

Ea = Babẍ
b + Γabcẋbẋc + Γab0ẋb + αabẋ

b + βa,

where

Bab = Bba,
∂Bac
∂ẋb

=
∂Bbc
∂ẋa

, (32)

the functions Γabc and Γab0 are uniquely determined by the Bij’s by (30), and αab, βa are
functions of (t, xi), satisfying the identities (31).

We can see that (31) are the Helmholtz conditions for the first order dynamical form
φ = φaω

a ∧ dt, where

φa = αabẋ
b + βa,

i.e. they mean that φ is locally variational. Equivalently, the 2-form

αφ = βadx
a ∧ dt+

1
2
αabdx

a ∧ dxb = φaω
a ∧ dt+

1
2
αabω

a ∧ ωb

on U×W is closed (cf. theorem 3.2); αφ is the closed extension of φ. This means however
that by the Poincaré Lemma, locally αφ = dν, where ν = Aαφ = fbdx

b + gdt with

fb = xa
∫ 1

0

(αab ◦ χ) u du, g = xa
∫ 1

0

βa ◦ χ du.

Hence, hν = Aφ = V dt, where

V = xa
∫ 1

0

(αabẋb + βa) ◦ χ du = fbẋ
b + g (33)

is the Tonti Lagrangian for φ.
We can see that every locally variational form ε canonically splits into two parts: a

second order dynamical form

εB = ε− φ,

uniquely determined by the matrix B = (Bab), and a first order (locally variational) dy-
namical form φ. By the following theorem this splitting is invariant with respect to change
of local coordinates.
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Theorem 3.10 (Krupková 1994) The form εB is globally variational. The global La-
grangian for εB is defined on R× TM and takes the form λB = −Tdt, where

T = ẋaẋb
∫ 1

0

(∫ 1

0

Bab ◦ χ̄ dv
)
◦ χ̄ v dv. (34)

Since every local Lagrangian for ε is

λ = Aε = AεB +Aφ ∼ λB +Aφ,

we get [73]
Theorem 3.11 Let ε ∈

∧2(R × T 2M) be a locally variational form. Every local first
order Lagrangian for ε reads

L = −T + V,

where T is a function on R × TM uniquely determined by B by (34), and V is a (local)
function affine in velocities (given by (33)).

If ε is a pertinent dynamical form on R × T 2M then the transformation rules for the
functions Bab show that Bab are components of a fibred morphism

B : R× TM → T 0
2M

over the identity of M , of the fibred manifold R × TM → M to the bundle T 0
2M → M

of type (0, 2) tensors on M . Conversely, to every such a morphism one associates a (non-
unique) pertinent dynamical form ε. Obviously, the morphism is regular iff ε is regular.

We say that a fibred morphism B : R × TM → T 0
2M is variational if the family of

associated dynamical forms contains a locally variational form. The Helmholtz conditions
show that B is variational if and only if it satisfies the integrability conditions (32). Tak-
ing into account the above results, we can see that a variational morphism gives rise to a
canonical locally variational dynamical form εB on R × T 2M , coming from the global
Lagrangian λB.

Equipped with the above observations, we can study SODEs on a manifold endowed
with a morphism.

Given a manifold (M,B), we say that a pertinent dynamical form ε on R × T 2M is
B-related if(∂Ea

∂ẍb

)
= B. (35)

In this way we obtain on (M,B) an equivalence class of all B-related dynamical forms,
containing a distinguished representative – the canonical dynamical form εB. For every ε
we then have the difference

φ = ε− εB,

which is a dynamical form on R × TM ; it is called a (covariant) force related with ε on
the manifold (M,B).

We can see that the concept of a B-related dynamical form concerns only semi-
variational forms, i.e. such that their Lepage equivalents αε are projectable onto the
evolution space. In this sense the following results exclusively concern semi-variational
equations [76, 86].



862 2nd order ODEs and the Inverse Problem

Proposition 3.12 Let M be a manifold, B : R × TM → T 0
2M a variational fibred

morphism over idM . Let ε ∈
∧2(R × T 2M) be a B-related dynamical form. Then

equations of paths of ε, ε ◦ J2γ = 0, split canonically, and take the form

−εB ◦ J2γ = φ ◦ J1γ.

In coordinates,

∂T

∂xa
− d

dt

∂T

∂ẋa
= φa,

or, explicitly,

Babẍ
b + Γabcẋbẋc + Γab0ẋb = −φa,

where T and Γabc, Γab0 are uniquely determined by the morphism B.

Proposition 3.13 Let φ be a force on (M,B). The following conditions are equivalent:

(1) φ is (R×M)-pertinent.

(2) The Helmholtz form Hφ is horizontal with respect to the projection onto R×M .

(3) The components of φ satisfy

∂φa
∂ẋb

+
∂φb
∂ẋa

= 0.

(4) The components of φ satisfy

φa = αabẋ
b + βa, where αab = −αba.

In terms of ε we get that φ is (R ×M)-pertinent if and only if ε satisfies the third set
of the Helmholtz conditions (26) (i.e., since ε is B-related by assumption, it satisfies all but
the last set of the Helmholtz conditions (26)).

A force φ on (M,B) that is locally variational (as a first order dynamical form) is
called a variational force. As we have seen, a force is variational if and only if it is
(R × M)-pertinent (i.e. affine in velocities) and satisfies the closure conditions (=first
order Helmholtz conditions) (31).

An important particular case appears when the considered SODEs are regular. Recall
that in this case the matrix (35) is regular, and prolongations of paths of the dynamical form
ε are integral curves of a semispray that is uniquely determined by ε, hence, equations for
paths of ε have an equivalent contravariant form.

A regular fibred morphism g : R×TM → T 0
2M is called a time, position and velocity

dependent metric, or simply a generalised metric on M . If moreover, the morphism is
variational, we speak about a variational metric.

On a manifold M with a variational metric g the canonical global Lagrangian λg =
−Tdt (34) is regular. With reference to physics, T is called the kinetic energy of g, and
the Lagrangian system determined by λg is called the free particle for the manifold (M, g).
The corresponding SODEs then take the form

∂T

∂xa
− d

dt

∂T

∂ẋa
= 0, (36)
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or, explicitly,

ẍa + Γabcẋ
bẋc + Γab0ẋ

b = 0, (37)

where

Γabc = gaiΓibc =
1
2

∫ 1

0

(∂gib
∂xc

+
∂gic
∂xb
− 2

∂gbc
∂xi

)
◦ χ̄ dv +

∫ 1

0

∂gbc
∂xi
◦ χ̄ v dv ,

Γab0 = gaiΓib0 =
∫ 1

0

∂gib
∂t
◦ χ̄ dv,

and they are equations for geodesics of the associated semispray connection w (defined by
w∗εg = 0), respectively, of a semispray Γ spanning the dynamical distribution of εg .

Moreover, from theorem 3.8 we get the structure of variational forces on a manifold
M with a generalised metric g [76]: namely, conditions (31) mean that every admissible
variational force is a Lorentz-type force. This question was first solved for the case of
the Euclidean metric (when g = the unit matrix) in [34] and [106]; in the latter paper the
result was obtained also for a velocity dependent metric appearing in the 3-dimensional
equations of motion in the special relativity theory.

If the morphism g is projectable onto M (meaning that g is identified with a usual
metric on M ), the (global) function T (34) turns to be the usual kinetic energy,

T =
1
2
gabẋ

aẋb,

and the connection coefficients read Γab0 = 0 and

Γabc =
1
2

(∂gab
∂xc

+
∂gac
∂xb

− ∂gbc
∂xa

)
.

This means that Γabc are the Christoffel symbols of the metric g, and equations of the “free
particle” (36) are equations for geodesics of the Levi-Civita connection. Given a force φ on
the (pseudo)-Riemannian manifold (M, g), the corresponding equations take the familiar
form of equations of motion in nonconservative mechanics.

If g is a Finsler metric on M , i.e. a fibred morphism from the slit tangent bundle
TM − 0 → M to the bundle of metrics on M over the identity of M , satisfying the
integrability and the homogeneity conditions

∂gab
∂ẋc

=
∂gac
∂ẋb

,
∂gab
∂ẋc

ẋc = 0,

then we obtain equations for geodesics of the Cartan connection [69, 76]. Indeed, in
(37), Γab0 = 0, and after a short computation, Γabcẋbẋc = 2gabGb, where Gb are the
geodesic coefficients on the Finsler manifold (M, g) (see e.g. [9] for introduction to Finsler
geometry).

4 Symmetries and first integrals

Joining the exterior differential systems approach to variational equations presented in sec-
tion 2 together with various differential forms related with the equations due to the exis-
tence of a Lagrangian, results in specific integration methods for variational SODEs. They
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all are based on a relation between symmetries of variational structures and first integrals
of the equations. The most cited result here is the famous Emmy Noether’s theorem, pub-
lished in 1918, stating that to every symmetry of a Lagrangian there corresponds a con-
servation law. Since that time various generalisations and modifications of this theorem
have been discovered, making the theory of symmetries one of the most interesting and
important parts of the variational calculus. In the Liouville theorem this theory becomes
a powerful integration method, more effective than the alternative integration method of
Lie. The classical Liouville method, however, applies exclusively to regular Lagrangian
systems, contrary to the Lie method that is an integration method for any completely in-
tegrable distribution. In accounting for singular (degenerate) Lagrangian systems, it turns
out that integration based on symmetries is no longer so straightforward. In this section
we present an extension of the classical theory of symmetries and related integration meth-
ods to non-regular Lagrangian systems, and also to differential equations that need not be
variational, but are representable as equations for the characteristics of a closed 2-form of
a constant rank.

4.1 Exterior differential systems related with variational SODEs: regular
Lagrangians revisited

As we have seen, second-order variational equations have a distinguished projectable ex-
tension αε that is global and closed. The dynamical distribution of αε is denoted by ∆ε

and called the Euler-Lagrange distribution: note, it is defined on R × TM . Thus, for
variational equations we have three generally different global representations by exterior
differential systems on the evolution space:

(1) the evolution distributionDε, whose integral sections coincide with prolongations of
extremals,

(2) the characteristic distribution χαε of the closed 2-form αε, whose holonomic integral
sections coincide with prolongations of extremals.

(3) the Euler-Lagrange distribution ∆ε whose holonomic integral sections coincide with
prolongations of extremals (and are the same as the holonomic integral sections of
χαε ).

Taking into account that for every Lagrangian λ, αε is on the domain of λ equal to the
Cartan 2-form dθλ, we can see that Euler-Lagrange equations are

– equations for integral sections of the evolution distribution Dε,

– equations for holonomic integral sections of the characteristic distribution of αε,
thus, for any Lagrangian λ of ε taking the form

J1γ∗iXdθλ = 0 ∀ vector field X on R× TM,

– equations for holonomic integral sections of the dynamical distribution ∆ε, thus, for
any Lagrangian λ of ε taking the form

J1γ∗iXdθλ = 0 ∀ π1-vertical vector field X on R× TM.
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Equations for integral sections of the Euler-Lagrange distribution ∆ε, i.e. equations
for sections δ of π1 satisfying

δ∗iXαε = 0 for every π1-vertical vector field X on R× TM (38)

are called Hamilton equations [37, 71]; solutions of Hamilton equations are then called
Hamilton extremals. With this terminology, equations for holonomic Hamilton extremals
are the Euler-Lagrange equations.

Apparently, every prolongation of an extremal is a Hamilton extremal. The set of
extremals, however, need not be in bijective correspondence with the set of Hamilton ex-
tremals, meaning that Hamilton equations in general are not equivalent with the Euler-
Lagrange equations. We can see, however, that the following holds:
Proposition 4.1 If ε is regular then Hamilton equations and Euler-Lagrange equations
are equivalent, meaning that every Hamilton extremal is a prolongation of an extremal of
ε.

Let us turn to regular locally variational forms in more detail. Combining properties
of regular equations with variationality we get
Proposition 4.2 (Krupková 1987, 1994) Let ε be a regular locally variational form on
R× T 2M . Denote

ε = Eaω
a ∧ dt, Ea = Babẍ

b +Aa.

The following conditions are equivalent:

(1) ε is regular.

(2) Every local projectable extension α of ε has maximal rank (= 2m).

(3) The Euler-Lagrange distribution ∆ε is a semispray connection.

(4) Dε = ∆ε = χαε .

(5) Equation iΓαε = 0 has a unique global solution satisfying the scaling condition
Γ(dt) = 1; it reads

Γ =
∂

∂t
+ ẋa

∂

∂xa
−BabAb

∂

∂ẋa
. (39)

The equivalence of (1) and (5) in proposition 4.2 was originally obtained by Gold-
schmidt and Sternberg [37, 136]. They called the vector field Γ (39) Euler-Lagrange field.
With help of (19) its components can be easily expressed by means of a Lagrangian for ε.

Equipped with the geometric understanding of regularity of equations we can extend it
to Lagrangians as follows: A Lagrangian λ is called regular if its Euler-Lagrange form is
regular [71].

Now, given a Lagrangian λ = Ldt for ε we can rewrite the regularity condition in
terms of the Lagrange function L. If λ is a first order Lagrangian, we get the well-known
condition

det
(

∂2L

∂ẋa∂ẋb

)
6= 0.
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If, however λ is a second order Lagrangian for the (second order) locally variational form
ε, the regularity condition takes the form

det
(

∂2L

∂ẋa∂ẋb
− ∂2L

∂ẍa∂xb
− ∂2L

∂xa∂ẍb
− d

dt

∂2L

∂ẋa∂ẍb

)
6= 0.

For regular Lagrangians we have the following theorem on a local canonical form of
the closed 2-form αε [71]:
Theorem 4.3 Let ε be a regular locally variational form on R × T 2M . Then in a neigh-
bourhood of every point in the evolution space R× TM there is a chart with coordinates
(t, xa, pa), and a function H , such that

αε = −dH ∧ dt+ dpa ∧ dxa.

The functions H and pa defined above are called a Hamiltonian and momenta of the
locally variational form ε.

The Hamiltonian and momenta of ε are non-unique: obviously for any local function
ϕ(t, xi), the family

H ′ = H +
∂ϕ

∂t
, p′a = pa −

∂ϕ

∂xa

is another set of Hamiltonian and momenta for ε. Hamiltonians and momenta of a locally
variational form are in one-to-one correspondence with the first order (generally, if ε is of
higher order, with the minimal order) Lagrangians.

The coordinates (t, xa, pa) are called Legendre coordinates. Expressing the coordinate-
free Hamilton equations (38) in Legendre coordinates we get the familiar Hamilton equa-
tions of classical mechanics,

dxa

dt
=
∂H

∂pa
,

dpa
dt

= − ∂H
∂xa

,

that are equivalent with the Euler-Lagrange equations.
Going back to proposition 2.8, we realised, that to each pertinent regular dynamical

form ε on R× T 2M there exists a unique semispray connection w having the same paths
as ε. Conversely, however, given a semispray connection w, there is a family of perti-
nent regular dynamical forms, having the same paths as w: they are characterised by the
condition w∗ε = 0, i.e. their components are given by

Ea = gab(ẍb − f b),

where g = (gab) is an arbitrary regular matrix. Consequently, to a given semispray

Γ =
∂

∂t
+ ẋa

∂

∂xa
+ fa

∂

∂ẋa

there corresponds a family of local projectable extensions of the ε’s, i.e. a family of 2-
forms of rank 2m such that Γ spans the characteristic distribution of α; they read

α = gabω
a ∧ (dẋb − f bdt) + F,
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where g is any regular matrix, and F is an arbitrary 2-contact 2-form.
A regular matrix g above is called a multiplier for Γ. It has an intrinsic meaning as a

regular fibred morphism between the fibred manifolds R × TM → M and T 0
2M → M

over the identity of M , where the latter is the bundle of all tensors of type (0, 2) over M
(g is a “time, position and velocity dependent metric” on M , considered in Sec. 3.4).

Now, taking into account the relation between semisprays and dynamical forms we can
extend to semisprays the inverse variational problem:

A semispray Γ is called variational [72] if the related family of dynamical forms con-
tains a locally variational form, i.e. if in a neighbourhood of every point in the evolution
space there exists a regular matrix g such that ε = gab(ẍb − f b)ωa ∧ dt is variational.
For a variational semispray Γ we thus have a regular first order Lagrangian λ such that
Dελ = span{Γ}.

Any regular matrix g relating a semispray Γ with a locally variational form is called
a variational multiplier for Γ. Since the related dynamical form satisfies the Helmholtz
conditions, we can see that every variational multiplier is symmetric and is a solution of
Helmholtz conditions that become partial differential equations for g. Existence and multi-
plicity of variational multipliers for a given semispray (SODEs in normal form) is a crucial
problem; we call it the contravariant inverse problem of the calculus of variations. Al-
though this problem for a general system of m SODEs in normal form is yet unsolved,
many interesting particular achievements have been reached. We devote Sections 5 and 6
to the inverse problem for semisprays and to various geometric structures that are helpful
in dealing with this question.

Due to the global existence of the Euler-Lagrange distribution ∆ε for variational equa-
tions, that, as we have seen above describes Hamilton extremals, we have along with regu-
lar and weakly regular dynamical forms (cf. Sec. 2.4) another distinguished class:

A locally variational form ε is called semiregular if its Euler-Lagrange distribution is
weakly horizontal and of a constant rank.

Since in this case ∆ε coincides with the characteristic distribution of the 2-form αε [74]
(see remark 2.13 in Sec. 2.4), and since αε has constant rank and is closed, we get that
the Euler-Lagrange distribution of a semiregular locally variational form is completely
integrable.

Given a semiregular locally variational form ε onR×T 2M , a (2m+1−p)-dimensional
immersed submanifoldQ of the evolution spaceR×TM is called Lagrangian submanifold
of ε if Q is foliated by the leaves of ∆ε.

Integration methods for the characteristic distribution of a closed 2-form, and in partic-
ular, for a semiregular locally variational form will be subject of the rest of this section.

4.2 Symmetries of Lagrangian structures

Given a locally variational form (variational SODEs) one can study invariance transforma-
tions and symmetries of the corresponding differential forms and distributions. We shall be
interested in relations between various kinds of symmetries, and in relations of symmetries
and conservation laws. Applications to exact integration of the Euler-Lagrange equations
will then be subject of the next section.

Geometric foundations of the theory of invariant variational problems were laid by
Trautman [142, 143] and Krupka [60]. Here we focus on ordinary differential equations
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(see also the book [82] by Krupková). For a general setting the reader can consult the paper
by Krupka in this book [66].

First, recall the concept of invariance transformation and of symmetry of a differential
form and of a distribution on a manifoldN (see e.g. [90, 92]). The reader should be aware
of the varied terminology appearing in the literature: invariance transformations are often
called finite symmetries and symmetries are then called infinitesimal symmetries.

A local diffeomorphism φ : N → N is called invariance transformation of a q-form η
if

φ∗η = η .

Let X be a vector field on N , and {φu} its local one-parameter group of transformations.
X is called a symmetry of η, if for every u, φu is an invariance transformation of η. Equiv-
alently, the symmetry condition takes the form

LXη = 0.

Given a distribution D of a constant rank on N , φ is called invariance transformation of
D if for all x ∈ N ,

Tφ(Dx) ⊂ Dφ(x).

The vector fieldX is called a symmetry ofD if for all u, φu is an invariance transformation
of D. The set of all symmetries of a distribution is a Lie algebra with respect to the Lie
bracket of vector fields, characterised as follows [92]:
Theorem 4.4 Let D be a distribution of a constant rank. The following three conditions
are equivalent:

(1) X is a symmetry of D,

(2) for every vector field Z belonging to D, the Lie bracket [X,Z] belongs to D,

(3) for every one-form η belonging to the annihilator D0 of D, the Lie derivative LXη
belongs to D0.

We can see that if X (with the local one-parameter group {φu}) is a symmetry of D,
and Q is an integral manifold of D then φu(Q) is also an integral manifold of D. In other
words, the local flow of a symmetry transfers integral mappings into integral mappings,
and, consequently integral manifolds into integral manifolds.

LetD be a distribution onN . A function f , defined on an open subset U ofN is called
a first integral of D if df ∈ D0, i.e., if iXdf = 0 for every vector field X ∈ D. We can see
that if f is a first integral of D on U and ι : Q → U ⊂ N is an integral manifold of D then
d(f ◦ ι) = 0, i.e., the function f is a constant along Q.

First integrals f1, f2 ofD defined on U are called independent if the forms df1, df2 are
linearly independent at each point of U . Let f1, . . . , fp be independent first integrals of D,
defined on U . The set {f1, . . . , fp} is called a complete set of independent first integrals
of D at a point x ∈ U (resp. on U ) if

D0(x) = span{df1(x), . . . , dfp(x)}
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(resp. if the above condition holds at each point of U ).
If {f1, . . . , fp} is a complete set of independent first integrals of D then the subman-

ifolds of U characterised by the equations f1 = c1, . . . , fp = cp, where c1, . . . , cp are
constants, are integral manifolds of D of maximal dimension, and one can find local coor-
dinates (yi) on N such that y1 = f1, . . . , y

p = fp.
If the distribution D has constant rank k and is completely integrable then in a neigh-

bourhood of every point inN the existence of a complete set of independent first integrals
is guaranteed by Frobenius Theorem. Indeed, around every point in N there is an adapted
chart (U,ϕ), ϕ = (yi), to the foliation defined by D, such that

D = span
{ ∂

∂y1
, . . . ,

∂

∂yk

}
= annih{dyk+1, . . . , dyn}

on U . Apparently, {yk+1, . . . , yn} is a complete set of independent first integrals of D on
U . The reader is referred to the paper [131] which describes an integration strategy for
systems of ordinary differential equations in the spirit of the foregoing discussion.

Let us return to a fibred manifold π0 : R×M → R and its jet prolongations. Let λ be
a Lagrangian on R× TM , ελ its Euler-Lagrange form. An isomorphism φ of π0 is called
invariance transformation of λ if

J1φ∗λ = 0,

and a generalised invariance transformation of λ if

J1φ∗ελ = 0.

The condition

LJ1Xλ = 0

for a π0-projectable vector field X on R×M be a symmetry of the Lagrangian λ is called
Noether equation. In coordinates it takes the form

J1X(L) + L
dX0

dt
= 0. (40)

Similarly, the condition

LJ2Xελ = 0

for a π0-projectable vector field X on R×M be a symmetry of the Euler-Lagrange form
of λ is called Noether-Bessel-Hagen equation. In coordinates,

J2X(Ea) + Eb
∂Xb

∂xa
+ Ea

dX0

dt
= 0, (41)

where for the higher components of J2X formula (1) has to be used.
The Noether equation (respectively, Noether-Bessel-Hagen equation) can be used to

find all symmetries of a given Lagrangian (respectively, of a given dynamical form), or, if
a group of transformations of R× TM is given, to find all invariant Lagrangians (respec-
tively, dynamical forms).
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To find all Euler-Lagrange expressions (locally variational forms) possessing pre-
scribed symmetries one has to combine the Noether-Bessel-Hagen equation with
Helmholtz conditions (cf. [134]).

For the sake of brevity, symmetries on the evolution space that are of the form J1X ,
where X is a vector field on the extended configuration space R × M , are called point
symmetries.

As shown in [60], joining the symmetry requirements with the first variation formula
(20), we immediately obtain the famous Noether theorem and its generalisation as follows:
Theorem 4.5 Noether Theorem. [105, 60] Let λ be Lagrangian on R × TM , θλ the
Cartan form of λ. Assume that for a π0-projectable vector field X on R ×M , J1X is a
symmetry of λ. Then for every extremal γ of λ,

iJ1Xθλ ◦ J1γ = const. (42)

Equation (42) saying that the function iJ1Xθλ is constant along extremals, is called a
conservation law.
Theorem 4.6 Generalised Noether Theorem. [60] Let ε be a locally variational form on
R×T 2M , let a π0-projectable vector field X on R×M be a point symmetry of ε. If λ is a
(local) Lagrangian for ε on an open set W ⊂ R× TM , and ρ is the unique closed 1-form
such that LJ1Xλ = hρ, and if γ is an extremal of ε defined on π1(W ) ⊂ R, then

J1γ∗(diJ1Xθλ − ρ) = 0.

This means that a point symmetry of a locally variational form ε gives rise to conser-
vation laws

(iJ1Xθλ − g) ◦ J1γ = const,

where g is a function (defined on an appropriate open set) such that dg = ρ. Thus, know-
ing a point symmetry of ε, the Generalised Noether Theorem provides us, for every La-
grangian, with a function constant along extremals.

Given a locally variational form ε on R × T 2M , we can consider symmetries of the
dynamical form itself, but also symmetries of its Lagrangians, Cartan forms and Cartan
2-forms (that unify, as we know, into a global closed 2-form – the Lepage equivalent of ε).
We now clarify relations between point symmetries of these differential forms.
Proposition 4.7 Let λ be a Lagrangian on R × TM , ελ its Euler-Lagrange form. Let X
be a π0-projectable vector field on R×M . Then

LJ2Xελ = εLJ1Xλ
.

Corollary 4.8 (1) Given a point symmetry X of ελ there exists a unique closed one-
form ρ such that

LJ1Xλ = hρ.

(2) Every point symmetry of a Lagrangian is a point symmetry of its Euler-Lagrange
form.

Moreover, we have [80]:
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Theorem 4.9 Let X be a π0-projectable vector field on R×M .

(1) X is a point symmetry of λ if and only if it is a point symmetry of the Cartan form
θλ.

(2) X is a point symmetry of the Euler-Lagrange form ελ if and only if it is a point
symmetry of the Lepage equivalent αελ = dθλ.

(3) Every point symmetry X of the Cartan form θλ is a point symmetry of the Cartan
2-form dθλ = αελ .

(4) If rank of αε = dθλ is constant then every point symmetry X of αε is a point
symmetry of the characteristic distribution of αε. If X is vertical then it is also a
point symmetry of the Euler-Lagrange distribution ∆ε.

(5) If ελ is semiregular then every point symmetry of ελ (hence of αελ ) is a point sym-
metry of the Euler-Lagrange distribution ∆ε.

Summarizing briefly, the set of point symmetries of a locally variational form ε is the
same as the set of point symmetries of the closed 2-form αε. It contains the set of all point
symmetries of any Lagrangian λ of ε (that coincides with the set of point symmetries of
the Cartan form θλ), and for semiregular ε is contained in the set of point symmetries of
the Euler-Lagrange distribution ∆ε.

The Noether Theorems provide us with “constants of the motion” related with sym-
metries, i.e. with functions that remain constant along prolonged extremals, each corre-
sponding to a symmetry of a Lagrangian. For regular Lagrangian systems, when there is
no difference between the evolution distribution Dε, Euler-Lagrange distribution ∆ε, and
the characteristic distribution of the Lepage 2-form αε, hence prolongations of extremals
coincide with integral sections (maximal integral manifolds) of (any of) the distributions,
there is no difference between constants of the motion and first integrals of Dε. For non-
regular Lagrangian systems, however, one may find functions constant along (prolonged)
extremals that are not first integrals of the characteristic distribution of αε [82]. So there
arises a question whether also in these more complicated cases the Noether Theorems can
be used for an explicit integration of the characteristic and/or the Euler-Lagrange distribu-
tion. It was proved in [81] that the answer is affirmative, and Noether Theorems hold also
in the following stronger formulation:
Theorem 4.10 (1) Let λ be Lagrangian on R× TM , θλ the Cartan form of λ. Assume

that a π0-projectable vector field X on R ×M is a point symmetry of λ. Then the
function iJ1Xθλ is a first integral of the characteristic distribution χαε of the 2-form
αε.

(2) Let ε be a locally variational form on R× T 2M , let a π0-projectable vector field X
on R ×M be a point symmetry of ε. If λ is a (local) Lagrangian for ε on an open
set W ⊂ R× TM , and ρ = dg is the unique closed 1-form such that LJ1Xλ = hρ,
then iJ1Xθλ−g is a first integral of the characteristic distribution χαε of the 2-form
αε.

So far, we have studied symmetries determined by vector fields on the extended con-
figuration space R × M . Now we shall consider general vector fields on the evolution
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space R × TM . Given a Lagrangian system a significant role is played by symmetries of
the corresponding Lepage forms, i.e. Cartan 1-forms θλ of individual Lagrangians and the
closed 2-form αε (as we have seen, for every Lagrangian λ for ε, on the domain of λ, αελ
identifies with the Cartan 2-form dθλ).

We have the following relations between different kinds of symmetries associated with
a Lagrangian system [80]:
Proposition 4.11 Let X be a vector field on the evolution space R× TM .

(1) Every symmetry of the Cartan form θλ is a symmetry of the Cartan 2-form dθλ =
αελ .

(2) Every symmetry of dθλ = αελ is a symmetry of the characteristic distribution χαελ
of the closed 2-form αελ .

Symmetries of Lepage forms provide us with first integrals of the characteristic distri-
bution:

If LXαελ = 0 then diXαελ = 0 so that locally

iXαελ = df,

i.e. by definition of the characteristic distribution, iXαελ belongs to the annihilator of
χαελ

. This means that f is a first integral of the distribution χαελ ; it can be obtained by
integration using the Poincaré Lemma.

Similarly, if LXθλ = 0 then iXdθλ = iXαελ = −diXθλ, so that the function

f = iXθλ

is a first integral of the characteristic distribution χαελ .

Recall that if the locally variational form ελ is semiregular, or even regular then the
characteristic distribution χαελ coincides with the Euler-Lagrange distribution ∆ελ , i.e.
symmetries of Lepage one and two-forms provide us with first integrals of the Euler-
Lagrange distribution ∆ελ . Moreover, since in this case ∆ελ is completely integrable,
they can be used to find extremals.

A method of integration of the Euler-Lagrange distribution based on symmetries of
Lepage forms and related first integrals is subject of the next section.

It should be pointed out that there is a rich bibliography dealing with various questions
concerning symmetries and first integrals in Lagrangian mechanics, some of the references
are listed in the Bibliography. The review paper by Sarlet and Cantrijn [122] has been
heavily cited in the literature as has the classification of symmetries in Lagrangian dy-
namics due to Prince [108, 109]. One can find also other interesting results, for example,
relating the theory of symmetries with the inverse problem of the calculus of variations
[7, 117, 119, 120, 126], or clarifying the place of symmetries of the Helmholtz form in
the theory of SODEs [67, 68]. There is a comprehensive application of the generalised
Noether theorem to the geodesic equations of a (pseudo) Riemannian metric to be found
in [114, 115].
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4.3 The Liouville Theorem for closed 2-forms and integration methods for
semiregular variational equations

In this section we present a generalisation of the Liouville theorem of the classical calcu-
lus of variations [91] to characteristic distributions of (arbitrary) closed two-forms of a
constant rank [74, 75, 113], and in particular, to semiregular variational equations (see
also [82] for exposition and related integration methods for higher order SODEs, and [54]
for variational equations); the generalisation is based on the Darboux Theorem for closed
2-forms and on the understanding of complete integrals as distributions [8].

Consider a manifoldN of dimension n. Let α be a closed two-form of a constant rank
on N . Denote by χα the characteristic distribution of α. Thus, the rank of α is an even
number, and rankα = corankχα. We set

rankα = 2p, rankχα = r,

so that 2p+ r = n.
Theorem 4.12 Darboux Theorem. Given a closed two-form α as above, then at each
point x ∈ N there is a local chart with coordinates

(a1, . . . , ap, b1, . . . , bp, y
2p+1, . . . , yn)

such that

α =
p∑

K=1

daK ∧ dbK .

Charts characterised by Darboux Theorem are called Darboux charts of α. In a Dar-
boux chart one has for the characteristic distribution

χα = span{∂/∂yσ, 2p+ 1 ≤ σ ≤ n} = annih{daK , dbK , 1 ≤ K ≤ p},

so that the Darboux functions a1, . . . , ap, b1, . . . , bp form a complete set of independent
first integrals of the characteristic distribution χα. This, however, means that the charac-
teristic distribution χα of α is completely integrable.

Let us turn to symmetries. If X is a vector field on N , and α is closed, then LXα =
diXα. This means that if X is a symmetry of α then (locally)

iXα = df,

where f is a first integral of the characteristic distribution χα. In particular, every vec-
tor field belonging to χα is a symmetry of α; the corresponding first integrals are trivial
(constant functions).

If ρ is a one-form (possibly defined on an open subset U ⊂ N ) such that α = dρ on U ,
we can see that LXρ = 0 means that iXα = df , where f = −iXρ. Thus, every symmetry
X of ρ is a symmetry of α, and iXρ is a first integral of the characteristic distribution χα.

Note that a first integral corresponding to a symmetry of α is unique up to a constant
function. Conversely, to a given first integral the corresponding symmetry is not unique
(all the symmetries form a class modulo the characteristic distribution).



874 2nd order ODEs and the Inverse Problem

Let X1, X2 be two symmetries of α. Then

i[X1,X2]α = LX1iX2α− iX2LX1α = diX1iX2α,

and we have the following assertion which can be viewed as a generalisation of the classical
Poisson Theorem.
Proposition 4.13 The set of all symmetries of a closed two-form α is a Lie algebra.

If f1, f2 are first integrals of the characteristic distribution χα, and X1, X2 are sym-
metries of α corresponding to f1 and f2, respectively, then

{f1, f2} := iX1iX2α = iX1df2 = −iX2df1

is a first integral of χα, corresponding to the symmetry [X1, X2] of α.

The first integral {f1, f2} is called the Poisson bracket of the first integrals f1, f2.
In particular, for every symmetry X of α and every Z belonging to the characteristic

distribution we have i[X,Z]α = diX iZα = 0, i.e., the symmetry [X,Z] of α belongs to
the characteristic distribution, giving rise to trivial first integrals. Consequently, using the
second condition of theorem 4.4, we get the relation between symmetries of a closed two-
form of a constant rank and of its characteristic distribution as follows: Every symmetry of
α is a symmetry of the characteristic distribution χα.

The problem of finding solutions of the characteristic distribution χα can be considered
as a problem of finding a covering of the manifold N by Darboux charts. The classical
idea of how to proceed is the following: use p symmetries of α to find p independent first
integrals, the remaining p first integrals then can be computed by means of differentiation
and integration from α (“by quadratures” in the classical terminology). However, not any
family of p independent first integrals of α is appropriate for using the Liouville integration
formulas: one has to start with the so-called “first integrals in involution”. Therefore to
find a proper generalisation of the theorem, we will be interested not only in the procedure
alone, but first of all in a geometric characterisation of admissible families of first integrals.
Consider a closed two-form α of a constant rank = 2p onN . Let I be a distribution defined
on an open subset U of N . I is called a complete integral of α on U [74] if

(1) I is completely integrable and corank I = p on U , and ,

(2) α belongs to the differential ideal generated by I.

Condition (2) in the above definition means that α = 0 on the maximal integral manifolds
of I.

The existence of local complete integrals is guaranteed by Darboux theorem: if
(U,ϕ), ϕ = (aK , bK , yσ), 1 ≤ K ≤ p, 1 ≤ σ ≤ r, is a Darboux chart of α, then putting

I = annih{daK , 1 ≤ K ≤ p}

we get a complete integral of α defined on U .
The geometric meaning of complete integrals is as follows:

Proposition 4.14 If I be a complete integral of α, defined on an open set U , then on U ,
the characteristic distribution χα is a subdistribution of I. Consequently, every leaf of the
foliation of the distribution I is foliated by the leaves of the characteristic distribution χα.
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In order to distinguish systems of first integrals of the characteristic distribution that
define complete integrals of α, we have the following definition: Let aK , 1 ≤ K ≤ p, be
independent first integrals of the characteristic distribution χα. We say that the integrals
aK are in involution if the distribution I = annih{daK , 1 ≤ K ≤ p} is a complete integral
of α.

The following theorem answers the question of under which conditions a family of first
integrals of χα (respectively, a family of symmetries of α) defines a complete integral [75].
Theorem 4.15 Let aK , 1 ≤ K ≤ p, be independent first integrals of the characteristic
distribution of α, and let XK , 1 ≤ K ≤ p, be some corresponding symmetries of α, i.e.,
such that iXKα = daK , for all K.

Alternatively, let XK , 1 ≤ K ≤ p, be nontrivial symmetries of α (i.e., such that
iXKα 6= 0 for all K, that is, X /∈ χα), linearly independent at each point of their domain
of definition, and let aK , 1 ≤ K ≤ p, be some corresponding first integrals of χα.

Then the following conditions are equivalent:

(1) The distribution

I = annih{iXKα, 1 ≤ K ≤ p} = annih{daK , 1 ≤ K ≤ p}

is a complete integral of α.

(2)

{aK , aL} = iXK iXLα = iXK da
L = 0, ∀ 1 ≤ K, L ≤ p.

(3)

annih{daK , 1 ≤ K ≤ p} = span{XK , Zσ, 1 ≤ K ≤ p, 1 ≤ σ ≤ r},

where the vector fields Z1, . . . , Zr span χα.

Both the definition of a complete integral and condition (3) above express the geometric
content of the classical concept of “a system of first integrals in involution” that is defined
by vanishing of all the Poisson brackets of the first integrals, i.e. by condition (2) of the
theorem.

The following theorem is a generalisation of the Liouville theorem of classical me-
chanics to closed two-forms of a constant rank, and it is of fundamental importance for
integration of distributions [75]:
Theorem 4.16 Let α be a closed two-form of constant rank 2p on N , let I be a complete
integral of α. Then at each point of the domain of I there exists a chart (U,ϕ), ϕ =
(aK , bK , yσ), 1 ≤ K ≤ p, 1 ≤ σ ≤ dimN − 2p, such that

(1) I = annih{daK , 1 ≤ K ≤ p},

(2) α = daK ∧ dbK ,

(3) the set of functions {aK , bK , 1 ≤ K ≤ p} is a complete set of independent first
integrals of the characteristic distribution χα of α.
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Note that condition (1) means that (U, ϕ) is an adapted chart to the distribution I, and
(2) means that it is a Darboux chart of α.

One can easily get explicit formulas for the first integrals bK , 1 ≤ K ≤ p, as follows:
Given a complete integral of χα ( = a set of independent first integrals of χα satisfying
{aK , aL} = 0), the functions aK can be completed to local coordinates, (yJ , aK), on N .
Now, since locally α = dρ, we have in the adapted coordinates

ρ = ρJ dy
J + ρ̂K da

K ,

where

∂ρJ
∂yI
− ∂ρI
∂yJ

= 0 ,

since by assumption dρ = 0 on the leaves of I. The latter are the integrability conditions
for the existence of a local function S(yJ , aK) such that

ρJ =
∂S

∂yJ
. (43)

Now, we have

ρ =
∂S

∂yJ
dyJ + ρ̂K da

K = dS +
(
ρ̂K −

∂S

∂aK

)
daK . (44)

Putting

bK = ρ̂K −
∂S

∂aK
(45)

gives us the desired set of p independent first integrals of the distribution χα. The functions
ρ̂K and S can be easily found using Poincaré Lemma. Indeed, since α belongs to the ideal
generated by I0 = span{da1, . . . , dap}, we have

α = gJK dy
J ∧ daK + hLK da

L ∧ daK ,

and ρ = Bα, where B is the standard homotopy operator. This, however, means that

ρJ = −aL
∫ 1

0

(gJL ◦ ψ)u du

ρ̂K = yJ
∫ 1

0

(gJK ◦ ψ)u du+ 2aL
∫ 1

0

(hLK ◦ ψ)u du,

where the mapping ψ is defined by ψ(u, yJ , aK) = (uyJ , uaK). Knowing ρ, we obtain a
suitable S from (43) easily again by application of the Poincaré Lemma, this time, however,
with use of a homotopy operator AI adapted to the foliation defined by I:

S = AIρ = yJ
∫ 1

0

(ρJ ◦ µ) dv,

where

µ(v, yJ , aK) = (vyJ , aK) .
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Note that S is unique up to a function h(aK) (i.e. up to first integrals of the distribution I).
Substituting all this into (45) an explicit formula for required p first integrals bK appears,
where the unknown first integrals are obtained by means of integration and differentiation
(“by quadratures”).

The above geometric version of the Liouville Theorem has the following reformulation
that is close to the classical one:
Theorem 4.17 Generalised Liouville Theorem. Let α be a closed two-form of constant
rank 2p on N . Let aK , 1 ≤ K ≤ p, be independent first integrals in involution of the
characteristic distribution χα of α, defined on an open subset U of N . Then the system
of functions {aK , bK , 1 ≤ K ≤ p}, where bK are defined by (45), is a complete set of
independent first integrals of χα.

Another reformulation of the same result could be called Coordinate-free Liouville
Theorem [74]:
Corollary 4.18 Let I1 be a complete integral of a closed two-form α of a constant rank
on N . Then to every point x of the domain of I1 there exists a neighborhood U and a
complete integral I2 of α on U such that I1 ∩ I2 is the characteristic distribution χα of α
on U .

Finally, the next reformulation of the Liouville Theorem is apparent from (44) and
generalises the classical Jacobi Theorem [75].
Corollary 4.19 Let I be a complete integral of a closed two-form α of a constant rank on
N . Then to every point x of the domain of I there exists a neighborhood U and a one-form
ρ̄ on U such that α = dρ̄ and ρ̄ belongs to I0 (i.e., ρ̄ vanishes on the maximal integral
manifolds of I). Otherwise speaking, given a (local) one-form ρ such that α = dρ, there
exists a function S such that

ρ− dS ∈ I0. (46)

In a chart adapted to the complete integral I (i.e. such that I0 = span{daK , 1 ≤ K ≤
p}), condition (46) reads

ρ̄ = ρ− dS = −bK daK ,

hence

bK = −i∂/∂aK ρ̄,

that obviously are independent first integrals of χα.

We have two important applications of the geometric Liouville theory:
1. Lagrangian systems. [74] This is the case when the manifold N is the evolution

spaceR×TM of a fibred manifold π0 : R×M → R, and α = αε is the Lepage equivalent
of a semiregular locally variational form ε onR×T 2M (recall that dαε = 0, and αε = dθλ
for every, possibly local and higher-order, Lagrangian λ of ε). Then, as we know, rankαε
is constant = 2p and the characteristic distribution χαε coincides with the Euler-Lagrange
distribution ∆ε. The Liouville theorem then provides an integration method for obtaining
the foliation of the evolution space determined by the Euler- Lagrange distribution ∆ε.
If rankαε is maximal (= 2m), i.e. if ε is regular, the foliation exactly corresponds to
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prolonged extremals of ε. If rankαε = 2p < 2m, prolongations of extremals coincide with
holonomic sections of the leaves of the foliation, while (general) sections of the leaves are
Hamilton extremals of ε (solutions of Hamilton equations).

Note that by proposition 4.14, the leaves of the foliation defined by a complete integral
I of αε are Lagrangian submanifolds (we also speak about Lagrangian foliation in this
context).

If ε is regular and I = annih{dai, 1 ≤ i ≤ m} is a complete integral of αε such that

det
( ∂ai
∂ẋj

)
6= 0, (47)

we can consider in the Liouville theorem adapted charts (t, xi, ai). Since ρ is the Cartan
form θλ of a Lagrangian λ of ε, generalised Jacobi theorem (Corollary 4.19) then gives
θλ − dS = −Hdt+ pidx

i − dS = −bidai, so that

∂S

∂t
= H,

∂S

∂xi
= pi,

∂S

∂ai
= bi.

Summarising, we get the famous classical Jacobi Theorem that every solution S(t, xi, ai)
of the partial differential equation

∂S

∂t
= H

(
t, xi,

∂S

∂xi

)
(48)

satisfying the condition

det
( ∂pi
∂aj

)
= det

( ∂2S

∂xi∂aj

)
6= 0

(that arises from the requirement (47) and means that (t, x, a) → (t, x, ẋ) → (t, x, p) are
coordinate transformations on the evolution space), provides first integrals of the Euler-
Lagrange equations, given by the formula bi = ∂S/∂xi.

Equation (48) is called the Hamilton-Jacobi equation, and we can see that it appears
as a consequence of the geometrical Liouville theorem. It is shown in [113, 111] that these
ideas apply mutatis mutandis to contact manifolds where the Cartan form is replaced by
the exterior derivative of the contact 1-form of the Reeb field.

2. Completely integrable distributions. [75] Let D be a completely integrable dis-
tribution of a constant rank on a manifoldN . It is clear that if corankD is an even number,
2p, then around every point in N there is a closed 2-form α of rank 2p such that D is the
characteristic distribution of α. Indeed, by Darboux Theorem, a local 2-form α with the
above properties appears as eg.

α = df1 ∧ dfp+1 + df2 ∧ dfp+2 + · · · dfp ∧ df2p,

where f1, f2, . . . , f2p are independent first integrals of the distribution D; their existence
is guaranteed by Frobenius Theorem.

To apply the Liouville integration method for getting maximal integral manifolds of D
one needs to know in a neighbourhood of every point at least one appropriate 2-form α.
This, however may be a problem (except, as we have seen above, when the given equations
come from a Lagrangian!). On the other hand, it is clear, that one can try to find such a
form directly, by solving the corresponding equations and conditions:
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(1) dα = 0,

(2) rankα = 2p,

(3) iZkα = 0, 1 ≤ k ≤ rankD, where Zk are independent generators of D,

that as we know, are locally solvable. Effectively this means finding a (local) 1-form ρ,
ρ = gidy

i, such that α = dρ, which produces equations for the functions gi. Examples of
this process for non-variational SODEs can be found in [113, 110].

5 Geometry of regular SODEs on R×TM

In what follows we will be analysing a system of second order differential equations in
normal or contravariant form,

ẍa = fa(t, x, ẋ) (49)

on a manifoldM with local coordinates (xa) and with associated bundles π : R×M →M,
π0 : R×M → R and π1,0 : E → R×M . As before the evolution spaceE := R×TM has
local adapted coordinates (t, xa, ua) or (t, xa, ẋa). The geodesic equations are, of course,
a special example and one might expect the analysis to be modelled on that (autonomous)
situation. However, we take the position that even the autonomous case is best described on
extended configuration space R×M and evolution space R×TM and that one should put
aside the historical fact that autonomous systems were discussed on M and its tangent and
cotangent bundles. We warn the reader that in the remainder of this article the configuration
spaceM has dimension n (rather thanm): this is to maintain consistency with the extensive
literature in this part of the topic.

5.1 A nonlinear connection and the Jacobi endomorphism

We follow [15, 21, 52, 53] and give the basic evolution space geometry of regular SODEs
as it stood around 1985 (with some enhancements).

From (49) we construct on E a second-order differential equation field:

Γ =
∂

∂t
+ ua

∂

∂xa
+ fa

∂

∂ua
(50)

whose integral curves are the 1-jets of the solution curves of the given equations.
The vertical and contact structures of the bundle π1,0 : E → R×M are combined

in S, an intrinsic (1, 1) tensor field on E and known as the vertical endomorphism. In
coordinates:

S = Va ⊗ ωa. (51)

where Va := ∂
∂ua are the vertical basis fields with respect to the bundle projection π1,0, and

ωa := dxa − uadt are the local contact forms as before. From the first order deformation
LΓS a nonlinear connection is constructed as follows: LΓS has eigenvalues 0, 1,−1 with
corresponding eigenspaces spanned locally by Γ, the n vertical fields Va and n horizontal
fields

Ha :=
∂

∂xa
− Γba

∂

∂ub
, where Γba := −1

2
∂f b

∂ua
, (52)
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respectively. Note that span{Γ, Ha} is the horizontal space of this connection. (See [21]
for an intrinsic development of the foregoing.)

The vector fields {Γ, Ha, Va} form a local basis on E, with dual basis {dt, ωa, ψa}
where

ψa := dua − fadt+ Γabω
b.

(Compare this basis with the one adapted to the second-order semispray connection given
in section 2.) The Γba form the components of the nonlinear connection thus induced by Γ.
The resulting direct sum decomposition of T (E) is IE = PΓ + PH + PV where IE is the
identity type (1, 1)-tensor field on E and PΓ, PH and PV are the three projection operators
given in coordinates by

PΓ = Γ⊗ dt , PH = Ha ⊗ ωa , PV = Va ⊗ ψa. (53)

The components of the Jacobi endomorphism (sometimes called the Douglas tensor),
Φ := PV ◦ LΓPH , a type (1,1) tensor field on E, can be calculated from

[Γ, Ha] = ΓbaHb + ΦbaVb, (54)

giving

Φ = Φba Vb ⊗ ωa =
(
Bba − ΓbcΓ

c
a − Γ(Γba)

)
Vb ⊗ ωa, (55)

where Bba := −∂f
b

∂xa
. Other useful results:

[Γ, Va] = −Ha + ΓbaVb, [Ha, Hb] = RdabVd, [Ha, Vb] = Vb(Γca)Vc = [Hb, Va]; (56)

the second of these is effectively the definition of the curvature, R, of the nonlinear con-
nection Γba. In coordinates

Rdab :=
1
2

(
∂2fd

∂xa∂ub
− ∂2fd

∂xb∂ua
+

1
2

(
∂f c

∂ua
∂2fd

∂uc∂ub
− ∂fc

∂ub
∂2fd

∂uc∂ua

))
.

The following identity is important:

Va(Φcb)− Vb(Φca) = 3Rcab. (57)

In [21] vertical and horizontal lifts to E of vector fields on R×M are intrinsically defined;
here it suffices to give their coordinate descriptions. GivenX ∈ X(R×M) with coordinate
representation X = X0 ∂

∂t +Xa ∂
∂xa then

Xv = (Xa − uaX0)Va and Xh = (Xa − uaX0)Ha.

This means, for example, that for any vertical vector µ ∈ Tq(E) there exists a unique
vector η ∈ Tπ1,0(q)(R×M) with dt(η) = 0 such that ηv = µ.

Using Φ := PV ◦ LΓPH and IE = PΓ + PH + PV it is a simple matter to show that

PV ◦ LΓPV = −Φ. (58)



O. Krupková and G. E. Prince 881

5.2 SODEs along the tangent bundle projection

In a series of papers [95, 96, 97, 128] Martı́nez, Cariñena, Sarlet et al developed the calcu-
lus of derivations along the tangent bundle projection with particular application to SODEs.
While exterior calculus per se is not available in the scenario, there are some computational
and conceptual advantages in this scheme which we will attempt to utilise.

So now we introduce vector fields and forms along the projection π1,0 : E → R×M .
We follow [130, 128]. Vector fields along π1,0 are sections of the pull back bundle
π1,0

∗(T (R×M)) overE. X(π1,0) denotes theC∞(E)-module of such vector fields. Sim-
ilarly,

∧
(π1,0) denotes the graded algebra of scalar-valued forms along π1,0 and V (π1,0)

denotes the
∧

(π1,0)-module of vector-valued forms along π1,0. Basic vector fields and
1-forms along π1,0 are elements of X(R × M) and X∗(R × M) respectively identified
with vector fields and forms along π1,0 by composition with π1,0. Using this device tensor
fields along the projection can be expressed as tensor products of basic vector fields and
1-forms with coefficients in C∞(E). The canonical vector field along π1,0 is

T =
∂

∂t
+ ua

∂

∂xa
,

and the natural bases for X(π1,0) and X∗(π1,0) are then {T, ∂
∂xa } and {dt, ωa}. The set

of equivalence classes of vector fields along π1,0 modulo T is denoted X(π1,0) so that
X ∈ X(π1,0) satisfies dt(X) = 0. Then the obvious bijection between X(π1,0) and V (E)
provides a vertical lift from X(π1,0) to V (E), given in coordinates by:

XV = X
a ∂

∂ua
= (Xa − uaX0)

∂

∂ua

where X = X0 ∂
∂t +Xa ∂

∂xa .
On the matter of horizontal lifts we part company with [128], following [53], and say

that the horizontal lift XH of X ∈ X(π1,0) is given by XH = X
a
Ha. (There are many

reasons for this: for example, it is consistent with the horizontal lift of [21] and it respects
the eigenvector structure of LΓS, for this reason it is also known as the strong horizontal
lift, see [28].) Finally, we can lift along Γ by XΓ := dt(X)Γ for any X ∈ X(π1,0) (so
that TΓ = Γ). Then any vector field W ∈ X(E) can be decomposed as

W = (WΓ)Γ + (WH)H + (WV )V

for unique WΓ ∈ span{T}, WH ∈ X(π1,0) with WH(t) = W (t) and WV ∈ X(π1,0).
This decomposition is the main aim of the lifting exercise. In coordinates,

WΓ = dt(W )T ,

WH = dt(W )
∂

∂t
+ dxa(W )

∂

∂xa
= dt(W )T + ωa(W )

∂

∂xa
,

WV = ψa(W )
∂

∂xa
.

The dynamical covariant derivative ∇ and the Jacobi endomorphism, Φ, are then de-
fined as objects along the projection through the following commutation relations on E:

[Γ, XV ] = −XH + (∇X)V and [Γ, XH ] = (∇X)H + Φ(X)V . (59)
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In coordinates Φ = Φab
∂
∂xa ⊗ ωb (we make no notational distinction between the Jacobi

endomorphism in this context and in that of the previous section). We extend ∇ to act on
forms by setting∇(F ) := Γ(F ) for F ∈

∧0(π1,0); then it can be shown that∇(〈X,α〉) =
〈∇X,α〉+ 〈X,∇α〉 and so∇ can be extended to tensor fields along π1,0 in the usual way.
∇T = 0 and, in coordinates,

∇ωa = −Γabω
b, ∇dt = 0, ∇ ∂

∂xa
= Γba

∂

∂xb
.

5.3 The Massa and Pagani connection

Massa and Pagani [98], Byrnes [11, 12], Crampin et al. [16] and Mestdag and Sarlet [125,
101, 100] have separately proposed various linear connections on E induced by a SODE
Γ. They all use the dynamical covariant derivative ∇ to determine derivatives along Γ,
but differ in the derivatives of Γ. This is essentially equivalent to different choices of the
torsion of the connection.

Massa and Pagani introduce a linear connection on E by imposing some natural re-
quirements. If we denote their connection by ∇̂, these are that the covariant differentials
∇̂dt, ∇̂S, and ∇̂Γ are all zero and that the vertical sub-bundle is flat.

Crampin et al. [16] firstly define a covariant derivative along π1,0 and then induce one
on E by lifting; the Massa and Pagani connection on E can be produced in the same way
(see [53] for the details of what follows).

For each Y ∈ X(E), U ∈ X(π1,0) and f ∈ C∞(E),

D̂Y U := [PH(Y ), UV ]V + [PΓ(Y ), UV ]V + [PV (Y ), UH ]H + Y (U(t))T,

D̂Y (f) := Y (f)

is a covariant derivative along the projection. Note that D̂Γ = ∇ and it is useful to intro-
duce the further notations

D̂H
Y := D̂Y H and D̂V

Y := D̂Y V .

The components of D̂ are as follows:

D̂ΓT = 0 D̂HaT = 0 D̂VaT = 0

D̂Γ
∂

∂xa
= Γba

∂

∂xb
D̂Hb

∂

∂xa
=
∂Γca
∂ub

∂

∂xc
D̂Vb

∂

∂xa
= 0 .

We now use D̂ to recover the linear connection ∇̂ of Massa and Pagani on E in the
manner of [16].

∇̂YX := (D̂YXΓ)Γ + (D̂YXH)H + (D̂YXV )V ,

∇̂Y (f) := Y (f)

for all Y,X ∈ X(E) and f ∈ C∞(E) is a linear covariant derivative.
(That this is the Massa and Pagani connection can be verified by calculating the co-

variant differentials of S, dt and Γ along with ∇̂VaX or directly from the components
below:)
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∇̂ΓΓ = 0, ∇̂ΓHa = ΓbaHb, ∇̂ΓVa = ΓbaVb,

∇̂HaΓ = 0, ∇̂HaHb =
∂Γca
∂ub

Hc, ∇̂HaVb =
∂Γca
∂ub

Vc,

∇̂VaΓ = 0, ∇̂VaHb = 0, ∇̂VaVb = 0.

A key feature of ∇̂ for us is that ∇̂XΓ = 0 for all X ∈ X(E). It’s also worth noting the
following important facts:

Let X,Y ∈ X(π1,0). Then

∇̂ΓX
V = (∇X)V , ∇̂ΓX

H = (∇X)H ,

∇̂Y HXH = (D̂Y HX)H , ∇̂Y HXV = (D̂Y HX)V ,

∇̂Y VXH = (D̂Y VX)H , ∇̂Y VXV = (D̂Y VX)V ,

∇̂Y HXΓ = Y H(dt(X))Γ, ∇̂Y VXΓ = Y V (dt(X))Γ.

Now with every linear connection there is an associated torsion and shape map (see
[52, 53]). The torsion is defined by

T̂ (X,Y ) := ∇̂XY − ∇̂YX − [X,Y ].

It will be useful later to have the following identity (valid for any connection) for a
two-form Ω

dΩ(X,Y, Z) =∇̂XΩ(Y,Z) + ∇̂Y Ω(Z,X) + ∇̂ZΩ(X,Y ) (60)

+ Ω(T̂ (X,Y ), Z) + Ω(T̂ (Y,Z), X) + Ω(T̂ (Z,X), Y ).

The shape map AZ associated with a vector field Z ∈ X(E) is an endomorphism of
tangent spaces of E constructed from Lie and parallel transport along the flow, {ζt}, of Z.

If τ t : TxE → Tζt(x)E is the parallel transport map along {ζt}, then

AZ(ξx) :=
d

dt

∣∣∣∣
t=0

(τ−1
t ◦ ζt∗)(ξx)

measures the deformation of tangent spaces by the flow. It is a simple matter to show that

AZ = ∇̂Z + T̂Z = ∇̂Z − LZ ,

where T̂Z(X) := T̂ (Z,X) and (∇̂Z)(X) := ∇̂XZ.
In our case the torsion contains all the significant geometry of the SODE:

T̂ (Γ, Va) = Ha, T̂ (Γ, Ha) = −ΦbaVb,

T̂ (Va, Vb) = 0, T̂ (Va, Hb) = 0,

T̂ (Ha, Hb) = −RcabVc.
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Since Γ is auto-parallel we have AΓ(X) = T̂ (Γ, X) and

AΓ = −PV ◦ LΓPH − PH ◦ LΓPV = −Φ− PH ◦ LΓPV ,

in coordinates

AΓ = −ΦabVa ⊗ ωb +Ha ⊗ ψa,

which gives geometric insight into the Jacobi endomorphism.
The Riemann curvature of ∇̂ is given in the usual way by

R(X,Y )Z := ∇̂X∇̂Y Z − ∇̂Y ∇̂XZ − ∇̂[X,Y ]Z,

with components (see [1] for a full development including Bianchi identities, etcetera)

R(X,Y )Γ = 0, R(Va, Vb)X = 0, R(Γ, Va)X = 0,
R(Γ, Ha)Vb = (−Rcab − Vb(Φca))Vc, R(Γ, Ha)Hb = (−Rcab − Vb(Φca))Hc,

R(Va, Hb)Vc = Va(Γdbc)Vd, R(Va, Hb)Hc = Va(Γdbc)Hd,

R(Ha, Hb)Vc = −Vc(Rdab)Vd, R(Ha, Hb)Hc = −Vc(Rdab)Hd,

where Γabc := Vb(Γac ).
Equipped with the Massa and Pagani connection a very rich geometry of SODEs waits

to be explored. Such a geometry holds the promise of extensions of the qualitative tech-
niques of the geometry of geodesics to a much broader class of differential equations.

6 The inverse problem for semisprays

In this section we will describe a particular thread of mathematical development in the
inverse problem of the calculus of variations. While it has not yet provided a solution to,
for example, the Douglas problem for n = 3, it has provided deep insight into both the
quantitative and qualitative structure of regular second order ordinary differential equa-
tions, uncovering the remarkable universal features shared by them all, features previously
thought to belong only to special classes. This line of research continues to be productive
as the prospect of a solution for n = 3 gets closer.

6.1 History and setting of the problem

The inverse problem for second order equations in normal form has a rather different his-
tory and current state to the problem in covariant form as discussed in section 3.2 and
elsewhere in section 3. This is essentially because in the covariant case we ask if the
system as it stands is variational and in the contravariant case we have to search for a vari-
ational covariant form. So the inverse problem for semisprays involves deciding whether
the solutions of a given system of second-order ordinary differential equations (49), namely

ẍa = fa(t, x, ẋ),

are the solutions of a set of Euler-Lagrange equations

∂2L

∂ẋa∂ẋb
ẍb +

∂2L

∂xb∂ẋa
ẋb +

∂2L

∂t∂ẋa
=

∂L

∂xa
, a, b = 1, . . . , n (61)
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for some Lagrangian function L(t, xb, ẋb).
Because the Euler-Lagrange equations are not generally in normal form, the problem

is to find a so-called (non-degenerate) multiplier matrix gab(t, xc, ẋc) such that

gab(ẍb − f b) ≡
d

dt

(
∂L

∂ẋa

)
− ∂L

∂ẋa
.

As in previous sections we use the notation gab to stress that the multipliers we consider
are regular (non-degenerate).

The most commonly used set of necessary and sufficient conditions for the existence of
the gab are the so-called Helmholtz conditions due to Douglas [30] and put in the following
form by Sarlet [118]:

gab = gba, Γ(gab) = gacΓcb + gbcΓca, gacΦcb = gbcΦca,
∂gab
∂uc

=
∂gac
∂ub

, (62)

where we have replaced ẋ by u and utilised all our notations to date.
These algebraic-differential conditions ultimately require the application of a theory of

integrability in order to determine the existence and uniqueness of their solutions. To date
the integrability theories that have been used are associated with the names of Riquier-
Janet, Cartan-Kähler and Spencer. Of these we will outline only the use of the Cartan-
Kähler theorem in its exterior differential systems manifestation (in section 6.3).

Before proceeding with the mathematical description and analysis, we provide the
reader with some historical perspective into this local inverse problem for second order
ordinary differential equations.

Helmholtz [47] first discussed whether systems of second order ordinary differential
equations are Euler-Lagrange for a first-order Lagrangian (that is, one depending on ve-
locities but not accelerations) in the form presented (the covariant inverse problem), and
found necessary conditions for this to be true. Mayer [99] later proved that the conditions
are also sufficient.

However, in 1886, a year earlier than Helmholtz published his celebrated result, in a
paper that unfortunately remained unknown for years, Sonin [133] found out that one SODE

ẍ− f = 0 (63)

can always be put into the form of an Euler-Lagrange equation by multiplying ẍ− f by a
suitable function g 6= 0. He also characterized the multiplicity of the solution, i.e. provided
a description of all Lagrangians for (63). Now, Sonin’s result can be proved easily using
the Helmholtz conditions, that for one equation (63) reduce to a single partial differential
equation for the unknown function g(t, x, ẋ):

∂g

∂t
+
∂g

∂x
ẋ+ f

∂g

∂ẋ
+ g

∂f

∂ẋ
= 0.

Since g 6= 0, this equation takes the form

∂ ln g
∂t

+
∂ ln g
∂x

ẋ+
∂ ln g
∂ẋ

f +
∂f

∂ẋ
= 0,

that is well-known be solvable; its general solution depends upon a single arbitrary function
of any two specific solutions of the corresponding homogeneous equation. Consequently,
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the most general Lagrangian for (63) depends upon one arbitrary function of two parame-
ters.

Later Hirsch [50] formulated independently, and in a more general setting, the multi-
plier problem, that is, the question of the existence of multiplier functions which convert a
system of second order ordinary differential equations in normal form into Euler-Lagrange
equations. Surprisingly it turned out that a solution to the multiplier problem need not exist
if there is more than one equation. Hirsch gave certain self-adjointness conditions for the
problem but they are not effective in classifying second order equations according to the
existence and uniqueness of the corresponding multipliers.

This multiplier problem was completely solved by Douglas in 1941 [30] for two de-
grees of freedom, that is, a pair of second order equations on the plane. He produced an
exhaustive classification of all such equations in normal form. In each case Douglas iden-
tified all (if any) Lagrangians producing Euler-Lagrange equations whose normal form is
that of the equations in that particular case. His method avoided Hirsch’s self-adjointness
conditions and he produced his own necessary and sufficient algebraic-differential condi-
tions. His approach was to generate a sequence of integrability conditions, solving these
using Riquier-Janet theory. While this approach is singularly effective and forms the basis
of current efforts, it has been particularly difficult to see how to cast it into a form suitable
for higher dimensions.

Interest from the physics community in the non-uniqueness aspects of the inverse prob-
lem provided the next contribution to solving the Helmholtz conditions. Henneaux [48] and
Henneaux and Shepley [49] developed an algorithm for solving the Helmholtz conditions
for any given system of second order equations. In particular, they solved the problem for
spherically symmetric problems in dimension 3. In this fundamental case Henneaux and
Shepley showed that a two-parameter family of Lagrangians produce the same equations
of motion. Startlingly these Lagrangians produced inequivalent quantum mechanical hy-
drogen atoms. Further mathematical aspects of this case were elaborated by Crampin and
Prince [17, 19].)

At around the same time Sarlet [118] showed that the part of the Helmholtz conditions
which ensures the correct time evolution of the multiplier matrix could be replaced by a
possibly infinite sequence of purely algebraic initial conditions. Along with the work of
Henneaux this provided a prototype for geometrising Douglas’s Helmholtz conditions.

Over the next 10 years or so Cantrijn, Cariñena, Crampin, Ibort, Marmo, Prince, Sar-
let, Saunders and Thompson explored the tangent bundle geometry of second order or-
dinary differential equations in general and the Euler-Lagrange equations in particular.
The inverse problem provided central inspiration for their examination of the integrability
theorems of classical mechanics, multi-Lagrangian systems, geodesic first integrals and
equations with symmetry. Using the geometrical approach to second order equations of
Klein and Grifone [41, 42, 56, 57], the Helmholtz conditions for non-autonomous second
order equations on a manifold were reformulated in terms of the corresponding non-linear
connection on its tangent bundle (see section 5.1). This occurred in 1985 after a sequence
of papers [15, 21, 118]. The work of Sarlet [121], and collectively Martı́nez, Cariñena
and Sarlet [95, 96, 97] on derivations along the tangent bundle projection (see section 5.2)
opened the way to the geometrical reformulation of Douglas’s solution of the two-degree
of freedom case. This was achieved in 1993 by Crampin, Sarlet, Martı́nez, Byrnes and
Prince and is reported in [23]. A number of dimension n classes were subsequently solved
([124, 123, 20]). The reader is directed to the review by Prince [110] for more details of
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this program up to the turn of the current century.
Separately Anderson and Thompson [7] applied exterior differential systems theory

to some special cases of the geometrised problem with considerable success. In order to
pursue the EDS approach Aldridge [1] used the Massa and Pagani connection of section
5.3 and recovered all the dimension n results to date along with an overall classification
scheme for this general case. It appears that the inverse problem still holds many accessible
secrets.

6.2 The general problem: geometric formulations

In this section we outline the progress in the geometric formulation and solution of the
inverse problem for semisprays to be found in the work of Aldridge, Cantrijn, Cariñena,
Crampin, Martı́nez, Prince, Sarlet, Thompson and their collaborators. See [1, 3, 14, 15, 19,
20, 21, 23, 118, 124, 127]. In what follows we denote the Cartan form of theorem 3.1 and
equation (17) by θL rather than θλ. A natural starting point is the following proposition
from Goldschmidt and Sternberg, see [37, 136] and compare with proposition 4.2:

Proposition 6.1 IfL is a regular Lagrangian (so that the matrix whose entries are
∂2L

∂ua∂ub
is everywhere nonsingular), then there is a unique vector field Γ, called the Euler-Lagrange
field, on E such that

iΓdθL = 0 and dt(Γ) = 1.

This vector field is a SODE, and the equations satisfied by its integral curves are the Euler-
Lagrange equations for L.

By careful observation of the properties of the Cartan 2-form, dθL, and follow-
ing the work of Klein [56, 57], Grifone [43, 44] and Crampin [15] in the autonomous
case, Crampin, Prince and Thompson [21] give the fundamental geometric version of the
Helmholtz conditions:
Theorem 6.2 (Crampin, Prince & Thompson 1984) Given a SODE Γ, necessary and
sufficient conditions for the existence of a regular Lagrangian, whose Euler-Lagrange field
is Γ, are that there exists Ω ∈

∧2(E) such that

(1) Ω has maximal rank

(2) Ω(V1, V2) = 0, ∀ V1, V2 ∈ V (E)

(3) iΓΩ = 0

(4) dΩ = 0

The above theorem is a “contravariant” version of Theorem 3.2 adapted to semisprays
(i.e. where the assumption on regularity of the corresponding dynamical form ε is added).
Its benefit is a direct construction of the related closed 2-form (the Lepage equivalent of ε)
in terms of the vector field Γ.

The 2-form Ω is modelled on the Cartan 2-form dθL and the necessity of the conditions

in the theorem follows from the fact that dθL =
∂2L

∂ua∂ub
ψa ∧ ωb. The sufficiency of the

conditions means that Ω = gabψ
a ∧ ωb where gab satisfies the Helmholtz conditions (62).
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This appearance of the Helmholtz conditions is rather surprising since the statement of
the theorem seems to entail quite general conditions on the characteristic vector field of
a maximal rank 2-form on an odd-dimensional manifold. It is, however, the fact that the
manifold is an evolution space and the vector field is a SODE that produces the interesting
structure.

The Helmholtz conditions can be made to appear explicitly in the following way. It
is straightforward to show that the only non-zero components of Ω are Ω(Va, Hb) so that
Ω = gabψ

a ∧ ωb for some functions gab on E. The closure conditions dΩ(X,Y, Z) = 0
then produce Helmholtz conditions (the maximal rank condition det(gab) 6= 0 has to be
applied separately).

The simplest way to see how the Helmholtz conditions in Sarlet’s form (62) arise from
theorem 6.2 is to put Ω := gabψ

a ∧ ωb and compute dΩ:

dΩ = (Γ(gab)− gcbΓca − gacΓcb)dt ∧ ψ
a ∧ ωb

+ (Hd(gab)− gcbVa(Γcd))ψ
a ∧ ωb ∧ ωd

+ Vc(gab)ψc ∧ ψa ∧ ωb

+ gabψ
a ∧ ψb ∧ dt

+ gcaΦcbω
a ∧ ωb ∧ dt

+ gcaHb(Γcd)ω
a ∧ ωb ∧ ωd.

The four Helmholtz conditions are

dΩ(Γ, Va, Vb) = 0, dΩ(Γ, Va, Hb) = 0,
dΩ(Γ, Ha, Hb) = 0, dΩ(Ha, Vb, Vc) = 0.

The remaining conditions arising from dΩ = 0, namely

dΩ(Ha, Hb, Vc) = 0 and dΩ(Ha, Hb, Hc) = 0,

can be shown to be derivable from the first four (notice that this last condition is void in
dimension 2).

The further development of this geometric line of enquiry relied on two-fold inspiration
from Douglas’s work. Firstly, Douglas generates hierarchies of integrability conditions
on the basic Helmholtz conditions by repeated use of the dynamical covariant derivative.
Secondly, he utilises the various possible Jordan normal forms of Φ. By combining these
two devices he creates his famous exhaustive classification scheme for the two degrees of
freedom case. In 1992 Anderson and Thompson [7] used Douglas’s hierarchies and the
basic differential geometry of SODEs on the evolution space (outlined in section 5.1) to
construct an exterior differential systems approach to the inverse problem. Amongst other
things they completely solved the case where Φ is a multiple of the identity for arbitrary
n. However, they did not pursue other possible Jordan normal forms. In the 1994 paper
[23], Crampin, Sarlet, Martı́nez, Byrnes and Prince give a geometric outline of Douglas’s
two-fold approach and point the way forward for a study of the higher dimensional cases.
This 1994 formulation was based upon the calculus of derivations along the tangent bundle
projection, an approach which does not allow direct access to EDS techniques. Nonetheless
the tangent bundle projection calculus was subsequently pursued in [20, 124, 123] and a
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number of important cases for arbitrary n were solved in the Riquier-Janet framework.
Finally, Douglas’s entire analysis was geometrised in this sense by Sarlet, Thompson and
Prince in [127]. We will return to the EDS study of the inverse problem and the role of the
Massa and Pagani connection in the next two sections.

Before we turn to a discussion of the integrability of the Helmholtz conditions we
will give the formulation of theorem 6.2 in terms of the calculus along the tangent bundle
projection described in section 5.2. The observation we made after theorem 6.2 about
the simple structure of dθL in the adapted co-frame means that the 2-form Ω on E of
theorem 6.2 which we seek is completely determined by a symmetric nondegenerate type
(0,2) tensor along π, of the form g = gabω

a ⊗ ωb (i.e. g vanishes on T). To be precise, Ω
is the so-called Kähler lift of g, Ω = gK , which vanishes on Γ and satisfies

gK(XV , Y V ) = gK(XH , Y H) = 0, gK(XV , Y H) = g(X,Y ).

In this formulation of the conditions (62) then reads

∇g = 0, g(ΦX,Y ) = g(X,ΦY ), D̂V
Xg(Y, Z) = D̂V

Y g(X,Z). (64)

Loosely speaking the integrability conditions on (64) are generated by repeated differ-
entiation by∇, and by application of the commutators of D̂V , D̂H and D̂Γ = ∇.

Repeated differentiation with∇ produces the two hierarchies

g(∇rΦ(X), Y ) = g(∇rΦ(Y ), X) r = 1, 2, 3, . . . (65)

and ∑
(XY Z)

g(∇rR(X,Y ), Z) = 0 r = 0, 1, 2, . . . , (66)

where the sum is over even permutations of X,Y, Z and where R is a type (1, 2) tensor-
field along π1,0, which is a component of the curvature of the connection D̂, and is related
to Φ by D̂V

XΦ(Y )− D̂V
Y Φ(X) = 3R(X,Y ) (cf equation (57)).

Application of the commutators produces the second order conditions

D̂V
U D̂

H
Z g(Y,X) + g(θ(Y,X)Z,U)

= D̂V
Z D̂

H
U g(Y,X) + g(Z, θ(Y,X)U),

where θ is a type (1, 3) tensor field along π1,0 (here written as a type (1, 1) tensor valued
twice covariant tensor), which is another part of the curvature of the connection D̂, and
which is symmetric in all of its arguments as a consequence of the first Bianchi identities.
There are two remarks which should be made about these integrability conditions. The
first is that there is some question about the claim in [124, 123] that they are complete (that
is, sufficient as well as necessary). Aldridge [1] explicitly argues that there are others, and
Grifone and Muzsnay [43, 44], using Spencer theory and a different starting point produce
what appear to be many more independent conditions. The second is that Thompson [139,
1] has shown that there is a termination theorem for both the above hierarchies. That is,
when, for a given r, a condition adds no new algebraic information about g, no further
information is available from the hierarchy.

In [23] it is shown the first broad classification of Douglas in [30] is by the linear
dependence or independence of Φ and its ∇ derivatives, as follows.
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Case I: Φ is a multiple of the identity tensor I .

Case II: ∇Φ is a linear combination of Φ and I .

Case III: ∇2Φ is a linear combination of∇Φ, Φ and I .

Case IV: ∇2Φ, ∇Φ, Φ and I are linearly independent.

Further subcases arise according to the diagonalisability or Φ and the integrability of
the corresponding eigenspaces. Unfortunately, a classification in the n degrees of freedom
case does not arise so easily, but a number of important cases do appear, for example
when Φ is a multiple of the identity and when Φ is diagonalisable with distinct eigenvalues
and each of the corresponding two dimensional (on R×TM ) eigenspaces is Frobenius
integrable. These cases are shown to be variational in [124] and [20] respectively.

While this geometric formulation along the projection is satisfying and lends itself to an
analysis using the Jordan normal forms of Φ, it simultaneously suffers from its reliance on
Riquier-Janet theory and its incompatibility with EDS. Using the Massa & Pagani connec-
tion and the shape map, AΓ, Aldridge [1] produced a corresponding geometric formulation
of theorem 6.2 on R×TM which is amenable to EDS:
Theorem 6.3 (Aldridge 2003)
Given a SODE Γ, necessary and sufficient conditions for the existence of a Lagrangian,
whose Euler-Lagrange field is Γ, are that there exists Ω ∈

∧2(E) :

1. Ω has maximal rank.

2. Ω(V1, V2) = 0 for all vertical V1, V2,

3. Ω(AΓ(X), Y ) = Ω(AΓ(Y ), X),

4. ∇̂ΓΩ = 0,

5. (∇̂ZV Ω)(XV , Y H) = (∇̂XV Ω)(ZV , Y H).

Aldridge also produces the following attractive result whose proof relies on equation
(60).
Proposition 6.4 The algebraic conditions arising from dΩ = 0 are all consequences of

Ω(T̂ (X,Y ), Z) + Ω(T̂ (Z,X), Y ) + Ω(T̂ (Y, Z), X) = 0. (67)

In this picture the two hierarchies of conditions (65),(66) become

Ω((∇̂
r

ΓAΓ)XH , Y H)− Ω((∇̂
r

ΓAΓ)Y H , XH) = 0,∑
(XY Z)

Ω((∇̂
r

ΓR)(XH , Y H), ZH) = 0, r = 0, 1, . . . .

Following the work of Aldridge, there has been renewed interest in applying EDS
theory to the inverse problem, see [3]. In order to do this we return to the evolution space
R×TM where we can do exterior calculus. The main thrust is to pick up where Anderson
and Thompson left off and to use the Jordan normal forms of Φ. As we will see in section
6.4, the EDS process produces the integrability conditions in a satisfactory manner and as
a bonus gives us a handle on the maximal rank condition.

The standard EDS reference is the book [10] and for the inverse problem Anderson and
Thompson’s memoir [7]. We will give a brief synopsis of the method in this context.
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6.3 EDS and the inverse problem: outline

The EDS process for finding the two forms of the inverse problem involves three steps:
finding a differential ideal, creating an equivalent linear Pfaffian system, and lastly using
the Cartan - Kähler theorem to determine the final generality of the solution.

The task is to find all the closed, maximal rank two forms on E of the form

gabψ
a ∧ ωb.

So let Σ be the submodule of two forms span{ψa ∧ ωb}, and let {Ωk} be a subset of two
forms in Σ. Initially we take {Ωk : k = 1, . . . , n2} to be some basis for Σ. Then the inverse
problem becomes that of finding the submodule of closed, maximal rank two forms in Σ,
i.e. finding functions rk such that d(rkΩk) = 0. Note that {Ωk} is a working subset of Σ
which will shrink as we progress.

The first EDS step is to find the maximal submodule, Σ′, of Σ that generates a differ-
ential ideal (that is, an ideal closed under exterior differentiation). We will find (or not) our
closed two forms in this ideal.

We use the following recursive process: starting with the submodule Σ0 := Σ and a
basis {Ωk}, find the submodule Σ1 ⊆ Σ0 such that dΩ ∈ 〈Σ0〉 for all Ω ∈ Σ1. That is, find
the functions rk on R×TM such that d(rkΩk) ∈ 〈Σ0〉 and hence rkdΩk ∈ 〈Σ0〉. This is
an algebraic problem.

Having found these rk and hence Σ1, we check if Σ1 = Σ0 and so is already a dif-
ferential ideal. If not, we iterate the process, finding the submodule Σ2 ⊂ Σ1 ⊂ Σ0 and
so on until at some step, a differential ideal is found or the empty set is reached. If at any
point during this process it is not possible to create a maximal rank two form, the inverse
problem has no solution. That is, if {Ω1, ...,Ωd} is a basis for Σi, then ∧n(

∑d
k=1 Ωk)

must be non-zero at each step.
Equipped with Σ′, the next step in the EDS process is to express the problem of finding

the closed two forms in Σ′ as a Pfaffian system. Let the differential ideal 〈Σ′〉 be spanned
by the set {Ωk : k = 1, . . . , d}, and calculate

dΩk = ξkh ∧ Ωh

where the ξij’s are now known one forms.
Since dΩ = ξj ∧Ωj for all Ω ∈ Σ′, and we are looking for those Ω’s such that dΩ = 0,

we find all possible d-tuples of one forms (ρAk ) = (ρA1 , ..., ρ
A
d ) such that ρAk ∧ Ωk = 0,

(A = 1, . . . , e say). Then if

0 = d(rkΩk) = drk ∧ Ωk + rkξ
k
h ∧ Ωh = (drk + rhξ

h
k) ∧ Ωk

we must find e functions pA on R×TM with

drk + rhξ
h
k = pAρ

A
k . (68)

At this point, the problem becomes that of solving (68) for rk in terms of the unknown
function pA, and secondly, finding the restrictions on the choice of these pA’s. Having
found the rk’s we can easily construct the gab, and hence the Lagrangians, or simply take
the Cartan two form(s) Ω = rkΩk.
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The general method for finding the solution for this (rk, pA)-problem in EDS is to
define an extended manifold N = E ⊗ Rd ⊗ Re with co-ordinates {xa, rk, pA}, a ∈
{1, ..., 2n}, k ∈ {1, ..., d}, A ∈ {1, ..., e} and look for 2n+ 1 dimensional manifolds that
are sections over E and on which the one forms

σk := drk + rhξ
h
k + pAρ

A
k

are zero.
In the remainder of this section, we will give a brief outline of the process of finding

the generality of the solutions to this last problem, see [7] or [10] for details.
To find these manifolds, σk are considered constraint forms for a distribution on N

whose integral submanifolds we want. To find these integral manifolds, we choose a basis
of forms on N , {αa, σk, πA} where {αa} are a pulled back basis for E, πA = dpA, and
σk as defined above completes the basis.

The condition that we want sections over E is that

α1 ∧ ... ∧ α2n+1

be non-zero on the 2n+ 1 dimensional integral manifolds given by the constraint forms.
According to [7], to determine the existence and generality of the solutions to (68), we

calculate the exterior derivatives dσk modulo the ideal generated by the forms σk.

dσk ≡ π1
k ∧ αi + tijk αi ∧ αj mod span{σk} (69)

where πik are some linear combination of dpA. As dσk expands with no dpA ∧ dpB terms,
the system is quasi-linear.

Because we want α1 ∧ ... ∧ α2n+1 6= 0 on the integral manifolds, we need to absorb
all the αi ∧ αj terms into the πik ∧ αi terms. This is done by changing the basis forms
πA to π̄A = πA − ljAαj . If any of the αi ∧ αj terms can not be absorbed, then asking
for dσk = 0 mod span{σl} is incompatible with the independence condition and therefore
there is no solution.

Once the αi ∧ αj terms have been removed, the next step is to create the tableau Π
shown below from which the Cartan characters, s1, s2, ..., sk, can be calculated allowing
us to apply the Cartan test for involution.

Π =

α1 α2 . . . αn

σ1 π1
1 π2

1 . . . πn1

σ2 π1
2 π2

2 . . . πn2
...

...
...

...
σd π1

d π2
d . . . πnd

The basis {αi} is chosen so that the number, s1, of independent one-forms in column 1
of Π is maximum, the number, s2, of independent one forms in column 2 also independent
of those in column 1 is maximum with s2 ≤ s1, and so on.

Once the Cartan characters are found, the Cartan test for involution is performed as
follows:
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Let t denote the number of ways in which the forms πik can be modified by π̄A =
πA − ljAαj , without changing (69). The differential system (68) is in involution if

t = s1 + 2s2 + 3s3 + ...+ ksk.

If the Cartan test fails, then it is necessary to prolong the differential system by differenti-
ating the original equations to obtain a new differential system on J1N , the first jet bundle
of local sections of N over M , and then begin the process again. (See [10] for details, but
to the best of our knowledge this failure has not been observed in the inverse problem.)

Once a series of Cartan characters is found that passes the Cartan test with last non-zero
character sl, then the general solution to the differential system will depend on sl arbitrary
functions of l variables.

6.4 EDS and the inverse problem: results

We give a brief outline of the results of Aldridge [1] and Aldridge et al [3]. Aldridge’s
starting point is theorem 6.3 which he uses to produce the hierarchies given in section 6.2.
Working on R×TM he produces further, apparently independent conditions, in contrast
to the approach of [124]. Turning to the EDS results, Aldridge shows that each of the
differential ideal steps entails a corresponding level in the two hierarchies. For example,
Theorem 6.5 The first differential ideal step.

Let Σ0 := span{Ωk} = span{ψa ∧ ωb}; if Σ1 is the submodule of Σ0 that satisfies
the differential ideal condition: dΩ ∈ 〈Σ0〉 ∀Ω ∈ Σ1, then all Ω ∈ Σ1 satisfy the standard
algebraic Helmholtz conditions:

Ω(XV , Y H) = Ω(Y V , XH),

Ω(AΓ(XH), Y H) = Ω(AΓ(Y H), XH),∑
(XY Z)

Ω(R(XH , Y H), ZH) = 0.

However, Aldridge’s additional conditions come in to play at further differential ideal
steps, and he falls short of identifying all the algebraic conditions produced by the differ-
ential ideal process. It is still not clear whether any further algebraic conditions arise from
the later steps in the EDS process.

Using the EDS algorithm Aldridge alone and with his collaborators recover the results
of [7, 124, 20] in a far more efficient manner than in the original work, often improving
on the strength of the statements. For example, the statement that Σ0 forms a differential
ideal if and only if Φ is a multiple of the identity, is proved in just a few lines in [3],
whereas in [7], only the reverse statement is shown. Aldridge gives a number of examples
of the application of the EDS process to the cases of Douglas with a clear indication of the
higher dimensional approach. In particular, he suggests that the classification be based first
on the Jordan normal form of Φ and then on stage at which the differential ideal process
terminates. This idea is pursued in [3].

There is a natural extension of this approach to the class of SODEs for which no La-
grangian exists. Suppose that the differential ideal process terminates with a submodule
Σk whose basis does not permit a non-degenerate two form in Σk. For a given n such
submodules are denumerable. For example, for n = 2 the final differential ideal could
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be generated by {ψ1 ∧ ω1}, {ψ2 ∧ ω2}, {ψ1 ∧ ω2 + ψ1 ∧ ω2}, and so on. The first two
of these clearly contain no non-degenerate two forms and so cannot lead to variationality.
Using the differential ideal condition on such differential ideals leads directly back to the
classes of SODEs responsible. In this way we can list those classes of equations which are
not variational and for which the EDS process terminates at the differential ideal step. At
the moment we do not have non-existence examples which are not in this class.

In our view the adoption of EDS approach to the inverse problem represents a return to
mainstream mathematics for this long-lived and productive area of enquiry.

6.5 The metrisability of connections

In the context of the inverse problem and differential geometry the following question is a
natural one: suppose that we have a linear symmetric connection on M with autoparallel
equations

ẍa + Γabcẋ
bẋc = 0, (70)

does there exist a multiplier gab(xc) which makes this system variational, and, of course,
is g a metric for which Γabc is the Levi-Civita connection?

So let’s assume a solution, gab, depending only on (xa), to the Helmholtz conditions for
(70). Notice that the last of equations (62) is automatically satisfied and we are assuming
that g is symmetric.

Using the constructs of section 5.1 we find that

Γab = Γabcu
c, Φab = Radcbu

cud

where Radcb are the components of the Riemann curvature of the connection. The
Helmholtz condition gacΦcb = gbcΦca gives

gfaR
a
(cd)b = gbaR

a
(cd)f , (71)

and the condition Γ(gab) = gacΓcb+gbcΓca,which along with the symmetry of Γabc, gives

Γabc =
1
2
gda
(
∂gcd
∂xb

+
∂gbd
∂xc

− ∂gbc
∂xd

)
.

So if g exists Γabc is its Levi-Civita connection (and (71) is just Rabcd = Rcdab). The
existence question is in general trickier, but for n = 2 it’s straightforward because of the
relation between the Riemann and Ricci tensors:

Racdb = δabRcd − δ
a
dRcb,

(recall that Rab := Rcabc and R := Raa). We find that if g exists then

Rab =
1
2
Rgab,

meaning that sufficient conditions for the existence of g are that 2
Rab
R

should satisfy the
Helmholtz conditions (62).

There is a corresponding question in Finsler geometry whose solution is not currently
available.
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6.6 The Grifone-Muzsnay approach

There is another approach to the inverse problem currently in use and due to Grifone and
Muzsnay ([43, 44]). So far it only applies to autonomous equations and so it would take us
too far out of our way to give a self-contained account. Such an account can, however, be
found in section 3 of Muzsnay and Thompson’s paper [104]. The basic idea is to study the
multiplier and the obstructions to variationality through the Euler-Lagrange operator P1.
The integrability of this operator is examined using Spencer theory. Given an autonomous
SODE and a function L : TM → R, this operator is defined as follows:
P1 : L 7→ ωL ∈

∧1(TM) with

ωL = iΓΩL + dL∆L− dL

where, in this context, ΩL := d(dL ◦ S) = d( ∂L∂ẋa dx
a), Γ := ẋa ∂

∂xa + fa ∂
∂ẋa , S :=

∂
∂ẋa ⊗ dx

a, and ∆ is the Liouville field ∆ := ẋa ∂
∂ẋa .

It is straightforward to show that

ωL =
(

Γ
(
∂L

∂ẋa

)
− ∂L

∂xa

)
dxa,

so we must look for L which make ωL ≡ 0, and to this end the integrability of P1 must be
studied.

While this study has not solved any new classes of inverse problems in the sense of
Douglas, there is an intriguing and as yet unresolved conflict with the along-the-projection
approach to the integrability conditions, with the Spencer approach apparently producing
many more independent conditions.

The Grifone-Muzsnay approach has been used the analysis of a certain inverse problem
on Lie groups. In a number of recent papers, Thompson, Muzsnay and others [140, 104,
116] examine the variationality of the autoparallel flow of a certain canonical connection
on a Lie group. This inverse problem provides a rich source of examples of both fixed and
arbitrary dimension. The zero connection ∇ on a Lie group G is the canonical symmetric
connection defined by ∇XY = 1

2 [X,Y ], ∀X,Y ∈ g. Using both direct attacks on the
Helmholtz conditions and the Spencer theory analysis of the Euler-Lagrange operator the
authors produce a considerable variety of results. For example, ∇ is variational for every
two-step nilpotent Lie group and for every Lie of dimension up to three. There are detailed
studies of the affine and Euclidean groups of the plane. The position of these examples in
any general classification of the inverse problem is not well understood.

6.7 Computational challenges and future impact

There are two challenges for symbolic computation inherent in the inverse problem. The
first is that of solving the Helmholtz conditions for a specific SODE or class of SODEs
including the consideration of global issues. The second is that of making progress with
the Douglas type solution in fixed or arbitrary dimension.

The first of these problems is straightforward: the major symbolic computation tools
have linear PDE solvers which can handle mixed algebraic and differential conditions like
the Helmholtz conditions. The n = 3 case presents no significant difficulties for almost any
type of smooth equations. For example, dimsym [132], the REDUCE differential equa-
tion symmetry package, can easily handle the spherically symmetric potential problem,
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reporting all representatives in this class of potentials and all obstructions to the globality
of solutions (see also [2]). No special differential geometry needs to be implemented. In-
deed, the ease with which concrete examples are currently handled is rather dispiriting to
the theorist.

The second challenge is far more interesting. There is no reason why, given the current
state of computer algebra implementations of EDS, that for a given n, a user should not
be able to specify the Jordan normal form of Φ and various related information on the
integrability of the eigenspaces and have the full EDS algorithm applied automatically.
Further, there is a real possibility that the nonexistence classes generated by the differential
ideal process (see section 6.4) can be elaborated for arbitrary n. Given the significant
manual computational complexity of these tasks, symbolic computation is probably the
only way that we will see an exhaustive solution of the inverse problem for n = 3.

The developments in the inverse problem described in these pages have yet to have a
significant effect outside mathematics and physics. However, the depth of our theoretical
understanding and our current computational tools are surely ready to have an impact in
areas such as molecular quantum mechanics where a “designer Lagrangian” is the starting
point for a molecular model. And in physics itself there is still the long standing open ques-
tion concerning the inequivalent quantum mechanics arising from multiple Lagrangians for
the classical equations of motion. The idea that the symmetries that come along with the
multiple Lagrangians may provide a quotient space containing the only “right” Lagrangian
is still unexplored. The solution to this problem will almost certainly have an impact on
the study of the inverse problem itself.
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[80] O. Krupková: Symmetries and first integrals of time-dependent higher-order con-
strained systems J. Geom. Phys. 18 (1996) 38–58
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[84] O. Krupková: Differential systems in higher-order mechanics In: Proceedings of
the Seminar on Differential Geometry, D. Krupka, Ed. (Mathematical Publications
2, Silesian University, Opava, 2000) 87–130
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1 Introduction

Starting from the early eighties, there has been an increasing interest in noncommutative
(and quantum) geometry both in mathematics and in mathematical physics, with motiva-
tions going back to quantum mechanics where classical observables such as position and
momenta do not commute any longer. The aims are to carry geometrical concepts over
to a new class of spaces whose algebras of functions are not commutative in general and
to use them in a variety of applications. In particular, it has emerged that such noncom-
mutative spaces retain a rich topology and geometry expressed first of all in K-theory and
K-homology, and in a variety of finer aspects of the theory. Developments have occurred
in several different fields of both pure mathematics and mathematical physics. In mathe-
matics these include fruitful interactions with analysis, number theory, category theory and
representation theory. In mathematical physics, noncommutative geometry has been used
for the quantum Hall effect, for applications to the standard model in particle physics and
to renormalization in quantum field theory, to models of spacetimes with noncommuting
coordinates, to noncommutative gauge theories and string theory.

By now the know territory is so vast and new regions are discovered at such a high
speed that the number of relevant papers is overwhelming. It is impossible to even think
of covering ‘everything’. In this report we attempt to a friendly introduction to some as-
pects of noncommutative geometry and of its applications and we confine ourself mainly to

8 B.V. .
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noncommutative differential geometry as originated from the work of A. Connes.The com-
mutative Gel’fand-Naimark theorem states that thereis a complete equivalence between the
category of (locally) compact Hausdorff spaces and(proper and) continuous maps and the
category of commutative (not necessarily) unitalC∗-algebras and ∗-homomorphisms. Any
commutativeC∗-algebra can be realized as the C∗-algebra of complex valued functions on
a(locally) compact Hausdorff space. A noncommutativeC∗-algebra will then be thought
of as the algebra of continuous functions on some‘virtual noncommutative space’. The
attention will be switched from spaces, which ingeneral do not even exist ‘concretely’, to
algebras of functions ‘defined on them’. Moregeneral suitable ∗-algebras will play the role
of smooth functions.Noncommutative spin geometry is based on the notion of a spectral
triple (A,H, D) [16, 17, 18]. Here A is a noncommutative ∗-algebra,H is a Hilbert space
on which A is realized faithfully as an algebra of bounded operators, and D is an operator
on H withsuitable properties and which contains (almost all) the ‘geometric’ information.
In fact, there is also a real structure given via an antilinear isometry J on H and suitable
compatibility conditions. With any closed n-dimensional Riemannian spin manifold M
there is associated acanonical spectral triple with A = C∞(M), the algebra of complex
valuedsmooth functions on M ; H = L2(M,S), the Hilbert space of square integrablesec-
tions of the irreducible spinor bundle over M ;and D the Dirac operator associated with
the Levi-Civita connection of the metric (and J related to the charge conjugation operator).
Interesting examples of noncommutative manifolds are provided by the noncommutative
torus [12, 60] and the toric noncommutative manifolds of [21].

The recent constructions of spectral triples, with the consequent analysis of the corre-
sponding spectral geometry, for the manifold of the quantum group SUq(2) in [29, 30],
for its quantum homogeneous spaces (the spheres of Podleś [57]) in [28, 27], and for a
quantum Euclidean four-sphere in [26], have provided a number of interesting examples at
the frontiers between noncommutative geometry and quantum groups theory. A common
feature of these examples is that their geometry is isospectral to the undeformed one and
the dimension (and the dimension spectrum) is the same as in the commutative limit. Fur-
thermore, they show that in order to have a real spectral triple one is forced to weaken the
original requirements that the real structure should satisfy, a phenomenon first observed in
[28] for the equatorial Podleś sphere.

Additional examples of (not necessarily isospectral) noncommutative geometry on
quantum spaces have been constructed on quantum two spheres [31, 25, 56, 66] on the
quantum group SUq(2) [10, 19] as well as on quantum flag manifolds [46].

Yang-Mills and gravity theories stem from the notion of connection (gauge orlinear) on
vector bundles. The possibility of extending these notions to therealm of noncommutative
geometry relies on another classical duality. The Serre-Swan theorem [69, 16] states that
there is a complete equivalence between the category of (smooth) vector bundles over a
(smooth) compact manifold and bundle maps and the category of projective modules of
finite type over commutative algebras and module morphisms. The space Γ(E,M) of
(smooth) sections of a vector bundle E over a compact manifold M is a projective module
of finite type over the algebraC(M) of (smooth) functions overM and any finite projective
C(M)-module is realized as the module of sections of some bundle over M . With a
noncommutative algebra A as the starting ingredient the (analogueof) vector bundles will
be projective modules of finite type overA. One thendevelops a full theory of connections
which culminates in the definition of a Yang-Mills action. Needless to say, starting with the
canonical triple associated with an ordinary manifold one recovers usual gauge theories.
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Noncommutative Yang-Mills theory onnoncommutative tori have been constructed in [24].
On the toric noncommutative spheres of [21] similar gauge theories have been recently
constructed in [48, 49] with a crucial use of twisted symmetries.

Useful introduction to several aspects on noncommutative geometry are available
in [47, 53, 39, 54, 43, 72]. A recent bird view of the field which shows applications
ranging from number theory to physics is [22].

2 Algebras instead of spaces

The well known classical duality between ordinary spaces and (suitable) commutative al-
gebras is expressed by the Gel’fand-Naimark theorem: the algebra of functions on a Haus-
dorff topological space is the only possible kind of commutative C∗-algebra.
Example 2.1 Let C0(M) be the C∗-algebra of complex valued continuous functions on a
locally compact Hausdorff topological space M which vanish at infinity. The (commuta-
tive) product is pointwise multiplication, the ∗ operation is just complex conjugation and
the norm is the supremum norm,

‖f‖∞ = sup
x∈M
|f(x)| .

This algebra has no unit. For a compact M the algebra C0(M) has a unit (the constant
function f = 1) and it coincides with the algebra C(M) of all continuous functions on
M . One can prove that C0(M) (and a fortiori C(M) if M is compact) is complete in the
supremum norm. Indeed, it is the closure in the above norm of the algebra of functions
with compact support [65].

Given any commutative C∗-algebra C one can reconstruct a Hausdorff topological
space M such that C is isometrically ∗-isomorphic to the algebra of (complex valued)
continuous functions C0(M) [32, 34]. The space M is the space of characters of C. A
character of the commutative C∗-algebra C is a one dimensional irreducible represen-
tation, that is, a (non-zero) ∗-linear functional x : C → C which is multiplicative, i.e.
x(fg) = x(f)x(g) for any f, g ∈ C. The space Ĉ of all characters is called the structure
space (or Gel’fand spectrum) of C. It is made into a topological space, called the Gel’fand
space of C, by endowing it with the Gel’fand topology, i.e. the topology of pointwise con-
vergence on C. In such a topology, a sequence {xn} of elements of Ĉ converges to x ∈ Ĉ
if and only if for any g ∈ C, the sequence {xn(g)} converges to x(g) in the topology of C.
It turns out that Ĉ is a compact Hausdorff space if the algebra C has a unit, otherwise it is
only locally compact. If f ∈ C, its Gel’fand transform f̂ : Ĉ → C is the function on Ĉ
given by

f̂(x) = x(f) , ∀ x ∈ Ĉ ,

which is clearly continuous. We thus get the interpretation of elements in C as C-valued
continuous functions on Ĉ. The Gel’fand-Naimark theorem states that all continuous func-
tions on Ĉ are of the form above for some f ∈ C. In fact, the Gel’fand transform f → f̂ is
an isometric ∗-isomorphism of C onto C(Ĉ); isometric meaning that ‖f̂‖∞ = ‖f‖, for any
f ∈ C, with ‖ · ‖∞ the supremum norm on C(Ĉ) as in Ex. 2.1.
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Viceversa, if M is a (locally) compact topological space the spaces Ĉ0(M) and M
can be identified both setwise and topologically. Therefore, there is a one-to-one corre-
spondence between the ∗-isomorphism classes of commutative C∗-algebras and the home-
omorphism classes of locally compact Hausdorff spaces. It is a complete duality between
the category of (locally) compact Hausdorff spaces and (proper and) continuous maps and
the category of commutative (not necessarily) unital C∗-algebras and ∗-homomorphisms.

In fact, if M is a (compact) differentiable manifold, one would like to reconstruct it
from the algebra C∞(M) of smooth functions which is only a Frèchet algebra, although
it is dense in the C∗-algebra C(M) of continuous functions. However, all characters of
C∞(M) are evaluations at points of M and any such a character extends to a character of
C(M). Thus, the Frèchet algebra C∞(M) does select M in the sense that two manifolds
are diffeomorphic if and only if the corresponding algebras of differentiable functions are
isomorphic. However, it is not yet known how to algebraically characterize algebras which
are isomorphic to Frèchet algebras of smooth functions (see also [71]).

The above topological reconstruction scheme cannot be directly generalized to a non-
commutative C∗-algebra A. In this case, there is more than one candidate for the ana-
logue of the topological space M . One is the structure space Â, the space of all unitary
equivalence classes of irreducible ∗-representations with the regional topology. A second
possibility is the primitive spectrum Prim(A) of A, the space of kernels of irreducible ∗-
representations with the Jacobson topology. While for a commutative C∗-algebra these
spaces agree, this is no longer true for a general C∗-algebra A, not even setwise. For
instance, Â may be very complicate while Prim(A) consisting of a single point.

A very fruitful way to generalize the duality between commutative algebras and spaces
is to associate noncommutative algebras to quotient spaces. There are plenty of examples,
notably leaf spaces of foliations, for which this association gives highly nontrivial algebras
(see for instance [22]). The prototype example of quotient space in which this fact is clearly
illustrated is the space of leaves of the foliation associated with the irrational rotations on
an ordinary torus, and the resulting space is the noncommutative torus which plays a key
role in several instances (see [62] for a thorough survey).

3 Modules as bundles

The algebraic analogue of vector bundles has its origin in a second classical duality: a
vector bundle E → M over a manifold M is completely characterized by the space
E = Γ(E,M) of its smooth sections. Since the algebra acts on the sections, the space
of sections can be thought of as a (right) module over the algebra C∞(M) of smooth
functions over M . Indeed by the Serre-Swan theorem [69, 16], locally trivial, finite-rank
complex vector bundles over a compact Hausdorff space M correspond canonically to
finite projective modules over the algebra A = C∞(M).

Let A be an algebra over C. A vector space E over C is a right module over A if it
carries a right representation of A:

E × A 3 (η, a) 7→ ηa ∈ E ,
η(ab) = (ηa)b , η(a+ b) = ηa+ ηb , (η + ξ)a = ηa+ ξa ,
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for any η, ξ ∈ E and a, b ∈ A . A left module is defined in a similar way. A bimodule over
the algebra A is a vector space E which carries both a left and a right A-module structure
and the two structures are required to be compatible, namely

(aη)b = a(ηb) , ∀ η ∈ E , a, b ∈ A .

Any right (respectively left) A-module E can be regarded as a left (respectively right)
module over the opposite algebraAo by setting aoη = ηa (respectively aη = ηao), for any
η ∈ E , a ∈ A. Any A-bimodule E can be regarded as a right module over the enveloping
algebra Ae := A ⊗ Aoby setting η(a ⊗ bo) = bηa, for any η ∈ E , a ∈ A, bo ∈ Ao. One
can also regard E as a left Ae-module by setting (a ⊗ bo)η = aηb, for any η ∈ E , a ∈
A, bo ∈ Ao.

A family (en) is a generating family for the right module E if any element of E can be
written (possibly in more than one way) as a finite combination

∑
n enan, with an ∈ A.

The family (en) is free if it is made of linearly independent elements (over A), and it is
a basis for the module E if it is a free generating family, so that any η ∈ E can be written
uniquely as a combination

∑
n enan, with an ∈ A. A module is called free if it admits a

basis. A module is said to be of finite type if it is finitely generated, namely if it admits a
generating family of finite cardinality.

Consider the free module CN ⊗ A := AN . Any element η ∈ AN can be thought
of as an N -dimensional vector with entries in A and can be written uniquely as a linear
combination η =

∑N
j=1 ejaj , with aj ∈ A and the basis {ej , j = 1, . . . , N} being

identified with the canonical basis of CN . This module is both free and of finite type. A
general free module (of finite type) might admit bases of different cardinality and so it
does not make sense to talk of dimension. If the free module is such that any two bases
have the same cardinality (this is, for instance, the case if A is commutative [6]), the latter
is called the dimension of the module. However, if the module E is of finite type there
is always an integer N and a (module) surjection ρ : AN → E . Then one has a basis
{εj , j = 1, . . . , N} for E which is the image of the free basis of AN , εj = ρ(ej). In
general one cannot solve the constraints among the basis elements so as to get a free basis.

3.1 Projective modules of finite type

By the Serre-Swan theorem, the particular kind of modules which correspond to vector
bundles are not only of finite type but also projective.
Definition 3.1 A rightA-module E is projective if it is a direct summand in a free module,
that is there exists a free module F and a module E ′ (which is then projective as well) such
that

F = E ⊕ E ′ .

An equivalent and useful definition of projective modules is that given a surjective homo-
morphism ρ :M→N of right A-modules, any homomorphism λ : E → N can be lifted
to a homomorphism λ̃ : E → M such that ρ ◦ λ̃ = λ. Then, if the module E is both
projective and of finite type with surjection ρ : AN → E , there exists a lift λ̃ : E → AN
such that ρ ◦ λ̃ = idE . We can then construct an idempotent e ∈ EndAAN ' MN (A),
MN (A) being the algebra of N ×N matrices with entries in A, given by

e = λ̃ ◦ ρ .
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Indeed, e2 = λ̃ ◦ ρ ◦ λ̃ ◦ ρ = λ̃ ◦ ρ = e. The idempotent e allows one to decompose the
free module AN as a direct sum of submodules,

AN = eAN ⊕ (I− e)AN ,

and in this way ρ and λ̃ are isomorphisms (inverses of each other) between E and eAN . The
module E is then projective of finite type over A if and only if there exits an idempotent
e ∈ MN (A), e2 = e , such that E = eAN . We shall use the term finite projective
to mean projective of finite type. The crucial link between finite projective modules and
vector bundles is provided by the Serre-Swan theorem.
Theorem 3.1 Let M be a compact finite dimensional manifold. Any C∞(M)-module E is
isomorphic to the module Γ(E,M) of smooth sections of a bundle E → M if and only if
Γ(E,M) is finite projective.

This theorem was first established for the continuous category, i.e. for continuous func-
tions and sections in [69], and extended to the smooth case in [16] (see also [39, 47]). It
says that with A = C∞(M), one can find an integer N and an idempotent p ∈ MN (A)
such that the module Γ(E,M) is written as Γ(E,M) = pAN .

4 Homology and cohomology

We shall take A to be a generic associative algebra over C with unit I.

4.1 Differential calculi

Given the algebra A, let Γ be a bimodule over A, and let d : A → Γ be an additive map.
We say that the pair (Γ,d) is a first order differential calculus over A if it happens that

(1) there is a Leibniz rule:

d(ab) = (da)b+ adb , ∀ a, b ∈ A ;

(2) any element ω ∈ Γ is of the form,

ω =
∑
i

aidbi , ai, bi ∈ A .

From the Leibniz rule it follows that d(I) = 0 but a generic element of C need not be
killed by d. For simplicity one asks that dC = 0, which is equivalent to the additional
requirement that d : A → Γ is a linear map. Any two first order differential calculi (Γ,d)
and (Γ′,d′) are be isomorphic if there is a bimodule isomorphism φ : Γ→ Γ′ such that

φ(da) = d′a , ∀ a ∈ A .

Example 4.1 There is a universal first order differential calculus associated with any A.
Consider first the submodule of A⊗A given by

Ω1A := ker(m : A⊗A → A) , m(a⊗ b) = ab ,
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and define the differential δ by

δ : A → Ω1A , δa := I⊗ a− a⊗ I .

The submodule Ω1A is generated by elements of the form 1 ⊗ a − a ⊗ 1 with a ∈ A.
Indeed, if

∑
i aibi = m(

∑
i ai ⊗ bi) = 0, then one gets∑

i

ai ⊗ bi =
∑
i

ai(1⊗ bi − bi ⊗ 1) =
∑
i

aiδbi

as it should be. Thus (Ω1A, δ) is a first order differential calculus over A.
Any first order differential calculus over A can be obtained from the universal one.

Proposition 4.1 Let N be any sub bimodule of Ω1A with canonical projection given by
π : Ω1A → Γ = Ω1A/N and define d = π ◦ δ. Then (Γ,d) is a first order differential
calculus over A and any such a calculus can be obtained in this way.

The first statement is obvious. Conversely, if (Γ,d) is a first order differential calculus over
A, define π : Ω1A → Γ by

π

(∑
i

ai ⊗ bi

)
:=
∑
i

aidbi .

Then, using the fact that
∑
i aibi = m(

∑
i ai ⊗ bi) = 0, one easily proves that π is

a bimodule morphism. Moreover, π is surjective, since given ω =
∑
i aidbi ∈ Γ, the

element ω̃ =
∑
i ai ⊗ bi − (

∑
i aibi) ⊗ I belongs to Ω1A, m(ω̃) = 0, and projects to ω,

π(ω̃) = ω − (
∑
i aibi)dI = ω. Define then the sub-bimodule N of Ω1A by

N := kerπ =

{∑
i

ai ⊗ bi ∈ Ω1A |
∑
i

aidbi = 0

}
.

Finally, π(δa) = π(I ⊗ a − a ⊗ I) = Ida − adI = da, which shows that π ◦ δ = d and
concludes the proof that (Γ,d) and (Ω1A/N , δ) are isomorphic.

With any given algebra A, there is associated a universal graded differential algebra
of forms ΩA =

⊕
p ΩpA. In degree 0, symply Ω0A = A. The space Ω1A of one-forms

has been constructed explicitly in terms of tensor products in Ex. 4.1. One thinks of Ω1A
as generated, as a left A-module, by symbols δa for a ∈ A with relations

δ(ab) = (δa)b+ aδb , ∀ a, b ∈ A . (4.1)
δ(αa+ βb) = αδa+ βδb , ∀ a, b ∈ A , α, β ∈ C . (4.2)

A generic element ω ∈ Ω1A is a finite sum of the form ω =
∑
i aiδbi , ai, bi ∈ A. The

left A-module Ω1A can also be endowed with a structure of a right A-module by using
(4.1), (∑

i

aiδbi

)
c :=

∑
i

ai(δbi)c =
∑
i

aiδ(bic)−
∑
i

aibiδc .

The relation (4.1) is just the Leibniz rule for the map δ : A → Ω1A, which therefore is
a derivation of A with values in the bimodule Ω1A. The requirement (4.2) gives δC = 0.
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The space ΩpA of p-forms is defined as ΩpA = Ω1AΩ1A · · ·Ω1AΩ1A (p factors), with
the product of any two one-forms defined by “juxtaposition”,

(a0δa1)(b0δb1) := a0(δa1)b0δb1 = a0δ(a1b0)δb1 − a0a1δb0δb1 ,

for any a0, a1, b0, b1 ∈ A. Thus, elements of ΩpA are finite linear combinations of mono-
mials of the form

ω = a0δa1δa2 · · · δap , ak ∈ A .

The product ΩpA×ΩqA → Ωp+qA of any p-form with any q-form produces a p+ q form
and is again defined by juxtaposition and rearranging the result by using (4.1). Notice that
there is nothing like graded commutativity of forms. The algebra ΩpA is a left A-module
by construction. Similarly to Ω1A, it can also be made into a right A-module.

One makes the algebra ΩA a differential algebra by extending the differential δ to a
linear operator δ : ΩpA → Ωp+1A, unambiguously by

δ(a0δa1 · · · δap) := δa0δa1 · · · δap .

It is nilpotent, δ2 = 0, and a graded derivation,

δ(ω1ω2) = δ(ω1)ω2 + (−1)pω1δω2 , ∀ ω1 ∈ ΩpA , ω2 ∈ ΩA .

The Prop. 4.1 is a manifestation of the fact that the graded differential algebra (ΩA, δ) is
universal in the following sense [5, 9, 41].
Proposition 4.2 Let (Γ = ⊕pΓp,d) be a graded differential algebra, and let ρ : A → Γ0

be a morphism of unital algebras. Then there exists a unique extension of ρ to a morphism
of graded differential algebras ρ̃ : ΩA → Γ such that ρ̃ ◦ δ = d ◦ ρ̃.

As a consequence, just as any first order differential calculus over A can be obtained
as a quotient of the universal one Ω1A, any graded differential algebra is a quotient of
the universal (ΩA, δ). One should remark that the latter is not very interesting from the
cohomological point of view; all cohomology spaces

Hp(ΩA) := ker(δ : ΩpA → Ωp+1A)/im(δ : Ωp−1A → ΩpA)

vanish, except in degree zero, H0(ΩA) = C. Indeed, there is a contracting homotopy
k : ΩpA → Ωp+1A, giving kδ + δk = I, and defined by

k(a0δa1 · · · δap) := (−1)p+1a0δa1 · · · δap−1 ap .

4.2 Hochschild and cyclic homology

Given an algebra A, consider the chain complex (C∗(A) =
⊕

n Cn(A), b) with chains
Cn(A) = A⊗(n+1) and the boundary map b : Cn(A)→ Cn−1(A) defined by

b(a0 ⊗ a1 ⊗ · · · ⊗ an) :=
n−1∑
j=0

(−1)ja0 ⊗ · · · ⊗ ajaj+1 ⊗ · · · ⊗ an

+ (−1)nana0 ⊗ a1 ⊗ · · · ⊗ an−1 . (4.3)
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It is easy to prove that b2 = 0. The Hochschild homology HH∗(A) of the algebraA is the
homology of this complex, HHn(A) := Hn(C∗(A), b) = Zn/Bn, with the cycles given
byZn := ker(b : Cn(A) → Cn−1(A)) and boundaries by Bn := im(b : Cn+1(A) →
Cn(A)).
Remark 4.1 One can generalize the previous constructions by taking chains with values in
any A-bimodue E . One defines Cn(A, E) := E ⊗ A⊗n on which the formula (4.3) makes
perfect sense when aa ∈ E due to the bimodule structure of E . The homology of this
complex is then denoted by HH∗(A, E).

Let us go back to the original case when E = A. Besides b we have another operator
which increases the degree, B : Cn(A)→ Cn+1(A), written B = B0A, where

B0(a0 ⊗ a1 ⊗ · · · ⊗ an) :=I⊗ a0 ⊗ a1 ⊗ · · · ⊗ an

A(a0 ⊗ a1 ⊗ · · · ⊗ an) :=
n∑
j=0

(−1)nj

n+ 1
aj ⊗ aj+1 ⊗ · · · ⊗ aj−1 , (4.4)

with the obvious cyclic identification n+1 = 0. One checks thatB2 = 0 and bB+Bb = 0.
Putting together these two operators one gets a bi-complex (C∗(A), b, B) with

Cp−q(A) in bi-degree p, q. The cyclic homology HC∗(A) of the algebra A is the ho-
mology of the total complex (CC(A), b + B), whose n-th term is given by CCn(A) :=
⊕p+q=nCp−q(A) = ⊕0≤q≤[n/2]C2n−q(A). Then,

HCn(A) := Hn(CC(A), b+B) = Zλn/B
λ
n ,

with the cyclic cycles given by Zλn := ker(b + B : CCn(A) → CCn−1(A)) and the
cyclic boundaries given by Bλn := im(b+B : CCn+1(A)→ CCn(A)).
Example 4.2 If M is a compact manifold, the Hochschild homology of the algebra
C∞(M) of smooth functions gives the deRham complex (Hochschild-Konstant-Rosenberg
theorem),

ΩkdR(M) ' HHk(C∞(M)) ,

with ΩkdR(M) the space of deRham forms of degree k on M . If d denotes the deRham
exterior differential, this isomorphisms is implemented by

a0da1 ∧ · · · ∧ dak 7→ εk(a0 ⊗ a1 ⊗ · · · ⊗ dak)

where εk is the antisymmetrization map

εk(a0 ⊗ a1 ⊗ · · · ⊗ dak) :=
∑
σ∈Sk

sign(σ)(a0 ⊗ aσ(1) ⊗ · · · ⊗ daσ(k))

and Sk is the symmetric group of degree k. In particular one checks that b ◦ εk = 0. The
deRham differential d corresponds to the operator B∗ (the lift of B to homology):

εk+1 ◦ d = (k + 1)B∗ ◦ εk .

On the other hand, the cyclic homology gives [13, 51]

HCk(C∞(M)) = ΩkdR(M)/dΩk−1
dR (M)⊕Hk−2

dR (M)⊕Hk−4
dR (M)⊕ · · · , (4.5)
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where Hj
dR(M) is the j-th deRham cohomology group. The last term in the sum is

H0
dR(M) or H1

dR(M) according to whether k is even or odd. Since C∞(M) is com-
mutative there is a natural decomposition (the λ-decomposition) of cyclic homology into
smaller pieces,

HC0(C∞(M)) = HC
(0)
0 (C∞(M)) ,

HCk(C∞(M)) = HC
(k)
k (C∞(M))⊕ · · · ⊕HC(1)

k (C∞(M)) ,

obtained by suitable idempotents e(i)
k commuting with the operator B: Be(i)

k = e
(i+1)
k+1 B.

It corresponds to the decomposition above and permits to extract the deRham cohomology

HC
(k)
k (C∞(M)) = ΩkdR(M)/dΩk−1

dR (M) ,
HC

(i)
k (C∞(M)) = H2i−k

dR (M) , for [n/2] ≤ i < n ,

HC
(i)
k (C∞(M)) = 0 , for i < [n/2] .

This example shows that it is possible to think of cyclic homology as a generalization of
deRham cohomology to the noncommutative setting.

4.3 Hochschild and cyclic cohomology

Similarly, one describes the dual theories. A Hochschild k cochain on the algebra A is an
(n+ 1)-linear functional on A or a linear form on A⊗(n+1). Let

Cn(A) = Hom(A⊗(n+1),C)

be the collection of such cochains. We have a cochain complex (C∗(A) =
⊕

n C
n(A), b)

with a coboundary map, b : Cn(A)→ Cn+1(A), defined by

bϕ(a0, a1, · · · , an+1) :=
n∑
j=0

(−1)jϕ(a0, · · · , ajaj+1, · · · , an+1)

+ (−1)n+1ϕ(an+1a0a1, · · · , an) . (4.6)

Clearly b2 = 0 and the Hochschild cohomologyHH∗(A) of the algebraA is the cohomol-
ogy of this complex, HHn(A) := Hn(C∗(A), b) = Zn/Bn, with the cocycles given by
Zn := ker(b : Cn(A)→ Cn+1(A)) and the coboundaries by Bn := im(b : Cn−1(A)→
Cn(A)).
Remark 4.2 The previous constructions can be generalized by taking cochains with values
in any A-bimodue E : Cn(A, E) is the space of n-linear maps ϕ : A⊗n → E with an
A-bimodule structure given by (a′ϕa′′)(a0, a1, · · · , an) = a′ϕ(a0, a1, · · · , an)a′′. The
coboundary map (4.6) is generalized to

bϕ(a1, · · · , an+1) := a1ϕ(a2, · · · , an+1)

+
n∑
j=1

(−1)jϕ(a1, · · · , ajaj+1, · · · , an+1)

+(−1)n+1ϕ(a1, · · · , an)an+1 .

The cohomology of this complex is then denoted by HH∗(A, E).
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A Hochschild 0-cocycle τ is a trace on A, since τ ∈ Hom(A,C) bτ = 0 reads now,

τ(a0a1)− τ(a1a0) = bτ(a0, a1) = 0 .

The trace property is extended to higher orders by saying that an n-cochain ϕ is cyclic if
λϕ = ϕ, with the map λ defined by,

λϕ(a0, a1, · · · , an) = (−1)nϕ(an, a0, · · · , an−1) .

A cyclic cocycle is a cyclic cochain ϕ for which bϕ = 0. A straightforward computation
shows that the sets of cyclic n-cochains Cnλ (A) = {ϕ ∈ Cn(A) | λϕ = ϕ} are preserved
by the Hochschild boundary operator: (1− λ)ϕ = 0 implies that (1− λ)bϕ = 0. Thus we
get a subcomplex (C∗λ(A) =

⊕
n C

n
λ (A), b) of the complex (C∗(A) =

⊕
n C

n(A), b).
The cyclic cohomology HC∗(A) of the algebra A is the cohomology of this subcomplex,

HCn(A) := Hn(C∗λ(A), b) = Znλ/B
n
λ ,

with the cyclic cocycles given by Znλ := ker(b : Cnλ (A) → Cn+1
λ (A)) and the cyclic

coboundaries given by Bnλ := im(b : Cn−1
λ (A)→ Cnλ (A)).

One can also define an operator B dual to the one in (4.4) for the homology and give a
bicomplex description of cyclic cohomology; we shall not use this description and we only
refer to [16] for all details. An additional important operator is the periodicity operator, a
degree two map between cyclic cocycles, S : Zn−1

λ −→ Zn+1
λ , given by

Sϕ(a0, a1, · · · , an+1) := − 1
n(n+ 1)

n∑
j=1

ϕ(a0, · · · , aj−1ajaj+1, · · · , an+1)

− 1
n(n+ 1)

n∑
1≤i<j≤n

(−1)i+jϕ(a0, · · · , ai−1ai, · · · , ajaj+1, · · · , an+1) .

(4.7)

In fact, one has the stronger result S(Zn−1
λ ) ⊆ Bn+1, the latter being the Hochschild

coboundaries; and cyclicity is easy to show. The induced morphisms in cohomology S :
HCn → HCn+2 define two directed systems of abelian groups. Their inductive limits

HP 0(A) := lim
→
HC2n(A) , HP 1(A) := lim

→
HC2n+1(A) ,

form a Z2-graded group which is called the periodic cyclic cohomology HP ∗(A) of the
algebra A. There is also a periodic cyclic homology [16, 51].

5 The Chern characters

There are two kinds of Chern characters, dual to each other. The first one, ch∗(·), leads to
well defined maps from the K-theory groups K∗(A) of projections and unitaries to (pe-
riod) cyclic homology of A. The dual Chern character, ch∗(·), of even and odd Fredholm
modules provides similar maps to (period) cyclic cohomology of A. These characters are
coupled by index theorems.
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5.1 The Chern character of idempotents and unitaries

The Chern character of a projection e ∈ Mm(A) is a formal sum, ch∗(e) =
∑
k chk(e),

with

chk(e) = Nk

(
ei0i1 −

1
2
δi0i1

)
⊗ ei1i2 ⊗ e

i2
i3
⊗ · · · ⊗ ei2ki0 , (5.1)

and Nk suitable normalization constants. The crucial property of ch∗(e) is that it defines a
cycle in the (b, B) bicomplex of cyclic homology [13, 16, 51],

(b+B)ch∗(e) = 0 , B chk(e) = b chk+1(e) ,

and the map e 7→ ch∗(e) leads to a well defined map from the K-theory group K0(A) to
the cyclic homology of A.

In the odd case unitary elements are used, instead of projections. The Chern character
of unitary u ∈Mr(A) is a formal, ch∗(u) =

∑
k chk+ 1

2
(u), with

chk+ 1
2
(u) = Nk

(
ui0i1 ⊗ (u∗)i1i2 ⊗ u

i2
i3
⊗ · · · ⊗ (u∗)i2k+1

i0

−(u∗)i0i1 ⊗ u
i1
i2
⊗ (u∗)i2i3 ⊗ · · · ⊗ u

i2k+1
i0

)
, (5.2)

and Nk suitable normalization constants. Again ch∗(u) defines a cycle in the (b, B) bi-
complex of cyclic homology [13, 16, 51],

(b+B)ch∗(u) = 0 , B chk+ 1
2
(e) = b chk+ 1

2 +1(e)

and the map u 7→ ch∗(u) leads to a well defined map from the K-theory group K1(A)
to the cyclic homology of A. In fact, in both even and odd cases the correct receptacle is
periodic cyclic homology, but we shall not dwell upon this point here and refer to [51].

5.2 Fredholm modules and index theorems

A Fredholm module can be thought of as an abstract elliptic operator. The full fledged
theory started with Atiyah and culminated in the KK-theory of Kasparov and the cyclic
cohomology of Connes. We shall only mention the few facts that we shall need later on.
Definition 5.1 ([13]) Let A be an involutive algebra. An odd Fredholm module over A is
the datum of

(1) a representation ψ of the algebra A on a Hilbert spaceH;

(2) an operator F onH such that

F 2 = I , F ∗ = F , [F,ψ(a)] ∈ K(H) , ∀ a ∈ A ,

where K(H) is the algebra of compact operators onH.
An even Fredholm module has, in addition, a Z2-grading γ ofH, γ∗ = γ, γ2 = I, with

Fγ + γF = 0 , ψ(a)γ − γψ(a) = 0 , ∀ a ∈ A .

With an even module we shall indicate with H± and ψ± the components of the Hilbert
space and of the representation with respect to the grading.
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Given any positive integer r, one can extend the previous modules to a Fredholm module
(Hr, Fr) over the algebraMr(A) = A⊗Mr(C) by a simple procedure:

Hr = H⊗ Cr , ψr = ψ ⊗ I , Fr = F ⊗ Ir ,

and γr = γ ⊗ Ir for an even module.
The importance of Fredholm modules is witnessed by the following theorem which can

be associated with the names of Atiyah and Kasparov [1, 42],
Theorem 5.1 a) Let (H, F, γ) be an even Fredholm module over the algebra A, and let
e ∈Mr(A) be a projection e2 = e = e∗. Then, the operator

ψ−r (e)Frψ+
r (e) : ψ+

r (e)Hr → ψ−r (e)Hr ,

is a Fredholm operator whose index depends only on the class of the projection e in the
K-theory of A. Thus we get an additive map

ϕ : K0(A)→ Z , ϕ([e]) = Index
(
ψ−r (e)Frψ+

r (e)
)
. (5.3)

b) Let (H, F ) be an odd Fredholm module over the algebra A, and take the projection
E = 1

2 (I+ F ). Let u ∈Mr(A) be unitary uu∗ = u∗u = I. Then the operator

Erψr(u)Er : ErHr → ErHr ,

is a Fredholm operator whose index depends only on the class of the unitary u in the
K-theory of A. Thus we get an additive map

ϕ : K1(A)→ Z , ϕ([u]) = Index (Erψr(u)Er) . (5.4)

IfA is a C∗-algebra, then in both even and odd cases the index map ϕ depends only on
the K-homology class [(H, F )] ∈ KK(A,C), of the Fredholm module in the Kasparov
KK-group, K∗(A) = KK(A,C), which is the abelian group of stable homotopy classes
of Fredholm modules over A [42]. The index pairings (5.3) and (5.4) can be given as [16]

ϕ(x) = 〈ch∗(H, F ), ch∗(x)〉 , x ∈ K∗(A) ,

via the Chern characters

ch∗(H, F ) ∈ HC∗(A) , ch∗(x) ∈ HC∗(A) ,

and the pairing between cyclic cohomology HC∗(A) and cyclic homology HC∗(A) of
the algebra A. The Chern character ch∗(x) in homology is given by (5.1) and (5.2) in the
even and odd case respectively. As for the Chern character ch∗(x) in cohomology we shall
give some fundamentals in the next Subsection.

5.3 The Chern characters of Fredholm modules

We recall [67] that on a Hilbert space H, with K(H) the algebra of compact operators,
one defines for p ∈ [1,∞[ the Schatten p-class Lp as the ideal of compact operators for
which TrT p is finite: Lp = {T ∈ K(H) | TrT p < ∞}. The Hölder inequality implies
Lp1 · · · Lpk ⊂ Lp, with p−1 =

∑k
j=1 p

−1
j .
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The Fredholm module (H, F ) over the algebra A is said to be p-summable if

[F,ψ(a)] ∈ Lp , ∀ a ∈ A .

This is the same for a even or odd module. For simplicity, in the rest of this section, we
shall drop the symbol ψ which indicates the representation on A on H. The idea is then
to construct ‘quantized differential forms’ and integrate (via a trace) forms of sufficiently
high degree, so that they belong to L1. In fact, one needs to introduce a conditional trace.
Given an operator T onH such that FT + TF ∈ L1, define

Tr′ T :=
1
2

TrF (FT + TF ) ;

note that, if T ∈ L1, then Tr′ T = TrT by cyclicity of the trace.
Let n be a nonnegative integer and let (H, F ) be a Fredholm module over the algebraA.

We take this module to be even or odd according to whether n is even or odd. We shall also
take it to be (n+ 1)-summable. We construct an n-dimensional cycle (Ω∗ = ⊕kΩk,d,

∫
)

over the algebra A. Elements of Ωk are quantized differential forms: Ω0 = A and for
k > 0, Ωk is the linear span of operators of the form

ω = a0[F, a1] · · · [F, an] , aj ∈ A .

By the assumption of summability, the Hölder inequality gives Ωk ⊂ Ln+1
k . The product

in Ω∗ is just the product of operators ωω′ ∈ Ωk+k′ for any ω ∈ Ωk and ω′ ∈ Ωk
′
. The

differential d : Ωk → Ωk+1 is defined by

dω = Fω − (−1)kωF , ω ∈ Ωk ,

and F 2 = 1 implies both d2 = 0 and the fact that d is a graded derivation

d(ωω′) = (dω)ω′ + (−1)kωdω′ , ω ∈ Ωk , ω′ ∈ Ωk
′
.

Finally, one defines a trace
∫

: Ωn → C in degree n, which is both closed (
∫

dω = 0) and
graded (

∫
ωω′ = (−1)kk

′ ∫
ω′ω). First, take n to be odd. With ω ∈ Ωn,∫

ω := Tr′ ω =
1
2

TrF (Fω + ωF )) =
1
2

TrFdω , (5.5)

is well defined since Fdω ∈ L1. If n is even and γ is the grading, with ω ∈ Ωn one defines∫
ω := Tr′ γω =

1
2

TrF (Fγω + γωF )) =
1
2

Tr γFdω , (5.6)

(recall that Fγ = −γF ); this is again well defined since γFdω ∈ L1. One straightfor-
wardly proves closure and graded cyclicity of both the integrals (5.5) and (5.6).

The character of the Fredholm module is the cyclic cocycle τn ∈ Znλ (A) given by,
τn(a0, a1, · · · , an) :=

∫
a0da1 · · · dan, with aj ∈ A. Explicitly,

τn(a0, a1, · · · , an) = Tr′ a0[F, a1], · · · , [F, an] , n odd ,
τn(a0, a1, · · · , an) = Tr′ γ a0[F, a1], · · · , [F, an] , n even . (5.7)
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In both cases one checks closure, bτn = 0, and cyclicity, λτn = (−1)nτn.
There is an ambiguity in the choice of the integer n. Given a Fredholm module (H, F )

over A, the parity of n is fixed. However for its precise value there is only a lower bound,
determined by the (n + 1)-summability: since Lp1 ⊂ Lp2 if p1 ≤ p2, one could replace
n by n + 2k with k any integer. Thus one gets a sequence of cyclic cocycles τn+2k ∈
Zn+2k
λ (A), k ≥ 0, with the same parity. The crucial fact is that the cyclic cohomology

classes of these cocycles are related by the periodicity operator S in (4.7). The characters
τn+2k satisfy the recursive relation

S[τm]λ = cm[τm+2]λ in HCm+2(A) , m = n+ 2k , k ≥ 0 ,

with cm a constant depending on m (one could get rid of these constants by suitably nor-
malizing the characters in (5.7)). Therefore, the sequence {τn+2k}k≥0 determines a well
defined class [τF ] in the periodic cyclic cohomology HP 0(A) or HP 1(A) according to
whether n is even or odd. The class [τF ] is the Chern character of the Fredholm module
(A,H, F ) in periodic cyclic cohomology.

More details of the general theory are in [16]. Some examples are in [40].

6 Connections and gauge transformations

The notion of a (gauge) connection on a (finite projective) module E over an algebraA and
with respect to a given calculus makes perfectly sense and one can develop several related
concepts algebraically. We take a right module structure.

6.1 Connections on modules

Let us suppose we have an algebra A with a differential calculus (ΩA = ⊕pΩpA,d). A
connection on the right A-module E is a C-linear map

∇ : E ⊗A ΩpA −→ E ⊗A Ωp+1A,

defined for any p ≥ 0, and satisfying the Leibniz rule

∇(ωρ) = (∇ω)ρ+ (−1)pωdρ, ∀ ω ∈ E ⊗A ΩpA, ρ ∈ ΩA.

A connection is completely determined by its restriction

∇ : E → E ⊗A Ω1A,

which satisfies

∇(ηa) = (∇η)a+ η ⊗A da, ∀ η ∈ E , a ∈ A ,

and which is extended to all of E ⊗A ΩpA using Leibniz rule. It is the latter rule that
implies the ΩA-linearity of the composition,

∇2 = ∇ ◦∇ : E ⊗A ΩpA −→ E ⊗A Ωp+2A.

The restriction of∇2 to E is the curvature

F : E → E ⊗A Ω2A,
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of the connection. It is A-linear, F (ηa) = F (η)a for any η ∈ E , a ∈ A, and satisfies

∇2(η ⊗A ρ) = F (η)ρ, ∀ η ∈ E , ρ ∈ ΩA.

Thus, F ∈ HomA(E , E ⊗A Ω2A), the latter being the collection of (right) A-linear ho-
momorphisms from E to E ⊗A Ω2A (for this collection an alternative notation that is used
in the literature, is EndA(E , E ⊗A Ω2A)). In order to have a Bianchi identity we need
some natural generalization. Let EndΩA(E ⊗A ΩA) be the collection of all ΩA-linear
endomorphisms of E ⊗A ΩA. It is an algebra under composition. The curvature F can be
thought of as an element of EndΩA(E ⊗A ΩA). There is a well defined map

[∇, · ] : EndΩA(E ⊗A ΩA) −→ EndΩA(E ⊗A ΩA),

[∇, T ] := ∇ ◦ T − (−1)|T | T ◦ ∇,

where |T | denotes the degree of T with respect to the Z2-grading of ΩA. It is straightfor-
wardly checked that [∇, · ] is a graded derivation for the algebra EndΩA(E ⊗A ΩA),

[∇, S ◦ T ] = [∇, S] ◦ T + (−1)|S|S ◦ [∇, T ].

Proposition 6.1 The curvature F satisfies the Bianchi identity,

[∇, F ] = 0.

Since F is an even element in EndΩA(E ⊗A ΩA), the map [∇, F ] makes sense. Further-
more,

[∇, F ] = ∇ ◦∇2 −∇2 ◦ ∇ = ∇3 −∇3 = 0.

In Sect. II.2 of [13], such a Bianchi identity was implicitly used in the construction of a
so-called canonical cycle from a connection on a finite projective A-module E .

Connections always exist on a projective module. On the module E = CN⊗CA ' AN ,
which is free, a connection is given by the operator

∇0 = I⊗ d : CN ⊗C ΩpA −→ CN ⊗C Ωp+1A.

With the canonical identification CN ⊗C ΩA = (CN ⊗C A) ⊗A ΩA ' (ΩA)N , one
thinks of ∇0 as acting on (ΩA)N as the operator ∇0 = (d,d, · · · ,d) (N -times). Next,
take a projective module E with inclusion map, λ : E → AN , which identifies E as a
direct summand of the free module AN and idempotent p : AN → E which allows one
to identify E = pAN . Using these maps and their natural extensions to E-valued forms, a
connection∇0 on E (called Levi-Civita or Grassmann) is the composition,

E ⊗A ΩpA λ−→ CN ⊗C ΩpA I⊗d−→ CN ⊗C Ωp+1A p−→ E ⊗A Ωp+1A,

that is

∇0 = p ◦ (I⊗ d) ◦ λ, (6.1)

which is simply written as ∇0 = pd. The space C(E) of all connections on E is an affine
space modeled on HomA(E , E ⊗A Ω1A). Indeed, if ∇1,∇2 are two connections on E ,
their difference is A-linear,

(∇1 −∇2)(ηa) = ((∇1 −∇2)(η))a, ∀ η ∈ E , a ∈ A,
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so that∇1 −∇2 ∈ HomA(E , E ⊗A Ω1A). Thus, any connection can be written as

∇ = pd + α, (6.2)

where α is any element in HomA(E , E ⊗A Ω1A). The “matrix of 1-forms” α as in (6.2) is
called the gauge potential of the connection ∇. The corresponding curvature F of ∇ is

F = pdpdp+ pdα+ α2.

Next, let the algebra A have an involution ∗; this is extended to the whole of ΩA by
the requirement (da)∗ = da∗ for any a ∈ A. A Hermitian structure on the module E is a
map 〈·, ·〉 : E × E → A with the properties

〈η, ξa〉 = 〈ξ, η〉 a, 〈η, ξ〉∗ = 〈ξ, η〉 ,
〈η, η〉 ≥ 0, 〈η, η〉 = 0⇔ η = 0, (6.3)

for any η, ξ ∈ E and a ∈ A (an element a ∈ A is positive if it is of the form a = b∗b
for some b ∈ A). We shall also require the Hermitian structure to be self-dual, i.e. every
right A-module homomorphism φ : E → A is represented by an element of η ∈ E , by
the assignment φ(·) = 〈η, ·〉, the latter having the correct properties by the first of (6.3).
The Hermitian structure is naturally extended to an ΩA-valued linear map on the product
E ⊗A ΩA× E ⊗A ΩA by

〈η ⊗A ω, ξ ⊗A ρ〉 = (−1)|η||ω|ω∗ 〈η, ξ〉 ρ, ∀ η, ξ ∈ E ⊗A ΩA, ω, ρ ∈ ΩA. (6.4)

A connection∇ on E and a Hermitian structure 〈·, ·〉 on E are called compatible if,

〈∇η, ξ〉+ 〈η,∇ξ〉 = d 〈η, ξ〉 , ∀ η, ξ ∈ E .

It follows directly from the Leibniz rule and (6.4) that this extends to

〈∇η, ξ〉+ (−1)|η| 〈η,∇ξ〉 = d 〈η, ξ〉 , ∀ η, ξ ∈ E ⊗A ΩA.

On the free module AN there is a canonical Hermitian structure given by

〈η, ξ〉 =
N∑
j=1

η∗jξj , (6.5)

with η = (η1, · · · , ηN ) and η = (η1, · · · , ηN ) any two elements of AN .
Under suitable regularity conditions on the algebra A all Hermitian structures on a

given finite projective module E over A are isomorphic to each other and are obtained
from the canonical structure (6.5) on AN by restriction [16, II.1]. Moreover, if E = pAN ,
then p is self-adjoint: p = p∗, with p∗ obtained by the composition of the involution ∗

in the algebra A with the usual matrix transposition. The Grassmann connection (6.1) is
easily seen to be compatible with this Hermitian structure,

d 〈η, ξ〉 = 〈∇0η, ξ〉+ 〈η,∇0ξ〉 .

For a general connection (6.2), the compatibility with the Hermitian structure reduces to

〈αη, ξ〉+ 〈η, αξ〉 = 0, ∀ η, ξ ∈ E ,

which just says that the gauge potential is skew-hermitian,

α∗ = −α.

We still use the symbol C(E) to denote the space of compatible connections on E .
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6.2 Gauge transformations

We now add the additional requirement that the algebra A is a Fréchet algebra and that
E a right Fréchet module. That is, both A and E are complete in the topology defined by
a family of seminorms ‖ · ‖i such that the following condition is satisfied: for all j there
exists a constant cj and an index k such that

‖ηa‖j ≤ cj‖η‖k‖a‖k.

The collection EndA(E) of allA-linear maps is an algebra with involution; its elements are
also called endomorphisms of E . It becomes a Fréchet algebra with the following family
of seminorms: for T ∈ EndA(E),

‖T‖i = sup
η
{‖Tη‖i : ‖η‖i ≤ 1} .

Since we are taking a self-dual Hermitian structure (see the discussion after (6.3)), any
T ∈ EndA(E) is adjointable, that is it admits an adjoint, an A-linear map T ∗ : E → E
such that

〈T ∗η, ξ〉 = 〈η, Tξ〉 , ∀ η, ξ ∈ E .

The group U(E) of unitary endomorphisms of E is given by

U(E) := {u ∈ EndA(E) | uu∗ = u∗u = IE}.

This group plays the role of the infinite dimensional group of gauge transformations. It
naturally acts on compatible connections by

(u,∇) 7→ ∇u := u∗∇u, ∀ u ∈ U(E), ∇ ∈ C(E), (6.6)

where u∗ is really u∗ ⊗ IΩA; this will always be understood in the following. Then the
curvature transforms in a covariant way

(u, F ) 7→ Fu = u∗Fu,

since, evidently, Fu = (∇u)2 = u∗∇uu∗∇u∗ = u∗∇2u = u∗Fu.
As for the gauge potential, one has the usual affine transformation,

(u, α) 7→ αu := u∗pdu+ u∗αu. (6.7)

Indeed,∇u(η) = u∗(pd+α)uη = u∗pd(uη)+u∗αuη = u∗pudη+u∗p(du)η+u∗αuη =
pdη + (u∗pdu+ u∗αu)η for any η ∈ E , which yields (6.7) for the transformed potential.

The “tangent vectors” to the gauge group U(E) constitute the vector space of in-
finitesimal gauge transformations. Suppose {ut}t∈R is a continuous family of elements in
EndA(E) (in the topology defined by the above sup-norms) and defineX := (∂ut/∂t)t=0.
Unitarity of ut then induces that X = −X∗. Thus, for ut to be a gauge transformation,
X should be a skew-hermitian endomorphisms of E . In this way, we understand the real
vector space EndsA(E) of all skew-hermitian endomorphisms of E as made of infinitesimal
gauge transformations. The complexification EndsA(E)⊗R C is identified with EndA(E).
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Infinitesimal gauge transformations act on a connection in a natural way. Let the
gauge transformation ut, with X = (∂ut/∂t)t=0, act on ∇ as in (6.6). From the fact
that (∂(ut∇u∗t )/∂t)t=0 = [∇, X], we conclude that an element X ∈ EndsA(E) acts in-
finitesimally on a connection∇ by the addition of [∇, X],

(X,∇) 7→ ∇X = ∇+ t[∇, X] +O(t2), ∀ X ∈ EndsA(E), ∇ ∈ C(E).

As a consequence, for the transformed curvature one finds

(X,F ) 7→ FX = F + t[F,X] +O(t2),

since FX = (∇+ t[∇, X]) ◦ (∇+ t[∇, X]) = ∇2 + t[∇2, X] +O(t2).

7 Noncommutative manifolds

A noncommutative geometry is described by a spectral triple (A,H, D). The operator D
plays in general the role of the Dirac operator [50] in ordinary Riemannian geometry. It
specifies both the K-homology fundamental class [16], as well as the metric on the state
space of A (see formula (7.6) later on). The ‘nontriviality’ of the spectral geometry is
measured by the nontriviality of the pairing between theK-theory of the algebraA and the
K-homology class of D. There are index maps with the Fredholm module (H, F ), with
D = |D|F , described in Sect. 5.2,

ϕ : K∗(A) −→ Z (7.1)

by the expressions like (5.3) and (5.4) for the even and odd case respectively.

7.1 The Dixmier trace

An algebraic generalization of the integral is via the Dixmier trace. We need a few facts
about compact operators – which we take mainly from [58, 67] – and show their use an
‘infinitesimals’. An operator T on a (separable, infinite dimensional) Hilbert space H is
said to be of finite rank if the orthogonal complement of its null space is finite dimensional.
This is equivalent to T having a finite dimensional range and what this is saying is that such
an operator is a finite dimensional matrix, even ifH is infinite dimensional. An operator T
onH is compact if it can be approximated in norm by finite rank operators. An equivalent
way to characterize a compact operator T is that

∀ ε > 0 , ∃ a finite dimensional subspace E ⊂ H | ‖T |E⊥‖ < ε . (7.2)

The algebra K(H) is the largest two-sided ideal in the C∗-algebra B(H). In fact, it is the
only norm closed and two-sided ideal; and it is an essential ideal [34]. It is a C∗-algebra
without a unit, since the operator I on an infinite dimensional Hilbert space is not compact.
The defining representation of K(H) by itself is irreducible and it is the only irreducible
representation of K(H) up to equivalence.
Remark 7.1 In general compact operators need not admit any nonzero eigenvalue. If T
is a self-adjoint compact operator there is a complete orthonormal basis for H made of
eigenvectors, {φk}k∈N, with eigenvalues λk → 0 as k → ∞. On the other hand, any
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compact operator T has a uniformly convergent (i.e. convergent in norm) expansion T =∑
k≥0 µk(T ) |ψk〉 〈φk|, with 0 ≤ µj+1 ≤ µj , and {ψk}k∈N, {φk}k∈N are orthonormal

sets (not necessarily complete). For this, one writes the polar decomposition T = U |T |,
with |T | =

√
T ∗T . Then, {µk(T )} are the characteristic values of T (with µ0(T ) = ‖T‖),

that is the non-vanishing eigenvalues of the (compact self-adjoint) operator |T | arranged
with repeated multiplicity; {φk} are the corresponding eigenvectors and ψk = Uφk.

Due to condition (7.2) compact operators are in a sense ‘small’ and they play the role
of infinitesimals. The size of the infinitesimal T ∈ K(H) is governed by the rate of decay
of the sequence {µk(T )} of characteristic values as k →∞.
Definition 7.1 An operator T ∈ K(H) is said to be an infinitesimal of order α ∈ R+ if

µk(T ) = O(k−α) as k →∞ , i.e. ∃ C <∞ | µk(T ) ≤ Ck−α , ∀ k ≥ 1 .

The collection of all infinitesimals of order α form a (not closed) two-sided ideal in B(H),
since for any T ∈ K(H) and B ∈ B(H), one has

µk(TB) ≤ ‖B‖µk(T ) , µk(BT ) ≤ ‖B‖µk(T ) .

The Dixmier trace is constructed in such a way that infinitesimals of order 1 are in the
domain of the trace, while higher order infinitesimals have vanishing trace. The usual trace
is not appropriate. Its domain is the two-sided ideal L1 of trace class operators. For any
T ∈ L1, the trace, defined as tr(T ) :=

∑
k 〈ξk, T ξk〉, is independent of the orthonormal

basis {ξk}k∈N of H and is, indeed, the sum of eigenvalues of T . When the operator is
positive and compact, one has that tr(T ) =

∑∞
k=0 µk(T ). In general, an infinitesimal of

order 1 is not inL1, since the only control on its characteristic values is that µk(T ) ≤ Ck−1

for some positive constant C. Moreover, L1 contains infinitesimals of order higher than 1.
However, for (positive) infinitesimals of order 1, the usual trace is at most logarithmically
divergent since

∑N−1
k=0 µk(T ) ≤ C logN . The Dixmier trace is just a way to extract the

coefficient of the logarithmic divergence [33].
Let L(1,∞) be the ideal of infinitesimal of order 1; it is also denoted L1+ and named

the Dixmier ideal. If T ∈ L(1,∞), one could try to define a positive functional by the limit

lim
N→∞

1
logN

N−1∑
k=0

µk(T ) . (7.3)

There are two problems with this formula: non-linearity and lack of convergence. For any
compact operator T , consider the partial normalized sums

γN (T ) =
1

logN

N−1∑
k=0

µk(T ) .

Given any two positive operators T1 and T2, they satisfy the inequality

γN (T1 + T2) ≤ γN (T1) + γN (T2) ≤ γ2N (T1 + T2)
(

1 +
log 2
logN

)
. (7.4)

From this, linearity would follow from convergence. In general, however, the sequence
{γN}, although bounded, is not convergent. Dixmier [33] proved that there exists an
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uncountable worth of scale invariant linear forms limω on the space `∞(N) of bounded
sequences. For each such form one gets a positive trace on the positive part of L(1,∞),

trω(T ) := limω γN , ∀ T ∈ L(1,∞) , T ≥ 0 .

This trace is called the Dixmier trace and, since the eigenvalues µk(T ) together with the
sequence {γN} are invariant under unitary tranformations, the trace is invariant as well.
From (7.4), it also follows that trω is additive on positive operators,

trω(T1 + T2) = trω(T1) + trω(T2) , ∀ T1, T2 ≥ 0 , T1, T2 ∈ L(1,∞) .

This, together with the fact that L(1,∞) is generated by its positive part ([47, 39]), implies
that trω extends by linearity to the entire L(1,∞) with the property that,

trω(BT ) = trω(TB) , ∀ B ∈ B(H) .

Now, the Dixmier trace is explicitly computable only for operators for which all values trω
coincides. Operators for which this happens are called measurable [16, 39]. An operator
T for which the sequence {γN} itself converges, that is the ordinary limit (7.3) exists, is
indeed mesurable. It is proved in [52] that a positive compact operator T ∈ L(1,∞) is
measurable if and only if this ordinary limit exists.

One has that trω(T ) = 0 for an operator T of order higher than 1, . This follows from
the fact that the space of all infinitesimals of order higher than 1 forms a two-sided ideal
whose elements satisfy the condition kµk(T ) → 0 as k → ∞; then the corresponding
sequence {γN} converges to zero giving a vanishing Dixmier trace. For a similar reason,
trace class operator also satisfy trω(T ) = 0.

Explicit examples of computations of Dixmier traces are in [39, 47].

An important result is the fact that for (a class of) pseudodifferential operators the
Dixmier trace coincides with a residue found by Wodzicki. This residue is a unique trace
on the algebra of pseudodifferential operators of any order. For operators of order at most
−n it coincides with the corresponding Dixmier trace.
Definition 7.2 Let (M, g) be an n-dimensional compact Riemannian manifold. Let T be
a pseudodifferential operator of order −n acting on sections of a complex vector bundle
E →M . Its Wodzicki residue is defined by

ResWT :=
1

n(2π)n

∫
S∗M

trE σ−n(T ) dµ .

Here σ−n(T ) is the principal symbol of T , a matrix-valued function on T ∗M which is
homogeneous of degree −n in the fibre coordinates. The trace trE is a matrix trace over
‘internal indices’, and the integral is taken over the unit co-sphere S∗M = {(x, ξ) ∈
T ∗M | gµνξµξν = 1} ⊂ T ∗M , with measure dµ = dµg(x)dξ. Note that the constant in
front of the integral is not ‘universally’ agreed upon.

Wodzicki has extended the above formula to a unique trace on the algebra of pseu-
dodifferential operators of any order [73, 74] acting on sections of a vector bundle over a
compact Riemannian manifold. The trace of any operator T is given by the right-hand side
of the same formula, with now σ−n(T ) the symbol of order −n of T . In particular, one
puts ResWT = 0 if the order of T is less than −n. For any pseudodifferential operator
of order ≤ −n, the Wodzicki residue coincides (up to a multiplicative constant) with the
Dixmier trace, as shown by the following (Connes’ trace theorem).
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Theorem 7.1 Let M be an n dimensional closed Riemannian manifold. Let T be a pseu-
dodifferential operator of order −n acting on sections of a vector bundle E →M . Then,

(1) The corresponding operator T on the Hilbert space H = L2(M,E) of square inte-
grable sections belongs to L(1,∞).

(2) The trace trω T does not depend on ω (thus T is measurable) and coincides with the
residue:

trω T = ResWT.

This result has been given in [14] (see also [39]). In the course of the proof one also
establishes that the trace trω T depends only on the conformal class of the metric on M .

7.2 Spectral triples

We introduce the concept of spectral triple, the main ingredient in Connes’ machinery.
Definition 7.3 A spectral triple (A,H, D) is given by a complex unital ∗-algebraA with a
faithfully representation π : A → B as bounded operators on the Hilbert spaceH, together
with a self-adjoint operator D = D∗ onH with the following properties.

(1) The resolvent (D + i)−1, is a compact operator onH;

(2) [D,π(a)] = Dπ(a)− π(a)D ∈ B(H), for any a ∈ A.

The triple is said to be even if there is a Z2 grading of H, namely an operator γ on H,
γ = γ∗, γ2 = 1, such that

γD +Dγ = 0 , γπ(a)− π(a)γ = 0 , ∀ a ∈ A .

If such a grading does not exist, the triple is said to be odd. In this case, for convenience
one takes γ = 1.
In the following, the representation being faithfull, the symbol π will be omitted and A
considered a subalgebra of B(H); then, its norm closure A is a C∗-algebra.

By the first assumption above, the self-adjoint operator D has a real discrete spectrum
made of eigenvalues, with each eigenvalue of finite multiplicity. Furthermore, |λk| → ∞
as k → ∞. Indeed, since (D + i)−1 is compact, it has characteristic values µk((D +
i)−1)→ 0, from which |λk| = µk(|D|)→∞. As we will see, D is a generalization of the
Dirac operator on an ordinary spin manifold, and we will symply call it the Dirac operator.

For simplicity we shall assume that D is invertible, simple modifications being needed
were this not the case. As alluded to above, The polar decomposition D = |D|F yields
a Fredholm module (H, F ) over A with the properties of Sect. 5.2 and defines the fun-
damental class in the K-homology of A. In order to define the analogue of the measure
integral, one needs the additional notion of the dimension of a spectral triple1.

1 For an infinite dimensional geometry one needs θ-summability, a spectral triple (A,H, D) being θ-
summable if tr(e−tD

2
) <∞ for all t > 0.
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Definition 7.4 With 0 < n < ∞, a spectral triple (A,H, D) is said to be n+-summable
if |D|−1 is an infinitesimal (in the sense of Def. 7.1) of order 1/n (and this implies that
|D|−n is an infinitesimal of order 1, that is |D|−n ∈ L(1,∞)). We shall also call such a n
the metric dimension of the triple.

Various degrees of regularity of elements of A are defined using the operator D and
its modulus |D| [23]. To the unbounded operator D on H one associates an unbounded
derivation δ on B(H), defined for all a ∈ B(H) by the rule,

δ(a) = [|D|, a] ,

A spectral triple is called regular if the following inclusion holds,

A ∪ [D,A] ⊂
⋂

j∈N
dom δj ,

and OP0 :=
⋂
j∈N dom δj is referred to as the as the ‘smooth domain’ of the operator

δ. The class Ψ0 of pseudodifferential operators of order less or equal that zero is defined
as the algebra generated by

⋃
k∈N δ

k(A ∪ [D,A]). Then, if the triple has finite metric
dimension n, the ‘zeta-type’ function

ζa(s) := trH(a|D|−s)

associated to a ∈ Ψ0 is defined and holomorphic for s ∈ C with Re s > n. And for a
regular finite-dimensional spectral triple it makes sense the following definition.
Definition 7.5 A spectral triple has dimension spectrum Σ iff Σ ⊂ C is a countable set
and, for all a ∈ Ψ0, the function ζa(s) extends to a meromorphic function on C with poles
in Σ as unique singularities.
If Σ is made only of simple poles the Wodzicki-type residue functional,∫

− T := Ress=0 tr(T |D|−s), (7.5)

is tracial on Ψ0 (see [11, 39, 8]). We also recall the definition of ‘smoothing operators’:

OP−∞ := {T ∈ OP0 | |D|kT ∈ OP0 ∀ k ∈ N} .

The class OP−∞ is a two-sided ∗-ideal in the ∗-algebra OP0, is δ-invariant and in the
smooth domain of δ. If T is a smoothing operator, ζT (s) is holomorphic on C. Also,
the integral (7.5) vanishes if T is a smoothing operator. Thus, elements in OP−∞ can be
neglected when computing the dimension spectrum and residues.

When restricted to elements of A, the integral (7.5) is given by the Dixmier trace,∫
− a = trω(a|D|−n) , ∀ a ∈ A .

The role of the operator |D|−n is to bring the bounded operator a into L(1,∞) so that the
Dixmier trace makes sense; and |D|−n is the analogue of the volume form of the space.

Given a spectral triple (A,H, D), there is a natural distance function on the space S(A)
of states of the C∗-algebra A (the norm closure of A), which is defined by [15],

d(φ, χ) := sup
a∈A
{|φ(a)− χ(a)| | ‖[D, a]‖ ≤ 1} , ∀ φ, χ ∈ S(A) . (7.6)
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This formula has been the starting point for interesting work on compact quantum metric
spaces (for additional material see [64]).

7.3 Real structures

There are many interesting examples of spectral triples just satisfying the conditions in
Def. 7.3. However, these are also interesting examples for which one has additional prop-
erties, for instance a real structure.

A real structure is given by an antilinear isometry J : H → H with a list of condi-
tions [17]. This may be thought of as a generalization of the CPT operator (in fact only CP,
since we are considering Euclidean signature). Indeed, the canonical triple associated with
any (Riemannian spin) manifold in Sect. 7.6 has a canonical real structure in the sense of
Def. 7.6 below, the antilinear isometry J being given by

Jψ := Cψ̄ , ∀ ψ ∈ H ,

where C is the charge conjugation operator [7].
Definition 7.6 Let (A,H, D) be a spectral triple, with γ the Z2-grading when n is even.
A real structure of KO-dimension n is an antilinear isometry J : H → H, such that:

J2 = ε(n)I , JD = ε′(n)DJ , Jγ = (−1)n/2γJ , if n is even,

and the mod 8 periodic functions ε(n) and ε′(n) given by

ε(n) = (1, 1,−1,−1,−1,−1, 1, 1) ,
ε′(n) = (1,−1, 1, 1, 1,−1, 1, 1) , n = 0, 1, . . . , 7 .

Furthermore, the map

b 7→ bo = Jb∗J−1 ,

determines a representation of the opposite algebra Ao onH which commutes with A,

[a, Jb∗J−1] = 0 , ∀ a, b ∈ A (7.7)

and the operator D satisfies the order one condition,

[[D, a], Jb∗J−1] = 0 , ∀ a, b ∈ A . (7.8)

A map J satisfying condition (7.7) also turns the Hilbert spaceH into a bimodule over A,
the bimodule structure being given by

a ξ b := aJb∗J−1 ξ , ∀ a, b ∈ A .

If a ∈ A acts on H by left multiplication, then Ja∗J−1 is the corresponding right mul-
tiplication. For commutative algebras, these actions can be identified and one writes
a = Ja∗J−1. In this case, condition (7.8) reads [[D, a], b] = 0 for any a, b ∈ A, which
is just the statement that D is a differential operator of order 1. Thus, the general condi-
tion (7.8) may be thought of as the statement that D is a ‘generalized differential operator’
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of order 1. Since a and bo commute by condition (7.7), condition (7.8) is symmetric,
namely it is equivalent to the condition [[D, bo], a] = 0, for any a, b ∈ A.

Recent interesting examples of spectral triples on spaces coming from quantum groups
show that the conditions (7.7) and (7.8) above are too restrictive. It was suggested in [28]
that one should modify these in order to obtain a meaningful noncommutative geometry
on quantum groups. One needs to replace (7.7) and (7.8) in Def. 7.6 by

[a, Jb∗J−1] ∈ I , [[D, a], Jb∗J−1] ∈ I, ∀ a, b ∈ A ,

where I is a suitable operator ideal of infinitesimals (see Def. 7.1). We shall describe these
examples in Sect. 9.

In general, a good starting point for a real structure J is the Tomita-Takesaki involution
[70]. Let us recall some definitions. IfM is an involutive subalgebra of B(H), a vector
ξ ∈ H is called cyclic for M if Mξ is dense in H; it is called separating for M if for
any T ∈ M, the condition Tξ = 0 implies T = 0. One finds that a cyclic vector forM is
separating for the commutant

M′ := {T ∈ B(H) | Ta = aT , ∀ a ∈M} .

IfM is a von Neumann algebra – that isM =M′′ –, the converse is also true, namely a
cyclic vector forM′ is separating forM [32]. Tomita’s theorem then states that for any
weakly closed2 ∗-algebra of operatorsM on a Hilbert space H which admits a cyclic and
separating vector ξ, there exists a canonical antilinear isometric involution J : H → H
which leaves ξ invariant, i.e. Jξ = ξ, and which conjugates M to its commutant, i.e.
JMJ−1 = M′. As a consequence, M is anti-isomorphic toM′, the anti-isomorphism
being given by the map M 3 a 7→ Ja∗J−1 ∈ M′. We sketch how this works. The
densely defined antilinear operator aξ 7→ a∗ξ is closable and its closure S has the polar
decomposition S = J∆1/2, with ∆ a positive self-adjoint operator and J is the above
antiunitary operator. The operator ∆ reduces to the identity when aξ 7→ a∗ξ is an isometry;
then J is the extension of this map to an antilinear isometry of H. This happens when the
stateM3 a 7→ (ξ, aξ) ∈ C is tracial.

7.4 Some additional conditions

There are some additional properties for a noncommutative geometry that we briefly list
here. A (spin) noncommutative geometry of dimension n is given by a regular spectral
triple (A,H, D) as in Sect. 7.2 (with a grading γ if the triple is even. There may be a
real structure J as in Sect. 7.3. In addition to those given above, they satisfiey the condi-
tions [18]:

a) (Finiteness). The space H∞ =
⋂
k Dom(Dk) is a finitely generated projective left

A module. It follows that the algebra A is a Fréchet pre-C∗-algebra.

b) (Orientation). There exists a Hochschild cycle c ∈ Zn(A,A ⊗ Ao) in degree n
(see Sect. 4.2) which, when represented onH, gives the grading γ ofH,

πD(c) = γ . (7.9)

2We also recall that the sequence {Tλ}λ∈Λ is said to converge weakly to T , Tλ → T , if and only if, for any
ξ, η ∈ H, 〈(Tλ − T )ξ, η〉 → 0.
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Recall that in odd dimensions this means that πD(c) = 1. Here A⊗Ao is given the
A-bimodule structure a1(a⊗ bo)a2 := (a1aa2)⊗ bo and any Hochschild k-chain in
Zk(A,A⊗Ao) is represented onH by

πD((a⊗ bo)a1 ⊗ · · · ⊗ ak) := aJb∗J−1[D, a1] · · · [D, ak] .

This condition gives an abstract volume form.

c) (Poincaré duality). The intersection form

K∗(A)×K∗(A) −→ Z

determined by the Fredholm index maps (7.1) of the operatorD and on theK-theory
K∗(A⊗Ao) is nondegenerate.

Recall from Ex. 4.2 that Hochschild homology classes of the algebra C∞(M) give dif-
ferential forms on the manifold M ; in particular an n-cycle gives a form of top degree.
The nondegeneracy of the volume form is the algebraic requirement (7.9). Also, recall that
ordinary Poincaré duality for an n dimensional manifold M is the existence of an isomor-
phism Hp(M) ' Hn−p(M) (cohomology with homology); this gives a pairing between
the cohomology groups Hp(M) and Hn−p(M).

The above conditions are satisfied by classical commutative geometry for a smooth
Riemannian manifold. Also, they are satisfied by the toric deformation that we shall de-
scribe in Sect. 8. But we have already mentioned that some of them – the commutant and
first order conditions – need to be modified for quantum groups (see Sect. 9) and are valid
only up to compact operators. It is still unclear what are the consequences of thee modifi-
cations on the last two conditions, i.e. on the orientation and Poincaré duality conditions.
Finally, we mention that the above conditions are for compact geometries. For noncompact
geometries, that is for non unital algebras a general strategy is still missing (but see [36]
for an interesting example and useful suggestions).

7.5 Differential forms for spectral triples

We shall now describe how to construct a differential algebra of forms out of a spectral
triple (A,H, D). Recall the universal calculus (ΩA, δ) of Sect. 4.1. The map

πD : ΩA −→ B(H) ,
πD(a0δa1 · · · δap) := a0[D, a1] · · · [D, ap] , aj ∈ A ,

is a homomorphism since both δ and [D, ·] are derivations on A. Furthermore, with
δ(a∗) = −δ(a), from [D, a]∗ = −[D, a∗] one has also that πD(ω)∗ = πD(ω∗) for any
form ω ∈ ΩA and πD is a ∗-representation of ΩA as bounded operators onH.

It is not possible to define the space of forms as the image πD(ΩA), since in general
πD(ω) = 0 does not imply that πD(δω) = 0. Such forms ω, for which πD(ω) = 0 while
πD(δω) 6= 0, are called junk forms. They have to be disposed of in order to construct a
true differential algebra and make πD into a homomorphism of differential algebras. If
J0 :=

⊕
p J

p
0 is the graded two-sided ideal of ΩA given by

Jp0 := {ω ∈ ΩpA | πD(ω) = 0} ,
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then J = J0 + δJ0 is a graded differential two-sided ideal of ΩA, and the following makes
sense.
Definition 7.7 The graded differential algebra of Connes’ forms over the algebra A is

ΩDA := ΩA/J ' πD(ΩA)/πD(δJ0) .

This algebra is naturally graded by the degrees of ΩA and J , the space of p-forms being

ΩpDA = ΩpA/Jp .

Since J is a differential ideal, the exterior differential δ defines a differential on ΩDA,

d : ΩpDA −→ Ωp+1
D A , d[ω] := [δω] ' [πD(δω)] ,

with [ω] the class in ΩpDA of ω ∈ ΩpA. Explicitly, the A-bimodule ΩpDA of p-forms is

ΩpDA ∼= πD(ΩpA)/πD(δ(J0 ∩ Ωp−1A)) ,

and is made of classes of operators of the form

ωp =
∑
j

aj0[D, aj1][D, aj2] · · · [D, ajp] , a
j
i ∈ A ,

modulo the sub-bimodule of operators∑
j

[D, bj0][D, bj1] · · · [D, bjp−1] | bji ∈ A ,
∑
j

bj0[D, bj1] · · · [D, bjp−1] = 0

 .

On them, the exterior differential is given by

d

∑
j

aj0[D, aj1] · · · [D, ajp]

 =

∑
j

[D, aj0][D, aj1] · · · [D, ajp]

 .

7.6 The canonical triple over a manifold

The basic example of spectral triple is the canonical triple on a closed n-dimensional
Riemannian spin manifold (M, g), with g denoting a Riemannian metric. We recall that a
spin manifold is a manifold on which it is possible to construct principal bundles having
the groups Spin(n) as structure groups. Then one defines spinor fields (i.e. fields which
describe fermions) as sections of suitable associated bundles overM . There are topological
obstructions to the existence of spin structure. A manifold admits a spin structure if and
only if its second Stiefel-Whitney class vanishes [50].

The canonical spectral triple (A,H, D) over the closed n-dimensional manifold M is:

(1) A = C∞(M) is the algebra of C-valued smooth functions on M .

(2) H = L2(M,S) is the Hilbert space of square integrable sections of the irreducible
spinor bundle S → M . The rank of the bundle is 2[n/2] with [k] indicating the
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integer part in k and the fibre at the point x ∈M is Sx ' C2[n/2]
. The Hilbert space

L2(M,S) is the completion of the dense A-module S = Γ∞(M,S) of spinor fields
with respect to the scalar product defined by the measure dµg of the metric g,

(ψ, φ) =
∫

dµg ψ · φ ,

with (ψ · φ)(x) =
∑
j ψj(x)φj(x) the natural scalar product in the spinor space Sx

at the point x ∈M .

(3) D is the Dirac operator associated with the Levi-Civita connection ω = dxµωµ of
the metric g.

We can assume that kerD is trivial. If not, since M compact, kerD is finite dimensional
and can thus be subtracted from the spinor space.

Elements of the algebra A act as multiplicative operators onH,

(fψ)(x) := f(x)ψ(x) , ∀ f ∈ A , ψ ∈ H . (7.10)

Let (ea, a = 1, . . . , n) be an orthonormal basis of vector fields; it is related to the natural
basis (∂µ, µ = 1, . . . , n) via the n-beins, the latter having components eµa . The components
{gµν} and {ηab} of the tangent and of the frame bundle metrics are related by

gµν = eµae
ν
bη
ab , ηab = eµae

ν
b gµν .

Indices {µ} and {a} will be lowered and raised by the metric g and η respectively. As
usual we sum over repeated indices.

The coefficients (ω b
µa) of the Levi-Civita (that is, metric and torsion-free) connection

of the metric g, defined by ∇µea = ω b
µaeb, are the solutions of the equations

∂µe
a
ν − ∂νeaµ − ω a

µb e
b
ν + ω a

νb e
b
µ = 0 .

Let Cl(M) be the Clifford bundle over M whose fibre at x ∈ M is just the complexi-
fied Clifford algebra ClC(T ∗xM), and let Γ(M,Cl(M)) be the module of corresponding
sections. There is an algebra morphism

γ : Γ(M,Cl(M))→ B(H) , γ(dxµ) := γµ(x) = γaeµa , µ = 1, . . . , n ,

and extended as an A-linear algebra map. The gamma matrices {γµ(x)} and {γa}, taken
to be Hermitian, satisfy

γµ(x)γν(x) + γν(x)γµ(x) = 2g(dxµ,dxν) = 2gµν , µ, ν = 1, . . . , n ;
γaγb + γbγa = 2ηab , a, b = 1, . . . , n .

The lift∇S of the Levi-Civita connection to the bundle of spinors is then

∇Sµ = ∂µ + ωSµ = ∂µ +
1
4
ωµabγ

aγb .

The Dirac operator, defined by D = −iγ ◦ ∇S , can be written locally as

D = −iγ(dxµ)∇Sµ = −iγµ(x)(∂µ + ωSµ) = −iγaeµa(∂µ + ωSµ) . (7.11)
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From the action (7.10) of A as multiplicative operators, one finds that

[D, f ]ψ = −i(γµ∂µf)ψ , ∀ f ∈ A ,

and the commutator [D, f ] is a multiplicative operator as well and is then bounded.
The factor (−i) in the definition (7.11) is introduced to make the Dirac operator D a

symmetric (instead of skew-symmetric) operator on the dense domain S, that is,

(Dψ, φ) = (ψ,Dφ) , ∀ ψ, φ ∈ S .

The operatorD is in fact essentially self-adjoint on S, as first proved in [75] (see also [35]).
For a densely defined operator T on a Hilbert spaceH, its adjoint T ∗ has domain

Dom(T ∗) := {ψ ∈ H : ∃χ ∈ H with (Tψ, φ) = (ψ, χ) ∀ ψ ∈ Dom(T )} .

Then T ∗φ = χ or (Tψ, φ) = (ψ, T ∗φ). If T is symmetric, then T ∗ is an extension
of T , that is Dom(T ) ⊆ Dom(T ∗) with T ∗ = T on Dom(T ). The closure of T is
the second adjoint T := T ∗∗ and its domain is determined by the fact that the graph of
T is the closure of the graph of T . Symmetric operators always admit a closure with
Dom(T ) ⊆ Dom(T ) ⊆ Dom(T ∗). One says that T is self-adjoint if T = T ∗, that is T
is symmetric and closed; one says that T is essentially self-adjoint if it is symmetric and
its closure T is self-adjoint. A merely symmetric unbounded operator may have non real
elements in its spectrum; a self-adjoint operator has a real spectrum, sp(T ) ∈ R instead.

Finally, we mention the Lichnérowicz formula [2] for the square of D,

D2 = ∆S +
1
4
R ,

where R is the scalar curvature of the metric and ∆S is the Laplacian operator lifted to the
bundle of spinors,

∆S = −gµν(∇Sµ∇
S
ν − Γρµν∇

S
ρ ) ,

with Γρµν the Christoffel symbols of the connection.
If the dimension n of M is even, the previous spectral triple is even. For the grading

operator one just takes the product of all flat gamma matrices,

γ = γn+1 = i−n/2γ1 · · · γn ,

which, when n is even, anticommutes with the Dirac operator, γD+Dγ = 0. Furthermore,
the factor in/2 ensures that γ2 = I , γ∗ = γ.
Proposition 7.1 Let (A,H, D) be the canonical triple over the manifold (M, g). Then,

(1) The space M is the structure space of the algebra A of continuous functions on M .

(2) The geodesic distance between any two points on M is given by

d(p, q) = sup
f∈A
{|f(p)− f(q)| | ‖[D, f ]‖ ≤ 1} , ∀ p, q ∈M .
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(3) The Riemannian measure on M is given by∫
M

dµgf =
n(2π)n

2[n/2]Ωn
trω(f |D|−n) , ∀ f ∈ A ,

where Ωn = 2πn/2/Γ(n2 ) is the usual volume of the sphere Sn−1.

For a full proof we refer to [16]. We only mention that point (3). above is a simple con-
sequence of Thm. 7.1: Since any function f acts as a multiplicative operator, the operator
f |D|−n is pseudodifferential of order −n. On the co-sphere bundle, its principal symbol,
σ−n(x, ξ) = f(x)‖γµξµ‖−n, reduces to the matrix f(x)I2[n/2] , with 2[n/2] the rank of the
spinor bundle. From Thm. 7.1 and Def. 7.2 if follows that

trω(f |D|−n) =
2[n/2]

n(2π)n

∫
Sn−1

dξ
∫
M

dµgf =
2[n/2]Ωn
n(2π)n

∫
M

dµgf .

The metric dimension of the canonical spectral triple over the manifold M coincides
with the dimension of M . Indeed, the Weyl formula [37] for the eigenvalues of |D| gives

µk(|D|) ∼ 2π
(

n

Ωnvol(M)

)1/n

k1/n as k →∞ .

Here vol(M) =
∫
M

dµg is the volume of the manifold M . In turn, this gives for the
operator |D|n a linear growth: µk(|D|n) ∼ k and |D|−n is an infinitesimal of order 1.
Finally, the dimension spectrum for the canonical spectral triple is the set {0, 1, . . . , n} and
the corresponding singularities are simple. Multiplicities occur for singular manifolds [23].

One does not need spinor structures to recover spectral properties like the dimension
since for this the Laplacian operator suffices. For the closed Riemannian manifold (M, g)
the Laplacian operator is written is local coordinates as

∆ = −gµν(∂µ∂ν − Γρµν∂ρ) ,

and Γρµν are the Christoffel symbols of the Levi-Civita connection. The operator ∆ extends
to a positive self-adjoint operator on the Hilbert space L2(M, dµg) and (∆ + 1)−1 is
compact. The counting function for its spectrum is

N∆(λ) := #{λk(∆) : λk(∆) ≤ λ} ,

where the eigenvalues λk(∆) are counted with multiplicity and an eigenvalue of multi-
plicity m appears m times in the counting function. Weyl theorem gives an asymptotic
estimate for the counting function,

N∆(λ) ∼ Ωnvol(M)
n(2π)n

λn/2 as λ→∞ .

Finally, we mention that the construction of differential forms given in Sect. 7.5, when
applied to the canonical triple over an ordinary manifold M , reproduces the usual exterior
algebra over M : for more details we refer to [16, 47, 39].
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7.7 Reconstructing commutative geometries

The previous Section shows how the usual Riemannian spin geometry is recovered when
the algebraA the algebra of smooth functions on a manifold,H is Hilbert space of spinors,
and D the Dirac operator for the spin structure the Riemannian metric. The question of re-
construction is whether the operator-theoretic framework described above could determine
a manifold structure whenever the algebraA of the triple is commutative.This programme,
started in [18] has proved quite formidable and has been completed after 10 years only
recently in [59]. In the latter paper, using a slightly stronger set of conditions on a spectral
triple, with the additional assumption of a commutative algebra A one recovers a closed
manifold whose algebra of smooth functions coincides with A.

8 Toric noncommutative manifolds

We briefly recal the general construction of toric noncommutative manifolds given in [21]
where they were called isospectral deformations. These are deformations of a classical
Riemannian manifold and satisfy all the properties of a noncommutative spin geometry.
They are the content of the following result taken from [21],
Theorem 8.1 Let M be a compact spin Riemannian manifold whose isometry group has
rank r ≥ 2. Then M admits a natural one parameter isospectral deformation to noncom-
mutative geometries Mθ.

The idea of the construction is to deform the standard spectral triple describing the
Riemannian geometry of M along a torus embedded in the isometry group, thus obtain-
ing a family of spectral triples describing noncommutative geometries. On this class of
noncommutative manifolds, gauge theories have been constructed in [48, 49].

8.1 Deforming a torus action

Let M be an m dimensional compact Riemannian manifold equipped with an isometric
smooth action σ of an n-torus Tn, n ≥ 2. We denote by σ also the corresponding action
of Tn by automorphisms – obtained by pull-backs – on the algebra C∞(M) of smooth
functions on M .

The algebra C∞(M) may be decomposed into spectral subspaces which are indexed
by the dual group Zn = T̂n. With s = (s1, · · · , sn) ∈ Tn, each r ∈ Zn yields a character
of Tn, e2πis 7→ e2πir·s, with the scalar product r · s := r1s1 + · · · + rnsn. The r-th
spectral subspace for the action σ of Tn on C∞(M) consists of those smooth functions fr
for which

σs(fr) = e2πir·s fr, (8.1)

and each f ∈ C∞(M) is the sum of a unique series f =
∑
r∈Zn fr, which is rapidly

convergent in the Fréchet topology of C∞(M) [63]. Let now θ = (θjk = −θkj) be a real
antisymmetric n × n matrix. The θ-deformation of C∞(M) may be defined by replacing
the ordinary product by a deformed product, given on spectral subspaces by

fr ×θ gr′ := fr σ 1
2 r·θ

(gr′) = eπir·θ·r
′
frgr′ , (8.2)
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where r · θ is the element in Rn with components (r · θ)k =
∑
rjθjk for k = 1, . . . , n.

The product in (8.2) is then extended linearly to all functions in C∞(M). We denote the
spaceC∞(M) endowed with the product×θ byC∞(Mθ). The action σ of Tn onC∞(M)
extends to an action on C∞(Mθ) given again by (8.1) on the homogeneous elements.

Next, let M be a spin manifold with H := L2(M,S) the Hilbert space of spinors and
D the usual Dirac operator of the metric of M . We know from Sect. 7.6 that functions act
on spinors by pointwise multiplication thus giving a representation π : C∞(M)→ B(H).

There is a double cover c : T̃n → Tn and a representation of T̃n on H by unitary
operators U(s), s ∈ T̃n, for which U(s)π(f)U(s)−1 = π(σc(s)(f)) for all f ∈ C∞(M)
and – since the torus action is assumed to be isometric – such that

U(s)DU(s)−1 = D,

From its very definition, αs coincides on π(C∞(M)) ⊂ B(H) with the automorphism
σc(s). Recall that an element T ∈ B(H) is called smooth for the action of T̃n if the map

T̃n 3 s 7→ αs(T ) := U(s)TU(s)−1,

is smooth for the norm topology. Much as it was done before for the smooth functions, we
shall use the torus action to give a spectral decomposition of smooth elements of B(H).
Any such a smooth element T is written as a (rapidly convergent) series T =

∑
Tr with

r ∈ Zn and each Tr is homogeneous of degree r under the action of T̃n, i.e.

αs(Tr) = e2πir·sTr, ∀ s ∈ T̃n.

Let (P1, P2, . . . , Pn) be the infinitesimal generators of the action of T̃n so that we can
write U(s) = exp 2πis · P . Now, with θ a real n× n anti-symmetric matrix as above, one
defines a twisted representation of the smooth elements of B(H) onH by

Lθ(T ) :=
∑
r

TrU( 1
2r · θ) =

∑
r

Tr exp
{
πi rjθjkPk

}
,

Taking smooth functions on M as elements of B(H) – via the representation π – the pre-
vious definition gives an algebra Lθ(C∞(M)) which we may think of as a representation
(as bounded operators onH) of the algebra C∞(Mθ). Indeed, by the very definition of the
product ×θ in (8.2) one establishes that

Lθ(f ×θ g) = Lθ(f)Lθ(g),

proving that the algebraC∞(M) equipped with the product×θ is isomorphic to the algebra
Lθ(C∞(M)). It is shown in [63] that there is a natural completion of the algebra C∞(Mθ)
to a C∗-algebra C(Mθ) whose smooth subalgebra – under the extended action of Tn – is
precisely C∞(Mθ). Thus, we can understand Lθ as a quantization map from

Lθ : C∞(M)→ C∞(Mθ),

which provides a strict deformation quantization in the sense of Rieffel. More generally,
in [63] one considers a (not necessarily commutative) C∗-algebra A carrying an action of
Rn. For an anti-symmetric n×nmatrix θ, one defines a star product×θ between elements
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in A much as we did before. The algebra A equipped with the product ×θ gives rise
to a C∗-algebra denoted by Aθ. Then the collection {A~θ}~∈[0,1] is a continuous family
of C∗-algebras providing a strict deformation quantization in the direction of the Poisson
structure on the algebra A defined by the matrix θ.

Our case corresponds to the choice A = C(M) with an action of Rn that is periodic
or, in other words, an action of Tn. The smooth elements in the deformed algebra make up
the algebra C∞(Mθ). The quantization map will play a key role in what follows, allowing
us to extend differential geometric techniques from M to the noncommutative space Mθ.

It was shown in [21] that the datum (Lθ(C∞(M)),H, D) satisfies all properties of a
noncommutative spin geometry as listed in Sect. 7; there is also a grading γ (for the even
case) and a real structure J . In particular, boundedness of the commutators [D,Lθ(f)] for
f ∈ C∞(M) follows from [D,Lθ(f)] = Lθ([D, f ]), D being of degree 0 (since Tn acts
by isometries, each Pk commutes with D). This noncommutative geometry is an isospec-
tral deformation of the classical Riemannian geometry of M , in that the spectrum of the
operator D coincides with that of the Dirac operator D on M . Thus all spectral properties
are unchanged. In particular, the triple is m+-summable and there is a noncommutative
integral as a Dixmier trace [33],∫

− Lθ(f) := Trω
(
Lθ(f)|D|−m

)
,

with f ∈ C∞(Mθ) understood in its representation onH.

8.2 The manifold Mθ as a fixed point algebra

A different but equivalent approach to these noncommutative manifolds Mθ was intro-
duced in [20]. In there the algebra C∞(Mθ) is identified as a fixed point subalgebra of
C∞(M) ⊗ C∞(Tnθ ) where C∞(Tnθ ) is the algebra of smooth functions on the noncom-
mutative torus. This identification was shown to be useful in extending techniques from
commutative differential geometry on M to the noncommutative space Mθ.

We recall the definition of the noncommutative n-torus Tnθ (see for instance [62]).
Let θ = (θjk = −θkj) be a real n × n anti-symmetric matrix as before, and let λjk =
e2πiθjk . The unital ∗-algebra A(Tnθ ) of polynomial functions on Tnθ is generated by n
unitary elements Uk, k = 1, . . . , n, with relations

U jUk = λjkUkU j , j, k = 1, . . . , n.

The polynomial algebra is extended to the universal C∗-algebra with the same genera-
tors. There is a natural action of Tn on A(Tnθ ) by ∗-automorphisms given by τs(Uk) =
e2πiskUk with s = (sk) ∈ Tn. The corresponding infinitesimal generators Xk of the ac-
tion are algebra derivations given explicitly on the generators by Xk(U j) = 2πiδjk. They
are used [12] to construct the pre-C∗-algebra C∞(Tnθ ) of smooth functions on Tnθ , the
completion of A(Tnθ ) with respect to the locally convex topology generated by the semi-
norms,

|u|r := sup
r1+···+rn≤r

‖Xr1
1 · · ·Xrn

n (u)‖,
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and ‖ · ‖ is the C∗-norm. The algebra C∞(Tnθ ) turns out to be a nuclear Fréchet space and
one can unambiguously take the completed tensor product C∞(M)⊗C∞(Tnθ ). Then, one

defines
(
C∞(M)⊗C∞(Tnθ )

)σ⊗τ−1

as the fixed point subalgebra of C∞(M)⊗C∞(Tnθ )
consisting of elements a in the tensor product that are invariant under the diagonal action
of Tn, i.e. such that σs ⊗ τ−s(a) = a for all s ∈ Tn. The noncommutative manifold Mθ

is defined by “duality” by setting for its functions,

C∞(Mθ) :=
(
C∞(M)⊗C∞(Tnθ )

)σ⊗τ−1

.

As the notation suggests, the algebra C∞(Mθ) is isomorphic to the algebra Lθ(C∞(M))
defined in the previous section.

Next, let S be a spin bundle over M and D the Dirac operator on Γ∞(M,S), the
C∞(M)-module of smooth sections of S . The action of the group Tn on M does not lift
directly to the spinor bundle. Rather, there is a double cover c : T̃n → Tn and a group
homomorphism s̃→ Vs̃ of T̃n into Aut(S) covering the action of Tn on M ,

Vs̃(fψ) = σc(s)(f)Vs̃(ψ),

for f ∈ C∞(M) and ψ ∈ Γ∞(M,S). According to [20], the proper notion of smooth
sections Γ∞(Mθ,S) of a spinor bundle on Mθ are elements of Γ∞(M,S)⊗̂C∞(Tnθ/2)
which are invariant under the diagonal action V × τ̃−1 of T̃n. Here s̃ 7→ τ̃ s̃ is the canonical
action of T̃n on A(Tnθ/2). Since the Dirac operator D commutes with Vs̃ (remember that
the torus action is isometric) one can restrictD⊗ I to the fixed point elements Γ∞(Mθ,S).

Then, let L2(M,S) be the space of square integrable spinors on M and let L2(Tnθ/2)
be the completion of C∞(Tnθ/2) in the norm a 7→ ‖a‖ = tr(a∗a)1/2, with tr the usual

trace on C∞(Tnθ/2). The diagonal action V × τ̃−1 of T̃n extends to L2(M,S)⊗L2(Tnθ/2)
(where it becomesU×τ ) and one definesL2(Mθ,S) to be the fixed point Hilbert subspace.
If D also denotes the closure of the Dirac operator on L2(M,S), one still denotes by D
the operator D ⊗ I on L2(M,S) ⊗ L2(Tnθ/2) when restricted to L2(Mθ,S). The triple
(C∞(Mθ), L2(Mθ,S), D) is an m+-summable noncommutative spin geometry.

9 The spectral geometry of the quantum group SUq(2)

As mentioned in the Introduction, there are by now several examples of noncommuta-
tive geometries on spaces coming from quantum groups. These include quantum two
spheres [31, 56, 66, 28, 25, 27], the quantum group SUq(2) [10, 19, 29, 30], the
quantum flag manifolds [46] and a quantum Euclidead four-sphere [26]. To illustrate
these examples, in this Section we shall briefly describe the isospectral spectral triple
(A(SUq(2)),H, D) for the quantum group SUq(2) given in [29].

The possibility of such a geometry was suggested in [21]. After some initial skepti-
cism [38], the programme was completed in [29] with the construction of a 3-dimensional
noncommutative geometry on the manifold of SUq(2). The spectrum of the operator D
is the same as that of the Dirac operator on the 3-sphere S3 ' SU(2) with it rotation-
invariant metric. In this sense the deformation, from SU(2) to SUq(2), is isospectral and
in particular the metric dimension of the spectral geometry is 3. The spectral triple is
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equivariant with respect to the symmetry algebra Uq(su(2)) ⊗ Uq(su(2)) of the quantum
group manifold SUq(2), implemented as a pair of commuting left and right actions of
Uq(su(2)) on the algebra A = A(SUq(2)). The equivariance allows us to compute the
spin representation of the algebra A and selects a class of possible Dirac operators D.

An equivariant real structure J is constructed by suitably lifting to the Hilbert space of
spinors H the Tomita conjugation operator for the left regular representation of A. How-
ever, unlike the Tomita operator for the spin representation, this J does not intertwine the
spin representation of A with its commutant. It is thus incompatible with the full set of
requirements for a real spectral triple as given in Sect. 7.3. It turns out that this commutant
property, and the companion “first-order” property of D, still hold up to infinitesimals of
arbitrarily high order.

9.1 The algebras of functions and of symmetries

We start with some algebraic preliminaries on the algebras of functions A = A(SUq(2))
and of infinitesimal symmetries Uq(su(2)).
Definition 9.1 For q real, 0 < q < 1, we denote by A = A(SUq(2)) the ∗-algebra
generated by a and b, subject to the commutation rules

ba = qab, b∗a = qab∗, bb∗ = b∗b,

a∗a+ q2b∗b = 1, aa∗ + bb∗ = 1.

At q = 1 this is just the algebra of polynomial functions on the manifold of the group
G = SU(2). The group structure is dualized into the one of a Hopf algebra structure for
the algebra of representable functions on the group. And this is generalized to the notion
of a quantum groups, that is a Hopf structure algebra on the algebra A(SUq(2)).
Definition 9.2 The algebra A(SUq(2)) comes with a Hopf ∗-algebra structure, with

coproduct: ∆a := a⊗ a− q b⊗ b∗, ∆b := b⊗ a∗ + a⊗ b ;

counit: ε(a) = 1, ε(b) = 0 ;

antipode: Sa = a∗, Sb = −qb, Sb∗ = −q−1b∗, Sa∗ = a .

Definition 9.3 The Hopf ∗-algebra U = Uq(su(2)) is generated as an algebra by elements
e, f, k, with k invertible, satisfying the relations

ek = qke, kf = qfk, k2 − k−2 = (q − q−1)(fe− ef).

and involution: k∗ = k, f∗ = e, e∗ = f . The coproduct ∆ is given by

∆k = k ⊗ k, ∆e = e⊗ k + k−1 ⊗ e, ∆f = f ⊗ k + k−1 ⊗ f,

while its counit ε and antipode S are given respectively by

ε(k) = 1, ε(f) = 0, ε(e) = 0,

Sk = k−1, Sf = −qf, Se = −q−1e.
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With k = qH , in the q = 1 limit the elementsH, f, e generate the Lie algebra su(2) and the
universal enveloping algebra U(su(2)). The action of su(2) (and of U(su(2))) on SU(2)
is generalized to a pairing between the corresponding deformed algebras.
Definition 9.4 The duality pairing between U and A is defined on generators by

〈k, a〉 = q
1
2 , 〈k, a∗〉 = q−

1
2 , 〈e,−qb∗〉 = 〈f, b〉 = 1,

with all other couples of generators pairing to 0. It satisfies

〈(Sh)∗, x〉 = 〈h, x∗〉, for all h ∈ U , x ∈ A.

This pairing gives [76] canonical left and right U-module algebra structures on A by

〈g, h . x〉 := 〈gh, x〉 〈g, x / h〉 := 〈hg, x〉 , for all g, h ∈ U , x ∈ A.

These mutually commuting actions of U on A are given by

h . x := (id⊗h) ∆x = x(1)

〈
h, x(2)

〉
,

x / h := (h⊗ id) ∆x =
〈
h, x(1)

〉
x(2),

using the Sweedler notation ∆x =: x(1) ⊗ x(2) with implicit summation. It follows from
the properties in Def. 9.4 that the star structure is compatible with both actions,

h . x∗ = ((Sh)∗ . x)∗, x∗ / h = (x / (Sh)∗)∗, for all h ∈ U , x ∈ A,

and they are linked through the antipodes: S(Sh . x) = Sx / h.
Let us onsider the algebra automorphism ϑ of U defined on generators by

ϑ(k) := k−1, ϑ(f) := −e, ϑ(e) := −f,

and which is an antiautomorphism for the coalgebra structure of U . Since S−1 ◦ ϑ is
an algebra antiautomorphism of U , it converts a right action into a left action; and because
both S−1 and ϑ are coalgebra antiautomorphisms, S−1◦ϑ preserves the coalgebra structure
of U . Thus, we get a second left action defined by

h · x := x / S−1(ϑ(h)).

and commuting with the first one. Both left actions are given on all generators by:

k . a = q
1
2 a, k . a∗ = q−

1
2 a∗, k . b = q−

1
2 b, k . b∗ = q

1
2 b∗,

f . a = 0, f . a∗ = −qb∗, f . b = a, f . b∗ = 0,

e . a = b, e . a∗ = 0, e . b = 0, e . b∗ = −q−1a∗,

and

k · a = q
1
2 a, k · a∗ = q−

1
2 a∗, k · b = q

1
2 b, k · b∗ = q−

1
2 b∗,

f · a = 0, f · a∗ = qb, f · b = 0, f · b∗ = −a,
e · a = −b∗, e · a∗ = 0, e · b = q−1a∗, e · b∗ = 0.
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Together, they give a left action of Uq(su(2)) ⊗ Uq(su(2)) on A(SUq(2)), that extends
to the case q 6= 1 the (infinitesimal) classical action of Spin(4) = SU(2)) × SU(2) on
SU(2) ≈ S3, realized as two commuting left actions of SU(2).

Next, we recall [45] that A has a vector-space basis consisting of matrix elements of
its irreducible corepresentations, {tlmn : 2l ∈ N, m, n = −l, . . . , l − 1, l}, with

t000 = 1, t
1
2
1
2 ,

1
2

= a, t
1
2
1
2 ,−

1
2

= b.

The coproduct has the matricial form ∆tlmn =
∑
k t
l
mk ⊗ tlkn, while the product is

tjrst
l
mn =

j+l∑
k=|j−l|

Cq

(
j l k
r m r +m

)
Cq

(
j l k
s n s+ n

)
tkr+m,s+n,

where the Cq(−) factors are q-Clebsch–Gordan coefficients [4, 44].
The Haar state ψ on the C∗-completion C(SUq(2)) is determined by setting ψ(1) := 1

and ψ(tlmn) := 0 if l > 0. Let Hψ = L2(SUq(2), ψ) be the Hilbert space of its GNS
representation. The GNS map η : C(SUq(2))→ Hψ is injective and satisfies

‖η(tlmn)‖2 = ψ((tlmn)∗ tlmn) =
q−2m

[2l + 1]
,

and the vectors η(tlmn) are mutually orthogonal. The involution in C(SUq(2)) is given by

(tlmn)∗ = (−1)2l+m+nqn−m tl−m,−n, (9.1)

and in particular, t
1
2
− 1

2 ,
1
2

= −qb∗ and t
1
2
− 1

2 ,−
1
2

= a∗. An orthonormal basis of Hψ is given
by

|lmn〉 := qm [2l + 1]
1
2 η(tlmn). (9.2)

We denote by πψ the corresponding GNS representation of C(SUq(2)) onHψ ,

πψ(x) |lmn〉 := qm [2l + 1]
1
2 η(x tlmn). (9.3)

9.2 The equivariant representation of A(SUq(2))

The regular representation of the algebra A(SUq(2)) on its GNS space Hψ is fully deter-
mined by its equivariance properties with respect to the left Hopf action of U ⊗ U .
Definition 9.5 Let λ and ρ be mutually commuting representations of the Hopf algebra U
on a vector space V . A representation π of the ∗-algebra A on V is (λ, ρ)-equivariant if
the following compatibility relations hold [68]:

λ(h)π(x)ξ = π(h(1) · x)λ(h(2))ξ, ρ(h)π(x)ξ = π(h(1) . x) ρ(h(2))ξ,

for all h ∈ U , x ∈ A and ξ ∈ V .
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For the case at hand, the two Uq(su(2)) symmetries λ and ρ decompose into compo-
nents according to the irreducible (involutive) representations of U = Uq(su(2)), which are
well known [45]. The irreducible ∗-representations σl of Uq(su(2)) are labelled by non-
negative half-integers l = 0, 1

2 , 1,
3
2 , 2, . . . , acting on U-modules Vl with dimVl = 2l + 1,

and having orthonormal bases {|lm〉 : m = −l,−l + 1, . . . , l − 1, l}; they are given by

σl(k) |lm〉 = qm |lm〉 ,

σl(f) |lm〉 =
√

[l −m][l +m+ 1] |l,m+ 1〉 , (9.4)

σl(e) |lm〉 =
√

[l −m+ 1][l +m] |l,m− 1〉 .

Here, for each n ∈ Z, [n] =:= (qn − q−n)/(q − q−1) is the corresponding “q-integer”.

The equivariant representation of A(SUq(2)) acts on the pre-Hilbert space

V :=
∞⊕

2l=0

Vl ⊗ Vl,

while the symmetries λ and ρ act on the first and the second leg of the tensor product
respectively, via the irreducible representations (9.4),

λ(h) = σl(h)⊗ id, ρ(h) = id⊗σl(h) on Vl ⊗ Vl.

We abbreviate |lmn〉 := |lm〉⊗ |ln〉, for m,n = −l, . . . , l− 1, l. These form an orthonor-
mal basis for Vl ⊗ Vl, for each fixed l. Also, we adopt a shorthand notation,

l± := l ± 1
2
, m± := m± 1

2
, n± := n± 1

2
.

Proposition 9.1 A (λ, ρ)-equivariant ∗-representation π of A(SUq(2)) on V must have
the following form,

π(a) |lmn〉 = A+
lmn

∣∣l+m+n+
〉

+A−lmn
∣∣l−m+n+

〉
,

π(b) |lmn〉 = B+
lmn

∣∣l+m+n−
〉

+B−lmn
∣∣l−m+n−

〉
, (9.5)

where, up to phase factors depending only on l, the constants A±lmn and B±lmn are,

A+
lmn = q(−2l+m+n−1)/2

(
[l +m+ 1][l + n+ 1]

[2l + 1][2l + 2]

) 1
2

,

A−lmn = q(2l+m+n+1)/2

(
[l −m][l − n]

[2l][2l + 1]

) 1
2

,

B+
lmn = q(m+n−1)/2

(
[l +m+ 1][l − n+ 1]

[2l + 1][2l + 2]

) 1
2

,

B−lmn = −q(m+n−1)/2

(
[l −m][l + n]

[2l][2l + 1]

) 1
2

.

As shown in [29], the formulae (9.5) give precisely the left regular representation πψ
of A(SUq(2)) in (9.3). The identification (9.2) embeds the pre-Hilbert space V densely
in the Hilbert space Hψ , and the representation πψ extends to the GNS representation of
C(SUq(2)) onHψ , as described by the Peter–Weyl theorem [45, 76].
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9.3 The spin representation

Definition 9.6 The left regular representation π of A is amplified to π′ = π ⊗ id on

W := V ⊗ C2 = V ⊗ V 1
2
.

In the commutative case when q = 1, this yields the spinor representation of SU(2),
because the spinor bundle is parallelizable, S ' SU(2) × C2. The representation theory
of U (and the corepresentation theory ofA) follows the same pattern: when q 6= 1 only the
Clebsch–Gordan coefficients need to be modified [44]. The Clebsch–Gordan decomposi-
tion of W is the (algebraic) direct sum

W =
( ∞⊕

2l=0

Vl ⊗ Vl
)
⊗ V 1

2
' V 1

2
⊕
∞⊕

2j=1

(Vj+ 1
2
⊗ Vj)⊕ (Vj− 1

2
⊗ Vj),

= W ↑0 ⊕
⊕
2j≥1

W ↑j ⊕W
↓
j . (9.6)

Here W ↑j ' Vj+ 1
2
⊗ Vj and W ↓j ' Vj− 1

2
⊗ Vj , with dimW ↑j = (2j + 1)(2j + 2), and

dimW ↓j = 2j(2j + 1), for j = 0, 1
2 , 1,

3
2 , . . . (there is no W ↓0 ).

Definition 9.7 We amplify the representation ρ of U on V to ρ′ = ρ⊗ id onW = V ⊗C2.
However, we replace λ on V by its tensor product with σ 1

2
on C2,

λ′(h) := (λ⊗ σ 1
2
)(∆h) = λ(h(1))⊗ σ 1

2
(h(2)).

It is straightforward to check that the representations λ′ and ρ′ on W commute, and that
the representation π′ of A on W is (λ′, ρ′)-equivariant,

λ′(h)π′(x)ψ = π′(h(1) · x)λ′(h(2))ψ, ρ′(h)π′(x)ψ = π′(h(1) . x) ρ′(h(2))ψ,

for all h ∈ U , x ∈ A and ψ ∈W .
The Hilbert space of spinors is H := Hψ ⊗ C2, which is just the completion of W . It

can be decomposed as H = H↑ ⊕ H↓, where H↑ and H↓ are the respective completions
of
⊕

2j≥0W
↑
j and

⊕
2j≥1W

↓
j . An better explicit basis for W , is given as follows.

For j = l + 1
2 , µ = m− 1

2 , with µ = −j, . . . , j and n = −j−, . . . , j−, let

|jµn ↓〉 := Cjµ
∣∣j−µ+n

〉
⊗
∣∣∣∣12 ,−1

2

〉
+ Sjµ

∣∣j−µ−n〉⊗ ∣∣∣∣12 ,+1
2

〉
;

and for j = l − 1
2 , µ = m− 1

2 , with µ = −j, . . . , j and n = −j+, . . . , j+, let

|jµn ↑〉 := −Sj+1,µ

∣∣j+µ+n
〉
⊗
∣∣∣∣12 ,−1

2

〉
+ Cj+1,µ

∣∣j+µ−n
〉
⊗
∣∣∣∣12 ,+1

2

〉
,

where the coefficients are

Cjµ := q−(j+µ)/2 [j − µ]
1
2

[2j]
1
2
, Sjµ := q(j−µ)/2 [j + µ]

1
2

[2j]
1
2
.
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Notice that there are no ↓ vectors for j = 0. It is straightforward to verify that these vectors
make up orthonormal bases for W ↓j and W ↑j , respectively.

The representation π′ can be computed in the new spinor basis by conjugating the form
of π ⊗ id found in Prop. 9.1 by the basis transformation (9.7). Equivalently, it can also be
derived from the (λ′, ρ′)-equivariance.
Definition 9.8 For j = 0, 1

2 , 1,
3
2 , . . . , with µ = −j, . . . , j and n = −j − 1

2 , . . . , j + 1
2 ,

we juxtapose the pair of spinors

|jµn〉〉 :=

(
|jµn ↑〉

|jµn ↓〉

)
,

with the convention that the lower component is zero when n = ±(j + 1
2 ) or j = 0.

Furthermore, a matrix with scalar entries,

A =
(
A↑↑ A↑↓
A↓↑ A↓↓

)
,

is understood to act on |jµn〉〉 by the rule:

A |jµn ↑〉 = A↑↑ |jµn ↑〉+A↓↑ |jµn ↓〉 , A |jµn ↓〉 = A↓↓ |jµn ↓〉+A↑↓ |jµn ↑〉 .

Proposition 9.2 The spinor ∗-representation π′ := π ⊗ id of A onH is written as

π(a) := a+ + a−, π(b) := b+ + b−,

where a± and b± are, up to phase factors depending only on j, the triangular operators,

a+ |jµn〉〉 := q(µ+n− 1
2 )/2[j + µ+ 1]

1
2

·

q−j− 1
2

[j+n+ 3
2 ]1/2

[2j+2] 0

q
1
2

[j−n+ 1
2 ]1/2

[2j+1] [2j+2] q−j
[j+n+ 1

2 ]1/2

[2j+1]

 |j+µ+n+〉〉,

a− |jµn〉〉 := q(µ+n− 1
2 )/2[j − µ]

1
2

·

qj+1 [j−n+ 1
2 ]1/2

[2j+1] −q 1
2

[j+n+ 1
2 ]1/2

[2j] [2j+1]

0 qj+
1
2

[j−n− 1
2 ]1/2

[2j]

 |j−µ+n+〉〉,

b+ |jµn〉〉 := q(µ+n− 1
2 )/2[j + µ+ 1]

1
2

·

 [j−n+ 3
2 ]1/2

[2j+2] 0

−q−j−1 [j+n+ 1
2 ]1/2

[2j+1] [2j+2] q−
1
2

[j−n+ 1
2 ]1/2

[2j+1]

 |j+µ+n−〉〉,

b− |jµn〉〉 := q(µ+n− 1
2 )/2[j − µ]

1
2

·

−q− 1
2

[j+n+ 1
2 ]1/2

[2j+1] −qj [j−n+ 1
2 ]1/2

[2j] [2j+1]

0 − [j+n− 1
2 ]1/2

[2j]

 |j−µ+n−〉〉.
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9.4 The equivariant Dirac operator

The Casimir element of Uq(su(2)) can be taken to be Cq = qk2 +q−1k−2 +(q−q−1)2ef .
The symmetric operators λ′(Cq) and ρ′(Cq) on H, defined with dense domain W , extend
to selfadjoint operators onH and the subspaces W ↑j , W ↓j are their joint eigenspaces,

λ′(Cq) |jµn ↑〉 = (q2j+1 + q−2j−1) |jµn ↑〉 ,
ρ′(Cq) |jµn ↑〉 = (q2j+2 + q−2j−2) |jµn ↑〉 ,
λ′(Cq) |jµn ↓〉 = (q2j+1 + q−2j−1) |jµn ↓〉 ,
ρ′(Cq) |jµn ↓〉 = (q2j + q−2j) |jµn ↓〉 ,

The finite-dimensional subspaces W ↑j and W ↓j will reduce any selfadjoint operator D
onH which commutes strongly with λ′(Cq) and ρ′(Cq). If we require that D be invariant
under the actions λ′ and ρ′, we get the following stronger condition.
Lemma 9.1 Let D be a selfadjoint operator that commutes strongly with λ′(h) and ρ′(h),
for each h ∈ U . Then the subspaces W ↑j and W ↓j are eigenspaces for D,

D |jµn ↑〉 = d↑j |jµn ↑〉 , D |jµn ↓〉 = d↓j |jµn ↓〉 , (9.8)

where d↑j and d↓j are real eigenvalues of D which depend only on j. Their respective
multiplicities are (2j + 1)(2j + 2) and 2j(2j + 1).

Additional natural restrictions on the eigenvalues d↑j , d
↓
j of the operator D will come

from the crucial requirement of boundedness of the commutators [D,π′(x)] for x ∈ A.
The “q-Dirac” operator D proposed in [3] corresponds to taking, in our notation,

d↑j =
2 [2j + 1]
q + q−1

, d↓j = −d↑j .

These are q-analogues of the classical eigenvalues of D/ − 1
2 where D/ is the classical Dirac

operator on the sphere S3 (with the round metric). For this particular choice it follows
directly from the explicit form of the representation in Prop. 9.2 that, for instance, the
commutator [D,π′(a)] is unbounded. This fact was already noted in [21] and it was sug-
gested that one should instead consider an operator D whose spectrum is just that of the
classical Dirac operator D/ .

Proposition 9.3 Let D be any selfadjoint operator with eigenspaces W ↑j and W ↓j , and
eigenvalues (9.8). If the eigenvalues d↑j and d↓j are linear in j,

d↑j = c↑1j + c↑2, d↓j = c↓1j + c↓2,

with c↑1, c↑2, c↓1, c↓2 not depending on j, then [D,π′(x)] is a bounded operator for all x ∈ A.

A selfadjoint operator D as in Prop. 9.3 is essentially the only possibility for a Dirac
operator satisfying a (modified) first-order condition. It is necessary that we assume c↓1c

↑
1 <

0 in order that the sign of the operator D be nontrivial; but up to irrelevant scaling factors
the choice of c↑j , c↓j is otherwise immaterial. With the particular choice d↑j = 2j + 3

2 and
d↓j = −2j − 1

2 , the spectrum of D, with multiplicity, coincides with that of the classical
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Dirac operator D/ on the round sphere S3. Thus, we can regard our spectral triple as an
isospectral deformation of (C∞(S3),H, D/ ), and in particular, its spectral dimension is 3.

The above particular choice of the classical eigenvalues has an extra benefit: it is easy
to prove regularity. We summarize our conclusions in the following theorem.
Theorem 9.1 The triple (A(SUq(2)),H, D), where the eigenvalues of D are given by

d↑j = 2j +
3
2
, d↓j = −2j − 1

2
,

is a regular 3+-summable spectral triple.

9.5 The real structure

For the manifold of SUq(2), by adding an equivariant real structure J it is not possible to
satisfy all usual properties of a real spectral triple, while having a nontrivial Dirac operator.
The commutant properties: that J intertwines a left action and a commuting right action of
the algebra on the Hilbert space; and the first order condition on D: that the commutators
[D, a], for any element a in the algebra, commute with the opposite action by any b, are
satisfied only up to a certain ideal of compact operators.

On the GNS representation space Hψ , the natural involution Tψ : η(x) 7→ η(x∗), is
an unbounded (antilinear) operator onHψ with domain η(C(SUq(2))). From the Tomita–
Takesaki theory [70], its closure has a polar decomposition Tψ =: Jψ∆1/2

ψ which defines
both the positive “modular operator” ∆ψ and the antiunitary “modular conjugation” Jψ .
From (9.1) and (9.2) it follows that

Tψ |lmn〉 = (−1)2l+m+nqm+n |l,−m,−n〉 ,

and the adjoint antilinear operator is given by

T ∗ψ |lmn〉 = (−1)2l+m+nq−m−n |l,−m,−n〉 .

Since ∆ψ = T ∗ψTψ , it follows that every vector |lmn〉 lies in the domain Dom ∆ψ with
∆ψ |lmn〉 = q2m+2n |lmn〉. Consequently,

Jψ |lmn〉 = (−1)2l+m+n |l,−m,−n〉 .

It is clear that J2
ψ = 1 onHψ .

Definition 9.9 Let π◦(x) := Jψ π(x∗) J−1
ψ , so that π◦ is a ∗-antirepresentation of A

on Hψ . Equivalently, π◦ is a ∗-representation of the opposite algebra A(SU1/q(2)). By
Tomita’s theorem [70], π and π◦ are commuting representations.

The (λ, ρ)-equivariance of π is reflected in an analogous equivariance condition for π◦.
Lemma 9.2 The symmetry of the antirepresentation π◦ of A onHψ is given by the equiv-
ariance conditions,

λ(h)π◦(x)ξ = π◦(h̃(2) · x)λ(h(1))ξ, ρ(h)π◦(x)ξ = π◦(h̃(2) . x) ρ(h(1))ξ,

for all h ∈ U , x ∈ A and ξ ∈ Hψ . Here h 7→ h̃ is the automorphism of U determined on
generators by k̃ := k, f̃ := q−1f , and ẽ := qe.
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Recall that Tψη(x) = η(x∗) for all x ∈ A and that η(x) = π(x) |000〉. From Def. 9.5
one finds that for generators h of U ,

Tψλ(h)π(x) |000〉 = π(x∗ / ϑ(h)∗) |000〉 = λ(S(h)∗)Tψπ(x) |000〉 ,

where we have used the relation S(ϑ(h)∗) = ϑ(S(h)∗). Since the vector |000〉 is separat-
ing for the GNS representation, we conclude that

Tψ λ(h)T−1
ψ = λ((Sh)∗).

Similarly, we find that Tψ ρ(h)T−1
ψ = ρ((Sh)∗). Thus, the antilinear involutory automor-

phism h 7→ (Sh)∗ of the Hopf ∗-algebra U is implemented by the Tomita operator for the
Haar state of the dual Hopf ∗-algebraA. This is a known feature of quantum-group duality
in the C∗-algebra framework [55].

The first step in defining an operator J on spinors is to construct the “right multipli-
cation” representation of A on spinors from its symmetry alone, in close parallel with the
equivariance conditions of Lem. 9.2 for the right regular representation π◦ of A on Hψ .
Then, the conjugation operator J on spinors is constructed as the one that intertwines the
left and the right spinor representations.
Proposition 9.4 Let π′◦ be an antirepresentation of A on H = Hψ ⊕ Hψ satisfying the
following equivariance conditions:

λ′(h)π′◦(x)ξ = π′◦(h̃(2) ·x)λ′(h(1))ξ, ρ′(h)π′◦(x)ξ = π′◦(h̃(2) . x) ρ′(h(1))ξ.

Then, up to some phase factors depending only on the index j in the decomposition (9.6),
π′◦ is given on the spinor basis by π′◦(a) = a◦+ + a◦− and π′◦(b) = b◦+ + b◦−, where
in direct analogy with spinor representation in Prop. 9.2, the operators a◦± and b◦± have
the triangular-matrix form as there, acting on the same respective basis vectors: but with
the coefficients of a± modified by the replacement q 7→ q−1, while the coefficients of b±
are modified by the replacement q 7→ q−1 and by multiplying the result by an overall
factor q−1.

Definition 9.10 The conjugation operator J is the antilinear operator onH defined explic-
itly on the orthonormal spinor basis by

J |jµn ↑〉 := i2(2j+µ+n) |j,−µ,−n, ↑〉 ,
J |jµn ↓〉 := i2(2j−µ−n) |j,−µ,−n, ↓〉 .

It is immediate to see that J is antiunitary and that J2 = −1, since each 4j ± 2(µ+ n) is
an odd integer.
Proposition 9.5 The operator J intertwines the left and right spinor representations:

J π′(x∗) J−1 = π′◦(x), for all x ∈ A.

For the invariant operator D of Sect. 9.4, from the diagonal form of both D and J on
their common eigenspacesW ↑j andW ↓j , given by the respective equations (9.8) and (9.10),
it easily follows that D and J commute.
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Proposition 9.6 The invariant operator D of equation (9.8) commutes with the conjuga-
tion operator J of Def. 9.10:

JDJ−1 = D.

The conjugation operator J of Def. 9.10 is not the Tomita modular conjugation for
the spinor representation of A, a fact having consequences on some of the requirements
for a real spectral triple, as we shall see presently. The Tomita operator for spinor is
Jψ ⊕ Jψ , which does not have a diagonal form in our chosen spinor basis (unless q = 1).
As mentioned above, conjugation of π′(A(SUq(2)) by the modular operator would yield
a representation of the opposite algebra A(SU1/q(2)), and the commutation relation anal-
ogous to (9.6) would then require D to be equivariant under the corresponding symmetry
of U1/q(su(2)). This extra equivariance condition would force D to be merely a scalar op-
erator, thereby ruling out the possibility of an equivariant 3+-summable real spectral triple
on A(SUq(2)) with the modular conjugation operator.

In order to get a nontrivial Dirac operator, the remedy is to modify J to a non-Tomita
conjugation operator. As mentioned, the price to pay for this is that the conditions for
a real spectral triple must be weakened: these are only satisfied up to certain trace-class
operators, in fact infinitesimals of arbitrary high order.
Definition 9.11 We denote byKq be the two-sided ideal of B(H) generated by the positive
trace-class operators Lq given by

Lq|jµn〉〉 := qj |jµn〉〉 for j ∈ 1
2
N,

The spectral triple over A(SUq(2)) is characterized by the folowing,
Theorem 9.2 The real spectral triple (A(SUq(2)),H, D, J), with A(SUq(2)) acting on
H via the spinor representation π′ of Prop. 9.2, satisfies both the commutant property and
the first order condition up to infinitesimals,

[π′◦(x), π′(y)] ∈ Kq, [π′◦(x), [D,π′(y)]] ∈ Kq, ∀x, y ∈ A(SUq(2)).

The ideal Kq is made of trace-class operators and is contained in the ideal of infinites-
imals of arbitrary high order. With Def. 7.1, a compact operator T is an infinitesimal of
arbitrary high order if its singular values µj(T ) satisfy limj→∞ jpµj(A) = 0 for all p > 0.
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[66] K Schmüdgen, E Wagner: Dirac operator and a twisted cyclic cocycle on the stan-
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Introduction

A (co)homology theory is a functor from a subcategory of the category of topological
spaces (e. g. the category of manifolds, the category of CW-complexes, etc.) to an alge-
braic category (e. g. the category of Abelian groups, the category of rings, etc) satisfying
additional axioms. For the category of manifolds it is natural to have a cohomology theory
which is constructed via the differentiable structure. The de Rham cohomology theory is
a classical cohomology theory of this type. For the most important classes of differen-
tiable manifolds, de Rham cohomology coincides with cohomology constructed in a pure
topological way, and therefore gives us a possibility to establish relation between the in-
variants of differential geometric structures on a manifold and the topological invariants of
this manifold. This fact results in numerous applications of de Rham cohomology: various
characteristic classes, de Rham-like complexes associated to differential structures, etc.

The aim of the present paper is to give a brief introduction to the de Rham cohomology
theory and to expose some relevant results in differential geometry. We do not give proofs,
however we provide the reader with references to literature where he can find detailed
exposition including proofs of results formulated here.

1This paper was written during the author’s visit to Universidad de Los Andes (Bogota, Colombia). The
author is thankful to Departamento de Matemáticas, Facultad de Ciencias de Universidad de los Andes (Bogotá,
Colombia), and Grupo Sanford for invitation, hospitality, and financial support during his visit in September-
October, 2006. Also he expresses his deep gratitude to professor José Ricardo Arteaga Bejarano for useful
cooperation and constant support.

8 B.V. .
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1 De Rham complex

1.1 De Rham complex. De Rham cohomology

1.1.1 The algebra of differential forms on smooth manifold

Let M be an n-dimensional smooth manifold. A differential form ω of degree k (k-form)
on M is a skewsymmetric tensor field of type (k, 0): p → ω(p)(X1, . . . , Xk), where
p ∈M , and X1, . . . , Xk are vectors in TpM . Note that a differential 0-form is a function,
and, for k > n, each differential k-form vanishes.

For any differential k-form ω and m-form η, the wedge product ω ∧ η is defined as
follows:

ω ∧ η =
1

(k +m)!

∑
σ∈Sk+m

ε(σ)ω(Xσ(1), . . . , Xσ(k))η(Xσ(k+1), . . . , Xσ(k+m)),

where Sk+m is the group of all permutations of the set {1, . . . , k + m}, and ε(σ) is the
sign of σ.

Let Ωk(M) be the vector space of all differential k-forms on M , and Ω(M) =
n
⊕
k=0

Ωk(M). Then the wedge product turns Ω(M) into a supercommutative associative

graded algebra: for ω ∈ Ωk(M), η ∈ Ωm(M), we have ω ∧ η = (−1)kmη ∧ ω.
With respect to local coordinates xi, a k-form ω is written as follows:

ω =
∑

i1<i2...<ik

ωi1...ik(xi)dxi1 ∧ . . . ∧ dxik .

Let M , M ′ be smooth manifolds, then any smooth map f : M → M ′ determines an
algebra homomorphism f∗ : Ω(M ′)→ Ω(M),

f∗ω′(X1, . . . , Xk) = ω(dfX1, . . . , dfXk),

where df : TM → TM ′ is the differential of f .

1.1.2 Exterior differential

The exterior differential d : Ω(M) → Ω(M) is uniquely defined by the following proper-
ties:

a) for any k, d : Ωk(M)→ Ωk+1(M) is a linear operator;

b) d is a superderivation of the algebra Ω(M), i. e. for any ω ∈ Ωk(M), η ∈ Ωl(M),

d(ω ∧ η) = dω ∧ η + (−1)kω ∧ dη;

c) for any smooth map f : M →M ′ and ω ∈ Ω(M ′), df∗ω = f∗dω;

e) for any function f ∈ Ω0(M), df ∈ Ω1(M) is the differential of f ;

d) d ◦ d = 0;
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The coordinates of dω are expressed in terms of the coordinates of ω as follows:

(dω)i1...ik+1 =
k+1∑
a=1

(−1)a+1∂iaωi1...îa...ik+1
,

where the hat over index means that this index is dropped. Another formula for calculating
the exterior differential dω of a k-form ω ∈ Ωk(M) is

dω(X1, . . . , Xk+1) =
1

k + 1

k+1∑
a=0

(−1)a+1Xaω(X1, . . . , X̂a, . . . , Xk+1)

+
1

k + 1

∑
1≤a<b≤k+1

(−1)a+bω([Xa, Xb], X1, . . . , X̂a, . . . , X̂b, . . . , Xk+1), (1)

where Xi, i = 1, k + 1, are vector fields on M , and the hat again means that the corre-
sponding argument is dropped. A differential form ω ∈ Ωk(M) is said to be closed if
dω = 0, and exact if ω = dη, η ∈ Ωk−1(M).

1.1.3 De Rham complex. De Rham cohomology ([6], [20])

By definition, the exterior differential has property d ◦ d = 0 (see 1.1.2). Hence we get the
de Rham complex of manifold M :

0→ Ω0(M) d−→ Ω1(M) d−→ . . .
d−→ Ωn(M)→ 0

and the vector space

Hk(M) = Hk
DR(M) =

ker d : Ωk(M)→ Ωk+1(M)
im d : Ωk−1(M)→ Ωk(M)

(2)

is called the de Rham cohomology of M in dimension k.
The algebra (Ω(M),∧) endowed with the exterior differential d is a differential al-

gebra, therefore the de Rham cohomology H(Ω, d) also is an algebra with respect to the
multiplication:

[ω1] ^ [ω2] = [ω1 ∧ ω2].

Thus we get the de Rham cohomology algebra.
Let f : M → M ′ be a smooth map. Then the inverse image map f∗ : Ωk(M ′) →

Ωk(M) gives us a chain map (Ω∗(M ′), d) → (Ω∗(M), d), ω′ → f∗(ω′) because df∗ =
f∗d (see 1.1.2). In addition, f∗ : Ω(M ′) → Ω(M) is an algebra homomorphism (see
1.1.1). Hence, each smooth map f : M → M ′ determines an algebra morphism f∗ :
H(M ′) → H(M), thus we get a functor HDR from the category of smooth manifold to
the category of algebras.

1.1.4 De Rham cohomology with compact support ([6], [20])

We can obtain another functor considering the ring Ωc(M) of forms with compact support.
For each ω ∈ Ωkc (M), we have dω ∈ Ωk+1

c (M), hence (Ωc(M), d) is a subcomplex in
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the de Rham complex (in fact, (Ωc(M), d) is a differential ideal in the differential algebra
(Ω(M), d)). The cohomologyHc(M) = H(Ωc(M), d) is called the de Rham cohomology
with compact support. Obviously, if M is compact, we have Ωc(M) = Ω(M), and hence
Hc(M) = H(M).

1.1.5 Calculation of de Rham cohomology

In general, it is very difficult to calculate de Rham cohomology using only the definition.
This can be done however in some special situations, for example, for a one-dimensional
manifold M . The de Rham complex for M is 0 → Ω0(M) d−→ Ω1(M) → 0. Let M
be connected, then either M = R, or M = S1. In both cases, from (2) it follows that
H0(M) ∼= R. If M = R, we have H1(M) = 0 because for any ω = g(x)dx we can find
f(x) =

∫ x
0
g(t)dt such that ω = df . Now let M = S1 and x be the angle, then a solution

f to the equation ω = df exists if and only if
∫ 2π

0
g(x)dx = 0. From this follows that

H1(M) = R.
Another case when one can directly calculate H(M) is the case when M = G/H is a

compact symmetric space of a connected compact Lie group G. This calculation is based
on the following statements: a) any invariant form on M is closed; b) for any closed form
ω ∈ Ω(M) a closed invariant form ω′ exists such that ω′ − ω = dη; c) If ω ∈ Ω(M) is
closed and invariant, then the cohomology class of ω is nonzero. From this follows that
the algebra of de Rham cohomology of M = G/H is isomorphic to the algebra of exterior
forms on the Lie algebra g of G which vanish on the Lie subalgebra h ⊂ g of H and are
invariant with respect to the inner automorphisms adh, h ∈ H (see, e. g., [22]).

1.1.6 Textbooks

The definition and basic properties of the de Rham cohomology are given in almost every
textbook on differential geometry, therefore we mention only several books devoted mainly
to the de Rham cohomology theory and related questions. First of all, it is the very clearly
written classical book [20] by George de Rham himself. In [35] W. Greub, S. Halperin, and
R. Vanstone give an exposition of the de Rham cohomology theory starting from the very
beginning and avoiding “formal algebraic topology”. For a very comprehensive introduc-
tion to this subject, we refer the reader to the book [6] by R. Bott and L. Tu, which gives
an excellent presentation of algebraic topology via differential forms. The book [87] by
I.Vaisman presents a unified exposition of the basic de Rham and harmonic theory used in
the representation of the cohomology of differentiable, foliated and complex manifolds by
differential forms.

1.2 Basic properties of de Rham cohomology (see, e. g.,[6])

1.2.1 Homotopy invariance of de Rham cohomology

Theorem 1 Let f0, f1 : M → M ′ be homotopic smooth maps. Then the corresponding
cohomology homomorphisms f∗0 and f∗1 , which map H(M ′) to H(M), coincide.

Thus the de Rham cohomology is homotopy invariant, and, if M is homotopically
equivalent to M ′, then H(M) ∼= H(M ′). In particular, from this follows



M. A. Malakhaltsev 957

Theorem 2 (Poincaré Lemma) Let U be a contractible open subset in Rn. Then

Hq(U) ∼= Hq(pt) ∼=
{
R, q = 0
0, q > 0

From this follows that the de Rham cohomology is a global invariant of manifold.
The proofs of the Poincare Lemma, as well as the homotopy invariance of the de Rham

cohomology, use an algebraic homotopy which can be constructed in different ways (see,
e. g., [6] and [14]).

The de Rham cohomology with compact support is not homotopically invariant.

However, we have the isomorphism H∗c (M × R) π∗−→←−
ε∗

H∗−1
c (M) where π(x, t) = x,

ε(x) = (x, 0), x ∈ Rn, t ∈ R. Hence follows
Lemma 2 (Poincaré Lemma for de Rham cohomology with compact support, [6])

Hq
c (Rn) ∼=

{
R, q = n
0, q 6= n

1.2.2 Sheaves and de Rham cohomology ([91],[94])

LetM be an n-dimensional smooth manifold. Let us denote by ΩkM the sheaf of k-forms on
M . Then the exterior differential determines the sheaf morphism d : ΩkM → Ωk+1

M . Denote
by RM the sheaf of locally constant functions on M , then we have the sheaf sequence:

0→ RM
i−→ Ω0 d−→ Ω1 d−→ . . .

d−→ Ωn → 0. (3)

From the Poincare lemma it follows that (3) is a fine resolution for the sheaf RM ,
hence, by the abstract de Rham theorem (see, e. g. [94]), the de Rham cohomology H(M)
is isomorphic to the Cech cohomology Ȟ(M ;RM ). Note that this fact can be also proved
using the corresponding double complex (see [6], [73]). Since the singular cohomology
Hsing(M) is isomorphic to the Čech cohomology Ȟ(M) ([9]), the de Rham cohomology
algebra is isomorphic to the singular cohomology algebra.

Since the de Rham cohomology is isomorphic to the singular cohomology, many con-
structions known for singular cohomology can be expressed in terms of de Rham coho-
mology.

1.2.3 Dimension of de Rham cohomology

Assume that an n-dimensional manifoldM admits a finite open coveringUα such that each
intersection Uα1 ∩Uα2 ∩ . . . Uαk is diffeomorphic to Rn. Then each vector space Hk(M)
is finite-dimensional (see 1.2.2). This is true, in particular, for a compact manifold M .

In general, de Rham cohomology is infinite-dimensional. For example, let us take
M = R × R \ Z × Z. Then dimH1(M) = ∞. In fact, if (x, y) are the coordinates on
M , then, for k, l ∈ Z, the forms ωk,l = −(y−l)dx+(x−k)dy

(x−k)2+(y−l)2 represent cohomology classes
linearly independent in H1(M).
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1.2.4 Connectedness and de Rham cohomology

Each connected componentMa of a manifoldM determines its characteristic function χα,
which is locally constant, and hence determines a cohomology class [χα] ∈ H0(M). In
fact, {[χα]} is a basis inH0(M). In particular,M is connected if and only ifH0(M) ∼= R.

1.2.5 Orientation and de Rham cohomology

Let M be an n-dimensional manifold. A form ω ∈ Ωn(M) nonvanishing at each p ∈ M
is called a volume form. If on M a volume form ω exists, then M is said to be orientable.
Note that dω = 0 by dimension arguments, hence we have the cohomology class [ω].
Theorem 3 ([6]) Let M be a smooth n-dimensional manifold.

a) If M is compact, then M is orientable if and only if Hn(M) 6= 0. In this case
Hn(M) ∼= R and for each volume form [ω] 6= 0.

b) If M is noncompact, then Hn(M) = 0. In particular, for each ω ∈ Ωn(M) one can
find θ ∈ Ωn−1(M) such that ω = dθ.

1.2.6 Künneth formula

Let M and M ′ be smooth manifolds, and π : M ×M ′ →M , π′ : M ×M ′ →M ′ be the
projections. Then we have the chain map

Ωk(M)× Ωl(M ′)→ Ωk+l(M ×M ′), (ω, ω′)→ π∗ω ∧ π′∗ω′.

This map induces the isomorphism

H(M)⊗H(M ′)→ H(M ×M ′), [ω]⊗ [ω′]→ [π∗ω ∧ π′∗ω′].

1.2.7 Mayer-Vietoris sequence

Let U and V be open subsets in a manifold M such that M = U ∪ V . Let iU : U ↪→ M ,
iV : V ↪→M , jU : U ∩ V ↪→ U , jV : U ∩ V ↪→ U be embeddings.
Theorem 4 ([6]) The sequence of de Rham complexes

0→ Ω(M)
(i∗U ,i

∗
V )−−−−−→ Ω(U)⊕ Ω(V ) r−→ Ω(U ∩ V )→ 0,

where r(ω, θ) = j∗Uω − j∗V ω, is exact.

The corresponding exact cohomology sequence

· · · → Hq(M)→ Hq(U)⊕Hq(V )→ Hq(U ∩ V )→ Hq+1(M)→ . . . (4)

is the Mayer-Vietoris sequence corresponding to M = U ∪ V .
For the de Rham cohomology with compact support we also have the exact sequence

0→ Ωc(U ∩ V ) δ−→ Ωc(U)⊕ Ωc(V ) s−→ Ωc(M)→ 0,

where δ(ω) = (−j∗Uω, j∗V ω) and s(ω, θ) = ω + θ, hence follows the Mayer-Vietoris
sequence for de Rham cohomology with compact support given by (4) with H replaced by
Hc.
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2 Integration and de Rham cohomology. De Rham currents.
Harmonic forms [20]

2.1 Integration and de Rham cohomology

Connection between integration and de Rham cohomology is based on well-known
Theorem 5 (Stokes Theorem) Let M be an n-dimensional oriented manifold with bound-
ary ∂M (possibly ∂M = ∅). Then, for each ω ∈ Ωn−1

c (M),∫
M

dω =
∫
∂M

ω

From the Stokes Theorem it follows that the following pairing is defined correctly:

Hk
c (M)×Hn−k(M)→ R, ([ω], [θ])→

∫
M

ω ∧ θ

For a compact manifold M , this pairing is nondegenerate and determines the Poincare
duality isomorphism Hk(M) ∼= Hn−k(M).

2.2 De Rham currents [20]

Let M be an n-dimensional smooth manifold. A current on M of degree k is a continuous
linear functional T : Ωk(M) → R (we say that T is continuous, if for each sequence of
forms ϕi, i = 1, 2, . . . whose supports lie in a compact set covered by a coordinate system
and any derivative of any ϕi uniformly converges to zero as i→∞, we have T (ϕi)→ 0).
Let us denote the set of all currents of degree k on M by Ek(M).

Let U be an open subset in M . A current T is said to be zero in U if T (ϕ) = 0 for
any form ϕ with compact support lying in U . If a current T vanishes at a neighborhood of
each point of an open U ⊂ M , then T = 0 in U . Hence follows that each current T has a
maximal open set where T = 0, and the complement of this set is called the support of T .
We denote by Ec(M) the space of currents with compact support.
Example 2.1 a) Any α ∈ Ωk(M) defines the (n − k)-current: α(ϕ) =

∫
M
α ∧ ϕ, n =

dimM ; b) Any k-chain c in M defines the k-current: c(ϕ) =
∫
c
ϕ; c) Any contravariant

k-vector v at a point p ∈ M defines the current v(ϕ) = vi1...ikϕi1...ik . Thus currents
simultaneously describe forms and chains.

The external differential d : Ωk(M)→ Ωk+1(M) determines the boundary operator b :
Ek+1(M)→ Ek(M) by the equality bT (ϕ) = T (dϕ). Thus we get a complex (Ek(M), b),
and its homology is called the de Rham homology of M .
Theorem 6 ([20]) Let M be a smooth manifold.

a) Let T ∈ Ek(M), and bT = 0. Then a C∞-form α ∈ Ωk(M) exists such that
T − α = bT ′, T ′ ∈ Ek+1(M). If T ∈ Ekc (M), then T ′ can also be taken in
Ek−1
c (M).

b) If α ∈ Ωk(M) is such that α = bT , T ∈ Ek+1(M), then α = dβ, where β ∈
Ωk−1(M). And if the current T lies in Ek+1

c , then one can take β also lying in
Ωk−1
c (M).
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Using this theorem, G. de Rham obtained duality theorems for arbitrary (compact and
noncompact) manifolds (see details in [20]).

2.3 Harmonic forms ([20], [91], [94])

Let g be a Riemannian metric on an oriented compact n-dimensional smooth manifold M ,
and ω be the corresponding volume form. The metric g determines the Hodge operator:
∗ : Ωk(M)→ Ωn−k(M) defined with respect to local coordinates by

(∗η)i1...in−k = ωi1...in−k
j1...jkηj1...jk .

One can prove that ∗∗ = (−1)k(n−k).
Now we set δ : Ωk(M) → Ωk−1(M), δ = (−1)n(k+1)+1 ∗ d∗ (on 0-forms δ is zero).

The Laplace-Beltrami operator ∆ : Ωk(M)→ Ωk(M) is defined as

∆ = δd+ dδ.

It is clear that, if M = Rn and g is the standard Euclidean metric, then ∆ is the standard

Laplacian (−1)n
n∑
i=1

∂2/∂2xi.

On Ωk(M) consider the scalar product

(α, β) =
∫
M

α ∧ ∗β,

and denote by ||α|| the corresponding norm. The operator δ is adjoint of d on Ω(M) with
respect to this scalar product: (dα, β) = (α, dβ), and the Laplace-Beltrami operator ∆ is
self-adjoint: (∆α, β) = (α,∆β).

A form α ∈ Ωk(M) is called harmonic if ∆α = 0, and let us denote byHk(M, g) the
set of all harmonic k-forms. One can easily prove that α ∈ Ωk(M) is harmonic if and only
if dα = 0 and δα = 0.
Theorem 7 (Hodge’s decomposition theorem (see, e. g., [91])) LetM be an oriented com-
pact n-dimensional smooth manifold M , g be a Riemannian metric on M , and ∆ be the
corresponding Laplace-Beltrami operator.

For each 0 ≤ k ≤ n, the spaceHk(M) is finite dimensional, and we have the following
orthogonal direct sum decomposition:

Ωk(M) = d(Ωk−1(M))⊕ δ(Ωk+1(M))⊕Hk(M).

Consequently, the equation ∆α = β has a solution α ∈ Ωk(M) if and only if β is
orthogonal to the space of harmonic k-forms.

Let us denote byH the projection of Ωk(M) ontoHk(M). The Green operator is G :
Ωk(M)→ (Hk(M))⊥, G(α) equals the unique solution of the equation ∆ω = α−H(α)
in (Hk(M))⊥. For each α ∈ Ωk(M), we have

α = dδGα+ δdGα+Hα.

From this expansion it follows
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Theorem 8 Each de Rham cohomology class of an oriented compact manifold M en-
dowed by a Riemannian metric g contains a unique harmonic representative.

The operator ∆ is elliptic and from the theory of elliptic operators it follows that on a
compact manifold M endowed with a Riemannian metric g the space of harmonic forms
is finite-dimensional. This gives another way to prove that the de Rham cohomology of a
compact manifold is finite-dimensional.
Remark 2.1 The results concerning the fact that the Laplacian is an elliptic operator and
hence has kernel of finite dimension are generalized in the theory of elliptic complexes
(see, e. g., [83]).
Remark 2.2 The fact that harmonic forms representing the de Rham cohomology classes of
a manifoldM are determined via a Riemannian metric g onM gives possibility to establish
relation between the geometrical properties of g and the topological properties of M . This
idea lies in the base of so-called “Bochner technique” (see the classical book by S.Bochner
and K. Yano [96]), which is widely used in the modern Riemannian geometry (see e. g.
J.P. Bourguignon’s paper devoted to Weitzenböck formulas in [4], and S.E.Stepanov’s re-
cent survey on Bochner technique and its applications in differential geometry [82]).

3 Generalizations of the de Rham complex

The de Rham complex can be generalized in various ways. One can take analytical or
locally integrable forms instead of smooth ones (see 3.1, 3.2 below), or to construct a com-
plex in a purely algebraic way from the algebra of smooth functions (see 3.2.1) whose
cohomology coincide with the de Rham cohomology. Another way is to construct a com-
plex of de Rham type for a space generalizing smooth manifolds (see 3.3.1, 3.4).

3.1 Analytic de Rham complex

One may ask if we can take forms of another differentiability class to construct the de Rham
complex. Certainly, if we take finite differentiable forms, the de Rham complex is not
correctly defined since the exterior differential lows the differentiability class. However, if
M is a real analytic manifold, then we can consider the analytic version of the de Rham
complex. In [66] B. Malgrange remarked that the de Rham cohomology of a real-analytic
manifold can be computed via real-analytic forms. In [3] L. Beretta re-proved this fact
using results from [2] and the property that the sheaves of germs of real-analytic forms are
locally free and coherent.

3.2 Lp-cohomology

Let M be an n-dimensional Riemannian manifold. For each measurable differential k-
form ω whose module is locally integrable, let us define dω by the equality∫

M

ω ∧ du = (−1)k+1

∫
M

dω ∧ u

for any smooth differential (n− k − 1)-form u with compact support lying in an oriented
domain of the interior of M .
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Denote by Lkp(M) the set of all k-forms ω such that

||ω||Lkp(M) = (
∫
M

|ω(x)|pdx)
1
p <∞,

and by W k
p (M) the set of all ω ∈ Lkp such that dω ∈ Lk+1

p (M). The cohomology Hk
p of

the complex (W ∗p , d) is called the Lp-cohomology of Riemannian manifold M .
The Lp-theory of differential forms plays an important role in the analysis on non-

compact Riemannian manifolds as well as in the study of asymptotic invariants of such
manifolds. In [52] V.I. Kuz’minov and I.A. Shvedov give a survey of papers on this sub-
ject, where they discussed the following problems: (1) approximation of Lp-forms by
compactly-supported forms, and the same problem restricted to the class of closed forms;
(2) computation of Lp-cohomology of warped products and, in particular, the Künneth for-
mula and duality theorems; (3) normal solvability of the exterior differentiation operator.

The relation between properties of Lp-cohomology and the geometrical properties of
the Riemannian metric g is intensively studied. For example, in [97] N. Yeganefar stud-
ied the Lp-cohomology of the complete manifolds of finite volume and pinched negative
curvature and proved the following statements.
Theorem 9 Let (Mn, g) be a complete n-dimensional manifold of finite volume and
pinched negative curvature −1 ≤ K ≤ −a2 < 0. Assume that p ≥ 1 is a real num-
ber, and k an integer such that k > (n + 1 + 2(p − 1)a)/(1 + (p − 1)a). Then we
have the isomorphism Hk

p (M) ' Hk
c (M), where Hk

c (M) denotes the compact supported
cohomology of M .

Theorem 10 Let (Mn, g) be a conformally compact n-dimensional manifold. Assume
that p ≥ 1 is a real number and k an integer such that k < (n− 10)/p. Then we have the
isomorphism Hk

p (M) ' Hk
c (M).

Note also the paper [12], where Gilles Carron, Thierry Coulhon and Rew Hassell stud-
ied Lp-cohomology for manifolds with Euclidean ends.

3.2.1 De Rham cohomology and Hochschild cohomology

LetA be a (possibly non-commutative) algebra over C, andM be a bimodule overA. Let
Ae = A ⊗ Ao be the tensor product of A and its opposite algebra. ThenM becomes a
left Ae-module. Denote by Cn(A,M) the space of n-linear maps from A toM, and let
b : Cn(A,M)→ Cn+1(A,M), T → bT , be given by

(bT )(a1, . . . , an, an+1) = a1T (a2, . . . , an+1)

+
n∑
i=1

(−1)iT (a1, . . . , aiai+1, . . . , an+1)

+ (−1)n+1T (a1, . . . , an)an+1. (5)

We have bb = 0, and the complex (C∗(A,M), b) is called the Hochschild complex of the
algebra A, and the cohomology of this complex the Hochschild cohomology of A with
coefficients inM.

The space A∗ of all linear functionals on A is an A-bimodule by (aϕb)(c) = ϕ(bca).
Therefore, we have the Hochschild complex C∗(A,A∗) and the corresponding cohomol-
ogy. Any element T ∈ Cn(A,A∗) can be considered as an n+1-linear functional τ onA:
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τ(a0, a1, . . . , an) = T (a1, . . . , an)(a0). Let us denote by Cnλ (A) the space of cochains in
Cn+1(A,A∗) such that, for any cyclic permutation σ of {0, 1, . . . , n}, στ = sgn(σ)τ . The
Hochschild coboundary b does not commute with the cyclic permutations, however it maps
Cnλ (A) to Cn+1

λ (A). Therefore, we obtain a subcomplex (C∗λ(A), b) of the Hochschild
complex, and its cohomology is called the cyclic cohomology of A. Any algebra homo-
morphism ρ : A → B induces a cochain map ρ∗ : Cnλ (B)→ Cnλ (A), (ρ∗ϕ)(a0, . . . , an) =
(ρ(ϕ(a0), . . . , ρ(an)) and hence the cohomology map Hn

λ (B)→ Hn
λ (A).

The construction of Hochschild and cyclic cohomology can be transferred (with the
corresponding changes) to the case of topological algebra with topology given by a system
of seminorms (see [18] for details). Now let M be a compact manifold, and A = C∞(M)
be the algebra of smooth functions endowed by the Frechet space topology defined by the
family of seminorms pn(f) = sup

α≤n
|∂α(f)| using local charts on M . In [18] A. Connes

proves the following result:
Theorem 11 a) The continuous Hochschild cohomology group Hk(A,A∗) is isomor-

phic to the space of de Rham currents (see 2.2) of dimension k on M . To the k + 1-
linear functional ϕ is associated the current T such that

T (f0df1 ∧ df2 ∧ · · · ∧ dfk) =
∑

σ∈Σk+1

sgn(σ)ϕ(fσ(0), fσ(1), . . . , fσ(k)).

b) For each k, Hk
λ(A) is isomorphic to the direct sum

ker b(⊂ Dk)⊕Hk−2(M ;C)⊕Hk−4(M ;C)⊕ . . . ,

where Hk(M : C) is the de Rham homology of M .

c) H∗(A) is isomorphic to the de Rham homology H(M ;C).

This result demonstrates that de Rham complex on the spectrum of an algebraA can be
expressed in terms of Hochschild cohomology of A. This idea was widely used in the the-
ory of deformation quantization (see, e.g., [8], [21], [93]). Also this result was generalized
to other algebras, see, e. g. [39], where the authors construct an isomorphism between the
de Rham cohomology of a manifold M and the relative Hochschild cohomology of the al-
gebra of differential operators onM . For the methods of computing the cyclic cohomology
for algebras of smooth functions on an orbifold see [92].

3.3 De Rham cohomology for generalized differential structures

The problem to define the de Rham cohomology for generalized spaces has been solved
in many ways. One of the first papers devoted to this problem is [81]. Here we describe
an approach to generalized differentiable structures, which was proposed by M.V. Losik in
[59], [60].

3.3.1 M.V.Losik’s Rn-sets. De Rham cohomology of Rn-sets

Let Rn be a category whose objects are open sets in Rn. For objects U , V , a morphism
between U and V is a diffeomorphism of U onto an open W ⊂ V . Let Z be a set. An
Rn-chart on Z is a pair (U, k), where U ∈ Obj(Rn) and k : U → Z is a map. A
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collection Φ = {(Uα, kα)} of Rn-charts is called an Rn-atlas if Z = ∪Uα. Each Rn-atlas
Φ determines a category AΦ such that Obj(AΦ) = Φ and morphisms between objects
(U1, k1) and (U2, k2) are the morphisms m : U1 → U2 of Rn with property k1 = k2 ◦m.
Then we have the covariant functor IΦ : AΦ → Sets, IΦ(U, k) = U , IΦ(m) = m. An
atlas of Rn-set on a set Z is an Rn-atlas on Z such that lim

−→
IΦ = Z. Any atlas of Rn-

set determines a maximal atlas of Rn-set, and a set Z endowed with a maximal atlas is
called an Rn-set. Let Z1, Z2 be Rn-sets endowed with maximal atlases Φ1, Φ2. A map
h : Z1 → Z2 is called a morphism of Rn-sets if for each Rn-chart (U, k) ∈ Φ1, the
Rn-chart (U, h ◦ k) lies in Φ2. Thus we obtain the category of Rn-sets.

Let us give several examples of Rn-sets. 1) A maximal atlas ϕ on a smooth manifold
M determines an atlas of Rn-set, hence any manifold is an Rn-set. Any smooth map
of manifolds is a morphism between Rn-sets, therefore the category of manifolds is a
subcategory in the category of Rn-sets. 2) Any orbifold is an Rn-set. 3) Any manifold
M endowed by a foliation F of codimension q admits a structure of Rq-set. Any foliated
chart (U, xi, xα) (this means that, for each leaf L, the connected components of U ∩ L
are given by equations xα = 0) determines a submersion ϕ : U → V ⊂ Rq , p →
(x1(p), . . . , xq(p)). Take s : V → U such that φ ◦ s = IdV , then (V, s) is an Rn-chart
and, taking an atlas of foliated charts on M , in this way we can construct an atlas of Rn-
set on M . 4) Any quotient space M/Γ of an n-dimensional manifold M by an action of a
pseudogroup Γ is an Rn-set.

Now let us consider a covariant functor F : Man → Sets from the category of
manifolds to the category of sets. Let us set F (Z) = lim

↔
F ◦ IΦ, thus we get extension of

F to the category of Rn-sets.
Let F = Ωp be the functor which maps each manifold M to the set Ω(M), and smooth

map f : M → M ′ to the map f∗ : Ω(M ′) → Ω(M). Then, for an Rn-set Z with atlas
Φ, we obtain Ω(Z) = lim

←
Ω ◦ IΦ. Since Ω(M) is a vector space for any M , and f∗

is linear, Ω(Z) is also a vector space. Moreover, the exterior product ∧ and the exterior
differential d determine the natural transformations of functors: (Ωp,Ωq) → Ωp+q and
d̃ : Ωp → Ωp+1. This gives the wedge product ∧ : Ωp(Z) × Ωq(Z) → Ωp+q(Z), and
the differential d : Ωp(Z) → Ωp+1(Z) which is compatible with the wedge product, and
d2 = 0. Thus we obtain the de Rham complex for the Rn-set Z. In the same way we can
define the singular homologyH∗(Z) of anRn-set Z and the paringH∗(Z)×H∗(Z)→ R.

This gives a possibility, in a unique way, to define the de Rham cohomology for orb-
ifolds, spaces of leaves of foliations, diffeological spaces, quotients of manifold by ac-
tion of discrete groups, and other spaces with generalized differentiable structures. Also
M.V. Losik defined characteristic classes of Rn-sets in terms of the de Rham cohomology.

3.4 Stratified de Rham cohomology

The problem of defining suitable complexes of differential forms on stratified spaces has
been studied by many authors. We mention only several results along this lines. A. Verona
[89], [90] proved a de Rham theorem for controlled forms in the context of an abstract strat-
ification. In [30] M. Ferrarotti introduced a complex of infinitesimally controlled forms,
containing the Verona’s complex. In [23] C.-O. Ewald studies the de Rham cohomology of
a class of spaces with singularities which are called stratifolds, and generalizes two classi-
cal results from the analysis of smooth manifolds to the class of stratifolds. The first one
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is Stokes theorem, the second one is the de Rham theorem which states that the de Rham
cohomology of a stratifold is isomorphic to its singular cohomology with coefficients in R.
He gives an explicit geometric construction of this isomorphism by integrating forms over
stratifolds. The relation between the Hochschild homology and the de Rham cohomology
for stratifolds (this relation for manifolds is described in 3.2.1) is studied by C.-O. Ewald
in [24].

4 Equivariant de Rham cohomology

Let X be a topological space endowed by an action of a compact Lie group G. In al-
gebraic topology the definition of equivariant cohomology group HG(X) is motivated by
the principle that, for a free G-action, HG(X) = H(X/G). The standard way to de-
fine equivariant cohomology is to take a contractible E on which G acts freely, and to
set HG(M) = H((X × E)/G). This definition is correct, i. e. does not depend on the
choice of E. Also, for each compact Lie group, one can find a contractible space E such
that G acts freely on E. In this situation one cannot use de Rham cohomology, because a
compact Lie group cannot act freely on a finite dimensional contractible manifold. There-
fore H. Cartan found a special algebraic construction to deal with this problem. In [38] the
reader can find the modern exposition of the theory of equivariant cohomology based on
superalgebra language.

The main idea is to construct an “algebraic analog of the space M × E”. Let M be a
manifold on which a compact Lie group G acts. Let g be the Lie group of G, and σ : g→
X(M), where σ(v)(p) = d

dt

∣∣
t=0

exp(tv)(p), p ∈ M , be the Lie algebra homomorphism
determined by the G-action on M [45]. Then g acts on Ω(M) via the interior product
ιv : Ωk(M) → Ωk−1(M), ιvω = iσ(v)ω. Also, we have the exterior differential d :
Ωk(M) → Ωk+1(M), and the Lie derivative Lv = Lσ(v) : Ωk(M) → Ωk(M), v ∈ g.
These operations satisfy the Weil equations:

ιvιw + ιwιv = 0, Lvιw − ιwLv = ι[v,w], LvLw − LwLv = L[v,w],

dιv + ιvd = Lv, dLv − Lvd = 0, d2 = 0.
(6)

In addition, the G-action on M induces the G-action ρ on Ω(M), and we have

ρg ◦ Lv ◦ ρ−1
g = LAdgv, ρg ◦ iv ◦ ρ−1

g = iAdgv,∀g ∈ G,∀v ∈ g.

This data can be expressed in superalgebra terms. AZ-graded superalgebra is anZ-graded
algebra g = ⊕gi with multiplication [ , ] such that [gi, gj ] ⊂ gi+j and

[vi, vj ] + (−1)ij [vj , vi] = 0, vi ∈ gi. (7)

A derivation D of a Z-graded superalgebra A is a linear map D : A → A such that
D(ab) = D(a)b + (−1)mkaD(b), where a ∈ Am, and k is called the degree of D. Let
Derk(A) be the set of derivations of degree k. For superalgebras A and B, the tensor
productA⊗B is also a superalgebra with respect to the product law (a1⊗b1) ·(a2⊗b2) =
(−1)ija1a2 ⊗ b1b2, where deg a2 = i, deg b1 = j.

Any Lie algebra g determines a Z-graded Lie superalgebra g̃ = g−1 ⊕ g0 ⊕ g1. Here
the Lie algebra g0 is isomorphic to the Lie algebra g, g−1 is isomorphic to g as vector
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space, g1 is a one-dimensional space. Since g̃ is a Z-graded algebra, we have [g−1, g−1] =
[g1, g1] = 0. Denote elements of g−1 by ιa, elements of g0 by La, a ∈ g, and elements in
g1 by d. Then, we have [Lv, Lw] = L[v,w] and set [Lv, ιw] = ι[v,w], [Lv, δ] = 0.

An action ofG onM determines a representation of g̃ on the commutative superalgebra
Ω(M) by derivations: Lv → Lσ(v), ιv → iσ(v), and a basic element d ∈ g1 goes to the
exterior differential d.

G∗-algebras and modules. AG∗-algebra is a commutative superalgebra endowed with
a representation ρ : G → Aut(A) and a representation g̃ = g−1 ⊕ g0 ⊕ g1 → Der(A),
where we denote the derivations corresponding to Lv , ιv , and d by the same symbols, and

d

dt
ρ(exp tv)

∣∣∣∣
t=0

= Lv ρ(g) ◦ L(v) ◦ ρ(g−1) = LAdgv,

ρ(g) ◦ iv ◦ ρ(g−1) = iAdgv, ρ(g)dρ(g−1) = d

(8)

A G∗-module is a supervector space A together with a linear representation ρ : G →
Aut(A) and a homomorphism g̃ → End(A) such that (8) hold. A G∗ module A is said to
satisfy condition (C) if there exists a linear map θ : g∗ → A1 such that θ(v∗)(ιw) = v∗(w)
for all v∗ ∈ g∗, w ∈ g, and θ(Ad(g)a) = ρ(g)θ(v) for all g ∈ G, v ∈ g. Any G∗ algebra
A has derivation d : A→ A, the image of a nonzero element in g1, and since [g1, g1] = 0,
from the commutativity relation (7) we get d2 = 0. Then, we set H(A) = H(A, d).
For a G∗ module A, we denote by Abas the set of G-invariant elements a ∈ A such that
iva = 0. Since, for each a ∈ Abas, Lva = 0, and hence div = −ivd (see (6)), we have
d(Abas) ⊂ Abas. Thus we set Hbas(A) = H(Abas, d).

Equivariant cohomology. Let E be a G∗ algebra which is acyclic (H(A) = 0) and
satisfies condition (C). Then for any G∗ algebra A, we set HG(A) = H((A ⊗ E)bas, d).
This definition does not depend on a choice of E. For a G∗ algebra morphism ϕ : A→ B,
we have the morphism ϕ⊗id : A⊗E → B⊗E, which induces the cohomology morphism
ϕG : HG(A)→ HG(B).

Now return to a manifold M endowed by an action of a Lie group G. In this case the
superalgebra Ω(M) is a G∗-algebra.
Theorem 12 ([38]) Let G be a compact Lie group acting on a smooth manifold M , then
HG(M) = HG(Ω(M)).

It remains to construct, for any compact group G, an acyclic G∗ algebra W . The
algebra defined below is called the Weil algebra.

We set W (g) = Λ(g) ⊗ S(g), and, for each θ ∈ Λk(g), deg(θ) = k, and, for each
s ∈ Sm(g), deg(s) = 2m. So we set W i,2j(g) = Λi(g) ⊗ S2j(g) Then, with respect to
the natural multiplication

(θ1 ⊗ s1) · (θ2 ⊗ s2) = (θ1 ∧ θ2)⊗ (s1

s
⊗ s2), (9)

W is a superalgebra. The Koszul differential dk : W (g)→W (g) is uniquely defined by

dK(x⊗ 1) = 1⊗ x, dK(1⊗ x) = 0,∀x⊗ 1, (10)

and, evidently, d2
K = 0. Consider Q : W (g) → W (g) determined by Q(x ⊗ 1) = 0,

Q(1 ⊗ x) = x ⊗ 1, then [Q, dK ]t = (k + l)t for each t ∈ W i,2j(g). Hence follows that
(W,d) is acyclic.
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The adjoint representation ad : G → GL(g) extends to the action ρ : G → Aut(G),
and dK is clearly G-invariant. Now let us define an action of g̃ on W . We set

Lv(θ⊗1) = Lvθ⊗1, Lv(1⊗θ) = 1⊗Lvθ, ιv(θ⊗1) = θ(v), ιv(1⊗θ) = Lvθ⊗1. (11)

where Lvθ(w) = −ad(v)θ(w) = −θ([v, w]). Finally, the basic element of g1 is repre-
sented by dK .

Note that the G∗ algebra W satisfies condition (C) since we have map g∗ → W1,
θ ⊗ 1 → θ. Thus, we have constructed the required acyclic G∗ algebra which is used in
the definition of equivariant cohomology.

Another definition of equivariant cohomology of a manifold endowed by an action of a
Lie group was proposed by M. V. Losik (see [61], [62]).

For a manifold M endowed by an action of a group G, let Cp,q = Cp,q(G,Ω(M)) be
the space of smooth maps from Gp to Ωq(M) for p > 0, and C0,q = Ωq(M). Define the
maps δ′ : Cp,q → Cp+1,q and δ′′ : Cp,q → Cp,q+1 as follows

(δ′c)(g1, . . . , gp+1) = g1c(g2, . . . , gp+1)

+
p∑
i=1

c(g1, . . . , gigi+1, . . . , gp+1) + (−1)pc(g1, . . . , gp),

(δ′′c)(g1, . . . , gp) = (−1)pdc(g1, . . . , gp), (12)

where c ∈ Cp,q , g1, . . . , gp ∈ G, and d is the exterior derivative. The cohomology of the
bicomplex C(G,Ω(M) endowed by the total coboundary operator δ′ + δ′′ is called the
equivariant cohomology of the G-manifold M .

In [61] M.V.Losik used the spectral sequence for the bicomplex (C(G,Ω(M), δ′, δ′′) in
order to construct characteristic classes which give as partial cases the characteristic classes
of A.G. Rejman, M.A. Semenov-Tyan-Shanskij, and L.D. Faddeev [25] for the automor-
phism group of a smooth principal fiber bundle and the characteristic classes of R. Bott
[5] for the diffeomorphism group of a manifold. In [62], for a compact G, he obtains a
generalization of the Cartan theorem on the cohomology of a homogeneous space.

5 Complexes of differential forms associated to differential
geometric structures

The de Rham cohomology construction sets the pattern for constructions of complexes
associated with various differential geometrical structures. In this section we give several
examples of such complexes of de Rham type.

5.1 Dolbeaux cohomology ([36], [87], [94])

Let (M,J) be an n-dimensional complex manifold. The complexified cotangent bundle
T ∗CM = T ∗M ⊗ C splits into the direct sum of subbundles: T ∗CM = T 1,0M ⊕ T 0,1M ,
where T 1,0M is locally spanned by dzi, and T 0,1M by d zi, i = 1, n. Let ΩC(M) be the
algebra of complex-valued differential forms, and we say that α ∈ ΩCM has type (p, q) if
locally

α = αi1...ipj1...jqdz
i1 ∧ · · · ∧ dzip ∧ d zj1 ∧ · · · ∧ d zjq
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It is clear that Ωk(M) = ⊕p+q=kΩp,q(M), where Ωp,q(M) is the space of forms of type
(p, q).

For each smooth function f : M → C, we have df = ∂f + ∂f , where ∂f = ∂
∂zk

fdzk

is a section of T 1,0M , and ∂f = ∂
∂zk

fdzk is a section of T 0,1M . These differential
operators extend to the algebra ΩC(M) and give the differential operators ∂ : Ωp,q(M)→
Ωp+1,q(M) and ∂ : Ωp,q(M)→ Ωp,q+1(M). It is clear that d = ∂ + ∂, and

∂2 = 0, ∂
2

= 0, ∂∂ = ∂∂.

The complex (Ωp,∗(M), ∂) is called the Dolbeaux complex of the complex manifold
(M,J), and its cohomology is denoted by Hp,q(M).
Lemma 3 (Poincare ∂-Lemma [36]) For a polydisk ∆ ⊂ Cn, we have Hp,q(∆) = 0 for
all p and q ≥ 1.

From this lemma and the definition of ∂ it follows that the sheaf sequence

0→ Ωph
i−→ Ωp,0 ∂−→ Ωp,1 . . . ∂−→ Ωp,q ∂−→ Ωp,q+1 ∂−→ . . .

is a fine resolution for the sheaf of holomorphic p-forms Ωph, hence Hq(M ; Ωp) ∼=
Hp,q(M).

The differential algebra ΩC(M) can be endowed by the structure of double complex
(Ωp,q(M), ∂, ∂), the corresponding spectral sequences are called the Froelicher spectral
sequences. These spectral sequences relate the Dolbeaux cohomology of (M,J) and the
de Rham cohomology of M .

5.1.1 Harmonic theory on compact complex manifolds

Let (M,J, h) be a compact Hermitian complex manifold, and dimC M = n. The Hermi-
tian metric h determines the Riemannian metric g, which, in turn, determines the Hodge
operator ∗ : Ω(M)→ Ω(M) (see 2.3). Then, for any k = 0, 2n, on the space ΩkC(M) we
have the scalar product

(ϕ,ψ) =
∫
M

ϕ ∧ ψ̄ (13)

This scalar product determines a positively definite Hermitian form on the complex vector
space ΩC(M) = ⊕2n

k=0Ωk(M) and the decomposition ΩkC(M) = ⊕
i+j=k

Ωi,j(M) is or-

thogonal with respect to (13). The operator ∂ : Ωp,q(M) → Ωp,q+1(M) has adjoint with
respect to the scalar product (13) operator

∂
∗

= −∗ ∂ ∗

The ∂-Laplacian is ∆∂ = ∂ ∂
∗

+ ∂
∗
∂ (sometimes this operator is denoted by �). A form

ϕ ∈ Ωp,q(M) such that ∆∂ϕ = 0 is called a harmonic form of type (p, q). Denote the
space of harmonic forms of type (p, q) byHp,q(M).
Theorem 13 (Hodge decomposition theorem, see, e. g., [36]) a) dimHp,q <∞.

b) There is defined the orthogonal projection H : Ωp,q(M) → Hp,q(M) and there
exists a unique operator, called the Green operator, G : Ωp,q(M)→ Ωp,q(M), such
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that G(Hp,q(M)) = 0, ∂G = G∂, ∂
∗
G = G∂

∗
, and, for each ψ ∈ Ωp,q(M),

ψ = Hψ + ∂(∂
∗
Gψ) + ∂

∗
(∂Gψ). From this follows the Hodge decomposition

Ωp,q(M) = Hp,q(M)⊕ ∂Ωp,q−1(M)⊕ ∂∗Ωp,q+1(M).

Theorem 14 (Kodaira-Serre duality, see, e. g. [36]) LetM be a compact complex manifold
of complex dimension n. Then

1) Hm(M ; Ωn) ∼= C;

2) The paring

Hq(M ; Ωp)⊗Hn−q(M ; Ωn−p)→ Hn(M ; Ωn)

is nondegenerate, where Ωk is the sheaf of holomorphic forms.

For a complex compact manifold the spaces of de Rham cohomology Hr(M,C) and
of Dolbeaux cohomology Hp,q(M) are finite dimensional (see 2.3 and Theorem 13). In
general, if a form ϕ is ∂-closed, then ϕ need not to be d-closed, and if a k-form ψ is d-
closed, and ψ = ψk,0 +ψk−1,1 + · · ·+ψ0,k, ψp,k−p ∈ Ωp,k−p(M), then ψp,k−p need not
to be ∂-closed.

Now let a complex compact manifold (M,J) admit a Kähler metric h (see, e. g. [36]).
Then Hk(M) = ⊕p+q=kHp,q(M), where Hk(M) is the space of ∆d-harmonic forms,
and Hp,q(M) is the space of ∆∂-harmonic forms of type (p, q). From this follows the
decomposition Hodge theorem for compact Kähler manifolds:
Theorem 15 (see, e.g., [36], [94]) Let M be a compact complex manifold admitting
Kähler metric. Then

Hk(M ;C) = ⊕p+q=kHp,q(M) and H
p,q

(M) = Hq,p(M),

where Hk(M ;C) is the de Rham cohomology of M with complex coefficients, and
Hp,q(M) is the Dolbeaux cohomology of (M,J).

5.2 Vaisman cohomology

Let F be a foliation of codimension m on an (m + r)-dimensional manifold, and TF
be the subbundle of TM tangent to F . With respect to the coordinate system (xa, xα),
a = 1,m, α = m+ 1,m+ r, adapted to the foliation, the leaves are given by the equations
xa = const, and the integrable distribution TF is locally determined by dxa = 0 (for the
foliation theory we refer the reader to [42], [68], [87]).

A k-form θ ∈ Ωk(M) is said to be basic if with respect to the adapted coordinates

θ = θa1...ak(xa)dxa1 ∧ . . . dxak .

Evidently, the set of basic forms is a subcomplex (Ωb, db) of the de Rham complex of
M and its cohomology Hb(M,F) is called the basic cohomology of the foliated manifold
(M,F). In general, Hb(M,F) is infinite-dimensional even if M is compact. If the folia-
tion F is simple (this means that the leaves of F are fibers of a submersion π : M → B),
then the basic cohomology is isomorphic to the de Rham cohomology of B.
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Let Q be a distribution complementary to TF : TM = TF ⊕ Q. Let ηα = 0 locally
determine Q, then (dxa, ηα) is a local coframe field on M . Let us denote by Ωp,q(M,F)
the space of (p+ q)-forms which are locally written as follows:

θ = θa1...apα1...αqdx
a1 ∧ . . . dxap ∧ ηα1 ∧ . . . ηαq .

Then, we have natural decomposition d = d1,0 + d0,1, where d1,0 : Ωp,q(M,F) →
Ωp+1,q(M,F), d0,1 : Ωp,q(M,F)→ Ωp,q+1(M,F), and, from d2 = 0 it follows that

d2
1,0 = 0, d2

0,1 = 0, d1,0d0,1 = d0,1d1,0,

so, for each p ≥ 0, we get the differential complex (Ωp,∗(M,F), ∂), where ∂ = d0,1.
The cohomology Hp,q(M,F) = Hq(Ωp,∗(M,F), ∂) of this complex is called foliated
cohomology (or, sometimes, leafwise cohomology) of type (p, q). Foliated cohomology
has many properties similar to the de Rham cohomology, for example, one can write the
Mayer-Vietoris sequence for them [41].

For each p ≥ 0, we have the exact sequence of sheaves over M :

0→ Ωpb
i−→ Ωp,0 ∂−→ Ωp,1 ∂−→ . . .

∂−→ Ωp,k ∂−→ Ωp,k+1 ∂−→ . . .

where i is the inclusion, which gives a fine resolution for the sheaf Ωpb of basic p-
forms on (M,F). Therefore, Hq(M ; Ωpb) ∼= Hp,q(M,F). The differential ring
(Ω(M), d) admits the filtration by the differential ideals F k(M) = ⊕i≥kΩi,∗(M,F),
and (Ω∗,∗(M,F), d1,0, d0,1) is the corresponding double complex. Therefore, for the foli-
ated manifold we get the spectral sequence with the first term Ep,q1 = Hp,q(M,F) which
converges to the de Rham cohomology of M .

The details of the above constructions the reader can find in I.Vaisman’s book [87].
Let (M,F) be a foliated manifold. A metric g on M is said to be bundle-like if, with

respect to the adapted coordinates (xa, xα), g = gab(xc)dxa⊗dxb+ gαβ(xc, xγ)θα⊗ θβ ,
where θα = dxα + tαadx

a is a coframe of TF⊥. If F admits a bundle-like metric, then F
is called a Riemannian foliation. Let ∇ be the Levi-Civita connection of g, and for each
X ∈ TF⊥,W (X) : TF → TF be the Weingarten map of the leaves. The mean curvature
κ is a 1-form on M defined by κ(X) = tr(W (X)) for X ∈ TF⊥, and κ(X) = 0 for
X ∈ TF . Now the usual global scalar product on forms restricts on Ωb(M,F) to a scalar
product. The adjoint δb of the operator db and the Laplacian ∆b = δbdb+dbδb are therefore
defined. In [43] a version of the Hodge theory is constructed for Riemannian foliations. In
particular, the following result is proved:
Theorem 16 ([43]) Let F be a transversally oriented Riemannian foliation on a compact
oriented manifold M . Assume that there exists a bundle-like metric g whose mean curva-
ture is a basic 1-form. Then

Ωb = im db ⊕ im δb ⊕Hb,

where Hb is the kernel of ∆b on Ωb. This is a decomposition into mutually orthogonal
subspaces with finite-dimensional Hb.

The foliated cohomology is used in construction of various versions of characteristic
classes of foliations and obstructions to existence of basic geometric objects (see, e. g.,
[42],[68]).
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Here we should also mention recent results by Crainic, Marius; Moerdijk, Ieke [19]
who present a new Čech-De Rham model for the cohomology of the classifying space of
a foliated manifold. In part, the Čech-De Rham model can be used to prove a version of
Poincare duality for foliations.

5.3 Cohomology of manifolds over algebras

Let A be a finite-dimensional commutative associative algebra with unit over R. Then
An ∼= Rnm (as vector spaces over R), where m = dimR A, this isomorphism defines a
topology onAn. LetU ⊂ An, V ⊂ Ak be open subsets. A map F : U → V is said to beA-
differentiable if, at each point a ∈ U , the differential dFa : TaAn ∼= An → TF (a)Ak ∼= Ak
is A-linear. Let Γ be the pseudogroup of all local A-diffeomorphisms of An. A maximal
Γ-atlas on a topological space M is called a structure of manifold over A on M , and M is
called a manifold over A.

The algebra A is said to be local if A ∼= R ⊕
◦
A, where

◦
A is the radical (the set of

nilpotent elements) of A. The simplest example of such algebra is the algebra of dual
numbers R(ε) = {a + bε | ε2 = 0}. The examples of manifolds over algebras are
provided by total spaces of jet bundles, in part, the total space of a tangent bundle is a
manifold over R(ε). Any ideal I ⊂ A determines a foliation on M whose tangent bundle

is I · TM , in particular, the foliation determined by
◦
A is called the canonical foliation on

M . For the general theory of manifolds over algebras we refer the reader to [76], [77] (see
also references given there).

In [78] V.V.Shurygin constructed de Rham cohomology for manifolds over algebras.
Let M be a manifold over A, dimA M = n, then each tangent space TpM has natural
structure of free module of rank n over A. One can consider the complex of A-valued
differential form (ΩA(M) = Ω(M) ⊗ A, d), where d is the exterior differential extended
to ΩA(M) by linearity. A k-form ϕ ∈ ΩkA(M) is said to be A-differentiable if ϕ and dϕ
are A-linear with respect to the A-module structure on the tangent spaces. In this case, if
Zi : U → A are A-valued coordinates on an open U ⊂M , we have

ϕ|U = ϕi1...ik(Z1, . . . , Zk)dZi1 ∧ · · · ∧ dZik ,

where ϕi1...ik(Z1, . . . , Zk) are A-differentiable functions. Denote by ΩkA−diff (M) the
space of A-differentiable forms, then we obtain the subcomplex (ΩA−diff (M), d) of the
complex (ΩA(M), d) called the de Rham complex of A-differentiable forms on M .
Theorem 17 (Poincare Lemma for A-differentiable forms, [78]) Let U be an open coordi-
nate parallelepiped in An, and let ϕ be an A-differentiable k-form on U such that dϕ = 0;
then there exists an A-smooth (k − 1)-form ψ on U such that ϕ = dψ.

In [78] (see also [77]) V.V.Shurygin constructs complexes of differential forms deter-
mined by ideals of A and finds properties of their cohomology. Also, for manifolds over
algebras, he constructs a bicomplex of differential forms, which, on one hand generalizes
the Dolbeaux bicomplex of complex manifold (see 5.1), and on the other hand, the Vaisman
bicomplex of foliated manifold (see 5.2).

For the properties of the de Rham complex of manifolds over algebras see also [31],
[63], [67].
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5.4 Poisson cohomology

Let M be a smooth manifold. Any Ψ ∈ Ω2(M) determines a skewsymmetric bracket
{ , } : F (M) × F (M) → F (M) by {f, g} = Ψ(df, dg). This bracket is said to be
Poisson if it satisfies the Jacobi identity {{f, g}, h}+ {{h, f}, g}+ {{g, h}, f} = 0, and
(M,Ψ) is called a Poisson manifold. Note that the Jacobi identity for {, } is equivalent to
the local equality Ψ[is∂sΨjk] = 0.

On a smooth manifoldM we have the Schouten-Nijenhuis bracket Ωk(M)×Ωl(M)→
Ωk+l−1(M) uniquely defined by

[u1∧u2∧· · ·∧uk, v1∧v2∧· · ·∧vl] =
∑
i,j

(−1)i+j [ui, vj ]∧u1∧. . . ûi . . . uk∧v1∧. . . v̂j . . . vl.

(14)

For A ∈ Ωk(M) and B ∈ Ωl(M), we have [A,B] ∈ Ωk+l−1(M), and (Ωk(M), [ , ])
is a Lie superalgebra:

[A,B] = (−1)degA degB [B,A] (15)

(−1)degA degC [[A,B], C] + (−1)degC degB [[C,A], B]

+ (−1)degB degA[[B,C], A] = 0 (16)

If Ψ ∈ Ω2(M) is a Poisson structure on M , then

[Ψ,Ψ] = 0. (17)

Now we have D : Ωk(M) → Ωk+1(M), DA = [ψ,A], and from (15),(16), and (17) it
follows that D2 = 0. The cohomology HP (M,Ψ) of the complex (Ω∗, D) is called the
Lichnerowicz-Poisson cohomology of (M,Ψ) [85].

Let Ψ̃ : T ∗M → TM , αi → vi = Ψijαj , be the vector bundle morphism determined
by a Poisson structure Ψ. Then, the operatorD : Ωk(M)→ Ωk+1(M) is given as follows:

Dw(α0, . . . , αk) =
k∑
i=0

Ψ̃αi(w(α0, . . . , α̂i, . . . , αk))+

k∑
0=i<j

(−1)i+jw({αi, αj}, α0, . . . , α̂i, . . . , α̂j , . . . , αk). (18)

Recall that a vector field V ∈ X(M) is called a Poisson vector field if LV Ψ = 0, and
a Hamiltonian vector field if V = Vf = Ψij∂if∂j . Any Hamiltonian vector field is a
Poisson vector field. From (18) it follows that, for a function f ∈ Ω0(M), Df = Vf , and,
for a vector field W ∈ Ω1(M), DW = −LWΨ. In these terms we can express Poisson
cohomology in small dimensions. H0

P (M,Ψ) is the set of Casimir functions of Ψ, that is
of functions f such that Ψij∂jf = 0. The cohomology group H1

P (M,Ψ) is the quotient
space of the space of Poisson vector fields by the space of Hamiltonian vector fields. The
space H2

P (M,Ψ) is the space of essential infinitesimal deformations of Ψ.
In [70] N. Nakanishi calculated Poisson cohomology of quadratic Poisson structures

on a plane. I.Vaisman constructed a double complex associated with Poisson structure (see
[88], [86]). For various results on Poisson cohomology calculation, see, e. g. [32], [69],
[71], [74], [95].
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5.5 Koszul complex

For a Poisson manifold (M,ψ), J.L.Koszul defined the differential δ : Ωk(M) →
Ωk+1(M), δ = i(Ψ)d − di(Ψ), where i(Ψ) is the contraction with the Poisson tensor
Ψ, and proved that δ2 = 0 [47]. The corresponding complex

. . .
δ−→ Ωk+1(M) δ−→ Ωk(M) δ→ Ωk−1(M) δ→ . . .

was called by J.-L. Brylinski [10] the canonical complex, and H(Ω∗(M), δ) =
H∗can(M,Ψ) the canonical homology of Poisson manifold (M,Ψ).

The differential δ is given as follows [10]

δ(f0 df1 ∧ . . . ∧ dfk) =
∑

1≤i≤k

(−1)i+1{f0, fi}df1 ∧ . . . ∧ d̂fi ∧ . . . ∧ dfk

+
∑

1≤i<j≤k

(−1)i+jf0d{fi, fj} ∧ df1 ∧ . . . ∧ d̂fi ∧ . . . ∧ d̂fj ∧ . . . ∧ dfk, (19)

and d ◦ δ + δ ◦ d = 0.
Let (M,ω), dimM = 2m, be a symplectic manifold. For k ≥ 0, let

∧kw : ∧k(T ∗M) × ∧k(T ∗M) → C∞(M) be the pairing defined by ∧kw(α, β) =
wi1j1 . . . wikjkαi1...ikβj1...jk . Also, on M we take the volume form vM = ωm/m!.

J.-L.Brylinski introduced an analog of the Hodge operator, the operator ∗ : Ωk(M)→
Ω2n−k(M), β ∧ (∗α) = ∧kw(β, α) · vM for all α, β ∈ Ωk(M). This operator has the
property ∗(∗α) = α and hence is an isomorphism. Also, for all α ∈ Ωk(M), δα =
(−1)k+1 ∗ d ∗ α. Hence follows that for a symplectic manifold (M,ω), dimM = 2m, the
operator ∗ gives an isomorphism Hk

can(M,w) ∼= H2m−k
dR (M).

Using the operator δ, one can construct another complex associated to a Poisson struc-
ture Ψ on a manifold M . Set Ω0(M) = ⊕k≥0Ω2k(M), Ω1(M) = ⊕k≥0Ω2k+1(M), and
D = d+δ. A form ϕ ∈ Ω0(M) is said to be even, and ϕ ∈ Ω1(M) is said to be odd. Then,
the differentials d and D are odd. In [79] V.V.Shurygin, jr constructed a chain Z2-graded
homomorphism ϕ : (Ω(M), d) → (Ω(M), D) which gives isomorphism in cohomology:
H0(Ω(M) ∼= ⊕k≥0Ω2k(M) and H1(Ω(M) ∼= ⊕k≥0Ω2k+1(M).

This result can be applied to the periodic double complex Eper
∗,∗(M) defined by

Eper
p.q(M) = Λq−p(M), for all p, q ∈ Z, which has d for the horizontal differential and
δ for the vertical differential, both of degree −1. From above it follows that its total co-
homology HD

∗ (M) is isomorphic to the de Rham cohomology of M . For Eper
∗,∗(M), one

has two spectral sequences {Er(M)} and {′Er(M)}, both converging to the total homol-
ogy. J.-L. Brylinski proved that, if M is a compact 2n-dimensional symplectic manifold,
the first spectral sequence {Er(M)} degenerates at E1(M) (i.e., E1(M) ∼= E∞(M)). In
[28] M. Fernández, R. Ibáñez, and M. de Leon give an example of a 5-dimensional compact
Poisson manifold M5 for which Hcan

1 (M5) 6∼= H4(M5), and E1(M5) 6∼= E2(M5).
Note also that in [10] J.L.Brylinski proved the following analog of Hodge’s theorem

(see 2.3):
Theorem 18 For a compact manifoldM with positive definite Kähler metric, any de Rham
cohomology class ξ ∈ H(M) has a symplectically harmonic representative: ξ = [α] and
dα = 0, δα = 0.

However, in general, the analog of Hodge’s theorem fails, a counterexample is given in
[27].
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J.-L.Brylinski’s complexes appear, for example, in H.-D. Cao-J. Zhou’s deforma-
tion quantization of de Rham complex [11]. Using the above mentioned results,
V.V.Shurygin, jr demonstrated that the quantum cohomology of Poisson manifold are ob-
tained by deformation quantization of de Rham cohomology [79].

Properties of Poisson cohomology of the lift of a Poisson structure on a smooth mani-
fold M to TA(M), where A is a Weil algebra, and TA is the Weil functor, are studied in
[80].

5.6 Coeffective cohomology

Another interesting complex of differential forms associated to a symplectic structure was
introduced by T. Bouche in [7]. The coeffective cohomology of a symplectic manifold
(M,ω) is the cohomology of the differential subcomplex (A∗(M), d) of the de Rham
complex consisting of the coeffective forms, i.e. those forms α such that α ∧ ω = 0.
Bouche proved that, if M is compact, the coeffective complex is elliptic for p ≥ n + 1,
and hence its cohomology groups have finite dimension. Moreover, Bouche proved that
for a compact Kähler 2n-dimensional manifold the coeffective cohomology groups and
the truncated de Rham cohomology groups by the de Rham class of the Kähler form are
isomorphic for degree p ≥ n + 1. This result does not hold for an arbitrary symplectic
manifold, the counterexamples are constructed in [26]: the authors take the 6-dimensional
nilmanifoldR6 = Γ\G, whereG is the simply connected nilpotent Lie group of dimension
6, defined by left-invariant 1-forms {αi, 1 ≤ i ≤ 6} such that

dα1 = dα2 = dα3 = 0, dα4 = α2 ∧ α1, dα5 = α3 ∧ α1, dα6 = α4 ∧ α1,

and Γ is a uniform subgroup of G, and the symplectic form is given by

ω = α1 ∧ α5 + α1 ∧ α6 + α2 ∧ α5 + α3 ∧ α4 + α1 ∧ α3.

They calculate the coeffective cohomology of (M,ω) using direct calculation and the fol-
lowing Nomizu’s type theorem
Theorem 19 ([26]) Let G be a connected nilpotent Lie group endowed with an invariant
symplectic form ω and with a discrete subgroup Γ such that the space of right cosets
M = Γ \G is compact. Then there is an isomorphism of cohomology groups Hp(A(g)) =
Hp(A(M)) for all p ≥ n+1, dimG = 2n, whereHp(A(g)) is the coeffective cohomology
with respect to ω and Hp(A(M)) is the coeffective cohomology defined by the projected
symplectic form ω on M .

The relationship between the coeffective cohomology and the de Rham cohomology
was studied in [29], where M. Fernández, R. Ibáñez, and M. de León obtained a bound
for the coeffective numbers and proved that the lower bound is got for compact Kähler
manifolds, and the upper one for non-compact exact symplectic manifolds. Also they
studied the behavior of the coeffective cohomology under deformations.

Note that similar complexes can be constructed for other geometric structures which
can be defined in terms of a closed differential form. For example, in [84] L. Ugarte studied
the properties of the coeffective complex for Spin(7)-manifolds.
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5.7 General remarks on complexes of differential forms associated to
differential geometric structures

Remark 5.1 The results on the canonical cohomology of Poisson manifold and the peri-
odic double complex are generalized to the Jacobi manifolds in [17] and [58] (see also
references there).
Remark 5.2 Generalized complex structures introduced by M. Hitchin [40] are now exten-
sively studied. Generalized complex geometry is a new kind of geometrical structure which
contains complex and symplectic geometry as its extremal special cases. In [16] the opera-
tors ∂ and ∂ (see 5.1) and the corresponding cohomology were defined for the generalized
complex structure. For this structure, there were constructed spectral sequences similar to
the Frölicher spectral sequences and an analog of Serre duality theorem (Theorem 14) was
proved (see [16], [37], and references there).
Remark 5.3 The construction of differential complexes for complex structure and its gen-
eralizations (like the manifolds over algebras) uses a decomposition of the tangent bundle
determined by the corresponding structure. In [51] A.Kushner studies decomposition of
the exterior differential on a manifold M endowed with almost product structure (TM
is splitted in a direct sum of distributions), and applies the obtained tensor invariants to
solving the problem of contact equivalence and the problem of contact linearization for
Monge-Ampère equations.
Remark 5.4 One of the general ways to obtain a complex of differential forms associated to
a differential geometric structure is to consider the Spencer complex for the Lie derivative
[72]. A differential geometric structure on a smooth manifold M is a section s of a natural
bundle ξ : EM → M . Then we can define the Lie derivative of s with respect to a vector
field X on M , which determines a first order differential operator Ls : TM → s∗(V E),
X → LXs. For Ls we have the Spencer P -complex [72], which, in many cases, gives
the fine resolution of the sheaf of infinitesimal automorphisms of s. For example, in this
way for the complex structure we obtain the Dolbeaux complex (see 5.1), for the foliation
structure the Vaisman cohomology (see 5.2), etc. (see [64], [65], [72]).
Remark 5.5 The theory of partial differential equations and the corresponding geometry of
jet bundles give rise to various complexes of differential forms, in particular, to so-called
variational complex of a locally trivial bundle. The numerous interesting results in this field
go far beyond the scope this paper, so we refer the reader to the book by I.S. Krasil’shchik,
V.V. Lychagin, and A.M. Vinogradov [48], and to [49]. Also, in this connection, see the
recent paper by D.Krupka [50] and references there.
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58(4) (1993) 433–452

[40] N. Hitchin: Generalized Calabi-Yau manifolds Preprint arXiv:math.DG/
0209099 (2002)

[41] A. El Kacimi-Alaoui, A. Tihami: Cohomologie bigraduée de certains feuilletages
Bull. Soc. Math. Belg., Sér. B 38 (1986) 144–156



978 De Rham cohomology

[42] F. W. Kamber, Ph. Tondeur: Characteristic classes of foliated bundles (Lect.Notes
Math. V.494., 1975)

[43] F. W. Kamber, Ph. Tondeur: De Rham-Hodge theory for Riemannian foliations
Math. Ann. 277 (1987) 415–431

[44] A. A. Kirillov: Local Lie algebras Uspehi Mat. Nauk 31(4(190)) (1976) 57–76;
Letter to the editors: Correction to ”Local Lie algebras” 31 (Uspehi Mat. Nauk
(1976), no. 4(190), 57–76) Russian; Uspehi Mat. Nauk 32(1(193)) (1977) 268

[45] S. Kobayashi, K. Nomizu: Foundations of differential geometry I (New York-
London: Interscience Publishers, a division of John Wiley & Sons. XI, 329 p., 1963)

[46] S. Kobayashi, K. Nomizu: Foundations of differential geometry II (New York-
London-Sydney: Interscience Publishers a division of John Wiley and Sons, 1969)

[47] J.-L. Koszul: Crochet de Schouten-Nijenhuis et cohomologie In: Élie Cartan et les
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1 Introduction

The study of manifolds with corners was originally developed by J. Cerf [4] and A. Douady
[7] as a natural generalization of the concept of finite-dimensional manifold with smooth
boundary. When one considers two manifolds with smooth boundary, its product is not a
manifold with smooth boundary, but it has an ordinary structure of manifold with corners,
and every finite product of manifolds with corners is again a manifold with corners.

Stability under finite products of manifolds with corners is of a great importance and
one can consider enough by itself to justify the detailed study of this type of manifolds.
For example, the important Schwartz Kernel Theorem (The linear operators from smooth
functions to distributions on a manifold with smooth boundary can be identified with dis-
tributions, namely their Schwartz kernels, on the product of the manifold with itself ) uses
this result of stability of products in an essential way (See [22]).

Applications of the manifolds with corners in differential topology arise immediately
after its definition, thus K. Jänich [15] uses this type of manifolds to the problem of classi-
fying transformation group actions on smooth manifolds, and in the integration theory on
manifolds a general formulation of the Stokes theorem is given in the setting of manifolds
with corners (see J. M. Lee [19]).

On the other hand the ideas on calculus of variations developed by M. Morse in [25]
lead to a change of direction in the study of manifolds. J. Eells in [8] proves that for a
large variety of spaces F of functions from a compact topological space S into a Rieman-
nian manifold M , the Riemannian structure on M determines a differentiable structure
(necessarily infinite-dimensional) on F . This is one of the first steps for the study of in-
finite dimensional manifolds and for the use of new methods in classical analysis, that

8 B.V. .
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historically can be trace back to the work of B. Riemann [26]. Thus a very natural task
is to extend the results of finite-dimensional manifolds with corners to infinite dimension.
The authors of the present chapter realized a quite systematic study of infinite-dimensional
Banach manifolds with corners in [21].

Here, we survey the main features of the manifolds with corners modeled on Banach
spaces or on larger categories of spaces as can be the normed spaces, the locally convex
vector spaces and the convenient vector spaces, that have arisen as important, in the last
years, in Global Analysis.

2 Quadrants

The local models to construct the manifolds with corners are open subsets of quadrants
of topological vector spaces. Thus in this paragraph we introduce the quadrants in vector
spaces and topological vector spaces and we survey the main properties of them.

All the vector spaces will be real vector spaces.However,we remark that the results es-
tablished here can be extended to complex vector spaces by considering its real restrictions
and carrying out adecuate adjustments of the notions considered.

Quadrants in vector spaces

2.1 Let E be a real vector space (rvs). A subset Q of E is called quadrant of E if there
exist a basis B = {ui}i∈I of E and a subset K of I such that

Q = L {uk |k ∈ K }+
{ ∑
i∈I−K

aiui

∣∣∣∣ ∑
i∈I−K

aiui has positive finite support
}

(positive finite support means: There exists a finite subset F of I −K such that ai > 0 for
all i ∈ F and ai = 0 for all i ∈ (I −K)−F ). In this case, we say that the pair (B,K) is
adapted to the quadrant Q.

Note that B is a subset of Q and

L {uk |k ∈ K } ∩
{ ∑
i∈I−K

aiui

∣∣∣∣ ∑
i∈I−K

aiui has positive finite support
}

=
{

0
}

(L {uk|k ∈ K} is the vector subspace of E generated by {uk|k ∈ K}).
Note that if E is non-trivial, then

{
0
}

is not a quadrant of E. If E =
{

0
}

, then Q = E
is a quadrant of E.

2.2 Let Q be a quadrant of a rvs E and let(
B = {ui}i∈I ,K ⊂ I

)
and

(
B′ = {u′m}m∈M , N ⊂M

)
be pairs adapted to Q. Then:

(i) L {uk|k ∈ K} = L {u′n|n ∈ N}.

(ii) card (I) = card (M) , card (K) = card (N), card (I −K) = card (M −N).

(iii) There exists a bijective map σ : I −K −→M −N such that u′σ(i) = riui + xi for
all i ∈ I −K, where xi ∈ L {uk|k ∈ K} and ri is a positive real number.
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(iv) If K = ∅, there exists a bijective map σ : I −→ M such that u′σ(i) = riui for all
i ∈ I, where ri is a positive real number.

This result proves the consistence of the following definitions.

2.3 Let Q be a quadrant of a rvs E and (B = {ui|i ∈ I} ,K ⊂ I) a pair adapted to Q.
Then:

(i) L {uk|k ∈ K} is called the kernel of Q and is denoted by Q0.

(ii) card (I −K) is called the index ofQ and is denoted by index (Q). Finally card (K)
(i.e. the dimension of Q0) is called coindex of Q and is denoted by coindex (Q) .

2.4 Let Q and Q′ be quadrants of a rvs E such that index (Q) = index (Q′) and
coindex (Q) = coindex (Q′). Then there exists a linear isomorphism α : E −→ E
such that α (Q) = Q′ and α

(
Q0
)

= Q′0.

2.5

(i) Let Q be a quadrant of a rvs E and (B = {ui |i ∈ I } ,K ⊂ I) a pair adapted to Q.
Then there exists a linear isomorphism

δ : E −→ Q0 × R(I−K)

such that δ (Q) = Q0 ×
(
R(I−K)

)+
, where R(I−K) ={

x ∈ RI−K |there is Fx finite subset of I −K with xi = 0 for all i /∈ Fx
}

and (
R(I−K)

)+

=
{
x ∈ R(I−K)|xi > 0 for all i

}
,

and δ
(
Q0
)

= Q0 ×
{

0
}

.

(ii) Let Q and Q′ be quadrants with finite indexes of a rvs E. Suppose that index (Q) =
index (Q′). Then coindex (Q) = coindex (Q′), (Q0 and Q′0 have the same finite
codimension).

2.6 New description of quadrants using linear maps
Let Q be a quadrant of a rvs E. Then there exists Λ = {λm |m ∈M }, a linearly

independent system of elements of E∗ = L (E,R), such that

Q = E+
Λ = {x ∈ E|λm (x) > 0 for all m ∈M} ,

Q0 = E0
Λ = {x ∈ E|λm (x) = 0 for all m ∈M}

and card (M) = index (Q). Therefore Q is a wedge set of E and, in particular, Q is a
convex set of E.
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Indeed, let (B = {ui|i ∈ I} ,K ⊂ I) be a pair adapted to Q. For every j ∈ I −K, let
λj be the element of E∗ defined by: λj (uk) = 0 for all k ∈ I − {j} and λj (uj) = 1. We
take M = I −K and all the statements are easily proved.

2.7

(a) Let E be a vector space, F a vector subspace of E∗ that separates points of E and
{x1, ..., xp} a finite subset of E. Then {x1, ..., xp} is a linearly independent system
of elements of E if and only if there exists a finite subset {λ1, ..., λp} of F such that
λi (xj) = δij

(b) Let E be a vector space and {λ1, ..., λp} a finite subset of E∗. Then {λ1, ..., λp} is
a linearly independent system of elements of E∗ if and only if there exists a finite
subset {x1, ..., xp} of E such that λi (xj) = δij .

(c) Let E be a rvs and Λ = {λ1, ..., λp} a finite linearly independent system of elements
of E∗. Then E+

Λ is a quadrant of E such that index
(
E+

Λ

)
= card (Λ) = p and(

E+
Λ

)0
= E0

Λ. Indeed, by (b), we have E = E0
Λ ⊕ L {x1, ..., xp}.

(d) There exist a rvs E and a linearly independent system Λ of elements of E∗ such that
E+

Λ is not a quadrant of E (see the example of 2.8).

In fact we have: Let E be a rvs of infinite dimension. Then there exists a linearly
independent system Λ of elements of E∗ such that E+

Λ =
{

0
}

(The example of 2.8 below,
may be adapted).

2.8 Let Q be a quadrant of finite index of a rvs E. Then, if Λ = {λm |m ∈M } and
Λ′ =

{
µp |p ∈ P

}
are linearly independent systems of elements of E∗ such that Q =

E+
Λ = E+

Λ′ , one verifies:

(i) Q0 = E0
Λ = E0

Λ′ .

(ii) card(M) = card(P ) = index (Q).

(iii) There exists a bijective map σ : M −→ P such that µσ(m) = rmλm, where rm is a
positive real number, for all m ∈M .

Remark In the preceding result, the statement “index (Q) is finite” is an essential condi-
tion, as proves the following:
Example Let E be a rvs with dim E = ℵ0 = card (N). Then E is isomorphic to R(N),
E∗ is isomorphic to RN, and dim E∗ = 2ℵ0 > ℵ0. Let B = {en |n ∈ N} be a basis
of E. Then Q = {x ∈ E|x =

∑
anen, with an > 0 for all n ∈ N} is a quadrant

of E and (B,∅ ⊂ N) is a pair adapted to Q, Q0 =
{

0
}

and index (Q) = ℵ0. Let us
consider the set of projections, P = {pn|n ∈ N} (pn(em) = δnm). Then P is a linearly
independent system of elements of E∗, Q = E+

P , Q0 = E0
P , and index (Q) = ℵ0 =

card (P ). For all (m,n) ∈ N × N, let us consider pnm ∈ E∗ defined by: pnm (en) = 1,
pnm (en+m) = 1, pnm (en+2m) = 1, pnm (en+3m) = 1, . . . , and pnm (ei) = 0for all i /∈
{n, n+m,n+ 2m,n+ 3m,...}. We know that the product mapping θ : E∗ → RN =∏
n∈N

R, x∗ 7−→ (x∗ (en)),is a linear isomorphism. Hence M = {pnm |(m,n) ∈ N× N}
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is a linearly independent system of elements of E∗. Moreover E+
M = Q, E0

M = Q0,
index (Q) = ℵ0 = card (M) and the preceding property (iii) is not verified. Finally
P ∪

{
θ−1 (−1,−1,−1, . . .)

}
(= Λ) is a linearly independent system of elements of E∗

and E+
Λ =

{
0
}

is not a quadrant of E, (θ−1 (−1,−1,−1, . . .) (en) = −1 for all n ∈ N).

2.9

(a) Let Q be a quadrant of a rvs E and ({ui|i ∈ I} ,K ⊂ I) a pair adapted to Q. Then:

(i) We know that Q0 = L {uk|k ∈ K} is an intrinsic subset of Q (2.2). If K = I,
then Q0 = E = Q and if K = ∅, then Q0 =

{
0
}

.
(ii) For all n ∈ N, let Qn be the set {x ∈ Q|there existx0 ∈ Q0, i1, . . . , in ∈

I − K and ai1 , . . . , ain ∈ R such that ai1 > 0, . . . , ain > 0, and x = x0 +
ai1ui1 + · · · + ainuin}. It is clear that Qn can be empty, but if Qn 6= ∅ then
Qm 6= ∅ for all m ∈ N withm < n.

This definition of Qn does not depend of the pair adapted to Q considered, (2.2).

(b) Let Q be a quadrant of a rvs E. Then:

(i) If index (Q) is infinite, then {Qn |n ∈ N ∪ {0}} is a partition of the
quadrant Q.

(ii) If index (Q) = n, n ∈ N ∪ {0}, then Qm = ∅ for all m > n and{
Q0, Q1, ..., Qn

}
is a partition of Q.

(c) Let Q be a quadrant of a rvs E. Then:

(i) If index (Q) is infinite and x ∈ Qn, (n ∈ N ∪ {0}), we say that x has coindex
n (coindex (x) = n).

(ii) If index (Q) is finite (index (Q) = n) and x ∈ Qm, 0 6 m 6 n, we say that
x has coindex m and index n − m (index (x) = n − m). In this case (of
index (Q) = n), {x ∈ Q | x has index n} = Q0.

(d) Let Q be a quadrant with finite index n of a rvs E. Let Λ = {ν1, ..., νn}
be a linearly independent system of elements of E∗ such that Q = E+

Λ , (con-
sequently Q0 = E0

Λ (2.8)). Then for x ∈ Q we have: “ coindex (x) = m
if and only if card {i|νi (x) 6= 0} = m′′ and “ index (x) = p if and only if
card {i|νi (x) = 0} = p′′.

2.10 Product of quadrants

(a) Let Q be a quadrant of a rvs E and Q′ a quadrant of a rvs E′. Then:

(i) Q × Q′ is a quadrant of E × E′, (Q×Q′)0 = Q0 × Q′0 and (Q×Q′)n =⋃
p+q=n

Qp×Q′q for all n ∈ N. Indeed if ({ui | i ∈ I} ,K ⊂ I) is a pair adapted

to Q and ({vj | j ∈ J} , L ⊂ J) is a pair adapted to Q′, then

({(ui, 0) | i ∈ I} ∪ {(0, vj) | j ∈ J} ,K ] L ⊂ I ] J)

is a pair adapted to Q×Q′ (] is the disjoint union).
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(ii) If index (Q) = n, index (Q′) = m, Λ = {λ1, ..., λn} is a linearly independent
system of elements of E∗ with Q = E+

Λ , and M = {µ1, ..., µm} is a linearly
independent system of elements of E′∗ with Q′ = E′+M , (consequently Q0 =
E0

Λ and Q′0 = E′0M ), then {λi · p1|i = 1, 2, ..., n} ∪
{
µj · p2|j = 1, 2, ...,m

}
(= Λ p1 ∪M p2) is a linearly independent system of elements of (E × E′)∗

and (E × E′)+
Λ p1∪M p2

= E+
Λ × E

′+
M , (E × E′)0

Λ p1∪M p2
= E0

Λ × E′0M .

(b) For all i ∈ {1, ..., n}, let Qi be a quadrant of a rvs Ei. Then
n∏
i=1

Qi is a quadrant

of the product real vector space
n∏
i=1

Ei,
(

n∏
i=1

Qi

)0

=
n∏
i=1

Q0
i and

(
n∏
i=1

Qi

)p
=⋃

p1+...+pn=p

(Qp1
1 × ...×Qpnn ) for all p ∈ N.

Of course (ii) of (a) is also generalized.

However an infinite product of quadrants is not, in general, a quadrant.
Example (1) [0,−→) = { r ∈ R | r > 0} is a quadrant of R.

(2)
∏
n∈N

[0,−→)n(=P ) , where [0,−→)n = [0,−→) for all natural number n, is the set{
x ∈ RN | xn > 0 for all n ∈ N

}
and P is not a quadrant of RN(= E).

Remark Let Q be a quadrant of a rvs E. Then, if Λ, Λ′ are linearly independent systems
of elements of E∗ such that Q = E+

Λ = E+
Λ′ , one verifies that Q0 = E0

Λ = E0
Λ′ (see 2.8).

Dealing with the example, suppose that P is a quadrant of E. Let Λ = {pn|n ∈ N}
be the set of the projections (Λ is a linearly independent system of elements of E∗). Then
E+

Λ = P and E0
Λ =

{
0
}

= P 0 (see the preceding remark).
Let ({ui|i ∈ I} ,K ⊂ I) be a pair adapted to P . By 2.6, there exists Λ =

{λm|m ∈M} a linearly independent system of elements of E∗ such that P = E+

Λ
,

P 0 = E0
Λ

and card (M) = index (P ). In fact M = I−K and for all j ∈M , λj (uj) = 1
and λj (uk) = 0 for all k ∈ I with k 6= j.

Then E0

Λ
=
{

0
}

, K = ∅, card (I) = index (P ), ui ∈ E+
Λ for all i ∈ I and, finally,

there exists i0 ∈ I such that ui0 has infinite positive coordinates. Let us consider v =(
x1 − 1

2x1, x2 − 1
3x2, . . . , xn − 1

n+1xn, . . .
)

, where ui0 = (x1, x2, . . . xn, . . .). Then
v, ui0 ∈ P and v = a1ui1 + · · · + amuim , with a1 > 0, . . . , am > 0, and ui0 − v =
ui0 − a1ui1 − · · · − amuim ∈ P and, consequently, m = 1, ui0 = ui1 , a1 < 1 and
v = a1ui0 , which is a contradiction.

2.11 Let Q be a quadrant of a rvs E, x ∈ Q and v ∈ E. Then we have one and only one
of the following statements:

(i) There is ε > 0 such that x+ tv ∈ Q for all t ∈ (−ε, ε) .

(ii) There is ε > 0 such that x+ tv ∈ Q for all t ∈ [0, ε) and x+ tv /∈ Q for all t < 0.

(iii) There is ε > 0 such that x+ tv ∈ Q for all t ∈ (−ε, 0] and x+ tv /∈ Q for all t > 0.

(iv) For all t 6= 0, x+ tv /∈ Q.
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Indeed, we take a pair (B,K ⊂ I) adapted to Q, span x and v with respect to B and
compare these expansions.

Quadrants in topological vector spaces

2.12 Characterization of quadrants with non-void interior

(i) Let Q be a quadrant of a real topological vector space (rtvs) E. Then the following
statements are equivalent:

(a) int(Q) 6= ∅ (int(Q) is the interior of Q in E).
(b) index (Q) is finite and Q0 is closed in E (we remark that if index (Q) = 0,

then Q0 = Q = E).

The step “(a) =⇒ (b)” follows from the lemma:

Let Q be a quadrant of a rtvs E. Then:

(1) if index (Q) is infinite, int(Q) = ∅, and

(2) if index (Q) is finite and Q0 is not closed, int(Q) = ∅.

Step “(b) =⇒ (a)”. Let ({ei | i ∈ I} , K ⊂ I) be a pair adapted toQ. Then I−K =
{i1, ...in} , where index (Q) = n, and Λ = {ν1, ..., νn} is a linearly independent
system of elements of E∗ with Q = E+

Λ and Q0 = E0
Λ, where νk (eik) = 1 and

νk (ej) = 0 for all j ∈ I with j 6= ik, k = 1, 2, ..., n.

Moreover Q0 × L {ei1 , ..., ein}
+−→ E is a linear homeomorphism, since we apply

the general result:

Let E be a topological vector space and F a closed vector subspace of finite codi-
mension. Then every algebraic supplement G of F in E is a topological supplement
of F in E. Consequently Λ ⊂ L (E,R) and

int(Q) =
{
x0 + λ1ei1 + · · ·+ λnein |x0 ∈ Q0, λ1 > 0, ..., λn > 0

}
.

(ii) Let Q be a quadrant of a rtvs E and n ∈ N. Then the following statements are
equivalent:

(a) index (Q) = n and Q0 is closed in E.

(b) There exists a linearly independent system Λ = {λ1, . . . λn} of elements of
L (E,R) such that Q = E+

Λ . (See 2.7 )

Moreover if (b) is fulfilled, Q0 = E0
Λ.

Note that if (b) holds, then there exists a finite subset {x1, ..., xn} of E such that
λi (xj) = δij and consequently E = E0

Λ ⊕ L {x1, ..., xn} . Let B0 =
{
x0
k|k ∈ K

}
be a basis ofE0

Λ and consider the set I = K∪{1, ..., n} . ThenB = B0∪{x1, ..., xn}

is a basis of E,Q = L
{
x0
k|k ∈ K

}
+
{

n∑
i=1

aixi|a1 > 0, ..., an > 0
}

, (B,K ⊂ I)

is adapted to Q, index (Q) = n and Q0 = E0
Λ.

The preceding result obviously holds for n = 0.
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(iii) We remark that there exists a Hausdorff rtvs (Hrtvs) E such that E 6= 0 and
L (E,R) = 0, [17]. Note that if Q is a quadrant in E with int (Q) 6= ∅, then
Q = E. Finally, ifQ is a quadrant inE with index (Q) = n ∈ N, then int (Q) = ∅.

We see that in order to deal with quadrants the class of Hausdorff real topological
vector spaces is a too much large class.

(iv) Let Q be a quadrant of a rtvs E. Then:

(a) int (Q) 6= ∅ and A non-void open subset of Q imply int (A) 6= ∅ (By (i),
step ”(b) =⇒ (a)”, we have that Q0 × L {ei1 , ..., ein}

+−→ E is a linear
homeomorphism).

(b) For every y ∈ int (Q) and every x ∈ Q, {tx+(1− t) y|0 6 t < 1} = [y, x) ⊂
int (Q) .

(v) Let E be a rtvs and Q a quadrant of E of finite index, n ∈ N, and closed kernel
and let ({ei|i ∈ I},K ⊂ I) be a pair adapted to Q (I −K = {i1, ..., in}) . Then
the map

Q0 × L {ei1 , ..., ein}
+−→ E

is a linear homeomorphism and{
x0 + λ1ei1 + · · ·+ λnein |x0 ∈ Q0, λ1 > 0, ..., λn > 0

}
= int (Q) .

This result and the topological characterization of Fréchet spaces obtained by
H. Toruńczyk (Every Fréchet space is homeomorphic to a Hilbert space, see [27]),
give the following:
Theorem Every quadrantQwith non-void interior of a Fréchet space (in particular,
a Banach space) is homeomorphic to a quadrant of a Hilbert space.

Note that Q0 is again a Fréchet space.

(vi) Let E be a rtvs and n ∈ N. Let us consider the set {{λi}i∈I | card(I) = n
and {λi}i∈I is a linearly independent system of elements of L(E,R)}(=A(E, n)).
Let us consider the binary relation on A(E,n):

{λi}i∈I ∼ {µj}j∈J if and only if there is a bijective map σ : I → J such that
µσ(i) = ρiλi, where ρi is a positive real number, for all i ∈ I .

Then ∼ is an equivalence relation. Moreover, the map A(E,n)/ ∼ −→ {Q | Q
is a quadrant in E of index n and closed kernel,[{λi}i∈I ] 7→ {x ∈ E|λi(x) > 0
for all i ∈ I}, is bijective (the inverse map is given by the preceding (ii)).

(vii) Let E be a rtvs, n ∈ N and Q a subset of E. Then Q is a quadrant in E with
index (Q) = n and Q0 closed if and only if there is {λ1, ..., λn}, a linearly indepen-
dent system of elements of L(E,R), such that Q = E+

{λ1,...,λn}.

(viii) Let E be a rtvs and n ∈ N. Let us consider the set {({ui}i∈I ,K ⊂ I) | {ui}i∈I
is a basis of E, card(I − K) = n and L{uk|k ∈ K} is closed in E}(=B(E,n)).

Let us consider the binary relation on B(E,n):



J. Margalef-Roig and E. Outerelo Domı́nguez 991

({ui}i∈I ,K ⊂ I) ∼ ({vj}j∈J ,M ⊂ J) if and only if L{uk|k ∈ K} = L{vm|m ∈
M} and there is a bijective map σ : I −K → J −M such that vσ(i) = riui + xi,
ri > 0, xi ∈ L{uk|k ∈ K}, for all i ∈ I −K.

Then ∼ is an equivalence relation. Moreover, the map B(E,n)/ ∼−→ {Q | Q
is a quadrant in E of index n and closed kernel}, [({ui}i∈I ,K ⊂ I)] 7→ L{uk|k ∈
K} + {

∑
i∈I−K

aiui|
∑

i∈I−K
aiui has positive finite support}, is bijective (the inverse

map is given by the preceding (ii)).

2.13

(i) Let E be a rtvs and Q a quadrant of E such that index (Q) = n ∈ N and
Q0 is closed in E. Then by 2.12 (ii) there exists a linearly independent system
Λ = {λ1, ..., λn} of elements of L(E,R) such that Q = E+

Λ and Q0 = E0
Λ. Now

by 2.7 (b), there exists a finite subset {x1, ..., xn} of E such that λi (xj) = δij .

Consequently E0
Λ × L {x1, ..., xn}

+−→ E is a linear homeomorphism, (that is
E = E0

Λ ⊕T L {x1, ..., xn}), the map α : E0
Λ × Rn −→ E, α (x0, r1, ..., rn) =

x0 + r1x1 + · · · + rnxn, is a linear homeomorphism, α
(
E0

Λ × (R+ ∪ {0})n
)

=
E+

Λ , where R+ = {x ∈ R|x > 0}, Q is closed in E, α
(
E0

Λ × (R+)n
)

= int (Q) =
{x ∈ Q| card {i|λi (x) > 0} = n} = {x ∈ Q| index (x) = 0},Fr (Q) = Q −
int (Q) = {x ∈ Q| card {i|λi (x) = 0} ≥ 1} = {x ∈ Q| index (x) > 1}, and
E+

Λ is homeomorphic to E+
λ for all λ ∈ Λ (In fact, E+

Λ ≈ E0
Λ × (Rn)+

{p1,...,pn} ≈
E0

Λ × (Rn)+
p1
≈ E+

λ1
, where ≈ means homeomorphism. Analogously for λ2,...,λn).

(ii) Let E be a rtvs and Λ = {λ1, . . . λn} , M = {µ1, ..., µm} finite linearly indepen-
dent systems of elements of L (E,R) such that E+

Λ = E+
M . Then:

(1) E+
Λ is a quadrant Q of E, such that index (Q) = n and Q0 = E0

Λ and, conse-
quently n = m, E0

Λ = E0
M (2.7 (c)), and Q0 is closed in E.

(2) There exists a bijective map τ : {1, ..., n} −→ {1, ..., n} such that for every
i ∈ {1, ..., n} there exists a positive real number ri satisfying λi = riµτ(i) ,
(2.8).

(iii) Let Q and P be quadrants of a rtvs E such that Q0 and P 0 are closed, and
index (Q) = index (P ) = n ∈ N. Then, there exists a linear homeomorphism
α : E −→ E such that α (Q) = P and α

(
Q0
)

= P 0 (We apply the following
lemma : Let E be a rtvs and F, G closed vector subspaces of E with the same finite
codimension. Then F and G are linearly homeomorphic).
Remark Let H be a real Hilbert space, λ : H −→ R a linear discontinuous map and
µ : H −→ R a linear continuous map with µ 6= 0. Then by 2.7 (c), we have that H+

λ

and H+
µ are quadrants of H of index 1 and

(
H+
λ

)0
= ker (λ), (H+

µ )0 = ker (µ),
but there is not a homeomorphism α : H −→ H such that α (ker (λ)) = ker (µ).
However there exists a linear isomorphism β : H −→ H such that β

(
H+
λ

)
= H+

µ

and β
(
H0
λ

)
= H0

µ, (ker (λ) is not closed in H).
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(iv) Let Q be a quadrant of a rtvs E such that index (Q) = n ∈ N and Q0 is closed
in E. Let F be a rtvs and α : Q −→ F a continuous map such that α (x+ y) =
α (x) + α (y) for all x, y ∈ Q and α (rx) = rα (x) for all x ∈ Q and for all non-
negative real number r. Then, α is linear on Q0 and there exists a unique continuous
linear map α : E −→ F such that α|Q = α.

(By the preceding (i), Q0 × L {x1, ..., xn}
+−→ E is a linear homeomorphism)

2.14 Let Q be a quadrant of a rtvs E, x an element of an open subset U of Q and v an
element of E. Then we have one and only one of the following statements:

(i) There is ε > 0 such that x+ tv ∈ U for all t ∈ (−ε, ε).

(ii) There is ε > 0 such that x+ tv ∈ U for all t ∈ [0, ε) and x+ tv /∈ Q for all t < 0.

(iii) There is ε > 0 such that x+ tv ∈ U for all t ∈ (−ε, 0] and x+ tv /∈ Q for all t > 0.

(iv) For all t ∈ R with t 6= 0, x+ tv /∈ Q (see 2.11)

Note that (iv) is not possible if v ∈ Q ∪ {−Q}.

Let x be an element of an open subset U of a quadrant Q of a rtvs E. We introduce the
following definitions:

(1) A (Q,U, x) = {v ∈ E | there is ε > 0 with x+ (−ε, ε) · v ⊂ int (U)}.

(2) B (Q,U, x) = {v ∈ E | there is ε > 0 with x+ (−ε, ε) · v ⊂ U}.

(3) B+ (Q,U, x) = {v ∈ E | there is ε > 0 with x + [0, ε) · v ⊂ U and x + tv /∈
Q for all t < 0}.

(4) B− (Q,U, x) = {v ∈ E | there is ε > 0 with x + (−ε, 0] · v ⊂ U and x + tv /∈
Q for all t > 0}.

(5) B0 (Q,U, x) = {v ∈ E | x+ tv /∈ Q for all t ∈ R with t 6= 0}.

Note that one verifies:

(a) A (Q,U, x) ⊂ B (Q,U, x) ; if A (Q,U, x) 6= ∅, then x ∈ int (Q) ; if
B (Q,U, x) = E and Q0 is closed in E ,then index (Q) is finite and x ∈ int (Q).

(b) If x ∈ int (Q) , then index (Q) is finite, Q0 is closed in E, x ∈ int (U) = U ∩
int (Q), A (Q,U, x) = B (Q,U, x) = E and B+ (Q,U, x) = B− (Q,U, x) =
B0 (Q,U, x) = ∅.

(c) If x /∈ int (Q) and Q0 is closed in E, then x ∈ Fr (Q), x /∈ int (U), A (Q,U, x) =
∅, Q0 ⊂ B (Q,U, x), B+ (Q,U, x) 6= ∅, B− (Q,U, x) 6= ∅, Q ⊂ B (Q,U, x) ∪
B+ (Q,U, x) and −Q ⊂ B (Q,U, x) ∪B− (Q,U, x) .

(d) If x /∈ int(Q), Q0 is closed in E and coindex (x) + 2 6 index (Q), then
B0 (Q,U, x) 6= ∅.
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(e) If x /∈ int (Q), Q0 is closed in E and index (Q) = n ∈ N and n−coindex (x) = 1,
then B0 (Q,U, x) = ∅ and int (Q) 6= ∅.

(f ) If x /∈ int (Q) and Q0 is not closed in E, then x ∈ Fr (Q), x /∈ int (U),
A (Q,U, x) = ∅, Q0 ⊂ B (Q,U, x), Q ⊂ B (Q,U, x) ∪ B+ (Q,U, x) and
−Q ⊂ B (Q,U, x) ∪B− (Q,U, x) .

(g) If x /∈ int (Q), Q0 is not closed in E, index (Q) = n ∈ N and coindex (x) = n,
then int (Q) = ∅ and B (Q,U, x) = E.

(h) If x /∈ int (Q), Q0 is not closed in E and coindex (x) + 2 6 index (Q), then
B0 (Q,U, x) 6= ∅.

(i) If x /∈ int (Q),Q0 is not closed inE, index (Q) = n ∈ N and n−coindex (x) = 1,
then B0 (Q,U, x) = ∅.

2.15 Let U be an open subset of a quadrant Q of a rtvs E. Suppose that int (Q) 6= ∅,
(2.12 (i)). For all k with 0 6 k 6 index (Q), one defines:

(i) Bk(U) = {x ∈ U | index (x) = k} , (2.9), (If index (Q) = 0, B0 (U) = U ). It
is clear that B0 (U) = int (U) = U ∩ int (Q) and int (U) is dense in U. Finally
{Bk(U) | 0 6 k 6 index (Q)} is a partition of U.

(ii) ∂k(U) = {x ∈ U | index (x) > k} , (If index (Q) = 0, ∂0(U) = U ), and this set
is called the k-boundary of U . It is clear that ∂k(U) =

⋃
j>k

Bj(U) is closed in U and

∂0(U) = U . The set ∂1(U) is called the boundary of U and is denoted by ∂(U).

Note thatBk(U) = U∩Bk(Q) and ∂k(U) = U∩∂k(Q) for all k with 0 6 k 6 index (Q).

Quadrants in locally convex real topological vector spaces

2.16 Let (E, T ) be a Hausdorff locally convex rtvs (Hlcrtvs) and V (0) = {V ⊂
E|V is a bornivorous (i.e., absorbs the bounded sets) absolutely convex subset of (E, T )}.
Then:

(i) V (0) is a 0-neighbourhood basis of a (unique) Hausdorff locally convex topology
on E, denoted by Tborn and called bornologification of (E, T ). This topology, Tborn,
is finer than T (T ⊂ Tborn).

(ii) (E, T ) and (E, Tborn) have the same collection of bounded sets, and (E, Tborn) is the
finest Hausdorff locally convex topology on E with this property. ([17], [18]).

Let (E, T ) be a Hlcrtvs. Then:

(1) (E, Tborn) is a bornological Hlcrtvs (A Hlcrtvs (E′, T ′) is said to be a bornological
space, if every bornivorous absolutely convex subset in (E′, T ′) is a neighbourhood
of 0 in (E′, T ′) ).

(2) (E, T ) is bornological if and only if T = Tborn.
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(3) For any Hlcrtvs F , {h : (E, Tborn) → F | h is a linear continuous map} = {f :
(E, T )→ F | f is a bounded linear map}.

(4) Let A be an absolutely convex set in E. Then A is a 0-neighbourhood in (E, Tborn)
if and only if A is a bornivorous subset.

(5) The continuous seminorms on (E, Tborn) are exactly the bounded seminorms on
(E, T ).

(6) If F is a vector subspace of E of finite codimension, then (T |F )born = (Tborn) |F .

Note that the topological product of at most countably many bornological spaces is again
bornological.

Let E be a Hlcrtvs.Then: If E is metrizable, E is bornological. In particular, if E is a
Fréchet (or normable) space, then E is bornological.

2.17 Let E be a Hlcrtvs and let c : R −→ E be a map (a curve). Then:

(i) c is called differentiable if the derivative, c′ (t) = lim
s→0

c(t+s)−c(t)
s at t, exists for all

t ∈ R, (consequently c is continuous).

(ii) We say that c is C0 if c is continuous on R. We say that c is C1 if c′ (t) exists for all
t ∈ R and c′ is continuous on R. We say that c is C2 if c′ and (c′)′ (= c′′) exist and
c′′ is continuous. In general, we say that c is Cn if c′, c′′, . . . , c(n exist and c(n is
continuous.

(iii) c is called smooth or C∞ if all the iterated derivatives exist.

The set of Cp curves in E will be denoted by Cp (R, E), (p ∈ {0} ∪ N ∪ {∞}) . We
remark that if (E, T ) is a Hlcrtvs,then (E, T ) and (E, Tborn) have the same smooth curves,
[18].

Let (E, T ) be a Hlcrtvs. We denote by C∞T, (which will be called C∞-topology), the
final topology in E induced by the family

C∞(R, E) = {c : R −→ E | c is a smooth curve in (E, T )}

The topological space (E,C∞T ) will be also denoted byC∞E. One has that T ⊂ Tborn ⊂
C∞T , even more C∞ (Tborn) = C∞T . Note that (E,C∞T ) is not, in general, a rtvs
(C∞RI , where card(I) > 2ℵ0 , is not completely regular (see [18])).

Let (E, T ) be a metrizable Hlcrtvs. Then, T = Tborn = C∞T . In particular, this takes
place if (E, T ) is a Fréchet space.

Note that (Rn, Tnu ) is a Hlcrtvs and C∞Tnu = Tnu . In general, the C∞-topology of a
product of two Hlcrtv spaces is not the product of the C∞-topologies of the factor spaces.
However the C∞-topology ofE×Rn, (where (E, T ) is a Hlcrtvs), is the product topology
of C∞T by Tnu (the usual topology of Rn).

Let (E, T ) be a Hlcrtvs and F a closed vector subspace of E. Then we have that the
topology C∞T induces in F the topology C∞ (T |F ). If F is not closed this result is not
true in general.
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Let (E, T ) be a Hlcrtvs and X a subset of E. Let us consider the set

F = {c : R −→ E | c is a smooth curve in (E, T ) with im(c) ⊂ X} .

The final topology in X generated by the family F will be called C∞−topology of X
and the corresponding topological space will be denoted by C∞X . This topology contains
the topology (C∞T )|X , but, in general, they do not coincide. If X is open of C∞T or
X is convex and locally closed in (E,C∞T ), then the C∞−topology of X is equal to
(C∞T ) |X .

Moreover, if U is a convex subset of a bornological Hlcrtvs E, then U is C∞-open if
and only if U is open in E (use the following result: Let V be an absolutely convex subset
of a bornological Hlcrtvs (E, T ). Then V is a 0-neighbourhood of (E, T ) if and only if V
is 0-neighbourhood in C∞E).

2.18 Let (E, T ) be a Hlcrtvs andK a convex set ofE with non-voidC∞−interior, that is,
intC∞T (K) 6= ∅. Then, we have that the segment (x, y] = {x+ t(y − x)|0 < t 6 1} ⊂
intC∞T (K) for all x ∈ K and all element y of intC∞T (K). The C∞−interior of K is
convex and open even in (E, Tborn), (weaker than (E,C∞T )), andK is closed in (E, Tborn)
if and only if it is closed in (E,C∞T ), [18].

2.19

(i) Let Q be a quadrant in a Hlcrtvs (E, T ). Then the following statements are equiva-
lent:

(a) The C∞−interior of Q is non-void, (that is intC∞T (Q) 6= ∅).

(b) index (Q) is finite and Qo is closed in (E, Tborn) (2.12, 2.18).

Note that if (a) is fulfilled, intTborn (Q) 6= ∅.

(ii) Let Q be a quadrant in a Hlcrtvs (E, T ) and n ∈ N. Then the following statements
are equivalent:

(1) index (Q) = n and Qo is closed in (E, Tborn).

(2) There exists a linearly independent system Λ = {λ1, ..., λn} of elements of
LBT (E,R) (the space of bounded linear maps from (E, T ) to R) such that
Q = E+

Λ .

Moreover if (2) holds, Q0 = E0
Λ. (Apply 2.12 (ii) and 2.16).

Finally if (2) holds, then:

(a) Q and Q0 are closed in (E, Tborn) and therefore in (E,C∞T ).

(b) intC∞T (Q) = intTborn (Q), (see 2.18).

(c) The C∞−topology on Q (2.17), coincides with (C∞T )|Q and the
C∞-topology on Q0 coincides with (C∞T ) |Q0 .
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(d) Let {x1, ..., xn} be a subset of E such that λi(xj) = δij . Then, by (a), Q0 ×
L {x1, ..., xn} → E, (x0, a1x1 + ...+ anxn) 7→ x0 + a1x1 + ...+ anxn, is a
linear homeomorphism with the topology Tborn. Consequently α : Q0×Rn →
E, (x0, a1, ..., an) 7→ x0 +a1x1 + ...+anxn, is a linear homeomorphism with
the topology Tborn and α : Q0×Rn → E is also a linear homeomorphism with
the topology C∞T , (again by (a)), and α

(
Q0 × (Rn)+

{p1,...,pn}

)
= Q.

Let us prove the last linear homeomorphism: LetU be an open set ofC∞T . We
need to prove that α−1(U) is open inQ0×Rn with the topology (C∞T ) |Q0×
Tnu , but we know that this topology coincides with C∞

(
T |Q0 × Tnu

)
which in

its turn coincides withC∞
(
Tborn|Q0 × Tnu

)
. Also we know that (C∞T ) |Q0 =

C∞
(
T |Q0

)
which in its turn is the C∞−topology of Q0 generated by the

family{
c : R −→ E | c is a smooth curve in (E, T ) with im(c) ⊂ Q0

}
.

Finally, recall that
(
T |Q0 × Tnu

)
born = Tborn|Q0 ×Tnu , and the spaces Q0×Rn

with the topologies T |Q0×Tnu and Tborn|Q0×Tnu have the same smooth curves.
Let c : R −→ Q0 × Rn be a smooth curve respect the topology T |Q0 × Tnu .
Then α ◦ c : R −→ E is a smooth curve respect the topology Tborn in E (also
respect to T ). Consequenly (α ◦ c)−1 (U) = c−1α−1(U) is an open set of R,
which ends the proof.
If we consider α−1, the same argument proves its continuity.

(e) LetU be a non-void element of (C∞T ) |Q. Then intC∞T (U) is also non-void.

3 Differentiation theories

The second basic tool (after the quadrants) to reach the notion of differentiable manifold
with corners, is a differentiation theory on open subsets of quadrants in topological vector
spaces.

In this field there are many options, for infinite dimensional topological vector spaces,
that are generalizations of the classical calculus in euclidean spaces. We only consider four
of them, and the choice is based upon in a larger use in analysis global today.

Differentiation theories in normable spaces

3.1

(i) Let x be an element of an open subset A of a quadrant Q in a rtvs E. Then x is
cluster point of A− {x} .

(ii) Let U be an open subset of a quadrant Q in a normable (with the norm ‖ ‖) rtvs
E, F a Hlcrtvs defined by the collection of seminorms{‖ ‖i |i ∈ I}, f : U −→ F
a map, x ∈ U and u ∈ L (E,F ). Then, we say that u is tangent to f at x if
limy→x(f(y) − f(x) − u(y − x)) ‖ y − x ‖−1= 0 ∈ F (which is equivalent to
limy→x ‖ f(y)− f(x)− u(y − x) ‖i‖ y − x ‖−1= 0 ∈ R, for all i ∈ I).
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Note that to be tangent to f at x is independent of the equivalent norms considered
in E. Moreover, if u, v are tangent to f at x, then u = v (that is, if the tangent to f
at x exists, it is unique).

(iii) Let U be an open subset of a quadrant Q in a normable rtvs E, F a Hlcrtvs, f :
U −→ F a map, and x ∈ U . If there exists u ∈ L (E,F ) such that u is tangent to
f at x, we say that f is differentiable (or Fréchet differentiable) at x, we denote u,
(the tangent to f at x), by Df (x) and, finally, we say that Df (x) is the differential
of f at x. If f is differentiable at every x ∈ U , f is said to be differentiable on U
and in this case we have the map Df : U −→ L (E,F ) defined by x 7→ Df (x).
Obviously if Q = E, then U is an open set of E and the preceding notion coincide
with the similar classical notions given in [2]. This coincidence also occurs when the
open subset U of the quadrant Q is an open subset of E. The above definitions do
not depend of the quadrant Q in E that contains U and such that U is open in Q, that
is, if Q and P are quadrants in E and U is open in Q and in P , then the preceding
definitions coincide for both Q and P.

The preceding notions are independent of the equivalent norms considered in E.

(iv) If f is differentiable at x ((iii)), then f is continuous at x.

3.2 Let f be differentiable at x, (3.1 (iii)). Then:

(i) For all u ∈ B (Q,U, x), (2.14), (recall that x ∈ int (U) implies B (Q,U, x) = E),

lim
t→0

f (x+ tu)− f (x)
t

= Df (x) (u) .

(ii) Let u be an element of B+ (Q,U, x),(in this case it must be x /∈ int (Q)). Then

lim
t→0+

f (x+ tu)− f (x)
t

= Df (x) (u) , (2.14).

(iii) Let u be an element of B− (Q,U, x),(in this case it must be x /∈ int (Q)). Then

lim
t→0−

f (x+ tu)− f (x)
t

= Df (x) (u) , (2.14).

Note Let us consider E, Q, U , F , f : U −→ F , x ∈ U as in (iii) of 3.1. Suppose that
E = R, (of course Q may be (←−, 0] or [0,−→) or R, and suppose that f ′ (x) exists,
(lateral derivatives when it is demanded in the cases x = 0. Then f is differentiable at x
and Df (x) (r) = rf ′ (x) for all r ∈ R.

3.3 Let U be an open subset of a quadrant Q of a normable rtvs (with the norm ‖ ‖)
E, F a Hlcrtvs (defined by the seminorms {‖ ‖i |i ∈ I}), and f : U −→ F a map. We
know that L (E,F ) is a Hlcrtvs defined by the family of seminorms

{
‖ ‖∗i |i ∈ I

}
, where

‖λ‖∗i = Supreme {‖λ (x)‖i | ‖x‖ 6 1} .
Then we give the following definitions:
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(1) f is of class 0,
(
C0
)
, or a C0-map if f is continuous on U .

(2) f is of class 1,
(
C1
)
, or a C1-map if f is differentiable on U and Df : U −→

L (E,F ) is C0.

(3) f is of class 2,
(
C2
)
, or a C2-map if f is differentiable on U and Df : U −→

L (E,F ) is C1 (which is equivalent to: f is differentiable on U, Df is differentiable
on U and D (Df) : U −→ L (E,L (E,F )) is continuous).
Note We know that L2 (E,F ) is a Hlcrtvs defined by the collection of seminorms{
‖ ‖∗∗i |i ∈ I

}
, where ‖λ‖∗∗i = Supreme {‖λ (x, y)‖i | ‖x‖ 6 1, ‖y‖ 6 1}.

Moreover θ : L (E,L (E,F )) −→ L2 (E,F ), θ (g) (x, y) = g (x) (y), is a linear
homeomorphism and θ ◦D (Df) : U −→ L2 (E,F ) will be denoted D2f .

(4) If r is a natural number with r > 1, f is of class r, (Cr), or a Cr-map if f , Df ,
D2f, ...,Dr−1f are diferentiable maps on U and Drf : U −→ Lr (E,F ) is contin-
uous, (inductive process).

(5) f is of class∞, (C∞), or a C∞-map if f is a Cr-map for all r ∈ N ∪ {0}.

One has the following properties:

(i) If F is normable, int(Q) 6= ∅, Dr−1f exists on U (r > 2) and Dr−1f is differ-
entiable at x ∈ U , then Drf(x) is a symmetric r-linear continuous map of Er into
F .

(ii) Suppose that f is Cr on U , then for all p ∈ N ∪ {0} with p 6 r, f is Cp on U and
Dpf is Cr−p on U.

(iii) Suppose that f = λ|U , where λ ∈ L(E,F ). Then f is C∞ on U and Df(x) = λ,
Drf(x) = 0 for all element x of U and all natural number r with r > 1.

(iv) If U is an open subset of a quadrant Q in a normable space E, which is product
of the normable spaces E1 and E2, and f = λ|U , where λ : E1 × E2 → F is
a continuous bilinear map, then f is a C∞-map on U , and Df(x1, x2)(v1, v2) =
λ(x1, v2) + λ(v1, x2) for all (x1, x2) ∈ U and all (v1, v2) ∈ E1 × E2. Moreover,
D2f(x1, x2) {(v1,v2), (u1, u2)} = λ(v1, u2) + λ(u1, v2) and Drf(x1, x2) = 0 for
all r > 2. This result can be extended to n-linear continuous maps.

3.4 In order to build manifolds with corners modeled on normable spaces, we explain
four basic properties of the Cr-maps.

(i) Restrictions to open sets If f : U −→ F is a Cr-map, (3.3), and V is an open set
of U , then f |V : V −→ F is a Cr-map and, (if r > 1) D (f |V ) (x) = Df (x) for
all x ∈ V.

(ii) Open covering property If {Vj |j ∈ J} is an open covering of U (open subset of
Q), then f : U −→ F is a Cr-map if and only if f |Vj : Vj −→ F is a Cr-map for
all j ∈ J.



J. Margalef-Roig and E. Outerelo Domı́nguez 999

(iii) Chain rule Let us consider E1, Q1, U1 as in (iii) of 3.1 and E2, Q2, U2 as in (iii)
of 3.1. Let f : U1 → U2 and g : U2 → G be maps, where G is a Hlcrtvs.Then if f
is differentiable at x0 ∈ U1 and g is differentiable at f (x0), one verifies that g ◦ f is
differentiable at x0 and

D (g ◦ f) (x0) = Dg (f (x0)) ◦Df (x0) .

Moreover if f and g are Cr, r ∈ {0} ∪ N ∪ {∞} , then g ◦ f is Cr.

(iv) Restrictions to vector subspaces Let f : U −→ F be a Cr-map (3.3). Let G
be a vector subspace of E and QG a quadrant of G. Suppose that U ∩ G is an
open subset of QG. Then f |U∩G : U ∩ G −→ F is a Cr-map and, (if r > 1),
D (f |U∩G) (x) = Df (x) |G for all x ∈ U ∩G.

(i) and (iv) are consequence of (iii).
Note In the study of properties of manifolds with corners are also useful the following
results:

(1) If f : U → F is a map (3.3) and F1 is a closed vector subspace of F such that
f(U) ⊂ F1, then f : U → F1 is a Cr-map if and only if f : U → F is a Cr-map
(3.3). (See 3.2). Of course L(E,F1) is a closed vector subspace of L(E,F ).

(2) Let {fi : U → Fi}i∈I be a collection of maps, where U is an open subset of a
quadrant Q of a normable space E and {Fi}i∈I is a family of Hlcrtv spaces. Then
the map (fi)i∈I(= f) : U →

∏
i∈I

Fi is differentiable at x ∈ U if and only if fi is

differentiable at x for all i ∈ I (3.1). In this case Df(x)(v) = (Dfi(x)(v))i∈I for
all v ∈ E. Finally, f is Cr on U if and only if fi is Cr on U for all i ∈ I .

3.5 Let U be an open subset of a quadrant Q of a normable rtvs E, and V an open
subset of a quadrant P of a normable rtvs G. We say that a map f : U → V is a Cr-
diffeomorphism if f is a bijective map and f , f−1are Cr-maps (3.3). In this case, it is
clear that f−1 : V → U is also a Cr-diffeomorphism.

Of course the composition of Cr-diffeomorphisms is a Cr-diffeomorphism, and the
identity map is a Cr-diffeomorphism. The chain rule (3.4 (iii)) implies that: If f : U → V
is a Cr-diffeomorphism (r > 1), then Df(x) : E → G is a linear homeomorphism and
(Df(x))−1 = D(f−1)(f(x)) for all x ∈ U .

“The boundary is preserved by diffeomorphisms”. This statement is explained in the
sequel.

3.6 Invariance of the boundary for Cr-diffeomorphisms
Let U be an open subset of a normable rtvs E, F a Hlcrtvs, f : U → F a map and

λ ∈ L(F,R) with λ 6= 0. Suppose that f(U) ⊂ F+
λ , f is differentiable at x ∈ U and

f(x) ∈ F 0
λ . Then Df(x)(E) ⊂ F 0

λ . (See [21]).
Note If we put “U is an open subset of E+

Λ , Λ = {λ1, ..., λn}” instead of “U is an open
subset of E”, then we obtain Df(x)(E+

Λ ) ⊂ F+
λ .

Theorem Let f : U → V be a Cr-diffeomorphism (r > 1), (3.5), where int(Q) 6= ∅,
int(P ) 6= ∅. Then we have:
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(a) index (x) = index (f(x)) for all x ∈ U (2.9).

(b) ∂U 6= ∅ if and only if ∂V 6= ∅ (2.15). Moreover, f(∂kU) = ∂kV for all k with
0 6 k 6 index (Q).

(c) int(U) 6= ∅ if and only if int(V ) 6= ∅. Moreover, f(BkU) = BkV for all k with
0 6 k 6 index (Q) (2.15, 2.13 (i)).

(d) f |int(U) : int(U)→ int(V ) is aCr-diffeomorphism andD(f |int(U))(x) = Df(x),
for all x ∈ int(U).

A non-void open subset of a quadrant Q of a normable rtvs E with int(Q) 6= ∅ is the
simplest example of C∞-manifold with corners modeled on normable rtv spaces and this
type of manifolds are the local models.
Note If in the preceding theorem, 0 ∈ U and 0 ∈ V , then index (Q) = index (P ).
Corollary Let Q and P be quadrants of a normable rtvs E with int(Q) 6= ∅ and
int(P ) 6= ∅. Then index (Q) = index (P ) if and only if P , Q are C∞-diffeomorphic.

It follows from the preceding theorem and 2.13 (iii).

3.7 Inverse mapping theorem for quadrants in Banach spaces
Let U be an open subset of a quadrant Q of a banachable rtvs E ([21]) with int(Q) 6=

∅, P a quadrant of a banachable rtvs G with int(P ) 6= ∅, f : U → P a Cr-map (r > 1)
and x ∈ U (3.3). Suppose that there exists an open neighbourhood V of x in U such
that f(V ∩ ∂U) ⊂ ∂P (2.15), and that Df(x) : E → G is a linear homeomorphism (by
2.12 (ii), Q = E+

Λ and P = G+
M ). Then there exist an open neighbourhood U1 of x in U

and an open neighbourhood U ′ of f(x) in P such that f(U1) = U ′ and f |U1 : U1 → U ′ is
a Cr-diffeomorphism (3.5), [21].

Note that ∂V = V ∩ ∂U .

3.8

(1) Let us consider E, Q, U , F , f as in 3.3. Suppose that E = R2 and Q = {(x, y) ∈
R2|x > 0, y > 0} (or Q = {(x, y) ∈ R2|x > 0} or Q = {(x, y) ∈ R2|y > 0} or
Q = R2). Then the following statements are equivalent:

(i) f : U → F is a C1-map on U (3.3).

(ii) There exist the maps D1f : U → F , D2f : U → F (partial derivatives) and
they are continuous.

Moreover, if (ii) is true, then Df(x, y)(s, t) = sD1f(x, y) + tD2f(x, y) for all
(x, y) ∈ U and all (s, t) ∈ R2.

(2) Let us considerE,Q, U , F , f as in the preceding (1). Then the following statements
are equivalent:

(i) f is Cr on U (r > 1), (3.3).

(ii) There exist the maps ∂p+qf
∂pt∂qs , p > 0, q > 0, 1 6 p + q 6 r from U to F , and

these maps are continuous.
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(3) Let us considerE,Q, U , F , f as in the preceding (1). Suppose that f isC1 on U and
Df : U → L(R2, F ) is differentiable at x0 ∈ U (3.1). Then D1f , D2f : U → F
are differentiable at x0 and D1(D2f)(x0) = D2(D1f)(x0). Moreover for any fixed
(s, t) ∈ R2, the map, (x, y) 7→ Df(x, y)(s, t), from U to F, is differentiable at x0

and D[Df(·)(s, t)](x0)(s′, t′) = D2f(x0)((s′, t′), (s, t)).

This results can be generalized to finite products of normed spaces as it is explained in the
next item.

3.9 Let (E1, ‖ ‖1), ..., (En, ‖ ‖n) be normed spaces, and Q1, ..., Qn quadrants of
E1, ..., En, respectively, such that int(Qi) 6= ∅ for all i ∈ {1, ..., n}. Let U be an open
subset of the quadrant Q = Q1 × ... × Qn (2.10) of the normed space (E, ‖ ‖) product
of the given normed spaces, x = (x1, ..., xn) an element of U and f : U → F a map,
where F is a Hlcrtvs. One defines the partial derivatives of f at x, D1f(x), ..., Dnf(x), as
usually (whenever they exist).

Then, if f is differentiable at x (3.1 (iii)), the partial derivatives of f at x exist and
Df(x)(v1, ..., vn) = D1f(x)(v1) + ...+Dnf(x)(vn) for all element (v1, ..., vn) of E (of
course Dif(x) ∈ L(Ei, F )).

By induction one defines the partial derivatives
Dim ...Di1f(x) ∈ Lm(Ei1 , ..., Eim ;F ), for all im, ..., i1 ∈ {1, ..., n}. (If Dm−1f

exists on U and is differentiable at x ∈ U , then we can change the order of partial deriva-
tives).

Finally we have: f is Cr on U if and only if f has continuous partial derivatives
Dim ...Di1f on U for all {i1, ..., im} ⊂ {1, ..., n} and all m 6 r.

The preceding results can be formulated for arbitrary quadrants, with non-void interior,
in a finite product of normable rtv spaces. In this case we use the linear homeomorphism
that transforms the given quadrant in a quadrant that is product of a finite number of quad-
rants (2.13 (iii)).

3.10
Lemma (Seeley [21]) There are two sequences of real numbers {an} and {bn} such that:

(i) {bn} is a strictly decreasing sequence of negative real numbers that converge to
−∞.

(ii)
∞∑
n=0

|an||bn|p <∞ for all p ∈ N ∪ {0}.

(iii)
∞∑
n=0

an(bn)p = 1 for all p ∈ N ∪ {0}.

Using this Lemma and the preceding characterization of Cr-maps, one proves the fol-
lowing result:
Proposition LetU be an open subset of a quadrantQwith non-void interior of a normable
rtv space E and f : U → F a map, where F is a normable rtvs. Then for all natural
number p, the following statements are equivalent:

(a) f is a Cp-map (3.3).
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(b) For every element x of U , there are an open neighbourhood V x of x in E and a
Cp-map f∗ : V x → F (3.3) (in the sense of ordinary differential calculus, which in
this case coincides with 3.3) such that f∗|V x∩U = f |V x∩U . (See [21])

Remark If at every point of U there is an open neighbourhood in U on which all the
derivatives of f are bounded by the same constant K, then the preceding proposition is
also true for C∞-maps (3.3).

Strong differentiability

See mainly [2] and [13].
3.11 A subset A of a topological space X is said to be admissible if A ⊂ int(A).
Lemma Let A be an admissible subset of an admissible subset B of a topological space
X . Then A is admissible in X . In particular G ∩ B, where G is open in X , is admissible
in X .

Let Q be a quadrant of a rtvs E with int(Q) 6= ∅. Then Q is admissible in E and
every open subset U of Q is admissible in E (U ⊂ int(U)).

Indeed, recall that if ({ei|i ∈ I},K ⊂ I) is a pair adapted toQ, index (Q) = n and I−
K = {i1, ..., in}, then the map + : Q0×L{ei1 , ..., ein} → E is a linear homeomorphism.
Consequently int(Q) = Q.

Let A be an admissible subset of a topological space X .Then A − int(A)(=∂A) will
be called boundary of A. The elements of ∂A will be called boundary points of A.

When U is an open subset of a quadrantQ of a rtvs E, with int(Q) 6= ∅, we have seen
that U is admissible in E and we have defined ∂U = U − int(U). But in 2.15 we have
also defined ∂U = {x ∈ U | index (x) > 1} (which becomes closed in U ). Of course these
two definitions coincide.
Definition Let a be an element of an admissible subset A of a normable (with norm ‖ ‖)
rtvs E and f : A→ F a map, where F is a Hlcrtvs defined by the collection of seminorms
{‖ ‖i |i ∈ I}. We say that f is strongly differentiable at a if there is u ∈ L(E,F ) such that

lim
(x,y)→(a,a)

(f(y)− f(x)− u(y − x)) ‖y − x‖−1 = 0 ∈ F (which limit is equivalent to:

lim
(x,y)→(a,a)

‖f(y)− f(x)− u(y − x)‖i ‖y − x‖
−1 = 0 ∈ R, for all i ∈ I).

If f is strongly differentiable at every point of A, f is said to be strongly differentiable
on A.

If f is strongly differentiable at x, then the continuous linear map u, that fulfils the
above limit, is unique and will be denoted by df(a), and will be called the strong differen-
tial of f at a.
Note The preceding notions are independent of the equivalent norms considered in E.
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3.12

(1) Let us consider E, A, F , f , a as in the preceding definition. Then:

(a) If f is strongly differentiable at a, then f is continuous at a.

(b) If F is normable and f is strongly differentiable at a, then for all real number
c > ‖df(a)‖, there exists δ > 0 such that ‖f(y)− f(x)‖ 6 c ‖y − x‖ for all
x, y ∈ B‖‖δ (a)∩A (which implies that f is uniformly continuous on B‖‖δ (a)∩
A).

(c) Suppose that f is strongly differentiable on A. Then the map df : A →
L(E,F ), y 7→ df(y), is continuous, where the topology on L(E,F ) is the
locally convex topology defined in 3.3.

(2) Let us consider E, Q, U , F , f , a ∈ U as in 3.1 (iii). Suppose that int(Q) 6= ∅ (so
U is admissible in E). Then if f is strongly differentiable at a, f is differentiable at
a (3.1 (iii)) and Df(a) = df(a). The converse of this result is not true, in general.

Moreover, if f is strongly differentiable on U, then f is a C1-map on U (3.3 (2)).

3.13 Mean value theorems
By the Hahn-Banach Theorem and the classical Mean value Theorem ([5], p. 153) one

has the following:
Lemma Let F be a Hlcrtvs, c : [a, b] → F a continuous map, where a, b ∈ R and
a < b, let D be a countable subset of [a, b] and h : [a, b] → R a continuous monotone
function. Suppose that c and h are differentiable maps at every x ∈ [a, b] − D. Let C
be a convex closed subset of F such that c′(t) ∈ h′(t) · C for all t ∈ [a, b] − D. Then
c(b)− c(a) ∈ (h(b)− h(a)) · C (see [18], p.10).

Let us consider E, Q, U , F , f as in 3.3. Let x, y be elements of U such that [x, y] ⊂ U
([x, y] = {(1− t)x+ ty|0 6 t 6 1}). As a consequence of the preceding Lemma we have
the following properties:

(1) Suppose that f is differentiable at every z ∈ [x, y] (3.1). Then:

(a) Let C be a closed convex subset of F such that Df(z)(y − x) ∈ C for all
z ∈ [x, y]. Then f(y) − f(x) ∈ C. In particular f(y) − f(x) belongs to the
closed convex hull of {Df(z)(y − x)|z ∈ [x, y]}.

(b) Let i be an element of I such that there is M > 0 with ‖Df(z)‖∗i 6M for all
z ∈ [x, y] (3.3). Then: ‖f(y)− f(x)‖i 6M ‖y − x‖.

(2) Suppose that f is differentiable on U (3.1 (iii)) and let x0 be a point of U. Suppose
that for i ∈ I there there is ρ > 0 such that ‖Df(z)−Df(x0)‖∗i 6 ρ for all
z ∈ [x, y]. Then ‖f(y)− f(x)−Df(x0)(y − x)‖i 6 ρ ‖y − x‖.

This property (2) permits us to prove that if f is a C1-map on U (3.3 (2)) and int(Q) 6= ∅,
then f is strongly differentiable on U (3.11).Thus, by 3.12 (2), we have:
Proposition Let us consider E, Q, U ,F , f as in 3.3, and suppose that int(Q) 6= ∅.
Then f is a C1-map on U if and only if f is strongly differentiable on U (in this case
Df(a) = df(a) for all a ∈ U ).
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3.14 Let us consider E, A, F , f as in 3.11 (Definition of strong differentiability). Then
we give the following definitions:

(1) f is a C1
S-map on A if f is strongly differentiable on A (in this case we have df(a)

for all a ∈ A and df : A→ L(E,F ) is continuous).

(2) f is a C2
S-map on A if f is a C1

S-map on A and df : A→ L(E,F ) is a C1
S-map on

A (which is equivalent to: f and df are strongly differentiable on A). In this case
d(df) : A → L(E,L(E,F )) is continuous and we put θ ◦ d(df) = d2f : A →
L2(E,F ) (see 3.3 (3)).

(3) Let r be a natural number with r > 1. Then f is a CrS-map on A if f , df ,
d2f, ..., dr−1f are strongly differentiable on A. In this case drf : A→ Lr(E,F ) is
continuous (inductive process).

(4) f is a C∞S -map on A, if f is a CkS-map on A for each positive integer k.

3.15

(1) Let us consider E, Q, U, F, f as in 3.3 and suppose that int(Q) 6= ∅. Then:

(a) f is C1 on U if and only if f is C1
S on U (in this case Df(a) = df(a) for all

point a of U ). Moreover, by induction, f is Ck on U if and only if f is CkS on
U (k > 1). Finally if f is Ck on U , then Dkf = dkf on U .

(b) Suppose that f is CkS on U . Then f |int(U) : int(U)→ F is CkS on int(U) and
therefore Ck on int(U).

(2) Let us consider E, A, F , f as in 3.11. Then:

(a) If f is CkS on A, we have that f |int(A) is CkS on int(A) and therefore Ck on
int(A).

(b) If f is CrS on A, then for all p ∈ N ∪ {0} with p 6 r, f is CpS on A and dpf is
Cr−pS on A.

(c) If λ ∈ L(E,F ) and f = λ|A, then f is a C∞S -map on A and df(x) = λ,
drf(x) = 0 for all point x of A and all natural number r > 1 (3.14).

3.16 In order to build manifolds with generalized boundary modeled on normable spaces,
we need essentially the four properties of CrS-maps that follow (see 3.4):

(i) Restrictions to open sets If f : A → F is a CrS-map on A (3.14) and V is an open
subset of A, then f |V : V → F is a CrS-map on V and d(f |V )(x) = df(x) for all
point x of V (note that V is admissible in E).

(ii) Open covering property Let E, A, F , f be as in 3.14, and {Uj |j ∈ J} an open
covering of A. Then f is CrS on A if and only if f |Uj is CrS on Uj for all j ∈ J.

(iii) Chain rule Let E1, A1, F1, f1 be as in 3.14 and let E2, A2, F2, f2 be as in 3.14.
Suppose that F1 = E2 and f1(A1) ⊂ A2. Then:
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(a) If f1 is strongly differentiable at x0 ∈ A1 and f2 is strongly differentiable
at f1(x0), then f2 ◦ f1 is strongly differentiable at x0 and d(f2 ◦ f1)(x0) =
df2(f1(x0)) ◦ df1(x0).

(b) If f1 and f2 are CrS (r ∈ N∪ {∞}) on A1 and A2, respectively, then f2 ◦ f1 is
CrS on A1(3.14).

(iv) Restrictions to vector subspaces Let E, A, F , f as in 3.14. Let G be a vector
subspace of E, and suppose that A ∩G is admissible in G and f : A→ F is CrS on
A (3.14). Then f |A∩G : A ∩G→ F is CrS on A ∩G and d(f |A∩G)(x) = df(x)|G
for all point x of A ∩G.

((i) and (iv) follow from (iii)).
Note In the study of properties of manifolds with generalized boundary is also useful the
following result: if f : A → F is a map (3.11) and F1 is a closed vector subspace of F
such that f(A) ⊂ F1, then f : A→ F1 is a CrS-map if and only if f : A→ F is a CrS-map
(3.14). Of course L(E,F1) is a closed vector subspace of L(E,F ).

3.17 Let E, A, F , f be as in 3.11, and B an admissible subset in F. Suppose that f(A) ⊂
B and that F is normable. We say that f : A→ B is a CrS-diffeomorphism if f : A→ B
is a bijective map and f , f−1 are CrS-maps (3.14 (3)). In this case f is a homeomorphism.

It is clear that if f : A → B is a CrS-diffeomorphism, then f−1 : B → A is
also a CrS-diffeomorphism. Moreover, the composition of CrS-diffeomorphisms is a CrS-
diffeomorphism (apply the chain rule), and the identity map is a CrS-diffeomorphism.

Finally, by the chain rule (3.16), one has that if f : A → B is a CrS-diffeomorphism,
then df(x) : E → F is a linear homeomorphism for all x ∈ A.

3.18 Invariance of the boundary for CrS-diffeomorphisms
We recall (3.7) that in Banach spaces we have the “nverse mapping theorem”. This

theorem implies the following important result: Let f : A → B be a CrS-diffeomorphism
(3.17), and suppose that E, F are banachable spaces. Then f(∂A) = ∂B. (3.11 and
3.15 (1) (b)).

This theorem allows us to define manifolds with generalized boundary, modeled on
banachable spaces.

Differentiation theory in locally convex spaces

We generalize some ideas contained in [11], [14] and [24], and construct a differential
calculus on open subsets of quadrants in Hlcrtvs. See also the article by József Szilasi and
Rezső L. Lovas.

3.19 Let U be an open subset of a quadrantQ of a Hlcrtvs E, F a Hlcrtvs and f : U → F
a map. Then f is said to be a weakly C1-map on U (or C1

W -map on U ) if:

(i) f : U → F is a continuous map.

(ii) For all element x of U , we have:

(1) For all v ∈ B(Q,U, x) (2.14),there exists lim
t→0

f(x+tv)−f(x)
t (=dvf(x)).
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(2) For all v ∈ B+(Q,U, x) (2.14),there exists lim
t→0+

f(x+tv)−f(x)
t (=dvf(x) or

d+
v f(x)).

(3) For all v ∈ B−(Q,U, x) (2.14),there exists lim
t→0−

f(x+tv)−f(x)
t (=dvf(x) or

d−v f(x)).

(iii) If AU = {(x, v) ∈ U ×E|v ∈ B(Q,U, x)∪B+(Q,U, x)∪B−(Q,U, x)}, then the
map d·f(·) : AU → F, (x, v) 7−→ dvf(x), is continuous.

Remarks (a) If x is an element of U and v a vector of E, then−v ∈ B+(Q,U, x) if and
only if v ∈ B−(Q,U, x). Consequently (ii) (2) implies (ii) (3).

(b) If E and F are Fréchet spaces and Q = E, then AU = U × E and the preceding
definition is the one used in [14].

(c) If Q = E, then AU = U × E and the preceding definition is the one used in [11].

(d) Consider x ∈ U , v ∈ B(Q,U, x) and u ∈ Q. Then there exists δ > 0 such that for
all t ∈ [0, δ), x+ tu ∈ U and v ∈ B(Q,U, x+ tu) (consequently (x+ tu, v) ∈ AU ).

(e) Consider x ∈ U , v ∈ B+(Q,U, x) and u ∈ Q. Then there exists δ > 0 such that
for all t, s ∈ [0, δ), x+ tu+ sv ∈ U and x+ sv /∈ Q for all s < 0 (then v /∈ −Q).
Suppose, moreover, that v ∈ Q and coindex (u + x) < coindex (v). Then for all
t ∈ [0, δ), v ∈ B+(Q,U, x+ tu).

(f ) Consider x ∈ U , v ∈ B−(Q,U, x) and u ∈ Q. Then there exists δ > 0 such that for
all (t, s) ∈ [0, δ) × (−δ, 0], x + tu + sv ∈ U and x + tv /∈ Q for all t > 0 (then
v /∈ Q). Suppose, moreover, that v ∈ −Q and coindex (u + x) < coindex (−v).
Then for all t ∈ [0, δ), v ∈ B−(Q,U, x+ tu).

(g) int(U)× E ⊂ AU and U × (Q ∪ (−Q)) ⊂ AU (2.14).

3.20 Suppose that f : U → F is a C1
W -map on U (3.19). Then:

(1) For all (x, v) ∈ AU and all real number r, one has (x, rv) ∈ AU and rdvf(x) =
drvf(x).

(2) If x ∈ int(U) and u, v ∈ E, then, applying 3.8, one deduces that du+vf(x) =
duf(x) + dvf(x) (see (g) of the preceding remark).

(3) If x ∈ U and u, v ∈ Q (or u, v ∈ −Q), then du+vf(x) = duf(x) + dvf(x).

Theorem Let f : U → F be a C1
W -map on U (3.19). Suppose that int(Q) 6= ∅. Then

there exists a unique continuous map df : U×E → F such that df |AU = d·f(·) : AU → F
and for all x ∈ U , df(x, ·) : E → F , u 7→ df(x, u), is a linear continuous map (called the
(Gâteaux) differential of f at x).

Indeed,by 2.12 (ii) there exists a linearly independent system Λ = {λ1, ..., λn} of el-
ements of L(E,R) such that Q = E+

Λ and Q0 = E0
Λ (n = Q)). By 2.7 (b), there

exists a finite subset {x1, ..., xn} of E such that λi(xj) = δij . Consequently the map
α : E0

Λ×Rn → E, (u, r1, ..., rn)7→ u+r1x1 + ...+rnxn, is a linear homeomorphism and
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α(E0
Λ × (Rn)+

{p1,...,pn}) = E+
Λ = Q. Then one defines df(x, u0 + r1x1 + ... + rnxn) =

du0f(x)+r1dx1f(x)+ ...+rndxnf(x), where u0 ∈ Q0, r1, ..., rn ∈ R. To end the proof
use the preceding (1), (2) and (3).

3.21 Let E,F be Hlcrtv spaces and let U be an admissible subset of E (3.11). C. Wockel
in [28] says that a map f : U → F is a C1-map on U if:

(i) f is a continuous map.

(ii) f |int(U) : int(U) → F is a C1
W -map on int(U) (3.19) (i.e., for all x ∈ int(U) and

all v ∈ B(E, int(U), x) = E there exists lim
t→0

f(x+tv)−f(x)
t = dv(f |int(U))(x) and

d·(f |int(U))(·) : Aint(U) = int(U)× E → F is continuous).

(iii) There exists a continuous map df : U × E → F (called the differential (Wockel) of
f ) such that df |int(U)×E = d·(f |int(U))(·).

Remarks (a) Of course d·(f |int(U))(·) = d(f |int(U)) (Theorem of 3.20).

(b) int(U)× E is admissible in E × E.

(c) For all x ∈ int(U), d·(f |int(U))(x) : E → F is a continuous linear map, and
therefore df(x, ·) : E → F is also a continuous linear map for all x ∈ U (use a net
on int(U) which converges to x).

(d) From the definition, df is unique.
Theorem Let U be an open subset of a quadrant Q of a Hlcrtvs E with int(U) 6= ∅, and
f : U → F a map, where F is a Hlcrtvs. Then f is a C1

W -map on U (3.19) if and only if
f is a C1-map on U according to the above definition given by Wockel.

By 3.19 and the Theorem of 3.20, we have the step “Definition 3.19 implies Definition
3.21”. For the converse step use 2.12 (iv) (b).
Corollary (a) Let E be a Hlcrtvs and let c : [0, δ) → E be a continuous curve such

that c|(0,δ) : (0, δ) → E is a C1-map. Assume that the derivative c′ : (0, δ) → E
has a continuous extension to [0, δ). Then c is differentiable at 0 (3.1 (iii)) and
c′(0) = lim

t→0+
c′(t) (c′(0) = Dc(0)(1)).

(b) Let E be a Hlcrtvs and let c : R → E be a continuous curve which is a C1-map on
R− {0}. Assume that the derivative c′ : R− {0} → E has a continuous extension
to R. Then c is differentiable at 0 (3.1 (iii)) and c′(0) = lim

t→0
c′(t).

Use the Lemma of 3.13.

3.22 The following results are necessary to study the relations between CrW -maps and
Cr-maps.
Proposition (The evaluation map) LetE be a normable rtvs and let F be a Hlcrtvs defined
by a collection of seminorms {‖ ‖i |i ∈ I}. Then the evaluation map e : E×L(E,F )→ F ,
(x, λ) 7→ λ(x), is continuous, where in L(E,F ) one considers the topology of its structure
of Hlcrtvs defined in 3.3.
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In the preceding result, the condition “E normable”” cannot be changed by “E Haus-
dorff locally convex”. Indeed: Let E be a Hlcrtvs. Consider L(E,R) equipped with a
topology of a topological vector space (for example, the locally convex topology of the
uniform convergence [16]), and let e : E × L(E,R)→ R be the evaluation map. Assume
that e is continuous. Then there are a convex neighbourhood V 0 of 0 in E and a neigh-
bourhood U0 of 0 in L(E,R) such that e(V 0 × U0) ⊂ [−1, 1]. Hence V 0 is bounded in
E (Recall the general result: Let E be a Hlcrtvs and let A be a subset of E. Then A is
bounded in E if and only if λ(A) is bounded for every λ ∈ L(E,R) [16].) On the other
hand, for all λ ∈ L(E,R) there is a natural number n such that 1

n ·λ ∈ U
0. Consequently

E is normable (apply the general result: Let E be a tvs. Then: (i) E is seminormable if
and only if there exists a bounded convex neighbourhood of 0, and (ii) E is normable if
and only if it is seminormable and Hausdorff.)
Corollary Let X be a topological space, E a normable rtvs, F a Hlcrtvs and α : X →
L(E,F ) a continuous map (with the topology of the structure of Hlcrtvs ofL(E,F ) defined
in 3.3). Then

v
α : X × E → F , (x, y) 7→ α(x)(y), is a continuous map.

As a consequence we have: If E, Q, U , F , f are as in 3.3 and f is a C1-map on U ,
then f is a C1

W -map on U , and Df(x)(v) = dvf(x) for all (x, v) ∈ AU (analogously for
Cr-maps, whenever that int(Q) 6= ∅).

One has the following converses of the preceding Corollary:

(1) Let X be a topological space, F a Hlcrtvs and β : X × Rn → F a continuous map
such that β(x,·) : Rn → F , y 7→ β(x, y) is a linear map for all point x of X. Then
∧
β : X → L(Rn, F ), x 7→ β(x,·), is a continuous map.

Note that the map ψ : L(R, F )× ...×L(R, F )→ L(Rn, F ), (λ1, ...λn) 7→ λ1p1 +
... + λnpn, is a linear homeomorphism. It is clear that ‖λjpj‖∗i = ‖λj‖∗i , j =
1, ..., n, i ∈ I , and ψ−1(µ) = (µ ◦ j1, ..., µ ◦ jn). Finally the family of seminorms

‖‖∗i ·
−
pj ,i ∈ I , j = 1, ..., n, describes the topology of L(R, F )× ...×L(R, F ),[17 ].

As a consequence of this statement and the Theorem of 3.20, we have: If f : U → F
is a C1

W -map on U and E = Rn, then f is a C1-map on U (3.3).

(2) Let U be an open subset of a quadrant Q, with int(Q) 6= ∅, of a normable rtvs E,
G a normable rtvs, F a Hlcrtvs and β : U ×G→ F a Cp-map (p ∈ N∪ {∞}) such
that β(x,·) : G → F is a linear continuous map for all point x of U . Then the map
∧
β : U → L(G,F ) is of class Cp−1(of course if p =∞, p− 1 =∞) (3.3).

It is sufficient to remark that D2β : U ×G→ L(G,F ) is a Cp−1-map and
∧
β(x) =

D2β(x, y) for all (x, y) ∈ U ×G.

Theorem Let E, Q, U , F , f be as in 3.19, and suppose that E = Rn (hence, int(Q) 6=
∅). Then the following statements are equivalent:

(i) f is strongly differentiable on U (3.11).

(ii) f is a C1-map on U (3.3).

(iii) f is a C1
W -map on U (3.19).
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The equivalence between (i) and (ii) has been established in the Proposition of 3.13.
The proof of the step “(iii) implies (ii)” follows from the preceding (1) and Theorem of
3.20. Finally, the proof of the step “(ii) implies (iii)” follows from the consequence of the
preceding Corollary.

3.23

(1) Let f : U → F be a C1
W -map on U (3.19), and let V be an open subset of U

(hence an open subset of Q). Then f |V : V → F is a C1
W -map on V , AV ⊂ AU

and d·f(·)|AV = d·(f |V )(·). Moreover if int(Q) 6= ∅, then df |V×E = d(f |V )
(Theorem of 3.20).

(2) Let E, Q, U , F , f be as in 3.19. Let {Vj}j∈J be an open covering of U. Then
f : U → F is a C1

W -map on U if and only if f |Vj : Vj → F is a C1
W -map on Vj for

all j ∈ J. In this case d·f(·)|AVj = d·(f |Vj )(·), for all j ∈ J .

(3) Let E, Q, U , F , f be as in 3.19 and let E1, Q1, U1, F1, f1 be as in 3.19. Suppose
that F = E1, f(U) ⊂ U1, f is a C1

W -map on U , f1 is a C1
W -map on U1 and

int(Q1) 6= ∅. Then f1 ◦ f : U → F1 is a C1
W -map on U and dv(f1 ◦ f)(x) =

df1(f(x), dvf(x)) for all (x, v) ∈ AU ⊂ U × E (Theorem of 3.20).

Finally if int(Q) 6= ∅, then d(f1 ◦ f)(x, v) = df1(f(x), df(x, v)) for all (x, v) ∈
U × E.

(4) Let f : U → F be a C1
W -map on U (3.19), where int(U) 6= ∅, and letH be a linear

subspace of E (therefore H is a Hlcrtvs). Suppose that U ∩H is an open subset of a
quadrant QH of H , quadrant that has finite index and closed kernel. Then f |U∩H :
U ∩H → F is a C1

W -map on U ∩H and df(x, ·)|H = d(f |U∩H)(x, ·) : H → F,
for all x ∈ U ∩H .

3.24 Invariance of the boundary for C1
W -diffeomorphisms

Lemma Let U be an open subset of a Hlcrtvs E, F a Hlcrtvs, λ ∈ L(F,R) with λ 6= 0,
f : U → F aC1

W -map onU with f(U) ⊂ F+
λ and x ∈ U (3.19). Suppose that f(x) ∈ F 0

λ .
Then df(x, u) ∈ F 0

λ for all element u of E (3.20), (see 3.6).

Definition Let E, Q, U , F , f be as 3.19. Let V be an open subset of a quadrant P of
F and suppose that f(U) ⊂ V . We say that f : U → V is a C1

W -diffeomorphism if
f : U → V is a bijective map and f : U → V, f−1 : V → U are C1

W -maps (3.19). In this
case f is a homeomorphism.

If f : U → V is a C1
W -diffeomorphism and int(Q) 6= ∅ and int(P ) 6= ∅, then

df(x, ·) : E → F is a linear homeomorphismo for all x ∈ U , (3.20), and df(x, ·),
df−1(f(x), ·) are inverse maps.
Theorem Let f : U → V be a C1

W -diffeomorphism and suppose that int(Q) 6= ∅ and
int(P ) 6= ∅. Then we have:

(a) For all x ∈ U ⊂ Q, index (x) = index (f(x)) (2.9 (c), 2.15).

(b) ∂U 6= ∅ if and only if ∂V 6= ∅. Moreover, f(∂U) = ∂V .
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(c) Int(U) 6= ∅ if and only if int(V ) 6= ∅. Moreover, f(int(U)) = int(V ).

(d) f |int(U) : int(U)→ int(V ) is a C1
W -diffeomorphism. Moreover:

df |int(U)×E = d(f |int(U)) : int(U)× E → F (3.20).

(e) f(∂kU) = ∂kV , f(BkU) = BkV, 0 6 k 6 index (Q).

Remark Let E, Q, U , f , F as in 3.19. Suppose that U is open in E. Then the definition of
“f is a C1

W -map on U” does not depend of the quadrant Q in E that contains U .

3.25

(1) Let f : U → F be a C1
W -map on U (3.19) and suppose that int(Q) 6= ∅. Then

we have the map df : U × E → F (3.20). On the other hand E × E is a Hlcrtvs,
Q × E is a quadrant of E × E with int(Q × E) 6= ∅ and U × E is an open
subset of Q × E. Suppose that df is a C1

W -map on U × E. Then f is said to be
a C2

W -map on U. In this case we have d(df)(= d2f) : U × E × E × E → F
(3.20). Recall that d2f |AU×E = d·(df)(·) and d2f(x, v, ·, ·) : E × E → F is
a linear continuous map for all (x, v) ∈ U × E and AU×E = B2 × E, where
B2 = {(x, v, u) ∈ U × E × E|(x, u) ∈ AU}.

(2) Let f : U → F be a C2
W -map on U and suppose that d2f : U × E × E × E →

F is a C1
W -map on U × E × E × E (3.19) (Note that Q × E3 is a quadrant of

E4 and int(Q × E3) 6= ∅). Then we say that f : U → F is a C3
W -map on

U. In this case we have d(d2f)(= d3f) : U × E × E × E × E4 → F (3.20).
Recall that d3f(x, u1, u2, u3, ·, ·, ·, ·) : E4 → F is a linear continuous map for all
(x, u1, u2, u3) ∈ U × E × E × E, (d3f : U × E23−1 → F ).

(3) Let U be an open subset of a quadrant Q, with int(Q) 6= ∅, of a Hlcrtvs E, and
F a Hlcrtvs. Then U × E2k−1, k a natural number, is an open subset of Q ×
E2k−1, which is a quadrant of E2k with finite index and closed kernel (2.10), (in
fact, index (Q× E2k−1) = index (Q)). Now if ϕ : U × E2k−1 → F is a C1

W -map,
then dϕ : U × E2k+1−1 → F (3.20).

(4) Inductively we have the following definition:

Let f : U → F be a C1
W -map on U (3.19) and suppose that int(Q) 6= ∅. We say

that f is a Ck+1
W -map on U , k a natural number, if:

df(= d1f) : U ×E → F is a C1
W -map on U ×E, d(df) = d2f : U ×E22−1 → F

is a C1
W -map on U × E22−1, d(d2f) = d3f : U × E23−1 → F is a C1

W -map on
U × E23−1,..., d(dk−1f) = dkf : U × E2k−1 → F is a C1

W -map on U × E2k−1.
In this case we have the extension d(dkf)(= dk+1f) : U × E2k+1−1 → F (3.20).

(5) Let f : U → F be as the preceding (4). We say that f is a C∞W -map on U if f is a
CkW -map on U for all k ∈ N.

Note that if f = λ|U , where λ is a continuous linear map of E into F, then f : U →
F is a C∞W -map on U .
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3.26 The results 3.23 (1),(restrictions to open sets), 3.23(2), (open covering property),
3.23 (3), (chain rule), and 3.23 (4), (restrictions to vector subspaces), remain true for CrW -
maps, r ∈ N ∪ {∞}, r > 1.

The definition of 3.24 is obviously generalized to obtain the notion of CrW -
diffeomorphism, r > 1. It is clear that if f : U → V is a CrW -diffeomorphism, then
f−1 : V → U is a CrW -diffeomorphism. On the other hand the composition of CrW -
diffeomorphisms is a CrW -diffeomorphism, and the identity map is a CrW -diffeomorphism.

If in Theorem of 3.24 we put “f : U → V is a CrW -diffeomorphism” instead of
“f : U → V is a C1

W -diffeomorphism”, then f |int(U) of (d) is a CrW -diffeomorphism.
Remark Let Q and Q′ be quadrants, with non-void interiors, of a Hlcrtvs E. Then Q and
Q′ are C∞W -diffeomorphic if and only if index (Q) = index (Q′) (2.13).

These results are the essential tools to construct manifolds with corners modeled on
Hlcrtv spaces.

3.27 Relation between CrW -maps and Cr-maps
Let E, Q, U , f, F be as in 3.3 and suppose that int(Q) 6= ∅. Then:

(i) If f is a Cr-map on U (3.3), then f is a CrW -map on U , for all r ∈ N (Use Corollary
of 3.22 and 3.28 below).

(ii) If f is a Cr+1
W -map on U , then f is a Cr-map on U (3.3), for all r ∈ N (Use 3.22 (2)

and 3.28 below).

(iii) f is a C∞-map on U (3.3) if and only if f is a C∞W -map on U (Use 3.22 (2)).

3.28 An alternative definition of CrW -maps

(i) Let f : U → F be a C1
W -map on U (3.19), with int(Q) 6= ∅. Let us consider the

extension df : U × E → F (Theorem of 3.20). Suppose that:

(1) For all vector v of E, df(·, v) : U → F is a C1
W -map on U (3.19), (then we

have the extension d(df(·, v)) : U × E → F ).

(2) The map {(x, v, u) ∈ U × E × E|(x, u) ∈ AU}(= B) → F , (x, v, u) 7→
du(df(·, v))(x) = d(df(·, v))(x, u), is continuous.

Then f is said to be C̃2
W -map on U , and in this case we define d̃2f(x, v, u) =

d(df(·, v))(x, u), for all (x, v, u) ∈ U × E × E.

Then for all (x, v, u) ∈ B, d̃2f(x, v, u) = du(df(·, v))(x); d̃2f : U ×E×E → F

is continuous; d̃2f(x, v, ·) : E → F is a linear map for all (x, v) ∈ U × E, and
d̃2f is unique.

(ii) Let f : U → F be a C̃2
W -map on U . Suppose that:

(1) For all (v, u) ∈ E × E, d̃2f(·, v, u) : U → F is a C1
W -map on U (3.19).

(2) The map {(x, v, u, w) ∈ U × E × E × E|(x,w) ∈ AU}(= B3) → F ,
(x, v, u, w) 7→ dw( d̃2f(·, v, u))(x), is continuous.
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Then we say that f is a C̃3
W -map on U . In this case for all (x, v, u, w) ∈ B3 one has

d( d̃2f(·, v, u))(x,w) = dw( d̃2f(·, v, u))(x),and we define

d̃3f(x, v, u, w) = d( d̃2f(·, v, u))(x,w) ∈ F for all (x, v, u, w) ∈ U ×E×E×E.
Then for all (x, v, u, w) ∈ B3, d̃3f(x, v, u, w) = dw(d̃2f(·, v, u))(x); d̃3f : U ×
E × E × E → F is continuous; d̃3f(x, v, u, ·) : E → F is a linear map for all
(x, v, u) ∈ U × E × E, and d̃3f is unique.

Inductively we have the following definition:

(iii) Let f : U → F be a C1
W -map on U (3.19), with int(Q) 6= ∅. The map f : U → F

is said to be a C̃kW -map on U (k ∈ N, k > 1) if:

df(·, v) : U → F is a C1
W -map on U for all v ∈ E and the map B2 = {(x, v, u) ∈

U × E × E|(x, u) ∈ AU} → F , (x, v, u) 7→ du(df(·, v))(x), is continuous;
d̃2f(·, v, u) : U → F is a C1

W -map on U (3.19) for all (v, u) ∈ E × E and the
map {(x, v, u, w) ∈ U × E × E × E|(x,w) ∈ AU}(= B3) → F , (x, v, u, w) 7→
dw(d̃2f(·, v, u))(x), is continuous;...; d̃k−1f(·, v1, ..., vk−1) : U → F is a C1

W -map
on U (3.19) for all (v1, ..., vk−1) ∈ Ek−1 and the map:

{(x, v1, ..., vk−1, w) ∈ U × Ek−1 × E|(x,w) ∈ AU}(= Bk)→ F ,

(x, v1, ..., vk−1, w) 7→ dw(d̃k−1f(·, v1, ..., vk−1))(x), is continuous.

(Then we have the extension d̃kf : U × Ek → F , which is continuous, is a linear
map respect the last coordinate, verifies d̃kf(x, v1, ..., vk−1, w) =

dw(d̃k−1f(·, v1, ..., vk−1))(x) for all (x, v1, ..., vk−1, w) ∈ Bk, and is unique).

Theorem Let f : U → F be a C1
W -map on U (3.19), with int(Q) 6= ∅. Then f is a

C̃kW -map on U ( k > 1) if and only if f is a CkW -map on U (3.25 (4)). (See [11]).

Differentiation theory in convenient vector spaces

For a detailed study of the differentiation theory in convenient vector spaces, the reader
can consult the books [10] and [18].

3.29 Mackey-convergence
Definition Let E be a Hlcrtvs. We say that a net {xγ}γ∈Γ in E Mackey-converges (or
M-converges) to x ∈ E, if there exists a closed bounded absolutely convex subset B of E
such that {xγ |γ ∈ Γ} ∪ {x} ⊂ 〈B〉 and the net {xγ}γ∈Γ converges to x in the normed
space EB = (〈B〉 , pB), where pB(y) = inf{r > 0|y ∈ r ·B} for all y ∈ 〈B〉.
Proposition 1 Let E be a Hlcrtvs, {xγ}γ∈Γ a net in E and x a point of E. Then {xγ}γ∈Γ

Mackey-converges to x ∈ E, if and only if there exists a bounded absolutely convex subset
B′ of E such that {xγ |γ ∈ Γ} ∪ {x} ⊂ 〈B′〉 and the net {xγ}γ∈Γ converges to x in the
normed space EB′ = (〈B′〉 , pB′).

Note that if B and B′ are bounded absolutely convex subsets of a Hlcrtvs E with
B′ ⊂ B, then 〈B′〉 ⊂ 〈B〉 , pB(y′) 6 pB′(y′) for all y′ ∈ 〈B′〉, and the inclusion
i : EB′ ↪→ EB is a continuous map, which is equivalent to TpB |〈B′〉 ⊂ TpB′ .

Note also that if (E, T ) is a rtvs, then:
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(i) The closure of a bounded subset of (E, T ) is a bounded subset of (E, T ).

(ii) The closure in (E, T ) of an absolutely convex subset inE is again absolutely convex.

Remarks (1) A net {xγ}γ∈Γ in E Mackey-converges to x ∈ E if and only if
{xγ − x}γ∈Γ Mackey-converges to 0 ∈ E.

(2) If the net {xγ}γ∈Γ in E Mackey-converges to x ∈ E, then there exists a sequence
{γn}n∈N in Γ such that the sequence {xγn}n∈N Mackey-converges to x ∈ E.

(3) Let E be a Hlcrtvs and B a bounded absolutely convex subset of E. Since 〈B〉 =⋃
t>0

t·B and {x ∈ 〈B〉 |pB(x) < 1} ⊂ B ⊂ {x ∈ 〈B〉 |pB(x) 6 1}, we have that the

inclusion iB : EB ↪→ E is a continuous map, which is equivalent to T |〈B〉 ⊂ TpB
(EB = (〈B〉 , pB)). Therefore, if {xγ}γ∈Γ is a net in E that Mackey-converges to
x ∈ E, then {xγ}γ∈Γ converges to x in E.

(4) Let (E, T ) be a Hlcrtvs. Then (E, Tborn) has the same Mackey converging sequences
as (E, T ) and Tborn is the final topology in E with respect to the inclusions iB :
EB ↪→ E for allB bounded and absolutely convex in E. Moreover, if T̃ is a locally
convex topology on E and it has the same Mackey converging sequences as (E, T ),
then T̃ ⊂ Tborn.

(5) Let (E, T ) be a Hlcrtvs. Then, Tborn is the final topology in E with respect to the
inclusions iB : EB → E, for allB closed bounded and absolutely convex in (E, T ).

Proposition 2 Let E be a Hlcrtvs, B a bounded absolutely convex subset of E, {xγ}γ∈Γ

a net in 〈B〉 and x ∈ 〈B〉. Then the following conditions are equivalent:

(a) {xγ}γ∈Γ converges to x in EB .

(b) There exists a net {µγ}γ∈Γ in R which converges to 0 such that (xγ − x) ∈ µγ ·B,
for all γ ∈ Γ.

(Use the preceding Remark (3), and in the step “(a)=⇒ (b)” take µγ = δpB(xγ − x)
for all γ ∈ Γ, where δ > 1).
Proposition 3 Let E be a Hlcrtvs. Then:

(1) Let c : R→ E be aC1-curve and {tn}n∈N a sequence of real numbers that converge
to 0. Then, the sequence {c(tn)}n∈N Mackey-converge to c(0) ∈ E (use the Mean
value Theorem).

(2) If c : R→ E is a Lip1-curve in E, then the curve t 7−→ 1
t (

1
t (c(t)− c(0))− c′(0))

is bounded on bounded subsets of R − {0}. Therefore, if the sequence {tn}n∈N in
R−{0} converges to 0, the sequence { c(tn)−c(0)

tn
}n∈N Mackey-converges to c′(0) ∈

E.

Proposition 4 Let E be a Hlcrtvs. Then:

(1) A subset A of E is closed in C∞E if and only if for every sequence {xn}n∈N in A,
which Mackey-converges to x ∈ E, the point x belongs to A.
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(2) If U is a subset of E such that U ∩ 〈B〉 is open in EB for all B bounded and
absolutely convex in E, then U is C∞-open in E.

3.30 Mackey complete spaces
Definition 1 (Mackey-Cauchy net) Let {xγ , γ ∈ Γ,6} be a net in a Hlcrtvs E. This net
will be called Mackey-Cauchy net if there exist a bounded absolutely convex subset B of
E and a net {µγ,γ′ , (γ, γ′) ∈ Γ × Γ,6 × 6} in R converging to 0 such that xγ − xγ′ ∈
µγ,γ′ ·B for all (γ, γ′) ∈ Γ× Γ.

Let B be a bounded absolutely convex subset of a Hlcrtvs E. Let {xγ}γ∈Γ be a net in
〈B〉. Then {xγ}γ∈Γ is a Cauchy net in the normed space EB if and only if there exists a
net {µγ,γ′ , (γ, γ′) ∈ Γ× Γ,6 × 6} in R converging to 0 such that xγ − xγ′ ∈ µγ,γ′ ·B,
for all (γ, γ′) ∈ Γ×Γ (i.e., {xγ}γ∈Γ is a Mackey-Cauchy net inE). Therefore, if {yγ}γ∈Γ

Mackey-converges to y in E, then {yγ}γ∈Γ is a Mackey-Cauchy net.
Proposition 1 Let {xγ}γ∈Γ be a Mackey-Cauchy net in a Hlcrtvs E and x ∈ E. Then,
{xγ}γ∈Γ converges to x in E if and only if {xγ}γ∈Γ Mackey converges to x ∈ E.

(Use the following result: Let E be a Hrtvs, B a bounded closed subset of E and J a
closed bounded interval of R. Then J ·B = {t · v|t ∈ J , v ∈ B} is closed in E.)

Note that if the Hlcrtvs E is metrizable, the condition Mackey-Cauchy for the net can
be omitted. [17].
Definition 2 (Mackey complete space) The Hlcrtvs E is called Mackey complete (or con-
venient) if every Mackey-Cauchy net in E converges in E.
Theorem Let E be a Hlcrtvs. Then the following conditions are equivalent:

(i) E is Mackey-complete.

(ii) Every Mackey-Cauchy net in E, Mackey converges in E.

(iii) Every Mackey-Cauchy sequence in E converges in E.

(iv) Every Mackey-Cauchy sequence in E, Mackey converges in E.

(v) For every absolutely convex bounded subset B of E, the normed space EB is com-
plete.

(vi) For every absolutely convex closed bounded subset B of E, the normed space EB is
complete.

(vii) For every bounded subset B of E there exists an absolutely convex closed bounded
subset B′ of E such that B ⊂ B′ and EB′ is complete.

(viii) For every bounded subset B of E there exists an absolutely convex bounded subset
B′ of E such that B ⊂ B′ and EB′ is complete.

(ix) Any Lipschitz curve in E is locally Riemann integrable.

(x) For any c1 ∈ C∞(R, E) there is c2 ∈ C∞(R, E) such that c′2 = c1.
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(xi) E is closed in the C∞-topology of any Hlcrtvs Ẽ , where E is a topological vector
subspace of Ẽ (Recall that the C∞-topology on Ẽ is the final topology with respect
to all smooth curves c : R→ Ẽ ).

(xii) If c : R→ E is a curve such that l ◦ c : R→ R is smooth for all l ∈ L(E,R), then
c is smooth.

(xiii) Any continuous linear mapping from a normed space F into E has a continuous
extension to the completion of the normed space F .

Recall that c : [a, b] → E is Riemann integrable (by definition) if the net of Riemann
sums converges in E. Moreover if c is continuous and E is sequentially complete (hence
convenient), then c is Riemann integrable (in fact, the net of Riemann sums is a Cauchy
net that has a subnet that is a sequence, and on the other hand an agglomeration point of a
Cauchy net is a point of convergence of this net).
Proposition 2 Let (E, T ) be a Hlcrtvs. Then we have:

(1) If E is complete (every Cauchy net in E converges in E), then E is sequentially
complete (every Cauchy sequence in E converges in E).

(2) If E is sequentially complete, then E is Mackey complete.

(3) If E is metrizable, then: the statements “E is complete”, “E is sequentially com-
plete”, and “E is Mackey complete”, are equivalents.

(4) (E, T ) is Mackey complete if and only if (E, Tborn) is Mackey complete (use the
preceding theorem and the results of 3.29).

3.31

(i) Let E, F be Hlcrtv spaces, and let l : E → F be a continuous linear map. Then l
maps Lipk-curves in E to Lipk-curves in F , for all 0 6 k 6∞, and for k > 0 one
has (l ◦ c)′ = l(c′(t)), t ∈ R.

(ii) Let E be a Mackey complete space and c : R → E a curve such that l ◦ c : R → R
is Lipn for all l ∈ L(E,R). Then c is Lipn.

(iii) A linear mapping l : E → F between Hlcrtv spaces is bounded (it maps bounded
sets to bounded sets) if and only if it maps smooth curves in E to smooth curves in
F.

3.32 Smooth maps
Let E, F be Hlcrtv spaces, K a subset of E and f : K → F a map. Then f is called

smooth if it maps smooth curves in K to smooth curves in F .
Note that in this case f : K → F is continuous, where the topology of K is the C∞-

topology (recall thatC∞K is a subspace ofC∞E wheneverK isC∞-open inE or locally
C∞-closed and convex; C∞K is the topological space K with the C∞-topology, i.e.,the
final topology with respect to all smooth curves c : R→ K ↪→ E).
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Remark If K = E = R, then f is smooth (with the preceding definition) if and only if f
is a smooth curve.
Proposition 1 Let f : U → F be a smooth map, where U is a C∞-open subset of E (U is
open in C∞E). Then:

(i) For all x ∈ U and all v ∈ E, there exists lim
t→0

f(x+tv)−f(x)
t (= dvf(x)).

(ii) For all x ∈ U , d·f(x)(= df(x)) : E → F , v 7→ dvf(x), is a linear and bounded
map, and therefore it is smooth and, finally, it is continuous from (E, Tborn) into F
(2.16) (E and (E, Tborn) have the same collection of bounded subsets).

(iii) d·f(·)(= df) : U × E → F, (x, v) 7→ dvf(x) is smooth.

Hint:

(1) c : R → E, t 7→ x + tv, is a smooth curve. Then there exists ε > 0 such that
c(t) ∈ U for all t ∈ (−ε, ε). Let σ : R → (−ε, ε) be a smooth curve such that
σ(t) = t for all t ∈ (− ε2 ,

ε
2 ). Then c ◦ σ : R → U ↪→ E is a smooth curve and

f◦c◦σ : R→ F is a smooth curve. Consequently (f◦c◦σ)′(0) = lim
t→0

f(x+tv)−f(x)
t .

(2) Apply 3.8 (1) and the Boman’s theorem: Let f : A → F be a map, where A is an
open set ofRn and F is a Hlcrtvs. Then f is smooth (with the preceding definition) if
and only if f is aC∞-map (3.3 (5)). In this case df : A×Rn → F , (x, v) 7→ dvf(x),
is smooth and consequently d·f(x) : Rn → F is smooth for all x ∈ A.

Proposition 2 (chain rule) Let E, F , G be Hlcrtv spaces, U a C∞-open subset in E,
V a C∞-open subset in F , f : U → F a map with f(U) ⊂ V and g : V → G a
map. Suppose that f, g are smooth maps. Then g ◦ f : U → G is a smooth map and
d(g◦f)(x, v) = dg(f(x), df(x, v)), for all (x, v) ∈ U×E. Consequently d(g◦f)(x, ·) =
dg(f(x), ·) ◦ df(x, ·) : E → G for all x ∈ U .

3.33 Smooth maps on quadrants
Definition Let E, F be convenient spaces (i.e., Mackey complete spaces), Q a quadrant
of E with intC∞E(Q) 6= ∅, U a C∞-open subset of Q and f : U → F a map. We say
that f is smooth if for all smooth curve c : R → U , f ◦ c : R → F is a smooth curve
(recall that if U 6= ∅, then intC∞E(U) 6= ∅).

One has:

(i) Let E, F , G be convenient spaces, Q a quadrant of E with intC∞E(Q) 6= ∅, U
a C∞-open subset of Q, P a quadrant of F with intC∞F (P ) 6= ∅, V a C∞-open
subset of P , f : U → V a smooth map and g : V → G a smooth map. Then
g ◦ f : U → G is a smooth map.

(ii) Let f : U → F be a smooth map (preceding definition). Then the map
(ρ=)f |intC∞E(U) : intC∞E(U) → F is smooth (3.32) and the map, x ∈
intC∞E(U) 7→ d·ρ(x) = dρ(x) ∈ {λ : E → F |λ is linear and bounded},
extends uniquely to a smooth map (preceding definition) df : U → {λ : E → F |λ
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is linear and bounded}(= Lb(E,F )). (Then df(x) is linear and continuous from
(E, Tborn) into F ). Note that the map, (x, v) ∈ intC∞E(U)× E 7→ dvρ(x) ∈ F , is
smooth (3.32). Moreover, for all x ∈ intC∞E(U), dρ(x) : E → F is smooth (3.32)
and continuous from (E, Tborn) into F. Note, finally, that Lb(E,F ) is a convenient
space.

(iii) Let f : U → F be a smooth map and c : R → U a smooth curve. Then f◦
c : R→ F is a smooth curve and (f ◦ c)′(t) = df(c(t))(c′(t)), for all t ∈ R.

(iv) Chain rule Let f : U → F be a smooth map and g : V → G a smooth map
with f(U) ⊂ V , (V ⊂ P ⊂ F ). Then g ◦ f : U → G is a smooth map and
d(g ◦ f)(x) = dg(f(x)) ◦ df(x), for all x ∈ U.

(v) Restriction to open sets Let f : U → F be a smooth map and V a C∞-open subset
of U , (C∞U is a topological subspace of C∞E). Then f |V : V → F is a smooth
map (of course V is a C∞-open subset of Q) and df(x) = d(f |V )(x), for all x ∈ V.

(vi) Restriction to vector subspaces Let f : U → F be a smooth map,G a closed linear
subspace of E (then a convenient space), QG a quadrant of G with intC∞G(QG) 6=
∅. Suppose that U ∩G is a C∞-open subset of QG. Then f |U∩G : U ∩G→ F is a
smooth map and df(x)|G = d(f |U∩G)(x), for all x ∈ U ∩G.

(vii) Open covering property Let E, F be convenient spaces, Q a quadrant of E with
intC∞E(Q) 6= ∅, U aC∞-open subset ofQ and f : U → F a map. Let {Vj |j ∈ J}
be a C∞-open covering of U . Then f : U → F is smooth if and only if f |Vj : Vj →
F is smooth for all j ∈ J.

Again, we have the essential results (together with the theorem of invariance of the bound-
ary) to construct manifolds with corners modeled on convenient spaces.

3.34

(1) Let E, F , Q, U , f : U → F be as in Definition of 3.33. Then f : U → F is a
smooth map if and only if λ ◦ f : U → R is a smooth map for all λ ∈ L(F,R)
(Definition of 3.33), (in particular F may be Fréchet or Banach).

(2) Let E, F be convenient spaces, Q a quadrant of E with int(Q) 6= ∅ (which implies
intC∞E(Q) 6= ∅), U an open subset of Q (hence U is a C∞-open subset of Q (in
this case C∞Q is a topological subspace of C∞E)), and f : U → F a map. Then f
is a smooth map (Definition of 3.33) if and only if λ ◦ f : U → R is a smooth map
(3.33) for all λ ∈ L(F,R). Therefore f is a smooth map (3.33) if and only if f is a
C∞W -map on U (3.25, 3.28).

3.35

(1) Let E, F , Q, U , f be as in Definition of 3.33. Let P be a quadrant of F with
intC∞F (P ) 6= ∅ and V a C∞-open subset of P. Suppose that f(U) ⊂ V. We say
that f : U → V is a smooth diffeomorphism if f : U → V is a bijective map
and f, f−1 are smooth maps (3.33). Note that in this case f−1 : V → U is also a
smooth diffeomorphism.
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(2) The composition of smooth diffeomorphisms is again a smooth diffeomorphism, and
the identity map is a smooth diffeomorphism.

(3) Let f : U → V be a smooth diffeomorphism. Then by 3.33 (ii), we have
the extensions df : U → Lb(E,F ) and d(f−1) : V → Lb(F,E) and we
know that df(x) ∈ L((E, Tborn), F ) and d(f−1)(f(x)) ∈ L((F, T ′born), E) for all
x ∈ U , where T ′ is the topology of F . By 3.33 (iv), df(x) is an isomorphism and
(df(x))−1 = d(f−1)(f(x)) for all x ∈ U. Finally df(x) is a linear homeomorphism
from (E, Tborn) onto (F, T ′born) for all x ∈ U .

3.36 Invariance of the boundary for smooth diffeomorphisms
Lemma LetE,F be convenient spaces, U a C∞-open subset ofE, λ : F → R a bounded
linear function with λ 6= 0, x ∈ U and f : U → F+

λ a smooth map (3.33) such that
f(x) ∈ F 0

λ . Then df(x)(E) ⊂ F 0
λ (3.33 (ii)).

Theorem (Invariance of the boundary) Let f : U → V be a smooth diffeomorphism
(3.35 (1), 3.33). (By 2.19 (i), index (Q) is finite and Q0 is closed in (E, Tborn), index (P )
is finite and P 0 is closed in (F, T ′born), where T and T ′ are the topologies of E and F ,
respectively). Then we have:

(a) index (x) = index (f(x)) for all x ∈ U , (2.9 (c) (ii)).

(b) {x ∈ U | index (x) > 1} 6= ∅ if and only if {y ∈ V | index (y) > 1} 6= ∅. (Note that
intTborn(Q) 6= ∅ and intT ′born

(P ) 6= ∅, 2.19 (i)).

(c) If U 6= ∅, intC∞E(U) 6= ∅ and intC∞F (V ) 6= ∅.

(d) f({x ∈ U | index (x) > k}) = {y ∈ V | index (y) > k}, for all 0 6 k 6 index (Q).

(e) f({x ∈ U | index (x) = k}) = {y ∈ V | index (y) = k}, for all 0 6 k 6 index (Q).

(f) f(intC∞E(U)) = intC∞F (V ) (Note that intC∞T (Q) = intTborn(Q) and
intC∞T ′(P ) = intT ′born

(P )).

(g) f |intC∞E(U) : intC∞E(U) → intC∞F (V ) is a smooth diffeomorphism (3.35) and
d(f |intC∞E(U))(x) = df(x) for all x ∈ intC∞E(U).

3.37 LetE be a convenient space andQ, Q′ quadrants inE with non-emptyC∞- interior.
Then Q, Q′ are smooth diffeomorphic (3.35) if and only if index (Q) = index (Q′) (3.36,
2.13 (iii)).

Indeed: if index (Q) = index (Q′),by 2.13 (iii), there exists a linear homeomorphism
α : (E, Tborn)→ (E, Tborn) such that α(Q) = Q′ and α(Q0) = Q′0. By 2.17, α|Q : Q→
Q′ is a smooth diffeomorphism (3.35). For the converse, apply the Theorem of 3.36.

On constructing smooth manifolds with corners modeled on convenient vector spaces,
the C∞-open subsets of quadrants, with non-empty C∞-interior, of convenient vector
spaces will be the local models.
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4 Manifolds with corners

The preceding notions of differentiability (Section 3) will be used to introduce the corre-
sponding notions of manifolds with corners.

Manifolds with corners modeled on normable spaces

4.1 Let X be a non-void set. We say that (U,ϕ, (E,Q)) is a chart on X if: U is a subset
of X , E is a normable rtvs, Q is a quadrant in E with int(Q) 6= ∅, ϕ : U → Q is an
injective map and ϕ(U) is an open subset of Q. In this case U will be called the domain,
ϕ the morphism and E the model of the chart. Recall that (2.12) if index (Q) = n ∈ N,
there exists a linearly independent system Λ = {λ1, ..., λn} of elements of L(E,R) such
that Q = E+

Λ , and consequently Q0 = E0
Λ (see 2.8 for the (certain) unicity).

Let c = (U,ϕ, (E,Q)) and c′ = (U ′, ϕ′, (E′, Q′)) be charts on X . We say that they
are compatible of class r or Cr-compatible (r ∈ {0}∪N∪{∞}(= N∗)) if: ϕ(U ∩U ′) and
ϕ′(U∩U ′) are open subsets ofQ andQ′, respectively, and the maps ϕ′ϕ−1 : ϕ(U∩U ′)→
ϕ′(U ∩ U ′) and ϕϕ′−1 : ϕ′(U ∩ U ′) → ϕ(U ∩ U ′) (transition functions) are Cr-maps

(3.3), (hence inverse homeomorphisms). In this case we shall write c C
r

v c′.
A collection A of charts on X is called an atlas of class r or Cr-atlas on X (r ∈ N∗),

if the domains of the charts of A cover X and any two of them are Cr-compatible.
Two atlases A, A′ of class r on X are called equivalent of class r or Cr-equivalent, if

A ∪A′ is an atlas of class r on X . In this case we shall write A Cr

v A′.
The properties of 3.4 permit us to prove that the preceding binary relation Cr

v is an
equivalence relation over the atlases of class r on X ([3]).

If A is an atlas of class r on X , the equivalence class (Cr-class), [A], is called differ-
entiable structure of class r on X and the pair (X, [A]) is called manifold with corners of
class r or Cr-manifold with corners (or Cr-manifold).

If (X, [A]) is a Cr-manifold with corners, then
⋃
{B|B ∈ [A]} ∈ [A].

The C0-manifolds with corners will be called topological manifolds with borders.
In this case for every x ∈ X , there exists a chart (U,ϕ, (E,Q)) such that x ∈ U and
codim(Q0) = 1.

If a Cr-manifold (X, [A]) with corners admits an atlas whose charts are modeled over
Banachable (or Hilbertizable) rtv spaces, then all the charts of (X, [A]) are modeled over
Banachable (or Hilbertizable) rtv spaces. In this case, we say that (X, [A]) is a Banach (or
a Hilbert) Cr-manifold with corners.

4.2 The Cr-manifolds are endowed with a natural topology determined by a basis given
by the domains of all the charts ([21], paragraph 1.2).

Since a normable rtvs is metrizable, the topology of a Cr-manifold is locally metriz-
able, verifies the first axiom of countability, and fulfils the T1 axiom (i.e., the unitary
subsets are closed). In general, this topology is not Hausdorff, and the axiom of Hausdorff
does not imply the regularity. Finally, by a well known theorem of Smirnov, a Hausdorff
Cr-manifold with corners is metrizable if and only if is paracompact ([21], paragraph 1.4).

The main feature of the Cr-manifolds (r > 1) is the existence of a boundary with a
stratified structure.
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Let (X, [A]) be a Cr-manifold with r > 1, x ∈ X and let (U,ϕ, (E,Q)),
(U ′, ϕ′, (E′, Q′)) be charts of (X, [A]) with x ∈ U ∩ U ′. Then, by 3.6:

index (ϕ(x)) = index (ϕ′(x))(= ind(x)).
The non-negative integer number ind(x) will be called index of x in (X, [A]), (2.9 (c)).
Let (X, [A]) be a Cr-manifold (r > 1). Then:

(a) For all k ∈ N ∪ {0}, the set {x ∈ X| ind(x) > k}(= ∂kX) is called k-boundary of
(X, [A]). The set ∂1X is also denoted by ∂X . It is clear that ∂0X = X .

(b) For all k ∈ N∪{0}, the set {x ∈ X| ind(x) = k} is denoted byBkX . The setB0X
is called interior of X and denoted by IntX .

It is clear that {BkX|k ∈ N ∪ {0}} is a partition of X , ∂kX =
⋃
k′>k

Bk′X , and

∂kX ⊂ ∂k′X whenever k′ 6 k.
Let X be a C0-manifold such that every x ∈ X has a chart of X modeled over an

euclidean space. Then we can speak of dimxX for all x ∈ X (Riesz’s theorem and
Brouwer’s theorem). Moreover if x ∈ X , then: there is a chart at x, (U,ϕ, (E,Q)), with
index (ϕ(x)) > 0 if and only if there is a chart at x, (U ′, ϕ′, (E′, Q′)), with index (ϕ′(x))
= 1. In this case we say that x is a boundary point ofX and all these points will be denoted
by Bord(X). Finally X −Bord(X) will be called interior of X.

The BkX sets have a natural structure of Cr-manifold:
Lemma Let (X, [A]) be a Cr-manifold (r > 1) and x ∈ X . Then there is a chart
(U,ϕ, (E,Q)) of (X, [A]) such that x ∈ U and ϕ(x) = 0 (centred chart at x), and hence
ind(x) = index (Q).

Proposition 1 Let X be a Cr-manifold (r > 1). Then ∂kX is a closed subset of X , for
all k ∈ N, and IntX is a dense open subset of X .

Proposition 2 Let (X, [A]) be aCr-manifold (r > 1) and k ∈ N∪{0}. Then there exists a
unique differentiable structure of class r on BkX such that for all x ∈ BkX and all chart
(U,ϕ, (E,Q)) of (X, [A]) with x ∈ U and ϕ(x) = 0, the triplet (U∩BkX,ϕ|U∩BkX , Q0)
is a chart of that structure.

Furthermore BkX (with this structure) has not boundary, that is, ∂(BkX) = ∅, and
the topology of the manifold BkX is the topology induced by X .

Note that if x ∈ BkX and (U,ϕ, (E,Q)) is a chart of (X, [A]) with x ∈ U and
ϕ(x) = 0, then ϕ(U ∩BkX) = ϕ(U) ∩Q0.
Corollary Let (X, [A]) be a Cr-manifold (r > 1). Then:

(a) There is a unique differentiable structure of class r on Int(X) = B0X , such that for
all x ∈ Int(X) and all chart (U,ϕ, (E,Q)) of (X, [A]) with x ∈ U and ϕ(x) = 0
(Hence Q0 = E and U ⊂ Int(X)), the triplet (U,ϕ,E) is a chart of Int(X)
with that structure. Furthermore Int(X) has not boundary and the topology of the
manifold Int(X) is the topology induced by X .

(b) If ∂2X = ∅, (hence ∂X = B1X), there is a unique differentiable structure of
class r on ∂X such that for all x ∈ ∂X and all chart (U,ϕ, (E,Q)) of (X, [A])
with x ∈ U and ϕ(x) = 0 (hence index (Q) = 1 and codim(Q0) = 1) the triplet
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(U ∩ ∂X,ϕ|U∩∂X , Q0) is a chart of that structure. Furthermore ∂(∂X) = ∅ and
the topology of the manifold ∂X is the topology induced by X .

4.3 Given a Cr-manifold X (r > 1) and x ∈ X , the definition of dimxX
is the natural one. We note that if X is a topological manifold, x ∈ X and
(U,ϕ, (E,Q)), (U ′, ϕ′, (E′, Q′)) are charts of X at x, then in general E and E′ are not
linearly homeomorphic.

IfX is a Cr-manifold (r > 1), C is a connected component ofX and x, z are elements
of C, then dimxX = dimzX . Finally if X is a Cr-manifold (r > 1), then: X is a locally
compact space if and only if dimxX is finite for all x ∈ X . Manifolds with this property
are called locally finite-dimensional manifolds. On the other hand, even though the infinite-
dimensional Banach Cr-manifolds are not locally compact, they always are Baire spaces
([21], 1.4.7).

The quadrants used in 4.1 are themselves C∞-manifolds with corners. If X is a Cr-
manifold (r > 1) and G is an open subset of X , then G is a Cr-manifold whose topology
is the induced by X and Bk(G) = Bk(X) ∩G for all k > 0.

4.4 Weakened differentiable manifolds
Let (X, [A]) be a Cr-manifold and s ∈ N ∪ {0} with s < r 6 ∞. Then, since a Cr-

map is a Cs-map (3.3 (5) (ii)), we have the Cs-manifold (X, [A]s), (weakened manifold),
([21], 1.3.1).

Note that the manifolds (X, [A]) and (X, [A]s) have the same topology.

4.5 Calculus on manifolds modeled on normable spaces
Let (X, [A]) be a Cr-manifold (r > 1), F a Hlcrtvs and f : X → F a map. We say

that f is a Cr-map if for every x ∈ X there exists a chart (U,ϕ, (E,Q)) of (X, [A]) at x
such that f ◦ ϕ−1 : ϕ(U)→ F is a Cr-map (3.3).

Note that if f : (X, [A])→ F is aCr-map, then for all s < r, the map f : (X, [A]s)→
F is a Cs-map.

It is easy to prove that if f : (X, [A])→ F is a Cr-map and (V, ψ, (E′, Q′)) is a chart
of (X, [A]), then f ◦ ψ−1 : ψ(V )→ F is a Cr-map (3.3).

Of course when X is a local manifold, this definition and 3.3 are equivalent.
Let X, X ′ be Cr-manifolds (r > 1) and f : X → X ′ a map. We say that f is a

Cr-map if for every x ∈ X there is a chart (U,ϕ, (E,Q)) of X at x and there is a chart
(U ′, ϕ′, (E′, Q′)) of X ′ at f(x) such that f(U) ⊂ U ′ and the map ϕ′ ◦ f ◦ϕ−1 : ϕ(U)→
ϕ′(U ′) is a Cr-map (3.3).

This definition extends naturally to the case r = 0, that is, to topological manifolds.
See [21], 1.3, for elementary results (now for normable spaces).

4.6 Diffeomorphisms of class r (r > 1) preserve the boundary
Let X , X ′ be Cr-manifolds (r > 1) and f : X → X ′ a map. Then f is called a

Cr-diffeomorphism if f is a bijective map and f, f−1 are Cr-maps (4.5).
This definition extends naturally to the case r = 0, that is, to the case of topological

manifolds and then the notions of diffeomorphism of class 0 and homeomorphism coin-
cide.

See [21], 1.3 (now for normable spaces).
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Lemma Let (X, [A]) be a Cr-manifold (r > 1), U an open subset of X , E a normable
rtvs, Q a quadrant of E with int(Q) 6= ∅ and ϕ : U → E a map such that ϕ(U) is an
open subset of Q. Then the following statements are equivalent:

(a) (U,ϕ, (E,Q)) is a chart of (X, [A]).

(b) ϕ : U → ϕ(U) is a Cr-diffeomorphism.

Theorem Let X, X ′ be Cr-manifolds (r > 1) and f : X → X ′ a Cr-diffeomorphism.
Then we have that:

(i) ind(x) = ind(f(x)) for all x ∈ X , (4.2).

(ii) f(∂kX) = ∂kX ′ and f(BkX) = BkX
′ for all k ∈ N ∪ {0}, (4.2).

Proposition Let f : X → X ′ be a Cr-diffeomorphism (r > 1). Then, for all k ∈ N∪{0},
f |BkX : BkX → BkX

′ is a Cr-diffeomorphism (4.2). In particular, if ∂2X = ∅, f is a
Cr-diffeomorphism of ∂X = B1X onto ∂X ′ = B1X

′.
Remark Let X , X ′ be locally finite dimensional topological manifolds and f : X → X ′ a
homeomorphism. Then (by Brouwer’s theorem) f(Bord(X)) = Bord(X ′), (4.2).

The main purpose of Differential Topology is to study the properties of the differen-
tiable manifolds which are preserved by diffeomorphisms.
Remarks (1) If two topological manifolds, over a set, have the same associated topol-

ogy, then these topological manifolds coincide.

(2) J. Milnor constructed several differentiable structures of class∞ over the sphere S7

whose associated topologies are the usual topology of S7 and any two of them are
not diffeomorphic, [23].

(3) S. Donaldson has proved that there are topological manifolds, modeled over R4,
which do not admit compatible differentiable structures, [6].

(4) The only euclidean space that admits non-diffeomorphic differentiable structures
with the usual topology as associated topology is R4, [12].

4.7 Tangent space and tangent linear map
Let (X, [A]) be a Cr-manifold (r ∈ N ∪ {∞}) and, a, a point of X . Consider the

class {(c, v)|c = (U,ϕ, (E,Q)) is a chart of (X, [A]) at a and v ∈ E}(=Ca(X))
and the binary relation v on Ca(X) defined by: (c, v) v (c′, v′) if and only if D(ϕ′ ◦
ϕ−1)(ϕ(a))(v) = v′ (3.3). This binary relation is an equivalence relation on Ca(X) and
the quotient set Ca(X)/ ∼ will be denoted by Ta((X, [A])).

Then we have the following properties:

(1) For every chart c = (U,ϕ, (E,Q)) of (X, [A]) at a, the map θac : E → TaX,
v 7→ [(c, v)], is bijective.
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(2) There is a unique structure of rtvs on TaX such that for every chart
c = (U,ϕ, (E,Q)) of (X, [A]) at a, the map θac : E → TaX is a linear homeo-
morphism. This structure of rtvs on TaX is normable (Banachable in the realm of
Banach Cr-manifolds)

(3) If c and c′ are charts of X at a, then (θac′)
−1θac = D(ϕ′ϕ−1)(ϕ(a)). The normable

rtvs TaX will be called tangent space of (X, [A]) at a.

(4) For 1 < s < r, Ta((X, [A])) and Ta((X, [A]s)) are linearly homeomorphic.

Let f : X → X ′ be a Cr-map (r > 1) and a ∈ X . Then, there is a unique continuous
linear map, Taf : TaX → Tf(a)X

′, such that for every chart c of X at a and every chart
c′ of X ′ at f(a) it holds Taf = θ

f(a)
c′ ◦D(ϕ′ ◦ f ◦ ϕ−1)(ϕ(a)) ◦ (θac )−1. This map, Taf ,

will be called tangent linear map to f at the point a of X .
See [21], 1.6 (now for normable spaces).

4.8 Kinematic interpretation of the tangent vectors
Let X be a Cr-manifold (r > 1) and x ∈ X. A curve of class s on X with origin x,

0 6 s 6 r, is a map α : J → X of class s, where J = [0, a) or J = (b, 0] or J = (c, d)
with 0 ∈ (c, d), such that α(0) = x.

If α is a curve of class s on X (1 6 s 6 r) with origin x defined on J = [0, a), then
the element T0(α)θ0

c0(1) of TxX , where c0 = ([0, a), i, (R, [0,→))), (θ0
c0 : R → ToJ ,

T0(α) : T0J → TxX), will be called tangent vector to α at 0 and will be denoted by
·
α(0).

Analogously if J = (b, 0] or J = (c, d). We note that if c = (U,ϕ, (E,Q)) is a chart of X
at x, then

·
α(0) = θxc lim

t→0+

ϕα(t)−ϕα(0)
t = θxc (ϕα)′(0), where θxc : E → TxX is the natural

linear homeomorphism. Analogously for (b, 0] and (c, d).
Let X be a Cr-manifold (r > 1) and x ∈ X . Then v ∈ TxX is said to be inner (or

interior) tangent vector if there is α : [0, a) → X , curve of class 1 on X with origin x,
such that

·
α(0) = v (analogously v ∈ TxX is said to be outer (or exterior) tangent vector if

there is β : (b, 0] → X , curve of class 1 on X with origin x, such that
·
β(0) = v). The set

of the inner tangent vectors at x ∈ X will be denoted by (TxX)i and the set of the outer
tangent vectors at x ∈ X will be denoted by (TxX)e. The set (TxX)i ∩ (TxX)e will be
denoted by (TxX)ie.

LetX be a Cr-manifold (r > 1), x ∈ X and v ∈ TxX . Then, v ∈ (TxX)ie if and only
if there exists α : (c, d)→ X , curve of class 1 on X with origin x, such that

·
α(0) = v.

Proposition 1 Let X be a Cr-manifold (r > 1) and x ∈ X . Then (TxX)i = −(Tx)e and
TxX = L((TxX)i) = L((TxX)e).

Proposition 2 Let X be a Cr-manifold (r > 1), x ∈ X and c = (U,ϕ, (E,Q)) a chart
of X such that x ∈ U and ϕ(x) = 0, (4.2). Let Λ be as in (2.12, 2.8, 4.1). Then we have
θxc (Q) = (TxX)i = (TxX)+

Λ◦(θxc )−1 , θxc (−Q) = (TxX)e, (θxc : E → TxX).

Proposition 3 Let X be a Cr-manifold (r > 1), x ∈ X and c = (U,ϕ, (E,Q)), c′ =
(U ′, ϕ′, (E′, Q′)) charts of X such that x ∈ U ∩ U ′ and ϕ(x) = ϕ′(x) = 0. Then
θxc (int(Q)) = θxc′(int(Q′)) ⊂ (TxX)i.
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The elements of θxc (int(Q)) will be called strictly inner (interior) tangent vectors at x
and this set of vectors will be denoted by (TxX)is. The elements of −θxc (int(Q)) will be
called strictly outer (exterior) tangent vectors at x. The set −(TxX)is will be denoted by
(TxX)es.

Note that if X is a Cr-manifold (r > 1) and x ∈ Int(X) = B0X , then TxX =
(TxX)i = (TxX)e.
Proposition 4 Let c = (U,ϕ, (E,Q)) be a chart at a point x of a Cr-manifold X (r > 1),
v ∈ TxX , and let Λ be as in (2.12, 2.8, 4.1). Then:

(1) v ∈ (TxX)i if and only if λ ∈ Λ and λϕ(x) = 0 imply λ(θxc )−1(v) > 0.

(2) v ∈ (TxX)is if and only if λ ∈ Λ and λϕ(x) = 0 imply λ(θxc )−1(v) > 0.

Proposition 5 Let f : X → X ′ be a Cr-map (r > 1) and x a point of X . Then
Txf((TxX)d) ⊂ (Tf(x)X

′)d for d = i, e, ie.

4.9 Tangent bundle manifold
Let X be a Cr-manifold (r > 1). We denote by TX the set {(x, v)|x ∈ X, v ∈ TxX}

and by τX the map τX : TX → X, (x, v) 7→ x. We construct, in a natural way, a unique
structure of differentiable manifold of class r − 1 on TX (topological manifold, if r = 1)
such that for every chart c = (U,ϕ, (E,Q)) ofX, dc is a chart of this structure, where dc =
(τ−1
X (U), ϕc, (E×E,Q×E)), ϕc : τ−1

X (U)→ E×E, ϕc((x, v)) = (ϕ(x), (θxc )−1(v)).
One has that: if (x, v) ∈ TX , then ind((x, v)) = ind(x). (See [21], 1.6, now for normable
spaces).

If f : X → X ′ is a Cr-map (r > 1), then Tf : TX → TX ′ defined by Tf(x, v) =
(f(x), Txf(v)), is a Cr−1-map. Moreover, one has that T (1X) = 1TX and T (g ◦ f) =
T (g) ◦ T (f), and therefore, T (f) is a Cr−1-diffeomorphism whenever f is a Cr-
diffeomorphism. Thus TX is a differential invariant of the Cr-manifold X , and the prin-
cipal differential invariants on X are constructed on TX .

4.10 Product of manifolds with corners
The category of manifolds with corners is the suitable category in which we can define

finite products.
Let X ,Y be Cr-manifolds with corners (r > 1). Then there is a unique structure of

differentiable manifold with corners of class r, [A], in X × Y such that for every chart
c = (U,ϕ, (E,Q)) of X and every chart d = (V, ψ, (F, P )) of Y , c × d = (U × V, ϕ ×
ψ, (E×F,Q×P )), (2.10), is a chart of (X×Y, [A]). The pair (X×Y, [A]) will be called
product manifold of X and Y. Recall that if index (Q) = n, index (P ) = m, Q = E+

Λ and
P = F+

M (2.12 (ii)), then (E × F )+
Λp1∪Mp2

= Q× P and (E × F )0
Λp1∪Mp2

= Q0 × P 0

(2.10).

One has the following properties:

(i) The topology of the product manifold X × Y is the product of the topologies of X
and Y.

(ii) For all (x, y) ∈ X × Y , ind(x, y) = ind(x) + ind(y), (4.2).



J. Margalef-Roig and E. Outerelo Domı́nguez 1025

(iii) For all k ∈ N∪{0}, ∂k(X×Y ) =
⋃

n+m=k

(∂nX×∂mY ). In particular, ∂(X×Y ) =

(∂X × Y ) ∪ (X × ∂Y ).

(iv) For all k ∈ N∪{0}, Bk(X×Y ) =
⋃

n+m=k

(BnX×BmY ) and these BnX×BmY

are pairwise disjoint open subsets of Bk(X × Y ). In particular, Int(X × Y ) =
Int(X)× Int(Y ).

(v) The projections p1 and p2 are Cr-maps, and for every (x, y) ∈ X × Y, the map
(T(x,y)p1, T(x,y)p2) : T(x,y)(X×Y )→ (TxX)×(TyY ) is a linear homeomorphism.
Moreover, (T(x,y)p1, T(x,y)p2) = (θxc × θ

y
d) ◦ (θ(x,y)

c×d )−1, and (Tp1, Tp2) : T (X ×
Y )→ TX × TY is a Cr−1-diffeomorphism.

(vi) For every (x, y) ∈ X × Y , the maps jx : Y → X × Y, y 7→ (x, y), and jy : X →
X × Y , x 7→ (x, y), are of class r, and (T(x,y)p1, T(x,y)p2) ◦ Txjy(v) = (v, 0),
(T(x,y)p1, T(x,y)p2) ◦ Tyjx(u) = (0, u).

(vii) Let X , Y , Z be Cr-manifolds (r > 1) and f : X → Y , g : X → Z maps. Then:

(a) (f, g) is a Cr-map if and only if f , g are Cr-maps.

(b) If (f, g) is a Cr-map, then (T(f(x),g(x))p1, T(f(x),g(x))p2) ◦ Tx(f, g)
= (Txf, Txg) for all x ∈ X , and (Tp1, Tp2) ◦ T ((f, g)) = (Tf, Tg).

(viii) Let X , Y , X ′, Y ′ be Cr-manifolds (r > 1) and f : X → X ′, g : Y → Y ′ maps.
Then:

(a) f × g is a Cr-map if and only if f , g are Cr-maps.

(b) If f × g is a Cr-map, then (T(f(x),g(y))p
′
1, T(f(x),g(y))p

′
2) ◦ T(x,y)(f × g) =

((Txf)×(Tyg))◦(T(x,y)p1, T(x,y)p2), for all (x, y) ∈ X×Y , and (Tp′1, Tp
′
2)◦

T (f ×g) = (Tf ×Tg)◦ (Tp1, Tp2) (See [21], 2.3, now for normable spaces).

By induction we construct the finite products, in this category of manifolds with cor-
ners. Note that in the category of manifolds without boundary, the construction of products
follows in a natural way without dificulties.

In order to develop this theory (manifolds with corners over normable rtv spaces) we
have a great inconvenience: the inverse mapping theorem fails (See [21], 2.2, for the Ba-
nach case).

4.11 Submanifolds
LetX be aCr-manifold (r > 1) andX ′ a subset ofX . We say thatX ′ is a submanifold

of class r of X if for every point x′ of X ′ there are a chart c = (U,ϕ, (E,Q)) of the Cr-
manifold X with x′ ∈ U and ϕ(x′) = 0, a closed linear subspace E′ of E that admits
a topological supplement G in E (that is, E = F + G, F ∩ G = {0} and the map
α : F × G → E, (u, v) 7→ u + v, is a linear homeomorphism) and a quadrant Q′ of E′

with intE′(Q′) 6= ∅ such that ϕ(U ∩X ′) = ϕ(U) ∩Q′ and ϕ(U) ∩Q′ is an open subset
of Q′ (See [21], 3.1). In this case we say that c is adapted to X ′ at x′ through (E′, Q′).

If we omit (for E′) “that admits a topological supplement G in E”, then we say that
X ′ is a non-splitting-submanifold of class r of X .
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Proposition 1 Let X be a Cr-manifold (r > 1), X ′ a subset of X , x′ a point of X ′,
c = (U,ϕ, (E,Q)) a chart of X at x′ with ϕ(x′) = 0, E′ a closed linear subspace of E
that admits a topological supplement in E and Q′ a quadrant of E′ with intE′(Q′) 6= ∅.
Then the following statements are equivalent:

(a) ϕ(U ∩X ′) = ϕ(U) ∩Q′ and this set is open in Q′.

(b) ϕ(U ∩X ′) = ϕ(U) ∩Q′ and Q′ ⊂ Q.

Note that “non-splitting-submanifold” does not imply “submanifold’.
Proposition 2 Let X ′ be a submanifold of class r of X . Then there is a unique differen-
tiable structure [A′] of class r in X ′ such that for every point x′ of X ′ and every chart
c = (U,ϕ, (E,Q)) of X at x′ with ϕ(x′) = 0, adapted to X ′ at x′ through (E′, Q′),
c′ = (U ∩X ′, ϕ|U∩X′ , (E′, Q′)) is a chart of [A′].
Proposition 3 Let X ′ be a submanifold of class r of X . Then the topology of X ′ as a
manifold, is the topology induced by the topology of X . Moreover X ′ = A ∩ C, where A
is an open subset of X and C is a closed subset of X .

Proposition 4 Let X ′ be a submanifold of class r of X and j : X ′ ↪→ X the inclusion
map. Then we have:

(i) j is a Cr-map, and for all Cr-manifold Y and all map f : Y → X ′ one has that: f
is a Cr-map if and only if j ◦ f : Y → X is a Cr-map.

(ii) Let [A′′] be a differentiable structure of class r on X ′ such that for all Cr-manifold
Y and all map f : Y → X ′ one has that: f is Cr if and only if j ◦ f : Y → X is
Cr. Then [A′′] = [A′], (Proposition 2).

(iii) For every point x′ of X ′, Tx′(j) is an injective continuous linear map whose image
im(Tx′(j)) admits a topological supplement in Tx′X .

(iv) If c = (U,ϕ, (E,Q)) is a chart of X at x′ ∈ X ′ with ϕ(x′) = 0, adapted to
X ′ at x′ through (E′, Q′), then for all y′ ∈ U ∩ X ′, Ty′j(Ty′X ′) = θy

′

c (E′),
(θy
′

c : E → Ty′X).

By analogy with the general topology, we may say that [A′] (Proposition 2) is the initial
differentiable structure of class r on X ′ respect the map j : X ′ ↪→ (X, [A]).
Definition (Special submanifolds) Let X ′ be a submanifold of class r of X . Then:

(i) X ′ is a neat submanifold of class r of X if ∂X ′ = (∂X) ∩X ′.

(ii) X ′ is a totally neat submanifold of class r of X if the following conditions holds:

(1) For all point x′ of X ′, indX′(x′) = indX(x′) (that is, BkX ′ = X ′ ∩BkX for
all k ∈ N ∪ {0}).

In fact (1) is equivalent to:

(2) ∂X ′ = (∂X) ∩ X ′ and Tx′X = (Tx′j′)(Tx′X ′) + (Tx′j)(Tx′BkX) for all
x′ ∈ X ′ ∩ BkX, where j′ : X ′ ↪→ X and j : BkX ↪→ X are the inclusion
maps. (See [21], 3.1, now for normable spaces).
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In [1] the authors (et al.) give conditions, over the Banach Cr-manifolds with corners,
which imply that these manifolds can be considered as closed submanifolds of a Banach
space. The proof of this result can be adapted to prove the following:
Theorem Let X be a Hausdorff paracompact Cr-manifold (r ∈ N if ∂X 6= ∅) with
corners whose charts are modeled over Cr-normal normable rtv spaces (i.e. normable rtv
spaces where every two disjoint closed subsets can be functionally separated by a function
of class r). Then X is Cr-diffeomorphic to a closed Cr-submanifold of a normed space.

For manifolds without boundary, J. Eells and K.D. Elworthy proved in [9] the following
immersion theorem: Let E be a C∞-smooth Banach space of infinite dimension, with a
Schauder base. Suppose that X is a separable metrizable C∞-manifold without boundary
modeled on E. If X is parallelizable, then X is C∞-diffeomorphic to an open subset of E.

4.12 Quotient manifolds
An important question in the theory of manifolds is the construction of quotient mani-

folds. If (X, [A]) is aCr-manifold with corners (r > 1) andR is an equivalence relation on
X , it is not always possible to construct a differentiable structure of class r on the quotient
set X/R compatible with the quotient topology. To obtain positive results one proceeds as
follows:
Definition 1 A Cr-map f : X → X ′ is a Cr-submersion at x ∈ X if admits a Cr local
section at x. In the case that f is a Cr-submersion at every point x of X , we say that f is
a Cr-submersion of X into X ′.

We take this definition in order to have the following universal property: If f : X → X ′

is a surjective Cr-submersion and g : X ′ → X ′′ is a map, where X ′′ is a Cr-manifold,
then g is a Cr-map if and only if g ◦ f is a Cr-map.

Definition 2 Let (X, [A]) be a Cr-manifold with corners and R an equivalence relation
on X . Then we say that R is regular if there is a differentiable structure of class r in X/R
such that the natural projection p : X → X/R is a Cr-submersion.

If R is a regular equivalence relation on the Cr-manifold X , then the differentiable
structure of class r on X/R such that p : X → X/R is a Cr-submersion is unique and its
topology is the quotient topology of X respect to R.
Remark If X is a Banach (or a Hilbert, or a locally finite-dimensional) Cr-manifold and
R is a regular equivalence relation on X , then the quotient manifold X/R is a Banach (or
a Hilbert, or a locally finite-dimensional, respectively) Cr-manifold.
Proposition Let (X, [A]) be a Cr-manifold and R a regular equivalence relation on X .
Let [A′′] be a differentiable structure of class r on X/R such that for all Cr-manifold Y
and all map f : X/R → Y , one has that: f is Cr if and only if f ◦ p : X → Y is Cr.
Then (X/R, [A′′]) is the quotient Cr-manifold introduced in the preceding Definition 2.

By analogy with the general topology,we may say that the quotient manifold is the final
differentiable structure of class r on X/R respect the map p : (X, [A])→ X/R.
Theorem LetX be a Banach Cr-manifold with corners andR an equivalence relation on
X . Then the following statements are equivalent:

(1) R is regular and p(∂X) = ∂(X/R).

(2) R is a neatCr-submanifold ofX×X such thatR[∂X] = ∂X , and (p1)|R : R→ X
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is a Cr-submersion (p1 : X ×X → X is the first projection).

For a proof of the preceding Theorem see [20], and for a characterization of regular
equivalence relations such that the quotient Banach manifold has not boundary see [21],
paragraph 4.3.

The authors (et al.) have extensively developed the theory of Cr-manifolds with cor-
ners in the realm of Banach spaces, i.e. Banach Cr-manifolds with corners. The develop-
ment of the theory of Cr-manifolds with corners in the context of normable spaces may
run analogously, taking account that now the inverse mapping theorem fails.

Manifolds with corners modeled on Hlcrtv spaces

Now we introduce the manifolds with corners in the context of Hlcrtv spaces.

4.13 Let X be a non-void set. We say that (U,ϕ, (E,Q)) is a chart on X if one verifies :
U is a subset of X, E is a Hlcrtvs, Q is a quadrant in E with int(Q) 6= ∅, ϕ : U → Q
is an injective map and ϕ(U) is an open subset of Q (if index (Q) = n ∈ N, there exists a
linearly independent system Λ = {λ1, ..., λn} of elements of L(E,R) such thatQ = E+

Λ ).
Let (U,ϕ, (E,Q)), (U ′, ϕ′, (E′, Q′)) be charts on X . We say that they are CrW -

compatible (r ∈ {0} ∪ N ∪ {∞}(= N∗)) if:
ϕ(U ∩U ′) is open inQ, ϕ′(U ∩U ′) is open inQ′ and the maps ϕ′ϕ−1 : ϕ(U ∩U ′)→

ϕ′(U ∩U ′) and ϕϕ′−1 : ϕ′(U ∩U ′)→ ϕ(U ∩U ′) are CrW -maps (3.19, 3.25, 3.28). Note
that C0

W -map means continuous map.
A collection A of charts on X is called a CrW -atlas on X (r ∈ N∗), if the domains of

the charts of A cover X and any two of them are CrW -compatible.
Two CrW -atlases A, A′ on X are called CrW -equivalent, if A∪A′ is a CrW -atlas on X.

This binary relation is an equivalence relation over the CrW -atlases on X (3.26).
IfA is aCrW -atlas onX , the equivalence class [A] is calledCrW -differentiable structure

on X and the pair (X, [A]) is called CrW -manifold with corners (or CrW -manifold).
If (X, [A]) is a CrW -manifold, the set {U ⊂ X|U is a domain of a chart of

(X, [A])} is a basis of a topology T[A] on X (called the natural topology induced by [A]).
This topology verifies the T1 axiom, and fulfils the first axiom of countability if and only if
the manifold is modeled on metrizable Hlcrtv spaces (hence locally metrizable). Moreover,
a CrW - manifold is metrizable if and only if it is Hausdorff paracompact and is modeled on
metrizable Hlcrtv spaces (use the quoted Smirnov Theorem).

Let (X, [A]) be a CrW -manifold with r > 1, x a point of X and (U,ϕ, (E,Q)),
(U ′, ϕ′, (E′, Q′)) charts of (X, [A]) with x ∈ U ∩ U ′.Then, by 3.24, index (ϕ(x)) =
index (ϕ′(x))(= ind(x)). The non-negative integer number ind(x) will be called index
of x in (X, [A]).

Let (X, [A]) be a CrW -manifold (r > 1). Then:

(a) For all k ∈ N ∪ {0}, the set {x ∈ X| ind(x) > k}(= ∂kX) is called k-boundary of
(X, [A]).

(b) For all k ∈ N ∪ {0}, the set {x ∈ X| ind(x) = k} is denoted by BkX.

In particular we have the Fréchet-manifolds, when we deal with Fréchet spaces as a
models. Since Fréchet spaces are complete, we have that Fréchet-manifolds are Baire
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spaces. Moreover, by the Theorem of 2.12, the topology of a Fréchet Cr-manifold
with corners is the topology of a Hilbert C0-manifold. This type of manifolds (Fréchet-
manifolds) has been studied by R. Hamilton, in the context of manifolds without boundary,
in [14].

In the realm of normable rtv spaces we have the concept 4.1 of manifold and the present
one. The result 3.27 gives the relations between these two concepts.
Lemma Let (X, [A]) be a CrW -manifold (r > 1) and x a point of X . Then there is a chart
(U,ϕ, (E,Q)) of (X, [A]) such that x ∈ U and ϕ(x) = 0 (centred chart at x), and hence
ind(x) = index (Q).

Proposition 1 Let (X, [A]) be a CrW -manifold (r > 1). Then ∂kX is a closed subset of
X , for all k ∈ N, and Int(X) = B0X is a dense open subset of X .

Proposition 2 Let (X, [A]) be a CrW -manifold (r > 1) and k ∈ N ∪ {0}. Then
there exists a unique CrW -differentiable structure on BkX such that for all point x of
BkX and all chart (U,ϕ, (E,Q)) of (X, [A]) with x ∈ U and ϕ(x) = 0, the triplet
(U ∩ BkX,ϕ|U∩BkX , Q0) is a chart of that CrW -differentiable structure. Furthermore
∂(BkX) = ∅ (with thisCrW -differentiable structure), and the topology of theCrWmanifold
BkX is the topology induced by X .

Note that if x is a point of BkX and (U,ϕ, (E,Q)) is a chart of (X, [A]) with x ∈ U
and ϕ(x) = 0, then ϕ(U ∩BkX) = ϕ(U) ∩Q0.

The reader can study, for CrW -manifolds with corners, the general properties (when
they have meaning) mentioned in 4.3, ...,4.12, for Cr-manifolds with corners.

Manifolds with corners modeled on convenient real vector spaces

4.14 Let X be a non-void set. We say that (U,ϕ, (E,Q)) is a chart on X if: U is a subset
of X , E is a convenient space (i.e., a Hlcrtvs which is Mackey complete (3.30)), Q is a
quadrant in E with intC∞T (Q) 6= ∅ (where, T is the topology of E), ϕ : U → Q is an
injective map, and ϕ(U) is a C∞-open subset ofQ (note that in this case the C∞-topology
of Q (2.17) is (C∞T )|Q).

Recall that (2.19) index (Q) is finite,Q0 is closed in (E, Tborn) and intTborn(Q) is non-
void. Consequently if index (Q) = n ∈ N, there exists a linearly independent system
Λ = {λ1, ..., λn} of elements of LBT (E,R) such that Q = E+

Λ , (hence Q0 = E0
Λ, Q and

Q0 are closed in (E, Tborn), and intC∞T (Q) = intTborn(Q)).
Let (U,ϕ, (E,Q)), (U ′, ϕ′, (E′, Q′)) be charts on X . We say that they are smooth-

compatible (sth-compatible) if: ϕ(U ∩U ′) and ϕ′(U ∩U ′) are C∞-open subsets of Q and
Q′, respectively, and ϕ′ϕ−1 : ϕ(U∩U ′)→ ϕ′(U∩U ′), ϕϕ′−1 : ϕ′(U∩U ′)→ ϕ(U∩U ′)
are smooth maps (3.33).

A collection A of charts on X is called a smooth-atlas on X (sth-atlas) if the domains
of the charts of A cover X and any two of them are sth-compatible.

Two sth-atlases A, A′ on X are called smooth-equivalent (sth-equivalent) if A ∪A′ is
a sth-atlas on X . This binary relation is an equivalence relation over the sth-atlases on X .

If A is a sth-atlas on X , the equivalence class [A] is called sth-structure on X and the
pair (X, [A]) is called sth-manifold with corners (or sth-manifold).
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Remark For all Hlcrtvs (E, T ) we have: C∞(Tborn) = C∞T (2.17), (E, Tborn) is a
bornological Hlcrtvs (2.16), and: (E, T ) is convenient if and only if (E, Tborn) is con-
venient (Proposition 2 (4) of 3.30). Moreover, if (E, T ) is a convient vector space, then
the identity map, 1E : (E, T ) → (E, Tborn), is a smooth diffeomorphism (3.35). In this
way, we can consider that the sth-manifolds are modeled on bornological convenient vector
spaces (see 2.19).

If we deal with the class of Fréchet spaces (which are convenient spaces (Proposition
2 of 3.30)), then we have:

(1) C∞T = Tborn = T for all Fréchet space (hence a Hlcrtvs) (E, T ), (2.17).

(2) LetE, F be Fréchet spaces,Q a quadrant ofE with int(Q) 6= ∅ (hence intC∞E(Q)
6= ∅), U an open subset of Q (which is equivalent to: U is a C∞-open subset of Q),
and f : U → F a map. Then f is a smooth map (Definition of 3.33) if and only if f
is a C∞W -map on U (3.19, 3.25, 3.28).

(3) The constructions (of manifolds) developed in 4.13 (C∞-class) and 4.14 are indis-
tinguishable.

If (X, [A]) is a sth-manifold, the set {U ⊂ X|U is a domain of a chart of (X, [A])}
is a basis of a topology T[A] on X (called the natural topology induced by [A]).

If (X, [A]) is a sth-manifold, the sth-curves c : R → X are defined in a natural way
(for each chart ϕ ◦ c is a sth-curve) and it can be proved that T[A] is the final topology in
X respect to the family {c : R → X|c is a sth-curve}. Moreover, the topology of a sth-
manifold verifies the T1 axiom (the C∞-topology of a Hlcrtvs is Hausdorff), and finally
a sth-manifold fulfils the first axiom of countability if and only if it is a Fréchet manifold
(see the proof of 4.19 in [18]).
Theorem Let (X, [A]) be a sth-manifold, x ∈ X and c = (U,ϕ, (E,Q)), c′ = (U ′, ϕ′,
(E′, Q′)) charts of (X, [A])with x ∈ U ∩U ′. Then, by 3.36, index (ϕ(x)) = index (ϕ′(x))
(= ind(x)). The non-negative integer number ind(x) will be called index of x in (X, [A]).

Let (X, [A]) be a sth-manifold. Then:

(a) For all k ∈ N∪ {0}, the set {x ∈ X| ind(x) > k} (= ∂kX) is called k-boundary of
(X, [A]) .

(b) For all k ∈ N ∪ {0}, the set {x ∈ X| ind(x) = k} is denoted by BkX .

If the quadrants are omitted, the sth-manifolds that we obtain were already defined in [18],
p. 264.

4.15 The smooth maps between sth-manifolds are defined as usually (by localization) and
one has that: f : X → X ′ is a smooth map if and only if f maps sth-curves in X to
sth-curves in X ′.

The reader can study, for sth-manifolds with corners, the general properties (when they
have meaning) mentioned in 4.4,...,4.12, for Cr-manifolds with corners.
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5 Manifolds with generalized boundary

The CrS-maps, introduced in 3.14, permit us to establish the foundations of the manifolds
with generalized boundary. This theory has been developed by G. Graham in [13].

5.1 Let X be a non-void set. We say that (U,ϕ,E) is a chart on X if: U is a subset of X ,
E is a normable rtvs, ϕ : U → E is an injective map and ϕ(U) is an admissible subset of
E (3.11).

Let (U,ϕ,E), (U ′, ϕ′, E′) be charts on X .We say that they are CrS-compatible (r ∈
N ∪ {∞}) if: ϕ(U ∩ U ′) is open in ϕ(U) (hence admissible in E), ϕ′(U ∩ U ′) is open in
ϕ′(U ′) (hence admissible in E′) and the maps ϕ′ϕ−1 : ϕ(U ∩U ′)→ ϕ′(U ∩U ′), ϕϕ′−1 :
ϕ′(U ∩U ′)→ ϕ(U ∩U ′) are CrS-maps (3.14), (hence they are inverse homeomorphisms).

A set A of charts on X is called a CrS-atlas on X , if the domains of the charts of A
cover X and any two of them are CrS-compatible. Two CrS-atlases A, A′ on X are called
CrS-equivalent ifA∪A′ is anCrS-atlas onX . This binary relation is an equivalence relation
over the CrS-atlases on X (use the results of 3.16).

If A is a CrS-atlas on X , the equivalence class [A] is called CrS-structure on X and the
pair (X, [A]) is called CrS-manifold with generalized boundary (or CrS-manifold).

Let (X, [A]) be a CrS-manifold. Then the set {U ⊂ X|U is the domain of a chart
of (X, [A])} is a basis of a topology on X , which will be denoted by T[A] and will be
called natural topology induced by [A] on X .

Now we deal with CrS-manifolds modeled over real Banach spaces. In this case we
can define the generalized boundary as follows: Let (X, [A]) be a CrS-manifold, x a point
of X , and (U,ϕ,E), (U ′, ϕ′, E′) charts of (X, [A]) with x ∈ U ∩ U ′. Then, by 3.18,
ϕ(x) ∈ int(ϕ(U ∩ U ′)) if and only if ϕ′(x) ∈ int(ϕ′(U ∩ U ′)).
Definition Let (X, [A]) be a CrS-manifold and x a point of X . We say that x is interior
point of (X, [A]) if there exists a chart (U,ϕ,E) of (X, [A]) such that x ∈ U and ϕ(x) ∈
int(ϕ(U)). The set of these points will be denoted by Int(X) and will be called interior
of X . The set X − Int(X) will be denoted by ∂X and will be called boundary of X . The
points of ∂X will be called boundary points of the manifold (X, [A]).
Proposition Let (X, [A]) be a CrS-manifold. Then we have that Int(X) is open and dense
in (X,T[A]) and ∂X is closed in this topological space. Moreover, Int(X) becomes, in a
natural way, Cr-manifold without boundary (3.15, 4.1).

The boundary of a CrS-manifold X can be a rare subset of X and, in general, we can
not define a differentiable structure on it.
Example If B is any subset of {y ∈ R2| ‖y‖ = 1}, then X = B ∪ {y ∈ R2| ‖y‖ < 1}
is a C∞S -manifold with generalized boundary such that ∂X = B and Int(X) = {y ∈
R2| ‖y‖ < 1} (note that X is an admissible subset of R2).

5.2 The CrS-maps between CrS-manifolds are defined as usually by localization.
Proposition Let f : X → X ′ be a CrS-diffeomorphism between CrS-manifolds modeled
over Banach spaces. Then, f(∂X) = ∂X ′, f(Int(X)) = Int(X ′), and f |Int(X) :
Int(X)→ Int(X ′) is a Cr-diffeomorphism (between Cr-manifolds without boundary).
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Jet manifolds and natural bundles1

D. J. Saunders
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1 Introduction

The two concepts forming the subject of this short article were both originally formulated
in the nineteen fifties, at a time when the importance of fibre bundles was becoming clear.
The idea of a jet appeared in the work of Charles Ehresmann [7, 8, 9, 10, 11]; this is an ob-
ject which encapsulates the values taken at a point by a map and its derivatives up to some
given order. Jets are useful as tools to provide coordinate-free ways of describing construc-
tions such as differential equations, and are particularly convenient where a space of maps,
which would normally be infinite-dimensional, can be replaced by a finite-dimensional
space of jets. In Section 2 we give the basic definitions and describe various manifolds
of jets, paying particular attention to the geometrical structures which are associated with
these manifolds.

The two following sections cover two major applications where the language of jets can
profitably be employed. In Section 3 we describe differential equations and, in particular,
look at the problem of when systems of partial differential equations have no solutions be-
cause cross-differentiating gives rise to inconsistencies; in Section 4 we express problems
in the calculus of variations using this language, and see in particular how the classical
Euler-Lagrange equations make natural use of jet coordinates.

The concept of a natural bundle also uses jets, although the underlying ideas go back
to the early descriptions of vectors and tensors as ‘objects transforming in certain ways’.
With the development of the the theory of fibre bundles, these objects were seen to be
elements of certain bundles associated to the frame bundle of a manifold. There were,

1This work was supported by grant no. 201/06/0922 for Global Analysis and its Applications from the Czech
Science Foundation.
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nevertheless, other significant constructions which did not fit into this pattern, the most
important of these being connections.

A more general approach to these ideas appeared in the work of Nijenhuis [29], where
a functorial method of associating bundles with manifolds was used, and we discuss this in
Section 5. By insisting that the association is ‘local’ in a specific way, it can be shown that a
natural bundle is simply one which is associated to a higher-order frame bundle, in the same
way that a bundle of tensors is associated to the (first-order) frame bundle. The language
of jets is again appropriate here, as higher-order frames are just jets of a particular kind,
and the structure group of a higher-order frame bundle is a jet group. Finally, we make
a further generalisation to gauge-natural bundles, where the functorial correspondence
associates the new bundles with principal bundles rather than manifolds.

The scope of this article is quite broad, and it is not intended to provide a compre-
hensive coverage of all the topics mentioned. It is instead introductory, with several
of topics being discussed in more depth elsewhere in this Handbook (see, in particular,
[13, 19, 21, 22, 43]; a detailed discussion of natural bundles may be found in [18].

2 Jets

2.1 What is a jet?

A jet is an object which can be constructed from a map (between differentiable manifolds)
and a point in the domain of the map; it is, essentially, the Taylor polynomial of the map
about that point.
Definition 2.1 If φ, φ̂ : M → N are Cp maps between Cp manifolds (1 ≤ p ≤ ∞) then
they are k-equivalent at x ∈ M (k ≤ p, k < ∞) if φ̂(x) = φ(x) and, for every Cp curve
γ : (a, b)→M with 0 ∈ (a, b) ⊂ R and γ(0) = x, and for every Cp function f : N → R,

dr(f ◦ φ̂ ◦ γ)
dtr

∣∣∣∣∣
0

=
dr(f ◦ φ ◦ γ)

dtr

∣∣∣∣
0

whenever 1 ≤ r ≤ k. The equivalence class containing the map φ is called the k-jet of φ
at x ∈ M and is denoted jkxφ. The number k is called the order of the jet. The definition
of an infinite jet is similar, and will be given in subsection 2.3.

Some remarks about this definition are needed. First, it is clear that the equivalence
relation depends, not on the maps themselves, but on their germs at x; we would get the
same result by considering maps defined only in neighbourhoods of x, because we could
always extend such maps to be defined on the whole of M . (Of course this wouldn’t work
in the same way for real-analytic maps, or for holomorphic maps on complex manifolds,
and there it would be more appropriate to concentrate on germs rather than maps.) And
secondly, we haven’t imposed any conditions about the manifolds being Hausdorff, para-
compact or finite-dimensional, although normally all three conditions hold: indeed, one
of the reasons for studying jets is that we can often avoid the complexities of infinite-
dimensional manifold theory. We shall henceforth assume that these conditions do hold.
We shall also restrict attention to manifolds and maps of class C∞; the reason for this will
be explained below.

The definition of a jet is often given in chart form, where it is common to use multi-
index notation. A multi-index I is an m-vector of non-negative integers with i-th element
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I(i), and the length |I| of the multi-index is
∑
i I(i). We also write I! for the factorial∏

i I(i)! and we let 1i denote the multi-index (0, . . . , 0, 1, 0, . . . , 0) with a single 1 in the
i-th position. So for instance, if I = (3, 1, 0, . . . , 0) then

∂|I|f

∂xI
=

∂4f

(∂x1)3∂x2
, |I| = 4 , I! = 3! 1! 0! . . . 0! = 6 .

Taking a chart onM with coordinates xi around x, and another chart onN with coordinates
uα around φ(x), we say that φ̂ is k-equivalent to φ at x if φ̂(x) = φ(x) and also

∂|I|φ̂
α

∂xI

∣∣∣∣∣
x

=
∂|I|φα

∂xI

∣∣∣∣
x

for every multi-index I with 1 ≤ |I| ≤ k. Given this alternative definition in one chart,
the chain rule then shows that the same condition holds for any chart, and the definition
of partial derivatives then gives us our original definition back again. In any chart there is
exactly one representative of the equivalence class that is a polynomial of degree k, and
that is indeed the Taylor polynomial of the map.

2.2 Manifolds of jets

We often use manifolds of jets, and several of these are already familiar in the first-order
case. First-order jets at zero of maps from R to N are tangent vectors, and the set of all
of them forms the tangent bundle TN ; the higher-order jets form the higher-order tangent
bundles T kN . Note that, for instance, T 2N is not the repeated tangent bundle TTN . It
is in fact a proper subset; we shall return to this point, and its generalizations, in subsec-
tion 2.4. On the other hand, first-order jets of maps fromM toR are cotangent vectors, and
the set of all of them, at all points of M , forms the cotangent bundle T ∗M ; higher-order
cotangent vectors are used rather less frequently.

In a similar way, first-order jets at zero of non-degenerate maps from Rn to N , where
n = dimN , are frames inN , where by non-degenerate we mean maps with non-vanishing
Jacobian at zero; the set of all of these jets forms the frame bundle FN . The set of first-
order jets of all maps from Rm to N (with m ≤ n) is perhaps less familiar: it is the
bundle T(m)N ofm-velocities inN ; the higher-order jets form the bundles of higher-order
m-velocities T k(m)N . Each of these has a sub-bundle containing the non-degenerate m-
velocities Fk(m)N , where in particular F1

(n)N is just the frame bundle FN ; we also write
FkN for the bundle Fk(n)N of k-th order frames.

The example of the tangent bundle TN will explain why we insist on smooth, that is
C∞, manifolds and maps, when our definition of the k-jet applies equally to a Cp map
when p ≥ k is finite. Let R[X] be the real algebra of polynomials in an indeterminate
X , and let (X2) denote the ideal generated by the monomial X2. The quotient D =
R[X]/(X2) is a local algebra: that is, it has a unique maximal ideal (ε), where ε is the
image of the monomial X under the projection R[X] → D. Elements of D are often
called dual numbers, and were studied in detail by André Weil [44]. If N is a smooth
manifold with an algebra of smooth real-valued functions C∞(N) then a tangent vector
v ∈ TyN may be identified with an algebra homomorphism φv ∈ C∞(N)→ D satisfying
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φv(f) = f(y) mod ε, so that if we write φv(f) = f0 + f1ε then

φv(fg) = f0g0 + (f0g1 + g0f1)ε ,

and the coefficient of ε incorporates Leibniz rule for derivations. Other manifolds of jets
may be generated algebraically in a similar way by using other local algebras; see, in par-
ticular, the article by I. Kolář in this volume [17]. But the algebraic construction doesn’t
work if the manifold isn’t smooth, because in such cases there are derivations which cannot
be obtained by this identification. For instance, it can been shown that the space of deriva-
tions at a given point y of a finite-dimensional Cp manifold N (where p is finite) is an
infinite dimensional space, whereas the tangent space TyN has the same finite dimension
as N [28].

We return to the case of smooth manifolds and maps. One important type of struc-
ture arises when we start with a fibred manifold π : E → M , so that π is a surjective
submersion. This might be a fibre bundle, or it might be a locally trivial bundle with no
particular specification about the group in which the transition functions take their values.
But neither of these conditions is a requirement; all that’s needed is that we can take local
sections φ : U → E (where U ⊂ M ) and consider their k-jets at points of M . Details of
the constructions may be found in [36]. We write, as before jkxφ for the k-jet, and put Jkπ
as the set of all these k-jets; we define the source and target projections πk : Jkπ → M ,
πk,0 : Jkπ → E by

πk(jkxφ) = x , πk,0(jkxφ) = φ(x) .

The set Jkπ is a C∞ manifold; if we take fibred charts on E with coordinates of the form
(xi, uα), where the projected chart on M has coordinates xi, then the coordinates on the
preimage of the chart in Jkπ are (xi, uα, uαI ) where

uαI (jkxφ) =
∂|I|φ

∂xI

∣∣∣∣
x

.

(If m = 1 then there is only one multi-index of a given length, and so we tend to write
the jet coordinates as uα(r) rather than uαI , where r = |I|.) These coordinates define a C∞

manifold structure on Jkπ of dimension n(1 + (m+ k)!/m!k!).
Note that we could use ordinary indices instead of multi-indices as subscripts of the

jet coordinates, on the understanding that uαi1···ir was symmetric in its subscripts. Chang-
ing from a sum over multi-indices to a sum over ordinary indices introduces a numerical
factor to compensate for repetition due to the symmetry: we have, for any quantity Φ(I)
depending on a multi-index I , the relationship

∑
|I|=r

|I|!
I!

Φ(I) =
m∑
i1=1

· · ·
m∑
ir=1

Φ(1i1 + · · ·+ 1ir ) ,

where the integer |I|!/I! is called the weight of the multi-index I .
With this manifold structure on Jkπ the source and target maps become smooth sur-

jective submersions, and in fact the target map defines a bundle structure. If we let
πl,k : J lπ → Jkπ be given by πl,k(jlxφ) = jkxφ for l > k, and identify the zero-jet
manifold with E, then, in particular, each πk,k−1 defines an affine bundle structure. The



D. J. Saunders 1039

associated vector bundle is SkT ∗M ⊗Jk−1π V π containing (k+ 1)-fold symmetric cotan-
gent vectors from the base, tensored with vertical tangent vectors from the total space, all
pulled back to Jk−1π. The action of such a tensor on a jet is evident in coordinates: if

ξ =
∑
|I|=k

ξαI dx
I ⊗ ∂

∂uα
∈ SkT ∗M ⊗Jk−1π V π

∣∣
jk−1
x φ

then

uαI (ξ · jkxφ) = ξαI + uαI (jkxφ) (|I| = k) .

Another important type of structure arises when we have a single manifold E of di-
mension (m + n) without a fibration over a base manifold M . We can then obtain ‘jets
of immersed submanifolds’. As a jet is a purely local construction, the only invariant of
the immersed manifold is its dimension, so we may assume that the immersed manifold is
Rm. We therefore start with a map σ : Rm → E that is non-degenerate at the origin, and
take its k-jet jk0σ ∈ Fk(m)E; but we wish to ignore the parametrization of the submanifold,
so we must take a further equivalence by setting jk0σ ∼ jk0 (σ◦f) for any diffeomorphism
f of Rm satisfing f(0) = 0. We call the resulting set Jk(E,m), the set of k-jets of m-
dimensional submanifolds of E, or sometimes the set of m-dimensional k-th order contact
elements of E. In the case k = 1 this is the Grassmannian bundle of m-planes in E, so by
extension Jk(E,m) is also called the bundle of k-th order Grassmannians, or the bundle
of k-th order contact elements. This set, too, is a C∞ manifold, of the same dimension as
Jkπ, and is the latter’s ‘projective completion’. We use the same coordinates on Jk(E,m)
as on Jkπ because, given an immersion, we can always define a local fibration of E over
Rm such that locally the immersion is a section of the fibration. The simplest example
of this is when m = k = 1; the (affine) jet bundle may then be considered as an affine
sub-bundle of the tangent bundle TE, whereas the bundle of jets of submanifolds may be
identified with the projective tangent bundle PTE. As with the case of jets of sections,
the maps πk+1,k : Jk+1(E,m) → Jk(E,m) define affine bundles, provided k ≥ 1; the
map π1,0 : J1(E,m) → E does not define an affine bundle but, as described above,
defines a Grassmannian bundle, of which the projective tangent bundle is a special case.
In this article, we shall tend to concentrate on the affine sub-bundle Jkπ rather than the
bundle Jk(E,m) of immersed submanifolds; many constructions involving the latter are
described in an article by D. R. Grigore in this volume [13].

Incidentally, when constructing Jk(E,m), we could have chosen to specify that the
further equivalence involved orientation-preserving diffeomorphisms f . This would have
given us the bundle of oriented jets of submanifolds Jk+(E,m); in the simple case m =
k = 1 we would obtain the sphere bundle, as studied in Finsler geometry, instead of the
projective tangent bundle.

Yet another variant of the jet construction arises when we consider jets of local diffeo-
morphisms: that is, maps defined globally with the property that each point has a neigh-
bourhood where the restriction is a diffeomorphism onto its image. If we consider jets
of local diffeomorphisms from a manifold to itself, and consider only those maps taking
a given fixed point to itself, then we might as well look at jets of local diffeomorphisms
f : Rm → Rm satisfying f(0) = 0. These are the invertible jets, and they form a group, the
jet group Lkm, under the operation of composition of jets: for the case k = 1 the group L1

m
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is just the general linear group GL(m,R). If we restrict further to orientation-preserving
diffeomorphisms then we obtain the oriented jet group Lkm+. From the construction of
Jk(E,m) it is evident that

Fk(m)E → Jk(E,m)

is a principal Lkm-bundle, and similarly that

Fk(m)E → Jk+(E,m)

is a principal Lkm+-bundle. Special cases of these bundles are the k-th order frame bundles

FkE = Fk(m+n)E → Jk(E,m+ n) = E .

The algebraic structure of the jet groups is important. As usual we denote by πl,k :
Lkm → Llm the natural projection, and this is clearly a group homomorphism. We can then
write Lkm as a semidirect product

Lkm
∼= GL(m,R)o kerπk,1 ,

where A ∈ GL(m,R) is regarded as a non-degenerate linear map Rm → Rm, and where
the action of GL(m,R) on kerπk,1 is left multiplication by jk0A ([18], Proposition 13.4).

In all these cases, the operation of taking jets is a covariant functor. For jets of sections,
it is a functor on the category of fibred manifolds and fibred maps whose projections are
local diffeomorphisms on the base. For jets of submanifolds, it is a functor on the category
of manifolds and smooth maps. The action of the functor on a map will be described
shortly, when we have considered prolongations.

2.3 Infinite jets

For some purposes it is convenient to use infinite jets. The definition is the obvious exten-
sion of the definition of a finite-order jet, so that two maps are∞-equivalent when they are
k-equivalent for each k.
Definition 2.2 If f, g : M → N are C∞ maps between C∞ manifolds then they are
∞-equivalent at x ∈ M if f(x) = g(x) and, for every C∞ curve γ : (a, b) → M with
0 ∈ (a, b) ⊂ R and γ(0) = x, and for every C∞ function φ : N → R,

dr(φ ◦ f ◦ γ)
dtr

∣∣∣∣
0

=
dr(φ ◦ g ◦ γ)

dtr

∣∣∣∣
0

whenever r ≥ 1. The equivalence class containing the map f is called the ∞-jet of f at
x ∈M and is denoted j∞x f .

As with finite-order jets, we can construct manifolds of infinite jets; but some care is
needed, because these will be infinite-dimensional manifolds.

The first observation here is that infinite jet manifolds will be Fréchet manifolds, rather
than Banach manifolds. The model vector space will be the space R[[X1, . . . , Xm]] of for-
mal power series in m indeterminates, perhaps taking a product with a finite-dimensional
space depending upon the particular manifold being considered. The natural topology to
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impose on this space is the inverse limit topology using the spaces Rk[X1, . . . , Xm] of
polynomials of total degree no greater than k and the sequence

R0[X1, . . . , Xm]← R1[X1, . . . , Xm]← . . .← Rk[X1, . . . , Xm]← . . .

of projection maps which discard the terms of highest degree. The topology constructed
in this way is locally convex, because it is defined by seminorms pk obtained by taking
the pull-backs of the norms on each polynomial space. It is metrizable, because there are
countably many seminorms and so the function

d(x, y) =
∑
k

1
2k
pk(x− y)

is a translation-invariant pseudometric which generates the topology; the seminorms sep-
arate points, and so the space is Hausdorff and hence the pseudometric is a metric. And
finally the space is complete, because if (xn) is a Cauchy sequence in this metric then
(xn|k) is a Cauchy sequence in Rk[X1, . . . , Xm], where xn|k denotes the truncation of
the power series xn to a polynomial of degree k. Each Cauchy sequence of polynomials
tends to a limit polynomial x|k in the finite-dimensional polynomial space, and these limit
polynomials determine a unique formal power series x which is easily seen to be the limit
of (xn) in the metric d.

Thus the space of formal power series satisfies the conditions for a Fréchet space.
Another technical detail to consider when defining a manifold structure concerns the

natural extension of the finite-order jet charts with jet coordinates,

uαI (j∞x f) =
∂|I|f

∂xI

∣∣∣∣
x

,

where now the multi-index I may have arbitrary length. We would like to know that every
formal power series is indeed the Taylor series of some smooth function, even if the series
converges only at the origin: the fact that this is the case is Borel’s Theorem. This is a
local theorem, and so its proof may be carried out on vector spaces ([42], Theorem 38.1).
We consider the Taylor map from the Fréchet space of smooth functions to the Fréchet
space of formal power series, and the transpose of this map between the dual spaces. The
topological dual of the space of formal power series is the space of polynomials; and the
topological dual of the space of smooth functions is the space of Schwarzian distributions
with compact support. It may be shown in the general case of continuous linear maps
between Fréchet spaces that if the transpose map is injective and has a closed image un-
der the weak topology then the original map is surjective ([42], Theorem 37.2); in this
particular case it is clear that the transpose is injective, and it may also be shown that the
image of the transpose is the space of finite linear combinations of derivatives of Dirac
delta-distributions, and this is closed under the weak topology ([42], Theorem 24.6). Thus
the Taylor map, which is evidently linear and is also continuous, must be surjective.

We therefore see that we may impose the structure of a Fréchet manifold upon suitable
sets of infinite jets; we shall concentrate on the situation of a fibred manifold π : E → M
and its infinite jet manifold J∞π. As with all infinite-dimensional manifolds, one needs to
take care about the validity of the theorems being used. In particular, the proof for Banach
spaces that an ordinary differential equation written in solved form has a local solution is
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not valid in the absence of a norm, and so we cannot guarantee that a vector field on an
infinite jet manifold will have a flow: there is, indeed, an important structural vector field
which definitely does not have a flow.

One final observation here about infinite jet manifolds concerns their vector fields and
differential forms. A tangent vector at any point may be considered as an element of the
model Fréchet space, a formal power series, and so may have infinitely many ‘compo-
nents’; the same obviously applies to a vector field. On the other hand, a cotangent vector
at that point may be regarded as an element of the dual of the model space, namely a poly-
nomial, and so will have a finite order: it will always be a pull-back from a cotangent vector
on a finite-order jet manifold. But a differential form, a section of the cotangent bundle
or its wedge products, need not be a pull-back: at each point it will have a finite order,
but these orders need not be bounded over the whole manifold. In many applications, for
instance in the calculus of variations, such generality is not required, and so consideration
is restricted to differential forms of globally finite order.

2.4 Prolongations and holonomic jets

One usually finds the words ‘prolongation’ and ‘holonomic’ associated with jets: the for-
mer just means differentiation, in a suitable sense, and the latter refers to an object that has
been obtained by prolongation. In this subsection we shall concentrate on jets of sections
of a fibration; similar considerations apply to other manifolds of jets.

The basic act of prolongation occurs in the construction of jets themselves. Starting
with a local section φ : U → E, we obtain a jet jkxφ for each x ∈ U ; the correspondence
U → Jkπ given by x 7→ jkxφ is then a local section of πk : Jkπ → M which we denote
jkφ and call the k-th prolongation of φ. By construction the coordinate representation of
jkφ satisfies

uαI ◦ jkφ =
∂|I|(uα ◦ φ)

∂xI
,

from which it is clear that jkφ is indeed smooth. Not every local section ψ of πk is a
prolongation: there is no particular reason why, in general, the coordinate representation of
ψ should satisfy

uαI ◦ ψ =
∂|I|(uα ◦ ψ)

∂xI
.

But if it does, we say that the local section ψ is holonomic.
We can use this idea to investigate some properties of manifolds of repeated jets. By

construction, πk : Jkπ → M is a fibred manifold, and so we can take l-jets of its local
sections ψ : U → Jkπ; the set of all these l-jets will form the manifold J lπk. For a holo-
nomic section ψ = jkφ, the resulting l-jet would then be jlxψ = jlx(jkφ). Such an l-jet
is called holonomic. Not every l-jet in J lπk is holonomic, and the subset containing holo-
nomic l-jets is a submanifold that may be identified with Jk+lπ, essentially because of the
commutativity of partial derivatives. In coordinate terms, the jet coordinates on J lπk are
uαI,J , indexed with a double multi-index, where |I| ≤ k and |J | ≤ l (it is convenient here
to include the cases where |I| = 0 or |J | = 0). In contrast, the jet coordinates on Jk+lπ are
uαI+J , with a single, symmetrized, multi-index. Using this identification, we call Jk+lπ the
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holonomic submanifold of J lπk. There is also a larger submanifold of ‘semi-holonomic
jets’ which we shall describe below in (2.6). In general, there is no canonically-defined
projection from the repeated jet manifold J lπk to the holonomic submanifold Jk+lπ.

We can generalize this idea to prolong certain fibred maps between two fibred mani-
folds. If the manifolds are π : E → M and ρ : H → N , and if f : E → H projects to a
local diffeomorphism f̄ : M → N then the prolonged map jkf : Jkπ → Jkρ is defined
by

jkf(jkxφ) = jkf̄(x)(f ◦ φ ◦ f̄
−1) ,

where f̄−1 denotes the inverse of f̄ in a neighbourhood of f̄(x). In the special case where
N = M and f̄ = idM then this formula simplifies considerably, to

jkf(jkxφ) = jkx(f ◦ φ) .

The prolonged map jkf is fibred over both f and f̄ , and in fact the correspondence be-
tween fibred manifolds (E, π,M) 7→ (Jkπ, πk,M) and fibred maps (f, f̄) 7→ (jkf, f̄) is
a functor on the category of fibred manifolds and fibred maps projecting to local difformor-
phisms. Note that if E and H are each fibred over two different base manifolds, and if f is
thus fibred over two different maps, then the same symbol jkf would represent two differ-
ent prolonged maps between two different pairs of jet manifolds. In these circumstances a
more explicit notation such as j1(f, f̄) might be helpful.

In charts (xi, uα) on E and (ya, vA) on H , if the coordinate representation of f is
(fa, fA) then the coordinate representation of the first prolongation j1f is

vAa ◦ j1f =
dfA

dxi
∂xi

∂ya

where

dfA

dxi
=
∂fA

∂xi
+ uαi

∂fA

∂uα

is the total derivative of fA; total derivative operators are described more geometrically
in the next subsection. Similar formulæ may be found for the coordinate representation
of higher prolongations, but a general formula is rather unwieldy unless M = N and
f̄ = idM , when the general formula is simply

vAI ◦ jkf =
d|I|fA

dxI
.

We can also prolong vector fields on the total spaceE of a fibred manifold π : E →M .
If the vector field X ∈ X(E) is projectable to X̄ ∈ X(M) then the flow ψt of X is
projectable to the flow ψ̄t of X̄ . Thus ψt is (at least locally) a fibred map, and so may be
prolonged to give a (local) fibred map jkψt which will be the flow of a vector field X(k)

on Jkπ. In a chart, if

X = Xi ∂

∂xi
+Xα ∂

∂uα
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with the functions Xi constant on each fibre, then

X(k) = Xi ∂

∂xi
+

k∑
|I|=0

d|I|Xα

dxI
−

∑
J+K=I
J 6=0

I!
J !K!

∂|J|Xj

∂xJ
uαK+1j

 ∂

∂uαI
;

if X is vertical over M so that the projected flow ψ̄t = idM then the coordinate formula is
simply

X(k) =
k∑
|I|=0

d|I|Xα

dxI
∂

∂uαI
.

In fact the restriction that X be projectable is not necessary. An arbitrary vector field on
E may be prolonged to a vector field on Jkπ, and in the coordinate formula above the
partial derivatives of the functions Xi are just replaced by total derivatives. An intrinsic
construction of X(k) in this more general case may be found in ([36], Definition 6.4.16) as
a composition

X(k) = rk ◦ jkX ,

where jkX : Jkπ → Jk(π ◦ τE) is the prolongation of X : E → TE regarded as a
map fibred over the identity on M , and rk : Jk(π ◦ τE) → TJkπ is a canonical map
described in ([36], Definition 6.4.14). It is for this reason that we use the notation X(k)

for the prolonged vector field; the symbol jkX used by some authors has for us a different
meaning.

2.5 Contact forms and total derivatives

Every manifold of jets has a distinguished class of differential forms called contact forms.
These forms capture, in an invariant way, the fact that some coordinates on a jet manifold
are ‘derivatives’ of others. The discussion in this subsection will be given in terms of affine
jet bundles, but similar (although more complicated) arguments apply to other types of jet
manifold.
Definition 2.3 A differential form θ on a jet manifold Jkπ is called a contact form if, for
every local section φ : U → E, U ⊂M , we have

(jkφ)∗θ = 0 .

A local basis for the contact 1-forms on Jkπ is given in coordinates by

θαI = duαI − uαI+1idx
i , |I| ≤ k − 1 .

Note in particular that the contraction of a contact 1-form with a vector field on Jkπ vertical
over Jk−1π will be zero (in other words, a contact 1-form is horizontal over Jk−1π). But
this need not be true for contact r-forms with r ≥ 2; for instance

dθαI = −duαI+1i ∧ dx
i



D. J. Saunders 1045

is a contact form which is not horizontal over Jk−1π.
A simple example of a contact 1-form arises when k = 1 and the fibre dimension

of E over M is 1; there is then a single contact form θ = du − uidx
i which satisfies

(dθ)m ∧ θ 6= 0, so that in this case the (2m + 1)-dimensional manifold J1π is a contact
manifold in the classical sense.

It is clear from the coordinate formula that any 1-form on Jkπ horizontal over Jk−1π
may be written uniquely as the sum of a contact form and a form horizontal over M ; in
particular, this applies to the pull-back by πk,k−1 of a 1-form on Jk−1π. We may extend
this decomposition to r-forms by defining s-contact r-forms. We say that an r-form θ on
Jkπ horizontal over Jk−1π is 1-contact if it is contact and if, for every vector field Y on
Jkπ vertical over M , the contraction iY θ is horizontal over M . We can then say that θ
is s-contact if, for every vector field Y on Jkπ vertical over M , the contraction iY θ is
(s − 1)-contact. Given these definitions, every r-form θ on J lπ horizontal over Jk−1π
may be written uniquely as

θ = θq + θq+1 + . . .+ θr

where θs is s-contact and where q = max{r −m, 0}.
We have used prolonged local sections jkφ to characterise contact forms; we may

conversely use contact forms to characterise prolonged sections.
Proposition 2.4 If ψ is a local section of πk : Jkπ → M satisfying the condition that
ψ∗θ = 0 for every contact 1-form θ on Jkπ then there is a local section φ of π : E → M
with ψ = jkφ.

The proof is a straightforward computation in local coordinates. We have

0 = ψ∗(duαI − uαI+1idx
i) = dψαI − ψ

α
I+1idx

i

so that

ψαI+1i =
∂ψαI
∂xi

and we may take φ = πk,0 ◦ ψ.
We now turn to the dual objects. There are two different points of view here; on the one

hand, we may think of contact 1-forms as living on the jet manifold Jkπ, and look at the
vector distribution annihilated by the contact forms. This is called the Cartan distribution
or, alternatively, the contact distribution, and denoted Cπk,k−1. It is not an integrable
distribution in the sense of Frobenius, and in fact its maximal integral manifolds are of two
types. By construction, the images of prolonged sections are integral manifolds, and they
are spanned by vectors of the form

∂

∂xi
+

∑
|I|≤k−1

uαI+1i

∂

∂uαI
. (2.1)

But the fibres of the affine bundle πk,k−1 : Jkπ → Jk−1π are also integral manifolds, and
they are spanned by vectors of the form

∂

∂uαJ
|J | = k .
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It is clear that taking the Lie bracket of a vector field of one type with a vector field of the
other type takes us outside the distribution.

Any symmetry (or infinitesimal symmetry) of a jet bundle which preserves the deriva-
tive relationship between the coordinates must also preserve the Cartan distribution, and in
fact we have the following results.
Theorem 2.5 Suppose that the fibre dimension n of π : E → M satisfies n ≥ 2. If f is a
diffeomorphism of Jkπ satisfying f∗(Cπk,k−1) = Cπk,k−1 then f is fibred over E. If X
is a vector field on Jkπ such that [X,Y ] is in Cπk,k−1 whenever Y is in Cπk,k−1 then X
is the prolongation of a vector field on E.

Proofs of these results for the case k = 1 may be found in ([36], Theorems 4.5.12
and 4.5.15); the proofs in the general case are similar. Note that the results are false when
n = 1: for instance, the map f given by

xi ◦ f = ui

u ◦ f = xiui − u
ui ◦ f = xi

is a diffeomorphism of J1π satisfying f∗(Cπ1,0) = (Cπ1,0) but which is not fibred over
E.

Whereas the Cartan distribution arises by duality when we regard the contact 1-forms
as being differential forms on Jkπ, we may also consider the latter as ‘differential forms
along the map πk,k−1’. With this interpretation, the dual objects are ‘vector fields along
πk,k−1’, namely maps X from Jkπ to TJk−1π satisfying

Xjkxφ
∈ Tjk−1

x φJ
k−1π ,

or equivalently sections X of the pullback bundle π∗k,k−1(TJk−1π)→ Jkπ.
Definition 2.6 A total derivative is a section X of the pull-back bundle

π∗k,k−1(TJk−1π)→ Jkπ

which annihilates the contact 1-forms on Jkπ.
A local basis for the total derivatives is given in coordinates by

∂

∂xi
+

∑
|I|≤k−1

uαI+1i

∂

∂uαI
.

Although this is identical to the formula given above (2.1) for certain vector fields in the
Cartan distribution, the total derivatives are conceptually quite different: in particular, they
are not vector fields on a manifold, and so the concept of a flow does not arise. They may
be used to differentiate functions, as the notation suggests; but whereas the functions to be
differentiated will be defined on Jk−1π, the results will be defined on Jkπ.

Both the set of contact forms and set of total derivativatives are evidently modules
over the ring of functions on Jkπ; but the information contained in these modules may
be captured in a single tensorial object. It is clear that the property of being a contact 1-
form is a pointwise property, and so we may define the sub-bundle of contact cotangent
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vectors C∗(πk,k−1). Regarded as a sub-bundle of the cotangent bundle T ∗Jkπ this is by
definition the Cartan distribution; but regarded as a sub-bundle of the pull-back bundle
π∗k,k−1(T ∗Jk−1π) it is complementary to the horizontal sub-bundle π∗k(T ∗M). The pro-
jections on the two components are type (1, 1) tensor fields, each of which captures the
contact information and may be called the contact structure of the jet bundle. In coordi-
nates, they are

hk = dxi ⊗ d

dxi
, vk =

k−1∑
|I|=0

θαI ⊗
∂

∂uαI
.

The first of these, hk, may be regarded as a kind of universal connection; indeed, if γ is a
section of π1,0 : J1π → E then the composition h1 ◦ γ is a type (1, 1) tensor field on E
whose image is complementary to the vertical bundle V π: see subsection 2.7 below.

It is worth mentioning that the definition of the contact structure makes essential use
of the fibration of E over a base manifold M , and so cannot be constructed in this way for
some other types of jet structure such as manifolds of jets of immersions.

2.6 Semiholonomic jets

One of the significant features of manifolds of jets is that the highest-order derivatives
play a rather distinctive rôle. We are able to take account of this property to construct
a new manifold, the manifold of semi-holonomic jets, that lies between the manifolds of
holonomic and non-holonomic jets. We restrict attention again in this subsection to affine
jet bundles, although similar considerations apply to bundles of jets of immersions.

We start by regarding πk,k−1 : Jkπ → Jk−1π as a map fibred over the identity on M ;
we may therefore prolong it to give the map

j1πk,k−1 : J1πk → J1πk−1 .

On the other hand, if we consider the first jet bundle of the fibred manifold πk : Jkπ →M
we obtain the map (πk)1,0 : J1πk → Jkπ, and regarding Jkπ as a submanifold of J1πk−1

we obtain a second map

(πk)1,0 : J1πk → J1πk−1 .

It therefore makes sense to look at the subset of J1πk where these two maps take the same
values.
Definition 2.7 The semiholonomic manifold Ĵk+1π is the submanifold of J1πk given by

Ĵk+1π = {j1
xψ ∈ J1πk : j1πk,k−1(j1

xψ) = (πk)1,0(j1
xψ)} .

We can see that Ĵk+1π is indeed a submanifold of J1πk by noting that it is given locally
by the coordinate conditions uαJ,j = uαJ+1j

for |J | ≤ k − 1, so that the jet coordinates of
order k or lower are completely symmetric. We may therefore take coordinates

(xi, uαI , u
α
K,i) |I| ≤ k, |K| = k

on Ĵk+1π.
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We mentioned earlier that there is, in general, no canonical projection J1πk → Jk+1π;
by contrast, there is a projection Ĵk+1π → Jk+1π. We may construct this projection by
noting that the condition for j1

xψ ∈ J1πk to lie in the submanifold Ĵk+1π may be written
as

j1
x(πk,k−1◦ψ) = ψ(x) , (2.2)

and defining the projection by

j1
xψ 7→ jk+1

x (πk,0◦ψ) ;

we may check that condition (2.2) implies that the definition does not depend upon the
choice of representative section ψ.

In the particular case k = 1 we note that the coordinates on Ĵ2π are (xi, uα, uαi , u
α
ij)

in ordinary index notation, whereas those on J2π are (xi, uα, uαi , u
α
(ij)) with symmetric

second-order jet coordinates, so we might expect to be able to find a complementary man-
ifold with skew-symmetric second-order coordinates. This is indeed the case, and we may
write

Ĵ2π ∼= J2π ×J1π

(∧2
T ∗M ⊗J1π V π

)
(2.3)

([36], Theorem 5.3.4). The higher-order semiholonomic jet bundles may similarly be writ-
ten as fibre products, but the complementary manifolds are more complicated as they have
coordinates which are partly symmetric and partly skew-symmetric [26].

2.7 Connections

A connection (or, more precisely, an Ehresmann connection) on a principal bundle P →
M with structure group G is usually taken to be a g-valued 1-form on P , where g is
the Lie algebra of G, satisfying certain conditions. An equivalent definition takes the
horizontal subspaces of the connection as fundamental, and the equivariance condition on
the connection form translates into a similar condition on the family of subspaces. But
one might easily imagine a less restrictive definition with no equivariance condition on the
subspaces, and then this could be applied to a more general situation where the principal
bundle was replaced by a fibred manifold without any particular structure group.
Definition 2.8 A connection on the fibred manifold π : E → M is a sub-bundle H → E
of the tangent bundle TE → E which is complementary to the vertical sub-bundle V π →
E. The fibres of the bundle H are the horizontal subspaces of the connection. A vector
field on E is called horizontal if it takes its values in the horizontal subspaces.

A version of the connection form definition may be recovered in this situation by con-
sidering, rather than an algebra-valued 1-form, a tangent-valued 1-form Γ which is a pro-
jection and whose images are the horizontal subspaces. Taking a fibred chart (xi, ua) on
E, we obtain

Γ = dxi ⊗
(

∂

∂xi
+ Γαi

∂

∂uα

)
.

The similarity between this formula and the coordinate formula for the horizontal contact
structure h on the jet bundle J1π should be immediate. The differences are that Γ is defined
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on E whereas h is defined on J1π, and that the functions Γαi defined locally on E have
replaced the jet coordinate functions uαi . This leads us to an alternative definition of a
connection on a fibred manifold.
Definition 2.9 A connection on the fibred manifold π : E →M is a section γ : E → J1π
of the affine bundle J1π → E.

The relationship between the two definitions is simply that Γ = h ◦ γ: locally, the sec-
tion γ substitutes the concrete functions Γαi for the jet coordinates uαi . The correspondence
is bijective ([36], Proposition 4.6.3).

On a principal bundle, a fundamental property of a connection is its curvature, a g-
valued 2-form obtained by differentiating the connection form. In the more general frame-
work we may also construct the curvature, and again there are two different approaches
using the two definitions of a connection. Using Γ, we may define the curvature by tak-
ing the Lie bracket of two horizontal vector fields and measuring its deviation from the
horizontal.
Definition 2.10 The curvature of a connection Γ is the map Ω : X(E) × X(E) → X(E)
given by

Ω(X,Y ) = [Γ(X),Γ(Y )]− Γ([Γ(X),Γ(Y )]) .

It is easy to check that Ω is bilinear over the functions onE and so is a vertical tangent-
valued 2-form. In coordinates it is

Ω = Ωαij dx
i∧dxj⊗ ∂

∂uα
= 1

2

(
∂Γαj
∂xi

+ Γβi
∂Γαj
∂uβ

− ∂Γαi
∂xj

− Γβj
∂Γαi
∂uβ

)
dxi∧dxj⊗ ∂

∂uα
.

(2.4)

On the other hand, we may take the section γ as the connection, and prolong it to give a
map j1γ : J1π → J1π1. Taking the composite

j1γ ◦ g : E → J1π1

we may check that, in a chart, uαi ◦j1γ◦g = uα,i◦j1γ◦g so that the composite map takes its
values in the semiholonomic manifold Ĵ2π. Recalling (equation 2.3) the decomposition of
Ĵ2π as a fibre product, we may take the projection on the second component

∧2
π∗1T

∗M⊗
π∗1,0V π to obtain a vertical tangent-valued 2-form which may be shown to equal−Ω ([36],
Theorem 5.3.5).

A connection with vanishing curvature has special properties.
Definition 2.11 If γ : E → J1π is a connection then any local section φ : U → E,
U ⊂M satisfying

j1φ = γ ◦ φ

is called an integral section of γ.
Theorem 2.12 A connection γ has integral sections if, and only if, it has vanishing curva-
ture. We also say that such a connection is integrable.

The proof of this theorem involves noting that, in coordinates, the condition for a local
section φ to be an integral section is

∂φα

∂xi
= Γαi ◦ φ , (2.5)
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so that φ is a solution of the partial differential equation given in (2.5); the vanishing of
the curvature (2.4) is just the Frobenius condition for this equation to have solutions ([36],
Proposition 5.3.1).

3 Differential equations

3.1 Differential operators

One way in which differential equations can be constructed is by the use of differential
operators. We shall shall consider two fibred manifolds π1 : E1 → M , π2 : E2 → M
over the same base M ; a map ∆ : Γ(π1) → Γ(π2) between sections of these two fibred
manifolds is called an operator. A simple type of operator arises from a map f : E1 → E2

fibred over the identity on M by setting

∆fφ = f ◦ φ

for φ ∈ Γ(π1). Such an operator ∆f is a pointwise operator because, for each x ∈M , the
value of ∆fφ at x depends only on the value of φ there. A more general type of operator
∆ is called local, where ∆φ(x) depends on the germ of φ at x rather than just its value.
By definition, a differential operator is one where ∆φ(x) depends on the derivatives of φ
at x; in the language of jets there is a map f : Jkπ1 → E2 such that ∆ = ∆f where now

∆fφ = f ◦ jkφ

for some k. The least such k is called the order of the differential operator.
We say that an operator ∆ is regular if, whenever φt is a smoothly parametrised family

of sections of π1, ∆φt is a smoothly parametrised family of sections of π2. If ∆f is a
differential operator then it is regular precisely when the associated map f is smooth ([18],
Proposition 14.14).

It is clear that a differential operator is local, because the jet of a section is determined
by its germ. A study of the converse involves Peetre’s Theorem. The original version
of Peetre’s Theorem involved linear differential operators; we may define these on vector
bundles π1 : E1 → M , π2 : E2 → M as the spaces of sections Γ(π1), Γ(π2) are
then vector spaces. It now makes sense to talk about the support of a section, defined
in the usual way as the closure of the set where the section does not vanish. We may
also introduce linear operators which do not increase support; it is clear that a linear local
operator satisfies this condition.
Theorem 3.1 (Peetre’s Theorem [33, 34]; see also ([18], Theorem 19.1) and the article by
J. Szilasi and R. L. Lovas in this volume[41])

Let ∆ be a linear support non-increasing operator Γ(π1)→ Γ(π2). For every compact
set K ⊂ M there is a natural number k such that, whenever φ1, φ2 ∈ Γ(π1) and x ∈ K,
the condition jkxφ1 = jkxφ2 implies ∆φ1(x) = ∆φ2(x).

Thus we may say that every linear local operator is a differential operator. Note that
differentiability of the image sections ∆φ is required for the theorem to hold: see [18],
Example 19.3.

A version of Peetre’s Theorem for non-linear operators is significantly more compli-
cated; see [39], and also ([18], Sections 19.4–19.15) and [41].
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3.2 Differential equations on jet bundles

We saw in subsection 2.7 that a connection defines a first-order partial differential equation
of a particular type. But we can use jet bundles to give intrinsic descriptions of much more
general differential equations. If R ⊂ Jkπ is a closed embedded submanifold then it will
be defined locally by the vanishing of some functions fµ. If we add some conditions to
ensure that πk|R : R → M is a fibred submanifold of πk : Jkπ → M , and that R is
genuinely defined on Jkπ rather than on a lower-order jet bundle, then we can say that R
‘is’ a k-th order partial differential equation in m independent and n dependent variables.
(If m = 1 then it is an ordinary differential equation.) A local solution will then be a local
section φ : U → E, U ⊂ M , whose prolongation satisfies jkφ(U) ⊂ R. This is like a
generalization of regarding a first-order ordinary differential equation, not as a vector field,
but as the image of a vector field in the tangent bundle. It isn’t quite the same, because the
solutions of the vector field equation are the integral curves, and the vector field itself is
needed (rather than its image) in order to fix the parametrization; in Jkπ the solutions are
local sections, carrying their own parametrization, so it is adequate to give the equation as
a submanifold.

Differential equations often arise in this intrinsic format from differential operators
between fibred manifolds. If ∆ : Γ(π1)→ Γ(π2) is such an operator with ∆φ = f ◦ jkφ,
and if ψ is a fixed section of π2, we may let R = f−1(ψ(M)). Typically π2 is a vector
bundle and ψ is its zero section, so that we recover the specification of R in terms of the
vanishing of some locally-defined functions fµ = wµ ◦ f where wµ are fibre coordinates
on E2.

To make R ‘look like’ a differential equation, we have to use its local coordinate repre-
sentation: in the case of partial differential equations, there may be integrability conditions
to be obtained by cross-differentiating the equations. Nevertheless we can, using jet bun-
dles, analyse the problem in a fairly abstract way. The idea is to say that the equation is
formally integrable if at each point we can find a sequence of Taylor coefficients such that
a formal power series with those coefficients would satisfy the equation; we then demon-
strate the existence of these coefficients in an intrinsic way. Nothing is said about the
convergence of the formal power series, and indeed there are known to be smooth (but
non-analytic) differential equations which are formally integrable but do not have actual
solutions: the formal power series thus cannot converge away from the point in question.
The first example of such an equation was given by Lewy [25] (see also [35], Chapter 5
Section 7.2):

∂y1

∂x1
− ∂y2

∂x2
− 2x2 ∂y

1

∂x3
− 2x1 ∂y

2

∂x3
= h

∂y2

∂x1
+
∂y1

∂x2
+ 2x1 ∂y

1

∂x3
− 2x2 ∂y

2

∂x3
= 0 .

The equation is formally integrable, according to the Theorem in Section 3.5; but with a
suitable choice of a smooth but non-analytic function h it will have no local solutions. The
reason behind this may be found in complex analysis. Setting z = x1 + ix2, w = y1 + iy2

and t = x3, we may rewrite the equations as

∂w

∂z̄
+ iz

∂w

∂t
=
h

2
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and the operator on the left-hand side is the Cauchy-Riemann operator on a suitable hy-
persurface in C2. There is now a substantial theory behind such operators [15]. Of course
there are many differential equations which are not of this form, and in particular cases
(such as when the equation R is the image of a connection γ) we may be sure that a for-
mally integrable equation does indeed have local solutions.

3.3 Prolonging differential equations

In order to analyse the formal integrability of a differential equation R, we proceed in
several stages. The first stage is to prolong the equation, by differentiating it. By definition
πk|R : R → M is a fibred manifold, and so we can construct its jet bundles (πk|R)

l
:

J l(πk|R)→M where of course J l(πk|R) ⊂ J lπk.
Definition 3.2 The l-th prolongation of the differential equation R ⊂ Jkπ is the holo-
nomic subset

R(l) = J l(πk|R) ∩ Jk+lπ

of J l(πk|R).
In general, πk+l|R(l) : R(l) → M need not be a fibred submanifold of Jk+lπ; but if

it is then we may prolong R(l) again, and (R(l))(p) = R(l+p). If the l-th prolongation is
a fibred submanifold for every l ≥ 1 then we say that R is regular. A local section φ is a
solution of R if, and only if, it is a solution of the prolonged equation R(l).
Definition 3.3 The regular differential equation R ⊂ Jkπ is formally integrable if, for
each l ≥ 1, πk+l,k+l−1(R(l)) = R(l−1).

The essential meaning of this definition is that, no matter how often we differentiate
the original equation, we cannot obtain any new integrability conditions that would provide
constraints on the possible values of the derivatives of a solution. We may therefore use the
differentiated equations to construct the sequence of Taylor coefficients. In coordinates, if
R is defined by the equations fµ(xi, uα, uαI ) = 0, then R(l) will be defined by

fµ = 0 ,
d|I|fµ

dxI
(1 ≤ |I| ≤ l) .

As the total derivatives are quasilinear expressions, it will always be possible to solve for
the highest-order derivatives and so construct the Taylor coefficients.

Of course the trouble with this definition of formal integrability is that it is impossible
to check it in a finite number of steps. We can deal with this problem using the algebraic
technique of Spencer coholomogy to measure the additional constraints which arise when
we differentiate the equation.

3.4 The symbol of a differential equation

An important object associated with a differential equation is its symbol. This is a family
of vector spaces GR defined on the equation manifold R. The idea is that GR captures the
dependence of the differential equation on the highest derivatives.

To work towards a definition of GR, we recall first that πk,k−1 : Jkπ → Jk−1π is an
affine bundle, modelled on the vector bundle SkT ∗M⊗Jk−1π V π. Thus the vector bundle
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V πk,k−1 of tangent vectors on Jkπ vertical over Jk−1π is isomorphic to SkT ∗M⊗Jk−1π

V π, and so we may regard the restriction V πk,k−1|R as satisfying

V πk,k−1|R ⊂ SkT ∗M ⊗Jk−1π V π
∣∣∣
R
.

Definition 3.4 The symbol GR of the differential equation R ⊂ Jkπ is the family of
vector spaces V πk,k−1|R.

Thus, at each point jkxφ ∈ R, the symbolGjkxφ may be identified with a vector subspace
of SkT ∗M⊗Jk−1πV π; to simplify the notation we shall, for the remainder of this section,
write SkT ∗⊗V for the latter space, omitting the arguments of the functors T ∗ and V and
the point, so that we have the identification

GR ⊂ SkT ∗ ⊗ V

representing an inclusion of vector spaces at jkxφ. In general the dimensions of these
subspaces may vary; but if the dimensions are all the same then the symbol will be a
vector bundle over R. In coordinates, the symbol at a point is the subspace defined by the
equations∑

|I|=k

∂fµ

∂uαI
vαI = 0

where vαI are coordinates on SkT ∗ ⊗ V with respect to bases dxi of T ∗ and ∂/∂uα of V .
As with the equation itself, we may prolong the symbol. This, though, is an algebraic

operation, carried out at each fixed point jkxφ, and so we may describe it at the level of the
individual vector spaces. We shall make use of the bundle F → Jkπ defined by

F = V πk|R /V (πk|R) ;

as R is a fibred submanifold we may identify this with the normal bundle of R in Jkπ.
Once again we shall also write F for the fibre of this bundle at the point jkxφ. As SkT ∗ ⊗
V ⊂ Vjkxφπk we may restrict the quotient map Vjkxφπk → F to give a map

SkT ∗ ⊗ V → F

and hence, by taking tensor products, maps

SlT ∗ ⊗ SkT ∗ ⊗ V → SlT ∗ ⊗ F

for each l ≥ 0. Combining these with the maps

Sk+lT ∗ ⊗ V →
⊗l

T ∗ ⊗
⊗k

T ∗ ⊗ V → SlT ∗ ⊗ SkT ∗ ⊗ V

given by inclusion and symmetrization, we obtain maps

Sk+lT ∗ ⊗ V → SlT ∗ ⊗ F .

Definition 3.5 The l-th prolongation of the symbol G of R is the kernel

G
(l)
R ⊂ Sk+lT ∗ ⊗ V

of the map Sk+lT ∗ ⊗ V → SlT ∗ ⊗ F .
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Note that we have defined each vector spaceG(l)
R at a point jkxφ of the original differen-

tial equationR, not at a point of the prolonged equationR(l); but in fact there is a canonical
isomorphism between this vector space and the symbol GR(l) at a point jk+l

x φ ∈ R(l). In
coordinates, each of these vector spaces is defined by the equations

∑
|I|=k

∂fµ

∂uαI
vαI+J = 0 , |J | = l .

We can use the prolonged symbols to remove the need for checking that a differential
equation is regular before applying the definition of formal integrability.
Proposition 3.6 (see [35], Chapter 2 Theorem 3.16)

The differential equation R ⊂ Jkπ is formally integrable if, and only if, for each l ≥ 1
the prolonged equation satisfies πk+l,k+l−1(R(l)) = R(l−1) and the prolonged symbol
G

(l)
R is a vector bundle.

3.5 Spencer sequences and formal integrability

The key to analyzing the formal integrability of a differential equation is to look, not so
much at the prolongations of the equation, as at the prolongations of its symbol. These
may be related by a map called the Spencer δ-map which relates symmetric and skew-
symmetric products of vector spaces (see [40]). We continue writing T ∗ for the pullback
of the cotangent space T ∗xM to the point jkxφ.
Definition 3.7 The Spencer δ-map is the map

δ :
∧p

T ∗ ⊗ SqT ∗ →
∧p+1

T ∗ ⊗ Sq−1T ∗

given by composition of the inclusion∧p
T ∗ ⊗ SqT ∗ →

⊗p
T ∗ ⊗

⊗q
T ∗ =

⊗p+q
T ∗

and the symmetrization and skew-symmetrization⊗p+q
T ∗ =

⊗p+1
T ∗ ⊗

⊗q−1
T ∗ →

∧p+1
T ∗ ⊗ Sq−1T ∗ .

By taking tensor products we obtain a map

δ :
∧p

T ∗ ⊗ SqT ∗ ⊗ V →
∧p+1

T ∗ ⊗ Sq−1T ∗ ⊗ V .

The Spencer δ-maps clearly satisfy the condition δ2 = 0, and by repeated composition
we obtain, for any l ≥ 0, the Spencer sequence

0→ Sk+lT ∗⊗V δ→ T ∗⊗ Sk+l−1T ∗⊗V δ→ . . .
δ→
∧m

T ∗⊗ Sk+l−mT ∗⊗V → 0

where we take Sk+l−mT ∗ = 0 for k + l < m.
Theorem 3.8 (see [35], Chapter 3 Proposition 1.5)

The Spencer sequences are exact.
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So far we have taken no account of any differential equation. If an equationR ⊂ Jkπ is
given then we may consider the prolongationsG(l)

R ⊂ Sk+lT ∗⊗V of its symbol, obtaining
their Spencer sequences

0→ G
(l)
R

δ→ T ∗ ⊗G(l−1)
R

δ→ . . .
δ→
∧m

T ∗ ⊗G(l−m)
R → 0

with the conventions that G(l−p)
R = Sk+l−pT ∗ ⊗ V if 0 ≤ k + l − p < k and that

G
(l−p)
R = 0 if k + l − p < 0.

Definition 3.9 The Spencer cohomology of the symbol GR is the family of cohomology
spaces Hp,k+l−p at the terms

∧p
T ∗ ⊗G(l−p)

R of the Spencer sequences for the prolonga-
tions G(l)

R .
Definition 3.10 The symbol GR is said to be s-acyclic if Hp,q = 0 for 0 ≤ p ≤ s, q ≥ k.
It is said to be involutive if Hp,q = 0 for 0 ≤ p ≤ m, q ≥ k.

Given these properties of the symbol GR, we now have a result which enables us to
check that a given differential equation is formally integrable.
Theorem 3.11 (Goldschmidt [12])

If the differential equation R has a 2-acyclic symbol GR, and if its first prolongation
R(1) is a fibred submanifold of Jk+1π and satisfies πk+1,k(R(1)) = R, then R is formally
integrable.

A formally integrable equation with an involutive symbol is said to be an involutive
equation, and if the fibred manifold E →M is real-analytic then such a system is guaran-
teed to have genuine solutions, unique for given initial conditions: this is the Cartan-Kähler
Theorem, and is ultimately a consequence of the Cauchy-Kovalevskaya Theorem (see [35],
Chapter 4 Theorem 4.6).

Of course one needs to be able to check whether a symbol is involutive in order to use
these results, and there are different approaches to the task. A homological approach is
described in [24]; a more traditional method [24, 35] is to use Cartan characters. To find
these, we choose a coordinate system xi in a neighbourhood of x ∈ M and subspaces
GR,j ⊂ GR defined by

GR,j = {ξ ∈ GR : i∂/∂xiξ = 0, 1 ≤ i ≤ j} .

These subspaces form a filtration

0 = GR,m ⊂ GR,m−1 ⊂ . . . ⊂ GR,1 ⊂ GR

and the Cartan character αj is the increase in dimension dimGR,j−1 − dimGR,j .
Theorem 3.12 (see [35], Chapter 3, Remark 2.28)

The Cartan characters satisfy dimG
(1)
R ≤

∑m
j=1 jαj , and the symbol is involutive if,

and only if, there are coordinates xi such that equality is attained. Such coordinates are
called δ-regular or quasi-regular.

It is worth noting that the Cartan characters used here may be related to those which
arise in the study of differential equations using exterior differential systems. The relation-
ship between Cartan characters and Spencer comology was described in a letter by J. P.
Serre, quoted (in French) in an appendix to [14].
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There remains the question of how to deal with an equation whose symbol is not invo-
lutive. The answer is to prolong the equation, and hence to prolong the symbol; eventually,
the symbol will become involutive at, say, G(l). We now need to check that prolonging
the equation once more to R(l+1) does not introduce integrability conditions. If it does, we
take the projection πk+l+1,k+l(R(l+1)) as a new equation (having the same solutions asR)
and start the process again. The Cartan-Kuranishi Theorem guarantees than this process
terminates. The final equation may, of course, be a zero-dimensional submanifold, and
then the original equation cannot have solutions.
Theorem 3.13 (Kuranishi [23])

If the equation R is regular then there are integers l, p such that πk+l+p,k+l(R(l+p)) is
involutive.

4 The calculus of variations

4.1 Variational problems on jet bundles

Problems in the calculus of variations can usefully be formulated on jet manifolds, and
by doing so the need to study infinite-dimensional function spaces can often be avoided.
We consider here only problems with fixed boundary conditions. There are essentially two
types of problem, depending upon whether or not the parametrization of the solution man-
ifold is important. For instance, a variational problem in mechanics might have trajectories
as solutions, and the speed along the trajectory would be important; on the other hand, a
variational problem in geometry might have paths giving the shortest distance between two
points, and then only the image of the path would be significant.

In this subsection we consider variational problems on a jet bundle Jkπ, where π :
E → M is a fibred manifold; we suppose that the base manifold M is orientable. The
problem is defined by a Lagrangian, an m-form λ which is horizontal over M . If M has
a given volume form ω then we would have λ = Lω for some function L on Jkπ. In a
problem of this kind, a solution is a local section and so has a parametrisation.
Definition 4.1 An extremal of the variational problem defined by the Lagrangian λ is a
local section φ : U → E, U ⊂M , satisfying

d

dt

∣∣∣∣
t=0

∫
C

(jkφt)
∗λ = 0

whenever C ⊂ U is a compact m-dimensional submanifold and φt is a 1-parameter family
of local sections of π satisfying φ0 = φ and φt|∂C = φ|∂C .

We study this problem by regarding the family of local sections φt as being generated
by a variation field, a vector field X on E which is vertical over M and which satisfies
φt = ψt ◦ φ where ψt is the local flow of X . The condition φt|∂C = φ|∂C translates into
X|π−1(∂C) = 0. Using this, we are able to reformulate the problem as∫

C

(jkφ)∗dXkλ = 0

where dXk denotes the Lie derivative by the prolongation Xk of the variation field.
We now suppose that we can find another m-form ϑλ on a related jet bundle J lπ

(where l ≥ k) such that the difference ϑl − π∗l,kλ is a contact form on J lπ, and such that
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the contraction of dϑλ with any vector field Y on J lπ which is vertical over E must also
result in a contact form. Any form ϑλ satisfying these two conditions is called a Lepage
equivalent of λ.

The first condition immediately implies that (jkφt)∗λ = (jlφt)∗ϑλ for any local sec-
tion φ, so that φ is an extremal of the variational problem defined by λ precisely when∫

C

(jlφ)∗dXlϑλ = 0 .

We may write the Lie derivative dXl in terms of contraction as iXld + diXl , giving two
integrals; but then Stokes’ Theorem gives∫

C

(jlφ)∗diXlϑλ =
∫
C

d(jlφ)∗iXlϑλ

=
∫
∂C

(jlφ)∗iXlϑλ

= 0

as X l vanishes on π−1
l (∂C), so that φ is now an extremal precisely when∫

C

(jlφ)∗iXldϑλ = 0 .

We next use the second condition in the definition of a Lepage equivalent. If Y is an
arbitrary vector field on J lπ projectable to X then the difference Y −X l is vertical over
E, so that i(Y−Xl)dϑλ is a contact form and hence (jlφ)∗i(Y−Xl)dϑλ vanishes. It follows
that φ is an extremal precisely when∫

C

(jlφ)∗iY dϑλ = 0

for any projectable vector field Y on J lπ vanishing on π−1
l (∂C).

We now observe that the integrand (jlφ)∗iY dϑλ may be written as

(jl+1φ)∗iȲ π
∗
l+1,ldϑλ

for any vector field Ȳ on J l+1π projecting to Y . Write the (m + 1)-form ψ = π∗l+1,ldϑλ
as the sum

ψ = ψ1 + ψ2 + . . .+ ψm+1

of 1-contact, 2-contact, . . . , (m+ 1)-contact components (subsection 2.5); then by defini-
tion only the 1-contact part ψ1 makes a contribution to the integrand, and the contraction
iȲ ψ1 must be horizontal over M .

Now take a fibred chart (xi, uα) onE with domainU such that π(U) ⊂M is contained
in the interior of C. Let x ∈ π(U), and let f be a bump function on M vanishing outside
π(U) such that f(x) = 1. Take Ȳ to be the vector field ∂/∂uα on J l+1π, and write

i(fȲ )ψ1 = fEαd
mx ;
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the functions Eα must then satisfy (jl+1φ)∗Eα = 0 at x (and hence throughout π(U))
using the vanishing of the integral and the arbitrariness of the bump function. These equa-
tions for the local section φ are the Euler-Lagrange equations for the Lagrangian λ, and
they take the usual coordinate form where

Eα =
k∑
|I|=0

(−1)|I|
d|I|

dxI

(
∂L

∂uαI

)
;

in general we must therefore have l+1 ≥ 2k, although for particular Lagrangians it may be
possible to take smaller values of l. The (m+1)-form ελ on J l+1π given in coordinates by
Eαdu

α ∧ dmx is, indeed, globally well-defined and is just the 1-contact part of π∗l+1,ldϑλ;
the zero set of ελ is a submanifold of J lπ defining the global Euler-Lagrange equation.

Of course, the calculation above presupposes the existence of a Lepage equivalent for
an arbitrary Lagrangian λ. The following results are known.
Theorem 4.2 LEPAGE EQUIVALENT THEOREM

(1) Every Lagrangian has at least one global Lepage equivalent defined on J2k−1π.

(2) If dimM = 1 then there is a unique global Lepage equivalent of each Lagrangian
λ, defined on J2k−1π. If, in coordinates, λ = Ldt then

ϑλ = Ldt+
k−1∑
r=0

(
k−r−1∑
s=0

(−1)s
ds

dts

(
∂L

∂uα(r+s+1)

))
θα(r) .

(3) If dimM ≥ 2 and k = 1 then three of the global Lepage equivalents are natural
operators (subsection 5.3) defined on J1π. If, in coordinates, λ = Ldmx then they
are

(a) ϑλ = Ldmx+
∂L

∂uαi
θα ∧ dm−1xi

(b) ϑ̂λ =
1

Lm−1

∧m

i=1

(
Ldxi +

∂L

∂uαi
θα
)

(c) ϑ̃λ =
min{m,n}∑

r=0

1
(r!)2

∂rL

∂yα1
i1
. . . ∂yαrir

θα1 ∧ . . . ∧ θαr ∧ dm−rxi1···ir ,

where formula (b) is valid for a non-vanishing Lagrangian.

(4) If dimM ≥ 2 and k = 2 then two of the global Lepage equivalents are natural
operators defined on J3π. If, in coordinates, λ = Ldmx then they are

(a) ϑλ = Ldmx+((
∂L

∂uαi
− 1

#(ij)
d

dxj
∂L

∂uαij

)
θα +

1
#(ij)

∂L

∂uαij
θαj

)
∧ dm−1xi

(b) ϑ̂λ =
1

Lm−1

∧m

i=1

(
Ldxi+
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∂L

∂uαi
− 1

#(ij)
d

dxj
∂L

∂uαij

)
θα +

1
#(ij)

∂L

∂uαij
θαj

)
,

where formula (b) is valid for a non-vanishing Lagrangian.

(5) If dimM ≥ 2 and k ≥ 2 then the global Lepage equivalent is not unique.

There are several different proofs of (1); one approach is described in ([36], Sec-
tion 6.5). This constructs, in an intrinsic way, a (unique) global Lepage equivalent for
first-order Lagrangians (formula (3a)), and then uses the identification Jk+1π ⊂ J1πk to
construct, recursively, Lepage equivalents for higher-order Lagrangians. The fact that there
is no canonical projection J1πk → Jk+1π means, though, that the latter construction is
not unique for m ≥ 2 (although see the comment on formula (4a) below).

The fact that the formulæ (2)–(4) do indeed describe Lepage equivalents, and that
these formulæ are unaffected by changes of fibred coordinates on E, may be verified
by direct calculation. An intrinsic method of constructing formula (2) uses a ‘vertical
endomorphism’ operator; this is related to the operators of the same name described in
subsection 4.2 below. Formula (3b) is classical [3], and is invariant under an arbitrary
change of coordinates on E (that is, ignoring the fibration over M ). This property also
holds for formula (3c) ([20] and, independently, [2]), with the additional property that
dϑ̃λ = 0 exactly when ελ = 0. Formula (4a) may be constructed using the recursive tech-
nique described above, but making use of the projection from the semiholonomic manifold
Ĵ2π → J2π [37]. Formula (4b) (and also formulæ (2), (3b) and (3c)) may be obtained
by considering an associated homogeneous problem and projecting [4, 5]; see also [30].
Finally, the negative result (5) may be found in [16].

4.2 Homogeneous variational problems

Variational problems whose solutions are unparametrised submanifolds may be specified
in two different ways. A direct method uses jets of submanifolds rather than jets of
sections, whereas the approach described in this subsection is to use instead spaces of
non-degenerate velocities: in general, the solution of a variational problem in this con-
text would have a preferred parametrisation, but we impose a homogeneity condition on
the Lagrangian to ensure that any reparametrisation is also a solution. Both approaches
are commonly used in Finsler geometry, and an interesting comparison between the two
is given in ([1], Section 2.1). The more general relation between the two approaches is
described in an article by D. Grigore in this Handbook [13].

We consider, therefore, variational problems on Fk(m)E, and the Lagrangian will be a
function on this manifold, rather than an m-form. To describe the homogeneity condition,
we shall use a version of the total derivative operators described earlier for jet bundles. In
the present context these are them vector fields dj along the projection Fk+1

(m) E → F
k
(m)E

given in coordinates as

dj =
k∑
|J|=0

uaJ+1j

∂

∂uaJ
.
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An intrinsic construction of dj takes a general point jk+1
0 γ ∈ Fk+1

(m) E and chooses a
representative map γ : Rm → E; then

dj |jk+1
0 γ = (jkγ)∗

(
∂

∂tj

∣∣∣∣
0

)
∈ Tjk0 γF

k−1
(m) E

where ∂/∂tj is the j-th standard coordinate vector field on Rm.
We also need a family of m type (1, 1) tensor fields Si on Fk(m)E whose intrinsic con-

struction is a little more complicated (see [4]) but which may be expressed in coordinates
as

Si =
k∑
|I|=0

(I(i) + 1)
∂

∂uaI+1i

⊗ duaI .

These tensor fields commute, and so we may use multi-index notation and write SI for
composite tensor fields. We now define the vector fields ∆I

i on Fk(m)E by

∆I
j = SI(dj) ;

although in principle these would also be vector fields along the projection Fk+1
(m) E →

Fk(m)E, they are constant on the fibres from the properties of Si and so we regard them as
vector fields on Fk(m)E. These vector fields ∆I

j are, in fact, the fundamental vector fields
of the principal Lkm+-bundle Fk(m)E → Jk+(E,m).

We can now give the condition for a Lagrangian function L : Fk(m)E → R to be
homogeneous: it is that

∆i
j(L) = δijL , ∆I

j (L) = 0 for |I| ≥ 2.

Definition 4.3 An extremal of the variational problem defined by the homogeneous La-
grangian L is a map σ : Rm → E satisfying

d

dt

∣∣∣∣
t=0

∫
C

((jkσt)∗L) dmt = 0

whenever C ⊂ Rm is a compact m-dimensional submanifold. σt is a 1-parameter family
of maps Rm → E satisfying σ0 = σ and σt|∂C = σ|∂C , and dmt is the standard volume
form on Rm.
Theorem 4.4 (see, for example, [4] Theorem 4.2)

If σ is an extremal and ψ is an orientation-preserving diffeomorphism of Rm then σ◦ψ
is also an extremal.

There is no concept of a Lepage equivalent for homogeneous Lagrangians; there are,
however, objects which may be used in a similar way, and these may be defined irrespec-
tive of the order of the Lagrangian. First, the Hilbert forms ϑi defined on F2k−1

(m) E are
generalisations of the 1-form of the same name used in Finsler geometry, and are specified
by

ϑi =
∑
I

(−1)|I|

(|I|+ 1)I!
dI(SI+1idL) ;



D. J. Saunders 1061

they are related to the Euler-Lagrange form εL on F2k
(m)E by

εL = dL− diϑi

where the pull-back maps have been omitted. Note that, just as the Lagrangian is a function
rather than an m-form, the Euler-Lagrange form in this homogeneous context is a 1-form
rather than an (m+ 1)-form. In coordinates, the latter is

εL = Eadu
a =

k∑
|I|=0

(−1)|I|dI

(
∂L

∂uaI

)
dua

so that the coefficients Ea are, once again, the Euler-Lagrange equations.
Next, we observe that if L is non-vanishing the the m-form

Θ̂L =
1

Lm−1

∧m

i=1
ϑi

is projectable to J2k−1
+ (E,m) exactly when m = 1 or k ≤ 2, and in suitable charts

on J2k−1
+ (E,m) the projections have precisely the coordinate representations given in

formulæ (2), (3b) or (4b) of the Lepage equivalent theorem ([4], Section 6). As

Jkπ ⊂ Jk+(E,m) , J2k−1π ⊂ J2k−1
+ (E,m)

are open submanifolds, and as a Lagrangian form λ on Jkπ gives rise to a homogeneous
Lagrangian function L on an open submanifold of Fk(m)E by

L(ξ) = 〈λρ(ξ), ξ 〉

where ξ ∈ Fk(m)E and where ρ : Fk(m)E → Jk+(E,m) is the projection, this provides one
explanation for the negative result of part (5) the Lepage equivalent theorem.

We also observe that, for a first-order homogeneous Lagrangian L, the m-form

Θ̃L =
1
m!
S1dS2d . . . SmdL

satisfies dΘ̃L = 0 exactly when εL = 0. This m-form is projectable to J1
+(E,m), and in

suitable charts the projection has precisely the coordinate representation given in formula
(3c) of the Lepage equivalent theorem [5].

A final remark is that many of these objects may be expressed concisely in terms of
vector-valued forms, taking their values in the vector space

∧s Rm∗ [38]; we denote the
space of r-forms on Fk(m)E taking their values in this vector space as Ωr,s(k). Identifying
the coordinate function ti on Rm with the constant 1-form dti, we define the Lagrangian
vector-valued 0-form Λ, the Hilbert vector-valued 1-form ΘL and the Euler-Lagrange
vector-valued 1-form EL to be

Λ = Ldmt ∈ Ω0,m
(k) , ΘL = ϑi⊗dm−1ti ∈ Ω1,m−1

(2k−1) , EL = εL⊗dmt ∈ Ω1,m
(2k) .

The relationship between these vector-valued forms may be specified using a coboundary
operator dT : Ωr,s(k) → Ωr,s+1

(k+1) defined in terms of the total derivative operators di by

dT(θ ⊗ w) = diθ ⊗ (dti ∧ w) , w ∈
∧s Rm∗ .
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This operator is globally exact for r ≥ 1 modulo pull-backs (and, if defined on an infinite-
order manifold F∞(m)E then it would be globally exact for r ≥ 1 without further qualifica-
tion); a canonical homotopy operator P is given by

P (Φ) = P j(s)(φi1···is)⊗
{
i∂/∂tj

(
dti1 ∧ . . . ∧ dtis

)}
where Φ = φi1···is ⊗

(
dti1 ∧ . . . ∧ dtis

)
∈ Ωr,s(k), the φi1···is are scalar r-forms, completely

skew-symmetric in the indices i1, . . . , is, and P j(s) is the differential operator on scalar
r-forms defined by

P j(s) =
rk−1∑
|J|=0

(−1)|J|(m− s)!|J |!
r|J|+1(m− s+ |J |+ 1)!J !

dJS
J+1j .

The relationship between Λ, ΘL and EL may now be given (omitting pull-back maps) by

ΘL = PdΛ , EL = dΛ− dTΘL .

4.3 The variational bicomplex

When describing the decomposition of differential r-forms on manifolds of jets of sections
in terms of their s-contact components (subsection 2.5) we made a point of restricting
attention to forms defined on Jkπ horizontal over Jk−1π. The horizontal and vertical
contact structures hk and vk (subsection 2.5) may be combined with the exterior derivative
to give two new operators, the horizontal and vertical differentials dh and dv, by

dh = hkd− dhk−1 , dv = vkd− dvk−1 .

These map r-forms on Jk−1π to (r + 1)-forms on Jkπ, and satisfy

d2
h = d2

v = 0 , dhdv + dvdh = 0 .

By construction if the r-form χ is s-contact then so is dhχ, whereas dvχ is (s+1)-contact,
so if we write Φsr−s for the space of s-contact r-forms then we have a bicomplex whose
typical rows and columns are

dh−→ Φsr−s−1
dh−→ Φsr−s

dh−→ Φsr−s+1
dh−→ ,

dv−→ Φs−1
r−s

dv−→ Φsr−s
dv−→ Φs+1

r−s
dv−→ .

A similar construction may be carried out on the manifold of infinite jets, and here the
differentials are defined on the manifold J∞π. This construction, augmented by some ad-
ditional spaces along the edge of the diagram, is known as the variational bicomplex. Both
horizontal and vertical differentials locally exact, although the proof for dh is consider-
ably harder than that for dv. More details about the variational bicomplex, together with a
somewhat different construction of a variational sequence defined on Jkπ for a fixed finite
order k, may be found in the article by R. Vitolo in this Handbook [43].

We may also consider whether it is possible to approach this problem in the context
of jets of submanifolds, or of non-degenerate velocities. In these cases, a form cannot be
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called ‘horizontal’, and so some other approach must be adopted. For jets of submani-
folds, one approach is to consider pseudo-horizontal forms [27]: these are the annihila-
tors of pseudo-vertical vectors, which are equivalence classes of vectors differing by total
derivatives.

For the context of non-degenerate velocities, the vector valued forms described in sub-
section 4.2 may be used instead; the operator dT corresponds to the horizontal differential,
and the ordinary exterior derivative corresponds to the vertical differential.

5 Natural bundles

5.1 Natural bundles and geometric objects

The idea of a natural bundle is that, starting with a manifold M of some given dimension
m, we can construct a fibred manifold FM →M in a local, functorial way. Thus F should
be a covariant functor from the category of m-dimensional manifolds and local diffeomor-
phisms, to the category of fibred manifolds and fibred maps over local diffeomorphisms,
such that following F with the base manifold functor gives the identity functor. The local
condition is that, if we look at a non-empty open submanifold U ⊂ M , then the resulting
fibred manifold FU → U should be just the restriction of FM toU . There is, in addition, a
regularity condition, that a smoothly parametrised family of local diffeomorphisms should
give rise to a smoothly parametrised family of fibred maps, although it may be shown that
this condition is always satisfied: see, for instance, [18] Corollary. 20.7. It will be clear
from the context whether we use the phrase ‘natural bundle’ to refer to the functor F , or to
the image FM .

A geometric object at x ∈ M is an element of the fibre of a natural bundle FM at x.
Such an object might be specified in terms of coordinates; a change of coordinates on M
would be represented by a local diffeomorphism, and so the corresponding change of coor-
dinates of the object would be determined by applying the functor: this is just the classical
way of describing geometric objects, as objects which ‘transform in a particular way’. A
basic example of a natural bundle is the tangent bundle TM →M ; tangent vectors are ge-
ometric objects. The cotangent bundle T ∗M → M is also a natural bundle, although in a
rather more complicated way, as the cotangent functor T ∗ itself is contravariant. Here, we
have to use the fact that we consider only local diffeomorphisms f betweenm-dimensional
manifolds, so that T ∗f is an isomorphism on each fibre and we may use its inverse to give
a covariant functor. In this way, cotangent vectors are also geometric objects.

Although we have stated that each natural bundle functor takes its values in the category
of fibred manifolds, the name suggests that each image is actually a locally trivial bundle,
and this indeed the case. The standard fibre of F is the fibre SF of FRm at 0 ∈ Rm (recall
that F acts on the category of m-dimensional manifolds); smoothness of the translation
map tx : y 7→ x+ y on Rm and the regularity condition then show that FRm ∼= Rm ×SF
is globally trivial. The local condition, and the existence of charts U → Rm with U ⊂ M
open, then show that FM is locally trivial.

5.2 The order of a natural bundle

We can describe the order of a natural bundle by considering how much information in a
local diffeomorphism is preserved by the action of the functor. We say that the order of F is
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at most k if, for each pair of local diffeomorphisms f, g : M1 →M2 and for each x ∈M1,
the restrictions of Ff and Fg to the fibre of FM1 at x are equal whenever jkxf1 = jkxf2.
The order of F is then the least such k for which this condition holds. So, for example,
both the tangent bundle and the cotangent bundle are first-order natural bundles.

It is well-known that the tangent and cotangent bundles TM , T ∗M are associated
bundles of the frame bundle FM . In fact every first-order natural bundle is an associated
bundle of FM , and indeed every k-th order natural bundle is an associated bundle of
FkM , the k-th order frame bundle (see [18], Proposition 14.5). To see how this arises,
note that the definition of order implies that there is a map

Lkm ×Rm FRm → FRm , (jk0 f, (0, s)) 7→ Ff(0, s)

for any local diffeomorphism of Rm defined near zero, where we have written an element
of FRm projecting to zero as (0, s) ∈ Rm ×SF ; we thus obtain a left action of Lkm on the
standard fibre SF , and so obtain an associated bundle in the usual way.

Of course we cannot use this description of natural bundles in the case of infinite order;
but it has been shown this case never arises, and that the order of every natural bundle is
finite ([32]; see also [18] Theorem 22.3).

5.3 Natural operators

A natural operator is a family of regular operators (subsection 3.1) between two natural
bundles satisfying certain conditions. If ∆ is a natural operator between the natural bundles
F1, F2 then, for each manifoldM , we require ∆M to be a regular operator from sections of
F1M to sections of F2M . We expect ∆ to behave correctly with respect to diffeomorphic
manifolds M1, M2 so that

∆M2(F1f ◦ φ ◦ f−1) = F2f ◦∆M1φ ◦ f−1

as sections of F2M2 →M2, whenever φ is a section of F1M1 →M1 and f : M1 →M2 is
a diffeomorphism. We also require a local condition, that ifU ⊂M is an open submanifold
then

∆U (φ|U ) = ∆Mφ|U

for every section φ of F1M → M . These two conditions taken together show that a
natural operator is represented by regular operators whose coordinate representations are
independent of the choice of chart.

One of the most useful ways of classifying natural operators involves the following
result.
Theorem 5.1 (see [18], Theorem 14.18) Let F1, F2 be two natural bundles defined on
m-dimensional manifolds of finite orders k1, k2 with standard fibres SF1 , SF2 . There is a
canonical bijective correspondence between the set of all l-th order natural operators from
F1 to F2 and the set of all smooth Lpm-equivariant maps between T lmSF1 and SF2 , where
p = max{k1 + l, k2}.

As an example, we consider the exterior derivative acting on r-forms with r ≥ 1.
This is a first-order natural operator between the first-order natural bundles

∧r
T ∗ and∧r+1

T ∗, and so corresponds to a L2
m-equivariant map T 1

m

∧r Rm∗ → ∧r+1Rm∗; it is
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possible to show that any natural operator between these natural bundles is first-order, and
is necessarily a constant multiple of the exterior derivative [31]. First, we need to see that
any such natural operator has finite order; this is a consequence of some analytical argu-
ments ([18], Proposition 23.5 and Example 23.6). Next, we use the correspondence be-
tween l-th order natural operators between these two natural bundles and Ll+1

m -equivariant
maps; by considering the action of such a map on the jet coordinates and choosing suitable
elements of Ll+1

m , it may be shown that the map depends only on the first-order jet coordi-
nates, that this dependence is linear, and is just a constant multiple of the equivariant map
corresponding to the exterior derivative ([18], Proposition 25.4).

5.4 Gauge natural bundles

A generalisation of the idea of a natural bundle arises when we consider, instead of just a
manifold M , an arbitrary principal G-bundle π : P →M for some Lie group G [6]. Once
again we fix the dimension m = dimM . A gauge natural bundle is then a functor F such
that

(1) every principal bundle π : P → M with dimM = m is transformed to a fibred
manifold Fπ : FP →M ;

(2) every principal morphism (f : P1 → P2, f̄ : M1 → M2) is transformed to a fibred
map (Ff : FP1 → FP2, f̄ : M1 →M2);

(3) for every non-empty open set U ⊂ M1 the transform Fi of the inclusion principal
morphism (i : π−1(U) → P, ı̄ : U → M) is equal to the inclusion of fibred
manifolds ((Fπ)−1(U)→ FP,U →M).

The order of the gauge-natural bundle may be described by considering principal mor-
phisms. Suppose that two such morphisms f, g : P1 → P2 have the same k-jet jkyf = jky g
at some point y ∈ P1; then by the group action they have the same k-jet at any point of the
fibre at x = π1(y). We say that the order of F is at most k if, for each x ∈M , the restric-
tions of Ff and Fg to the fibre of FP1 at x are equal whenever the k-jets of f and g are
equal at any point of the fibre of P1 at x. The order of F is then the least such k for which
this condition holds. We also say that the gauge-natural bundle is regular if a smoothly
parametrised family of principal morphisms transforms to a smoothly parametrised family
of maps of fibred manifolds. As with natural bundles, it may be shown that every gauge-
natural bundle is regular ([18], Proposition 51.10), and that every gauge-natural bundle has
finite order ([18], Proposition 51.7).
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Contents

Introduction
1 Background
2 Calculus in topological vector spaces and beyond
3 The Chern–Rund derivative

Introduction

Global analysis is a particular amalgamation of topology, geometry and analysis, with
strong physical motivations in its roots, its development and its perspectives. To formulate
a problem in global analysis exactly, we need

(1) a base manifold,

(2) suitable fibre bundles over the base manifold,

(3) a differential operator between the topological vector spaces consisting of the sec-
tions of the chosen bundles.

In quantum physical applications, the base manifold plays the role of space-time; its points
represent the location of the particles. The particles obey the laws of quantum physics,
which are encoded in the vector space structure attached to the particles in the mathematical
model. A particle carries this vector space structure with itself as it moves. Thus we arrive
at the intuitive notion of vector bundle, which had arisen as the ‘repère mobile’ in Élie
Cartan’s works a few years before quantum theory was discovered.

To describe a system (e.g. in quantum physics) in the geometric framework of vector
bundles effectively, we need a suitably flexible differential calculus. We have to differen-
tiate vectors which change smoothly together with the vector space carrying them. The
primitive idea of differentiating the coordinates of the vector in a fixed basis is obviously
not satisfactory, since there is no intrinsic coordinate system which could guarantee the
invariance of the results. These difficulties were traditionally solved by classical tensor
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calculus, whose most sophisticated version can be found in Schouten’s ‘Ricci-Calculus’.
From there, the theory could only develop to the global direction, from the debauch of in-
dices to totally index-free calculus. This may be well illustrated by A. Nijenhuis’ activity.

It had become essentially clear by the second decade of the last century that, for a
coordinate-invariant tensorial differential calculus, we need a structure establishing an iso-
morphism between vector spaces at different points. Such a structure is called a connec-
tion. A connection was first constructed by Levi-Civita in the framework of Riemannian
geometry by defining a parallel transport between the tangent spaces at two points of the
base manifold along a smooth arc connecting the given points. This makes it possible to
form a difference quotient and to differentiate vector and tensor fields along the curve. The
differentiation procedure so defined is covariant differentiation. Thus it also becomes clear
that

connection, parallel transport, covariant differentiation

are essentially equivalent notions: these are the same object, from different points of view.
The history sketched in the foregoing is of course well-known, and technical details

are nowadays available in dozens of excellent monographs and textbooks. Somewhat para-
doxically, purely historical features (the exact original sources of main ideas, the evolution
of main streamlines) are not clear in every detail, and they would be worth of a more pro-
found study. In our present work, we would like to sketch some aspects of the rich theory
of differentiation on manifolds which are less traditional and less known, but which def-
initely seem to be progressive. One of the powerful trends nowadays is the globalization
of calculus on infinite-dimensional non-Banach topological vector spaces, i.e., its trans-
plantation onto manifolds, and a formulation of a corresponding Lie theory. The spectrum
becomes more colourful (and the theory less transparent) by the circumstance that we see
contesting calculi even on a local level. One corner stone in this direction is definitely
A. Kriegl and P. W. Michor’s truly monumental monograph [18], which establishes the
theory of calculus in so-called convenient vector spaces. Differentiation theory in con-
venient vector spaces is outlined in the contribution of J. Margalef-Roig and E. Outerelo
Domı́nguez in this volume. Another promising approach is Michal – Bastiani differential
calculus, which became known mainly due to J. Milnor and R. Hamilton. We have chosen
this way, drawing much from H. Glöckner and K.-H. Neeb’s monograph is preparation,
which will contain a thorough and exhaustive account of this calculus.

We would like to emphasize that the fundamental notions and techniques of ‘infinite
dimensional analysis’ can be spared neither by those who study analysis ‘only’ on finite-
dimensional manifolds. The reason for this is very simple: even the vector space of smooth
functions on an open subset of Rn is infinite-dimensional, and the most natural structure
with which it may be endowed is a suitable multinorm which makes it a Fréchet space.
Accordingly, we begin our treatment by a review of some basic notions and facts in con-
nection with topological vector spaces. The presentation is organized in such a way that
we may provide a non-trivial application by a detailed proof of Peetre’s theorem. This
famous theorem characterizes linear differential operators as support-decreasing R-linear
maps, and it is of course well-known, together with its various proofs. The source of one of
the standard proofs is Narasimhan’s book [29]; Helgason takes over essentially his proof
[15]. Although Narasimhan’s proof is very clear in its main features, our experience is
that understanding it in every fine detail requires serious intellectual efforts. Therefore we
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thought that a detailed treatment of Narasimhan’s line of thought could be useful by fill-
ing in the wider logical gaps. Thus, besides presenting fundamental techniques, we shall
also have a possibility to demonstrate hidden subtleties of these sophisticated (at first sight
mysterious) constructions.

We discuss Peetre’s theorem in a local framework, its transplantation to vector bundles,
however, does not raise any difficulty. After climbing this first peak, we sketch the main
steps towards the globalization of Michal – Bastiani differential calculus, on the level of
basic notions and constructions, on a manifold modeled on a locally convex topological
vector space.

In the last section, for simplicity’s sake, we return to finite dimension, and we discuss
a special problem about covariant derivatives. Due to Élie Cartan’s activity, it has been
known since the 1930s that a covariant derivative compatible with a Finsler structure can-
not be constructed on the base manifold (more precisely, on its tangent bundle), and the
velocity-dependent character of the objects makes it necessary to start from a so-called line
element bundle. In a contemporary language: the introduction of a covariant derivative,
analogous to Levi-Civita’s, metrical with respect to the Finsler structure, is only possible
in the pull-back of the tangent bundle over itself, or in some ‘equivalent’ fibre bundle. We
have to note that it was a long and tedious way from Élie Cartan’s intuitively very clear but
conceptually rather obscure construction to today’s strict formulations, and this way was
paved, to a great extent, by the demand for understanding Élie Cartan. In the meantime, in
1943, another ‘half-metrical’ covariant derivative in Finsler geometry was discovered by
S. S. Chern (rediscovered by Hanno Rund in 1951). This covariant derivative was essen-
tially in a state of suspended animation until the 1990s. Then, however, came a turning
point. Due to Chern’s renewed activity and D. Bao and Z. Shen’s work, Chern’s covariant
derivative became one of the most important tools of those working in this field. We wanted
to understand which were the properties of Chern’s derivative which could give priority to
it over other covariant derivatives used in Finsler geometry (if there are such properties).
As we have mentioned, Chern’s connection is only half-metrical: covariant derivatives of
the metric tensor arising from the Finsler structure in vertical directions do not vanish in
general. ‘In return’, however, the derivative is ‘vertically natural’: it induces the natural
parallelism of vector spaces on the fibres. This property makes it possible to interpret
Chern’s derivative as a covariant derivative given on the base manifold, parametrized lo-
cally by a nowhere vanishing vector field. We think that this possibility of interpretation
does distinguish Chern’s derivative in some sense. As for genuine applications of Chern’s
connection, we refer to T. Aikou and L. Kozma’s study in this volume.

Notation

As usual, R and C will denote the fields of real and complex numbers, respectively. N
stands for the ‘half-ring’ of natural numbers (integers = 0). If K if one of these number
systems, then K∗ := Kr {0}. R+ := {z ∈ R|z = 0}, R∗+ := R+ ∩ R∗. A mapping from
a set into R or C will be called a function.

Discussing functions defined on a subset of Rn, it will be convenient to use the multi-
index notation α = (α1, . . . , αn), where αi ∈ N, 1 5 i 5 n. We agree that

|α| := α1 + . . .+ αn, α! := α1! . . . αn!.

If β := (β1, . . . , βn) ∈ Nn, and βj 5 αj for all j ∈ {1, . . . , n}, we write β 5 α and
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define

α− β := (α1 − β1, . . . , αn − βn),
(
α

β

)
:=

α!
(α− β)!β!

.

If V and W are vector spaces over a field F, then LF(V,W ) or simply L(V,W ) de-
notes the vector space of all linear mappings from V into W , and V ∗ := L(V,F) is the
(algebraic) dual of V . If k ∈ N∗, Lk(V,W ) is the vector space of all k-multilinear map-
pings ϕ : V × . . . × V → W . We note that L

(
V,Lk(V,W )

)
is canonically isomorphic

to Lk+1(V,W ). We use an analogous notation if, more generally, V and W are modules
over the same commutative ring.

1 Background

Topology

We assume the reader is familiar with the rudiments of point set topology, so the meaning
of such elementary terms as open and closed set, neighbourhood, connectedness, Hausdorff
topology, (open) covering, first and second countability, compactness and local compact-
ness, continuity, homeomorphism, . . . does not demand an explanation. For the sake of
definiteness, we are going to follow, as closely as feasible, the convention of Dugundji’s
Topology [7]. Thus by a neighbourhood of a point or a set in a topological space we shall
always mean an open subset containing the point or subset, and we include in the definition
of second countability, compactness and local compactness the requirement that the topol-
ogy is Hausdorff. This subsection serves to fix basic terminology and notation, as well as
to collect some more subtle topological ideas which may be beyond the usual knowledge
of non-specialists.

We denote by N (p) the set of all neighbourhoods of a point p in a topological space.
A subset F ⊂ N (p) is said to be a fundamental system of p if for every V ∈ N (p) there

exists U ∈ F such that U ⊂ V . If S is a topological space, and A ⊂ S, then
◦
A, Ā and ∂A

denote the interior, the closure and the boundary of A, resp. If G is an Abelian group, and
f : S → G is a mapping, then

supp(f) := {p ∈ S|f(p) 6= 0}

is the support of f .
Let M be a metric space with distance function % : M ×M → R. If a ∈ M , and

r ∈ R∗+, the set

B%r (a) := {p ∈M |%(a, p) < r}

is called the open %-ball of centre a and radius r. (We shall omit the distinguishing %
whenever the distance function is clear from the context.) By declaring a subset ofM to be
open if it is a (possibly empty) union of open balls, a topology is obtained onM , called the
metric topology ofM , or the topology induced by the distance function %. Unless otherwise
stated, a metric space will always be topologized by its metric topology. Conversely, if a
topology T on a set S is induced by a distance function % : S × S → R, then T and % are
called compatible, and T is said to be metrizable.
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By far the most important metric space is the Euclidean n-space Rn, the set of all
n-tuples v =

(
ν1, . . . , νn

)
endowed with the Euclidean distance defined by

%E(a, b) := ‖a− b‖ = 〈a− b, a− b〉1/2 (a, b ∈ Rn),

where 〈 , 〉 is the canonical scalar product in Rn, and ‖ · ‖ is Euclidean norm arising from
〈 , 〉. The metric topology of Rn is called the Euclidean topology of Rn. We shall assume
that Rn (in particular, R = R1) is topologized with the Euclidean topology.

Let U be an open subset of Rn. A sequence (Ki)i∈N∗ of compact subsets of U is said
to be a compact exhaustion of U if

Ki ⊂
◦
Ki+1 (i ∈ N∗) and U = ∪

i∈N∗
Ki.

Lemma 1.1 There does exist a compact exhaustion for any open subset of Rn.

Proof. Let a (nonempty) open subset U of Rn be given. For every positive integer m,
define a subset Km of U as follows:

Km :=
{
p ∈ U

∣∣∣∣%E(p, ∂U) =
1
m

}
∩Bm(0)

(by convention, %E(p, ∂U) :=∞ if ∂U = ∅). It is then clear that each set Km is compact,

Km ⊂
◦
Km+1 (m ∈ N∗), and ∪i∈N∗Ki = U .

Now we recall some more delicate concepts and facts of point set topology.
A Hausdorff space is said to be a Lindelöf space if each open covering of the space

contains a countable covering. By a theorem of Lindelöf [7, Ch. VIII, 6.3] all second
countable spaces are Lindelöf (but the converse is not true!).

A locally compact space is called σ-compact if it can be expressed as the union of a
sequence of its compact subsets. It can be shown (see [7, Ch. XI, 7.2]) that a topological
space is σ-compact, if and only if, it is a locally compact Lindelöf space.

Let S be a topological space. An open covering (Uα)α∈A of S is said to be locally finite
(or nbd-finite) if each point of S has a nbd U such that U∩Uα 6= ∅ for at most finitely many
indices α. If (Uα)α∈A and (Vβ)β∈B are two coverings of S, then (Uα) is a refinement of
(Vβ) if for each α ∈ A there is some β ∈ B such that Uα ⊂ Vβ . A Hausdorff space is said
to be paracompact if each open covering of the space has an open locally finite refinement.

The following result has important applications in analysis.
Lemma 1.2 Any σ-compact topological space, in particular any second countable locally
compact topological space, is paracompact.

Proof. The statement is a fairly immediate consequence of some general topological facts.
Namely, the σ-compact spaces, as we have remarked above, are just the locally compact
Lindelöf spaces. Locally compact spaces are regular: each point and closed set not contain-
ing the point have disjoint nbds. Since by a theorem of K. Morita [7, VIII, 6.5] in Lindelöf
spaces regularity and paracompactness are equivalent concepts, we get the result.

It is well-known that the classical concept of convergence of sequences is not sufficient
for the purposes of analysis. Nets, which are generalizations of sequences, and their con-
vergence provide an efficient tool to handle a wider class of problems. To define nets, let
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us first recall that a directed set is a set A endowed with a partial ordering 5 such that for
any two elements α, β ∈ A there is an element γ ∈ A such that γ = α and γ = β. A net in
a set S is a family (sα)α∈A of elements of S, i.e., a mapping s : A→ S, α 7→ s(α) =: sα,
where A is a directed set. Obviously, any sequence s : n ∈ N 7→ s(n) =: sn ∈ S is a net,
since N is a directed set with its usual ordering.

A net (sα)α∈A in a topological space S is said to converge (or to tend) to a point p ∈ S
if for every U ∈ N (p) there is a β ∈ A such that

sα ∈ U whenever α = β.

Then we use the standard notation p = lim
α∈A

sα, and we say that (sα)α∈A is convergent in

S and has a limit p ∈ S.
Lemma 1.3 A topological space is Hausdorff if and only if any two limits of any conver-
gent net are equal.

Indication of proof. Let S be a topological space. It can immediately be seen that if
S is Hausdorff, then any convergent net in S has a unique limit. Conversely, sup-
pose that S is not Hausdorff. Let p, q ∈ S be two points which cannot be sep-
arated by open sets. Consider the directed set A whose elements are ordered pairs
α = (U ,V) where U ∈ N (p), V ∈ N (q) with the partial ordering

(U ,V) = (U1,V1) :⇐⇒ (U ⊂ U1 and V ⊂ V1).

For any α = (U ,V) let sα be some point of U ∩ V . Then the mapping s : α ∈ A 7→ sα ∈ S
is a net, and it is easy to check that s converges to both p and q.

The next result shows that nets are sufficient to control continuity.
Lemma 1.4 A mapping ϕ : S → T between two topological spaces is continuous if and
only if for every net s : A → S converging to p ∈ S, the net ϕ ◦ s : A → T converges to
ϕ(p).

For a (quite immediate) proof see e.g. [5, Ch. I, 6.6].

If S and T are topological spaces, then the set of continuous mappings of S into T will
be denoted by C(S, T ). In particular, C(S) = C0(S) := C(S,R), and

Cc(S) := {f ∈ C(S)| supp(f) is compact}.

Topological vector spaces

When Banach published his famous book ‘Théorie des operations linéaires’ in 1932, it was
the opinion that normed spaces provide a sufficiently wide framework to comprehend all
interesting concrete problems of analysis. It turned out, however, in a short time that this is
an illusion: a number of (non-artificial) problems of analysis lead to infinite-dimensional
vector spaces whose topology cannot be derived from a norm. In this subsection we recall
the most basic definitions and facts concerning topological vector spaces, especially locally
convex spaces. We restrict ourselves to real vector spaces, although vector spaces over
K ∈ {R,C} can also be treated without any extra difficulties.

If V is a (real) vector space, then a subset H of V is said to be
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convex if for each t ∈ [0, 1], tH + (1− t)H ⊂ H;

balanced if αH ⊂ H whenever α ∈ [−1, 1];

absorbing if ∪λ∈R∗+λH = V , i.e., for all v ∈ V there is a positive real number λ
(depending on v) such that v ∈ λH .

By a topological vector space (TVS) we mean a real vector space V endowed with a
Hausdorff topology compatible with the vector space structure of V in the sense that the
addition map V × V → V , (u, v) 7→ u + v and the scalar multiplication R × V → V ,
(λ, v) 7→ λv are continuous. (The product spaces are equipped with the product topology.)
Such a topology is called a linear topology or vector topology on V .

Let V be a topological vector space. For each a ∈ V the translation Ta : v ∈ V 7→
Ta(v) := a + v ∈ V , and for each λ ∈ R∗ the homothety hλ : v ∈ V 7→ λv ∈ V are
homeomorphisms. This simple observation is very important: it implies, roughly speaking,
that the linear topology looks like the same at any point. Thus, practically, in a TVS it is
enough to define a local concept or to prove a local property only in a neighbourhood
of the origin. We agree that in TVS context a fundamental system will always mean a
fundamental system of the origin. Thus F is a fundamental system in V if F ⊂ N (0), and
every neighbourhood of 0 (briefly 0-neighbourhood) contains a member of F .

In the category TVS the isomorphisms are the toplinear isomorphisms: linear isomor-
phisms which are homeomorphisms at the same time. As the following classical result
shows, the structure of finite dimensional topological vector spaces is the simplest possi-
ble.
Lemma 1.5 (A. Tychonoff) If V is an n-dimensional topological vector space, then there
is a toplinear isomorphism from V onto the Euclidean n-space Rn.

The idea of proof is immediate: we choose a basis (v1, . . . , vn) of V , and we show that
the linear isomorphism

(
ν1, . . . , νn

)
∈ Rn 7→

n∑
i=1

νivi ∈ V,

which is obviously continuous, is an open map. For details see e.g. [7, p. 413] or [36, p.
28].

Now we return to a generic topological vector space V . A subset H of V is said to
be bounded if for every 0-neighbourhood U there is a positive real number ε such that
εH ⊂ U . V is called locally convex if it has a fundamental system whose members are
convex sets, i.e., every 0-neighbourhood contains a convex 0-neighbourhood. V has the
Heine – Borel property if every closed and bounded subset of V is compact.
Lemma 1.6 If a topological vector space V has a countable fundamental system, then V
is metrizable. More precisely, there is a distance function % on V such that

(i) % is compatible with the linear topology of V ;

(ii) % is translation invariant, i.e., %(Ta(u), Ta(v)) = %(u, v) for all a, u, v ∈ V ;

(iii) the open %-balls centred at the origin are balanced.
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If, in addition, V is locally convex, then % can be chosen so as to satisfy (i)–(iii), and also

(iv) all open %-balls are convex.

For a proof we refer to [33, I, 1.24].
A net (vα)α∈A in a locally convex space V is said to be a Cauchy net if for every

0-neighbourhood U in V there is an α0 ∈ A such that

vα − vβ ∈ U whenever α, β = α0.

In particular, a sequence in V is called a Cauchy sequence if it is a Cauchy net. Note
that if the topology of V is compatible with a translation invariant distance function % :
V × V → R, then a sequence (vn)n∈N∗ in V is a Cauchy sequence if and only if it is
a Cauchy sequence in metrical sense, i.e., for every ε ∈ R∗+ there is an integer n0 such
that %(vm, vn) < ε whenever m > n0 and n > n0. A locally convex space V is said
to be complete, resp. sequentially complete if any Cauchy net, resp. Cauchy sequence is
convergent in V . These completeness concepts coincide if V is metrizable, i.e., we have
Lemma 1.7 A metrizable locally convex space is complete if and only if it is sequentially
complete.

As for the proof, the only technical difficulty is to check that sequential completeness
implies completeness, i.e., the convergence of every Cauchy net. For a detailed reasoning
we refer to [8, B.6.2].

It follows from our preceding remarks that if the topology of a locally convex space is
induced by a translation invariant distance function, then the space is complete if and only
if it is complete as a metric space. TVSs sharing these properties deserve an own name:
a locally convex space is said to be a Fréchet space if its linear topology is induced by
a complete, translation invariant distance function. We shall see in the next chapter that
important examples of Fréchet spaces occur even in the context of classical analysis. In the
rest of this chapter we are going to indicate how one can construct locally convex spaces,
in particular Fréchet spaces, starting from a family of seminorms.

We recall that a seminorm on a real vector space V is a function ν : V → R, satisfying
the following axioms:

ν(u+ v) 5 ν(u) + ν(v) for all u, v ∈ V (subadditivity);

ν(λv) = |λ|ν(v) for all λ ∈ R, v ∈ V (absolute homogeneity).

Then it follows that ν(0) = 0, and ν(v) = 0 for all v ∈ V . If, in addition, ν(v) = 0
implies v = 0, then ν is a norm on V . As in the case of metric spaces, given a point a ∈ V
and a positive real number r, we use the notation

Bνr (a) := {v ∈ V |ν(v − a) < r}

and the term ‘open ν-ball with centre a and radius r’. It can be seen immediately that the
‘open unit ν-ball’

B := Bν1 (0) = {v ∈ V |ν(v) < 1}

is convex, balanced and absorbing.
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A family P = (να)α∈A of seminorms on V is said to be separating if for any point
v ∈ V r {0} there is an index α ∈ A such that να(v) 6= 0. A separating family of
seminorms on a vector space is also called a multinorm. A multinormed vector space is a
vector space endowed with a multinorm.
Lemma 1.8 Suppose P = (να)α∈A is a separating family of seminorms on a vector space
V . For each α ∈ A and n ∈ N∗, let

V(α, n) :=
{
v ∈ V

∣∣∣∣να(v) <
1
n

}
.

If F is the family of all finite intersections of the sets V(α, n), then F is a fundamental
system for a topology on V , which makes V into a locally convex TVS such that

(i) the members of F are convex balanced sets;

(ii) for each α ∈ A, the function να : V → R is continuous;

(iii) a subset H of V is bounded if and only if every member of P is bounded on H .

For a proof we refer to Rudin’s text [33].
Some comments to this important result seem to be appropriate.

Remark 1.9 Suppose V is a locally convex space, and let T be its linear topology. It may
be shown that if F is a fundamental system of V consisting of convex balanced sets, then
F generates a separating family P of seminorms on V . According to 1.8, P induces a
topology T1 on V . Now it can easily be checked that T1 = T .
Remark 1.10 Suppose that in Lemma 1.8 a countable family P = (νn)n∈N∗ of seminorms
is given on V . Then the fundamental system arising from P is also countable, therefore,
by Lemma 1.6, the induced topology is compatible with a translation invariant distance
function. In addition, such a distance function can explicitly be constructed in terms of P;
for example, the formula

%(u, v) :=
∞∑
n=1

2−nνn(u− v)
1 + νn(u− v)

; (u, v) ∈ V × V

defines a distance function which satisfies the desired properties.
As a consequence of our preceding discussion, we have the following useful character-

ization of Fréchet spaces.
Corollary 1.11 A vector space is a Fréchet space, if and only if, it is a complete multi-
normed vector space (V, (να)α∈A), where the set A is countable. Completeness is under-
stood with respect to the multinorm topology whose subbasis is the family{

Bναr (v) ⊂ V |α ∈ A, r ∈ R∗+, v ∈ V
}
.

The distance function described in 1.10 is compatible with the multinorm topology.

2 Calculus in topological vector spaces and beyond

Local analysis in the context of topological vector spaces

In infinite-dimensional analysis there is a deep breaking between the case of (real or com-
plex) Banach spaces and that of more general locally convex topological vector spaces
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which are not normable: depending on the type of derivatives used (Fréchet derivative,
Gâteaux derivative, . . . ) one obtains non-equivalent calculi. As a consequence, there are
several theories of infinite-dimensional manifolds, Lie groups and differential geometric
structures. Changing the real or complex ground field to a more general topological field
or ring, even more general differential calculus, Lie theory and differential geometry may
be constructed [3, 4]. In this subsection we briefly explain the approach to differential
calculus originated by A. D. Michal [25] and A. Bastiani [2], and popularized by J. Milnor
[27] and R. Hamilton [13]. For an accurately elaborated, detailed recent account we refer
to [8].

For simplicity, and in harmony with the applications we are going to present, we restrict
ourselves to the real case. We begin with some remarks concerning the differentiability
of curves with values in a locally convex topological vector space. This is the simplest
situation, without any difficulty in principle. However, some interesting new phenomena
occur.
Definition 2.1 Let V be a locally convex vector space and I ⊂ R an interval containing
more than one point. By a C0-curve on I with values in V we mean a continuous map
γ : I → V .

(1) Let α, β ∈ R, α < β. A C0-curve γ : [α, β] → V is called a Lipschitz curve if the
set {

1
s− t

(γ(s)− γ(t)) ∈ V
∣∣∣∣s, t ∈ [α, β], s 6= t

}
is bounded in V .

(2) Suppose I is an open interval. A C0-curve γ : I → V is said to be a C1-curve if the
limit

γ′(t) := lim
s→0

1
s

(γ(t+ s)− γ(t))

exists for all t ∈ I , and the map

γ′ : t ∈ I 7→ γ′(t) ∈ V

is continuous. Given k ∈ N∗, γ is called of class Ck if all its iterated derivatives up
to order k exist and are continuous. γ is smooth if it is of class Ck for all k ∈ N.

Remark 2.2 It may be shown (but not at this stage of the theory) that if γ : I → V is a
C1-curve and [α, β] ⊂ I is a compact interval, then γ � [α, β] is Lipschitz.
Definition 2.3 Suppose V is a locally convex vector space, and let γ : [α, β] → V be a
C0-curve. If there exists a vector v ∈ V such that for every continuous linear form λ ∈ V ∗
we have

λ(v) =
∫ β

α

λ ◦ γ (Riemann integral),

then v ∈ V is called the weak integral of γ from α to β, and the notation

v =:
∫ β

α

γ =
∫ β

α

γ(t)dt
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is applied. V is said to be Mackey-complete if the weak integral
∫ β
α
γ exists for each

Lipschitz-curve γ : [α, β]→ V .
Remark 2.4 (1) If the weak integral of a C0-curve γ : [α, β] → V exists, then it is

unique, since by a version of the Hahn – Banach theorem V ∗ separates points on V
(see e.g. [33, 3.4, Corollary]).

(2) If V is a sequentially complete locally convex vector space, then it is also Mackey-
complete: it may be shown that the weak integral of any C0-curve γ : [α, β] → V
can be obtained as the limit of a sequence of Riemann sums. For details see [8]. The
importance of the concept of Mackey-completeness lies in the fact that a number of
important constructions of the theory depends only on the existence of some weak
integrals. For an alternative definition and an exhaustive description of Mackey-
completeness we refer to the monograph of A. Kriegl and P. Michor [18].

(3) Let V and W be locally convex spaces, ϕ : V → W a continuous linear mapping,
and γ : I → V a C1-curve. One can check by an immediate application of the
definition that ϕ ◦ γ : I →W is also a C1-curve, and

(ϕ ◦ γ)′ = ϕ ◦ γ′.

Lemma 2.5 (Fundamental theorem of calculus) Let V be a locally convex vector space,
and I ⊂ R be an open interval.

(1) If γ : I → V is a C1-curve and α, β ∈ I , then

γ(β)− γ(α) =
∫ β

α

γ′(t)dt.

(2) If γ : I → V is a C0-curve, α ∈ I , and the weak integral

η(t) :=
∫ t

α

γ(s)ds

exists for all t ∈ I , then η : I → V is a C1-curve, and η′ = γ.

Proof of part 1. Let λ ∈ V ∗ be a continuous linear form. By Remark 2.4(3) and the
classical ‘Fundamental theorem of calculus’, it follows that

λ(γ(β)− γ(α)) = λγ(β)− λγ(α) =
∫ β

α

(λ ◦ γ)′ =
∫ β

α

λ ◦ γ′.

It means that γ(β)− γ(α) is the weak integral of γ′ from α to β.

Remark 2.6 The second part of the lemma is proved in [13]; it needs a more sophisticated
argument, and hence additional preparations.
Definition 2.7 Let V and W be locally convex topological vector spaces, U ⊂ V an open
set, and f : U →W a mapping.
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(1) By the derivative of f at a point p ∈ U in the direction v ∈ V we mean the limit

Dvf(p) = df(p, v) := lim
t→0

1
t
(f(p+ tv)− f(p))

whenever it exists. f is called differentiable at p if df(p, v) exists for all v ∈ V .

(2) The map f is said to be continuously differentiable or of class C1 (briefly C1) on U
if it is differentiable at every point of U and the map

df : U × V →W, (p, v) 7→ df(p, v)

is continuous.

(3) Let k ∈ N, k = 2. f is called a Ck-map (or briefly Ck) if the iterated directional
derivatives

djf(p, v1, . . . , vj) := (Dvj . . . Dv1f)(p)

exist for all j ∈ N∗ such that j 5 k, p ∈ U and v1, . . . , vj ∈ V , and the mappings
djf : U × V j → W are continuous. djf is called the jth differential of f . If f is
Ck for all k ∈ N, then f is said to be C∞ or smooth.

Notation We write Ck(U ,W ) for the set (in fact a vector space) of Ck-maps from U into
W . When W is 1-dimensional, and hence W ∼= R, we usually just write Ck(U).
Remark 2.8 (1) It is obvious from the definition that the derivative of a linear mapping

exists at every point. Since there are linear mappings which are not continuous, it
follows that differentiability does not imply continuity. However, if ϕ : V →W is a
continuous linear mapping, then ϕ is smooth, and at every (p, v) ∈ V × V we have
dϕ(p, v) = ϕ(v), while dkϕ = 0 for k = 2.

(2) djf in our notation is not the same as djf in [8], rather it is the same as d(j)f in [8].

(3) The concept of Ck-differentiability introduced here will occasionally be mentioned
as the Michal – Bastiani differentiability. Observe that in the formulation of the def-
inition the local convexity of the underlying vector spaces does not play any role.
However, if one wants to build a ‘reasonable’ theory of differentiation (with ‘ex-
pectable’ rules for calculation), the requirement of local convexity is indispensable.

Lemma 2.9 Let V and W be locally convex vector spaces, U ⊂ V an open subset, and
f : U →W a C1-map.

(1) The map

f ′(p) : V →W, v 7→ f ′(p)(v) := df(p, v)

is a continuous linear map for each p ∈ U , and f is continuous.

(2) Let p ∈ U , v ∈ V , and suppose that p + tv ∈ U for all t ∈ [0, 1]. Define the
C0-curve c : [0, 1]→W by

c(t) := df(p+ tv, v) = f ′(p+ tv)(v).
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Then

f(p+ v) = f(p) +
∫ 1

0

c,

therefore f is locally constant, if and only if, df = 0.

(3) (Chain rule) Suppose Z is another locally convex vector space, V ⊂ W is an open
subset, and h : V → Z is a C1-map. If f(U) ⊂ V , then h ◦ f : U → Z is also a
C1-map, and for all p ∈ U we have

(h ◦ f)′(p) = h′(f(p)) ◦ f ′(p).

(4) (Schwarz’s theorem) If f is of class Ck (k = 2), then

f (k)(p) : (v1, . . . , vk) ∈ V k 7→ f (k)(p)(v1, . . . , vk) := dkf(p, v1, . . . , vk)

is a continuous, symmetric k-linear map for all p ∈ U .

(5) (Taylor’s formula) Suppose f is of class Ck (k = 2). Then, if p ∈ U , v ∈ V and the
segment joining p and p+ v is in U , we have

f(p+ v) = f(p) + f ′(p)(v) + . . .+
1

(k − 1)!
f (k−1)(p)(v, . . . , v)

+
1

(k − 1)!

∫ 1

0

ck,

where ck : [0, 1]→W is a C0-curve given by

ck(t) := (1− t)k−1f (k)(p+ tv)(v, . . . , v), t ∈ [0, 1].

Indication of proof. The continuity of f ′(p) is obvious, since f ′(p) = df(p, ·), and df is
continuous. An immediate application of the definition of differentiability leads to the
homogeneity of f ′(p). To check the additivity of f ′(p) some further (but not difficult)
preparation is necessary, see [8, 1.2.13, 1.2.14]. To prove the integral representation in (2),
let

γ(t) := f(p+ tv), t ∈ [0, 1].

Then γ is differentiable at each t ∈ [0, 1] in the sense of 2.1(2), namely

γ′(t) := lim
s→0

γ(t+ s)− γ(t)
s

= lim
s→0

1
s

(f(p+ tv + sv)− f(p+ tv))

=: df(p+ tv, v) = f ′(p+ tv)(v) =: c(t).

Thus γ′ = c, and the fundamental theorem of calculus (2.5(1)) gives

f(p+ v)− f(p) = γ(1)− γ(0) =
∫ 1

0

γ′ =
∫ 1

0

c.
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To see that f is continuous, choose a continuous seminorm ν : W → R, and let ε be an
arbitrary positive real number. Then there exists a balanced neighbourhood U0 of the origin
in V such that p+ U0 ⊂ U , and for all t ∈ [0, 1], v ∈ U0 we have

ν(c(t)) = ν(f ′(p+ tv)(v)) 5 ε.

Now it may be shown [8, 1.1.8] that

ν
(∫ 1

0
c
)
5 sup{ν(c(t)) ∈ R|t ∈ [0, 1]},

therefore

ν(f(p+ v)− f(p)) = ν
(∫ 1

0
c
)
5 ε,

and hence f is continuous. This concludes the sketchy proof of (1) and (2).
For a proof of the chain rule and Schwarz’s theorem we refer to [13] and [8]. The latter

reference also contains a detailed treatment of Taylor’s formula.

Remark 2.10 We keep the hypotheses and notations of the Lemma.

(1) The continuous linear map f ′(p) : V → W introduced in 2.9(1) is said to be the
derivative of f at p. Note that the symbol f ′(t) carries double meaning if f : I →W
is a C1-curve: by 2.1(2) f ′(t) ∈ W , while by 2.9(1) f ′(t) ∈ L(R,W ). Fortunately,
this abuse of notation leads to no serious conflict since the vector spaces W and
L(R,W ) can be canonically identified via the linear isomorphism

γ ∈ L(R,W ) 7→ γ(1) ∈W.

(2) In Lemma 2.9 we have listed only the most elementary facts concerning Michal –
Bastiani differentiation. It is a more subtle problem, for example, to obtain inverse
(or implicit) function theorems in this (or a more general) context. The idea of gener-
alization of the classical inverse function theorem for mappings between some types
of Fréchet spaces is due to John Nash. Nash’s inverse function theorem played an im-
portant role in his famous paper on isometric embeddings of Riemannian manifolds
[30]. It was F. Sergeraert who stated the theorem explicitly in terms of a category of
maps between Fréchet spaces [34]. In Moser’s formulation [28] the theorem became
an abstract theorem in functional analysis of wide applicability. Further generaliza-
tions have been given by Hamilton [14], Kuranishi [19], Zehnder [37], and more
recently Leslie [22] and Ma [24]. In reference [10], inspired by Hiltunen’s results
[16], Glöckner proves implicit function theorems for mappings defined on topologi-
cal vector spaces over valued fields. In particular, in the real and complex cases he
obtains implicit function theorems for mappings from not necessarily locally convex
topological vector spaces to Banach spaces.

To emphasize that the results of calculus in Banach spaces cannot be transplanted
into the wider framework of topological vector spaces in general, finally we men-
tion a quite typical pathology: the uniqueness and existence of solutions to ordinary
differential equations are not guaranteed beyond Banach spaces. For a simple illus-
tration of this phenomenon in Fréchet spaces see [13, 5.6.1].
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(3) We briefly discuss the relation between the concept of Michal – Bastiani differentia-
bility and the classical concept of Fréchet differentiability for mappings between Ba-
nach spaces. Recall that a continuous map from an open subset U of a Banach space
V into a Banach spaceW is called continuously Fréchet differentiable or FC1, if for
all p ∈ U there exists a (necessarily unique) continuous linear map f ′(p) : V → W
such that

lim
v→0

f(p+ v)− f(p)− f ′(p)(v)
‖v‖

= 0,

and the map f ′ : U → L(V,W ), p 7→ f ′(p) is continuous (with respect to the
operator norm in L(V,W )). Inductively, we define f to be FCk (k = 2) if f ′ is
FCk−1. Now it may be shown that every FCk-map is Ck (in the sense of Michal –
Bastiani), and every Ck+1-map between open subsets of Banach spaces is FCk, so
the two concepts coincide in the C∞ case. For a proof we refer to [26] or [11].

(4) As an equally important approach to non-Banach infinite-dimensional calculus we
have to mention the so-called convenient calculus elaborated in detail by A. Kriegl
and P. W. Michor [18]. Let V and W be locally convex vector spaces and U ⊂
V an open subset. A mapping f : U → W is said to be conveniently smooth if
f ◦ γ : I → W is a smooth curve for each smooth curve γ : I → U . By the
chain rule 2.9(3) it is clear that if a mapping is Michal – Bastiani smooth, then it
is conveniently smooth as well. The converse of this statement is definitely false:
a conveniently smooth mapping need not even be continuous. However, if V is a
Fréchet space, then f : U → W is conveniently smooth if and only if it is Michal –
Bastiani smooth. For a sketchy proof see [31, II, 2.10].

Remark 2.11 It should be noticed that all the difficulties arising in our preceding discussion
disappear if the underlying vector spaces are finite dimensional. The first reason for this lies
in the fact that Tychonoff’s theorem (1.5) guarantees, roughly speaking, that the Euclidean
topology ofRn is the only linear topology that an n-dimensional real vector space can have.
This canonical topology is locally convex, locally compact and metrizable. In particular,
if V and W are finite dimensional vector spaces, then L(V,W ) also carries the canonical
linear topology. This also leads to a significant difference between the calculus in finite or
infinite dimensional Banach spaces on the one hand, and in non-Banachable spaces on the
other hand. For example, if V and W are (non-Banach) Fréchet spaces, then the vector
space of continuous linear maps between V and W is not necessarily a Fréchet space. In
the following we assume that all finite dimensional vector spaces are endowed with the
canonical topology assured by Tychonoff’s theorem.

In the finite dimensional case the differentiability concepts introduced above result in
the same class of Ck mappings. For lack of norms we shall always use the Michal –
Bastiani definition. So if V and W are finite dimensional (real) vector spaces, U ⊂ V
is an open set, then a mapping f : U → W is C1 if there is a continuous mapping
f ′ : U → L(V,W ) such that at each point p ∈ U and for all v ∈ V we have

f ′(p)(v) = lim
t→0

1
t
(f(p+ tv)− f(p)).

Higher derivatives and smoothness can be defined as in 2.7(3). Notice that if f ∈
Ck(U ,W ) (k = 2), then its kth derivative at a point p ∈ U is denoted by f (k)(p), and it is
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an element of

L
(
V,Lk−1(V,W )

) ∼= Lk(V,W )

given by

f (k)(p)(v1, . . . , vk)

:= lim
t→0

1
t

(
f (k−1)(p+ tv1)(v2, . . . , vk)− f (k−1)(p)(v2, . . . , vk)

)
for each (v1, . . . , vk) ∈ V k.

Smooth functions and differential operators on Rn

In this subsection we have a closer look at the most important special case, when the do-
main of the considered functions is a subset of the Euclidean n-space Rn, and we describe
the linear differential operators acting on the spaces of these functions.

First we recall a basic existence result.
Lemma 2.12 Let U be a nonempty open subset of Rn, and (Ui)i∈I an open covering of U .
There exists a family (fi)i∈I of smooth functions on U such that

(i) 0 5 fi(p) 5 1 for all i ∈ I and p ∈ U;

(ii) supp(fi) ⊂ Ui for all i ∈ I;

(iii) (supp(fi))i∈I is locally finite;

(iv) for each point p ∈ U we have
∑
i∈I fi(p) = 1.

The family (fi)i∈I in the Lemma is said to be a partition of unity subordinate to the
covering (Ui)i∈I . The heart of the proof consists of an application of the purely topological
Lemma 1.2 and the construction of a smooth function f : Rn → R, called a smooth bump
function, with the following properties:

0 5 f(p) 5 1 for all p ∈ Rn; f(q) = 1 if q ∈ B1(0); supp(f) ⊂ B2(0)

(the balls are taken with respect to the Euclidean distance).
More generally, let U and V be open subsets, K a closed subset of Rn, and suppose

that K ⊂ V ⊂ U . A smooth function f : U → R is said to be a bump function for K
supported in V if 0 5 f(p) 5 1 for each p ∈ U , f(q) = 1 if q ∈ K, and supp(f) ⊂ V . As
an immediate consequence of Lemma 2.12, we have
Corollary 2.13 If U and V are open subsets,K is a closed subset of Rn, andK ⊂ V ⊂ U ,
then there exists a bump function for K supported in V .

Indeed, if U0 := V , U1 := U rK, then (U0,U1) is an open covering of U , so by 2.12
there exists a partition of unity (f0, f1) subordinate to (U0,U1). Then f1 � K = 0, and for
each q ∈ K we have f0(q) = (f0 + f1)(q) = 1, therefore the function f := f0 has the
desired properties.
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Remark 2.14 In the following the canonical basis of Rn will be denoted by (ei)ni=1, and
(ei)ni=1 will stand for its dual. The family (ei)ni=1 will also be mentioned as the canonical
coordinate system for Rn. If U ⊂ Rn is an open subset, and f ∈ C∞(U), then

Dif : U → R, p 7→ Dif(p) := f ′(p)(ei) (i ∈ {1, . . . , n})

is the ith partial derivative of f (with respect to the canonical coordinate system). For each
multi-index α = (α1, . . . , αn) ∈ Nn we write

Dαf := Dα1
1 . . . Dαn

n f ; Dαi
i f := Di . . . Di︸ ︷︷ ︸

αitimes

f (i ∈ {1, . . . , n})

with the convention Dαf := f if |α| = 0. We say that Dα is an elementary partial
differential operator of order |α|. A linear differential operator is a linear combination
D =

∑
‖α‖5m aαD

α, where m ∈ N, aα ∈ C∞(U). Clearly, D maps C∞(U) linearly
into C∞(U). It is not difficult to show (see e.g. [6, (8.13.1)], or [20, Ch. XI, §1]) that
if a linear differential operator is identically 0 on C∞(U), then each of its coefficients is
identically 0 on U . From this it follows that the coefficients of a linear diferential operator
D =

∑
‖α‖5m aαD

α are uniquely determined; the highest value of |α| such that aα 6= 0
is called the order of D.
Lemma 2.15 (generalized Leibniz rule) Let U 6= ∅ be an open subset of Rn. If f, h ∈
C∞(U) and α ∈ Nn is a multi-index, then

Dα(fh) =
∑

µ+ν=α

(
α

ν

)
(Dνf)(Dµh).

Remark 2.16 We need some further notations. We shall denote by C∞c (Rn) the subspace
of C∞(Rn) consisting of smooth functions on Rn which have compact support. For any
nonempty subset S of Rn, C∞c (S) will stand for the space of functions in C∞c (Rn) whose
support lies in S. A function in C∞c (S) will be identified with its restriction to S. (Notice
that L. Schwartz’s notation E(U) := C∞(U), D(U) := C∞c (U), D(K) := C∞c (K) is
widely used in distribution theory.)
Proposition 2.17 Let a (nonempty) open subset U of Rn be given. For any compact set K
contained in U and any multi-index α ∈ Nn, define the function ‖ ‖Kα : C∞(U) → R by
setting

‖f‖Kα := sup
p∈K
|Dαf(p)|, f ∈ C∞(U).

Then the family
(
‖ ‖Kα

)
is a multinorm onC∞(U) which makes it into a Fréchet space hav-

ing the Heine – Borel property, such thatC∞c (K) is a closed subspace ofC∞(U) whenever
K ⊂ U is compact.

Proof. It is clear that the family
(
‖ ‖Kα

)
is a multinorm, so it defines a locally convex

topology on C∞(U) according to 1.8. We claim that the TVS so obtained is metrizable
and complete. In order to show this we construct another countable family of seminorms
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on C∞(U) which is equivalent to the given one in the sense that the two families generate
the same topology.

Let (Kn)n∈N∗ be the compact exhaustion of U described in the proof of 1.1. If for each
n ∈ N∗

νn(f) := sup
p∈Kn,|α|5n

|Dαf(p)|, f ∈ C∞(U),

then (νn)n∈N∗ is a multinorm on C∞(U), which defines a metrizable locally convex topol-
ogy on C∞(U) by 1.8 and 1.10. To prove the equivalence of the two seminorm-families,
it is enough to check that each member of the first family is majorized by a finite linear
combination of the second family, and conversely.

Now, on the one hand, it is obvious that for every positive integer n and smooth function
f in C∞(U) we have

νn(f) 5
∑
|α|5n

‖f‖Knα
(

2.18= ‖f‖Knn
)
,

thus νn is majorized by
(
‖ ‖Knα

)
|α|5n. To prove the converse, choose a compact set K ⊂

U , and define the following functions:

δ : K → ]0,∞] , p 7→ δ(p) := %E(p, ∂U);
∆ : K → R+, p 7→ ∆(p) := %E(p, 0) = ‖p‖.

Then both δ and ∆ are continuous; δ attains its minimum c ∈ R∗+, and ∆ attains its
maximum C ∈ R+ on K. Now choose n ∈ N∗ such that

1
n
< c and n > C.

Then the member Kn of the compact exhaustion of U contains the compact set K. If, in
addition, n = |α|, the seminorm νn is a majorant of the seminorm ‖ ‖Kα .

For a proof of the remaining claims we refer to [33, 1.46].

Remark 2.18 Let U be an open subset of Rn, S any subset of U , and m ∈ N. It is easy to
check that the mapping

‖ ‖Sm : f ∈ C∞c (U) 7→ ‖f‖Sm :=
∑
|α|5m

sup
p∈S
|Dαf(p)|

is also a seminorm on C∞c (U). Using this seminorm, in case of S = U we shall omit the
superscript in the notation.

Now, following Narasimhan [29, 1.5.1], we introduce a purely technical term. We say
that a function f ∈ C∞(U) is m-flat at a point p ∈ U if Dαf(p) = 0, whenever |α| 5 m.
We shall find the following observation useful:
Lemma 2.19 If a function f ∈ C∞(Rn) is m-flat at the origin, then for every ε ∈
R∗+ there exists a function h ∈ C∞(Rn), vanishing on a 0-neighbourhood, such that
‖h− f‖m < ε.
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Proof. Corollary 2.13 assures the existence of a function ψ ∈ C∞(Rn) such that

∀p ∈ Rn : 0 5 ψ(p) 5 1, ψ(p) = 0 if p ∈ B 1
2
(0), ψ(p) = 1 if p ∈ RnrB1(0).

Given a positive real number δ, consider the homothety hδ of Rn, and let

h :=
(
ψ ◦ h1/δ

)
f.

Then, obviously, h ∈ C∞(Rn), and h vanishes on a 0-neighbourhood. So it is sufficient
to show that if |α| 5 m,

sup
p∈Rn

|Dαh(p)−Dαf(p)| → 0 as δ → 0. (∗)

Since h(p) = f(p) if ‖p‖ > δ, it follows that

sup
p∈Rn

|Dαh(p)−Dαf(p)| = sup
‖p‖5δ

|Dαh(p)−Dαf(p)|

5 sup
‖p‖5δ

|Dαh(p)|+ sup
‖p‖5δ

|Dαf(p)|.

By our assumption, we have Dαf(0) = 0 for |α| 5 m; thus

sup
‖p‖5δ

|Dαf(p)| → 0 as δ → 0. (∗∗)

Now we consider the function Dαh. Using 2.15, we obtain

Dαh = Dα
((
ψ ◦ h1/δ

)
f
)

=
∑

µ+ν=α

(
α

ν

)
Dν
(
ψ ◦ h1/δ

)
Dµf

=
∑

µ+ν=α

(
α

ν

)
δ−|ν|

(
(Dνψ) ◦ h1/δ

)
Dµf.

Since ψ is constant outside B1(0), the function Dνψ is bounded. If

Cν := sup
p∈Rn

|Dνψ(p)|, C := max
ν

(
α

ν

)
Cν ,

then we get the following estimation:

|Dαh| 5 C
∑

µ+ν=α

δ−|ν||Dµf |.

As f is m-flat at 0, Dµf is (m− |µ|)-flat at the origin. Thus, using Landau’s symbol o(·),

sup
‖p‖5δ

|Dµf(p)| = o
(
δm−|µ|

)
,

therefore

sup
‖p‖5δ

|Dαh(p)| = o
(∑

µ+ν=α δ
m−|µ|−|ν|

)
= o

(
δm−|α|

)
,
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and hence

sup
p∈Rn

|Dαh(p)−Dαf(p)| 5 o
(
δm−|α|

)
+ sup
‖p‖5δ

|Dαf(p)|.

In view of (∗∗), this implies the desired relation (∗).

Lemma 2.20 Let U ⊂ Rn be a (nonempty) open set. Suppose D : C∞(U) → C∞(U),
f 7→ Df is a linear mapping which decreases supports, that is

supp(Df) ⊂ supp(f)

for all functions f ∈ C∞(U). Then for each point p ∈ U there exists a relatively compact
neighbourhood V of p

(
V̄ ⊂ U

)
, a positive integer m and a positive real number C such

that

‖Du‖0 5 C‖u‖m

holds for any function u ∈ C∞c (V r {p}) (‖ ‖k (k ∈ N) is the seminorm introduced in
2.18).

Note Recall that any function f ∈ C∞c (V r {p}) is identified with a function f̃ ∈ C∞(U)
according to 2.16. Since D is support-decreasing, we may apply it to f by the formula
Df := Df̃ .

Proof of the lemma. Suppose the contrary: there is a point p ∈ U such that for any rela-
tively compact nbd V ⊂ U of p, any positive integer m and positive real number C, there
is a function u ∈ C∞c (V r {p}) such that

‖Du‖0 > C‖u‖m.

1st step Choose a relatively compact set U0 ⊂ U in N (p), and let m := 1, C := 22. By
our assumption, there is a function u1 ∈ C∞c (U0 r {p}) such that

‖Du1‖0 > 22‖u1‖1.

Let U1 := {q ∈ U0|u1(q) 6= 0}. Then U0 r U1 ∈ N (p), so, using our assumption again,
there is a function u2 ∈ C∞c

(
U0 r U1 r {p}

)
such that

‖Du2‖0 > 24‖u2‖2.

Now we define U2 :=
{
q ∈ U0 r U1

∣∣u2(q) 6= 0
}

, and we repeat our argument. Thus, by
induction, we obtain a sequence (Uk)k∈N∗ of open sets and (uk)k∈N∗ of functions such
that

Uk ⊂ U0 r {p} (k ∈ N∗); Uk ∩ U` = ∅ if k 6= `;

uk ∈ C∞c
(
U0 r U1 r . . .r Uk−1 r {p}

)
⊂ C∞c (U);

Uk =
{
q ∈ U0 r U1 r . . .r Uk−1

∣∣uk(q) 6= 0
}

(k ∈ N∗),

and, finally,

‖Duk‖0 > 22k‖uk‖k. (∗)
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2nd step Consider the function

u :=
∑
k∈N∗

2−k

‖uk‖k
uk.

Since at each point of U0, at most one member of the right-hand side differs from zero, u
is well-defined. We claim that u is smooth on its domain. To prove this, we have to show
that each point p ∈ U0 has a neighbourhood on which u is smooth. We divide the points of
U0 into three disjoint classes in the following way. First, let

V1 :=
∞
∪
k=1
Uk.

Then any point p ∈ V1 is contained in some Uk, on which u is obviously smooth. Next,
let V2 be the set of points in U0 which have a neighbourhood V intersecting with at most
one of the Uk’s. Then u is smooth on V as well. Finally, let V3 be the set of points
in U0 whose every neighbourhood intersects with infinitely many of the Uk’s. The only
difficulty is to verify the smoothness of u in a neighbourhood of such points. By the
Bolzano – Weierstraß theorem, V3 cannot be empty.

Let p ∈ V3. First we show that u is continuous at p. Since p /∈ Uk (k ∈ N∗), u(p) = 0.
Let ε > 0 be arbitrary, and

k :=
⌈

log2

1
ε

⌉
(where the symbol d e denotes upper integer part). Now we define

δ := min
15i5k

d
(
p,Ui

)
.

Then δ > 0, otherwise p ∈ V2 would follow. If q ∈ Bδ(p), we have either u(q) = 0 or
q ∈ U` for some ` > k, thus

|u(q)| =
∣∣∣∣ 2−`

‖u`‖`
u`(q)

∣∣∣∣ 5 ∣∣∣∣ 2−`

‖u`‖0
u`(q)

∣∣∣∣ 5 2−` < 2−k 5 2− log2(1/ε) = ε,

therefore u is continuous at p.
Now we proceed by induction. Let m be a fixed positive integer, and suppose that all

partial derivatives of u up to order m − 1 exist and are continuous, and they all vanish at
p. Let α ∈ Nn be a multi-index such that |α| = m − 1, and i ∈ {1, . . . , n}. To show that
DiD

αu(p) exists, we have to consider the following limit:

lim
t→0

Dαu(p+ tei)−Dαu(p)
t

= lim
t→0

Dαu(p+ tei)
t

.

Let ε > 0 be arbitrary. Now we define k almost in the same way as in the previous part of
the proof:

k := max
{
m,

⌈
log2

1
ε

⌉}
.
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Let t ∈ ]0, δ[, where δ is defined exactly in the same way as above. Then either Dαu(p +
tei) = 0, or p+ tei ∈ U` for some ` > k. Let

t0 := sup{s ∈ ]0, t[ |p+ sei /∈ U`}.

Then the function s 7→ Dαu(p + sei) is continuous on [t0, t] and differentiable on ]t0, t[,
so, by Lagrange’s mean value theorem, there is some ξ ∈ ]t0, t[ such that

(s 7→ Dαu(p+ sei))′(ξ) = DiD
αu(p+ ξei)

=
Dαu(p+ tei)−Dαu(p+ t0ei)

t− t0
=
Dαu(p+ tei)

t− t0
.

Thus we have the following estimation:∣∣∣∣Dαu(p+ tei)
t

∣∣∣∣ 5 ∣∣∣∣Dαu(p+ tei)
t− t0

∣∣∣∣ = |DiD
αu(p+ ξei)|

=
∣∣∣∣ 2−`

‖u`‖`
DiD

αu`(p+ ξei)
∣∣∣∣ 5 ∣∣∣∣ 2−`

‖DiDαu`‖0
DiD

αu`(q)
∣∣∣∣

5 2−` < 2−k 5 2− log2(1/ε) = ε.

If t ∈ ]−δ, 0[, then we proceed in the same way to obtain

DiD
αu(p) = lim

t→0

Dαu(p+ tei)−Dαu(p)
t

= 0.

Therefore DiD
αu exists at every point of U0. Its continuity is shown in the same way as

that of u.

3rd step We obviously have

u � Uk = 2−k(‖uk‖k)−1uk. (∗∗)

Since D is linear and support-decreasing, it follows that

(Du) � Uk = 2−k(‖uk‖k)−1(Duk) � uk.

Thus, taking into account relations (∗) and (∗∗), we conclude that there is a point pk ∈ Uk
such that

|Du(pk)| = 2−k(‖uk‖k)−1|Duk(pk)| > 2−k(‖uk‖k)−1 · 22k‖uk‖k = 2k.

On the other hand, the function Du is continuous, and its support is compact, hence it is
bounded. This contradicts the above assertion.

Lemma 2.21 Suppose U ⊂ Rn is a nonempty open set, and let V be a relatively compact
open set contained in U . Consider a support-decreasing linear mapping D : C∞(U) →
C∞(U). Assume there is a positive integer m and a positive real number C such that

‖Du‖0 5 C‖u‖m (∗)

for all u ∈ C∞c (V). Then
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(i) Du(p) = 0 whenever u is m-flat at p,

(ii) there exist smooth functions aα (α ∈ Nn, |α| 5 m) in C∞(V) such that for each
u ∈ C∞c (V), p ∈ V we have

Du(p) =
∑
|α|5m

aα(p)(Dαu)(p).

Proof. (i) By Lemma 2.19, there is a sequence (un)n∈N of functions in C∞c (V) such
that un vanishes in a neighbourhood of p for each n ∈ N, and

lim
n→∞

‖un − u‖m = 0.

Taking into account our condition (∗), this implies that (Dun)n∈N converges uni-
formly to Du on V . Since supp(Dun) ⊂ supp(un), and un vanishes near p, we
have Dun(p) = 0 for each n ∈ N. Hence

Du(p) = lim
n→∞

(Dun)(p) = 0,

as we claimed.

(ii) To prove the second statement, consider for an arbitrarily chosen point p ∈ U and
multi-index α = (α1, . . . , αn) ∈ Nn the polynomial

µα,p(ξ) :=
(
ξ1 − p1

)α1 · . . . · (ξn − pn)αn

(ξ =
(
ξ1, . . . , ξn

)
is a symbol). Then µα,p can be viewed as a smooth function in

C∞(U), and the functions

ηα : p ∈ U 7→ ηα(p) := (Dµα,p)(p) (α ∈ Nn)

also belong to C∞(U). Now let u ∈ C∞c (V), and define

f := u−
∑
|α|5m

1
α!

(Dαu)(p)µα,p.

Then for each β ∈ Nn, |β| 5 m we have

Dβf = Dβu−
∑

|α|5m,α=β

1
α!

(Dαu)(p)
α!

(α− β)!
µα−β,p.

Since

µα−β,p(p) =
{

0 if β 6= α,
1 if β = α,

it follows that

Dβf(p) = 0, |β| 5 m;
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i.e., the function f is m-flat at p. Thus, by part (i), Df(p) = 0, therefore

Du(p) =
∑
|α|5m

1
α!

(Dαu)(p)ηα(p);

so with the help of the smooth functions aα := 1
α!ηα (α ∈ Nn, |α| 5 m) Du can be

represented in the desired form.

Now we introduce a more sophisticated version of the concept of a linear differential
operator mentioned in 2.14.
Definition 2.22 Let U ⊂ Rn be a nonempty open subset. A differential operator on U is
a linear mapping D : C∞(U) → C∞(U) with the following property: for each relatively
compact open set V whose closure in contained in U there exists a finite family of functions
aα ∈ C∞(V) (α ∈ Nn) such that for each u ∈ C∞(V),

Du =
∑
α

aα(Dαu).

Note Differential operators in this more general sense also have a well-defined order lo-
cally, according to 2.14.

Having this concept, we are ready to formulate and prove the main result of this sub-
section.
Theorem 2.23 (local Peetre theorem) Let U ⊂ Rn be a nonempty open subset. If
D : C∞(U) → C∞(U) is a support-decreasing linear mapping, then D is a differen-
tial operator on U . Conversely, any differential operator is support decreasing.

Proof. The converse statement is clearly true. To prove the direct statement, consider a
linear mapping D : C∞(U)→ C∞(U) with the property

supp(Du) ⊂ supp(u), u ∈ C∞(U).

Let V ⊂ U be a relatively compact open set such that V̄ ⊂ U . According to 2.20, for each
point p ∈ V there is a neighbourhood Up ⊂ U of p, a positive integer mp and a positive
real number Cp such that

‖Du‖0 5 Cp‖u‖mp

holds for any function u ∈ C∞c (Up r {p}). The family (Up)p∈V is an open covering
of V̄ , so by its compactness, there are finitely many points p1, . . . , pk in V such that the
corresponding open sets U1, . . . ,Uk still cover V̄ . Let

m := max{mpi |i ∈ {1, . . . , k}} and C := max{Cpi |i ∈ {1, . . . , k}}.

Then for each i ∈ {1, . . . , k} and u ∈ C∞c (Ui r {pi}) we have

‖Du‖0 5 C‖u‖m. (∗)

We show that there is also a positive constant C̃ such that

‖Du‖0 5 C̃‖u‖m
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holds for any function u ∈ C∞c (V r {p1, . . . , pk}). Using Lemma 2.12, let (fi)k+1
i=1 be a

partition of unity subordinate to the open covering
(
U1, . . . ,Uk,U r V̄

)
of U . Then each

function u ∈ C∞c (V r {p1, . . . , pn}) can be written in the form

u =
k+1∑
i=1

fiu =
k∑
i=1

fiu,

and (∗) holds for every member of the sum, therefore

‖Du‖0 =
∥∥∥D (∑k

i=1 fiu
)∥∥∥

0
=
∥∥∥∑k

i=1D(fiu)
∥∥∥

0

5
k∑
i=1

‖D(fiu)‖0 5
k∑
i=1

C‖fiu‖m = C

k∑
i=1

‖fiu‖m.

Thus it is enough to show that there are positive constants Ci such that

‖fiu‖m 5 Ci‖u‖m (i = 1, . . . , k)

which are independent of u (and may depend on the partition of unity chosen, however).
By the generalized Leibniz rule (2.15), we have

‖fiu‖m =
∑
|α‖5m

sup
p∈V
|Dα(fiu)(p)|

=
∑
|α‖5m

sup
p∈V

∣∣∣∑µ+ν=α

(
α
ν

)
(Dνfi)(p)(Dµu)(p)

∣∣∣
5

∑
|α‖5m

sup
p∈V

∑
µ+ν=α

(
α

ν

)
|Dνfi(p)||Dµu(p)|

5
∑
|α‖5m

∑
µ+ν=α

(
α

ν

)
sup
p∈V
|Dνfi(p)||Dµu(p)|

5
∑
|α‖5m

∑
µ+ν=α

(
α

ν

)(
supp∈V |Dνfi(p)|

) (
supp∈V |Dµu(p)|

)
=
∑
|µ|5m

[∑
|µ+ν|5m

(
µ+ν
ν

)
supp∈V |Dνfi(p)|

]
sup
p∈V
|Dµu(p)|.

Letting

Ci :=
∑

|µ+ν|5m

(
µ+ ν

ν

)
sup
p∈V
|Dνfi(p)|,

we obtain

‖fiu‖m 5 Ci
∑
|µ|5m

sup
p∈V
|Dµu(p)| = Ci‖u‖m,
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thus the desired estimation is valid for each term. Finally, if

C̃ := C

k∑
i=1

Ci,

then we conclude

‖Du‖0 5 C
k∑
i=1

‖fiu‖m 5 C
k∑
i=1

Ci‖u‖m = C̃‖u‖m.

Lemma 2.21 then implies that for each p ∈ V r {p1, . . . , pn},

Du(p) =
∑
|α|5m

aα(p)(Dαu)(p), aα ∈ C∞(V).

However, both functionsDu and
∑
|α|5m aα(Dαu) are continuous, so the desired relation

is valid at every point of V .

Transition from local to global

1st step: manifolds and bundles Since we have a chain rule for C1-mappings between
locally convex TVSs, the concept of a manifold modeled on such a vector space can
be introduced without any difficulty: we may follow the well paved path of the finite-
dimensional theory.

LetM be a Hausdorff space and V a locally convex TVS. By a V -chart onM we mean
a pair (U , x), where U ⊂M is an open subset of M , and x is a homeomorphism of U onto
an open subset of V . Two charts, (U , x) and (V, y) are said to be smoothly compatible if
the transition mappings

y ◦ x−1 : x(U ∩ V)→ y(U ∩ V) and x ◦ y−1 : y(U ∩ V)→ x(U ∩ V)

are smooth mappings between open subsets of V in Michal – Bastiani’s sense, or U ∩ V =
∅. A V -atlas on M is a family A = (Ui, xi)i∈I of pairwise compatible V -charts of M
such that the sets Ui form an open covering of M . A smooth V -structure on M is a
maximal V -atlas, and a smooth V -manifold is a Hausdorff space endowed with a smooth
V -structure. A smooth V -manifold is said to be a Fréchet manifold, a Banach manifold
and an n-manifold, resp., if the model space V is a Fréchet space, a Banach space and an
n-dimensional (real) vector space, resp. In the latter case, without loss of generality, the
Euclidean n-space Rn can be chosen as a model space.

The concept of smoothness of a mapping between a V -manifold M and a W -manifold
N can formally be defined in the same way as in the finite-dimensional case: a mapping
ϕ : M → N is said to be smooth if it is continuous and, for every chart (U , x) on M and
(V, y) on N , the mapping

y ◦ ϕ ◦ x−1 : x
(
ϕ−1(V) ∩ U

)
⊂ V →W

is Michal – Bastiani smooth. If, in addition, ϕ has a smooth inverse, then it is called a
diffeomorphism. The space of all smooth mappings from M to N will be denoted by
C∞(M,N). In particular, C∞(M) stands for the algebra of smooth functions on M , and

C∞c (M) := {f ∈ C∞(M)| supp(f) is compact}.
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Let π : E → M be a smooth mapping between smooth manifolds modeled on some
locally convex TVSs, and let V be a fixed locally convex space. π : E → M is said to be
a vector bundle with typical fibre V if the following conditions are satisfied:

(i) every fibre Ep := π−1(p), p ∈M , is a locally convex TVS;

(ii) for each point p ∈ M there is a neighbourhood U of p and a diffeomorphism Φ :
U × V → π−1(U) such that π ◦Φ = pr1, where pr1 : U × V → U is the projection
to the first factor, and the mappings

Φq : V → Eq, v 7→ Φq(v) := Φ(q, v), q ∈ U

are toplinear isomorphisms.

Further terminology: M is the base manifold, E is the total manifold, and π is the projec-
tion of the bundle. Φ is a trivialization of π−1(U) (or a local trivialization of E). For a
vector bundle π : E → M , we shall use both the abbreviation π (which is unambiguous)
and the shorthand E (which may be ambiguous), depending on what we wish to empha-
size. If the base manifold is finite dimensional, and the typical fibre is a k-dimensional
vector space, then we shall speak of a vector bundle of rank k.

Let π1 : E1 → M1 and π2 : E2 → M2 be vector bundles. A smooth mapping ϕ :
E1 → E2 is called fibre preserving if π1(z1) = π1(z2) implies π2(ϕ((z1)) = π2(ϕ(z2))
for all z1, z2 ∈ E1. Then ϕ induces a smooth mapping ϕ : M1 → M2 such that π2 ◦
ϕ = ϕ ◦ π1. A fibre preserving mapping ϕ : E1 → E2 is said to be a bundle map if it
restricts to continuous linear mappings ϕ1 : (E1)p → (E2)ϕ(p), p ∈ M . If, in addition,
M1 = M2 =: M , and ϕ = 1M , then ϕ is called a strong bundle map.

Suppose π : E → M is a vector bundle with typical fibre V and f : N → M is a
smooth mapping. For each q ∈ N , let (f∗E)q := {q}×Ef(q) be endowed with the vector
space structure inherited from Ef(q):

(q, z1) + (q, z2) := (q, z1 + z2), λ(q, z) := (q, λz)(
z1, z2, z ∈ Ef(q), λ ∈ R

)
. If

f∗E := ∪
q∈N

(f∗E)q = {(q, z) ∈ N × E|f(q) = π(z)} =: N ×M E,

then f∗E carries a unique smooth structure which makes it a vector bundle with base
manifoldN , projection π1 := pr1 � N×M E and typical fibre V . If Φ : U×V → π−1(U)
is a local trivialization of E, then the mapping

f∗Φ : f−1(U)× V → π−1
1 (f−1(U)), (q, v) 7→ (q,Φ(f(q), v))

is a local trivialization for f∗E. The vector bundle π1 : f∗E → N so obtained is said
to be the pull-back of π over f , and it is also denoted by f∗π. Note that the mapping
π2 := pr2 � N ×M E is a bundle map from f∗E to E which induces the given mapping f
between the base manifolds.

For our next remarks, let us fix a vector bundle π : E →M . A section of π is a smooth
mapping σ : M → E with π ◦σ = 1M ; thus σ(p) ∈ Ep for all p ∈M . Similarly, a section
of π over an open subset U ⊂ M is a smooth mapping σ : U → E with π ◦ σ = 1U . The
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support of a section σ : U → E is supp(σ) := {p ∈ U|σ(p) 6= 0} (the closure is meant
in U). We denote by Γ(π) (or Γ(E)) the set of sections of π. Γ(U , E) stands for the set
of sections of E over U ; Γc(U , E) = {σ ∈ Γ(U , E)| supp(σ) is compact}. Γ(U , E), in
particular, Γ(π) is surely nonempty: we have the zero section p ∈ U 7→ o(p) := 0p :=

the zero vector of Ep.
◦
E := ∪p∈M (Ep r {0p}) will denote the deleted bundle for E, and

◦
π := π �

◦
E. Sections (local sections with common domain) can be added to each other

and multiplied by smooth functions on M using the standard pointwise definitions. These
two operations make Γ(π) and Γ(U , E) a C∞(M)-module and a C∞(U)-module, resp.
In particular, Γ(π) and Γ(U , E) (as well as Γc(U , E)) are real vector spaces. Under some
assumptions on the topological and the smooth structure of the base manifold and the TVS
structure of the typical fibre, the spaces of sections can be endowed with ‘similarly nice’
TVS structure. For more information on this subtle problem see Kriegl – Michor’s mono-
graph [18, section 30]. In the next subsection we shall briefly discuss the finite dimensional
case.

Now suppose that a smooth mapping f : N →M is also given, and consider the pull-
back bundle π1 : N ×M E → N . A smooth mapping S : N → N ×M E is a section of
π1 if and only if there is a smooth mapping S : N → E such that π ◦ S = f and S(q) =
(q, S(q)) for all q ∈ N ; S is mentioned as the principal part of the section S. A smooth
mapping S : N → E satisfying π ◦ S = f is called a section of E along f . Identifying
a section of f∗E with its principal part, we get a canonical module isomorphism between
Γ(f∗E) and the module Γf (E) = Γf (π) of sections of E along f .

2nd step: tangent bundle The crucial step in transporting of calculus from the model
space V to a smooth V -manifold M is the construction of tangent vectors. Choose a point
p of M and consider all triples of the form (U , x, a), where (U , x) is a chart around p and
a ∈ V . The relation ∼ defined by

(U , x, a) ∼ (V, y, b) :⇐⇒
(
y ◦ x−1

)′
(x(p))(a) = b

is an equivalence relation. The ∼-equivalence class [(U , x, a)] of a triple (U , x, a) is said
to be a tangent vector to M at p. The set of tangent vectors to M at p is the tangent space
to M at p; it will be denoted by TpM . A chart (U , x) around p determines a bijection
ϑp : TpM → V by the rule

v ∈ TpM 7→ ϑp(v) := a ∈ V if (U , x, a) ∈ v.

There is a unique locally convex TVS structure on TpM which makes the bijection ϑp a
toplinear isomorphism. To be explicit, the linear structure of TpM is given by

λv + µw := ϑ−1
p (λϑp(v) + µϑp(w)); v, w ∈ TpM ; λ, µ ∈ R.

The TVS structure so obtained on TpM does not depend on the choice of (U , x), since
if (V, y) is another chart around p, and ηp : TpM → V is associated with (V, y), then
ηp ◦ ϑ

−1
p =

(
y ◦ x−1

)′ (x(p)), which is a toplinear isomorphism.
Let TM := ∪p∈MTpM (disjoint union), and define the mapping τ : TM → M

by τ(v) := p if v ∈ TpM . There is a unique smooth structure on TM which makes
τ : TM → M into a vector bundle with fibres (TM)p = TpM and typical fibre V . To
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indicate the construction of this smooth structure, let (U , x) be a chart on M , and assign to
each v ∈ τ−1(U) ⊂ TM the pair

(
x(τ(v)), ϑτ(v)(v)

)
∈ V × V . Thus we get a bijective

mapping

τU :=
(
x ◦ τ , ϑτ(·)

)
: τ−1(U)→ x(U)× V ⊂ V × V.

As (U , x) runs over all charts of an atlas of M , the pairs
(
τ−1(U), τU

)
form an atlas for

TM and make it into a smooth manifold modeled on V × V such that the topology of
TM is the finest topology for which each mapping τU is a homeomorphism. (For details
see [8, 2.3].) The vector bundle so obtained is called the tangent bundle of M , and it is
denoted by τ , TM or τM . If, in particular, U is an open subset of the model space V , then
U (as well as V ) can be regarded as a smooth manifold modeled on V . In this case there
is a canonical identification TU ∼= U × V , which will be frequently used, without further
mention.

Now take two manifolds M and N , modeled on V and W , respectively. Let f : M →
N be a smooth mapping and p ∈M . Choose charts (U , x) around p and (V, y) around f(p)
such that f(U) ⊂ V . Let ϑp : TpM → V and ηf(p) : Tf(p)N → W be the isomorphisms
associated with (U , x) and (V, y). Then

(f∗)p := η−1
f(p) ◦

(
y ◦ f ◦ x−1

)′
(x(p)) ◦ ϑp : TpM → Tf(p)N

is a well-defined linear mapping, called the tangent map of f at p. (‘Well-defined’ means
that (f∗)p does not depend on the choice of (U , x) and (V, y).) Having the fibrewise
tangent maps, we associate to f : M → N the bundle map

f∗ : TM → TN, f∗ � TpM := (f∗)p.

Let, in particular, f : M →W be a smooth mapping. Then the mapping

df := pr2 ◦ f∗ : TM →W ×W →W

is called the differential of f . By restriction, it leads to a continuous linear mapping

df(p) = dpf := df � TpM →W,

for each p ∈M .
The sections of the tangent bundle τ : TM → M are said to be vector fields on M .

We denote their C∞(M)-module by X(M) rather than Γ(τ) or Γ(TM). Any vector field
X on M induces a derivation ϑX of the real algebra C∞(M) by the rule

f ∈ C∞(M) 7→ ϑX(f) = X.f := df ◦X.

It may be shown that if X,Y ∈ X(M), then there exists a unique vector field [X,Y ] on M
such that on each open subset U of M we have

ϑ[X,Y ](f) = ϑX(ϑY (f))− ϑY (ϑX(f))

for all f ∈ C∞(U), and the mapping [·, ·] : X(M) × X(M) → X(M) makes X(M) a
(real) Lie algebra. For an accurate proof of these claims we refer to [8]. Lang’s monograph
[20] treats vector fields on Banach manifolds, while Klingenberg’s book [17] deals with
the Hilbertian case. Notice that if dimM =∞, then not all derivations of C∞(M) can be
described as above by vector fields.
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Back to the finite dimension

In the subsequent concluding part of this section we shall consider vector bundles of finite
rank over a common base manifold M . Then, by our convention, M is also finite dimen-
sional; let n := dimM , n ∈ N∗. We assume, furthermore, that the topology of M is
second countable. Then, as it is well-known, M admits a (smooth) partition of unity; in
particular, for each neighbourhood of every point of M there is a bump function supported
in the given neighbourhood. Under these conditions we have the following useful technical
result:
Lemma 2.24 Let π : E →M be a vector bundle of rank k over the n-dimensional second
countable base manifold M , and let p be a point of M . Then for each z ∈ Ep there is
a section σ ∈ Γ(π) such that σ(p) = z. If U ⊂ M is an open set containing p, and
σ : U → E is a section of π over U , then there is a section σ̃ ∈ Γ(π) which coincides with
σ in a neighbourhood of p.

Proof. Choose a local trivialization Φ : V × Rk → π−1(V) of E with p ∈ V and a bump
function f ∈ C∞(M) supported in V such that f(p) = 1. Given z ∈ Ep, there is a unique
vector v ∈ Rk for which Φ(p, v) = z. Define a mapping σ : M → E by

σ(q) :=
{

Φ(q, f(q)v) if q ∈ V,
0 if q /∈ V.

Then σ is clearly a (smooth) section of π with the desired property σ(p) = z, so our first
claim is true. The second statement can be verified similarly.

By a frame of π : E → M over an open subset U of M we mean a sequence (σi)ki=1

of sections of E over U such that (σi(p))ki=1 is a basis of Ep for all p ∈ U . If the domain
U of the sections σi is not specified, we shall speak of a local frame. Local frames are
actually the same objects as local trivializations. Indeed, if (σ1, . . . , σk) is a frame of E
over U , then the mapping

Φ : U × Rk → E,
(
p,
∑k
i=1 ν

iei

)
7→

k∑
i=1

νiσi(p)

is a trivialization of π−1(U). Conversely, if Φ : U ×Rk → E is a local trivialization of E,
then the mappings

σi : p ∈ U 7→ σi(p) := Φ(p, ei) (1 5 i 5 k)

form a local frame of E.
Now consider two vector bundles, π1 : E1 → M and π2 : E2 → M of finite rank. A

mapping Γ(E1) → Γ(E2) will be called tensorial if it is C∞(M)-linear. The following
simple result is of basic importance and frequently (in general, tacitly) used.
Lemma 2.25 (the fundamental lemma of strong bundle maps) A mapping F : Γ(π1) →
Γ(π2) is tensorial if and only if there is a strong bundle map F : E1 → E2 such that
F(σ) = F ◦ σ for all σ ∈ Γ(π1).
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For a proof see e.g. John M. Lee’s text [21]. In the following we shall usually identify
a tensorial mapping F : Γ(π1)→ Γ(π2) with the corresponding bundle map F , and write
Fσ rather than F(σ) or F ◦ σ.

The concept of a linear differential operator introduced in 2.14 can immediately be
generalized to the context of vector bundles. Our initial definition is strongly motivated by
the property formulated in the local Peetre theorem 2.23.
Definition 2.26 An R-linear mapping D : Γ(π1) → Γ(π2), σ 7→ D(σ) =: Dσ is said to
be a linear differential operator if it is support-decreasing, i.e., supp(Dσ) ⊂ supp(σ) for
any section σ ∈ Γ(π1).

Linear differential operators are natural with respect to restrictions: if U is an open
subset of M , and D : Γ(π1) → Γ(π2) is a linear differential operator, then (using the
abbreviation (πi)U := πi � π

−1
i (U), i ∈ {1, 2}) there is a unique differential operator

DU : Γ((π1)U )→ Γ((π2)U ) such thatDσ � U = DU (σ � U) for every section σ ∈ Γ(π1).
Indeed, let p ∈ U be an arbitrary point. By Lemma 2.24, for any section σU ∈ Γ((π1)U )
there is a section σ of π1 such that σ = σU in a neighbourhood of p. If (DUσU )(p) :=
(Dσ)(p), then DU : Γ((π1)U ) → Γ((π2)U ) is a well-defined linear differential operator
with the desired naturality property. An equivalent formulation: D is a local operator
in the sense that for each open subset U of M and each section σ ∈ Γ(π1) such that
σ � U = 0, we have (Dσ) � U = 0.

Let (U , x) be a chart on M . Suppose that π1 and π2 are trivializable over U , i.e.,
there exist trivializations Φ1 : U × Rk → π−1

1 (U) and Φ2 : U × R` → π−1
2 (U). If

σ ∈ Γ(π1), then σ̃ := pr2 ◦ Φ−1
1 ◦ σ ◦ x−1 is a smooth mapping from x(U) ⊂ Rn to

Rk, and the mapping σ ∈ Γ(π1) 7→ σ̃ ∈ C∞
(
x(U),Rk

)
is a linear isomorphism. Let

D : Γ(π1) → Γ(π2) be a linear differential operator, and consider the induced operator
DU : Γ((π1)U ) → Γ((π2)U ). There exists a well-defined continuous linear mapping D̃
from the Fréchet space C∞

(
x(U),Rk

)
into the Fréchet space C∞

(
x(U),R`

)
such that

pr2 ◦ Φ−1
2 ◦DU (σ � U) ◦ x−1 = D̃

(
pr2 ◦ Φ−1

1 ◦ (σ � U) ◦ x−1
)

;

briefly D̃Uσ = D̃(σ̃). D̃ is said to be the local expression of D with respect to the chart
(U , x) and the trivializations Φ1, Φ2.

Now we are in a position to transpose Peetre’s local theorem (2.23) to the context of
vector bundles.
Theorem 2.27 (Peetre’s theorem) Let π1 and π2 be vector bundles over M of rank k and
`, respectively. If D : Γ(π1) → Γ(π2) is a linear differential operator, then there exists
a chart (U , x) at each point of M , such that π1 and π2 are trivializable over U , and the
corresponding local expression of D is of the form

f ∈ C∞
(
x(U),Rk

)
7→

∑
|α|5m

Aα ◦Dαf,

where for each multi-index α such that |α| 5 m,Aα is a smooth mapping from x(U) ⊂ Rn
to L

(
Rk,R`

)
.

Peetre’s theorem makes it possible to define the order of a linear differential operator
D : Γ(π1)→ Γ(π2) at a point p ∈M as the largest m ∈ N for which there exists a multi-
index α such that |α| = m, and Aα(p) 6= 0 in a local expression of D in a neighbourhood
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of p. It follows at once that ifD is of order 0, then it may be identified with a strong bundle
map E1 → E2, therefore it acts by the rule σ ∈ Γ(π1) 7→ D ◦ σ ∈ Γ(π2). Equivalently, in
view of Lemma 2.25, D can be considered as a tensorial mapping from Γ(π1) to Γ(π2).

For the rest of this section, we let π : E → M be a vector bundle of rank k over
an n-dimensional base manifold M . We continue to assume that M admits a partition of
unity.

An important class of first order differential operators from Γ(π) to Γ(π) may be spec-
ified by introducing the concept of covariant differentiation. The notion is well-known, but
fundamental, so we briefly recall that a mapping

D : X(M)× Γ(π)→ Γ(π), (X,σ) 7→ DXσ

is said to be a covariant derivative on E if it is tensorial in X and derivation in σ. DXσ is
called the covariant derivative of σ in the direction of X , while for any section σ ∈ Γ(π),
the mapping

Dσ : X(M)→ Γ(π), σ 7→ DXσ

is the covariant differential of σ. Then Dσ ∈ LC∞(M)(X(M),Γ(π)). For every fixed
vector field X on M , the mapping

DX : Γ(π)→ Γ(π), σ 7→ DXσ

is obviously R-linear. Moreover, DX is a local operator. Indeed, let U ⊂ M be an open
set, and choose a point p ∈ M . The existence of bump functions supported in U also
guarantees that there is a smooth function f on M such that f(p) = 0 and f = 1 outside
U . If σ ∈ Γ(π), and σ � U = 0, then σ = fσ, and

(DXσ)(p) = (DX(fσ))(p) = (Xf)(p)σ(p) + f(p)(DXσ)(p) = 0,

therefore DXσ � U = 0. R-linearity and locality imply that DX is a linear differential
operator. To see that it is of first order, let

(
U ,
(
ui
)n
i=1

)
be a chart on M , and (σj)kj=1

a frame over U . If X ∈ X(M), σ ∈ Γ(π), then X � U =
∑n
i=1X

i ∂
∂ui , σ � U =∑k

r=1 f
rσr

(
Xi, fr ∈ C∞(U); 1 5 i 5 n, 1 5 r 5 k

)
, and by the local character ofDX ,

(DXσ) � U = DX�U (σ � U) =
n∑
i=1

k∑
r=1

Xi

(
∂fr

∂ui
σr + frD ∂

∂ui
σr

)
.

The local sections D ∂

∂ui
σr can be combined from the frame (σj)kj=1 in the form

D ∂

∂ui
σr =

k∑
s=1

Γsirσs, Γsir ∈ C∞(U);

so we get

(DXσ) � U =
n∑
i=1

k∑
s=1

Xi

(
∂fs

∂ui
+
∑k
r=1 Γsirf

r

)
σs.

Since ∂fs

∂ui := Di

(
fs ◦ u−1

)
◦ u, DX is indeed of first order. Notice that the functions

Γsir ∈ C∞(U) (1 5 i 5 n; 1 5 r, s 5 k) are called the Christoffel symbols of D with
respect to the chart

(
U ,
(
ui
)n
i=1

)
and local frame (σi)ki=1.
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3 The Chern – Rund derivative

Conventions

Throughout this section we shall work over an n-dimensional (n ∈ N∗) smooth manifold
M admitting a partition of unity. More precisely, the main scene of our next considerations
will be the tangent bundle τ : TM → M of M and the pull-back bundle τ1 : τ∗TM =
TM ×M TM → TM . We shall also need the tangent bundle τTM : TTM → TM of

TM , the deleted bundle
◦
τ :

◦
TM → M

( ◦
TM := {v ∈ TM |v 6= 0}, ◦τ := τ �

◦
TM

)
for

τ and the pull-back
◦
τ∗TM =

◦
TM ×M TM of TM via

◦
τ . For the C∞(TM)-modules

Γ(τ∗TM) ∼= Γτ (TM) and Γ
(◦
τ∗TM

) ∼= Γ◦
τ
(TM) we use the convenient notations X(τ)

and X
(◦
τ
)
, resp. Any vector field X on M induces a vector field X̂ along τ and

◦
τ with

principal partsX◦τ andX◦ ◦τ , resp. X̂ is called a basic vector field along τ (or
◦
τ ). Locally,

the basic vector fields generate the modules X(τ) and X
(◦
τ
)
. A distinguished vector field

along τ is the canonical vector field

δ : v ∈ TM 7→ δ(v) := (v, v) ∈ TM ×M TM.

Generic vector fields along τ (or
◦
τ ) will be denoted by X̃, Ỹ , . . . . From the module X(τ)

(or X
(◦
τ
)
) one can build the spaces of type (r, s) tensors along τ (or

◦
τ ). These C∞(TM)-

multilinear machines can also be interpreted as ‘fields’. For example, a type (0, 2) tensor

field g : X
(◦
τ
)
× X

(◦
τ
)
→ C∞

( ◦
TM

)
can be regarded as a mapping

v ∈
◦
TM 7→ gv ∈ L2

(
T◦
τ(v)

M,R
)

which has the following smoothness property: the function

g
(
X̃, Ỹ

)
: v ∈

◦
TM 7→ g

(
X̃, Ỹ

)
(v) := gv

(
X̃(v), Ỹ (v)

)
is smooth for any two vector fields X̃, Ỹ along

◦
τ .

For coordinate calculations we choose a chart
(
U ,
(
ui
)n
i=1

)
on M , and employ the

induced chart(
τ−1(U),

(
xi, yi

))
; xi := ui ◦ τ , yi : v ∈ τ−1(U) 7→ yi(v) := v

(
ui
)

(1 5 i 5 n) on TM . The coordinate vector fields

∂

∂ui
: f ∈ C∞(U) 7→ ∂f

∂ui
:= Di

(
f ◦ u−1

)
◦ u ∈ C∞(U) (1 5 i 5 n)

form a frame of τ : TM → M over U . Similarly,
(

∂
∂xi ,

∂
∂yi

)n
i=1

is a local frame of
τTM : TTM → TM . The basic vector fields

∂̂

∂ui
: v ∈ τ−1(U) 7→

(
v,

(
∂

∂ui

)
τ(v)

)
(1 5 i 5 n)
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provide a local frame for τ∗TM . Using this frame, over τ−1(U) we have

X̂ =
n∑
i=1

(
Xi ◦ τ

) ∂̂

∂ui
if X ∈ X(M), X � U =

n∑
i=1

Xi ∂

∂ui
;

δ =
n∑
i=1

yi
∂̂

∂ui
.

The coordinate expression of a generic section X̃ of τ∗TM is

X̃ � τ−1(U) =
n∑
i=1

X̃i ∂̂

∂ui
, X̃i ∈ C∞

(
τ−1(U)

)
(1 5 i 5 n).

Canonical constructions on TM and τ∗TM

We begin with a frequently used, simple observation. Let V be an n-dimensional real
vector space, endowed with the canonical smooth structure determined by a linear isomor-
phism of V onto Rn. For any p ∈ V , V may be naturally identified with its tangent space
TpV via the linear isomorphism

ıp : v ∈ V 7→ ıp(v) := %̇(0) ∈ TpV, %(t) := p+ tv (t ∈ R)

(%̇(0) is the tangent vector of % at 0 in the sense of classical manifold theory). If (ei)ni=1 is
a basis of V , and

(
ei
)n
i=1

is its dual, then

ıp(v) =
n∑
i=1

ei(v)
(
∂

∂ei

)
p

.

By means of these identifications, we get an injective strong bundle map

i : TM×M TM → TTM, (v, w) ∈ {v}×Tτ(v)M 7→ i(v, w) := ıv(w) ∈ TvTτ(v)M.

Im(i) =: V TM is said to be the vertical bundle of τTM : TTM → TM . It is easy to
check that V TM = Ker(τ∗). By Lemma 2.25, i may be interpreted as a tensorial mapping
from X(τ) to X(TM) denoted by the same symbol. Xv(TM) := i(X(τ)) is the module
of vertical vector fields on TM (in fact, Xv(TM) is a Lie-subalgebra of X(TM)). In
particular, Xv := iX̂ is said to be the vertical lift of X ∈ X(M); C := iδ is the Liouville
vector field on TM . It is easy to check that

[Xv, Y v] = 0, [C,Xv] = −Xv; X,Y ∈ X(M).

In terms of local coordinates,

i(v, w) =
n∑
i=1

yi(w)
(
∂

∂yi

)
v

(τ(v) = τ(w));

i

(
∂̂

∂ui

)
v

= i

(
v,

(
∂

∂ui

)
τ(v)

)
=
(
∂

∂yi

)
v

,
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hence
(

∂

∂ui

)v
=

∂

∂yi
(1 5 i 5 n);

Xv =
n∑
i=1

(
Xi ◦ τ

) ∂

∂yi
if X � U =

n∑
i=1

Xi ∂

∂ui
.

A further and surjective strong bundle map is

j := (τTM , τ∗) : TTM → TM ×M TM, z ∈ TvTM 7→ j(z) := (v, τ∗(z)),

which can also be regarded as a tensorial mapping from X(TM) to X(τ). j acts on the

local frame
(

∂
∂xi ,

∂
∂yi

)n
i=1

by

j
(

∂

∂xi

)
=

∂̂

∂ui
, j

(
∂

∂yi

)
= 0 (1 5 i 5 n),

therefore Ker(j) = Im(i) = Xv(TM). The composition J := i ◦ j is said to be the
vertical endomorphism of X(TM) (or TTM ). It follows that

Im(J) = Ker(J) = Xv(TM), J2 = 0.

By the complete lift of a smooth function f on M we mean the function f c : v ∈
TM 7→ f c(v) := v(f) ∈ R. Then, obviously, f c ∈ C∞(TM). It can be shown that for
any vector field X on M there exists a unique vector field Xc on TM such that Xcf c =
(Xf)c for all f ∈ C∞(M) [35]. Xc is said to be the complete lift of X . A great deal
of calculations may be simplified by the fact that if (Xi)ni=1 is a local frame of TM , then
(Xv

i , X
c
i )ni=1 is a local frame of TTM .

It follows immediately that jXc = X̂ , or, equivalently, JXc = Xv . Concerning the
vertical and the complete lifts, we have

[Xc, Y c] = [X,Y ]c, [Xv, Y c] = [X,Y ]v, [C,Xc] = 0; X,Y ∈ X(M).

We shall need, furthermore, the following
Lemma 3.1 If X and Z are vector fields on M , and F is a smooth function on TM , then

X(F ◦ Z) = (XcF + [X,Z]vF ) ◦ Z.

The simplest, but not too aesthetic way to prove this relation is to express everything
in terms of local coordinates.

On τ∗TM there exists a canonical differential operator of first order which makes it
possible to differentiate tensors along τ in vertical directions. We call this operator the
canonical v-covariant derivative, and we denote it by ∇v . It can explicitly be given as
follows: for each section X̃ in X(τ),

∇v
X̃
F :=

(
iX̃
)
F if F ∈ C∞(TM);

∇v
X̃
Ỹ := j

[
iX̃, η

]
if Ỹ ∈ X(τ) and η ∈ X(TM) such that jη = Ỹ .
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Using the frame
(

∂̂
∂ui

)n
i=1

over τ−1(U), if X̃ � τ−1(U) =
∑n
i=1 X̃

i ∂̂
∂ui and

Ỹ � τ−1(U) =
∑n
i=1 Ỹ

i ∂̂
∂ui , then

∇v
X̃
F � τ−1(U) =

n∑
i=1

X̃i ∂F

∂yi
, ∇v

X̃
Ỹ � τ−1(U) =

n∑
i,j=1

X̃i ∂Ỹ
j

∂yi
∂̂

∂uj
.

From the last expression it is clear that ∇v
X̃
Ỹ is well-defined: it does not depend on the

choice of η. The mapping ∇v :
(
X̃, Ỹ

)
∈ X(τ)× X(τ)→ ∇v

X̃
Ỹ ∈ X(τ) has the formal

properties of a covariant derivative operator: it is tensorial in X̃ and satifies the derivation
rule

∇v
X̃
FỸ =

(
∇v
X̃
F
)
Ỹ + F∇v

X̃
Ỹ , F ∈ C∞(TM).

From the very definition, or using the coordinate expression, it can easily be deduced
that

∇v
X̃
Ŷ = 0, ∇v

X̃
δ = X̃; X̃ ∈ X(τ), Y ∈ X(M).

Using an appropriate version of Willmore’s theorem on tensor derivations (see e.g. [35,
1.32]), ∇v can uniquely be extended to a tensor derivation of the tensor algebra of X(τ).
For any tensor Ã along τ we may also consider the (canonical) v-covariant differentials of
Ã by the rule iX̃∇

vÃ := ∇v
X̃
Ã (iX̃ denotes the substitution operator associated to X̃). If,

in particular, F ∈ C∞(TM), then ∇vF is a one-form, ∇v∇vF := ∇v(∇vF ) is a type
(0, 2) tensor along τ . ∇v∇vF is called the (vertical) Hessian of F . For any two vector
fields X,Y on M we have

∇v∇vF
(
X̂, Ŷ

)
= Xv(Y vF ) = [Xv, Y v]F + Y v(XvF )

= Y v(XvF ) = ∇v∇vF
(
Ŷ , X̂

)
,

so the tensor∇v∇vF is symmetric.

Ehresmann connections and Berwald derivatives

Definition 3.2 By an Ehresmann connection on TM we mean a mapping
H : TM ×M TM → TTM satisfying the following conditions:

(C1) H �
◦
TM ×M TM is smooth;

(C2) for all v ∈
◦
TM ,H � {v} × Tτ(v)M is a linear mapping to TvTM ;

(C3) j ◦ H = 1TM×MTM ;

(C4) if o : M → TM is the zero section of TM , then H(o(p), v) = (o∗)p(v) for all
p ∈M , v ∈ TpM .



József Szilasi and Rezső L. Lovas 1105

Then (C3) and (C4) are clearly consistent, however, the smoothness of H (and the
objects derived from H) is not guaranteed on its whole domain. (This weakening of
smoothness allows more flexibility in applications.) If HTM := Im(H), then TTM =
HTM ⊕ V TM (Whitney sum); HTM is said to be a horizontal subbundle of TTM .

Given an Ehresmann connection H on TM , there exists a unique strong bundle map

V : TTM → TM ×M TM , smooth in general only on T
◦
TM , such that

V ◦ i = 1TM×MTM and Ker(V) = Im(H).

V is called the vertical map associated to H. h := H ◦ j and v := i ◦ V are projectors on
TTM , the horizontal and vertical projector belonging to H, respectively. H (as well as
V , h and v) induce tensorial mappings at the level of sections. Xh(TM) := H(X(τ)) =
h(X(TM)) is called the space of horizontal vector fields on TM . In particular, Xh :=
H
(
X̂
)

= hXc is the horizontal lift of X ∈ X(M). We have: X(TM) = Xh(TM) ⊕
Xv(TM) (direct sum of modules). In terms of the local frames

(
∂̂
∂ui

)n
i=1

of τ∗TM and((
∂
∂xi

)n
i=1

,
(

∂
∂yi

)n
i=1

)
of TTM , we get the following coordinate expressions:

H

(
∂̂

∂ui

)
=

∂

∂xi
−

n∑
j=1

N j
i

∂

∂yj
; V

(
∂

∂xi

)
=

n∑
j=1

N j
i

∂̂

∂uj
, V

(
∂

∂yi

)
=

∂̂

∂ui
;

h
(

∂

∂xi

)
=

∂

∂xi
−

n∑
j=1

N j
i

∂

∂yj
, h

(
∂

∂yi

)
= 0;

v
(

∂

∂xi

)
=

n∑
j=1

N j
i

∂

∂yj
, v

(
∂

∂yi

)
=

∂

∂yi
(1 5 i 5 n).

The functions N j
i , defined on τ−1(U) and smooth on

◦
τ−1(U), are called the Christoffel

symbols of H with respect to the given local frames. (The minus sign in the first formula
is more or less traditional.)

Via linearization, any Ehresmann connection H leads to a covariant derivative ∇ :

X
( ◦
TM

)
× X

(◦
τ
)
→ X

(◦
τ
)

on τ∗TM , called the Berwald derivative induced by H. The
explicit rules of calculation are

∇HX̃ Ỹ := V
[
HX̃, iỸ

]
and ∇iX̃ Ỹ := ∇v

X̃
Ỹ ; X̃, Ỹ ∈ X

(◦
τ
)
.

The h-part of∇, given by ∇h
X̃
Ỹ := ∇HX̃ Ỹ , has the coordinate expression

∇h
∂̂

∂ui

∂̂

∂uj
= ∇( ∂

∂ui
)h

∂̂

∂uj
=

n∑
k=1

∂Nk
j

∂yi
∂̂

∂uk
(1 5 i, j 5 n),

where the functions Nk
j are the Christoffel symbols of H. If Ã is any tensor along

◦
τ , we

may also consider the h-Berwald differential ∇hÃ of Ã given by ∇hÃ
(
X̃
)

:= ∇h
X̃
Ã.

t := ∇hδ is said to be the tension ofH. Then for any section X̃ along
◦
τ we have

t
(
X̃
)

= ∇hδ
(
X̃
)

= ∇HX̃δ = V
[
HX̃, C

]
.
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H is called homogeneous if t = 0. If a homogeneous Ehresmann connection is of class
C1 at the zeros, then there exists a covariant derivative D on M (more precisely, on TM )
such that for all X,Y ∈ X(M),

(DXY )v =
[
Xh, Y v

]
.

So under homogeneity and C1-differentiability Ehresmann connections lead to classical
covariant derivatives on the base manifold.

For covariant derivatives given on a generic vector bundle there is no reasonable con-
cept of ‘torsion’. However, if D is a covariant derivative on the pull-back bundle τ∗TM ,
and an Ehresmann connection H is also specified on TM , we have useful generalizations
of the classical torsion: the vertical torsion T v(D) and the horizontal torsion Th(D) given
by

T v(D)
(
X̃, Ỹ

)
:= DiX̃ Ỹ −DiỸ X̃ − i−1

[
iX̃, iỸ

]
and

Th(D)
(
X̃, Ỹ

)
:= DHX̃ Ỹ −DHỸ X̃ − j

[
HX̃,HỸ

]
,

respectively. (It is easy to check that both T v(D) and Th(D) are tensorial.)
The vertical torsion of any Berwald derivative ∇ vanishes. Indeed, for all ξ, η ∈

X(TM) we have

i(T v(∇)(jξ, jη)) = i∇Jξjη − i∇Jηjξ − [Jξ, Jη]
= J [Jξ, η]− J [Jη, ξ]− [Jξ, Jη] = −NJ(ξ, η),

where NJ is the Nijenhuis torsion of J . However, as it is well-known, NJ = 0, therefore
T v(∇) = 0.

The horizontal torsion of the Berwald derivative induced by an Ehresmann connection
H is said to be the torsion ofH. Denoting this tensor by T, we get

iT
(
X̂, Ŷ

)
=
[
Xh, Y v

]
−
[
Y h, Xv

]
− [X,Y ]v; X,Y ∈ X(M).

If H is of class C1 and homogeneous, then there is a covariant derivative D on M such
that (DXY )v =

[
Xh, Y v

]
(X,Y ∈ X(M)); hence

iT
(
X̂, Ŷ

)
= (DXY −DYX − [X,Y ])v =: (T (D))v,

so T reduces to the usual torsion of D.
Definition 3.3 By a semispray on TM we mean a mapping S : TM → TTM such

that τTM ◦ S = 1TM , JS = C (or, equivalently, jS = δ) and S �
◦
TM is smooth.

A semispray is said to be a spray if it is of class C1 on TM , and has the homogeneity
property [C, S] = S. A spray is called affine if it is of class C2 (and hence smooth) on
TM .
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Any semispray S on TM induces an Ehresmann connection HS on TM such that for
all X ∈ X(M) we have

HS
(
X̂
)

=
1
2

(Xc + [Xv, S]).

The torsion of HS vanishes. Conversely, if an Ehresmann connection H has vanishing
torsion, then there exists a semispray S on TM such that HS = H, i.e., ‘H is generated
by a semispray’. These important results (at least in an intrinsic formulation) are due to
M. Crampin and J. Grifone (independently). For details we refer to [35].

Parametric Lagrangians and Finsler manifolds

First we recall that a function f : TM → R is called positive-homogeneous of degree r
(r ∈ R), briefly r+-homogeneous if for each λ ∈ R∗+ and v ∈ TM we have f(λv) =

λrf(v). If f is smooth on
◦
TM , then Cf = rf , or, equivalently, ∇vδf = rf (Euler’s

relation). Conversely, this property implies that f is r+-homogeneous on
◦
TM .

Definition 3.4 By a parametric Lagrangian we mean a 1+-homogeneous function F :

TM → R which is smooth on
◦
TM . Then Q := 1

2F
2 is called the quadratic Lagrangian

or energy function associated to F . The symmetric type (0,2) tensor

gF := ∇v∇vQ =
1
2
∇v∇vF 2

along
◦
τ is the metric tensor determined by F . If, in addition,

F (v) > 0 whenever v ∈
◦
TM,

then F is called positive definite.
Lemma 3.5 Let F : TM → R be a parametric Lagrangian. Then

(i) ∇v∇vF
(
δ, X̂

)
= 0 for every vector field X on M , therefore the vertical Hessian

of F is degenerate.

(ii) The quadratic Lagrangian Q = 1
2F

2 is 2+-homogeneous; C1 on TM , smooth on
◦
TM .

(iii) The metric tensor gF = ∇v∇vQ is 0+-homogeneous in the sense that∇vδgF = 0.

(iv) g and Q are related by gF (δ, δ) = 2Q.

(v) If ϑ̃F
(
X̃
)

:= g
(
X̃, δ

)
, then ϑ̃F is a one-form along

◦
τ , and ϑF := ϑ̃F ◦ j is a

one-form on
◦
TM . We have ϑ̃F = ∇vQ = F∇vF .

Except the second statement of (ii), each claim can be verified by immediate calcula-
tions. For example, taking into account that∇v

X̃
Ŷ = 0 for all X̃ ∈ X(τ), Y ∈ X(M),

∇v∇vF
(
δ, X̂

)
= ∇vδ(∇

vF )
(
X̂
)

= C
(
∇v
X̂
F
)
−∇vF

(
∇vδX̂

)
= C(XvF )

= [C,Xv]F +Xv(CF ) = −XvF +XvF = 0,



1108 Some aspects of differential theories

whence (i). As for the (not difficult) proof of the fact that Q is C1 on TM , see [35, p.
1378, Observation].
Remark 3.6 Both ϑ̃F and ϑF are called the Lagrange one-form associated to F ; ωF :=
dϑF is the Lagrange two-form (d is the classical exterior derivative on TM ). ωF and the
metric tensor gF are related by

ωF (Jξ, η) = gF (jξ, jη); ξ, η ∈ X
( ◦
TM

)
(to check this it is enough to evaluate both sides on a pair (Xc, Y c) with X,Y ∈ X(M)).
We conclude that the Lagrange two-form and the metric tensor associated to a parametric
Lagrangian are non-degenerate at the same time. (Non-degeneracy is meant pointwise.
This implies a corresponding property at the level of vector fields, but not vice versa.)
Definition 3.7 By a Finsler function we mean a positive definite parametric Lagrangian
whose associated metric tensor is non-degenerate (and hence is a pseudo-Riemannian met-
ric on

◦
τ∗TM ). A manifold is said to be a Finsler manifold if its tangent bundle is endowed

with a Finsler function.
Proposition 3.8 If (M,F ) is a Finsler manifold, then the metric tensor gF is positive
definite, i.e., gF is a Riemannian metric in

◦
τ∗TM .

Proof. The problem can be reduced to prove the following: if a smooth function Q :
Rnr{0} → [0,∞[ is 2+-homogeneous, and the second derivativeQ′′(p) : Rn×Rn → R
is a non-degenerate symmetric bilinear form at each point p ∈ Rn r {0}, then Q′′(p) is
positive definite. A further reduction is provided by the fact that the index of Q′′(p) does
not depend on the point of p ∈ Rnr{0} (this can be seen, e.g., by an immediate continuity
argument). Thus it is enough to show that Q′′(p) is positive definite at a suitably chosen
point p.

The continuity of Q and the compactness of the Euclidean unit sphere ∂B1(0) implies
the existence of a point e ∈ ∂B1(0) such that Q(e) 5 Q(a) for all a ∈ ∂B1(0). Let H
be the orthogonal complement of the linear span of e. If v ∈ H , then Q′(e)(v) = 0, and
Q′′(e)(v, v) = 0. On the other hand, applying (v) of 3.5, it follows that

Q′′(e)(e, v) = Q′(e)(v) = 0, v ∈ H.

Now let u ∈ Rn r {0} be any vector. It can uniquely be decomposed in the form u =
αe+ v; α ∈ R, v ∈ H . Since by Euler’s relation Q′′(e)(e, e) = 2Q(e), we get

Q′′(e)(u, u) = 2α2Q(e) +Q′′(e)(v, v) = 0.

This inequality is in fact strict, because Q′′(e) is non-degenerate.

Note The above proof is due to P. Varjú, a student of University of Szeged (Hungary).
Another argument can be found in [23].

If (M,F ) is a Finsler manifold, then by 3.6 the Lagrange two-form ωF is non-
degenerate, so there exists a unique semispray S on TM such that iSωF = −dQ. Due to
the 2+-homogeneity of Q, S is in fact a spray, called the canonical spray of the Finsler
manifold.
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Lemma 3.9 (fundamental lemma of Finsler geometry) Let (M,F ) be a Finsler manifold.
There exists a unique Ehresmann connection H on TM such that H is homogeneous, the
torsion ofH vanishes, and dF ◦ H = 0.

Proof. We are going to show only the existence statement. As for the uniqueness, which
needs more preparation and takes about one page, we refer to [35, p. 1384].

Let S be the canonical spray of (M,F ), and consider the Ehresmann connection HS
induced by S according to the Crampin – Grifone construction. Then, as we have already
pointed out, the torsion ofHS vanishes. Since

HS is homogeneous def.⇐⇒ t = 0 ⇐⇒ i ◦ t = 0 ⇐⇒
[
Xh, C

]
= 0, X ∈ X(M),

we calculate:
[
Xh, C

]
=
[

1
2 (Xc + [Xv, S]), C

]
= 1

2 [[Xv, S], C] = − 1
2 ([[S,C], Xv]

+[[C,Xv], S]) = 1
2 ([S,Xv] + [Xv, S]) = 0.

Now we show that dF ◦HS = 0. Since dQ = FdF , and F vanishes nowhere on
◦
TM ,

our claim is equivalent to

dQ ◦ HS = 0 ⇐⇒ XhQ = 0 for all X ∈ X(M).

By the definition of S, 0 = iSωF + dQ. We evaluate both sides on a horizontal lift Xh:

0 = ωF
(
S,Xh

)
+XhQ = dϑF

(
S,Xh

)
+XhQ = Sϑ̃F

(
jXh

)
−Xhϑ̃F (jS)

− ϑ̃F
(
j
[
S,Xh

])
+XhQ

3.5(v)= S
(
∇vQ

(
jXh

))
−Xh(∇vQ(δ))

−∇vQ
(
j
[
S,Xh

])
+XhQ = S(XvQ)− 2XhQ− J

[
S,Xh

]
Q+XhQ

= [S,Xv]Q− 2XhQ−XcQ+XhQ+XhQ,

taking into account that SQ = dQ(S) = −iSωF (S) = −ωF (S, S) = 0, and (see [35,
3.3, Cor. 3]) J

[
S,Xh

]
= Xc −Xh. Finally, by the definition of HS again, [S,Xv]Q =

XcQ− 2XhQ, therefore −2XhQ = 0.
Thus we have proved that the canonical spray of a Finsler manifold induces an Ehres-

mann connection with the desired properties.

Note In a coordinate-free form, the fundamental lemma of Finsler geometry was first
stated and proved by J. Grifone [12]. We call the Ehresmann connection so described the
Barthel connection of the Finsler manifold. (Other terms, e.g., ‘nonlinear Cartan connec-
tion’ are also used.) Now we briefly discuss the relation between the fundamental lemma
of Finsler geometry and Riemannian geometry.

Consider the type (0, 3) tensor C[ := ∇vgF = ∇v∇v∇vQ along
◦
τ and the type (1, 2)

tensor C defined by the musical duality given by

gF

(
C
(
X̃, Ỹ

)
, Z̃
)

= C[
(
X̃, Ỹ , Z̃

)
; X̃, Ỹ , Z̃ ∈ X

(◦
τ
)
.

C, as well as C[, is called Cartan tensor of the Finsler manifold (M,F ). It is easy to see
that C[ vanishes if and only if gF is the lift of a Riemannian metric g : X(M)× X(M)→
C∞(M) on M in the sense that gF = g ◦ τ . (Then gF

(
X̂, Ŷ

)
= g(X,Y ) ◦ τ for

all X,Y ∈ X(M).) In this particular case the canonical spray of (M,F ) becomes an
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affine spray, and, as we have already remarked, the Barthel connection induces a covariant
derivative D on M such that (DXY )v =

[
Xh, Y v

]
for all vector fields X,Y on M . It can

be shown by an immediate calculation that D is just the Levi-Civita derivative on (M, g).
Thus, roughly speaking, if a Finsler manifold reduces to a Riemannian manifold, then its
Barthel connection reduces to the Levi-Civita derivative on the base manifold.

Covariant derivatives on a Finsler manifold

For the sake of convenient exposition, first we introduce some technical terms. Let a covari-
ant derivative operatorD on

◦
τ∗TM and an Ehresmann connectionH on TM be given. We

say thatD is strongly associated toH ifDδ = V (= the vertical map belonging toH). The
v-part Dv and the h-part Dh of D are given by Dv

X̃
(·) := DiX̃(·) and Dh

X̃
(·) := DHX̃(·),

respectively. If g is a (pseudo) Riemannian metric on
◦
τ∗TM , then D is called v-metrical,

h-metrical or a metric derivative, if Dvg = 0, Dhg = 0 and Dg = 0, respectively. By the
h-Cartan tensor of a Finsler manifold (M,F ) we mean the type (0, 3) tensor Ch[ := ∇hgF ,
or the (1, 2) tensor Ch given by

gF

(
Ch
(
X̃, Ỹ

)
, Z̃
)

= Ch[
(
X̃, Ỹ , Z̃

)
; X̃, Ỹ , Z̃ ∈ X

(◦
τ
)

along
◦
τ , where ∇ is the Berwald derivative induced by the Barthel connection. (∇ will be

mentioned as the Finslerian Berwald derivative on (M,F ) in the following.)
From a ‘modern’ point of view, the covariant derivative operators introduced in Finsler

geometry by L. Berwald, É. Cartan, S. S. Chern, H. Rund and later by M. Hashiguchi
using classical tensor calculus, can be interpreted as covariant derivatives on

◦
τ∗TM , spec-

ified by some nice properties (compatibility or ‘semi-compatibility’ with the metric tensor
and the Barthel connection, vanishing of some torsion tensors). The covariant derivative
constructed by É. Cartan in 1934 is an exact analogue of the Levi-Civita derivative on a
Riemannian manifold, but it lives on the pull-back bundle

◦
τ∗TM . To be more precise,

Cartan’s derivative D : X
( ◦
TM

)
× X

(◦
τ
)
→ X

(◦
τ
)

is the only covariant derivative on a

Finsler manifold (M,F ) which is metric (DgF = 0), and whose vertical and horizontal
torsion vanish (the latter is taken with respect to the Barthel connection H). Then D is
strongly associated toH, and it is related to the Finslerian Berwald derivative by

Dv = ∇v +
1
2
C, Dh = ∇h +

1
2
Ch.

For a proof of this, as well as the next result, we refer to [35].
In 1943 S. S. Chern, using Cartan’s calculus of differential forms; later, but indepen-

dently, in 1951, H. Rund by means of tensor calculus, constructed a covariant derivative
on a Finsler manifold which may be described in our language as follows:
Lemma 3.10 Let (M,F ) be a Finsler manifold, and let H denote its Barthel connection.
There exists a unique covariant derivative D on

◦
τ∗TM such that Dv = ∇v , Dhg = 0

(i.e., D is h-metrical with respect to H), and the (H-)horizontal torsion of D vanishes.
Then D is strongly associated to H, and it is related to the Finslerian Berwald derivative
by

Dv = ∇v, Dh = ∇h +
1
2
Ch.
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It will be useful to summarize the classical covariant derivatives used in Finsler geom-
etry in a tabular form.

D =
(
Dv, Dh

)
Dvg Dhg T v(D) Th(D) Dδ

Berwald(
∇v,∇h

) C[ Ch[ 0 T = 0
t ◦ j + V

= V
Cartan 0 0 0 0 V

Chern – Rund
Dv := ∇v C[ 0 0 0 V

Hashiguchi
Dh := ∇h 0 Ch[ 0 T = 0 V

(Data printed in bold are prescribed.)
It is a historical curiosity that Chern’s covariant derivative and Rund’s covariant deriva-

tive were identified only in 1996 [1]. Another construction of the Chern – Rund derivative
can be found in a quite recent paper of H.-B. Rademacher [32]: it is given locally as a
covariant derivative on the base manifold M , ‘parametrized’ by a nowhere vanishing vec-
tor field on an open subset of M , satisfying some Koszul-type axioms. Now we identify
Rademacher’s constructions with ours presented in 3.10.
Theorem 3.11 Let (M,F ) be a Finsler manifold. Suppose U ⊂ M is an open set, and U
is a nowhere vanishing vector field on U . If gU is defined by

gU (X,Y ) := gF

(
X̂, Ŷ

)
◦ U ; X,Y ∈ X(U),

then gU is a Riemannian metric on U , and there exists a unique covariant derivative

DU : X(U)× X(U)→ X(U), (X,Y ) 7→ DU
XY

such that DU is torsion-free and almost metric in the sense that

XgU (Y,Z) = gU
(
DU
XY,Z

)
+ gU

(
Y,DU

XZ
)

+ C[
(
D̂U
XY , Ŷ , Ẑ

)
◦ U

for any vector fields X,Y, Z on U . DU is related to the Chern – Rund derivative D by

DU
XY =

(
DXc Ŷ

)
◦ U ; X,Y ∈ X(U).

Proof. To show the existence, we define the mapping DU by the prescription(
DU
XY
)

(p) := DXc Ŷ (U(p)); X,Y ∈ X(U), p ∈ U ;

whereD is the Chern – Rund derivative on (M,F ). It is then obvious thatDU is additive in
both of its variables. To check the C∞(U)-linearity inX and the Leibniz rule, we choose a
smooth function f on U , and using the properties of the Chern – Rund derivative, calculate:

DU
fXY :=

(
D(fX)c Ŷ

)
◦ U =

(
f cDXv Ŷ + fvDXc Ŷ

)
◦ U
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= (fv ◦ U)
(
DXc Ŷ ◦ U

)
= fDU

XY
(
fv := f ◦ ◦τ

)
;

DU
XfY :=

(
DXcf

vŶ
)
◦ U =

(
(Xcfv)Ŷ + fvDXc Ŷ

)
◦ U = (Xf)Y + fDU

XY.

Taking into account that the horizontal torsion of D vanishes, and hence 0 = DXh Ŷ −
DY hX̂ − j

[
Xh, Y h

]
= DXh Ŷ −DY hX̂ − [̂X,Y ], it follows that

DU
XY −DU

YX =
(
DXc Ŷ −DY cX̂

)
◦ U

=
(
DXh Ŷ −DY hX̂

)
◦ U = [̂X,Y ] ◦ U = [X,Y ],

i.e., DU is torsion-free. It remains to show that DU is almost metric. By Lemma 3.1 and
using that D is h-metrical, we get

XgU (Y,Z) = X
(
gF

(
Ŷ , Ẑ

)
◦ U
)

=
(

(Xc + [X,U ]v)gF
(
Ŷ , Ẑ

))
◦ U

=
((
Xh + vXc + [X,U ]v

)
gF

(
Ŷ , Ẑ

))
◦ U = gF

(
DXh Ŷ , Ẑ

)
◦ U

+ gF

(
Ŷ , DXhẐ

)
◦ U + C[

(
VXc + [̂X,U ], Ŷ , Ẑ

)
◦ U.

Finally, we identify the term VXc+[̂X,U ]. Observe that at each point p ∈ U , Uh(U(p)) =
H ◦ Û(U(p)) = H(U(p), U(p)) = H ◦ δ(U(p)) = S(U(p)), where S is the canonical
spray of (M,F ). Using this, the torsion-freeness of the Barthel connection and the relation
Ch(·, δ) = 0 (as for the latter, see [35, 3.11]), we have

(vXc + [X,U ]v) ◦ U =
(
vXc +

[
Xh, Uv

]
−
[
Uh, Xv

])
◦ U

=
(
vXc + i∇XhÛ − i∇UhX̂

)
◦ U =

(
vXc + i∇XhÛ − i∇SX̂

)
◦ U

=
(
v(Xc − [S,Xv]) + i∇XhÛ +

1
2
iCh

(
X̂, δ

))
◦ U = i

(
DXc Ŷ

)
◦ U

=
(
DU
XY
)v
.

This completes the proof of the existence statement. As for uniqueness, it can be shown
(see the cited paper of Rademacher) that if DU is an almost-metric, torsion-free covariant
derivative operator on U , then it obeys a Koszul-type formula, and hence it is uniquely
determined.
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Variational sequences
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Introduction

The modern differential geometric approach to mechanics and field theory inspired many
scientists coming from different areas of mathematics and theoretical physics to the devel-
opment of a differential geometric theory of the calculus of variations (see, for example,
[40, 45, 69, 108]). Relevant objects of the calculus of variations (like Lagrangians, com-
ponents of Euler–Lagrange equations) were interpreted as differential forms on jet spaces1

of a fibred manifold.
Fibred manifolds where chosen to provide a geometric model of the space of indepen-

dent and dependent coordinates. This is not the most general model, see subsection 6.2.
Soon it was realized that operations like the one of passing from a Lagrangian to its

Euler–Lagrange form were part of a complex, namely, the variational sequence. The foun-
dational contributions to variational sequences (and much more) can be found in the papers
[5, 22, 29, 30, 42, 55, 70, 89, 102, 106, 109, 110, 115, 116, 118]. More details on the de-
velopment of the subject can be found in section 7.

The variational sequence is a tool that allows to fit several important problems of the
calculus of variations all at once. Let us describe two of the most important among such
problems.

• Given a set of Euler–Lagrange equations, the vanishing of Helmholtz conditions is
a necessary and sufficient condition for the existence of a local Lagrangian for the

1The reader is invited to see the paper [100] of this Handbook about jet spaces.

8 B.V. .
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given equations. (see, e.g., [24, 105] for more details on Helmholtz conditions).
What about the domain of definition of the Lagrangian? Does there exist a global
Lagrangian? This problem is said to be the inverse problem of the calculus of vari-
ations, despite the fact that it is not the only inverse problem that can be considered
in this framework.

• It is important to be able to determine all variationally trivial Lagrangians, depending
on derivatives of a prescribed order, defined on a given fibred manifold. Those are
Lagrangians whose Euler–Lagrange equation identically vanish. For example, in
liquid crystals theories [36] minima of the action functional can be computed by
adding to the physical Lagrangian a trivial Lagrangian. Such trivial Lagrangians
are known to be locally of the type of a ‘total divergence’ of an n − 1-form. But
what about their dependence on highest order derivatives? Moreover, another inverse
problem arises: are they global total divergences or not?

Let us see what are the answers of variational sequence theories to the above problems
in an intuitive way. Let us denote byC the space of currents2, by L the space of Lagrangian
forms, by E the space of Euler–Lagrange-type forms and by H the space of Helmholtz
forms. Then, the variational sequence is a sequence of modules (or of sheaves, depending
on the approaches) of the type

· · · // C
dH // L

E // E
H // H

D // . . . ,

where dH is the operator of total divergence, E is the operator that takes a Lagrangian
into the corresponding Euler–Lagrange form, H is the operator which takes an Euler–
Lagrange type form into the corresponding Helmholtz form, and D is a further operator of
the complex.

The repeated application of two consecutive operators of the sequence is identically
zero: this is why the homological algebra term ‘complex’ is used for the above sequence.
In the theory of variational sequences the following facts are proved about the previous
problems.

• Let η ∈ E be a Euler–Lagrange form. Then η = E(λ) for a locally defined La-
grangian λ ∈ L if and only if H(η) = 0. The space kerH/ Im E is isomorphic to
the n + 1-st de Rham cohomology of the total space of the fibred manifold. This is
the solution of the so-called global inverse problem.

• The set of variationally trivial Lagrangians is ker E . The space ker E/ Im dH is iso-
morphic to the n-th cohomology class of the total space of the fibred manifold. This
enables us to compute which variationally trivial Lagrangians are of the global or
local form of a total divergence. More information on the structure of such La-
grangians can be found in section 6.1.

Now, let us describe the structure of the paper.

2Here ‘currents’ are n − 1-forms, hence they can be integrated on n − 1-dimensional submanifolds. This
includes conserved quantities (or conserved currents). The term ‘currents’ from classical calculus of variations
admits a modern generalization [44] which is not dealt with hereby.
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In section 1 some basic facts on jet spaces are recalled. The interested reader may con-
sult [1, 18, 79, 82, 91, 98] and the paper [100] in this Handbook for detailed introductions
to jets.

Next section is devoted to contact forms, which are forms whose pull-back by any
section of the fibred manifold identically vanishes. The horizontalization is introduced in
order to be able to single out the part of a form whose pull-back by any section does not
identically vanish. In order to overcome some technical difficulties, infinite order jets are
introduced. In practice, this trick amount at dealing with forms which are defined on an
arbitrary, but finite, order jet space.

Section 3 contains a description of one of the approaches to variational sequences on
fibred manifolds: the variational bicomplex. This approach has been developed mostly in
[102, 109, 110, 111]. Local exactness and global cohomological properties of the varia-
tional bicomplex are discussed.

In section 4 another important approach to variational sequences is presented: the C-
spectral sequence approach by [115, 116, 118]. Contact forms provide a differential filtra-
tion of the space of forms on jets. This filtration induces a spectral sequence, the C-spectral
sequence, in a standard way. A part of the variational bicomplex and the variational se-
quence is recovered as some of the differential groups in the C-spectral sequence. The
C-spectral sequence also yields a variational sequence on manifolds without fibrings (see
subsection 6.2) and on differential equations (see subsection 6.3). In particular, in the latter
case, the C-spectral sequence yields differential and topological invariants of the equation,
among which there are conservation laws (this particular aspect received foundational con-
tributions also by [22, 23, 106]).

The above approaches were formulated on infinite order jets. In [5, 34, 70] a finite
order variational sequence on jets of fibred manifolds is proposed. The approach in [70] is
described in section 5, together with comparisons with the above infinite order approaches.

Unfortunately, space constraints do not allow to write a complete text on variational
sequences. For this reason, while foundations of the theory are exposed in the above sec-
tions in the most possible detailed way (but without detailed proofs), in section 6 there is
a collection of references to many interesting theoretical and applied topics like the equiv-
ariant inverse problem, symmetries of variational forms, variational sequences on jets of
submanifolds, etc.. The reader who is interested in more detailed foundational expositions
of the subject could consult the following books.

[4] This book is unpublished, yet it is a good source of examples, calculations and results
which never appeared elsewhere.

[14] The book is devoted to the inverse problem in mechanics (one independent variable).

[23] The book covers some geometric aspects of the calculus of variations which are quite
close to those of this paper, but in the framework of exterior differential systems.

[18] It is a book on the geometry of differential equations, with one chapter devoted to the
variational sequence on jets of fibrings and on differential equations, with a focus on
symmetries and conservation laws.

[32] Idem. There is one section about the variational bicomplex.

[57] Idem. The formalism is quite close to that of [4].
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[66] Idem. The formalism is the same as in [18] but with a lot more of theoretical material,
like the k-lines theorem.

[91] Idem. There is also a section on variational multivectors, which are dual objects of
variational forms (see subsection 6.5).

[98] The book deals with jets of fibrings and has a final chapter on the variational sequence
on infinite order jets.

[121] It is a book on the geometry of differential equations and the C-spectral sequence
(see section 4), with a mostly theoretical exposition.

[127] Idem, but there are some examples and applications.

We also stress that two very good web sites for this topic are the web site at Utah State
University of Logan http://www.math.usu.edu/˜fg_mp (which seems to be no
longer actively maintained) and the ‘diffiety’ web site http://diffiety.ac.ru.

The paper ends with some notes on the development of the subject and a relatively
complete bibliography. Despite the fact that we did extensive bibliographical researches
the subject is quite vast and it is possible that some issues have been forgotten or not
properly mentioned. For this reason, we excuse ourselves in advance with the scientists
whose contribution was hereby overlooked or misunderstood.

As a last comment, we observe that we had to make a synthesis from a lot of sources.
For this reason we adopted notation that did not come from a single source, but has the
advantage of being able to express all approaches at once.

Acknowledgements. It is a pleasure to acknowledge D. Krupka, G. Manno, J. Pohjan-
pelto and A. M. Verbovetsky for many stimulating comments on the subject in general and
on my manuscript in particular. They helped me to improve the text in an essential way.

Many thanks are also due to I. Kolář, I. S. Krasil′shchik, M. Modugno, P. Olver, M.
Palese, G. Saccomandi, D. Saunders, C. Tejero Prieto, W. M. Tulczyjew, A. M. Vinogradov
for several interesting discussions.

I also would like to thank the staff of the library of the Department of Mathemat-
ics (University of Lecce), namely Antonella Toni (director), Salvatore De Giuseppe and
Francesco Lucarella, for their kind and professional assistance during my bibliographical
researches.

This research has been supported by PRIN 2006/2007 “Leggi di conservazione e ter-
modinamica in meccanica dei continui e in teorie di campo”, by the section GNSAGA of
the Istituto Nazionale di Alta Matematica http://www.altamatematica.it, and
by the Department of Mathematics of the University of Lecce.

1 Preliminaries

Manifolds and maps between manifolds are C∞. All morphisms of fibred manifolds (and
hence bundles) will be morphisms over the identity of the base manifold, unless otherwise
specified. In particular, when speaking of ‘forms’ we will always mean ‘C∞ differential
forms’.

Some parts of this paper deals with sheaves. A concise but fairly complete exposition
of sheaf theory can be found in [126]; it covers all the needs of our exposition.
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Now, we recall some basic facts on jet spaces. Our framework is a fibred manifold

π : E →M,

with dimM = n, dimE = n+m, n,m ≥ 1. We have the vector subbundle V E def= kerTπ
of TE, which is made by vectors which are tangent to the fibres of E.

For 1 ≤ r, we are concerned with the r-th jet space Jrπ; we also set J0π ≡ E. For
0 ≤ s < r we recall the natural fibrings

πr,s : Jrπ → Jsπ, πr : Jrπ →M,

and the affine bundle πr,r−1 : Jrπ → Jr−1π associated with the vector bundle �rT ∗M
⊗Jr−1π V E → Jr−1π.

Charts on E adapted to the fibring are denoted by (xλ, ui). Greek indices λ, µ,. . .
run from 1 to n and label base coordinates, Latin indices i, j,. . . run from 1 to m and
label fibre coordinates, unless otherwise specified. We denote by (∂/∂xλ, ∂/∂ui) and
(dxλ, dui), respectively, the local bases of vector fields and 1-forms on E induced by an
adapted chart.

Multiindices are needed in order to label derivative coordinates on jet spaces. It is pos-
sible to use general multiindices or symmetrized multiindices in order to label derivatives.
There are advantages and disadvantages of both approaches; to the purposes of this paper
we prefer to use the symmetrized multiindices because of the one-to-one correspondence
between them and coordinates on jets. In particular, following the approach of [98] we
denote multi-indices by boldface Greek letters such as σ = (σ1, . . . , σn) ∈ Nn. We also
set |σ| def=

∑
i σi and σ! def=σ1! · · ·σn!. Multiindices can be summed in an obvious way; the

sum of a multiindex with a Greek index σ+λ will denote the sum of σ and the multiindex
(0, . . . , 1, 0, . . . , 0), where 1 is at the λ-th entry.

The charts induced on Jrπ are denoted by (xλ, uiσ), where 0 ≤ |σ| ≤ r and ui0
def=ui.

The local vector fields and forms of Jrπ induced by the fibre coordinates are denoted by
(∂/∂uiσ) and (duiσ), 0 ≤ |σ| ≤ r, 1 ≤ i ≤ m, respectively.

An r-th order (ordinary or partial) differential equation is, by definition, a submanifold
Y ⊂ Jrπ.

We denote by jrs : M → Jrπ the jet prolongation of a section s : M → E and by
Jrf : Jrπ → Jrπ the jet prolongation of a bundle automorphism f : E → E over the
identity. Any vector field X : E → TE which projects onto a vector field X : M → TM
can be prolonged to a vector fieldXr : Jrπ → TJrπ by prolonging its flow; its coordinate
expression is well-known (see, e.g., [18, 91, 98]).

The fundamental geometric structure on jets is the contact distribution, or Cartan dis-
tribution, Cr ⊂ TJrπ. It is the distribution on Jrπ generated by all vectors which are
tangent to the image jrs(M) ⊂ Jrπ of a prolonged section jrs. It is locally generated by
the vector fields

Dλ =
∂

∂xλ
+ uiσλ

∂

∂uiσ
,

∂

∂uiτ
, (1.1)

with 0 ≤ |σ| ≤ r − 1, |τ | = r.
Remark 1.1 The contact distribution on finite order jets is not involutive. Indeed, despite
the fact that [Dλ, Dµ] = 0, if τ = σ + λ then [Dλ, ∂/∂u

i
τ ] = −∂/∂uiσ . Moreover,
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the contact distribution on finite order jets does not admit a natural direct summand that
complement it to TJrπ. The above two facts are the main motivation to the passage to
infinite order jets in order to formulate the variational sequence.

While the contact distribution has an essential importance in the symmetry analysis
of PDE [18, 91], in this context the dual concept of contact differential form will play a
central role.

2 Contact forms

2.1 Contact forms

Let us denote by Fr = C∞(Jrπ) the ring of smooth functions on Jrπ.
We denote by Ωkr the Fr-module of k-forms on Jrπ.
We denote by Ω∗r the exterior algebra of forms on Jrπ.

Definition 2.1 We say that a form α ∈ Ωkr is a contact k-form if

(jrs)∗α = 0

for all sections s of π.
We denote by C1Ωkr the Fr-module of contact k-forms on Jrπ.
We denote by C1Ω∗r the exterior algebra of contact forms on Jrπ.
Note that if k > n then every form is contact, i.e., C1Ωkr = Ωkr .
It is obvious from the commutation of d and pull-back that dC1Ωkr ⊂ C1Ωk+1

r . More-
over, it is obvious that C1Ω∗r is an ideal of Ω∗r . Hence, the following lemma holds.
Lemma 2.2 The space C1Ω∗r is a differential ideal of Ω∗r .

Unfortunately, the above ideal does not coincide with the ideal generated by 1-forms
which annihilate the contact distribution (for this would contradict the non-integrability).
More precisely, the following lemma can be easily proved (see, e.g., [70]).
Lemma 2.3 The space C1Ω1

r is locally generated (on Fr) by the 1-forms

ωiσ
def= duiσ − uiσ+λdx

λ, 0 ≤ |σ| ≤ r − 1.

The above differential forms generate the annihilator of the contact distribution, which
is an ideal of Ω∗r . However, such an ideal is not differential, hence it does not coincide with
C1Ω∗r . To realize it, the following formula can be easily proved

dωiσ = −ωiσ+λ ∧ dxλ, (2.1)

from which it follows that, when |σ| = r− 1, then dωiσ , which is a contact 2-form, cannot
be expressed through the 1-forms of lemma 2.3 because ωiσ+λ contains derivatives of order
r + 1.

The following theorem has been first conjectured in [35] (C1Ω-hypothesis), then proved
in [70, 71].
Theorem 2.4 Let k ≥ 2. The space C1Ωkr is locally generated (on Fr) by the forms

ωiσ, dωiτ , 0 ≤ |σ| ≤ r − 1, |τ | = r − 1.
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We can consider forms which are generated by p-th exterior powers of contact forms.
More precisely, we have the following definition.
Definition 2.5 Let p ≥ 1. We say that a form α ∈ Ωkr is a p-contact k-form if it is
generated by p-th exterior powers of contact forms.

We denote by CpΩkr the Fr-module of p-contact k-forms on Jrπ.
We denote by CpΩ∗r the exterior algebra of p-contact forms on Jrπ.
Finally, we set C0Ω∗r

def= Ω∗r .
In other words, CpΩ∗r is the p-th power of the ideal C1Ω∗r in Ω∗r . Of course, a 1-contact

form is just a contact form. The following lemma is trivial.
Lemma 2.6 Let p ≥ 0. We have the inclusion

Cp+1Ω∗r ⊂ CpΩ∗r .

It follows that the space Cp+1Ω∗r is a differential ideal of CpΩ∗r , hence of Ω∗r .

2.2 Horizontalization

Following the discussion in the Introduction, we would like to introduce a tool to extract
from a form α ∈ Ωkr the non-trivial part (to the purposes of calculus of variations). In
other words, we would like to introduce a map whose kernel is precisely the set of contact
forms. First of all, we observe that eq. (2.1) and Theorem 2.4 suggest that such a map can
be constructed if we allow it to increase the jet order by 1. More precisely, it can be easily
proved that the contact 1-forms ωiσ , with 0 ≤ |σ| ≤ r − 1 generate a natural subbundle
C∗r ⊂ T ∗Jrπ [122]. We have the following lemma (see [82, 98]).
Lemma 2.7 We have the splitting

Jr+1π ×
Jrπ

T ∗Jrπ =
(
Jr+1π ×

M
T ∗M

)
⊕

Jr+1π
C∗r+1, (2.2)

with projections

Dr+1 : Jr+1π → T ∗M ⊗
M
TJrπ, ωr+1 : Jr+1π → T ∗Jrπ ⊗

Jrπ
V Jrπ,

with coordinate expression

Dr+1 = dxλ ⊗Dλ = dxλ ⊗
(

∂

∂xλ
+ uiσ+λ

∂

∂uiσ

)
,

ωr+1 = ωiσ ⊗
∂

∂uiσ
= (duiσ − uiσ+λdx

λ)⊗ ∂

∂uiσ
.

Note that the above construction makes sense through the natural inclusions V Jrπ ⊂
TJrπ and Jr+1π ×M T ∗M ⊂ T ∗Jr+1π, the latter being provided by T ∗πr.

From elementary multilinear algebra (see the Appendix) it turns out that we have the
splitting

Jr+1π ×Jrπ ∧kT ∗Jrπ =
⊕
p+q=k

(
Jr+1π ×

M
∧qT ∗M

)
⊕

Jr+1π
∧pC∗r+1.
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Now, we observe that a form α ∈ Ωkr fulfills

π∗r+1,r(α) : Jr+1π → ∧kT ∗Jrπ ⊂ ∧kT ∗Jr+1π,

where the inclusion is realized through the map T ∗πr+1,r. Hence, π∗r+1,r(α) can be split
into k+1 factors which, respectively, have 0 contact factors, 1 contact factor, . . . , k contact
factors. More precisely, let us denote byHqr the set of q-forms of the type

α : Jrπ → ∧qT ∗M.

We have the following proposition (for a proof, see [70, 122, 124]).
Proposition 2.8 We have the natural decomposition

Ωkr ⊂
⊕
p+q=k

CpΩpr+1 ∧H
q
r+1,

with splitting projections

prp,q : Ωkr → CpΩ
p
r+1∧H

q
r+1, prp,q(α) =

((
p+ q

q

)
�p iDr+1 ��qiωr+1

)
◦π∗r+1,r,

where iDr+1 , iωr+1 stand for contractions followed by a wedge product (see [98] and the
Appendix).

Note that the above maps prp,q are not surjective. See [122] for more details.
Definition 2.9 We say the horizontalization to be the map

hp,q : CpΩp+qr → CpΩpr+1 ∧H
q
r+1, α 7→ prp,q(α).

Horizontalization is not surjective, unless n = 1 [72]. We denote by

Ω
p,q

r
def=hp,q(CpΩp+qr ) (2.3)

the image of the horizontalization; we say an element ᾱ ∈ Ω
0,q

r to be a horizontal form.
Probably the first occurrence of horizontalization is in [69]. Of course, horizontaliza-

tion is just the above projection on forms which have 0 contact factors. Note that, if q > n,
then horizontalization is the zero map. In coordinates, if 0 < q ≤ n, then

α = ασ1···σh
i1 ···ih λh+1···λq du

i1
σ1
∧ · · · ∧ duihσh ∧ dx

λh+1 ∧ · · · ∧ dxλq

and

h0,q(α) = ui1σ1+λ1
· · ·uihσh+λh

ασ1···σh
i1 ···ih λh+1···λq dx

λ1 ∧ · · · ∧ dxλq , (2.4)

where 0 ≤ h ≤ q (see [5, 70, 71, 122, 125]). Note that the above form is not the most gen-
eral polynomial in (r+1)-st derivatives, even if q = 1. For q > 1 the skew-symmetrization
in the indexes λ1,. . . , λh yields a peculiar structure in the polynomial, in which the sums
of all terms of the same degree are said to be hyperjacobians [90]. Note that the coordinate
expressions of hp,q can be obtained in a similar way.

The technical importance of horizontalization is in the next two results.
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Lemma 2.10 Let α ∈ Ωqr, with 0 ≤ q ≤ n, and s : M → E be a section. Then

(jrs)∗(α) = (jr+1s)∗(h0,q(α))

Proposition 2.11 Let p ≥ 0. The kernel of hp,q coincides with p+ 1-contact q-forms, i.e.,

Cp+1Ωp+qr = kerhp,q.

For a proof of both results, see, for example, [124, 125].

2.3 Horizontal and vertical differential

The above decomposition also affects the exterior differential. Namely, the pull-back of the
differential can be split in two operators, one of which raises the contact degree by one, and
the other raises the horizontal degree by one. More precisely, in view of proposition 2.8
and following [98], we introduce the maps

iH : Ωkr → Ωkr+1, iH = iDr+1 ◦ π∗r+1,r, (2.5a)

iV : Ωkr → Ωkr+1, iV = iωr+1 ◦ π∗r+1,r. (2.5b)

The maps iH and iV are two derivations along πr+1,r of degree 0. Together with the
exterior differential d they yield two derivations along πr+1,r of degree 1, the horizontal
and vertical differential

dH
def= iH ◦ d− d ◦ iH : Ωkr → Ωkr+1,

dV
def= iV ◦ d− d ◦ iV : Ωkr → Ωkr+1,

It can be proved (see [98]) that dH and dV fulfill the properties

d2
H = d2

V = 0, dH ◦ dV + dV ◦ dH = 0, (2.6a)

dH + dV = (πr+1
r )∗ ◦ d, (2.6b)

(jr+1s)∗ ◦ dV = 0, d ◦ (jrs)∗ = (jr+1s)∗ ◦ dH . (2.6c)

The action of dH and dV on functions f : JrY → R and one–forms on JrY uniquely
characterizes dH and dV . We have the coordinate expressions

dHf = Dλf dx
λ =

(
∂f

∂xλ
+ uiσ+λ

∂f

∂uiσ

)
dxλ, (2.7a)

dHdx
λ = 0, dHdu

i
σ = −duiσ+λ ∧ dxλ, dHω

i
σ = −ωiσ+λ ∧ dxλ, (2.7b)

dV f =
∂f

∂uiσ
ωiσ, (2.7c)

dV dx
λ = 0 , dV du

i
σ = diσ+λ ∧ dxλ, dV ω

i
σ = 0. (2.7d)

We note that dHduiσ = dHω
i
σ .
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2.4 Infinite order jets

From subsections 2.1, 2.2, 2.3, it is clear that there are fundamental operations in the
geometry of jets which do not preserve the order. For this reason the first formulations of
variational sequences were derived in infinite order frameworks (with a partial exception
in [5]). At the level of forms, this amounts at defining spaces containing all forms on any
arbitrary (but finite) order jet. At the level of vector fields, this is done by considering
infinite sequences of tangent vectors which are related by the maps Tπr,s.

In what follows we will use the notions of projective (or inverse) system, projective (or
inverse) limit, injective (or direct) system, injective (or direct) limit. Such notions can be
found in any book of homological algebra (see, e.g., [96]).

We start with the following definition. Consider the projective system

· · ·
πr+2,r+1 // Jr+1π

πr+1,r // Jrπ
πr,r−1 // · · ·

π1,0 // E
π // M.

Definition 2.12 We define the infinite order jet space to be the projective limit

J∞π def= lim←− J
rπ.

Any element θ ∈ J∞π is a sequence of points {θr}r≥0, θr ∈ Jrπ, which are related by
the projections of the system, πr,s(θr) = θs, r ≥ s. Hence, we have obvious projections

π∞,r : J∞π → Jrπ, π∞ : J∞π →M.

Any section s : M → E induces an element j∞s(x) ∈ J∞π, for x ∈ M , in an obvious
way, and conversely, any element θ ∈ J∞π is of the form θ = j∞s(x), with x = π∞(θ),
for a well-known result of analysis.

Several results can be proved on the infinite order jet: it has the structure of a bundle
on E whose fibres are R∞, the space of sequences of real numbers; local coordinates on
J∞π are (xλ, uiσ), where 0 ≤ |σ| < +∞; it is connected ifE is connected, it is Hausdorff
and second countable [98]; it is paracompact [102]. Unfortunately, R∞ is a Fréchet space
which cannot be made into a Banach space [98], hence several important parts of the theory
of infinite dimensional Banach manifolds fail to be true. But, to the purposes of building
a variational sequence, we need just the ability to deal with functions, tangent vectors and
forms which are defined on any finite order jet space. This does not amount at defining all
possible functions, tangent vectors, forms on J∞π, but only at considering their inductive
or projective counterparts. This is a more or less implicit assumption in the literature; see
[18] for an exposition which is close to the present one.

We begin with the projective structure of the tangent space. Namely, we have the
following projective system

· · ·
Tπr+2,r+1 // TJr+1π

Tπr+1,r // TJrπ
Tπr,r−1 // · · ·

Tπ1,0 // TE
Tπ // TM.

We define the tangent space TJ∞π to be the projective limit of the above projective sys-
tem. Hence a tangent vector at θ ∈ J∞π is a sequence of vectors {X̄,Xr}k≥0 tangent to
M and to Jrπ respectively such that Tπr(Xr) = X̄ , Tπr,s(Xr) = Xs for all r ≥ s ≥ 0.
Any tangent vector can be presented in coordinates as the formal sum

X = Xλ ∂

∂xλ
+Xi

σ

∂

∂uiσ
, 0 ≤ |σ| < +∞, (2.8)
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where Xλ, Xi
σ ∈ R. Of course we have obvious projections

Tπ∞,r : TJ∞π → TJrπ, Tπ∞ : TJ∞π → TM,

by which it is possible to define pull-back of forms on the infinite order jet. Moreover,
we define the vertical subbundle V J∞π ⊂ TJ∞π as the subspace V J∞π def= kerTπ∞. It
could also be introduced as a projective limit of finite-order vertical bundles. In coordi-
nates, a vertical tangent vector can be expressed as in (2.8), with the condition Xλ = 0.

Analogously, we define the cotangent space T ∗J∞π to be the injective limit of the
injective system · · ·T ∗Jrπ → T ∗Jr+1π · · · . Hence a cotangent vector at θ ∈ J∞π is an
equivalence class of the direct sum ⊕r∈NT

∗
θ J

rπ under the following equivalence relation:
for all α, β ∈ ⊕r∈NT

∗
θ J

rπ we set α ∼ β if and only if there exist r, s ∈ N, r < s, such that
T ∗πs,r(α) = β. Moreover, we define the horizontal subbundle π∗∞(T ∗M) ⊂ T ∗J∞π.

Any tangent vector can be presented in coordinates as the formal sum

X = Xλ ∂

∂xλ
+Xi

σ

∂

∂uiσ
, 0 ≤ |σ| < +∞, (2.9)

where Xλ, Xi
σ ∈ R. Any cotangent vector can be presented in coordinates as the finite

sum

α = αλdx
λ + ασ

i du
i
σ, 0 ≤ |σ| ≤ r, (2.10)

for an r ∈ N.
According with lemma 2.7, we have the following lemma (see [98]).

Lemma 2.13 We have the splittings

TJ∞π = C∞ ⊕
J∞π

V J∞π, (2.11)

T ∗J∞π = π∗∞(T ∗M) ⊕
J∞π

C∗∞, (2.12)

where

• C∞ is the projective limit of the projective system · · ·Cr+1 → Cr · · · , where the
projection is the restriction of Tπr+1,r to Cr+1;

• C∗∞ is the injective limit of the injective system · · ·C∗r → C∗r+1 · · · , where the injec-
tion is the restriction of T ∗πr+1,r to C∗r .

The splitting projections are just the direct limit of the maps iH and iV of (2.5), that we
indicate with the same symbol.

Now, we could introduce functions and differential forms on J∞π as functions on J∞π
or sections of exterior powers of T ∗J∞π. But we prefer to insist with our ‘injective limit’
approach because it makes more clear the ideas exposed in the beginning of this section.

The composition with πr+1,r provides the injective system of rings · · · ⊂ Fr ⊂
Fr+1 ⊂ · · · . We can regard the above system also as a filtered algebra [18]. Ac-
cordingly, pull-back via πr+1,r provides several injective (or direct) systems of mod-
ules over the above injective system of rings, namely · · · ⊂ Ωkr ⊂ Ωkr+1 ⊂ · · · ,
· · · ⊂ Ω

0,q

r ⊂ Ω
0,q

r+1 ⊂ · · · , · · · ⊂ CpΩp+qr ⊂ CpΩp+qr+1 ⊂ · · · .
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Let us introduce the injective (or direct) limits of the above injective systems

F def= lim−→Fr, Ωk def= lim−→Ωkr , Ω
0,q def= lim−→Ω

0,q

r , CpΩp+q def= lim−→C
pΩp+qr .

Definition 2.14 We say:

• f ∈ F to be a (smooth) function on J∞π;

• α ∈ Ωk to be a (differential) k-form on J∞π;

• ᾱ ∈ Ω
0,q

to be a horizontal q-form on J∞π;

• γ ∈ CpΩk to be a p-contact k-form on J∞π.

From the definition of direct limit it follows that elements f ∈ F are equivalence
classes of the direct sum ⊕r∈NFr under the following equivalence relation: for all g, h ∈
⊕r∈NFr we set g ∼ h if and only if there exist r, s ∈ N, r < s, such that π∗s,rh = g. Of
course, the same holds for the other spaces in the above definition, so that:

• F is made by all functions on a jet space Jrπ of arbitrary, but finite, order;

• Ωk is made by all k-forms on a jet space Jrπ of arbitrary, but finite, order;

• Ω
0,q

is made by all horizontal q-forms on a jet space Jrπ of arbitrary, but finite,
order; if α ∈ Ω

0,q
, then, locally,

α = αλ1···λk dx
λ1 ∧ · · · ∧ dxλk , αλ1···λk ∈ F ;

hence, if α ∈ Ω
0,q

then α : Jrπ → ∧kT ∗M , for some r ∈ N. For this reason, if we
consider the inductive system · · · ⊂ Hqr ⊂ H

q
r+1 ⊂ · · · and its injective limit Hq ,

we have the equalityHq = Ω
0,q

, which does not holt at any finite order level;

• CpΩk is made by all p-contact k-forms on a jet space Jrπ of arbitrary, but finite,
order; if α ∈ CpΩk, then, locally,

α = ωi1σ1
∧ · · · ∧ ωipσp ∧ α

σ1···σp
i1···ip , α

σ1···σp
i1···ip ∈ Ωk−p,

where the multiindexes σ1,. . . , σp have arbitrary, but finite, length.

The differential d, the projections prp,q (hence also the horizontalization hp,q) and the
differentials dH , dV on finite order jets induce the maps

d : Ωk → Ωk+1, α 7→ dα, prp,q : Ωp+q → CpΩp ∧ Ω
0,q
, α 7→ prp,q(α),

dH : Ωk → Ωk+1, α 7→ dHα, dV : Ωk → Ωk+1, α 7→ dV α,

for each k ≥ 0, where, being α ∈ Ωkr for some r, dα coincides with the differential of α
on Ωkr , and analogously for prp,q , dH and dV .

The proof of the following proposition follows easily from the definitions, the coordi-
nate expressions (2.7), and proposition 2.8.
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Proposition 2.15 We have the natural splitting

Ωk =
⊕
p+q=k

CpΩp ∧ Ω
0,q

;

with splitting projections

prp,q : Ωp+q → CpΩp ∧ Ω
0,q
, prp,q(α) =

(
p+ q

q

)
�p iV ��qiH .

Moreover, we have the following inclusions

dH(CpΩp ∧ Ω
0,q

) ⊂ CpΩp ∧ Ω
0,q+1

, dV (CpΩp ∧ Ω
0,q

) ⊂ Cp+1Ωp+1 ∧ Ω
0,q
.

Remark 2.16 The above splitting represents one of the major differences between the finite
order and the infinite order case. The simple structure of the splitting and the behaviour
of dH and dV will allow us to give an easy definition of the variational sequence in the
infinite order case.
Remark 2.17 The differentials dH and dV can also be defined through the above splitting.
More precisely, it can be easily proved that

d(CpΩp ∧ Ω
0,q

) ⊂ CpΩp ∧ Ω
0,q+1 ⊕ Cp+1Ωp+1 ∧ Ω

0,q
;

then dH is the projection onto the first factor and dV is the projection onto the second
factor of the restriction of d to CpΩp ∧ Ω

0,q
(see [4]).

Finally, a vector field on J∞π is a filtered derivation of F , i.e., an R-linear derivation
X : F → F such that X(Fr) ⊂ Fr+s for all r, and for l ≥ 0 which depends on X . The
number l is said to be the filtration degree of the field X . The set of all vector fields is a
filtered Lie algebra over R with respect to commutator [X,Y ]. Of course, any vector field
X on J∞π can be regarded as a section of TJ∞π with coordinate expression

X = Xλ ∂

∂xλ
+Xi

σ

∂

∂uiσ
, 0 ≤ |σ| < +∞.

where Xλ ∈ Fs and Xi
σ ∈ Fr+s [18].

Let X be a vector field on J∞π. Then X can be split according with (2.11) as

X = XH +XV , (2.13)

XH = XλDλ, XV = (Xi
σ − uiσ+λX

λ)
∂

∂uiσ
0 ≤ |σ| < +∞.

We observe that any vector fieldX : E → TE which projects onto a vector fieldX : M →
TM can be prolonged to a vector field X∞ with filtration degree 0. We have

X∞ = XλDλ +Dσ(Xi − uiλXλ)
∂

∂uiσ
, 0 ≤ |σ| < +∞, (2.14)

where Xλ ∈ C∞(M). The vector field X∞V is said to be the evolutionary vector field with
generating function X (see, e.g., [18, 91]).
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We can consider more general evolutionary vector fields. Namely, it can be proved
(see, e.g., [18, 91]) that a vector field X on J∞π is a symmetry of C∞ if and only if it its
vertical part is of the form XV = Eϕ, where ϕ : Jrπ → V π and

Eϕ : J∞π → V J∞π, Eϕ = Dσϕ
i ∂

∂uiσ
. (2.15)

We say Eϕ to be an evolutionary vector field with generating function ϕ; of course, the
filtration degree of Eϕ is the order r of the jet space on which ϕ is defined. It can be
proved [18, 91] that evolutionary vector fields are uniquely determined by their generating
functions. We denote the Fr-module of generating functions on Jrπ with κr. Composing
with projections πr+1,r yields the chain of inclusions · · · ⊂ κr ⊂ κr+1 ⊂ · · · , hence the
direct limit κ. This module plays an important role in section 4.

3 Variational bicomplex and variational sequence

Variational sequences has been introduced basically in two ways.
The first way is through the properties of dH , dV on infinite order jets [108, 109,

102, 110]. Another way to describe this approach is to consider the splitting (2.11) as a
connection on J∞π which has zero curvature.

The second way is through a spectral sequence [29, 30, 115, 116, 118]; this approach
will be described in section 4.

Partial exceptions to this classification are [5], where the approach is (at least partially)
on finite order jets, and [17], where the approach is based on the properties of the interior
Euler operator (see subsection 3.1). In this section we describe the approach of [108, 109,
102, 110] in a modern language which is close to that of [4, 98].

For all p ≥ 0 we introduce the following notation:

E0,q
0

def= Ω
0,q
, Ep,q0

def= CpΩp ∧ Ω
0,q
, (3.1)

Ep,n1
def=Ep,n0

/
dH(Ep,n−1

0 ) = CpΩp ∧ Ω
0,n/

dh(CpΩp ∧ Ω
0,n−1

). (3.2)

The integers p, q are called, respectively, the contact and the horizontal degree.
We also denote by Ωk(M) the space of k-forms on M .
We define the map

e1 : Ep,n1 → Ep+1,n
1 , e1([α]) = [dV α]. (3.3)

The above map is well-defined because dV ◦ dH = −dH ◦ dV .
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In view of the properties (2.6a) of dH and dV the following diagram commutes

0

��

0

��

0

��

0

��
0 // E0,0

0

dV //

dH

��

E1,0
0

−dH
��

Ep,00

dV //

(−1)pdH

��

Ep+1,0
0

(−1)p+1dH
��

0 // E0,1
0

dV // E1,1
0 Ep,10

dV // Ep+1,1
0

0 // E0,n−1
0

dV //

dH

��

E1,n−1
0

−dH
��

Ep,n−1
0

dV //

(−1)pdH

��

Ep+1,n−1
0

(−1)p+1dH
��

0 // E0,n
0

dV //

��

E1,n
0

��

Ep,n0

dV //

��

Ep+1,n
0

��
0 0 0 0

(3.4)

and rows and columns are complexes (in the sense that the kernel of a map contains the
image of the previous). According with standard terminology from homological algebra,
the above diagram (3.4) is a double complex, or a bicomplex [20]. The diagram (3.4)
can be augmented (again, a standard procedure from homological algebra) by the natural
inclusion of de Rham complex of M on the left edge and the natural quotient projection
on the complex

0 // E0,n
1

e1 // E1,n
1 Ep,n1

e1 // Ep+1,n
1
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on the bottom edge. The resulting bicomplex is

0

��

0

��
R

��

R

��

0

��

0

��

0

��
0 // Ω0(M)

π∗∞ //

d

��

E0,0
0

dV //

dH

��

E1,0
0

−dH
��

Ep,00

dV //

(−1)pdH

��

Ep+1,0
0

(−1)p+1dH
��

0 // Ω1(M)
π∗∞ // E0,1

0

dV // E1,1
0 Ep,10

dV // Ep+1,1
0

0 // Ωn−1(M)
π∗∞ //

d

��

E0,n−1
0

dV //

dH

��

E1,n−1
0

−dH
��

Ep,n−1
0

dV //

(−1)pdH

��

Ep+1,n−1
0

(−1)p+1dH
��

0 // Ωn(M)
π∗∞ //

��

E0,n
0

dV //

��

E1,n
0

��

Ep,n0

dV //

��

Ep+1,n
0

��
0 // E0,n

1

e1 //

��

E1,n
1

��

Ep,n1

e1 //

��

Ep+1,n
1

��
0 0 0 0

(3.5)

Definition 3.1 We say the variational bicomplex associated with the fibred manifold
π : E →M to be the bicomplex (3.5).

The variational sequence can be extracted from the variational bicomplex.
Definition 3.2 The following complex

0 // R // E0,0
0

dH // E0,1
0 E0,n−1

0

dH // E0,n
0

E //

E // E1,n
n

e1 // E2,n
1 Ep,n1

e1 // Ep+1,n
1

(3.6)

where the map E is just the composition of the quotient projection E0,n
0 → E0,n

1 with the
differential e1 : E0,n

1 → E1,n
1 , is said to be the variational sequence3.

The motivation for the above definition is immediate after the analysis of the quotient
spaces Ep,q1 that we are going to perform in next subsection.

The second column of the variational bicomplex has a special importance and will be
studied later on.

3Some authors use the term Euler–Lagrange complex instead, see [4]
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Definition 3.3 We say the following sequence

0 // R // E0,0
0

dH // E0,1
0 E0,n−1

0

dH // E0,n
0

// 0 (3.7)

to be the horizontal de Rham sequence.

3.1 Representation of the variational sequence by forms

The problem of representing the elements of the quotients Ep,n1 for p > 1 has been inde-
pendently solved by many authors [109, 110, 115, 116, 79, 17]. We recognize two different
approaches to the problem: with differential forms [109, 110, 79, 17] and with differential
operators [115, 116]. In this section we follow the first approach. The interpretation of the
variational sequence (3.6) in terms of objects of the calculus of variations will follow at
once.

Following [109, 110, 4], let us introduce the map

I : Ep,n0 → Ep,n0 , I(α) =
1
p
ωi ∧ (−1)|σ|Dσ

(
i∂/∂uiσα

)
(3.8)

where Dσ stands for the iterated Lie derivative (LD1)σ1 · · · (LDn)σn .
Definition 3.4 We say the map I to be the interior Euler operator4.

Note that I is denoted by τ in [109, 110] and byD∗ in [17]. For a proof of the following
theorem, see [4, 67, 110].
Theorem 3.5 The following properties of I holds

• I is a natural map, i.e., LX∞(I(α)) = I(LX∞(α)), hence I is a global map;

• if α ∈ Ep,n0 then there exists a unique form β ∈ En,p0 , which is of the type β = dHγ
with γ ∈ Ep,n−1

0 , such that

α = I(α) + β. (3.9)

Remark 3.6 The above form γ is not uniquely defined, in general. For p = 1, if the order
of α is 1 it is easily proved that γ is uniquely defined; if the order of α is 2 then there
exists a unique γ fulfilling a certain intrinsic property; if the order is 3 it is proved in [61]
that no natural γ of the above type exists. In [37, 41, 61] it is proved that suitable linear
connections on M and on the fibres of π : E → M can be used to determine a unique γ.
See [2, 4] for the case p > 1.

It follows from the above theorem that I is a global map, and if γ ∈ Ep,n−1
1 then

I(dH(γ)) = 0, so that I2 = I . For this reason I induces an isomorphism (denoted by the
same letter)

I : Ep,n1 → Vp, [α] 7→ I(α),

where Vp ⊂ Ep,n0 is a suitable subspace. The map I also allows us to represent the
differentials E , e1 through forms: I(E(λ)) = I([dV λ]), and I(e1([α])) = I([dV α]).

4This name is due to I. Anderson.
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Definition 3.7 We say the elements of Vp to be the p-th degree variational (or functional,
as in [4]) forms.

Let us see the coordinate expression of I in the most meaningful cases. We set
ν def= dx1 ∧ · · · ∧ dxn.

Case p = 1: let [α] ∈ E1,n
1 . Then α = ασ

i ω
i
σ ∧ ν and

I([α]) = (−1)|σ|Dσα
σ
i ω

i ∧ ν.

Hence, if λ ∈ E0,n
0 , then λ = Lν, E(λ) = [∂L/∂uiσω

i
σ ∧ ν] and

I(E(λ)) = (−1)|σ|Dσ
∂L

∂uiσ
ωi ∧ ν, (3.10)

which is just the expression of the Euler–Lagrange form corresponding to the La-
grangian form λ. It can be proved that the Euler–Lagrange form is the only natural
operator in a broad class of differential operators [62, 63]. It is not difficult to prove
the following result (see [98, 102]).
Proposition 3.8 The space V1 is equal to the injective limit of the system · · · V1

r ⊂
V1
r+1 · · · , where V1

r is the space of sections of the bundle

(π∗r,1C
∗
1 ) ∧ (π∗r ∧n T ∗M) .

Following [102], the elements of V1 are called source forms. A source form η ∈ V1

has the coordinate expression

η = ηi ω
i ∧ ν, ηi ∈ F , i = 1, . . . ,m.

Case p = 2: let [α] ∈ E1,n
1 . Then α = αστ

i j ω
i
σ ∧ωjτ ∧ ν (with αστ

i j = −ατσ
j i ) and, if α is

a form on the r-th order jet, then

I([α]) =
1
2
ωi ∧ (−1)|σ|Dσ(αστ

i j ω
j
τ ) ∧ ν

=
1
2

∑
µ+τ=ρ

0≤|ρ|≤2r

(−1)|ξ+µ| (ξ + µ)!
ξ!µ!

Dξα
ξ+µτ
i j ω

i ∧ ωjρ ∧ ν.
(3.11)

If η ∈ V1, then η represents the element [η] ∈ Ep,q1 . Hence, if η is a form on the r-th
order jet, then

I(e1[η]) =I(dV η)

=I
(
∂ηk
∂uhσ

ωhσ ∧ ωk ∧ ν
)

=
1
2
ωi ∧

(
∂ηj
∂ui
− ∂ηi
∂uj

)
ωj ∧ ν

+
1
2
ωi ∧

∑
0≤ρ≤2r
|µ+ρ|≥1

(−1)|µ+ρ| (µ+ ρ)!
µ!ρ!

Dµ

∂ηj
∂uiµ+ρ

ωjρ ∧ ν

(3.12)
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The above form is the well-known Helmholtz form corresponding to the source form
η. The above coordinate expression dates back to [17], even if the local expression
of the Helmholtz conditions I(dV η) = 0 of local variationality of η were known
much before, even in the general case of arbitrary values of r and n.

The Helmholtz conditions may be also expressed by the Helmholtz tensor [64]. It
has the same components of the Helmholtz form without skew-symmetrization with
respect to the pair of indexes (i, j). It has been proved that the Helmholtz tensor is
the only natural operator in a broad class [64, 87]. Note that the Helmholtz form is
also connected with the second variation of functionals [39].

Note that if p ≥ 2 then the spaces Vp cannot be characterized as spaces of sections of a
vector bundle, like V1. This can be realized by the fact that Vp fail to be modules over F .
We will see in section 4 how to characterize the elements of Vp.

The forms in Vp may also be interpreted as functionals. The case p = 1 was clear
in the papers [40, 45, 69]; the case p > 1 was dealt with first in [17] (see also [4]).
This provides a relationship between ‘standard’ calculus of variations and the theory of
variational sequences.
Definition 3.9 Let α ∈ Ep,n0 . Then we define the family of functionals A(α)

A(α)(X1, . . . , Xp)(s)U
def= z

∫
U

(j∞s)∗α(X∞1 , . . . , X∞p ),

depending on an oriented open set with compact closure and oriented regular boundary
U ⊂M , on p vertical vector fields {Xi : E → V E}1≤i≤p which vanish on π−1(∂U), and
on a section s of π.

The vector fields X1, . . . , Xp are called variation fields. We denote by

Fp def={A(α) | α ∈ Ep,n0 }

the space of functionals.
The following proposition is proved in [4, 17].

Proposition 3.10 Let α, α′ ∈ Ep,n0 . ThenA(α) = A(α′) if and only if [α] = [α′] ∈ Ep,n1 ,
or, equivalently, if and only if α′ = α+ dHβ, with β ∈ Ep,n−1

0 . Hence Vp ' Fp.

Of course, in the case p = 1 we recover the standard integral of a source form evaluated
on a variation field.

3.2 Local properties of the variational bicomplex

In this section we show that the variational bicomplex is locally exact. More precisely, re-
call that an exact sequence is a complex where the kernel of each map is equal to the image
of the previous one. Then, we prove that for all p ∈ E there exists an open neighbourhood
U ⊂ E of p such that the variational sequence on the fibred manifold π|U : U → π(U) is
an exact sequence.

We begin by proving an exactness result for the rows of the variational bicomplex.
Theorem 3.11 Let q ≥ 0. Then for all p ∈ E there exists an open neighbourhood U ⊂ E
of p such that the rows

0 // Ωq(M)
π∗∞ // E0,q

0

dV // E1,q
0 Ep,q0

dV // Ep+1,q
0
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of the variational bicomplex associated with the fibred manifold π|U : U → π(U) are
exact.

The above theorem was proved in [109] for the case of jets of n-velocities (see, e.g.,
[63] for a definition) and [110] for the case of jets of fibred manifolds (see also [4, 98]
for a detailed exposition). The proof is just a ‘vertical’ version of the Poincaré lemma. In
[115, 116] an alternative proof was proposed, see section 4.

A more complex homotopy operator is constructed in order to prove next theorem.
Several proofs of the following result has been provided: [109, 110] (see also [4, 98] for
a detailed exposition) and [102] with two different homotopy operators, [115, 116] with
Spencer sequences, [106] with Koszul complexes (indeed, in [115, 116] the authors proved
the global exactness, see also [118, 18] and section 4 for a detailed exposition).
Theorem 3.12 Let p ≥ 1. Then for all p ∈ E there exists an open neighbourhood U ⊂ E
of p such that the columns

0 // Ep,00

(−1)pdH // Ep,10 Ep,n−1
0

(−1)pdH // Ep,n0
// 0

of the variational bicomplex associated with the fibred manifold π|U : U → π(U) are exact
for horizontal degrees 0 ≤ q ≤ n− 1.

Note that in the case p = 1 the global exactness was also established in [61] (see also
references therein) by direct computation of the potential of dH -closed forms using an
auxiliary symmetric linear connection on M .

As relatively trivial consequences of the above theorems we have the following corol-
lary, obtained via ‘diagram chasing’ techniques [109, 110, 102] (see also [4, 98] for a
detailed exposition), or via spectral sequences [115, 116] (see also [118, 18] and section 4
for a detailed exposition).
Corollary 3.13 For all p ∈ E there exists an open neighbourhood U ⊂ E of p such
that in the variational bicomplex associated with the fibred manifold π|U : U → π(U) the
following complexes are exact:

• the horizontal de Rham sequence (3.7);

• the bottom row of the variational sequence

0 // E0,n
1

e1 // E1,n
1 Ep,n1

e1 // Ep+1,n
1 . (3.13)

It follows that the variational sequence associated with the fibred manifold π|U : U →
π(U) is exact.

Note that also in [79] a variational sequence is constructed and the local exactness at
the vertices of degree n and n+ 1 is proved.

3.3 Global properties of the variational bicomplex

In this section we collect results about the cohomology of rows and columns of the varia-
tional bicomplex on the given (but arbitrary) fibred manifold π : E → M . We recall that
the cohomology of a complex is the sequence of the quotients of the kernel of a map with
the image of the previous one. The cohomology of the columns is the most studied because
it allows to compute the cohomology of the variational sequence.
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Theorem 3.14 Let p ≥ 1. Then the columns

0 // Ep,00

(−1)pdH // Ep,10 Ep,n−1
0

(−1)pdH // Ep,10
// Ep,n1

// 0

are exact (i.e., the above sequence have zero cohomology) for horizontal degrees 0 ≤ q ≤
n− 1.

The above theorem has been proved in several ways. The first proofs appeared in [115,
116] (using Spencer sequences; see also the longer paper [118]), in [102] (using a sheaf-
theoretical approach) in [106] (using an isomorphism with the polynomial Koszul complex;
see also the more modern texts [18, 66, 114, 121]) and in [4] (using local exactness and a
Mayer–Vietoris argument). Note that the approach of [102] implies passing from modules
of sections Ep,q0 to the corresponding sheaves of germs of local sections. Those sheaves
consists of sections which are defined on finite order jet spaces only locally (see [43, 123]).
The following corollary holds.
Corollary 3.15 The cohomology of the variational sequence is (not naturally) isomorphic
to the de Rham cohomology of E.

Note that the above corollary implies that the cohomology of the horizontal de Rham
sequence is isomorphic to the de Rham cohomology of E for horizontal degrees 0 ≤ q ≤
n − 1. Such a cohomology is also called characteristic cohomology in the framework of
exterior differential systems [22, 23].

The above corollary can be proved using spectral sequences [115, 116] (but see the
more modern texts [18, 66, 114, 121]), sheaf-theoretical arguments [102] or just basic
diagram chasing [4]. Note that all proofs show first that the cohomology of the variational
sequence is isomorphic to the cohomology of the complex (Ω∗, d), which is, by definition,
the de Rham cohomology H∗(J∞π) of J∞π. Then it is quickly seen that H∗(J∞π) is
isomorphic to H∗(E), just by the fact that, in this case, the cohomology functor commutes
with direct limits.

The cohomology of the rows of the variational bicomplex is much less studied. We
have the following results [4].
Theorem 3.16 The cohomology of the rows

0 // Ωq(M)
π∗∞ // E0,q

0

dV // E1,q
0 Ep,q0

dV // Ep+1,q
0

vanish for vertical degrees p > m.

Some restrictions on the topology of E have to be asked in order to compute the coho-
mology of vertical rows.
Theorem 3.17 Let π be a bundle with typical fibre F . Suppose that F admit a finite
covering {Ui}0≤i≤k such that each Ui and each non-empty intersection Ui1 ∩ · · · ∩ Uil is
diffeomorphic to Rn for any l (finite good cover, see [20]). Suppose that for each p there
are a finite number {βi}1≤i≤d of p-forms on E whose restriction to the fibres of E is a
basis for the cohomology of the fibres. Then

H(Ep,q0 , dV ) ' Hp(F )⊗Hq(M).
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More precisely, the forms αi
def=π∗∞,0(βi) ∈ E

p,0
0 are dV -closed, and if α ∈ Ep,q0 is dV -

closed, then there are forms {ξi}1≤i≤d in Ωq(M) and a form η ∈ Ep−1,q
0 such that

α =
d∑
i=1

ξi ∧ αi + dV η.

The forms {ξi}1≤i≤d are unique in the sense that α is dV -exact if and only if {ξi}1≤i≤d
vanish.

The above theorem is clearly inspired by the Leray–Hirsch theorem [20], but its hy-
potheses are weaker because the forms βi are not assumed to be closed on E.

4 C-spectral sequence and variational sequence

In this section we derive the variational sequence as a by-product of a spectral sequence, the
C-spectral sequence. To the author’s knowledge the first formulations of the C-spectral se-
quence (on infinite order jets) were done in [29] and [116], independently. But the compu-
tation of all terms of the C-spectral sequence was done in [116] (using results from [115]),
in the more general setting of differential equations (see also the longer paper [118]). Note
that the variational sequence was already formulated in [115], without using the C-spectral
sequence. See the notes in section 7 for more details.

The C-spectral sequence allows us not only to recover the variational bicomplex as was
formulated in the previous section, but also to formulate a variational sequence on infinite
order jets of submanifolds and on infinite prolongations of (ordinary or partial) differential
equations (which, we recall, are submanifolds of a jet space of a certain finite order). In this
section we will recall the main results on the C-spectral sequence on the fibred manifold π.
We will follow the most recent presentation of the subject [18, 66].

We will use the language of differential operators, as in [115, 116]. There are a number
of reasons for doing that. First of all this language is used by a part of the scientists that
work in this field. Then, it yields the same construction as the interior Euler operator using
the adjoint of a differential operator. Moreover, differential operators and the operations
on them constitute a calculus which is complementary to that of differential forms and
is of independent interest with respect to variational sequences. An important domain
of application of this calculus is, for example, the Hamiltonian formalism for evolution
equations [56, 66].

4.1 The C-spectral sequence and its 0-th term

Here we introduce the C-spectral sequence and compute its first term.
We begin by recalling the basic facts on spectral sequences, but we suggest the inter-

ested reader to consult a book on algebraic topology (like [20, 81]; see also [66]).
We recall that a filtered module is a module P endowed with a chain5 of submodules

P def=F 0P ⊃ F 1P ⊃ F 2P ⊃ · · · ⊃ F pP ⊃ · · ·

5We will only use decreasing filtrations.
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A filtered module yields the associated graded module S∗0 (P ), where

Sp0 (P ) def=F pP
/
F p+1P.

A (graded) filtered complex is a graded filtered module P endowed with a differential d of
degree 1 which preserves the filtration, i.e., d(F pP ) ⊂ F pP . With every filtered complex
it is associated a filtration of its cohomology H∗(P ) as follows:

H∗(P ) = F 0H∗(P ) ⊃ F 1H∗(P ) ⊃ F 2H∗(P ) ⊃ · · · ⊃ F pH∗(P ) ⊃ · · · (4.1)

where F pH∗(P ) is the image of the cohomological map H∗(F pP )→ H∗(P ) induced by
the inclusion F pP ⊂ P . In general (4.1) is a filtration without a natural differential.

Any filtered complex yields a spectral sequence. A spectral sequence is a sequence of
differential Abelian groups (Sn, sn) where the cohomology of each term is equal to the
next term: H(Sn, sn) = Sn+1.

A spectral sequence is said to converge if there exists k ∈ N such that for every k′ ∈ N,
k′ > k, we have Sk = Sk′ . In this case we set S∞

def=Sk. For spectral sequences associated
with filtered complexes the notion of convergence is more specific. Namely, a spectral
sequence associated with a filtered complex is said to converge if it exists a graded filtered
module Q such that S∞ = S∗0 (Q). It can be proved [20, 81, 66] that if a spectral sequence
associated with a filtered complex P lays in the first quadrant (i.e., Sp,qr = 0 whenever
p < 0 or q < 0), then it converges to the graded module S0(H∗(P )) associated with the
filtration (4.1) of H∗(P ).

In view of lemma 2.6, the following infinite chain of module inclusions

Ω∗ = C0Ω∗ ⊃ C1Ω∗ ⊃ C2Ω∗ ⊃ · · · ⊃ CpΩ∗ ⊃ · · · (4.2)

is a filtered complex.
Definition 4.1 The above filtered complex (4.2) is said to be the C-filtration.

The induced spectral sequence is said to be the C-spectral sequence.
We recall that, from the definition of spectral sequence associated with a filtered com-

plex, the first term (Sp,q0 , s0) of the C-spectral sequence is just the graded module associ-
ated with the C-filtration, i.e.,

Sp,q0 = CpΩp+q
/
Cp+1Ωp+q,

with differential s0 : Sp,q0 → Sp,q+1
0 , s0([α]) = [dα]. The C-spectral sequence is a first

quadrant spectral sequence, hence it converges to the graded group associated with the de
Rham cohomology H∗(J∞π) of the initial complex Ω∗ of the C-filtration. We stress that
H∗(J∞π) is filtered according with (4.1).

The proof of the following proposition is quite simple and derives from proposi-
tion 2.11 [18, 115, 116, 118, 121].
Proposition 4.2 The horizontalization hp,q yields an isomorphism, denoted by the same
symbol,

hp,q : Sp,q0 → Ep,q0 , [α] 7→ hp,q(α).
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Moreover, the above isomorphism yields s0 = dH . It turns out that the first term of the
C-spectral sequence is just the family of complexes (Ep,∗0 , dH)0≤p<+∞, or, equivalently,
the family of columns of the diagram (3.4).
Remark 4.3 The reader may wonder about how to recover rows of the variational bicom-
plex within the C-spectral sequence approach. There is another natural filtration of Ω∗: it
is provided by horizontal forms. Namely, one could consider the ideal of forms generated
by the codistribution T ∗π : T ∗M → T ∗J∞π and its powers. This filtration is preserved
by d and yields another spectral sequence, whose 0-term consists of the rows of the dia-
gram (3.4).

The computations of the remaining terms of the C-spectral sequence will be done in
subsection 4.3.

4.2 Forms and differential operators

The computation of the C-spectral sequence has been performed in [115, 116, 118] in the
language of differential operators. More precisely, there is an isomorphism between the
spaces Ep,q0 and suitable spaces of differential operators. As a by-product, we will obtain
a description of the spaces Ep,q1 . The purpose of this subsection is to recall the basic facts
about differential operators and to state the above mentioned isomorphism.

We now recall the basic algebraic and geometric setting for differential operators. The
interested reader could consult [18, 66, 121] for more details.

Let P,Q be modules over an algebra A over R. We recall ([1]) that a linear differential
operator of order k is defined to be an R-linear map ∆ : P → Q such that

[δa0 , [. . . , [δak ,∆] . . . ]] = 0 (4.3)

for all a0, . . . , ak ∈ A. Here, square brackets stand for commutators and δai is the mul-
tiplication morphism. Of course, linear differential operators of order zero are morphisms
of modules. The A-module of differential operators of order k from P to Q is denoted by
Diffk(P,Q). The A-module of differential operators of any order from P to Q is denoted
by Diff(P,Q). This definition can be generalized to maps between the product of the A-
modules P1,. . .Pl and Q which are differential operators of order k in each argument, i.e.,
multidifferential operators. The corresponding space is denoted by Diffk(P1, . . . , Pl;Q),
or, if P1 = · · · = Pl = P , by Diff(l) k(P,Q). Accordingly, we define Diff(l)(P,Q).

Let P ,Q be modules of sections of a vector bundle over the same basisM , and suppose
that (ei)0≤i≤p, (fj)1≤j≤q are local bases for their respective sections. Then it can be
proved that a differential operator ∆ ∈ Diffk(P,Q) acts in coordinates as expected:

∆(s) = ajσi
∂|σ|si

∂xσ1 · · · ∂xσn
fj , 0 ≤ |σ| ≤ k, for all s ∈ P , (4.4)

where we used the coordinate expression s = siei. The proof makes use of Taylor expan-
sions of the coefficients si and of the property (4.3).

Consider the chain of algebrae · · · ⊂ Fk ⊂ Fk+1 ⊂ · · · , and two chains of modules
of sections of vector bundles · · · ⊂ Pk ⊂ Pk+1 ⊂ · · · and · · · ⊂ Qk ⊂ Qk+1 ⊂ · · · over
the previous algebrae, with direct limits P and Q. Then a differential operator ∆: P →
Q is an R-linear map such that for all k the restriction ∆|Pk is a differential operator
∆|Pk : Pk → Qk+l, where l can depend on k.
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We will mainly use differential operators whose expressions contain total derivatives
instead of standard ones. To do that, we say a F-module P to be horizontal if it is the
module of sections of π∗∞V → J∞π, where V → M is a vector bundle. Of course, P
can be seen as the direct limit of the chain of modules of sections of π∗rV → Jrπ. Then,
we say a differential operator ∆: P → Q (of order k) between two horizontal modules
P and Q to be C-differential if it can be restricted to the manifolds of the form j∞s(M),
where s is a section of π. In other words, ∆ is a C-differential operator if the equality
j∞s(M)∗(ϕ) = 0, ϕ ∈ P , implies j∞s(M)∗(∆(ϕ)) = 0 for any section s : M → E. In
local coordinates, we have ∆ = ajσi Dσ , where ajσi ∈ F .

We denote by CDiffk(P,Q) the F-module of C-differential operators of order k from
P to Q. We also introduce the F-module CDiff(P,Q) of differential operators from P
to Q of any order. We can generalize the definition to multi-C-differential operators. In
particular, we will be interested to spaces of antisymmetric multi-C-differential operators,
which we denote by CDiffalt

(l) k(P,Q). Analogously, we introduce CDiffalt
(l)(P,Q).

Now, we consider the two horizontal modules κ (2.15) and E0,q
0 = Ω

0,q
. For a proof

of the following proposition, see [18].
Proposition 4.4 We have the natural isomorphism

Ep,q0 → CDiffalt
(p)(κ, E

0,q
0 ), α 7→ ∇α (4.5)

where∇α(ϕ1, . . . , ϕp) = Eϕpy(. . .y(Eϕ1
yα) . . . ).

Note that the isomorphism holds because for any vertical tangent vector to Jrπ there
exists an evolutionary field passing through it. In coordinates, if α

α = α
σ1···σp
i1 ···ip λ1···λq ω

i1
σ1
∧ · · · ∧ ωipσp ∧ dxλ1 ∧ · · · ∧ dxλq

then

∇α(ϕ1, . . . , ϕp) = p!ασ1···σp
i1 ···ip λ1···λq Dσ1ϕ

i1 · · ·Dσpϕ
ip dxλ1 ∧ · · · ∧ dxλq

4.3 The C-spectral sequence and its 1-st and 2-nd terms

The term Sp,q1 of the C-spectral sequence is computed in two steps. The following lemma
yields the cohomology of the terms with 0 ≤ q ≤ n − 1. Let P be a horizontal module.
Recall that E0,q

0 = Ω
0,q

, the space of horizontal forms, and E0,0
0 = F . We introduce the

adjoint module P ∗ def= Hom(P,E0,n
0 ). Consider the complex

0 // CDiff(p)(P,E
0,0
0 ) w // CDiff(p)(P,E

0,1
0 ) CDiff(p)(P,E

0,n
0 ) // 0

(4.6)

where the maps w are defined by w(∇) def= dH ◦ ∇.
Theorem 4.5 The cohomology of the complex (4.6) is zero at CDiff(p)(P,E

0,q
0 ) for 0 ≤

q ≤ n− 1 and is CDiff(p−1)(P, P ∗) for q = n.

The first version of the above theorem appeared in [116] (corollary 2; see also the
longer paper [117]. The proof was published later [118] and used Spencer cohomol-
ogy. Another proof based on the Koszul complex appeared in [106], but the formu-
lation involved only differential forms in Ep,q0 . In the language of differential opera-
tors (see proposition 4.4), this amounts at considering the subspace CDiffalt

(p)(P,E
0,q
0 ) ⊂
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CDiff(p)(P,E
0,q
0 ), with P = κ. The statement of the above theorem 4.5 is taken from

[18, p. 190], but the proof is essentially the same as in [106]. Note that there is an obvious
inclusion

CDiff(p−1)(P, P ∗) ⊂ CDiff(p)(P,E
0,n
0 ).

There is an action of the permutation group Sp of p elements on CDiff(p)(P,E
0,q
0 ).

Namely, if τ ∈ Sp and ∇ ∈ CDiff(p)(P,E
0,q
0 ) then for all s1, . . . , sp ∈ P we set

τ(∇)(s1, . . . , sp)
def= ∇(sτ(1), . . . , sτ(p)). This action commutes with w, so that we have

the following corollary.
Corollary 4.6 The skew-symmetric part of the complex (4.6) has zero cohomology at
CDiffalt

(p)(P,E
0,q
0 ) for 0 ≤ q ≤ n− 1.

It is easy to realize through the isomorphism of proposition 4.4 that, if P = κ, then
w = dH up to the isomorphism 4.5. Another set of terms of the C-spectral sequence
follows.
Corollary 4.7 We have:

• Sp,q1 = 0 for p > 0 and 0 ≤ q ≤ n− 1;

• S0,q
1 = Hq(E) for 0 ≤ q ≤ n− 1.

The content of the above theorem is the same of theorem 3.14 and corollary 3.15. The
proof of the second statement of above corollary follows from the convergence of the C-
spectral sequence to the de Rham cohomology. Indeed it can be quickly realized that the
differential s1 is the zero map on S0,q

1 for 0 ≤ q ≤ n− 1 and that s1 is never S0,q
1 -valued

for 0 ≤ q ≤ n − 1. It follows that S0,q
2 = S0,q

∞ for 0 ≤ q ≤ n − 1. Moreover, we note
that there is at most one nonzero term among Sp,q∞ with p + q = k. Then there exists a p̃
such that F p̃H p̃+q(Ω∗r) 6= F p̃+1H p̃+q(Ω∗r). This implies that the filtration of the de Rham
cohomology of the initial complex (Ω∗, d) is trivial:

H p̃+q(Ω∗r) = F 0H p̃+q(Ω∗r) = · · · = F p̃H p̃+q(Ω∗r) ⊃ 0 · · · ⊃ 0, (4.7)

whence Sp̃,q∞ = H p̃+q(Ω∗r).

We now calculate the last set of terms of E1. The following elementary lemma comes
directly from the definition of spectral sequence and the isomorphism (4.5).
Lemma 4.8 We have

Sp,n1 = Ep,n0

/
dH(Ep,n−1

0 ) = CpΩp ∧ Ω
0,n/

dH(CpΩp ∧ Ω
0,n−1

) = Ep,n1 .

It turns out that

Ep,n1 ' CDiffalt
(p)(κ, E

0,n
0 )

/
dH(CDiffalt

(p)(κ, E
0,n−1
0 )).

In view of the discussion preceding corollary 4.6, the term Ep,n1 is isomorphic to the
subspace Kp(κ) ⊂ CDiff(p−1)(κ,κ∗) of elements which are invariant under the action of
the permutation group Sp. To do that we need the notion of adjoint operator. Let P , Q be
horizontal modules and ∆: P → Q a C-differential operator. Then ∆ induces a map

∆′ : CDiff(Q,E0,q
0 )→ CDiff(P,E0,q

0 ), ∆′(∇) = ∇ ◦∆.
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The map ∆′ is a cochain map for the complex (4.6) (with p = 1), in the sense that ∆′◦w =
w ◦∆′. Hence ∆′ yields a cohomology map which, according to theorem 4.5, is trivial if
0 ≤ q ≤ n− 1 and is denoted by ∆∗ : Q∗ → P ∗ if q = n.
Definition 4.9 The operator ∆∗ is said to be the adjoint operator to ∆.

In coordinates, following the same notation of (4.4), we have ∆ = ajσi Dσ . If {ei⊗ν},
{f j ⊗ ν} are two local bases respectively of P ∗ and Q∗, and s∗ ∈ P ∗, t∗ ∈ Q∗, we have
s∗ = sie

i ⊗ ν, t∗ = tjf
j ⊗ ν, and

∆∗(t∗) = (−1)|σ|Dσ(ajσi tj)e
i ⊗ ν. (4.8)

In fact, it can be easily proved that the composition ∇ ◦ ∆ is locally equal to the above
expression up to an operator in Imw. Of course, locally this is just integration by parts.
The global meaning of the expression (4.8) appears in the two following statements (for
a proof, see [18, 66]). If ∆ ∈ CDiff(p)(P,Q), then for any p1, . . . , pp−1 we define
∆(p1, . . . , pp−1) ∈ CDiff(P,Q) in the following obvious way:

∆(p1, . . . , pp−1)(pp) = ∆(p1, . . . , pp−1, pp). (4.9)

Next lemma shows how to determine the representative of each n-th cohomology class of
the complex (4.6).
Lemma 4.10 Let P be a horizontal module and ∆ ∈ CDiff(p)(P,E

0,n
0 ). Then

∆(p1, . . . , pp−1) = ∆(p1, . . . , pp−1)∗(1) + w(∇(p1, . . . , pp−1)), (4.10)

where ∇(p1, . . . , pp−1) ∈ CDiff(P,E0,n−1
0 ). It turns out that w(∇(p1, . . . , pp−1)) =

w(∇̃), with ∇̃ ∈ CDiff(p)(P,E
0,n
0 ).

The proof is achieved first locally, with a relatively easy computation, then globally
by observing that ∆(p1, . . . , pp−1)∗(1) is a natural operator and the representative of a
cohomology class, hence the difference ∆(p1, . . . , pp−1)−∆(p1, . . . , pp−1)∗(1) must lie
in the image of w. See also [18, 66].

The above operator w(∇̃) is uniquely determined, but ∇̃ is not. The problem of deter-
mining under which additional requirements ∇̃ is uniquely determined has been thoroughly
analysed in [2, 4, 61] (see remark 3.6). Eq. (4.10) is a consequence of the fact that every
object in the n-th cohomology class of the complex (4.6) is globally represented by a single
homomorphism in P ∗.
Proposition 4.11 (Green’s formula) Let P , Q be horizontal modules and ∆: P → Q a
C-differential operator. Then

q∗(∆(p))− (∆∗(q∗))(p) = dH(ωp,q∗(∆)) (4.11)

for all q∗ ∈ Q∗, p ∈ P , where ωp,q∗(∆) ∈ E0,n−1
0 and ωp,q∗(∆) is a C-differential

operator with respect to p and q∗.

The above formula has been introduced in [115] (but see also [18, 66, 118]); its proof
is a simple consequence of lemma 4.10.

Now, it is easy to see that the action of a permutation of the first p − 1 arguments
of � ∈ CDiff(p−1)(κ,κ∗) commutes with the splitting of lemma 4.10, hence Kp(κ) ⊂



1142 Variational sequences

CDiffalt
(p−1)(κ,κ∗). Then, for ∆ ∈ CDiff(p−1)(κ,κ∗) and for any p1, . . . , pp we define

∆j(p1, . . . , p̂j , . . . , pp−1) ∈ CDiff(κ,κ∗) in the following obvious way:

∆j(p1, . . . , p̂j , . . . , pp−1)(pj)(pp) = ∆(p1, . . . , pp−1)(pp). (4.12)

Due to Green’s formula we have

∆j(pj)(pp) = ∆∗j (pp)(pj) + dH(ωp,q∗(∆)).

This implies thatKp(κ) ⊂ CDiffalt
(p−1)(κ,κ∗) is the subset of skew-adjoint operators with

respect to the exchange of one of the first p − 1 arguments with the last one. Hence, we
proved the following theorem.
Theorem 4.12 There is an isomorphism

I : Ep,n1 → Kp(κ), [∆] 7→ ∆∗(1), (4.13)

where the adjoint is taken with respect to one of the arguments of ∆.

Let us see the coordinate expression of I in the most meaningful cases. We will repre-
sent elements of Ep,n0 through the isomorphism 4.5. We set ν def= dx1 ∧ · · · ∧ dxn.

Case p = 1: let [α] ∈ E1,n
1 . Then ∇α(ϕ) = ασ

i Dσϕ
i ν and

I([α])(ϕ) = (−1)|σ|Dσα
σ
i ϕ

i ν.

Considerations similar to what exposed in section 3.1 apply also here.

Case p = 2: let [α] ∈ E1,n
1 . Then ∇α(ϕ1, ϕ2) = 2αστ

i jDσϕ
i
1Dτϕ

j
2 ν (with αστ

i j =
−ατσ

j i ) and, if α is a form on the r-th order jet, then

I([α])(ϕ1)(ϕ2) = (−1)|τ |Dτ (2αστ
i jDσϕ

i
1)ϕj2 ν

=
∑

µ+σ=ρ
0≤|ρ|≤2r

(−1)|ξ+µ| (ξ + µ)!
ξ!µ!

2Dξα
σξ+µ
ij Dρϕ

i
1ϕ

j
2 ν. (4.14)

Note that the above expressions coincide with the expressions of subsection 3.1 up to the
isomorphism (4.5) and a constant factor (which depends on different conventions about
numerical factors and the ordering in contractions and wedge products).
Remark 4.13 We observe that in [116] an intrinsic expression of e1 which makes use of
the above isomorphism was provided (see also [18, p. 195–197]).

A last step is needed in order to complete the computation of the C-spectral sequence.
Theorem 4.14 We have:

• S0,q
2 = Hq(E) for 0 ≤ q ≤ n− 1;

• Sp,q2 = 0 for p > 0 and 0 ≤ q ≤ n− 1;

• Sp,n2 = Hp+n(E) for 0 ≤ p.

It turns out that S2 = S∞.
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The only non-trivial statement of the above theorem is the last one. This follows from
the convergence of the C-spectral sequence to the de Rham cohomology and the fact that
the differential e2 always point either from 0 to Sp,n2 or from Sp,n2 , so that it is the trivial
map in both cases. For more details, see [18, 66, 118]. We just recall that the computation
of the C-spectral sequence for J∞π is called one-line theorem [118, 121].
Corollary 4.15 The variational sequence is obtained from the C-spectral sequence by join-
ing the two complexes (E0,q

0 , dH) and (Ep,n1 , e1).

The above corollary is proved after proving that s1 = e1. This is quite easy, see [124].
We stress once again that the above construction yields the same results as in sec-

tion 3 with the only exception of the cohomology of the rows. For this another spectral
sequence would produce the results, namely the one arising from a filtration through hori-
zontal forms.

5 Finite order variational sequence

The variational bicomplex and its derivation through the spectral sequence have been de-
rived so far on infinite order jets. The reasons for doing that have been explained in sec-
tion 2. But both the variational bicomplex and its derivation through the spectral sequence
admit a finite-order counterpart, which has been studied in recent years.

The first statement of a partial version of finite order variational sequence was in [5].
This finite order variational sequence stopped with a trivial projection to 0 just after the
space of finite order source forms (see section 3.1). The local exactness of this sequence
was proved, together with an original solution of the global inverse problem (despite the
fact that in order to do that the authors used infinite order jets). For more detailed comments
about that variational sequence see remark 5.7.

The first formulation of a (long) variational sequence on finite order jet spaces is in [70]
(see [72] for the case n = 1). Below we will describe the main points of the approach
of [70], and compare it with other approaches. We also observe that more details can be
found in [74]. The C-spectral sequence on finite order jets of fibrings has been recently
computed; the interested reader can find it in [125].

For the sake of completeness we also mention the paper [46]. In that paper the exact-
ness of the horizontal de Rham sequence on finite order jets of submanifolds is proved.
Nonetheless, we stress that this result could also be easily derived from the exactness re-
sults in [5, 70]. Another contribution has been given in [95], where the author stresses
the relationship between a part of the finite order variational sequence and the Spencer
sequence. This relationship was already explored in [115, 116] in the case of infinite order
jet spaces.

The scheme of the finite order approach of [70] is the following. First of all we stress
that the approach is developed in the language of sheaves. In [70] a natural exact subse-
quence of the de Rham sequence on Jrπ is defined. This subsequence is made by contact
forms and their differentials. Then we define the r–th order variational sequence to be the
quotient of the de Rham sequence on Jrπ by means of the above exact subsequence. Local
and global results about the variational sequence are proved using the fact that the above
subsequence is globally exact and using the abstract de Rham theorem.

Let us consider the sheaf of 1-contact forms C1Ω∗, and denote by (dC1Ωk )̃ the sheaf
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generated by the presheaf dC1Ωk. We set

Θq
r

def= C1Ωqr + (dC1Ωq−1
r )̃ 0 ≤ q ≤ n,

Θp+n
r

def= CpΩp+nr + (dCpΩp+n−1
r )̃ 1 ≤ p ≤ dim Jrπ.

(5.1)

We observe that dC1Ωq−1
r ⊂ C1Ωqr, so that the second summand of the above first equation

yields no contribution to C1Ωqr. Moreover, if we denote by cr the dimension of the contact
distribution on Jrπ, the we observe that Θp+n

r = 0 if p+n > P def= dim Jrπ−cr. Moreover,
we have the following property (proved in [70]).
Lemma 5.1 Let 0 ≤ k ≤ dim Jrπ. Then the sheaves Θk

r are soft sheaves.

We have the following natural soft subsequence of the de Rham sequence on Jrπ

0 // Θ1
r

d // Θ2
r

d // . . . d // ΘP
r

d // 0 (5.2)

Definition 5.2 The sheaf sequence (5.2) is said to be the contact sequence.
Theorem 5.3 The contact sequence is an exact soft resolution of C1Ω1

r , hence the coho-
mology of the associated cochain complex of sections on any open subset of Jrπ vanishes.

The above theorem is proved in [70] by first proving the local exactness of the contact
sequence and then using standard results from sheaf theory (for which an adequate source
is [126]).

Standard arguments of homological algebra prove that the following diagram is com-
mutative, and its rows and columns are exact.

0

��

0

��

0

��
0 // Θ1

r
d //

��

Θ2
r

d //

��

. . . d // ΘI
r

d //

��

0

0 // R // Ω0
r

d //

��?
??

??
??

Ω1
r

d //

��

Ω2
r

d //

��

. . . d // ΩIr
d //

��

ΩI+1
r

d // · · · 0

Ω1
r/Θ

1
r

E1 //

��

Ω2
r/Θ

2
r

E2 //

��

. . .
EI−1// ΩIr/Θ

I
r

EI
=={{{{{{{{

��
0 0 0

Definition 5.4 The above diagram is said to be the r-th order variational bicomplex asso-
ciated with the fibred manifold π : E → M . We say the bottom row of the above diagram
to be the r-th order variational sequence associated with the fibred manifold π : E →M .

Due to theorem 5.3 the finite order variational sequence is an exact sheaf sequence (this
means that the sequence is locally exact, [126]). Hence both the de Rham sequence and
the variational sequence are acyclic resolutions of the constant sheaf R (‘acyclic’ means
that the sequences are locally exact with the exception of the first sheaf R). Next corollary
follows at once.
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Corollary 5.5 The cohomology of the variational sequence is naturally isomorphic to the
de Rham cohomology of Jrπ.

Having already dealt with local and global properties of the r-th order variational se-
quence, we are left with the problem of representing the quotient sheaves. Now it is obvious
that, for 0 ≤ q ≤ n, horizontalization provides such a representation (see [70, 122]).
Proposition 5.6 Let 0 ≤ q ≤ n. Then we have the isomorphism

Jq : Ωqr/Θ
q
r → Ω

0,q

r , [α] 7→ h0,q(α).

The quotient differential Eq reads through the above isomorphism as

Jq+1(Eq([α])) = Jq+1([dα]) = h0,q+1(dα) = dHh
0,q+1(α).

The last equality of the above equation is the least obvious, and was first proved in [5].
The proof depends on the fact that Dλu

i
σµ = uiσµλ, and that the indexes λ, µ are skew-

symmetrized in the coefficients of α (see the coordinate expression of h0,q).
Remark 5.7 In [5] the finite order variational sequence is developed starting from the idea
of finding a subsequence of forms whose order do not change under dH . The authors prove
that the above property characterizes the forms which are the image of h0,q (see also [4]).
Conversely, in [70] the idea is to start with forms on finite order jets, but the result is the
same up to the degree q = n.

When the degree of forms is greater than n we are able to provide isomorphisms of
the quotient sheaves with other quotient sheaves made with proper subsheaves. This helps
both to the purpose of representing quotient sheaves and to the purpose of comparing the
current approach with others, as we will see.
Proposition 5.8 The horizontalization hp,n induces the natural sheaf isomorphism

Jp+n : Ωp+nr /Θp+n
r → Ω

p,n

r /hp,n((dCpΩp+n−1
r )̃), [α] 7→ [hp,n(α)].

The quotient differential Ep+n reads through the above isomorphism as

Jp+1+n(Ep+n([α])) = Jp+1+n([dα]) = [hp+1,n(dα)] = [dHhp,n(α)].

For a proof, see [124]. A similar approach is in [67, 68].
Now, it is clear from proposition 5.8 that we are able to represent the quotient sheaves

Ω
p,n

r /hp,n((dCpΩp+n−1
r )̃) using the interior Euler operator restricted to Ω

p,n

r ; this is pre-
cisely the approach of [67, 68]. See [47] for a different approach to this problem. A further
approach to the problem of representation appeared in [76]. Here the concept of Lepagean
equivalent is introduced in full generality (older version of this concept can be found e.g.,
in [69], with references to older foundational works). Namely, let α ∈ Ωp+nr . Then a
Lepage equivalent of [α] ∈ Ep,n1 is a differential form β ∈ Ωp+nr such that

hp,n(β) = hp,n(α), hp,q(dβ) = I(hp+1,n(dα)) = e1([α]).

The most important example of a Lepagean equivalent is the Poincaré–Cartan form of a
Lagrangian (see, e.g., [74]). A representation of forms in the variational sequence through
Lepagian equivalents is currently being studied also in exterior differential systems theo-
ries [23].
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Remark 5.9 It is interesting to observe that, either in view of theorem 4.5 or in view of the
results by several authors referred to in remark 3.6, every form α ∈ Ω

p,n

r can be written as
the sum α = σ + dHγ, where σ can be seen either as a skew-adjoint differential operator
(from the isomorphism of proposition 4.4 and theorem 4.12) or as a form in the image of
the interior Euler operator (which admits an equivalent characterization as skew-adjoint
form, see [4]).

This means that, despite the fact that the denominator in proposition 5.8 is made by
forms which are locally total divergences, only global divergences really matter.

The finite order formulation of [70] yields a variational sequence which can be proved
to be equal to the finite order variational sequence obtained from a finite order analogue of
the C-spectral sequence [125]. Moreover, as one could expect, for 0 ≤ s < r pull-back via
πr,s yields a natural inclusion of the s-th order variational bicomplex into the s-th order
variational bicomplex. More precisely, we have the following lemma (see [70]).
Lemma 5.10 Let 0 ≤ s < r. Then we have the injective sheaf morphism

χrs :
(
Ωks/Θ

k
s

)
→
(
Ωkr/Θ

k
r

)
, [α] 7→ [π∗r,sα].

Hence, there is an inclusion of the s–th order variational bicomplex into the r–th order
variational bicomplex.

It can be proved that there exists an infinite order analogue of the above r-th order
variational bicomplex [123]. This is defined in view of the above lemma via a direct
limit of the injective family of r-th order variational bicomplexes. Nonetheless the direct
limit infinite order bicomplex will be a bicomplex of presheaves, because gluing forms
defined on jets of increasing order provides ‘forms’ which are only locally of finite order
(see [43, 123] and the comments after theorem 3.14).
Remark 5.11 The main motivation for the finite order variational sequence has been a re-
finement in inverse problems of the calculus of variations. For example, a source form
[α] ∈ Ωn+1

r /Θn+1
r which is locally variational, i.e. e1([α]) = 0, admits a (local) La-

grangian [β] ∈ Ωnr /Θ
n
r . A representative of [β] is h0,n(β), which is defined on the r + 1-

st order jet and depends on highest order derivatives through hyperjacobians (proposi-
tion 5.6). See [73, 123, 124, 125] for a comparison between the finite order and infinite
order approaches.

6 Special topics

Due to space and time constraints it is not possible to go further in describing in details
the current achievements in variational sequence theory. It is also impossible to reserve
to applications and examples more than just a mention. The above tasks would require
writing a whole book. But in this section at least the most important research directions of
the last 15 years will be exposed, with reference to the literature for the readers who are
interested in knowing more.

6.1 Inverse problem of the calculus of variations

The variational sequence is intimately related with the inverse problem of the calculus
of variations (see the Introduction). This problem has a long history for which possible
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sources are the notes [91, p. 377] and references quoted therein, and [14, 88, 78] for the
case of mechanics (n = 1). Here we briefly describe some inverse problems arising in the
variational sequence, including the inverse problem of the calculus of variations. We just
recall that the cohomology of the de Rham sequence onE is isomorphic to the cohomology
of the variational sequence.

Variationally trivial Lagrangians. A variationally trivial Lagrangian is an element
[α] ∈ E0,n

1 such that e1([α]) = 0. If [α] is a variationally trivial Lagrangian, then [α]
is locally a total divergence, i.e., [α] = dH [β] with [β] ∈ E0,n−1

0 . A global horizontal
n− 1-form [β] ∈ E0,n−1

0 such that [α] = dH [β] exists if and only if [[α]] = 0 ∈ Hn(E).
A refinement of this result is the following theorem.
Theorem 6.1 Let λ : Jrπ → ∧nT ∗M induce a variationally trivial Lagrangian [λ]. Then,
locally, λ = dHµ, where µ = h0,n−1(α) and α ∈ Ωn−1

r−1 .

In other words, according to the above hypotheses, λ = h0,n(dα), hence it depends on
r-th order derivatives through hyperjacobians. This result has been proved in [5, 15, 75,
48]6 using various techniques. Note that the result is better with respect to the order of jets
than what can be obtained by the local exactness of the finite order variational sequence.
In fact, from the finite order variational sequence we would obtain α ∈ Ωn−1

r . Of course,
the result is sharp: the order cannot be further lowered.

Locally variational source forms. A locally variational source form is an element [α] ∈
E1,n

1 such that e1([α]) = 0. If [α] is a locally variational source form, then [α] is locally
the Euler–Lagrange expression of a (local) Lagrangian, i.e., [α] = E [β] with [β] ∈ E0,n

1 .
A global Lagrangian [β] ∈ E0,n

0 such that [α] = E [β] exists if and only if [[α]] = 0 ∈
Hn+1(E). A refinement of this result, like in the previous inverse problem, is much more
difficult. We list the results which have been achieved till now.
Theorem 6.2 Let [α] ∈ Ωn+1

r /Θn+1
r be locally variational. Then there exists a (local)

Lagrangian [β] ∈ Ωnr /Θ
n
r such that [α] = E [β].

The above result is a direct consequence of the local exactness of the finite order vari-
ational sequence, and, as before, it is sharp with respect to the order [70, 122]. However,
it can be very difficult to check that a source form is in the space Ωn+1

r /Θn+1
r . A result

proved in [4] is helpful in this sense. Let u(r) denote all derivative coordinates of order r
on a jet space. Let f ∈ C∞(J2rπ), and suppose that

f(xλ, u(0), . . . , u(r), tu(r+1), t2u(r+2), . . . , tru(2r))

is a polynomial of degree less than or equal to r in u(s), with r + 1 ≤ s ≤ 2r. Then
f is said to be a weighted polynomial of degree r in the derivative coordinates of order
r + 1 ≤ s ≤ 2r.
Theorem 6.3 Let [∆] be a locally variational source form induced by ∆: J2rπ → C∗0 ∧
∧nT ∗M . Suppose that the coefficients of ∆ are weighted polynomials of degree less than
or equal to r. Then ∆ = E(λ), where λ : Jrπ → ∧nT ∗M .

Again, the result is sharp with respect to the order of the jet space where the Lagrangian
is defined. The above theorem is complemented in [4] by a rather complex algorithm for

6In [15] the proof is for the special case when the Lagrangian does not depend on (xλ).
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building the lowest order Lagrangian. This algorithm is an improvement of the well-known
Volterra Lagrangian

L =
∫ 1

0

ui∆i(xλ, tujσ)dt

for a locally variational source form ∆. In fact, the above Lagrangian is defined on the same
jet space as ∆. The finite order variational sequence yields another method for computing
lower order Lagrangians, provided we know that ∆ = [α] ∈ Ωn+1

r /Θn+1
r . Namely, we

apply the contact homotopy operator to the closed form dα ∈ Θn+2
r , finding β ∈ Θn+1

r

such that dβ = dα. By using once again using the (standard) homotopy operator we find
γ ∈ Ωnr such that dγ = β − α, and λ def=h0,n(γ) is the required Lagrangian. Of course, the
most difficult point is to invert the representation of quotients in the variational sequence,
i.e., to find a least order α such that ∆ = [α].

The above theorem does not exhaust the finite order inverse problem. A locally varia-
tional source form on J2rπ seems to have a definite form of the coefficients with respect
to its derivatives of order s, with r + 1 ≤ s ≤ 2r. A conjecture in this sense is formulated
in [4] in an admittedly imprecise way. We conjecture that locally variational source forms
defined on J2rπ could be elements of Ωn+1

r /Θn+1
r . Note that the representation through I

of elements in Ωn+1
r /Θn+1

r yields source forms which are of order 2r+1 and are obtained
through the adjoint of the horizontalization of a form in Ωn+1

r (which is a hyperjacobian
polynomial of degree at most n in derivatives of order r); see [122] for more details about
the structure of such forms.

Finally, we recall that recently some geometric results on variational first-order partial
differential equations have been obtained in [54]. Such equations arise in multisymplectic
field theories.

Symplectic structures. In [33] the symplectic structures for evolution equations are in-
troduced. They are dual to the Hamiltonian structures mentioned in the introduction. A
symplectic structure is an element [α] ∈ E2,n

1 such that e1(α) = 0 (see also[18]). It is
clear that another inverse problem arises here. But there are no results as on the above
section. It seems natural to formulate a conjecture on the structure of symplectic structures
by analogy with the above conjecture.

Variational problems defined by local data. There are some examples of global source
forms which do not admit a global Lagrangian. For instance, Galilean relativistic mechan-
ics [97] and Chern–Simons field theories (where a global Lagrangian indeed exists but it
is not gauge-invariant). Some authors proposed a general formalism for dealing with such
situations. Namely, they introduce a sheaf of local n-forms all of which produce the same
Euler–Lagrange source form under the action of E . See [21, 19, 103, 104] for more details.

6.2 Variational sequence on jets of submanifolds

Let E be an n + m-dimensional manifold, and x ∈ E. We say that two n-dimensional
submanifolds L1, L2 such that x ∈ L1 ∩ L2 are r-equivalent if they have a contact of
order r at x. It is possible to choose a chart of E at x of the form (xλ, ui), 1 ≤ λ ≤ n,
1 ≤ i ≤ m, where both L1 and L2 can be expressed as graphs ui = f i1(xλ), ui = f i2(xλ).
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Then the contact condition is the equality of the derivatives of the above functions at x
up to the order r. This is an equivalence relation whose quotient set is Jr(E,n), the r-
th order jet space of n-dimensional submanifolds of E7. If E is endowed with a fibring
π, then Jrπ is the open and dense subspace of Jr(E,n) which is made by submanifolds
which are transverse to the fibring at a point (which, of course, can be locally identified
with the images of sections, hence with local sections themselves).

Of course, jets of submanifolds have a contact distribution, hence a C-spectral sequence
can be formulated [29, 115, 116]. As a by-product a variational sequence is obtained. Jets
of submanifolds can also be seen as jets of parametrizations of submanifolds (i.e., jets of
local n-dimensional immersions) up to the action of the reparametrization group [63]. In
this setting another approach to the variational sequence is [99]. In [84] the finite-order C-
spectral sequence on jets of submanifolds is computed. See also the more comprehensive
treaties [1, 119, 121] on the geometry of jets of submanifolds, partial differential equations
and the calculus of variations. Another approach to the calculus of variations on jets of
submanifolds can be found in [49].

6.3 Variational sequence on differential equations

There are several books on the geometric theory of differential equations (see the Introduc-
tion). We invite the interested reader to consult them. Here we just recall the main result
related to the variational sequence on differential equations.

A differential equation (ordinary or partial, scalar or system) is a submanifold S ⊂
Jr(E,n). Such a submanifold inherits the contact distribution from Jr(E,n), hence the
C-spectral sequence can be defined on it. Let us describe what are the main differences
with the ‘trivial equation case’, i.e., the case of S = Jr(E,n) or S = Jrπ.

First of all, we observe that the term E0,n−1
1 of the C-spectral sequence of an equation

is made by equivalence classes of conservation laws of the given equation up to trivial
conservation laws. To realize it, it is sufficient to recall that conservation laws take the
form of a total divergence which vanishes on the given equation (like, e.g., continuity
equations).

If S is closed then it can be represented as F = 0, where F is a section of a vector
bundle over Jr(E,n). Any differential equation S = S(0) ⊂ Jr(E,n) can be prolonged
to a differential equation S(1) ⊂ Jr+1(E,n) which is locally described as DλF

i = 0. By
iterating this procedure we obtain a sequence {S(i)}0≤i≤+∞. We require that the equation
S be formally integrable: this amounts at requiring that for every i ∈ N the restriction of
πi+1,i to S(i+1) be a bundle over S(i). Hence the inverse limit S(∞) can be constructed.
We also require that the equation be regular: this means that the ideal of functions on S(∞)

is functionally generated by the differential consequences DσF
i of F . Finally, we say that

S is `-normal if the linearization of F has maximal rank (see [18, p. 198] for more details).
In [116, 118] the following theorem is proved (‘two-lines theorem’): if S is formally

integrable, regular and `-normal, then the terms Ep,q1 of the C-spectral sequence on S(∞)

with p > 0, 1 ≤ q ≤ n − 2 are trivial. In other words, non-trivial terms of the C-
spectral sequence are distributed on the column E0,q

i for 1 ≤ q ≤ n − 2 and on the rows
Ep,n−1
j , Ep,nj for p ≥ 1; this explains the name of the theorem. Note that E0,q

∞ = E0,q
1 for

7The synonyms ‘manifold of contact elements’ [28] and ‘extended jet bundles’ [91] are also used.
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1 ≤ q ≤ n− 2 and Ep,n−1
∞ = Ep,n−1

3 , Ep,n∞ = Ep,n3 for p ≥ 1. An explicit description of
the non-vanishing terms is also provided by the two-line theorem.

Most ‘classical’ differential equations of mathematical physics (KdV equation, heat
equation, etc.) are `-normal, but gauge equations (like Yang-Mills equation and Einstein
equation) are not; the structure of their conservation laws is more complex than that of
`-normal equations [51]. This fact was not considered in [116, 118]. In [107] the method
of compatibility complex was proposed to compute the number of non-trivial lines. That
approach has been generalized in [114] (k-lines theorem) and compared with the Koszul–
Tate resolution method in [113]. In [22] the same problem was considered in the framework
of exterior differential systems (the author used the term ‘characteristic cohomology’ to
indicate what we called the horizontal de Rham cohomology); see also [23].

Since then, several papers dealt with the C-spectral sequence on differential equations.
We recall the works [50, 59] on evolution equations and the works [7, 8, 9] on second-order
parabolic and hyperbolic equations in the case n = 2.

6.4 Variational sequence and symmetries

Invariant variational problems. There are a number of variational problems which ad-
mit a group of symmetries G. The way to find invariant solutions for these problems is
to find solutions of a reduced system on the space of invariants of G; this is related to
Palais’principle of symmetric criticality. In the paper [6] the solution of this problem is re-
lated to the existence of a cochain map between the G-invariant variational bicomplex (see
below) and the variational bicomplex on the space of invariants of G. The local existence
of the cochain map is related to a relative Lie algebra cohomology group.

Lie derivatives of variational forms. The Lie derivative of variational forms, i.e., el-
ements of Ep,n1 or equivalently Vp, is interesting for the determination of symmetries of
Lagrangians and source forms. However, the result of a Lie derivative with respect to a
prolonged vector field is a form which, in general, contains dH -exact terms. For this rea-
son it is natural to derive a new operator, the variational Lie derivative, which is defined up
to dH -exact terms. Such a formula first appeared in [118] (‘infinitesimal Stokes’formula’).
Theorem 6.4 Let X : E → TE be a vector field, and [α] ∈ Ep,n1 . Then

[LX∞α] = e1([iX∞α]) + iX∞(e1([α])),

where the contraction iX∞(e1([α])) is defined by virtue of the identity iX∞V ◦ dH = dH ◦
iX∞V and the fact that the action of X∞H is trivial.

The above theorem can also be found in [4], and in [38, 77] in the finite order case. It
has clear connections with Noether’s theorem, for which we invite the reader to consult the
above literature.

Evolutionary vector fields are one example of first-order differential operators with no
constant term that preserve the contact distribution. For this reason, they yield operators on
all the spacesE∗,∗k of the C-spectral sequence. More generally, the problem of finding ‘sec-
ondary’ differential operators, i.e., higher order differential operators which preserve the
contact distribution, has been faced [53]. A complete classification has not been achieved
yet.
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Takens’problem. It is well-known that, by virtue of Noether’s theorem, any infinitesimal
symmetry of a Lagrangian yields a conservation law of the corresponding Euler–Lagrange
equations. Takens’problem [101] can be formulated as follows: when a source form, en-
dowed with a space of infinitesimal symmetries each of which generates a conservation
law, is locally variational.

The problem has been solved in several cases, besides the simplest ones in [101].

(1) Among the main results of [13], we have the following one. Consider the bundle
A → M , where A is the space of electromagnetic vector potentials, and let ∆ be
a source form. Suppose that ∆ has translational and gauge symmetries and corre-
sponding conservation laws. Then, if n = 2 and ∆ is of third order, or n ≥ 3 and ∆
is of second order, ∆ is locally variational.

(2) In [10] the case of second-order scalar differential equations is considered. A number
of conditions on symmetries and conservation laws about which Takens’problem for
the above equations admits an affirmative answer is derived.

(3) In [12] the case of polynomial differential equations which admit the algebra of Eu-
clidean isometries and corresponding conservation laws is considered. The authors
make use of the formal differential calculus by [42].

(4) Finally, in [92] the problem is considered for the case of systems of first order dif-
ferential equations which admit the group of translations and corresponding conser-
vation laws.

Invariant inverse problem. This problem can be described as follows: given a locally
variational source forms which is invariant under the action of a group G, find (if it exists)
a Lagrangian which is invariant under the action of G.

The problem admits a formulation in cohomological terms: consider a Lie group G
(or a Lie pseudogroup G′) acting on a manifold E8. Lift the action to J∞(E,n). Then
consider theG-invariant subcomplex of the variational sequence. Its cohomology is theG-
invariant cohomology; it determines the solvability of the invariant inverse problem. The
main difference with the non-invariant case is that the G-invariant cohomology could be
different from zero even locally. The same consideration holds for infinitesimal actions.

The invariant variational bicomplex appeared in [106] together with several examples
of applications, but without any specific mention to the invariant inverse problem. In a sub-
sequent paper [3] (where the reader can also find a short story of the invariant inverse prob-
lem) the following invariant inverse problem was considered: to find natural Lagrangians
for natural source forms on the bundle of Riemannian metrics on a given manifold M .
Among the results it is interesting to note that, while the invariant n + 1-st cohomology
vanishes for dimM = 0, 1, 2 mod 4, it is nonvanishing for dimM = 3 mod 4, thus
leading to an obstruction of Chern–Simons type to the existence of natural Lagrangians for
natural source forms.

Further results in mechanics (n = 1) are exposed in [85, 86], where the obstruction
to the existence of Lagrangians is found in the cohomology of the Lie algebra of G. It is
proved that such an obstruction can be removed by a central extension of the group G.

8if the manifold is fibred, then the action is required to be projectable
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In [11] the local inverse problem invariant with respect to a finite-dimensional Lie
group action is completely solved. Namely, conditions under which the local invariant
cohomology of the variational sequence is isomorphic to the local invariant de Rham co-
homology of the total space E are given. Moreover, considering the action of a finite-
dimensional Lie algebra, conditions under which the local invariant cohomology of the
variational sequence is isomorphic to the cohomology of the Lie algebra are given. The
paper is completed by several examples. In [93] the case of an infinite-dimensional Lie
pseudogroup has been considered, and the local invariant cohomology is computed in terms
of the Lie algebra cohomology of the formal infinitesimal generators of the pseudogroup.
An application of the above methods and results is presented in [94].

In [60] the authors make use of a method of invariantization from the moving frames
theory and compute the invariant counterparts of operators like the horizontal differential
and the Euler–Lagrange operator.

The invariant variational bicomplex seems to be an important part of the BRST theory
of quantized gauge fields [16], despite the fact that the mathematical side of that theory
still needs deep investigation.

Differential invariants. The works [3, 106] (see also references therein) showed that the
C-spectral sequence invariant with respect to the pseudogroup of local diffeomorphisms
provides a new approach to characteristic classes. In [52, 120] characteristic classes are
interpreted as cohomologies of the regular spectra of the algebra of differential invariants.

6.5 Further topics

Variational multivectors. Variational forms, i.e., elements of Ep,n1 , admit a dual coun-
terpart. More precisely, ‘standard’ differential forms on a manifold M admit as a counter-
part multivector fields, i.e., sections of the bundle ∧kTM . The counterpart of the ‘stan-
dard’ exterior differential is the Schouten bracket. The counterpart for variational forms is
constituted by variational multivectors. In [91] (where the word ‘functional’ is used instead
of ‘variational’, see also references therein) the approach to variational multivectors is an
‘integral’ one, and multivectors are described in coordinates up to total divergences. A vari-
ational Poisson bracket is introduced. In [56] multivectors are explicitly described through
the calculus of differential operators, and their bracket is analyzed in the graded case, which
leads both to a variational Poisson bracket and to a variational Schouten bracket. We stress
that such a bracket allows to define operators which are Hamiltonian, in the sense that their
‘squared’ bracket vanishes, without respect to a given Hamiltonian [58].

Variational sequences on supermanifolds. The problem of computing the analogue of
the C-spectral sequence for supermanifolds is almost completely open. We quote the pa-
per [112] with a comprehensive list of references. There, integration, adjoint operators,
Green’s formula, the Euler operator and Noether’s theorem are introduced in a noncom-
mutative setting. As a by-product, an interesting characterization of Berezin volume forms
is obtained.
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7 Notes on the development of the subject

To the author’s knowledge, the first papers where a variational sequence appeared are by
Horndeski [55] and by Gel′fand and Dikii [42]. Horndeski constructed an analogue of
the sequence (3.13) for a class of tensors (rather than forms) in coordinates, using jets
in an implicit way, in order to study the inverse problem of the calculus of variations.
Gel′fand and Dikii introduced the differentials dH and E of the variational sequence (3.6)
in the case n = m = 1, only for polynomial functions of uiσ . The calculus that they
developed was called by them the formal calculus of variations. This calculus was used
to study the Hamiltonian formalism for evolution equations, of which they are among the
main contributors. Their variational sequence was studied by Olver and Shakiban, who
computed its cohomology [89]. An alternative approach to this problem is in [31].

At the same time Tulczyjew, studying the Euler–Lagrange differential [108], and speak-
ing with Horndeski9, matured the ideas that led to the variational bicomplex, first for higher
n-dimensional tangent bundles T rnM [109], then for jets of fibrings [110]. His results in-
cluded the local exactness of the variational bicomplex, achieved through local homotopy
operators. However, his results did not include the solution of the global inverse problem,
i.e., cohomological results about the variational sequence, until [111].

The C-spectral sequence approach was developed independently by Dedecker [29] and
Vinogradov [115, 116]. However, the most complete achievements about the C-spectral
sequence are due to Vinogradov. In fact, in [29] there is only the definition of the C-
spectral sequence, together with the definition of the variational sequence on jets of fibrings
and submanifolds (see also the later paper [30]). Previous works by Dedecker made use
of spectral sequences for the calculus of variations [25, 26, 27, 28], but none dealt with
variational sequences. In [115, 116] all terms of the C-spectral sequence are computed for
jets of fibrings and jets of submanifolds (‘one-line theorem’). The computation included
a complete description of all terms of Ep,n1 through the theory of adjoint operators and
Green’s formula. Moreover, the C-spectral sequence was computed for the first time also on
differential equations (‘two-line theorem’). This last achievement led to the interpretation
of conservation laws in terms of cohomology classes of the horizontal de Rham complex
on the given equation and their computation. Vinogradov did not publish the detailed
proofs of his results in [115, 116]; however he published a longer exposition of his results
in [117] followed by a detailed exposition with proofs in [118]. Manin’s review [83] of
the geometry of partial differential equations devotes a section to the variational sequence.
The material is based on results by Vinogradov and Kuperschmidt.

Independently, Takens [102] provided a formulation of the variational bicomplex to-
gether with local exactness and global cohomological results on jets of fibrings. His proofs
of the local exactness relied are different with respect to those of Tulczyjew. After [102],
Takens left this field of research and become an outstanding scientist in dynamical systems.

All the above approaches to variational sequences were developed on infinite order
jets. Independently from the previous authors, Anderson and Duchamp [5] developed a
new approach to variational sequences. The main novelty in their approach was the use of
finite order jets. Their approach was formulated trying to find spaces of forms for which
dH was stationary with respect to the order of jets. Their approach did not provide a ‘long’
variational sequence, stopping with zero just after the space of source forms. Moreover,

9W. M. Tulczyjew, private communication
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in the paper there is a cohomological computation about the global inverse problem, but
this is performed on the infinite order jet. Another important result in the paper is the local
classification of trivial Lagrangians of order r (but see also [15] for Lagrangians which
do not depend on (xλ)). Such a result has never been derived in an infinite order jets
framework. Anderson is the author of the book [4], which, unfortunately, has never been
finished. However, it is still a source of interesting proofs, examples, and facts, especially
about the finite order inverse problem.

After that the foundations were established, a number of important contributions and
improvements appeared in the literature.

In [106] Tsujishita reviewed the C-spectral sequence and presented some new proofs
of old facts together with new ideas and theorems (remarkably, the invariant C-spectral
sequence with interesting examples). A deeper analysis by several authors (Gessler [51],
Krasil′shchik [65], Marvan [80], Tsujishita [107], Verbovetsky [114]) led to the general-
ization of Vinogradov’s ‘two-lines theorem’ to the so-called ‘k-lines theorem’. The fun-
damental tool for the computation of non-trivial lines in the C-spectral sequence was the
compatibility complex (see [114] and references therein).

The k-lines theorem was also proved in [16] in the framework of the BRST theory
of quantized gauge fields [16]. A comparison between the approach of [16] (Koszul-Tate
resolution) and the compatibility complex method was recently performed [113].

Bryant and Griffiths [22] proved similar results on the horizontal de Rham cohomol-
ogy in the framework of exterior differential systems. They call such a cohomology the
characteristic cohomology of an exterior differential system.

Duzhin began to study the finite order C-spectral sequence, but he only completed the
computations for first order jets of the trivial bundle π = pr1 : M × R → M (here pr1 is
the projection on the first factor) [34].

Krupka was the first one to formulate a ‘long’ variational sequence on finite order
jets in [70]. This approach was formulated in the language of sheaves entirely in terms
of finite order jet spaces. The idea is described in section 5. The results included local
exactness and global cohomology of the finite order variational sequence, which turned
out to be the same as the infinite order case. More precisely, it was proved that the direct
limit of Krupka’s variational bicomplex was the same as the variational bicomplex [123,
124], and that the C-spectral sequence on finite order jets provides a finite order variational
sequence which is the same as Krupka’s one [124, 125]. The representation of Krupka’s
variational sequence was obtained by Krbek and Musilová in [67, 68] using the interior
Euler operator adapted to the finite order case. The classification of variationally trivial
Lagrangians was proved using local exactness of the finite order variational sequence [48,
75]. The Lepagean equivalent theory provided yet another representation of the variational
sequence [76].

As a final remark, we observe that there are many research topics which are connected
with variational sequences (such as the inverse problem of the calculus of variations). It is
impossible to provide historical notes for all of them, for space and time constraints. The
interested reader can consult the references indicated in section 6.
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Appendix: splitting the exterior algebra

In propositions 2.8 and 2.15 we deal with two splittings of exterior algebrae which are
induced by the splittings (2.2) and (2.12) of the underlying space. In order to make this
paper self-contained we briefly describe how to obtain the exterior algebra projections from
the underlying splitting projections [122, 124].

Let V be a vector space such that dimV = n. Suppose that V = W1 ⊕ W2, with
p1 : V →W1 and p2 : V →W2 the related projections. Then, we have the splitting

∧mV =
⊕

k+h=m

∧kW1 ∧ ∧hW2, (7.1)

where∧kW1∧∧hW2 is the subspace of∧mV generated by the wedge products of elements
of ∧kW1 and ∧hW2.

There exists a natural inclusion �k L(V, V ) ⊂ L(∧kV,∧kV ). Then, the following
identity can be easily proved:

�n(p1 + p2) =
n∑
i=0

(
n

i

)
�i p1 ��n−ip2.

It follows that the projections pk,h related to the splitting (7.1) turn out to be the maps

pk,h =
(
k

p

)
�k p1 � �hp2 : ∧mV → ∧kW1 ∧ ∧hW2.
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Introduction

In a very influential paper in 1939 Oka [41] discovered a condition on complex man-
ifolds for which a Cousin II distribution is holomorphically solvable if it is topologically
solvable. The reduction of holomorphic problems to topological problems is often refers
to as the Oka Principle. Oka’s article led to the invention of the concept of plurisubhar-
monic exhaustion by Grauert, the concept of Stein manifolds by Stein, the cohomolog-
ical theory on complex manifolds by Dolbeault and H. Cartan, cumulating in the work
of Grauert uniting the analytic, algebraic and topological theory into the theory of com-
plex manifolds (especially Stein manifolds) that we know today. One of the spectacular
achievements of Grauert is the extension, in 1957/58 [19] and [20], of Oka’s Principle to
holomorphic fiber bundles over Stein spaces, namely, two holomorphic principal bundles
are biholomorphic if and only if they are topologically isomorphic. Grauert also showed
that if two global holomorphic sections are homotopic through global continuous sections
then they are also homotopic through global holomorphic sections. These results are ex-
tended further by Gromov [21], [22], [23] in 1989 to subelliptic bundles, a concept more
flexible than fiber bundles. In the last few years, thanks to the effort of Eliashberg [10],
Forster-Ramspott [13], Forstneric-Prezelj [16], Henkin-Leiterer [27], Larrusson [36] and

8 B.V. .
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many others, the theory (sometimes under the name of the homotopy principle or sim-
ply h-principle) is once again attracting a lot of attention. In this article we shall present
an account of some of the main results of the theory together with some of the impor-
tant applications: embedding dimension of Stein spaces (Forster and Ramspott [12, 13],
Schürmann [46]), complete intersections (Schneider [45], Forstneric [14]) and complex
hyperbolic geometry (Chandler-Wong [8], Wong-Wong [51]). In the last section we intro-
duce briefly the algebraic version of the Oka Principle known as Serre’s Problems. The
statement that an algebraic on Kn (where K is an algebraically closed field) vector bundle
is trivial is equivalent to the statement that every projective module over the polynomial
ring K[t1, ..., tn] is free. This last statement was resolved in the affirmative by Quillen and
Suslin independently in 1976. This can be extended to the ring convergent power series
over p-adic numbers. For rigid analytic p-adic number fields, the analogue of complex
Stein can be defined and can be used to deal with problems in p-adic hyperbolic geometry
(see Anh-Wang-Wong [2]). This is the analogue of the application of the Oka Principle
in complex hyperbolic geometry. We only give a very partial list of references due to the
limitation of the length of the article, interested readers should look into the bibliography
of the short list of articles that we provide.

1 Stein manifolds and Stein spaces

The most natural class of non-compact complex manifolds (resp., spaces) are the closed
complex submanifolds (resp., subvarieties, i.e., common zeros of holomorphic functions)
of CN . These manifolds are Kähler and have many (as many as one can hope for) holo-
morphic functions. An intrinsic characterization of these manifolds, now known as Stein
manifolds, first appeared in a ground breaking paper by K. Stein [47] in 1951:

Definition 1.1. A complex manifold X is said to be a Stein manifold if the following three
conditions are satisfied:

(i) Global holomorphic functions separate points, i.e., for any pair of distinct points
x1 6= x2 ∈ X there exists a holomorphic function on X such that f(xi) 6= f(x2).

(ii) X is holomorphically convex, i.e., for any compact set K in X , the holomorphic
convex hull

K̂ = {x ∈ X | |f(x)| ≤ ||f ||K = sup
y∈K
|f(y)|}

is also compact.
(iii) Global holomorphic functions provide local coordinates, i.e., for any x ∈ X there

exist holomorphic functions f1, ..., fn, n = dimCX on X such that df1 ∧ ... ∧ dfn(x) 6=
0. �

Remark 1.2. Condition (ii) above is equivalent to the condition:
for any discrete sequence {xn} in X there exists a global holomorphic function f

such that lim supi |f(xi)| =∞. �

We give here a very brief description of complex spaces. A ringed space is a Hausdorff
topological space X together with a sheaf OX (the structure sheaf) of associative and
commutative local algebras over C. Recall that the radical of an ideal I is defined to be:

rad I = {x ∈ R | xn ∈ I for some n ∈ N}.
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The radical of the zero ideal is called the nilradical. The nilradical subsheaf n is the
subsheaf whose stalk at x is the nilradical of the stalk of the structure sheaf at x. A ringed
space (X,OX) is said to be reduced if n = 0. In general the ringed space (X,OX/n) is
reduced and is called the reduction of (X,OX).

By a closed analytic subvariety (the term closed analytic subset is also commonly
used in the literature) X of an open set U in CN we mean the common zeros of global
holomorphic functions on U together with a structure sheaf defined by OX = OU/IX
where IX is the ideal sheaf of germs of holomorphic functions vanishing on X . The
ringed space (X,OX) is reduced.

It is convenient and important to allow non-reduced structure. We start from a coherent
subsheaf (= subsheaf of finite type) of ideals I of OU where U is an open set U in CN .
Let X = V (I) = supp(OU/I) = {x ∈ X | OU,x 6= IU,x} and OX = OU/I. The
ringed space (X,OX) is called a closed analytic subspace X of U . The reduction of
(X,OU/I) is the analytic subvariety (X,OU/IX) (IX is the ideal sheaf ofX) introduced
in the preceding paragraph.

Example 1.3. Let X = {(z, w) ∈ C2 | z = 0} be one of the coordinate lines. The ideal
sheaf IX =< z > is generated by the function z then (X,OC2/ < z >) is reduced. If we
take I =< z2 >, the ideal generated by z2, then (X,OC2/ < z2 >) is non-reduced. �

Definition 1.4. A complex space is a Hausdorff space which admits a countable basis of
open sets with a coordinate covering of open subsets {Ui} and homeomorphism fi : Ui →
Vi where Vi is a subvariety in some open subset in Cni such that

fij = fi ◦ f−1
j : fj(Ui ∩ Uj)→ fi(Ui ∩ Uj)

is a biholomorphic map. The structure sheaf OX is defined via these biholomorphic maps.
At each point x the local embedding dimension at x is the smallest integer nx such that
there exists an open neighborhood Ux which is biholomorphic to a closed subvariety of
an open set in Cnx . A complex space is said to have bounded embedding dimension if
supx∈X nx <∞. �

Remark 1.5. A local embedding allows us to define the structure sheaf OX of a complex
space X . The pair (X,OX) is a ringed space. The local embedding also shows that X
is locally compact and locally pathwise connected. Some authors omitted the condition
that the topology admits a countable basis of open sets. For our purpose this is included
in the definition to avoid certain pathological situations. This condition implies that X is
metrizable hence paracompact (every open cover has a locally finite refinement) and that
X is a countable union of of compact sets. �

In the presence of singular points the third condition in Definition 1.1 obviously re-
quires modification:

Definition 1.6. A complex space X is said to be Stein if
(i) (separability) global holomorphic functions separate points;

(ii) (convexity) X is holomorphically convex;
(iii) (uniformizable) global holomorphic functions generate the maximal ideal at each

point ofX , i.e., for any x ∈ X there exist finitely many global holomorphic functions such
that the germs of these functions at x generate the maximal ideal mx(= the sheaf germs of
functions vanishing at x) of OX,x. �
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In the older literature (for example in Grauert’s original articles) the terminology holo-
morphically complete is often used instead of Stein space.

The following topological property of a Stein space (due to Andreotti-Frankel [1] in the
non-singular case and to Hamm [26] in the general case) plays an important role in many
important results in the cohomological as well as the analytical theory of Stein spaces:

Theorem 1.7. A Stein space of complex dimension n has the homotopy type of a CW
complex of real dimension n.

In the preceding theorem homotopy can be replaced by homology or by intersection
homology (see [17]):

Corollary 1.8. Let X be a complex n-dimensional Stein space. Then

Hi(X,Z) = IHi(X,Z) = 0

for i > n, moreover, Hn(X,Z) and IHn(X,Z) has no torsion.

Example 1.9. (see Patrizio-Wong [42]) Let X be a pure dimension closed subvariety of
CN . For a generic point z0 ∈ CN the function τ = ||z − z0||2|X is a Morse function
on X . Assume that X is non-singular then τ is a strictly plurisubharmonic non-negative
function on X . Let m0 be the minimum of τ on X . The set X0 = {x ∈ X | τ(x) = m0}
is called the center of X (relative to τ ). By a well-known theorem (of Harvey-Wells) the
center is a totally real submanifold of real dimension at most n. If τ has no critical point
except for those in the center (i.e., X0 = {x ∈ X | dτ |x = 0}) then τ is said to be a
canonical exhaustion function of radius 0 < R ≤ ∞. The following assertion is clear.

The center X0 of a canonical exhaustion has the same homotopy type as X .

If a canonical exhaustion function exists then standard Morse theory implies that X can
be homotopically deformed onto the center X0. Replacing τ by τ −m0 we may always
assume that the minimum value is 0. A strictly plurisubharmonic exhaustion function τ :
X → [0, R), of class C∞ (C 5 is enough), on X is said to be a Monge-Ampére exhaustion
if the function log τ satisfies the complex homogeneous Monge-Ampére equation:

(∂∂̄ log τ)n = 0, n = dimCX

on X \X0. The preceding equation is equivalent to the following equation:∑
α,β

τ β̄ατατ β̄ = τ

where subscripts indicate partial derivatives and superscripts indicates raising of indices.
So τα = ∂τ/∂zα, τβ = ∂τ/∂z̄β ; (ταβ̄) is the Levi-form and (τ β̄α) is the inverse matrix.
The preceding equation simply means that

||dτ ||2h = τ (*)

where h is the Kähler metric defined by the Levi-form
√
−1∂∂̄||z||2. It is clear that:

A Monge-Ampére exhaustion is canonical.
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Condition (*) implies that τ = 0 is the only critical value of a Monge-Ampére exhaustion.
We give a few examples of Stein manifolds with Monge-Ampére exhaustions. The obvious
one is Cn with τ = ||z||2 (and the unit ball Bn. Indeed it is known that, up to biholomor-
phisms (Cn, ||z||2) and (Bn, ||z||2) (infinite or finite radius) are the only Stein manifolds
with a smooth (C5 is enough; regularity is crucial here) Monge-Ampére exhaustion such
that the center consists of exactly one point.

Examples of Stein manifolds which can be deformed into a compact symmetric spaces
of rank one are also known. The following are Stein (actually affine algebraic) manifolds:

(Mn
I ) = Qn, the complex affine quadric, n ≥ 2;

(Mn
II) = Pn(C) \Qn−1

where Q
n−1

is compact complex quadric, n ≥ 2;

(M2n
III) = (Pn(C)×Pn(C)) \PN

∞(C), n ≥ 1, N = (n+ 1)2− 1;

(M4n
IV ) = Gr(2, 2n,C) \ PN∞(C), n ≥ 1, N = n(2n− 1)− 1;

(M16
V ) is a 16 dimensional Stein manifold.

Each of these Stein manifolds admit a strictly plurisubharmonic exhaustion function τ :
M → [1,∞) with center the respective compact symmetric space of rank one:

(I) the n-sphere Sn, n ≥ 2;
(II) the real projective space Pn(R), n ≥ 2;

(III) the complex projective space Pn(C), n ≥ 1;
(IV ) the quaterionic projective space Pn(H), n ≥ 1;
(V ) the Cayley projective plane Pn(Cayley).

Moreover, the function cosh−1 τ satisfies the complex homogeneous equation:

(ddc cosh−1 τ)m =
(
ddc log (τ +

√
τ2 − 1)

)m = 0

outside of the center and where m = dimM .
For example the affine hyperquardics

Qn = {z = (z1, ..., zn+1) ∈ Cn+1 | z2
1 + · · ·+ z2

n+1 = 1}

contains the n-sphere Sn = {x2
1 + · · ·+ x2

n+1 = 1} where xj = Re zj . The function

τ(z) = ||z||2|Qn = (|z1|2 + · · ·+ |zn+1|2)|Qn

is a strictly plurisubharmonic exhaustion function with center Sn. The other cases, though
more complicated, are analogously verified. �

The theorem of Andreotti-Frankel was established by constructing a proper Morse
function on the Stein manifold X with the property that all critical points have index
bounded from above by the complex dimension of X . It turns out that this condition
characterize Stein manifolds (Eliashberg [11]):

Theorem 1.10. Let X be an open smooth almost complex manifold of real dimension 2n.
If there exists a proper Morse function ρ : X → [0,∞) such that all critical points have
index ≤ n then X admits a Stein structure.
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The following theorem is a partial list of various different characterization of Stein
manifolds (see Gunning [25] for the proof):

Theorem 1.11. Let X be a complex manifold. Then the following conditions are equiva-
lent.

(1) X is Stein.
(2) Global holomorphic functions separate points and X is holomorphically convex.
(3) For any discrete sequence, finite or infinite, {xi | i ∈ I} and any sequence of

complex numbers {ci | i ∈ I} there exists a holomorphic function on X such that f(xi) =
ci for all i ∈ I .

(4) For any point x ∈ X there exists a sequence of holomorphic functions {fi} on X
such that x is an isolated point of A = ∩i{z ∈ X | fi(z) = 0} and X is holomorphically
convex.

(5) X contains no compact complex subvariety of strictly positive dimension and X is
holomorphically convex.

(6) The sheaf cohomology groups Hi(X,S) = 0 for all i ≥ 1 and for all coherent
sheaf S on X .

(7) There exists a proper real valued function ρ : X → R such that the Levi form
ddcρ =

√
−1∂∂̄ρ is positive definite.

(8) There is a holomorphic embedding of X as a closed complex submanifold of CN

for some N .

Remark 1.12. (i) If X is a domain in a Stein manifold Y then X is Stein if and only
if Hi(X,OX) = 0 for all 1 ≤ i ≤ n = dimCX where OX is the sheaf of germs of
holomorphic functions. IfX is a domain in Cn thenX is Stein if and only ifHi(X,OX) =
0 for all 1 ≤ i ≤ n− 1.

(ii) For complex spaces the first 6 conditions are equivalent. The equivalence extends also
to (7) with the following modification:

(7′) There exists a proper real valued function ρ : X → R such that, at each point
x ∈ X there exists an open neighborhood Ux of x, an embedding hx : Ux → Vx where Vx
is an analytic subset of an open set B in Cnx and a function ρ̃x of class C2 with positive
definite Levi form such that ρ = h∗xρ̃x = ρ̃x ◦ hx.

(iii) Stein spaces satisfying condition (8) are precisely those with bounded local embed-
ding dimension, more precisely, those with the property that the supremum (over x ∈ X)
of the local embedding dimension at x is bounded.

(iv) For the question of the best (i.e., the smallest) possible embedding dimension N see
section 7 below.

2 Oka’s theorem

Let X be a complex space and U = {Ui} an open cover of X . A Cousin I distribution is
a collection {(Ui, fi) | fi is a meromorphic function on Ui} satisfying the condition that
fi−fj = fij is holomorphic on Ui∩Uj . The condition means that fi and fj have the same
principal part onUi∩Uj . Cousin’s first (or the additive Cousin) problem is to find condition
so that there exists a global meromorphic function onX with the given prescribed principle
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parts. In one complex variable this is known as the Mittag-Leffler’s problem. It is a well-
known fact that the problem is solvable if H1(X,OX) = 0. In particular this is true if X
is Stein (see Theorem 1.11 part (6) or Remark 1.12).

A collection {(Ui ∩ Uj , fij) | fij is non-vanishing and holomorphic on Ui ∩ Uj} is
called a Cousin II distribution if the multiplicative cocycle condition is satisfied:

fijfjkfki = 1.

The Cousin II (or the multiplicative Cousin) problem is to find conditions so that there
exists, for all i, a non-vanishing holomorphic function fi on Ui such that

fij = fi/fj

on Ui ∩ Uj .

The theory of Oka’s principle originated from the insightful work of Oka in 1939 that,
on a domain of holomorphy (= Stein domain) in Cn, the Second Cousin Problem is holo-
morphically solvable if and only if it is continuously solvable:

Theorem 2.1. (Oka 1939) Let X be a complex space satisfying the condition that

H1(X,OX) = 0

(this is the case if X is Stein) and {(Ui ∩ Uj , fij)} be a Cousin II distribution where
{Ui} is an open cover of X by Stein open subsets. Assume that there exist continuous
non-vanishing functions such that ci on Ui such that ci/cj = fij is non-vanishing and
holomorphic on Ui ∩ Uj . Then there exists, on each Ui, a non-vanishing holomorphic
functions fi such that fi/fj = ci/cj on Ui ∩ Uj for all i, j.

Proof. We may write ci = expχi where each χi is continuous. The condition that ci/cj
is holomorphic on Ui ∩ Uj is equivalent to the condition that χi − χj is holomorphic on
Ui ∩ Uj . Moreover χij = χi − χj satisfies the additive cocycle condition:

χij + χjk + χki = 0.

If H1(X,OX) = 0 then the additive Cousin Problem is solvable, namely, there exist
holomorphic functions φi on Ui such that φi − φj = χi − χj for all i, j. The functions
fi = expφi on Ui satisfy the requirement of the theorem. �

Oka’s theorem preceded the introduction of the concept of Stein spaces and the original
theorem assume that X is a domain of holomorphy but the proof of the more general form
requires no new technique. Oka’s theorem can also be viewed as follows. The Cousin
II distribution {Ui ∩ Uj , fij} is a cocycle, i.e., an element of Z1(U ,O∗X) (where O∗X is
the sheaf of germs of non-vanishing holomorphic functions) hence defines an element in
H1(X,O∗) = isomorphism classes of holomorphic line bundles on X . Oka’s theorem
asserts that a holomorphic line bundle over a Stein space (H1(X,OX) is sufficient) is
holomorphically trivial if it is topologically trivial. In fact, on a Stein space, the injection
O∗X → C∗X of the sheaf of germs of non-vanishing holomorphic functions into the sheaf of
germs of non-vanishing continuous functions induces an isomorphism:

H1(X,O∗) ∼= H1(X, C∗).
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In other words, on a Stein space every continuous line bundle admits a holomorphic struc-
ture and two holomorphic line bundles are holomorphically isomorphic if and only if they
are continuously isomorphic. This assertion can be established as follows. In the continu-
ous category there is a short exact sequence:

0→ Z→ C ε→ C∗ → 0

(where ε(f) = exp(2π
√
−1f )) inducing a long exact sequence:

· · · → H1(X, C)→ H1(X, C∗)→ H2(X,Z)→ H2(X, C)→ · · ·

The sheaf of germs of continuous functions is a fine sheaf hence Hi(X, C) = 0 for all
i ≥ 1. This implies that

H1(X, C∗) ∼= H2(X,Z).

On a complex manifold there is an analogous short exact sequence of sheaves:

0→ Z→ O ε→ O∗ → 0

inducing a long exact sequence:

· · · → H1(X,O)→ H1(X,O∗)→ H2(X,Z)→ H2(X,O)→ · · ·

If the groups Hi(X,O) = 0 for i = 1 and 2 (for example, if X is Stein) then:

H1(X,O∗) ∼= H2(X,Z).

Consequently, Oka’s Theorem is valid for any such manifolds:

Theorem 2.2. Let X be a complex manifold satisfying the condition that

H1(X,O) = H2(X,O) = 0

(this is the case if X is Stein) then

H1(X,O∗) ∼= H1(X, C∗) ∼= H2(X,Z);

consequently, every continuous complex line bundle admits a holomorphic structure

Corollary 2.3. Let X be a complex manifold satisfying the condition of theorem 2.2. If in
addition, H2(X,Z) = 0, then all continuous and holomorphic line bundles are trivial.

Remark 2.4. (a) As remarked in section 1, for domains in Cn, n ≤ 3, the condition in
Theorem 2.2 is equivalent to Stein but is strictly weaker than Stein if n ≥ 4.

(b) If X is an open (= non-compact) Riemann surface then the conditions of Corollary
2.3 are satisfied, hence every holomorphic line bundle is trivial. As we shall see later that,
in fact, the same is true for vector bundles of arbitrary rank (see Theorem 5.1 below).

(c) The assumptions of Theorem 2.2 are satisfied for some compact complex manifolds
(which are of course not Stein), for example, Hi(Pn,O) = 0 for all i ≥ 0. However, the
condition that H2(Pn,Z) = 0 in Corollary 2.3 is never satisfied if X is compact Kähler,
for example, H2(Pn,Z) ∼= Z.
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3 Grauert’s Oka principle

Over a Stein manifold Oka’s result in the preceding section may be equivalently reformu-
lated as follows.

Theorem 3.1. Let p : E → X be a holomorphic principle bundle over a Stein manifold.
If the fiber is C∗ then every continuous section is homotopic to a holomorphic section.

Oka’s result was extended by Grauert in 1957 to any principal G-bundle. Besides
Grauert’s original papers, the article of H. Cartan [6] is also a good reference for the mate-
rials of this section.

Let G be a complex Lie group and F a complex space. We say that G acts on F holo-
morphically if there is a group homomorphism φ : G→ AutF (where AutF is the group
of biholomorphic self maps of F . The action is said to be effective if the homomorphism
φ is injective. We shall always assume that G acts effectively, from the left, on F . Let
p : E → X be a continuous (resp. holomorphic) fiber bundle over X with fiber F and
Lie group G. This means that p is a continuous (resp. holomorphic) surjection and the
following axioms are satisfied:

(i) p is locally trivial, i.e., there exists an open cover {Ui} ofX and continuous (resp.
holomorphic) bundle isomorphism φi : p−1(Ui)→ Ui ×G for all i,

(ii) φij = φi ◦ φ
−1
j : p−1(Ui ∩ Uj)→ p−1(Ui ∩ Uj) is of the form

φij(x, ξ) = (x, ψij(x)ξ))

where ψij : Ui∩Uj → G is a continuous (resp. holomorphic) map satisfying the condition:

ψijψjk = ψik.

A fiber bundle is determined up to isomorphisms by the cocycles {ψij}. In other words, the
set of isomorphism classes of continuous (resp. holomorphic) fiber bundle is H1(X,Gc)
(resp. H1(X,Gh)) where Gc (resp. Gh) is the sheaf of germs of continuous (resp. holo-
morphic) functions on X with values in G. The space of sections over an open set U in X ,
denoted Γ(U,Gc) and Γ(U,Gh), are equipped with the topology of uniform convergence
on compact subsets of U . This induces a topology on the space of cocycles Z1(U ,Gc) and
hence also a topology on the set H1(U ,Gc) where U is an open cover of X . Taking direct
limit over open covers U yields a topology on the setH1(X,Gc). It is well-known that (see
for example Hirzebruch [28]) H1(X,Gc) (resp. H1(X,Gh)) is the set of all isomorphic
classes of continuous (resp. holomorphic) principal fiber bundles with typical fiber G. If
G is not abelian H1(X,Gc) and H1(X,Gc) do not have the structure of a group but there
is a distinguished element corresponding to the trivial fiber bundle.

A fiber bundleE is said to be a principalG-bundle if F = GwithG acting on itself via
left translations. The group G acts naturally on E from the right. Indeed we can directly
define a principal G-bundle p : E → X by postulating a right action by G on E satisfying
the axioms:

(i) local trivialization, φi : Ui ×G
u→ p−1(Ui),

(ii) φi(x, g)g′ = φi(x, gg′) for all i and for all g, g′ ∈ G.

Let E be a principal G-bundle and F a complex space on which G acts effectively
form the left. A fiber bundle with typical fiber F associated to E is constructed as follows.
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Define an action of G on E × F by

(γ, ξ)g = (γg, g−1ξ)

for all g ∈ G and γ ∈ E, ξ ∈ F . The orbit space E ×G F = (E × F )/G is a fiber bundle.
The bundles E and E ×G F are said to be associated to each other. Bundles associated to
each other define the same element in the set H1(X,Gc) (resp. H1(X,Gh)).

Theorem 3.2. (Grauert) Let X be a complex space and and G be a complex Lie group.
Denote by Gc and Gh the sheaf of germs of continuous and, respectively, holomorphic
functions on X with values in G. Assume that X is Stein then the inclusion ι : Gh → Gc
induces a bijection ι∗ : H1(X,Gh) → H1(X,Gc). Consequently, (i) every continuous
principleG-bundle admits a unique holomorphic structure, (ii) two holomorphic principle
G-bundles are holomorphically isomorphic if and only they are continuously isomorphic.

Corollary 3.3. On a contractible Stein space X every holomorphic principal G-bundle is
holomorphically trivial.

LetE a holomorphic principalG-bundle over a complex spaceX . The space of contin-
uous and respectively, holomorphic sections are denoted by Γ(X, C(E)) and Γ(X,O(E))
where C(E) and O(E) are the sheaf of germs of continuous sections and, respectively,
holomorphic sections of E. These spaces are equipped with the topology of uniform con-
vergence on compact subsets of U .

Definition 3.4. Let X and Z be complex spaces and X0 ⊂ X . Let f0, f1 : X → Z be
continuous maps with f0 holomorphic. We say that f0 can be deformed to f1 (or f0 and
f1 are homotopic) relative to Z if there is a continuous map

F : X × [0, 1]→ Z

such that f0 = F (·, 0), f1 = F (·, 1). If both f0 and f1 are holomorphic we say that f0

can be deformed through holomorphic maps to) f1 (or f0 and f1 are homotopic through
holomorphic maps to f1) relative to Y if, in addition, F is real analytic and ft = F (·, t) :
X → Y is holomorphic for 0 ≤ t ≤ 1.

The following results (useful in applications) are variations of Grauert’s Oka Principle
formulated in terms of sections.

Theorem 3.5. (Homotopy) Let E be a holomorphic principal G-bundle. Let Y be a
(possibly empty) closed analytic subset of a Stein space X . Then

(i) every continuous section f0 : X → E, such that f0|Y is holomorphic, is homotopic
through continuous sections relative to Y to a holomorphic section f1 : X → E;

(ii) any two holomorphic sections f0, f1 : X → E which are homotopic through
continuous sections relative to Y are also homotopic through holomorphic sections relative
to Y .

Theorem 3.6. (Runge Approximation) Let E be a holomorphic principal G-bundle over
a Stein space X . Let f : U → E be a holomorphic section over a holomorphically convex
open subset U of X . If f can be arbitrary approximated, on compact subsets of U , by
global continuous sections of E then it can be arbitrary approximated, on compact subsets
of U , by global holomorphic sections of E.
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Theorem 3.7. (Extension) Let E be a holomorphic principle G-bundle. Let U be a holo-
morphically convex open subset of a Stein space X and Y be a closed analytic subset of
X . Let f : U → E and g : Y → E be holomorphic sections, defined on U and Y re-
spectively, satisfying the condition that f = g on Y ∩ U . If f can be approximated, on
compact subsets of U ∩ Y , by global continuous sections of E which are extensions of g
then it can be approximated, on compact subsets of U ∩Y , by global holomorphic sections
of E which are extensions of g.

Remark 3.8. If we take E to be a trivial G-bundle then the preceding theorems yield the
various version of Oka principle for maps into a complex Lie groupG. For example we get
from Theorem 3.5 that every continuous map from a Stein space into G is homotopic to a
holomorphic map and two holomorphicG-valued maps are homotopic through continuous
maps then they are also homotopic through holomorphic maps.

Definition 3.9. Let B be a subgroup of a topological group A with unit 1. Denote by Īq

the q-fold, q ≥ 1, Cartesian product of the unit interval Ī = [0, 1] and

Jq−1 = {(t1, ..., tq) ∈ ∂Īq | tq 6= 0}.

For q ≥ 1 the set of all continuous map f : Īq → A such that

f(∂Īq) ⊂ B and f(Jq−1) = 1

is a topological group, denoted ρq(A,B), with the obvious structure induced by the group
structure of A. We set by convention ρ0(A,B) = A. The connected components of
ρq(A,B) also form a group and will be denoted by πq(A,B). If B = {1} we write ρq(A)
for ρq(A, 1) and πq(A) for πq(A, 1).

Theorem 3.10. Let X be a Stein space and E be a principal G-bundle over X . Then the
injection ι : Γ(X,O(E)) → Γ(X, C(E)) is a weak homotopy equivalence, i.e., induces a
bijection ι∗ : πq(Γ(X,O(E)))→ πq(Γ(X, C(E))) for all integer q ≥ 0.

Remark 3.11. In fact Theorems 3.5, 3.6, 3.7 and 3.10 are valid for fiber bundles with
complex homogeneous spaces as fibers.

There is also the question about the converse: to what extent does the Oka principle
characterize the base space X? For instance, is X Stein? The first result in this direction
is due to Kajiwara and Nishihara [31]:

Theorem 3.12. Let X be a two dimensional Stein manifold and let D j X be an open
subset. Let G be a complex Lie group and Gh and Gc be the sheaves of germs of holomor-
phic and resp. continuous functions on D with values in G. If the inclusion ι : Gh → Gc
induces a bijection of H1(D,Gh) and H1(D,Gc) then D is Stein.

The theorem is false if the dimension ofX is three or higher: simply takeG = C, D =
Cn \ {0} and X = Cn. For n ≥ 3, H1(D,O) = H1(D, C) = 0 but D is not Stein.

Kajiwara [29] also obtained the following result:

Theorem 3.13. Let X be a Stein manifold of arbitrary dimension and D be a domain in
X with continuous boundary. Suppose that there exists a complex Lie group G with the
property that for every polydisc P in X and every open covering U of D ∩ D a cocycle
f ∈ Z1(U , G) is Gc-trivial then it is also Gh-trivial. Then D is Stein.
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Kajiwara also provided a counter-example of a domainD with discontinuous boundary.
Leiterer [38] found a condition which works for all domains and for all dimensions:

Theorem 3.14. Let X be a Stein manifold of arbitrary dimension and D a domain in X
with H1(D,O) = 0. If every continuously trivial bundle on D is also holomorphically
trivial then D is Stein.

Henkin and Leiterer showed that Grauert’s Principle is valid on the following class of
manifolds slightly more general than Stein:

Definition 3.15. A complex manifold X is said to be pseudoconvex if there exists an
exhaustion (i.e., proper) function ρ : X → R of class C2 such that ρ is strictly plurisubhar-
monic (i.e., the Levi form ddcρ is positive definite) onX−X0 whereX0 = ρ−1((−∞, 0]).

Theorem 3.16. Theorem 3.5 is valid for pseudoconvex manifolds.

Grauert’s original approach is based on induction on the dimension of the base X .
Henkin and Leiterer [27] used an approach known as the bumping technique (I believe
also due to Grauert for other purpose). However the bumping technique works only if the
base X is non-singular.

4 Gromov’s Oka principle

In 1989 Gromov further ([21], [22], [23]) extended Oka’s principle to much wider classes
of spaces that are not fiber bundles. Some of his results were written up in details later
by Forstneric and Prezelj [17], [16]. These results extend Grauert’s Oka Principle for
holomorphic fiber bundles p : E → X over a Stein manifold to certain submersions
p : Z → X . Submersion here means that the map p and its differential dp : TZ → TX
are surjective. The condition on Z is that it should be subelliptic. By way of motivation
we start with a simpler notion (due to Gromov):

Definition 4.1. Let p : Z → X be a holomorphic submersion of complex manifolds and
h : E → Z be a holomorphic vector bundle over Z. A holomorphic map s : E → Z is
said to be a vertical spray (or simply, a spray) associated to the submersion if its restriction
to the zero section (which may be identified with Z) is the identity self-map of Z, i.e.,
s(0z) = z and fiber preserving, i.e., s(Ez) ⊂ Zp(z) (where Ez and Zp(z) are fibers over
the respective points) for all z ∈ Z. Denote by sz = s|Ez : Ez → Zp(z). A spray s is said
to be dominating at a point z ∈ Z if the differential

dsz : T0zEz → TzZp(z) = ker dpz

at the point 0z is a surjection. A spray s is said to be dominating if is dominating at every
point z ∈ Z, in other words, ds : E → V TZ(= vertical tangent bundle = ker dp) is
surjective. �

Essentially, the situation of a vector bundle E → X is replaced by the situation of a
triple (E s→ Z

p→ X) where s is a vector bundle and p is a submersion. Roughly speaking
it is required that the bundle structure is compatible (fiber preserving) with the submersion.
With this set up the results of section 3 remain valid:



Pit-Mann Wong 1177

Theorem 4.2. (Homotopy) Let (E s→ Z
p→ X) be a dominating vertical spray over a

Stein manifold X . Let Y be a (possibly empty) closed analytic subset of X . Then
(i) every continuous section f0 : X → E such that f0|Y is holomorphic is homotopic

through continuous sections relative to Y to a holomorphic section f1 : X → E;
(ii) any two holomorphic sections f0, f1 : X → E which are homotopic through

continuous sections relative to Y are also homotopic through holomorphic sections relative
to Y .

Theorem 4.3. (Runge Approximation) Let (E s→ Z
p→ X) be a dominating vertical spray

over a Stein manifold X . Let U ⊂ X be a holomorphically convex open subset of X and
f : U → Z be a holomorphic section. If f can be arbitrary approximated, on compact
subsets of U , by global continuous sections of Z then it can be arbitrary approximated, on
compact subsets of U , by global holomorphic sections of Z.

Theorem 4.4. (Extension) Let (E s→ Z
p→ X) be a dominating vertical spray over a Stein

manifold X . Let U be a holomorphically convex open subset of a Stein space X and Y be
a closed analytic subset of X . Let f : U → E and g : Y → E be holomorphic sections,
defined on U and Y respectively, satisfying the condition that f = g on Y ∩ U . If f can
be arbitrary approximated, on compact subsets of U ∩Y , by global continuous sections of
E which are extensions of g then it can be arbitrary approximated, on compact subsets of
U ∩ Y , by global holomorphic sections of E which are extensions of g.

Corollary 4.5. (Weak Homotopy Equivalence) Let (E s→ Z
p→ X) be a dominating

vertical spray over a Stein manifold X . The inclusion i : Γhol(X,Z) → Γcont(X,Z) of
the space of holomorphic sections in the space of continuous sections is a weak homotopy
equivalence, i.e., induces a bijection ι∗ : πq(Γhol(X,Z))→ πq(Γhol(X,Z)).

It is not so easy to come up with interesting examples of dominating sprays. The
situation improves dramatically by slightly weaken the notion above (this is again due to
Gromov):

Definition 4.6. A holomorphic submersion of complex manifolds p : Z → X is said to
be subelliptic if at every point x ∈ X there exists an open neighborhood U of x such that
p|U : Z|U → U admits finitely many sprays si : Ei → Z, i = 1, ..., k such that

s1(E1,z) + · · ·+ sk(Ek,z) = V TzZ.

If k = 1 at every point then the submersion is said to be elliptic.

The proofs of the preceding results work just as well for subellptic submersions:

Theorem 4.7. The conclusions of Theorems 4.2, 4.3, 4.4 and Corollary 4.5 are valid for a
subelliptic holomorphic submersion p : Z → X over a Stein manifold X .

We give below examples of sprays, elliptic and subelliptic submersions. These exam-
ples can be found in the article by Gromov or Forstnerič [16],

Example 4.8. (1) Let G be a complex Lie group with Lie algebra g. Let E = G× g→ G
then

s : E → G, s(g, t) = (exp t)g

is a dominating spray.
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(2) Let φi : C×Y → Y, i = 1, ..., N be holomorphic maps with the property that each

φit : Y → Y, φit(y) = φi(t, y), t ∈ C

is an one-parameter subgroup of automorphisms of Y . Then

s = (φ1, ..., φN ) : Y × CN → Y, s(y, t1, ..., tN ) = (φ1(t1), ..., φN (tN ))

is a spray which is dominating if the vector fields associated to φit, i = 1, ..., N span the
fibers of the tangent bundle TY at each point of Y . This is the case if Y is homogeneous.
Using the one parameter subgroups associated to these vector fields we obtain a dominating
spray on Cn.

(3) Let Σ be a complex subvariety of codimension at least two in a complex Grassman-
nian Y . Then Y \ Σ is subelliptic. More generally, let p : Z → X be a holomorphic fiber
bundle, with typical fiber a complex Grassmannian, over a complex manifold X . Let Σ be
a complex subvariety in Z such that Σ ∩ Zx is of codimension at least two in Zx for all
x ∈ X . Then Z \ Σ→ X is a subelliptic bundle over X .

(4) If Y is subelliptic then any unramified cover Ỹ of Y is also subelliptic. The con-
verse, whether Ỹ subelliptic implies Y subelliptic, is open.

(5) If each Yi, i = 1, ..., n, is subelliptic then the Cartesian product Ψn
i=1Yi is also

subelliptic.
(6) The open Riemann surface Y = P1 \ {d distinct points } is subelliptic if and only

if d ≤ 2. More generally, Y = Pn \ {d hyperplanes in general position } is subelliptic if
and only if d ≤ n + 1. Notice that P1 \ {d distinct points } is hyperbolic if d > 2 and
more generally, Y = Pn \ {d hyperplanes in general position } is measure hyperbolic if
d > n+ 2.

(7) (Rosay) The manifold

Y = C2 \
(
{w = 0} ∪ {w = 1} ∪ {w = kz} ∪ {zw = 1}

)
is not subelliptic.

5 The case of Riemann surfaces

Grauert’s Oka principle implies that every holomorphic vector bundle over a contractible
Stein space is holomorphically trivial. In the special case of open Riemann surfaces (all of
which are Stein) triviality is automatic without any topological assumption:

Theorem 5.1. (Röhrl [43] 1957) Every holomorphic vector bundle over an open Riemann
surface is holomorphically trivial.

We recall here a classical theorem on vector bundles over the Riemann sphere for com-
parison:

Theorem 5.2. (Grothendieck [23] 1957) Every holomorphic vector bundle over the Rie-
mann sphere P1 is holomorphically isomorphic to a direct sum of holomorphic line bun-
dles.

The analogue of Theorem 5.1 in higher dimension was observed by a number of people.
The first results are due to Forster-Ramspott in a series of paper beginning in 1966. The
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next result can be derived from the work of M. Schneider in [45] using Hamm’s topological
lemma (see Theorem 1.7 in section 1) :

Theorem 5.3. Let X be a pure n-dimensional Stein space and E a holomorphic vector
bundle of rank r ≥ [n/2] over X . Then

(a) there is a holomorphic vector bundle F of rank [n/2] such that E is holomorphi-
cally isomorphic to F ⊕Or−[n/2]

X ,
(b) if n is even then there is a holomorphic vector bundle F such that E is holomorphi-

cally isomorphic to F ⊕Or−(n/2)+1
X precisely when the Chern class cn/2(E) vanishes.

Röhrl’s Theorem is the case n = 1 in part (a) of the preceding theorem. For n = 2
part (b) asserts that a vector bundle is trivial if and only if c1(E) = 0. By Hamm’s result
Theorem 5.3 is reduced to the case of complex vector bundles over CW-complexes of
real dimension n (so H2(X,Z) = 0 if X is an open Riemann surface, Röhrl’s Theorem
follows immediately because H1(X,O∗ = H2(X,Z)). For a proof of the assertions of
the theorem in the later case we refer the readers to Husemoller [29]. The next result is
another example of combining Oka Principle with Hamm’s Lemma:

Theorem 5.4. Let X be a pure n-dimensional Stein space. Let E and F be holomorphic
vector bundles of rank r ≥ [n/2] overX . Assume that the torsion inH2(X,Z) is relatively
prime to (m−1)! for all m ≥ 3. Then E and F are holomorphically isomorphic if the two
bundles have the same total Chern class.

The preceding result (with continuous isomorphism) is known for continuous bundles
over a CW complex (see Peterson [43]). The theorem now follows from Oka-Grauert’s
Principle.

Definition 5.5. Let X,Y be complex spaces. We say that the Oka principle holds for
mappings from X to Y if every continuous map f0 : X → Y is homotopic to a holomor-
phic mapping f : X → Y . We shall denote by [X : Y ] the set of homotopy classes of
continuous maps from X to Y . �

The complete list of pairs of Riemann surfaces (open or otherwise) for which the Oka
principle holds can be found in Winkelmann [49]:

Theorem 5.6a. Let X and Y be Riemann surfaces. Then Oka’s principle for mappings
from X to Y holds if and only if (X,Y ) is in the list below:

(a) X = P1, Y � P1(every continuous map is homotopic to a constant),
(b) X non-compact, Y = P1(every continuous map is homotopic to a constant),
(c) either X or Y ,
(d) X is non-compact, Y = C∗(there is a surjection ρ : H0(X,O∗) → H1(X,Z) =

Hom(π1(X),Z) = Hom(π1(M), π1(C∗)) = [X : C∗]),
(e) X is non-compact, Y is a torus,
(f) X = X \∪iDi where X is a compact Riemann surface and {Di | i = 1, .., k} are

disjoint discs of positive radii, Y is punctured unit disc ∆∗.

It is convenient to list all pairs of Riemann surface for which the Oka Principle fails.

Theorem 5.6b. Let X and Y be Riemann surfaces then Oka’s principle for mappings
from X to Y fails if and only if (X,Y ) is in the list below:

(a) X is compact and Y = P1,
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(b) X is compact and neither X nor Y is simply connected,
(c) X is non-compact and not simply connected, Y is not a torus nor any in the list

P1,C,C∗,∆,∆∗ where ∆ is the unit disc and ∆∗ = ∆ \ {0},
(d) X = X \ {one point} where X is compact, Y = ∆∗,
(e) H1(X) is not finitely generated and Y = ∆∗.

6 Complete intersections

Definition 6.1. Let R be a commutative ring. (We consider only rings with 1.) The
dimension of R is by definition the supremum of the lengths n of all prime ideal chains:

p0 ( p1 ( · · · ( pn.

The height, h(p), of a prime ideal is the supremum of all the lengths of prime ideal chains
terminating at p (pn = p in the chain above). For an ideal I ( R the height of I , h(I), is
the infimum of the heights of prime ideals containing I . For an ideal I , denote by µ(I) the
infimum of the number of generators (over R) of I . �

For a commutative Noetherian ring R it is clear that

h(I) ≤ µ(I) <∞

for all ideal I .

Definition 6.2. Let I 6= R be an ideal in a commutative Noetherian ring R. Then I is
said to be an ideal theoretic complete intersection (or simply a complete intersection)
in R if h(I) = µ(I). It is said to be a set theoretic complete intersection if there exists
f1, ..., fr such that rad(I) = rad(f1, ..., fr) with r = h(I). It is said to be a local complete
intersection if for all maximal ideal m the localization Im is an ideal theoretic complete
intersection in Rm. �

The corresponding geometric version on varieties of these concepts are defined in terms
of the rings of functions:

Definition 6.3. Let X be a complex space and Y ⊂ X a complex subspace. Denote
by I(Y ) := H0(Y, IY ) (where IY is the ideal sheaf of Y in X) and R = O(X) :=
H0(X,OX). Then Y is said to be an ideal theoretic complete intersection, or simply
a complete intersection in X (resp. a set theoretical complete intersection; resp. a lo-
cal complete intersection) if I(Y ) is an ideal theoretic complete intersection (resp. a set
theoretical complete intersection; resp. a local complete intersection) in R. �

An excellent reference for this section is the article by Schneider [45].

Remark 6.4. (i) A subspace Y is said to be a local complete intersection at a point y ∈ Y
if the ideal IY,y is a local complete intersection in OX,y . The condition that the ideal
I = I(Y ) is a local complete intersection in R = O(X) in the sense of Definition 6.3 is
equivalent to the condition that IY,y is a local complete intersection inOX,y for all y ∈ Y .

(ii) A family of functions f1, ..., fr on X is said to define a complex subspace Y in X
if Y = {x ∈ X | f1(x) = · · · = fr(x)}. Define

µ(Y ) = min{r | there exists r holomorphic functions on X defining Y }. (6.1)
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then

codimY ≤ µ(Y ) ≤ µ(I(Y )). (6.2)

In fact

Y is a complete intersection if and only if µ(Y ) = codimY. (6.3)

In other words, if r = codimY then Y is a complete intersection if and only if there exists
r holomorphic functions f1, ..., fr onX such that the germs of these functions at y generate
the ideal IY,y (overOX,y) for all y ∈ Y . For a local complete intersection we only require
that the generators are locally defined near y and may vary with y. Analogously, we also
have

Y is an ideal complete intersection if and only if µ(I(Y )) = codimY. (6.4)

(iii) If X is affine algebraic and Y an affine algebraic subspace then the preceding
concepts can also be formulated in the algebraic category (and one can replace C by an
algebraically closed field). In this case the ideal I(Y ) is replaced by Ialg(Y ) = {algebraic
functions on X vanishing on Y }, O(X) is replaced by Oalg(X) = {algebraic functions
on X} and the generators are required to be algebraic. If the underlying field is C then
an affine algebraic variety over C is Stein. The numbers µalg(Y ) and µalg(I(Y )) are
analogously defined. The assertions (6.2), (6.3) and (6.4) are also valid in the algebraic
category. This case will be further discussed in section 8 below concerning the algebraic
version of the Oka Principle.

(iv) It is clear that, in either the holomorphic or algebraic category, an ideal complete
intersection is a local complete intersection as well as a set theoretic complete intersection.

(v) A smooth subvariety is a local complete intersection.
(vi) Forster showed that, if Y ⊂ An is an affine algebraic subspace then µalg(Y ) ≤

n+ 1. Kumar [33] showed later that µalg(Y ) ≤ n if Y is a local complete intersection.
(vii) Kumar [34] showed that affine algebraic locally complete intersection curves in

An are set theoretic (algebraic) complete intersections.
(viii) Affine algebraic subspaces of pure dimension n − 1 (every irreducible compo-

nents is of dimension n− 1) of An are algebraic complete intersections. It is clear that, in
general, affine curves are not set theoretic algebraic complete intersections (just take any
curve that is not a local complete intersection). There are also smooth affine curves that are
not (ideal theoretic) algebraic complete intersections. An excellent source in the algebraic
case is Kunz [35].

(ix) Let IY be the ideal sheaf of Y . The quotient IY /I2
Y is called the conormal sheaf.

It is locally free (in which case it is referred to as the conormal bundle and its dual, the
normal bundle) if Y is a local complete intersection. Boratynski [4] showed that if Y ⊂ An

is an affine algebraic local complete intersection with trivial normal bundle then Y is a set
theoretic (algebraic) complete intersection. �

As far as I know the analogue of Boratynski’s result in the Stein (transcendental) case
is still open:

Open Problem 6.5. Is every closed complex subspace Y in Cn which is a local complete
intersection and with trivial normal bundle a complete intersection?
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For a general coherent sheaf S the number of generators µ(S(X)) (where S(X) is the
space of global sections of S) may not be finite. It is finite if

d = sup
x∈X

dim Sx/mxSx

is finite. In fact we have the following result due to Schneider [43]:

Theorem 6.6. Let X be a pure n-dimensional Stein space and S a coherent analytic sheaf
over X . For k ≥ 1 let Sk(S) = {x ∈ X | dimSx/mxSx ≥ k}. Then the O(X)-module
S(X) = H0(X,S) is finitely generated if and only if

r = sup
Sk(S)\Sk+1(S)6=∅

[1
2

dimSk(S)
]

+ k <∞

and, in which case, S(X) is generated by r elements.

If S is a vector bundle the result can be strengthened by using Theorem 5.3:

Corollary 6.7. Let E be a holomorphic vector bundle of rank r over a Stein space of
dimension n then µ(E) ≤ r+ [n/2]. If n is even then µ(E) ≤ r+ [n/2]− 1 if and only if
the Serge class sn/2 = 0.

The total Serge class is by definition s(E) = c(E)−1.

Remark 6.8. (i) LetE be a holomorphic vector bundle over a complex manifold Y (which
may be identified with the zero section of E). Then E is holomorphically isomorphic to
the normal bundle NY |E of Y in E.

(ii) Let Y be a complex submanifold of a Stein manifold X . Then there exist an open
neighborhood U of the zero section 0N in the normal bundleNY |X , an open neighborhood
V of Y in X and a biholomorphic map φ : U → V such that φ(0N ) = Y .

(iii) Let Y be a complex submanifold of a Stein manifold X . If Y is a complete
intersection then the normal bundle NY |X is trivial.

(iv) LetE be a holomorphic vector bundle over a Stein manifold Y . Then Y (identified
as the zero section ofE) is a complete intersection inE if and only ifE is holomorphically
trivial. �

Definition 6.9. A subspace Y in X is said to be an almost complete intersection if
µ(I(Y )) ≤ codimY + 1 (resp. µalg(I(Y )) ≤ codimY + 1). �

The preceding definition is motivated by the Lemma of Serre:

Theorem 6.10. Let I be a finitely generated ideal of a commutative ring. Then

µ(I) ≤ µ(I/I2) + 1.

In particular, if Y is an affine algebraic subspace of An then

µalg(IY ) ≤ µalg(IY /I2
Y ) + 1.

The preceding theorem is valid on Stein spaces:
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Theorem 6.11. Let I be a finitely generated coherent sheaf in a Stein X then

µ(I) ≤ µ(I/I2) + 1.

In particular, this is true for I = IY = the ideal sheaf of a closed complex subspace Y in
X . Consequently, if Y is a local complete intersection then

µ(IY ) ≤ µ(NY ) + 1.

If, in addition the normal bundle Ny is trivial then Y is an almost complete intersection.

Remark 6.12. See Remark 6.4 (ix) for the last assertion. One can obviously say a little
more, namely, if NY is trivial then µ(NY ) = rank NY = codimY , hence

codimY ≤ µ(IY ) ≤ codimY + 1.

Thus the main question reduces to: “when is µ(IY ) = µ(NY )” or µ(IY ) = µ(I/I2)?

Thus, for this particular problem, we are not yet able to recover the analogue of the
algebraic result. There are, however, other cases for which we have stronger results in the
Stein case than in the algebraic case. We begin with some technical results concerning the
removal of intersections. The formulation below is due to Gromov and a more detailed
version can be found in Forsternic. Suppose that f : X → Y is a holomorphic map
between complex spaces andA is a closed complex subvariety of Y . If f−1(A) is the union
of two disjoint complex subvarieties X0 and X1 in X . We would like to find conditions
so that there is a homotopy ft : X → Y, t ∈ [0, 1], of continuous maps such that f0 =
f, ft|X0 = f |X0 for all t ∈ [0, 1] and f−1

1 (A) = X0. We have the following version of
Oka principle for removing intersections.

Theorem 6.13. (Forsternic) Let f : X → Y be a holomorphic map where X is Stein
and Y is subelliptic. Let A be a complex subvariety of Y such that Y \ A is subelliptic.
Assume that f−1(A) = X0 ∪ X1 where X0 and X1 are disjoint complex subvarieties in
X . Assume that there is a homotopy f̃t : X → Y, t ∈ [0, 1], of continuous maps such
that f̃0 = f, f̃−1

1 (A) = X0 and f̃t|U = f |U for all t ∈ [0, 1] and for some fixed open
neighborhood U of X0. Then, for any positive integer r, there is a homotopy ft : X →
Y, t ∈ [0, 1], of holomorphic maps such that f0 = f, f−1

1 (A) = X0 and ft agrees with f
on X0 up to order r for all t ∈ [0, 1].

This implies the Oka principle for local complete intersections of Forster and Ramspott:

Corollary 6.14. Let X be a Stein manifold. Let Y ⊂ X be a closed complex submani-
fold of codimension d which is a complete intersection in an open neighborhood U of Y .
Let f1, ..., fd be holomorphic functions on U such that Y = {x ∈ U | f1(x) = ... =
fd(x) = 0}. If these local defining functions admit extension to global continuous func-
tions f̃0, ..., f̃d on X such that Y = {x ∈ X | f̃1(x) = · · · = f̃d(x) = 0} then Y is a
holomorphic complete intersection inX , i.e., there exists holomorphic functions F1, ..., Fd
on X such that Y = {x ∈ X | F1(x) = · · · = Fd(x) = 0}.
Theorem 6.15. Let X be an n-dimensional Stein manifold and Y be a codimension k
closed complex submanifold. Then

µ(I(Y )) ≤

{
[(n+ k)/2] if k ≥ 2,
1 + [n/2] if k = 1.
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By Oka’s principle the problem is reduced to counting continuous generators. The next
two corollaries are immediate consequence of the preceding theorem:

Corollary 6.16. If Y is a closed set of discrete points in a Stein manifold X then Y is a
complete intersection.

Corollary 6.17. If Y is a non-singular curve in a Stein manifold X then Y is a complete
intersection.

These results can be extended (see Forster-Ramspott [12], [13]).

Theorem 6.18. let Y be a closed submanifold of a Stein manifold X . Assume that the
normal bundle of Y in X is trivial. Then Y is a complete intersection if

Hq+1(X,Y, πq(S2k−1)) = 0

for all q ≥ 2k − 1.

Theorem 6.19. let Y be a closed submanifold of pure dimension in a connected Stein
manifold X such that dimY < dimX/2. Then Y is a complete intersection if the normal
bundle of Y in X is trivial.

The last result can be improved if X = Cn.

Theorem 6.20. let Y be a closed submanifold of pure dimension in Cn such that dimY <
3(n− 1)/2.Then Y is a complete intersection if the normal bundle of Y in X is trivial.

In fact the preceding is valid for any contractible Stein spaceX and Y a local complete
intersection.

Theorem 6.21. Let Y be a k-dimension closed subspace of a n-dimension Stein space.
Assume that Y is a local complete intersection and the conormal bundle is trivial. Then Y
is a complete intersection if any one of the following conditions is satisfied:

(i) 2k < n;
(ii) X is contractible and 3k ≤ 2(n− 1);
(iii) 2k = n and the dual class of Y in H2k(X,Z) vanishes.

7 Embedding dimensions of Stein spaces

Let X be a Stein space of complex dimension n. The embedding dimension mx of a
point x ∈ X is the smallest integer m such that there is an open neighborhood U of x
which is biholomorphic to a closed analytic subset of the unit ball Bm in Cm. The global
embedding dimension of X is by definition:

mX = embdimX = sup
x∈X

mx.

If X is non-singular then mX = n. The classical theorem of Remmert, Narisimhan,
Bishop, Wiegmann [48] asserts that:

Theorem 7.1. (Embedding Theorem) Let X be a Stein space of complex dimension n for
which the local embedding dimension m is finite. Then there exists a proper embedding of
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X into CN with N = max{2n + 1, n + m}. In fact the proper embeddings are dense in
O(X)N where the space of holomorphic functions O(X) is equipped with the topology of
uniform convergence on compact sets.

Remark 7.2. If X is non-singular or more generally, reduced, then the embedding dimen-
sion N can be taken to be 2n+ 1. Forster conjectured that, if X is smooth then N should
be n+[n/2]+1. The following example (due to Forster shows that the conjectured number
is sharp. Let Y be the complement of a quadric in P2, i.e.,

Y = {(x, y, z) ∈ P2 | x2 + y2 + z2 6= 0}

and

X =

{
Y m, if n = 2m,
qY [m] ×C, if n = 2m+ 1.

Then X is a n-dimensional Stein manifold which can be embedded in Cn+[n/2]+1 but not
in Cn+[n/2]. �

We shall always assume that the embedding dimension mX is finite. For an integer
k ≥ 0 the set

Xk = {x ∈ X | mx ≥ k}

is an analytic subset. Let nk = dimCXk and define the invariant

qX = sup
k∈N,k≤mX

{k +
[nk

2

]
}.

It is known that

n+ [n/2] ≤ qX ≤ max{n+ [n/2],mX + dimS(OX)/2}

where S(OX) is the singular locus of the structure sheaf OX .

Remark 7.3. It is well-known that

dimS(OX)


≤ dimX − 1, if X is reduced,
≤ dimX − 2, if X is normal,
= 0, if X has only isolated singularities,
= −∞, if X is smooth.

�

In general (singularities permitted) Schürmann [46] conjectured that

Conjecture 7.4. Any Stein space X of complex dimension n and of bounded embedding
dimension mX can be properly holomorphically embedded in CN with

N = max{n+ [n/2] + 1, qX}.
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The conjecture reduces to that of Forster if X is smooth. The conjecture is solved,
except for one case, by [Schürmann 46]:

Theorem 7.5. Any Stein space X of complex dimension n and of bounded embedding
dimension mX can be properly holomorphically embedded in CN with

N = max{n+ [n/2] + 1, qX , 3}.

Remark 7.6. The only case that is still unsettled (due to the extra entry 3 in N above) is
whether a Stein curve X with mX ≤ 2 can be embedded in C2. For non-singular Stein
curves (= open Riemann surfaces) the following are known to admit proper embeddings in
C2:

(a) the unit disc ∆ = {z ∈ C | |z| < 1},
(b) all annuli A = {z ∈ C | 1 < |z| < r},
(c) the punctured unit disc ∆∗ = {z ∈ C | 0 < |z| < 1},
(d) (Globevnik-Stensones) all bounded finitely connected domain D in C whose

boundary contains no isolated points. �

The proof of Theorem 7.5 is based, as usual, on (1) the Runge Approximation of the
Oka Principle (see Theorem 3.6 and Theorem 4.3) and (2) the topology of a Stein space.
The improvement over the previous work is to construct a special almost proper map. (A
continuous map f : X → Y between two locally compact topological spaces is said to be
almost proper if, for every compact set K ⊂ Y , each connected component of f−1(K)
is compact.) The idea of using almost proper rather than proper directly was already used
by Forster, Eliasberg-Gromov. Schürmann’s construction is superior in that he used the
subtler version (Lefschetz’s Theorem for Stein spaces, due to Hamm) of the topology of a
Stein space given by Theorem 1.8. This version, which we now describe, is more technical.

Let X be a reduced Stein space and let f : X → B(R) = {z ∈ Cn | ||z|| < R} be a
finite holomorphic map. Denote by Z = f(X) the image of f . Let Z ′ be a closed analytic
subset of Z and X ′ = f−1(Z ′). Assume that

(i) Z \ Z ′ and X \X ′ are smooth and non-empty,
(ii) f |Z\Z′ : Z \ Z ′ → X \X ′ is an immersion.

Let Φ be the restriction of ||z||2 to Z and denote by Zr = {z ∈ Z | ||z|| < r} ∪ Z ′ and
Xr = f−1(Zr).

Theorem 7.7. Let s < t be regular values of Φ|Z\Z′ . For any open set Us such that
Zs ⊂ Us ⊂ Zt. Then there exist a continuous function φ : Ut → [0,∞) defined on some
open neighborhood Ut of Zt and a constant c > 0 such that

(1) Zs ⊂ Zφ,c = {z ∈ Zt | φ(z) < c} ⊂ Us,
(2) φ is of class C∞ on U \ Zs,
(3) φ is strictly plurisubharmonic on U \ Zφ,c,
(4) φ|Zt\Zs is a Morse function of Zi \ Zs and c is a regular value.

The following corollary (known as the Lefschetz Theorem for Stein space) is immedi-
ate:

Corollary 7.8. Let Zφ,c be as in the preceding theorem. Then Zt \ Zs is obtained from
Zφ,c \ Zs be adjoining a cell of real dimension ≤ dimC(Z \ Z ′).
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The assumption that f is an immersion implies that the preceding theorem is valid also
for the function φ′ = φ ◦ f on X . Then Xφ′,c = f−1Zφ,t = {x ∈ Xt | φ′(x) < c}
where Xt = f−1(Zt). Thus Xt \Xs is obtained from Xφ,c \Xs be adjoining a cell of real
dimension ≤ dimC(X \X ′).

The problem of proper map is quite difficult. We have:

Open Problem 7.9. The Oka principle for proper embedding of Stein manifolds is open.
Namely, suppose that X is a Stein manifold and f : X → CN is a proper embedding of
class C∞. Is f homotopic to a proper holomorphic embedding?

In contrast the Oka principle for holomorphic immersion is known. The following
results are due to Eliashberg and Gromov and Gromov [24]:

Theorem 7.10. Every Stein manifold of complex dimension n admits an immersion into
C[3n/2].

Theorem 7.11. Let X be a Stein manifold of complex dimension n. Let q > n be an
integer. Then there is an immersion f : X → Cq if and only if the cotangent T ∗X is
spanned by q global continuous 1-forms.

Open Problem 7.12. The case q = n, however, remains open.

There is also a result concerning relative proper embeddings (or extension of embed-
dings):

Theorem 7.13. Let Y be a closed submanifold of an n-dimensional Stein manifold. Let
f : Y → CN , N ≥ 2n + 1 be a proper embedding then there exists a proper embedding
f̃ : X → CN such that f̃ |Y = f .

There is also results on embeddings with interpolations:

Theorem 7.14. Let X be a Stein manifold and suppose that there is a proper embedding
of X in CN , N > 1. Then for any discrete subset Γ in CN there exists an embedding
f : X → CN such that Γ ⊂ f(X). Moreover, the map f can be chosen so that for any
holomorphic map φ : Cd → CN , d = N − dimX , of maximal rank the intersection
φ(Cr) ∩ f(X) is an infinite set. If d = 1 then f can be chosen so that CN \ f(X) is
Kobayashi hyperbolic.

For convenience we say that a space Y is d-hyperbolic if there does not exist any
holomorphic map φ : Cd → Y of rank r. Since Cn can be properly embedded in CN for
any N > n the theorem above implies the existence of a proper embedding f : Cn →
Cn+d such that Cn+d \ f(Cn) is d-hyperbolic. On the other hand, a result of Abyankar
and Moh asserts that every polynomial embedding of C in C2 is equivalent to a linear
embedding hence the complement of any such embedding is biholomorphic to C×C∗.

Next we consider the problem of constructing holomorphic functions on a Stein man-
ifold without critical points (note that it is clear that the set of critical points of a generic
holomorphic function on a Stein manifold is a discrete set). The problem was first studied
by Gunning and Narasimhan in the case of Riemann surfaces and by Forsternic:

Theorem 7.15. Let X be a Stein manifold of complex dimension n then there exists [(n+
1)/2] holomorphic functions f1, ..., f[(n+1)/2] on X with the property that the differentials
df1, ..., df[(n+1)/2] are linearly independent over C at any point x ∈ X .
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Gunning and Narasimhan’s construction in the case of a Riemann surface X is based
on the fact that T ∗X is trivial hence there exists a global holomorphic non-vanishing dif-
ferential 1-form ω. (The higher dimensional analogue is the result of Ramspott that, every
holomorphic vector bundles on a Stein manifold admits [(n + 1)/2] linearly independent
(over C) global holomorphic sections.) The idea is to find an antiderivative for ω, i.e.,
ω = df is exact for some global holomorphic function f . For this we need to find ω whose
integral over every closed curve vanishes (Cauchy’s condition). This is achieved by show-
ing that there is a non-vanishing holomorphic function g on X such that egω satisfies the
Cauchy condition, i.e., egω = dγ where γ is differentiable. This is done first by adjusting ω
by continuous functions on an exhaustion of X be relative compact open Runge (holomor-
phically convex) domains and the appropriate global holomorphic function is constructed
via Runge’s approximation theorem.

Let f be a holomorphic function defined on a complex manifold X the critical set of
f = {x ∈ X | dfx = 0} shall be denoted by Crit(f,X).

The following is the Oka principle for extensions preserving critical points.

Theorem 7.16. Let X be a Stein manifold and Y ⊂ X a closed complex submanifold.
Let f be a holomorphic function on some open neighborhood Y such that the critical
set Crit(f, U) is discrete and is contained in Y. For any non-negative integer and any
holomorphic function f on Y there is a holomorphic function f̃ on X such that f and f̃
agrees on Y up to order r and that Crit(f, U) = Crit(f̃ , X).

The following is Oka’s homotopy principle for extensions of submersions.

Theorem 7.17. Let X be a Stein manifold and Y a closed complex submanifold. Let θ0 =
(θ0

1, ..., θ
0
q), 1 ≤ q < dimX be a q-tuple of continuous 1-form of type (1, 0) onX such that

θ1, ..., θq are linearly independent at every point x ∈ X and θ0 = df0 = (df0
1 , ..., df

0
q )

where f0
1 , .., f

0
q are holomorphic functions on an open neighborhood U of Y . Then there

exist a homotopy θt of q-tuples of continuous forms of type (1, 0) on X such that θt = df t

is holomorphic and exact on U and that θ1 = (df1
1 , ..., df

1
q ) is globally exact holomorphic

and f1 = (f1
1 , ..., f

q
q ) : X → Cq is a holomorphic submersion.

Recall that (Theorem 1.10 of Androetti-Frankel) every Stein manifold of complex di-
mension n admits a strictly pseudoconvex exhaustion function with Morse index at most n
at each critical point. This implies that

Theorem 7.18. LetX be a Stein manifold of complex dimension n admitting an exhaustion
function with Morse index at most k at each critical point. Then X admits a holomorphic
submersion onto Cnk where nk = min{n − [k/2], n − 1}. In particular, every Stein
manifold of complex dimension n admits a holomorphic submersion onto C[(n+1)/2.

Gunning and Rossi’s result is the case dimX = q = 1. Note that the case dimX =
q ≥ 2 is open.

8 Oka principle with growth condition

Among the complex subspaces of CN there are those that are defined by polynomials
(the common zeros of a finite number of polynomials). These are the affine algebraic
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subvarieties. Such a variety X can also be characterized by the condition that the closure
(the term compactification and completion are also commonly used in the literature) X in
PN is a complex subspace (necessarily algebraic by Chow’s theorem) of PN .

In other words a Stein space X is affine algebraic if it admits a compactification X
which is projective. It is well-known that a non-singular affine algebraic manifold X ad-
mits an embedding with the property that its closure X is a smooth projective variety and
that D = X \X is of simple normal crossings.

An n-dimensional complex space X is affine algebraic if and only if it is a finite rami-
fied cover of Cn, i.e., there exists a proper holomorphic surjection φ : X → Cn such that
the preimage φ−1(z) is a finite set of points in X .

A holomorphic coherent sheaf S on an affine variety X is said to be algebraic if can
be extended to a holomorphic coherent sheaf on the projective variety X . The condition
is independent of the choices of the affine embeddings of X in CN . By Chow’s theorem
every holomorphic coherent sheaf over a projective variety is algebraic. However this is
not true for coherent sheaves over non-compact algebraic varieties.

In general there are non-extendible continuous principle bundles on an affine algebraic
variety X and such bundles cannot admit an algebraic structure. Denote, respectively, by
Gcont,Ghol and Galg the sheaf of germs of continuous, holomorphic and algebraic principle
G-bundles. We have, in general:

H1(X,Gcont) = H1(X,Ghol) 6= H1(X,Galg).

(However, it is true that every algebraic principal G-bundle on Cn is algebraically trivial.)
Thus the Grauert-Oka principle is not valid in the algebraic category.

In 1974 Cornalba-Griffiths [9] proposed a finite order Grauert-Oka principle. The con-
cept of a holomorphic function of finite order defined on CN is well known, namely a
holomorphic function is of finite order if its logarithmic maximum modulus is of polyno-
mial growth:

Mf (r) = max
||z||<r

log |f(z)| ≤ Ark +B

where k,A,B are non-negative constants. The definition above makes perfect sense for
any subvariety X of CN (in the definition above the maximum is taken over all x ∈ X
such that ||Z|| < r) hence the concept holomorphic function of finite order is defined
on all affine varieties (even though the definition makes sense for any Stein spaces but
in general there may not be any non-trivial holomorphic functions satisfying the growth
condition). The product and sum of functions of finite order are of finite order hence it has
a natural structure of a ring. Note that polynomials on an affine variety are precisely those
holomorphic functions satisfying the condition

Mf (r) = max
z∈X,||z||<r

log |f(z)| ≤ A log r +B.

Thus the ring of polynomials is a subring of the ring of functions of finite order.
For a non-singular affine variety the concept of finite order can be localized via open

sets of its closure X . Namely, on an open set U in X , a holomorphic function defined on
U \D (D = X \X) is said to be of finite order if

Mf (r) = max
z∈U\D,||z||<r

log |f(z)| ≤ Ark +B.
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Denote by Γf.o.(U) = holomorphic functions of finite order defined on U \ D then the
sheaf associated to the presheaf

U 7→ Γf.o.(U), U open set in X

is called the sheaf of germs of holomorphic functions of finite order on X and is denoted
by Of.o.. It is important to keep in mind that Of.o. is a sheaf on X containing OX as a
subsheaf. On the other hand, we have Of.o.|X = OX |X = OX . The main fact concerning
the sheaf Of.o. is the following result of Muflur-Vitter-Wong [40]:

Theorem 8.1. Let X be an affine algebraic variety with completion X . Then Of.o. is flat
over OX , namely, for any short exact sequence of OX -sheaves:

0→ A→ B → C → 0

the sequence

0→ A⊗Of.o. → B ⊗Of.o. → C ⊗Of.o. → 0

is also exact.

This implies the following vanishing theorem:

Corollary 8.2. Let X be an affine algebraic variety with completion X . Then, for any
coherent sheaf S on X ,

Hq(X,S ⊗Of.o.) = 0

for all q ≥ 1.

The topology of an affine manifold can also be computed using the finite order forms.
Recall that on a smooth affine variety X we have a complex:

dp : H0(X,Ap)→ H0(X,Ap+1)

where Ap is the sheaf of germs of p-forms of class C∞, resulting in the deRham isomor-
phism (Hp

d (X,A∗) = ker dp/im dp−1 for p ≥ 1 and H0
d(X,A∗) = ker d0):

H∗d (X,A∗) ∼= H∗(X,C).

Analogously we have the complex:

∂ : H0(X,Ωp)→ H0(X,Ωp+1)

where Ωp is the sheaf of germs of holomorphic p-forms, resulting in the Serre isomor-
phism:

H∗∂(X,Ω∗) ∼= H∗(X,C).

Denote by (Ωalg)p the sheaf of germs of rational p-forms on X holomorphic on X and
poles along D = X \X then we have a complex:

∂ : H0(X, (Ωalg)p)→ H0(X,Ωalg)p+1)
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and the Atiyah-Hodge isomorphism:

H∗∂(X,Ωalg) ∼= H∗(X,C).

These isomorphisms hold also in the finite order category (see [M-V-W]). We get have
from the complex

d : H0(X, (Af.o.)p)→ H0(X, (Af.o.)p+1)

the finite order deRham isomorphism:

H∗d (X,Af.o.) ∼= H∗(X,C)

and from the complex

∂ : H0(X, (Ωf.o.)p)→ H0(X,Ωf.o.)p+1)

the finite order Atiyah-Hodge-Serre isomorphism:

H∗∂(X,Ωf.o.) ∼= H∗(X,C).

We now introduce the main result of Cornalba-Griffiths. Let O∗f.o. be the sheaf of
germs of non-vanishing holomorphic functions of finite order. A rank r holomorphic vector
bundle E over a smooth affine manifold X is said to admit a finite order structure if there
exists an open cover {Ui} of X such that fi : Ui × Cr ∼= E|Ui is trivial (fi(x, ξ) =
(x, gi(x))) and that the transition functions f−1

j ◦ fi(x, ξ) = (x, gij(x)ξ) where

gij : Ui ∩ Uj → GL(r,C)

is of finite order (i.e., every component is a function of finite order on Ui ∩ Uj). For a line
bundle this means that gij is a non-vanishing holomorphic functions of finite order. Thus
H1(X,O∗f.o.) is the group of isomorphism classes of holomorphic line bundles on X . A
finite order line bundle is trivial in the sense of finite order if

gij = gig
−1
j

where gi is finite order on Ui. The following Oka principle with growth condition is due
to Cornalba-Griffiths [9]:

Theorem 8.3. Let X be an affine manifold then

H1(X,O∗f.o.) ∼= H1(X, C∗X) ∼= H2(X,Z).

In particular, every topological line bundle admits a finite order structure and a finite order
line bundle is trivial in the category of finite order bundles if and only it is topologically
trivial.

Cornalba-Griffiths also proposed several definitions of finite order structure for vector
bundles of rank ≥ 2 over affine manifolds. We shall always assume that X is embedded
in some CN and X is smooth and D = X \ X is of simple normal crossings. Let τ =
||z||2|X be the induced strictly plurisubharmonic exhaustion function. We shall also use the
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concept of “mixed holomorphic bisectional curvature” associated to a metric on a bundle
E (see Cao-Wong [5] for details). If E = TX is the tangent bundle equipped with a
metric onX then this is just the usual concept of “holomorphic bisectional curvature”. The
first definition is to impose condition on the “mixed holomorphic bisectional curvature”.
This is natural because this is the curvature term that appears in the Bochner-Weitzenbock
formula. Thus with control on this curvature it is possible to sole the ∂̄-problem (for E-
valued forms) with growth condition.

Definition I. A holomorphic vector bundle over an affine algebraic manifold X is said to
be of algebraic (resp. finite order) if there exists a hermitian metric h on E such that the
mixed bisectional curvature Θ (which in the case of a line bundle is simply the first Chern
form of the metric) satisfies the condition

|Θ| ≤ Cddcτ

for some positive constant C > 0 (resp.

|Θ| ≤ Cτλddcτ

for some positive constant C > 0 and non-negative constant λ ≥ 0).

The second definition is to impose a growth condition on the classifying map. Let ωFS
be the Kähler form (induced by the usual Fubini-Study metric on the complex projective
space via the Plücker embedding) on the Grassmann manifold Gr(r,N) of r-dimensional
linear subspaces in CN . Let f : X → Gr(r,N) be a holomorphic map. The only known
way of imposing growth condition on mappings is via the theory of Nevanlinna. The
characteristic function (obtained via integrating the Chern form of the appropriated bundle,
hence the terminology) of f is defined by

Tf (r) =
∫ r

0

dt

t

∫
τ≤r2

f∗ωFS ∧ (ddc log τ)n−1.

It is well-known (a theorem of Stoll) that the map f is algebraic if and only if Tf (r) =
O(log r). In fact, for an algebraic map

lim
r→∞

Tf (r)
log r

= deg f.

The map is said to be of finite order if and only if Tf (r) ≤ O(rλ) for some λ ≥ 0. These
definitions are standard in Nevanlinna theory.

Definition II. A holomorphic vector bundle (E, h) over X is said to be algebraic (resp. of
finite order) if there exists an algebraic (resp. a holomorphic map of finite order) f : X →
Gr(r,N) for some m such that E = f∗U where U is the universal bundle over Gr(r,N).

The next definition impose condition on the transition function of the bundle relative
to the special coverings of X .

Definition III. A holomorphic vector bundle E of rank r on X is algebraic (resp. of finite
order) if there exists an open cover {Ui} ofX such thatE|Ui\D is trivial and with transition
functions

gij ∈ GL(r,Oalg

(
(Ui ∩ Uj) \D

)
(resp. GL(r,Of.o.

(
(Ui ∩ Uj) \D

)
)).
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Another definition introduced by Cornalba-Griffiths is to impose condition on the
Schubert cycles. Let Y be a subvariety of (pure) dimension k in X . The standard way
of measuring the “volume” growth of subvarieties is to use Nevanlinna theory. The count-
ing function of Y is defined by

NY (r) =
∫ r

0

dt

t2k−1

∫
Y (r)

(ddcτ)k

where Y (r) = {x ∈ Y | τ(r) < r2}. It is well-known that Y is algebraic if and only if
NY (r) = O(log r). The subvariety Y is said to be of finite order if and only if NY (r) ≤
Crλ. These definitions are standard in Nevanlinna theory.

Definition IV. A holomorphic vector bundle E of rank r on X is algebraic (resp. of order
at most λ) if there exists global holomorphic sections σ1, ..., σr of E such that Yq =
[σ1 ∧ · · · ∧ σr−q+1 = 0] is a subvariety of codimension min{q, n} is algebraic (resp. of
finite order) for q = 1, ..., r.

It is relatively easy to show that Definitions I-IV are equivalent for algebraic bundles
of any rank and also for line bundles in the finite order case (see [9] for details). The case
of finite order bundles of rank ≥ 2 remains open. There appears to be essential difficulties
to work directly with vector bundles of higher rank.

One way of dealing with a vector bundle E of higher rank is to use the Lemma of
Grothendieck/Serre:

Theorem 8.4. LetE be a holomorphic vector bundle, of rank≥ 2, over a complex manifold
X . Then

Hq(X,�mE ⊗ S) ∼= Hq(P(E∨),Lm ⊗ p∗S)

for all q ≥ 0 and any sheaf S on X where L is the Serre bundle on the projectivization
P(E∨), E∨ is the dual, and �mE the m-fold symmetric product, of E.

The Serre line bundle on P(E∨) is the line bundle whose restriction to each of the fiber
(∼= Pr−1, r = rankE) of the projection p : P(E∨) → X is the hyperplane line bundle
over Pr−1. The preceding theorem implies that, at the cohomology level, the investigation
of the behavior of vector bundles is reduced to that of line bundles over the projectivization.
The standard technique is to find a good Hermitian metric on the line bundle and use ∂̄-
theory. Now a Hermetian metric h on the Serre line bundle defines canonically (and vice
versa) a Finsler metric (by abuse of notations we use the same symbol h for both) on E
and the first Chern form c1(L, h) is positive-definite (resp. non-negative) if and only if
the mixed holomorphic bisectional curvature of (E, h) is positive (resp. non-negative).
The readers are referred to Cao-Wong [5] for details. This suggest that we should extend
Definition I of Cornalba-Griffiths to Finsler metrics. Equivalently, by putting assumption
on the Serre line bundle and work with line bundles over P(E∨). In the thesis of my
student M. Maican [39] the Finsler formulation was used and in Wong [50] the Serre bundle
approach was used (moreover, for technical reason, an integral bound was used in place of
the pointwise bound used in [40] and [50]):

Definition V. A holomorphic vector bundle E of rank r ≥ 2 over an affine algebraic
manifold X is said to be of finite order if there exists a Hermitian metric h along the Serre
line bundle L on P(E∨) such that the following conditions hold:
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(i) c1(L, h) > 0 and c1(L, h) ≥ ddc(p∗τ) where p : P(E∨)→ X is the projection,
τ is the exhaustion function on X used in Definition I and ddc(p∗τ) is the Levi form of the
exhaustion function p∗τ on P(E∨);

(ii) T ((L, h), r) ≤ O(rλ) for some λ ≥ 0 where

T ((L, h), r) =
∫ r

0

dt

t

∫
{p∗τ≤r}

η ∧ ddc(ddc log p∗τ)n−1 ∧ c1(L, h)r

(iii) c1(L, h)− Ric c1(L, h) ≥ εc1(L, h) for some positive constant ε.

It is also convenient to replace Definition III of Cornalba-Griffiths by:

Definition VI. A holomorphic vector bundle E, of rank r ≥ 2, over a special affine al-
gebraic manifold X is said to be of finite order if there exists an injective holomorphic
immersion F : P(E∨) → PN such that F ∗(OPN (1)) = LP(E∨) and satisfying the fol-
lowing estimate∫ r

0

dt

t

∫
{p∗τ≤t}

(ddc log p∗τ)n−1 ∧ F ∗ωrFS = O(rλ)

where ωFS is the Fubini-Study metric on PN .

With these modifications it was shown in [50] that:

Theorem 8.5. Let E be a holomorphic vector bundle over an affine algebraic manifold X
of complex dimension n then Definitions I, V and V I are equivalent.

In [39] it was shown, with Definition V formulated in terms of Finsler metric and a
pointwise bound, that V =⇒ V I =⇒ I .

9 Oka’s principle and the Moving Lemma in hyperbolic geometry

We present in this section an application of the Oka Principle in establishing a “Moving
Lemma” which is very useful in the transcendental intersection theory and in hyperbolic
geometry. A complex space X is said to be Brody hyperbolic if every holomorphic map
f : C → X is constant. For compact complex space Brody hyperbolicity is equivalent
to Kobayashi hyperbolic. For non-compact space Kobayashi hyperbolicity implies Brody
hyperbolicity but the converse is false in general. A weaker notion is that of weak hyperbol-
icity. A complex space is said to be weakly hyperbolic if the image of every holomorphic
map f : C → X is contained in a subspace Y of dimension strictly less than that of X .
An even weaker version is that of measure hyperbolicity. A complex space X of complex
dimension n is said to be measure hyperbolic if every holomorphic map f : Cn → X is
degenerate in the sense that the Jacobian determinant vanishes, i.e.,

det


∂f1
∂z1 . . . ∂f1

∂zn

. . . . .

. . . . .

. . . . .
∂fn
∂z1 . . . ∂fn

∂zn

 = 0.
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Let X be a complex manifold of dimension n. We shall denote by JkX the k-th jet
bundle of X . These bundles are defined as follows (the readers are referred to [8], [18],
[32] for further details). LetHx, x ∈ X , be the sheaf of germs of holomorphic curves:

{f : ∆r → X is holomorphic for some r > 0 and f(0) = x}

where ∆r is the disc of radius r in C. Define, for k ∈ N, an equivalence relation by
designating two elements f, g ∈ Hx as k-equivalent (written f ∼k g) if

f
(p)
j (0) = g

(p)
j (0)

for all 1 ≤ p ≤ k, where fj = zj ◦ f, z1, ..., zn are local holomorphic coordinates near x
and f (p)

j = ∂pfj/∂ζ is the p-th order derivative relative to the variable ζ ∈ ∆r. The sheaf
of parameterized k-jets is defined by:

JkX = ∪x∈XHx/ ∼k . (9.1)

Elements of JkX will be denoted by jkf(0) = (f(0), f
′
(0), ..., f (k)(0)).

We set J0X = OX . It is clear that J1X = TX but, in general, for k ≥ 2, JkX is not
locally free. There is, however, a natural C∗-action on JkX defined via parametrization.
Namely, for λ ∈ C∗ and f ∈ Hx a map fλ ∈ Hx is defined by fλ(t) = f(λt). Then
jkfλ(0) = (fλ(0), f

′

λ(0), ..., f (k)
λ (0)) = (f(0), λf

′
(0), ..., λkf (k)(0)). So the C∗-action

is given by

λ · jkf(0) = (f(0), λf
′
(0), ..., λkf (k)(0)). (9.2)

Note that even though JkX is not a vector bundle but the zero section still makes sense.

For the tangent bundle TX we have the dual T ∗X = Ω1
X which is the sheaf associated

to the presheaf

Ω1
U = {ω : TX|U → C holomorphic | ω(λ · j1f) = λω(j1f), λ ∈ C}.

Analogously, we define for positive integers m, k, the sheaf of germs of k-jet differentials
of weight m, denoted Jmk X , to be the sheaf associated to the presheaf

Jmk U = {ω : JkX|U → C holomorphic | ω(λjkf) = λmω(jkf), λ ∈ C}. (9.3)

Note that J11X = T ∗X = ΩX1. We also set Jm0 X = OX for all m.

We gather some basic properties of JkX and Jmk X in the next Proposition.

Proposition 9.1. Let X and Y be complex manifolds and let F : X → Y be a holomor-
phic map.

(a) For any ` ≤ k the map pk` : JkX → J`X defined by

pk`(jkf(0)) = j`f(0)

is a well-defined C∗-bundle map (the forgetting map), i.e., pk` respects the C∗-action
defined by (9.2).



1196 The Oka-Grauert-Gromov principle for holomorphic bundles

(b) The k-th order induced map JkF : JkX → JkY , defined by

JkF (jkf(0)) = jk(F ◦ f)(0)

is a well-defined C∗-bundle map.
(c) Given any holomorphic map f : ∆r → X (0 < r ≤ ∞), the map (the k-th order

lifting) jkf : ∆r/2 → JkX defined by

jkf(ζ) = jkg(0), ζ ∈ ∆r/2

where g(ξ) = f(ζ + ξ) is holomorphic for ξ ∈ ∆r/2 and commutes with the projection
pk : JkX → X , i.e., pk ◦ jkf = f .

(d) The map δ : Jmk X → J
m+1
k+1 X defined by δf = df if k = 0 and for k ≥ 1 and

ω ∈ Jmk X

δω(jk+1f) = (ω(jkf))
′

is a C∗-bundle map (derivation). Iteration yields a C∗-bundle map

δkφ(jkf) = (φ ◦ f)(k).

(e) For ` ≤ k the natural projection pkl : JkX → J lX induces an injection (the dual
forgetting map) p∗kl : Jml X → Jmk X defined by “forgetting” those derivatives higher
than l:

p∗klω(jkf) = ω(pkl(jkf)) = ω(jlf), ω ∈ Jml X.

(We shall simply write ω(jkf) = ω(jlf) if no confusion arises).

Example 9.2. A 1-jet differential is a differential 1-form ω =
∑n
i=1 ai(z)dzi. Let f =

(f1, ..., fn) : ∆r → X be a holomorphic map. Then

ω(j1f) =
n∑
i=1

ai(f)dzi(f
′
) =

n∑
i=1

ai(f)f
′

i

and δω is a 2-jet differential of weight 2, given by

δω(j2f) = (ω(j1f))
′

= (
n∑
i=1

ai(f)f
′

i )
′

=
n∑

i,j=1

∂ai
∂zj

(f)f
′

if
′

j +
n∑
i=1

ai(f)f
′′

i .

Analogously, δ2ω is a 3-jet differential of weight 3, given by

δ2ω(j3f) =
n∑

i,j=1

∂2ai
∂zj∂zk

(f)f
′

if
′

jf
′

k + 3
n∑

ij=1

∂ai
∂zj

(f)f
′′

i f
′

j +
n∑
i=1

ai(f)f
′′′

i .

Example 9.3. (See [8] for details.) Let

X = {[z0, z1, z2] ∈ P2 |P (z0, z1, z2) = 0}
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be a non-singular curve of degree d = 4. Using the preceding we may write down explicitly
a basis for H0(Jmk X). We demonstrate via examples. For d = 4, it can be shown that

h0(J 2
2 X) = h0(K2

X) + h0(KX) = 6 + 3 = 9

(where KX is the canonical line bundle) and, since the genus is 3, there are 3 linearly
independent 1-forms ω1, ω2, ω3 which may be taken as ([8]):

ω1 =
z0(z0dz1 − z1dz0)

∂P/∂z2
, ω2 =

z1(z0dz1 − z1dz0)
∂P/∂z2

, ω3 =
z2(z0dz1 − z1dz0)

∂P/∂z3
.

A basis for H0(J 2
2 X) is given by

ω⊗2
1 , ω⊗2

2 , ω⊗2
3 , ω1 ⊗ ω2, ω1 ⊗ ω3, ω2 ⊗ ω3, δω1, δω2, δω3

where δ is the derivation defined in Proposition 2.1. The first six of these provide a basis
of H0(KX2) and the last three may be identified with a basis of H0(KX). For J 3

2 X we
have

h0(J 3
2 X) = h0(K2

X) + h0(K3
X)

= h0(OX(2(d− 3))) + h0(OX(3(d− 3)))

=
(

2d− 4
2

)
−
(
d− 4

2

)
+
(

3d− 7
2

)
−
(

2d− 7
2

)
.

In particular, for d = 4, h0(J 3
2 X) = h0(K2

X) + h0(K3
X) = 6 + 10 = 16. A basis for

H0(J 3
2 X) is given by the six elements (identified with a basis of H0(K2

X))

δω⊗2
1 , δω⊗2

2 , δω⊗2
3 , δ(ω1 ⊗ ω2), δ(ω1 ⊗ ω3), δ(ω2 ⊗ ω3)

and the 10 elements (a basis of H0(K3X)):

ω⊗3
1 , ω⊗3

2 , ω⊗3
3 , ω1 ⊗ ω2 ⊗ ω3,

ω⊗2
1 ⊗ ω2, ω⊗2

1 ⊗ ω3, ω⊗2
2 ⊗ ω1, ω⊗2

2 ⊗ ω3, ω⊗2
3 ⊗ ω1, ω⊗2

3 ⊗ ω2.

�

Remark 9.4. The concept of jet bundles extends also to singular spaces. Let us remark on
how this may be defined. One may locally embed an open set U of X as a subvariety in
a smooth variety Y . By abuse of notation we write simply U ⊂ Y . At a point x ∈ U the
stalk jet (JkY )x is then defined (Y is smooth). The stalk (JkX)x is defined as the subset

{jkf(0) ∈ (JkY )x | f : ∆r → Y is holomorphic , f(0) = x and f(∆r) ⊂ U}.

�

Example 9.5. Consider the embedded curve in C2:

X = {(x, y) | y2 = x3}

with a simple cusp at the origin. Differentiation yields:

2ydy = 3x2dx



1198 The Oka-Grauert-Gromov principle for holomorphic bundles

thus J1X is simply the variety in C4 defined by

J1X = {(x, y;x1, y1) ∈ C2 ×C2 | y2 = x3, 2yy1 = 3x2x1}.

Consider the projection p10 : J1X → X induced by the projection pr2 : C2 ×C2 → C2

onto the first factor. Then p−1
10 (0, 0) ∼= C2 but for (x, y) 6= (0, 0)

p−1
10 (x, y) ∼= {(x1, y1) ∈ C2 | 2yx1 = 3x2y1} ∼= C

is a line through the origin in C2.

Differentiate further, we get:

2(dy)2 + 2yδ2y = 6x(dx)2 + 3x2δ2x.

Thus J2X is the variety in C6 defined by

J2X = {(x, y;x1, y1;x2, y2) ∈ C6 | f = f1 = f2 = 0}

where
f(x, y) = y2 − x3,

qf1(x, y;x1, y1) = 2yy1 − 3x2x1,

f2(x, y;x1, y1;x2, y2) = 2y2
1 + 2yy2 − 6xx2

1 − 3x2x2

For 2-jets we have two projections:
p20 : J2X → X be the projection induced by the projection C2 × C4 onto the first

factor, and
p21 : J2X → J1X be the projection induced by the projection C4 ×C2 onto the first

factor.

We have:
(1) p−1

21 (0, 0;x1, 0) ∼= C2 for any x1

(2) p−1
21 (0, 0; 0, y1) = ∅ if y1 6= 0,

(3) p−1
21 (x, y; 0, 0) = C if x 6= 0, y 6= 0 is a line in C2 through the origin,

(4) p−1
21 (x, y;x1, y1) = C if x 6= 0, y 6= 0, x1 6= 0, y1 6= 0 is an affine line in C2 not

passing through the origin. �

Let f : C → X be a holomorphic map such that the k-jet jkf : C → JkX is non-
trivial in the sense that the image jkf(C) is not entirely contained in the zero-section of
JkX then

[jkf ] : C→ P(JkX)

(where [ ] : JkX → P(JkX) is the quotient map) is a well-defined holomorphic map.
Clearly we have p ◦ [jkf ] = f where p : (JkX) → X is the projection. This map
shall be referred to as the canonical lifting of f . In the theory of holomorphic maps it
is usually difficult to “move” the map f holomorphically. It is, however much easier to
“move” the jet jkf in JkX , by that we mean moving the image of jkf along the fiber
of a generic point. More precisely, we look for a holomorphic map gk : C → P(JkX)
such that gk(ζ) is in the fiber P(Jkf(ζ)(X)) for all ζ but at a prescribed point ζ0, gk(ζ0) 6=
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jkf(ζ0). This is possible basically due to the fact that C is contractible hence the pull-back
f∗(P(JkX)) is a trivial bundle with fiber the weighted projective space P(Qk,n). Thus, if
there is an automorphism φ of P(Qk,n), sending an element (f(ζ), v1) to (f(ζ), v2) then
the automorphism can be extended to a bundle morphism of f∗(P(JkX)). Even though a
weighted projective space admits many automorphisms it is not a homogeneous space. For
example, a singular point cannot be moved to a non-singular point by an automorphism,
we can always do so via rational maps.

Consider the following commutative diagram:

f∗(JkX)
f∗−→ JkX

[ ] ↓ ↓ [ ]

f∗P(JkX)
f∗−→ P(JkX) (9.4)

ρ ↓ [jkf ]↗ ↓ p

C
f−→ X

Since C is contractible and Stein, Oka Principle implies that the bundle f∗(JkX)→ C is
holomorphically trivial. The same is then also true for f∗P(JkX) → C. Thus we have a
commutative diagram

C×P(Qk,n) Φ−→ f∗P(JkX)
f∗−→ P(JkX)

p1 ↓ ρ ↓ [jkf ]↗ ↓ p (9.5)

C id−→ C
f−→ X

where P(Qk,n) is the weighted projective space which is isomorphic to any of the fibers
of P(JkX), Φ is the trivialization map and p1 is the projection onto the first factor. From
the definition (2.1.3) of the C∗-action, the fiber P(JkX)x is a weighted projective space
of type

Qk,n = (1, · · · , 1, 2, · · · , 2, ..., k, · · · , k)

(each integer is repeated n-times).

In general for anyQ = (q0, ..., qr) be a (r+1)-tuples of positive integers and (Cr+1, Q)
be the (r + 1)-dimensional complex vector space such that the variable zi, 0 ≤ i ≤ r is
assigned the weight (or degree) qi. A C∗-action is defined on (Cr+1, Q) by:

λ · (z0, ..., zr) = (λq0z0, ..., λ
qrzr), λ ∈ C∗.

The quotient space, P(Q) = (Cr+1, Q)/C∗, is the weighted projective space of type Q.
(Note that for the fiber P(Qk,n) of the projectivized k-jet bundle over an n-dimensional
manifold X , r = nk − 1.) The equivalence class of an element (z0, ..., zr) is denoted by
[z0, ..., zr]Q. For Q = (1, ..., 1) = 1,P(Q) = Pr is the usual complex projective space of
dimension r and an element of Pr is denoted simply by [z0, ..., zr]. For a tuple Q define a
map ψQ : (Cr+1,1)→ (Cr+1, Q) by

ψQ(z0, ..., zr) = (zq00 , ..., z
qr
r ).



1200 The Oka-Grauert-Gromov principle for holomorphic bundles

It is easily seen that ρQ is compatible with the respective C∗-actions and hence descends
to a well-defined morphism:

[ψQ] : Pr → P(Q), [ψQ]([z0, ..., zr]) = [zq00 , ..., z
qr
r ]Q.

The weighted projective space can be alternatively described as follows. Denote by Θqi

the group consisting of all qi-th roots of unity then the group ΘQ = ⊕ri=0Θqi acts on Pr

by coordinatewise multiplication:

(θ0, ..., θr).[z0, .., zr] = [θ0z0, ..., θrzr], θi ∈ Θqi .

The the quotient space Pr/ΘQ is isomorphic to P(Q).

Theorem 9.6. The weighted projective space P(Q) is isomorphic to the quotient Pr/ΘQ.
In particular, (Q) is irreducible and normal (the singularities are cyclic quotients and
hence rational).

The singular set can be described explicitly as follows.

Theorem 9.7. Let Q = (q0, ..., qr) be q (r + 1)-tuple of positive integers such that
gcd{q0, .., qr} = 1 and gcd{q0, ..., q̂i, ..., qr} = 1 for i = 0, ..., r. Then the a point
[z0, ..., zr]Q is a singular points of P(Q) = if and only if gcd{qi | zi 6= 0} > 1. The set of
regular points P(Q)reg is simply connected.

Example 9.8. Let Qk,2 = (1, 1; 2, 2; ..., k, k) then the singular points are of the form:

[0, 0; ∗, ∗; 0, 0; 0, 0; ...; 0, 0]Q
[0, 0; 0, 0; ∗, ∗; 0, 0; ...; 0, 0]Q
· · ·
· · ·

[0, 0; 0, 0; 0, 0; ...; 0, 0; ∗, ∗]Q

where ∗ represents non-zero complex numbers. The weighted projective space P(Qk,2) is
of dimension 2k − 1. It is non-singular if and only if k = 1, and for k ≥ 2,

dim P(Qk,2)sing = 1.

The projectivized jet bundle P(JkX) over a surface X is of dimension 2k + 1. It is non-
singular if and only if k = 1 and

dim P(JkX)sing = 3.

In general, the weighted projective space P(Qk,n) is of dimension nk−1. It is non-singular
if and only if k = 1 and

dim mathbfP (Qk,2)sing = n− 1.

The projectivized jet bundle P(JkX) over a manifold X of dimension n is of dimension
n(k + 1)− 1. It is non-singular if and only if k = 1 and

dim P(JkX)sing = 2n− 1.
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�

The following notion is standard in algebraic geometry:

Definition 9.9. A coherent sheaf S of rank r over a complex space X of dimension n is
said to be big if

dimH0(X,S⊗m) = O(mn+r−1).

�

Remark 9.10. (i) It is well-known that S is big if and only if the Serre line sheaf LP(JkX),
over the projectivization P(JkX), is big. The Serre line bundle is the line sheaf on
P(JkX) whose restriction to each fiber is the sheaf OP(Qn,k)(1) of the weighted pro-
jective space P(Qn,k).

(ii) It is well-known that the space of sections

H0(X,�mS ⊗ [D]) and H0(P(S∨),L⊗mP(S∨) ⊗ p
∗[D])

are canonically isomorphic where p is the projection map and D is a divisor on X . In
particular,

H0(X,�mJmk X ⊗ [D]) and H0(P(JkX),L⊗m
P(JkX)

⊗ p∗[D]).

(iii) It is well known that, if a coherent S over X is big then, for any effective divisor
D in X

dimH0(X,S⊗m(−D)) = O(mn+r−1), n = dimX.

This follows from the exact sequence:

0→ S(−D) ⊗σ−→ S ρ|D−→ S⊗m|D → 0

where [σ = 0] = D and ρ|D is the restriction map. The associate long exact sequence
starts with

0→ H0(X,S⊗m(−D)) ⊗σ−→ H0(X,S⊗m)
ρ|D−→ H0(D,S⊗m|D)→ ...

The middle term isO(mn+r−1) and it is well-known thatH0(D,S⊗m|D) is of lower order
because dimD = n− 1. �

We now return to the diagrams (9.4) and (9.5). By definition

f∗P(JkX) = {(ζ, v) ∈ C×P(JkX) | f(ζ) = p(v)}

and the commutativity of the diagram implies that [jkf ](ζ) = f∗(ζ, [jkf ](ζ)). Triviality
of the bundle then implies that there is a holomorphic section φ : C → C × P(Qk,n)
(p1 ◦ φ = id) such that

f∗ ◦ Φ ◦ φ = [jkf ].

We may write φ(ζ) = (ζ, ψ(ζ)) where ψ : C→ P(Qk,n) is a holomorphic map. Thus we
can move [jkf ] by moving the section φ (which amounts to moving ψ).



1202 The Oka-Grauert-Gromov principle for holomorphic bundles

More precisely, let u0 = ψ(ζ0) ∈ P(JkX)ζ0
= P(Qk,n) (observe that there is no loss

of generality in assuming that fi(ζ0) = 1 for all i), where ζ0 is a fixed point in C, and an
arbitrary point [v] ∈ P(Qk,n) there exists a rational map

γ : P(Qk,n)→ P(Qk,n)

such that γ([u0]) = [v] inducing a rational map

G : C×P(Qk,n)→ C×P(Qk,n), G(ζ, [ξ]) = (ζ, γ([ξ])). (9.6)

Then we get a section

G ◦ φ : C→ C×P(Qk,n), G ◦ φ(ζ) = (ζ, γ([ξ])) (9.7)

which is holomorphic and G◦φ(ζ0) = (ζ0, γ([u0])) = (ζ0, [v]). (For example, in the case
k = 1,P(Q1,n) is just the usual projective space Pn−1, and is a homogeneous manifold.
Thus we can simply take γ to be an automorphism sending [u0] to [v].) In any case γ may
be chosen to be of the form

γ
(
x1 = (x1

1, ..., x
n
1 ); ...;xk = (x1

k, ..., x
n
k )
)

=
((
P 1

1 (x1), ..., Pn1 (x1)
)
; ...;

(
..., P 1

k (x1, ..., xk), ..., Pnk (x1, ..., xk)
))
, (9.8)

where
(
(..., xj1, ...); ...; (..., xjk, ..)

)
, 1 ≤ j ≤ n, are the homogeneous coordinates on

P(Qk,n) and each P `i , 1 ≤ i ≤ n, 1 ≤ ` ≤ k is a weighted homogeneous polynomial
of degree dj (with coefficients in C). The map γ is said to be a weighted homogeneous
map of weight d. The map

[gk] = f∗ ◦ Φ ◦G ◦ φ : C→ P(JkX) (9.9)

is holomorphic (a meromorphic map from a curve into a projective variety is necessarily
holomorphic) and is a lifting of f , i.e., p ◦ [gk] = f with the property that

[gk(ζ0)] = f∗ ◦ Φ(ζ, [v]).

On the other hand we have:

[jkf(ζ0)] = f∗ ◦ Φ ◦ φ(ζ0) = f∗ ◦ Φ(ζ0, [u0]).

We have thus successfully move [jkf ] to [gk]. Observe that

gk(ζ) = (f(ζ),
((
P 1

1 (j1f)), ..., Pn1 (j1f)); ...;
(
P 1
k (jkf), ..., Pnk (jkf)

))
. (9.10)

We summarize the construction above in the following lemma:

Lemma 9.11. (Moving Lemma) Let f : C → X be a holomorphic map into a projective
manifold. Assume that the image of jkf is not contained entirely in the zero section of
JkX . Let ζ0 be an arbitrary point of C and [ξ0] ∈ P(JkX)f(ζ0)

∼= P(Qk,n). Then there
exists a holomorphic map

[gk] : C→ P(JkX)
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such that (i) p ◦ [gk] = f, (ii) [gk](ζ0) = [ξ0], and (iii) [gk] = (f, [P1, ..., Pk]) where
each [P1, ..., Pk] is a weighted homogeneous polynomial map of degree d in jkf .

The proof of the Moving Schwarz Lemma is based on the Lemma of Logarithmic
Derivatives in Nevanlinna Theory. We shall need the following variation of Theorem 6.1
in [8]:

Lemma 9.12. (Logarithmic Derivatives : Moving Version) Let X be a projective variety.
Given

(i) a non-constant holomorphic map f : C→ X ,
(ii) let [gk] : C→ P(JkX) be a holomorphic lifting of f constructed in the preceding

lemma,
(iii) 0 6≡ ω ∈ H0(X,Jmk X) (or H0(X,Jmk X(logD)) where D is an effective divi-

sor with simple normal crossings) such that ω ◦ gk 6≡ 0. Then

Tω◦gk(r) =
∫ 2π

0

log+
∣∣∣ ω(gk(re

√
−1θ))

∣∣∣ dθ
2π
≤ O

(
log Tf (r)

)
.

Proof. As in the proof of Theorem 6.1 in [8] there exist a finite number of rational func-
tions t1, ..., tq on X such that:

(†) the logarithmic jet differentials {(d(j)ti/ti)m/j | 1 ≤ i ≤ q, 1 ≤ j ≤ k}
span the fibers of Jmk X(logD) (resp.Jmk X) over every point of X .

To obtain the estimate of the theorem, we proceed analogously as in [8], by considering
the function,

ρ : JkX(− logD)→ [0,∞],

defined by

ρ(ξ) =
N∑
i=1

k∑
j=1

|(d(j)τ i/τ i)md/j(ξ)|2, ξ ∈ JkX(− logD) (resp. JkX) (††)

is continuous in the extended sense; ρ is strictly positive (possibly +∞) outside the zero-
section of JkX (see the proof in [8] for more details, because the jet differentials in (†)
span). Fix a fiber Fx = JkxX,x ∈ X and let Pi, 1 ≤ i ≤ k, be weighted homogeneous
polynomials of degree d in ξ. Denote by P (ξ) = (P1(ξ), .., Pk(ξ)) and define,

Rx,P (ξ) =
|ω(P (ξ))|2

ρ(ξ)
: (Fx)∗ → [0,∞).

Observe that:

|ω(P (λξ))|2

ρ(λξ)
=
|λ|2md|ω(P (ξ))|2

|λ|2mdρ(ξ)
=
|ω(P (ξ))|2

ρ(ξ)

for all λ ∈ C we see that Rx descends to a well-defined continuous function on the pro-
jectivization Px(JkX) and so, by compactness, there exists a constant

cx,P = max
[ξ]∈Px(JkX)

R([ξ])
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with the property that

|ω(P (ξ))|2 ≤ cx,P ρ(ξ)

for all ξ and P . Since the space of weighted homogeneous polynomials of a fixed degree
may be identified with some projective variety, we get

|ω(P (ξ))|2 ≤ cxρ(ξ), cx = max
[Q]|degQ=d

cx,[Q] <∞.

Obviously, cx is a continuous function of x, hence (as X is compact) we may replace cx
by C = maxx∈X cx in the inequality above. This implies that

Tω◦gk(r) =
∫ 2π

0

log+ |ω(gk(re
√
−1θ))| dθ

2π

≤
∫ 2π

0

log+ |ρ(jkf(re
√
−1θ))| dθ

2π
+O(1).

The classical lemma of logarithmic derivatives for meromorphic functions and (††) implies
the following estimate:∫ 2π

0

log+ |ρ(gk(re
√
−1θ))| θ

2π

≤ O
(∫ 2π

0

N∑
i=1

log+ |(ti ◦ f)(j)/ti ◦ f |
dθ

2π

)
≤ O

(
log r(Tf (r))

)
as claimed. �

By remark 9.10 we can identify a jet differential ω ∈ H0(X,Jmk ⊗ [−H]) with an
element of σω ∈ H0(P(JkX),Lm ⊗ p∗[−H]). The canonical isomorphism is such that
ω(gk) = σω([gk]). We shall abuse notation and write ω for σω as well. The following is a
very useful consequence of the Moving Lemma:

Theorem 9.13. (Moving Schwarz Lemma) Let X be a compact complex manifold, f :
C → X be a non-constant holomorphic map and [gk] : C → P(JkX) a lifting as
constructed in the Moving Lemma (Lemma 9.11). Let H be an effective generic ample
divisor inX and ω ∈ H0(Y,LmP(JkX)⊗p

∗[−H]) be a non-trivial section (where LP(JkX)

is the Serre line bundle and p : P(JkX)→ X is the projection map). Then ω([gk]) ≡ 0.

Proof. By Lemma 9.12, if ω([gk]) 6≡ 0 then

Tω◦gk)(r) = O
(

log Tf (r)
)
.

On the other hand, there is no loss of generality that, the ample divisor H is generic. From
Nevanlinna Theory we know that Nf (H, r) = O(Tf (r)) for generic ample divisors. Since
[gk] is a lifting of f the intersection number of [gk] with p∗(−H) is not smaller than the
intersection number of f with H . This implies that

Nω◦gk(p∗H, r) ≥ Nf (H, r) = O(Tf (r)),
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thus

O(Tf (r)) ≤ Nω◦g(p∗H, r) ≤ Tω◦gk(r) ≤ O(log rTf (r)).

This is impossible, as we may assume without loss of generality that f is transcendental
(so log r/Tf (r)→ 0). This means that ω(gk) ≡ 0 as claimed. �

Let X be a projective variety and

S = {x ∈ f(C) for some non-constant holomorphic curve f : C→ X}.

Let L = LP(JkX) be the Serre line bundle over P(Jk(X)). Define, for a very ample
divisor H in X ,

BH = ∩m≥0{ξ ∈ P(Jk(X)) | σ(ξ) = 0, σ ∈ H0(P(Jk(X),Lm ⊗ p∗(−H))}

and

B = ∩HBH

where the intersection is taken over all very ample divisor of X .

Theorem 9.14. (Structure Theorem for Base Locus) Let X be a projective variety and
assume that the sheaf of germs of k-jet differentials JkX is big. Then p−1(S) is contained
in B where p : P(JkX)→ X is the projection map.

Proof. For any x0 = f(ζ0) ∈ f(C) where f : Cp → X is analytic. Let (x0), v) be
any point in the fiber P(JkX)x0 , we get via the Moving Lemma the existence of a lifting,
[gk] : C → P(JkX), of f such that [gk](ζ0) = (f(ζ0), v) = (x0, v) and satisfies the
growth condition T[gk](r) = Tf (r). By the moving Schwarz Lemma, [gk](C) ⊂ BH for
any very ample divisor H . Thus (f(ζ), v) is in B. Since (x0, v) is an arbitrary point in the
fiber P(JkX)x0 , the entire fiber P(JkX)x0 is in B. Since x0 is an arbitrary point in S we
have p−1(S) ⊂ B as claimed. �

IfX is a surface, the base locus is the union of the preimages of all rational curves and
elliptic curves in X .

Corollary 9.15. Let X be a complex projective variety and assume that the sheaf of germs
of k-jet differentials is big. Then X is Brody hyperbolic, i.e., the image of every holomor-
phic map f : C→ X is contained in a subvariety Y in X of strictly lower dimension.

Proof. Let f : C → X be a non-constant entire holomorphic curve in X and Y be
the Zariski closure of f(C) in X . Since f(C) ⊂ S hence p−1(f(P)) ⊂ B which is a
subvariety of P(JkX). Thus p−1(Y ) is also contained in B, hence is contained in B.
If the image f(C) is not contained in a proper subvariety of X then Y = X , but then
B = p−1(Y ) = p−1(X) = P(JkX). This is absurd, thus f(C) must be contained in a
proper subvariety of X . �

Remark 9.16. The preceding (Lemma 9.11 - Corollary 9.15) are valid for logarithmic jets
Jmk X(logD) (with the condition that f : C→ X \D) instead of Jmk X . �

The next result can be found in [8] (see also [18]):
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Theorem 9.17. The sheaf of k-jet differential JkX of a hypersurface X in P3 is big if
degX ≥ 5.

By Corollary 9.15, every entire holomorphic curve f : C→ X is contained in an alge-
braic curve, necessarily, rational or elliptic. By a result of Xu [52], a generic hypersurface
X in P3 of degree ≥ 5 does not contain any rational or elliptic curve thus (see [8]):

Corollary 9.18. A generic hypersurface X of degree d ≥ 5 in P3 is Brody hyperbolic.

10 The algebraic version of Oka’s principle

In Serre’s celebrated paper on coherent sheaves, it was shown that an OX -coherent (resp.
locally free) sheaf M over an affine algebraic variety X (defined over an algebraically
closed field C of characteristic zero) may be identified with a finitely presentable (resp.
projective) module M over the coordinate ring OX(X). In the special case where X is
the affine space Kn, OX(X) is just the polynomial ring K[t1, ..., tn] and in general, the
coordinate ring of an affine algebraic variety is the quotient K[t1, ..., tN ]/I for some ideal
I . The famous Serre’s problem is the following:

“Is a projective module over a polynomial ring K[t1, ..., tn] free?”

Geometrically this is equivalent to asking

“Is every algebraic vector bundle over Kn trivial?”

In the case K = C this is a special case of the Oka Principle and the answer is affirmative
because Cn is contractible so every topological bundle is topological trivial, hence also
holomorphically trivial. Serre’s algebraic Oka Principle was established affirmatively by
Quillen and Suslin, independently, in 1976.

The analogue of Stein varieties, on which the Oka Principle is establised, can be analo-
gously defined over the p-adic number field Cp with the p-adic absolute value | |p replacing
the usual Archimedean absolute on Cn. Analytic functions can be defined as convergent
power series. Since the p-adic absolute value is non-Archimedean it is necessary to work in
the categories of affinoid varieties and rigid analytic varieties as introduced by Tate. It will
take too much space here to properly define these concepts so we shall be contented with
a very brief description and refer to [2] for the precise definitions (and further references).
The algebra of convergent power series (defined over Cp) in n variables and with radius of
convergent r > 0 is known as the Tate algebras and will be denoted by Tn,r. The maximal
spectrum (i.e. the space of all maximal ideals) Max(Tn,r) can be identified with the space

Max(Tn,r) = ∆
n
(r) = {(x1, ..., xn) ∈ Cn

p | max
1≤i≤n

|xi|p ≤ r}.

In general an affinoid variety is by definition a pair Max(R), R) where R is an affinoid
algebra, that is,R = TN,r/I for someN and for some ideal I . In particular, (∆

n
(r), Tn,r)

is an affinoid variety. Very roughly speaking, a rigid analytic variety is a space which
admits an open cover consisting of affinoid varieties satisfying the obvious compatibility
conditions. With these the analogue of a Stein variety can be defined:
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Definition 10.1. A rigid analytic variety X is said to be quasi-Stein if there exists an
exhaustion

X1 ⊂ X2 ⊂ · · · ⊂ ∪∞i=1Xi = X

where each Xi is an open subdomain which is affinoid. �

The definition is meant to imitate the fact that a complex Stein manifolds admits an
exhaustion by pseudoconvex subdomains. We stress here that the p-adic topology (the
metric topology defined by the p-adic absolute value) behaves very differently from the
Archimedean absolute value on C and is not suitable for defining sheaves and sheaf co-
homologies. It is therefore necessarily to work with the associated Grothendieck topology
(abbrev. G-topology, which is, however, not a topology as the name suggested) and is
included in the technical definition of rigid analytic varieties.

The following theorem (see [2]) shows that the quasi-Stein rigid varieties share many
of the properties of complex Stein manifolds (see section 1 of this article)

Theorem 10.2. Let X a quasi-Stein rigid analytic variety. Then
(i) OX,x is a Noetherian local ring,

(ii) OX(X)|Xi is dense in OXi ,
(iii) (Theorem A) for each point x ∈ X the evaluation map H0(X,S) → Sx is

surjective, in other words, global sections generate each stalk.
(iv) (Theorem B) Hq(X,S) = 0 for all q ≥ 1 for any coherent OX -sheaf S, in

particular, Hq(X,OX) = 0 for all q ≥ 1 and H0(X,OX) = OX(X).

Theorem A and B in complex theory are known as Cartan’s Theorem A and B. Serre’s
identification of locally free sheaves with projective modules for affine algebraic varieties
is also valid in the category of quasi-Stein varieties. More precisely, a locally free O)X -
sheaf over a quasi-Stein rigid analytic variety is identified with a projective module over
the sheaf of OX(X)-module. The Serre problem can also be formulated:

“Is a projective module over the ring Tn,∞, of convergent power series with radius of
convergence r =∞, free?”

The Serre’s problem is also valid in this form hence, we have:

“A locally free rigid analytic sheaf over the rigid analytic variety Cn
p is trivial.

Note that Cp admits two structures, the affine algebraic structure and the rigid analytic
structure. The situation is similar to the complex case, Cn has the structure of an algebraic
variety and also an analytic structure.

The results in section 9 can be extended to the p-adic case. In fact, some of the results in
the p-adic case is stronger than the complex case. For example, a p-adic abelian varieties (in
particular an elliptic curve, i.e. a curve of genus 1) is p-adic hyperbolic. The corresponding
result is obviously false in the complex case. We refer to [2] for precise statements and
details.
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(1983) 121–135

[27] G. Henkin and F. Leiterer: Oka-Grauert’s principle without induction over the basis
dimension Math. Ann. 311 (1988) 71–93

[28] F. Hirzebruch: Topological Methods in Algebraic Geometry (Springer-Verlag, 1966)
[29] D. Husemoller: Fiber Bundles (McGraw-Hill, 1966)
[30] J. Kajiwara: Equivalence of Steinness and validity of Oka’s principle for subdo-

mains with continuous boundaries of a Stein manifold Mem. Fac. Sci. Kyushu Univ.
Ser. A 33 (1979) 83–93

[31] J. Kajiwara and M. Nishihara: Charakterisierung der Steinschen Teilgebiete durch
das Okasches prinzip in zweidimensionaler Steinscher Mannigfaltigkeit Mem. Fac.
Sci. Kyushu Univ. Ser. A 33 (1979) 71–76

[32] D. Krupka and M. Krupka: Jets and contact elements In: Proceedings of the Seminar
on Differential Geometry (Math. Publ. vol. 2, 2000) 39–85

[33] N. M. Kumar: Complete intersections J. Math. Koyoto Univ. 17 (1977) 533–538
[34] N. M. Kumar: On Two Conjectures About Polynomial Rings Invent. Math. 46

(1978) 225–236
[35] E. Kunz: Introduction to commutative algebra and algebraic geometry (Birkhaüser,
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Abstracts

Global aspects of Finsler geometry
Tadashi Aikou and László Kozma

Finsler geometry originates from the calculus of variations, started in the twenties of the
last century. The first essential movement towards global aspects of Finsler metrics on
manifolds was due to L. Auslander in 1955. Then, the development of global (principal)
connection theory, applied for Finslerian structures by M. Matsumoto in the sixties, opened
the door to discuss the generalization of Riemannian global results for Finsler geometry.
This was getting through by Chern’s flourishing school in the last 15 years.

In this report we intend to sketch the state of today in this respect without the purpose
of completeness. First the basics in Finsler Geometry are described: the fundamental func-
tion, the Chern connection, torsions and curvatures, the flag curvature. Then the properties
of geodesics, the exponential map, the minimality of geodesics, and the Hopf-Rinow theo-
rem are given. We discuss the first and second variation formulae, Jacobi fields, conjugate
points, injectivity radius and related topics, such as Cartan-Hadamard and Bonnet-Myers
theorems. We quote the fundamental comparison theorems of Finsler geometry: some
depends on bounds of flag curvature, while others depend on bounds of the Ricci scalar
curvature. Several rigidity theorems are presented, which give assumptions on the Finsler
structure for the reduction to a locally Minkowski or Riemannian space. Then, applying
Morse’s theory for the energy functional, some results on the length and multiplicity of
closed geodesics of Finsler manifolds, and the sphere theorem are reviewed. Finally, we
report how the Gauss-Bonnet theorem have been extended for Finsler manifolds.

Morse theory and nonlinear differential equations
Thomas Bartsch, Andrzej Szulkin and Michel Willem

In this survey we treat Morse theory on Hilbert manifolds for functions with degenerate
critical points. We describe the global and the local aspects of the theory, in particular
the Morse inequalities, the Morse Lemma and critical groups. We consider applications
to semi-linear elliptic problems and to closed geodesics on a riemannian manifold. The
theory is extended to strongly indefinite functionals. Applications are given to periodic
solutions of first order hamiltonian systems.

8 B.V. .
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Index theory
David Bleecker

Early history of index theory is given, covering events leading to the discovery of the
Atiyah-Singer Index Theorem. Basic facts are proven about Fredholm operators and the
behavior of the index under perturbations, composition, etc.. The connection between fam-
ilies of Fredholm operators and K-theory is made in the Atiyah-Janich Theorem. Elliptic
pseudo-differential operators on compact manifolds are shown to yield Fredholm oper-
ators. Outlines are given of the embedding proof of the Atiyah-Singer Index Theorem
and the heat kernel proof for twisted Dirac operators. Statements are provided for twisted
versions of the classical index theorems; e.g., the Hirzebruch-Signature, Chern-Gauss-
Bonnet, and Hirzebruch-Riemann-Roch Theorems. Brief treatments of G-index theory
and the Atiyah-Patodi-Singer Theorem are included.

Partial differential equations on closed and open manifolds
Jürgen Eichhorn

We present a survey of some important classes of partial differential equations on mani-
folds and of methods for solving them. This concerns questions of spectral theory, the heat
equation and the heat kernel, the wave equation, Huygens’ principle and the Hamiltonian
approach, index theory on open manifolds, the continuity method and a choice of nonlinear
equations important in geometry and mathematical physics. The spaces under considera-
tion are linear and non-linear Sobolev structures which we briefly define at the beginning
of our contribution.

The spectral geometry of operators of Dirac and Laplace type
Peter Gilkey

We survey results concerning asymptotic formulae in spectral geometry. We give explicit
combinatorial formulas for both the heat trace asymptotics and for the heat content asymp-
totics in the context of smooth manifolds with boundary for the realization with respect to
a variety of elliptic boundary conditions of an operator of Laplace type. We relate these
formulaes to questions in spectral geometry and to the index theorem.

Lagrangian formalism on Grassmann manifolds
D. R. Grigore

The Lagrangian formalism on a arbitrary non-fibrating manifold is described from the
kinematical point of view by (higher-order) Grassmann manifolds; such manifolds are ob-
tained by factorization of the regular velocity manifold to the action of the differential
group. Here we present the basic concepts of the Lagrangian formalism, as Lagrange,
Euler-Lagrange and Helmholtz-Sonin forms, relevant in this context. These objects come
in pairs, namely we have homogeneous objects (defined on the regular velocity mani-
fold) and non-homogeneous objects (defined on the Grassmann manifold) and we give the
connection between them. As a result the generic expressions for a variationally trivial
Lagrangian and for a locally variational differential equation remain the same as in the
fibrating case. Finally, we concentrate on the case of second order Grassmann bundles
which are relevant for many physically interesting cases.
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Sobolev spaces on manifolds
Emmanuel Hebey and Frédéric Robert

Sobolev spaces are important tools in several branches of mathematics. We discuss various
aspects of Sobolev spaces on manifolds. While Sobolev spaces are well understood in Eu-
clidean space, surprises occur in the context of Riemannian manifolds. Starting from the
very first definition of such spaces, we discuss existence and nonexistence of Sobolev em-
beddings, different types of Sobolev inequalities, including the isoperimetric and the Nash
inequality, and the difficult question of getting sharp constants in Sobolev inequalities.

Harmonic maps
Frédéric Hélein and John C. Wood

Harmonic maps are maps between Riemannian manifolds which extremize a natural en-
ergy functional or ‘Dirichlet integral’. They include harmonic functions between Euclidean
spaces, geodesics, minimal immersions, and harmonic morphisms (maps which preserve
Laplace’s equation). The Euler-Lagrange equations satisfied by a harmonic map form a
semi-linear elliptic system of partial differential equations of second order.

We concentrate on the key questions of existence, uniqueness and regularity of har-
monic maps between given manifolds. We survey some of the main methods of global
analysis for answering these questions, together with the approach using twistor theory
and integrable systems.

Topology of differentiable mappings
Kevin Houston

To study the topology of a differentiable mapping one can consider its image or its fibres. A
proportion of this survey paper looks at how the latter can be studied in the case of singular
complex analytic maps. An important aspect of this is study of the local case, the primary
object of interest of which is the Milnor Fibre. More generally, Stratified Morse Theory
is used to investigate the topology of singular spaces. In the complex case we can use
rectified homotopical depth to generalize the Lefschetz Hyperplane Theorem. In the less
studied case of images of maps we describe a powerful spectral sequence that can be used
to investigate the homology of the image of a finite and proper map using the alternating
homology of the multiple point spaces of the map.

Group actions and Hilbert’s fifth problem
Sören Illman

In the first section of the article we consider Hilbert’s fifth problem concerning Lie’s theory
of transformation groups. In his fifth problem Hilbert asks the following. Given a continu-
ous action of a locally euclidean group G on a locally euclidean space M , can one choose
coordinates in G and M so that the action is real analytic? We discuss the affirmative
solutions given in Theorems 1.1 and 1.2, and also present known counterexamples to the
general question posed by Hilbert. Theorem 1.1 is the celebrated result from 1952, due to
Gleason, Montgomery and Zippin, which says that every locally euclidean group is a Lie

Abstracts
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group. Theorem 1.2 is a more recent result, due to the author, which says that every Cartan
(thus in particular, every proper) Cs differentiable action, 1 ≤ s ≤ ∞, of a Lie group G is
equivalent to a real analytic action.

The remaining part of the article, Sections 2–18, is then used to give a complete, and
to a very large extent selfcontained, proof of Theorem 1.2. This tour brings us into many
different topics within the theory of transformation groups.

Exterior differential systems
Niky Kamran

We review the main existence theorems for integral manifolds of exterior differential
sytems, with a special emphasis the Cartan-Kähler Theorem for involutive analytic ex-
terior differential systems. These theorems are illustrated on a number of classical prob-
lems in differential geometry and contact geometry of differential equations. We also give
an introduction to the Cartan-Kuranishi Prolongation Theorem, and to the characteristic
cohomology of exterior differential systems.

Weil bundles as generalized jet spaces
Ivan Kolář

We generalize the concept of higher order velocity and we interpret a Weil bundle as the
space of A-velocities for an arbitrary Weil algebra A. Using a recent identification of
every product preserving bundle functor on manifolds with a Weil functor TA, we deduce
geometric results on TA-prolongations of various geometric objects. We characterize every
fiber product preserving bundle functor F on fibered manifolds in a jet-like manner and we
study F -prolongations of several geometric structures.

Distributions, vector distributions, and immersions of manifolds in Euclidean spaces
Július Korbaš

Our main topics are Schwartzian distributions (including generalized sections of vector
bundles), vector distributions (including the vector field problem), and immersions of
smooth manifolds in Euclidean spaces (including isometric immersions). The Atiyah-
Singer index theorem (covered by D. Bleecker’s contribution in this Handbook) is a kind
of node at which the three topics are joined.

Geometry of differential equations
Boris Kruglikov and Valentin Lychagin

In this contribution a review of geometric and algebraic methods for investigations of sys-
tems of partial differential equations is given. We begin with detailed description of the
geometry of jet spaces, Lie transformations and pseudogroups. Investigation of topology
of integral Grassmanians allows to study singularities of integral manifolds of Cartan dis-
tributions in jets and PDEs.

We consider the most general regular systems of different order PDEs and construct
the corresponding algebra of non-linear differential operators and module of C-differential
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operators, as well as linearization and evolutionary differentiations. Then we discuss the
bracket and multi-bracket formalism, which is applied to the theory of formal integrability.
Here we mainly discuss computation of Spencer δ-cohomology and compatibility condi-
tions, role of characteristics and various reductions of symbolic systems.

Finally we give a brief panorama of local solvability and integrability methods, de-
scribe formal approach to solution spaces, and discuss symmetries, auxiliary integrals and
differential invariants. Spencer D-cohomology links the local aspects to the global theory
and some methods for their evaluations together with examples are provided.

Part of the story we present is already classical, but we also contribute modern approach
and recent results. The exposition is dense though this is compensated with quite a few
references.

Global variational theory in fibred spaces
D. Krupka

We survey recent developments in the general theory of higher order, global integral vari-
ational functionals on fibred manifolds. First we study differential forms on jet prolonga-
tions of fibred manifolds. Then we introduce basic global concepts of the theory of La-
grange structures, such as the Lagrangian, the Lepage form, the Euler-Lagrange form, and
characterize their properties in terms of differentiation and integration theory on manifolds.
We study properties of the Euler-Lagrange mapping, and variational functionals, invariant
with respect to automorphisms of underlying fibred manifolds. We finally discuss selected
topics: examples of Lepage forms, the variational sequence and its consequences, possible
formulations of the Hamilton theory, lifting functors and natural bundles, and properties of
natural variational functionals on natural bundles. Remarks on the proofs of basic asser-
tions are presented.

Second Order Ordinary Differential Equations in Jet Bundles and the Inverse
Problem of the Calculus of Variations
O. Krupková and G. E. Prince

This article is ostensibly concerned with the inverse problem in the calculus of variations
for a single independent variable: “when does a system of second order ordinary differ-
ential equations admit an equivalent variational formulation as a set of Euler-Lagrange
equations?”

Because efforts to solve this famous 120 year old problem over the last 3 decades
have involved the development of many entirely new geometric frameworks for second
order ordinary differential equations, we firstly describe this underlying geometry, covering
topics such as calculus on jet bundle prolongations of fibred manifolds, the geometric
description of second order ordinary differential equations by both forms and vector fields,
and of variational structures, globally and locally. We then turn to the inverse problem in
both its covariant and contravariant forms and derive and discuss the famous Helmholtz
conditions, being the necessary and sufficient conditions for the existence of a Lagrangian.
We give the various geometric versions of the renowned work of Douglas who solved
the problem for two degrees of freedom and review the latest progress on the problem
for arbitrary degrees of freedom using exterior differential systems theory. The article is
intended to provide a comprehensive introduction to the various aspects of current research.

Abstracts
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Elements of noncommutative geometry
Giovanni Landi

We give an introduction to noncommutative geometry and its use. In the presented ap-
proach, a geometric space is given a spectral description as a triple (A,H, D) consisting
of a *-algebraA represented on a Hilbert spaceH together with an unbounded self-adjoint
operator D interacting with the algebra in a bounded manner. The aim is to carry ge-
ometrical concepts over to a new class of spaces for which the algebra of functions A
is noncommutative in general. We supplement the general theory with examples which
include toric noncommutative spaces and spaces coming from quantum groups.

De Rham cohomology
M. A. Malakhaltsev

The aim of the paper is to give a brief introduction to the de Rham cohomology theory and
to expose some relevant results in differential geometry. It includes the following topics: 1)
De Rham complex. De Rham cohomology; 2) Integration and de Rham cohomology. De
Rham currents. Harmonic forms; 3) Generalizations of the de Rham complex; 4) Equiv-
ariant de Rham cohomology; 5) Complexes of differential forms associated to differential
geometric structures. No proofs are given, however the main statements are supplied with
references to literature where the reader can find detailed exposition including proofs. The
bibliography: 97 titles.

Topology of manifolds with corners
J. Margalef-Roig and E. Outerelo Domı́nguez

The study of manifolds with corners was originally developed by J. Cerf and A. Douady as
a natural generalization of the concept of finite-dimensional manifold with smooth bound-
ary, and applications of this type of manifolds in differential topology arose immediately
after its definition. In the setting of Global Analysis a very natural task is to extend the re-
sults of finite-dimensional manifolds with corners to infinite dimensional manifolds. Thus,
in this article, we survey the main features of the manifolds with corners modeled on Ba-
nach spaces or on larger categories of spaces as can be the normed spaces, the locally
convex vector spaces and the convenient vector spaces, that have arisen as very important,
in the last years.

Jet manifolds and natural bundles
D. J. Saunders

We introduce manifolds of jets, including jets of sections, jets of immersed submanifolds
and higher-order velocities, and describe some of the geometrical structures which are
canonically associated with these manifolds. As applications, we give brief introductions
to the integrability theory for differential equations using Spencer cohomology, and to
the calculus of variations and the associated variational complexes. We finally describe
how jets may be used to characterise those operators having chart-independent coordinate
representations by using the concepts of natural bundle and natural operator.
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Some aspects of differential theories
József Szilasi and Rezső L. Lovas

As Serge Lang wrote, it is possible to lay down the foundations (and more beyond) for
manifolds modeled on Banach or Hilbert spaces rather than finite dimensional spaces at no
extra cost. In this article we briefly outline how the theory works if the model space is a
more general locally convex (real) topological vector space, and the underlying differential
calculus is the infinite-dimensional calculus initiated by A. D. Michal and A. Bastiani. In
order to present at least one essential application of basic techniques of functional anal-
ysis, we discuss in detail a coordinate-free characterization of differential operators due
to J. Peetre. In the last part we consider the covariant derivative operator discovered by
S. S. Chern and H. Rund (independently), and which became an indispensable tool for
present day Finsler geometry. We show that the Chern–Rund derivative can be interpreted
as a differential operator on the base manifold.

Variational sequences
R. Vitolo

Variational sequences are complexes of modules or sheaf sequences in which one of the
operations is the Euler-Lagrange operator, i.e., the differential operator taking a Lagrangian
into its Euler-Lagrange form, whose kernel is the Euler-Lagrange equation.

In this paper we present the most common approaches to variational sequences and
discuss some directions of the current research on the topic.

The Oka-Grauert-Gromov principle for holomorphic bundles
Pit-Mann Wong

The Oka-Grauert-Gromov principle is a very powerful tool in the theory of holomorphic
fiber bundles, more generally subelliptic bundles, over Stein spaces. The basic form as-
serts that such bundles must be holomorphically trivial if it is topologically trivial. This
is particular useful in the study of holomorphic mappings from a Stein space into a pro-
jective variety. The situation is particularly nice in the case of hyperbolic geometry where
the domain is the complex Euclidean space. The Oka-Grauert-Gromov principle in this
case says that every subelliptic bundle is trivial. For example, the pull-back of the arc
spaces or the parametrized jet bundles of any order are trivial and information of deriva-
tives of any order can be dealt with using only classical function theory. The theory can
even be extended to the case of Cartesian spaces defined over p-adic number fields. The
basic form of Oka-Grauert-Gromov principle now is equivalent to the assertion that every
projective module, over a ring p-adic convergent power series, is free. This is an analogue
of the classical Serre’s problem that every projective module, over a polynomial ring with
coefficients in a field, is free. In the complex case, the principle can be applied to many
important problems: submersion, immersion, embedding problems; extension problems;
theory of complete intersections; homotopy theory, to name a few. The analogue of these
more sophisticated problems of the principle are, as yet, to be explored in the p-adic case.

Abstracts
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Index

Abel, N.H., 534
Affine bundle structure, 1038–9
Akbar-Zadeh’s theorem, 31–3
Algebra, 627
Alternating homology, 525–8
Analytic De Rham complex, 961
Arc length, 18–20
Asymptotically linear problems, 54–5
Atiyah-Janich theorem, 88, 93–5
Atiyah-Patodi-Singer Index Theorem, 141–2
Atiyah-Segal-Singer Fixed-Point Formula, 141
Atiyah-Singer Index Formula, 104–39, 

213–15, 306
K-theoretic proof of, 111
topological index, 105–11

Atiyah-Singer index, 687

Banach-Hölder theory, 160
Banach manifolds, 984
Banach spaces, 1041
Berwald spaces, 13–14
Best constants, 394–405
Bianchi identity, 13
Bifurcation theory, 55–6
Bishop-Gromov volume comparison theorem, 30–1
Bochner identity, 472
Bonnet-Myers theorem, 28–9
Borel proper, 546–8
Borel’s theorem, 1041
Bott vanishing theorem, 613–14
Brelot harmonic space, 426
Brody hyperbolic space, 1194
Bubble tree, 457–8
Bubbles, 456–9, 473
Bundle map, 1095, 1098

-spectral sequence, 1136–43
Calculus in topological 

vector spaces, 1077–100

Calculus of variations, 1056–63
homogeneous variational problems, 1059–62
variational bicomplex, 1062–3
variational problems on jet bundles, 1056–9

Canonical foliation, 971
Canonical lift, 16
Canonical triple, 931–4
Cartan and proper actions of Lie groups, 543–8
Cartan distributions, 728–9, 1045–6
Cartan G-manifold, non-paracompact, 548–50
Cartan-Hadamard conjecture, 406–11
Cartan-Hadamard theorem, 27–8
Cartan-Kähler Theorem, 592, 600–607, 1055

applications, 616–21
for Pfaffian systems, 608–12

Cartan-Kuranishi Prolongation Theorem, 592, 
607–608, 1056

Cartan submanifolds, 617–19
Cartan systems, 598
Cartan tensor field, 3
Cartan’s involutivity test, 593, 603–5, 616–21
Category theory, 714
Cauchy characteristic vector fields, 598
Cauchy-Kovalevskaia Theorem, 592, 600
Cauchy-Riemann operator, 96–7
Cauchy sequence, 27, 81, 1076
Chain rule, 1081–2
Characteristic cohomology theory, 612–13
Chern characters, 107–108, 915–19

Chern character defect, 108–10
Fredholm modules, and index theorems, 916–19
of idempotents and unitaries, 916

Chern connection, 5–6, 8
see also Rund connection

Chern-Rund derivative, 1101–12
Berwald derivatives, 1104–7
Ehresmann connections, 1104–7
Finsler manifolds, 1107–12
parametric Lagrangians, 1107–10
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Chern-Weil theory, 613
Class, of a differential system, 600–601
Classical Morse theory, 512
Clifford algebra, 115
Clifford bundle, 150
Cobordant manifolds, 686
Coeffective cohomology, 974
Cohen-Macaulay rings, 518
Cohomology, characteristic, 612–13
Cohomology of manifolds over algebras, 971
Colombeau’s algebra, 670–1
Commutative geometries, reconstruction 

of, 935
Complete intersections, 1180–4
Complex spaces, 1166–7

description, 1166–7
Stein, 1167

Complex vector distributions, 705–6
Configuration space, 839

extended, 839
Conic structure theorem, 499
Conjugate points, 23–4
Conjugate radius, 27
Connection, 1048–50, 1070
Connections on modules, 919–21
Connes, A., 906
Contact distribution, see Cartan distributions
Contact element, 337
Contact forms, 341–2, 783–6, 1044–7, 1120–8
Continuity method for non-linear PDEs 

on open manifolds, 235–7
Convenient calculus, 1083
Cousin I distribution, 1170–1
Cousin II distribution, 1171
Critical groups, 51–2, 60–3
Critical point theory, 41
Curvature rigidity, 31–2
Curvature, 11–15

Darboux Theorem, 592, 598, 873
De Rham cohomology, 953–75

basic properties of, 956–8
currents, 959–60
dimension of, 957
equivariant, 965–7
examples of complexes, 967–75
harmonic forms, 960–1
and Hochschild cohomology, 962–3
and integration, 959
and sheaves, 957
stratified, 964–5

De Rham complex, 291, 953–6
see also De Rham cohomology

De Rham currents, 959–60
De Rham sequence, horizontal, 1131
Deahna-Clebsch-Frobenius theorem, 683–4
Derived flag, 597
Diffeomorphism, 469
Differential calculi, 910–12
Differential equations, geometry of, 725–66

differential operators, algebra of, 733–41
formal theory of PDEs, 741–51
geometry of jet spaces, 726–33
local and global aspects, 751–66

Differential equations, on jet manifolds, 1050–6
differential operators, 1050
Peetre’s theorem, 1050
prolonging of, 1052
Spencer sequences and formal integrability 

of, 1054–6
symbols of, 1052–4

Differential equations:
geometry of, 725–66
non-linear, 41–70
partial, 147–282

Differential geometry, applications, 616–21
Cartan submanifolds, 617–19
Riemannian metrics, orthogonal 

coordinates for, 619–21
Differential groups, 332–3, 727–8
Differential operators, 95–6

brackets and multi-brackets of, 740–1
linear, 733–4
non-linear, 737–8

Differential theories, 1069–112
calculus in topological vector spaces, 1077–100
Chern-Rund derivative, 1101–12
topology, 1072–4

Differentiation theories, 996–1018
in convenient vector spaces, 1012–18
in locally convex spaces, 1005–1009
in normable spaces, 996–1002
strong differentiability, 1002–1005

Dipole, 461
Dirac delta-function, 667–8
Dirac operator, equivariant, 945–6
Dirac operators, twisted, 114–29
Dirac type, operator of, 290
Dirichlet boundary conditions, 296–7, 308, 315
Dirichlet problem, 418–21

solutions to, 419–20
uniqueness and minimality, 421, 471–2
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Distributional densities, 677
Distributions, 665–6, 669

definition, 667
see also Schwartzian distributions

Distributions, and related concepts on 
manifolds, 674–80

Schwartz kernel theorem on manifolds, 680
wave front sets, 679–80

Distributions, on Euclidean spaces, 666–73
behaviour under different diffeomorphisms, 

671–2
derivatives of, 670
Fourier transforms of, 672–3

Dixmier trace, 923–6
Dolbeault cohomology spaces, 135, 306
Dolbeaux cohomology, 967–9
Dominating sprays, 1176–8
Dynamical forms, 844–6

Ehresmann connection, 4–5
Ehresmann Fibration theorem, 504, 508
Eigenmaps, 468
Einstein-Dirac equation, 253–4
Elliptic decomposition, 101
Elliptic differential operators, 96–9

Cauchy-Riemann operator, 96–7
Hirzebruch signature operator, 98
Laplace operator, 96

Elliptic operators, 95–104
differential operators, 95–6

Embedding dimensions of Stein 
spaces, 1184–9

Embedding theorem, 1184–5
Embedding theorems, Sobolev spaces on 

manifolds, 381–8, 389–94
compact setting, 384–5
Euclidean case, 389–91
Euclidean setting, 383–4
non-compact setting, 385–7

Embedding theory, homotopy methods, 
711–12

Energy gap, 457
Energy minimizing map, 430–1
Equality and density issues, 380–1
Equivalence, Cartan’s method of, 613
Equivariant De Rham cohomology, 965–7
Equivarient glueing lemma, 569
Equivariant Index Theorem, 139–41
Euclidean type inequalities, 388–9
Euler-Lagrange equation, 20
Euler-Lagrange forms, 344–51

Euler-Lagrange mapping, structure of, 806–16
and fibred automorphisms, 806
formal divergence equations, 807–10
image of, 811–16
kernel of, 810–11

Euler operator, 97–8, 345
Exotic spheres, 499
Extended objects, 368–71
Exterior differential systems (EDS), 591–621, 

755, 839–50, 864–7
inverse problem, 891–4
with independence condition, 602–603

Faber-Krahn inequalities, 201–2
Fibre product, preserving bundle factors, 650–6

applications, 656–63
jet functors, 650
nonholonomic jets, 650–1

Fibred manifolds, 839–40
Fibred manifolds, prolongation of, 775–82

differential forms on, 782–9
Fibred mechanics, 824–5
Finite symmetries, 868
Finsler manifolds, 1–37, 1107–10

Berwald, 13–14
completeness of, 26–7
covariant derivatives on, 1110–1112
geodesics in, 16–27, 33–5
Landsberg, 10
locally Minkowski, 14–15
locally symmetric, 33

Finsler metrics, 1–16
First prolongation, 607–10
First variation formula, 803–804, 851–2

in Finsler manifolds, 18–20
Flag curvature, 15–16
Flow natural map, 656–7
Fluid dynamics, 268–76
Foliation, 683
Formal derivatives, 329–31
Formal integrability, via multi-brackets, 748–50
Fourier transform, 102
F-prolongation of actions, 662
F-prolongation of connections, 658
F-prolongation of vector bundles, 656–7
Fréchet spaces, 1041–2, 1076–7, 1082
Fredholm alternative, 79
Fredholm modules, and index theorems, 916–19
Fredholm operators, 77–86, 211–12, 218–19

definition of, 77–9
examples, 79–86
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Friedrichs’ extension, 168
Frobenius Theorem, 592, 596–8, 683–4
Frölicher-Nijenhuis bracket, 645, 649
Fundamental elliptic estimate, 100
Fundamental theorem of calculus, 1079
Funk metric, 2

geodesics of, 22

G-equivariant Index Theorem, 139–41
Gap phenomenon, 463–4
Gauge natural bundles, 1065
Gauge theory, 258–68

non-Abelian, 362–5
Gauge transformations, 922–3
Gauss-Bonnet-Chern Formula, 131–2
Gauss-Bonnet-Chern theorem, 36–7, 115, 

131–2, 304–305
Gauss maps, 467–8
Gel’fand-Naimark theorem, 906–7
Generalized complex structures, 975
Generalized Yang-Mills Index Theorem, 

132–4
Generalized Zariski singularity, 501
Geodesic variation, 23–4
Geodesics, 424
Geodesics, closed, 33–5, 56–8

in Finsler manifold, 16–27
of Funk metric, 22
of Randers metric, 21

Geometric monodromy, 504
Global immersions and embeddings, 

Whitney’s, 708
Global inverse problem, solution of, 1116
Global isometric immersions, 709
Global theory, 41–4
Global variational theory, in fibred spaces, 

773–830
Euler-Lagrange mapping, structure of, 806–16
fibred mechanics, 824–5
Hamilton theory, 825–7
invariant variational principles, 816–20
inverse problem, 827–8
Lagrange structures, 790–805
prolongations of fibred manifolds, 775–89
variational sequence, 823–4

Gluing principle, 669
Goursat normal form theorem, 599
Grassmann manifold, Lagrangian formalism on, 

344–56
applications, 362–71
Euler-Lagrange forms, 344–52

Grassmann manifolds, 327–44
contact forms on, 341–2
differential equations on, 352–6
differential group, 332–3
higher order, 336–40
morphisms of, 343–4
second order, 357–8

Grauert-Morrey imbedding theorem, 571–2
Grauert’s Oka principle, 1173–6
Gravitation theory, 365–8
Green’s kernel, 204
Green’s operator, 204
Gromov’s h-principle, 712
Gromov’s Oka principle, 1176–8
Group actions, 540–3

Haar integrals, 572–6
Hadamard space, 28
Hahn-Banach extension theorem, 224
Hamilton equations, 865–6
Hamilton theory, 825–7
Hamiltonian systems, 63

infinite dimensional, 210–11
Hamm’s theorem, 503
Harmonic forms, 98

De Rham cohomology, 960–1
Harmonic functions on Euclidean spaces, 

418–21
Dirichlet principle, 418–21

Harmonic maps between Riemannian 
manifolds, 421–9

definition, 421–3
examples, 423–6
harmonic morphisms, 426–9

Harmonic maps, 236, 248–52, 417–80
examples, 423–6
harmonic functions on Euclidean spaces, 

418–21
minimality of, 469–71
restrictions on, 469
twistor theory for, 473–80
uniqueness of, 468–9

Harmonic maps
complex isotropic, 475
into Lie groups, 476–7
into Riemannian symmetric spaces, 

477–8
pluriharmonic, 478–9
properties according to geometric structures, 

471–3
real isotropic, 474–5
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Harmonic maps, proving existence of, 453–68, 471
bubbles, 456–9 
direct method, 453–63
heat flow, 459–61
other methods, 466–8

Harmonic maps, weakly, 429–42
continuous, 442–6
and holomorphic functions, 421
and Sobolev spaces between manifolds, 429–42

Harmonic morphisms, 426–9
Hausdorff dimension, 446
Hausdorff space, 1074
Hearing the shape of a drum, 294–6
Heat content asymptotics, 306–12
Heat content with source terms, 312–13
Heat equation, 189–204
Heat flow, 189–204, 459–60
Heat kernel, 189–204
Heat kernel methods for twisted Dirac 

operators, 114–29
Heat trace asymptotics, and index theory, 303–306
Heat trace asymptotics, for closed manifold, 

291–4
and eta and zeta functions, 294

Heat trace asymptotics, of manifolds with 
boundaries, 296–303

Dirichlet boundary conditions, 296–7, 308, 315
mixed boundary conditions, 298–9, 309
Neumann boundary conditions, 296–7
oblique boundary conditions, 311
Robin boundary conditions, 296–8, 302, 

308–309
spectral boundary conditions, 315–16
transfer boundary conditions, 301–302, 

310–11
transmission boundary conditions, 300–301, 

310
Zaremba boundary conditions, 311–12

Heat trace asymptotics, of non-minimal 
operators, 316–17

Heaviside function, 667
Helmholtz conditions, 854–60, 885–8
Helmholtz form, 1132–3
Helmholtz-Sonin form, 353–4
Hilbert-Cartan equation, 599–600
Hilbert geometry, 33
Hilbert-Lie groups, 262
Hilbert metric, 2
Hilbert’s fifth problem, 533–8
Hirsch and Smale’s immersion theory, 709–11
Hirsch-Smale theorem, 714

Hirzebruch-Riemann-Roch Formula, 134–9
holomorphic, 139
twisted, 138–9

Hirzebruch-Riemann-Roch theorem, 97
Hirzebruch signature formula, 129–31
Hirzebruch signature operator, 98
Hochschild and cyclic cohomology, 914–15
Hochschild and cyclic homology, 912–14
Hodge decomoposition, 136
Hodge theory, 504
Holomorphic bisectional curvature, 1192
Holonomic jets, 1042–4
Holonomy group, 8
Homogeneous Lagrangian, 346–52
Homogeneous spaces, of Lie groups, 550–2
Homology, alternating, 525–8
Homology, and cohomology, 910–15

differential calculi, 910–12
Hochschild and cyclic cohomology, 914–15
Hochschild and cyclic homology, 912–14

Hopf-Rinow theorem, 27
Horizontal distribution, 841
Huygens’ principle, 206–10
Hyperbolic symbol, 609–11
Hyperjacobians, 1122

Idempotents and unitaries, 916
Image computing spectral sequence, 525–9

alternating homology of a complex, 525–7
spectral sequence, 527–9

Image Computing Spectral, 495
Immersions of manifolds, 666
Implicit function theorem, 493, 495–6, 521, 

1082
Index form, 26
Index theory, 75–142

Fredholm operators, 77–86
and heat trace asymptotics, 303–306
history of, 75–7
on open manifolds, 211–35

Index, 77–9
bundle, 88–90
invariance properties of, 80–6

Infinite jets, 1040–2
Infinite prolongations, 608, 612
Infinite singularities, obstructions to removing, 

693–5
Infinitesimal symmetries, 868
Inner averaging map, 575
Integrability condition, 477
Integrability tensor, 9
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Integral element, 592, 601–604
Kähler-regular, 603–604
ordinary, 592, 602
polar space of, 601–602

Integral first variation formula, 853
Integral Grassmanians, 731–3, 750–1
Integral manifolds, 592–4

basic existence theorems for, 595–600
Intersection Cohomology, 494
Invariance of boundary:

for C1
w-diffeomorphisms, 1009–11

for Cr-diffeomorphisms, 999–1000
for Cr

s-diffeomorphisms, 1005
for smooth diffeomorphisms, 1018

Invariant variational principles, 816–20
Jacobi vector fields, 818–20

Inverse function theorem, 1082
Inverse mapping theorem, for quadrants 

in Banach spaces, 1000
Inverse problem in covariant formulation, 852–5
Inverse problem, 827–8
Invertible jets, 1039
Involution, systems in, see Involutive analytic 

systems and Cartan-Kähler Theorem
Involutive analytic systems and Cartan-Kähler 

Theorem, 600–607
Involutive symbol, 608–609
Involutivity test, Cartan’s, 593, 603–605, 616–21
Isolated complete intersection singularity, 504
Isometric immersions, 424
Iwasawa decomposition, 477

Jacobi endomorphism, 879–80
Jacobi equation, 23–4
Jacobi fields, 23–4
Jacobi manifolds, 975
Jacobian ideal, 502
Jet manifolds, 1035–65

calculus of variations on, 1056–63
differential equations on, 1050–6
and natural bundles, 1063–5

Jet spaces, 726–7, 1119
Jets, 1035–50

connections, 1048–50
contact forms, 1044–7
definition, 1036–7
holonomic, 1042–4
of immersed submanifolds, 1039
infinite, 1040–2
invertible, 1039
manifolds of, 1037–40

prolongations, 1042–4
semiholonomic, 1047–8
total derivatives, 1044–7

Klein-Gordon equation, 204–11
Koszul proper, 545–8
Kozsul complex, 973–4
Krupka variational sequence, 856–9
K-theory, introduction to, 86–7

proof of Atiyah-Singer Index Formula, 111
Thom Isomorphism theorem in, 106–107

Kuiper’s theorem, 90–3
Künneth formula, 958

Lagrange structures, 790–805
extremals, 804–805
Lepage forms, 793–803
variational derivatives, 790–3
variational functions, 790

Lagrangian formalism on Grassman manifold, 
344–56

applications, 362–71
Euler-Lagrange forms, 344–52

Lagrangian formalism on second order 
Grassman bundles, 357–62

Landsberg spaces, 10
weak, 11

Laplace and Dirac type operators, spectral 
geometry of, 289–320

DeRham complex, 291
heat trace asymptotics, 291–4

Laplace operator, 96
Laplacian comparison theorem, 29–30
Leaves, 683
Lefschetz Hyperplane theorem, 517
Lefschetz Theorem for Stein space, 1186–7
Lemma, equivariant glueing, 569
Lepage equivalent theorem, 1057–9

examples of, 820–2
Lepage forms, 793–801
Lepage forms, examples of, 820–2
Levi-Civita connection, 6, 9, 14
Lie derivative, 10
Lie-Euler operators, 346
Lie groupoids, 660–1
Lie groups, 534–40

Cartan and proper actions of, 543–8
homogeneous spaces of, 550–2
and manifolds, 539–40

Lie transformation group, 535
Lie transformations, 729–30
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Lindelöf space, 1073
Linear differential operators, 167–77
Liouville theorem, 863–4, 873–9

applications of, 877–9
Local Index theorem, 114–15, 122–9

proof of, 122–6
Local isometric immersions, first results on, 

707–708
Locally Minkowski spaces, 14–15
Loop group formulations, 476–80
Lp-cohomology, 961–3

Mackey complete spaces, 1014–15
Manifold, tangent bundle, 1024
Manifolds and singularities, 495–8
Manifolds in Euclidean spaces, immersions 

and embeddings of, 706–18
Manifolds of jets, 1037–40
Manifolds with corners, 1019–30

modeled on convenient real vector spaces, 
1029–30

modeled on Hlcrtv spaces, 1028–9
modeled on normable spaces, 1019–28

Manifolds with generalized boundary, 1031
Manifolds, quotient, 1027
Martinet’s vanishing theorem, 614
Massa and Pagani connection, 882–4
Maurer-Cartan equation, 476
Maximal integral manifold, 683–5
Maximal vertical distribution, 841
Maximum principle, 420, 471
Mayer-Vietoris sequence, 958
Mean value property, 420
Mean value theorems, 1003–1004
Measure hyperbolicity, 1194
Meromorphic potential, 478
Metastable range of dimensions, 695
Michal-Bastiani differentiability, 1080, 1083
Middle dimension, 501
Milnor algebra, 502
Milnor Fibration theorem, 500
Milnor fibre, 493, 498–504

complete intersections, 503–504
and isolated singularities, 501–502
new from old, 502–503
unreasonable effectiveness of, 502–503

Milnor number, 504
Mixed boundary conditions, 298–9, 309
Modules as bundles, 908–10
Monge-Ampère equations, 615–16
Monge-Ampére exhaustion, 1168–9

Monodromy, 504–507
Monodromy operator, 504
Monotonicity formula, 447
Morse data, 514–17
Morse index, 58–60
Morse inequalities, 45–50
Morse lemma, 51
Morse singularity, 496–7
Morse theory, 41–70

closed geodesics, 56–8
strongly indefinite variational problems, 63–9
strongly indefinite, 58–63

Morse theory, 493–4, 497
classical, 512
relative stratified, 520–1
stratified, 512–17

Moving Schwarz Lemma, 1204–1205
Multiple point spaces, 521–4
Multiplicative property in equivariant 

K-theory, 112–14

Nash, John, 1082
Nash inequality, 387–8, 403–405
Nash-Moser theorem, 280
Natural bundles, 1063–5

gauge, 1065
and geometric objects, 1063
order of, 1063–4

Nets, 1073–4
Neumann boundary conditions, 296–7
Neumann problem, 80
Nevanlinna theory, 1193
Nilradical, 1167
Noether-Bessel-Hagen equation, 869
Noether equation, 869–70
Non-Abelian gauge theories, 362–5
Non-commutative geometry, 905–48

algebra, 907–908
Chern characters, 915–19
connections on modules, 919–21
gauge transformations, 922–3
homology and cohomology, 910–15
modules as bundles, 908–10
noncommutative manifolds, 923–35
spectral geometry of quantum group SUq(2), 

938–48
toric noncommutative manifolds, 935–8

Noncommutative manifolds, 923–35
Dixmier trace, 923–6
real structures, 928–9
spectral triples, 926–31
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Non-degenerate maps, 1037
Non-linear field theories, 253–8
Non-linear PDEs on open manifolds, continuity 

method, 235–7
Teichmüller theory, 236–48

Non-linear PDEs, symbols and characteristics, 
735–7

Non-linear Sobolev structures, 157–67
Null Lagrangians, 470

Oblique boundary conditions, 311
Odd-dimensional manifolds, 2-distributions 

on, 692
Oka-Grauert-Gromov principle for holomorphic 

bundles, 1165–207
Oka Principle, 1165

algebraic version of, 1206–1207
Grauert’s, 1173–6
Gromov’s, 1176–8
and Moving Lemma, 1194–206
with growth condition, 1188–94

Oka’s theorem, 1170–2
Grauert’s, 1173

Open mapping theorem, 78, 84
Orthogonal coordinates, for Riemannian 

metrics, 619–21

Palais proper, 546–8
Palais-Smale condition, 57
Parallel translation, 7–8
Partial differential equations (PDEs), 

147–282
continuity method, 235–7
heat equations, heat kernels and heat flow, 

188–204
index theory, 211–35
linear, 734–5
non-linear Sobolev structures, 157–67
scalar hyperbolic, 614–16
Sobolev spaces, 148–57
spectral theory, 167–77
spectral value zero, 177–88
wave equation, 204–11

Partition argument, 331
Peetre’s theorem, 1050, 1070–1, 1092, 1098
Perturbation theory, 168
Pfaffian systems, 594–600, 685

Cartan-Kähler theorem for, 608–12
completely integrable, 596–8
quasi-linear, 604

Pluriharmonic maps, 478–9

Point symmetries, 870
Poisson cohomology, 972
Poisson theorem, 874
Principal and linear connections, 648
Product-preserving bundle functors, 635
Product theorem, 568–9
Prolongation tower, 607–608
Prolongation, and Cartan-Kuranishi 

Theorem, 607–608
Prolongations, 734–5
Prolongations of fibred manifolds, 775–89
Pseudo-differential operators, 101–104

Quadrants, 984–96
in locally convex real topological vector 

spaces, 993–6
product of, 987–9
smooth maps on, 1016–17
in topological vector spaces, 989–93
in vector spaces, 984–9

Quasi-linear systems, 604
Quotient manifolds, 1027

Radial geodesic, 17
Randers metric, 2

geodesics of, 21
Rauch comparison theorem, 29, 35–6
Rectified homotopical depth, 494, 517–20

definition, 517–18
Reduced characters, 605–606, 611–13
Reduction techniques, 468
Regularity of harmonic maps, 442–53
Relaxed energy, 464–6
Rellich's criterion, 171
Rellich’s theorem, 54
Resolution method, 507
Ricci curvature, 28
Ricci flow, 277–82
Riemann surfaces, 1178–80
Riemannian manifolds, conjecture, 183–4
Riemannian metrics, 2, 5, 9

orthogonal coordinates for, 619–21
Riemannian submersions, spectral geometry of, 

317–20
Rigidity theorems, 31–3
Riquier-Janet theory, 747–8
Robin boundary conditions, 296–8, 302, 308–309
Rourke and Sanderson’s compression theorem, 714
Rund connection, 6

see also Chern connection
Runge Approximation, 1174–5, 1177, 1186
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Sard’s theorem, 495
Schwartz Kernel Theorem, 672, 983
Schwartz kernel theorem on manifolds, 680
Schwartzian distributions, 665–6

definition, 667
see also Distributions

Schwarz’s theorem, 1081–2
Sebastiani-Thom theorem, 503
Second-order ordinary differential equations 

(SODEs), 147, 837–96
on fibred manifolds, 839–50
geometry of, 879–84
symmetries and first integrals, 863–79
variational structures in, 850–63

Second-order ordinary differential equations, 
and inverse problem of the calculus of 
variations, 884–96

computational challenges, 895–6
and exterior differential systems (EDS), 

891–4
geometric formulations, 887–90
Grifone-Muzsnay approach, 895
history of, 884–7
metrisability of connections, 894

Second-order ordinary differential equations, 
geometry of, 879–84

Jacobi endomorphism, 879–80
Massa and Pagani connection, 882–4
and tangent bundle projection, 881–2

Second-order ordinary differential equations, 
on fibred manifolds, 839–50

calculus on jet bundles, 840–3
dynamical forms, 844–6
geometric classification of, 847–50
jet prolongations, 839–40

Second variation formula, 24–7
Self-adjoint linear differential operators, 

167–177
Semi-spray distributions, 842, 848
Semiholonomic jets, 1047–8
Serre-Swan theorem, 906, 908
Sheaf theory, 1118, 1144
Shift operators, 79
Singularities of spaces and mappings, 496–8
s-jet prolongation, 839
Slices, 554–9
Smearing endomorphism, 292
Smooth functions and differential operators on 

R
n, 1084–94

Smooth maps, 432–6, 1015–17
Sobolev maps, trace of, 441–2

Sobolev spaces on manifolds, 375–411
best constants, 394–405
Cartan-Hadamard conjecture, 406–11
compact embeddings, 394
definition, 376–9
embedding theorems, 381–8, 389–94
equality and density issues, 380–1
Euclidean type inequalities, 388–9
explicit sharp inequalities, 405–6
Nash inequality, 387–8, 403–5

Sobolev spaces, 99–101, 148–57, 375–6
module structure theorem, 154–5

Sobolev’s theorem, 381
Spectral asymmetry, 302–303
Spectral boundary conditions, 315–16
Spectral geometry of quantum group SUq(2), 

938–48
Dirac operator, equivariant, 945–6
spin representation, 943–4

Spectral geometry, of Dirac and Laplace type 
operators, 289–320

of Riemannian submersions, 317–20
Spectral parameter, 477
Spectral sequence, 527–9
Spectral theory, 167–77
Spectral triples, 926–31
Spectral value zero, 177–88
Spencer D-cohomology, 763–6
Spencer δ-cohomology, 742–4
Sphere theorem, 35–6
Spin representation, 943–4
Standard elliptic operators, 129–39

Gauss-Bonnet-Chern Formula, 131–2
Generalized Yang-Mills Index Theorem, 132–4
Hirzebruch-Riemann-Roch Formula, 134–9
Hirzebruch signature formula, 129–31

Stationary maps, 431–2
regularity of, 451–2

Stein manifolds, 1166–70
definition, 1166
examples of, 1169

Stein spaces, 1166–72
embedding dimensions of, 1184–9

Steiner’s Roman Surface, 522
Stratification method, 507
Stratifications of spaces, 507–12

First Thom-Mather Isotopy Lemma, 
509–11

Second Thom-Mather Isotopy Lemma, 
511–12

Stratified De Rham cohomology, 964–5
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Stratified Morse theory, 494, 503, 512–17
Morse data, 514–16
Morse functions, 514–15
relative, 520–1

Stress-energy tensor, 431–2
Strong Cr topology, 539–68
Strong Lopatenski-Shapiro condition, 296
Strongly indefinite morse theory, 58–63

cohomology, 58–60
Structure theorem for Base Locus, 1205
Submanifolds, 1025–7
Symbol of order, 103
Symbol, 608–10

hyperbolic, 609–11
involutive, 608–609
principal, 96

Symmetric operators, semi-bounded, 168
Symmetries and first integrals, in second-order 

ordinary differential equations, 863–79
exterior differential systems, 864–7
Liouville theorem, 863–4, 873–9
symmetries of Lagrangian structures, 

867–72
Symmetries of Lagrangian structures, 867–72

TA- prolongations, geometry of, 641–50
Tangent bundle, 675, 1096–7
Tangent bundle manifold, 1024
Tangent bundle projection, 881–2
Tangent manifold, 675
Tangent space, and tangent linear map, 

1022–3
Tautological section, 3
Taylor’s formula, 1081
Teichmüller theory, 161, 236, 237–48
Test functions, 667
Theorem, 1.2, 537–8

proof of, 582–6
Theory of bubbling, applications of, 458–9, 473
Theory of second-order ordinary differential 

equations, variational structures in, 850–63
first variation formula, 851–2
inverse problem in covariant formulation, 

852–5
Krupka variational sequence, 856–9

Thom Isomorphism theorem, 106–8
Thom-Mather Isotopy Lemmas, 509–12

first, 509–11
second, 511–12

Three critical points theorem, 53–4
Tjurina number, 504

Toeplitz operator, 79–80
Tonti Lagrangian, 854–60
Topological g-index, 140
Topological index, 105–11

cohomological formula for, 108
Topological obstructions, 613–14
Topological vector spaces (TVS), 1075–7
Topology of differential mappings, 493–529

image computing spectral sequence, 525–9
manifolds and singularities, 495–8
Milnor fibre, 498–504
monodromy, 504–507
rectified homotopical depth, 517–20
relative stratified Morse theory, 520–1
stratifications of spaces, 507–12
stratified Morse theory, 512–17
topology of spaces and multiple point spaces, 

521–4
Topology of images, 521–4

and multiple point spaces, 523–4
Topology of manifolds with corners, 

983–1031
differentiation theories, 996–7
quadrants, 984–96

Toponogov comparison theorem, 35
Toric noncommutative manifolds, 935–8
Torsion, 8–11
Total derivatives, 338, 1044–7
Tráng, Lê Dung, 498
Transfer boundary conditions, 301–302, 

310–11
Transmission boundary conditions, 

300–301, 310
Trivial vector distributions, existence 

questions, 695–8
Twisted Dirac operators, 114–29

heat kernel methods for, 114–29
index formula for, 122–3

Twisted products, 552–4
Twistor theory, for harmonic maps, 473–80

loop group formulations, 476–80
Two-line theorem, Vinogradov’s, 613
Tychonoff’s theorem, 1083

Uniform structure, 157

Vaisman cohomology, 969–71
Vanishing theorem, Bott’s, 613
Variation formula:

first, 18–20, 803–804, 851–2
second, 24–7
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Variation operator, 505
Variational bicomplex, 1128–36
Variational exact sequence, 327
Variational multivectors, 1152
Variational problems, on jet bundles, 1056–9

Lepage equivalent theorem, 1057–9
Variational problems, strongly indefinite, 

63–9
Hamiltonian systems, 63–9

Variational sequences, 823–4, 850, 856, 
1115–55

and calculus of variations, 1115–16
development of, 1153–5
on differential equations, 1149–50
finite order, 1143–6
on jets of manifolds, 1148–9
on supermanifolds, 1152

Variational sequences, contact forms, 
1120–8

horizontal and vertical differential, 1123
horizontalization, 1121–3
infinite order jets, 1124–8

Variational sequences, symmetries, 1150–2
differential invariants, 1152
invariant inverse problem, 1151–2
invariant variational problems, 1150
Lie derivatives, 1150
Takens’ problem, 1151

Variational sequences, the inverse problem 
of the calculus of variations, 1146–8

locally variational source forms, 1147–8
variationally trivial Langragians, 1147

Variational sequences, variational bicomplex, 
1128–36

global properties of, 1134–6
local properties of, 1133–4
representation, 1131–3

Variational sequences, -spectral sequence, 
1136–43

forms and differential operators, 1138–9
and its 0-th term, 1136–8
and its 1-st and 2-nd terms, 1139–43

Vector bundles, of finite rank, 1098–100
Vector codistributions, 683
Vector distributions, 665–6, 680–706

existence question, 685–9
integrability of, 683–4

Vector field problem, 665, 695–8
results on, 698–704
on specific manifolds after 1975, 704–5

Velocities 
higher order regular, 333–6
(r, n)-, 328–9

Velocity manifold, 327
Vertical endomorphism, 889
Very strong  topology, 539–68
Virtual bundles, 87
Volume comparison, 30–1

Wave equation, 204–11
Wave front sets, 679–80
Wave group, 204
Weakly regular equations, 849
Weierstrass data, 478
Weil algebra, 625–32

automorphisms, 631
homomorphisms, 630
reparametrizations, 629–30
tensor products, 631

Weil bundle, 625, 632–63
A-velocities, 632, 639
iteration, 637–8
multilinear maps, 636–7
natural transformations, 635–7

Weil functors, 633
Weil, A., 625
Weyl asymptotic formula, 292
Weyl tensor, 745–7
Whitney approximation, 570–2
Whitney cross-cap, 497, 521

see also Whitney umbrella
Whitney cusp, 498
Whitney stratification, 507
Whitney umbrella, 497, 521

see also Whitney cross-cap
Whitney’s theorem, 495

Yang-Mills-Higgs equations, 259–60
Yang-Mills Index Theorem, 132–4

Zaremba boundary conditions, 311–12
Zero curvature equation, 477

e-regularity, 447
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